

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

VECTOR PROCESSOR VIRTUALIZATION: DISTRIBUTED MEMORY

HIERARCHY AND SIMULTANEOUS MULTITHREADING

by

SeyedAmin Rooholamin

Taking advantage of DLP (Data-Level Parallelism) is indispensable in most data streaming

and multimedia applications. Several architectures have been proposed to improve both

the performance and energy consumption for such applications. Superscalar and VLIW

(Very Long Instruction Word) processors, along with SIMD (Single-Instruction Multiple-

Data) and vector processor (VP) accelerators, are among the available options for designers

to accomplish their desired requirements. On the other hand, these choices turn out to be

large resource and energy consumers, while also not being always used efficiently due to

data dependencies among instructions and limited portion of vectorizable code in single

applications that deploy them. This dissertation proposes an innovative architecture for a

multithreaded VP which separates the path for performing data shuffle and memory-

indexed accesses from the data path for executing other vector instructions that access the

memory. This separation speeds up the most common memory access operations by

avoiding extra delays and unnecessary stalls. In this multilane-based VP design, each

vector lane uses its own private memory to avoid any stalls during memory access

instructions. More importantly, the proposed VP has an innovative multithreaded

architecture which makes it highly suitable for concurrent sharing in multicore

environments. To this end, the VP which is developed in VHDL and prototyped on an

FPGA (Field-Programmable Gate Array), serves as a coprocessor for one or more scalar

cores in various system architectures presented in the dissertation.

In the first system architecture, the VP is allocated exclusively to a single scalar

core. Benchmarking shows that the VP can achieve very high performance. The inclusion

of distributed data shuffle engines across vector lanes has a spectacular impact on the

execution time, primarily for applications like FFT (Fast-Fourier Transform) that require

large amounts of data shuffling.

In the second system architecture, a VP virtualization technique is presented which,

when applied, enables the multithreaded VP to simultaneously execute many threads of

various vector lengths. The threads compete simultaneously for the VP resources having

as a goal an improved aggregate VP utilization. This approach yields high VP utilization

even under low utilization for the individual threads. A vector register file (VRF)

virtualization technique dynamically allocates physical vector registers to running threads.

The technique is implemented for a multi-core processor embedded in an FPGA. Under

the dynamic creation of threads, benchmarking demonstrates large VP speedups and drastic

energy savings when compared to the first system architecture.

In the last system architecture, further improvements focus on VP virtualization

relying exclusively on hardware. Moreover, a pipelined data shuffle network replaces the

non-pipelined shuffle engines. The VP can then take advantage of identical instruction

flows that may be present in different vector applications by running in a fused instruction

mode that increases its utilization. A power dissipation model is introduced as well as two

optimization policies towards minimizing the consumed energy, or the product of the

energy and runtime for a given application. Benchmarking shows the positive impact of

these optimizations.

VECTOR PROCESSOR VIRTUALIZATION: DISTRIBUTED MEMORY

HIERARCHY AND SIMULTANEOUS MULTITHREADING

by

SeyedAmin Rooholamin

A Dissertation

Submitted to the Faculty of

New Jersey Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Electrical Engineering

Helen and John C. Hartmann Department of Electrical and Computer Engineering

May 2016

Copyright © 2016 by SeyedAmin Rooholamin

ALL RIGHTS RESERVED

APPROVAL PAGE

VECTOR PROCESSOR VIRTUALIZATION: DISTRIBUTED MEMORY

HIERARCHY AND SIMULTANEOUS MULTITHREADING

SeyedAmin Rooholamin

Dr. Sotirios G. Ziavras, Dissertation Advisor Date

Professor of Electrical and Computer Engineering,

Associate Provost for Graduate Studies and Dean of the Graduate Faculty, NJIT

Dr. Durgamadhab Misra, Committee Member Date

Professor of Electrical and Computer Engineering, NJIT

Dr. Sui-hoi E. Hou, Committee Member Date

Professor of Electrical and Computer Engineering, NJIT

Dr. Roberto Rojas-Cessa, Committee Member Date

Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Alexandros Gerbessiotis, Committee Member Date

Associate Professor of Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author: 	 SeyedAmin Rooholamin

Degree: 	 Doctor of Philosophy

Date: 	 May 2016

Undergraduate and Graduate Education:

• Doctor of Philosophy in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2016

• Master of Science in Electrical Engineering,
Isfahan University of Technology, Isfahan, Iran, 2008

• Bachelor of Science in Electrical Engineering,
Isfahan University of Technology, Isfahan, Iran, 2005

Major: 	 Electrical Engineering

Presentations and Publications:

Rooholamin, S.A., and Ziavras, S.G. (June 2015). Modular Vector Processor Architecture
Targeting at Data-level Parallelism, Microprocessors and Microsystems. Elsevier,
39, 4, pp. 237-249.

Lu, Y, Rooholamin, S.A., and Ziavras, S.G. (March 2016). Vector Processor
Virtualization for Simultaneous Multithreading, ACM Transactions on Embedded
Computing Systems. Accepted for publication.

Lu, Y, Rooholamin, S.A., and Ziavras, S.G. (March 2016). Power-Performance
Optimization of a Virtualized SMT Vector Processor via Thread Fusion and Lane
Configuration. IEEE Computer Society Annual Symposium on VLSI. Accepted for
publication.

`

iv

v

To my Family, with Love and Gratitude

 تقدیم به پدر و مادرم با عشق و سپاس

vi

ACKNOWLEDGMENT

I would like to express my heartfelt gratitude and deepest appreciation to my adviser Dr.

Sotirios G Ziavras for being my mentor through my PhD career. His wisdom, commitment,

guidance and inspiration as well as his extraordinary skills and depth of knowledge guided

and motivated me to find and pursue my research. His constructive criticism and trusted

support made this work a great learning experience.

I would like to express my sincere gratitude to Dr. Durga Misra, Dr. Edwin Hou,

Dr. Roberto Rojas-Cessa and Dr. Alexandros V. Gerbessiotis for serving as committee

members. I appreciate their time as well as their encouraging and constructive comments,

and feedback on the dissertation.

Moreover, I am truly indebted and thankful to the ECE Department at NJIT for the

TA and fellowship support. This work would not have been possible without this support.

Further thanks go to the staff of the offices of international students and graduate

studies, and the staff of the ECE Department for their advice, help and support with

administrative matters during my PhD studies.

Additionally, I would like to thank my friends Yaojie, Behzad and Mina for all the

great and unforgettable moments we shared together during these years.

Finally, it is my honor to express my deepest gratitude and respect to my family for

being supportive and encouraging. I am grateful to my fantastic parents Nahid and Akbar

who always give me their unconditional love and support. I would also like to thank my

brother, Ehsan, who has always been there for me.

 TABLE OF CONTENTS

Chapter Page

vii

 Background History .. 1

 Motivations and Objectives ... 3

1.2.1 Single Host System ... 3

1.2.2 Multiple Hosts System .. 5

1.2.3 Virtualized SMT VP .. 7

 Related Work in Vector Processing .. 10

 VP Sharing Techniques and Comparisons .. 12

 Single Host System Architecture .. 16

3.1.1 VP Architecture and Instructions in the Single Host System 20

3.1.2 Pipelined ALU and LDST Unit .. 25

3.1.3 Resource Utilization in Single Host System ... 27

 Multiple Hosts System Architecture ... 28

3.2.1 The System Core ... 30

3.2.2 Application Cores ... 31

3.2.3 Vector Instruction FIFOs and Arbitrator .. 32

3.2.4 The System Bus .. 33

 VP Virtualization ... 34

 1 INTRODUCTION ... 1

 2 RELATED WORK .. 10

 3 PROPOSED VECTOR COPROCESSOR .. 16

 TABLE OF CONTENTS

 (Continued)

Chapter Page

viii

3.3.1 The Vector Register File ... 34

3.3.2 The Vector Register Management Algorithm .. 35

3.3.3 Assigning/Releasing VRF Resources ... 38

3.3.4 VRF Fragmentation Issues ... 39

 VP Architecture in the Multiple Hosts System ... 40

3.4.1 VP-MB Interface .. 42

3.4.2 Hazard Detection .. 42

3.4.3 Vector Lane Structure in the Multiple Hosts System 44

3.4.4 Resource Utilization in the Multiple Hosts System 45

 Benchmark Suite for the Single Host System ... 48

4.1.1 Vector Instruction in the Single Host System ... 48

4.1.2 Benchmark Applications for Single Host System 50

 Benchmark Suite for the Multiple Hosts System .. 52

4.2.1 VP Instruction and Compilation for the Multiple Hosts System 53

4.2.2 Benchmark Applications for the Multiple Hosts System 55

 Single Host System Performance Analysis ... 57

 4 BENCHMARKING .. 48

5 PERFORMANCE ANALYSIS ... 57

 TABLE OF CONTENTS

 (Continued)

Chapter Page

ix

5.1.1 Simulation Results and Performance Analysis in the Single Host System 57

5.1.2 Performance Exploration in the Single Host System 65

5.1.3 Comparison with Prior Work .. 69

 Multiple Hosts System Performance Analysis ... 71

5.2.1 Simulation Results .. 71

5.2.2 Comparison with the Single Host System and Prior Works 75

 Scheduling Algorithm Implemented on the System Core 77

 Queues of Fixed Length .. 79

 Open System with Randomly Arriving Threads ... 82

 Power Analysis for the Single Host System .. 86

 Power Analysis for the Multiple Hosts System ... 90

7.2.1 VP Dynamic Power for the Multiple Hosts System 91

7.2.2 Total Energy Consumption in the Multiple Hosts System 94

 Virtualized VP Architecture .. 96

8.1.1 Increasing the VP Saturation Level .. 96

8.1.2 VP Pipelined Data Shuffle Network ... 97

 6 SCHEDULING VECTOR THREADS ... 77

 7 POWER ANALYSIS AND ENERGY CONSUMPTION 86

 8 VIRTUALIZED SMT VP AND OPTIMIZATION VIA THREAD FUSION AND

LANE CONFIGURATION .. 96

 TABLE OF CONTENTS

 (Continued)

Chapter Page

x

8.1.3 Virtualized VM Address Space .. 101

8.1.4 Configurable Components .. 102

8.1.5 VRF and VM Virtualization Under SMT ... 104

8.1.6 Fusion of Similar Threads .. 106

 System Architecture and FPGA Implementation .. 107

 Benchmarking the Virtualized VP .. 109

 Power Model ... 111

 The Scheduling Policy ... 114

 Conclusion ... 118

 Future Work .. 119

 9 COCNCLUSION AND FUTURE WORK ... 118

 REFERENCES ... 122

 LIST OF TABLES

Table Page

xi

3.1 Resource Consumption for Single Host System. .. 28

3.2 Resource Consumption for Multiple Hosts System. ... 47

5.1 Performance Comparison for Three Multiplication Algorithms and Various VLs

on the Single Host System. Algorithms 1 and 2 Use Both the VP and MB.

Algorithm 3 Uses Only the VP. The Execution Time is Shown for Each Element

Produced in the Product Matrix. (a) Without Compiler Optimization and (b) with

 Compiler Optimization. .. 58

5.2 Performance Comparison for FIR Filtering with Various Filter Sizes in the Single

Host System. The Times for Data Exchanges Between the Global and Private

Memories are Included. The Times are for Calculating All the Output Elements.

(a) Without Compiler Optimization and (b) with Compiler Optimization. 59

5.3 Performance Comparison for FFT of Various Sizes in the Single Host System.

The Execution Time Includes the Overhead of Writing and Reading Between

the Global and Vector Memories. The Numbers are for Calculating the Results

 (a)Without Compiler Optimization and (b) with Compiler Optimization. 60

5.4 Performance Comparison for RGB2YIQ with Various VLs in the Single Host

System. The Time is for Calculating a Block of 8*8 Pixels in YIQ Color Space.

 (a) Without Compiler Optimization and (b) with Compiler Optimization. 61

5.5 Matrix Multiplication Performance Comparison for Various VLs in the Single

 Host System. .. 67

5.6 FIR Performance Comparison for Various VLs in the Single Host System....... 68

5.7 FFT Performance Comparison for Various VLs in the Single Host System. 68

5.8 RGB2YIQ Performance Comparison for Various VLs in Single Host System. . 68

5.9 Speedups of the VP in Single Host System and the Design in [Beldianu et al.,

 2013] vs. the MB for VL=32. ... 70

5.10 Matrix Multiplication Performance in the Multiple Hosts System (Input and

 Output Matrix Size: VL*VL, 1 Iteration per Core). ... 72

5.11 FIR Performance in the Multiple Hosts System (Input Vector Size: VL, 1

 Iteration per Core). .. 72

 LIST OF TABLES

 (Continued)

Table Page

xii

5.12 VDP Performance in the Multiple Hosts System (Input Vector Size : VL, 1

 Iteration per Core). ... 72

5.13 DCT Performance in the Multiple Hosts System (Input: VL/8 Blocks of Size

 8*8, 1 Iteration per Core). ... 73

5.14 RGB2YIQ Performance in the Multiple Hosts System (Input: 1024 Pixels, 1

 Iteration per Core). .. 73

5.15 Speedup Comparison With the Single Host and Previously Shared VP 76

6.1 Detailed Results for a Schedule with Pending Thread Queue Length of 8. 81

6.2 Detailed Results for a Schedule with Pending Thread Queue Length of 16. 81

6.3 Characteristics of Chosen Tasks for an Open System. .. 83

6.4 Detailed Task Arrivals and Execution Time for λ=0.5. 83

6.5 Detailed Task Arrivals and Execution Time for λ=0.75. 84

6.6 Detailed Task Arrivals and Execution Time for λ=1. .. 84

7.1 Power and Energy Consumption for Matrix Multiplication (f=50 MHz). 88

7.2 Power and Energy Consumption for FIR Filtering (f=50 MHz). 89

7.3 Power and Energy Consumption for FFT (f=50 MHz). 89

7.4 Power and Energy Consumption for RGB2YIQ (f=50 MHz). 90

7.5 Power and Energy Consumption for MM (f= 100MHz). 92

7.6 Power and Energy Consumption for FIR (f= 100MHz). 93

7.7 Power and Energy Consumption for VDP (f= 100MHz). 93

7.8 Power and Energy Consumption for DCT (f= 100MHz). 93

7.9 Power and Energy Consumption for RGB2YIQ (f= 100MHz). 93

 LIST OF TABLES

 (Continued)

Table Page

xiii

8.1 FFT Performance and Utilization Comparison Between the Previous VP with the

Shuffle Engines and the Modified VP with the Pipelined Data Shuffle Network

 (f=100MHz) ... 101

8.2 Resource Consumption and Utilization Percentage ... 108

8.3 Performance Profile Data for 4Lanes Unfused VP ... 109

8.4 Performance Profile Data for 4Lanes Fused VP ... 110

8.5 Performance Profile Data for 2Lanes Unfused VP .. 110

 LIST OF FIGURES

Figure Page

xiv

3.1 High-level architecture of the multi-lane VP prototyped on a Xilinx FPGA in

single host architecture. The vector memory is low-order interleaved. Each vector

 lane is attached to a private memory.. 17

3.2 Detailed architecture of the four-lane VP applied in single host architecture (FP:

 Floating-point). ... 19

3.3 Lane architecture for VP in single host architecture. ... 23

3.4 Pipelined structures in the ALU and LDST data paths. 27

3.5 Multicore architecture for VP sharing (Instr Arb: vector instruction arbitrator). . 29

3.6 The FSM model for AC behavior (CMD: command; APP: application; ACK:

 acknowledgment). .. 32

3.7 VRF structure in multiple hosts system. .. 35

3.8 RMM (Register Management Module) and its TLT interface. 36

3.9 Data structures used to manage the VRF. ... 37

3.10 Duration of fragmented registers for VL=32 and 64. ... 40

3.11 Detailed architecture of the VP applied in the multiple hosts architecture. 41

3.12 Vector lane architecture for the multiple hosts system. 45

4.1 Example of C code showing VP instructions implemented as macro calls for

 vector addition in single host system. ... 51

4.2 ISA of the VP. .. 51

4.3 Macros to define vector instructions in multiple hosts system. 54

5.1 Speedup for matrix multiplication with and without optimization. (a) VP vs. MB

 for Algorithm 3 and (b) VP+MB vs. MB for Algorithm 2. 63

5.2 VP vs. MB speedup for FIR filtering with and without optimization. (a)

 Algorithm 2and (b) Algorithm 1. .. 63

5.3 Speedup for FFT. (a) VP with the data shuffle engine vs. MB for Algorithm 2

 and (b)VP+MB without the shuffle engine vs. MB for Algorithm 1................. 64

 LIST OF FIGURES

 (Continued)

