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ABSTRACT 

VECTOR PROCESSOR VIRTUALIZATION: DISTRIBUTED MEMORY 

HIERARCHY AND SIMULTANEOUS MULTITHREADING 

 

by 

SeyedAmin Rooholamin 

Taking advantage of DLP (Data-Level Parallelism) is indispensable in most data streaming 

and multimedia applications.  Several architectures have been proposed to improve both 

the performance and energy consumption for such applications. Superscalar and VLIW 

(Very Long Instruction Word) processors, along with SIMD (Single-Instruction Multiple-

Data) and vector processor (VP) accelerators, are among the available options for designers 

to accomplish their desired requirements. On the other hand, these choices turn out to be 

large resource and energy consumers, while also not being always used efficiently due to 

data dependencies among instructions and limited portion of vectorizable code in single 

applications that deploy them. This dissertation proposes an innovative architecture for a 

multithreaded VP which separates the path for performing data shuffle and memory-

indexed accesses from the data path for executing other vector instructions that access the 

memory. This separation speeds up the most common memory access operations by 

avoiding extra delays and unnecessary stalls. In this multilane-based VP design, each 

vector lane uses its own private memory to avoid any stalls during memory access 

instructions. More importantly, the proposed VP has an innovative multithreaded 

architecture which makes it highly suitable for concurrent sharing in multicore 

environments. To this end, the VP which is developed in VHDL and prototyped on an 

FPGA (Field-Programmable Gate Array), serves as a coprocessor for one or more scalar 

cores in various system architectures presented in the dissertation.  



 

 

In the first system architecture, the VP is allocated exclusively to a single scalar 

core. Benchmarking shows that the VP can achieve very high performance. The inclusion 

of distributed data shuffle engines across vector lanes has a spectacular impact on the 

execution time, primarily for applications like FFT (Fast-Fourier Transform) that require 

large amounts of data shuffling. 

In the second system architecture, a VP virtualization technique is presented which, 

when applied, enables the multithreaded VP to simultaneously execute many threads of 

various vector lengths. The threads compete simultaneously for the VP resources having 

as a goal an improved aggregate VP utilization. This approach yields high VP utilization 

even under low utilization for the individual threads. A vector register file (VRF) 

virtualization technique dynamically allocates physical vector registers to running threads. 

The technique is implemented for a multi-core processor embedded in an FPGA. Under 

the dynamic creation of threads, benchmarking demonstrates large VP speedups and drastic 

energy savings when compared to the first system architecture. 

In the last system architecture, further improvements focus on VP virtualization 

relying exclusively on hardware.  Moreover, a pipelined data shuffle network replaces the 

non-pipelined shuffle engines. The VP can then take advantage of identical instruction 

flows that may be present in different vector applications by running in a fused instruction 

mode that increases its utilization. A power dissipation model is introduced as well as two 

optimization policies towards minimizing the consumed energy, or the product of the 

energy and runtime for a given application. Benchmarking shows the positive impact of 

these optimizations. 
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CHAPTER 1  

INTRODUCTION 

 Background History  

In the computer world, there has always been an evolving demand for parallel processing 

and supercomputing. In recent years, this demand has intensified and is complicated by 

ongoing and unpredictable increases in the size of data and applications. To address this 

demand, parallel attempts have been made to improve the processing and computing 

performance of computers in terms of both hardware and software aspects. The ideas 

behind both approaches are based on exploiting or creating parallelism in the context of 

processing. This can be inherited parallelism in data load or instruction flow for a single 

application, or it can be created by simultaneous execution of multiple applications. In this 

work, various levels of parallelism and techniques are combined in efforts to achieve 

maximum performance from given resources. 

SIMD architectures are highly efficient in exploiting DLP in applications due to 

their specialized hardware design. A VP, also known as array processor, employs an SIMD 

architecture capable of processing an array of data elements simultaneously by executing 

a single vector instruction. Serving as an accelerator, a VP can offload the DLP workload 

from general-purpose scalar processors, thus enhancing the overall performance and 

energy efficiency. [Espasa et al., 1997] show that instruction level parallelism (ILP) and 

DLP can be merged in a single simultaneous vector multithreaded architecture for higher 

performance. Several VP accelerators have been proposed. The VIRAM’s multi-lane 

architecture has become the basis for several VP designs [Kozyrakis et al., 2003]. It has a 

basic multi-lane architecture that can be used to build VPs for exploiting DLP through 
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SIMD processing. Each lane contains similar pipelined execution and load-store units. 

Each vector register is uniformly distributed among the lanes. All the elements from a 

vector in a lane are processed sequentially in its pipelined units while corresponding 

elements from different lanes are processed simultaneously. Using EEMBC benchmarks, 

it was demonstrated that a cache-less VIRAM is much faster than a superscalar RISC or a 

cache-based VLIW processor [Kozyrakis et al., 2002]. 

In this dissertation, a new architecture for a lane-based VIRAM-like VP is first 

proposed and implemented. The VP can accelerate vector-oriented floating-point 

applications by using a high-speed load-store unit and dedicated scratch pad memory in 

each lane. In addition, the designed VP has a multithreaded architecture where several 

threads may utilize VP resources simultaneously. In this case, resource conflicts are 

resolved at static time. 

To further improve this system, the VP is then augmented to support a register file 

virtualization technique in order to dynamically resolve relevant resource conflicts. This is 

joint work with another Ph.D. student. In this scenario, a scalar core is in charge of 

managing the virtualization process. It is accelerated by dedicated hardware and the VP is 

modified accordingly to take advantage of virtualization. The managing core can further 

be utilized for thread scheduling. 

In the last part of this dissertation, the VP architecture is first improved to remove 

some of its structural limitations. The modified VP is capable of achieving higher resource 

utilization (close to 100 %). It introduces both register file and memory virtualization. The 

virtualization is performed completely in hardware which results in less overhead. The old 

non-pipelined shuffle engines are replaced by a pipelined shuffle network. It yields a 
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scalable and yet flexible VP that is capable of dynamically deactivating some of its 

computing lanes in order to reduce the static power with minimum performance loss. In 

addition, the modified simultaneous multi-threaded (SMT) VP can exploit identical 

instruction flows that may be present in different vector applications by running in a novel 

instruction fused mode that increases the overall resource utilization. Under instruction 

fusion, similar copies of an instruction to be run on multiple threads or cores are merged 

into a single copy for simultaneous execution. 

 Motivations and Objectives 

In this work, two system architectures are first proposed and implemented, namely single 

host and multiple host systems. Although both include a VP as a coprocessor, they have 

different goals. The specific aspects of vector processing targeted by each system are 

covered in Sub-sections 1.2.1 and 1.2.2 . In the last part of this dissertation, the VP is 

modified to become more scalable and yet flexible. The modified architecture is called 

virtualized SMT VP and is subjected to two energy optimization scenarios. The objectives 

are covered in Sub-section 1.2.3. 

1.2.1 Single Host System 

In a VIRAM-like architecture, a memory crossbar often connects the vector lanes to the 

memory banks to facilitate index memory addressing and data shuffling. This crossbar adds 

extra delay when not actually needed, such as for stride-based data loads and stores. 

Moreover, it increases the energy consumption. Adding a cache to each lane may solve this 

problem to some extent but the cache coherence problem will require an expensive 

solution, often prohibitive for embedded systems. Since in practical applications stride 
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addressing is more common than other types of addressing [Kennedy et al., 1992], here a 

VP model is introduced that does not sacrifice performance for less likely memory access 

instructions. A VIRAM-based, floating-point VP is developed and embedded in an FPGA 

that connects to a scalar processor. This VP comprises four vector lanes, and provides two 

separate data paths for each lane to process and execute load and store operations in the 

LDST (Load-Store) unit in parallel with floating-point operations in the ALU. Each cache-

less lane is directly attached to its own local memory. Data shuffle instructions are 

supported by a shuffle engine in each lane which is placed after the lane’s local memory 

and connects to other lanes via a combinational crossbar. All the local memories connect 

to the shared bus which is used to exchange data between these memories and the global 

memory. The prototyping of a system with four lanes shows substantial increases in 

performance for a set of benchmarks compared to similar systems that do not contain the 

shuffle engines. This VP is highly flexible for applications with varying VL (Vector 

Length; it represents the number of elements in the vector), thus allowing the VL value to 

be specified by each individual vector instruction; the instruction decoder in each lane is 

then in charge of vector instruction synchronization. In the single host system architecture, 

threads of disparate VLs running on the same scalar processor can exploit the VP as long 

as they do not result in vector register name conflicts. Benchmarking shows speedups of 

up to 1500 compared to running vector code on a scalar processor with the same clock 

frequency. 

Previously proposed VPs are not versatile enough in multithreading environments. 

They were mostly capable of handling simultaneously multiple threads using the same 

vector length in predefined contexts. However, this approach is not often efficient for real 
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applications since a VP is a rather high-cost, high-performance accelerator that consumes 

considerable area and energy in multicore processors. A more flexible VP that can be 

shared dynamically by multiple cores results in better resource utilization, higher 

performance and lower energy power dissipation. The proposed solution supports the 

simultaneous processing of multiple threads having diverse VLs. In fact, the VLs used by 

any given thread are allowed to change during execution. To fully exploit this capability, 

VP virtualization is proposed and implemented for the multiple hosts system architecture 

as well as the virtualized SMT VP architecture. 

1.2.2 Multiple Hosts System 

This work is motivated by the fact that VPs dedicated to single-thread execution on 

multithreaded or multicore processors are often not efficiently utilized due to the following 

reasons. First, every application contains some unvectorizable serial code for flow control 

or other system management; the scalar host processor cannot issue vector instructions to 

the VP for such an application at a rate sufficient to keep it highly utilized. Second, data 

dependencies within some applications’ vector instruction flows can cause frequent stalls, 

wasting precious clock cycles in the super-pipelined floating-point units (FPUs) of the VP. 

Finally, it may be preferable sometimes for applications containing small vectorizable code 

to be executed on the host scalar processor in order to allow another application with more 

vector code to exclusively use the VP. However, the execution of the former applications 

as well could be enhanced given the chance to simultaneously use the VP. Our 

benchmarking shows that some applications with such a low VP utilization as 5% can yield 

a speedup of 83 when executed on a VP compared to a scalar processor with the same clock 

frequency.  
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Traditional VPs designed to service exclusively one host scalar processor are 

normally optimized for applications of a certain level of DLP and usually more vector lanes 

can be added to exploit the increased DLP in new applications [Kozyrakis et al., 2003], 

[Yiannacouras et al., 2008],[ Yu et al., 2009]. However, an increased number of lanes will 

reduce the utilization of VP resources for other applications with lower DLP. For example, 

for maximum utilization a VP with four lanes running an application of VL=16 needs to 

be fed with a new vector instruction every four clock cycles. If the number of lanes is 

increased to 16 to also accommodate larger applications, for the former application to 

achieve maximum utilization the VP must receive one vector instruction every clock cycle 

that the host processor may not be capable of.  

To address these challenges, a VP sharing technique named VP virtualization is 

proposed, for simultaneous multithreading that achieves high aggregate VP utilization 

independent of the DLP of individual vector threads. The developed multithreaded VP 

accommodates up to four threads of diverse VLs simultaneously, and can scales effortlessly 

to support more threads. VP virtualization solves the register name conflicts among threads 

using a novel VRF virtualization algorithm, which dynamically allocates physical registers 

of different lengths to threads. With the easy-to-use VRF management kernel functions, 

programmers are provided with a constant register name space and the management of 

VRF becomes transparent. VP sharing is applied to the aforementioned multi-lane VP 

[Rooholamin et al., 2015], and the performance and energy improvement are benchmarked. 

The new system consists of a VP interfaced with a five-core host subsystem. Four cores 

share the VP simultaneously for running vector applications whereas the fifth core does 

VP management and vector thread scheduling. The new VP can run simultaneously up to 
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four vector threads of various VLs. Any vector register name conflicts between threads are 

resolved via an innovative VRF virtualization technique.  Virtualization involves an 

effective register management algorithm run on the control core and a hardwired 

translation look-up table (TLT) for fast virtual to physical register name (i.e., ID) 

translation. With VRF virtualization, the management of physical vector register names 

becomes transparent to application programmers who assume a virtual register space. 

Benchmarking shows a throughput improvement of up to 400% for many low VP 

utilization applications compared to the older VP that did not support simultaneous 

multithreading. A high throughput runtime scheduler for VP threads is also proposed. 

Experiments show 322% throughput improvement and energy savings of 37% with proper 

scheduling and power-gating that reduces static energy. 

1.2.3 Virtualized SMT VP 

VP (co)processors exploit DLP due to their SIMD specialized architecture. The modular 

design of lane-based VPs empowers scalability. As a VP scales up, however, higher DLP 

is required to keep its lanes fully utilized. Vector applications optimized for a given VP 

size would yield poor utilization on its scaled up version with an increased number of 

vector lanes. Therefore, VP sharing among many on-chip cores is recommended. Without 

proper resource management, scaling will adversely lead to many idling cycles in each lane 

for an otherwise efficient vector application, and thus unnecessarily drain static power 

[Beldianu et al., 2015].  

A flexible lane-based VP design is proposed that can wisely and dynamically 

deactivate some of its lanes toward reducing the static power consumption with minimum 

performance loss. A novel thread fusion technique is presented as well to be used by our 
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SMT VP for multiplying its utilization when similar threads coming from different 

applications are identified in a pending vector task queue. A highly accurate power 

dissipation model for the VP is developed that is used toward runtime optimization of the 

energy and/or performance. The complexities of managing the VP’s fusion process and 

dynamic lane configuration are hidden from application programmers via complete VP 

virtualization; the VP management kernel sets VP state registers for controlling 

configurable hardware components, and handling vector instruction synchronization, 

vector memory (VM) access, and vector VRF usage. Each vector application is executed 

as a thread with its own virtual VM address and VRF name space, and does not need to be 

recompiled to run under a different VP configuration or fusion state. 

In [Beldianu et al., 2015], a dynamic power-gating technique is proposed to control 

the VP’s width (i.e., number of active lanes) in order to achieve optimized performance 

and/or energy. Compared to [Beldianu et al., 2015], our lane deactivation process is capable 

of power-gating the entire lane including its dedicated VM bank due to our distributed 

memory architecture, while the memory crossbar connecting the lanes to the VM and all 

memory modules always have to stay active in [Beldianu et al., 2015]. Thread fusion 

[Rakvic et al., 2010] fuses parallel threads that run on the same SMT processor/core. 

Instruction fusion [Lu et al., 2015] fuses identical instruction flows within unrolled loops. 

While both fusion techniques are applied to general purpose RISC processors mainly 

towards energy reduction, the fusion technique presented here boosts VP utilization while 

reducing the host processors’ energy.  

This dissertation is organized as follows. Chapter 2 mainly includes related works 

which target vector processing and multithreading. The similarities and differences 
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between our work and these works are discussed in this chapter. The architecture of the 

sub-system of scalar processors and its VP interface for the single host and multiple hosts 

architecture are covered in Chapter 3. The VP’s architecture, including the designs of the 

hazard detection unit and the VM banks, are discussed for each system separately in this 

chapter. The VRF virtualization technique and resource consumption of the FPGA 

prototype are also covered in Chapter 3. Chapter 4 introduces the benchmarks for the 

evaluation of the proposed systems. Chapter 5 includes performance analysis involving all 

the results of benchmarking on single host and multiple hosts systems. In Chapter 6, 

various scheduling algorithms are proposed for the multiple hosts system. Chapter 7 

analyzes the power and energy consumption for both aforementioned systems. Chapter 8 

covers the hardware modifications in the SMT virtualized VP as well as optimization 

processes targeting energy consumption via thread fusion and lane configuration. Finally, 

conclusions and future work are drawn in Chapter 9. 



 

10 

CHAPTER 2  

RELATED WORK 

 

This chapter includes an overview of previously proposed hardware accelerators. In 

Section 2.1, different types of single-threaded vector processors, which are designed to 

improve high performance computing, are presented. These accelerators may be developed 

for ASIC or FPGA platforms. They are versatile or application oriented. Like our single 

host architecture, they are all dedicated exclusively to a single scalar processor. In 

Section 2.2, various VP sharing techniques are introduced. Various types of multi-threaded 

architectures are also discussed.  

 Related Work in Vector Processing 

The SODA VP has a fully programmable architecture for software defined radio [Lin et 

al., 2006]. Using SIMD parallelism and being optimized for 16-bit computations, it 

supports the W-CDMA and IEEE802.11a protocols.  Embedded systems using a soft core 

or hard core processor for the main execution unit also have the option to attach a hardware 

accelerator to increase their performance for specialized tasks. Sometimes these 

accelerators are realized using FPGA resources to speed up applications with high 

computational cost. They are often referred to as soft vector processors (SVPs). Designing 

a custom hardware accelerator that will yield outstanding performance needs good 

knowledge of HDL (Hardware Description Language) programming. Another SIMD, 

FPGA-based processor uses a 16-way data path and 17 memory blocks as the vector 

memory in order to perform data alignment and avoid bank conflicts [Cho et al., 2006]. 

VESPA [Yiannacouras et al., 2008] is a portable, scalable and flexible soft VP which uses 
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the same instruction set as VIRAM but the coprocessor architecture was hand-written in 

Verilog with built-in parameterization. It can be scaled with regards to the number of lanes 

and yields x6.3 improvement with 16 lanes for EEMBC benchmarks compared to a one-

lane VP.  It is flexible as the size of the vector length and its width, as well as the memory 

crossbar, can vary according to the target application.  

The VIPERS soft VP is a general-purpose accelerator that can achieve a x44 speedup 

compared to the Nios II scalar processor [Yu et al., 2009]; it increases the area requirements 

26-fold. It supports specific instructions for the applications, such as motion estimation and 

median filters, and can be parameterized in terms of number of lanes, maximum vector 

length and processor data width. VEGAS [Chou et al., 2011] is a soft VP with cache-less 

scratchpad memory instead of a vector register file. It achieves x1.7-3.1 improvements in 

the area-delay product compared to VESPA and VIPERS. Using scratchpad memory 

instead of a Vector Register File (VRF), it achieves a speedup of up to 208 compared to 

the Nios II scalar processor. Further improvements eliminated its ALU bottleneck and the 

resulting VENICE [Severance et al., 2012] SVP doubled the performance-per-logic block 

compared to VEGAS. With the integration of a streaming pipeline in the data path of 

VENICE, a x7000 times speedup results for the N-body problem [Severance et al., 2014].  

Application specific VPs are another type of accelerator designed and optimized to 

expedite specific types of applications. An application-specific floating-point accelerator 

is built using a fully automated tool chain, co-synthesis and co-optimization for SIMD 

extension with a parameterizable number of vector elements [Hagiescu et al., 2011]. An 

application-specific VP for performing sparse matrix multiplication was presented in 

[Yang et al., 2005]. IBM’s PowerEN processor integrates five hardware application 
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specific accelerators in a heterogeneous architecture to perform key functions such as 

compression, encryption, authentication, intrusion detection and XML processing for big 

workload network applications. Hardware acceleration facilitates energy-proportional 

performance scaling [Heil et al., 2014]. Multimedia applications containing video 

processing kernels deal with massive DLP. SIMD vector architectures (i.e., VPs) are the 

best candidates to exploit the parallelism in video frames. In recent years many researchers 

have tried to optimize codecs for the implementation of new video coding standards such 

as H.264 or MPEG4. [Iranpour et al., 2004], [Lee et al., 2004], [Kim et al., 2005], [Shengfa 

et al., 2006] and [Lee et al., 2009] all proposed SIMD-based video codecs focusing on 

optimizations enhancing the performance.  

A major challenge with these VPs is their slow memory accesses. Comprehensive 

explorations of MIMD, vector SIMD and vector thread architectures in handling regular 

and irregular DLP efficiently confirm that vector-based microarchitectures are more area 

and energy efficient compared to their scalar counterparts even for irregular DLP [Lee et 

al., 2013].  [Lo et al., 2011] introduced an improved SIMD architecture targeting video 

processing. It has a parallel memory structure composed of various block sizes and word 

lengths as well as a configurable SIMD architecture. This structure can perform random 

register file accesses to realize complex operations, such as shuffling, which is quite 

common in video coding kernel functions. A crossbar is located between the ALU 

(Arithmetic Logic Unit) and register file. 

 VP Sharing Techniques and Comparisons  

The idea of VP sharing for multiple threads or cores was first proposed by Beldianu and 

Ziavras [Beldianu et al., 2013]. Three VP sharing policies were introduced for a multi-lane 
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VP, namely coarse-grain temporal sharing (CTS), fine-grain temporal sharing (FTS) and 

vector lane sharing (VLS). Their FPGA prototype contained two scalar core processors. 

Under CTS, each core reserves the entire VP exclusively until its current vector thread 

stalls or completes execution, and then hands over VP access to the other core. FTS is 

similar to the VP sharing scheme which is proposed here, where all cores access the entire 

VP simultaneously and VP resource conflicts are resolved by an arbitrator. CTS and FTS 

support sharing only for threads with the same VL (vector length; it represents the number 

of elements in the vector). VLS is the only mode under which active threads using different 

VLs can coexist in the VP which is split into two independent sets of vector lanes, one set 

for each core; VLS relies on two vector controllers (VCs) to control the two sets. FTS 

achieves the best VP utilization and may double the speedup compared to CTS while 

reducing the dynamic energy by 50%  [Beldianu et al., 2015]. 

The work here differs from [Beldianu et al., 2013] in four major aspects. Register 

name conflicts for VP sharing are solved, a problem that was not mentioned in their work. 

