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ABSTRACT 

CUSTOM ENGINEERED NANOMATERIALS 

FOR ENERGETICS AND ENERGY APPLICATIONS 

by 

Ani Abraham 

 

Recent interest in reactive material has shifted to more custom formulations targeting 

specific applications.  In this work, preparation and characterization of nanomaterials used 

for several energetics and energy applications are addressed.   

The main challenge of this effort is to design and prepare nanomaterials which 

have significant improvements associated with combustion dynamics, reaction rates, 

sensitivity, biocidal effectiveness, moisture stability, and are environmentally safer over 

the existing energetics.  Nanomaterials that are used to defeat stockpiles of chemical and 

biological weapons, modify ionosphere properties for transmission of optical and radio 

signals, and for energy storage are prepared under room or cryogenic temperatures via 

mechanical milling.  

This offers a scalable and versatile method for modifying or creating 

nanostructured composite materials.  Additionally, nano-composite films used for on-chip 

energetics are prepared using electrochemical etching via solutions containing 

hydrofluoric acid, ethanol and hydrogen peroxide.  Lastly, a less sensitive bimetal 

nano-powder for replacement of commonly used nano-sized aluminum is prepared by 

electro-exploded wires of pure metals. 

Morphology and phase compositions of nanomaterials are characterized by 

scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray 

diffraction (XRD).  Thermal analysis is performed using thermo-gravimetry (TG), 



 

 

 

differential scanning calorimetry (DSC), and bomb calorimetry.  TG results indicate the 

stability of the biocidal content as well as the individual decomposition and oxidation 

reactions involving the nanomaterials.  DSC results are used to quantify the thermal energy 

storage capabilities and material performance upon cycling for energy storage materials.  

Bomb calorimetry results establish the energy density of nano-composite films and 

furthermore, agrees with thermodynamic equilibrium calculations for on-chip energetics. 

Ignition temperatures of several nanomaterials are determined at heating rates of 

10
3
 to 10

5
 K/s using a heated filament experiment.  In a separate ignition experiment, the 

electrostatic discharge (ESD) ignition stimulus is used to characterize minimum ignition 

energy and cloud combustion characteristics.  Aerosol combustion inside a constant 

volume explosion vessel is used to determine the combustion performance.  Additionally, 

single particle combustion times as a function of particle size are quantified using products 

of hydrocarbon flame as the oxidative environment.  Propagation velocities of the 

combustion event are also measured under air, nitrogen and vacuum environments using a 

high-speed video camera for several nanomaterials. 

Nanomaterials prepared for bioagent defeat application in comparison to pure Al 

or Mg metals have substantially reduced ignition temperatures and longer combustion 

times.  Their stability and effectiveness to inactivate bioagents are also substantially 

improved. 

For on-chip energetics, moisture-stable and perchlorate-free compositions of 

nano-composite films are prepared; however, slower propagation rates compared to 

previous composite systems are seen. 



 

 

 

The efficiency and overall charge of the refractory metal, samarium (Sm), in the 

starting composition is substantially improved by increasing the reactive interface surface 

area, via mechanical milling, within the nano-energetic material used as the heat source for 

Sm evaporation.  Altering the interface chemistry of nano-energetic materials helps to 

achieve high reaction rates and consequently, high combustion temperatures to ionize Sm 

metal while inhibiting undesired reaction between Sm and the components of the 

nano-energetic material. 

Lastly, the Al-Ni bimetal nano-powders prepared with doped amount of nickel 

could be used as replacement for aluminum nano-powders.  It is observed that the bimetal 

powder is oxidizing slower than n-Al, leading to its greater stability during handling and 

storage.  Furthermore, the bimetal powder is less ESD-ignition sensitive than n-Al with 

similar combustion temperatures. 
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CHAPTER 1  

INTRODUCTION 

 

In past decades, research of next generation reactive materials shared a common focus of 

improving ignition and combustion characteristics of metal-based powders, used as fuel 

additives in propellants, explosives, and pyrotechnics [1-9].  Recently, there has emerged a 

substantial interest in more custom engineered reactive materials formulated to target 

specific applications, some of which included modified fuels and/or oxidizers for bioagent 

defeat [10-16], on-chip energetics [17-29] for microelectromechanical systems (MEMS), 

and heaters for evaporation of refractory metals to modify ionosphere [30-37].  

Additionally, there is interest in desensitizing nano-powders by additives and coating 

technology [38-42].  Lastly, use of reactive powders of metals, alloys, and metal-based 

composites for applications involving energy generation and harvesting has also been of 

interest recently [43-47].   

1.1 Energetics for Biological Weapon Defeat 

Reactive materials developed as components of advanced munitions, aimed to eliminate or 

inactivate stockpiles of biological weapons [48, 49], has primarily focused on fuels and 

oxidizers modified by added halogens (i.e., iodine), although additives including other 

materials with known biocidal properties were also investigated.  Generally, these can be 

classified into three main groups: metal-based fuels [12, 16, 50, 51], oxidizers [52], and 

thermites (metal fuel and oxidizer compositions) with at least one component producing 

biocidal combustion products [10, 11, 14, 15].  Although various processing and 

preparation techniques can be used, mechanical milling [53, 54] was shown to be a 
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versatile and scalable method to prepare stable metal-iodine composite reactive powders, 

which generate biocidal combustion products [12, 13, 16, 50, 51].  Upon ignition, iodinated 

gas species must be readily generated inactivating in situ aerosolized spores and bacteria 

and thus preventing their escape and contamination of the surrounding areas.  Prior to 

ignition, iodine or other components capable of generating biocidal gases, typically 

containing a halogen, should be stabilized in the reactive material so that it can be stored 

and processed along with other components of energetic systems [55, 56].  The 

halogen-holding materials should burn with a strong heat release to warrant their use in 

energetic formulations. 

Several metal-based reactive materials are developed using mechanical milling at 

both liquid nitrogen and room temperatures.  We characterized their stability, ignition and 

combustion performance to identify the most effective powders for spore inactivation.  

Although most of the prepared materials contained halogens as the biocidal component, we 

also explored a sulfur containing material, which may have potential biocidal benefits. 

1.2 On-chip Energetics 

Porous silicon (PS) is the primary fuel in on-chip energetics, which undergoes highly 

exothermic reactions with various oxidizers.  One consistent result from the earlier studies 

is that sodium perchlorate (NaClO4) performed very well as an oxidizer in terms of the 

qualitative measures used, including optical emission and acoustic intensities.  Since then, 

several groups [22-29] have carried out extensive studies of the PS/NaClO4 system, 

quantitatively validating its high reaction rates with high energy release and tunability 

[57-60].  The high performance of PS/NaClO4 system compared to others is due in part to 

the high solubility of NaClO4 in alcohols [28]; e.g., in methanol, where it exceeds 400 gl
-1
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solvent at 25°C [61].  The higher solubility increases oxidizer filling of the pores when the 

solvent evaporates [62].  Although the PS/NaClO4 energetic materials perform well, the 

high solubility of NaClO4 in both alcohols and water also correlates with its high 

hygroscopicity, making it difficult to use in many practical situations.  Furthermore, 

perchlorates may present environmental and health hazards due to the long-term stability 

of the chlorate ion and its tendency to mimic iodide ions in biological processes [63, 64].   

Therefore, exploring alternative oxidizers with potential benefits of increased 

moisture stability and/or perchlorate-free composition is of interest.  The primary focus is 

on the combustion of on-chip PS with solid oxidizers including sulfur and several nitrates. 

1.3 Energetics for Modification of Ionosphere 

Ejection of clouds of readily ionized metal atoms can be used to modify ionosphere to 

study and alter its properties important for transmission of optical and radio signals  [30].  

Conventional propellants or explosives used as a heat source to readily release and ionize 

metals, such as lithium [31, 32], barium [33-35], and, most recently, samarium [36, 37], are 

problematic because of the rapid reaction of evaporated metal with combustion products 

released simultaneously.  A more custom engineered energetic materials are necessary to 

minimize the oxidation or chemical bonding of samarium with combustion products; thus, 

improving upon the current efficiencies [37] and maximizing the ionization of the entire 

charge of samarium in the starting formulation.   

In this study, an approach for generation of samarium clouds is explored using 

metal-based reactive materials prepared by arrested reactive milling (ARM) [1], producing 

high combustion temperatures and forming relatively stable, inert condensed products.  

Conventional blending or mixing starting components with samarium discussed by 
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previous researchers [37] is purposefully avoided in this study to diminish any reaction of 

samarium with other components of reactive materials.  A reactive material is initially 

prepared by Arrested Reactive Milling (ARM), containing components capable of highly 

exothermic reaction mixed on the scale of ca. 100 nm inside micron-sized fully dense 

powder particles.  This material is then blended with samarium powder, utilizing a short 

milling step.  Several borides, carbides, and sulfides, as well as thermite systems are 

prepared and tested as reactive materials to determine the best suited material for 

generation of clouds of evaporated samarium. 

1.4 Nanomaterials for Energy Applications 

Recently, reactive powders of metals, alloys, and metal-based composites have shown 

potential usefulness for energy applications [43-47].  Additionally, metal-based materials 

can serve as energy storage materials (ESM) with high thermal conductivity and high 

strength [65].  However, the containment of metal that melts upon heating (serving as an 

energy storage medium) in repetitive heating cycles is difficult, and therefore, bulk 

containers are often used [66], limiting the type of structures that can be manufactured 

using the ESM.  In one proposed solution to overcome the structural difficulties, recently it 

was reported [67] that an easy to melt metal, Bi, can be incorporated into matrices of Ag 

metal, which does not form intermetallics with Bi.  However, during repetitive thermal 

cycling, migration and coalescence of Bi is expected.  In another study [68], nano-sized Bi 

particles were embedded in a polyimide resin matrix to prevent coalescence; but thermal 

conductivity would be jeopardized.   

Similarly, it is possible to prepare composite materials with low-melting point 

metal dispersed in a metal or ceramic matrix with high melting point.  However, to prevent 
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structural weakness and rapid deterioration from melt-freeze cycles, the low-melting point 

metal inclusions must be encapsulated inside a thermally stable matrix.  Such a material is 

developed, prepared, and characterized in this work, exploiting a reactive nano-thermite as 

a precursor.   

Using mechanical milling, a nanocomposite thermite is prepared.  It is then slowly 

annealed to initiate a controllable redox reaction to yield an ESM composite.  The 

composite after completion of the redox reaction contains nano-scale inclusions or layers 

of low-melting point metal surrounded by protective metal oxide.  Such ESM structures 

have high thermal conductivity and strength in addition to being stable in time.  

Furthermore, these are not easily destroyed by repeated melting and solidification of the 

encapsulated inclusions, a desired characteristic for EMS. 

1.5 Bimetal Nano-powders for Advanced Energetics 

Research in new nano-energetic systems, including metal nano-powders, nano-thermites, 

and intermetallics are emerging [69-71] due to the increased availability of aluminum 

nano-powders from manufacturing processes matured over the past two decades [72-74].  

Aluminum nano-powders remain to be the most widely used fuel additives to propellants, 

explosives, and pyrotechnics due to their ability to improve combustion efficiencies and 

detonation properties with its large available reactive surface area [75-77].  Consequently, 

the large surface area achieved from using nano-powders results in increased sensitivity to 

electrostatic discharge (ESD) ignition stimulus compared to micron-sized powders [78, 

79].  Additionally, aging of aluminum powders causing deterioration of reactive properties 

has been a concern for nano-energetic materials and n-Al, in particular [80, 81].   
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Desensitizing energetic materials using non-metal additives [38-40] and organic 

coatings is effective [41, 42]; but often not viable due to the adverse effects on combustion 

dynamics and energy density.  Therefore, preparing new nano-powders which are less 

sensitive to ESD ignition and aging while preserving energy density and high reactive 

surface remains a challenge.  In this study, bimetal aluminum-nickel (Al-Ni) nano-powders 

are prepared via electro-exploded wires [72, 73] as a potential replacement for Al 

nano-powders.  Ignition and ESD sensitivity are characterized experimentally.  

Furthermore, a detailed oxidation model developed for micron and nano-sized aluminum 

powders [82-84] are adapted for Al-Ni nano-powders and compared directly with the 

kinetics and aging process for aluminum nano-powders prepared using the same technique. 
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CHAPTER 2  

ALUMINUM-IODOFORM COMPOSITE REACTIVE MATERIAL 

2.1 Abstract 

Mechanically alloyed aluminum-iodoform composites were prepared with iodine 

concentration of 20 wt. %.  Ball milling at both room temperature and liquid nitrogen 

temperature was explored.  Material characterization by electron microscopy and x-ray 

diffraction showed no difference between samples milled at different temperatures. 

However, samples prepared at room temperature aged rapidly.  Thermo-gravimetric 

measurements quantifying release of iodine upon heating confirmed that cryogenic milling 

was necessary to stabilize iodoform in the Al-matrix.  Iodine was released upon heating in 

four distinct stages.  The oxidation of the prepared materials was also studied using 

thermo-gravimetric analysis and two main oxidation steps were detected. The ignition 

temperatures were determined for powders coated onto a metal filament heated electrically 

at 10
3
 – 10

4
 K/min. The ignition temperatures of the prepared materials were noticeably 

lower compared to the Al∙I2 composite prepared using a similar cryo-milling approach.  

The combustion characteristics determined using constant volume explosions of 

aerosolized powders were found to be similar to those of Al∙I2 composite.  The maximum 

pressure and rate of pressure rise observed in the latter experiments were greater than for 

pure aluminum powders with comparable particle sizes. 

2.2 Introduction 

There is substantial interest in reactive materials with biocidal combustion products 

capable of eliminating or inactivating aerosolized microorganisms [10-15].  Research has 
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primarily addressed fuels and oxidizers modified by added halogens, although additives 

including other materials with known biocidal properties were also investigated.  Some of 

the specific materials prepared and tested include silver oxides, iodine oxides, and thermite 

systems with silver iodates [10, 14, 85, 86]. 

Generally, it is possible to classify different reactive materials capable of producing 

biocidal combustion products in three main groups: 

 Fuels, such as aluminum based powders; [12, 50, 51] 

 Oxidizers, such as iodine oxides or iodate-based compositions; [52] 

 Energetic formulations, such as thermites containing both fuel and oxidizer, with at 

least one of the components producing biocidal products [10, 11, 14, 15]. 

For either fuels or oxidizers to be used as drop-in replacements in the current 

energetic formulations, they should be compatible with the other formulation components 

and sufficiently stable to endure conventional processing routine [55, 56].  Use of the 

reactive materials comprising both fuel and oxidizer may require a complete redesign of 

energetic formulations.  In any case, stability, compatibility with common binders, and 

insensitivity to ignition, e.g., by spark, are critical practical characteristics required of new 

reactive materials.  

Both silver oxide and iodine oxides are expected to yield large quantities of 

biocidal combustion products; however they are moisture sensitive and relatively hard to 

handle.  In initial experiments with silver oxide, the desired elemental silver, known to be a 

biocide, was not produced during combustion [10].  Most of the currently tested thermite 

compositions include moisture-sensitive oxides and nano-powders, such as nano-Al, 

known to be very sensitive to spark ignition [79, 87, 88]. 
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Conversely, metal-halogen powders prepared by mechanical alloying with high 

energy densities, comparable to pure aluminum, are relatively stable and insensitive, and 

produce effective biocidal combustion products [12, 16, 50, 89].  Previous work 

investigated mechanically alloyed composites, Al∙I2 [12, 16, 50] and Al∙B∙I2 [90], prepared 

by ball milling elemental iodine respectively with aluminum and with blended 

aluminum/boron powders.  Although these materials were shown to be effective in 

inactivating aerosolized microorganisms [13, 90, 91], elemental iodine used for their 

preparation is relatively unstable and quite volatile under ambient conditions with vapor 

pressure of 0.041 kPa at 298 K [92].  This work, therefore, is aimed to prepare stable 

aluminum-based iodine-containing powders without use of elemental iodine as a starting 

material.  In particular, iodoform, CHI3, which is a more stable iodine carrier with vapor 

pressure of 0.005 kPa at 298 K [93], is explored.  In addition to iodine, iodoform contains 

carbon and hydrogen, which are both known to be effective fuels and may result in an 

improvement of energetic characteristics of the mechanically alloyed powders.  

Iodoform is widely used in medicine as an antiseptic and antimicrobial agent.  It is 

much less volatile and more stable at ambient conditions compared to elemental iodine. 

The sublimation of iodoform begins around 80 °C and the melting is reported to occur 

around 120 °C [94].  When exposed to higher temperatures, iodoform starts to decompose 

around 160 °C, and major decomposition products include double-ionized iodine, iodine 

radical, and oxidation products of CHI3 or iodine (e.g. HIO3) [94].  While Al-based 

composites using elemental iodine are best milled at liquid nitrogen temperature, so that 

iodine is solidified, this requirement may be less stringent for iodoform, and both room 
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temperature and cryo-milling options can be explored for preparation of aluminum-based, 

iodine containing powders. 

2.3 Experimental 

The starting material were aluminum powder, -325 mesh size (<45 µm), 99.5% pure, from 

Atlantic Equipment Engineers, and iodoform powder, purchased from Alfa Aesar, 99% 

pure. 

2.3.1 Ball-Milling Equipment and Parameters 

Two different ball-mills were used to prepare mechanically alloyed powders at room 

temperature and at the temperature of liquid nitrogen (-196 °C). A model 01HD attritor 

mill by Union Process with the vial cooled by liquid nitrogen, and a shaker mill (SPEX 

Certiprep, 8000 series) with the vial cooled by an air jet at room temperature were used to 

prepare composite samples A and B, respectively.  The starting materials, Al and CHI3, 

were mixed to obtain a material composition with a mass ratio of Al/I = 80/20 for both 

samples, to be directly comparable with the Al∙I2 composites investigated earlier [13].  

Both materials were milled using 3/8‖-diameter case-hardened carbon steel balls. 

Sample A prepared by cryogenic milling produced a 50-g batch of powder.  It was 

prepared in a 750 mL stationary stainless steel milling vial placed inside an insulated 

cooling jacket, through which liquid nitrogen was circulated at approximately 2 CFM (0.94 

L/s).  The ball to powder mass ratio was 36.  An impeller rotated at 400 rpm and the milling 

time was 24 hours.  Additional information regarding the cryogenic milling process in the 

attritor mill is provided elsewhere [16]. 
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Sample B synthesized by milling at room temperature was prepared in two 50-mL 

flat-ended steel vials simultaneously.  Each vial contained 5 g of powder.  Ball to powder 

mass ratio was 10.  The vials were loaded and sealed inside an argon-filled glovebox.  The 

milling time was 8 hours. 

Milling parameters are summarized in Table 2.1. 

  

Table 2.1 Milling Parameters Used for Preparing Samples A and B 

Sample 

ID 

Milling 

Media 

Milling 

Time (hrs) 

Batch 

Size (g) 
BPR 

Milling 

Condition 

A Attritor Mill 24 50 36 cryogenic 

B Shaker Mill 8 5 10 ambient 

2.3.2 Characterization Techniques and Instrumentation 

Back-scattered scanning electron microscopy (SEM) images were used to characterize the 

morphologies of both samples. Particle size distribution (PSD) of each sample was 

measured with low-angle laser light scattering using a Beckman-Coulter LS230 Particle 

Counter.  A PANalytical Empyrean diffractometer was used for X-ray diffraction (XRD) 

to determine phase composition for each sample. The XRD powder diffractometer was 

operated at 45 kV and 40 mA using unfiltered Cu Kα radiation (λ=1.5438Å). 

The stability of iodoform encapsulation into the Al-matrix and the release of iodine 

upon heating were investigated using thermo-gravimetric (TG) analysis. Under argon gas, 

TG traces for iodine release were obtained using a Netzsch Simultaneous Thermal 

Analyzer STA409 PG with a TG sample holder. A small piece of zirconium foil was placed 

in the furnace below the sample holder as an oxygen getter to eliminate any oxidation 

involving residual or trace oxygen. The furnace was purged with argon at 50 mL/min. The 

sample mass for each experiment varied in the range of 19 – 23 mg.  
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Oxidation of the prepared powders was studied using a TA Instruments model 

Q5000IR thermo-gravimetric analyzer. The powder was loaded into an alumina crucible 

with a sample mass of 2 – 4 mg. The balance was purged with argon at 10 mL/min and the 

furnace was purged with oxygen at 25 mL/min. 

Ignition of the milled powder was characterized in air using a heated filament 

experiment described in detail elsewhere [95, 96].  A slurry with milled material and 

hexane was made to prepare a thin, 1-cm long coating on a 4.5 cm long, 0.5 mm diameter 

nickel-chromium alloy heating wire. The coated wire was heated by a DC current.  Varied 

applied voltage and adjustable resistors connected in series with the wire were used to vary 

the heating rates in the range of 1000 – 10,000 K/s. The temperature of the filament was 

measured using a high-speed infrared pyrometer (DP1581 by Omega Engineering, Inc.) 

focused on an uncoated filament surface adjacent to the powder coating.  The emission 

from the powder coating was visualized using a high speed video camera (MotionPro 500 

by Redlake), operated at 500 fps.  Prior to ignition, the coating surface was darker than that 

of the heated filament.  The ignition instant was registered when the powder became 

brighter than the heated filament.   

Combustion studies were conducted using a constant volume explosion (CVE) 

experiment [2, 70].  A spherical vessel of 9.2 L was used. The vessel was initially 

evacuated and the aerosolized powder was introduced into the vessel using an air blast 

delivered from a pressurized reservoir.  The pre-ignition pressure in the vessel was close to 

1 atm.  After a 0.3-s delay necessary to minimize the turbulence, the powder cloud was 

ignited by an electrically heated tungsten wire placed at the center of the vessel. The 

pressure inside the vessel was recorded as function of time using a pressure transducer by 



 

 

  13 

Schaevitz Sensors.  The ratio of the maximum pressure to the initial pressure, Pmax/Pini, and 

maximum rate of pressure rise, (dP/dt)max, were identified to characterize the energy 

released during the experiment and the rate of combustion, respectively. The CVE 

experiment was conducted with a fuel-rich system at a constant powder load of 4.65 g of 

the composite Al∙CHI3 powder.  Assuming that the only combustion products are Al2O3, 

I2O5, CO2, and H2O, this powder load corresponds to an equivalence ratio of about 1.45.   

Present results can be directly compared to earlier experiments using the same 

experimental setup and pure aluminum powders, for which the same mass load was used to 

achieve reproducible ignition [12]. 

2.4 Results 

2.4.1 Particle Sizes, Morphology, and Stability 

After milling, both samples were recovered under argon; portions of the powders were 

loaded in clear glass bottles and stored under ambient condition. The glass bottles were 

closed but not sealed; thus, the powder was slowly exposed to air as well as the humidity 

present in the air-conditioned laboratory air.  A noticeable difference in color due to aging 

was seen in sample B within two weeks of storage.  Originally gray colored sample B 

changed to yellowish-gray, indicating release of iodine and its presence on the surface of 

the powder.  The remainder of sample B that was stored under argon did not show any 

discoloration.  No discoloration was observed for sample A stored in room air.  These 

initial observations show that the cryogenic milling conditions help stabilize the iodoform 

in the Al-matrix. 
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SEM images of the samples A and B (cf. Table 2.1) are shown in Figure 2.1.  The 

milled powders contain equiaxial particles with many fines (particles less than 10 µm.)  

Qualitatively, it appears that sample B includes more coarse particles compared to sample 

A.  The images were produced using backscattered electrons; thus, they were sensitive to 

the phase contrast between elements with different atomic weights.  For both samples, 

particle surfaces appear to be homogeneous and phase contrast is not detectable despite a 

large difference in the atomic weight of iodine and aluminum, which was expected to result 

in substantially brighter surfaces rich with iodoform.  The uniform surface brightness 

indicates a homogeneous distribution of iodoform in the prepared composite powders.   

The particle size distribution (PSD) and respective volume mean particle sizes for 

both samples A and B are presented in Figure 2.2. The average particle sizes are 14.1 µm 

and 26.0 µm for samples A and B, respectively.  It is observed, therefore, that the milling at 

cryogenic temperatures (sample A) helps achieving finer particle sizes.  It appears that for 

both samples the size distributions are bimodal; for sample A the second peak is relatively 

well resolved whereas for sample B it appears as a shoulder at the coarse-particle side of 

the distribution curve. 

The XRD patterns for both samples are shown in Figure 2.3, where all the observed 

intensity peaks represent pure aluminum.  There are no clear differences between the XRD 

patterns for both samples. 

Surface area of sample A was measured to be 4.50 m
2
/g, using Brunauer, Emmett 

and Teller (BET) method with MONOSORB® surface area analyzer manufactured by 

Quantachrome Corp.  The high surface area may be the result of particles having well 
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developed rugged surface with small crevices observed from the image in Figure 2.1.  The 

measurements were not performed for sample B which was difficult to handle in open air. 

  

Figure 2.1 SEM images of sample A and sample B. 
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Figure 2.2 Particle size distribution of milled sample A and sample B. 
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Figure 2.3 XRD patterns of sample A and sample B. 
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2.4.2 Iodine Release 

For sample A, heating rates were varied from 2 to 20 K/min and experiments were carried 

out to the maximum temperature of 1400 °C.  Derivatives of the TG traces, dm/dT, were 

used to identify individual stages of iodine release occurring during the temperature ramp.  

Both TG traces and their derivatives are shown in Figure 2.4.  For reference, a single TG 

trace recorded at 10 K/min is also shown for Al∙I2 [12].  Qualitatively, iodine release for the 

prepared Al-iodoform powder is similar to that observed for Al∙I2.   

The minima of the derivatives of TG traces show peaks in the rates of mass loss.  

There were four distinguishable peaks, and, respectively, four iodine release stages could 

be identified for sample A at heating rates of 10 K/min and above.  The derivative peaks for 

stages I, II and IV show a shift towards higher temperatures with increasing heating rates, 

while the peak for stage III remains at an effectively constant temperature.  At heating rates 

of 2 and 5 K/min, stages III and IV overlap, and only at higher heating rates does the peak 

for stage IV shift sufficiently to distinguish it from the stage III peak. 

For sample B, because of its poor stability, a TG trace was recorded only at one 

heating rate of 20 K/min, as illustrated in Figure 2.5.  Based on the TG derivative trace, two 

iodine release stages could be distinguished.  

The iodine release stages for samples A and B could be compared to each other 

semi-quantitatively considering TG traces recorded at 20 K/min for both samples.  This 

comparison is presented Table 2.2.  Note that stages I and II are not the same for samples A 

and B, based on their respective temperature ranges.  Stage II for sample B can roughly be 

related to stages III and IV for sample A. 
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For sample A, the iodine release at low-temperature stages I and II is quite small.  

Most of iodine is released in the vicinity of the aluminum melting point.  Conversely, 

sample B shows a significant amount of sample mass loss (14.7%) during its 

low-temperature stage I.  

These results show that the iodoform is much better stabilized inside the Al-matrix 

for sample A compared to sample B.  This is consistent with the qualitative observation of 

discoloration/aging for sample B.  

Because of poor stability of sample B, it was not characterized further.   

Table 2.2 Iodine Release Stages at 20 K/min for Sample A and B 

Sample ID  stage I stage II stage III stage IV 

A 
Temp Range (°C) 104 - 301 407 – 513 543 - 693 693 – 786 

Δ Total Mass (%) -2.4 -5.4 -12.1 -18.1 

B 
Temp Range (°C) 80 - 456 566 – 781     

Δ Total Mass (%) -14.7 -20.1     
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Figure 2.4 Mass change and derivative traces for sample A in heated in argon at various 

heating rates. 
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Figure 2.5 Mass change and derivative traces for sample B heated in argon at 20 K/min. 

2.4.3 Oxidation 

The oxidation of sample A was studied using heating rates from 2 to 20 K/min and the 

results are presented in Figure 2.6.  Once again, for reference, a TG trace for oxidation of 

Al∙I2 heated at 10 K/min is shown [12].  Qualitatively, oxidation behavior of sample A is 

similar to that of Al∙I2.  However, sample A oxidizes somewhat faster than Al∙I2; also, a 

small stepwise mass increase is clearly observed for sample A when Al melts while it is 

less noticeable for Al∙I2.  

The TG traces for the Al-iodoform composite (sample A) show initial mass loss at 

low temperatures corresponding to release of iodine before two sharp oxidation steps are 

observed.  As expected for thermally activated processes, higher heating rates result in a 

shift of the oxidation steps to higher temperatures.  

The magnitude of the first oxidation step appears to be smaller for lower heating 

rates, compared to the higher heating rate experiments.  The overall mass gain (and thus, 
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the oxidation degree) remains quite consistent when the material is heated to 1000 °C at 

different heating rates.  
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Figure 2.6 Oxidation of sample A at various heating rates. 

2.4.4 Ignition 

Figure 2.7 shows the measured ignition temperatures for sample A as a function of the 

heating rate. The data are scattered in a relatively narrow range of temperatures.  A very 

weak trend of increasing temperatures at greater heating rates may be observed. 

For comparison, ignition temperatures of Al∙I2 powder are also shown in Figure 

2.7.  It is apparent that Al-iodoform ignites at substantially lower temperatures than Al∙I2. 
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Figure 2.7 Ignition temperature of sample A and Al∙I2 composite [12] at different 

heating rates in air. 
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2.4.5 Reaction Kinetics 

Temperatures marking positions of individual stages of iodine release (minima in the TG 

derivative traces), oxidation steps, and ignition temperatures are shown in a Kissinger plot 

[97] in Figure 2.8.  The vertical axis shows ln(T
2
/β), where β is the heating rate and T is the 

specific event temperature; the horizontal axis is the reciprocal temperature, 1/T.  Iodine 

release stages I and II do not correlate with the first oxidation step.  In contrast, the iodine 

release stages III and IV correlate with the second oxidation step occurring near the Al 

melting point. 

Comparing events observed in low-heating rate TG experiments with ignition, it 

becomes apparent that ignition is well correlated with the iodine release stage II.  

Extrapolation of the kinetic trend for the first oxidation step into high heating rates also 

points to the temperature range close to that observed for ignition; however, the effect of 

heating rate on oxidation during stage I appears to be noticeably stronger than that 

observed for ignition temperatures. 

Activation energies, ∆E, of individual iodine release stages and oxidation steps are 

directly proportional to the slopes of the linear-regression line that can be obtained from 

the Kissinger plot shown in Figure 2.8.  No activation energy value is shown for the iodine 

release stage III, which appears to directly correlate with the Al melting.  The activation 

energies are presented and compared to those for Al∙I2 in Table 2.3. Although TG traces for 

both Al∙CHI3 and Al∙I2 look qualitatively similar to each other, a difference in activation 

energies for both individual iodine release stages and oxidation steps is observed.  

Activation energies of iodine release are generally lower for Al∙CHI3.  If the decomposition 

rate is limited by diffusion, then this lower activation barrier suggests lower diffusion 
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resistance in the case of the iodoform composite, possibly due to particle disintegration and 

therefore, increased creation of new surface during decomposition. 
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Figure 2.8 Kissinger plot of sample A with ignition temperatures (squares), iodine 

release stages (triangles), and oxidation steps (circles) measured at different heating rates. 

Al melting point (dashed line) is also shown. 

For oxidation, the activation energies for the first step are similar for both Al∙I2 and 

Al∙CHI3.  For the second step, activation energy for Al∙CHI3 is lower.   

Table 2.3 Activation Energies, ∆E (kJ/mol), for Al∙CHI3 and Al∙I2 for Various Kinetic 

Mechanisms 

 Iodine release  Oxidation 

 stage I stage II
a
 stage IV

a
  step I step II 

Al∙CHI3 80±15 330±110 250±30  76±12 260±15 

Al∙I2 130±10 530±100 530±90  65±6 380±39 

[a] In reference [12], the iodine release stages corresponding to stages II and IV  

for Al∙I2 are referred to as ―additional‖ and stage II, respectively. 

2.4.6 Aerosol Combustion 

Sample A ignited readily inside the explosion vessel; an example of characteristic pressure 

traces is shown in Figure 2.9.  A summary of results is given in Figure 2.10.  The results 

include the average ratios of maximum explosion pressure, Pmax, to the initial pressure, Pini 
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and the average maximum rate of pressure rise, (dP/dt)max for sample A compared to those 

for Al∙I2 and several reference aluminum powders with volume-based average particle 

sizes varied from 9.0 to 15.1 µm.  From earlier work [2, 70, 98], Pmax/Pini and (dP/dt)max are 

known to be proportional to the flame temperature and combustion rate, respectively.  In 

comparison to the reference aluminum powder, sample A has higher values of both 

Pmax/Pini and (dP/dt)max.  Combustion characteristics for the prepared Al∙CHI3 composite 

are similar to those observed for Al∙I2 [12]. 
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Figure 2.9 A characteristic pressure trace recorded in CVE experiments with the 

prepared Al∙CHI3 composite powder burning in air (sample A). 