Figure Page

xv

5.4 VP vs. MB speedup for RGB2YIQ in single host system. 65

5.5 Performance/Area improvement for the VP over the MB in single host system. 66

5.6 Maximum utilization of the LDST and ALU units. .. 75

6.1 Scheduler flowchart. ... 78

6.2 Execution time for thread queues of fixed length.(a) Length = 8.(b) Length =16. 80

6.3 The average of the total execution time for all threads scheduled in a time slice,

 with and without VP sharing, for λ= 0.5, 0.75 and 1. (Time slice: 10ms.) 85

7.1 Average total dynamic energy consumption per time slice for λ=0.5, 0.75 and 1 94

7.2 Total energy consumption with (w/) and without (w/o) VP sharing, and with

 power gating, for λ=0.5, 0.75 and 1. .. 95

8.1 Data shuffling example for the pipelined shuffle network. 99

8.2 Overall architecture of the pipelined data shuffle network. 100

8.3 Mapping of VL, host-to-VM address and VP-to-VM address via virtualization 103

8.4 System architecture of a fusion capable VP of degree two 107

8.5 Fusion of two DCT operations ... 107

8.6 Dynamic power vs. utilization for both ALU and LDST data paths. 112

8.7 Optimal utilization boundaries for a. minimum energy b. minimum energy-

execution time product .. 115

8.8 Comparison of the Emin, ETmin policies against a VP w/o fusion and lane

configuration over the average of 1000 time slices. a. energy b. runtime c.energy-

 runtime product. .. 116

9.1 Abstracted architecture of a distributed system with enhanced VPs. 120

xvi

LIST OF ABBREVIATIONS

ALU Arithmetic Logic Unit

AC Application Core

ASIC Application Specific Integrated Circuit

AXI Advanced eXtensible Interface

CTS Coarse-grain Temporal Sharing

DCT Discrete Cosine Transform

DLP Data Level Parallelism

DMA Direct Memory Access

DSP Digital Signal Processor

FFT Fast Fourier Transform

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

FSL Fast Simplex Link

FTS Fine-grain Temporal Sharing

GPU Graphical Processing Unit

HDU Hazard Detection Unit

ILP Instruction Level Parallelism

LDST Load Store

LMB Local Memory Bus

MIMD Multiple Instruction Multiple Data

MM Matrix Multiplication

PLB Processor Local Bus

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Threads

SMT Simultaneous Multithreading

SPS Scalar Processor Subsystem

TLT Translation Lookup Table

VC Vector Controller

VDP Vector Dot Product

xvii

VLIW Very Long Instruction Word

VLS Vector Lane Sharing

VM Vector Memory

VP Vector Processor

VRF Vector Register File

VT Vector Thread

WB Write Back

1

CHAPTER 1

INTRODUCTION

 Background History

In the computer world, there has always been an evolving demand for parallel processing

and supercomputing. In recent years, this demand has intensified and is complicated by

ongoing and unpredictable increases in the size of data and applications. To address this

demand, parallel attempts have been made to improve the processing and computing

performance of computers in terms of both hardware and software aspects. The ideas

behind both approaches are based on exploiting or creating parallelism in the context of

processing. This can be inherited parallelism in data load or instruction flow for a single

application, or it can be created by simultaneous execution of multiple applications. In this

work, various levels of parallelism and techniques are combined in efforts to achieve

maximum performance from given resources.

SIMD architectures are highly efficient in exploiting DLP in applications due to

their specialized hardware design. A VP, also known as array processor, employs an SIMD

architecture capable of processing an array of data elements simultaneously by executing

a single vector instruction. Serving as an accelerator, a VP can offload the DLP workload

from general-purpose scalar processors, thus enhancing the overall performance and

energy efficiency. [Espasa et al., 1997] show that instruction level parallelism (ILP) and

DLP can be merged in a single simultaneous vector multithreaded architecture for higher

performance. Several VP accelerators have been proposed. The VIRAM’s multi-lane

architecture has become the basis for several VP designs [Kozyrakis et al., 2003]. It has a

basic multi-lane architecture that can be used to build VPs for exploiting DLP through

2

SIMD processing. Each lane contains similar pipelined execution and load-store units.

Each vector register is uniformly distributed among the lanes. All the elements from a

vector in a lane are processed sequentially in its pipelined units while corresponding

elements from different lanes are processed simultaneously. Using EEMBC benchmarks,

it was demonstrated that a cache-less VIRAM is much faster than a superscalar RISC or a

cache-based VLIW processor [Kozyrakis et al., 2002].

In this dissertation, a new architecture for a lane-based VIRAM-like VP is first

proposed and implemented. The VP can accelerate vector-oriented floating-point

applications by using a high-speed load-store unit and dedicated scratch pad memory in

each lane. In addition, the designed VP has a multithreaded architecture where several

threads may utilize VP resources simultaneously. In this case, resource conflicts are

resolved at static time.

To further improve this system, the VP is then augmented to support a register file

virtualization technique in order to dynamically resolve relevant resource conflicts. This is

joint work with another Ph.D. student. In this scenario, a scalar core is in charge of

managing the virtualization process. It is accelerated by dedicated hardware and the VP is

modified accordingly to take advantage of virtualization. The managing core can further

be utilized for thread scheduling.

In the last part of this dissertation, the VP architecture is first improved to remove

some of its structural limitations. The modified VP is capable of achieving higher resource

utilization (close to 100 %). It introduces both register file and memory virtualization. The

virtualization is performed completely in hardware which results in less overhead. The old

non-pipelined shuffle engines are replaced by a pipelined shuffle network. It yields a

3

scalable and yet flexible VP that is capable of dynamically deactivating some of its

computing lanes in order to reduce the static power with minimum performance loss. In

addition, the modified simultaneous multi-threaded (SMT) VP can exploit identical

instruction flows that may be present in different vector applications by running in a novel

instruction fused mode that increases the overall resource utilization. Under instruction

fusion, similar copies of an instruction to be run on multiple threads or cores are merged

into a single copy for simultaneous execution.

 Motivations and Objectives

In this work, two system architectures are first proposed and implemented, namely single

host and multiple host systems. Although both include a VP as a coprocessor, they have

different goals. The specific aspects of vector processing targeted by each system are

covered in Sub-sections 1.2.1 and 1.2.2 . In the last part of this dissertation, the VP is

modified to become more scalable and yet flexible. The modified architecture is called

virtualized SMT VP and is subjected to two energy optimization scenarios. The objectives

are covered in Sub-section 1.2.3.

1.2.1 Single Host System

In a VIRAM-like architecture, a memory crossbar often connects the vector lanes to the

memory banks to facilitate index memory addressing and data shuffling. This crossbar adds

extra delay when not actually needed, such as for stride-based data loads and stores.

Moreover, it increases the energy consumption. Adding a cache to each lane may solve this

problem to some extent but the cache coherence problem will require an expensive

solution, often prohibitive for embedded systems. Since in practical applications stride

4

addressing is more common than other types of addressing [Kennedy et al., 1992], here a

VP model is introduced that does not sacrifice performance for less likely memory access

instructions. A VIRAM-based, floating-point VP is developed and embedded in an FPGA

that connects to a scalar processor. This VP comprises four vector lanes, and provides two

separate data paths for each lane to process and execute load and store operations in the

LDST (Load-Store) unit in parallel with floating-point operations in the ALU. Each cache-

less lane is directly attached to its own local memory. Data shuffle instructions are

supported by a shuffle engine in each lane which is placed after the lane’s local memory

and connects to other lanes via a combinational crossbar. All the local memories connect

to the shared bus which is used to exchange data between these memories and the global

memory. The prototyping of a system with four lanes shows substantial increases in

performance for a set of benchmarks compared to similar systems that do not contain the

shuffle engines. This VP is highly flexible for applications with varying VL (Vector

Length; it represents the number of elements in the vector), thus allowing the VL value to

be specified by each individual vector instruction; the instruction decoder in each lane is

then in charge of vector instruction synchronization. In the single host system architecture,

threads of disparate VLs running on the same scalar processor can exploit the VP as long

as they do not result in vector register name conflicts. Benchmarking shows speedups of

up to 1500 compared to running vector code on a scalar processor with the same clock

frequency.

Previously proposed VPs are not versatile enough in multithreading environments.

They were mostly capable of handling simultaneously multiple threads using the same

vector length in predefined contexts. However, this approach is not often efficient for real

5

applications since a VP is a rather high-cost, high-performance accelerator that consumes

considerable area and energy in multicore processors. A more flexible VP that can be

shared dynamically by multiple cores results in better resource utilization, higher

performance and lower energy power dissipation. The proposed solution supports the

simultaneous processing of multiple threads having diverse VLs. In fact, the VLs used by

any given thread are allowed to change during execution. To fully exploit this capability,

VP virtualization is proposed and implemented for the multiple hosts system architecture

as well as the virtualized SMT VP architecture.

1.2.2 Multiple Hosts System

This work is motivated by the fact that VPs dedicated to single-thread execution on

multithreaded or multicore processors are often not efficiently utilized due to the following

reasons. First, every application contains some unvectorizable serial code for flow control

or other system management; the scalar host processor cannot issue vector instructions to

the VP for such an application at a rate sufficient to keep it highly utilized. Second, data

dependencies within some applications’ vector instruction flows can cause frequent stalls,

wasting precious clock cycles in the super-pipelined floating-point units (FPUs) of the VP.

Finally, it may be preferable sometimes for applications containing small vectorizable code

to be executed on the host scalar processor in order to allow another application with more

vector code to exclusively use the VP. However, the execution of the former applications

as well could be enhanced given the chance to simultaneously use the VP. Our

benchmarking shows that some applications with such a low VP utilization as 5% can yield

a speedup of 83 when executed on a VP compared to a scalar processor with the same clock

frequency.

6

Traditional VPs designed to service exclusively one host scalar processor are

normally optimized for applications of a certain level of DLP and usually more vector lanes

can be added to exploit the increased DLP in new applications [Kozyrakis et al., 2003],

[Yiannacouras et al., 2008],[Yu et al., 2009]. However, an increased number of lanes will

reduce the utilization of VP resources for other applications with lower DLP. For example,

for maximum utilization a VP with four lanes running an application of VL=16 needs to

be fed with a new vector instruction every four clock cycles. If the number of lanes is

increased to 16 to also accommodate larger applications, for the former application to

achieve maximum utilization the VP must receive one vector instruction every clock cycle

that the host processor may not be capable of.

To address these challenges, a VP sharing technique named VP virtualization is

proposed, for simultaneous multithreading that achieves high aggregate VP utilization

independent of the DLP of individual vector threads. The developed multithreaded VP

accommodates up to four threads of diverse VLs simultaneously, and can scales effortlessly

to support more threads. VP virtualization solves the register name conflicts among threads

using a novel VRF virtualization algorithm, which dynamically allocates physical registers

of different lengths to threads. With the easy-to-use VRF management kernel functions,

programmers are provided with a constant register name space and the management of

VRF becomes transparent. VP sharing is applied to the aforementioned multi-lane VP

[Rooholamin et al., 2015], and the performance and energy improvement are benchmarked.

The new system consists of a VP interfaced with a five-core host subsystem. Four cores

share the VP simultaneously for running vector applications whereas the fifth core does

VP management and vector thread scheduling. The new VP can run simultaneously up to

7

four vector threads of various VLs. Any vector register name conflicts between threads are

resolved via an innovative VRF virtualization technique. Virtualization involves an

effective register management algorithm run on the control core and a hardwired

translation look-up table (TLT) for fast virtual to physical register name (i.e., ID)

translation. With VRF virtualization, the management of physical vector register names

becomes transparent to application programmers who assume a virtual register space.

Benchmarking shows a throughput improvement of up to 400% for many low VP

utilization applications compared to the older VP that did not support simultaneous

multithreading. A high throughput runtime scheduler for VP threads is also proposed.

Experiments show 322% throughput improvement and energy savings of 37% with proper

scheduling and power-gating that reduces static energy.

1.2.3 Virtualized SMT VP

VP (co)processors exploit DLP due to their SIMD specialized architecture. The modular

design of lane-based VPs empowers scalability. As a VP scales up, however, higher DLP

is required to keep its lanes fully utilized. Vector applications optimized for a given VP

size would yield poor utilization on its scaled up version with an increased number of

vector lanes. Therefore, VP sharing among many on-chip cores is recommended. Without

proper resource management, scaling will adversely lead to many idling cycles in each lane

for an otherwise efficient vector application, and thus unnecessarily drain static power

[Beldianu et al., 2015].

A flexible lane-based VP design is proposed that can wisely and dynamically

deactivate some of its lanes toward reducing the static power consumption with minimum

performance loss. A novel thread fusion technique is presented as well to be used by our

8

SMT VP for multiplying its utilization when similar threads coming from different

applications are identified in a pending vector task queue. A highly accurate power

dissipation model for the VP is developed that is used toward runtime optimization of the

energy and/or performance. The complexities of managing the VP’s fusion process and

dynamic lane configuration are hidden from application programmers via complete VP

virtualization; the VP management kernel sets VP state registers for controlling

configurable hardware components, and handling vector instruction synchronization,

vector memory (VM) access, and vector VRF usage. Each vector application is executed

as a thread with its own virtual VM address and VRF name space, and does not need to be

recompiled to run under a different VP configuration or fusion state.

In [Beldianu et al., 2015], a dynamic power-gating technique is proposed to control

the VP’s width (i.e., number of active lanes) in order to achieve optimized performance

and/or energy. Compared to [Beldianu et al., 2015], our lane deactivation process is capable

of power-gating the entire lane including its dedicated VM bank due to our distributed

memory architecture, while the memory crossbar connecting the lanes to the VM and all

memory modules always have to stay active in [Beldianu et al., 2015]. Thread fusion

[Rakvic et al., 2010] fuses parallel threads that run on the same SMT processor/core.

Instruction fusion [Lu et al., 2015] fuses identical instruction flows within unrolled loops.

While both fusion techniques are applied to general purpose RISC processors mainly

towards energy reduction, the fusion technique presented here boosts VP utilization while

reducing the host processors’ energy.

This dissertation is organized as follows. Chapter 2 mainly includes related works

which target vector processing and multithreading. The similarities and differences

9

between our work and these works are discussed in this chapter. The architecture of the

sub-system of scalar processors and its VP interface for the single host and multiple hosts

architecture are covered in Chapter 3. The VP’s architecture, including the designs of the

hazard detection unit and the VM banks, are discussed for each system separately in this

chapter. The VRF virtualization technique and resource consumption of the FPGA

prototype are also covered in Chapter 3. Chapter 4 introduces the benchmarks for the

evaluation of the proposed systems. Chapter 5 includes performance analysis involving all

the results of benchmarking on single host and multiple hosts systems. In Chapter 6,

various scheduling algorithms are proposed for the multiple hosts system. Chapter 7

analyzes the power and energy consumption for both aforementioned systems. Chapter 8

covers the hardware modifications in the SMT virtualized VP as well as optimization

processes targeting energy consumption via thread fusion and lane configuration. Finally,

conclusions and future work are drawn in Chapter 9.

10

CHAPTER 2

RELATED WORK

This chapter includes an overview of previously proposed hardware accelerators. In

Section 2.1, different types of single-threaded vector processors, which are designed to

improve high performance computing, are presented. These accelerators may be developed

for ASIC or FPGA platforms. They are versatile or application oriented. Like our single

host architecture, they are all dedicated exclusively to a single scalar processor. In

Section 2.2, various VP sharing techniques are introduced. Various types of multi-threaded

architectures are also discussed.

 Related Work in Vector Processing

The SODA VP has a fully programmable architecture for software defined radio [Lin et

al., 2006]. Using SIMD parallelism and being optimized for 16-bit computations, it

supports the W-CDMA and IEEE802.11a protocols. Embedded systems using a soft core

or hard core processor for the main execution unit also have the option to attach a hardware

accelerator to increase their performance for specialized tasks. Sometimes these

accelerators are realized using FPGA resources to speed up applications with high

computational cost. They are often referred to as soft vector processors (SVPs). Designing

a custom hardware accelerator that will yield outstanding performance needs good

knowledge of HDL (Hardware Description Language) programming. Another SIMD,

FPGA-based processor uses a 16-way data path and 17 memory blocks as the vector

memory in order to perform data alignment and avoid bank conflicts [Cho et al., 2006].

VESPA [Yiannacouras et al., 2008] is a portable, scalable and flexible soft VP which uses

11

the same instruction set as VIRAM but the coprocessor architecture was hand-written in

Verilog with built-in parameterization. It can be scaled with regards to the number of lanes

and yields x6.3 improvement with 16 lanes for EEMBC benchmarks compared to a one-

lane VP. It is flexible as the size of the vector length and its width, as well as the memory

crossbar, can vary according to the target application.

The VIPERS soft VP is a general-purpose accelerator that can achieve a x44 speedup

compared to the Nios II scalar processor [Yu et al., 2009]; it increases the area requirements

26-fold. It supports specific instructions for the applications, such as motion estimation and

median filters, and can be parameterized in terms of number of lanes, maximum vector

length and processor data width. VEGAS [Chou et al., 2011] is a soft VP with cache-less

scratchpad memory instead of a vector register file. It achieves x1.7-3.1 improvements in

the area-delay product compared to VESPA and VIPERS. Using scratchpad memory

instead of a Vector Register File (VRF), it achieves a speedup of up to 208 compared to

the Nios II scalar processor. Further improvements eliminated its ALU bottleneck and the

resulting VENICE [Severance et al., 2012] SVP doubled the performance-per-logic block

compared to VEGAS. With the integration of a streaming pipeline in the data path of

VENICE, a x7000 times speedup results for the N-body problem [Severance et al., 2014].