VRF virtualization greatly improves in practice simultaneous VP sharing. Otherwise, 

application programmers must rename vector registers statically based on thread 

combinations that will be present simultaneously in the VP; this is hardly possible in 

dynamic environments with an unknown, large or infinite number of combinations. 

Second, [Beldianu et al., 2013] supports VP sharing for two threads of different VL only 

under the VLS execution mode that configures two independent sets of vector lanes using 

two VCs. In contrast, we maximize the VP’s utilization by allowing multiple threads of 

different VLs to run simultaneously on the VP. This results in substantial throughput 

increases. A single VC broadcasts vector instructions to all lanes. The thread ID and VL 
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reside in each broadcasted instruction. With multiple non-empty instruction FIFOs, round-

robin arbitration decides each clock cycle the vector instruction to enter the VP. The thread 

population in the VP can be increased by modifying the arbitrator’s state machine. Third, 

an added FIFO structure between the VP interface and host cores eliminates frequent stalls 

of the latter due to vector instruction arbitration. Under low VP utilization, an application’s 

speed is bounded by its host core.  

However, when multiple hosts send simultaneously vector instructions to the VP, 

then only one host will get VP access in the next clock cycle. Such wastage of clock cycles 

can be avoided with the implemented FIFOs since a core can keep sending vector 

instructions until its FIFO becomes full; this will occur for peak VP utilization. Finally, the 

crossbar between the lanes and VM banks is removed by connecting a bank’s dedicated 

port to the attached lane’s LDST unit. This modification eliminates arbitrator delays in the 

crossbar and improves VP throughput for sequential memory accesses that are omnipresent 

due to its pipelined units that target array operations. The removal of the crossbar also 

improves scalability of the VP. With both the VM and VRF distributed across the VP lanes, 

scaling the VP can be effortlessly achieved by attaching more identical lanes to the VC, 

which will not increase the complexity of individual lanes.  

One of the innovations in the proposed VP sharing technique is similar to Intel’s 

proprietary Hyper-Threading Technology (HTT), which is a simultaneous multithreading 

technique for general-purpose processing [Marr et al., 2002]. The basic differences are:  

(a)  simultaneous multithreading is applied to vector code; (b) the threads may arrive from 

different core processors;  and (c) each logic processor in HTT contains a complete set of 

general-purpose registers due to a rather small register space; however, a similar VP 
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approach (i.e., a distinct VRF for each vector thread) would not only require a substantial 

number of register resources (due to two-dimensional vector storage) but also their average 

utilization would be drastically reduced due to a much larger register population. This issue 

is addressed by the proposed VRF virtualization technique; although it maintains a separate 

logical vector register space for each thread, a shared physical VRF is implemented.  

A general-purpose graphics processing unit (GPGPU) is capable of running 

hundreds of threads simultaneously in each of its streaming multiprocessors (SMs); 

however, all of the simultaneously executing threads have to be homogeneous. GPGPU 

relies on thousands of homogenous threads to exploit the DLP in an application, and can 

only service one host thread at a time. In contrast, a VP thread is already parallel due to the 

explicit vector nature of its instructions, and the virtualized VP is capable of simultaneously 

exploiting the DLP in multiple heterogeneous host threads.  A VP also consumes 

significantly less resource compared to a modern GPGPU. Nvidia’s latest Maxwell GPU 

GTX 980 consists of 16 SMs, each with 128 CUDA cores, and the GPU has 5.2 billion 

transistors [Nvidia Corp. 2014]. Without highly sustained DLP and a fine-grained power 

management mechanism, many CUDA cores in an SM may idle frequently, and thus lead 

to prohibitively low resource utilization and high static energy consumption. 
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CHAPTER 3  

PROPOSED VECTOR COPROCESSOR 

 

In this chapter, two system architectures are proposed. For the single host system 

architecture, the proposed VP is exclusively utilized by one scalar processor while it is 

placed on the shared bus and any scalar processor connected to that shared bus can use the 

VP. In the multiple hosts architecture, VP virtualization is presented where multiple cores 

can share the VP using simultaneous multithreading. 

 Single Host System Architecture 

Figure 3.1 depicts the basic architecture of the FPGA-prototyped VP in the single host 

architecture. A single scalar core is based on Xilinx’s soft core MicroBlaze (MB),  fetches 

instructions from its instruction memory (not shown in the figure) and issues them to 

appropriate execution units. The MB is in charge of executing all scalar and control 

instructions while vector instructions are sent to the VP. The shuffle engine, which is 

distributed along the lanes, is activated only to realize vector data shuffling with multiple 

vector lanes. The design introduces two innovative concepts. First, it removes the 

competition of lanes to access memory banks, which is the case for earlier works, by 

employing cache-less private memories for the lanes; the private memories form a low-

order interleaved space that resides between the lanes and the global memory. Second, the 

vector length can vary even between instructions in the same thread. In all previously 

introduced VPs, the vector length was defined for each working context, program or thread. 

It was usually a fixed number for each thread and was set in advance by the scheduler. In 

contrast, this model allows the programmer to define the vector length for each individual 
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instruction. As a result, the vector length can vary widely, even for instructions in the same 

loop. This unique feature of the VP is well exploited through VP virtualization. 

 

 

Figure 3.1 High-level architecture of the multi-lane VP prototyped on a Xilinx FPGA in 

single host architecture. The vector memory is low-order interleaved. Each vector lane is 

attached to a private memory. 

 

Data needed by applications running on the VP should be preferably stored in the 

private memories of lanes. Since these private memories connect to the AXI (Advanced 

eXtensible Interface) shared bus, copying the data from the global memory could be done 

either by the MB or the DMA engine as both have access to the shared bus. If the instruction 

and data caches also of the MB are placed on the AXI interconnect, the time needed to 

copy the data from the global memory to either the vector memory or the MB data cache 

will basically be the same. The same principles are applied for writing back from the VP 

private memories or the MB data cache to the global memory. Block data are placed in 

consecutive locations in the MB data cache while low-order interleaving among lanes is 

used for the vector memory. 
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To evaluate the proposed VP model, an FPGA prototype is created with four lanes 

and four on-chip memory banks that serve as local memories. The VP model is modular 

and can be easily extended to include more lanes. The Xilinx Virtex6 xc6vlx240t-FF748 

FPGA device is used. To reduce the complexity of the hardware design in order to track 

operations progressing through the data path, rather simple execution units are included in 

the vector lanes. Since each lane directly connects only to its private memory in order to 

avoid contention when accessing memory banks, a very fast load-store unit was designed 

in each lane as there is no chance of stalling during memory access instructions. Contention 

when accessing a memory bank can only happen in the case of data shuffle instructions 

which, however, are totally handled by each lane’s shuffle engine. Since the distributed 

shuffle engines employ other ports of the private memory banks than those that connect to 

lanes, other vector instructions can be executed while realizing data shuffling as long as no 

data hazard exists between the involved instructions. Figure 3.2 shows the detailed 

architecture of the single host system prototype. 

The hardware design of the vector lanes, vector controller, scheduler, data shuffle 

controller, data shuffle engines, and combinational crossbar and mux was done by writing 

VHDL code. Xilinx IPs (Intellectual Properties) were used for the realization of the 

memory banks, memory controllers, MB, and AXI4 and AXI4 Lite interconnects. The VP 

was developed using Xilinx ISE version 14.5. The MB was added to the project using the 

EDK tool while its configuration and connection to the peripherals was done using Xilinx 

XPS.  Since this work focuses on proof of concept, the prototyped VP consists of four lanes 

and has 1024 32-bit registers in the VRF. It also contains a 64Kbyte vector memory that 
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can accommodate the largest developed benchmark. The rest of this section contains the 

VP details. 

 

 

Figure 3.2 Detailed architecture of the four-lane VP applied in single host architecture 

(FP: Floating-point). 

 

The MB soft core is a 32-bit RISC Harvard architecture [Xilinx Inc., 2010] that 

supports the AXI4 and LMB (Local Memory Bus) interfaces. Version 8.40.a is 

implemented with five pipeline stages and an FPU. Data and instruction caches can be 

connected to either bus. For flexibility, the memory blocks are connected to both the AXI4 

and LMB buses. Each bus requires its own memory controller. Only one AXI4 memory 

controller is used to create a slave interface for the vector memory. The AXI4 interconnect 

is good as a shared bus for high-performance memory mapping and can support up to 16 

slaves and 16 masters [Xilinx Inc., 2012]. The AXI4 crossbar can realize every transfer 

between interconnected IPs, like memories. Moreover, it supports the DMA-based burst 
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mode for up to 256 data transfer cycles which is suitable for transfers between the global 

and private memories. 

To connect the VP and shuffle controller to the MB for vector instruction transfers 

from the MB, the AXI4 Lite interconnect is used which is appropriate for this type of non-

DMA memory-mapped transfers. The slave interfaces for connecting the VP and shuffle 

controllers to the shared bus are developed using the create-and-import peripheral wizard 

in Xilinx XPS. They both contain control registers which can be read and written by the 

MB through the AXI4 lite interconnect. A hardwired scheduler for accessing the VP is 

included in the VP interface. The main responsibility of the scheduler is to grant VP access 

to a requesting MB based on the vector length it asks for and the current availability of VP 

vector registers. Vector instructions are written into the VP using memory mapping. 

3.1.1 VP Architecture and Instructions in the Single Host System 

Two types of vector instructions are used by the VP. The first type does not contain data 

and all the required fields for executing the instruction are placed in the 32-bit instruction; 

vector-vector ALU instructions are of this type. The other instruction type consumes 64 

bits that contain a 32-bit operand value; e.g., vector-scalar ALU instructions are of this 

type. Since the main focus here is proof of concept for the hardware design, an advanced 

compiler for the VP was not developed. Inline function calls are included in the C code for 

the MB; they represent VP instructions and their realization involves macros.  Since the 

VP’s instruction input port is viewed as a memory location by the MB in this memory 

mapped system, a small delay may occur between issuing an instruction of the second type 

and the arrival of the needed operand. Thus, the scheduler sends them together to the VP 

when the data becomes available. 
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Every MB that has access to the AXI4 Lite interconnect can send a request to the 

scheduler for VP resource access. Each MB can access the VP as a peripheral device using 

two different addresses, for sending a VP request or release instruction and a vector 

instruction upon VP granting, respectively. Requests are granted by the scheduler. Threads 

initiate a request to the scheduler in advance using a 32-bit instruction. This request 

instruction includes the VL per register and the number of vector registers needed by the 

thread. An affirmative reply by the scheduler will include a 2-bit thread ID that can be used 

to get VP access. This will occur only if there is enough space in the vector register file to 

accommodate the request. The MB running the thread will include this ID in all vector 

instructions sent to the VP. Vector register renaming and hazard detection rely on this type 

of ID. If the aforementioned conditions for the thread are not satisfied, the scheduler will 

reject the thread request with information about the currently available VL and vector 

registers. Although our hardware implementation allows different vector instructions to 

employ different VLs, a complicated register renaming unit will be needed. Therefore, for 

the sake of simplicity, in single host system it is assumed that the VP can handle two threads 

at a time, from the same or different MB cores, where all instructions in both threads use 

the same VL. Otherwise, it will be the compiler’s or programmer’s responsibility to employ 

registers that will guarantee no conflicts in the VRF. Threads release VP resources by 

issuing a release instruction to the scheduler.  

The VP scheduler interfaces the VP via the VP controller (VC). The latter has a 

pipelined architecture that consumes three clock cycles for register renaming and hazard 

detection. Since the VP connects to AXI4 Lite via the shared bus, it can receive instructions 

from any scalar processor that connects to that bus in a multicore environment; thus, the 
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VC unit can accept vector instructions from a multitude of threads and carry out register 

renaming, if needed. The register renaming stage for single host system is completely 

implemented in hardware and takes only one clock cycle. However, it cannot be applied 

for comprehensive multithreading as it requires threads of similar VLs. RAW (Read-After-

Write), WAW (Write-After-Write) and WAR (Write-After-Read) data hazards are 

resolved by the hazard detection unit in the VC. This unit resolves all possible hazards in 

accessing vector registers in the lanes by using an appropriate instruction tagging 

mechanism. Adding a tag to each instruction allows handshaking between the VC and VP. 

The same instructions are issued simultaneously to all four lanes. 

The detailed architecture of each lane is depicted in Figure 3.3. The data paths for 

memory and ALU instructions are completely separated in each lane, and related 

instructions and data are queued in different FIFOs. All the instructions and data in a lane 

are represented using 32 bits. Memory accessing instructions always contain 32-bit 

additional data to represent the private memory base address to be used. ALU instructions 

for vector-scalar operations also contain a 32-bit floating point scalar. ALU instructions 

are decoded by the ALU decode unit and the needed operands are fetched from the VRF. 

The VRF in each lane consists of 256 32-bit locations that can store 256 single-precision 

floating-point vector elements.  It is accessed using three read and two write ports since the 

ALU and load (part of the load-store LDST) units need two and one read port in order to 

simultaneously read two and one operand respectively, and the register WB (Write-Back)  
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Figure 3.3 Lane architecture for VP in single host architecture. 

 

and store (part of LDST) units require one write port each.  In the case of contention, when 

different ports want to perform different tasks simultaneously on the same location in the 

VRF, the write first policy could be applied. The design results in one clock cycle latency 

for sending the output to related ports; it uses output enable ports to ease the reading task. 

Reading from the VRF is possible only when the output enables are triggered. The ALU 

decode unit requires two read ports when reading a pair of floating-point operands to 

realize vector-vector instructions. The ALU execution unit in the lane contains a floating-

point adder/subtractor and a multiplier that were developed using open source code [Open 

cores, 2012]. This unit has six pipeline stages for addition and subtraction, and four stages 

for multiplication; it performs operations on 32-bit single-precision floating-point data. 

The results of the execution unit are sent to the WB block which connects to a write port 

of the VRF for writing one element per clock cycle in a pipelined fashion. 
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Absolute and indexed memory addressing are used to access the private memories. 

Absolute addressing may employ a non-unit stride. The LDST unit fetches the register 

content for a store instruction from the VRF and generates the destination address for the 

lane’s private memory using the base address that arrived right after the instruction. It uses 

only one VRF read port. Each vector memory instruction issued to the lane has two 32-bit 

fields. The first field contains the source or destination register and the stride value, 

whereas the second one is a base address in the lane’s private memory.  Indexed addressing 

for the private memory is realized using the data shuffle engines. For load instructions, the 

WB unit writes the fetched memory contents into the proper register using a write port at 

the rate of one element per clock cycle. In the prototyped VP with four lanes, 1024 (i.e., 4 

lanes *256 elements/lane) vector elements can reside in the VRF; the VRF is divided 

evenly among the four lanes so the VL must be a multiple of four. Hence, the VRF can be 

configured as 16 vector registers with VL=64, or 32 registers with VL=32, or 64 registers 

with VL=16. The location of register elements in the VRF depends on the VL value and 

the register ID. In the case of VL=64, for example, register “r0” contains all the elements 

of “r0” and “r1” for VL=32.  

The ALU and LDST decode blocks in each lane include counters for 

synchronization when reading from the VRF and feeding the data to the next block; they 

are initialized based on the VL assumed by the instruction. Since the design avoids memory 

stalls by making a private memory available to each lane, all lanes remain synchronized in 

the full pipeline utilization mode where one element is processed every clock cycle in the 

lane. This synchronization flexibility allows dynamic changes of VL’s value for any given 

instruction.   For example, the vector-vector instruction “r2 <= r0+r1” for VL=32 can be 
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substituted by the two vector-vector instructions “r4<=r0+r2” and “r5<=r1+r3 for VL=16, 

and vice versa, within a thread or a loop since the corresponding registers include the same 

elements from the VRF (as per the preceding paragraph). 

For memory access instructions without data shuffling, the shuffle engine adds no 

delay since the combinational crossbar is placed in the middle of the connection between 

the AXI4 shared bus and the memory port. Since both the shuffle engine and the MB use 

the same memory ports when accessing the private memory, only one of them can write to 

or read from the memory in any given clock cycle; the access decision is made by the 

shuffle engine and is realized via the crossbar. Each lane uses independent ports to access 

its private memory and the LDST unit can execute the next memory access instruction 

while data shuffling is performed as long as there are no data hazards.   If there is an access 

contention on a memory bank while running a data shuffle instruction, the shuffle engine 

will apply the round robin scheduling policy. Indexed memory addressing also can be 

realized by the shuffle engine. The shuffle controller simultaneously provides to all four 

shuffle engines the information needed for shuffling (i.e., the source, destination and index 

register values). 

3.1.2 Pipelined ALU and LDST Unit 

The VC as well as the vector lanes are pipelined. The first block in the VP’s data path is 

the VC which has three pipeline stages for register renaming, hazard detection, and 

separating for forwarding the ALU and LDST instruction word components (e.g., base 

address or scalar operand), respectively. Two clock cycles are consumed in either FIFO to 

pass an instruction and its data to the VP. The ALU decode unit consumes four clock cycles 

for decoding, fetching operands and feeding them to the execution unit. The floating-point 
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execution unit consumes six clock cycles for processing and an additional cycle to receive 

an acknowledgment from the WB unit after writing a result into the VRF. Thus, the total 

latency for filling up the pipeline with ALU instructions is sixteen clock cycles (accounting 

for all delays in the lane and VC), as shown in Figure 3.4 (the first three stages are inside 

the VC). 

Memory access instructions are decoded by the LDST decode unit which contains 

six pipeline stages for instruction decoding, data fetching from the VRF and address 

generation when executing store instructions. For a load involving the private memory, two 

more clock cycles are added representing a memory access and data latching by the WB 

unit, respectively. There is also one clock cycle delay between fetching consecutive vector 

instructions from either FIFO. This delay eases functional verification and instruction 

tracking through the data path during behavioral simulation, since it represents a high-

impedance state (‘Z’) delineating consecutive instructions. The total latency for filling up 

the pipeline is 11 and 13 clock cycles for a store and a load instruction, respectively, as 

shown in Figure 3.4. For data shuffle instructions, the data path consists of the shuffle 

controller and shuffle engines. For a shuffle instruction, the shuffle controller accepts three 

addresses representing the location of the source, destination and index data in the vector 

memory. This controller will not initiate data transfers until all the required information for 

the desired permutation becomes available. After sending the information to the shuffle 

engines, four clock cycles are needed per element to fetch the data and the corresponding 

index from the memory, and at most four more clock cycles to apply round-robin 

scheduling upon data collision involving any of the four private memories.  
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Figure 3.4 Pipelined structures in the ALU and LDST data paths. 

 

3.1.3 Resource Utilization in Single Host System 

Before demonstrating the proposed architecture’s performance achievements, it is essential 

to know the silicon area occupied by this design. The architecture of Figure 3.2 was 

synthesized for the Virtex6 xc6vlx240t-FF748 FPGA device which is organized in 

columns and is built with a 40nm copper CMOS process. This Xilinx device includes 

37,680 slices, where each slice contains 4 LUTs and 8 flip flops for realizing configurable 

logic. It also includes 768 DSP48E1 DSP modules, where each module contains an 25*18-

bit multiplier, an adder and an accumulator.  There are also 344 block RAMs (BRAMs) of 

36 Kbits each which are used to realize memory components in digital designs. The overall 

resource consumption of our design is presented in Table 3.1. The MB system consumption 

in the table is without the VP and the connection interfaces of Figure 3.2. It can be 
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concluded that the VP accelerator consumes almost 11times as much area as the MB in an 

effort to speed up data-parallel applications. Also, the data shuffle engines do not consume 

many resources. It will be extrapolated further in Chapter 7 by investigating the dynamic 

energy consumption of these resources for a set of benchmarks. 

Table 3.1 Resource Consumption for Single Host System.  

Entity Slice Registers 

(% Utilization) 

Slice LUTs 

(% Utilization) 

RAMB36E1s 

(% Utilization) 

DSP84E1s 

(% Utilization) 

Vector Processor 45212 (14.9%) 69127 (45.8%) 0 4 (0.5%) 

Vector Memory 2 (0%) 296 (0%) 16 (3.8%) 0 

Shuffle Engines 1320 (0.4%) 1228 (0.8%) 0 0 

MB System 4947 (1.6%) 6183 (4.1%) 16 (3.8%) 3 (0.4%) 

 

 Multiple Hosts System Architecture 

As shown in Figure 3.5, this prototyped system consists of two sub-systems, namely a 

heterogeneous component with five scalar processors and the VP. The scalar processors 

sub-system (SPS) runs system managing applications as well as the flow control part of 

vector applications, and sends vector instructions to the VP. The TLT, which provides 

hardware support for real-time VP register renaming, is also managed by the SPS. The 

interface between the SPS and the VP is pipelined, and the VP can read up to one 32-bit 

instruction/datum and three 6-bit physical register names from the SPS in each clock cycle. 

A detailed discussion of the SPS follows. More VP details follow in 3.4. 

MB, a 32-bit RISC embedded soft processor provided by Xilinx, is the chosen 

architecture for the scalar processors, namely MB0 to MB4, in the SPS. The MB’s Harvard 

architecture in the SPS interfaces a fast local memory (LM) that stores frequently used 

library functions. LM blocks can be initialized from the FPGA’s flash memory upon power 



 

29 

up; the connections are omitted in Figure 3.5. The libraries can also be modified at runtime 

by attached MBs. In addition to regular load/store instructions which can access memory 

and I/O devices mapped within the 4GB address space, MB supports a special interface 

known as AXI4-Stream (AXI4-S). The MB’s AXI4-S interface can be accessed using 

put/get instructions; each AXI4-S interface consists of one input and one output port, 

providing a low latency dedicated link to the processor’s pipeline. Each MB can be 

configured with up to 16 AXI4-S interfaces. The AXI4-S interface is widely used in the 

developed multiple hosts system for inter-core and core to custom-hardware connections.  