Because the prepared powder is substantially different from pure aluminum, a more 

useful assessment of its combustion effectiveness compared to aluminum may be obtained 

considering results of respective thermodynamic equilibrium calculations.  The 

calculations were performed using NASA CEA code[99].  Constant volume combustion 

was considered for two cases: aluminum/air and aluminum/iodoform/air.  The calculations 

were performed for different powder mass loads and accounting for the experimental 

chamber volume.  The maximum powder mass used in calculations corresponded to the 

experimental load.  Smaller powder loads were considered to account for situations that are 
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likely to occur in experiments: some of the powder may not be effectively aerosolized and 

remain in the reservoir even after the air blast; in addition, some of the aerosolized powder 

could be deposited onto the explosion chamber walls before ignition.  Previous experience 

suggests that the correction of the powder mass may be as large as 20% [100].   
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Figure 2.10 Comparison of CVE experiment results, maximum pressure and rate of 

pressure rise, for pure aluminum, Al∙I2, and the prepared Al∙CHI3 composite powder 

(sample A). 

The results in terms of for Pmax/Pini and Tmax are shown in Figure 2.11.  

The flame temperature for the aluminum/air mixture peaks at about 3 g mass load.  

For the iodoform-containing mixture, the peak temperature is observed at a greater powder 

load, close to 3.75 g, whereas the mass of aluminum as a component in the 

aluminum-iodoform powder remains close to 3 g.  The peak temperature for the 

iodoform-containing mixture is somewhat lower than for the pure aluminum combustion.   

Generally, the calculated pressure ratios, Pmax/Pini, tend to increase with increasing 

powder mass for both fuels.  The trend is stronger for the iodoform-containing mixture.  

The pressure is clearly affected by both calculated temperatures and product species and 
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for the experimental powder load, 4.65 g, the equilibrium pressure is expected to be higher 

for the iodoform-containing powder.  However, this situation reverses for lower powder 

loads, which can be more relevant for the experimental conditions, when powder losses 

may occur during dispersion and on the vessel walls.   

Because the range of powder mass loads shown in Figure 2.11 is likely greater than 

possible variation in the sample mass in experiments due to all possible losses, one 

observes that the range of pressure changes, is less than 5% for the iodoform-containing 

mixture and even narrower than that for the aluminum/air system.  Thus, combustion 

efficiency of different mixtures can be relatively well assessed by direct comparison of 

their measured pressure ratios.  
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Figure 2.11 CEA pressure and temperature at various theoretical sample masses. 
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2.5 Discussion 

2.5.1 Iodine Release, Oxidation and Ignition 

Samples A and B, prepared using cryo-milling and room temperature milling, respectively, 

illustrate the importance of milling temperature for achieving a stable composite.  

Although iodoform itself is relatively stable at room temperature, the stability of the 

Al∙CHI3 composite is substantially improved by cryo-milling (cf. Figure 2.4 and Figure 

2.5).  A relative measure of material stability (see also APPENDIX A), S,  introduced for 

Al∙I2 composite[12] is used to compare the stability of Al∙CHI3 to Al∙I2 and Al∙B∙I2.  The 

parameter S was defined as the percentage of weight loss at temperatures exceeding 400 °C 

(673 K).  The values of S are 83% for both Al∙CHI3 (sample A) and Al∙I2 whereas for 

Al∙B∙I2, it is 85%.  Thus, both Al∙CHI3 and Al∙I2 prepared by cryo-milling are similar in 

stability to each other, and slightly less stable compared to Al∙B∙I2. 

A direct comparison of TG traces for sample A and Al∙I2 shows the iodine release 

stages for the cryo-milling prepared Al∙CHI3 are similar to those for Al∙I2.  Individual 

iodine release stages observed in the TG traces can be attributed to different ways the 

iodoform may be bound inside the Al-matrix.  Similar to that of Al∙I2 composite[50], the 

loosely bound iodoform is released from the Al-matrix during stages I and II, 

corresponding to the decomposition of iodoform and dissociation of AlI3, respectively.  

Although pure AlI3 boils off completely around 400 °C,[16] the decomposition TG trace of 

sample A at the heating rate of 20 K/min shows the iodine release stage II spanning over 

the temperature range of 407 – 513 °C.  Due to the encapsulation of AlI3 in the Al matrix, 

its effective boiling point may be shifting to higher temperatures because most of the AlI3 

molecules may not be readily available at the sample surface to be removed.  In stages III 
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and IV, a significant amount of iodine is released around the aluminum melting point, 660 

°C, indicating that iodine was confined within the aluminum crystal lattice or its defects, 

which are destroyed during melting.  A comparison of TG traces for sample A and for Al∙I2 

shows that the mass of iodine stabilized in the Al-matrix is the same for both composites.   

Qualitatively, both iodine release and oxidation processes are similar to those for 

Al∙I2; however, there are differences in specific details and apparent activation energies for 

individual iodine release stages and oxidation steps.   The lower activation energies for all 

iodine release stages suggest an easier release of iodine upon heating, when it is introduced 

by milling aluminum with iodoform.   At the same time, the main sequence identified in 

reference [12] and including sequential release of iodine from phases behaving as 

elemental iodine and as decomposing AlI3 remains valid.  

The oxidation steps for Al∙I2 and Al∙CHI3 are very similar to each other.  However, 

the activation energy for the second oxidations step is noticeably lower for Al∙CHI3.  This 

might be explained by release of hydrocarbon species, resulting in a stronger disruption of 

the powder particle surface and thus assisting in formation of fresh surface prone to rapid 

oxidation.   

It is important to realize that because of the difference in activation energies of 

different oxidation steps and iodine release stages, the order of events might be reversed at 

high heating rates, typical of ignition.  At low heating rates, oxidation step 1 for Al∙CHI3 

occurs before the iodine release stage II.  At high heating rates, this could no longer be the 

case.  A linear extrapolation of the kinetic trends (Figure 2.8) over a broad range of heating 

rates is likely invalid, and a more detailed modeling, taking into account heat transfer 
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processes specific for each ignition configuration, is necessary to assign which of the two 

processes is more likely triggering ignition of the prepared Al∙CHI3 powders.   

In the case of Al∙I2 composite, the ignition occurs at the aluminum melting point 

where iodine release is substantial.  Although the iodine release near the aluminum melting 

point remains substantial for the prepared Al∙CHI3 powders, they ignite at much lower 

temperatures.  It is suggested that the ignition temperature is reduced because of the 

presence of hydrogen and carbon in the prepared Al∙CHI3 composite powder.  At the iodine 

release stage II for Al∙CHI3, it is possible for volatile species other than iodine, e.g., 

hydrocarbon molecules, to escape and oxidize, if the heating occurs in an oxidizing 

atmosphere.  The ignition may thus be accelerated by an added heat release in the direct 

vicinity of the powder surface.  The oxidation of the released hydrocarbon would also 

occur in the TG experiments; however, the process would unlikely affect the sample mass 

measurement – and thus, the recorded TG traces.  The oxidation products are gases, e.g. 

CO2, CO, OH and/or H2O, which would be vented away from the sample and thus would 

not affect the heterogeneous surface reactions on its surface. 

2.5.2 Combustion 

 

The combustion dynamics of Al∙CHI3 is very similar to that of Al∙I2 [12], therefore, one 

would expect similar release of iodine-containing biocidal products during combustion.  

From the CVE experimental results shown in Figure 2.10, the Al∙CHI3 composite is shown 

to be more energetic over comparable size pure Al powder in terms of both maximum 

pressure and rate of pressure rise.  The improved combustion characteristics are attractive 

for practical applications in advanced energetics.   
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The overall combustion scenario of the prepared Al∙CHI3 composite powder may 

be affected by both its ignition and combustion characteristics.  In case of a powder 

dispersed in a fire ball generated by a high explosive, a reduced ignition temperature would 

imply that the prepared particles may ignite while being exposed only to the combustion 

products of the high explosive, well before they can be mixed with the surrounding 

environment.  This may be advantageous for coupling their combustion energy to sustain 

the propagating shock wave.  However, this will also mean that much of the halogenated 

combustion products will be released within the fire ball, where they will not effectively 

interact with any viable bio-aerosol (see APPENDIX B). 

 

2.6 Conclusions 

Cryo-milling is necessary to achieve a stable Al∙CHI3 composite with the same mass of 

iodine stabilized as for Al∙I2 into the Al-matrix.  The addition of hydrocarbon e.g., C and H 

atoms, can alter the ignition and combustion of the Al∙CHI3 composite.  The iodoform is 

bound to the Al-matrix in three different forms and during thermal decomposition, at least 

three different stages of iodine release are observed.  The initial oxidation step occurs at a 

temperature higher than the first stage of iodine release; it does not correlate directly with 

any of the iodine release stages.  The ignition of Al∙CHI3 composite occurs at a lower 

temperature than that of Al∙I2.  Based on a Kissinger plot, the kinetics trends for both first 

oxidation step and second stage of iodine release can be extrapolated to high heating rate at 

the temperature range, at which ignition is observed.  A relatively weak effect of heating 

rate on the ignition temperature suggests its better correlation with the stage II of iodine 

release.  A relatively low ignition temperature may be associated with release and instant 
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oxidation of volatile species other than iodine, e.g., hydrocarbon molecules.  The 

combustion dynamics of Al∙CHI3 composite is similar to that of Al∙I2 composite.  

Furthermore, the maximum pressure and pressure rise observed in the constant volume 

explosion show an improvement compared to the pure Al. 
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CHAPTER 3    

ALUMINUM-BASED REACTIVE MATERIALS  

WITH INCREASED BIOCIDAL CONTENT 

3.1 Abstract   

Al∙TiI4 and Al∙NbCl5 reactive materials with and without surface modification were 

prepared using mechanical alloying at liquid nitrogen temperatures.  These composites 

were specifically engineered to stabilize high concentrations of halogens (two to three 

times more than the previously prepared Al∙I2, Al∙B∙I2 and Al∙CHI3) in the overall 

composition, capable of releasing halogenated products during ignition and combustion to 

inactivate bioaerosol.  Fresh composites without surface modification were susceptible to 

rapid oxidation upon exposure to air.  Coating surface with Teflon® allowed mitigating 

this effect, and further stabilizing the halogens in the Al-matrix.  Stability of materials was 

studied using thermo-gravimetry, where the most stable material was Teflon®-coated 

powder of Al∙NbCl5.  This powder was characterized by electron microscopy and 

low-angle laser light scattering to determine particle size distribution.  Additionally, 

powder aging effects were determined by x-ray diffraction.  Mostly, all of the chlorine 

release from the fresh coated powder of Al∙NbCl5 was observed above 400 C.  Although 

the samples aged in ambient air showed early release of chlorine under 400 C, its ignition 

temperatures, determined from powders coated onto a metal filament heated electrically at 

10
3
 – 10

5
 K/min, were not altered when compared to freshly coated powder.  The ignition 

temperatures of the prepared materials were noticeably lower than for the pure Al and 

comparable to the Al∙I2 composite prepared using a similar cryo-milling approach.  Particle 
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combustion tested inside the products of a hydrocarbon laminar flame, showed that the 

Teflon® coated powder of Al∙NbCl5 burns longer than pure Al at the same particle size. 

3.2 Introduction 

Reactive materials with biocidal combustion products capable of inactivating aerosolized 

microorganisms have been developed recently [12, 13, 50, 51, 90, 101].  The focus was on 

additives to conventional energetic formulations involving halogens, known to have strong 

biocidal properties.  Materials developed can be classified into three main groups: 

metal-based fuels, oxidizers, and thermites (metal fuel and oxidizer compositions) with at 

least one component producing biocidal combustion products.  In addition to generating 

the desired combustion products, reactive material components must be stable and 

compatible with common binders to endure conventional processing routine.  Furthermore, 

insensitivity to spark, impact, friction, and other common ignition stimuli is also desired 

for material handling. 

Our work has focused on incorporating halogens or halogen containing compounds 

in aluminum.  Powders containing up to 20 wt. % of iodine with compositions of Al∙I2 [12], 

Al∙B∙I2 [90], and Al∙CHI3 [101] have been developed and tested.  In this study, efforts are 

aimed at developing new metal-based components with substantially increased halogen 

content. 

The main challenge is to stabilize the halogen in a reactive metal matrix, so that the 

material can be handled and formulated as a regular metal fuel, e.g., aluminum powder, 

commonly added in energetic formulations.   The approach taken in this study is based on 

mechanical alloying (or ball milling) starting metal powder and a halogen-containing 

material to produce a stable composite powder.  Previous work showed that cryo-milling 
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was necessary to stabilize iodine in aluminum matrix.  Milling at room temperature could 

be used to stabilize iodine in a binary Al-B composite.  However, the amount of iodine that 

could be stabilized could not exceed 20 wt. %.  Thus, new material compositions need to be 

explored to produce materials with greater halogen concentrations.   

3.3 Approach 

To select most promising halogen-containing starting components, properties of different 

metal halides were surveyed ranking them based on the maximum enthalpy, ∆H, required 

to convert the halide into the most stable metal oxide and oxidized halogen.  This enthalpy 

is taken per mole of halogen.  The results are shown in Figure 3.1 where the estimated 

reaction enthalpy is plotted vs. weight % of the respective halide that should be added to 

aluminum in order to prepare a reactive material with 40 wt. % of halogen.  The 40 wt. % 

benchmark doubling the previously achieved content of iodine in the Al-based powders 

(Al∙I2, Al∙B∙I2, and Al∙CHI3) serves as a target halogen content for the new reactive 

materials.  In Figure 3.1, the most desired compositions would have the greatest negative 

reaction enthalpy and the lowest wt. % of metal halide (allowing their encapsulation into 

aluminum matrix); thus, they would be represented by symbols located at the lower left 

portions of the plots, shown separately for chlorine, bromine and iodine.  It is clear that the 

iodine-containing materials are most favorable energetically.  Among all materials 

considered, only a few could be selected taking into account their toxicity, stability, and 

cost.  In particular, 44 wt. % of TiI4, equaling to two times more iodine compared to 

previous materials, was selected for initial experiments with Al.  In addition, a 

chlorine-containing starting material with 26 wt. % of NbCl5, equaling to three times more 

halogens per mole basis compared to previous materials, was selected to evaluate the effect 
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of chlorine as a biocidal fuel additive when prepared as composite with Al.  Due to the 

interest in stabilizing these metal-halides in the aluminum matrix, composite particles may 

need to be coated with Teflon®. 
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Figure 3.1 Survey of metal-halide oxidation enthalpies. 

3.4 Experimental 

Cryogenic milling technique, at the temperature of liquid nitrogen (-196 °C), was used to 

prepare mechanically alloyed powders of Al∙TiI4 and Al∙NbCl5.  A model 01HD attritor 

mill by Union process with the vial cooled by liquid nitrogen, was used to prepare the 

composites.  Materials were milled using 3/8‖-diameter case-hardened carbon steel balls.  

Samples prepared by cryogenic milling produced a 50-g batch of powder.  It was prepared 

in a 750 mL stationary stainless steel milling vial placed inside an insulated cooling jacket, 

through which liquid nitrogen was circulated at approximately 2 CFM (0.94 L/s).  The ball 

to powder mass ratio was 36.  An impeller rotated at 400 rpm for a milling time of 24 hours.  
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The starting materials were mixed to obtain a material composition with two times (44 wt. 

% TiI4 with Al) more iodine for Al∙TiI4 and with three times (26 wt. % of NbCl5 with Al) 

more chlorine halogens for Al∙NbCl5, compared to previous Al∙I2 [12], Al∙B∙I2 [90], and 

Al∙CHI3 [101] composites.  Additionally, using a shaker mill (SPEX Certiprep, 8000 

series) with the vial cooled by an air jet at room temperature, the powders of Al∙TiI4 and 

Al∙NbCl5 were coated with 5 wt. % of Teflon®.   

Back-scattered scanning electron microscopy (SEM) images were used to 

characterize the powder morphologies, shapes and sizes.  Particle size distribution (PSD) 

was measured with low-angle laser light scattering using a Beckman-Coulter LS230 

Particle Counter.  A PANalytical Empyrean diffractometer was used for X-ray diffraction 

(XRD) to determine phase composition for each sample. The XRD powder diffractometer 

was operated at 45 kV and 40 mA using unfiltered Cu Kα radiation (λ=1.5438Å). 

The stability of halogens encapsulation into the Al-matrix and the release of these 

halogens upon heating were investigated using thermo-gravimetric (TG) analysis.  The 

samples were heated under argon to 1000 ºC using a TA Instruments model Q5000IR 

thermo-gravimetric analyzer.  Sample masses ranging from 10 to 25 mg were loaded into 

the instrument in an alumina crucible.  Both, the balance and furnace were purged with 100 

mL/min of argon at 30 ºC for at least 500 min before starting the experiment.  High gas 

flow rates and long flushing times were used to purge oxygen from the furnace, since it 

cannot be evacuated.  During the actual measurements, gas flow rates were reduced to 20 

and 50 mL/min for the balance and furnace, respectively.  Mass loss as a function of 

temperature was determined at a fixed heating rate of 10 K/min for all powders.   



 

 

  35 

Ignition of the most stable powders was characterized in air using a heated filament 

experiment described in detail elsewhere [95, 96].  A slurry with milled material and 

hexane was made to prepare a thin, 1-cm long coating on a 4.5 cm long, 0.5 mm diameter 

nickel-chromium alloy heating wire. The coated wire was heated by a DC current.  Varied 

applied voltage and adjustable resistors connected in series with the wire were used to vary 

the heating rates in the range of 10
3
 – 10

5
 K/s. The temperature of the filament was 

measured using a high-speed infrared pyrometer (DP1581 by Omega Engineering, Inc.) 

focused on an uncoated filament surface adjacent to the powder coating.  The emission 

from the powder coating was visualized using a high speed video camera (MotionPro 500 

by Redlake), operated at 500 fps.  Prior to ignition, the coating surface was darker than that 

of the heated filament.  The ignition instant was registered when the powder became 

brighter than the heated filament. 

Particle combustion of the most stable powders was conducted in an oxidizer 

comprising combustion products of hydrocarbon fuel, which is an environment similar to 

that encountered by metal particles burning in propellants and explosives.  A detailed 

description of the pre-mixed air-acetylene laminar flame and the experimental set-up 

describing the particle feeding are described elsewhere [102-104].  Briefly, the powders 

were introduced into the premixed air-acetylene laminar flame using a custom screw 

feeder, where a thin layer of powder was deposited into threads of a stainless steel, 

¾‖-diameter screw with 16 threads per inch.  The screw placed inside a cylindrical 

enclosure was attached to a DC-motor, allowing it to rotate in counter clock-wise direction.  

As the screw rotated, particles were fed into the hydrocarbon laminar flame by a focused 

nitrogen jet blowing across a tread of the screw, which was coated with the powder.  The 
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powder feed rate was determined by the rotation speed of the screw.  The particles ignited 

and combusted inside the hot flame products, where the optical emission from the burning 

particles were recorded using an array of three filtered photomultiplier tubes (PMTs).  

Assuming that larger particles burn longer, the measured statistical distribution of particle 

burn times was correlated with the PSD measured with low-angle laser light scattering.  

3.5 Results and Discussion 

3.5.1 Iodine Release and Stability of Al∙TiI4 

The measured iodine release as a function of temperature for all of the powders prepared 

using Al∙TiI4 are presented in Figure 3.2.  It was observed that the uncoated powder was 

hard to handle because it was pyrophoric and reacted immediately when exposed to air.  In 

Figure 3.2, this oxidation effect is observed, causing the initial mass increase at the 

beginning of the TG trace, where the temperature was held constant while the TG was 

purged (see Section 3.4).  The Teflon® coated samples do not show this behavior in the TG 

trace. 

A relative measure of material stability (see also APPENDIX A), S,  introduced for 

Al∙I2 composite [12] is used to compare the stability of all prepared powders.  The 

parameter S was defined as the percentage of weight loss at temperatures exceeding 400 °C 

(673 K).  The values of S are 34% and 68% for uncoated and coated powders of Al∙TiI4, 

respectively.  Although, coating the powders helped to mitigate the rapid oxidation and 

improve the stability, it is still not comparable to the previously prepared powders of Al∙I2, 

Al∙B∙I2, and Al∙CHI3.  Due to instability, powders of Al∙TiI4 were not further characterized. 
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Figure 3.2 TG traces of uncoated and coated powders of Al∙TiI4. 

3.5.2 Chlorine Release and Stability of Al∙NbCl5 

In Figure 3.3, both uncoated and coated powders of Al∙NbCl5 were measured for the 

chlorine release as a function of temperature.  In addition, same samples of both uncoated 

and coated powders of Al∙NbCl5 were aged in ambient air for two weeks and tested again 

for their chlorine release.  Fresh uncoated powders were vulnerable to air oxidation, 

observed from the initial mass increase at the beginning of the TG trace in Figure 3.3(A).  

Similar to Al∙TiI4 powders, coated powders improved chlorine encapsulation and mitigated 

the rapid oxidation.  These fresh powders showed that most of the chlorine was released at 

high temperatures after 400 C with the value of stability, S, being 85% and 94% for 

uncoated and coated powders, respectively.  The aged powders show that storage in 

ambient air caused part of the chlorine to be released early at low temperatures below 400 

C.  The values of S were 48% and 64% for the aged uncoated and coated powders, 

respectively.  From this analysis, it was evident that substantial amount of chlorine was 

released from all powders; but stability was compromised for powders stored in ambient 

air.  The most stable powder of Al∙NbCl5, coated with Teflon®.  It was used for further 

ignition and combustion experiments. 
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Figure 3.3 (A) TG traces of fresh uncoated and coated powder of Al∙NbCl5 and (B) 2 

weeks aged uncoated and coated powder of Al∙NbCl5. 

3.5.3 Particle Size, Morphology, and Phase Composition 

SEM images of both uncoated and coated powders of Al∙NbCl5 are shown in Figure 3.4.  

Powders consist of equiaxial particles with many fines, (particles < 5 µm).  These images 

produced using backscattered electrons are sensitive to the phase contrast between 

elements containing different atomic masses.  Thus, niobium and chlorine should appear 

brighter than aluminum.  However, the particle surfaces exhibit a rather uniform 

brightness, indicating that components are mixed on a scale finer than the resolution of the 

images.  The coated powder (Figure 3.4(B)) surface looked smoother than the uncoated 

powder (Figure 3.4(A)), an indication that the coating was indeed applied. 

Particle size distributions for coated powder of Al∙NbCl5 are shown in Figure 3.5.  

A narrow size distribution with a mean particle size of 6.7 µm is seen for this sample.  The 

phase composition results from XRD are shown in Figure 3.6, where the freshly coated 

powder of Al∙NbCl5 shows mostly crystalline Al peaks.  In contrast, the aged coated 

powder of Al∙NbCl5 shows both crystalline Al peaks and meta-stable oxide, NbO1.64, 
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peaks.  This result is consistent with the difference in the TG traces for fresh and aged 

coated powders.  

(A)  (B)  

Figure 3.4 SEM images of fresh (A) uncoated and (B) coated powder of Al∙NbCl5. 
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Figure 3.5 Particle size distribution of fresh coated powder of Al∙NbCl5. 
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Figure 3.6 XRD pattern of fresh and aged coated powders of Al∙NbCl5. 
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3.5.4 Ignition 

Ignition temperatures as a function of heating rate for both fresh and aged Teflon® coated 

powders of Al∙NbCl5 samples are shown in Figure 3.7, where both appear to ignite at 

similar temperatures.  Although the data are scattered in a relatively narrow range of 

temperatures, a weak trend of increasing temperatures at greater heating rates may be 

observed.  Additionally, these powders are also compared to several reference powders in 

Figure 3.7.  It is seen that the ignition temperatures are close to that of the Al∙I2 powders. 
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Figure 3.7 Ignition temperatures of both fresh and aged Teflon® coated powders of 

Al∙NbCl5 are compared to several reference powders. 

3.5.5 Particle Combustion in a Laminar Flame 

The emission pluses collected using the three filtered PMTs were processed using a 

rigorous data processing presented technique described elsewhere [104].  The distribution 

of burn times processed from the duration of the emission was correlated with the PSD, to 

show the average burn time for the respective particle size bin.  This correlation of burn 

times as a function of particle size is presented for the Teflon® coated powder of Al∙NbCl5 

in Figure 3.8, where it is compared to the pure Al.  The results indicate that the Al∙NbCl5 
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powders burn slower than the pure Al.  The images of the ignited particle streaks are also 

shown in Figure 3.8 for both Al∙NbCl5 and pure Al.  In comparison, the burning particle 

streaks of Al∙NbCl5 are longer than for pure Al.  Particles also tend to ignite lower in the 

flame, indicating a reduced ignition temperature.  The effectiveness towards bioaerosol 

inactivation is presented in APPENDIX B.  
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Figure 3.8 Combustion times as a function of particle size and burning particle streak of 

fresh coated powder of Al∙NbCl5 compared to pure Al. 

3.6 Conclusions 

Al-based composites with substantially increased concentration of halogens were 

prepared.  It is not feasible to prepare stable composite materials containing 40 wt. % of 

iodine, doubling the halogen content using the same components as in the previously 

prepared materials.  A more stable surface modified composite of Al∙NbCl5 was 

successfully prepared with tripling the amount of halogens with chlorine, compared to 

previous systems.  From thermal analysis, it was observed that freshly Teflon® coated 

powder of Al∙NbCl5 was very stable, releasing most of the chlorine after 400 C.  Some 

aging effects were observed for the powders kept under ambient air; however, it did not 
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alter the ignition temperatures when compared to fresh powders.  Ignition temperatures 

were comparable to those for Al∙I2 and lower than for pure Al.  Combustion times, 

however, were longer than for pure Al.    
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CHAPTER 4  

EFFECT OF COMPOSITION ON PROPERTIES OF REACTIVE Al·B·I2 

POWDERS PREPARED BY MECHANICAL MILLING 

4.1 Abstract 

Metal-based fuels producing halogen-containing combustion products are being developed 

to enable rapid inactivation of harmful aerosolized spores and bacteria. Ternary reactive 

materials containing aluminum, boron, and iodine were prepared by mechanical milling 

with systematically varied Al:B ratio.  The aluminum mass fraction varied from 0 to 70 %, 

and most materials included 20 wt. % of iodine.  Prepared powders were inspected by 

electron microscopy; particle size distributions were measured using low angle laser light 

scattering.  Stability of materials was studied using thermo-gravimetry and differential 

scanning calorimetry.  As-prepared as well as pre-heated and quenched samples were 

analyzed using x-ray diffraction.  Iodine was released upon heating in several stages.  

Low-temperature iodine release was relatively small.  It overlapped with decomposition of 

B(OH)3 releasing water.  The most significant amounts of iodine were released when the 

samples were heated to 400 – 500 ºC, when AlB2 formed.   Both AlB2 formation and iodine 

release were further accelerated by melting of aluminum.  For the boron-rich samples, in 

which boron remained after all aluminum was used to form AlB2, an additional, 

high-temperature iodine release stage was observed near 900 ºC.  The results show that 

both boron and aluminum are capable of stabilizing substantial quantities of iodine in the 

metal matrix. The iodine is released at temperatures much greater than its boiling point.  

The mechanism by which iodine is retained in boron and aluminum remains unclear. 
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4.2 Introduction 

Mechanical milling is a versatile and scalable technique used for processing and 

preparation of a wide range of advanced materials [53, 54].  These include metal-based 

mechanically alloyed or composite reactive powders used as fuel additives in propellants, 

explosives, and pyrotechnics [1-9].  Recently, mechanical milling was used to prepare 

metal-iodine composite reactive powders, which generate biocidal combustion products 

[12, 13, 50, 51].  Such materials are desired as components of advanced munitions aimed to 

eliminate or inactivate stockpiles of biological weapons [48, 49]. Upon ignition, iodinated 

gas species must be readily generated inactivating in situ aerosolized spores and bacteria 

and thus preventing their escape and contamination of the surrounding areas.  Prior to 

ignition, iodine or other components capable of generating biocidal gases, typically 

containing a halogen, should be stabilized in the reactive material so that it can be stored 

and processed along with other components of energetic systems [55, 56].  The 

halogen-holding materials should burn with a strong heat release to warrant their use in 

energetic formulations.  The capability to stabilize up to 20 wt. % of iodine in 

aluminum-based powders prepared by ball milling was shown in references [12, 13, 50, 

51]; however, the mechanism by which the iodine was stabilized remains unclear.  

Materials containing comparable amounts of iodine were prepared using pure aluminum 

ball milled with iodine [105] and with iodoform [101], and using a blend of aluminum and 

boron (Al:B mass ratio = 6) milled with iodine [90].  All prepared composites were 

observed to be effective in producing biocidal combustion products and inactivating 

bio-agents [13, 90, 91], while exhibiting markedly different ignition and combustion 

characteristics.  Specifically, particles of the Al∙B∙I2 composite had the highest ignition 
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temperatures and longest combustion times, but their combustion products were somewhat 

more effective in inactivating bioaerosol [90]. Additionally, the prepared Al∙B∙I2 was 

slightly more stable than other materials, i.e., iodine loss was observed upon heating to 

higher temperatures compared to other composites.  Unlike Al∙I2, requiring 24 hours of 

cryomilling, Al∙B∙I2 was prepared at room temperature using relatively short milling times 

[90].   

In this effort, both material stability and kinetics of iodine release are investigated 

as a function of Al:B ratio in the ternary, mechanically alloyed Al∙B∙I2 composites 

containing 20 wt. % of iodine.  It is of interest to clarify roles of both aluminum and boron 

in stabilizing iodine in the composite powders.  A practical goal of this work is to develop 

a composition that is capable of simultaneously releasing both substantial energy and 

iodine upon ignition, while remaining stable at lower temperatures.  

4.3 Materials and Experimental Methods 

Starting materials used to prepare Al∙B∙I2 composites were elemental aluminum powder, 

-325 mesh (<45 µm), 99.5% pure, from Atlantic Equipment Engineers, and amorphous 

boron powder (<1 µm), 93-96% pure, from SB Boron.  In selected experiments, 99% pure, 

-325 mesh boron (mixture of amorphous and crystalline) from Alfa Aesar was used.  Iodine 

chips (approximately 1–5 mm in size), 99% pure, from Sigma Aldrich were added to the 

initial powder load.  In one experiment, the starting material mixture only consisted of 

amorphous boron and elemental iodine. 
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4.3.1 Ball-Milling Equipment and Parameters 

All samples, except for one as discussed below, were prepared using a shaker mill (SPEX 

Certiprep, 8000 series) with two 50 mL flat-ended steel vials cooled by room-temperature 

air jets.  All materials were milled with a fixed ball to powder mass ratio (BPR) of 10 using 

3/8‖-diameter case-hardened carbon steel balls.  Each vial contained 5 g of powder.  The 

vials were loaded and sealed inside an argon-filled glovebox.  An exploratory milling 

study, in which multiple material and milling parameters were varied, was followed by 

further experiments with more promising material compositions.  The Al:B mass ratios 

ranged from 0 to 7.  Table 4.1 shows the compositions and milling times representing all 

prepared samples.  The iodine content was fixed at 10 wt. % for samples 1 and 2.  It was 

increased to 20 wt. % for samples 3A to 9. 

Table 4.1 Composition of Al∙B∙I2 Composites Prepared 

Sample 

ID 

Mass Ratio 

Al:B:I2 

Mass Ratio 

Al:B 

Mole Ratio 

Al:B 

Boron purity 

(%) 

Milling Time 

(hrs) 

1 0:90:10 0.00 0.00 95 4 

2 10:80:10 0.13 0.05 95 4 

3A 10:70:20 0.14 0.06 95 4 

3B 10:70:20 0.14 0.06 95 8 

4 15:65:20 0.23 0.09 95 4 

5 30:50:20 0.60 0.24 95 4 

6 40:40:20 1.00 0.40 95 4 

7 50:30:20 1.67 0.67 95 4 

8 60:20:20 3.00 1.20 95 4 

9 70:10:20 7.00 2.80 95 4 

10* 26:44:30 0.60 0.24 95 14 

11 0:90:10 0.00 0.00 99 4 

12 30:50:20 0.60 0.24 99 4 

13 40:40:20 1.00 0.40 99 4 

*Prepared in the attritor mill chilled by liquid nitrogen 

Sample 10 with a higher iodine content of 30 wt. % was prepared using a model 

01HD attritor mill by Union process with the vial cooled by liquid nitrogen at -196 °C.  50 
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g of powder was loaded into a 750 mL stationary stainless steel milling vial.  The vial was 

placed inside an insulated cooling jacket, which was flushed with liquid nitrogen while 

gaseous nitrogen was flushed through the milling vial at about 2 CFM (0.94 L/s) to prevent 

oxidation during the milling process.  Ball-milling was conducted for 14 hrs using 

3/8‖-diameter case-hardened carbon steel balls at a BPR of 36. Additional details regarding 

the preparation of mechanically alloyed powders at cryogenic milling conditions in the 

attritor mill are provided elsewhere [16].  