Application specific VPs are another type of accelerator designed and optimized to

expedite specific types of applications. An application-specific floating-point accelerator

is built using a fully automated tool chain, co-synthesis and co-optimization for SIMD

extension with a parameterizable number of vector elements [Hagiescu et al., 2011]. An

application-specific VP for performing sparse matrix multiplication was presented in

[Yang et al., 2005]. IBM’s PowerEN processor integrates five hardware application

12

specific accelerators in a heterogeneous architecture to perform key functions such as

compression, encryption, authentication, intrusion detection and XML processing for big

workload network applications. Hardware acceleration facilitates energy-proportional

performance scaling [Heil et al., 2014]. Multimedia applications containing video

processing kernels deal with massive DLP. SIMD vector architectures (i.e., VPs) are the

best candidates to exploit the parallelism in video frames. In recent years many researchers

have tried to optimize codecs for the implementation of new video coding standards such

as H.264 or MPEG4. [Iranpour et al., 2004], [Lee et al., 2004], [Kim et al., 2005], [Shengfa

et al., 2006] and [Lee et al., 2009] all proposed SIMD-based video codecs focusing on

optimizations enhancing the performance.

A major challenge with these VPs is their slow memory accesses. Comprehensive

explorations of MIMD, vector SIMD and vector thread architectures in handling regular

and irregular DLP efficiently confirm that vector-based microarchitectures are more area

and energy efficient compared to their scalar counterparts even for irregular DLP [Lee et

al., 2013]. [Lo et al., 2011] introduced an improved SIMD architecture targeting video

processing. It has a parallel memory structure composed of various block sizes and word

lengths as well as a configurable SIMD architecture. This structure can perform random

register file accesses to realize complex operations, such as shuffling, which is quite

common in video coding kernel functions. A crossbar is located between the ALU

(Arithmetic Logic Unit) and register file.

 VP Sharing Techniques and Comparisons

The idea of VP sharing for multiple threads or cores was first proposed by Beldianu and

Ziavras [Beldianu et al., 2013]. Three VP sharing policies were introduced for a multi-lane

13

VP, namely coarse-grain temporal sharing (CTS), fine-grain temporal sharing (FTS) and

vector lane sharing (VLS). Their FPGA prototype contained two scalar core processors.

Under CTS, each core reserves the entire VP exclusively until its current vector thread

stalls or completes execution, and then hands over VP access to the other core. FTS is

similar to the VP sharing scheme which is proposed here, where all cores access the entire

VP simultaneously and VP resource conflicts are resolved by an arbitrator. CTS and FTS

support sharing only for threads with the same VL (vector length; it represents the number

of elements in the vector). VLS is the only mode under which active threads using different

VLs can coexist in the VP which is split into two independent sets of vector lanes, one set

for each core; VLS relies on two vector controllers (VCs) to control the two sets. FTS

achieves the best VP utilization and may double the speedup compared to CTS while

reducing the dynamic energy by 50% [Beldianu et al., 2015].

The work here differs from [Beldianu et al., 2013] in four major aspects. Register

name conflicts for VP sharing are solved, a problem that was not mentioned in their work.

VRF virtualization greatly improves in practice simultaneous VP sharing. Otherwise,

application programmers must rename vector registers statically based on thread

combinations that will be present simultaneously in the VP; this is hardly possible in

dynamic environments with an unknown, large or infinite number of combinations.

Second, [Beldianu et al., 2013] supports VP sharing for two threads of different VL only

under the VLS execution mode that configures two independent sets of vector lanes using

two VCs. In contrast, we maximize the VP’s utilization by allowing multiple threads of

different VLs to run simultaneously on the VP. This results in substantial throughput

increases. A single VC broadcasts vector instructions to all lanes. The thread ID and VL

14

reside in each broadcasted instruction. With multiple non-empty instruction FIFOs, round-

robin arbitration decides each clock cycle the vector instruction to enter the VP. The thread

population in the VP can be increased by modifying the arbitrator’s state machine. Third,

an added FIFO structure between the VP interface and host cores eliminates frequent stalls

of the latter due to vector instruction arbitration. Under low VP utilization, an application’s

speed is bounded by its host core.

However, when multiple hosts send simultaneously vector instructions to the VP,

then only one host will get VP access in the next clock cycle. Such wastage of clock cycles

can be avoided with the implemented FIFOs since a core can keep sending vector

instructions until its FIFO becomes full; this will occur for peak VP utilization. Finally, the

crossbar between the lanes and VM banks is removed by connecting a bank’s dedicated

port to the attached lane’s LDST unit. This modification eliminates arbitrator delays in the

crossbar and improves VP throughput for sequential memory accesses that are omnipresent

due to its pipelined units that target array operations. The removal of the crossbar also

improves scalability of the VP. With both the VM and VRF distributed across the VP lanes,

scaling the VP can be effortlessly achieved by attaching more identical lanes to the VC,

which will not increase the complexity of individual lanes.

One of the innovations in the proposed VP sharing technique is similar to Intel’s

proprietary Hyper-Threading Technology (HTT), which is a simultaneous multithreading

technique for general-purpose processing [Marr et al., 2002]. The basic differences are:

(a) simultaneous multithreading is applied to vector code; (b) the threads may arrive from

different core processors; and (c) each logic processor in HTT contains a complete set of

general-purpose registers due to a rather small register space; however, a similar VP

15

approach (i.e., a distinct VRF for each vector thread) would not only require a substantial

number of register resources (due to two-dimensional vector storage) but also their average

utilization would be drastically reduced due to a much larger register population. This issue

is addressed by the proposed VRF virtualization technique; although it maintains a separate

logical vector register space for each thread, a shared physical VRF is implemented.

A general-purpose graphics processing unit (GPGPU) is capable of running

hundreds of threads simultaneously in each of its streaming multiprocessors (SMs);

however, all of the simultaneously executing threads have to be homogeneous. GPGPU

relies on thousands of homogenous threads to exploit the DLP in an application, and can

only service one host thread at a time. In contrast, a VP thread is already parallel due to the

explicit vector nature of its instructions, and the virtualized VP is capable of simultaneously

exploiting the DLP in multiple heterogeneous host threads. A VP also consumes

significantly less resource compared to a modern GPGPU. Nvidia’s latest Maxwell GPU

GTX 980 consists of 16 SMs, each with 128 CUDA cores, and the GPU has 5.2 billion

transistors [Nvidia Corp. 2014]. Without highly sustained DLP and a fine-grained power

management mechanism, many CUDA cores in an SM may idle frequently, and thus lead

to prohibitively low resource utilization and high static energy consumption.

16

CHAPTER 3

PROPOSED VECTOR COPROCESSOR

In this chapter, two system architectures are proposed. For the single host system

architecture, the proposed VP is exclusively utilized by one scalar processor while it is

placed on the shared bus and any scalar processor connected to that shared bus can use the

VP. In the multiple hosts architecture, VP virtualization is presented where multiple cores

can share the VP using simultaneous multithreading.

 Single Host System Architecture

Figure 3.1 depicts the basic architecture of the FPGA-prototyped VP in the single host

architecture. A single scalar core is based on Xilinx’s soft core MicroBlaze (MB), fetches

instructions from its instruction memory (not shown in the figure) and issues them to

appropriate execution units. The MB is in charge of executing all scalar and control

instructions while vector instructions are sent to the VP. The shuffle engine, which is

distributed along the lanes, is activated only to realize vector data shuffling with multiple

vector lanes. The design introduces two innovative concepts. First, it removes the

competition of lanes to access memory banks, which is the case for earlier works, by

employing cache-less private memories for the lanes; the private memories form a low-

order interleaved space that resides between the lanes and the global memory. Second, the

vector length can vary even between instructions in the same thread. In all previously

introduced VPs, the vector length was defined for each working context, program or thread.

It was usually a fixed number for each thread and was set in advance by the scheduler. In

contrast, this model allows the programmer to define the vector length for each individual

17

instruction. As a result, the vector length can vary widely, even for instructions in the same

loop. This unique feature of the VP is well exploited through VP virtualization.

Figure 3.1 High-level architecture of the multi-lane VP prototyped on a Xilinx FPGA in

single host architecture. The vector memory is low-order interleaved. Each vector lane is

attached to a private memory.

Data needed by applications running on the VP should be preferably stored in the

private memories of lanes. Since these private memories connect to the AXI (Advanced

eXtensible Interface) shared bus, copying the data from the global memory could be done

either by the MB or the DMA engine as both have access to the shared bus. If the instruction

and data caches also of the MB are placed on the AXI interconnect, the time needed to

copy the data from the global memory to either the vector memory or the MB data cache

will basically be the same. The same principles are applied for writing back from the VP

private memories or the MB data cache to the global memory. Block data are placed in

consecutive locations in the MB data cache while low-order interleaving among lanes is

used for the vector memory.

18

To evaluate the proposed VP model, an FPGA prototype is created with four lanes

and four on-chip memory banks that serve as local memories. The VP model is modular

and can be easily extended to include more lanes. The Xilinx Virtex6 xc6vlx240t-FF748

FPGA device is used. To reduce the complexity of the hardware design in order to track

operations progressing through the data path, rather simple execution units are included in

the vector lanes. Since each lane directly connects only to its private memory in order to

avoid contention when accessing memory banks, a very fast load-store unit was designed

in each lane as there is no chance of stalling during memory access instructions. Contention

when accessing a memory bank can only happen in the case of data shuffle instructions

which, however, are totally handled by each lane’s shuffle engine. Since the distributed

shuffle engines employ other ports of the private memory banks than those that connect to

lanes, other vector instructions can be executed while realizing data shuffling as long as no

data hazard exists between the involved instructions. Figure 3.2 shows the detailed

architecture of the single host system prototype.

The hardware design of the vector lanes, vector controller, scheduler, data shuffle

controller, data shuffle engines, and combinational crossbar and mux was done by writing

VHDL code. Xilinx IPs (Intellectual Properties) were used for the realization of the

memory banks, memory controllers, MB, and AXI4 and AXI4 Lite interconnects. The VP

was developed using Xilinx ISE version 14.5. The MB was added to the project using the

EDK tool while its configuration and connection to the peripherals was done using Xilinx

XPS. Since this work focuses on proof of concept, the prototyped VP consists of four lanes

and has 1024 32-bit registers in the VRF. It also contains a 64Kbyte vector memory that

19

can accommodate the largest developed benchmark. The rest of this section contains the

VP details.

Figure 3.2 Detailed architecture of the four-lane VP applied in single host architecture

(FP: Floating-point).

The MB soft core is a 32-bit RISC Harvard architecture [Xilinx Inc., 2010] that

supports the AXI4 and LMB (Local Memory Bus) interfaces. Version 8.40.a is

implemented with five pipeline stages and an FPU. Data and instruction caches can be

connected to either bus. For flexibility, the memory blocks are connected to both the AXI4

and LMB buses. Each bus requires its own memory controller. Only one AXI4 memory

controller is used to create a slave interface for the vector memory. The AXI4 interconnect

is good as a shared bus for high-performance memory mapping and can support up to 16

slaves and 16 masters [Xilinx Inc., 2012]. The AXI4 crossbar can realize every transfer

between interconnected IPs, like memories. Moreover, it supports the DMA-based burst

20

mode for up to 256 data transfer cycles which is suitable for transfers between the global

and private memories.

To connect the VP and shuffle controller to the MB for vector instruction transfers

from the MB, the AXI4 Lite interconnect is used which is appropriate for this type of non-

DMA memory-mapped transfers. The slave interfaces for connecting the VP and shuffle

controllers to the shared bus are developed using the create-and-import peripheral wizard

in Xilinx XPS. They both contain control registers which can be read and written by the

MB through the AXI4 lite interconnect. A hardwired scheduler for accessing the VP is

included in the VP interface. The main responsibility of the scheduler is to grant VP access

to a requesting MB based on the vector length it asks for and the current availability of VP

vector registers. Vector instructions are written into the VP using memory mapping.

3.1.1 VP Architecture and Instructions in the Single Host System

Two types of vector instructions are used by the VP. The first type does not contain data

and all the required fields for executing the instruction are placed in the 32-bit instruction;

vector-vector ALU instructions are of this type. The other instruction type consumes 64

bits that contain a 32-bit operand value; e.g., vector-scalar ALU instructions are of this

type. Since the main focus here is proof of concept for the hardware design, an advanced

compiler for the VP was not developed. Inline function calls are included in the C code for

the MB; they represent VP instructions and their realization involves macros. Since the

VP’s instruction input port is viewed as a memory location by the MB in this memory

mapped system, a small delay may occur between issuing an instruction of the second type

and the arrival of the needed operand. Thus, the scheduler sends them together to the VP

when the data becomes available.

21

Every MB that has access to the AXI4 Lite interconnect can send a request to the

scheduler for VP resource access. Each MB can access the VP as a peripheral device using

two different addresses, for sending a VP request or release instruction and a vector

instruction upon VP granting, respectively. Requests are granted by the scheduler. Threads

initiate a request to the scheduler in advance using a 32-bit instruction. This request

instruction includes the VL per register and the number of vector registers needed by the

thread. An affirmative reply by the scheduler will include a 2-bit thread ID that can be used

to get VP access. This will occur only if there is enough space in the vector register file to

accommodate the request. The MB running the thread will include this ID in all vector

instructions sent to the VP. Vector register renaming and hazard detection rely on this type

of ID. If the aforementioned conditions for the thread are not satisfied, the scheduler will

reject the thread request with information about the currently available VL and vector

registers. Although our hardware implementation allows different vector instructions to

employ different VLs, a complicated register renaming unit will be needed. Therefore, for

the sake of simplicity, in single host system it is assumed that the VP can handle two threads

at a time, from the same or different MB cores, where all instructions in both threads use

the same VL. Otherwise, it will be the compiler’s or programmer’s responsibility to employ

registers that will guarantee no conflicts in the VRF. Threads release VP resources by

issuing a release instruction to the scheduler.

The VP scheduler interfaces the VP via the VP controller (VC). The latter has a

pipelined architecture that consumes three clock cycles for register renaming and hazard

detection. Since the VP connects to AXI4 Lite via the shared bus, it can receive instructions

from any scalar processor that connects to that bus in a multicore environment; thus, the

22

VC unit can accept vector instructions from a multitude of threads and carry out register

renaming, if needed. The register renaming stage for single host system is completely

implemented in hardware and takes only one clock cycle. However, it cannot be applied

for comprehensive multithreading as it requires threads of similar VLs. RAW (Read-After-

Write), WAW (Write-After-Write) and WAR (Write-After-Read) data hazards are

resolved by the hazard detection unit in the VC. This unit resolves all possible hazards in

accessing vector registers in the lanes by using an appropriate instruction tagging

mechanism. Adding a tag to each instruction allows handshaking between the VC and VP.

The same instructions are issued simultaneously to all four lanes.

The detailed architecture of each lane is depicted in Figure 3.3. The data paths for

memory and ALU instructions are completely separated in each lane, and related

instructions and data are queued in different FIFOs. All the instructions and data in a lane

are represented using 32 bits. Memory accessing instructions always contain 32-bit

additional data to represent the private memory base address to be used. ALU instructions

for vector-scalar operations also contain a 32-bit floating point scalar. ALU instructions

are decoded by the ALU decode unit and the needed operands are fetched from the VRF.

The VRF in each lane consists of 256 32-bit locations that can store 256 single-precision

floating-point vector elements. It is accessed using three read and two write ports since the

ALU and load (part of the load-store LDST) units need two and one read port in order to

simultaneously read two and one operand respectively, and the register WB (Write-Back)

23

Figure 3.3 Lane architecture for VP in single host architecture.

and store (part of LDST) units require one write port each. In the case of contention, when

different ports want to perform different tasks simultaneously on the same location in the

VRF, the write first policy could be applied. The design results in one clock cycle latency

for sending the output to related ports; it uses output enable ports to ease the reading task.

Reading from the VRF is possible only when the output enables are triggered. The ALU

decode unit requires two read ports when reading a pair of floating-point operands to

realize vector-vector instructions. The ALU execution unit in the lane contains a floating-

point adder/subtractor and a multiplier that were developed using open source code [Open

cores, 2012]. This unit has six pipeline stages for addition and subtraction, and four stages

for multiplication; it performs operations on 32-bit single-precision floating-point data.

The results of the execution unit are sent to the WB block which connects to a write port

of the VRF for writing one element per clock cycle in a pipelined fashion.

24

Absolute and indexed memory addressing are used to access the private memories.

