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ABSTRACT 

AN ELECTROMECHANICAL SYSTEM FOR CHARACTERIZATION OF  

PIEZOELECTRIC MATERIALS 

 

by 

  Ahmet Sait Asan 

Piezoelectric materials have been used in medical applications for a long time due to their 

unique characteristics, which is to respond to mechanical stimulation by producing an 

electrical current and vice versa. They perform a pivotal role in medical applications both 

for diagnostic and therapeutic purposes. In this regard, characterizing the piezoelectric 

properties of these materials is crucial for their usage. In this particular study, an 

electromechanical system for measurement of piezoelectric output signals is designed and 

tested. The project is motivated by the question: can the piezoelectric properties be 

characterized by applying different mechanical stimulation waveforms and frequencies. 

Two well-known piezoelectric materials, Polyvinylidene Fluoride (PVDF) and Lead 

Zirconate Titanate (PZT), are used as samples in this project to demonstrate the device 

operation. In addition, a non-piezoelectric material is included as a control group.   
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Minds should be enlightened with science, and hearts need to be illumined 

with religion. The truth comes forth by the marriage of the two. 

 

Vicdanın ziyası, ulûm-u diniyedir. Aklın nuru, fünun-u medeniyedir. İkisinin 

imtizacıyla hakikat tecellî eder. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Objectives 

The objective of this thesis is to characterize piezoelectric materials’ behavior. 

Piezoelectric materials have the ability to convert mechanical energy type to electrical 

and vice versa, and that makes them particularly important for biomedical applications. 

Tissue recovery, piezosurgery, and pressure sensing are some of the areas where 

piezoelectric materials find applications in medicine. 

The thesis implements a novel design to characterize piezoelectric materials 

performance. A stack piezoelectric actuator was employed to apply mechanical stress to 

the materials under testing, and piezoelectric materials’ output and the applied force were 

collected simultaneously to estimate the d33 value. In order to test the system the 

Polyvinylidene Fluoride (PVDF), Lead Zirconate Titanate (PZT), and a non-piezoelectric 

material samples were used. 

This design is able to generate a force in various waveforms and at different 

frequencies applied to the material. Also for further signal processing, the collected force 

and piezoelectric charge output signals are acquired into a computer. Being able to apply 

mechanical perturbations in different waveforms is the advantage of this setup over other 

commercially available designs. Another key point for this design is that with a small 

modification the system can begin testing piezoelectric materials in wet conditions, which 

is a necessary step for better understanding how PVDF scaffold behave in vivo. 
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1.2 Organization  

This thesis is divided into five chapters. This chapter presents the objectives and the 

significance of this work. Chapter 2 reviews the theoretical background for this study. 

Chapter 3 provides information about the experimental setup and the main components of 

the design.  Chapter 4 shows the results of preliminary testing using selected materials. 

Finally, Chapter 5 presents the conclusion of the work along with future outlook.  
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CHAPTER 2 

INTRODUCTION 

 

2.1 Dielectric Materials 

Dielectric materials have a poor performance to convey electricity. However, when they 

are exposed to external electrical fields, these materials can store and carry charges for 

short ranges. Solid materials include positive and negative charges, but under the 

influence of an electrical field, these charges separate to the positive and negative group 

(Stroyan 2004). This phenomenon is called polarization. One of the crucial types of 

dielectric materials is piezoelectric materials which are utilizing this separation in order 

to convert one energy type to another one. 

 

 

Figure 2.1 The bound charges are touching the capacitor plates while the free charges 

usually float around in the material, but for this case, they are aligned with the bound 

charges. 

Source: The Dynamic Chemistry Hypertext. 
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2.1.1 Polar Effects 

Crystal structure of the materials defines their characteristics. Piezoelectricity, 

pyroelectricity, and ferroelectricity are some of the important features that certain 

materials have (Stroyan 2004). Due to these characteristics, piezoelectric, pyroelectric, 

and ferroelectric materials become polarized when they are exposed to mechanical stress. 

In other words, these materials can convert mechanical energy to electrical energy or vice 

versa. Pyroelectric materials convert the heat energy to the electrical energy because 

pyroelectric materials` crystal structure changes when they are under the effect of 

temperature change. The opposite case is also valid for their crystal structure. When a 

ferroelectric material is subjected to an electrical field, its crystal structure is polarized 

until the electrical effect is removed. 

 

2.1.2 History of Piezoelectric Materials 

Piezoelectricity was first realized in the early part of 18th century. As tourmaline crystals 

were thrown in hot ashes, it was noticed that these crystals attracted and repelled the 

ashes. However, the researchers did not know this was piezoelectricity. German physicist 

Aepinus explained the reason of this interesting movement of the tourmaline crystals. 

According to the German scientist, the reason for this behavior was of the electrical 

origin. Scottish physicist D. Brewster called this behavior pyroelectricity in 1824 (Cady 

1946). 

In 1880, Piezoelectricity was discovered by Pierre and Jacques Curie. At the 

beginning of their scientific careers, Curie brothers realized that under compression, 

certain types of crystals produced charges on their surfaces. Eventually, the two brothers 

developed the basics of piezoelectric behavior and documented responses of the materials 
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like Rochelle salt, quartz, and topaz. Walter Guyton Cady provided in his book, 

Piezoelectricity, the core understanding of piezoelectricity in 1946. 

 

2.2  Piezoelectricity 

Because of the inner polarization of the materials, when dielectric materials are subjected 

to an external electric field, the dimensions of the materials change. The reason is that 

under the electrical influence, negative charges move in the direction of the electrical 

field, and positive charges move in the opposite way of the electrical field. These specific 

movements cause materials to change their shape (Vijaya 2013).  

Crystals are classified into 32 classes, 21 of them have the non-center–of-

symmetry, and the rest of them have the center-of-symmetry. 

 

Figure 2.1 Classification of dielectric materials. 

 
Source: Vijaya, M. S. (2013). Piezoelectric materials and devices. CRC Press: Boca Raton, FL. 