Finally, as discussed below, samples 11-13 are analogs of samples 1, 5, and 6 

prepared using higher purity boron as a starting material.  

 After milling, all samples were recovered and stored under argon in glass bottles in 

a glovebox.  

4.3.2 Characterization Techniques and Instrumentation 

The amount of iodine captured and retained inside the mechanically alloyed materials as a 

function of temperature was determined using thermo-gravimetric (TG) analysis.  The 

samples were heated under argon to 1000 ºC using a TA Instruments model Q5000IR 

thermo-gravimetric analyzer.  Sample masses ranging from 7 to 18 mg were loaded into the 

instrument in an alumina crucible.  Both, the balance and furnace were purged with 100 

mL/min of argon at 30 ºC for at least 500 min before starting the experiment.  High gas 

flow rates and long flushing times were used to purge oxygen from the furnace, since it 

cannot be evacuated.  During the actual measurements gas flow rates were reduced to 20 

and 50 mL/min for the balance and furnace, respectively. 
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Mass loss as a function of temperature was determined at a fixed heating rate of 10 

K/min for all powders.  Powders exhibiting most of their mass loss at higher temperatures, 

and thus capable of better stabilizing iodine in the metal matrix, were characterized further.     

Release of iodine upon heating was confirmed using mass spectrometry; however, 

quantitative mass-spectrometric measurements were difficult because iodine readily 

contaminated the instrument.   

The morphologies of the stable powders were characterized using a Philips Phenom 

tabletop scanning electron microscope (SEM) with a back-scattered electron detector, 

showing the phase contrast between aluminum, boron, and iodine.  Particle size 

distributions (PSD) were measured by low-angle laser light scattering using a 

Beckman-Coulter LS230 Particle Counter. 

Phase compositions of the milled stable powders were determined by X-ray 

diffraction (XRD) using PANalytical Empyrean diffractometer operated at 45 kV and 40 

mA using unfiltered Cu Kα radiation (λ=1.5438 Å).  A spinning-stage sample holder was 

used for all XRD measurements at scan angles ranging from 5 to 90.  Furthermore, XRD 

measurements were performed for samples heated to and quenched at specific 

temperatures. 

4.4 Results 

TG traces for the heated samples showed mass loss stages occurring at different 

temperatures.  A relative measure of the material stability, S, had been introduced 

previously for Al∙I2 composite [105].  It was defined as the mass lost above 400 C (673 K) 
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relative to the total mass loss starting at room temperature.  For convenience, this 

quantitative measure is also used in the present study.  

4.4.1 Exploratory Milling Study 

An exploratory study was conducted by changing the Al:B ratio, overall iodine content, 

and milling time.  It also included a cryo-milling experiment.  TG traces were used to 

assess the stability, S, of the prepared samples.  Figure 4.1 shows TG traces and their 

derivatives (DTG) for samples 1 – 3B (cf. Table 4.1), and for the cryo-milled sample 10.  

For clarity, traces for different samples are shifted vertically relative to one another.  

Different stages of mass loss are labeled in the DTG plot.  All mass loss stages occurring 

before 400 ºC are grouped into stage I, with sub-stages I
a
, I

b
, and I

c
.   

The first sub-stage, I
a
 is observed for all samples, including sample 1 prepared 

without aluminum, although its magnitude is reduced when aluminum is present.  Not 

shown in Figure 4.1, the starting, 93-96% pure boron also shows a 5-6% mass loss at the 

same temperature.  It could, therefore, be associated with a boron impurity rather than 

iodine loss.  XRD patterns for both starting boron and sample 1, not shown here, indicate 

the presence of hydroxide, B(OH)3, suggesting that this low-temperature mass loss stage 

can be assigned to the decomposition of B(OH)3.  In samples mechanically alloyed with 

aluminum, it is likely that most of the boron hydroxide was partially reduced, and a more 

stable aluminum hydroxide formed instead, although it might not have been sufficiently 

crystalline to be detectable by XRD.  This reaction would be expected because in 

commercial preparation of amorphous boron, metals such as Mg, Al, Fe, Ca, Na, Li are 

known to be reducing agents [106].  The dehydration of aluminum hydroxide was not 
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detected in the TG traces of sample 2, suggesting that it may be later decomposed to Al2O3 

and H2 resulting in a very small and hard to detect weight loss. 
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Figure 4.1 TG traces and their derivatives for initial exploratory experiments with 95% 

purity amorphous boron.  Sample IDs are 1, 2, 3A, 3B, and 10 (cf. Table 4.1).  Both TG and 

DTG traces are offset for clarity; the scale is valid for sample 1. 

To verify the effect of impurity on the low-temperature mass loss, a high purity 

boron powder (99%) was used to prepare and characterize several reference samples (11 – 

13 in Table 4.1).  Respective TG traces are shown in Figure 4.2.  The mass loss for 

sub-stage I
a
 is reduced to less than 1% for sample 11 with just boron and iodine, but 

increases to ~3 to 4% for samples 12 and 13, containing aluminum.  Thus, sub-stage I
a
 is 
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likely to correlate with the decomposition of boron hydroxide for samples without 

aluminum.  In the presence of aluminum, sub-stage I
a
 is most likely a coupled effect of 

dehydration of boron and iodine sublimation.  The sublimation of iodine in the same 

temperature range was previously observed for binary Al∙I2 materials [16].   
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Figure 4.2 TG traces and their derivatives for initial exploratory experiments with 

high-purity (99%) boron.  Sample IDs are 11– 13 (cf. Table 4.1).  Both TG and DTG traces 

are offset for clarity; the scale is valid for sample 11. 

It was observed that the materials prepared with high-purity boron (samples 12 and 

13) were harder to handle because they reacted immediately when exposed to air, 

generating visible fumes.  This suggests that any increased reactivity, e.g., surface 

oxidation, releases weakly bound iodine, and that it is, therefore, more practical to work 

with less pure boron that is not as susceptible to rapid surface reactions.  This oxidation 
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effect also caused the initial mass increase seen at the beginning of the TG traces in Figure 

4.2, where the temperature was held constant while the TG was purged (see Section 4.3.2).  

As a result, the stability parameter S as defined above is biased for these high-purity 

materials. 

Sub-stage I
b
 correlates well with the boiling point of elemental iodine (182.3 ºC, 

[107]).  In some materials (2, 3B, see Figure 4.1), the dm/dt peak is above 200 °C, and 

therefore correlates better with the decomposition of BI3 (208 ºC, [108]).  Regardless of the 

true nature of this peak, it is more or less clearly observed for all samples containing Al 

represented in Figure 4.1. 

Sub-stage I
c
 is only developed for the sample prepared by cryo-milling (sample 10).   

Stage II is relatively strong for the cryomilled sample and for sample 3B prepared using an 

extended milling time.  It becomes sharper and stronger with increasing aluminum 

concentration (see Figure 4.2 and Figure 4.3).   

Cryo-milling (sample 10, in Figure 4.1) did not result in marked enhancement of 

the material stability S as defined above.  Comparing TG traces for samples 3A (4 h) and 

3B (8 h), it can be noted that a longer milling time also does not appear to result in an 

improved stability. 

In Figure 4.1, stage III near the melting point of Al is only detected clearly in 

sample 10 prepared by cryomilling and with a greater aluminum concentration compared 

to samples 1 – 3B. Stage III becomes more pronounced for the samples with greater 

concentrations of aluminum (see Figure 4.2 and Figure 4.3 below).   
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Stage IV, occurring above the aluminum melting point is shifted for different 

samples.  It is observed for all boron-containing materials, while it was not detected earlier 

for binary Al∙I2 materials [16].  

4.4.2 Stable Al∙B∙I2 Composites 

Milling of ternary Al∙B∙I2 composites with 20 wt. % iodine was continued to determine the 

Al:B ratio with optimal stability S.  TG traces and their derivatives are shown in Figure 4.3 

and Figure 4.4.   
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Figure 4.3 TG traces for Al∙B∙I2 composites with 20 wt. % I2 and Al ranging from 10 to 

70 wt. % (samples 3A, 4 - 9, cf. Table 4.1). The vertical scale applies to sample 3A, the 

other traces are offset for clarity. 
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Samples 3A and 4 (10 and 15 wt. % Al, respectively) characteristically show a 

different shape compared to all other samples with 30 wt. % Al and above.  The 

low-temperature mass loss is stronger, stage II is very weak, stage III is not observed, and 

stage IV is observed as a double step, poorly resolved for sample 3A and distinct for 

sample 4. 
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Figure 4.4 Derivatives of TG traces for Al∙B∙I2 composites with 20 wt. % I2 and Al 

ranging from 10 to 70 wt. % (samples 3A, 4 – 9, cf. Table 4.1). The curves are offset 

vertically for clarity. 

At 30 wt. % Al and above, all curves have a similar shape with several observable 

trends: Stage I
a
 near 115 ºC occurs for all samples.  Stage Ic is not observed.  The onset of 

mass loss stage II is clearly defined only at Al concentrations of 30 wt. % and above; it 
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becomes sharper and shifts to lower temperatures with increasing aluminum concentration.  

A small mass loss step at 324 °C, distinct only in the dm/dt signal in Figure 4.4, precedes 

stage II for the most aluminum-rich material, sample 9.  This coincides with the 

decomposition of AlI3 previously reported for Al∙I2 composites materials [16].  Following 

stage II, a smaller mass loss step is observed clearly for higher Al concentrations.  It 

becomes less distinct and shifts to higher temperatures for lower Al concentrations.  Stage 

III mass loss near the Al melting point is observed for samples with aluminum 

concentration of 30 wt. % and higher, while stage IV becomes undetectable above 30 wt. % 

Al.  Stage III appears to be a composite step with two sub-stages at higher Al 

concentrations.  The higher-temperature step dominates in samples 5, 6, 7, and 9, while in 

sample 8 with 60 wt. % Al the lower-temperature step is stronger. 

In order to follow the stability, S, over time, sample 6 (40 wt. % Al, 20 wt. % I2) 

was selected as a representative material with an Al/B ratio close to that of AlB2, and 

subjected to aging at room temperature in both argon and air environments.  The 

corresponding TG traces are shown in Figure 4.5. The material stored in argon (in 

glovebox) shows a reduced low-temperature mass loss compared to the fresh material. At 

higher temperature, the aged sample behaves similar to the fresh material.  Conversely, the 

material stored in air shows an increased mass loss at lower temperatures, and an additional 

mass loss stage near 900 °C.  

A plot of stability, S, as a function of the aluminum concentration for different 

Al∙B∙I2 composites containing 20 wt. % of iodine is shown in Figure 4.6.  Circles show data 

for the freshly milled samples.  The time between sample recovery and TG measurement 

varied from few hours to one day.  Squares show the results for the more stable samples 
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stored under argon for one month.  For sample 7, a data point (triangle) is also shown for a 

measurement taken 1 week after the sample was prepared and stored under argon.  A 

difference in stability for the fresh samples 7 and 8 is likely explained by the difference in 

time between their preparation and the TG measurement.  Both samples were prepared 

simultaneously; however, TG traces were measured for sample 7 immediately after it was 

recovered, whereas sample 8 was analyzed the next day. 
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Figure 4.5 TG traces showing the effect of aging on sample 6 (40 wt. % Al, 20 wt. % I2). 
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Figure 4.6 Stability of Al∙B∙I2 composites with 20 wt. % of iodine. Data are shown for 

freshly milled samples and samples aged in the glovebox. 
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Based on the results presented in Figure 4.3 – Figure 4.6, samples 5 and 6 were 

recognized as the most stable (see also APPENDIX A), showing the highest absolute 

values of S and higher onset temperatures for the high-temperature mass loss stages.  

Therefore, their structure, morphology, and phase evolution during heating were analyzed 

further.  Additionally, the sample 6 effectiveness to inactivate bioaerosol spores were 

tested and presented in APPENDIX B.  

4.4.3 Particle Shape, Size, and Morphology 

SEM images for samples 5 and 6 with 30 and 40 wt. % Al, respectively, are shown in 

Figure 4.7.  Powders consist of equiaxial particles with many fines, (particles < 5 µm).  

These images produced using backscattered electrons are sensitive to the phase contrast 

between elements containing different atomic masses.  Thus, iodine and boron should 

appear brighter and darker than aluminum, respectively.  However, the particle surfaces 

exhibit a rather uniform brightness, indicating that components are mixed on a scale finer 

than the resolution of the images.   

 

Figure 4.7 Backscattered electron images of samples 5 (30 wt. % Al, 20 wt. % I2) and 

sample 6 (40 wt. % Al, 20 wt. % I2).  
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Particle size distributions for samples 5 and 6 are shown in Figure 4.8.  The mean 

particle sizes are 8.6 and 13.4 µm for samples 5 and sample 6, respectively.  Sample 5 with 

greater boron content has finer particles.  These powders are substantially finer than the 

previously prepared Al∙B∙I2 material with the same 20 wt. % of iodine but only 11 wt. % of 

boron [90, 109].  
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Figure 4.8 Particle size distributions for samples 5 and 6. 

4.4.4 Material Structure and Composition 

XRD patterns for freshly milled powders and powders quenched during heating are shown 

in Figure 4.9 for both samples 5 and 6.  XRD patterns for as-prepared materials show peaks 

of aluminum and an increased background near 26° 2 typical of the amorphous boron.  As 

expected, aluminum peaks are stronger for sample 6, containing more aluminum. 

Sample 5 (30 wt. % Al) was heated to and quenched at 770 and 1000 °C.  

Respective recovered samples show compositions of the material after stages III and IV of 

mass loss (cf. Figure 4.3).  The sample quenched at 770 C shows formation of AlB2 as a 

main phase (see Figure 4.9a).  Aluminum peaks disappear and the amorphous boron hump 

becomes much weaker.  The sample quenched at 1000 C shows formation of AlB12.   
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Peaks of -Al2O3 also appear although the experiments were performed in a flow of Ar.   

Peaks of Al13Fe4 are detected, which are likely caused by contamination of the prepared 

material by steel from the milling media.  
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Figure 4.9 XRD patterns of freshly milled and quenched powders at various 

temperatures a) sample 5 (30 wt. % Al, 20 wt. % I2) and b) sample 6 (40 wt. % Al, 20 wt. % 

I2). 

Sample 6 (40 wt. % Al) was heated to and quenched from multiple temperatures 

(Figure 4.9b).  Samples quenched from 400, 530, 590, 725, and 1000 C, represented 
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materials at the onset of stage II, after stage II, onset of stage III, after stage III, and after 

stage IV, respectively. 

The sample quenched at 400 ºC shows a weaker hump of amorphous boron 

compared to the freshly prepared powder; it also shows an intermetallic Al6Fe phase 

(contamination from steel milling media).   The Al6Fe pattern disappears above 530 °C and 

is replaced by Al13Fe4. Small peaks of intermetallic AlB2 are first seen in the sample 

quenched at 530 C; they increase gradually for the sample quenched at 590 C.  AlB2 

becomes a predominant phase for the sample quenched at 725 C; its formation correlates 

with the strongest iodine release seen at stage III.  Conversely, the peaks of aluminum 

almost disappear at this temperature.  Sample 6 quenched at 1000 C, showed formation of 

AlB12 and -Al2O3, similarly to sample 5. In contrast to sample 5, the Al peaks remain 

visible for all quenched powders of sample 6. 

4.5 Discussion 

It is observed that the Al:B ratio affects the stability S of the prepared ternary Al∙B∙I2 

composite powders.  The release of iodine detected at elevated temperatures can be 

interpreted assuming that in the as-prepared materials iodine is chemically bound to both, 

Al and B.   

Different stages of mass loss are likely signifying formation of different iodine 

bearing compounds in the prepared powders.   

Stage I mass loss, however, is not only caused by release of iodine.  The TG traces 

of amorphous boron (not presented in this paper) and sample 1 suggest ~6% mass loss from 

release of water by hydrated boron oxides, which is observed to be important, especially 
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for the materials with low concentrations of aluminum.  This reaction is weakly 

endothermic and can be described as:  

 (  )                                         (  )                  (R1) 

For materials with substantial concentrations of aluminum, hydrated boron oxides 

can be reduced to form pure boron; this exothermic redox reaction, shown below, can 

occur during milling or upon heating.    

 (  )        (  )                                 (  )                  (R2) 

It is likely that both reactions occur, resulting in a diminished low-temperature 

mass loss due to release of water for the materials containing aluminum.   

S
a

m
p

le
 M

a
s
s
 

C
h

a
n

g
e

, 
%

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0 100 200 300 400 500

H
e

a
t 

F
lo

w
, 

W
/g

(e
x
o

 =
 u

p
)

0.00

0.02

0.04

0.06

0.08

d
m

/d
T

TG
DTG

Temperature, 
o
C

DSC

heating rate: 2 K/min

 

Figure 4.10 Details of the low-temperature reactions in sample 2 (10 wt. % Al, 10 wt. % 

I2). 

Separating the simultaneous release of water and iodine is difficult.  As noted 

above, quantitative mass-spectrometric measurements of iodine release would be useful, 

but are cumbersome because iodine contaminates the instrument rapidly.  An additional, 

low-temperature DSC scan in argon at 2 K/min for sample 2 (10 wt. % Al, 10 wt. % I2) is 
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shown in Figure 4.10.  There is a positive net heat release, indicative of the redox reaction.  

The endotherms, associated with release of water and iodine are likely masked by this 

stronger reaction.  The TG trace of sample 2 with the lowest concentration of Al shows 

only 0.8 % of overall weight loss during stages I
a
 and I

b
, suggesting release of only small 

amounts of water or iodine. Two closely spaced mass loss stages that can be distinguished 

in the DTG cannot be separated based on the measured DSC signal.  For sample 2, the 

integral measured heat release for both sub-stages I
a
 and I

b
 is ∆H ≈ 443 J/g.  The calculated 

net heat release assuming both sub-stages I
a
 and I

b
 are associated with release of water or 

iodine, yields 363 and 486 J/g, respectively.  The measured value is bounded by the 

calculated values suggesting that the net heat release can be associated with both reactions; 

however, the extent of each reaction cannot be quantified. 

The XRD results suggest that the most significant iodine release during stage II 

occurs as a consequence of the formation of new Al-bearing phases, and the concurrent 

destruction of the initial Al phase stabilizing iodine.  In order to be released, iodine must be 

able to diffuse rapidly through the newly formed phases; there is presently no data on 

respective diffusion rates.  First, the Fe contamination gives rise to the formation of Al6Fe, 

which coincides with the onset of stage II.  At higher temperatures AlB2 forms, further 

consuming Al.  Eventually the melting point of Al is reached, where the majority of the 

AlB2 forms, and additional I2 evolves. It is unclear whether the iodine released during 

formation of AlB2 was bound to Al or B or to both materials, although the general 

temperature range of iodine release in this stage correlates with that observed for binary 

Al∙I2 materials [50].   
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Stage IV was the most surprising and occurred only for materials which had Al:B 

mole ratio less than 0.4, indicating that some unreacted boron remained after the AlB2 

formation, which has a molar Al:B ratio of 0.5.  Therefore, stage IV is assigned to release 

of iodine bound to boron.  This high temperature mass loss stage was also observed for 

samples prepared in the absence of aluminum, supporting the above assignment.  The mass 

loss was unambiguously associated with release of iodine based on EDX analysis on binary 

B∙I2 material (sample 1).  The EDX showed the presence of iodine in the sample quenched 

at 500 ºC, before stage IV, however, iodine was no longer present in the same binary 

material quenched at 1000 ºC, after stage IV.  Because no unrecognized XRD peaks that 

could be assigned to metastable boron-iodine phases were detected for the quenched 

samples, it is possible that iodine does not form crystalline phases more stable than the 

solid solution in the amorphous boron, or that the iodine is stabilized at the surface of the 

relatively fine boron particles.  

Amounts of iodine retained within the boron matrix can be estimated considering 

the mass loss observed during stage IV for all samples.  For boron-rich materials, a total 

amount of unreacted boron after stage III, can be obtained assuming that all aluminum 

becomes part of the formed AlB2, removing respective stoichiometric amount of boron 

from the material.  The experimental values of the mass loss for stage IV and respective 

mass fraction of unreacted boron present after AlB2 formation are shown in Table 4.2.  The 

mass fraction of iodine retained in boron is also shown for each sample.  This latter value 

varies in a relatively narrow range, remaining close to 10 – 11% for all samples prepared 

using low-purity, amorphous boron.  It increases to about 13% for the higher purity boron.  

The difference is likely associated with the error made in the active boron content estimate 
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for the low-purity boron, which was relatively heavily oxidized.  Thus, it can be suggested 

that boron can retain up to 13 wt. % of iodine until it is heated to nearly 900 ºC. 

Table 4.2 Iodine Retained in Boron Metal Matrix 

Sample 

ID 

Mass Ratio 

Al:B:I2 

Free B after AlB2 

formation 

wt. %  

Stage IV  

mass loss  

wt. %  

I2 in free B after 

AlB2 formation 

wt. % 

1 0:90:10 100.00 9.01 8.27 

2 10:80:10 79.99 9.09 10.21 

3A 10:70:20 77.48 7.32 8.63 

3B 10:70:20 77.48 9.73 11.16 

4 15:65:20 66.22 8.35 11.19 

5 30:50:20 32.45 4.31 11.72 

6 40:40:20 9.93 1.15 10.38 

7 50:30:20 0.00 0.00 N/A 

8 60:20:20 0.00 0.00 N/A 

9 70:10:20 0.00 0.00 N/A 

10 26:44:30 32.45 4.40 11.93 

11* 0:90:10 100.00 7.67 7.12 

12 30:50:20 32.45 4.95 13.24 

13 40:40:20 9.93 1.50 13.12 

*Stage IV is not completed at 1000 ºC   

4.6 Conclusions 

Metal-based materials containing iodine are of interest as reactive materials generating 

biocidal combustion products, which assist in rapid inactivation of harmful aerosolized 

microorganisms.  In this work, ternary Al∙B∙I2 materials with systematically varied Al:B 

ratios were prepared by mechanical milling.  The materials were capable of retaining at 

least 20 wt. % of iodine, which was released upon heating in several stages.  

Low-temperature iodine release was relatively minor for the ternary materials.  It 

overlapped with dehydration of B(OH)3 accompanied by release of water.  The most 

significant amounts of iodine were released in the 400 – 500 ºC temperature range, and 

during AlB2 formation.  Both AlB2 formation and iodine release increased further by 
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melting of aluminum.  For boron-rich samples with excess B after AlB2 formation an 

additional, high-temperature iodine release stage was observed near 900 ºC.  The results 

show that both boron and aluminum are capable of retaining substantial quantities of iodine 

stabilized in the metal matrix and released upon heating to temperatures much exceeding 

the iodine boiling point.  The mechanism by which iodine is retained in boron and 

aluminum remains unclear.  
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CHAPTER 5  

PREPARATION, IGNITION AND COMBUSTION OF  

Mg·S REACTIVE NANOCOMPOSITES 

5.1 Abstract 

Elemental magnesium and sulfur powders were ball milled to prepare a nanocomposite 

material, Mg·S.  Ignition of the prepared powder was characterized using both a heated 

filament experiment and electric spark.  Combustion of individual particles was studied by 

injecting the powder into a premixed hydrocarbon-air flame.  Combustion of powder 

clouds was examined using a constant volume explosion chamber.  Biocidal effect of the 

produced combustion products against aerosolized endospores of Bacillus thuringiensis 

(simulant of Bacillus anthracis) was quantified.  The powders ignited at lower 

temperatures, compared to pure magnesium.  Delayed ignition was observed for powders 

initiated by spark and for powder clouds ignited in a constant volume chamber by a heated 

wire.  The delay is likely due to the formation of an evaporated sulfur cloud preceding 

ignition.  The composite material burned faster than pure magnesium, which was shown by 

shorter measured burn times for individual particles, and by higher rates of pressure rise in 

the constant volume explosion experiments.  The optical emission spectra produced by 

burning Mg·S nanocomposite powders exhibited an unusually strong emission at short 

wavelengths; additional spectroscopic studies of such flames are of interest.  Combustion 

products generated by Mg·S composite powders effectively inactivated aerosolized spores; 

the effectiveness of inactivation was comparable to some previously examined 

formulations, including aluminum-based composite powders containing iodine. 
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5.2 Introduction 

Mechanical milling has been recognized as a versatile and scalable technique used for 

preparation of a wide range of advanced materials [53, 54].  Among other materials, 

reactive powders of metal-based alloys [3-5, 9, 110] and composites [1, 2, 6-8, 16, 101, 

111-114] were prepared for use as fuel additives in propellants, explosives, and 

pyrotechnics.  Iodine-bearing metal fuels, including powders of Al·I2 [12, 16, 50], Al·CHI3 

[101], Al·B·I2 [111] and Mg·B·I2 [115], were also prepared by mechanical milling.  Such 

materials release biocidal species as combustion products and are of interest for advanced 

munitions designed to defeat biological weapons.  A challenge is to stabilize a biocidal 

component (e.g., a volatile halogen, such as iodine) in the reactive material, which would 

allow for conventional storage, processing and handling of the material.  At the same time, 

the combustion enthalpy and rate of reaction should remain high, while the biocidal species 

are released, preferably in the gas phase.  Current research is focused to expand the range 

of novel materials capable of undergoing highly exothermic reactions and releasing 

biocidal products.  

A recent study of nanocomposite thermite containing nano-Al/K2S2O8 [116], 

suggested that combustion products containing sulfur, i.e., SO2, could be of interest 

because of their biocidal properties.  However, sulfur-containing reactive materials remain 

largely unexplored.  Elemental sulfur is known to be moisture and air stable and capable of 

exothermic reactions with metals such as Zn, Zr, Hf, Ti, Fe, Mn, Mg, Si, and etc. 

[117-123].  Additionally, combustion of energetic composite containing porous silicon and 

elemental sulfur in oxidative environments was shown to form significant amount of 

gaseous products [124, 125], which are believed to be in the form of sulfur oxide species.  
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Therefore, sulfur-containing reactive materials capable of releasing large quantities of 

biocidal gases may be feasible. 

 In this study, reactive nanocomposites of magnesium with sulfur were prepared and 

characterized. This composition is selected based on a highly exothermic reaction between 

the components releasing 6,820 J/g and 12,812 J/cm
3
 [126].  Powders with the 

stoichiometric magnesium over sulfur ratios, with 57 wt. % of sulfur were prepared by ball 

milling at room and liquid nitrogen temperatures starting with elemental powders.  Their 

ignition kinetics and combustion dynamics in oxidizing environments were characterized.  

Biocidal properties of the combustion products of the prepared material against aerosolized 

endospores of Bacillus thuringiensis (simulant of B. anthracis, a causative agent of 

Anthrax) were investigated following the experimental protocols previously developed by 

this research team [13, 51, 90, 101, 127]. 

5.3 Experiment 

5.3.1 Material Synthesis 

Starting materials were elemental powders of magnesium, -325 mesh, 99.8% pure, 

purchased from Alfa Aesar and sulfur, -100 mesh, reagent grade, purchased from 

Sigma-Aldrich. Earlier studies report a mechanically triggered reaction in the metal-sulfur 

system to occur at very short milling times, before a well-mixed composite structure could 

be prepared [119, 122, 128, 129].  To prepare well mixed and unreacted composites, an 

exploratory study using two different mills and various milling conditions was conducted.  

Powders were milled at both cryogenic (77 K) and room temperatures.  A freezer mill 

(SPEX 6850) with four 25 mL steel vials operated under liquid nitrogen was used for the 
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cryo-milling experiments.  The milling tool was a 5.84-cm long steel rod with 9.525-mm 

diameter oscillating within the vial at a frequency of 15 Hz.  Unfortunately, two milling 

experiments conducted with milling times of 100 and 150 min yielded powders that formed 

MgS, and thus not useful as reactive materials.  No further cryomilling experiments were 

attempted in the present effort.  

A shaker mill (SPEX Certiprep, 8000 series) with two 50 mL flat-ended steel vials 

cooled by room-temperature air jets was used for room-temperature milling.  The milling 

vials were loaded and sealed inside an argon-filled glovebox.  No process control agent 

was used.  A 10-kΩ NTC thermistor (Model: MF52-103) with ceramic insulation was 

attached to the outside of one of the milling vials to monitor its temperature during milling.  

A mechanically activated reaction, detected by a temperature spike, occurred for several 

powders at different milling conditions, as shown in Table 5.1.  Several powders were 

prepared by altering the milling media size (case-hardened carbon steel balls), 

ball-to-powder ratio (BPR) and mass of the material loaded to find the milling conditions 

yielding an unreacted composite material.   

Table 5.1 Cryogenic and Room-Temperature (RT) Milling Parameters 

Mill 
Sample 

ID 

Mass of 

material 

loaded 

(g) 

BPR 
Ball Size 

(mm) 

Mg:S 

mole 

ratio 

Milling 

time (min) 

Reacted 

during 

milling 

Freezer: 

Cryo-mi

lling 

1 2 -- -- 1 150 Yes 

2 2 -- -- 2 150 Yes 

3 2 -- -- 1 100 Yes 

Shaker: 

Room 

temp. 

milling 

4 2 10 10 1 10 No 

5 5 10 10 1 <1 Yes 

6 5 5 5 1 22.5 – 28.5 Yes 

7 5 5 5 1 20 No 
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 A list of all prepared powders is shown in Table 5.1 with their respective milling 

conditions.  Only two samples, with IDs 4 and 7, produced composite powders rather than 

reacted MgS. 

5.3.2 Material Characterization 

Using a LEO 1530 Field Emission microscope, back-scattered scanning electron 

microscopy (SEM) images were acquired to characterize the powder morphologies and 

scale of mixing in the prepared powders.  Particle size distributions (PSDs) for the prepared 

powders were measured in order to process particle combustion data following the 

methodology described elsewhere [103, 130, 131].  This methodology involves correlating 

the measured distributions of particle burn times and particle sizes with each other.   

To obtain PSD of burning particles the powder was fed through the burner used for 

combustion measurements.  The burner setup was described in detail elsewhere [103, 104, 

130]; it is also summarized in Section 2.3 below.  The powder was loaded into, and fed by, 

the screw feeder used by the burner.  A gas flow carrying particles issued from the burner 

nozzle, although the flame was not ignited. The particles were captured electrophoretically 

using double-sided carbon tape attached to an SEM stub charged to 1 kV and placed above 

the burner.  Individual particles as well as agglomerates were captured.  Thus, possible 

agglomeration of the powder as a result of passing through the feeder and burner could be 

accounted for in the obtained size distributions.  SEM images of the collected powder 

particles and agglomerates were processed using ImageJ 1.46r software [132] to obtain the 

PSDs.  A brightness threshold was selected for each image to distinguish the background 

from particle, before allowing the built-in particle analyzer from ImageJ to process the 

particle sizes.  Based on the observed particle sizes and resolution of the obtained SEM 
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images, particles with an area smaller than 1 µm
2
 were discounted, as mostly representing 

image or substrate defects, rather than actual particles.  The particle equivalent diameter 

was calculated using the area determined by ImageJ assuming spherical geometry.  

Additionally, PSDs were also measured by low-angle laser light scattering using a 

Beckman-Coulter LS230 Particle Counter, where agglomerates were removed by 

sonication during the measurement.  Results from this measurement represent the true, 

non-agglomerated size distributions of the powder, while the PSDs determined from the 

SEM images by ImageJ represent the size distributions of particles and agglomerates fed 

into the flame.    

X-ray diffraction (XRD) was used to determine phase compositions for as-milled 

powders and combustion products, using a PANalytical Empyrean diffractometer.  The 

diffractometer was operated at 45 kV and 40 mA using unfiltered Cu K radiation ( = 

1.5438 Å). 

5.3.3 Characterization of Ignition, Combustion and Biocidal Effectiveness 

Ignition of the prepared powders was characterized in air using a heated filament 

experiment described in detail elsewhere [95, 96].  A hexane slurry with the powder was 

made to prepare a thin, 10-mm long coating on a 45-mm long, 0.5-mm diameter 

nickel-chromium alloy heating wire. The coated wire was heated by a DC current.  Varied 

applied voltage and an adjustable resistor connected in series with the wire were used to 

vary the heating rates in a range of 10
3
 to 10

5 
K/s.  The temperature of the filament was 

measured using a high-speed infrared pyrometer (DP1581 by Omega Engineering, Inc.) 

focused on an uncoated filament surface adjacent to the powder coating.  The emission 

from the powder coating was visualized using a high speed video camera (MotionPro 500 
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by Redlake), operated at 500 fps.  Prior to ignition, the coating surface was darker than that 

of the heated filament.  The ignition instant was registered when the powder became 

brighter than the heated filament.   