Absolute addressing may employ a non-unit stride. The LDST unit fetches the register

content for a store instruction from the VRF and generates the destination address for the

lane’s private memory using the base address that arrived right after the instruction. It uses

only one VRF read port. Each vector memory instruction issued to the lane has two 32-bit

fields. The first field contains the source or destination register and the stride value,

whereas the second one is a base address in the lane’s private memory. Indexed addressing

for the private memory is realized using the data shuffle engines. For load instructions, the

WB unit writes the fetched memory contents into the proper register using a write port at

the rate of one element per clock cycle. In the prototyped VP with four lanes, 1024 (i.e., 4

lanes *256 elements/lane) vector elements can reside in the VRF; the VRF is divided

evenly among the four lanes so the VL must be a multiple of four. Hence, the VRF can be

configured as 16 vector registers with VL=64, or 32 registers with VL=32, or 64 registers

with VL=16. The location of register elements in the VRF depends on the VL value and

the register ID. In the case of VL=64, for example, register “r0” contains all the elements

of “r0” and “r1” for VL=32.

The ALU and LDST decode blocks in each lane include counters for

synchronization when reading from the VRF and feeding the data to the next block; they

are initialized based on the VL assumed by the instruction. Since the design avoids memory

stalls by making a private memory available to each lane, all lanes remain synchronized in

the full pipeline utilization mode where one element is processed every clock cycle in the

lane. This synchronization flexibility allows dynamic changes of VL’s value for any given

instruction. For example, the vector-vector instruction “r2 <= r0+r1” for VL=32 can be

25

substituted by the two vector-vector instructions “r4<=r0+r2” and “r5<=r1+r3 for VL=16,

and vice versa, within a thread or a loop since the corresponding registers include the same

elements from the VRF (as per the preceding paragraph).

For memory access instructions without data shuffling, the shuffle engine adds no

delay since the combinational crossbar is placed in the middle of the connection between

the AXI4 shared bus and the memory port. Since both the shuffle engine and the MB use

the same memory ports when accessing the private memory, only one of them can write to

or read from the memory in any given clock cycle; the access decision is made by the

shuffle engine and is realized via the crossbar. Each lane uses independent ports to access

its private memory and the LDST unit can execute the next memory access instruction

while data shuffling is performed as long as there are no data hazards. If there is an access

contention on a memory bank while running a data shuffle instruction, the shuffle engine

will apply the round robin scheduling policy. Indexed memory addressing also can be

realized by the shuffle engine. The shuffle controller simultaneously provides to all four

shuffle engines the information needed for shuffling (i.e., the source, destination and index

register values).

3.1.2 Pipelined ALU and LDST Unit

The VC as well as the vector lanes are pipelined. The first block in the VP’s data path is

the VC which has three pipeline stages for register renaming, hazard detection, and

separating for forwarding the ALU and LDST instruction word components (e.g., base

address or scalar operand), respectively. Two clock cycles are consumed in either FIFO to

pass an instruction and its data to the VP. The ALU decode unit consumes four clock cycles

for decoding, fetching operands and feeding them to the execution unit. The floating-point

26

execution unit consumes six clock cycles for processing and an additional cycle to receive

an acknowledgment from the WB unit after writing a result into the VRF. Thus, the total

latency for filling up the pipeline with ALU instructions is sixteen clock cycles (accounting

for all delays in the lane and VC), as shown in Figure 3.4 (the first three stages are inside

the VC).

Memory access instructions are decoded by the LDST decode unit which contains

six pipeline stages for instruction decoding, data fetching from the VRF and address

generation when executing store instructions. For a load involving the private memory, two

more clock cycles are added representing a memory access and data latching by the WB

unit, respectively. There is also one clock cycle delay between fetching consecutive vector

instructions from either FIFO. This delay eases functional verification and instruction

tracking through the data path during behavioral simulation, since it represents a high-

impedance state (‘Z’) delineating consecutive instructions. The total latency for filling up

the pipeline is 11 and 13 clock cycles for a store and a load instruction, respectively, as

shown in Figure 3.4. For data shuffle instructions, the data path consists of the shuffle

controller and shuffle engines. For a shuffle instruction, the shuffle controller accepts three

addresses representing the location of the source, destination and index data in the vector

memory. This controller will not initiate data transfers until all the required information for

the desired permutation becomes available. After sending the information to the shuffle

engines, four clock cycles are needed per element to fetch the data and the corresponding

index from the memory, and at most four more clock cycles to apply round-robin

scheduling upon data collision involving any of the four private memories.

27

Figure 3.4 Pipelined structures in the ALU and LDST data paths.

3.1.3 Resource Utilization in Single Host System

Before demonstrating the proposed architecture’s performance achievements, it is essential

to know the silicon area occupied by this design. The architecture of Figure 3.2 was

synthesized for the Virtex6 xc6vlx240t-FF748 FPGA device which is organized in

columns and is built with a 40nm copper CMOS process. This Xilinx device includes

37,680 slices, where each slice contains 4 LUTs and 8 flip flops for realizing configurable

logic. It also includes 768 DSP48E1 DSP modules, where each module contains an 25*18-

bit multiplier, an adder and an accumulator. There are also 344 block RAMs (BRAMs) of

36 Kbits each which are used to realize memory components in digital designs. The overall

resource consumption of our design is presented in Table 3.1. The MB system consumption

in the table is without the VP and the connection interfaces of Figure 3.2. It can be

28

concluded that the VP accelerator consumes almost 11times as much area as the MB in an

effort to speed up data-parallel applications. Also, the data shuffle engines do not consume

many resources. It will be extrapolated further in Chapter 7 by investigating the dynamic

energy consumption of these resources for a set of benchmarks.

Table 3.1 Resource Consumption for Single Host System.

Entity Slice Registers

(% Utilization)

Slice LUTs

(% Utilization)

RAMB36E1s

(% Utilization)

DSP84E1s

(% Utilization)

Vector Processor 45212 (14.9%) 69127 (45.8%) 0 4 (0.5%)

Vector Memory 2 (0%) 296 (0%) 16 (3.8%) 0

Shuffle Engines 1320 (0.4%) 1228 (0.8%) 0 0

MB System 4947 (1.6%) 6183 (4.1%) 16 (3.8%) 3 (0.4%)

 Multiple Hosts System Architecture

As shown in Figure 3.5, this prototyped system consists of two sub-systems, namely a

heterogeneous component with five scalar processors and the VP. The scalar processors

sub-system (SPS) runs system managing applications as well as the flow control part of

vector applications, and sends vector instructions to the VP. The TLT, which provides

hardware support for real-time VP register renaming, is also managed by the SPS. The

interface between the SPS and the VP is pipelined, and the VP can read up to one 32-bit

instruction/datum and three 6-bit physical register names from the SPS in each clock cycle.

A detailed discussion of the SPS follows. More VP details follow in 3.4.

MB, a 32-bit RISC embedded soft processor provided by Xilinx, is the chosen

architecture for the scalar processors, namely MB0 to MB4, in the SPS. The MB’s Harvard

architecture in the SPS interfaces a fast local memory (LM) that stores frequently used

library functions. LM blocks can be initialized from the FPGA’s flash memory upon power

29

up; the connections are omitted in Figure 3.5. The libraries can also be modified at runtime

by attached MBs. In addition to regular load/store instructions which can access memory

and I/O devices mapped within the 4GB address space, MB supports a special interface

known as AXI4-Stream (AXI4-S). The MB’s AXI4-S interface can be accessed using

put/get instructions; each AXI4-S interface consists of one input and one output port,

providing a low latency dedicated link to the processor’s pipeline. Each MB can be

configured with up to 16 AXI4-S interfaces. The AXI4-S interface is widely used in the

developed multiple hosts system for inter-core and core to custom-hardware connections.

Figure 3.5 Multicore architecture for VP sharing (Instr Arb: vector instruction arbitrator).

30

Put/get instructions are of two types: blocking and non-blocking. Blocking

instructions will stall the MB pipeline if the receiver/sender is not ready to receive/send

data. On the other hand, for non-blocking instructions the processor will keep executing

instructions without receiver/sender acknowledgments; a polled software flag indicates a

successfully completed transfer. Both types of put/get instructions are used for reasons

explained later in this section.

3.2.1 The System Core

MB0 is at the center of the SPS. It is connected to the other four MBs and the TLT using

the AXI-S interface. MB0 performs the following tasks: i) It runs the register management

algorithm that supports VRF virtualization. ii) It updates the TLT based on the mapping of

virtual vector registers used by a thread to available physical registers in the VRF; the

mapping is produced by the register management algorithm. iii) It estimates the VP

utilization using information for tasks running on the VP and schedules new vector threads

based on this estimate. iv) For simplicity without loss of generality, in the benchmarking

MB0 notifies the application cores (MB1-MB4) about new tasks assigned to them.

v) Finally, it polls MB1-MB4 for task completion before releasing VP resources.

MB0 is connected to the TLT using only the output port of its AXI-S interface. It

uses a non-blocking put instruction since MB0 knows when the TLT is ready to be written.

The connections between MB0 and the slave cores are bi-directional and facilitate non-

blocking put/get instructions to free MB0 from slave acknowledgments while enabling the

fine-grain monitoring of slave status. MB0 knows the state of every slave core and only

assigns tasks to idle cores. Using a non-blocking get instruction, MB0 polls frequently each

slave for task completion. A task completion flag written by the slave is checked by MB0

31

for avoiding the premature release of VP resources occupied by the task. MB0 is attached

to a fast 32KB LM that contains the register management and thread scheduler codes. Since

MB0 needs to run only integer code, an FPU is omitted for resource and power efficiency.

3.2.2 Application Cores

MB1-MB4 serve as application cores (ACs). Each AC runs applications that may contain

function calls to vector kernels. These vector kernels are part of a library stored in the

attached 16KB LM. For the sake of benchmarking the proposed VP virtualization

technique, it is assumed here that the ACs receive commands from MB0 to execute vector

kernels and then send an acknowledgment to MB0 upon successfully completing this task.

This behavior of the ACs is represented by the finite state machine (FSM) of Figure 3.6.

The AC, which starts in the wait state, executes an application after receiving an MB0

command. When the application finishes, the AC sends an acknowledgment that sets a flag

which is periodically checked by MB0; the AC goes back to the wait state. Serving as

slaves to MB0, the ACs use blocking put/get instructions to communicate with MB0

through the AXI-S interface. Blocking put/get instructions ensure that an AC trying to

communicate with MB0 stalls its pipeline until a command or acknowledgement arrives

from MB0.

Each AC is also configured with another AXI4-S interface that connects it to its

dedicated vector instruction FIFO (see Figure 3.5). An AC running vector application

kernels generates vector instructions which are forwarded to this FIFO. Vector instruction

details are covered in Section 4.2.1. Each vector instruction goes through the VP instruction

arbitrator before it reaches the VP for decoding and execution. The AC runs the serial code

of the application.

32

Figure 3.6 The FSM model for AC behavior (CMD: command; APP: application; ACK:

acknowledgment).

3.2.3 Vector Instruction FIFOs and Arbitrator

The vector instruction FIFOs in the prototype are constructed using Xilinx IPs and are

configured as First Word Fall Through (FWFT) FIFOs with a depth of 16 32-bit words.

The arbitrator is custom hardware that is developed in VHDL. The FIFOs and arbitrator

play important roles in system performance, especially when the VP utilization is relatively

low for the following reason. To ensure that each vector instruction is received properly,

an AC sends vector instructions or relevant data using a blocking put instruction that stalls

the AC pipeline until the transaction is acknowledged. Due to VP sharing in this system,

multiple ACs may send vector instructions at the same time. With the FIFOs added

between the ACs and the VP, each AC can keep issuing vector instructions until its

dedicated FIFO becomes full, which implies that the VP has saturated.

A smart round-robin arbitrator is implemented to share the VP resources equitably

among all four ACs. To eliminate unnecessary clock wastage, only non-empty FIFOs are

33

polled. The FIFOs and pipelined arbitrator are carefully designed for high throughput. The

arbitrator consists of two stages that realize arbitration and handshaking with the VP’s

receiving unit, respectively. The FIFO and arbitrator interconnects provide a bandwidth of

one 32-bit instruction/data per clock cycle with the SPS and VP respectively, which

suffices to sustain peak VP performance.

3.2.4 The System Bus

An AXI4 bus connects the five MBs with the system and vector memories. This 32-bit

system bus is optimized for high performance with separate read and write channels; it also

supports incremental bursts of up to 256 bus-wide data transfers. The 128 KB system

memory is accessible by the five MBs and external I/O devices, while the vector memory

is accessible by the MBs and the VP. Application data are initially stored in the system

memory and are moved to the VM for VP processing. A DMA engine can expedite these

transfers. Each VM bank has two ports; one port directly connects to a lane’s LDST unit.

With four direct connections between VP lanes and VM banks, a four-fold bandwidth

increase can be achieved between the VP and the VM compared to a system with a

crossbar [Beldianu et al., 2013]. The other port of each bank is connected to the system bus

in a low-order interleaved fashion; sequential data communicated by a MB or the DMA

engine are low-order interleaved among the four banks to support fast pipelined accesses.

I/O devices attached to the system bus can support debugging, display or other data

input/output capabilities. For VP benchmarking, data is initialized in the system memory

and configure LEDs for debugging using general-purpose input/output (GPIO) channels.

34

 VP Virtualization

Without loss of generality, the multiple hosts system prototype supports VP sharing with

up to four threads running simultaneously, where each thread uses a VL from the set {16,

32, and 64}. To support VP sharing for achieving the highest thread throughput, a runtime

VRF virtualization technique was invented that resolves register conflicts among

competing active threads. Each vector thread is programmed with its own independent

virtual register name space and at run time virtual register names are mapped to physical

names based on the availability of VP registers. The VRF virtualization technique involves

two components: (1) a register management algorithm run by MB0 that determines virtual

to physical vector register mappings; and (2) a hardwired TLT that facilitates the fast

translation of IDs between virtual and physical registers after the former algorithm

completes the mapping process. Using a convenient programming interface for this

prototype, which is supported by the VRF virtualization technique, applications have

access to virtual vector registers 0 to 31 for VL=16 or 32, and 0 to 15 for VL=64; this

choice matches the physical VRF size as discussed in the next subsection. It is not assumed

the uncommon case of 64 vector registers with VL=16 since it will also increase

unnecessarily the complexity.

3.3.1 The Vector Register File

The physical VRF consists of 16 vector registers where each register can store 64 (i.e.,

VL=64) 32-bit elements. If needed, each register of VL=64 can be split into two registers

of VL=32, and each register of VL=32 can be further split into two registers of VL=16.

The notation reg_64(n-1) is used to represent the n-th physical vector register for VL=64,

where n=1, 2, …, 16. As illustrated in Figure 3.7, reg_64(0) can be split into reg_32(0)

35

and reg_32(1), or further to become reg_16(0), reg_16(1), reg_16(2), and reg_16(3). The

vector instruction decoder needs both a register’s physical name and the VL of the

instruction to physically locate a register in the VRF. In the VP design, each vector

instruction contains a 2-bit thread ID, the 5-bit IDs of involved virtual registers, and the

VL of the instruction encoded in a 2-bit field. The thread ID and the virtual register IDs are

used to obtain physical register IDs from the TLT, as discussed in the following section.

3.3.2 The Vector Register Management Algorithm

The functional blocks of the register management module (RMM) and its TLT interface

are shown in Figure 3.8. The vector register management algorithm is developed to support

an independent/virtual space of 32 vector registers for each thread. The RMM receives as

input a request to either allocate new registers, with the needed VL and number of registers,

or release registers, with the ID of a vector thread that just completed execution. After

Figure 3.7 VRF structure in multiple hosts system.

properly processing the input command and updating the register and thread state

accordingly, the RMM responds to the corresponding core by providing the assigned thread

36

ID. To minimize vector register fragmentation, the register access queues as well as the

register split, allocation, release and merge/recovery mechanisms give priority to the

preservation of registers with larger VL. More details follow later in this section. For our

current benchmarking, the functionality of RMM is realized in software by MB0. A

hardwired version of RMM is a future objective towards even higher performance and

lower energy consumption.

Figure 3.8 RMM (Register Management Module) and its TLT interface.

Figure 3.9 shows two data structures for VRF management. Struct vp_control

contains data needed to manage VRF. Each register is an instance of struct

37

vp_reg; there are three vp_reg arrays in vp_control for VL=16, 32 and 64, respectively.

A register’s vp_reg record is located by using its physical ID as the index into one of the

three arrays. If the register is available for access, vp_reg can also be accessed using the

quick access queue. Inside vp_reg, field rname is the physical name of the register; it

initializes to the index within the array. Field in_queue is set to ‘1’ when a register is put

into the fast access queue; it is available to be assigned to a thread or to be split for smaller

VL. After a register is assigned or split, in_queue is set to ‘0’ and used is set to ‘1’. Fields

prev and next are used to implement the fast access queue (a doubly linked list).

Figure 3.9 Data structures used to manage the VRF.