 

 

Figure 3.5 Multicore architecture for VP sharing (Instr Arb: vector instruction arbitrator). 
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Put/get instructions are of two types: blocking and non-blocking. Blocking 

instructions will stall the MB pipeline if the receiver/sender is not ready to receive/send 

data. On the other hand, for non-blocking instructions the processor will keep executing 

instructions without receiver/sender acknowledgments; a polled software flag indicates a 

successfully completed transfer. Both types of put/get instructions are used for reasons 

explained later in this section. 

3.2.1 The System Core 

MB0 is at the center of the SPS. It is connected to the other four MBs and the TLT using 

the AXI-S interface. MB0 performs the following tasks: i) It runs the register management 

algorithm that supports VRF virtualization. ii) It updates the TLT based on the mapping of 

virtual vector registers used by a thread to available physical registers in the VRF; the 

mapping is produced by the register management algorithm. iii) It estimates the VP 

utilization using information for tasks running on the VP and schedules new vector threads 

based on this estimate. iv) For simplicity without loss of generality, in the benchmarking 

MB0 notifies the application cores (MB1-MB4) about new tasks assigned to them.  

v) Finally, it polls MB1-MB4 for task completion before releasing VP resources. 

MB0 is connected to the TLT using only the output port of its AXI-S interface. It 

uses a non-blocking put instruction since MB0 knows when the TLT is ready to be written. 

The connections between MB0 and the slave cores are bi-directional and facilitate non-

blocking put/get instructions to free MB0 from slave acknowledgments while enabling the 

fine-grain monitoring of slave status. MB0 knows the state of every slave core and only 

assigns tasks to idle cores. Using a non-blocking get instruction, MB0 polls frequently each 

slave for task completion. A task completion flag written by the slave is checked by MB0 



 

31 

for avoiding the premature release of VP resources occupied by the task. MB0 is attached 

to a fast 32KB LM that contains the register management and thread scheduler codes. Since 

MB0 needs to run only integer code, an FPU is omitted for resource and power efficiency. 

3.2.2 Application Cores 

MB1-MB4 serve as application cores (ACs). Each AC runs applications that may contain 

function calls to vector kernels. These vector kernels are part of a library stored in the 

attached 16KB LM.   For the sake of benchmarking the proposed VP virtualization 

technique, it is assumed here that the ACs receive commands from MB0 to execute vector 

kernels and then send an acknowledgment to MB0 upon successfully completing this task. 

This behavior of the ACs is represented by the finite state machine (FSM) of Figure 3.6. 

The AC, which starts in the wait state, executes an application after receiving an MB0 

command. When the application finishes, the AC sends an acknowledgment that sets a flag 

which is periodically checked by MB0; the AC goes back to the wait state. Serving as 

slaves to MB0, the ACs use blocking put/get instructions to communicate with MB0 

through the AXI-S interface. Blocking put/get instructions ensure that an AC trying to 

communicate with MB0 stalls its pipeline until a command or acknowledgement arrives 

from MB0.  

Each AC is also configured with another AXI4-S interface that connects it to its 

dedicated vector instruction FIFO (see Figure 3.5). An AC running vector application 

kernels generates vector instructions which are forwarded to this FIFO. Vector instruction 

details are covered in Section 4.2.1. Each vector instruction goes through the VP instruction 

arbitrator before it reaches the VP for decoding and execution. The AC runs the serial code 

of the application.  
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Figure 3.6 The FSM model for AC behavior (CMD: command; APP: application; ACK: 

acknowledgment). 

 

3.2.3 Vector Instruction FIFOs and Arbitrator 

The vector instruction FIFOs in the prototype are constructed using Xilinx IPs and are 

configured as First Word Fall Through (FWFT) FIFOs with a depth of 16 32-bit words. 

The arbitrator is custom hardware that is developed in VHDL. The FIFOs and arbitrator 

play important roles in system performance, especially when the VP utilization is relatively 

low for the following reason. To ensure that each vector instruction is received properly, 

an AC sends vector instructions or relevant data using a blocking put instruction that stalls 

the AC pipeline until the transaction is acknowledged. Due to VP sharing in this system, 

multiple ACs may send vector instructions at the same time.  With the FIFOs added 

between the ACs and the VP, each AC can keep issuing vector instructions until its 

dedicated FIFO becomes full, which implies that the VP has saturated.  

A smart round-robin arbitrator is implemented to share the VP resources equitably 

among all four ACs. To eliminate unnecessary clock wastage, only non-empty FIFOs are 
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polled. The FIFOs and pipelined arbitrator are carefully designed for high throughput. The 

arbitrator consists of two stages that realize arbitration and handshaking with the VP’s 

receiving unit, respectively. The FIFO and arbitrator interconnects provide a bandwidth of 

one 32-bit instruction/data per clock cycle with the SPS and VP respectively, which 

suffices to sustain peak VP performance. 

3.2.4 The System Bus 

An AXI4 bus connects the five MBs with the system and vector memories. This 32-bit 

system bus is optimized for high performance with separate read and write channels; it also 

supports incremental bursts of up to 256 bus-wide data transfers. The 128 KB system 

memory is accessible by the five MBs and external I/O devices, while the vector memory 

is accessible by the MBs and the VP. Application data are initially stored in the system 

memory and are moved to the VM for VP processing. A DMA engine can expedite these 

transfers. Each VM bank has two ports; one port directly connects to a lane’s LDST unit. 

With four direct connections between VP lanes and VM banks, a four-fold bandwidth 

increase can be achieved between the VP and the VM compared to a system with a 

crossbar [Beldianu et al., 2013]. The other port of each bank is connected to the system bus 

in a low-order interleaved fashion; sequential data communicated by a MB or the DMA 

engine are low-order interleaved among the four banks to support fast pipelined accesses. 

I/O devices attached to the system bus can support debugging, display or other data 

input/output capabilities. For VP benchmarking, data is initialized in the system memory 

and configure LEDs for debugging using general-purpose input/output (GPIO) channels. 
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 VP Virtualization 

Without loss of generality, the multiple hosts system prototype supports VP sharing with 

up to four threads running simultaneously, where each thread uses a VL from the set {16, 

32, and 64}. To support VP sharing for achieving the highest thread throughput, a runtime 

VRF virtualization technique was invented that resolves register conflicts among 

competing active threads.  Each vector thread is programmed with its own independent 

virtual register name space and at run time virtual register names are mapped to physical 

names based on the availability of VP registers. The VRF virtualization technique involves 

two components: (1) a register management algorithm run by MB0 that determines virtual 

to physical vector register mappings; and (2) a hardwired TLT that facilitates the fast 

translation of IDs between virtual and physical registers after the former algorithm 

completes the mapping process. Using a convenient programming interface for this 

prototype, which is supported by the VRF virtualization technique, applications have 

access to virtual vector registers 0 to 31 for VL=16 or 32, and 0 to 15 for VL=64; this 

choice matches the physical VRF size as discussed in the next subsection.  It is not assumed 

the uncommon case of 64 vector registers with VL=16 since it will also increase 

unnecessarily the complexity. 

3.3.1 The Vector Register File 

The physical VRF consists of 16 vector registers where each register can store 64 (i.e., 

VL=64) 32-bit elements. If needed, each register of VL=64 can be split into two registers 

of VL=32, and each register of VL=32 can be further split into two registers of VL=16. 

The notation reg_64(n-1) is used to represent the n-th physical vector register for VL=64, 

where n=1, 2, …, 16. As illustrated in Figure 3.7, reg_64(0) can be split into reg_32(0) 
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and reg_32(1), or further to become reg_16(0), reg_16(1), reg_16(2), and reg_16(3). The 

vector instruction decoder needs both a register’s physical name and the VL of the 

instruction to physically locate a register in the VRF. In the VP design, each vector 

instruction contains a 2-bit thread ID, the 5-bit IDs of involved virtual registers, and the 

VL of the instruction encoded in a 2-bit field. The thread ID and the virtual register IDs are 

used to obtain physical register IDs from the TLT, as discussed in the following section.   

3.3.2 The Vector Register Management Algorithm 

The functional blocks of the register management module (RMM) and its TLT interface 

are shown in Figure 3.8. The vector register management algorithm is developed to support 

an independent/virtual space of 32 vector registers for each thread. The RMM receives as 

input a request to either allocate new registers, with the needed VL and number of registers, 

or release registers, with the ID of a vector thread that just completed execution. After  

 

Figure 3.7 VRF structure in multiple hosts system. 

properly processing the input command and updating the register and thread state 

accordingly, the RMM responds to the corresponding core by providing the assigned thread 
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ID. To minimize vector register fragmentation, the register access queues as well as the 

register split, allocation, release and merge/recovery mechanisms give priority to the 

preservation of registers with larger VL. More details follow later in this section. For our 

current benchmarking, the functionality of RMM is realized in software by MB0. A 

hardwired version of RMM is a future objective towards even higher performance and 

lower energy consumption. 

 

Figure 3.8 RMM (Register Management Module) and its TLT interface. 

 

Figure 3.9 shows two data structures for VRF management. Struct vp_control 

contains data needed to manage VRF. Each register is an instance of struct  
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vp_reg; there are three vp_reg arrays in vp_control for VL=16, 32 and 64, respectively. 

A register’s vp_reg record is located by using its physical ID as the index into one of the 

three arrays. If the register is available for access, vp_reg can also be accessed using the 

quick access queue. Inside vp_reg, field rname is the physical name of the register; it 

initializes to the index within the array. Field in_queue is set to ‘1’ when a register is put 

into the fast access queue; it is available to be assigned to a thread or to be split for smaller 

VL. After a register is assigned or split, in_queue is set to ‘0’ and used is set to ‘1’. Fields 

prev and next are used to implement the fast access queue (a doubly linked list).  

 

 

Figure 3.9 Data structures used to manage the VRF. 

 

The fast access queue is accessed to identify an available register for allocation or 

splitting. Using one of the head_16, head_32 and head_64 pointers in vp_control, the 

vp_reg record of the first available register in a queue is found and its fields are modified 

accordingly. Before any thread accesses VP, vp_control is initialized. No register is used 

initially, therefore the fields representing the number of registers available for VL=16, 32 

struct vp_reg 
{ 
int rname; //Register's physical name 
int in_que, used; //Register's status 
vp_reg *prev, *next; //Pointers for implementing the access queue 
}; 
 
struct vp_control 
{ 
vp_reg reg_16[64], reg_32[32], reg_64[16]; //Array of all the registers 
vp_reg *head_16, *head_32, *head_64; //Head of access queue for each VL  
int avail_16, avail_32, avail_64; //Number of registers available for each VL 
int in_que_16, in_que_32, in_que_64; //Number of registers in the fast access queue  
int thread_len[4]; //VL for each thread 
int thread_num[4]; //Number of registers used by each thread 
int tlt_table[32][4]; //Mapping of virtual name to physical name 
}; 
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or 64 are 64, 32 and 16, respectively. Initially, all 16 registers with VL=64 are ready to be 

accessed or split; therefore, they are arranged into the fast access queue pointed to by 

head_64. The other two access queues for VL=32 and 16 are initially empty. Fields 

in_que_64, in_que_32 and in_que_16 are initialized to 16, 0 and 0, respectively. 

3.3.3 Assigning/Releasing VRF Resources  

When a thread requests VP access, its VL and needed number of registers are provided. 

Based on VL’s value, avail_16, avail_32 or avail_64 within vp_control is compared with 

the latter number. If the remaining number of available registers is not enough for the 

thread, VP access is denied. Otherwise, the thread is assigned an ID (0 to 3) for unique 

identification while using the VP, and register allocation begins. thread_len[ID] and 

thread_num[ID] in vp_control are modified to record the thread’s VL and number of 

registers. 

Only vector registers in the fast access queue are allocated. When registers of 

VL=16 are needed, their available number in the queue is checked; if the number is not 

sufficient, registers in the queue of VL=32 are split. If registers in the queue of VL=32 are 

not sufficient, registers in the queue of VL=64 are split. Whenever a register of VL=N is 

split, for N=64 or 32, the respective number of VL=N registers in the queue and the 

potentially available number of registers are decremented by one. However, for registers 

of VL=N/2, their number in the queue is incremented by two while their number of 

potentially available remain unchanged until the register is actually allocated.  

After register splitting, there will be sufficient registers in the fast access queue 

representing the VL of the assigned thread. Chosen registers are removed from the queue 

for allocation. The physical IDs of the registers are stored into TLT and tlt_table in 
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vp_control. The physical names in tlt_table will later be used to release VP registers. TLT 

has three read ports and contains the same information with array tlt_table; it supports 

three VP register name readings per clock cycle. VP uses the 2-bit thread ID concatenated 

with the 5-bit register ID to form an index into the 128-entry TLT for locating the physical 

register ID used by a vector instruction. 

When a thread finishes execution, the tlt_table entries assigned to the thread are 

identified for releasing its registers. Instead putting it back into the fast access queue, a 

released register may be combined with its “sister” register to form a register of higher VL 

depending on the current status of VRF. For example, reg_16(15) is checked when 

reg_16(14) is released. If reg_16(15) is not in the access queue, reg_16(14) is returned to 

the queue. Otherwise, the two registers are combined into reg_32(7); it may trigger the 

recovery of reg_64(4) based on the status of reg_32(6). 

3.3.4 VRF Fragmentation Issues 

The VRF management algorithm is designed to minimize register fragmentation by 

forming registers of larger VL upon releasing VP threads. However, if the VP threads do 

not complete execution in the reverse order of their VP instantiation, fragmentation can 

still occur. To evaluate the efficiency of the algorithm, an experiment was performed 

involving random VP request/release calls. After each request/release call, the number of 

fragmented reg_32 and reg_64 are counted. The number of request failures are also 

counted due to register fragmentation. Random calls are generated using the rand() C 

function for random integer number generation. When the VP is not occupied by any 

thread, the call is a request; when the VP is fully occupied by four threads, it is a release; 

otherwise, release and request have equal probability.  
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For a VP request, all three VLs have the same probability; once the VL is set, all 

possible numbers of registers for that VL are chosen with equal probability. For a VP 

release, all the current VP threads have the same probability of being released. This random 

calls were repeated 109 times. The numbers of fragmented reg_32 and reg_64 and their 

duration (measured in number of calls) are plotted in logarithmic scale in Figure 3.10. In 

the worst case, two out of the thirty-two reg_32 and three out of the sixteen reg_64 are 

fragmented. However, fragmented registers are not present more than 98% of the time. 

591,441,754 of the 109 random calls are for VP requests, and 408,558,246 of them succeed. 

Among the request failures, only 155,865 are due to fragmentation, thus fragmentation may 

impact a request only with a 0.026% probability.  

 

 

Figure 3.10 Duration of fragmented registers for VL=32 and 64. 

 

 VP Architecture in the Multiple Hosts System 

The VP consists of a VC, a data hazard detection unit, the VRF containing 1024 32-bit 

elements, a VM of size 64KB, and four vector lanes;  each lane has a LDST unit and  a 
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FPU. The VM is divided into four low-order interleaved banks; each bank is a true dual-

port RAM with one port connected exclusively to one of the vector lanes and the other port 

connected to the system bus shared with the SPS. Whereas each vector lane can only access 

its own dedicated memory bank, all scalar processors and the DMA controller can access 

all four VM banks. Application data are initially stored in the system memory, and are 

transferred for VP processing to the VM banks using either the DMA engine or one of the 

ACs. Figure 3.11 shows the detailed architecture of the VP prototype applied in multiple 

hosts system.  Two types of vector instructions are used by VP which were described in 

Section 3.1.1. Since here also focus is proof of concept for the hardware design, an 

advanced compiler was not developed for the VP. Vector instructions are generated by ACs 

using macro definitions in C code, and are sent to the VP via the arbitrator interface.  

The VP has the same pipeline stages as discussed in Subsection 3.1.2. The internal 

architectures for realizing the register renaming and hazard detection stages are completely 

different. The following sections describe how these two first stages work to support SMT 

performed on the multiple hosts system. 

 

Figure 3.11 Detailed architecture of the VP applied in the multiple hosts architecture.  
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3.4.1 VP-MB Interface  

The arbitrator in the SPS interfaces the VP via the VC. The latter has a pipelined 

architecture that consists of three stages for register renaming, hazard detection and data 

path separation, respectively. The VC always gives transaction permission to the arbitrator 

unless VP resources are not available (i.e., the lane FIFO is full) or a previous instruction 

has been stalled due to a data dependency. Register renaming is performed by reading 

physical register names/IDs from the TLT, which is managed and updated by MB0 in the 

SPS. Each vector instruction uses at most three vector registers, and therefore the TLT is 

triple-ported. Each vector instruction contains up to three register name fields, which 

represent the virtual names of the source and destination registers. In the first stage of the 

VC (the renaming stage), these virtual names are replaced by their corresponding physical 

names, which are mapped using the VRF virtualization technique introduced in 

Section 3.3.2.   

3.4.2 Hazard Detection 

After updating the register name fields, instructions enter the Hazard Detection Unit 

(HDU). RAW, WAW and WAR data hazards are detected by this unit to provide control 

signals to the VC. The VC then resolves all potential data hazards by stalling instructions 

that are dependent on other instructions in the pipeline, to assure the proper order of register 

access.  This prototype can process simultaneously four vector threads by assigning distinct 

IDs to threads. Since there is no data dependency across different threads, the HDU is only 

responsible for detecting data hazards within each thread. The modular HDU design is 

scalable to eventually support more simultaneously executing threads. Each HDU module 

has a temporary slot that buffers the previous instruction of a thread that entered the vector 
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lanes, and a counter that counts the number of remaining same-thread instructions in the 

lanes. A buffered instruction is a potential cause of hazard since the next incoming 

instruction may depend on it. The counter of instructions is incremented by one upon the 

VC issuing a new vector instruction from the same thread; it is decreased by one when an 

instruction from the thread completes execution. Involved lanes broadcast an 

acknowledgment with the thread ID to all the HDU modules when an instruction 

completes; the module with the matching thread ID will then update its counter. Due to the 

separate data paths for ALU and LDST instructions in the lane design, the counter may be 

decremented by two when two instructions simultaneously completing execution in the 

two data paths belong to the same thread. A counter value of zero means that there is no 

pending instruction in the lane for this thread, so there is no need to check the buffered 

instruction for hazards. When an instruction enters the HDU, the HDU module that 

corresponds to the instruction’s thread-ID is chosen to perform hazard detection. The 

instruction is compared against the buffered instruction in the module; if a data hazard is 

detected, the instruction will be stalled from entering the lanes until the counter’s value is 

reduced to 0. 

This mechanism adds only one extra pipeline stage and does not decrease the 

throughput without hazards. With a data hazard, the instruction in the HDU stage stalls 

until its dependent has gone through the safe point; by the time the former starts fetching 

its first operand, the latter will have written its first result. For longer VL instructions, the 

pipeline will still be fully filled even with a hazard. With VL=16, at most three bubbles 

will be injected into the pipeline due to a stall. The stall cannot be avoided with in-order 
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execution. However, since the design targets SMT assuming no dependencies among 

threads, the HDU’s performance impact is almost negligible.  

3.4.3 Vector Lane Structure in the Multiple Hosts System 

The detailed lane architecture is depicted in Figure 3.12. The modular VP model can be 

easily extended to include more lanes. To reduce the complexity of the hardware design in 

order to track the progress of operations through the pipeline, relatively simple execution 

units are used in the vector lanes. Once a vector instruction has passed the hazard checking 

phase, it is broadcasted to all vector lanes for execution. The pipelines for LDST and ALU 

instructions are exactly the same as discussed in Section 3.1.1. The only difference is 

related to performing handshaking for hazard detection. In the tagging mechanism, only 

the TAG field of every instruction is sent back to the VC once the instruction has passed 

the safe point; in contrast,  as discussed in Section 3.4.2 here the thread ID is passed. 

For load instructions, the WB unit writes the fetched memory contents into the 

proper register using a write port at the rate of one element per clock cycle. Each lane is 

directly connected to its private memory in order to avoid contention when accessing 

memory banks, and therefore a high throughput LDST can be implemented since memory 

access will never be stalled due to arbitration. The need for arbitration often drags down 

performance in designs where all memory banks are accessible by all lanes. Since a VP 

lane only occupies one port and every VM bank is dual-ported, the other port can be 

dedicated to the AXI4 bus. With such a configuration, LDST instructions can be executed 

without affecting data transfers between the system memory and VM. The ALU and LDST 

decode blocks in each lane include counters for synchronization across different lanes, and 

the counter values are initialized based on the VL field contained in vector instructions. 
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Since each vector instruction contains its own VL information, the VP no longer needs to 

keep the VL state. Vector instructions with different VLs can coexist in the VP lanes, 

making the VP extremely flexible in handling applications with different VLs. 

 

 

Figure 3.12 Vector lane architecture for the multiple hosts system. 

3.4.4 Resource Utilization in the Multiple Hosts System 

The multiple hosts system is prototyped on a Xilinx Virtex6 xc6vlx240t FPGA device. The 

entire VP, the vector instruction arbitrator, and the TLT are custom designed in VHDL. 