Dielectric Materials 

(Electrostrictive) 

Centro-symmetric 

(Non-piezoelectric 
materials) 
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(Piezoelectric 
materials) 

Non-pyroelectric 
materials 

Pyroelectric 
materials 

Non-ferroelectric 
materials 

Ferroelectric 
materials 
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When the centro-symmetric materials undergo an external electrical field, due to 

the symmetrical structure, positive and negative charges’ contractions and extensions will 

eliminate each other, and ideally there will be no dimensional change. However, due to 

the fact that chemical bonds do not perfectly match, there is still a small amount of 

deformation. On the other hand, if a material has the non-symmetrical structure, under the 

influence of the electrical field, opposite charges will move in different directions, and 

this will cause deformation of the material (Vijaya 2013). Piezoelectric materials have 

non-symmetric crystal structure.  These materials are also called smart materials 

(Harrison and Ounaies 2001).   

 

2.2.1  Piezoelectric Effect 

Dielectric materials are divided into two categories, centro-symmetric and non-centro-

symmetric. Piezoelectric materials are under the class of the non-centro-symmetric 

category. The piezoelectric effect is also divided into two groups: direct effect, and 

indirect effect. 

 

2.2.1.1  Indirect Effect.    When an electric field is applied to a non-centro-symmetric 

material, its positive and negative charges move asymmetrically. Asymmetrical 

movement causes deformation of the material. Depending on the polarity of the applied 

electrical field, the deformation can be either in the form of expansion or compression 

(Vijaya 2013). 

           Some of the important applications of the indirect piezoelectric effect are the 

sonar, piezoelectric speakers, and electromechanical transducers, which convert 

electricity into mechanical movements. 
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(a)Poled piezoelectric                     (b) DC voltage applied to the                  (c) DC voltage applied  
 material.                                            material. Tensile strain                             with reverse polarity.  
                                                             generated.                                                  Compressive strain                 
                                                                                                                                   generated. 

Figure 2.2 Indirect piezoelectric effect: (a) Poled piezoelectric material. (b) When a DC 

field is applied with the same polarity as the poling field, the materials develop tensile 

strain. (c) When a DC field is applied in the reverse direction, the material develops 

compressive strain. 

Source: Vijaya, M. S. (2013). 

2.2.1.2 Direct Effect.    When a mechanical tension is applied to the piezoelectric 

materials, due to the non-symmetrical structure of the piezoelectric materials, a potential 

difference occurs on the two sides of the material`s surface, and a voltage output can be 

measured. The more stress is applied to the material, the larger voltage can be measured 

(Vijaya 2013). 

           Piezoelectric device are dynamic systems, hence, if a stable mechanical stress is 

applied to the piezoelectric material, the output of the material will not be stable; on the 

contrary, it will decay due to the internal finite impedance of the piezoelectric material. 

Therefore, a charge amplifier can be employed to collect the charges before they 

dissipate. Using the direct piezoelectricity is vital for many sensor applications. Pressure, 

force, and acceleration sensors are some examples of the piezoelectric sensor systems. 

 

+ 

- 

- 

+ 
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(a)Poled piezoelectric             (b) Tensile stress applied to the          (c) Compressive stress applied                            
 material.                                         material. Positive voltage                    to the material. Negative  
                                                          generated                                               voltage generated.           

Figure 2.3 Direct piezoelectric effect: (a) Poled piezoelectric materials. (b) When tensile 

stress is applied to the material, the material develops a voltage across its face with the 

same polarity as the poling voltage. (c) When a compressive stress is applied to the 

material, the material develops voltage with polarity opposite to that of the poling 

voltage. Source: Vijaya, M. S. (2013). 

 

 

 

 

 

 

 
 
 
 
 
                  (a)Poled piezoelectric                                 (b) AC voltage applied to the material.                  
                       material.                                                   Tensile and compression strain generated                
                                                                                           depending on the AC voltage phase.                                                 

Figure 2.4 Effect of AC field on a piezoelectric: (a) Poled piezoelectric material; (b) AC 

field is applied to the material. The material gets extended and contracted alternatingly; 

that is, the material vibrates producing an acoustic field in the vicinity. Source: Vijaya, M. S. 

(2013). 

AC 
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The equations below are the governing equations of piezoelectric materials. They 

describe the two piezoelectric effects with respect to electrical and elastic properties 

(Haertling 1999).   

 

                                                              Direct Effect: D= dT + 𝜀E                                                      (2.1) 

 

                                                      Indirect Effect: X = sT + dE                                            (2.2) 

 

D is equal to the surface charge divided by area, 𝑑 is the piezoelectric coefficient, 𝑇 is 

stress, 𝜀 is the permittivity of the material, 𝐸 is the electrical field, 𝜒 is the strain, and 𝑠 is 

the compliance or elasticity coefficient, all given as three dimensional tensors. 

 

2.3  Material Properties 

As mentioned in the section 2.2.1, there are two types of piezoelectric behaviors. The 

direct effect is when the input is a mechanical energy such as stress, the output will be in 

the electrical form, and for the indirect effect, it is vice versa as mentioned in the previous 

sections. To have a better understanding about the piezoelectric materials, it should be 

known what kinds of parameters have an impact on the piezoelectric materials. In this 

section, piezoelectric material properties are discussed. 

           Under the mechanical stress, the piezoelectric material generates electricity. This 

electricity depends on the piezoelectric coefficient 𝑒 whose unit is N/V m (Vijaya 2013). 

The coupling between elastic and electrical effects depends on the magnitude of the stress 

constant. Strain constant d is the other critical coefficient which relates to the external 

electrical field. It is also called transmitting constant with the unit of m/V (Vijaya 2013). 
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Generated electrical field per unit of the mechanical stress is denoted by the receiving 

constant g, with the unit of V m/N (Vijaya 2013). Permittivity 𝜀 is the dielectric 

parameter of the piezoelectric material, and it is related to the vectors of the coefficients d 

and 𝜀 both (Vijaya 2013). Permittivity defines piezoelectric materials` electrical 

impedance. The relationship between the d and e coefficients is defined as (Vijaya 2013). 