The fast access queue is accessed to identify an available register for allocation or

splitting. Using one of the head_16, head_32 and head_64 pointers in vp_control, the

vp_reg record of the first available register in a queue is found and its fields are modified

accordingly. Before any thread accesses VP, vp_control is initialized. No register is used

initially, therefore the fields representing the number of registers available for VL=16, 32

struct vp_reg
{
int rname; //Register's physical name
int in_que, used; //Register's status
vp_reg *prev, *next; //Pointers for implementing the access queue
};

struct vp_control
{
vp_reg reg_16[64], reg_32[32], reg_64[16]; //Array of all the registers
vp_reg *head_16, *head_32, *head_64; //Head of access queue for each VL
int avail_16, avail_32, avail_64; //Number of registers available for each VL
int in_que_16, in_que_32, in_que_64; //Number of registers in the fast access queue
int thread_len[4]; //VL for each thread
int thread_num[4]; //Number of registers used by each thread
int tlt_table[32][4]; //Mapping of virtual name to physical name
};

38

or 64 are 64, 32 and 16, respectively. Initially, all 16 registers with VL=64 are ready to be

accessed or split; therefore, they are arranged into the fast access queue pointed to by

head_64. The other two access queues for VL=32 and 16 are initially empty. Fields

in_que_64, in_que_32 and in_que_16 are initialized to 16, 0 and 0, respectively.

3.3.3 Assigning/Releasing VRF Resources

When a thread requests VP access, its VL and needed number of registers are provided.

Based on VL’s value, avail_16, avail_32 or avail_64 within vp_control is compared with

the latter number. If the remaining number of available registers is not enough for the

thread, VP access is denied. Otherwise, the thread is assigned an ID (0 to 3) for unique

identification while using the VP, and register allocation begins. thread_len[ID] and

thread_num[ID] in vp_control are modified to record the thread’s VL and number of

registers.

Only vector registers in the fast access queue are allocated. When registers of

VL=16 are needed, their available number in the queue is checked; if the number is not

sufficient, registers in the queue of VL=32 are split. If registers in the queue of VL=32 are

not sufficient, registers in the queue of VL=64 are split. Whenever a register of VL=N is

split, for N=64 or 32, the respective number of VL=N registers in the queue and the

potentially available number of registers are decremented by one. However, for registers

of VL=N/2, their number in the queue is incremented by two while their number of

potentially available remain unchanged until the register is actually allocated.

After register splitting, there will be sufficient registers in the fast access queue

representing the VL of the assigned thread. Chosen registers are removed from the queue

for allocation. The physical IDs of the registers are stored into TLT and tlt_table in

39

vp_control. The physical names in tlt_table will later be used to release VP registers. TLT

has three read ports and contains the same information with array tlt_table; it supports

three VP register name readings per clock cycle. VP uses the 2-bit thread ID concatenated

with the 5-bit register ID to form an index into the 128-entry TLT for locating the physical

register ID used by a vector instruction.

When a thread finishes execution, the tlt_table entries assigned to the thread are

identified for releasing its registers. Instead putting it back into the fast access queue, a

released register may be combined with its “sister” register to form a register of higher VL

depending on the current status of VRF. For example, reg_16(15) is checked when

reg_16(14) is released. If reg_16(15) is not in the access queue, reg_16(14) is returned to

the queue. Otherwise, the two registers are combined into reg_32(7); it may trigger the

recovery of reg_64(4) based on the status of reg_32(6).

3.3.4 VRF Fragmentation Issues

The VRF management algorithm is designed to minimize register fragmentation by

forming registers of larger VL upon releasing VP threads. However, if the VP threads do

not complete execution in the reverse order of their VP instantiation, fragmentation can

still occur. To evaluate the efficiency of the algorithm, an experiment was performed

involving random VP request/release calls. After each request/release call, the number of

fragmented reg_32 and reg_64 are counted. The number of request failures are also

counted due to register fragmentation. Random calls are generated using the rand() C

function for random integer number generation. When the VP is not occupied by any

thread, the call is a request; when the VP is fully occupied by four threads, it is a release;

otherwise, release and request have equal probability.

40

For a VP request, all three VLs have the same probability; once the VL is set, all

possible numbers of registers for that VL are chosen with equal probability. For a VP

release, all the current VP threads have the same probability of being released. This random

calls were repeated 109 times. The numbers of fragmented reg_32 and reg_64 and their

duration (measured in number of calls) are plotted in logarithmic scale in Figure 3.10. In

the worst case, two out of the thirty-two reg_32 and three out of the sixteen reg_64 are

fragmented. However, fragmented registers are not present more than 98% of the time.

591,441,754 of the 109 random calls are for VP requests, and 408,558,246 of them succeed.

Among the request failures, only 155,865 are due to fragmentation, thus fragmentation may

impact a request only with a 0.026% probability.

Figure 3.10 Duration of fragmented registers for VL=32 and 64.

 VP Architecture in the Multiple Hosts System

The VP consists of a VC, a data hazard detection unit, the VRF containing 1024 32-bit

elements, a VM of size 64KB, and four vector lanes; each lane has a LDST unit and a

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

1E+9

1E+10

0 1 2 3

R_32 Frag

R_64 Frag

D
u

ra
ti

o
n

Number of Fragmented Registers

41

FPU. The VM is divided into four low-order interleaved banks; each bank is a true dual-

port RAM with one port connected exclusively to one of the vector lanes and the other port

connected to the system bus shared with the SPS. Whereas each vector lane can only access

its own dedicated memory bank, all scalar processors and the DMA controller can access

all four VM banks. Application data are initially stored in the system memory, and are

transferred for VP processing to the VM banks using either the DMA engine or one of the

ACs. Figure 3.11 shows the detailed architecture of the VP prototype applied in multiple

hosts system. Two types of vector instructions are used by VP which were described in

Section 3.1.1. Since here also focus is proof of concept for the hardware design, an

advanced compiler was not developed for the VP. Vector instructions are generated by ACs

using macro definitions in C code, and are sent to the VP via the arbitrator interface.

The VP has the same pipeline stages as discussed in Subsection 3.1.2. The internal

architectures for realizing the register renaming and hazard detection stages are completely

different. The following sections describe how these two first stages work to support SMT

performed on the multiple hosts system.

Figure 3.11 Detailed architecture of the VP applied in the multiple hosts architecture.

42

3.4.1 VP-MB Interface

The arbitrator in the SPS interfaces the VP via the VC. The latter has a pipelined

architecture that consists of three stages for register renaming, hazard detection and data

path separation, respectively. The VC always gives transaction permission to the arbitrator

unless VP resources are not available (i.e., the lane FIFO is full) or a previous instruction

has been stalled due to a data dependency. Register renaming is performed by reading

physical register names/IDs from the TLT, which is managed and updated by MB0 in the

SPS. Each vector instruction uses at most three vector registers, and therefore the TLT is

triple-ported. Each vector instruction contains up to three register name fields, which

represent the virtual names of the source and destination registers. In the first stage of the

VC (the renaming stage), these virtual names are replaced by their corresponding physical

names, which are mapped using the VRF virtualization technique introduced in

Section 3.3.2.

3.4.2 Hazard Detection

After updating the register name fields, instructions enter the Hazard Detection Unit

(HDU). RAW, WAW and WAR data hazards are detected by this unit to provide control

signals to the VC. The VC then resolves all potential data hazards by stalling instructions

that are dependent on other instructions in the pipeline, to assure the proper order of register

access. This prototype can process simultaneously four vector threads by assigning distinct

IDs to threads. Since there is no data dependency across different threads, the HDU is only

responsible for detecting data hazards within each thread. The modular HDU design is

scalable to eventually support more simultaneously executing threads. Each HDU module

has a temporary slot that buffers the previous instruction of a thread that entered the vector

43

lanes, and a counter that counts the number of remaining same-thread instructions in the

lanes. A buffered instruction is a potential cause of hazard since the next incoming

instruction may depend on it. The counter of instructions is incremented by one upon the

VC issuing a new vector instruction from the same thread; it is decreased by one when an

instruction from the thread completes execution. Involved lanes broadcast an

acknowledgment with the thread ID to all the HDU modules when an instruction

completes; the module with the matching thread ID will then update its counter. Due to the

separate data paths for ALU and LDST instructions in the lane design, the counter may be

decremented by two when two instructions simultaneously completing execution in the

two data paths belong to the same thread. A counter value of zero means that there is no

pending instruction in the lane for this thread, so there is no need to check the buffered

instruction for hazards. When an instruction enters the HDU, the HDU module that

corresponds to the instruction’s thread-ID is chosen to perform hazard detection. The

instruction is compared against the buffered instruction in the module; if a data hazard is

detected, the instruction will be stalled from entering the lanes until the counter’s value is

reduced to 0.

This mechanism adds only one extra pipeline stage and does not decrease the

throughput without hazards. With a data hazard, the instruction in the HDU stage stalls

until its dependent has gone through the safe point; by the time the former starts fetching

its first operand, the latter will have written its first result. For longer VL instructions, the

pipeline will still be fully filled even with a hazard. With VL=16, at most three bubbles

will be injected into the pipeline due to a stall. The stall cannot be avoided with in-order

44

execution. However, since the design targets SMT assuming no dependencies among

threads, the HDU’s performance impact is almost negligible.

3.4.3 Vector Lane Structure in the Multiple Hosts System

The detailed lane architecture is depicted in Figure 3.12. The modular VP model can be

easily extended to include more lanes. To reduce the complexity of the hardware design in

order to track the progress of operations through the pipeline, relatively simple execution

units are used in the vector lanes. Once a vector instruction has passed the hazard checking

phase, it is broadcasted to all vector lanes for execution. The pipelines for LDST and ALU

instructions are exactly the same as discussed in Section 3.1.1. The only difference is

related to performing handshaking for hazard detection. In the tagging mechanism, only

the TAG field of every instruction is sent back to the VC once the instruction has passed

the safe point; in contrast, as discussed in Section 3.4.2 here the thread ID is passed.

For load instructions, the WB unit writes the fetched memory contents into the

proper register using a write port at the rate of one element per clock cycle. Each lane is

directly connected to its private memory in order to avoid contention when accessing

memory banks, and therefore a high throughput LDST can be implemented since memory

access will never be stalled due to arbitration. The need for arbitration often drags down

performance in designs where all memory banks are accessible by all lanes. Since a VP

lane only occupies one port and every VM bank is dual-ported, the other port can be

dedicated to the AXI4 bus. With such a configuration, LDST instructions can be executed

without affecting data transfers between the system memory and VM. The ALU and LDST

decode blocks in each lane include counters for synchronization across different lanes, and

the counter values are initialized based on the VL field contained in vector instructions.

45

Since each vector instruction contains its own VL information, the VP no longer needs to

keep the VL state. Vector instructions with different VLs can coexist in the VP lanes,

making the VP extremely flexible in handling applications with different VLs.

Figure 3.12 Vector lane architecture for the multiple hosts system.

3.4.4 Resource Utilization in the Multiple Hosts System

The multiple hosts system is prototyped on a Xilinx Virtex6 xc6vlx240t FPGA device. The

entire VP, the vector instruction arbitrator, and the TLT are custom designed in VHDL.

The rest of the system is constructed by connecting various IP cores provided in the Xilinx

tool chain. The system is fully synthesized and routed, and the FPGA resource consumption

46

is shown in Table 3.2. The FPGA device contains 37,680 slices; each slice has eight

registers and four 6-input lookup tables (LUTs). Each register is implemented with flip-

flops or latches, and each LUT may be composed of a pair of 5-input LUTs. Some LUTs

are implemented as small RAM blocks which are known as distributed RAMs. Large RAM

memory can be realized using 36Kbit BRAM blocks (RAMB36E1). Embedded DSP slices

(DSP48E1) contain a hardwired 25x18 two's complement multiplier/accumulator. The

VP’s FPUs are designed with custom logic for ASIC implementation, and therefore do not

employ DSP slices. Only four DSP48E1s are used in the VP, one for each vector lane’s

synchronization counter. The entire VP subsystem and its SPS interface (including the

vector instruction FIFOs, arbitrator and TLT) consume 13.9% and 45.8% of the total

registers and LUTs. The resource consumption of FPGA-based designs relies somewhat

on the randomness of the routing process. Some registers and LUTs are simply used as

wires and buffers to reduce critical path delays. Therefore, the actual minimum amount of

resources required to implement the system is lower than that in the table.

The entire design flow relies on the Xilinx ISE design suite. For simulation

efficiency, all performance results presented in Chapter 5 and Chapter 6 are based on cycle

accurate behavioral system simulation. For highly accurate power measurements, the post-

place-and-route simulation was performed on the VP at a fine detail, down to the switching

of individual LUTs. The binaries for each benchmark were generated and used as

testbenches to obtain Switching Activity Interchange Format (SAIF) files, which were used

by the Xpower Analyzer to calculate the accurate power consumption.

47

Table 3.2 Resource Consumption for Multiple Hosts System.

Entity Slice

Registers

(%Utilization)

Slice LUTs

(% Utilization)

RAMB36E1s

(% Utilization)

DSP48E1s

(% Utilization)

1 Vector Lane

(ALU+LDST+VRF)

10247 (3.4%) 17035 (11.3%) 0 (0%) 1 (<1%)

VM (4 Banks) 16 (<1%) 272 (<1%) 16 (3.8%) 0 (0%)

VC (Including HDU) 358 (<1%) 305 (<1%) 0 (0%) 0 (0%)

VP (VC + 4 Lanes + VM) 41378 (13.7%) 68717 (45.6%) 16 (3.8%) 4 (<1%)

VP/SPS Interface 388 (<1%) 283 (<1%) 0 (0%) 0 (0%)

VP + VP/SPS Interface 41766 (13.9%) 69000 (45.8%) 16 (3.8%) 4 (<1%)

SPS 9962 (3.3%) 15268 (10.1%) 73 (17.5%) 23 (3%)

48

CHAPTER 4

BENCHMARKING

 Benchmark Suite for the Single Host System

The FPGA-based simulation testbench was built using the Xilinx Project Navigator for the

single host system. The chosen working frequency of 50 MHz for the VP is the result of

the open source codes used to implement the ALU’s FPU. However, critical path delay

analysis shows that the VP’s clock cycle could become as low as 7.01 ns (i.e., a frequency

of 142.65 MHz) corresponding to the path delay in the adder. This delay is due to 32 levels

of logic. The earliest and latest signal arrival times are 1.897 ns and 2.126 ns, respectively.

A 50-MHz frequency was thus chosen for the MB and all the peripherals (e.g., memories,

memory controllers and VP).

4.1.1 Vector Instruction in the Single Host System

Various vector-intensive benchmarks were employed to evaluate the developed design.

Since MB is a soft core processor, the simulation of the executable file is performed using

the developed RTL model. By performing behavioral simulation, all the ports, signals and

memories in the system can be accessed. All the system components are integrated using

the ISE project navigator and all the connections are made according to the architecture

described in the previous chapter. The designed hardware is exported to the SDK tool so

that the execution of developed application benchmarks can be driven by the scalar

processor. The inline embedded macros for the VP are hand-coded to maximize its

performance. Also, the drivers for the vector and shuffle controllers are developed

manually using inline assembly coding. For a fair comparison with code run exclusively

49

on the MB, the MB’s data and instruction caches are attached to the AXI4 memory; the

time taken to transfer, via the DMA engine or the scalar processor, data from an external

memory, such as DDR, to the data cache and private memories is the same since all connect

to the same shared bus, and use the same clock signal and protocol. However, DMA is

much faster in the burst transfer mode and should be used for preloading memories.

Although the time taken by data transfers in the performance comparison between

the MB and the VP is excluded, the extra time is counted when data is moved between the

cache and private memories. Since the private memories are connected independently to

the AXI4 interconnect, all of them are accessible and addressable by both the MB and the

DMA engine using low-order interleaving. Both the MB and DMA controller view the four

private memories as a big vector memory with a single base address. Low-order

interleaving is realized by the MUX block. The MB has access to all locations in the vector

memory using its base address and the appropriate offset each time. In this prototype, each

private memory is 16 Kbytes, so 64 Kbytes of vector memory are available to store

application data.

Two distinct types of vector instructions, without (type 1) and with address (type

2) inclusion, are embedded in the C code run by the MB (i.e., using inline macro calls).

The MB runs them as one or two store word (SW) instructions, respectively, targeting the

VP’s memory-mapped interface. Figure 4.1 shows how type 1 and type 2 instructions are

defined using C functions, and how they are used to create macros that represent VP

instructions. The type 1 __ADD instruction only needs 32 bits, whereas the type 2 __VLD

(unit-stride load) and __VST (unit-stride store) instructions also carry a 32-bit address. The

C code in Figure 4.1 loads two 16-element vectors from the VM and stores the summation

50

result back in the VM. The C structure that defines a vector contains two unsigned integer

fields representing the vector’s VL and a pointer to its first element in the VM. The latter

field actually contains the offset of the first element which must be added to the base

address of the VM.