The rest of the system is constructed by connecting various IP cores provided in the Xilinx 

tool chain. The system is fully synthesized and routed, and the FPGA resource consumption 
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is shown in Table 3.2. The FPGA device contains 37,680 slices; each slice has eight 

registers and four 6-input lookup tables (LUTs). Each register is implemented with flip-

flops or latches, and each LUT may be composed of a pair of 5-input LUTs. Some LUTs 

are implemented as small RAM blocks which are known as distributed RAMs. Large RAM 

memory can be realized using 36Kbit BRAM blocks (RAMB36E1). Embedded DSP slices 

(DSP48E1) contain a hardwired 25x18 two's complement multiplier/accumulator. The 

VP’s FPUs are designed with custom logic for ASIC implementation, and therefore do not 

employ DSP slices. Only four DSP48E1s are used in the VP, one for each vector lane’s 

synchronization counter. The entire VP subsystem and its SPS interface (including the 

vector instruction FIFOs, arbitrator and TLT) consume 13.9% and 45.8% of the total 

registers and LUTs. The resource consumption of FPGA-based designs relies somewhat 

on the randomness of the routing process. Some registers and LUTs are simply used as 

wires and buffers to reduce critical path delays. Therefore, the actual minimum amount of 

resources required to implement the system is lower than that in the table.  

The entire design flow relies on the Xilinx ISE design suite. For simulation 

efficiency, all performance results presented in Chapter 5 and Chapter 6 are based on cycle 

accurate behavioral system simulation. For highly accurate power measurements, the post-

place-and-route simulation was performed on the VP at a fine detail, down to the switching 

of individual LUTs. The binaries for each benchmark were generated and used as 

testbenches to obtain Switching Activity Interchange Format (SAIF) files, which were used 

by the Xpower Analyzer to calculate the accurate power consumption.  
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Table 3.2 Resource Consumption for Multiple Hosts System. 

Entity Slice 

Registers 

(%Utilization) 

Slice LUTs 

(% Utilization) 

RAMB36E1s 

(% Utilization) 

DSP48E1s 

(% Utilization) 

1 Vector Lane 

(ALU+LDST+VRF) 

10247 (3.4%) 17035 (11.3%) 0 (0%) 1 (<1%) 

VM (4 Banks) 16 (<1%) 272 (<1%) 16 (3.8%)  0 (0%) 

VC (Including HDU) 358 (<1%) 305 (<1%) 0 (0%) 0 (0%) 

VP (VC + 4 Lanes + VM) 41378 (13.7%) 68717 (45.6%) 16 (3.8%) 4 (<1%) 

VP/SPS Interface  388 (<1%) 283 (<1%) 0 (0%) 0 (0%) 

VP + VP/SPS Interface 41766 (13.9%) 69000 (45.8%) 16 (3.8%) 4 (<1%) 

SPS  9962 (3.3%) 15268 (10.1%) 73 (17.5%) 23 (3%) 
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CHAPTER 4  

BENCHMARKING 

 Benchmark Suite for the Single Host System 

The FPGA-based simulation testbench was built using the Xilinx Project Navigator for the 

single host system. The chosen working frequency of 50 MHz for the VP is the result of 

the open source codes used to implement the ALU’s FPU. However, critical path delay 

analysis shows that the VP’s clock cycle could become as low as 7.01 ns (i.e., a frequency 

of 142.65 MHz) corresponding to the path delay in the adder. This delay is due to 32 levels 

of logic. The earliest and latest signal arrival times are 1.897 ns and 2.126 ns, respectively.  

A 50-MHz frequency was thus chosen for the MB and all the peripherals (e.g., memories, 

memory controllers and VP). 

4.1.1 Vector Instruction in the Single Host System 

Various vector-intensive benchmarks were employed to evaluate the developed design. 

Since MB is a soft core processor, the simulation of the executable file is performed using 

the developed RTL model. By performing behavioral simulation, all the ports, signals and 

memories in the system can be accessed. All the system components are integrated using 

the ISE project navigator and all the connections are made according to the architecture 

described in the previous chapter. The designed hardware is exported to the SDK tool so 

that the execution of developed application benchmarks can be driven by the scalar 

processor. The inline embedded macros for the VP are hand-coded to maximize its 

performance. Also, the drivers for the vector and shuffle controllers are developed 

manually using inline assembly coding. For a fair comparison with code run exclusively 
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on the MB, the MB’s data and instruction caches are attached to the AXI4 memory; the 

time taken to transfer, via the DMA engine or the scalar processor, data from an external 

memory, such as DDR, to the data cache and private memories is the same since all connect 

to the same shared bus, and use the same clock signal and protocol. However, DMA is 

much faster in the burst transfer mode and should be used for preloading memories. 

Although the time taken by data transfers in the performance comparison between 

the MB and the VP is excluded, the extra time is counted when data is moved between the 

cache and private memories. Since the private memories are connected independently to 

the AXI4 interconnect, all of them are accessible and addressable by both the MB and the 

DMA engine using low-order interleaving. Both the MB and DMA controller view the four 

private memories as a big vector memory with a single base address. Low-order 

interleaving is realized by the MUX block. The MB has access to all locations in the vector 

memory using its base address and the appropriate offset each time. In this prototype, each 

private memory is 16 Kbytes, so 64 Kbytes of vector memory are available to store 

application data. 

Two distinct types of vector instructions, without (type 1) and with address (type 

2) inclusion, are embedded in the C code run by the MB (i.e., using inline macro calls). 

The MB runs them as one or two store word (SW) instructions, respectively, targeting the 

VP’s memory-mapped interface. Figure 4.1 shows how type 1 and type 2 instructions are 

defined using C functions, and how they are used to create macros that represent VP 

instructions. The type 1 __ADD instruction only needs 32 bits, whereas the type 2 __VLD 

(unit-stride load) and __VST (unit-stride store) instructions also carry a 32-bit address. The 

C code in Figure 4.1 loads two 16-element vectors from the VM and stores the summation 
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result back in the VM. The C structure that defines a vector contains two unsigned integer 

fields representing the vector’s VL and a pointer to its first element in the VM. The latter 

field actually contains the offset of the first element which must be added to the base 

address of the VM.  

To compile each benchmark written in the C language and containing inline macros 

for the VP, the MB GNU mb-gcc tool is applied twice, with and without optimization, 

respectively. Maximum optimization (O3) is invoked that involves inline functioning, loop 

unrolling and strict aliasing. This optimization causes code rearrangement in order to 

increase the rate of issuing vector instructions. Eight benchmark algorithms with three 

alternatives each for the VL value are tested. Therefore, results for 24 benchmark 

instantiations are presented for single host system. All the benchmarks are developed using 

the VP’s instruction set architecture (ISA) shown in Figure 4.2. 

4.1.2 Benchmark Applications for Single Host System 

The first benchmark is the multiplication of square matrices with size 16*16, 32*32 and 

64*64. Three benchmark algorithms are developed for matrix multiplication to run on 

single host system. Algorithms 1 and 2 calculate one element of the resulting matrix in 

each loop iteration. Only the location of additions differs between these two algorithms 

(details follow in the Section 5.1.1). Algorithm 3 improves the vectorization ratio (i.e., ratio 

of vector to scalar code) since all the elements of a row in the resulting matrix are calculated 

in each loop iteration. 

 For the sake of comparison, sequential C code for the MB scalar processor is also 

developed for matrix multiplication that represents the same number of operations with 

each of these algorithms. Two benchmark algorithms implement FIR (Finite Impulse  
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Figure 4.1 Example of C code showing VP instructions implemented as macro calls for 

vector addition in single host system. 

 

Figure 4.2 ISA of the VP.  
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Response) digital filtering and use the outer product [Sung et al., 1987]. 16, 32 and 64 tap 

FIR filters are realized. One of these benchmarks (Algorithm 2, which is presented below), 

applies special memory initialization to maximize the vectorization ratio in a way that takes 

advantage of unrolling the loop four times. In this method the coefficient window slides 4 

times over input sequence instead of once in every iteration. This was realized by 

initializing four copies of the input sequence in the VM with each first element of the 

sequence located in a different memory bank. 

The next two benchmark algorithms implement FFT using a 16, 32 and 64 point 

decimation-in-time radix-2 butterfly algorithm [Cooley et al., 1965]. Shuffle instructions 

are executed in each stage. In each benchmark execution, the results of performing data 

shuffling by the scalar processor and the shuffle engine, respectively, are observed and 

compared. More details about the FIR and FFT benchmark variations follow in the 

Section 5.1.1.  

The last benchmark is RGB2YIQ (RGB to YIQ color space) mapping. This 

benchmark, which is the most vectorizable, is run on 16*16, 32*32 and 64*64 pixel 

matrices. All these benchmark instantiations were also implemented on the MB using 

sequential code. 

 Benchmark Suite for the Multiple Hosts System 

Various vector-intensive benchmarks were employed to evaluate the design in the multiple 

hosts system. Some benchmarks are already applied and explained in the single host 

system. Here the 100 MHz working frequency is selected for running benchmarks. 

However, as the single host system critical path delay analysis shows, the VP’s clock cycle 
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could be as low as 7.01 ns (i.e., representing 142.65 MHz), corresponding to the path delay 

in the adder.  

Although different frequencies are applied to benchmark the single host and 

multiple hosts systems, this may not cause any concern in the presentation of results due 

to the following reasons: 

1. The only result which depends on the frequency is the execution time which, however, 

can be easily converted to a cycle count result for better evaluation. 

 

2. The VP utilization in each scenario is completely independent of the working frequency. 

 

3. The comparisons for both systems are based on the speedup achieved, which is 

independent of the working frequency. 

 

4. Power and energy analysis for each benchmark is performed on the desired frequency 

and presented accordingly.  

4.2.1 VP Instruction and Compilation for the Multiple Hosts System 

As shown in Figure 4.3, two basic types of vector instructions are sent to the VP: without 

(type V_instr_a) and with a scalar operand (type V_instr_b). Macro definitions ease 

programming by providing an assembly-like VP programming interface. As an example, 

Figure 4.3 shows the macro definition for the 32-bit __ADD (vector-vector add) type a 

instruction, and the __VLD (unit-stride load) and __VST (unit-stride store) type b 

instructions that hold an extra 32-bit scalar operand as address. It can be seen from the 

figure that different MB assembly instructions, namely “put” and “cput”, are used here to 

develop vector instruction macros rather than “SW” which was the case in the single host 

system. This is because here the VP connects to the stream interface of the MB while in 

the single host system it was placed on the AXI4 shared bus. Since the AXI4 interconnect 

forms a memory mapped architecture, the store instruction was required to send data to the 

VP. The main function in Figure 4.3 loads two 16-element vectors from the VM and stores 
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the summation result back into the VM. To compile benchmarks, written in the C language, 

that contain macros and assembly code for vector instructions, the MB GNU mb-gcc tool 

without optimization (i.e., option o0) was applied. Five algorithms were evaluated on the 

multiple hosts system, each with three alternative VLs, for a total of fifteen distinct 

benchmarks. 

 

Figure 4.3 Macros to define vector instructions in multiple hosts system. 

The complete ISA of the VP, including all vector instructions as well as the control 

instructions developed for VP virtualization, are listed in Figure 4.2. Previously in the 

single host system discussed in Section 3.1.1 the __VP_REQ and __VP_REL instructions 

are sent to the hardware scheduler and a response is received accordingly by reading the 

scheduler handshake response from its memory mapped location. In the multiple hosts 
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system, these two instructions were implemented by software since the real scheduler in 

this system is the system core (MB0 in Figure 3.5) as described in Section 3.2.1. The 

control instruction __VP_REQ is implemented as a C function which takes the 

application’s VL and the number of registers as input. Upon a successful VP request, the 

thread ID is returned. The __VP_REL function takes as a parameter the thread ID and 

releases all the vector registers occupied by the corresponding thread. Vector application 

development for the virtualized VP is almost identical to that for a single threaded VP. 

Programmers only have to use the __VP_REQ function to obtain a thread ID and use it as 

the ID field for every VP instruction. When the application is completed, VP resources 

must be released using a __VP_REL call.   

4.2.2 Benchmark Applications for the Multiple Hosts System 

The first benchmark is matrix multiplication (MM) for square matrices of size 16*16, 

32*32 and 64*64. Here only algorithm 3 for MM from the single host benchmarks is 

implemented. In this application, all elements on a row of the resulting matrix are 

calculated in each loop iteration to maximize the vectorization ratio (i.e., ratio of vector to 

scalar code). It multiplies a single element of the first matrix with all elements on a row of 

the second matrix to produce partial products. To calculate row i in the result, each element 

on row i of the first matrix is multiplied with the respective row in the second matrix 

(element 1 with row 1, element 2 with row 2, and so on) and appropriate partial products 

are summed up. All multiplications are performed using scalar-vector multiplication 

instructions, and additions are of the vector-vector type. Using an optimal approach, only 

two vector registers of size VL are needed in this benchmark. The results show that by 

increasing the dimensionality of the matrix and consequently the VL, the time needed to 
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generate one element in the product matrix decreases slightly (due to higher vectorization 

ratio).  

The second benchmark is Finite Impulse Response (FIR) digital filter that uses the 

outer product. 16, 32 and 64 tap FIR filters are implemented with the input sequence having 

the same size as the filter; the resulting sequence has twice the input length. This is 

algorithm 2 for the FIR benchmark which was discussed in terms of the single host system. 

A loop unrolling technique was used to expand the kernel four times and increase the 

vectorization ratio. This benchmark uses two vector registers of size VL.  

The third benchmark is vector-dot product (VDP) with VL= 16, 32, and 64. A 

vector-vector multiplication instruction is followed by a couple of vector-vector addition 

instructions. Four VL-sized vector registers are used. The execution time of VDP is 

measured for an input of five pairs of arrays having VL elements per thread.  

The fourth benchmark is the discrete cosine transform (DCT) which is common in 

video processing. Since DCT is usually applied to fixed-sized pixel blocks, like 8*8 or 4*4, 

following the same principle one-dimensional 8-point DCT on blocks of size 8*8 is 

performed. 2, 4 and 8 adjacent blocks are used as input with VL=16, 32 and 64, 

respectively. Three vector registers of size VL are used.  

The last benchmark is RGB to YIQ color space mapping (RGB2YIQ). It has the 

highest portion of vector code among all five benchmarks and uses seven vector registers. 

The configurations of VL=16, 32, and 64 is used to perform the calculation on a 1024-pixel 

block. Since the input size is independent of VL, higher VLs lead to fewer loop iterations, 

and therefore shorter execution times. 
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CHAPTER 5  

PERFORMANCE ANALYSIS 

 Single Host System Performance Analysis 

In this chapter, performance results are presented for the benchmarking performed on the 

single host system architecture of Subsection 5.1.1. Detailed analysis for performance 

exploration focusing on ideal and practical systems is given in Subsection 5.1.2. A 

comprehensive comparison with other VPs benchmarked for the same applications is 

presented in Subsection 5.1.3. As discussed earlier in Section 4.2, the simulation frequency 

for both the VP and MB systems in the single host architecture is 50MHz. Hence, all the 

simulation results presented in this section are based on this frequency. 

5.1.1 Simulation Results and Performance Analysis in the Single Host System 

Table 5.1.a and b show results under various execution scenarios for matrix multiplication 

without compiler optimization and with maximum compiler optimization, respectively. 

The DMA is used to transfer input data to vector memory. For the sake of simplicity, the 

time taken in each case for producing one element in the resulting matrix is shown. Matrix 

multiplication Algorithms 1 and 2 multiply a row with a column and add the partial results. 

Both algorithms use the VP for multiplications. Algorithm 1 uses the MB for the addition 

of partial products whereas Algorithm 2 uses both the VP and the MB for this purpose. 

More specifically, partial products are loaded in four vector registers and vector-vector 

additions are then applied, which are followed by VL/4 MB additions to produce each 

element in the resulting matrix. Algorithm 3 uses a different technique that produces a 

single resulting row at a time. More specifically, the MB is only in charge of vector-
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instruction control flow; all additions and multiplications are done by the VP. This 

algorithm multiplies a single element of the first matrix with all the elements on a row of 

the second matrix to produce partial products. To calculate row i in the result, each element 

on row i of the first matrix is multiplied by the respective row in the second matrix (element 

1 with row 1, element 2 with row 2, and so on) and appropriate partial products are summed 

up. All the multiplications are performed using scalar-vector multiplication instructions 

and additions are carried out via vector-vector additions.  

 

Table 5.1 Performance Comparison for Three Multiplication Algorithms and Various 

VLs on the Single Host System. Algorithms 1 and 2 Use Both the VP and MB. Algorithm 

3 Uses Only the VP. The Execution Time is Shown for Each Element Produced in the 

Product Matrix. (a) Without Compiler Optimization and (b) with Compiler Optimization. 

Matrix Size 

Vector Length 

Algorithm 1 

Execution 

Time(us) 

(VP+MB) 

Algorithm 2 

Execution 

Time(us) 

(VP+MB) 

Algorithm 3 

Execution 

Time(us) 

(VP) 

Scalar 

Execution 

Time(us) 

(MB) 

16*16                 VL=16 75 28 4.5 160 

32*32                 VL=32 144 31 4.36 319 

64*64                 VL=64 279 34 4.32 630 
  (a) 

Matrix Size 

Vector Length 

Algorithm 1 

Execution 

Time(us) 

(VP+MB) 

Algorithm 2 

Execution 

Time(us) 

(VP+MB) 

Algorithm 3 

Execution 

Time(us) 

(VP) 

Scalar 

Execution 

Time(us) 

(MB) 

16*16                 VL=16 69 21 1.5 139 

32*32                 VL=32 136 22 1.43 278 

64*64                 VL=64 268 23 1.368 552 
(b) 

 

The results show that by increasing the dimensionality of the matrix and 

consequently the VL, the time needed to generate one element in the product matrix 

increases for the element-wise Algorithms 1 and 2 while it decreases slightly for the row-

wise Algorithm 3 (due to higher vectorization ratio). Compiler optimization demonstrates 

the most dramatic beneficial impact on the algorithm that uses the VP the most; this is 

because the improvement increases faster with the matrix size. 



 

59 

Table 5.2.a and b show performance results for FIR filtering under various 

scenarios and VLs without and with compiler optimization, respectively. 16, 32 and 64 tap 

FIR filters are implemented with the size of the input sequence being the same as the size 

of the filter; therefore, the resulting sequence has double the length of the input. The MB 

is used to transfer data between the global and vector memories. Two algorithms are 

developed. Algorithm 1 has no loop unrolling while Algorithm 2 uses special initialization 

of the vector memory customized for the four lanes by unrolling the loop four times to 

achieve higher VP utilization. The results in the table include the time to initialize the 

private memory by transferring data from the global memory. Similar to matrix 

multiplication, the effect of compiler optimization is more prominent when using only the 

VP. 

 

Table 5.2 Performance Comparison for FIR Filtering with Various Filter Sizes in the 

Single Host System. The Times for Data Exchanges Between the Global and Private 

Memories are Included. The Times are for Calculating All the Output Elements. (a) 

Without Compiler Optimization and (b) with Compiler Optimization. 

Filter Size 

  Vector Length 

Input 

Length 

Output 

Length 

Algorithm 1 

Execution 

Time(us) 

(VP+MB) 

Algorithm 2 

 Execution 

Time(us) 

(VP) 

Scalar 

 Execution 

Time(us) 

(MB) 

16 Tap             VL=16 16 32 414 149 4250 

32 Tap             VL=32 32 64 1439 278 15615 

64 Tap             VL=64 64 128 5331 536 68703 
(a) 

Filter Size 

  Vector Length 

Input 

Length 

Output 

Length 

Algorithm 1 

Execution 

Time(us) 

(VP+MB) 

Algorithm 2 

 Execution 

Time(us) 

(VP) 

Scalar 

 Execution 

Time(us) 

(MB) 

16 Tap             VL=16 16 32 114 52 3813 

32 Tap             VL=32 32 64 370 94 14189 

64 Tap             VL=64 64 128 1312 178 64102 
(b) 

Table 5.3.a and b depict the results for FFT without and with compiler optimization, 

respectively. 16, 32 and 64 point FFT are implemented using two algorithms. MB is in 
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charge of transferring input and output data between the global and vector memories. In 

Algorithm 1, the shuffling of data in the vector memory is realized by the MB via the AXI4 

interconnect. In Algorithm 2, the distributed data shuffle engines implement shuffling 

needed in each stage of FFT. As intended, the data shuffle engines which are distributed 

across the vector lanes have a spectacular beneficial impact on FFT’s execution time due 

to its hefty demand of data shuffling. The relevant speedup is 5.92 and 7.33 for the 64-

point FFT without and with compiler optimization, respectively. Furthermore, the 64-point 

FFT speedup of Algorithm 2 against runs on the MB is 52.07 and 110.45 without and with 

compiler optimization, respectively. Also, similar to runs of the other benchmarks, the 

impact of compiler optimization becomes more prominent when the VP utilization 

increases. In general, the performance advances of our architecture become more 

manifested with increased VLs in applications. 

 

Table 5.3 Performance Comparison for FFT of Various Sizes in the Single Host System. 

The Execution Time Includes the Overhead of Writing and Reading Between the Global 

and Vector Memories. The Numbers are for Calculating All the Output Results. (a) 

Without Compiler Optimization and (b) with Compiler Optimization. 