 

d=𝜀e                                                             (2.3) 

 

Coupling coefficient k is another parameter to understand the efficiency of 

piezoelectric materials as a transducer (Vijaya 2013). It shows the material`s ability to 

convert the energy from one type to another, which is in our case from mechanical to 

electrical and vice versa. While converting the energy, there can be some energy loss and 

eventually this causes sensitivity and bandwidth loss (Devaraju 2013). The equation 

below shows the relationship between them. 

 

         (𝑘)2 =
(𝑝𝑖𝑒𝑧𝑜𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑡𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙)2

𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑚𝑒𝑐𝑎𝑛𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
                 (2.4) 

 

Piezoelectric constant also reflects the same quantity. 
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2.4 Dynamic Behavior of a Piezoelectric Material 

To understand the dynamic behavior of the piezoelectric materials, the electrical or 

mechanical representation of the system can be used. In this thesis, the electrical 

representation is employed (figure 2.6). 

Figure 2.6, the alternating voltage represents applied vibrating force, and the 

piezoelectric material is shown as a capacitor 𝐶0. 

 

𝐶0 =
𝜀𝐴

𝑑
                                                           (2.5) 

 

Where 𝜀 is permittivity of the material, A is the area, and d is the thickness of the 

material. The mass of the piezoelectric material is represented by L, and C symbolizes the 

compliance constant. Moreover, due to the friction and other reasons, there is energy loss 

in the system. R represents all the loss in the system. 

 

Figure 2.5 Equivalent electrical circuit representation of vibrating piezoelectric element.  

 
Source: (Vijaya,2013). 

 

           The impedance of the system is a function of the frequency. The peak values of the 

impedance define a resonance. If the impedance has its minimum value, this point is 
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called resonance frequency; and when it has a maximum value, it is called anti-resonance 

frequency. A piezoelectric material reaches its maximum output voltage amplitude when 

it is in the resonance frequency. Assuming that the energy loss is zero, resonance 

frequency (fr) becomes 

 

  𝑓𝑟 = 𝑓𝑠 =
1

2𝜋
√
1

𝐿𝐶
                                                  (2.6) 

 

Under the same circumstance, zero loss, anti-resonance (fa) becomes 

 

  𝑓𝑎 = 𝑓𝑝 =
1

2𝜋
√
𝐶+𝐶0

𝐿𝐶𝐶0
                                                (2.7) 

 

Electromechanical coupling coefficient can be calculated by the help of fr, and fa (San 

Emerito 1997, Vijaya 2013). 

 

2.5 Piezoelectric Materials 

Piezoelectric materials can be used in a diverse list of areas such as fabrication of micro-

electrical-mechanical system (MEMS), detection of mechanical vibrations or 

displacements, and various biomedical areas. Piezoelectric materials will be classified in 

this section. 
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2.5.1 Quartz 

Quartz is one of the most prevalent minerals in nature. It has been used as a crystal 

oscillator and quartz clock. Because quartz has a piezoelectric structure, it can be utilized 

in frequency control applications (Vijaya 2013). Robust mechanical properties, high 

stiffness constant, high Q factor, good reliability, and long life make the quartz ideal 

material to be used for resonance applications over other materials (Vijaya 2013). 

 

2.5.2 Piezoceramics 

Piezoelectric ceramic materials (PCMs) have ferroelectric connections. Solid materials 

such as lead zirconate titanate (PZT) are used to produce modern PCM (Sharapov 2014). 

PZT has some vital properties such as its electromechanical coupling coefficient in 

thickness mode, high relative dielectric constant, low mechanical loss, and low dielectric 

loss (Devaraju 2013). Due to these superior properties, it is used in many transducers and 

actuator applications. However, it has some drawbacks, such as fragility, low 

reproducibility, and fabrication difficulties. 

 

2.5.3 Piezopolymers 

There is a significant difference between the structure of the polymers and inorganics, 

which are crystals and ceramics. Notably, piezoelectric strain constant of the polymers is 

lower than ceramics. On the other hand, the piezoelectric constant is much higher than 

that of the ceramics. Polymers are light and tough; and that is why they find a wide range 

of applications as sensors and actuators. Furthermore, they are flexible, and they can 

easily be formed into desired shapes. Some of the other features of the polymers are high 

strength, high impact resistance, low electrical constant, low elastic stiffness, and low 
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density (Harrison 2007). Polyvinylidene fluoride (PVDF) is one of the most well-known 

and widely used polymers. The discovery of a large residual polarization in oriented films 

of PVDF has first mentioned in the Kawai`s research in 1969, and it has become the 

cornerstone for the usage of polymers (Brown 2000).  

 

2.5.4 Piezocomposite 

Piezocomposite materials are derived from a combination of the polymers and ceramics, 

and this makes them special for electromechanical transducer applications (Guinovart-

Dı́az, Bravo-Castillero et al. 2001). Due to the high piezoelectricity and pyroelectric 

properties they show, they are receiving more attention in recent years. These materials 

provide higher operating frequencies, thereby, they improve the resolution in medical 

applications (Guinovart-Dı́az, Bravo-Castillero et al. 2001). Finally, these materials have 

promising results for high-pressure sensors, hydrophones, and shock accelerometers 

(Zhang 2008). 

 

2.7 Polyvinylidene Fluoride (PVDF) 

Some synthetic and biomedical polymers such as wood and muscle tendons have natural 

piezoelectricity. Using these materials was not common, but, after Kawai`s discovery, 

polymers had a prevalent usage (Stroyan 2004). After imposing a DC electric field and a 

high temperature to these polymers, it has been found that it is possible to detect 

piezoelectric voltages from these polymers. These materials became very popular in a 

short period because of their flexibility and mechanical properties. 

PVDF is one of the most promising polymers in the field. The reason is that it has 

a fast and a large electromechanical response, high mechanical and chemical stability, 
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low acoustic impedance, and flexibility (Eberle, Schmidt et al. 1996, Bae and Chang 

2015). Hence, it has being used in various applications such as pressure sensors, vibration 

measurements, ultrasonic imaging in medical instruments, and speakers (Shirinov and 

Schomburg 2008, Sharma, Naik et al. 2015). PVDF-based materials can also be formed 

in different shapes and dimensions, which provide them with a great potential in the vast 

scope of applications. PVDF polymers have four phases; alpha, beta, theta, and gamma. 