To compile each benchmark written in the C language and containing inline macros

for the VP, the MB GNU mb-gcc tool is applied twice, with and without optimization,

respectively. Maximum optimization (O3) is invoked that involves inline functioning, loop

unrolling and strict aliasing. This optimization causes code rearrangement in order to

increase the rate of issuing vector instructions. Eight benchmark algorithms with three

alternatives each for the VL value are tested. Therefore, results for 24 benchmark

instantiations are presented for single host system. All the benchmarks are developed using

the VP’s instruction set architecture (ISA) shown in Figure 4.2.

4.1.2 Benchmark Applications for Single Host System

The first benchmark is the multiplication of square matrices with size 16*16, 32*32 and

64*64. Three benchmark algorithms are developed for matrix multiplication to run on

single host system. Algorithms 1 and 2 calculate one element of the resulting matrix in

each loop iteration. Only the location of additions differs between these two algorithms

(details follow in the Section 5.1.1). Algorithm 3 improves the vectorization ratio (i.e., ratio

of vector to scalar code) since all the elements of a row in the resulting matrix are calculated

in each loop iteration.

 For the sake of comparison, sequential C code for the MB scalar processor is also

developed for matrix multiplication that represents the same number of operations with

each of these algorithms. Two benchmark algorithms implement FIR (Finite Impulse

51

Figure 4.1 Example of C code showing VP instructions implemented as macro calls for

vector addition in single host system.

Figure 4.2 ISA of the VP.

52

Response) digital filtering and use the outer product [Sung et al., 1987]. 16, 32 and 64 tap

FIR filters are realized. One of these benchmarks (Algorithm 2, which is presented below),

applies special memory initialization to maximize the vectorization ratio in a way that takes

advantage of unrolling the loop four times. In this method the coefficient window slides 4

times over input sequence instead of once in every iteration. This was realized by

initializing four copies of the input sequence in the VM with each first element of the

sequence located in a different memory bank.

The next two benchmark algorithms implement FFT using a 16, 32 and 64 point

decimation-in-time radix-2 butterfly algorithm [Cooley et al., 1965]. Shuffle instructions

are executed in each stage. In each benchmark execution, the results of performing data

shuffling by the scalar processor and the shuffle engine, respectively, are observed and

compared. More details about the FIR and FFT benchmark variations follow in the

Section 5.1.1.

The last benchmark is RGB2YIQ (RGB to YIQ color space) mapping. This

benchmark, which is the most vectorizable, is run on 16*16, 32*32 and 64*64 pixel

matrices. All these benchmark instantiations were also implemented on the MB using

sequential code.

 Benchmark Suite for the Multiple Hosts System

Various vector-intensive benchmarks were employed to evaluate the design in the multiple

hosts system. Some benchmarks are already applied and explained in the single host

system. Here the 100 MHz working frequency is selected for running benchmarks.

However, as the single host system critical path delay analysis shows, the VP’s clock cycle

53

could be as low as 7.01 ns (i.e., representing 142.65 MHz), corresponding to the path delay

in the adder.

Although different frequencies are applied to benchmark the single host and

multiple hosts systems, this may not cause any concern in the presentation of results due

to the following reasons:

1. The only result which depends on the frequency is the execution time which, however,

can be easily converted to a cycle count result for better evaluation.

2. The VP utilization in each scenario is completely independent of the working frequency.

3. The comparisons for both systems are based on the speedup achieved, which is

independent of the working frequency.

4. Power and energy analysis for each benchmark is performed on the desired frequency

and presented accordingly.

4.2.1 VP Instruction and Compilation for the Multiple Hosts System

As shown in Figure 4.3, two basic types of vector instructions are sent to the VP: without

(type V_instr_a) and with a scalar operand (type V_instr_b). Macro definitions ease

programming by providing an assembly-like VP programming interface. As an example,

Figure 4.3 shows the macro definition for the 32-bit __ADD (vector-vector add) type a

instruction, and the __VLD (unit-stride load) and __VST (unit-stride store) type b

instructions that hold an extra 32-bit scalar operand as address. It can be seen from the

figure that different MB assembly instructions, namely “put” and “cput”, are used here to

develop vector instruction macros rather than “SW” which was the case in the single host

system. This is because here the VP connects to the stream interface of the MB while in

the single host system it was placed on the AXI4 shared bus. Since the AXI4 interconnect

forms a memory mapped architecture, the store instruction was required to send data to the

VP. The main function in Figure 4.3 loads two 16-element vectors from the VM and stores

54

the summation result back into the VM. To compile benchmarks, written in the C language,

that contain macros and assembly code for vector instructions, the MB GNU mb-gcc tool

without optimization (i.e., option o0) was applied. Five algorithms were evaluated on the

multiple hosts system, each with three alternative VLs, for a total of fifteen distinct

benchmarks.

Figure 4.3 Macros to define vector instructions in multiple hosts system.

The complete ISA of the VP, including all vector instructions as well as the control

instructions developed for VP virtualization, are listed in Figure 4.2. Previously in the

single host system discussed in Section 3.1.1 the __VP_REQ and __VP_REL instructions

are sent to the hardware scheduler and a response is received accordingly by reading the

scheduler handshake response from its memory mapped location. In the multiple hosts

55

system, these two instructions were implemented by software since the real scheduler in

this system is the system core (MB0 in Figure 3.5) as described in Section 3.2.1. The

control instruction __VP_REQ is implemented as a C function which takes the

application’s VL and the number of registers as input. Upon a successful VP request, the

thread ID is returned. The __VP_REL function takes as a parameter the thread ID and

releases all the vector registers occupied by the corresponding thread. Vector application

development for the virtualized VP is almost identical to that for a single threaded VP.

Programmers only have to use the __VP_REQ function to obtain a thread ID and use it as

the ID field for every VP instruction. When the application is completed, VP resources

must be released using a __VP_REL call.

4.2.2 Benchmark Applications for the Multiple Hosts System

The first benchmark is matrix multiplication (MM) for square matrices of size 16*16,

32*32 and 64*64. Here only algorithm 3 for MM from the single host benchmarks is

implemented. In this application, all elements on a row of the resulting matrix are

calculated in each loop iteration to maximize the vectorization ratio (i.e., ratio of vector to

scalar code). It multiplies a single element of the first matrix with all elements on a row of

the second matrix to produce partial products. To calculate row i in the result, each element

on row i of the first matrix is multiplied with the respective row in the second matrix

(element 1 with row 1, element 2 with row 2, and so on) and appropriate partial products

are summed up. All multiplications are performed using scalar-vector multiplication

instructions, and additions are of the vector-vector type. Using an optimal approach, only

two vector registers of size VL are needed in this benchmark. The results show that by

increasing the dimensionality of the matrix and consequently the VL, the time needed to

56

generate one element in the product matrix decreases slightly (due to higher vectorization

ratio).

The second benchmark is Finite Impulse Response (FIR) digital filter that uses the

outer product. 16, 32 and 64 tap FIR filters are implemented with the input sequence having

the same size as the filter; the resulting sequence has twice the input length. This is

algorithm 2 for the FIR benchmark which was discussed in terms of the single host system.

A loop unrolling technique was used to expand the kernel four times and increase the

vectorization ratio. This benchmark uses two vector registers of size VL.

The third benchmark is vector-dot product (VDP) with VL= 16, 32, and 64. A

vector-vector multiplication instruction is followed by a couple of vector-vector addition

instructions. Four VL-sized vector registers are used. The execution time of VDP is

measured for an input of five pairs of arrays having VL elements per thread.

The fourth benchmark is the discrete cosine transform (DCT) which is common in

video processing. Since DCT is usually applied to fixed-sized pixel blocks, like 8*8 or 4*4,

following the same principle one-dimensional 8-point DCT on blocks of size 8*8 is

performed. 2, 4 and 8 adjacent blocks are used as input with VL=16, 32 and 64,

respectively. Three vector registers of size VL are used.

The last benchmark is RGB to YIQ color space mapping (RGB2YIQ). It has the

highest portion of vector code among all five benchmarks and uses seven vector registers.

The configurations of VL=16, 32, and 64 is used to perform the calculation on a 1024-pixel

block. Since the input size is independent of VL, higher VLs lead to fewer loop iterations,

and therefore shorter execution times.

57

CHAPTER 5

PERFORMANCE ANALYSIS

 Single Host System Performance Analysis

In this chapter, performance results are presented for the benchmarking performed on the

single host system architecture of Subsection 5.1.1. Detailed analysis for performance

exploration focusing on ideal and practical systems is given in Subsection 5.1.2. A

comprehensive comparison with other VPs benchmarked for the same applications is

presented in Subsection 5.1.3. As discussed earlier in Section 4.2, the simulation frequency

for both the VP and MB systems in the single host architecture is 50MHz. Hence, all the

simulation results presented in this section are based on this frequency.

5.1.1 Simulation Results and Performance Analysis in the Single Host System

Table 5.1.a and b show results under various execution scenarios for matrix multiplication

without compiler optimization and with maximum compiler optimization, respectively.

The DMA is used to transfer input data to vector memory. For the sake of simplicity, the

time taken in each case for producing one element in the resulting matrix is shown. Matrix

multiplication Algorithms 1 and 2 multiply a row with a column and add the partial results.

Both algorithms use the VP for multiplications. Algorithm 1 uses the MB for the addition

of partial products whereas Algorithm 2 uses both the VP and the MB for this purpose.

More specifically, partial products are loaded in four vector registers and vector-vector

additions are then applied, which are followed by VL/4 MB additions to produce each

element in the resulting matrix. Algorithm 3 uses a different technique that produces a

single resulting row at a time. More specifically, the MB is only in charge of vector-

58

instruction control flow; all additions and multiplications are done by the VP. This

algorithm multiplies a single element of the first matrix with all the elements on a row of

the second matrix to produce partial products. To calculate row i in the result, each element

on row i of the first matrix is multiplied by the respective row in the second matrix (element

1 with row 1, element 2 with row 2, and so on) and appropriate partial products are summed

up. All the multiplications are performed using scalar-vector multiplication instructions

and additions are carried out via vector-vector additions.

Table 5.1 Performance Comparison for Three Multiplication Algorithms and Various

VLs on the Single Host System. Algorithms 1 and 2 Use Both the VP and MB. Algorithm

3 Uses Only the VP. The Execution Time is Shown for Each Element Produced in the

Product Matrix. (a) Without Compiler Optimization and (b) with Compiler Optimization.

Matrix Size

Vector Length

Algorithm 1

Execution

Time(us)

(VP+MB)

Algorithm 2

Execution

Time(us)

(VP+MB)

Algorithm 3

Execution

Time(us)

(VP)

Scalar

Execution

Time(us)

(MB)

16*16 VL=16 75 28 4.5 160

32*32 VL=32 144 31 4.36 319

64*64 VL=64 279 34 4.32 630
 (a)

Matrix Size

Vector Length

Algorithm 1

Execution

Time(us)

(VP+MB)

Algorithm 2

Execution

Time(us)

(VP+MB)

Algorithm 3

Execution

Time(us)

(VP)

Scalar

Execution

Time(us)

(MB)

16*16 VL=16 69 21 1.5 139

32*32 VL=32 136 22 1.43 278

64*64 VL=64 268 23 1.368 552
(b)

The results show that by increasing the dimensionality of the matrix and

consequently the VL, the time needed to generate one element in the product matrix

increases for the element-wise Algorithms 1 and 2 while it decreases slightly for the row-

wise Algorithm 3 (due to higher vectorization ratio). Compiler optimization demonstrates

the most dramatic beneficial impact on the algorithm that uses the VP the most; this is

because the improvement increases faster with the matrix size.

59

Table 5.2.a and b show performance results for FIR filtering under various

scenarios and VLs without and with compiler optimization, respectively. 16, 32 and 64 tap

FIR filters are implemented with the size of the input sequence being the same as the size

of the filter; therefore, the resulting sequence has double the length of the input. The MB

is used to transfer data between the global and vector memories. Two algorithms are

developed. Algorithm 1 has no loop unrolling while Algorithm 2 uses special initialization

of the vector memory customized for the four lanes by unrolling the loop four times to

achieve higher VP utilization. The results in the table include the time to initialize the

private memory by transferring data from the global memory. Similar to matrix

multiplication, the effect of compiler optimization is more prominent when using only the

VP.

Table 5.2 Performance Comparison for FIR Filtering with Various Filter Sizes in the

Single Host System. The Times for Data Exchanges Between the Global and Private

Memories are Included. The Times are for Calculating All the Output Elements. (a)

Without Compiler Optimization and (b) with Compiler Optimization.

Filter Size

 Vector Length

Input

Length

Output

Length

Algorithm 1

Execution

Time(us)

(VP+MB)

Algorithm 2

 Execution

Time(us)

(VP)

Scalar

 Execution

Time(us)

(MB)

16 Tap VL=16 16 32 414 149 4250

32 Tap VL=32 32 64 1439 278 15615

64 Tap VL=64 64 128 5331 536 68703
(a)

Filter Size

 Vector Length

Input

Length

Output

Length

Algorithm 1

Execution

Time(us)

(VP+MB)

Algorithm 2

 Execution

Time(us)

(VP)

Scalar

 Execution

Time(us)

(MB)

16 Tap VL=16 16 32 114 52 3813

32 Tap VL=32 32 64 370 94 14189

64 Tap VL=64 64 128 1312 178 64102
(b)

Table 5.3.a and b depict the results for FFT without and with compiler optimization,

respectively. 16, 32 and 64 point FFT are implemented using two algorithms. MB is in

60

charge of transferring input and output data between the global and vector memories. In

Algorithm 1, the shuffling of data in the vector memory is realized by the MB via the AXI4

interconnect. In Algorithm 2, the distributed data shuffle engines implement shuffling

needed in each stage of FFT. As intended, the data shuffle engines which are distributed

across the vector lanes have a spectacular beneficial impact on FFT’s execution time due

to its hefty demand of data shuffling. The relevant speedup is 5.92 and 7.33 for the 64-

point FFT without and with compiler optimization, respectively. Furthermore, the 64-point

FFT speedup of Algorithm 2 against runs on the MB is 52.07 and 110.45 without and with

compiler optimization, respectively. Also, similar to runs of the other benchmarks, the

impact of compiler optimization becomes more prominent when the VP utilization

increases. In general, the performance advances of our architecture become more

manifested with increased VLs in applications.

Table 5.3 Performance Comparison for FFT of Various Sizes in the Single Host System.

The Execution Time Includes the Overhead of Writing and Reading Between the Global

and Vector Memories. The Numbers are for Calculating All the Output Results. (a)

Without Compiler Optimization and (b) with Compiler Optimization.

FFT Size

Vector Length

Algorithm 1

Execution

Time(us)

(VP+MB)

Algorithm 2

Execution

Time(us)

(VP)

Scalar

Execution

Time(us)

(MB)

16 Point VL=16 386 132 3850

32 Point VL=32 814 190 7380

64 Point VL=64 1783 301 15673
(a)

FFT Size

Vector Length

Algorithm 1

Execution

Time(us)

(VP+MB)

Algorithm 2

Execution

Time(us)

(VP)

Scalar

Execution

Time(us)

(MB)

16 Point VL=16 175 42 2520

32 Point VL=32 379 63 5605

64 Point VL=64 762 104 11487
(b)

61

Table 5.4.a and b show performance results for the RGB2YIO benchmark without

and with compiler optimization, respectively. DMA is used to move information about

pixels to the vector memory. Although three sizes are chosen for the input pixel array, the

results in the table are for calculating the values in a block of 8*8 pixels in the YIQ target

space. Since each output pixel value depends only on the corresponding input pixel value,

the MB time consumed for calculating an 8*8 block is the same in all three cases. Since

this benchmark is highly vectorizable, the speedup of the VP over the MB is huge.

Obviously, it increases even further via compiler optimization.

Table 5.4 Performance Comparison for RGB2YIQ with Various VLs in the Single Host

System. The Time is for Calculating a Block of 8*8 Pixels in the YIQ Color Space. (a)

Without Compiler Optimization and (b) with Compiler Optimization.

Vector

Length

VP

Execution

Time(us)

(VP)

Scalar

Execution

Time(us)

(MB)

VL=16 63.25 10932

VL=32 31.66 10932

VL=64 16.76 10932
(a)

Vector

Length

VP

Execution

Time(us)

(VP)

Scalar

Execution

Time(us)

(MB)

VL=16 27.58 10572

VL=32 13.87 10572

VL=64 6.99 10572
(b)

To further underscore the need of the VP coprocessor, Figure 5.1.a shows its

speedup compared to MB execution for matrix multiplication using Algorithm 3. The VP

achieves a x400 speedup with VL=64 and compiler optimization. A main performance

bottleneck in this testbench is the low rate of issuing vector instructions to the VP.

Therefore, without optimization the VP is not fully utilized since the time between issuing

62

vector instructions to the VP is larger than the time needed for a vector instruction to be

implemented. Using inline assembly-language macros for vector instructions rather than

HLL function calls, this difference is reduced as much as possible. There are also two other

approaches needed to be followed in the effort to minimize VP idle times. First, increasing

the VL of the application algorithm will keep the VP busy for a longer time, hopefully till

the next vector instruction is issued.