FFT Size 

Vector Length 

Algorithm 1 

Execution 

Time(us) 

(VP+MB) 

Algorithm 2 

Execution 

Time(us) 

(VP) 

Scalar 

Execution 

Time(us) 

(MB) 

16 Point                 VL=16 386 132 3850 

32 Point                 VL=32 814 190 7380 

64 Point                 VL=64 1783 301 15673 
(a) 

FFT Size 

Vector Length 

Algorithm 1 

Execution 

Time(us) 

(VP+MB) 

Algorithm 2 

Execution 

Time(us) 

(VP) 

Scalar 

Execution 

Time(us) 

(MB) 

16 Point                 VL=16 175 42 2520 

32 Point                 VL=32 379 63 5605 

64 Point                 VL=64 762 104 11487 
(b) 
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Table 5.4.a and b show performance results for the RGB2YIO benchmark without 

and with compiler optimization, respectively. DMA is used to move information about 

pixels to the vector memory. Although three sizes are chosen for the input pixel array, the 

results in the table are for calculating the values in a block of 8*8 pixels in the YIQ target 

space. Since each output pixel value depends only on the corresponding input pixel value, 

the MB time consumed for calculating an 8*8 block is the same in all three cases. Since 

this benchmark is highly vectorizable, the speedup of the VP over the MB is huge. 

Obviously, it increases even further via compiler optimization. 

 

Table 5.4 Performance Comparison for RGB2YIQ with Various VLs in the Single Host 

System. The Time is for Calculating a Block of 8*8 Pixels in the YIQ Color Space. (a) 

Without Compiler Optimization and (b) with Compiler Optimization. 

Vector 

Length 

VP 

Execution 

Time(us) 

(VP) 

Scalar 

Execution 

Time(us) 

(MB) 

VL=16 63.25 10932 

VL=32 31.66 10932 

VL=64 16.76 10932 
(a) 

Vector 

Length 

VP 

Execution 

Time(us) 

(VP) 

Scalar 

Execution 

Time(us) 

(MB) 

VL=16 27.58 10572 

VL=32 13.87 10572 

VL=64 6.99 10572 
(b) 

 

To further underscore the need of the VP coprocessor, Figure 5.1.a shows its 

speedup compared to MB execution for matrix multiplication using Algorithm 3. The VP 

achieves a x400 speedup with VL=64 and compiler optimization. A main performance 

bottleneck in this testbench is the low rate of issuing vector instructions to the VP. 

Therefore, without optimization the VP is not fully utilized since the time between issuing 
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vector instructions to the VP is larger than the time needed for a vector instruction to be 

implemented. Using inline assembly-language macros for vector instructions rather than 

HLL function calls, this difference is reduced as much as possible. There are also two other 

approaches needed to be followed in the effort to minimize VP idle times. First, increasing 

the VL of the application algorithm will keep the VP busy for a longer time, hopefully till 

the next vector instruction is issued.   

The second approach is to increase the vector instruction issue rate for the VP by 

applying code optimization. Both of these methods result in increasing the VP utilization 

when it is exclusively attached to a scalar core in the single host system. As it will be seen 

in the multiple hosts system result, VP utilization could also be increased through VP 

virtualization and share VP resources between different threads.  Figure 5.1.b shows the 

speedup of the VP+MB system versus the MB for matrix multiplication under Algorithm 

2. Two main differences can be observed between the two parts of Figure 5.1. The rate of 

speedup improvement for Algorithm 3 with an increasing VL is much higher, which 

implies a higher VP utilization. Also, the effect of compiler optimization is lower for 

Algorithm 2 because only part of the application is run on the VP. 

Figure 5.2 depicts the speedup for FIR filtering under various filter tap sizes and 

VLs. Figure 5.2.a presents the speedup of the VP versus the MB for Algorithm 2. For 64 

taps with compiler optimization, the speedup is higher than 350 and increases drastically 

when the VL increases due to higher vectorization ratios. Initializing the private memories 

of the four lanes helps this process. 
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Figure 5.1 Speedup for matrix multiplication with and without optimization. (a) VP vs. 

MB for Algorithm 3 and (b) VP+MB vs. MB for Algorithm 2. 

 

 

Figure 5.2 VP vs. MB speedup for FIR filtering with and without optimization. (a) 

Algorithm 2 and (b) Algorithm 1. 

 

Figure 5.2.b shows the speedup for Algorithm 1. Without optimization, the speedup 

does not keep up with VL increases since this algorithm has a lower vectorization ratio; 

the MB is involved in each iteration that produces a new element of the result. However, 

compiler optimization increases the portion of the algorithm that runs on the VP which, in 

turn, improves acceleration. 
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Figure 5.3.a and b show the FFT speedup for various VLs, with and without the 

distributed data shuffle engines, respectively. The VP with the data shuffle engines and 

code optimization achieves a 110-fold speedup over the MB for the 64-point FFT. For 

Figure 5.3.b, the data shuffle instructions are implemented by the MB instead of the VP. 

Without the shuffle engine and without code optimization, the speedup degrades slightly 

with an increasing VL. Since data shuffling is the most time consuming process in each 

stage of FFT, performing it on the MB with an increased VL results in slight performance  

 

Figure 5.3 Speedup for FFT. (a) VP with the data shuffle engine vs. MB for Algorithm 2 

and (b) VP+MB without the shuffle engine vs. MB for Algorithm 1. 

 

degradation; however, compiler optimization can compensate by increasing the portion run 

on the VP.  

Figure 5.4 shows the speedup for the highly vectorizable RGB2YIQ benchmark. 

The VP achieves an impressive 1500-fold speedup over the MB for VL=64 and with 

compiler optimization. This benchmark approaches the peak performance of the VP since 

most of the time the VP is fully utilized without waiting for a new vector instruction to be 

issued. 
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For the sake of comprehensive analysis, Figure 5.5  shows the performance/area 

ratio of the VP over MB execution of the benchmarks in the single host system for three 

VL alternatives, assuming maximum compiler optimization. The benchmarking shows that 

the VP supports scalability since the ratio generally improves with increases in the VL. 

Actually, the improvement is faster for a reduced number of data dependencies (i.e., 

RGB2YIQ), and slower or negligible for a very large number of data dependencies (i.e., 

FFT).   

 

Figure 5.4 VP vs. MB speedup for RGB2YIQ in single host system. 

 

5.1.2 Performance Exploration in the Single Host System 

For a fair performance comparison with earlier works involving VP designs, it is needed 

to count the execution time of applications in number of clock cycles (e.g., since different 

target FPGAs used in prototyping support different clock frequencies, etc.). The main 

bottleneck in benchmarking is the MB core that adds delays to the process of issuing vector 

instructions to the VP; this decreases the utilization of the VP due to a lesser average 

density of vector instructions in each lane’s ALU and LDST FIFOs. Compiler optimization 

may ease this problem depending on the application, as discussed in Section 5.1.1. For fair 
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VP comparisons independent of compilers and scalar cores, maximum VP performance 

should be targeted. Therefore, all the vector instructions in this section are placed in 

advance in the VC queue instead of being issued by the MB as encountered in the 

application code. Also, all private memories are initialized with the needed application 

data. Thus, the clock cycles really taken by the applications on the VP are counted. 

 

Figure 5.5 Performance/Area improvement for the VP over the MB in single host 

system. 

 

To find the minimum number of clock cycles for executing each benchmark, its 

total number of instructions is calculated. For accuracy, the VP behavior in the case of 

hazard detection is taken into consideration. Whenever a data hazard is detected by the VC, 

issuing instructions to the FIFO is stalled and demand for a new vector instruction (VI) is 

delayed until the corresponding instruction is committed and the pipeline is back to normal 

operation. Another important issue is the capability of overlapping a data shuffle 

instruction with subsequent instructions as long as no data hazard is present. 

Table 5.5 to Table 5.8 show performance results for executing each benchmark on 

the VP. “Practical” times are obtained from the already presented results by excluding the 
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times needed to transfer data between the global and private memories. “Ideal” times are 

obtained by removing any MB delay in issuing instructions to the VP. “Ideal without 

private memories” times are similar to ideal but, instead of having a private memory in 

each lane, each lane has access to all memory banks in the vector memory using a crossbar 

that connects lanes to memories (similar to the architecture [Beldianu et al., 2013]). Under 

the worst case scenario for vector load and store instructions, only one element per clock 

cycle can be transferred between the lanes and the vector memory. This, however, is the 

best case for the VP architecture due to the presence of the private memories that can 

transfer four elements per clock cycle.  

 

Table 5.5 Matrix Multiplication Performance Comparison for Various VLs in the Single 

Host System. 

 

Vector 

Length 

 

TI* 

 

EFPI** 

 

#of 

cycles 

Stall 

Rate 

(%) 

#of 

cycles 

per 

VI*** 

Average 

Utilization 

(%) 

LDST ALU 

VL=16 784 10.44 6893 0 8.79 15.8 29.7  

Ideal VL=32 3104 21.11 40461 0 13.05 20.9 42.2 

VL=64 12352 42.44 252441 0 20.48 26.3 51.7 

VL=16 784 10.44 10157 32 12.95 10.7 20.2 Ideal without 

private 

memory 

VL=32 3104 21.11 64845 35 20.89 13.1 26.3 

VL=64 12352 42.44 455309 44 36.86 14.58 28.6 

VL=16 784 10.44 19200 0 24.48 5.7 11.3  

Practical VL=32 3104 21.11 73216 0 23.58 11.3 22.3 

VL=64 12352 42.44 280166 0 22.68 23.7 46.6 

*TI=Total Instructions                                  ***VI: Vector Instruction 

**EFPI=Effective FLOPs Per Instruction 

 

“Total instructions” represents the number of vector instructions issued by the MB, 

considering all loop iterations. The effective FLOPS per instruction are obtained by 

dividing the total number of ALU floating-point operations in the benchmark by the total 

number of instructions. The average number of clock cycles needed per instruction is then 
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Table 5.6 FIR Performance Comparison for Various VLs in the Single Host System. 

 

Vector 

Length 

 

TI 

 

EFPI 

 

#of 

cycles 

Stall 

Rate 

(%) 

#of 

cycles 

per 

VI 

Average 

Utilization (%) 

LDST ALU 

VL=16 100 10.24 463 0 4.63 29.3 57.1  

Ideal VL=32 196 20.89 1419 0 7.23 37.1 73.2 

VL=64 388 42.22 5341 0 13.76 39.1 77.3 

VL=16 100 10.24 931 50 9.31 14.6 28.4 Ideal without 

private 

memory 

VL=32 196 20.89 3003 52 15.32 17.5 34.6 

VL=64 388 42.22 11691 54 30.13 17.9 35.3 

VL=16 100 10.24 1450 0 14.5 9.3 18.2  

Practical VL=32 196 20.89 2850 0 14.54 18.53 36.5 

VL=64 388 42.22 5750 0 14.82 36.1 71.8 

 

Table 5.7 FFT Performance Comparison for Various VLs in the Single Host System. 

 

Vector 

Length 

 

TI 

 

EFPI 

 

#of 

cycles 

Stall 

Rate 

(%) 

#of 

cycles 

per VI 

Average 

Utilization (%) 

LDST ALU SHF 

VL=16 64 10 396 0 6.18 16 40.4 24  

Ideal VL=32 80 20 956 0 11.95 16.7 41.7 25.1 

VL=64 96 40 2280 0 23.75 16.8 42 25.2 

VL=16 64 10 672 40 10.5 9.4 23.8 14.1 Ideal without 

private 

memory 

VL=32 80 20 1611 40 20.14 9.9 24.7 14.9 

VL=64 96 40 3820 40 39.79 10 25.1 15 

VL=16 64 10 1300 0 20.31 4.7 12.3 7.4  

Practical VL=32 80 20 1550 0 19.37 10.3 26 15.4 

VL=64 96 40 2500 0 26.04 15.4 38.4 23.1 

 

Table 5.8 RGB2YIQ Performance Comparison for Various VLs in the Single Host 

System. 

 

Vector 

Length 

 

TI 

 

EFPI 

 

#of 

cycles 

Stall 

Rate 

(%) 

#of 

cycles 

per VI 

Average 

Utilization 

(%) 

LDST ALU 

VL=16 336 11.42 1437 0 4.27 26.7 66.8  

Ideal VL=32 672 22.85 5165 0 7.68 29.7 74.3 

VL=64 1344 45.71 19533 0 14.53 31.4 78.6 

VL=16 336 11.42 2493 42 7.42 15.4 38.5 Ideal without 

private 

memory 

VL=32 672 22.85 9581 46 14.25 16 40 

VL=64 1344 45.71 37581 48 27.96 16.3 42.9 

VL=16 336 11.42 5500 0 16.36 6.9 17.5  

Practical VL=32 672 22.85 11100 0 16.51 13.8 34.6 

VL=64 1344 45.71 22400 0 16.66 27.4 68.6 
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calculated for each benchmark. The LDST average utilization of a lane shows the number 

of vector elements sent to or received from the vector memory in 100 clock cycles. The 

ALU average utilization represents the number of elements produced by a lane’s ALU in 

100 clock cycles.  The SHF utilization in Table 5.7 for the FFT shows the number of 

elements transferred by the shuffle engines in 100 clock cycles. It can be concluded that 

increasing the VL brings the practical time closer to the ideal one due to higher VP 

utilization and less idling between instructions issued by the MB. 

5.1.3  Comparison with Prior Work 

The presented 4-lane VP results are compared with those in [Beldianu et al., 2013] that 

assumed a VIRAM-like VP (like us) with eight lanes. A crossbar in the latter design 

connects the lanes to the global vector memory, and is also used to realize data shuffle and 

indexed memory instructions. Due to the lack of private memories, there is a high chance 

of stalls for memory instructions. They used a Xilinx block memory IP (BRAM) for the 

VRF and   their total VRF capacity was 2 Kbytes/lane (ours is   1 Kbyte/lane). Since they 

used Xilinx IPs to build lane ALUs, many embedded DSP blocks were consumed. The Fast 

Simplex Link (FSL) point-to-point interface was employed to connect the VP with the MB. 

Each of the two MBs in their design uses its own VC and FSL slave and master interfaces 

to access the VP.  To allow the two MB cores to share the VP, three scheduling policies 

were implemented for their scheduler. In coarse-grain temporal sharing (CTS), the two 

cores time share the entire VP. In fine-grain temporal sharing (FTS), both cores compete 

simultaneously for all the VP resources. This is equivalent to SMT with respect to VP 

usage and the two core threads use different vector registers. Vector lane sharing (VLS), 

finally, assigns distinct lanes to each MB upon demand, as decided by the VC. 
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As per Table 5.9, the obtained speedup for the FFT benchmark is smaller than that 

for FIR filtering and matrix multiplication since the former requires heavy data shuffling. 

However, the speedups are always higher than those in [Beldianu et al., 2013]. This 

observation becomes even more impressive considering that proposed VP platform here 

has four, instead of eight, lanes and one core, instead of two. For the FIR benchmark, the 

speedups of the VP and SODA is compared in reference to their individual host processors 

(i.e., MB and Alpha, respectively). SODA achieves speedups of up to 19 and 26 for 33- 

and 65-tap filters, respectively. The developed VP accomplishes much higher speedups of 

150 and 350 for the 32- and 64-tap filters, respectively.  

Also, there exist comparative results of FPGA and ASIC realizations involving 

various designs that make it possible to estimate the relative speedup and improved power 

dissipation, within an order of magnitude, when an FPGA-based design is moved into the 

ASIC realm (e.g.,[Beldianu et al., 2015][Kuon et al., 2007][Suresh at al., 2013]). However, 

an ASIC implementation of our design, a rather hectic and lengthy process, will be a future 

research objective.  

 

Table 5.9 Speedups of the VP in Single Host System and the Design in [Beldianu et al., 

2013] vs. the MB for VL=32. 

Architecture Matrix 

Multiplication 

FIR FFT 

CTS [Beldianu et al., 2013], 

8 lanes, 1 core 

12.97 10.93 49.02 

FTS  [Beldianu et al., 2013] 

8 lanes, 2 cores 

25.89 21.83 86.76 

VP in single host system,  

4 lanes, 1 core 

193.5 150.94 88.98 

 



 

71 

 Multiple Hosts System Performance Analysis 

All the simulation results presented in this section are based on a working frequency of 

100MHz for all the MBs and the VP. 

5.2.1 Simulation Results  

In this section only, it is assumed that the VP runs simultaneously each time up to four 

threads from the same benchmark. The only exception is RGB2YIQ with VL=64 since it 

requires seven registers per thread while the VP has 16 registers of VL=64; it is assumed 

up to two threads for RGB2YIQ. 58 simulations are done for various VLs and degrees of 

multithreading. For clarity, the times for task request and register management are 

excluded from our measurements. Since the threads start execution at the same time and 

the SPS’s VP interface involves a round-robin arbitrator, all threads finish execution at the 

same time. Table 5.10 to Table 5.14 show the execution times and VP utilization of these 

benchmarks for various numbers of VL and active cores (i.e., threads). The execution times 

are for the input size described in Section 4.2.2.  

In this section, all simultaneous threads of the same application are homogeneous, 

but independent, and their flow control codes are executed on different MBs. All threads 

operate on different input data sets to increase the throughput. 

In Chapter 6, the VP’s simultaneous execution of heterogeneous threads with 

different VLs, coming from different MBs, and the implementation of different algorithms 

will be discussed. The tables show that the VP utilization with a single thread is very low 

for all benchmarks when VL=16; as more threads/cores are involved, the utilization 

improves substantially. As the VL increases, the utilization of a thread increases up to a 

saturation point. As explained earlier (Section 3.1.2), there is a high impedance state of one  
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Table 5.10 Matrix Multiplication Performance in the Multiple Hosts System (Input and 

Output Matrix Size: VL*VL, 1 Iteration per Core). 

VL 
# of 

cores 

LDST 

NWT 

ALU 

FLOP 

Execution 

Time (μs) 

Million 

FLOP/S 

% LDST 

Utilization 

% ALU 

Utilization 
Speedup 

16 

1 4608 8192 241 53.11 4.78 8.49 84.97 

2 9216 16384 241 106.22 9.56 16.99 169.95 

3 13824 24576 241 159.33 14.34 25.49 254.93 

4 18432 32768 241 212.44 19.12 33.99 339.91 

32 

1 34816 65536 942 106.53 9.23 17.39 173.38 

2 69632 131072 942 213.06 18.47 34.78 346.76 

3 104448 196608 942 319.59 27.72 52.17 520.19 

4 139264 262144 942 426.12 36.96 69.57 693.53 

64 

1 270336 524288 3819 208.07 17.69 34.32 337.8 

2 530672 1048576 3819 416.14 35.39 68.64 675.69 

3 811008 1572864 4221 564.76 48.03 93.15 917.01 

4 1081344 2097152 5625 565.06 48.05 93.20 917.5 

NWT: Number of Word Transactions 

Table 5.11 FIR Performance in the Multiple Hosts System (Input Vector Size: VL, 1 

Iteration per Core). 

VL 
# of 

cores 

LDST 

NWT 

ALU 

FLOP 

Execution 

Time (μs) 

Million 

FLOP/S 

% LDST 

Utilization 

% ALU 

Utilization 
Speedup 

16 

1 576 1024 27 59.25 5.3 9.4 78.8 

2 1152 2048 27 118.51 10.6 18.9 157.4 

3 1728 3072 27 177.77 16 28.4 236.1 

4 2304 4096 27 237.04 21.3 37.9 314.8 

32 

1 2176 4096 51 122.98 10.6 20 153.07 

2 4352 8192 51 245.96 21.3 40 306.15 

3 6528 12288 51 368.94 32 60 459.23 

4 8704 16384 51 491.92 42.6 80 612.31 

64 

1 8448 16384 97 256 21.77 42.22 354.13 

2 16896 32768 97 512 43.54 84.44 708.26 

3 25344 48152 133 552.6 47.63 90.0 774.83 

4 33792 65536 177 561.17 47.72 92.56 776.29 

Table 5.12 VDP Performance in the Multiple Hosts System (Input Vector Size :VL, 1 

Iteration per Core). 

VL 
# of 

cores 

LDST 

NWT 

ALU 

FLOP 

Execution 

Time (μs) 

Million 

FLOP/S 

% LDST 

Utilization 

% ALU 

Utilization 
Speedup 

16 

1 112 64 2.4 73.33 11.6 6.6 4.88 

2 224 128 2.4 146.66 23.2 13.3 9.77 

3 336 192 2.4 220 34.8 20 14.65 

4 448 256 2.4 293.33 46.4 26.6 19.54 

32 

1 288 160 3 149.33 24 13.33 8.1 

2 576 320 3 298.66 48 26.6 16.2 

3 864 480 3 448 72 40 24.3 

4 1152 640 3.4 527.05 84.7 47.05 28.58 

64 

1 704 448 3.6 320 48.8 31.1 13.05 

2 1408 896 4 576 88 56 23.5 

3 2112 1344 6 576 88 56 23.5 

4 2816 1792 8 576 88 56 23.5 
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Table 5.13 DCT Performance in the Multiple Hosts System (Input: VL/8 Blocks of Size 

8*8, 1 Iteration per Core). 

VL 
# of 

cores 

LDST 

NWT 

ALU 

FLOP 

Execution 

Time (μs) 

Million 

FLOP/S 

% LDST 

Utilization 

% ALU 

Utilization 
Speedup 

16 

1 4224 2048 87 72.09 12.13 5.96 7.98 

2 8448 4096 87 144.18 24.27 11.92 15.97 

3 12672 6144 87 216.27 36.41 17.89 23.96 

4 16896 8192 87 23.85 48.55 23.85 31.95 

32 

1 8448 4096 87 144.18 24.24 11.57 19.2 

2 16896 8192 87 288.36 48.55 23.51 38.4 

3 25344 12288 87 432.55 72.82 32.25 57.65 

4 33792 16384 94 533.78 89 43.15 71.14 

64 

1 16896 8192 87 288.36 48.55 23.53 48.55 

2 33792 16384 109 460.33 77.5 37.57 77.50 

3 50688 24576 132 557.51 93.86 45.51 93.86 

4 67584 32768 176 557.51 93.86 45.51 93.86 

 

clock cycle between issuing successive instructions; this state may decrease the maximum 

utilization but eases the verification of functional behavior. Due to this effect, the nominal 

maximum utilization that can be achieved for VL=16, 32, and 64, is calculated as 80%, 

88.88% and 94.11%, respectively. Before saturation, a benchmark’s performance is 

actually upper bounded by scalar core execution for the serial part of the vector application; 

thus, a VP shared by many scalar cores is recommended in this case. The total execution  

 

Table 5.14 RGB2YIQ Performance in the Multiple Hosts System (Input: 1024 Pixels, 1 

Iteration per Core). 