However, only the beta phase has the potential usage in the applications because of its 

piezoelectric property (Salimi and Yousefi 2003, Zhu, Zeng et al. 2008).  Lately, PVDF is 

used in tissue engineering application as a scaffold.  

 

2.8 PVDF Scaffold 

The scaffold provides mechanical support to the tissue during the recovery period. Host 

cells can attach to the scaffold, and that provides the tissue with an environment to 

populate and develop subsequent tissue (Lannutti, Reneker et al. 2007, Chan and Leong 

2008).  Polymeric biomaterials, which are biocompatible with enough mechanical 

strength, are being used to produce scaffolds. Moreover, for robust tissue growing, they 

have sufficient surface area and porosity. Electrospinned scaffold eliminates these 

drawbacks and performs the way that is needed (Sakaguchi, Amoroso et al. 2014).  

Certain piezoelectric materials can be employed as a scaffold for supporting the 

nerve regeneration process. Due to their biocompatibility and piezoelectric properties, 

PVDF is one of the ideal polymers that can perform as a scaffold. Piezoelectric polymers 

can electrically stimulate the tissue when mechanical deformation occurs. Generated 

electricity helps the nerves regenerate (Halabi, Behrens et al. 2014). It has been shown 
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that PVDF-TrFE scaffold has induced recovery of cardiovascular cell types (Hitscherich, 

Wu et al. 2016).  

 

2.9 Application of Piezoelectricity 

Ferroelectric crystals are the core in most of the commercial piezoelectric materials. 

BaTiO3 was the first commercially manufactured piezoelectric material (Barsoum 1997). 

Detection of mechanical vibrations, producing charge at high voltages, control of 

frequency, and generation of ultrasonic and acoustic vibrations are the most common 

reasons that piezoelectric materials are being used for. Sensors and actuators are 

manufactured by using bulk ceramics which are formed into common shapes. For 

ultrasonic imaging, thermal imaging, pollution sensors, and microphone applications 

plates, cylinders, and blocks are employed (Kasap 2002). 

Piezoelectric materials are the milestone for Micro-electrical-mechanical-system 

(MEMS) applications. MEMS is a relatively new and breakthrough technology for the 

circuit industry. Thanks to this technology, it is possible to produce smaller devices. In 

spite of the small structure of these new devices, their productivity is equal and higher 

compared to bulk materials. Furthermore, MEMS enables the industry to produce lower 

cost materials (Peterson 1998).  

           The ultrasonic medical applications are the other relevant field for utilization of 

piezoelectric materials. There are many advancements of ultrasonic diagnostic tools in 

recent years. The main advantage of using ultrasonic imagining is that it can make 

minimally-invasive surgery possible. This technique is safer and provides surgeons to 

distinguish between soft tissue and organs. Soft PZT ceramics are also widely used in 

medical imagining (Schwartz 2003). 
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2.10 Piezoelectric Actuators 

Actuators and sensors make systems smart and adaptive. Smart materials understand the 

environment and can respond to the external stimulus without any need for human 

intervention. The main mechanism of operation for smart materials is converting one 

energy form to another. Piezoelectric and electrostrictive devices have become key 

components in smart actuator systems such as precision positioners, miniature ultrasonic 

motors and adaptive mechanical dampers. When an electrical field is applied to 

piezoelectric materials, there are two main kinds of behaviors that may occur in the 

material. First one is that the thickness of the material will increase. This kind of bending 

behavior is observed on piezoelectric stack actuators. Second behavior is called planer 

motion. The electrical field causes the plate to move to a planer contraction, under the 

above conditions. This behavior is used for piezoelectric bending actuators. A substrate 

sheet and the PZT-layer are contained in bending actuators (Qing-Ming, Xiao-Hong et al. 

1999). 

 

2.11 Longitudinal Actuators 

In longitudinal piezoelectric actuators, the electric field is applied parallel to the ceramic 

layer’s polarization direction. This causes a displacement or strain in the way of 

polarization. Despite the fact that individual layers produce small displacements only, 

aggregate displacement is much higher because the stack actuator consists of many layers 

(Figure 1.11). Longitudinal stack actuators are highly efficient in converting electrical 

energy to mechanical energy.  
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Figure 2.6 Longitudinal displacement (top) and polarization of the individual layers 

(bottom) of a stack actuator. 

Estimation of the longitudinal displacement where: 

                                                   

                                                                          (2.8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.piceramic.com/typo3temp/pics/2c890bd593.png
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CHAPTER 3 

RESEARCH DESIGN AND METHODOLOGY 

 

3.1 Overall System Description 

As mentioned in Chapter 2, piezoelectric materials generate an electrical output when 

they are subjected to mechanical stress. In this design, a mechanical strain is applied to 

the piezoelectric material to be tested. Concurrently, the output is collected through the 

data acquisition (DAQ) board. Figure 3.1 shows the general setup of the system, and the 

data flow. 

 

Figure 3.7 Block diagram of data acquisition for applying stress to the piezoelectric 

material and collecting the data into the computer via the NI DAQ Board. 
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In this block diagram, it can be seen how data is flowing. First, in the computer, the user 

can produce a waveform and set its amplitude, frequency, and duty cycle. The DAQ 

board sends this waveform to the signal generator and the signal generator produces the 

desired waveform. After generating this signal, it is amplified because in order to drive 

stack actuator, a high voltage source is needed. Stack actuator receives the generated 

signal and produces force. Upon applying the force, the piezoelectric material under 

testing generates electricity, and the voltage difference between the two sides of the 

material is detected by the copper plates. Since piezoelectric materials produce charge, a 

charge amplifier is used to collect this charge, integrate, and amplify it. Then for signal 

processing, the amplified signal is sent to a desktop computer through the DAQ board. 

Finally, the results are analyzed in Matlab.   

           A force sensor is also added to the system and the applied force and the 

piezoelectric material’s response are collected simultaneously into the computer. With 

this setup, materials can be characterized by comparing the applied force and the output 

voltage from the material being tested. 