The second approach is to increase the vector instruction issue rate for the VP by

applying code optimization. Both of these methods result in increasing the VP utilization

when it is exclusively attached to a scalar core in the single host system. As it will be seen

in the multiple hosts system result, VP utilization could also be increased through VP

virtualization and share VP resources between different threads. Figure 5.1.b shows the

speedup of the VP+MB system versus the MB for matrix multiplication under Algorithm

2. Two main differences can be observed between the two parts of Figure 5.1. The rate of

speedup improvement for Algorithm 3 with an increasing VL is much higher, which

implies a higher VP utilization. Also, the effect of compiler optimization is lower for

Algorithm 2 because only part of the application is run on the VP.

Figure 5.2 depicts the speedup for FIR filtering under various filter tap sizes and

VLs. Figure 5.2.a presents the speedup of the VP versus the MB for Algorithm 2. For 64

taps with compiler optimization, the speedup is higher than 350 and increases drastically

when the VL increases due to higher vectorization ratios. Initializing the private memories

of the four lanes helps this process.

63

Figure 5.1 Speedup for matrix multiplication with and without optimization. (a) VP vs.

MB for Algorithm 3 and (b) VP+MB vs. MB for Algorithm 2.

Figure 5.2 VP vs. MB speedup for FIR filtering with and without optimization. (a)

Algorithm 2 and (b) Algorithm 1.

Figure 5.2.b shows the speedup for Algorithm 1. Without optimization, the speedup

does not keep up with VL increases since this algorithm has a lower vectorization ratio;

the MB is involved in each iteration that produces a new element of the result. However,

compiler optimization increases the portion of the algorithm that runs on the VP which, in

turn, improves acceleration.

64

Figure 5.3.a and b show the FFT speedup for various VLs, with and without the

distributed data shuffle engines, respectively. The VP with the data shuffle engines and

code optimization achieves a 110-fold speedup over the MB for the 64-point FFT. For

Figure 5.3.b, the data shuffle instructions are implemented by the MB instead of the VP.

Without the shuffle engine and without code optimization, the speedup degrades slightly

with an increasing VL. Since data shuffling is the most time consuming process in each

stage of FFT, performing it on the MB with an increased VL results in slight performance

Figure 5.3 Speedup for FFT. (a) VP with the data shuffle engine vs. MB for Algorithm 2

and (b) VP+MB without the shuffle engine vs. MB for Algorithm 1.

degradation; however, compiler optimization can compensate by increasing the portion run

on the VP.

Figure 5.4 shows the speedup for the highly vectorizable RGB2YIQ benchmark.

The VP achieves an impressive 1500-fold speedup over the MB for VL=64 and with

compiler optimization. This benchmark approaches the peak performance of the VP since

most of the time the VP is fully utilized without waiting for a new vector instruction to be

issued.

65

For the sake of comprehensive analysis, Figure 5.5 shows the performance/area

ratio of the VP over MB execution of the benchmarks in the single host system for three

VL alternatives, assuming maximum compiler optimization. The benchmarking shows that

the VP supports scalability since the ratio generally improves with increases in the VL.

Actually, the improvement is faster for a reduced number of data dependencies (i.e.,

RGB2YIQ), and slower or negligible for a very large number of data dependencies (i.e.,

FFT).

Figure 5.4 VP vs. MB speedup for RGB2YIQ in single host system.

5.1.2 Performance Exploration in the Single Host System

For a fair performance comparison with earlier works involving VP designs, it is needed

to count the execution time of applications in number of clock cycles (e.g., since different

target FPGAs used in prototyping support different clock frequencies, etc.). The main

bottleneck in benchmarking is the MB core that adds delays to the process of issuing vector

instructions to the VP; this decreases the utilization of the VP due to a lesser average

density of vector instructions in each lane’s ALU and LDST FIFOs. Compiler optimization

may ease this problem depending on the application, as discussed in Section 5.1.1. For fair

66

VP comparisons independent of compilers and scalar cores, maximum VP performance

should be targeted. Therefore, all the vector instructions in this section are placed in

advance in the VC queue instead of being issued by the MB as encountered in the

application code. Also, all private memories are initialized with the needed application

data. Thus, the clock cycles really taken by the applications on the VP are counted.

Figure 5.5 Performance/Area improvement for the VP over the MB in single host

system.

To find the minimum number of clock cycles for executing each benchmark, its

total number of instructions is calculated. For accuracy, the VP behavior in the case of

hazard detection is taken into consideration. Whenever a data hazard is detected by the VC,

issuing instructions to the FIFO is stalled and demand for a new vector instruction (VI) is

delayed until the corresponding instruction is committed and the pipeline is back to normal

operation. Another important issue is the capability of overlapping a data shuffle

instruction with subsequent instructions as long as no data hazard is present.

Table 5.5 to Table 5.8 show performance results for executing each benchmark on

the VP. “Practical” times are obtained from the already presented results by excluding the

67

times needed to transfer data between the global and private memories. “Ideal” times are

obtained by removing any MB delay in issuing instructions to the VP. “Ideal without

private memories” times are similar to ideal but, instead of having a private memory in

each lane, each lane has access to all memory banks in the vector memory using a crossbar

that connects lanes to memories (similar to the architecture [Beldianu et al., 2013]). Under

the worst case scenario for vector load and store instructions, only one element per clock

cycle can be transferred between the lanes and the vector memory. This, however, is the

best case for the VP architecture due to the presence of the private memories that can

transfer four elements per clock cycle.

Table 5.5 Matrix Multiplication Performance Comparison for Various VLs in the Single

Host System.

Vector

Length

TI*

EFPI**

#of

cycles

Stall

Rate

(%)

#of

cycles

per

VI***

Average

Utilization

(%)

LDST ALU

VL=16 784 10.44 6893 0 8.79 15.8 29.7

Ideal VL=32 3104 21.11 40461 0 13.05 20.9 42.2

VL=64 12352 42.44 252441 0 20.48 26.3 51.7

VL=16 784 10.44 10157 32 12.95 10.7 20.2 Ideal without

private

memory

VL=32 3104 21.11 64845 35 20.89 13.1 26.3

VL=64 12352 42.44 455309 44 36.86 14.58 28.6

VL=16 784 10.44 19200 0 24.48 5.7 11.3

Practical VL=32 3104 21.11 73216 0 23.58 11.3 22.3

VL=64 12352 42.44 280166 0 22.68 23.7 46.6

*TI=Total Instructions ***VI: Vector Instruction

**EFPI=Effective FLOPs Per Instruction

“Total instructions” represents the number of vector instructions issued by the MB,

considering all loop iterations. The effective FLOPS per instruction are obtained by

dividing the total number of ALU floating-point operations in the benchmark by the total

number of instructions. The average number of clock cycles needed per instruction is then

68

Table 5.6 FIR Performance Comparison for Various VLs in the Single Host System.

Vector

Length

TI

EFPI

#of

cycles

Stall

Rate

(%)

#of

cycles

per

VI

Average

Utilization (%)

LDST ALU

VL=16 100 10.24 463 0 4.63 29.3 57.1

Ideal VL=32 196 20.89 1419 0 7.23 37.1 73.2

VL=64 388 42.22 5341 0 13.76 39.1 77.3

VL=16 100 10.24 931 50 9.31 14.6 28.4 Ideal without

private

memory

VL=32 196 20.89 3003 52 15.32 17.5 34.6

VL=64 388 42.22 11691 54 30.13 17.9 35.3

VL=16 100 10.24 1450 0 14.5 9.3 18.2

Practical VL=32 196 20.89 2850 0 14.54 18.53 36.5

VL=64 388 42.22 5750 0 14.82 36.1 71.8

Table 5.7 FFT Performance Comparison for Various VLs in the Single Host System.

Vector

Length

TI

EFPI

#of

cycles

Stall

Rate

(%)

#of

cycles

per VI

Average

Utilization (%)

LDST ALU SHF

VL=16 64 10 396 0 6.18 16 40.4 24

Ideal VL=32 80 20 956 0 11.95 16.7 41.7 25.1

VL=64 96 40 2280 0 23.75 16.8 42 25.2

VL=16 64 10 672 40 10.5 9.4 23.8 14.1 Ideal without

private

memory

VL=32 80 20 1611 40 20.14 9.9 24.7 14.9

VL=64 96 40 3820 40 39.79 10 25.1 15

VL=16 64 10 1300 0 20.31 4.7 12.3 7.4

Practical VL=32 80 20 1550 0 19.37 10.3 26 15.4

VL=64 96 40 2500 0 26.04 15.4 38.4 23.1

Table 5.8 RGB2YIQ Performance Comparison for Various VLs in the Single Host

System.

Vector

Length

TI

EFPI

#of

cycles

Stall

Rate

(%)

#of

cycles

per VI

Average

Utilization

(%)

LDST ALU

VL=16 336 11.42 1437 0 4.27 26.7 66.8

Ideal VL=32 672 22.85 5165 0 7.68 29.7 74.3

VL=64 1344 45.71 19533 0 14.53 31.4 78.6

VL=16 336 11.42 2493 42 7.42 15.4 38.5 Ideal without

private

memory

VL=32 672 22.85 9581 46 14.25 16 40

VL=64 1344 45.71 37581 48 27.96 16.3 42.9

VL=16 336 11.42 5500 0 16.36 6.9 17.5

Practical VL=32 672 22.85 11100 0 16.51 13.8 34.6

VL=64 1344 45.71 22400 0 16.66 27.4 68.6

69

calculated for each benchmark. The LDST average utilization of a lane shows the number

of vector elements sent to or received from the vector memory in 100 clock cycles. The

ALU average utilization represents the number of elements produced by a lane’s ALU in

100 clock cycles. The SHF utilization in Table 5.7 for the FFT shows the number of

elements transferred by the shuffle engines in 100 clock cycles. It can be concluded that

increasing the VL brings the practical time closer to the ideal one due to higher VP

utilization and less idling between instructions issued by the MB.

5.1.3 Comparison with Prior Work

The presented 4-lane VP results are compared with those in [Beldianu et al., 2013] that

assumed a VIRAM-like VP (like us) with eight lanes. A crossbar in the latter design

connects the lanes to the global vector memory, and is also used to realize data shuffle and

indexed memory instructions. Due to the lack of private memories, there is a high chance

of stalls for memory instructions. They used a Xilinx block memory IP (BRAM) for the

VRF and their total VRF capacity was 2 Kbytes/lane (ours is 1 Kbyte/lane). Since they

used Xilinx IPs to build lane ALUs, many embedded DSP blocks were consumed. The Fast

Simplex Link (FSL) point-to-point interface was employed to connect the VP with the MB.

Each of the two MBs in their design uses its own VC and FSL slave and master interfaces

to access the VP. To allow the two MB cores to share the VP, three scheduling policies

were implemented for their scheduler. In coarse-grain temporal sharing (CTS), the two

cores time share the entire VP. In fine-grain temporal sharing (FTS), both cores compete

simultaneously for all the VP resources. This is equivalent to SMT with respect to VP

usage and the two core threads use different vector registers. Vector lane sharing (VLS),

finally, assigns distinct lanes to each MB upon demand, as decided by the VC.

70

As per Table 5.9, the obtained speedup for the FFT benchmark is smaller than that

for FIR filtering and matrix multiplication since the former requires heavy data shuffling.

However, the speedups are always higher than those in [Beldianu et al., 2013]. This

observation becomes even more impressive considering that proposed VP platform here

has four, instead of eight, lanes and one core, instead of two. For the FIR benchmark, the

speedups of the VP and SODA is compared in reference to their individual host processors

(i.e., MB and Alpha, respectively). SODA achieves speedups of up to 19 and 26 for 33-

and 65-tap filters, respectively. The developed VP accomplishes much higher speedups of

150 and 350 for the 32- and 64-tap filters, respectively.

Also, there exist comparative results of FPGA and ASIC realizations involving

various designs that make it possible to estimate the relative speedup and improved power

dissipation, within an order of magnitude, when an FPGA-based design is moved into the

ASIC realm (e.g.,[Beldianu et al., 2015][Kuon et al., 2007][Suresh at al., 2013]). However,

an ASIC implementation of our design, a rather hectic and lengthy process, will be a future

research objective.

Table 5.9 Speedups of the VP in Single Host System and the Design in [Beldianu et al.,

2013] vs. the MB for VL=32.

Architecture Matrix

Multiplication

FIR FFT

CTS [Beldianu et al., 2013],

8 lanes, 1 core

12.97 10.93 49.02

FTS [Beldianu et al., 2013]

8 lanes, 2 cores

25.89 21.83 86.76

VP in single host system,

4 lanes, 1 core

193.5 150.94 88.98

71

 Multiple Hosts System Performance Analysis

All the simulation results presented in this section are based on a working frequency of

100MHz for all the MBs and the VP.

5.2.1 Simulation Results

In this section only, it is assumed that the VP runs simultaneously each time up to four

threads from the same benchmark. The only exception is RGB2YIQ with VL=64 since it

requires seven registers per thread while the VP has 16 registers of VL=64; it is assumed

up to two threads for RGB2YIQ. 58 simulations are done for various VLs and degrees of

multithreading. For clarity, the times for task request and register management are

excluded from our measurements. Since the threads start execution at the same time and

the SPS’s VP interface involves a round-robin arbitrator, all threads finish execution at the

same time. Table 5.10 to Table 5.14 show the execution times and VP utilization of these

benchmarks for various numbers of VL and active cores (i.e., threads). The execution times

are for the input size described in Section 4.2.2.

In this section, all simultaneous threads of the same application are homogeneous,

but independent, and their flow control codes are executed on different MBs. All threads

operate on different input data sets to increase the throughput.

In Chapter 6, the VP’s simultaneous execution of heterogeneous threads with

different VLs, coming from different MBs, and the implementation of different algorithms

will be discussed. The tables show that the VP utilization with a single thread is very low

for all benchmarks when VL=16; as more threads/cores are involved, the utilization

improves substantially. As the VL increases, the utilization of a thread increases up to a

saturation point. As explained earlier (Section 3.1.2), there is a high impedance state of one

72

Table 5.10 Matrix Multiplication Performance in the Multiple Hosts System (Input and

Output Matrix Size: VL*VL, 1 Iteration per Core).

VL
of

cores

LDST

NWT

ALU

FLOP

Execution

Time (μs)

Million

FLOP/S

% LDST

Utilization

% ALU

Utilization
Speedup

16

1 4608 8192 241 53.11 4.78 8.49 84.97

2 9216 16384 241 106.22 9.56 16.99 169.95

3 13824 24576 241 159.33 14.34 25.49 254.93

4 18432 32768 241 212.44 19.12 33.99 339.91

32

1 34816 65536 942 106.53 9.23 17.39 173.38

2 69632 131072 942 213.06 18.47 34.78 346.76

3 104448 196608 942 319.59 27.72 52.17 520.19

4 139264 262144 942 426.12 36.96 69.57 693.53

64

1 270336 524288 3819 208.07 17.69 34.32 337.8

2 530672 1048576 3819 416.14 35.39 68.64 675.69

3 811008 1572864 4221 564.76 48.03 93.15 917.01

4 1081344 2097152 5625 565.06 48.05 93.20 917.5

NWT: Number of Word Transactions

Table 5.11 FIR Performance in the Multiple Hosts System (Input Vector Size: VL, 1

Iteration per Core).

VL
of

cores

LDST

NWT

ALU

FLOP

Execution

Time (μs)

Million

FLOP/S

% LDST

Utilization

% ALU

Utilization
Speedup

16

1 576 1024 27 59.25 5.3 9.4 78.8

2 1152 2048 27 118.51 10.6 18.9 157.4

3 1728 3072 27 177.77 16 28.4 236.1

4 2304 4096 27 237.04 21.3 37.9 314.8

32

1 2176 4096 51 122.98 10.6 20 153.07

2 4352 8192 51 245.96 21.3 40 306.15

3 6528 12288 51 368.94 32 60 459.23

4 8704 16384 51 491.92 42.6 80 612.31

64

1 8448 16384 97 256 21.77 42.22 354.13

2 16896 32768 97 512 43.54 84.44 708.26

3 25344 48152 133 552.6 47.63 90.0 774.83

4 33792 65536 177 561.17 47.72 92.56 776.29

Table 5.12 VDP Performance in the Multiple Hosts System (Input Vector Size :VL, 1

Iteration per Core).

VL
of

cores

LDST

NWT

ALU

FLOP

Execution

Time (μs)

Million

FLOP/S

% LDST

Utilization

% ALU

Utilization
Speedup

16

1 112 64 2.4 73.33 11.6 6.6 4.88

2 224 128 2.4 146.66 23.2 13.3 9.77

3 336 192 2.4 220 34.8 20 14.65

4 448 256 2.4 293.33 46.4 26.6 19.54

32

1 288 160 3 149.33 24 13.33 8.1

2 576 320 3 298.66 48 26.6 16.2

3 864 480 3 448 72 40 24.3

4 1152 640 3.4 527.05 84.7 47.05 28.58

64

1 704 448 3.6 320 48.8 31.1 13.05

2 1408 896 4 576 88 56 23.5

3 2112 1344 6 576 88 56 23.5

4 2816 1792 8 576 88 56 23.5

73

Table 5.13 DCT Performance in the Multiple Hosts System (Input: VL/8 Blocks of Size

8*8, 1 Iteration per Core).