In a separate experiment, the ignition of the prepared powders was tested using an 

electro-static discharge (ESD).  A setup based on a model 931 firing test system by 

Electro-Tech Systems, Inc., was used, which was described in detail elsewhere [114, 133].  

The powder was placed inside a 0.5-mm deep, 6-mm diameter cavity of a grounded, 

custom-made polished brass sample holder.  An even layer thickness was achieved by 

scraping away the excess of powder with a razor blade.  A pin electrode was fixed ~ 0.2 

mm above the surface of the powder.  A selected capacitor was charged to a voltage in the 

range of 1 – 20 kV, before discharging through the pin electrode to the powder.  All 

experiments were conducted inside a sealed test chamber with a volume of 624 cm
3
.  The 

ESD powder ignition was tested in different environments: air, argon, and helium at 1 atm, 

as well as in air at reduced pressures.  All tests conducted in air at 1 atm used a 2000 pF 

capacitor.  Different capacitors from 2000 to 20,000 pF were utilized for other 

environments. The powder ignited consistently only in air at 1 atm.  The powder did not 

ignite when the chamber was filled with Ar or He.  The powder could be ignited when a 

20,000 pF capacitor was used at 0.098 atm (-27 in Hg) air; however, it could not be ignited 

if pressure was further reduced.  

Optical emission produced by the ignited powder was recorded using a 

photomultiplier tube (PMT) filtered at a wavelength  = 568 nm, placed 15 cm away from 

the sample.  The chamber was also equipped with a Model 482A21 dynamic pressure 

transducer by Piezoelectronics to record the pressure as a function of time.  The maximum 
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measured pressure and chamber volume were used to estimate the energy release during 

combustion, which was compared to the respective theoretical reaction enthalpy. 

Aerosol combustion measurements were conducted using a constant volume 

explosion (CVE) experiment in air [2, 70].  Aerosol was ignited in a 9.2-L spherical vessel.  

The vessel was initially evacuated, and the aerosolized powder was introduced using an air 

blast delivered from a pressurized reservoir.  The air blast raised the pressure in the vessel 

to approximately 1 atm before ignition.  After a 0.3-s delay that was necessary to minimize 

turbulence, the aerosolized cloud was ignited by an electrically heated tungsten wire placed 

at the center of the vessel. The pressure inside the vessel was recorded as function of time 

using a PX2AN1XX500PSAAX pressure transducer by Honeywell.  The ratio of the 

maximum pressure to the initial pressure, Pmax/P0, and the maximum rate of pressure rise, 

(dP/dt)max, were determined to characterize the energy released during the experiment and 

the rate of combustion, respectively.  Assuming that the main combustion products were 

MgO, and SO2, the experiments were conducted with a fuel-rich system at a constant 

powder load of 4.65 g of the Mg·S nanocomposites, corresponding to an equivalence ratio 

of about 1.57.  Results obtained in this study can be directly compared to those reported 

previously for pure aluminum and Al·Mg alloy powders, which were evaluated using the 

same experimental set-up and powder mass loads [134, 135]. 

Particle combustion of Mg·S nanocomposites was studied by injecting the powder 

into an air-acetylene flame [103, 130, 131].  Powders burned in combustion products of 

acetylene mixing with surrounding air.  This environment emulates those encountered by 

metal particles burning in an expanding fireball produced by explosives or in air-breathing 

propellants.  Detailed descriptions of the pre-mixed air-acetylene laminar flame and the 
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experimental set-up including the particle feeder are available elsewhere [103, 104, 130].  

Briefly, the powders were introduced into a premixed laminar flame using a custom screw 

feeder, where a thin layer of powder was deposited into threads of a stainless steel, 19-mm 

diameter screw with 629.9 threads per meter (16 threads per inch.)  The screw placed inside 

a cylindrical enclosure was attached to a DC motor, turning it clock-wise.  A nitrogen 

nozzle, connected with the enclosure was mechanically coupled with the screw and shifted 

along it as the screw rotated.  A nitrogen jet directed across a thread of the screw removed 

deposited particles. The particle laden jet exited the screw enclosure and was fed into a thin 

tube placed axially in a burner tube feeding the premixed air/acetylene mixture.  Particles 

entered the flame along its vertical axis.    

Optical emission from the burning particles was recorded using an array of three 

filtered PMTs.  In selected experiments, emission was also recorded using a 32-channel 

H7260 series linear array multianode PMT assembly by Hamamatsu.  The PMT assembly 

was coupled with a spectrometer covering a wavelength range of 373.4 – 641.0 nm.  The 

optical measurements were used to obtain both burn times and combustion temperatures of 

the ignited composite material particles and agglomerates.   

Biocidal effectiveness of the generated combustion products was tested following 

the methods and protocols established earlier [13, 51, 90, 127].  Powder was fed into an 

air-acetylene flame at a rate of 0.9 – 1.2 g/min, using the same set-up as employed for 

particle combustion measurements discussed above.  The burner was enclosed in a flow 

system enabling passage of a challenge bioaerosol above the flame.  Vertical position of 

the burner was adjusted, so that the combustion products had different temperatures while 

being mixed with the bioaerosol.  The challenge bioaerosol was generated by a Collison 
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nebulizer (BGI Inc.) operated at 6 L/min from a liquid suspension charged with viable 

spores of Bacillus thuringiensis serovar kurstaki, Btk. Freeze-dried Btk spores were 

acquired from Certis USA Inc., strain SA-11 (product # SA-11 SDTC; technical grade 

concentrate developed for US Army and Air Force).  After exiting the nebulizer’s nozzle, 

the bioaerosol was diluted with a 30 L/min HEPA-filtered dry air flow and 

charge-equilibrated with a 10-mCi 
85

Kr charge equilibrator (model 3012, TSI Inc.).  

Combustion products and bioaerosol were mixed in the exposure chamber; an estimated 

exposure time of the bioaerosol to the combustion products was approximately 0.33 s.  

After passing through the chamber, the bioaerosol was collected on 25-mm sterile gelatin 

filter (SKC Inc.) for a culture-based analysis. As a result, an inactivation factor, IF [13, 51, 

90, 127] , was determined by comparing the viable concentration of spores measured with 

and without exposure to combustion products of the tested nanocomposite. 

5.4 Results and Discussion 

5.4.1 Particle Shape, Size, and Morphology 

SEM images of samples ID4 and ID7 (see Table 5.1), which did not form MgS during 

milling are shown in Figure 5.1.  Powders consist of roughly equiaxial particles with 

broadly varied sizes.  Individual composite particles in sample 7 appear to be more 

homogeneous and have smoother surfaces compared to sample 4, where the particles 

contain relatively coarse Mg flakes, with some flakes unattached to composite particles.  

The images are produced using backscattered electrons, which are sensitive to the phase 

contrast between elements containing different atomic masses.  Therefore, sulfur should 

appear brighter than magnesium.  Although the brightness differences are subtle, a close 



 

 

76 

examination of Figure 5.1B shows certain parts of the particle surfaces to be brighter, 

which may be indicative of sulfur coating.  Generally, sample 7 appears to be the better 

mixed material, containing particles with lower porosity compared to sample 4.  Hence, 

further experimental work in this study was conducted with sample 7. 

(A)  (B)  

Figure 5.1 Backscattered electron images of samples 4 (A) and  7 (B). 

Particle size, µm

0.1 1 10 100

N
u
m

b
e

r 
o

f 
p

a
rt

ic
le

s

0%

2%

4%

6%

8%
ImageJ

<d>=6.4 m

0%

2%

4%

6%

8%

10%

Coulter
<d>=1.1 m

 

Figure 5.2 Particle size distribution for sample 7 acquired using the laser scattering with 

a Coulter particle analyzer and the ImageJ processing. 

 Particle size distribution for sample 7 obtained using the Coulter particle analyzer 

and by ImageJ processing are shown in Figure 5.2, where the mean particle sizes of a 

number-based distribution are 1.1 and 6.4 m, respectively.  It is not surprising that when 
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considering agglomerates for the PSDs in the ImageJ processing, the size distribution is 

shifted to the right compared to the PSDs obtained from Coulter analyzer, where 

agglomerates were removed.  Additionally, when analyzing the PSDs from ImageJ, there 

are almost no particles with sizes below 2 µm, justifying the minimum threshold size of 1 

µm selected for the image processing. 

5.4.2 Material Stability and Phase Composition 

The material stability of the Mg·S nanocomposites was tested by aging the material in 

ambient air for three weeks.  XRD patterns for the freshly milled and aged powders are 

shown in Figure 5.3.  No sign of significant aging was detected: for both fresh and aged 

powders, only crystalline peaks of pure magnesium and sulfur were observed.  

Additionally, XRD results confirmed that a substantial reaction during milling was, in fact, 

avoided. 
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Figure 5.3 X-ray diffraction patterns of fresh and aged (3 weeks) powders of Mg·S 

nanocomposite material (sample 7). 
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5.4.3 Filament Ignition 

Ignition temperatures measured for sample 7, both fresh and aged powders, are shown in 

Figure 5.4 as a function of heating rate.  The data are scattered in a relatively narrow range 

of temperatures.  For both fresh and aged materials, a weak increase in the ignition 

temperatures at greater heating rates is observed.  This is in contrast to pure Mg powders 

[96], where the ignition temperature is a stronger function of the heating rate.  Also, it 

should be noted that the Mg·S nanocomposites have lower ignition temperatures compared 

to pure Mg powders [96].  Interestingly, the ignition temperatures reported by [123] for 

Mg·S composites prepared using molten sulfur are comparable to the present 

measurements for the materials prepared by milling.   
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Figure 5.4 Ignition temperatures of sample 7 as a function of heating rate.  

Individual frames collected from the high speed video imaging are shown in Figure 

5.5.  Images are turned 90°, so that the area above the heated wire is seen at the left part in 

each image.  The first frame, taken 40 ms after the wire was heated, shows the initial 

emission from the igniting sample. This time can be considered the ignition delay at a 

heating rate of ~17,000 K/s.  The frames at 42 and 46 ms show a growing flame produced 
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by ignition of an increasingly greater portion of the powder coated on the wire.  In frame 

46, some particles are seen to be ejected away from the filament, at estimated speeds of 1.6 

to 2.7 m/s.  At 50 ms and above, additional flame balls appear separately and away from the 

initial flame propagating from the wire.  New flame balls may be caused by ignition of 

ejected composite particles in a cloud of evaporating sulfur.  Such flame balls separated 

from the flame around the wire were not observed for pure magnesium or other metal 

powders ignited in the same experimental setup.   

 

Figure 5.5 A sequence of images captured using a high speed video camera in the 

filament ignition experiments.  The images are turned 90º, so that left = up.  Frame rate is 

500 fps.  Individual frame exposure time is 2 ms. 

5.4.4 Spark Ignition 

In air, a minimum ESD voltage of 4 kV with a 2000 pF capacitor was necessary for ignition 

to occur consistently. Characteristic optical emission and pressure signals are presented in 

Figure 5.6.  Emission pulses start 4 – 6 ms after the ESD, a longer ignition delay compared 

to pure magnesium powders [136] and to aluminum-based nanocomposite thermites [133].  

The formation of an evaporating sulfur cloud is most likely the reason for the longer 

ignition delays.  With an increase in the ESD voltage, the leading slope of the emission 

pulse does not shift significantly, while both amplitude and duration of the pulse increase.  

At 12 kV, an extended plateau follows the maximum emission intensity.  Pressure traces 

are delayed compared to the emission signals.  Considering the speed of sound and 
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chamber dimension, the sound wave can travel through the ESD chamber in approximately 

1 ms, while shifts between the peaks of emission and pressure signals are of the order of 

tens of ms.  Therefore, such shifts represent the actual time delay between the emission and 

pressure signals.  Generally, pressure peaks when emission signal decays; the peak 

pressure times are indicative of the extinction or complete combustion of the ignited 

powder.  Amplitudes of the pressure pulses increase substantially at greater ESD voltages.  

Note that vertical scales in Figure 5.6 are different for each voltage, so that the increase in 

the amplitude of both optical emission and pressure at higher voltages may not be 

immediately apparent.   

Selected video frames of the combustion event captured at 500 fps for an ESD 

voltage of 12 kV are presented in Figure 5.7.  The frame taken 4 ms after the spark, 

approximately when the onset of the emission pulse is registered, shows incandescent 

particles moving away from the region struck by the spark.  The region near the spark is 

dark, while the incandescent particles are observed at a distances varied from 10 to 25 mm 

from the needle electrode, or from the location where the particles were directly heated by 

the spark.  Based on that distance and the time the frame was taken, the velocities of the 

ejected particles are estimated to vary from 2.5 to 6.1 m/s.  At 8 ms, the ignited particle 

cloud visible in the 4-ms frame is seen to move further up and produce a much brighter 

emission.  Considering the displacement of the cloud, the speed of ignited particles can be 

estimated as 1.2 to 2.0 m/s.  At the same time, it is apparent that particles continue being 

ejected from the sample holder and ignited by the heat produced by the burning cloud.  

Frames taken at longer times show slower moving burning particles involved with 

recirculating flow patterns.  Similarly to filament ignition experiments, new individual 
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flame balls are observed at longer times, most probably caused by the ignition of the 

composite inside the evaporating sulfur cloud.  It is seen that more powder is ejected from 

the sample holder and ignited, apparently explaining the nature of the observed emission 

plateau in Figure 5.6.   
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Figure 5.6 Emission trace filtered at 568 nm and pressure signal of the powder ignited in 

ambient air. Capacitor (2000 pF) was charged to 4, 6, and 12 kV for different experiments. 

 

Figure 5.7 Images of the cloud combustion event in air initiated by ESD at 12 kV.  

Frame rate is 500 fps.  Individual frame exposure time is 2 ms. 

An example of the optical emission and pressure signals recorded for an 

experiment in low-pressure air is shown in Figure 5.8.  A much stronger ESD was used to 
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ignite the powder.  Respectively, a stronger and longer pressure pulse was recorded 

indicating a greater amount of the material ignited.  Because ignition could not be achieved 

at lower pressures and in inert gases, presence of oxygen must have been critical for 

ignition of the prepared materials.  The oxygen concentration inside the chamber at -27" 

Hg was more than sufficient to fully oxidize all the magnesium and sulfur ejected from the 

sample holder.  Thermodynamic equilibrium calculations performed using NASA CEA 

code [99] at a constant volume configuration was selected to determine the final theoretical 

pressure for this experiment.  Assuming that all of the air present inside the ESD chamber 

at -27" Hg (9.9 kPa) is allowed to react with the powder ejected from the sample holder, 

yields a theoretical P of 44.2 kPa forming only MgO and SO2 as the main product species.  

The combustion efficiency, , is calculated as a ratio of the experimental and theoretical 

values of P, which produced = 0.2 for this case.  In Figure 5.9, a set of CEA calculation 

results are shown where the volume fraction of air inside the chamber allowed to react with 

the ejected powder was varied while keeping the starting pressure of -27" Hg (9.9 kPa) 

constant by introducing additional inert N2 gas into the starting reactants.  The volume 

fraction is calculated relative to the reference volume representing the chamber filled with 

air at 1 atm. For clarity, an additional x-axis is shown with the amount of air reacting with 

the composites.  The rationale behind this is that not the entire chamber volume participates 

in the reaction.  The calculations therefore mimic a small cloud of variable, but a priori 

unknown volume reacting in a larger chamber filled with an effectively inert gas.  Volume 

fraction of 0.1 in Figure 5.9 represents the calculation for a low-pressure chamber filled 

with air without any additional N2 gas, for which the theoretical P of 44.2 kPa was 

calculated.  Additionally, the mole fraction of the formed magnesium sulfide, MgS, was 
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also tracked for each calculation and reported in Figure 5.9.  The results show that the 

experimentally obtained pressure is clearly lower than the calculated one regardless 

whether the main reaction products are oxidized.  Furthermore, the calculated pressure 

decreases drastically initially as the volume fraction of air is decreased until MgS 

formation becomes significant where theoretical P plateaus.  This suggests that the 

present measurement does not allow one to separate between MgS, MgO, or SO2 formation 

in these experiments; rather a combination of these three species may form depending on 

the amount of air reacting with the composites.  
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Figure 5.8 Emission trace filtered at 568 nm and pressure signal of the powder ignited at 

a low-pressure air (-27" Hg).  Capacitor (20,000 pF) was charged to 20 kV. 

Figure 5.10 demonstrates average values of the temporal characteristics of the 

optical emission traces obtained in experiments conducted in room air.  Error bars 

represent standard deviations from repeat runs.  The peak onset (t-10) was defined as time 

from the ESD pulse initiation until the signal increased to 10% of its peak value.  The peak 

width was taken at half maximum, between times t-50 and t+50. In addition, peak position 

(t100) is shown as well as the overall burn time (t+10) identified when the signal decreased to 

10% of its peak value.  The peak onset shifts only slightly to lower times with an increased 

voltage.  Both, the width of the peak and the burn time increase at higher voltages, are in 

qualitative agreement with the trend seen in Figure 5.6.  This result is consistent with the 
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higher mass losses observed from the sample holder during experiments for higher 

voltages, shown in Table 5.2.  It is clear that more powder ignited at higher voltages.  

Volume fraction of air inside the chamber

reacting with Mg·S nanocomposites

0.0001 0.001 0.01 0.1

Equivalent volume of air reacting with 

Mg·S nanocomposites (mL)

0.01 0.1 1 10 100
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Figure 5.9 CEA pressures for various volume fractions of air inside the chamber which 

is allowed to react with Mg·S nanocomposite at a constant initial pressure of -27 in Hg (9.9 

kPa).  For clarity, an additional x-axis is shown with the amount of air reacting with the 

composites in mL.  Constant starting pressure is achieved by replacing air with inert N2 as 

an additional starting reactant in CEA.  Mole fraction of the MgS species formation is also 

shown.  The calculated pressures are about 2- to 5-fold greater than the experimental 

pressure. 

Assuming that combustion adiabatically heats the gas in the entire chamber volume 

and causes respective pressure increase, we estimated the energy release based on the 

maximum pressures measured.  Results are shown in Table 5.2.  These are lower bound 

assessments for the heat release during spark ignition, neglecting any heat losses.  

Assuming that the reaction product was only condensed MgS, the theoretical energy 

release, Hcalc.= 6.13 kJ/g based on the fH(MgS) values obtained from NIST Chemistry 

Webbook [107].  This energy release was reported to be 6.82 kJ/g by [126].  Similarly, 
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assuming that the reaction product was MgO and SO2, the theoretical energy release, 

Hcalc.= 15.92 kJ/g based on the fH(MgO) and fH(SO2) values obtained from NIST 

Chemistry Webbook [107].  For higher discharge voltages, the estimate indicates that 

about 20% to 40% of the theoretical energy was released during the cloud combustion 

assuming MgO and SO2 or only MgS was the product, respectively.  This is a relatively 

high combustion efficiency, considering that the volume of the experimental chamber was 

substantially greater than the volume of the burning particle cloud, leading to substantial 

energy dissipation unaccounted for in the present estimate.   
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Figure 5.10 Temporal characteristics of the optical emission signals produced by the 

powders initiated by ESD at different voltages. 

Table 5.2 Average Experimental Mass Loss from the Sample Holder and a Comparison 

of Theoretical and Experimental Energy Release for Experiments in Air 

Voltage 

(kV) 

Avg. experimental  

mass loss (mg) 
Hexp. (kJ/g) 

4 0.70 1.32 ± 0.76 

6 1.27 3.26 ± 1.29 

12 3.37 2.60 ± 0.45 
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5.4.5 Aerosol Combustion 

Figure 5.11 presents an example of characteristic pressure traces recorded in CVE 

experiments for sample 7.  The initiation of the igniter corresponds to the time of zero.  For 

comparison, CVE traces for pure Al [134] and for Al·Mg alloy [135] are shown.  The 

experimental results obtained with the pure -325 mesh Mg powder are also shown in 

Figure 5.11.  The ignition delay for Mg·S is substantially longer than for all other powders.  

This is qualitatively consistent with longer delays observed in the ESD ignition tests; likely 

due to the ignition occurring inside an evaporating sulfur cloud.  The rate of pressure rise is 

higher than for the other tested powders.  The value of (P/P0)max is lower than those for Al 

and Al·Mg alloys, but higher than that for the coarser, pure Mg powder.   
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Figure 5.11 Characteristic pressure traces recorded in CVE experiments with the 

prepared Mg∙S nanocomposite powders burning in air (sample 7) compared to similar 

traces for pure Al [134], Mg, and Al·Mg alloy [135].   

When the vessel was opened after each experiment with Mg·S, gaseous products 

with a pungent odor escaped.  Although, the gaseous products were not analyzed, this was 

the typical smell of sulfur oxide species in the form of SO and SO2 [137].  The condensed 

combustion products were collected and analyzed using XRD.  The results shown in Figure 
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5.12 indicated that both MgO and MgS were formed.  Additionally, unreacted sulfur was 

also present. 
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Figure 5.12 XRD patterns of combustion products collected from CVE experiments. 

A summary of CVE results is given in Table 5.3 for the Mg·S composite and for 

pure Al, Mg and Al∙Mg alloy powders.  Both, average ratios of maximum explosion 

pressure, Pmax, to the initial pressure, P0, and average maximum rate of pressure rise, 

(d(P/P0)/dt)max, are shown as indicative of the energy release and rate of reaction, 

respectively.  The average and standard deviation values were calculated from at least three 

repeated experiments.   

A useful assessment of the combustion efficiency for different powders may be 

obtained comparing the experimentally determined pressure ratios, Pmax/P0 with those 

predicted by thermodynamic equilibrium calculations performed using NASA CEA code 

[99].  A constant volume configuration was selected in CEA.  Three cases with different 

sets of reactants were considered.  In one case, elemental Mg and S were mixed with air.  In 

another, magnesium sulfide, MgS was mixed with air. Finally, in the third calculation 

elemental Mg and S were mixed with nitrogen.  The experimental vessel volume and initial 

pressure were accounted for.  For each case, calculations were carried out for different 
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powder mass loads, with the maximum representing the experimental mass powder load of 

4.65 g.  Results are shown in Figure 5.13.  The powder masses lower than experimental 

were considered to account for imperfect aerosolization of the powder and possible 

deposition of the aerosolized powder on the chamber walls.  Previous work suggests that 

the correction for the powder mass may be as large as 20% [100].  Labels in Figure 5.13 list 

the main combustion products predicted to form for each calculated case.  The complete 

reaction in air predicts effectively no MgS in the products.  The pressures are substantially 

greater than that observed in experiments, even if the mass of the powder is substantially 

reduced.  For the cases considering MgS in air or Mg and S in nitrogen, the predicted 

pressures are closer to the experimentally obtained one.  Because both MgO and MgS were 

detected in the products, the experimental situation was better represented by the latter two 

calculated cases.   

Maximum pressures obtained in each calculation for the powder load of 4.65 g are 

shown in Table 5.3.  In addition, Table 5.3 includes results of CEA calculations 

considering 4.65 g of other materials exposed to air, to provide appropriate comparison for 

the reference CVE experiments presented in Figure 5.11 and Table 5.3.  The efficiency is 

calculated as a ratio of the experimental and theoretical values of (P/P0)max for each 

material. 

For all materials, the CEA-predicted pressures are higher than those experimentally 

determined.  An anticipated reduction in the efficiency as a result of imperfect 

aerosolization was already discussed.  In addition, the combustion efficiency is strongly 

affected by the particle sizes.  This effect is likely responsible for the relatively low 

pressures and respective efficiencies observed for elemental Mg powder.  It is instructive 
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to consider the effect of particle size on the combustion efficiency presented in Figure 5.14.  

For Al, Mg, and Mg·S, the efficiency drops linearly as a function of the particle size.  The 

only outlier from the linear trend is the mechanically alloyed powder of Al·Mg, for which 

efficiency is greater, than is anticipated based on its particle size.   

Table 5.3 CVE Experiment Results Compared to Other Fuels (Data Represent Average 

Values ± Standard Deviations) 

Material 

Volume-based 

avg. particle 

size m) 

(d(P/P0)/dt)max 

(s
-1

) 

(P/P0)max 

experim. 

(P/P0)max  

calculated 

by CEA 

Efficiency 

Mg∙S  19.2 498 ± 125 6.4 ± 0.3 10.6 0.60 

Al (H5) [134] 9.06 439 ± 105 8.5 ± 0.3 12.4 0.69 

Mg (-325 mesh) 31.7 76 ± 42 5.7 ± 0.6 12.1 0.47 

Al∙Mg [135] 36.5 326 ± 53 7.6 ± 0.2 13.5 0.56 

 

Powder load, g

2.0 2.5 3.0 3.5 4.0 4.5 5.0

N
o
rm

a
liz

e
d
 p

re
s
s
u
re

, 
P

/P
0

5

6

7

8

9

10

11 Reactants: Mg, S, air 
Main products: MgO, SO2, SO

Reactants: Mg, S, N2

Main products MgS

Reactants: MgS, air 
Main products: MgO, SO2

Main products: MgO, MgS

Experiment

 

Figure 5.13 CEA pressure for three cases at various theoretical mass powder loads. 
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Figure 5.14 Efficiency of combustion in CVE experiments for powders of different 

materials as a function of their respective average volumetric particle sizes.  

5.4.6 Particle Combustion in a Laminar Flame 

Based on the emission pulses collected using the three filtered PMTs and processed using a 

technique described in [104], the distribution of the emission pulse durations representing 

burn times was correlated with the PSD. This allowed us to establish the relationship 

between the burn time and the particle size.  Figure 5.15 demonstrates this relationship for 

the Mg∙S nanocomposites as well as a pure Mg (from [104]).  The results indicate that the 

particles of Mg∙S nanocomposites have shorter burn times than the same size particles of 

the pure Mg, a characteristic often desired for reactive materials. 

The optical emission from the 32-channel PMT for a selected particle burned inside 

the laminar flame with a burn time of ~2.2 ms is presented in  

Figure 5.16A.  The signals shown are subtracted from the background produced by 

the emission produced of the laminar acetylene-air flame.  Additionally, the peak emission 

intensity (measured at 2.2 ms) is shown in  
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Figure 5.16B for all wavelengths.  The intensity decreases for higher wavelengths; 

for a gray emitter this would indicate an unusually high combustion temperature (> 

10,000K).  The spectrum in  

Figure 5.16B shows, therefore, that the emission produced by burning Mg·S 

composite cannot be interpreted as that produced by a gray emitter.  Further spectroscopic 

studies of combustion of such materials are of interest.   
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Figure 5.15 Combustion times of the Mg∙S nanocomposites as a function of the particle 

size. 

Time (ms)

0 1 2 3 4 5 6

In
te

n
si

ty
 (

a
.u

.)

Wavelength (nm)

350 400 450 500 550 600 650

In
te

n
si

ty
 (

a
.u

.)

(A) (B)

Emission Spectrum

Channels 1to32

 

Figure 5.16 (A) Emission signals from 32 channel PMT for a single particle and (B) 

emission spectrum at the peak position of 2.2 ms.  
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Figure 5.17 Average inactivation of aerosolized Btk spores with the Mg∙S 

nanocomposites and other materials at two different burner positions. Exposure time is 

estimated to be 0.33 s. The geometric mean values and geometric standard deviations are 

reported. 

5.4.7 Exposure of Microorganisms to Combustion Products 

Inactivation of aerosolized Btk spores by combustion products of the Mg∙S nanocomposite 

powder was observed for two selected burner positions.  The weighted average 

temperature in the volume where the combustion products were mixed with endospores 

was approximately 170 and 260 ºC for the burner at low and high positions, respectively 

[90].  The exposure time of the bioaerosol to the combustion product was about 0.33 s.  

Figure 5.17 presents the IF values obtained for Mg∙S.  This figure also demonstrates the 

reference values previously reported for unseeded flame and flame seeded with pure Al 

powders along with IF values obtained for Al∙I2 and Al∙B∙I2 [90].   It was concluded that the 
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Mg∙S nanocomposites prepared in the present study form combustion products capable of 

inactivating the challenge bioaerosol more effectively than unseeded hydrocarbon flame or 

the flame seeded with aluminum powder.  The observed effect is statistically the same as 

for the iodine-containing materials, although mole fraction of sulfur is greater than that of 

iodine.  Further comparison can be made with presented data in APPENDIX B as well. 

5.5 Conclusions 

Nanocomposite containing finely mixed magnesium and sulfur were prepared by arrested 

reactive milling.  The powders were reactive and ignited at lower temperatures, compared 

to pure magnesium.  Ignition of these materials occurred with substantial delays; a likely 

reason for such delays is formation of an evaporated sulfur cloud.  The delayed ignition 

was observed for the powders initiated by spark and for the powder clouds ignited in a 

constant volume chamber by a heated wire.  The powders burned faster than pure 

magnesium as evidenced by shorter measured burn times for individual particles, and 

higher rates of pressure rise in the constant volume explosion experiments.  The optical 

emission spectra produced by burning Mg·S nanocomposite powders exhibited an 

unusually strong emission at short wavelengths; additional spectroscopic studies of such 

flames are of interest, which might establish utility of such composites in specialized 

pyrotechnic formulations.  Combustion products generated by the Mg·S nanocomposite 

powders inactivated the aerosolized Bacillus spores much more efficiently than the 

combustion products originated by unseeded or aluminum-seeded flames.  The efficiency 

of inactivation was approximately the same as that achieved by combustion of some 

aluminum-based composite powders containing iodine. 
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CHAPTER 6  

COMBUSTION OF ENERGETIC POROUS SILICON  

COMPOSITES CONTAINING DIFFERENT OXIDIZERS 

6.1 Abstract 

We present a quantitative investigation of combustion of on-chip porous silicon (PS) 

energetic materials using oxidizers with improved moisture stability and/or minimized 

environmental impact compared to sodium perchlorate (NaClO4).  Material properties of 

the PS films were characterized using gas adsorption porosimetry and profilometry to 

determine specific surface area, porosity and etch depth.  PS energetic composites were 

formed using melt-penetrated or solution-deposited oxidizers into the pores.  Combustion 

was characterized by high speed imaging and bomb calorimetry.  The flame speeds 

quantified for PS/sulfur and PS/nitrate systems varied in the ranges of 2.9 – 3.7 ms
-1

and 

3.1 – 21 ms
-1

, respectively.   The experimental combustion enthalpies are reported for 

different oxidizer systems in both inert and oxidizing environments.  For the PS/sulfur and 

the PS/nitrate systems, the experimental heats of combustion were comparable to those 

calculated for the thermodynamic equilibrium and taking into account an increased 

reactivity of PS due to the hydrogen terminated silicon surface. 

6.2 Introduction 

Observations of highly exothermic reactions between porous silicon (PS) and nitric acid 

[138] or liquid oxygen [139] in the early 1990’s and the incorporation of solid oxidizers 

into PS pores reported in 2002 led to interest in PS composite energetic materials [17].  

Initial demonstrations involved alcohol solutions facilitating transport of gadolinium 

nitrate and other similar oxidizers into the PS pores [17, 18].  That work was followed by 
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experimental surveys of several other oxidizer candidates by Clément et al. [19] and du 

Plessis [20, 21], including elemental sulfur which may be melt cast directly without a 

solvent.   

One consistent result from the earlier studies is that sodium perchlorate (NaClO4) 

performed very well in terms of the qualitative measures used, including optical emission 

and acoustic intensities.  Our group [22-25] and others [26-29] have since carried out 

extensive studies of the PS/NaClO4 system, quantitatively validating its performance 

observing highly tunable flame speeds from 1 ms
-1

 [57] to over 3000 ms
-1

 [58, 59], and 

heats of reaction of up to 22 kJ/g of PS [60].  The high performance of NaClO4 is likely due 

in part to its high solubility in alcohols [28]; e.g., in methanol, where it exceeds 400 gl
-1

 

solvent at 25°C [61].  The high solubility increases oxidizer filling of the pores when the 

solvent evaporates [62].  Although the PS/NaClO4 energetic materials perform well, the 

high solubility of NaClO4 in both alcohols and water also correlates with its high 

hygroscopicity, making it difficult to use in many practical situations.  Furthermore, 

perchlorates may present environmental and health hazards due to the long-term stability 

of the chlorate ion and its tendency to mimic iodide ions in biological processes [63, 64].   

Therefore, in this paper we explore alternative oxidizers with potential benefits of 

increased moisture stability and/or perchlorate-free composition.  Despite a recent study 

reporting interesting combustion of free standing PS films in air without the use of any 

additional oxidizers [140], we focus on combustion of substrate-integrated PS films with 

solid oxidizers including sulfur and several nitrates.  A subset of these oxidizers has been 

qualitatively explored previously, including sulfur, calcium nitrate, and gadolinium nitrate 

[19-21].  This paper is the first report of quantitative measurements for flame speeds and 
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calorimetric combustion enthalpies using these oxidizers as well as magnesium and 

manganese nitrates with PS.  Iodine containing oxidizers were also considered. We used 

thermodynamic calculations to establish a baseline for the combustion enthalpy measured.  