 

3.2 DAQ Board 

Only two inputs and one output channels of the NI PCI 6259 DAQ board are needed in 

this study. One of the inputs is connected to the amplifier that amplifies the signal coming 

from the copper electrodes (plates). The other input is connected to the force sensor. The 

DAQ board output is connected to the signal generator to produce the control signals. 
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Figure 3.8 NI PCI 6259 DAQ Board, maximum sampling frequency is 1.25 MHz. 

Source: NI datasheet. 2014, November 06. Retrieved from http://sine.ni.com/nips/cds/view/p/lang/en/nid  

 

3.3 BK Precision Signal Generator 

In order to give voltage to the stack actuator, BK Precision 4040A signal generator is 

used. It has a wide frequency range that allows the user to apply different frequencies to 

the stack actuator. The other important feature is that several different signal waveforms 

can be applied to the actuator such as square, sinusoidal, or triangle wave and different 

force patterns can be obtained easily. Moreover, if it is needed, the duty cycle of the 

waveform can be varied through the computer by taking advantage of a control input 

available on this signal generator. The signal generator has a 0.2 Hz to 20 MHz frequency 

range. 
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Figure 3.9 BK Precision Signal Generator. 

Source: Retrieved from http://www.bkprecision.com/products/signal-generators/4040A-20-mhz-sweep-

function- generator.html.  

 

3.4 Amplifier 

It is because the stack actuator needs a high excitation voltage to function, a voltage 

amplifier is used to magnify the control signal that is produced by the signal generator. 

The EPA-008 is a high voltage linear amplifier with an integral high voltage power 

supply. It is designed to be small in size and convenient for bench top experimentation. It 

accepts a +/- 10 Vpeak ground referenced input signal and produces a +/- 180 Vpeak 

ground referenced output drive signal. It is designed to be used as a high voltage drive 

source for various piezoelectric actuating devices operated from DC to the low audio 

frequency range. (EPA-008-1 datasheet)  

http://www.bkprecision.com/products/signal-generators/4040A-20-mhz-sweep-function-%20generator.html
http://www.bkprecision.com/products/signal-generators/4040A-20-mhz-sweep-function-%20generator.html


  23 
 

 

Figure 3.10 EPA-008-1 Linear Amplifier. 

Source: Retrieved from http://www.piezo.com/prodelect2epa008.html. 

 

3.5 Charge Amplifier 

A charge amplifier produces a voltage output which is proportional to the integrated value 

of the input current. When piezoelectric materials are under mechanical stress, they will 

produce electrical charges. However, under the static stress, due to the internal resistance 

of the piezoelectric material, the produced charge will decay over time. The charge 

amplifier collects the charge before it discharges to ground and stores it in a capacitor and 

maintains a voltage that is proportional with the collected charge. 

 

Figure 3.11 Charge amplifier circuit. 

http://www.piezo.com/prodelect2epa008.html
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3.6 Force Sensor 

The FS03 force sensor is used to measure the applied force to the piezoelectric materials. 

The FS03 sensor is a low cost, piezoresistive-based force sensor. It is employed in this 

design because it has a high-level voltage output, calibration, and temperature 

compensation sensor, which gives an accurate and stable output over a 5 °C to 50 °C [41 

°F to 122 °F] temperature range. Operation from any DC supply voltage, up to 12.0 Vdc, 

is acceptable. Their small size enables the use of multiple sensors in limited space. (FS03 

datasheet) 

 

Figure 3.12 FS03 Force sensor.  

Source: FS03 datasheet. 

 

3.7 Stack Piezoelectric Actuator 

Stack piezoelectric actuators are used as linear electromechanical drivers or motors. They 

act mainly like an expanding element generating a compressive force. The complete 

motion cycle is nearly proportional to a voltage signal input from DC up to high 

frequencies. It has a compact size, accurate positioning in nm, high-speed response and 

large blocking force. Also, it is easy to be controlled by a voltage source. (Stack actuator 

datasheet)  
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Figure 3.13 Piezoelectric stack actuator. 

Source: Retrieved from http://www.piezotechnics.com/ 

 

3.8 Faraday Cage 

A Faraday cage is an enclosure container made by conductive mesh wire or plates. Not 

every piezoelectric material generates a high output voltage. Therefore, if there is noise 

during data acquisition, which will contaminate the investigated signal. Faraday cage is 

used to reduce noise, especially the 60 Hz noise from the power lines, and ensure a high 

quality signal even with low output voltages.  It is almost impossible to eliminate all 

noise from the system, but it can be minimized by using a Faraday cage and some other 

noise cancellation techniques. Depending on the recording environment, the electrodes, 

which can be metal needles and wires, can pick up electromagnetic waves, or other types 

of electrical noise.  A Faraday cage can be used to prevent most of these noise sources.  

 

http://www.piezotechnics.com/
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Figure 3.14 Faraday cage. 

Source: Retrieved from http://www.scientifica.uk.com/product.php?shopprodid=102. 

 

3.9 Experimental Procedure 

In this system, as mentioned in Section 3.1, a mechanical stress is applied to the 

piezoelectric materials by using piezoelectric stack actuator. Thanks to the stack actuator, 

different waveforms and frequencies can be produced and applied to the materials under 

testing.  

 

http://www.scientifica.uk.com/product.php?shopprodid=102
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Figure 3.15 Piezoelectric stack actuator. 

 

           The stack actuator is glued to a micromanipulator which helps to arrange the initial 

position of the stack. Moreover, the initial, steady force can be controlled by using the 

micromanipulator.  

 

Figure 16 Micromanipulator. 

 

Piezo Stack Actuator 
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           There is a metal stick that was glued to the stack actuator to transfer the stress to 

the material and the force sensor. The stack should not be directly placed over the 

piezoelectric material and force sensor, because it is being driven by a high voltage, and 

this high voltage can cause substantial electrical artifact on the recorded signal.  

 

Figure 3.17 Electrodes and force sensor. 