VL 
# of 

cores 

LDST 

NWT 

ALU 

FLOP 

Execution 

Time (μs) 

Million 

FLOP/S 

% LDST 

Utilization 

% ALU 

Utilization 
Speedup 

16 

1 6144 15360 244.2 88.05 6.29 15.72 358.13 

2 12288 30720 244.2 176.11 12.58 31.45 716.26 

3 18432 46080 244.2 264.17 18.87 41.74 1074.39 

4 24576 61440 244.2 352.23 25.16 62.9 1432.53 

32 

1 6144 15360 123.6 173.98 12.43 31.06 707.57 

2 12288 30720 123.7 347.68 24.83 62.08 1415.14 

3 18432 46080 155.8 414.06 29.57 73.49 1690.51 

4 24576 61440 204.1 421.44 30.10 75.25 1713.98 

64 

1 6144 15360 63.74 337.37 24.09 60.24 1372.07 

2 12288 30720 96.7 444.57 31.76 79.43 1808.8 

3 18432 46080 NA NA NA NA NA 

4 24576 61440 NA NA NA NA NA 
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time with multiple threads may be the same as the benchmark’s native duration (the 

execution time when the VP is exclusively occupied by one thread of the benchmark) if  

each thread has a rather low utilization. When the total VP utilization with many 

simultaneous threads exceeds the VP’s nominal maximum, all threads’ execution will slow 

down proportionally due to resource competition. It is also important to realize that when 

either the ALU or LDST unit saturates, the other unit’s utilization may not increase further 

since ALU and LDST operations may depend on each other. Among the five basic 

benchmarks provided for multiple hosts system, it can be seen that MM, FIR and 

RGB2YIQ have higher ALU utilization that leads to VP saturation. VDP and DCT have 

higher LDST utilization that may lead to LDST saturation that limits further throughput 

increases. Upon VP saturation, the slowdown amount is determined by the higher of the 

ALU and LDST utilizations.  

Figure 5.6 shows the maximum ALU and LDST utilizations for various 

benchmarks, and the VL and core numbers. Running the RGB2YIQ benchmark with 

VL=64 on more than two cores is impractical since each benchmark instance needs seven 

vector registers whereas our VP contains 16 vector registers of VL=64. According to 

Table 5.14, the performance of RGB2YIQ with VL=64 saturates for two cores although 

the ALU utilization is not close to the nominal maximum of 94%. This can happen when 

threads produce high VP utilization and many data hazards, causing frequent VC stalls. For 

each benchmark, sequential C code with identical functionality and behavior was also run 

on a 100 MHz MB. The last column in the tables is the speedup of the VP versus the scalar 

core. 
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Figure 5.6 Maximum utilization of the LDST and ALU units.   

 

5.2.2 Comparison with the Single Host System and Prior Works 

To perform a fair performance comparison with the single host system and other previously 

published works that focused on VP sharing for multicores, a common reference point is 

chosen. Moreover, the chosen benchmark scenarios are similar (including the same values 

of VL). Since VP speedups against their host processors were listed in all these prior works, 

the same is applied for the multi host system.  Table 5.15 shows comparisons with 

[Beldianu et al., 2013] that implemented an 8-lane VP shared by two scalar processors 

using the CTS, FTS, and VLS policies. FTS has the best performance among these policies. 

As per Section 2.2, FTS is similar to the VP sharing technique in the multi host system. 

The single host architecture [Rooholamin et al., 2015] uses a VP architecture that has many 
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similarities to the one applied in the multi host system. It utilizes a hardware scheduler and 

register renaming block to support VP sharing for two threads with identical VL; one host 

issues threads. It relies on compiler optimizations to increase the issue rate of vector 

instructions. The table shows that the proposed VP sharing technique always yields by far 

the best speedup compared to the single host system and others which have double the 

lanes. 

 

Table 5.15 Speedup Comparison With the Single Host and Previously Shared VP . 

SYSTEM   \   BENCHMARK MM FIR RGB2YIQ VL 

Single host system, 4 lanes,1 core 92.66 73.32 383.32 
16 

Multiple hosts system, 4 lanes, 4 cores 339.91 314.8 1432.53 

 [Beldianu et al.,  2013], CTS,  8 lanes, 1 core 12.97 10.93 NA 

32 
  [Beldianu et al.,  2013], FTS, 8 lanes, 2 cores 25.89 21.83 NA 

Single host system, 4 lanes,1 core 193.06 150.94 762.22 

Multiple hosts system, 4 lanes, 4 cores 693.53 612.31 1713.98 

Single host system, 4 lanes,1 core 403.50 360.12 1512.44 
64 

Multiple hosts system, 4 lanes, 4 cores 917.50 776.29 1808.80 
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CHAPTER 6  

SCHEDULING VECTOR THREADS 

 Scheduling Algorithm Implemented on the System Core 

This chapter focuses on throughput-maximizing thread scheduling for a multi-host system. 

First, each application is profiled to determine its ALU and LDST utilizations, as well as 

its native duration based on the results in Section 5.2.1 (i.e., its execution time with 

exclusive VP access). The combinations of simultaneously executing benchmarks are 

evaluated from the set of 15 benchmarks (five benchmarks with three VL alternatives each) 

for: i) A closed system with a fixed number of threads in Section 6.2. ii) An open system 

with randomly arriving threads in Section 6.3.  

As observed in Section 5.2.1, when the ALU and LDST utilizations are both far 

below 90%, the performance is upper bounded by the speed of the ACs that issue vector 

instructions, and therefore multiple threads could share the VP with only negligible 

increase in the per-thread execution time. Due to the one clock cycle delay between 

consecutive instructions (Section 3.1.2), the VP’s saturation threshold is not 100% but a 

number from 80% to 94% depending on the active threads’ VLs. A saturation threshold of 

90% is assumed to design a scheduling algorithm that keeps the VP highly busy either with 

zero or minimum saturation.  

In a closed system, all threads in a queue at a given time are scheduled. No new 

threads are added into the queue before all threads in the current queue have finished 

execution. The scheduler algorithm flowchart is given in Figure 6.1. Once a thread is 

picked by the scheduler, it keeps executing until the end, at which time its VP resources 

are released to any pending threads. Pending threads are arranged in descending order of 
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their native duration. The ALU and LDST utilizations as well as the VRF usage of pending 

threads are provided to the scheduler as input. The scheduler keeps picking pending threads 

for execution until the VP has four threads, or no other pending thread can be 

accommodated due to unavailable VRF resources. The scheduler searches down the queue 

 

 

Figure 6.1 Scheduler flowchart. 
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until a fitting thread is found which does not lead to saturation. If no such thread is found, 

the thread update mechanism ensures that the scheduler searches down the queue only once 

to find a fitting thread that results in minimum saturation. The scheduler always starts 

investigation with the first pending thread of the longest native duration. If the available 

VRF resources are sufficient, utilization saturation check is performed to see whether this 

thread will lead to an ALU or LDST overall utilization higher than 90%. If no saturation 

can occur, this thread is scheduled. Otherwise, it becomes the “potential thread” for 

scheduling.  When another thread in the queue is found to lead to utilization saturation, it 

is compared against the currently potential thread. If the former thread can yield smaller 

ALU and LDST overall utilizations than the currently potential thread, then the former will 

replace the latter as the potential thread for scheduling. When the entire queue has been 

searched and all pending threads are either not fitting or lead to saturation, the currently 

potential thread is chosen for immediate scheduling.  

 Queues of Fixed Length 

The scheduler is tested with thread queue lengths of 8 and 16 using each time six different 

thread combinations. Threads were chosen with equal probability from the list of 15 

benchmarks of Section 4.2.2. The input data size for each thread was randomly picked, 

resulting in different native durations for the same benchmark across different thread 

combinations. The average result is shown in Figure 6.2. To compare with the optimal 

solution for the six scenarios with a queue length of eight, the best possible execution time 

is identified via exhaustive search (i.e., by calculating the total execution time of all 

possible scheduling orders using a C program). Compared to the optimal case, which 

cannot be implemented in practice at run time, the execution time is only 14.7% slower on 
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the average and optimality is achieved in one of the six scenarios. In the case of a queue 

length of eight, the scheduling algorithm results in an average speedup of 2.83 compared 

to the case without VP sharing; when the queue length increases to 16, the average speedup 

increases to 3.33. As the length of the thread queue increases, the speedup further increases 

to become close to four, which is ideal (since it matches the maximum number of threads 

that can share the VP). In this dissertation, only one of the six scenarios is chosen for each 

queue length to generate a table with detailed simulation information. Table 6.1 and 

Table 6.2 show details for all threads, including the critical times when threads are chosen 

for scheduling or complete execution. 

 

 

Figure 6.2 Execution time for thread queues of fixed length. (a) Length = 8. (b) Length 

=16.   
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Table 6.1 Detailed Results for a Schedule with Pending Thread Queue Length of 8. 

Task 

ID 

Application VL Native 

Duration 

w/o VP 

Sharing 

(us) 

ALU 

Utilization 

(%) 

LDST 

Utilization 

(%) 

Issue 

Time 

(us) 

Commit 

Time 

(us) 

Actual 

Duration 

(us) 

0 MM 16 4820 9 5 11 4905 4894 

1 VDP 64 3600 31 49 30 4348 4318 

2 DCT 64 2610 24 49 3075 6083 3008 

3 FIR  16 2025 9 5 44 2109 2065 

4 MM 32 1884 17 9 60 1967 1907 

5 RGB2YIQ 64 1268 60 24 2680 4655 1975 

6 VDP 16 960 7 12 1994 3048 1054 

7 FIR 32 510 20 11 2132 2642 510 

Practical issue order based on static scheduling: 0,1,3,4,6,7,5,2 

Best issue order based on simulation of all permutations: 0,3,6,4,1,2,5,7 

Actual execution time = 6.083ms 

Total native duration w/o VP sharing= 17.677ms 

Speedup =2.91 

Optimal execution time =5.215ms 

 

 

Table 6.2 Detailed Results for a Schedule with Pending Thread Queue Length of 16. 

Task 

ID 

Application VL Native 

Duration 

w/o VP 

Sharing  

(us) 

ALU 

Utilization 

(%) 

LDST 

Utilization 

(%) 

Issue 

Time 

(us) 

Commit 

Time 

(us) 

Actual 

Duration 

(us) 

0 MM 64 3819 34 18 11 3829 3818 

1 MM 32 2826 17 9 24 2873 2849 

2 RGB2YIQ 32 1483.2 31 12 54 1705 1651 

3 MM 16 964 8 5 1111 2080 969 

4 DCT 32 860 12 24 1740 2606 866 

5 DCT 64 783 24 49 2632 3460 828 

6 DCT 16 693 6 12 78 771 693 

7 FIR 64 679 42 22 3533 4338 805 

8 FIR 16 675 9 5 2101 2789 688 

9 RGB2YIQ 64 634 60 24 4030 4815 785 

10 VDP 32 630 13 24 3511 4357 846 

11 FIR 32 561 20 11 2907 3468 561 

12 RGB2YIQ 16 488.4 16 6 2837 3470 633 

13 VDP 64 356.4 31 49 3863 4397 534 

14 DCT 32 348 12 24 3559 3988 429 

15 VDP 16 240 7 12 820 1070 250 

Practical issue order based on static scheduling: 0,1,2,6,15,3,4,8,5,12,11,10,7,14,13,9 

Actual execution time = 4.815ms 

Total native duration w/o VP sharing= 16.053ms 

Speedup =3.33 
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 Open System with Randomly Arriving Threads 

To simulate an open system with randomly arriving tasks, all tasks arriving within 10ms 

time slices are scheduled. A fixed input size is chosen for each benchmark to create 15 

distinct tasks. The characteristics of each task are listed in Table 6.3. Dynamic energy 

measurement is the focus of Chapter 7. The average task native duration is 0.182ms. Task 

arrival follows the Poisson distribution with a rate of λ tasks arriving per time slice. Tasks 

arriving in a time slice form a queue which is scheduled for execution in the next time slice. 

The evaluation is for λ=0.5, 0.75 and 1; for a given λ, queues for six consecutive time slices 

are generated and average values for the six schedules is calculated. Details of task arrivals 

and execution times are shown in Table 6.4 to Table 6.6. The average of the total execution 

time for all threads scheduled in a time slice is shown in Figure 6.3. The speedup compared 

to the VP without sharing is 2.59, 3.15 and 3.22 for λ=0.5, 0.75 and 1, respectively. The 

speedups concur with the results obtained earlier for fixed thread queue lengths where the 

speedup increased with the thread population. Without VP sharing and scheduling, even 

for the lowest thread arrival rate the queue increases faster than the system can process. 

With proposed scheduling, the VP is active only 80% of the time slice for the highest λ= 

1. The rest of the time the VP can be power gated to reduce the static energy (Section 7.2.2).  
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Table 6.3 Characteristics of Chosen Tasks for an Open System. 

Task  

ID 
Application_VL 

Native 

Duration 

(μs) 

% ALU 

Utilization  

% LDST 

Utilization  

Vector 

Registers 

Dynamic 

Energy 

(μJ) 

0 RGB2YIQ_16 4884 16 6 7 766 

1 MM_64 3819 34 18 2 792.3 

2 MM_32 2826 17 9 2 404.1 

3 RGB2YIQ_32 2472 31 12 7 535.8 

4 FIR_64 1940 42 22 2 577.2 

5 DCT_64 1740 24 49 3 417.8 

6 DCT_32 1740 12 24 3 288.2 

7 DCT_16 1740 6 12 3 207.8 

8 MM_16 1446 8 5 2 152.34 

9 RGB2YIQ_64 1268 60 24 7 354.4 

10 FIR_32 1020 20 11 2 255 

11 VDP_64 720 31 49 4 192.8 

12 VDP_32 600 13 24 4 123.6 

13 FIR_16 540 9 5 2 85.8 

14 VDP_16 480 7 12 4 70.8 
 

 

 

Table 6.4 Detailed Task Arrivals and Execution Time for λ=0.5. 

Task 

ID 
Application_VL 

Number of Task Arrivals 
Average 

Slice1 Slice2 Slice3 Slice4 Slice5 Slice6 

0 RGB2YIQ_16 1 1 1 1 0 0 .66 

1 MM_64 1 0 0 0 0 2 0.5 

2 MM_32 0 0 0 0 0 0 0 

3 RGB2YIQ_32 2 0 0 0 0 0 .33 

4 FIR_64 1 0 1 1 0 0 0.5 

5 DCT_64 0 1 0 0 1 1 0.5 

6 DCT_32 0 1 0 0 0 0 0.16 

7 DCT_16 0 0 0 1 0 1 0.33 

8 MM_16 3 2 1 0 0 1 1.16 

9 RGB2YIQ_64 2 0 0 0 0 1 0.5 

10 FIR_32 0 0 0 1 0 0 0.16 

11 VDP_64 1 0 1 0 1 0 0.5 

12 VDP_32 2 1 1 1 2 0 1.16 

13 FIR_16 0 1 2 2 1 2 1.33 

14 VDP_16 2 0 1 0 0 0 0.5 

Total Native Duration (ms) 25.3 12.39 11.15 11.26 4.2 14.9 13.21 

Actual Duration (ms) 8.22 4.9 4.9 4.9 1.8 4.7 4.9 

Speedup 3.08 2.52 2.26 2.28 2.26 3.12 2.59 
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Table 6.5 Detailed Task Arrivals and Execution Time for λ=0.75. 

Task ID Application_VL 
Number of Task Arrivals 

Average 
Slice1 Slice2 Slice3 Slice4 Slice5 Slice6 

0 RGB2YIQ_16 0 0 2 0 0 0 0.33 

1 MM_64 0 1 0 2 0 0 0.5 

2 MM_32 2 0 0 0 1 0 0.5 

3 RGB2YIQ_32 1 2 0 1 0 1 0.83 

4 FIR_64 1 1 1 0 1 1 0.83 

5 DCT_64 1 1 1 2 0 1 1 

6 DCT_32 0 0 0 0 0 1 0.16 

7 DCT_16 1 2 1 1 0 0 0.83 

8 MM_16 2 3 1 1 0 2 1.5 

9 RGB2YIQ_64 1 0 2 1 1 0 0.83 

10 FIR_32 1 0 1 0 1 0 0.5 

11 VDP_64 3 2 0 0 1 1 1.16 

12 VDP_32 0 2 1 0 0 0 0.5 

13 FIR_16 1 0 1 4 1 0 1.16 

14 VDP_16 0 1 0 0 1 0 0.33 

Total Native Duration (ms) 21.4 23.38 21.33 20.2 8.79 11.5 17.77 

Actual Duration (ms) 6.59 6.75 6.66 6.62 3.05 3.75 5.57 

Speedup 3.25 3.46 3.20 3.05 2.88 3.06 3.15 

 

 

Table 6.6 Detailed Task Arrivals and Execution Time for λ=1. 

Task 

ID 
Application_VL 

Number of Task Arrivals 
Average 

Slice1 Slice2 Slice3 Slice4 Slice5 Slice6 

0 RGB2YIQ_16 2 1 1 0 0 1 0.83 

1 MM_64 1 2 2 2 2 0 1.5 

2 MM_32 1 0 0 1 0 1 0.5 

3 RGB2YIQ_32 0 2 3 1 1 0 1.16 

4 FIR_64 1 2 0 0 0 0 0.5 

5 DCT_64 2 0 1 0 1 0 0.66 

6 DCT_32 1 0 1 0 2 0 0.66 

7 DCT_16 0 2 2 0 2 1 1.16 

8 MM_16 2 3 3 1 0 0 1.5 

9 RGB2YIQ_64 1 1 0 1 1 2 1 

10 FIR_32 1 0 1 1 3 1 1.16 

11 VDP_64 0 2 1 0 1 0 0.66 

12 VDP_32 0 2 1 1 1 2 1.16 

13 FIR_16 0 1 2 1 2 2 1.33 

14 VDP_16 0 2 1 0 0 1 0.66 

Total Native Duration (ms) 28.75 34.57 35.14 17.81 25.53 15.76 26.26 

Actual Duration (ms) 8.44 10.29 9.81 6.17 7.83 5.53 8.01 

Speedup 3.4 3.36 3.58 2.88 3.26 2.84 3.23 
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Figure 6.3 The average of the total execution time for all threads scheduled in a time 

slice, with and without VP sharing, for λ= 0.5, 0.75 and 1. (Time slice: 10ms.) 
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CHAPTER 7  

POWER ANALYSIS AND ENERGY CONSUMPTION  

 

In this chapter, a comprehensive power analysis and energy consumption for the single 

host system is presented (Section 7.1). For this system, as mentioned in Section 4.1, all the 

results are based on a frequency of 50MHz for the VP and VM. Results are given for the 

benchmarks suit presented in Section 4.1.2 for the single host system. In Section 7.2, the 

power analysis is presented for the multi-host system which is based on a frequency of 

100MHz for the VP and VM running the benchmark suit of Section 4.2.2.  In this section 

it is also discussed how proper scheduling and a power gating technique can reduce 

significantly the energy consumption. 

 Power Analysis for the Single Host System 

For high accuracy in the estimation of the VP’s power and energy consumption, the Xilinx 

Power Analyzer (XPA) is employed which can determine the power when the activity rate 

for each signal and net in the hardware are specified. Power dissipation has two major 

components. Static power dissipation is due to current leaking through the transistors, even 

without any activities. Dynamic power depends on the design’s activities [Xilinx INC, 

2011]. 

Estimating the dynamic power of a design requires knowledge of the activity rates 

for all signals and nets in the hardware. This information is available in the Xilinx SAIF 

(Switching Activity Interchange Format) and VCD (Value Change Dump) files which are 

generated after performing timing simulation of the design. Timing simulation for each 

benchmark instantiation is performed using the ISE simulator (ISim) tool that generates an 
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SAIF file that shows the exact activity rates in the placed-and-routed (RAP) design. The 

design is first synthesized, translated and mapped to the target platform before RAP. The 

SAIF file is generated between desired intervals during simulation and includes 

information for the interval. The SAIF, NCD (Native Circuit Description) and PCF 

(Physical Constraint) files are imported into XPA to obtain accurate estimation of the 

power consumption before the configuration bit-stream is generated and downloaded into 

the FPGA. 

To find the maximum dynamic energy dissipation, maximum VP performance is 

targeted. To this end, we focus on the kernel of each benchmark that involves in the 

calculations the VP, private memories and shuffle engines. The respective vector 

instructions are then applied directly to the VP instead of being issued by the MB (i.e., 

there is no delay between consecutive VP instructions). For each kernel, first behavioral 

simulation is performed to obtain the interval for SAIF generation. The start point is the 

moment that the first vector instruction from the kernel enters the VC whereas the end point 

is when the last vector element is written back to the VRF or private memories. After 

determining the desired interval, the post-RAP simulation is performed for the benchmark 

and the SAIF file is generated for the desired interval. The device configuration and 

environmental parameters are set to their default values (e.g., the ambient temperature is 

500C and the airflow is 250LFM). The static power remains unchanged at 2.878W for all 

benchmarks since the same target device is used (FPGAs do not support power gating). 