Comparisons of experiments and thermodynamic calculations suggested that combustion 

involved a significant amount of hydrogen, which was produced by the SiHx passivating 

layer on the surface of PS; an artifact of the hydrofluoric acid etch [22, 139, 141]. 

6.3 Materials and Experimental Methods 

6.3.1 Sample Fabrication 

The authors would like to note that certain steps within the sample fabrication process can 

be hazardous without utilizing proper facilities, procedures, and equipment.   In particular, 

the hydrofluoric acid (HF) used during the etch process must only be used under an 

appropriate fume hood designed for use with acids, and with the proper personal protective 

equipment. 

The starting material for PS film fabrication was <100> oriented, double-side 

polished, boron doped, p-type silicon wafers of 525 µm thickness and 100 mm diameter 

with resistivity of 1-10 Ω∙cm.  The wafers were obtained from Rogue Valley Microdevices 

(Medford, OR) with a double sided 6000 Å silicon nitride (Si3N4) layer deposited using 

low stress, low pressure chemical vapor deposition (LPCVD).  For etching, the silicon 

nitride layer was completely removed from the backside, attached to a platinum anode. A 

sputter deposited 1700 Å platinum layer acted as a cathode for the electrochemical etch. 
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Figure 6.1 (A) PS strip (27 mm long x 3 mm wide) used for flame propagation 

measurements; (B) square PS chip (17 mm x 17 mm) used for bomb calorimetry 

measurements. 

A detailed description for fabrication of the PS strips (27 mm long x 3 mm wide) 

shown in Figure 6.1(A) for flame propagation measurements is presented elsewhere [59, 

60].  The etch solution consisted of hydrofluoric acid (HF, 49% in H2O), ethanol (EtOH), 

and hydrogen peroxide (H2O2, 30% in H2O) added at 2.4% of the HF-ethanol bath volume.  

The desired macro-structure of PS film was obtained by selectively removing the silicon 

nitride layer from the front side of the wafer with a photolithographic process to expose 

bare silicon.  The HF:EtOH ratio of the etch solution was 3:1 for all PS strips.  An etching 

time of 5 min was used for wafers with resistivities of 1-10 Ω∙cm.  Samples for bomb 

calorimetry shown in Figure 6.1(B) required a larger mass and therefore were different 

from those for flame speed analysis.  These consisted of 1–10 Ω∙cm wafers diced into 17 × 

17 mm chips and etched in the HF:EtOH for 30 minutes.   For these samples, a longer etch 

time was required due to a larger surface area ratio of front-side silicon to back-side 

platinum, which affects the etch current [142]. 

6.3.2 Porous Silicon Characterization 

After the fabrication of PS films, material properties were characterized using gas 

adsorption porosimetry.  The PS strip was cleaved and tested using a Micromeritcs Tristar 
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II 3020 surface area analyzer to determine the surface area, pore size, and pore volume.  

The system uses Brunauer-Emmett-Teller (BET) theory [143, 144] to determine surface 

area and Barrett-Joyner-Halenda (BJH) theory [143, 145] to determine pore size and pore 

volume.  The mass of the PS was determined using a gravimetric technique, with mass 

recorded before and after the removal of PS via a reaction with sodium hydroxide (NaOH).  

Due to the destructive nature of this measurement, additional samples were prepared for 

every batch of etch solution for material characterization experiments.  The mass for these 

samples varied from 1.6 – 1.8 mg for strips for the flame speed study and 9.1 – 18.3 mg for 

the chips for bomb calorimetry.  We have previously showed [60] that the variation in 

material properties of samples from the same wafer is between 1% and 3%, and therefore 

the samples used for combustion were assumed to have the same material properties as 

samples from the same wafer that were used for material characterization.   

Due to the variation in the mass from wafer to wafer, nitrogen adsorption 

porosimetry was conducted for each wafer used in this study to determine the PS material 

properties.  Additionally, the porosity was determined using the following equation (6.1): 

  ( )   
    

(  
 

 
)
                                                      (6.1) 

where   is the porosity,   is specific volume of the pores found from porosimetry, and   is 

the bulk density of silicon (2.33 g∙cm
-3

 [143]).  The etch depth of PS strips was determined 

from profilometry using an Ambios Technology, Inc. XP-2 High Resolution Surface 

Profiler after the removal of PS with NaOH.  The resolution of this device was 10 nm. 
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6.3.3 Pore Loading 

The energetic composites were formulated by impregnating the PS film with various 

oxidizers.  Previous efforts focused on characterizing PS with sodium perchlorate 

(NaClO4), where a nearly saturated 3.2 M methanol solution of NaClO4 was drop cast on 

top of the porous structure [59, 60, 142, 146].  The oxidizer was then allowed to seep into 

the pores and dry, resulting in an energetic system.  Using the NaClO4 system as a 

reference, the present study quantitatively investigates the reactivity of PS film with other 

viable oxidizers.  The list of oxidizers is presented in Table 6.1 along with the pore loading 

technique used for each oxidizer.  With various oxidizers, different pore loading 

techniques were necessary to achieve stable energetic composites.  With the drop cast pore 

loading technique, different compatible solvents were used depending on the oxidizer.  For 

sulfur, due to its low melting point, 119.6 ºC [147], and stability in the liquid state,  melting 

sulfur powder on top of the PS strip (Smelted) was used as a pore loading technique.  After 

melting, sulfur on top of the PS was cooled to room temperature.  

All PS/oxidizer materials after pore loading became sensitive to ignition stimuli. 

Although we did not quantify the sensitivities, it should be noted that several samples 

ignited when being handled using non-grounded tools (i.e., metal tweezers).   Electro-static 

sparks or friction likely caused ignition. PS based composites should be handled with 

extreme care after pore loading.  Specifically, PS loaded with oxidizers, NaClO4 and 

Mn(NO3)2, were observed to be most sensitive to handle.  Samples with Mg(NO3)2, 

Ca(NO3)2 and sulfur were less sensitive.  

For bomb calorimetry samples, the oxidizer content was measured for melted or 

drop cast cases.  The average amount of sulfur melted on top of the PS chip was 0.077 ± 
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0.012 g.  For nitrate-based oxidizers, 40 – 50 µL of solution was drop cast on top of the PS 

chip to fully cover the top surface of the chip and dried inside a nitrogen flowing dry-box 

for at least 30 minutes.   

Table 6.1 Commercially available oxidizers used in this study 

Chemical Name 
Chemical 

Formula 
Supplier Purity Pore Loading Technique 

Sulfur, powder, 

-100 mesh 
S Sigma-Aldrich 

Reagent  

grade 

Melted on top of PS 

Drop cast CS2 solution; 1.9M 

Gadolinium 

nitrate hydrate 

Gd(NO3)3∙xH2O 

(x≈6) 
Alfa Aesar 99.9% 

Drop cast methanol solution; 0.8M 

& 2.7M 

Magnesium 

nitrate 

hexahydrate 

Mg(NO3)2∙6H2O Alfa Aesar 98% 

Drop cast ethanol solution; 0.8M 

Calcium nitrate 

tetrahydrate 
Ca(NO3)2∙4H2O Alfa Aesar 99% 

Drop cast ethanol solution; 1M 

Manganese 

nitrate 

tetrahydrate 

Mn(NO3)2∙4H2O Alfa Aesar 98% 

Drop cast ethanol solution; 1M 

Potassium 

periodate 
KIO4 Alfa Aesar 99% 

Drop cast methanol solution; conc. 

<0.1M 

Sodium 

metaperiodate 
NaIO4 Alfa Aesar 98% 

Drop cast methanol solution; conc. 

<0.2M 

Iodopentoxide I2O5 Sigma-Aldrich ≥98% 

Drop cast methanol solution; conc. 

<0.2M 

Drop cast acetone/ distilled water 

mixture solution; conc. <0.6M 

Gravimetric measurements were conducted to estimate the oxidizer mass which 

fills the pores from drop casting sulfur and nitrates as described elsewhere [60].  In an 

attempt to account for excess dry oxidizer on the surface of each chip, surface oxidizer was 

removed from the insensitive (non- porous) Si3N4 regions on the top of the chip by a cotton 

swab, leaving excess oxidizer above the sensitive PS region.  The removed oxidizer was 

weighed, and the surface area that was covered by it was measured.  Assuming that the 

surface oxidizer above the active PS area, which was not wiped, was covered by the same 

mass per unit area of excess oxidizer, the mass of excess dry oxidizer above PS was 

estimated. By subtracting this estimate from the total amount of oxidizer left on the sample, 

the mass of oxidizer in the pores was calculated. 
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6.3.4 Characterization of Porous Silicon Energetic Composite 

After oxidizing the PS strips, the ignition and combustion events were captured by a 

Photron FASTCAM SA5 high speed camera at 100,000 frames per second inside an 

enclosed optically transparent box.  All experiments were conducted in a nitrogen flowing 

dry-box with at least three repeats, except one experiment performed in air.  The high speed 

video was processed using open source software, Tracker Video Analysis and Modeling 

Tool, to track the flame front during combustion.  The average flame speed was calculated 

for steady flame fronts using a linear fit of the distance traveled by the luminous flame 

front as a function of time.  The standard deviation was calculated for all experiments with 

at least three or more flame speed measurements for all cases except for one.  Flame speeds 

were successfully measured for energetic composites involving sulfur and nitrate-based 

oxidizers, but not for iodine-based oxidizers.  All iodine-containing oxidizers had low 

solubility in the respective solvents, and the PS strips with iodine-based oxidizers did not 

self-propagate for the concentrations shown in Table 6.1.  Because of their low reactivity, 

these materials were not characterized further. 

Bomb calorimetry measurements were conducted with a Parr Semimicro 

Calorimeter (Parr 6725) and a Parr Calorimetric Thermometer (Parr 6772).  The calibration 

of the calorimeter was completed using benzoic acid pellets.  The constant volume specific 

heat capacity of the bomb calorimeter (Cv) was determined to be 2.1 ± 0.14 kJ ms
-1

.  Using 

the PS chip (17 mm x 17 mm), the energetic composite was prepared with both sulfur and 

nitrate-based oxidizers for the bomb calorimetry measurement.  The samples were placed 

inside the bomb cell pressurized to 2 atm with either dry nitrogen or oxygen.  An 

electrically heated fuse wire was used to ignite the sample inside the sealed cell.  The 
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consumed fuse wire length during each measurement was determined and the energy 

contribution from the burned fuse wire was subtracted from the total heat measured.  The 

average combustion enthalpy and standard deviation after subtraction was calculated for 

all energetic composites.  The measurement uncertainty also included the error associated 

with the calibrated Cv value of the calorimeter.  For specific nitrates (containing Mg, Ca, or 

Mn), multiple experiments were not conducted in nitrogen.  Therefore, error bars shown in 

the results are based only on the calibration error.  Samples without multiple experimental 

runs were difficult to reproduce for a variety of reasons.  For Mn(NO3)2∙4H2O samples, 

preparing and loading them inside the bomb cell was difficult due to their high sensitivity.  

Therefore, only one experiment was conducted in both nitrogen and oxygen.  In the case of 

Mg(NO3)2∙6H2O, and Ca(NO3)2∙4H2O, a larger mass was required to register a successful 

signal in nitrogen, and therefore two 17 x 17 mm samples were placed in the calorimeter.  

These samples were less sensitive; however, extreme care was taken to load the bomb cell 

with two samples.  Additionally, for the Sdrop cast sample, the fuse wire ignited the energetic 

composite but a signal was not registered under nitrogen environment even with the use of 

two PS chips.  Although, sulfur containing samples were less sensitive than perchlorates 

and nitrates, they were still sensitive to handle. We did not attempt an experiment with 

more than two PS chips due to this reason for these samples. 

6.4 Results and Discussion 

6.4.1 Characteristics of PS 

The gas adsorption porosimetry results for the PS strips for flame speed experiments are 

reported in Table 6.2.  The pore size, pore volume, and surface area of these samples varied 
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in the range of 27.6 – 33.3 Å, 0.73 – 1.12 cm
3
g

-1
, and 733 – 983 m

2
g

-1
, respectively.  The 

etch depth measured using profilometry (representing the maximum depth the oxidizer 

could penetrate) ranged from 24 to 26 µm.  The porosity reported in Table 6.2 was 

calculated using equation (1) for all samples.  PS chips for bomb calorimetry were also 

characterized using gas adsorption porosimetry, where pore size, pore volume, and surface 

area ranged from 32.4 – 34.0 Å, 0.81 – 1.08 cm
3
g

-1
 and 647 - 911 m

2
g

-1
, respectively.   

In addition to porosity parameters, SiH2 present on the surface of PS may have 

affected the combustion enthalpy significantly.  It is well known that the etching of silicon 

with HF removes the native oxide layer and passivates the surface with a hydrogen 

terminated layer in the form of SiHx (x = 1,2,3) [148, 149], where it can be assumed that the 

average x=2, as for SiH2.  Surface functionalization of PS and the presence of SiH2 can 

affect combustion and, in particular, results of the bomb calorimetry measurements.  

Therefore, we estimated the mole ratio of silicon hydride relative to the bulk PS (bulk PS = 

porous silicon + hydrogen terminated surface),  (       ), using the following equation 

(6.2), 

 (       )  (
        

  
) (

    

         
)                                     (6.2) 

where    is the specific BET surface area (647 - 911 m
2
g

-1
 of PS) for PS chip (17mm x 

17mm bomb calorimetry samples),       is the atom surface density (7.5×10
18

 atomsm
-2

 

of PS),    is the Avogadro constant, and      is the molecular weight of silicon.  

 (       ) was estimated to range from 0.23 to 0.32, due to the variation in surface area 

between wafers. 
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6.4.2 Pore Loading 

The energetic composite can be further understood by determining the amount of oxidizer 

present inside the pores.  To estimate this amount, a gravimetric technique presented in 

[60] for NaClO4 was used for the drop cast pore loading of 1.8 M and 0.8 – 1 M 

concentrated sulfur and nitrate-based oxidizers, respectively.  The measured oxidizer mass 

inside the pores ranged from 0.56 to 0.89 mg, depending on the drop cast oxidizer.  The 

equivalence ratios derived from this measured mass, Φm, are reported in Table 6.3, and 

show the energetic systems to be fuel-rich.  Additionally for drop cast samples, 

equivalence ratios, Φc, were calculated for samples with 70% porosity, assuming the 

concentrated solution initially occupies the entire porous volume, before the evaporation of 

the solvent.  This calculation was expected to produce an upper bound for the amount of 

oxidizer deposited in the pores.  For NaClO4, the reported values of  Φc and Φm are 

comparable to each other [60].  However, in this work, Φc was 1.5 – 3 times higher than 

Φm, indicating that the measured amount of oxidizer in the pores was larger than the 

calculated value.  Although porosity values in Table 6.2 actually ranged from 63-72 %, Φc 

was still higher than Φm over this range for each sample. This apparently unrealistic result 

may be explained by different morphology of oxidizers deposited on top of the porous 

surface as compared to that of bulk Si. Therefore, it seems that the gravimetric technique 

using removal of oxidizer from insensitive surfaces of crystalline silicon is not well suited 

for drop cast sulfur and nitrate based oxidizers.  A better estimate of mass inside the PS 

after pore loading remains to be the calculated Φc values presented in Table 6.3, and in any 

case it appears that very fuel-rich energetic composites were formed.  
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Since it was not possible to use the gravimetric technique for the Smelted case, the 

equivalence ratio as a function of porosity was calculated assuming that all the available 

volume inside the porous structure was occupied by sulfur, creating a fully dense system 

(Sfully dense).  For example, a 70% porous system filled with sulfur (density of 2.069 g∙cm
-3

 

[147]) is expected to reach equivalence ratio of 1.1, near  stoichiometric conditions 

(equivalence ratio of unity) as shown in Table 6.3. 

6.4.3 Flame Propagation 

6.4.3.1 PS/Sulfur. A built-in gold bridge wire [23, 58-60] was used to ignite the 

sample in nitrogen and simultaneously trigger the image capture process.  Average 

measured flame speeds for different sets of samples are shown in Table 6.2.  Samples with 

sulfur powder melted on top of the strip (Smelted) exhibited similar flame speeds as drop cast 

sulfur (Sdrop cast) samples at 3 ms
-1

.  An additional flame speed experiment was repeated in 

air to ensure both the stability and reactivity of the Smelted system under ambient conditions.  

A comparable flame speed of 2.9 ms
-1

 was observed in air; however, the flame appearance 

was very different from that in  nitrogen.  Figure 6.2(A) and Figure 6.2(B) show the 

combustion events of Smelted tested in nitrogen and air, respectively.  The flame in air 

flared much more aggressively and the combustion products emitted a higher intensity 

light compared to the flame in nitrogen for both Smelted and Sdrop cast.  We suspect a 

considerable secondary reaction in the presence of air occurred in the gas phase, which 

caused the intensified flame characteristics observed in air.  The combustion products from 

the initial Si/S reaction are expected to further react in air to form various silicon and sulfur 

oxides.  It is surprising that both Smelted and Sdrop cast with apparently different pore loading 
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and equivalence ratio as indicated in Table 6.3, showed comparable flame speeds that were 

much lower compared to the PS/NaClO4 system [58-60].  It is also interesting that the 

violent gas phase reaction occurring in air did not alter the flame speed.  Note that the 

pattern of the gas phase flame suggests a relatively low speed of gas motion and substantial 

effect of natural convection. Thus, produced gas species likely did not cause a local 

pressure increase or substantial convective heat transfer in the direction of flame 

propagation.  Possibly, the flame speed in this case was controlled by heat transfer through 

a composite Si/S structure obtained in PS, although further work is desired to elucidate the 

flame propagation mechanism.  

 

Figure 6.2 Combustion event of (A) Smelted tested in nitrogen and (B) Smelted tested in 

air. 
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Table 6.2 Material Properties of PS Strips for Flame Speed Characterization, Etched 

for 5 Minutes in 3:1 (HF:Et) Etch Solution; Flame Speed Measurements Using Various 

Oxidizers 

Pore Loading Technique / 

Experimental Environment 

Surface Area 

(m
2
g

-1
) 

Pore Volume 

(cm
3
g

-1
) 

Pore Size 

(Å) 

Porosity 

(%) 

Etch Depth 

(µm) 

Flame Speed   

(ms
-1

) 

Smelted    / Air 845 0.98 31.8 70 26 2.9 

Smelted    / N2 808 0.73 27.6 63 24 3.0 ± 0.1 

Sdrop cast / N2 983 1.12 31.8 72 25 3.7 ± 0.1 

2.7 M Gd(NO3)3 drop cast  / N2 845 0.98 31.8 70 26 3.1 

0.8 M Gd(NO3)3 drop cast  / N2 845 0.98 31.8 70 26 10.1 ± 2.2 

0.8 M Mg(NO3)2 drop cast / N2 733 0.76 29.9 64 25 4.4 ± 1.4 

1 M Ca(NO3)2 drop cast       / N2 777 0.76 28.9 64 25 9.8 ± 1.9 

1 M Mn(NO3)2 drop cast     / N2 777 0.76 28.9 64 25 21.0 ± 7.0 

Table 6.3 Gravimetrically Measured Amount of Oxidizer Inside the Pores Along with 

Measured and Calculated Equivalence Ratios 

Pore Loading 

Assumption 

Pore Loading 

Technique 

Measured 

mass inside the 

pores (mg) 

Eq. Ratio using 

measured mass 

(Φm) 

Calculated Eq. 

Ratio using 

assumption (Φc) 

70% porous sample fully 

dense with oxidizer 

Smelted -- -- 1.1 

1) 70% porous sample 

filled with oxidizer 

solution 

2) only residual oxidizer 

after evaporation of 

solvent is expected to be 

loaded into the pores 

Sdrop cast 0.89 3.8 4.8 

0.8 M Gd(NO3)3 drop cast 0.67 10.1 15.6 

0.8 M Mg(NO3)2 drop cast 0.67 8.5 24.6 

1 M Ca(NO3)2 drop cast 0.70 7.5 20.5 

1 M Mn(NO3)2 drop cast 0.56 10.1 19.9 

6.4.3.2 PS/Nitrates. The average flame speeds for PS/nitrate-based energetic 

composites are reported in Table 6.2, ranging from 4.4 – 21.0 ms
-1

 for ≤ 1 M nitrate-based 

solution.  In the case of Gd(NO3)3, a reduced flame speed was observed for a sample with a 

higher concentration obtained from a 2.7 M solution.  We suspect that due to the higher 

viscosity solution, the pore loading was reduced, causing a decreased flame speed. When 

utilizing Gd(NO3)3 in solution, variation in oxidizer concentration produced visible 

differences in solution viscosity.  The 2.7M solution created a thick layer of Gd(NO3)3 over 

the top of the PS film after drop casting and drying.  This behavior was in contrast to the 
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energetic system involving sodium perchlorate [60], where a noticeable difference in 

viscosity was not seen for a nearly saturated 3.2 M solution of NaClO4 compared to 0.8 M 

NaClO4 solution.  Additionally, the pore loading increased four times when drop casting 

higher concentrations of NaClO4.  We suspect that due to a higher viscosity solution in 

Gd(NO3)3, oxidizer penetration into the pores was limited, and likely hindered observed 

flame speeds. 

Figure 6.3 shows combustion event snapshots for all nitrates used in this study.  A 

self-propagating reaction was observed for these composites with flame speeds slightly 

greater than for the sulfur containing energetic composites.  Qualitatively, greater amounts 

of ejected gas phase species observed in Figure 6.3 correlated with higher flame speeds in 

Table 6.2.  This observation was supported by chemical equilibrium calculations 

performed with Cheetah 7.0 [150] under constant pressure for PS/sulfur, PS/Ca(NO3)2, and 

PS/NaClO4.  Other nitrates were not available in Cheetah 7.0.  Results predicted that 

PS/NaClO4 produces 25% more gaseous products than PS/Ca(NO3)2, and gas production 

from PS/Ca(NO3)2 was ~6x that of PS/sulfur.  Note that based on the shape and structure of 

the luminous zones above the PS surface, it is apparent that the ejected gas species moved 

faster than those observed in Figure 6.2(B), for PS/sulfur combustion in air.  Thus, it may 

be that the gas species released by decomposing nitrates accelerated convective heat 

transfer and thus caused greater flame speeds.  Because all flame speeds observed in these 

experiments are much lower compared to PS/NaClO4 system [58-60], the effect of 

convective heat transfer for nitrates appears weaker than for sodium perchlorate.  This 

conclusion is consistent with a lower expected total gas release by the decomposing 

nitrates.  Similarly, conductive heat transfer may increase in the PS/nitrates due to changes 
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in the combustion temperatures compared to PS/suflur. This could results in increasing 

flame speeds for PS/nitrates compared to PS/sulfur.  Therefore, it is likely that both 

convective and conductive heat transfer mechanisms affect flame speeds for PS/nitrates.  

The dominating mechanism may be difficult to identify. 

 

Figure 6.3 Combustion event snapshots of PS/nitrate systems during flame speed 

measurements. 
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Figure 6.4 Combustion enthalpy for Si/S/N2 and SiH2/Si/S/N2 system from CEA 

compared to bomb calorimetry experiment of Smelted in N2. 
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6.4.4 Bomb Calorimetry 

6.4.4.1 PS/Sulfur. Experimental results shown in Figure 6.4 are compared to 

calculations using NASA CEA thermodynamic equilibrium code [99] for the PS/sulfur 

combustion in nitrogen.  A constant volume configuration was selected in CEA, where the 

calculations considered the experimental bomb cell volume and initial pressure.  Using 

these parameters, the amount of nitrogen filling the bomb cell volume was calculated using 

ideal gas law.  The initial amount of nitrogen which filled the bomb cell was kept constant 

for all experiments and for respective CEA calculations.  Initially, a CEA calculation was 

performed with reactants involving Si/S/N2 to compare with the experimental results.  

Additionally, two other calculations were performed using the reactants SiH2/Si/S/N2, 

accounting for possible functionalization of the PS surface as discussed in part 5.4.1.  

Because the heat of formation of functionalized PS is not well defined in the literature, the 

only available gas phase SiH2 species from the CEA library was selected for calculations.  

Although the use of gas phase species may result in overestimation of the heat of 

combustion, the calculations will nevertheless provide insight into how functionalization 

affects combustion.  For SiH2/Si/S/N2, the upper and lower range of  (       ) obtained 

from equation (5.2) were used to calculate the combustion enthalpy.  The mole ratios of 

S:Si and/or S:(Si+SiH2) were varied in Figure 6.4 to account for the range between the 

sulfur limited case, Sfully dense (mole ratio ≈ 1.40), and the excess sulfur case, Smelted (mole 

ratio ≈ 3.65).  The calculations did not converge for the Si/S/N2 at the lowest S:Si ratio, 

corresponding to its Sfully dense case.  Although the combustion enthalpies for the considered 

compositions (Si/S/N2, and SiH2/Si/S/N2 with  (       )       and  (       )      ) 

show a maximum for each case, the variation in predicted reaction enthalpy was relatively 
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small.  The maximum calculated combustion enthalpies for the compositions with Smelted 

were 1.2 kJ/g of PS for Si/S/N2, 3.7 kJ/g of PS for SiH2/Si/S/N2 with  (       )        

and 4.7 kJ/g of PS for SiH2/Si/S/N2 with  (       )      .  When comparing major 

product species predicted by CEA during combustion, silicon sulfide was the most 

dominant in all three cases.  In the cases of SiH2/Si/S/N2, other major species such as H2S 

and H2 were present.  The calculations did not predict significant amounts of silicon nitride 

species. 

The experimental combustion enthalpy obtained from bomb calorimetry under 

nitrogen was 5.2 ± 0.6 kJ/g of PS.  The error bar is based on standard deviation of both the 

error from multiple measurements as well as the error associated with the calibrated Cv 

value of the calorimeter.  Note that the reported experimental value is normalized by the 

measured PS mass.  The mass of the PS was determined using a gravimetric technique, 

with mass recorded before and after the removal of PS via a reaction with sodium 

hydroxide (NaOH).  Since this was a destructive process, it was not possible to test the 

mass of the PS chips used in the actual bomb calorimeter measurements.  Instead, the 

measured mass of one of the 17 mm x 17 mm PS chip from each wafer was assumed to be 

representative of every sample from that wafer, and was used to normalize the total heat 

release observed during the bomb calorimetry measurement conducted with samples from 

the same wafer.  The error in defining the mass of PS used in the actual test was not 

quantified and not taken into account.  Therefore, the error reported for the experimental 

values is under-estimated.  Additionally, the bulk silicon and platinum were considered to 

be inert, while the total heat release was solely considered from the PS reaction.  However, 

if even a small percentage of bulk silicon reacted with the oxidizer, the combustion 
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enthalpy per unit mass would decrease because of the additional higher density fuel.  Even 

considering the above caveats, comparisons of CEA calculations and the experimental 

values suggest that the likely presence of SiH2 species discussed in Section 6.4.1 led to a 

significant increase in the measured reaction enthalpy compared to that expected for PS 

with an unmodified surface.  Indeed, only the combustion enthalpy calculated for the 

0.32
SiH2/Si/S/N2 system with the highest possible value of  (       )  was close to the 

experimental value. 

6.4.4.2 PS/Nitrates. The combustion enthalpy of each energetic composite prepared 

using the nitrate-based oxidizer was tested inside the bomb calorimeter under a nitrogen 

environment.  Comparisons of measurements with theoretical heats of combustion were of 

interest.  The thermodynamic calculations for the PS/nitrates using NASA CEA code could 

not be conducted because the CEA library does not contain these chemicals.  However, the 

enthalpies of formation for anhydrous form of nitrates and NaClO4 were obtained from the 

literature [48] for all but Gd(NO3)3 to estimate the expected heat of reaction based on the 

following reactions (R1) and (R2).  In reaction (R1), M represents the anions (Mg, Ca or 

Mn) and   represents the amount of hydrogen termination (23 – 32 % of SiH2). 

     SiH2 +    (   ) Si + M(NO3)2      SiO2 + MO +      H2 + N2                   (R1) 

  SiH2 + (   )Si + (         )NaClO4  SiO2 + (         )NaCl +   H2O   (R2) 

According to the pore loading analysis conducted in Section 5.4.2, the composition 

of the reactive energetic composite depends on how the oxidizer is loaded into the pores of 

the PS film.  For example, in the case of nitrates and NaClO4, only about 20 - 30 wt. % of 

the oxidizer drop cast on the surface is expected to fill the pores, while the residual oxidizer 

sits on top of the chip [60].  This residual amount is not usually expected to participate in 
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the reaction due to a relatively long diffusion distance between the PS and residual 

oxidizer.  However, this may not be the case for the combustion event taking place inside a 

pressurized constant volume cell in the bomb calorimeter, when the time of reaction could 

be extended.  To evaluate the amount of oxidizer participating in the reaction with PS, the 

experimental results were compared with three calculations.  For each calculation, a 

different oxidizer-limited assumption shown below was used to calculate the expected 

energy release for each system, while also including the SiH2 terminated surface. 

oxidizer-limited assumptions 

(i) all of the drop cast oxidizer participated in the reaction with  (       )       

(ii) all of the drop cast oxidizer participated in the reaction with  (       )    

(iii) only the pore loaded oxidizer participated in the reaction with  (       )       

Results of these calculations are shown in Figure 6.5. The error bars include 

experimental error as well as calibration error. Only the experimental value for Gd(NO3)3 

is shown because the heat of formation value for Gd(NO3)3 could not be obtained to 

calculate its combustion enthalpy. The measured energy release best correlates with the 

calculated heat of reaction for Ca(NO3)2, Mn(NO3)2 and NaClO4 when considering an 

oxidizer limited case with all of the drop cast amount participating in reaction R1 and R2.  

Consistent with the result from the PS/sulfur system, it appears that the PS surface 

functionalization with SiH2 had a substantial effect on the combustion enthalpy. In the case 

of Mg(NO3)2, the experimental value falls in between the assumptions ii and iii.  This may 

be due to the fact that not all of the oxidizer reacted.   
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Figure 6.5 Experimental combustion enthalpy in nitro-gen for 3:1 etch solution ratio 

(HF:ethanol). The top of each bar color indicates the total heat calculated using each 

oxidizer-limited assumption. 
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Figure 6.6 Experimental combustion enthalpy in oxygen for 3:1 etch solution ratio 

(HF:ethanol).  The error bar includes experimental error as well as calibration error. 
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For all systems, the experimental enthalpies exceeded their calculated values 

obtained assuming that only the oxidizer within the pores was involved in the reaction with 

PS.  This was a surprising result and suggests that in bomb calorimetry experiments, excess 

oxidizer on the sample surface contributes to its reaction — a concept that was previously 

neglected [60, 151].  The exact amount of oxidizer participating in the reaction with PS is 

still poorly defined, however.  A gravimetric technique described in references [60, 151] is 

not sufficiently versatile to be used for all oxidizers.  A better technique must be developed 

in the future to quantitatively correlate the amount of the pore loaded oxidizer with the heat 

release observed. 

An additional experiment in oxygen was conducted for all composites and the 

results are shown in Figure 6.6.  Consistently for all energetic systems, higher heat of 

combustion values were observed in oxygen compared to nitrogen, qualitatively 

confirming that fuel-rich PS energetic composites were, in fact, formed after loading the 

pores with the oxidizer.  The combustion enthalpies calculated assuming that all of the drop 

cast oxidizer and excess oxygen are available to fully oxidize the PS correlated well with 

experimental results.  Consistently with previous calculations, possible functionalization 

of the PS surface with SiH2 affected the combustion enthalpy substantially.  Calculations 

for PS/sulfur (not shown in Figure 6.6) predicted nearly complete oxidation of both Si and 

S. Resulting reaction enthalpy calculated from CEA exceeded substantially that observed 

in experiments, in which PS reacted with sulfur filled in pores, forming SiS2 shielded from 

ambient oxygen by the excess layer of sulfur on the surface.  The calculation were not 

performed for the case of Gd(NO3)3, due to the lack of heat of formation value for 

Gd(NO3)3.  A direct comparison between Figure 6.5 and Figure 6.6 can be used to roughly 
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assess the amount of PS left unreacted in the experiments conducted in nitrogen.  In the 

presence of oxygen, this unreacted PS appears to be fully oxidized, so that the measured 

enthalpies approach their respective theoretical limits. 