 

           On the other side of the stick, one of the electrodes is glued to the stick and also 

the stick is grounded to prevent any potential noise. In addition, another copper electrode 

is placed on the force sensor, hence the applied force and output voltage from the 

piezoelectric materials can be measured at the same time. The force sensor output is 

directly connected to the DAQ board; concurrently, the piezoelectric material’s output is 

connected to the charge amplifier. 

Metal Stick 

Electrodes 

Force Sensor 
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Figure 3.18 Charge amplifier. 

 

           After the amplification, the output voltage is connected to the DAQ board. The 

signal generator is used to drive the stack actuator. Since the input of the stack can go up 

to 150 V, an amplifier is needed to amplify the signal generated by the signal generator. 

           To prevent any noise contamination, everything is grounded in the system, and the 

Faraday cage is used to eliminate 60 Hz and any other electromagnetic threat. After 

collecting data, the data is analyzed on the computer in Matlab, and based on the results, 

the materials can be characterized for their piezoelectric properties.  

Amplifier Output 
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Figure 3.19 General view of the design. 
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Figure 3.20 General view of the design with the Faraday cage. 
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CHAPTER 4 

RESULTS and DISCUSSION 

 

4.1 Stack Piezoelectric Actuator Response to Varying Voltages 

There are two ways to control the force applied to the material under testing. The first 

one is using the micromanipulator to apply a constant compression. This helps the user to 

adjust the baseline force. The second approach, also used during data collection, to 

control the applied force is by adjusting the stack actuator’s voltage level. During data 

collection 20V, 40V, 60V, 80V, 100V, 120V, 140V, and 150V are applied to the stack 

actuator. It is important to consider that 150V is the maximum value that can be applied 

to the actuator according to the datasheet. The figure below indicates this relationship. 

Figure 4.21 Output voltage of the force sensor at increasing voltages applied to the 
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piezoelectric actuator. The signals are filtered with a low-pass filter on the computer for 

clarity of presentation.  

 

In order to convert the force sensor output (V) to Newton (N) units, the following 

formula that is given in the force sensor datasheet was used: 

                        𝑢𝑡𝑝𝑢𝑡( ) =
 .   𝑠𝑢𝑝𝑝𝑙𝑦

 𝑜𝑟𝑐𝑒𝑟𝑎   
 ( 𝑜𝑟𝑐𝑒𝑎𝑝𝑝   𝑑)   .    𝑠𝑢𝑝𝑝𝑙𝑦      (4. ) 

The Figure 4.2 was obtained by applying Equation 4.1 to the previous results. 

Observing the relationship obtained between the stack actuator output force and the 

applied voltage to the actuator, we can conclude that these measures are directly 

proportional. Hence, increasing the applied voltage to the actuator causes proportionally 

larger output forces.   

 

Figure 4.2 Correlation of the generated force by actuator and actuator’s input voltage. 
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The following linear model shows the relationship between these two measures. 

Linear model Poly1: 

 

                                                      f(x) = p1*x + p2                                                       (4.2) 

 

Coefficients (with 95% confidence interval): 

p1 =    0.008868  (0.007611, 0.01013) 

p2 =     0.03443  (-0.0901, 0.159) 

Goodness of fit: 

SSE: 0.02453 

R-square: 0.98 

Adjusted R-square: 0.977 

RMSE: 0.06394 

Considering the outcomes of the analysis, and observing an R-square value of 

larger than 0.95 to a linear line fit, we can conclude that the observed data indeed follows 

a linear trend. 

 

4.2 Stack Piezoelectric Actuator’s Response to Various Waveforms 

Several types of waveforms are applied to the stack actuator to investigate if the 

waveform will be maintained on the force sensor’s output. The results can be seen in 

figure 4.3.  
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Figure 4.3 Force sensor output to different waveforms applied to drive the stack actuator. 

 

Figure 4.3, corroborates that the stack actuator can follow different waveform 

types of the driving voltage with a close representation of the signal in the generated 

force. Slight deviation from the original waveform occurs due to the lack of very high 

frequencies as this will be demonstrated in the next section.   

 

4.3 Sinusoidal Excitation of the Stack Actuator 

Figure 4.4 illustrates the piezoelectric stack actuator’s peak-to-peak force output at 

different frequencies of the driving voltage with a sinusoidal waveform. 
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Figure 4.4 Measured peak force at different frequencies of sinusoidal waveform. 

 

The amplitude of the mechanical stimulus was kept constant, only the frequency of the 

signal was varied in the range of 0-200Hz. As observed in Fig. 3.5 the actuator’s output 

force is frequency dependent. Up to 100Hz, the actuator’s force is more or less constant 

with a slight peak around 50Hz. Around 150Hz, there is dip in the output force before it 

starts increasing again. The actuator gives the highest response at 180Hz, which is the 

resonance frequency for this particular device as specified in its datasheet.  

 

4.4 Metallic PVDF Measurement 

To test the system, measurement were made using commercial PVDF material (by 

Goodfellow Inc.) with both sides coated with metallic film. Different voltages were 

applied to the stack actuator, and the generated force was applied to the PVDF. The 
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applied force was measured by the force sensor. After collecting data, the voltage output 

of the force sensor was converted to Newton (N) based on the given equation by the force 

sensor’s manufacturer. 

 

Figure 4.5 The PVDF response at different force amplitudes varied between 0.13N and 

0.81N. Applied force is a 1 Hz square wave.  
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Figure 4.6 The PVDF response at different force amplitudes varied between 0.98N and 

1.3N. Applied force is a 1 Hz square wave. 
 

           Before converting the output voltage to Newton, raw data is filtered with a low-

pass filter. The filter has sixth order, and the cutoff frequency is 10Hz. After filtering the 

signal, the equation is used to convert the voltage to Newton. Considering that the second 

input comes from the PVDF output, the output should be converted to surface charge 

density since it is the amplified output. The formula for conversion is showed below. 

 

                                                        Q=C*V                                                                   (4.3) 

The voltage (V) is calculated from the amplitude of the output signal, and the capacitance 

(C) is 10nf as shown in the charge amplifier’s schematic. After applying the formula for 

conversion, we should indicate that there is a non-inverting amplifier, and its gain factor 
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is 12. Thus, the resulting value (Q) needs to be divided by 12. In order to find the charge 

(coulomb) per millimeter square, the last calculated, Q, value is divided by the area, 

5mm×7mm, over which the force was exerted. The unit of the final value is C/mm
2
. 