For matrix multiplication with Algorithm 3, which is the most vectorizable in 

Table 5.1, the innermost loop that involves three instructions is considered as the target 

kernel. It is repeated VL times until one row of the product matrix is generated. This kernel 
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includes one load instruction, one vector-scalar multiplication and one vector-vector 

addition. Table 7.1 shows the measured values for this benchmark under this maximum 

power dissipation scenario that assumes no delay between issuing consecutive vector 

instructions. “Kernel duration” shows the length of the chosen interval. “Application 

duration” is obtained from the “ideal” numbers in Table 5.5. It can be seen that the clock 

distribution network dominates the dynamic power, which is in agreement with earlier 

results. In fact, as it will be seen in Section 7.2, the clock power is technically part of the 

static power. The dynamic power does not include the clock distribution network power 

dissipation. 

 

Table 7.1 Power and Energy Consumption for Matrix Multiplication (f=50 MHz). 

VL Kernel 

Duration 

(ns) 

VC+4lanes+Memories 

Dynamic Power (mW) 

Application 

Duration 

(us) 

Application 

Dynamic 

Energy  

(uJ) 

Kernel 

Dynamic 

Power 

(mW) 
Clock Signal & 

Logic 

BRAM 

& IO 

16 550 106.8 71.96 4.16 137 25.06 182.92 

32 710 106.8 87.96 5.28 809 161.83 200.04 

64 1030 106.8 104.2 6.84 5048 1099.66 217.84 

 

For FIR filtering with Algorithm 2, which is the most vectorizable in Table 5.2, the 

target kernel for power estimation is the internal loop that slides the coefficients four times 

over the input sequence and carries out multiplications and additions to produce four 

elements of the result. This kernel contains twelve vector instructions that consist of four 

load, four vector-scalar multiplication and four vector-vector addition instructions, and 

maximizes the VP utilization for this benchmark. The power and energy values are 

presented in Table 7.2.  

For FFT with Algorithm 2, which is the most vectorizable in Table 5.3, a single 

stage of FFT calculation forms the target kernel. Each stage involves sixteen vector 
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Table 7.2 Power and Energy Consumption for FIR Filtering (f=50 MHz). 

VL Kernel 

Duration 

(ns) 

VC+4lanes+Memories 

Dynamic Power (mW) 

Application 

Duration 

(us) 

Application 

Dynamic 

Energy  

(uJ) 

Kernel 

Dynamic 

Power 

(mW) 
Clock Signal & 

Logic 

BRAM 

& IO 

16 1150 106.8 93.52 5.36 9.2 1.89 205.68 

32 1790 106.8 102.6 6 28.3 6.09 215.4 

64 3070 106.8 109.52 6.52 106.8 23.80 222.84 

 

instructions which include two data shuffle, six vector-vector multiplication, two load, two 

store, two vector-vector addition and two vector-vector subtraction instructions. Table 7.3 

contains the results.  Since data shuffling does not interfere with internal VP operations, 

the “ideal” numbers from Table 5.7 are assumed for the time. It can be seen that, when the 

ratio of ALU to LDST instructions issued increases in the kernel (e.g., FFT), the dynamic 

power of the signals and logic increases since more results are produced in the FPUs.  

 

Table 7.3 Power and Energy Consumption for FFT (f=50 MHz). 

 

 

VL 

Kernel 

Duration 

(ns) 

VC+4lanes+Memories 

Dynamic Power (mW) 

Shuffle 

Engines+ 

Crossbar 

Dynamic 

Power 

(mW) 

Application 

Duration 

(us) 

Application 

Dynamic 

Energy 

(uJ) 

Kernel 

Dynamic 

Power 

(mW) 
CLk Signal 

& 

Logic 

BRAM 

& IO 

16 1350 106.8 107.36 5.52 22.12 7.9 1.91 241.8 

32 2090 106.8 133.12 6.48 22.12 19.1 5.13 268.52 

64 3690 106.8 144.16 7 22.12 45.6 12.77 280.08 

 

For the RGB2YIO benchmark, the chosen kernel with the maximum VP utilization 

converts the color space for one row of the input block. This kernel consists of 21 vector 

instructions and includes three load, nine scalar-vector multiplication, six vector-vector 

addition and three store instructions. The “ideal” numbers from Table 5.8 are used. The 

results are shown in Table 7.3 
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Table 7.4 Power and Energy Consumption for RGB2YIQ (f=50 MHz). 

VL Kernel 

Duration 

(ns) 

VC+4lanes+Memories 

Dynamic Power (mW) 

Application 

Duration 

(us) 

Application 

Dynamic 

Energy 

(uJ) 

Kernel 

Dynamic 

Power 

(mW) 
Clock Signal & 

Logic 

BRAM 

& IO 

16 2350 106.8 82.96 5.72 28.7 5.6 195.48 

32 4230 106.8 93.16 5.64 103.3 21.2 205.2 

64 7590 106.8 94.2 5.44 390.6 88.6 206.4 

 

 Power Analysis for the Multiple Hosts System 

In this section, the energy consumption for the benchmarks of Section 4.2.2 is investigated. 

Based on the power dissipation of individual benchmarks, a projection is made of the total 

energy consumption for the dynamic schedules of Subsection 6.3. In a more accurate 

categorization, power consumption has three components: device static, design static and 

design dynamic [Beldianu et al., 2015]. The device static power, also known as leakage 

power, is a device specific constant not related to resource utilization or the switching 

activity. Under our simulation conditions for an ambient temperature of 500C and an 

airflow of 250LFM (linear feet per minute), the leakage power for our chosen FPGA is 

2.88W. The design static power represents the power consumption when the device is 

configured, but there is no switching activity. It includes the static power in I/O DCI 

terminations, clock managers, etc., and is related to FPGA resource consumption. The 

design dynamic power results from the switching of the user configured logic. Accounting 

for the FPGA resources that the VP actually uses, the presented power model adds the 

design’s static and dynamic powers to estimate the total dissipation. 
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7.2.1 VP Dynamic Power for the Multiple Hosts System 

To reliably estimate the dynamic power, the VP design was fully implemented and all 

signal switching activities of each system node were used as input for power calculation. 

As for the single host system, the VP is fully implemented (i.e., synthesized, translated, 

placed and routed) using the Xilinx ISE tool chain, and performed PAR ISE simulations. 

The binaries of the vector instructions of each benchmark were generated to estimate the 

dynamic power. The power measurements include all power consumed by VP subsystems 

(i.e., VC, HDU, vector lanes, VRF and VM). Also, register name readings from TLT 

contributed to the figure.  

Due to the time consuming nature of PAR simulations, the average power 

consumption for one iteration of each vector kernel is measured. For matrix multiplication 

and FIR filtering, the same kernels as previously discussed for the single host system in 

Section 7.1  are applied here.  For MM, the innermost loop that involves three vector 

instructions is considered as the target kernel. For FIR filtering, the target kernel for power 

estimation is the internal loop which is unrolled four times, slides the coefficients four 

times over the input sequence, and carries out multiplications and additions to produce four 

elements of the result. This kernel contains twelve vector instructions. For VDP, the kernel 

size depends on VL. This kernel contains 11, 14 and 18 vector instructions for VL=16, 32 

and 64, respectively.  For VL=16, the kernel consists of five loads, two stores, three vector-

vector additions and one vector-vector multiplication. For VL=32, one load, one store and 

one vector-vector addition are added to the former case. For VL=64, two loads and two 

vector-vector instructions are added to the VL=32 case. For DCT, the inner loop which 

calculates the output result for one output coefficient is the kernel. This kernel contains six 
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instructions: two loads, two stores, one vector-vector multiplication and one vector-vector 

addition. For RGB2YIO, the chosen kernel converts the color space for VL input pixels. It 

contains 21 instructions: three loads, nine scalar-vector multiplications, six vector-vector 

additions and three stores. 

For VP power measurements of individual benchmarks, the VP is used exclusively 

without competition. The total dynamic energy consumed by a benchmark is actually the 

product of its vector kernel power consumption and its native duration. The dynamic power 

and energy consumptions of individual benchmarks are shown in Table 7.5 to Table 7.9. 

The energy numbers shown are based on the input data sizes of Section 5.2.1. Using the 

measured power, the total dynamic energy consumption of each benchmark for various 

native durations can be calculated; this approach aids the estimation of the energy 

consumption in dynamic environments. The dynamic energy results for the predefined 

tasks of Section 6.3 were included in Table 6.3. Using a task’s average number of arrivals 

per time slice, its average dynamic energy consumption per slice can be produced. 

Figure 7.1 shows that the dynamic energy consumption is related almost linearly to the task 

arrival rate.  

 

Table 7.5 Power and Energy Consumption for MM (f= 100MHz). 

VL Kernel 

Duration 

(ns) 

VC+4Lanes+Memories 

Dynamic Power (mW) 

Kernel 

Dynamic 

Power 

(mW) 

Application 

Duration 

(us) 

Application 

Dynamic 

Energy  

(uJ) 
Signal & 

Logic 

BRAM & 

IO 

16 365 102.04 3.32 105.36 241 25.39 

32 405 136.96 6.04 143 942 134.7 

64 555 198.68 8.8 207.48 3819 792.3 
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Table 7.6 Power and Energy Consumption for FIR (f= 100MHz). 

VL Duration 

(ns) 

VC+4Lanes+Memories 

Dynamic Power (mW) 

Dynamic 

Power 

(mW) 

Duration 

(us) 

Dynamic 

Energy  

(uJ) Signals & 

Logic 

BRAM & 

IO 
16 895 153.68 5.44 159.12 27 4.29 

32 935 239.6 10.48 250.08 51 12.75 

64 1575 284.6 13 297.6 97 28.86 

 

Table 7.7 Power and Energy Consumption for VDP (f= 100MHz). 

VL Duration 

(ns) 

VC+4Lanes+Memories 

Dynamic Power (mW) 

Dynamic 

Power 

(mW) 

Duration 

(us) 

Dynamic 

Energy 

(uJ) Signals & 

Logic 

BRAM & 

IO 
16 765 136.26 11.24 147.5 12 1.77 

32 1235 187.4 19.04 206.44 15 3.09 

64 2275 243.28 24.92 268.2 18 4.82 

 

Table 7.8 Power and Energy Consumption for DCT (f= 100MHz). 

VL Duration 

(ns) 

VC+4Lanes+Memories 

Dynamic Power (mW) 

Dynamic 

Power 

(mW) 

Duration 

(us) 

Dynamic 

Energy 

(uJ) Signals & 

Logic 

BRAM & 

IO 
16 525 110.16 9.32 119.48 87 10.39 

32 605 149 16.64 165.64 87 14.41 

64 775 212.28 27.92 240.2 87 20.89 

 

Table 7.9 Power and Energy Consumption for RGB2YIQ (f= 100MHz). 

VL Duration 

(ns) 

VC+4Lanes+Memories 

Dynamic Power (mW) 

Dynamic 

Power 

(mW) 

Duration 

(us) 

Dynamic 

Energy  

(uJ) Signals & 

Logic 

BRAM & 

IO 
16 1465 152 5 157 244 38.3 

32 1805 209.64 8.2 217.84 123 26.79 

64 2295 267.76 13.52 281.28 63 17.72 
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Figure 7.1 Average total dynamic energy consumption per time slice for λ=0.5, 0.75 and 

1. 

7.2.2 Total Energy Consumption in the Multiple Hosts System 

The VP’s static power is measured without running instructions but just applying the clock 

signals. For a 100µs measurement after system reset, the average static power is 214mW. 

Without pending instructions for the VP, power-gating (PG) can be applied to shut off the 

VP and zero its static power dissipation. Implementing PG requires sleep transistors, 

isolation cells and circuits to control power signals. It can reduce the design static power 

by 85% [Beldianu et al., 2015].  

Although commercial FPGAs currently lack PG support, PG in association with 

proposed dynamic scheduler of Section 6.3 could yield not only performance gains but also 

substantial reduction in the overall energy consumption. In each time slice, once the task 

queue becomes empty, the VP is PGed until the beginning of the next time slice. Using the 

static power measurements, the assumption of a 85% static power reduction with PG and 

the measured average execution time in Figure 6.3, the VP’s average static energy 

consumption is projected per time slice for a given task arrival rate. Combining the results 

with the dynamic energy of Figure 7.1, Figure 7.2 shows the effect of PG on the VP’s 
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energy consumption with and without VP sharing. The total energy saved by combining 

VP sharing, proper scheduling and PG is 33.9%, 36.1% and 37% under task arrival rates 

of λ=0.5, 0.75 and 1, respectively. These are major energy savings on top of our very 

substantial performance improvements. 

 

Figure 7.2 Total energy consumption with (w/) and without (w/o) VP sharing, and with 

power gating, for λ=0.5, 0.75 and 1. 
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CHAPTER 8  

VIRTUALIZED SMT VP AND OPTIMIZATION VIA THREAD FUSION AND 

LANE CONFIGURATION 

 

In this chapter, architectural VP modifications are described in Section 8.1. Some of the 

improvements and modifications are made to increase VP utilization, while others result in 

a virtualized SMT VP. Resource utilization and performance benchmarking results for the 

virtualized SMT VP are included in Sections 8.2 and 8.3, respectively. An accurate power 

dissipation model for this new VP is introduced in Section 8.4, and energy optimization 

scenarios and scheduling processes using this power model are discussed in Section 8.5. 

 Virtualized VP Architecture 

Subsection 8.1.1 covers those modifications which result in increasing VP performance 

and utilization. Subsection 8.1.2 introduces a novel architecture for performing the data 

shuffle instruction. The detailed architectural implementation of this pipelined structure is 

discussed and its performance evaluation is presented. Subsections 8.1.3 to 8.1.5 cover 

hardware modifications applied to the VP to increase flexibility and realize VRF and VM 

virtualization processes in the VP data path. Subsection 8.1.6 describes how the new VP 

architecture can be exploited in the fused mode.  

8.1.1 Increasing the VP Saturation Level 

As mentioned earlier in Section 5.2, the developed VP has a limitation on its maximum 

achievable utilization level, namely its saturation level. The main reason contributing to 

this problem is having an idle clock cycle between fetching consecutive instructions in 
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either the LDST or ALU data path from the instruction FIFOs. Although this idle cycle 

eases the process of functional verification, it also puts an undesirable bound on VP 

utilization. This causes the maximum theoretical utilization of the VP to be 80% for 

VL=16, 88% for VL=32 and 94% for VL=64. By a slight modification of the ALU and 

LDST decoder state machines in Figure 3.3, the idle high impedance state between 

successive instructions is removed. Saving this precious clock cycle can results in a 

theoretical maximum utilization of 100% for the VP resources. As a result, the performance 

of the VP for single thread execution is also slightly improved, which can be noticed from 

the benchmarking of Section 8.3. 

Using open source code for FPU ALU units causes another bottleneck in VP 

performance. Using RTL code for developing the FPU adder and multiplier is beneficial 

when the VP is designed to be prototyped on ASIC platforms. Since our design is 

prototyped on an FPGA platform (for proof of concept), the Xilinx IPs replace open source 

FPUs. As a result, the VP uses more Xilinx DSP modules rather than registers and LUTs 

(as presented in Section 8.2) and is no longer limited by the critical path delay in open 

source blocks (it results in 15% improvement in the critical path delay). 

8.1.2 VP Pipelined Data Shuffle Network 

The data shuffle engine structure which was used in the single host system of Section 3.1 

has some limitations. First of all, it is not pipelined. It uses a host side VM port to read the 

source, and destination address as well as shuffle index for each element. Since the VM 

bandwidth is bounded by one element per clock cycle, a total of eight clock cycles are 

needed per element in the lane to perform shuffling. Three clock cycles are needed per 

element to fetch the source, destination and corresponding index address from the memory, 
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one for generating the physical address and four more clock cycles to apply round-robin 

scheduling between memory banks to avoid any possible contention. All the shuffle 

engines work concurrently. So, for example, for VL=32 with 8 elements in each lane the 

shuffle engine architecture takes 64 clock cycles to complete shuffling. Secondly, shuffle 

instructions use their own controller. Having a dedicated controller removes the 

unnecessary stall of the VP during shuffling. As a drawback, it makes the synchronization 

of threads complex under SMT since each thread has two interfaces to the VP.  

To alleviate these problems, a new data shuffle network is designed and 

implemented. This design is completely pipelined and works on elements that reside within 

the VRF rather than the VM. The shuffle network shuffles data among lanes. A data shuffle 

instruction is issued like a regular ALU instruction through the VC. The previous 

synchronization problem no longer exists since all requests are issued to the VP through a 

single interface (VC). The total clock cycles needed for shuffling is equal to the number of 

elements per lane since the design is fully pipelined (e.g., 8 clock cycles for VL=32). 

The new data shuffle network consists of four stages of pipelining. No extra read 

or write port is needed on the VRF to perform shuffling. The ALU decoder reads the source 

data and the shuffle index from the VRF and sends them to the shuffle unit. In each pipeline 

stage, the shuffle unit registers both the data and index per element, and sends them to the 

next level on a clock edge. The targeted next level can be located in the lane shuffle unit 

or in the next neighboring lane’s shuffle unit. So each pipeline stage in a lane shuffle unit 

can accept data and an index from its own higher stage or from the higher stage of the 

previous lane’s shuffle unit.  The off lane passing decision is made based on the 

corresponding input index (I_indx) and lane index (L_indx). If (I_indx mod 4= L_indx), 
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then that data is located in the correct lane and no longer needs to be passed to the 

neighboring lane. Since there are four lanes in the developed VP, at most four clock cycles 

are needed for an element to reach its destination lane. The result of the shuffle unit (both 

the data and index), which is ready after four clock cycles, is buffered in the WB unit. The 

data will be written in the correct destination in the VRF based on the index and destination 

information provided to the WB unit by the decoder. Figure 8.1 gives an example of how 

the pipelined shuffle network works. The input for level 1 is provided by the lane’s ALU 

decoder. The index numbers in the figure represent (I_indx mod 4) values. The elements 

“A” to “D” represent four successive elements in the vector register. Since the VRF has a 

low order interleaved structure, elements reside in the four different lanes. 

 

Figure 8.1 Data shuffling example for the pipelined shuffle network. 

It can be seen from Figure 8.1 that when an element’s index matches the lane index 

(I_indx mod 4= L_indx), there is no need to pass the element to the next lane. This can 

happen only after four stages. Since the shuffle network consists of four stages, three levels 
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of passing elements will be needed between stages. The overall architecture of the 

pipelined data shuffle network is depicted in Figure 8.2. 

It can be observed from Figure 8.1 that, in the last stage of the shuffle unit, four 

elements may need to be written into the VRF. This can happen only if four elements are 

to be written into four different lanes’ VRFs. This fact imposes a limitation on the proposed 

pipelined structure. Based on this limitation, only certain shuffle patterns could be realized 

in the pipelined architecture and the rest may require the help of a scalar host processor. If 

four successive indexes in the shuffle index register target four different lanes’ indexes, 

then the pattern can be realized directly with the pipelined structure. Fortunately this is the 

case for most of the desired shuffling patterns in a practical application such as FFT.   

 

 

Figure 8.2 Overall architecture of the pipelined data shuffle network. 

To evaluate the new shuffle architecture, the FFT benchmark is rearranged to be 

run on the single host system with a modified VP architecture that includes the new 

pipelined shuffle network. Comparisons in Table 8.1 are against the previous architecture 

for FFT. It shows that the new architecture can accelerate FFT around 2-3 times, compared 

to the old VP with the unpipelined shuffle engine network. 
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Table 8.1 FFT Performance and Utilization Comparison Between the Previous VP with 

the Shuffle Engines and the Modified VP with the Pipelined Data Shuffle Network 

(f=100MHz) 
VL Platform ALU (%) LDST (%) SHF (%) Execution Time (ns) 

16 Pipeline shuffle 40.2 20.1 N/A 3980 

Shuffle engines 4.7 12.3 7.4 13000 

32 Pipeline shuffle 65.04 31.22 N/A 6150 

Shuffle engines 10.3 26 15.4 15500 

64 Pipeline shuffle 78.81 36.78 N/A 12180 

Shuffle engines 15.4 38.4 23.1 25000 

 

8.1.3 Virtualized VM Address Space  

Each vector lane in the VP contains an ALU unit as well as a LDST unit that interfaces the 

VM. As discussed in detail in Section 3.1.1, the VP features a distributed VM design where 

one of each VM bank’s dual ports is assigned exclusively to one VP lane, and yet all VM 

banks can be accessed by the host processors via a mux connected to the second port of 

every VM bank. Since the VM is accessed by two heterogeneous types of masters (i.e., the 

on-chip host cores and the VP), it is assigned two different address domains with regard to 

each one of its masters. The host-to-VM mux accesses VM banks in low-order interleaved 

fashion to hide the bank selection details from the hosts; therefore, all VM banks appear as 

one large memory module with a continuous address space on the system bus. Each VP 

lane, on the other hand, can only access and process elements within its dedicated VM bank 

based on the VP-to-VM issued address and VL information. 

 All vector instructions from the hosts go through the VC that handles hazard 

detection and virtualization, and then broadcasts them to the ALU or LDST pipeline 

interface in each lane. To ensure the correct execution of a vector application under various 

numbers of active lanes, both address domains of the VM as well as the VL information 

must be virtualized. This is essential for runtime VP lane configuration, since all address 
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values and the VL for a vector application are determined statically, and therefore the same 

values must be properly interpreted by the hardware under disparate VP configurations. To 

facilitate address virtualization, the host-to-VM mux and the VC are modified to be 

configurable by host requests. Before starting a new vector thread, a host will submit a 

request to configure state registers based on the optimal number of lanes needed by the 

thread. 