6.5 Conclusions 

Energetic composites using PS film with various oxidizers were prepared and their 

performance was analyzed quantitatively.  In particular, moisture stable energetic 

composites were prepared using PS film and sulfur.  PS/sulfur systems were similarly 

readily ignitable and combustible in both inert and oxidizing gases. Similar flame speeds 

around 3 ms
-1

 were observed for the composites prepared using different pore loading 

techniques, Smelted and Sdrop cast.   The flame speed was also unaffected by the presence of an 

external oxidizing gas.  The reaction heat was increased due to functionalization of PS 

surface with SiH2, taking part in combustion.  The PS/sulfur system is a potential 

alternative to NaClO4 for applications requiring moisture stable and perchlorate-free 

energetic composites.  The flame speed for PS/sulfur was much lower than for an earlier 

characterized PS/NaClO4 system.  A detailed study, outside the scope of present work, is 

needed to understand how more rapid combustion speeds might be achieved for PS/sulfur 

combustion. 

Fuel-rich composites with minimal pore filling were also prepared with 

nitrate-based oxidizers.  These energetic composites were ignited in nitrogen gas.  The 

flame speeds for these oxidizers with PS were higher than for PS/sulfur, but still 

considerably lower than those for PS/NaClO4. These oxidizers may be viable for 

applications requiring lower burn speeds and more controlled reactions.  The combustion 

studies using the bomb calorimeter showed all systems have higher combustion enthalpies 
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in oxygen compared to nitrogen, confirming the starting composition to be fuel-rich.  More 

interestingly, the thermodynamic estimates correlated better with experimental reaction 

enthalpies when the surface terminated hydrogen and excess oxidizer, in addition to the 

oxidizer loaded in the pores, were accounted for in the reaction.  Determining the exact 

amount of the oxidizer reacting with PS remains a challenge. 
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CHAPTER 7  

REACTIVE MATERIALS FOR EVAPORATING SAMARIUM 

7.1 Abstract 

Different reactive materials were prepared and evaluated as potential heaters to evaporate 

refractory and readily ionized samarium metal.  Fully dense, nanocomposite powders of 

thermites and boride-forming compounds were prepared using arrested reactive milling.  In 

some samples, samarium powder was blended with the nanocomposite powders; in other 

samples samarium was added using an additional short milling step.  Powders were pressed 

in pellets and ignited at a low pressure.  Flame propagation was monitored optically; 

combustion products were collected and analyzed.  It was observed that nanocomposite 

2B-Ti powder in which samarium was added via an additional milling step was most 

suitable for evaporating samarium, while preventing its reaction with other material 

components.  Up to 30 wt. % of samarium could be added and most of it evaporated in the 

present experiments. 

7.2 Introduction 

Ejection of clouds of readily ionized metal atoms can be used to modify ionosphere to 

study and alter its properties important for transmission of optical and radio signals  [30].  

Clouds of lithium [31, 32], barium [33-35], and, most recently, samarium [36, 37] were 

explored.  Some of the recent results were negatively affected by reduced efficiency of 

release and ionization of samarium [37].  It is possible that not the entire charge of 

samarium was evaporated; it is further possible that some of the metal was oxidized or 

chemically bound.  Formation of a metal cloud in an upper atmosphere layer is not a trivial 
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task.  It is particularly difficult when dealing with easy to ionize and thus fairly reactive 

metals, such as Li, Ba, or Sm.  Using conventional propellants or explosives to generate 

metal clouds is problematic because of rapid reaction of evaporated metal with the 

simultaneously released combustion products to form i.e., samarium oxides or samarium 

borides.  Here, an approach for generation of samarium clouds is explored using 

metal-based reactive materials producing high combustion temperatures and forming 

relatively stable, inert condensed products, which are unlikely to include Sm.  Further, to 

minimize possible reaction of samarium with individual components of reactive materials, 

in this study, fully dense, micron-sized nanocomposite reactive material powders are 

prepared by arrested reactive milling (ARM) [1].  Conventional blending or mixing 

starting components with samarium to prepare reactive material is purposefully avoided in 

this study to diminish any reaction of samarium with other components of reactive 

materials.  In ARM-prepared reactive materials, components capable of highly exothermic 

chemical reaction are mixed on the scale of 100 nm within each particle.  Thus, such 

components ARM are much more likely to react with each other than with relatively coarse 

samarium particles, added later to the pre-milled nanocomposite powders using a distinct 

mixing step. 

 

Review of the literature data suggested many potentially useful reactive materials, 

including composites forming borides, carbides, and sulfides, as well as thermite-like 

compositions undergoing redox reactions [126, 152-154], which are expected to generate 

the heat and temperature necessary to evaporate Sm.  It was, however, difficult to 

determine in which systems, reactions of Sm with other components are least likely to 

occur.  A preliminary survey aimed to select reactive systems for which high reaction rates 
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and temperatures were reported experimentally, enabled us to narrow down the 

compositions to be explored to 2B-Ti [1, 155, 156], 2B-Zr [157, 158], Ti-C [159-162], 

Mg-S [122], and a thermite system Al-MoO3 with different fuel/oxidizer ratios [2, 99, 163, 

164].  The above list of possible compositions is not exhaustive; however, it considers 

distinctly different types of reactive materials.  Further work can consider other materials 

for each type of compositions, forming borides, carbides, sulfides, or oxides.  This paper 

discusses experiments focused to determine which of the surveyed compositions is better 

suited to generate clouds of evaporated samarium. 

7.3 Materials and Experimental Methods 

7.3.1 Material Preparation 

Several nanocomposite powders were prepared by ARM [1] starting from readily 

commercially available elemental metal, metalloid, or oxide powders.  A list of the starting 

materials, their purity and the compositions of prepared nanocomposites are given in Table 

7.1.  ARM was used extensively to prepare variety of reactive materials in the past, e.g., [1, 

2, 163-165]; here it was used to prepare 2B-Ti, 2B-Zr, Ti-C, Mg-S, and Al-MoO3 

nanocomposite powders. A shaker mill (SPEX Certiprep, 8000 series) with two 50 mL 

flat-ended steel vials cooled by room-temperature air jets was used to prepare all 

composites except for Mg-S.  Case-hardened carbon steel balls 3/8‖-diameter, were used 

as a milling media.  Ball to powder mass ratio (BPR) was fixed at 10.  During milling, 

about 2 – 5 mL of hexane was used as the process control agent (PCA).  The milling vials 

were loaded and sealed inside an argon-filled glovebox.  For Mg-S system, mechanically 

triggered reaction was reported to occur at very short milling times, before a well-mixed 
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composite structure was prepared [128, 129].  In an attempt to avoid premature reaction, a 

freezer mill (SPEX 6850) with four 25 mL steel vial operated at liquid nitrogen 

temperature was used.  A 2.3‖ long steel rod with 3/8‖-diameter oscillating within the vial 

at a frequency of 15 Hz was used as a milling tool.  Powder load was 2 g.  Unfortunately, 

two milling experiments conducted with milling times of 100 and 150 min yielded a 

powder that was reacted.   Further attempts to prepare Mg-S composites were not made for 

this study.   

Table 7.1 List of Elemental Powders Used to Prepare Nanocomposites 

Chemical Name Chemical 

Formula 

Supplier Purity Nanocomposites 

Titanium powder,  

-325 mesh (<44 µm) 

Ti Alfa Aesar 99% 2B-Ti, Ti-C 

Amorphous boron powder,  

<1 µm 

B SB Boron 93-96% 2B-Ti, 2B-Zr 

Carbon black powder,  

FE-603, 1-5 µm 

C Atlantic Equipment 

Engineers 

99.9% Ti-C 

Zirconium powder,  

APS, 2-3 µm 

Zr Alfa Aesar 97.2% 2B-Zr, Zr-C 

Magnesium powder,  

-325 mesh (<44 µm) 

Mg Alfa Aesar 99.8% Mg-S 

Sulfur, powder,  

-100 mesh (<149 µm) 

S Sigma-Aldrich Reagent 

Grade 

Mg-S 

Aluminum powder, 

-325 mesh (<44 µm) 

Al Atlantic Equipment 

Engineers 

99.5% 2Al-MoO3, 4Al-MoO3, 

8Al-MoO3 

Molybdenum oxide, powder, 

-325mesh (<44 µm) 

MoO3 Alfa Aesar 99.95% 2Al-MoO3, 4Al-MoO3, 

8Al-MoO3 

 

Preliminary material assessments described briefly in Section 3.1 were used to 

downselect 2B-Ti and Al-MoO3 as the most promising reactive materials for evaporation 

of Sm.  However, in the case of 2B-Ti, the heats of formation of TiB2 and commonly found 

SmB6 are comparable to each other [166].  Additionally, other samarium borides (i.e., 

Sm2B5, SmB2, SmB4, SmB66) are reported in the literature [167-169], suggesting possible 

reactions of boron with Sm instead of Ti.  Similarly, in the case of Al-MoO3, formation of 

samarium oxide (Sm2O3) is thermodynamically favored due to its higher heat of formation 
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values compared to aluminum oxide (Al2O3) [166]. It was therefore desired to maximize 

the reaction rates between components of the heat-generating reactive material, to reduce 

the likelihood of added Sm particles to participate in the reaction.  Reaction rates of 2B-Ti 

and Al-MoO3 are directly correlated with surface area of the reactive interface between B 

and Ti and Al and MoO3, respectively.  Therefore, ARM was used to prepare fully dense 

nanocomposites, in which reactive components fully contact each other and mixed on the 

scale of ca. 100 nm. material assessments described below showed that 2B-Ti and 

Al-MoO3 were the most promising reactive materials for evaporation of Sm.  

Table 7.2 Test Mixtures Based on 2B-Ti and Al-MoO3 Nanocomposites 

Sample 

ID 

Reactive 

mixture base 

Evaporating metal Mixing conditions 

*Mp/Mi(%) Type 

Mass 

fraction (%) Reactive base Evaporating metal 

1  2B-Ti -- 0 ARM – 3hrs -- N/A 

2 2B-Ti -- 0 Blend – 6min -- N/A 

3 2B-Ti Cu 56 ARM – 3hrs Blend – 6min No data 

4  2B-Ti Cu 47 ARM – 3hrs Blend – 6min No data 

5 2B-Ti Cu 45 ARM – 3hrs Blend – 6min No data 

6  2B-Ti Sm 47 ARM – 3hrs Blend – 6min 1.017 

7  2B-Ti Sm 46 ARM – 3hrs Blend – 6min No data 

8 2B-Ti Sm 44 ARM – 3hrs Blend – 6min No data 

9  2B-Ti Sm 40 ARM – 3hrs Blend – 6min No data 

10  2B-Ti Sm 47 ARM – 3hrs ARM – 15 min 0.944 

11 2B-Ti Sm 47 ARM – 3hrs ARM – 30 min 0.866 ± 0.01 

12 2B-Ti Sm 40 ARM – 3hrs ARM – 30 min 0.863 ± 0.02 

13 2B-Ti Sm 40 ARM – 3hrs ARM – 60 min 0.925 

14  2B-Ti Sm 30 ARM – 3hrs ARM – 30 min 0.717 ± 0.02 

15 2Al-MoO3 -- 0 ARM – 30 min -- N/A 

16 4Al-MoO3 -- 0 ARM – 25 min -- N/A 

17 8Al-MoO3 -- 0 ARM – 60 min -- N/A 

18 2Al-MoO3 Cu 60 ARM – 30 min Blend – 6min No data 

19  2Al-MoO3 Cu 50 ARM – 30 min Blend – 6min No data 

20  8Al-MoO3 Cu 50 ARM – 60 min Blend – 6min No data 

21  2Al-MoO3 Sm 60 ARM – 30 min ARM – 30 min 1.011 

22  2Al-MoO3 Sm 50 ARM – 30 min ARM – 30 min 0.887 

23 4Al-MoO3 Sm 50 ARM – 25 min ARM – 30 min 0.989 

24  4Al-MoO3 Sm 40 ARM – 25 min ARM – 30 min 0.975 

25  4Al-MoO3 Sm 30 ARM – 25 min ARM – 30 min 0.949 

*Mp = mass of the combustion products; Mi = mass of the initial sample 
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Using 2B-Ti and Al-MoO3 nanocomposites, several test mixtures were prepared by 

blending or milling with a surrogate material, elemental copper powder, -325 mesh, 99% 

pure, from Alfa Aesar, or directly with samarium powder, <250 micron, REacton®, 99.9% 

(REO), from Alfa Aesar.  All test mixtures prepared using 2B-Ti and Al-MoO3 

nanocomposites are listed in Table 7.2. 

To blend an additional metal powder (Cu or Sm) with the prepared nanocomposite 

reactive material powders, both powders were placed inside 50 mL glass vials and rotated 

at 130 rpm for 6 minutes.  To distribute the metal more homogeneously, an additional 

milling step was used for some samples; the same shaker mill used to prepare initial 

nanocomposite powders was exploited.  The powders were wet milled using 2 – 5 mL of 

hexane.  Detailed preparation conditions used for different test mixtures are presented in 

Table 7.2. 

7.3.2 Characterization Techniques and Instrumentation 

Back-scattered scanning electron microscopy (SEM) images were used to characterize the 

powder morphologies and scale of mixing in the prepared powders.  Condensed 

combustion products collected after experiments were also examined using SEM.  A 

PANalytical Empyrean diffractometer was used for X- ray diffraction (XRD) to determine 

phase compositions of combustion products.  The XRD powder diffractometer was 

operated at 45 kV and 40 mA using unfiltered Cu K radiation ( = 1.5438 Å). 

All combustion experiments were conducted inside a chamber constructed based 

on a HPS® NW 50 ISO-KF vacuum tee with a 2.06‖-diameter.  A sketch of the 

experimental set-up is shown in Figure 7.1.  The bottom flange of the chamber contained 

electrical feedthroughs to power an igniter, a tungsten wire.  The top flange included a port 
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connected to a vacuum pump.  Experiments were performed at a negative pressure of -27 in 

Hg.  The side flange of the chamber was used to mount a Lexan® window.  The 

experiments were observed and recorded through the window using a high-speed video 

camera at 100 – 200 frames per second.   

 

Figure 7.1 Experimental setup. 

A cylindrical sample was mounted on a 3.2 mm-diameter copper rod.  A short 

paper tube (≤3-mm in height) was used to hold the pellet on top of the rod.  The rod was 

inserted into a hole in a plastic support plate shown in the zoomed inset in.  Two metal 

electrodes were positioned on either side of the sample.  The electrodes were connected to 

an electrically heated tungsten wire (0.2-mm diameter).   
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Preliminary combustion experiments were conducted in air with powders loosely 

packed in a 3.2 mm-diameter, ≤ 10 mm height paper tube.  These tests were used to identify 

more reactive heat source materials to be used in experiments in vacuum.  The loosely 

packed powder samples did not burn well in vacuum, however. Combustion experiments 

in vacuum, aimed to imitate conditions in the upper atmosphere, were conducted using 3.2 

mm-diameter pellets pressed out of the prepared powders.  The pellet heights varied from 

3.2 to 8.0 mm.  Both pellets and powder filled paper tubes were placed on the copper rod 

support and ignited at the top end.  The flame propagated downward.  

The pellets were prepared with a Carver automatic pellet press using a uniaxial die 

at a nominal force of 1000 – 1500 lbs.  Some of the materials did not press well and 

prepared pellets could crack or contain fractures.  In particular, for 2B-Ti/Sm blends, most 

of the pellets had hairline fractures after their recovery from the pressing die.  The fractures 

were likely formed due to the particle size differences and poor mixing between 2B-Ti 

nanocomposites and Sm.  Despite minor defects, these samples were useful for the ignition 

and combustion tests.   

The combustion products were collected two different ways.  The vaporized 

combustion products were collected by lining the sample support plate and vacuum 

chamber walls with aluminum foil.  Most of the vaporized products deposited on the foil.  

The foil was replaced between each experiment.  In addition to the vapor deposits on the 

foil, larger fragments of solid combustion products left over from the burning pellet or 

powder tube were collected for further characterization.  In addition to XRD and SEM, 

weight of these collected fragments was measured. 
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7.4 Results and Discussion 

7.4.1 Preliminary Assessment of Reactivity for the Prepared Materials 

Prepared 2B-Ti, 2B-Zr, Ti-C, and Al-MoO3 nanocomposite powders were ignited initially 

in vacuum using both loose powder cylinders and pellets.  2B-Ti and Al-MoO3 

nanocomposites readily ignited; while ignition was not consistently achieved for other 

compositions.  In addition, preparing pellets of Ti-C proved to be difficult; the powder did 

not consolidate using the presently available press and die set.  Therefore, 2B-Zr, and Ti-C, 

materials were not considered for further combustion tests.  Since, the preparation of Mg-S 

composite was unsuccessful; this material was also not considered for further testing. 

7.4.2 Particle Size, Morphology and Scale of Mixing 

Back-scattered scanning electron microscopy (SEM) images of the prepared mixtures of 

2B-Ti nanocomposites and Sm are shown in Figure 7.2.  In these materials, Sm was milled 

with the nanocomposite powders and milling times were 15 and 30 minutes for the samples 

shown in the left and right panels of Figure 7.2, respectively.  Longer milling caused 

reduction in particle sizes.  Because back-scattered electrons are sensitive to the phase 

contrast between elements with different atomic weights, samarium inclusions and 

particles appear the brightest, followed by titanium and boron.   
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Figure 7.2 Back-scattered SEM images of as milled samples 10 – 12, and sample 14. 

In SEM images, Sm appears to have a smoother surface than 2B-Ti 

nanocomposites.  For the sample milled for 15 min, relatively coarse unattached Sm 

particles are observed.  However, no such particles could be found in the 30-min milled 

sample.  Most of Sm is finely dispersed and attached to the surface of 2B-Ti composite 
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particles.  It appears to be more spread and better adhered to the 2B-Ti composite surface 

for the 30-min milled sample. No formation of 3-dimensional ternary composite particles 

could be detected. 

 

Figure 7.3 Back-scattered SEM images of as milled sample 21 and sample 22. 

 Similarly in Figure 7.3, the SEM images of the prepared mixtures containing 

Al-MoO3 nanocomposite and Sm are shown.  The surface of Sm is smoother than that of 

the Al-MoO3 nanocomposites.  We observe fine particles of Sm attached to the surface of 

the Al-MoO3 nanocomposites.  Additionally, some unattached MoO3 is also present, which 

can be identified by characteristic elongated crystallite shapes.  It suggests that the mixing 

between Al and MoO3 was not fully optimized while the nanocomposite material was 

prepared. 

7.4.3 Combustion Experiments 

7.4.3.1 Preliminary Combustion Experiments in Air. In preliminary experiments, 

behavior of ARM-prepared 2B-Ti nanocomposite powders ignited in air was compared to 

that of 2B-Ti powder blends with the identical phase compositions.  Only the 

ARM-prepared 2B-Ti nanocomposite ignited and burned in a self-sustaining fashion. The 
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blend of 2B-Ti (sample 2, cf. Table 7.2) did not ignite in either powder or pelletized forms.  

Therefore, all other experiments were conducted using mixtures prepared from the 

ARM-prepared 2B-Ti nanocomposite powder.  An example of self-propagating 

combustion for a sample placed as a loose powder in a paper tube is shown in Figure 7.4 for 

sample 4 (containing 47% of Cu as a surrogate for Sm).   In this and following several 

figures, the image on the left shows configuration of the sample being tested.  The sample 

is placed on top of the copper rod (cf. Figure 7.1).  Tungsten ignition wire is touching the 

top of the sample.  The following images are frames of the video shot at 200 fps, with the 

lens aperture closed to avoid saturation.  Time zero is selected as the frame before the first 

sign of the sample ignition was seen on the videos.  The labels in subsequent frames show 

time after time zero in ms.  In Figure 7.4, in several initial frames following ignition of the 

sample (images at 10, 45, and 100 ms), hot particles are ejected upwards.  As the 

combustion wave propagates through the sample, the products formed on top prevent or 

limit the upwards particle ejection and consequently, particles are ejected from the sides of 

the paper tube (image at 535 ms). 

 

Figure 7.4 A sequence of video frames illustrating combustion of sample 4 (47% Cu) in 

air.  The time between 2
nd

 frame and other frames shown are in milliseconds.  Image of the 

combustion product is also shown. 

7.4.3.2 Combustion Experiments in Vacuum. As noted above, copper was used as 

a surrogate material for initial experiments to understand the effectiveness of milled 2B-Ti 
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and Al-MoO3 nanocomposites to vaporize a high boiling point metal.  Similar to samarium, 

copper has a high boiling point of 2,562 C and vaporization of Cu can be easily detected 

by examining deposits on the foil lined around the burning sample.  Unlike samarium, 

however, copper is not reactive. It also has a very high thermal conductivity, enhancing 

heat propagation in the mixed sample and minimizing temperature gradients even if the 

powder is not homogeneously mixed with the nanocomposite material.   

In contrast to experiments in air, self-propagating flame was not observed for 

loosely packed powders in vacuum.  Particles on top of the paper tube, which were in direct 

contact with the tungsten wire, ignited and were ejected up from the sample.  Particles 

further below in the sample were not effectively heated and did not ignite.  Heat transfer 

was improved in pressed pellets, which were, therefore, more suitable for experiments in 

vacuum. 

All of the samples shown in Table 7.2 were ignited in the vacuum chamber.  

Qualitatively three different modes of combustion were observed, in which the flame 

propagated as follows:  

(i) without significant particle ejection,  

(ii) accompanied by ejection of large fragments comparable to the size of the pellet, and  

(iii) accompanied by ejection of fine fragments, which were smaller than the pellet size.   

Each combustion regime is described below.  Note that in some cases, it was 

difficult to clearly distinguish between regimes I and II or between regimes II and III. 

(i) Propagation without significant particle ejection 
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This combustion regime was observed for samples 6, 10, and 11.  In all these 

samples, 47 wt. % of samarium was added to the milled 2B-Ti composite.  All of these 

samples completely self-propagated without any significant observed particle ejection 

from the burning pellet.  An illustration of this combustion regime is shown in Figure 7.5 

for sample 11.  The bottom of the pellet is wrapped into a paper tube, attached to the copper 

rod under the sample. The paper tube prevented the pellet from shifting upon its ignition.  

The burning pellet is observed to expand somewhat, pushing the ignition wire up as the 

flame propagates down through the pellet.  It was observed that the flame propagation was 

faster for test mixtures, for which Sm was milled in compared to the ARM-prepared 2B-Ti 

nanocomposite blended with Sm.  Few particle streaks were observed for the milled test 

mixtures.  We suspect that in regime (i), the fast flame propagation and particle streaks 

observed for the milled 2B-Ti/Sm mixtures were due to both reduction in particle size and 

enhanced mixing achieved by mechanical milling.  The weight measurement of the 

collected condensed products (cf. Table 7.2 – samples 6, 10, and 11) showed no weight loss 

for sample 6 with blended Sm.  A small weight increase observed could be associated with 

a fragment of the heating wire welded into the sample products.  The weight loss was 

detected for samples 10 and 11, increasing for longer milling times.  However, the weight 

loss remained much smaller than the mass fraction of Sm in the sample. 

 

Figure 7.5 A sequence of video frames illustrating combustion of sample 11 (47% Sm) 

in vacuum.   
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(ii) Propagation with ejection of large fragments comparable to the size of the pellet  

Combustion regime II and intermediate behavior between regimes ii and iii were 

observed for many samples listed in Table 7.2.   For samples 5, 7 – 9, 18, 19, 21, 23, and 24, 

when the pellet ignited, combustion started with streaks of fine particles ejected up from 

the surface.  This was followed by formation and break-up of larger fragments. The 

fragments could also be ejected up and often fell down soon after their ejection.  In most 

cases, ejection of a large fragment disrupted the flame propagation.  In some cases, it was 

possible to re-ignite the quenched pellet by additional heating achieved by increasing the 

voltage across the tungsten wire.  This resulted in further ejection of particles/fragments or 

the entire burning pellet lifting off.  An illustration of this combustion regime is shown in 

Figure 7.6 for sample 18, where initial frames show ejection of multiple fine particle; 

frames taken at longer times show larger fragments breaking-off and quenching the 

reaction.  The image on the right hand side (at 75 ms) shows a large cylindrical fragment 

turned 90º while falling down after being ejected from the burning pellet. 

 

Figure 7.6 A sequence of video frames illustrating combustion of sample 18 (60% Cu) 

in vacuum.   

It is interesting to note that none of the pellets prepared using milled 2B-Ti/Sm 

showed this combustion behavior.  In contrast, most of the pellets containing 2Al-MoO3 

and 4Al-MoO3 burned in this regime.  A transition from regime (ii) to regime (iii) occurred 
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when the mass ratio of Sm decreased to 50 and 30 wt. % for samples containing 

2Al-MoO3/Sm and 4Al-MoO3/Sm, respectively.   

(iii)  Propagation with ejection of fine fragments 

Burning particles that were much finer than the pellet were ejected as the 

combustion propagated downward through the pressed samples.  Samples 3, 4, 12 – 14, 20, 

22, 25 showed this behavior.  In all cases, ejection removed substantial fraction of material 

from the burning pellets.  Figure 7.7 shows an illustration of this combustion regime for 

sample 14.  A qualitative trend was observed for the pellets of milled 2B-Ti/Sm, where 

increasing milling time and reducing the Sm mass increased the ejection rate of fine 

particles.  This combustion regime is most desired for Sm evaporation based on the 

measured mass of the remaining coarse condensed combustion products.  It is likely that 

Sm effectively evaporates both from the burning pellet and from the ejected fine 

fragments. 

 

Figure 7.7 A sequence of video frames illustrating combustion of sample 14 (30% Sm) 

in vacuum.   

After conducting a set of experiments in air and vacuum; a portion of the prepared 

powder was stored in air for 2 months to analyze the effect of aging on its combustion.  

Combustion experiments in air and vacuum were repeated, where the aged material ignited 

and combusted similarly to that of the freshly prepared material.  Additionally, from the 

mass balance analysis, comparable masses were measured from the condensed combustion 
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products of the aged materials to that of fresh, indicating that similar amount of Sm 

evaporates from the aged material during combustion. 

7.4.3.3 Mass Balance. In order to optimize the milling conditions and the 

compositions capable of vaporizing the most amount of Sm, mass measurements of the 

remaining condensed products were taken into account.  After pelletizing samples 10 – 14 

and 21 – 25, prepared using milled 2B-Ti/Sm and milled Al-MoO3/Sm, the pellet masses 

were measured before igniting them inside the vacuum chamber.  Similarly, after each 

combustion experiment, the products were collected and weighed to obtain the final mass 

(Mf) of the products.  All results are given in Table 7.2.  For some cases, unexpectedly, the 

mass of the products slightly exceeded the mass of the original sample.  It is possible that 

the additional mass in the products was caused by carbonaceous products of combustion of 

the paper cylinder used to position the pellets and by fragments of embedded tungsten wire 

used for ignition. 

Assuming the difference between the initial and final mass, (Mi – Mf), represented 

the amount of Sm evaporated from the pellet, the percentage of Sm vaporized during the 

combustion event was calculated and shown in Figure 7.8a.  In the case of milled 

2B-Ti/Sm, comparison between three milling times suggests that 15 min and 60 min used 

to mill Sm were inferior to 30 min for Sm evaporation.  For all samples prepared with the 

30 min milling time, a trend was observed where the percentage of evaporated Sm 

increased as the Sm content in the starting mixture was reduced.  As an aside observation, 

bronze colored deposits were clearly seen on the aluminum foil surrounding the sample 

area.  
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In the case of milled Al-MoO3/Sm, two different base reactive materials, 

2Al-MoO3 and 4Al-MoO3, were tested.  Again, the mass of the pellet recorded before and 

after combustion was used to determine the amount of Sm evaporated during combustion.  

Results are illustrated in Figure 7.8b for samples 21 – 25.  Similarly to 2B-Ti/Sm system, 

as the amount of Sm in the initial mixture was decreased, the Sm vaporization amount 

increased.  However, the total amounts of evaporated Sm were significantly lower for 

mixtures prepared with Al-MoO3 compared to 2B-Ti.  Although combustion events 

recorded using the high-speed camera show some particle streaks for the Al-MoO3 based 

samples, the amounts of material deposited on the aluminum foil were qualitatively smaller 

compared to those with 2B-Ti – based pellets. 
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Figure 7.8 The percentage of Sm vaporized as a function of initial Sm mass load in the 

starting mixture.  Experiments were repeated at least 3 times and error was determined for 

30 min milled sample. 

7.4.3.4 Flame Speed. Recorded videos were used to measure the flame speed for the 

burning pellets.  Results are shown in Figure 7.9, with the focus on a trend produced by 

samples 11, 12, and 14.  The flame speed becomes lower for the materials with more Sm 

added.  This is in qualitative agreement with the trend shown in Figure 7.8. 
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Figure 7.9 Flame propagation velocity for 2Bi-Ti/Sm milled samples. 

7.4.4 Combustion Products 

Optical microscopy images of the combustion deposits collected using aluminum foil are 

shown in Figure 7.10. Qualitative comparisons showed that the surrogate Cu metal 

produced more visible deposits on the foil compared to Sm.  Comparing the reactive base 

nanocomposite 2B-Ti to Al-MoO3 it was observed that substantially more Sm was 

deposited on the aluminum foil in combustion experiments with test mixtures containing 

2B-Ti nanocomposite.   This result was consistent with the low percentage of Sm 

vaporization calculated using the mass balance analysis in Section 7.4.3.3. 

 

Figure 7.10 Vaporized combustion products collected on the aluminum foil. Optical 

microscopy images. 
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Figure 7.11 Back-scattered SEM images of combustion products of milled 2B-Ti/Sm 

(sample 12 and sample 14). 

 In Figure 7.11, SEM images of the solid combustion products collected are shown 

for the milled 2B-Ti/Sm system.  A morphological change to the milled 2B-Ti 

nanocomposite was observed when comparing the combustion products to the starting 

powder shown in Figure 7.2.  A porous structure was formed during the combustion, 

indicating that samarium was vaporized and ejected out of the pellet.  

Both fine spherical Sm particles and Sm surface coatings on larger particles are 

seen in Figure 7.11.  Presence of Sm detected in Figure 7.11 based on the image brightness 

was supported by more detailed Energy-dispersive x-ray spectra (EDX) obtained using 

SEM.  This morphology of the products suggests that Sm was molten; but not all of it 

evaporated leaving spherical particles in the material.  Part of the evaporated Sm could 

condense on top of the cooled burned out pellet fragments, forming the surface coating.  

Further EDX characterization qualitatively indicated significantly lower concentrations of 

Sm present for sample 14 compared to other samples; note that this was the same sample, 

for which the highest percentage of Sm evaporation was expected based on the mass 

measurements discussed in Section 7.4.3.3. 
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Figure 7.12 XRD analysis conducted on the combustion products of milled 2B-Ti/Sm 

(samples 12, and 14) and milled 4Al-MoO3/Sm (sample 25). 

The results of the XRD analysis conducted on the combustion products from milled 

2B-Ti/Sm and 4Al-MoO3/Sm are shown in Figure 7.12.  In the 2B-Ti/Sm system, majority 

of the products composed of TiB2 with small amounts of Sm2O3 and elemental Sm.  No 

sign of reaction products between Sm and B was detected in the XRD analysis, confirming 

that ARM technique to prepare the 2B-Ti nanocomposite does, in fact, inhibit the reactions 

between Sm and B or Ti.  However, for 4Al-MoO3/Sm system, the major combustion 

product was ternary oxide SmAlO3.  This result indicates that Sm oxidation minimized its 

evaporation.  This makes the present thermite system not viable for Sm evaporation.  These 

results are consistent with the low percentage of Sm vaporization calculated from the mass 

balance analysis for Al-MoO3/Sm pellets.  Furthermore, they support the qualitative 

observations showing very small amount of deposits present on aluminum foil lining the 

chamber walls after respective combustion experiments. 
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7.5 Conclusions 

Nanocomposite 2B-Ti material prepared by ARM is a viable heating material for Sm 

evaporation.  In the present experiments, mixing Sm with the ARM-prepared powder was 

most effective when 30 wt. % of Sm was added using an additional 30-min milling step.  