In order to understand the relationship between the force and the PVDF output, 

the following graphic was produced: 

 

Figure 4.7 A linear line fit to the PVDF output data. Applied force is a 1 Hz square 

wave.  

 

Once again, we can see that the values show a linear relation that we are seeking 

to prove.  

Figure 4.7 was obtained using the average of 5 different samples, and it shows the 

relationship between output voltage of the piezoelectric PVDF and applied force. The X 

axis represents the change of the applied force, and the Y axis indicates the output of the 
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PVDF. As it can be seen in the figure, PVDF output and applied force seem to have a 

directly linear relation. The following linear model shows the relationship between the 

force and the PVDF material.  

Linear model Poly1: 

 

                                                          f(x) = p1*x + p2                                                   (4.4) 

Coefficients (with 95% confidence bounds): 

p1 =       1.247  (1.235, 1.26) 

p2 =      0.0223  (0.01098, 0.03362) 

Goodness of fit:  

SSE: 0.0001923 

R-square: 0.99 

Adjusted R-square: 0.99 

RMSE: 0.005662 

As the results show, the R-square and the adjusted R-square of this model are 

above 0.99 which indicates that the relationship between the applied force and the PVDF 

material is indeed highly linear.  

D33 value, 43.64×10
-12

, is found by dividing produced charge to applied force. 

When calculated value is compared to the d33 value from datasheet, 20×10
-12

, a slight 

difference is observed. The reason may result from electrodes quality. 
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4.5 PZT Measurements 

As a second material of choice, another piezoelectric material, PZT (by Piezo System 

Inc.), is tested. The force vs. output voltage relationship of the PZT is shown in Figure 

4.8. The main difference between this data and the previous one is the fact that this time a 

sinusoidal signal is applied to the actuator.  

Once again the relationship seems to be linear. 

 

Figure 4.8 The PZT output voltage vs. the force. Applied force frequency is 1 Hz.  

 

Figure 4.8 shows the relationship between the output voltage of the PZT and the 

applied force. The X axis represents the applied force, and the Y axis shows the output of 

the PZT. As seen in the figure, the PZT output and the applied force seem to have a linear 

relation. The following linear equation was used to model the relationship between the 

force and the PZT material.  
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Linear model Poly1: 

 

                                                         f(x) = p1*x + p2                                                    (4.5) 

 

Coefficients (with 95% confidence bounds): 

p1 =       382.5  (316.9, 448.1) 

p2 =      -2.387  (-5.173, 0.3986) 

Goodness of fit: 

SSE: 16.19 

 R-square: 0.9714 

 Adjusted R-square: 0.9666 

 RMSE: 1.643 

As the result shows, the R-square and the adjusted R-square of this model are 

above 0.98 which indicates that the relationship between the applied force and the PZT 

material is indeed linear.  

D33 value, 127.3×10
-11

, is found by dividing produced charge by force. When 

compared to d33 value from datasheet, 390×10
-12

, the measured value is three times 

larger. The discrepancy may result from the sample sizes used by us and the 

manufacturer. The company may also be reporting the minimum charge values that are 

guaranteed in a randomly chosen sample. 

           When a sinusoidal signal is applied to the stack, the output of the PZT maintains 

the shape of the signal to a large extent, as shown in the figures below.  
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Figure 4.9 Force sensor output. 

 

Figure 4.10 PZT output. Applied force frequency is 5 Hz. 
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In addition to these results, it could be observed that PZT has higher output 

response compared to PVDF. Even under a low force, it gives much higher voltages than 

PVDF.    

 

4.6 Non-Piezoelectric Material Measurement 

As a control, a non-piezoelectric material was tested, and its output was compared with 

that of the PVDF material. Figure 4.11 shows the impact of the force on the non-

piezoelectric material.  

 

Figure 4.11 Relationship with force non-piezoelectric material output. Applied force 

frequency is 1 Hz. 

 

Once the control test was finalized, we needed to relate these results to the ones obtained 

from the PVDF experiment. The results of this comparison are shown in the Figure 3.12.  
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4.7 Piezoelectric vs. Non-piezoelectric 

 

Figure 4.22 Comparison between PVDF film and non-piezoelectric material’s output. 

 

Figure 4.12 shows the difference between the piezoelectric and non-piezoelectric 

materials. This control phase shows that the PVDF material clearly produces an output 

voltage compared to non-piezoelectric materials, which also indicates that there is some 

amount of noise in the system. The reason for the output voltage with the non-

piezoelectric material can be the capacitance change across the material under 

mechanical perturbations, electrical crosstalk from the actuator driving voltage, or the 

motion artifact. 

 

4.8 Design Comparison 

In order to assess this system’s pros and cons, some commercially available 
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designs are investigated. For instance, Piezotest Inc. is one of the well-known companies 

working on characterization of piezoelectric materials. Their product, D33 Piezometer 

device, is capable of applying forces at varying frequencies, from 30 Hz to 300 Hz. 

However, it is not able to implement different waveforms of the force. Another piezo test 

meter device manufactured by Sinocera Piezotronics Inc. can comparatively produce low 

forces, 0.25N, to apply to the materials under testing. Unlike commercial devices, the 

designed setup in this study is capable of applying higher forces with frequencies 

adjustable from DC to 200 Hz. Furthermore, different force waveforms can be 

implemented. Also, with a small modification, the system can begin testing piezoelectric 

materials in wet conditions, which is a necessary step for better understanding how PVDF 

scaffolds behave in vivo. 
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CHAPTER 5 

 

CONCLUSION AND FUTURE WORK 

 

5.1 Conclusions 

This study was set out to design an electromechanical system to characterize the 

piezoelectric property of the materials. Piezoelectric materials have such exquisite 

characteristics in responding to mechanical stimulations by producing electrical output. 