8.1.4 Configurable Components 

Figure 8.3 illustrates how a data array with base host-to-VM address of 4N and VL=8 can 

be accessed by the virtualized VP correctly under different lane configurations. The figure 

shows the cases of two-lane (Figure 8.3.a) and four-lane (Figure 8.3.b) configurations in a 

VP with four lanes; however, this scheme can be easily adapted for any 2N active lanes 

with any VL = 2M, where N and M are both natural numbers and M ≥ N. The VP’s lane 

state register, which can be configured dynamically by the hosts via a simple control 

instruction, stores the number of active lanes and determines how the VP behaves in the 

following cases. 

 In the case of all lanes being active (four in this example), the lowest two bits of 

the host-to-VM address will be used as the select signal for the host-to-VM mux, and the 

remaining bits will be used as the actual physical address for every VM bank. As shown in 

Figure 8.3.b, the data array is mapped to the physical address [N, N+1] of each VM bank, 

with two elements per bank. Therefore, the array’s base VP-to-VM address is compiled to 

be N, which is the same as its physical address in each bank. The LDST unit within each 

lane will start accessing the array with base address N, and based on the VL = 8 and four 
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active lanes information passed from the VC, the instruction decoder will set the counter 

to two so that each lane will access two elements per instruction.  

 

 

Figure 8.3 Mapping of VL, host-to-VM address and VP-to-VM address via 

virtualization. 

When the host dynamically deactivates two VP lanes and their attached VM banks, 

only two banks remain and therefore the mux must be configured to take only the LSB of 

the host-to-VM address as the bank select signal. All remaining bits will be used as each 

bank’s physical address, and since the host-to-VM address is compiled at static time and 

does not change, under the new configuration the array will be mapped to the physical 

address [2N, 2N+3] of each remaining VM bank, with four elements per bank. To ensure 

that the VP can still reach the array with the unchangeable VP-to-VM address of N, the 
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VC’s virtualization stage simply has to shift left the address by one bit and pass it to all 

lanes’ LDST units. The new configuration also requires that the VC shift left the VL by 

one bit to make each lane access four elements per instruction. Since the decoder unit in 

each lane relies on the register name and VL value to locate the right vector registers, 

shifting VL also ensures that each lane will use the right location and number of registers 

under the new configuration. 

8.1.5 VRF and VM Virtualization Under SMT 

The VP is originally designed to support vector-based SMT and sharing among many 

processors. To achieve true SMT where instructions from multiple threads can coexist 

inside the VP pipeline without interference, both the VRF name space and the VM space 

are virtualized on a per instruction basis. With SMT virtualization, one SMT capable VP 

appears as multiple logical VPs (LVPs) to multiple hosts/cores. Shown in Figure 8.4 is a 

simple example of an SMT VP of degree two. The VP has only one physical instruction 

input channel; however, the FIFOs and arbitrator structure create two virtual channels. The 

VP input arbitrator accepts instructions from two different FIFOs in round-robin fashion, 

and each FIFO can be assigned to a host; in this example, only one host is used and the two 

LVPs are used to exploit TLP via thread fusion. The thread ID for each instruction is filled 

by the arbitrator based on the source FIFO. For ID = 0, all VRF names are unchanged. 

When ID = 1, the virtualization stage in the VC properly flips a few bits in each register 

name based on the instruction’s VL. The scheme ensures that LVP0 occupies the lower 

half of the VRF and LVP1 occupies the higher half. The mechanism achieves VRF resource 

sharing with significant flexibility in that it allows both LVPs to function correctly as long 



 

105 

as (a) the total VRF usage does not exceed the available physical VRF resources, and 

 (b) in the single LVP mode, either LVP0 or LVP1 can occupy the entire VRF space.  

 As shown in Figure 8.4, the host-to-VM mux supports data transfers between the 

hosts’ RAM space and both LVPs’ virtual VM spaces. Based on the thread state register, 

which can be configured by the hosts, part of the host-to-VM address is flipped to map the 

LVP1’s virtual address space to the higher half of the VM banks. The data transfer only 

happens at the beginning and the end of a vector application, and therefore no per 

instruction switching between LVP0 and LVP1 is required for data transfers. The thread 

state register can be configured by the hosts using a simple control instruction which is 

similar to that used for dynamic lane configuration. The virtualization for SMT capability 

does not conflict with that for dynamic lane configuration, and therefore the prototype is 

extremely versatile; without recompilation, any two applications can simultaneously 

function properly on the VP regardless of their assigned thread ID or the number of active 

VP lanes. 

For simplicity, an FPGA-based prototype capable of executing two threads 

simultaneously is built. However, the max number of simultaneous threads can be easily 

increased by increasing the number of instruction FIFOs and modifying the arbitrator’s 

state machine. VRF virtualization for more than two threads can be supported by using a 

VRF renaming algorithm presented in section 3.3.2 which dynamically maps the threads’ 

virtual VRF names to physical names while minimizing register fragmentation. Virtual VM 

for multiple threads can be implemented by using a memory management unit. 
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8.1.6 Fusion of Similar Threads 

For frequently used computation intensive operations, highly optimized VP routines are 

implemented and stored in a library. When multiple pending tasks are of the same 

operation, it is possible to fuse these operations thanks to the VP’s per thread virtual VM 

and VRF space. Figure 8.5 shows how two DCT operations are accelerated by fusing the 

threads. Without fusion (Figure 8.5.a), the two operations will be executed sequentially. 

When two threads are fused (Figure 8.5.b), the major parts of their execution are merged, 

so that the hosts’ domain issues vector instructions only once while the VP receives two 

copies. The switch in Figure 8.4 is set to the fusion state for duplicating each vector 

instruction from the host domain and sending it to both FIFOs. A scheduler of vector 

threads decides on fusion. Due to the independent virtual nature of each LVP, the two 

identical instruction flows will perform the same operation but on different input data 

within each virtual space.  

Vector thread fusion has many benefits: (a) it significantly increases the vector 

instruction issue rate for all hosts; (b) the VP utilization is effectively multiplied by the 

degree of fusion as long as the aggregate utilization does not exceed 100%; (c) it reduces 

the overall energy consumption since the host domain only has to run the flow control 

program once to send out vector instructions for fused threads; (d) since the VP’s SMT 

virtualization is compatible with dynamic lane configuration, fusion can be combined with 

lane configuration to optimize performance and energy figures. 
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Figure 8.4 System architecture of a fusion capable VP of degree two 

 

 

Figure 8.5 Fusion of two DCT operations 

 System Architecture and FPGA Implementation 

To evaluate the two proposed techniques, a dual-threaded modified VP interfaced with a 

hosts system is prototyped on a Xilinx XC7Z045-1fbg676 FPGA. The system architecture 
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is similar to that in Figure 8.4, with the hosts system replaced by a MB processor that issues 

vector threads. Various vector kernels are stored in MB 16KB local memory. The system 

RAM and VM are 64KB each. A DMA engine is attached to the system bus for fast data 

transfers between the system RAM and VM. The mux connecting the VM and system bus 

is configurable by the MB to support the virtualization for lane configurability and SMT. 

I/O components on the bus are used for debugging purposes and we implemented an 8-bit 

LED to show the system status. A cycle accurate timer (not shown in the figure) that 

measures application runtime can interrupt the MB. 

The VP has four lanes and is capable of running with 1, 2, or 4 active lanes. Each 

lane’s dedicated VM bank can be deactivated with its assigned lane. A vector register of 

length N contains N register elements, and therefore the number of available vector 

registers depends on the VL of each register. The VP, the fusion switch, the VM data mux 

and the vector instruction arbitrator are custom hardware designed in VHDL, and the rest 

of the system components are Xilinx IPs. The target FPGA has a speed grade of -1. The 

minimum achievable critical delay is 6.01ns and it is improved by 15% compare to old VP 

as open source FPUs are substituted with Xilinx IPs; for simplicity, a 100MHz system is 

implemented. The resource consumption breakdown for the VP is shown in Table 8.2. 

  

Table 8.2 Resource Consumption and Utilization Percentage 

Entity 
Registers 

U(%) 

LUTs 

U(%) 

RAMB36E1s 

U(%) 

DSP48E1s 

U(%) 

One Lane 9571 (2%) 17437 (7%) 0 5 (<1%) 

VM 16 (<1%) 272 (<1%) 16 (2%) 0 

VC 287 (<1%) 451 (<1%) 0 0 

VP 38674 (8%) 70143 (32%) 16 (2%) 20 (2%) 
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 Benchmarking the Virtualized VP 

Four vector applications, which were introduced in Chapter 4, are picked for proposed 

system benchmarking. The applications are DCT, FIR , RGB2YIQ and VDP. Since the 

current VP supports three different VLs, each picked application is evaluated using all 

supported VLs, creating a total of 12 benchmarks. Each benchmark is characterized by its 

ALU utilization (UALU) and LDST utilization (ULDST). Each benchmark is executed 

under various configurations, measured the corresponding runtime, and calculated the 

utilization the pipelines. The utilization is defined as Ototal /O4lanes, where Ototal is the 

total number of operations for an application and O4lanes is the maximum number of 

operations that can be performed by the four lanes during the application’s runtime.  

Table 8.3 to 8.5 show the runtime and utilization figures under three VP configurations  

(a. Four lanes active without fusion. b. Four lanes active with fusion. c. Two lanes active 

without fusion.)  

 

Table 8.3 Performance Profile Data for 4Lanes Unfused VP 

APP VL T(μs) ALU(%) LDST(%) 

DCT 

16 75 6.8 14.1 

32 75 13.6 28.2 

64 75 27.3 56.4 

VDP 

16 23.7 6.7 11.8 

32 28.3 14.1 25.4 

64 34.4 32.5 51.1 

RGB2YIO 

16 243.6 15.8 6.3 

32 123.8 31.0 12.4 

64 64.0 60.0 24.0 

FIR 

16 25.7 10.6 5.5 

32 46.8 22.7 11.5 

64 89.1 47.8 24.0 

 

The native utilization (U) and native runtime (T) are called an application’s figures 

under configuration a. Utilization and runtime figures under other configurations are 
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represented by U’ and T’. With two active lanes, the maximum achievable utilization is 

50%; it is the average with two active lanes at 100% and the other two lanes at 0%. For 

benchmarks with ALU and LDST native utilizations below 50%, the runtime and 

utilizations are not affected due to lane deactivation.  

 

Table 8.4 Performance Profile Data for 4Lanes Fused VP 

APP VL T(μs) ALU(%) LDST(%) 

DCT 

16 75 13.6 28.2 

32 75 27.2 56.4 

64 86.5 47.36 97.6 

VDP 

16 23.7 13.4 23.6 

32 28.3 28.2 50.8 

64 35.8 62.6 98.4 

RGB2YIQ 

16 243.7 31.6 12.6 

32 123.5 62.1 24.9 

64 78.3 98.1 39.2 

FIR 

16 25.9 21.1 10.9 

32 46.7 45.5 22.9 

64 89.2 95.7 47.9 

 

Table 8.5 Performance Profile Data for 2Lanes Unfused VP 

APP VL T(μs) ALU(%) LDST(%) 

DCT 

16 75 6.8 14.1 

32 75 13.6 28.2 

64 84.9 24.1 49.8 

VDP 

16 23.7 6.7 11.8 

32 28.3 14.1 25.4 

64 35.7 31.3 49.2 

RGB 

16 243.6 15.8 6.3 

32 123.8 31.0 12.4 

64 77.7 49.4 19.8 

FIR 

16 25.7 10.6 5.5 

32 46.8 22.7 11.5 

64 89.03 47.8 24.0 

 

For other benchmarks, from UALU and ULDST the higher will hit the 50% saturation 

level while the other will decrease proportionally. The runtime increase is related to the 

higher of UALU and ULDST. The relation between each benchmark’s actual figures for two 

active lanes and their native figures is shown in Equation 8.1. 
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(8.1) 

The maximum utilization achievable is 50% when two lanes are deactivated. The 

Equation 8.1 agrees with the measurements shown in  

Table 8.3 to Table 8.5. U’ALU_1lane , U’LDST_1lane and T’1lane with one active lane can 

be derived using a similar approach and changing the threshold to 25%. A fused benchmark 

can be considered as a new one with new native runtime and utilizations, as shown in 

Table 8.4. The runtime scheduler will use the utilization information to choose the optimal 

number of active lanes based on the scheduling policy. The scheduling policy will be 

discussed in Section 8.5. 

 Power Model 

A highly accurate VP power consumption model is needed for optimization purposes. By 

combining the VP’s NCD file with the testbenches of different scenarios, the detailed SAIF 

for various VP utilizations is obtained. By using testbenches that issue instructions to the 

VP at various rates, the VP’s static and dynamic power under various utilizations is 

measured. Figure 8.6 shows dynamic power results. 

All VP lanes’ dynamic power can be broken down into four components 

corresponding to the: VRF, VM banks, LDST data path (including LDST FIFO and 
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decoder, address generator, and write back unit) and ALU data path (including ALU FIFO 

and decoder, execution and write back units). Each component’s dynamic power is linear 

to its utilization, and is therefore related to UALU and ULDST. Each LDST operation involves 

one memory access and one VRF access, and each ALU operation involves reading two 

operands from the VRF and writing one result back to the VRF. Therefore, the relation 

between VP lanes’ dynamic power and their utilizations can be described by Equation 8.2. 

Each coefficient K is the power per utilization in mW/% for each corresponding 

component. On the other hand, the VC is a common block that processes both ALU and 

LDST instructions, and therefore its power consumption is linear to the total issue rate (IR) 

of both types of instruction, and that can be described by Equation 8.3. 

 

 

Figure 8.6 Dynamic power vs. utilization for both ALU and LDST data paths. 
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By adding together the terms in Equation 8.2 and Equation 8.3, the Equation 8.4 

is obtained the VP’s dynamic power as a simple linear function of UALU and ULDST. 
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This power model matches the measurements of the VP’s dynamic power vs. ULDST  

with idle ALU (Figure 8.6.a), and power vs. UALU with idle LDST (Figure 8.6.b). From the 

measured data the coefficient K for each component is extracted; the most important are 

for the ALU and LDST units: K’ALU =  2.838mw/%, and K’LDST = 1.415mW/%.  

The VP’s total power is given by Equation 8.5. The measured VC static power is 

2.2mW, and each lane’s static power is 26.5mW with its dedicated memory bank. Since 

the FPGA does not support power gating, it is implemented using extra logic to isolate the 

power signal. Power gated components still dissipate about 15% of their original static 

power [Beldianu et al., 2015]. Pstatic is 108.2mW, 63.15mW and 40.63mW for the 4, 2, and 

1 lane configuration, respectively. In Equation 8.5, UALU and ULDST are the applications’ 

actual utilizations under various situations. Combining Equation 8.5 with Equation 8.1, 
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Equation 8.6 is obtained that describes the relation of an application’s power consumption 

with two active lanes and its native utilizations. A similar equation can be derived with one 

active lane. 
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 The Scheduling Policy 

So far a vector application’s P4lanes, P2lanes and P1lane  are obtained as function of their 

native utilizations. The execution times T2lanes and T1lane are also related to T4lanes, and the 

example for T2lanes is shown in Equation 8.1. The set of P and T values form two-

dimensional matrices with UALU and ULDST as indexes. Two different scheduling policies 

using P and T are proposed. The first policy is to achieve minimum energy consumption. 

The energy matrix for each configuration can be calculated by ENlanes = PNlanes * TNlanes. By 

comparing E4lanes, E2lanes and E1lane, the utilization boundary for optimal configuration can 

be determined. Figure 8.7.a shows a generic contour for minimum energy consumption; 

the actual values depend on the application. All applications whose native utilizations fall 

into region A consume minimum energy when executed with one active lane, while region 
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B is for two lanes and region C is for four lanes. Using a similar approach, the boundary 

for the second scheduling policy which minimizes the product of an application’s execution 

time and energy consumption can be obtained; it is shown in Figure 8.7.b. 

 

 

Figure 8.7 Optimal utilization boundaries for a. minimum energy b. minimum energy-

execution time product 

 

The two scheduling policies (Emin and ETmin) were tested using an open system 

model where tasks that arrive within a time slice of size 10ms are scheduled in the 

following 10ms slice. The arrival of every task follows the Poisson distribution; six arrival 

rates λ = 1, 3, 5, 7, 9, 11 are tested. Tasks in the queue are ordered by their task type; since 

similar tasks are adjacent in the queue, the scheduler easily identifies fusable tasks. The 
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tasks are those in Section 8.3. For each optimization policy, every task has two optimal 

execution configurations: unfused and fused modes. All configurations can be obtained by 

combining each task’s UALU and ULDST with the results shown in Figure 8.7. As mentioned 

previously, the scheduler will treat a fused task as a new task with its own UALU and ULDST.  

 

 

Figure 8.8 Comparison of the Emin, ETmin policies against a VP w/o fusion and lane 

configuration over the average of 1000 time slices. a. energy b. runtime c. energy-runtime 

product.  

 

The task queues for 1000 time slices are generated using the MATLAB random 

number generator, and calculated the average parameters for the two scheduling policies 
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and also for the VP without the proposed techniques. As shown in Figure 8.8, for the Emin 

policy, the proposed techniques reduce the average energy consumption by up to 33.8% 

while improving the runtime by 40%. The ETmin policy reduces the product of energy and 

runtime by up to 62.7%. For the VP without fusion and lane configuration, the average 

execution time at λ = 11 is close to 10ms and the system is about to overflow.  
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CHAPTER 9  

COCNCLUSION AND FUTURE WORK 

 Conclusion 

This dissertation presented a multi-lane VP architecture as a high-performance coprocessor 

for data-parallel applications in multicore/multithreaded processors. More specifically, the 

main motivation of this work was to introduce a multithreaded VP framework realizing 

SMT and eventually resource virtualization. This coprocessor is applied to three system 

architectures.  

In the single host system, the VP is exclusively dedicated to a scalar processor and 

improves system performance via exploiting DLP. The proposed VP has a VIRAM-like 

architecture with dedicated data paths in each lane for LDST and ALU instructions. This 

data path separation makes the VP capable of exploiting ILP as well. Assigning a private 

memory to each vector lane and specifying one set of memory ports exclusively for 

transactions between that memory and the corresponding lane increases the speedup for 

memory-based vector instructions. Data shuffling and index addressing are realized using 

distributed data shuffle engines and a crossbar which is placed between the private and 

global memories. A benchmark suite to evaluate the system performance is introduced 

which shows an up to 1500-fold speedup over a scalar processor; the area is increased 11-

fold.  Detailed performance and power dissipation results for each benchmark are provided. 

The results prove the viability of our approach.  

In the multiple hosts system, the scalar cores share the VP resources via VP 

virtualization that improves the aggregate utilization and performance with SMT. 

Virtualization can be applied in a multicore environment where the VP is shared by 
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multiple cores via a bus or in a unicore environment where the core is designed to support 

SMT. An easy-to-use interface makes VP sharing transparent to application programmers 

while improving the throughput many-fold.  More specifically, the proposed VP can 

simultaneously execute multiple threads of similar or disparate vector lengths to improve 

VP throughput. The virtualization technique is prototyped for a multi-core processor 

embedded in an FPGA as a multiple hosts system. Under the dynamic creation of threads 

with diverse needs for vector sizes and types of operations, benchmarking results show 

impressive VP speedups of up to 333% and total energy savings of up to 37% with proper 

thread scheduling and power gating compared to a single host system that allows VP access 

to just one thread at a time. Finally, the performance improvements compared to the single 

host system and other prior works for VP sharing that did not support VP virtualization 

further prove the viability of our approach since the obtained speedups are impressive.  

Subsequently, the VP architecture is improved to increase its functionality and 

configurability as well as its throughput. The new version is called virtualized SMT VP. 

By combining the proposed dynamic lane configuration and fusion techniques in the design 

of a shared virtualized SMT VP, the VP’s energy consumption and energy runtime product 

are improved substantially under two proposed optimization policies. As VPs scale up in 

the number of vector lanes, fine-grain power management provided by lane configuration 

becomes more critical. The benefit of the fusion technique will also be amplified when the 

fusion degree grows above two.  

 Future Work 

The VP pipeline can be improved to support more operations, such as the square root and 

negation. Adding a data reduction instruction to the VP for fully associative operations 
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(e.g. adding all the elements in a vector register) would also be extremely beneficial. These 

kinds of instructions were always performed on the scalar host for all previously proposed 

VPs and resulted in performance degradation for several practical applications.  

Developing a distributed, rather than a centralized system, where each scalar core 

has access to more than one virtualized SMT VP can further improve parallelism. In this 

system, instruction fusion will be applied on top of VP virtualization to increase DLP 

exploitation. In fact, with instruction fusion the effective rate of issuing vector instructions 

will be doubled, while the total dynamic energy consumption due to vector application 

flow control on the host processor will be reduced by 50%. In such a system, each host can 

request fusion in order to achieve higher performance by exploiting more parallelism. In 

the case of request granting, the host can take advantage of many vector logical threads to 

run an application. Similar copies of a vector instruction will be sent to different virtualized 

vector logical cores to perform the same function on different resources. These virtualized 

vector cores can be located within the same or different physical vector coprocessors. A 

very abstracted overall architecture of such a distributed system is presented in Figure 9.1. 

Each virtualized SMT VP in this system will provide two logical cores to perform SMT.  

 

 

Figure 9.1  Abstracted architecture of a distributed system with enhanced VPs. 
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Having all the profiled data regarding performance and power analysis, a 

comprehensive high level model of the system can be developed in C. This model will be 

used for further exploration.
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