For that material, nearly all samarium evaporated during combustion, as confirmed by 

change in weight of the combusted sample and analysis of the condensed combustion 

products.   No reaction products of Sm with either B or Ti were detected in the collected 

condensate. 
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CHAPTER 8  

ENERGY STORAGE MATERIALS WITH OXIDE-ENCAPSULATED 

INCLUSIONS OF LOW-MELTING POINT METAL 

8.1 Abstract 

A composite energy storage material with inclusions of a low-melting point metal 

encapsulated in protective metal oxide shells is prepared and characterized.  A reactive 

nanocomposite thermite prepared using arrested reactive milling, is used as a precursor for 

preparation of the energy storage material.  This precursor material is a composite with a 

metal matrix and metal oxide inclusions capable of a redox reaction.  The metal oxide is 

selected to yield an easy to melt metal upon completion of the redox reaction.  The 

precursor material is heated slowly to a temperature not to exceed the melting point of the 

metal matrix and kept at an elevated temperature to initiate and complete the redox 

reaction.  The product of this redox reaction is a composite material comprising inclusions 

of an easy to melt metal encapsulated with an oxide produced by the redox reaction.  In this 

study, Al/Bi2O3 nanocomposite thermites were prepared as precursors for energy storage 

materials with Al matrix and Bi inclusions encapsulated with Al2O3. Thermal and 

mechanical properties of the prepared material were compared to those of reference binary 

Al/Bi and ternary Al/Bi/Al2O3 materials.  The material containing encapsulated Bi 

inclusions was shown to be capable of storing energy by melting and solidifying Bi 

inclusions repeatedly.  The inclusions did not drift inside the material upon heating; 

prepared composite structure remained largely intact upon thermal cycling.  Conversely, 

the structure of reference composite materials with similar bulk compositions but without 

encapsulated Bi inclusions was not preserved upon thermal cycling.  Molten Bi tended to 

separate from Al and form interconnected coarse network of inclusions.  Upon cycling, Bi 
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accumulated on surface of the material.  Difference in mobility between encapsulated and 

non-encapsulated Bi inclusions caused dramatic differences in the mechanical properties 

of the resulting composites.  Materials with encapsulated Bi inclusions were much stronger 

and capable of retaining their structure and strength despite thermal cycling expected for 

useful energy storage materials. 

8.2 Introduction 

Metal based energy storage materials (ESM) have advantages of high thermal 

conductivity, potentially high strength, and others [65].  The main issue is that the metal 

that melts upon heating (and thus serves as an energy storage medium) needs to be 

contained in order for the material to be used in repetitive heating cycles.  Containment of 

liquid metals is difficult; often bulk containers are used [66], which limit significantly the 

types of structures that can be manufactured using the ESM.  Using couples of metals that 

do not form intermetallics, such as Ag/Bi was reported recently [67]; however, such 

systems are limited and even if no intermetallics are formed, inclusions of an easily melting 

metal (Bi) are expected to migrate and coalesce after thermal cycling.     

Composite materials can be readily prepared, in which a low-melting point metal is 

dispersed in a metal or ceramic matrix with a higher melting point.  However, without 

encapsulation of the low-melting point metal inclusions, the material becomes structurally 

weak when the low-melting metal is liquid, and therefore deteriorates rapidly.  Repeated 

heating may additionally cause formation of alloys and other compounds, altering the 

melting point of inclusions and thus affecting their energy storage capacity.  Further, 

repeated melting may cause redistribution of non-encapsulated material within the 

structure, causing loss of uniformity.  Finally, the strength of the composite material 
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containing low-melting point inclusions would be reduced dramatically when the 

inclusions melt. The above negative effects can be circumvented if inclusions of the 

low-melting point material are encapsulated in a matrix that is thermally stable and 

mechanically sound.   

In the structures described here, the energy storing medium (an easy to melt metal 

or alloy) is enclosed in nano-scale inclusions or layers surrounded by protective metal 

oxide.  Such structures are stable in time and are not destroyed by repeated melting and 

solidification of the encapsulated inclusions. 

8.3 Technical Approach 

The ESM is made using a precursor material, a nanocomposite thermite powder prepared 

by arrested reactive milling [1].  Alternatively, it may be a nanocomposite layered structure 

prepared by vacuum deposition.  The preparation of the energy storage material by milling 

and its structure are illustrated schematically in Figure 8.1.  Starting materials for the 

milling are regular powders, one of which is a metal, such as aluminum, and another is a 

readily reducible metal oxide.  For ESM, the reduced oxide should yield an easily melting 

metal; examples include oxides of bismuth, indium, tin, and others.  After milling, a fully 

dense composite is prepared with the metal matrix and oxide inclusions.  Typically, the 

dimensions of inclusions are close to 100 nm [170].  Using a highly heat conductive 

aluminum as the metal matrix ensures the capability to reduce nearly all metal oxides.  

Other metal fuels that can be used with many oxides include magnesium, zirconium, and 

titanium.  Different metal/oxide combinations can be used to prepare the ESM capable of 

storing energy at different temperatures and having tunable thermal conductivity and heat 

capacity.   
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To prepare the energy storage material, the nanocomposite material prepared by 

milling is heated up slowly so that the redox reaction between the metal matrix and oxide 

inclusions occurs.  The heating should be well controlled so that the reaction occurs 

heterogeneously and the structure of the composite material is retained.  For example, 

maintaining the temperature below the melting point of the metal matrix will help stabilize 

the structure.  As a result of the redox reaction, each oxide inclusion is reduced to its 

respective metal surrounded by a layer of the product oxide.  For the example of aluminum 

matrix and bismuth oxide inclusions, the product will be bismuth metal inclusions 

encapsulated in aluminum oxide.  The encapsulated bismuth inclusions will be inside a 

metal matrix for fuel rich compositions.  For compositions close to stoichiometry, the 

matrix will be primarily made of the formed oxide.  For tin oxide inclusions in aluminum 

matrix, the product will be tin inclusions encapsulated in aluminum oxide.  Once produced, 

such encapsulated metal inclusions can be heated above the melting point of the 

encapsulated metal, e.g., Bi.  The metal will remain within the protective oxide shell (e.g., 

Al2O3 shell) and will be capable of melting and solidifying repeatedly, without changing 

the overall material structure or morphology.  The continuity and structure of the matrix 

will be unaffected by melting of encapsulated inclusions. Thus, the desired energy storage 

material is produced. 

Properties of the nanocomposite energy storage material derived from energetic 

nanocomposites can be adjusted by changing the original metal/oxide ratio: compositions 

closer to the stoichiometry of the redox reaction will produce more metal (e.g., Bi), as well 

as more product oxide (e.g., alumina).  The resulting energy storage material has therefore 

a higher energy storage capacity, and it is mechanically stronger.  Its bulk thermal 
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conductivity will be lower, however.  More metal-rich energetic composites will result in 

energy storage materials with less product metal (lower energy storage capacity), less 

product oxide (lower mechanical strength), and more residual metal (higher thermal 

conductivity).  This gives the opportunity to tailor the material to specific applications.  

 

Figure 8.1 Schematic diagram showing preparation of the metal-based energy storage 

material and its structure. 

8.4 Experimental and Instrumentation Techniques 

8.4.1 Material Synthesis 

Bismuth inclusions serve as melting energy-storing medium in the materials described 

here.  Selecting bismuth is justified by earlier studies of ESM [67, 68]. Starting materials 

used to prepare fuel rich Al/Bi2O3 nanocomposite were elemental aluminum powder, -325 

mesh (<45 µm), 99.5% pure, from Atlantic Equipment Engineers and fine powder of 

bismuth oxide, 99% pure, from Skylighter, Inc.  The powders were mixed to produce two 

different compositions, with 6 and 12 moles of Al per mole of Bi2O3, designated 

respectively as 6Al/Bi2O3 and 12Al/Bi2O3.   The blended powders were ball-milled under 

inert argon gas environment using a shaker mill (SPEX Certiprep, 8000 series) with two 50 

mL flat-ended steel vials cooled by room-temperature air jets.  Case-hardened carbon steel 
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balls 3/8‖-diameter, were used as a milling media.  Ball to powder mass ratio (BPR) was 

fixed at 10.  During milling, 3 mL of hexane was used as the process control agent (PCA).  

Milling time was set to 45 min. 

Nanocomposite powders, consisting of fully dense individual particles obtained by 

ball milling [53, 171], were used to prepare two types of ESM samples. For thermal 

analysis, the powders were pressed into 1/8-inch diameter pellets with a uniaxial die at a 

force of 1000 lbs using a Carver automatic pellet press in room air.  Although not 

quantified, pervious experience shows negligible amount of air may have been trapped 

inside during pelletizing at these conditions [172].  The pellets were heated in a furnace of 

a thermal analyzer (Netzsch STA409 PG) in argon to obtain bismuth inclusions 

encapsulated in aluminum oxide.  The pellets were heated to 550 C and 300 C and were 

held at the maximum temperature for 6 and 64 hrs, respectively.  For mechanical testing, 

¼-inch pellets were prepared using the same pellet press and annealed at 300 C for 5 days 

using an Omegalux LMF-3550 box furnace under inert argon gas environment.  Any air 

trapped within the pellet at the particle-particle interfaces, may react with the Al-rich 

surface of the particle to form Al2O3 during annealing under inert argon gas environment.  

However, this should only add additional barrier to prevent molten Bi migration and 

should not be in contact with the reduced Bi during the redox reaction, which occur inside 

the particle.  From previous experience [172], pelletizing conditions described above, may 

only lead to 10 to 20% of porosity, which should not cause any differences to the finally 

formed ESM structure. 

For comparison, two additional composites were prepared.  One reference material 

was used to observe the effect of encapsulation of Bi inclusions on its re-melting as a result 
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of cycled heating.  It consisted of a binary composite of Al and Bi with 6.5 moles of Al per 

mole of Bi: 6.5Al/Bi.  It was also used to compare mechanical properties of different 

materials.  The second material was used as a more appropriate reference for mechanical 

properties of the prepared material and included Al2O3 as well, which could cause 

dispersion strengthening.  It consisted of a ternary Al, Al2O3 and Bi composite, with mole 

composition of 4Al/Al2O3/2Bi.  The specific compositions 6.5Al/Bi and 4Al/Al2O3/2Bi 

were selected to fix the bismuth volume fraction of the Al/Bi and Al/Al2O3/Bi composites 

to mimic the expected bismuth volume fraction in the encapsulated ESM produced using 

12Al/Bi2O3 and 6Al/Bi2O3 nanocomposite powders, respectively.  Both reference 

composites were prepared using the same elemental aluminum as used to prepare Al/Bi2O3 

nanocomposite powders, elemental bismuth powder, 99.5% pure, - 325 mesh from Alfa 

Aesar, and -aluminum oxide nano powder, 99.85% pure, APS 150 nm, from Inframat 

Advanced Materials.  The blended Al/Bi, and Al/Bi/Al2O3 powders used for different 

reference materials were ball milled using the same conditions as described above.  The 

milling times were 45 minutes for 4Al/Al2O3/2Bi, and 60 minutes for 6.5Al/Bi.  Pellets 

with diameters 1/8 and 1/4-inch were pressed for thermal analysis and mechanical tests, 

respectively. 

8.4.2 Characterization Techniques 

The particle and inclusion sizes, shapes, and morphology of both, as-prepared and reacted 

materials were characterized using back-scattered scanning electron microscopy (SEM) 

using a  LEO 1530 Field Emission microscope.  Since backscattered electrons are sensitive 

to the phase contrast between elements with different atomic weights, bismuth appears 

brighter than aluminum in the images. 
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Thermal stability and temperature-dependent phase changes were analyzed using 

differential scanning calorimetry (DSC).  A Netzsch Simultaneous Thermal Analyzer 

STA409 PG with a DSC sample carrier and corundum sample crucibles was used to 

conduct the experiments in ultra-high purity argon (50 mL/min) environment at a heating 

rate of 10 C/min.   

The thermal stability and latent heat storage of the reacted materials (PCM) were 

analyzed in the DSC by cycling the annealed samples between 50 C and 300 C for 5 

times.  The thermal energy storage due to the melting of Bi, and the onset temperature of 

the melting peak was obtained for each cycle.  

Using an Instron 5567 universal testing system equipped with a furnace, two 

different types of mechanical testing were conducted on the consolidated pellets.  First, 

stress-strain curves were recorded at constant temperatures of 250 C and 300 C, selected 

to be respectively below and above the Bi melting point.  These isothermal tests were 

performed for the annealed 12Al/Bi2O3 and 6.5Al/Bi pellets.  A compressive stress-strain 

curve and strength at 5 % strain as function of temperature were obtained.  In addition, 

creep tests at a constant load of 3kN were performed where the temperature was scanned 

from 200 to 300 C.  The strain as function of temperature was recorded; the test was 

performed for annealed 6Al/Bi2O3 and 4Al/Al2O3/2Bi.  The temperature was scanned by 

changing the furnace setpoint, which resulted in a nonlinear heating profile.  The actual 

sample temperature was estimated from baseline creep tests, assuming initial and final 

stable states represent the respective temperature setpoints. 
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8.5 Results and Discussion 

8.5.1 Preparation of Composite with Encapsulated Bismuth Inclusions 

DSC traces for 1/8-inch diameter pellets of milled 12Al/Bi2O3, and 6.5Al/Bi composites 

are shown in Figure 8.2.  The samples were heated at 10 ºC/min to 550 C, well above the 

melting point of pure bismuth.   For 12Al/Bi2O3 pellet, the DSC signal shows a broad 

exothermic peak overlapping with a weak endothermic peak near the melting point of pure 

bismuth metal.  The exothermic reaction indicates reduction of Bi2O3 and oxidation of Al.  

By the time the Bi melting point is reached, a small amount of Bi has formed, causing a 

small endothermic peak overlapping with the broader exothermic peak.  In contrast, as 

expected for the 6.5Al/Bi pellet, the DSC signal shows only an endothermic peak, 

indicating melting of Bi.  
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Figure 8.2 DSC signal of 12Al/Bi2O3 nanocomposite and 6.5Al/Bi metal-metal 

composite heated to 550 C at 10ºC/min. 
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Backscattered electron SEM images of cross-sectioned pellets for as-milled and 

annealed 12Al/Bi2O3 and 6.5Al/Bi materials are shown in Figure 8.3.  Annealed materials 

were heated to 300 ºC, held at that temperature for 64 hours, and then cycled between 200 

and 300 ºC for five times. 

For as-milled 12Al/Bi2O3, light-colored micron- and nano-sized inclusions of 

Bi2O3 are embedded into a dark-grey Al matrix.  After the material is annealed, it is 

observed that fine light-colored inclusions remain uniformly distributed in the material.  

Their dimensions remain close to those of the original Bi2O3 inclusions.  The boundaries 

and shapes of inclusions change, but no coalescence or migration of inclusions within the 

sample are detected.  The inclusions formed after annealing are mostly composed of Bi.  

Encapsulating Al2O3 cannot be distinguished from the Al matrix.  Only amorphous Al2O3 

is expected to form in samples exposed to 300 ºC and 550 ºC [173].  Such Al2O3 layers are 

nonporous, when formed in absence of an alumina-dissolving solvent [174] and thus 

should prevent migration of the Bi inclusions. 

For as-milled 6.5Al/Bi, the structure is very homogeneous and only nano-scaled 

inclusions of Bi are observed.  After annealing, however, the structure changes 

substantially.  Bismuth is redistributed to form a relatively coarse, interconnected web-like 

structure.  Further, bismuth migrates to the surface of the sample pellet, forming a Bi-rich 

layer.  This behavior is consistent with phase separation occurring in similar alloys upon 

heating [175].  The phase separation is due to a combination of the Marangoni and Stokes 

motions.  No such redistribution was detected for the material prepared using 12Al/Bi2O3 

nanocomposite as precursor and producing encapsulated nano-sized Bi inclusions.  It is 

expected that after continuing thermal cycling, the 6.5Al/Bi metal-metal composite will 
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become mechanically weaker as more and more bismuth metal will concentrate at the 

outside of the pellet.  The composite structure would further coarsen limiting practical 

usefulness of such material as ESM. 

(A)  (B)  

(C) (D)  

Figure 8.3 Backscattered electron cross-sectional SEM image of (A) 12Al/Bi2O3 

metal-metal oxide nanocomposite as milled (B) 12Al/Bi2O3 pellet annealed at 300 C and 

held at isothermal for 64 h before cycled for 5 times (C) 6.5Al/Bi metal-metal composite as 

milled (D) 6.5Al/Bi pellet annealed at 300 C and held at isothermal for 64 h before cycled 

for 5 times and evidence of Bi metal pooling to the outer surface is observed. 

8.5.2 Energy Storage Performance  

DSC traces for both ESM prepared using 12Al/Bi2O3 and for reference 6.5Al/Bi samples 

are shown in Figure 8.4.  For each material, two samples were used in experiments: 

annealed at 550 and 300 C for 6 and 64 hrs, respectively.  For clarity, the traces for 

materials annealed at different temperatures are shifted vertically relative to each other.  

For both 12Al/Bi2O3, and 6.5Al/Bi, an endothermic peak is observed near the pure Bi 
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melting point.   The peak onset temperatures and respective integrated heat effects are 

listed in Table 8.1.  In addition, the heat effects estimated based on the total available 

amount of Bi for each material are shown.  

The peaks occur at a slightly lower temperature, are slightly broader and less deep 

for the ESM prepared using 12Al/Bi2O3.  For this material, the peak comprises two closely 

overlapping endothermic events, particularly well seen for the sample annealed at 300 ºC.  

The double peak may indicate dissolution of very small amount of aluminum in bismuth.  

The Bi-rich part of the Al-Bi phase diagram is not well quantified and the eutectic 

composition contains more than 99 at-% of Bi [176].  Eutectic melting occurs at 270 ºC, 

very close to the melting point of pure Bi, 271.442 ºC.  If the amount of dissolved Al is less 

than that of the eutectic composition, the melting peak is expected to split into two closely 

located peaks, similar to what is observed in Figure 8.4(A).  However, if the amount of 

dissolved Al exceeds that of the eutectic composition, only the eutectic melting peak 

should be detectable in the present experiments.  The liquidus line for the remaining, 

Al-rich solution will be at a much higher temperature, which was not reached in the present 

DSC tests.  Because of the dissolved aluminum, the enthalpy of melting may exceed the 

melting enthalpy of pure Bi, as observed in Figure 8.4(B).   

The melting peak onset temperatures are slightly lower for the ESM with 

encapsulated Bi inclusions compared to those for the binary Al/Bi material.  It likely is 

associated with reduced dimensions of the Bi inclusions, so that the effect of melting point 

depression for nano-sized bismuth domains becomes noticeable [67, 68].  

The enthalpy of melting is consistently greater for the samples annealed at a higher 

temperature for both ESM with encapsulated Bi inclusions and for the reference material.  
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For the ESM prepared using a nanocomposite thermite, the effect is most likely caused by 

a more complete reduction of Bi2O3 at elevated temperatures.  Conversely, for the 

reference metal-metal composite, the effect is likely caused by a more significant 

dissolution of aluminum in the molten bismuth upon its heating to higher temperatures.  
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Figure 8.4 DSC signal of 12Al/Bi2O3 nanocomposite and 6.5Al/Bi metal-metal 

composite annealed at 550 C and 300 C for 6 hrs and 64 hrs, respectively, and heated a 

second time to 300 C. 

Table 8.1 Peak Onset Temperature and Energy Stored for the Prepared Materials.  For 

the Measurements, Annealed Samples were Cooled to 50 C and Re-heated to 300 C, 

Above the Melting Point of Bi 

  Material Annealing conditions Peak onset, C  
Energy Stored, J/g 

Actual Expected 

12Al/Bi2O3 
550 C for 6 hrs 256.9 26.40 27.5 

300 C for 64 hrs 253.4 22.39 27.5 

6.5Al/Bi 
550 C for 6 hrs 264.4 31.74 28.3 

300 C for 64 hrs 264.2 29.40 28.3 
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8.5.3 Mechanical Testing 

Traces of stress as a function of strain for the isothermal mechanical loading tests are 

shown in Figure 8.5 for annealed 12Al/Bi2O3 and 6.5Al/Bi samples.  Compressive 

stress-strain curves were recorded at 250 °C and 300 °C, below and above the Bi melting 

point of 271.442 °C, respectively.  Both materials deform elastically initially, until the 

yield strength is reached, after which plastic deformation starts.  The ESM with 

encapsulated Bi inclusions prepared using a nanocomposite thermite is generally stronger 

than the metal composite.  Both materials show a reduction in yield strength above the Bi 

melting point.  At 5 % strain, the softening of the encapsulated composite amounts to a 

15.6 % reduction in strength, while the strength of the metal composite decreases by 31.3 

%.  This suggests that the encapsulation of Bi in the molten state results in a material that is 

mechanically more sound, and less likely to deteriorate at prolonged or repeated exposure 

to temperatures above the melting point.  
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Figure 8.5 Stress-strain curves of 1/4-inch pellets of a 12Al/Bi2O3 metal-metal oxide 

nanocomposite, and a 6.5Al/Bi metal-metal composite. 
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Figure 8.6 Creep Test of 6Al/Bi2O3 and 4Al/Al2O3/2Bi. 

(A)  (B)  

(C)  (D)  

Figure 8.7 Backscattered electron cross-sectional SEM image of samples annealed at 

300  C for 5 days before compression and creep tested using Instron (A) 12Al/Bi2O3 

metal-metal oxide nanocomposite compression tested at 250 C (B) 6.5Al/Bi metal-metal 

composite compression tested at 250 C (C) 6Al/Bi2O3 metal-metal oxide nanocomposite 

creep tested from 200 – 300 C at 3 kN. (D) 4Al/Al2O3/2Bi creep tested from 200 – 300 C 

at 3kN.  
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Strain measured in creep tests, when the samples were loaded with a constant force 

of 3 kN and heated up to 300 ºC is shown in Figure 8.6.  The results are shown for the ESM 

prepared using nanocomposite thermite 6Al/Bi2O3 and for reference ternary composite 

material 4Al/Al2O3/2Bi annealed preliminarily at 300 ºC for 120 hrs.  It is observed that the 

reference ternary material begins deforming at about 230 ºC as the Bi component starts to 

soften.  Near the melting point of Bi, dramatic deformation occurs.  Conversely, the ESM 

containing encapsulated Bi inclusions does not show an appreciable deformation in the 

entire temperature range considered.   

SEM images of mechanically tested samples are shown in Figure 8.7 for the 

encapsulated materials prepared from 12Al/Bi2O3 and 6Al/Bi2O3 and the non-encapsulated 

materials, 6.5Al/Bi and 4Al/Al2O3/2Bi.  For both materials containing encapsulated Bi 

shown in Figure 8.7(A) and Figure 8.7(C), the bright Bi inclusions appear to be roughly 

equiaxial and uniformly dispersed in the darker Al-rich matrix.  As in Figure 8.3, it is 

difficult to detect Al2O3.  For the material with greater Bi concentration (Figure 8.7(C)), the 

Bi inclusions are greater in size and occupy a greater fraction of the material’s volume.  For 

both materials containing non-encapsulated Bi, bright Bi inclusions form interconnected 

networks.  It is interesting to compare structures shown in Figure 8.7(C) and Figure 8.7(D), 

which have similar concentrations of Al, Bi, and Al2O3.  Clear morphological differences 

between the two materials are observed.  In Figure 8.7(D), crystalline Al2O3 particles are 

visible.  Such particles are well separated from one another and are surrounded by 

interconnected Bi metal matrix.  In contrast, the Al2O3 is hard to detect in Figure 8.7(C); 

however, multiple separated Bi inclusions are observed instead.  Most of the Bi inclusions 
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have well-defined boundaries surrounded by a darker phase, which is expected to be Al2O3 

and Al. 

8.6 Conclusions 

Energy storage materials containing inclusions of an easy-to melt metal, Bi, encapsulated 

with protective Al2O3 in an aluminum matrix were prepared using nanocomposite 

Al/Bi2O3 thermite as a precursor material.  The precursor material was slowly annealed to 

reduce Bi2O3 and form encapsulated Bi inclusions.  The material is shown to be capable of 

storing energy by melting and solidifying Bi inclusions.  The inclusions do not drift inside 

the material upon heating; prepared composite structure remains largely intact upon 

thermal cycling.  Conversely, the structure of reference composite materials with similar 

bulk compositions but without encapsulated Bi inclusions is not preserved upon thermal 

cycling.  Molten Bi tends to separate from Al and form interconnected coarse network of 

inclusions.  Upon cycling, Bi accumulates on surface of the material.  Difference in 

mobility between encapsulated and non-encapsulated Bi inclusions causes dramatic 

differences in the mechanical properties of the resulting composites.  Materials with 

encapsulated Bi inclusions are much stronger and capable of retaining their structure and 

strength despite thermal cycling expected for useful energy storage materials.  
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CHAPTER 9  

BIMETAL Al-Ni NANO-POWDERS FOR ADVANCED ENERGETICS 

9.1 Abstract 

Four bimetal Al-Ni nano-powders with compositions varied from 5 to 45 at. % of nickel 

were synthesized by explosion of electrically heated twisted pure metal wires in argon.  

The nano-powders were characterized using electron microscopy, x-ray diffraction, and 

thermal analysis.  In addition, ignition experiments were performed using an electrically 

heated filament and electrostatic discharge to initiate the reaction.  The results were 

compared to those for pure nano-aluminum powder (n-Al) prepared using the same wire 

explosion technique.  The nano-powders with high nickel concentrations contain fully 

reacted intermetallic phases, which are difficult to oxidize making them unattractive for 

energetic formulations.  Nano-powders with lower nickel concentrations do not contain 

significant amounts of the intermetallic phases.  No intermetallics could be detected in the 

powder with 5 at. % Ni, which oxidized qualitatively similar to n-Al.  The overall mass 

gain during oxidation for the bimetal powder was nearly identical to that of n-Al, indicating 

the same heat release anticipated from their combustion.  Oxidation kinetics assessed for 

this material accounting directly for the measured particle size distribution was compared 

to that of n-Al.  The bimetal powder oxidized slower than n-Al, indicating its greater 

stability during handling and storage.  The bimetal powder was less ESD-ignition sensitive 

than n-Al, but generated a stronger emission signal when ignited.   Therefore, the bimetal 

powder with 5 at. % Ni is an attractive replacement of n-Al for advanced energetics with 

lower ESD sensitivity, better stability, and improved combustion performance. 
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9.2 Introduction 

Aluminum powders are the most common metal fuel additives to propellants, explosives 

and pyrotechnics due to the high energy density [177-179]. There is significant interest in 

aluminum nano-powders (n-Al), which can be readily manufactured using electrically 

exploded wires, a technique developed in recent decades [72-74].  Such nano-powders 

react faster than conventional micron-sized aluminum powders, due to a large available 

surface area [75-77].  Availability of n-Al stimulated development of many novel 

nano-energetic systems, including nano-thermites and intermetallics [69, 71, 180].  

Significant improvements in reaction rates, correlated directly with the increased available 

reactive surface, observed for nano-energetic materials are unfortunately accompanied 

with their increased ignition sensitivity to electrostatic discharge (ESD) and other ignition 

stimuli [78, 79].  Additionally, aging causing deterioration of reactive properties has been a 

concern for nano-energetic materials and n-Al, in particular [80, 81]. 

Commonly, metal nano-powders and associated nano-energetic materials may be 

desensitized using less reactive non-metal additives [38, 39].  For example, carbon 

nanotubes were used to desensitize Al-CuO nano-thermites; however, they had adverse 

effects on combustion rates and overall energy density [40].  Similarly, organic coatings 

applied to n-Al substantially reduce its energy density [41, 42].  Preserving both energy 

density and high reactive surface while reducing the sensitivity remains a main challenge 

in developing nano-energetic materials.   

The approach explored here involves aluminum-based bimetal nanoparticles.  In 

particular, aluminum-nickel (Al-Ni) nano-powders are considered.  Formation of 

intermetallic Al-Ni alloys is well-known to occur through exothermic reactions [181-184], 
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which could be boosting ignition and ensuing metal oxidation.  It is also expected that the 

oxides produced at elevated temperatures in the bimetal Al-Ni system may be less 

protective than pure Al2O3; thus the heterogeneous reactions controlling ignition may be 

accelerated.  At the same time, the presence of Ni may reduce the sensitivity of respective 

nanoparticles to oxidation at low temperatures. 

9.3 Technical Approach 

Four bimetal spherical nano-powders are prepared with different aluminum to nickel 

ratios.  Each powder is characterized to assess its phase composition, reactions occurring 

upon heating, and ignition temperature.  A composition with the most attractive properties 

is identified, for which additional measurements are performed.  In particular, oxidation 

kinetics is characterized following a recently developed experimental methodology 

enabling one to explicitly account for oxidation of particles of different sizes [83, 185, 

186].  Results are used to predict the aging behavior of the bimetallic powder; they are also 

compared directly with similar results for n-Al.  Finally, electrostatic ignition experiments 

are performed for both the bimetal nano-powder and pure n-Al.     

9.4 Materials and Experimental Methods 

9.4.1 Materials 

A technique used to prepare spherical aluminum nano-powders (n-Al) in argon by 

electro-exploded wires was recently adapted to prepare bimetal nano-powders [187-189].  

Instead of a single wire, two pure metal wires are twisted together and heated by a high 

current pulse. The evaporated metal condenses forming composite bimetal nanoparticles.  
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Spherical Al-Ni nano-powders with various compositions were prepared, as listed in Table 

9.1.  The powders were passivated at room temperature for 72 hours at a reduced oxygen 

pressure. 

Table 9.1 Al-Ni Nano-powders Prepared with Their Sample IDs 

Sample IDs Composition (atomic %) 

Al95-Ni05 95% Al : 5% Ni 

Al90-Ni10 90% Al : 10% Ni 

Al80-Ni20 80% Al : 20% Ni 

Al55-Ni45 55% Al : 45% Ni 

9.4.2 Characterization 

The prepared nano-particles were examined using a JEOL JEM-100 CXII transmission 

electron microscope (TEM) and a LEO 1530 Field Emission back-scattered scanning 

electron microscope (SEM).  The TEM images were processed to obtain particle size 

distributions for selected powders.  A PANalytical Empyrean diffractometer was used for 

X-ray diffraction (XRD) to determine phase compositions of the prepared materials.  The 

XRD powder diffractometer was operated at 45 kV and 40 mA using unfiltered Cu K 

radiation ( = 1.5438 Å). A Netzsch Simultaneous Thermal Analyzer STA409 PG with 

corundum sample crucibles was used to conduct the differential scanning calorimetry 

(DSC) measurements in ultra-high purity argon (50 mL/min) at a heating rate of 20 K/min. 

Thermo-gravimetric (TG) experiments combined with DSC were conducted in an 

argon/oxygen gas mixture at 20 K/min for all powders.  In addition, a set of TG 

measurements was performed for a selected nano-powder oxidized at heating rates varied 

from 5 to 20 K/min using a TA Instruments TA Q5000-IR. 

Ignition of the nano-powders was characterized in air using a heated filament 

experiment described in detail elsewhere [96, 190].  A hexane slurry with the powder was 
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made to prepare a thin, 10-mm long coating on a 45-mm long, 0.5-mm diameter 

nickel-chromium alloy heating wire.  A DC current was used to heat the coated wire.  

Varied applied voltage and an adjustable resistor connected in series with the wire were 

used to vary the heating rates in a range of 10
3
 - 10

5 
K/s.  Using a high-speed infrared 

pyrometer (DP1581 by Omega Engineering, Inc.) focused on an uncoated filament surface 

adjacent to the powder coating, the temperature of the filament was measured.  Powder 

emission was visualized using a high speed video camera (MotionPro 500 by Redlake), 

operated at 500 fps.  The ignition instant was registered when the powder became brighter 

than the heated filament.   

In a separate ignition experiment, selected nano-powders were ignited using an 

ESD to identity the minimum ignition threshold and compared it with that of n-Al.  A setup 

based on a model 931 firing test system by Electro-Tech Systems, Inc., was used, which 

was described in detail elsewhere [114, 133].  The powder was placed inside a 0.5-mm 

deep, 3-mm diameter cavity of a grounded, custom-made polished aluminum sample 

holder.  An even layer thickness was achieved by scraping away the excess of powder with 

a razor blade.  A pin electrode was fixed ~ 0.2 mm above the surface of the powder.  A 

2000 pF capacitor was charged to a voltage in the range of 2 – 7 kV, before discharging 

through the pin electrode to the nano-powders.  All experiments were performed in air at 1 

atm.  Optical emission produced by the ignited powder was recorded using a 

photomultiplier tube (PMT) filtered at a wavelength  = 568 nm, placed 17 cm away from 

the sample.  In selected experiments, optical emission was recorded using a 32-channel 

H7260 series linear array multianode PMT by Hamamatsu with a spectrometer covering a 

wavelength range of 373.4 – 641.0 nm (see APPENDIX C). 
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9.5 Results and Discussion 

9.5.1 Characteristics of Bimetal Nano-powders with Different Compositions 

Both TEM and SEM images of the prepared nano-powders show that all powders are 

mostly spherical without significant phase contrast between aluminum and nickel.  A TEM 

image of Al95-Ni05 nano-powder is presented in Figure 9.1 as an example.  Most of the 

particle images have uniform brightness, suggesting that aluminum and nickel are mixed 

homogenously.  In some particles, however, dark inclusions are observed indicative of 

nickel-rich phases.  Few particles have dark shells, suggesting nickel-rich surface layers.  

However, such particles with pronounced heterogeneities are relatively rare. 