Converting one energy type to another makes them exceptional and beneficial for both 

therapeutic and diagnostic purposes. Tissue recovery, piezosurgery, and pressure sensing 

are some of the areas where piezoelectric materials find applications in medicine.   

           In this study, an electromechanical system is designed to investigate the 

piezoelectricity of such materials. First, varying levels of mechanical stress can be 

applied to the materials to obtain the force-voltage relationship. This relationship also 

provides necessary calibration information to compare with different piezoelectric 

materials. Second, the response of the piezoelectric material at different waveforms of the 

mechanical stimulus can be determined using the system developed. Finally, the 

mechanical stimulus frequency can be adjusted within a desired range to evaluate the 

material’s response as a function of frequency. Understanding their frequency limitation 

is important for their intended purpose since the response may get distorted at high 

frequencies.   

           In order to produce mechanical perturbations as described above at various 

frequencies and waveforms, a piezoelectric stack actuator is used. As a piezoelectric 

device, stack actuator is producing mechanical stress when it is under the effect of 
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electricity, which is the indirect effect. The produced force by the stack actuator can 

easily be controlled by adjusting the exciting voltage. Moreover, it has a steady response 

both at relatively high frequencies and with different waveforms. 

           In order to test the system, piezoelectric materials PVDF and PZT, and a non-

piezoelectric material are utilized. Figure 4.15 shows the PVDF and non-piezoelectric 

material response to the same applied force.  Also, the PZT’s sinusoidal signal response 

can be seen in Figure 4.13. This study provides a straightforward way to analyze and test 

piezoelectricity of the materials. 

           The main difficulty in this study was finding a way for applying different 

mechanical strain at various waveforms and frequencies under one design. After 

designing various setups, we decided to use a piezoelectric stack actuator. Another 

important design challenge was elimination of noise from the recordings. To do this, a 

Faraday cage was custom-made, and all metal parts in the system were grounded. To 

prevent motion artifact, the system was firmly fixed with mechanical parts. Also, for the 

electrical artifact, a metal stick was used to move the high-voltage-driven stack actuator 

away from the recording area. 

 

5.2 Future Work 

For further studies, an actuator with a larger force rating can be employed to obtain 

higher mechanical stress. Also, to investigate the material’s response under different 

conditions, such as in dry and wet media, some modifications needs to be implemented 

on the design. That is, if it needs to be studied how implanted piezoelectric materials 
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behave in the body, especially with PVDF scaffolds, a wet environment can mimic the in 

vivo situation more realistically.  
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APPENDIX 

MATLAB CODES  

Data Acquisition Codes 

clear 

tic 

ai = analoginput('nidaq','Dev2'); 

ai.ClockSource = 'Internal';  

ai.BufferingMode = 'Auto'; 

ai.TriggerType = 'Immediate';   

ao = analogoutput('nidaq','Dev2');  

  

ao.ClockSource = 'Internal'; 

trial =3;  % number of trials 

  

daqfile = ['trial' num2str(trial) '.daq'];  

ai.LogFileName = daqfile;       

ai.LogToDiskMode = 'index'; 

ai.LoggingMode = 'Disk&Memory'; 

  

ai.InputType = 'SingleEnded';  

addchannel(ai,[20 21]); 

addchannel(ao,[0]);   

ActualRange = setverify(ai.Channel,'InputRange',[-10 10]); 
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set(ai,'RunTimeErrorFcn',@daqcallback) 

set(ai,'ChannelSkewMode','Equisample');  

 

duration =5;   % duration of each trial/train in seconds 

Fs=20000;      % sampling frequency 

ActualRate = setverify(ai,'SampleRate',Fs) 

set(ai,'SamplesPerTrigger',duration*ActualRate); 

set (ao, 'SampleRate', Fs) 

 f=1; 

 kj=0; 

  

amplitude=50;                      % pulse amplitude 

 pulse_f=f;                            % pulse frequency in Hz 

 pulse_duration=500 ;           % pulse duration in ms 

 num_pulses=duration*pulse_f;   

 PD=pulse_duration*0.001*Fs; 

 PInt=Fs/pulse_f-PD-1; 

 outdata=[0 amplitude*ones(1, PD) zeros(1, PInt)]; 

 outdata2=[]; 

   

   for i=1:num_pulses, 

       outdata2=[outdata2 outdata]; 

   end 
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outdata2=outdata2'; 

putdata(ao, outdata2); 

start(ai); 

start(ao); 

data_trigger_time = ai.InitialTriggerTime  

[data, time] = getdata(ai); 

stop(ai); 

stop(ao); 

df=figure 

t=1/Fs:1/Fs:duration; 

plot(t,data(:,1)) 

hold on 

plot(t,data(:,2),'r') 

saveas(df,sprintf('forcestack(10)f%d.fig',f)) 

toc 

 

Filtering and Converting 

These codes for calculating force sensor output. 

This repeated for each collected figure. 

force_range=1.36; 

vsupply=6; 
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a=openfig('sinus_5hz.fig'); 

b=findobj(a, 'type', 'line'); 

x_data=get(b,'xdata'); 

y_data=get(b,'ydata'); 

force=y_data; 

time=x_data; 

[b1,a1]=butter(3,10/(20000/2)); 

forcefiltered=filtfilt(b1,a1,force); 

forcefiltered_new=forcefiltered(1:20000); 

force_new=forcefiltered-min(forcefiltered_new)-0.01; 

figure; 

plot(time,forcefiltered); 

q=findpeaks(forcefiltered); 

a=size(q); 

a=a(1,2); 

w=findpeaks(-forcefiltered); 

s=size(w); 

s=s(1,2); 

if a>s 

    q=q(1:s) 

elseif a<s 

    w=w(1:a) 
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end 

forcevalue(1)=mean(q+w); 

 

applied_force(1)=((forcevalue(1)*force_range)/(.8*vsupply))*10; 

 

Observed Material’s Output 

These codes perform to find charge density. 

non_amplified=y_data/(270/22); 

Q=(10^-8)*non_amplified; 

Q_per_mm=Q/(5.4*7); 

Q_pico_per_mm=Q_per_mm/(10^-12); 
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