Al95-Ni05

 

Figure 9.1 TEM image of Al95-Ni05 nano-powder. 

A particle size distribution for the powder shown in Figure 9.1 was obtained from 

processing multiple TEM images; the result is shown in Figure 9.2.  In addition, a size 

distribution for a reference pure n-Al sample is shown.  The same wire explosion apparatus 
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was used to prepare both n-Al and bimetal Al-Ni powders.  Typically, Al-Ni powders are 

finer than n-Al, which is observed in Figure 9.2 for the example shown. 
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Figure 9.2 Particle size distributions of Al95-Ni05 and n-Al obtained from processing 

TEM images. 
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Figure 9.3 XRD patterns for all as-prepared Al-Ni nano-powders. 

XRD patterns for all nano-powders are shown in Figure 9.3.  For the most 

nickel-rich material Al55-Ni45, aluminum peaks are not observed; instead AlNi 

intermetallic alloy dominates the recorded XRD pattern.  Smaller peaks of other alloys, 
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including AlNi3 and Al3Ni2 are also observed. Thus aluminum and nickel are fully reacted 

for this material, making it less interesting for applications in energetic systems.  For 

Al80-Ni20, pure Al peaks are significant along with peaks produced by intermetallics 

Al3Ni2 and AlNi3.  In addition, weak peaks of Al3Ni appear.  Peaks of Al3Ni become much 

stronger and comparable to the peaks of Al for Al90-Ni10.  The least reacted sample is 

Al95-Ni05, for which the XRD pattern shows peaks of Al with only minor indication of 

Al3Ni. 
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Figure 9.4 DSC of Al-Ni and n-Al powders obtained in a flow of argon at the heating 

rate of 20 K/min. 

The results of the DSC experiment conducted in argon are shown in Figure 9.4 for 

all Al-Ni nano-powders and compared to n-Al.  All samples, except Al55-Ni45, show a 

weak exothermic peak followed by a strong endotherm near pure aluminum melting point.  

Both peaks become stronger for samples with smaller concentrations of Ni. The 

exothermic peak was caused by the sample reacting with residual or trace oxygen 

remaining in the furnace that was being flushed with argon.  This peak could be reduced by 

multiple repeated evacuations and refills of the furnace with argon prior to the experiment.  
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It suggests that the samples with less Ni are oxidizing more readily.  The melting occurs at 

the same temperature as for the bulk aluminum, and thus the melting point is not apparently 

affected by the particle sizes. In qualitative agreement with the observed XRD patterns, the 

endothermic Al melting peaks are diminished as the concentration of Al is decreased.  For 

example, for Al55-Ni45, no Al melting peak is observed, consistently with its respective 

XRD pattern only showing intermetallic alloys and no aluminum in that material.   

Conversely, aluminum melting peak for Al95-Ni05 is identical to that observed for pure 

n-Al.   
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Figure 9.5 DSC of Al-Ni nano-powders conducted in an argon/oxygen mixture at 20 

K/min. 

Results of simultaneous DSC and TG measurements conducted in an argon/oxygen 

mixture are shown in Figure 9.5 and Figure 9.6, respectively.  The experiment conducted at 

the same conditions with a similar starting mass load of n-Al resulted in its ignition.  DSC 

and TG signals for all nano-powders show an exothermic peak and a respective sample 

mass gain prior to the Al melting point, similar to the first pronounced oxidation step for 

aluminum caused by transformation of the amorphous oxide into a -Al2O3 crystalline 
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polymorph [191-194].  Nano-powders with lower concentrations of nickel show sharper 

exothermic peaks and higher percentages of relative mass gain.  The shape of the DSC 

peak for Al95-Ni05 suggests that this material nearly ignited at about 880 K. These results 

suggest that materials with lowest concentrations of nickel, such as Al95-Ni05, are most 

interesting as potential replacements of pure n-Al in energetic formulations.  On the other 

hand, aluminum appears to be fully passivated in materials containing primarily 

intermetallic alloys; the lack of its oxidation upon heating in thermo-analytical 

experiments suggests that a poor combustion performance is also expected. 
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Figure 9.6 TG of Al-Ni nano-powders conducted in an argon/oxygen mixture at 20 

K/min. 

Results of the heated filament experiments for all bimetal nano-powders are shown 

in Figure 9.7.  Ignition temperatures are plotted as a function of the heating rate.  Each 

point represents at least five individual tests performed at the nominally the same heating 

rate.  All powders ignite in vicinity of the aluminum melting point.  For all nano-powders 

except Al55-Ni45, containing mostly AlNi (cf. Figure 9.3), the ignition temperatures do 

not change at different heating rates.  This suggests that the aluminum melting is an 

ignition trigger.  It is likely that the first oxidation step begins for all powders below the 
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aluminum melting point; however, it may be incomplete by the time the powder is heated 

to the aluminum melting point when the heating rates are much higher than in TG 

experiments.  When aluminum melts, particle surface morphology is changed, and a 

reactive fresh surface is likely produced further accelerating oxidation and causing ignition 

of the nanoparticles.  For Al55-Ni45, the ignition temperature increases at greater heating 

rates, suggesting a different ignition mechanism compared to other powders.  Indeed, this 

material does not contain pure aluminum and thus no changes in particle morphology is 

expected at the aluminum melting point, unlike for other Al-Ni nano-powders. 
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Figure 9.7 Ignition temperatures of Al-Ni nano-powders as function of heating rate. 

9.5.2 Oxidation of Al95Ni05 

Results of DSC and TG measurements with different prepared Al-Ni nano-powders 

suggested that the material with the lowest concentration of Ni, Al95-Ni05 is most 

attractive as a potential replacement of n-Al.  Thus, more detailed measurements were 

performed to characterize reactivity and sensitivity for this material.  A set of TG 

measurements performed for Al95-Ni05 in pure oxygen at different heating rates is 
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presented in Figure 9.8.  In addition, a similar measurement for n-Al at one of the heating 

rates is shown for comparison.  A cursory inspection of data shown in Figure 9.8 suggests 

that the oxidation of n-Al occurs very similarly to that of Al95-Ni05.  Comparing directly 

the TG traces recorded at 5 K/min for both materials, one observes that the first oxidation 

step for Al95-Ni05 nano-powder occurs at a slightly lower temperature than for n-Al.  

Qualitatively, this observation can be interpreted considering that Al95-Ni05 is 

substantially finer than n-Al (cf. Figure 9.2).  The overall mass change of Al95-Ni05 is 

similar to that of n-Al, suggesting that the amount of reactive aluminum is similar to each 

other in both materials. 
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Figure 9.8 TG of Al-Ni and n-Al powders in oxygen-argon flow at various heating rates. 

9.5.3 TG Data Processing 

Results of the TG experiments were processed considering a specific oxidation model in 

order to account explicitly for the effect of particle size distribution [83].  The model is 

illustrated in Figure 9.9.  As the metal is consumed, a void grows inside the particle core. 
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Figure 9.9 Schematic diagram of the particle geometry used for the oxidation model. 

The weight gain measured in a TG experiment is split among powder particle size 

bins:   

  

  
 ∑

   

  
 ∑                                                    (9.1) 

where M is the total powder mass, t is time, m is the mass of particles in an individual 

particle size bin, A is the area of the reactive interface, and j is mass flux of the 

slowest-diffusing species.  Index i numbers particle size bins.  Following earlier work on 

aluminum oxidation [83, 186], the outward diffusion of aluminum is assumed to limit the 

rate of reaction, so that the reaction interface is located outside of the growing oxide shell, 

at r=r1, as shown in. The presence of nickel was neglected for the purpose of the present 

analysis, considering its relatively low concentration and considering that the TG curves 

for the bimetal Al95-Ni05 are very similar to those of n-Al (cf. Figure 9.8).  The change in 

the reactive surface area for each size bin,            
 , is determined accounting for 

number of particles in each bin, Ni, and radius of the respective reactive interface, r1,i.  

Based on the solution of diffusion equation for a spherical particle with a growing oxide 

shell, the flux depends on the radii r1 and r2 as: 
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                                                       (9.2) 

where D is diffusion coefficient, and is density.  Outer and inner radii of the oxide shell 

are labeled as r1 and r2, respectively (see Figure 9.9).  Index i marking an individual size 

bin is removed for brevity in equation (9.2). Thus, the measured mass uptake is distributed 

proportionally to the function    
  

  

 

     
 

    

     
 accounting for the effect of particle 

geometry on the mass flux.  The density affects the thickness of the growing oxide layer; it 

is assumed to increase in a stepwise fashion when a polymorphic transition between 

amorphous and -Al2O3 occurs.  For simplicity, this transition is assumed to occur at a 

fixed temperature, although a more accurate model would need to account for the effect of 

both temperature and thickness of the oxide shell [195-197].  Thermal expansion was 

accounted for both metal core (assuming it behaves as the pure aluminum) and the oxide.   

TG traces representing oxidation of particles of each given size bin obtained for 

different heating rates are processed using a model-free isoconversion technique [198, 199] 

to obtain activation energy as a function of the reaction progress.  Once the activation 

energies are obtained, the reaction model represented by Figure 9.9 is considered to 

identify the pre-exponent and thus to fully quantify the rate of oxidation. 

9.5.4 Oxidation Mechanism and Kinetics 

Results shown in Figure 9.8, processed as described above can be recast in terms of the 

thickness of the oxide shell grown on particles of different sizes as a function of 

temperature.  This is illustrated for several particle sizes in Figure 9.10.  All particles are 

assumed to have the same initial oxide layer (2.5-nm thick), and smaller particles are fully 

oxidized first.  For the smallest, 9-nm, particle size, the complete oxidation is predicted at 
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about 770 K, which is close to the assumed temperature of the polymorphic phase change 

in alumina. This phase change accounts for a sudden reduction in the oxide thickness 

observed around 770 K for all particles.  Larger size particles are fully oxidized at 

increasingly higher temperatures.  For the oxidizing particles, the thickness of the growing 

oxide shell is a weak function of the particle size, with larger particles predicted to have 

slightly thicker oxide shells. 
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Figure 9.10 Thickness of the oxide layer grown on particles of different sizes as a 

function of temperature for Al95-Ni05 heated in oxygen-argon flow at 10 K/min.  Particle 

bin size represents the initial particle diameter. 

Data shown in Figure 9.10 are useful to compare oxidation rates for different 

materials.  Instead of considering the TG-measured overall mass increase for the whole 

powder, as shown in Figure 9.8, which is affected by the initial particle size distribution, 

oxidation rates of different materials are compared directly considering the thickness of the 

oxide shell grown on particles of the same sizes heated following the same program.  Such 

a comparison for Al95-Ni05 and n-Al is presented in Figure 9.11.  Results are shown for 

two representative size bins, one is close to 120 and the other, to 255 nm for both powders.  
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It is observed that particles of n-Al oxidize faster, growing thicker shells than the same size 

particles of Al95-Ni05 while being heated at the same rate to the same temperature.  This 

result could not have been obtained examining direct measurements, shown in Figure 9.8; 

it emerges only after the present processing accounting for the measured particle size 

distributions is applied.  It is clear from Figure 9.11 that Al95-Ni05 is substantially more 

stable than n-Al, and thus is expected to age slower and ignite at a higher temperature than 

n-Al.  Considering only a minor reduction in the total reaction enthalpy of Al95-Ni05 

compared to n-Al, this bimetal material may be an attractive replacement of n-Al in the 

applications requiring a reduced ignition sensitivity and greater stability of the energetic 

formulation. 
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Figure 9.11 Comparison of the oxide thickness for the close particle sizes for n-Al and 

Al95-Ni05 as a function of temperature.  The results obtained by splitting the respective 

measured TG traces among different powder size bins and accounting for the oxidation 

model illustrated in Figure 9.9. 

The thickness of the grown oxide layer is a convenient indicator of the oxidation 

reaction progress.  TG traces for individual particle size bins recast in terms of the oxide 

thickness, as shown in Figure 9.10 and Figure 9.11, and obtained from experiments 

performed at different heating rates were used to calculate the activation energy using a 
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model-free isoconversion processing method [199].  This processing was performed for 

different particle size bins for both n-Al and Al95-Ni05, yielding self-consistent 

descriptions for the apparent activation energy as a function of the oxide thickness for both 

materials.  Results of this analysis are presented in Figure 9.12.  Shown are the apparent 

activation energies obtained for particles with sizes equal to the surface averages for each 

powder.  The activation energies as functions of the oxide thickness for other particle sizes 

overlapped with the present curves nearly perfectly for both materials.  
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Figure 9.12 Apparent activation energies as a function of the oxide thickness 

characterizing growth of both amorphous and -Al2O3 polymorphs for n-Al and 

Al95-Ni05.   

The processing was conducted separately for the apparent activation energies 

describing growth of amorphous alumina below 770 K, and growth of -Al2O3 with a 

higher density at higher temperatures.  Thus, two separate reaction progress functions were 

used, i.e., thicknesses of each of the alumina polymorphs.  For each calculation, an initial 

thickness registered for all three heating rate measurements was treated as the starting 

value, corresponding to zero reaction progress.  This treatment was straightforward for the 
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growth of amorphous oxide, which was always assumed to have the same ―natural‖ 

thickness of 2.5 nm.  However, when the assumed phase change temperature of 770 K was 

reached, different oxide thicknesses were grown at different heating rates.  The processing 

for -Al2O3 started from its thickness observed for the lowest heating rate – and thus also 

registered for all three heating rates, but at slightly higher temperatures, which explains a 

range of oxide thicknesses near the phase change in Figure 9.12, for which no activation 

energy was obtained.  

Qualitatively, the trends describing changes of the apparent activation energy as a 

function of the oxide thickness are similar for both Al95-Ni05 and n-Al.  A rapid increase 

in the activation energy occurs at the beginning of oxidation.  This increase was proposed 

to be caused by healing of imperfections and defects existing in the natural amorphous 

alumina, as its thickness is increasing [84]. The rate of this increase is reduced before 

-Al2O3 begins to form.  The activation energy continues to increase for -Al2O3; 

eventually, a peak in the activation energy is reached.   After the peak, a relatively rapid 

decrease in the apparent activation energy is observed down to unrealistically low values.  

Finally, another increase in the apparent activation energy occurs at still greater 

thicknesses.  For both materials, a rapid reduction in the apparent activation energy occurs 

when the temperature is close to the melting point of aluminum.  The decrease in the 

apparent activation energy is most likely associated with a substantial change in the 

morphology of the reaction interface, e.g., formation of cracks in the oxide shell, 

coalescence/sintering of different particles, leakage of molten aluminum, etc.  These 

phenomena cannot be described in terms of the oxidation model considered here (cf. 

Figure 9.9).  Therefore, any useful interpretation of the results presented in Figure 9.12 
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should be limited to the initial changes in the apparent activation energy.  It is suggested 

that the initial growth of the apparent activation energy up to its peak value may represent 

the actual heterogeneous oxidation occurring following a scenario shown in Figure 9.9.  

This initial reaction is important to quantify because it most likely determines how the 

material ignites and how its aging occurs before substantial fraction of the material have 

been oxidized.  Comparison of the trends shown in Figure 9.12 shows that the apparent 

activation energy of oxidation is generally higher for Al95-Ni05 than it is for n-Al.  This 

result is consistent with the observed greater stability of Al95-Ni05 compared to n-Al.  A 

higher activation energy (and thus a greater stability) for Al95-Ni05 is most likely 

associated with the modified properties of the growing oxide scale.  Although the structure 

of the growing oxide remains generally unchanged, based on the same observed sequence 

of the oxidation steps as observed for pure aluminum, its diffusion resistance is increased 

as a result of its doping with the oxidized nickel.   

9.5.5 Preliminary Analysis of Aging of Al95-Ni05 and n-Al 

Activation energies obtained from the model-free isoconversion processing are inserted in 

the explicit oxidation model represented in Figure 9.9, where the diffusion coefficient D is 

described using an Arrhenius expression.  The pre-exponent for the diffusion coefficient is 

then adjusted to describe the actual oxidation kinetics; thus, the pre-exponent is specified 

as a function of the oxide thickness, similar to that for the apparent activation energies.  

The obtained complete description of the reaction kinetics is then used to predict aging of 

n-Al and Al95-Ni05 powders.  For a specific example, aging for both powders was 

considered upon their exposure to an oxygen-containing environment at 30 °C.  For 

simplicity, calculations for each powder considered a spherical 100-nm diameter particle.  
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The predicted reduction in the radius of the metal core as a function of exposure time is 

shown in Figure 9.13.  As expected, n-Al is aging substantially faster than Al95-Ni05. Note 

that the present data and estimates were made for oxidation in dry environments, where 

both aluminum-based powders are quite stable.  A lower overall stability is anticipated for 

humid environments, for which improvements in the powder stability offered by the 

bi-metal Al95-Ni05 could be more tangible.  
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Figure 9.13 Aging of 100-nm diameter particles of n-Al and Al95-Ni05 exposed to a dry 

oxidizing environment at 30 C in terms of reduction in the radius of their respective metal 

cores. 

9.5.6 Ignition of Nano-powders Al95-Ni05 and n-Al by ESD 

The experiments were conducted in air with a 2000 pF capacitor allowed to characterize 

the minimum ignition threshold of both Al95-Ni05 and n-Al.  It was noted that at voltages 

below 4 kV, some of the Al95-Ni05 powder remained in the sample holder after the spark 

discharge.  All n-Al was always ejected, however.  Characteristic optical emission signals 

produced by the ignited powders are shown in Figure 9.14.  The peak structure typically 

includes a relatively weak prompt ignition event, with characteristic times of about 2 – 4 
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ms, and a stronger delayed ignition, occurring typically after 10 ms.  The prompt ignition 

peak is not discernable for all recorded traces; its timing is comparable to that observed in 

experiments with individual aluminum nanoparticles [200, 201].  Thus, the initial weak 

peak likely represents particles directly ignited by ESD.  The stronger, delayed peak 

occurring at 15 – 60 ms may be associated with ignition of an aerosolized powder cloud.  It 

is stronger for n-Al at lower ESD voltages, as expected based on the larger amount of 

powder ejected from the sample holder.  However, in contrast, the peak emission at ESD 

voltages greater than 5 kV, is consistently stronger for Al95-Ni05.   
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Figure 9.14 Emission trace of Al95-Ni05 and n-Al powders filtered at 568 nm and ignited 

in ambient air. Capacitor (2000 pF) was charged to 7.00 and 3.88 kV for different 

experiments. 

As ESD voltage was decreased to identify the minimum ignition energy, at which 

no emission pulse could be detected. Results of these experiments are shown in Figure 

9.15.  The trends implied by the peak emission plotted as a function of the ESD energy 

indicates that about 2 times more energy is required to ignite Al95-Ni05 compared to n-Al.  
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Therefore, the bimetal powder is substantially less ESD-sensitive than n-Al.  This result is 

consistent with the analysis of oxidation of these materials, presented in Figure 9.11 and 

Figure 9.12. 
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Figure 9.15 Peak emissions from ESD experiments conducted in air as a function of the 

ESD energy produced by the capacitor (2000 pF) which was charged to 2 – 7 kV. 

Optical emission from a 32-channel PMT (see APPENDIX C) was used to identify 

the combustion temperature for experiments at ESD voltage of 7 kV.  The intensities were 

initially fit to a gray emitter, resulting in the unusually high combustion temperatures of 

4150 K for both n-Al and Al95-Ni05.  The highest temperature was observed near the peak 

of the emission signal for both powders.  When the emissivity was assumed to change as a 

function of the wavelength as  ~ 
-1.2

, following recent work [202], the peak combustion 

temperature was reduced to about 3500 K for both materials (see APPENDIX C). 

9.6 Conclusions 

Bimetal Ni-Al nano-powders with different compositions were synthesized by explosion 

of twisted pure metal wires.  The nano-powders prepared with high nickel concentrations 

contain fully reacted intermetallic phases.  Such intermetallics are difficult to oxidize 

making them unattractive for energetic formulations.  Nano-powders with lower nickel 
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concentrations do not contain significant amounts of the intermetallic phases.  In particular, 

no intermetallics could be detected in the powder with 5 at. % Ni, which oxidized 

qualitatively very similarly to n-Al.  The overall mass gain during oxidation for the 

bi-metal powder was nearly identical to that of n-Al, indicating the same heat release 

anticipated from their combustion.  Oxidation kinetics assessed for this material 

accounting directly for the measured particle size distribution was compared to that for 

n-Al.  Qualitatively, oxidation for both materials included the same stepwise accelerations 

in the reaction rates at increased temperatures, attributed earlier to polymorphic phase 

changes in the growing alumina scale.  Therefore, it was concluded that oxide scales 

formed on oxidizing bimetal particles were structurally similar to those growing on pure 

aluminum.  It was observed that the bimetal powder is oxidizing slower than n-Al, leading 

to its greater stability during handling and storage.  The difference in the oxidation kinetics 

was attributed to doping the growing aluminum oxide scale with the oxidized nickel.  A 

quantitative description of the oxidation kinetics, including apparent activation energy and 

pre-exponent for the diffusion coefficient controlling the oxidation rate was obtained.  The 

model was used to predict how the bimetal nanoparticles age when exposed to an oxidizing 

environment; it was observed that they age slower than n-Al.  It was further observed that 

the bi-metal powder is less ESD-ignition sensitive than n-Al.  While the combustion 

temperatures for both materials are similar to each other and close to 3500 K, a stronger 

emission signal is produced by the bimetal powder than by n-Al when similar masses of 

powders are ignited by high energy sparks.  Therefore, the bimetal powder with 5 at. % Ni 

is an attractive replacement of n-Al for advanced energetics, combining a lower ESD 

sensitivity and better stability with the same or even improved energetic performance. 
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CHAPTER 10  

CONCLUSIONS AND FUTURE WORK 

10.1 Conclusions 

Several preparation techniques are successfully applied to prepare novel nanomaterials for 

energetics and energy applications.  Mechanical milling has been a versatile technique 

used to prepare most of the nanomaterials discussed in this work.  Additional preparation 

techniques such as electrochemical etching for on-chip energetics and electro-exploded 

wires for bimetal nano-powders are also presented. 

As presented in Chapters 2 – 4, aluminum-based composites containing halogens 

are prepared using cryo and room-temperature milling techniques.  It is shown that 

cryomilling is a necessity for powders containing aluminum as fuel and volatile additives 

including iodoform or metal halides (NbCl5 and TiI4).  Milling at liquid nitrogen 

temperature is more effective in stabilizing such additives into aluminum matrix compared 

to room temperature milling.  Specifically for metal halides, the material is further coated 

using Teflon® to improve material stability.  In Chapter 4, a systematic study on several 

ternary Al∙B∙I2 composites is presented.  In these composites, the presence of boron allows 

to stabilize high concentrations (20 wt. %) of volatile iodine into boron and aluminum 

matrix using mechanical milling at room temperatures. 

TG measurements in argon environment are used to quantify the material stability 

of each composite (see also APPENDIX A), where the most stable composites of Al∙CHI3, 

Al∙TiI4, Al∙NbCl5, and Al∙B∙I2 showed stabilities of 83%, 68%, 94%, 96%, respectively.  

Ignition temperatures characterized using a heated filament experiment show that all 
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Al-based and B-based composites have lower ignition temperatures than the pure Al or 

pure B.  The lowest ignition temperatures are seen for Al∙CHI3 composites.  Furthermore, 

in single particle combustion experiments, all composites have longer burn times than pure 

Al. 

Additionally, in Chapter 5, the preparation of Mg∙S nanocomposite using 

mechanical milling at room temperature with substantially increased amount of sulfur is 

discussed.  Mg∙S nanocomposite ignited at lower temperatures and burned faster than pure 

magnesium.  Ignition initiated by spark during ESD experiment and by a heated wire for 

aerosol combustion experiment, occurred with substantial delays; a likely reason is the 

formation of an evaporated sulfur cloud.  The nanomaterials discussed in Chapters 2 – 5 are 

capable of inactivating the challenge bioaerosol more effectively than pure metal powders.  

Because mole fraction of chlorine and sulfur is greater than of iodine, the observed effect is 

statistically the best for Al∙B∙I2 (see APPENDIX B) compared to Al∙CHI3, Al∙NbCl5, and 

Mg∙S, indicating that the iodine-containing composites are the most effective for biological 

weapon defeat applications. 

As presented in Chapter 6, PS film prepared using electrochemical etching is 

impregnated with sulfur and different nitrate oxidizers to prepare on-chip energetic 

composites.  In particular, perchlorate-free and moisture stable PS/sulfur composites are 

readily ignitable and combustible in both inert and oxidizing environments, where flame 

speeds around 3 ms
-1

 remained unaffected by the presence of different external 

environments.  Furthermore, the heat of reaction was increased due to functionalization of 

PS surface with SiH2, taking part in combustion.  Fuel-rich PS/nitrate composites with 

minimal pore filling are easily ignited under inert environment.  The flame speeds and 
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combustion enthalpies are quantified and compared to PS/NaClO4 composites.  These 

composites are viable for applications requiring perchlorate-free on-chip energetics with 

lower burn speeds and more controlled reactions.  The thermodynamic estimates correlated 

better with experimental combustion enthalpies when the surface terminated hydrogen and 

excess oxidizer, in addition to the oxidizer loaded in the pores, were accounted for in the 

reaction. 

In Chapter 7, nanocomposite 2B-Ti material prepared by ARM is shown to be a 

viable heating material for Sm evaporation.  During experiments, the composition 

containing mixture of 30 wt. % of Sm with the ARM-prepared powder is most effective in 

Sm evaporation when 30 wt. % of Sm was added using an additional 30-min milling step.  

Al-MoO3 nanocomposite is not a viable heating material due to the undesired reactions 

between Sm and combustion products to form the ternary oxide, SmAlO3 and minimizing 

Sm evaporation.  In contrast, no reaction products of Sm with either B or Ti were detected 

in the collected condensate. 

In Chapter 8, ESM prepared using nanocomposite Al/Bi2O3 thermite as a precursor 

material and slowly annealing it to reduce Bi2O3 to form Bi inclusions, encapsulated with 

protective Al2O3 in an aluminum matrix is discussed with the goal of making a material 

capable of storing energy by melting and solidifying Bi inclusions.  Upon thermal cycling, 

the inclusions do not drift inside the material and composite structure remains intact.  In 

contrast, reference composite materials containing similar bulk compositions but without 

encapsulated Bi inclusions show that molten Bi tends to separate from Al and form 

interconnected coarse network of Bi metal; further cycling accumulates Bi on surface of 

the material.  Dramatic differences in the mechanical properties of the encapsulated and 
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non-encapsulated composites are observed, where the Bi encapsulation results in a much 

stronger and mechanically sound structure useful for allowing repeated cycles of energy 

storage. 

In Chapter 9, bimetal Al-Ni nano-powders with different compositions are 

synthesized by explosion of twisted pure metal wires.  Nano-powders with 5 at. % Ni do 

not contain significant amounts of the intermetallic phases and oxidizes similarly to n-Al, 

indicating the same heat release during combustion.  Oxidation kinetics assessed for this 

material accounting directly for the measured particle size distribution was compared to 

that for n-Al.  Qualitatively, oxidation for both materials included the same stepwise 

accelerations in the reaction rates at increased temperatures; therefore, growing alumina 

scales formed on oxidizing bimetal particles were structurally similar to those growing on 

pure aluminum.  The bimetal powder oxidizes slower than n-Al due to the presence of 

doped nickel oxide in the growing alumina, which results in greater stability during 

handling and storage.  Oxidation model developed was used to predict that the bimetal 

nano-powder age slower than n-Al due to their difference in oxidation kinetics.  

Furthermore, the bimetal nano-powder is less ESD-ignition sensitive than n-Al with 

similar combustion temperatures of 3500 K.  Hence, Al-Ni bimetal nano-powder with 5 at. 

% Ni could be an attractive replacement of n-Al for advanced energetics, when lower ESD 

sensitivity is desired and/or when the powder needs to be handled and stored while being 

exposed to oxidizing environments. 



 

 

184 

10.2 Future Work 

This work with composites prepared for bioagent defeat applications showed that both 

aluminum and boron are capable of retaining substantial quantities of iodine stabilized in 

the metal matrix and released upon heating to temperatures much exceeding the iodine 

boiling point.  X-ray diffraction used to analyze different phases was ineffective in 

clarifying how iodine was retained in aluminum and boron.  However, it is interesting what 

those metal-iodine phases are.  Other characterization techniques using TEM or XPS may 

provide spatially resolved phase compositions to better understand the retention 

mechanism.  Composites containing greater mole fractions of biocidal content, e.g., 

chlorine and sulfur, are statistically less effective in inactivating the bioaerosol than iodine 

containing Al∙B∙I2 composite.  Additional studies addressing combustion of such halogen- 

or other biocidal agent containing materials using time-resolved optical spectroscopy can 

identify the combustion products generated from each composite to establish which 

products are most important for the spore inactivation.  The same optical measurements 

would also be useful to further optimize the reactive materials in the practical agent defeat 

energetic formulations.  This work showed that 20 wt. % iodine is the maximum amount 

which can be stabilized into aluminum and boron metal fuel matrices.  Thus, new 

formulations with iodine-containing oxidizers, e.g., Ca(IO3)2, will be needed to be 

combined with metal-based fuels to further improve upon the inactivation effectiveness. 

Varying HF:ethanol ratios of the electrochemical etching solution can be used to 

alter the material properties, i.e., porosity and surface area, of the PS film.  An in-depth 

analysis by varying material properties may be used to achieve faster burn rates for 

PS/sulfur and PS/nitrate systems.   
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Feasibility of preparing metal-based energy storage material is only shown using 

Al/Bi2O3 at operating temperature around 270 °C.  Further development using metals 

including Ga, Sn, In, and Zn will cover melting points from 30 – 420 °C for new 

metal-based nano-encapsulated ESMs to expand the range of operating temperatures. 

Preliminary aging study for n-Al and Al95-Ni05 was conducted in oxygen/argon 

mixture.  It is further beneficial to study the oxidation and aging processes of these 

powders in humid environments. 
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APPENDIX A  

STABILITY OF HALOGEN CONTAINING COMPOSITES 

 

A relative measure of material stability, S,  introduced for Al∙I2 composite[12] was used to 

compare the stability of halogen containing composites prepared using various milling 

techniques.  The parameter S was defined as the percentage of weight loss at temperatures 

exceeding 400 °C (673 K).  In Figure A.1, the stability of all composites are presented, 

where AlBI2(40:40:20) composite is seen to be the most stable.  Additionally, the substantial 

increase due to Teflon® coating and glove box (GB) aging is also observed. 
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Figure A.1 Stability of halogen containing composites prepared via mechanical milling. 



 

 

187 

APPENDIX B   

INACTIVATION OF BIOAEROSOL SPORES 

 

Inactivation of aerosolized Bt(k) spores and BG spores without crystals by combustion 

products of prepared composites were observed.  The exposure time of the bioaerosol to 

the combustion product was about 0.33 s.  Figure B.1 and Figure B.2 presents the 

inactivation factor (IF) values obtained for Bt(k) spores and BG spores, respectively.  

Al∙B∙I2(40:40:20) composite show significant inactivation effectiveness towards Bt(k) spores 

compared to other composites.  Additionally, all composites show relatively strong 

inactivation towards BG spores as well.  These experiments were conducted in 

collaboration with Prof. Sergey Grinshpun’s group at University of Cincinnati. 

 

Figure B.1 Average inactivation of aerosolized Bt(k) spores with the combustion 

products of prepared composites at two different burner positions. 
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Figure B.2 Average inactivation of aerosolized BG spores with the combustion products 

of prepared composites at high burner position. 
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APPENDIX C  

COMBUSTION TEMPERATURE MEASUREMENT 

 

Optical emission from the combustion event at ESD voltage of 7 kV was recorded using a 

32-channel PMT to obtain combustion temperatures for both n-Al and Al95-Ni05.  In 

Figure C.1, an example of the collected emission spectra is shown for Al95-Ni05.  The 

intensities fit to a grey emitter indicated unusually high combustion temperatures of 4150 

K for both powders.  Therefore, a power-law dependence,  ~ 
-1.2

, suggested for 

emissivity as function of wavelength in recent work [202], was assumed.  The combustion 

temperatures of both powders are shown in Figure C.2, along with an emission trace.  

Highest combustion temperature of about 3500 K occurs at the peak emission for both 

powders.  

 

Figure C.1 Emission spectra of Al95-Ni05 recorded using 32-channel PMT. 

 



 

 

190 

T
e
m

p
e
ra

tu
re

 (
K

)

2400

2800

3200

3600

Time (ms)

1 10 100

2400

2800

3200

3600

In
te

n
s
it
y
 (

a
.u

.)

nAl

Al95-Ni05

 

Figure C.2 Combustion temperatures of n-Al and Al95-Ni05.  
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