VL
of

cores

LDST

NWT

ALU

FLOP

Execution

Time (μs)

Million

FLOP/S

% LDST

Utilization

% ALU

Utilization
Speedup

16

1 4224 2048 87 72.09 12.13 5.96 7.98

2 8448 4096 87 144.18 24.27 11.92 15.97

3 12672 6144 87 216.27 36.41 17.89 23.96

4 16896 8192 87 23.85 48.55 23.85 31.95

32

1 8448 4096 87 144.18 24.24 11.57 19.2

2 16896 8192 87 288.36 48.55 23.51 38.4

3 25344 12288 87 432.55 72.82 32.25 57.65

4 33792 16384 94 533.78 89 43.15 71.14

64

1 16896 8192 87 288.36 48.55 23.53 48.55

2 33792 16384 109 460.33 77.5 37.57 77.50

3 50688 24576 132 557.51 93.86 45.51 93.86

4 67584 32768 176 557.51 93.86 45.51 93.86

clock cycle between issuing successive instructions; this state may decrease the maximum

utilization but eases the verification of functional behavior. Due to this effect, the nominal

maximum utilization that can be achieved for VL=16, 32, and 64, is calculated as 80%,

88.88% and 94.11%, respectively. Before saturation, a benchmark’s performance is

actually upper bounded by scalar core execution for the serial part of the vector application;

thus, a VP shared by many scalar cores is recommended in this case. The total execution

Table 5.14 RGB2YIQ Performance in the Multiple Hosts System (Input: 1024 Pixels, 1

Iteration per Core).

VL
of

cores

LDST

NWT

ALU

FLOP

Execution

Time (μs)

Million

FLOP/S

% LDST

Utilization

% ALU

Utilization
Speedup

16

1 6144 15360 244.2 88.05 6.29 15.72 358.13

2 12288 30720 244.2 176.11 12.58 31.45 716.26

3 18432 46080 244.2 264.17 18.87 41.74 1074.39

4 24576 61440 244.2 352.23 25.16 62.9 1432.53

32

1 6144 15360 123.6 173.98 12.43 31.06 707.57

2 12288 30720 123.7 347.68 24.83 62.08 1415.14

3 18432 46080 155.8 414.06 29.57 73.49 1690.51

4 24576 61440 204.1 421.44 30.10 75.25 1713.98

64

1 6144 15360 63.74 337.37 24.09 60.24 1372.07

2 12288 30720 96.7 444.57 31.76 79.43 1808.8

3 18432 46080 NA NA NA NA NA

4 24576 61440 NA NA NA NA NA

74

time with multiple threads may be the same as the benchmark’s native duration (the

execution time when the VP is exclusively occupied by one thread of the benchmark) if

each thread has a rather low utilization. When the total VP utilization with many

simultaneous threads exceeds the VP’s nominal maximum, all threads’ execution will slow

down proportionally due to resource competition. It is also important to realize that when

either the ALU or LDST unit saturates, the other unit’s utilization may not increase further

since ALU and LDST operations may depend on each other. Among the five basic

benchmarks provided for multiple hosts system, it can be seen that MM, FIR and

RGB2YIQ have higher ALU utilization that leads to VP saturation. VDP and DCT have

higher LDST utilization that may lead to LDST saturation that limits further throughput

increases. Upon VP saturation, the slowdown amount is determined by the higher of the

ALU and LDST utilizations.

Figure 5.6 shows the maximum ALU and LDST utilizations for various

benchmarks, and the VL and core numbers. Running the RGB2YIQ benchmark with

VL=64 on more than two cores is impractical since each benchmark instance needs seven

vector registers whereas our VP contains 16 vector registers of VL=64. According to

Table 5.14, the performance of RGB2YIQ with VL=64 saturates for two cores although

the ALU utilization is not close to the nominal maximum of 94%. This can happen when

threads produce high VP utilization and many data hazards, causing frequent VC stalls. For

each benchmark, sequential C code with identical functionality and behavior was also run

on a 100 MHz MB. The last column in the tables is the speedup of the VP versus the scalar

core.

75

Figure 5.6 Maximum utilization of the LDST and ALU units.

5.2.2 Comparison with the Single Host System and Prior Works

To perform a fair performance comparison with the single host system and other previously

published works that focused on VP sharing for multicores, a common reference point is

chosen. Moreover, the chosen benchmark scenarios are similar (including the same values

of VL). Since VP speedups against their host processors were listed in all these prior works,

the same is applied for the multi host system. Table 5.15 shows comparisons with

[Beldianu et al., 2013] that implemented an 8-lane VP shared by two scalar processors

using the CTS, FTS, and VLS policies. FTS has the best performance among these policies.

As per Section 2.2, FTS is similar to the VP sharing technique in the multi host system.

The single host architecture [Rooholamin et al., 2015] uses a VP architecture that has many

76

similarities to the one applied in the multi host system. It utilizes a hardware scheduler and

register renaming block to support VP sharing for two threads with identical VL; one host

issues threads. It relies on compiler optimizations to increase the issue rate of vector

instructions. The table shows that the proposed VP sharing technique always yields by far

the best speedup compared to the single host system and others which have double the

lanes.

Table 5.15 Speedup Comparison With the Single Host and Previously Shared VP .

SYSTEM \ BENCHMARK MM FIR RGB2YIQ VL

Single host system, 4 lanes,1 core 92.66 73.32 383.32
16

Multiple hosts system, 4 lanes, 4 cores 339.91 314.8 1432.53

 [Beldianu et al., 2013], CTS, 8 lanes, 1 core 12.97 10.93 NA

32
 [Beldianu et al., 2013], FTS, 8 lanes, 2 cores 25.89 21.83 NA

Single host system, 4 lanes,1 core 193.06 150.94 762.22

Multiple hosts system, 4 lanes, 4 cores 693.53 612.31 1713.98

Single host system, 4 lanes,1 core 403.50 360.12 1512.44
64

Multiple hosts system, 4 lanes, 4 cores 917.50 776.29 1808.80

77

CHAPTER 6

SCHEDULING VECTOR THREADS

 Scheduling Algorithm Implemented on the System Core

This chapter focuses on throughput-maximizing thread scheduling for a multi-host system.

First, each application is profiled to determine its ALU and LDST utilizations, as well as

its native duration based on the results in Section 5.2.1 (i.e., its execution time with

exclusive VP access). The combinations of simultaneously executing benchmarks are

evaluated from the set of 15 benchmarks (five benchmarks with three VL alternatives each)

for: i) A closed system with a fixed number of threads in Section 6.2. ii) An open system

with randomly arriving threads in Section 6.3.

As observed in Section 5.2.1, when the ALU and LDST utilizations are both far

below 90%, the performance is upper bounded by the speed of the ACs that issue vector

instructions, and therefore multiple threads could share the VP with only negligible

increase in the per-thread execution time. Due to the one clock cycle delay between

consecutive instructions (Section 3.1.2), the VP’s saturation threshold is not 100% but a

number from 80% to 94% depending on the active threads’ VLs. A saturation threshold of

90% is assumed to design a scheduling algorithm that keeps the VP highly busy either with

zero or minimum saturation.

In a closed system, all threads in a queue at a given time are scheduled. No new

threads are added into the queue before all threads in the current queue have finished

execution. The scheduler algorithm flowchart is given in Figure 6.1. Once a thread is

picked by the scheduler, it keeps executing until the end, at which time its VP resources

are released to any pending threads. Pending threads are arranged in descending order of

78

their native duration. The ALU and LDST utilizations as well as the VRF usage of pending

threads are provided to the scheduler as input. The scheduler keeps picking pending threads

for execution until the VP has four threads, or no other pending thread can be

accommodated due to unavailable VRF resources. The scheduler searches down the queue

Figure 6.1 Scheduler flowchart.

79

until a fitting thread is found which does not lead to saturation. If no such thread is found,

the thread update mechanism ensures that the scheduler searches down the queue only once

to find a fitting thread that results in minimum saturation. The scheduler always starts

investigation with the first pending thread of the longest native duration. If the available

VRF resources are sufficient, utilization saturation check is performed to see whether this

thread will lead to an ALU or LDST overall utilization higher than 90%. If no saturation

can occur, this thread is scheduled. Otherwise, it becomes the “potential thread” for

scheduling. When another thread in the queue is found to lead to utilization saturation, it

is compared against the currently potential thread. If the former thread can yield smaller

ALU and LDST overall utilizations than the currently potential thread, then the former will

replace the latter as the potential thread for scheduling. When the entire queue has been

searched and all pending threads are either not fitting or lead to saturation, the currently

potential thread is chosen for immediate scheduling.

 Queues of Fixed Length

The scheduler is tested with thread queue lengths of 8 and 16 using each time six different

thread combinations. Threads were chosen with equal probability from the list of 15

benchmarks of Section 4.2.2. The input data size for each thread was randomly picked,

resulting in different native durations for the same benchmark across different thread

combinations. The average result is shown in Figure 6.2. To compare with the optimal

solution for the six scenarios with a queue length of eight, the best possible execution time

is identified via exhaustive search (i.e., by calculating the total execution time of all

possible scheduling orders using a C program). Compared to the optimal case, which

cannot be implemented in practice at run time, the execution time is only 14.7% slower on

80

the average and optimality is achieved in one of the six scenarios. In the case of a queue

length of eight, the scheduling algorithm results in an average speedup of 2.83 compared

to the case without VP sharing; when the queue length increases to 16, the average speedup

increases to 3.33. As the length of the thread queue increases, the speedup further increases

to become close to four, which is ideal (since it matches the maximum number of threads

that can share the VP). In this dissertation, only one of the six scenarios is chosen for each

queue length to generate a table with detailed simulation information. Table 6.1 and

Table 6.2 show details for all threads, including the critical times when threads are chosen

for scheduling or complete execution.

Figure 6.2 Execution time for thread queues of fixed length. (a) Length = 8. (b) Length

=16.

0 10 20 30 40

1

2

3

4

5

6

w/ sharing

Execution time
0 5 10 15 20

1

2

3

4

5

6

optimal

w/ sharing

Execution time
(ms) (a) (b)

81

Table 6.1 Detailed Results for a Schedule with Pending Thread Queue Length of 8.

Task

ID

Application VL Native

Duration

w/o VP

Sharing

(us)

ALU

Utilization

(%)

LDST

Utilization

(%)

Issue

Time

(us)

Commit

Time

(us)

Actual

Duration

(us)

0 MM 16 4820 9 5 11 4905 4894

1 VDP 64 3600 31 49 30 4348 4318

2 DCT 64 2610 24 49 3075 6083 3008

3 FIR 16 2025 9 5 44 2109 2065

4 MM 32 1884 17 9 60 1967 1907

5 RGB2YIQ 64 1268 60 24 2680 4655 1975

6 VDP 16 960 7 12 1994 3048 1054

7 FIR 32 510 20 11 2132 2642 510

Practical issue order based on static scheduling: 0,1,3,4,6,7,5,2

Best issue order based on simulation of all permutations: 0,3,6,4,1,2,5,7

Actual execution time = 6.083ms

Total native duration w/o VP sharing= 17.677ms

Speedup =2.91

Optimal execution time =5.215ms

Table 6.2 Detailed Results for a Schedule with Pending Thread Queue Length of 16.

Task

ID

Application VL Native

Duration

w/o VP

Sharing

(us)

ALU

Utilization

(%)

LDST

Utilization

(%)

Issue

Time

(us)

Commit

Time

(us)

Actual

Duration

(us)

0 MM 64 3819 34 18 11 3829 3818

1 MM 32 2826 17 9 24 2873 2849

2 RGB2YIQ 32 1483.2 31 12 54 1705 1651

3 MM 16 964 8 5 1111 2080 969

4 DCT 32 860 12 24 1740 2606 866

5 DCT 64 783 24 49 2632 3460 828

6 DCT 16 693 6 12 78 771 693

7 FIR 64 679 42 22 3533 4338 805

8 FIR 16 675 9 5 2101 2789 688

9 RGB2YIQ 64 634 60 24 4030 4815 785

10 VDP 32 630 13 24 3511 4357 846

11 FIR 32 561 20 11 2907 3468 561

12 RGB2YIQ 16 488.4 16 6 2837 3470 633

13 VDP 64 356.4 31 49 3863 4397 534

14 DCT 32 348 12 24 3559 3988 429

15 VDP 16 240 7 12 820 1070 250

Practical issue order based on static scheduling: 0,1,2,6,15,3,4,8,5,12,11,10,7,14,13,9

Actual execution time = 4.815ms

Total native duration w/o VP sharing= 16.053ms

Speedup =3.33

82

 Open System with Randomly Arriving Threads

To simulate an open system with randomly arriving tasks, all tasks arriving within 10ms

time slices are scheduled. A fixed input size is chosen for each benchmark to create 15

distinct tasks. The characteristics of each task are listed in Table 6.3. Dynamic energy

measurement is the focus of Chapter 7. The average task native duration is 0.182ms. Task

arrival follows the Poisson distribution with a rate of λ tasks arriving per time slice. Tasks

arriving in a time slice form a queue which is scheduled for execution in the next time slice.

The evaluation is for λ=0.5, 0.75 and 1; for a given λ, queues for six consecutive time slices

are generated and average values for the six schedules is calculated. Details of task arrivals

and execution times are shown in Table 6.4 to Table 6.6. The average of the total execution

time for all threads scheduled in a time slice is shown in Figure 6.3. The speedup compared

to the VP without sharing is 2.59, 3.15 and 3.22 for λ=0.5, 0.75 and 1, respectively. The

speedups concur with the results obtained earlier for fixed thread queue lengths where the

speedup increased with the thread population. Without VP sharing and scheduling, even

for the lowest thread arrival rate the queue increases faster than the system can process.

With proposed scheduling, the VP is active only 80% of the time slice for the highest λ=

1. The rest of the time the VP can be power gated to reduce the static energy (Section 7.2.2).

83

Table 6.3 Characteristics of Chosen Tasks for an Open System.

Task

ID
Application_VL

Native

Duration

(μs)

% ALU

Utilization

% LDST

Utilization

Vector

Registers

Dynamic

Energy

(μJ)

0 RGB2YIQ_16 4884 16 6 7 766

1 MM_64 3819 34 18 2 792.3

2 MM_32 2826 17 9 2 404.1

3 RGB2YIQ_32 2472 31 12 7 535.8

4 FIR_64 1940 42 22 2 577.2

5 DCT_64 1740 24 49 3 417.8

6 DCT_32 1740 12 24 3 288.2

7 DCT_16 1740 6 12 3 207.8

8 MM_16 1446 8 5 2 152.34

9 RGB2YIQ_64 1268 60 24 7 354.4

10 FIR_32 1020 20 11 2 255

11 VDP_64 720 31 49 4 192.8

12 VDP_32 600 13 24 4 123.6

13 FIR_16 540 9 5 2 85.8

14 VDP_16 480 7 12 4 70.8

Table 6.4 Detailed Task Arrivals and Execution Time for λ=0.5.

Task

ID
Application_VL

Number of Task Arrivals
Average

Slice1 Slice2 Slice3 Slice4 Slice5 Slice6

0 RGB2YIQ_16 1 1 1 1 0 0 .66

1 MM_64 1 0 0 0 0 2 0.5

2 MM_32 0 0 0 0 0 0 0

3 RGB2YIQ_32 2 0 0 0 0 0 .33

4 FIR_64 1 0 1 1 0 0 0.5

5 DCT_64 0 1 0 0 1 1 0.5

6 DCT_32 0 1 0 0 0 0 0.16

7 DCT_16 0 0 0 1 0 1 0.33

8 MM_16 3 2 1 0 0 1 1.16

9 RGB2YIQ_64 2 0 0 0 0 1 0.5

10 FIR_32 0 0 0 1 0 0 0.16

11 VDP_64 1 0 1 0 1 0 0.5

12 VDP_32 2 1 1 1 2 0 1.16

13 FIR_16 0 1 2 2 1 2 1.33

14 VDP_16 2 0 1 0 0 0 0.5

Total Native Duration (ms) 25.3 12.39 11.15 11.26 4.2 14.9 13.21

Actual Duration (ms) 8.22 4.9 4.9 4.9 1.8 4.7 4.9

Speedup 3.08 2.52 2.26 2.28 2.26 3.12 2.59

84

Table 6.5 Detailed Task Arrivals and Execution Time for λ=0.75.

Task ID Application_VL
Number of Task Arrivals

Average
Slice1 Slice2 Slice3 Slice4 Slice5 Slice6

0 RGB2YIQ_16 0 0 2 0 0 0 0.33

1 MM_64 0 1 0 2 0 0 0.5

2 MM_32 2 0 0 0 1 0 0.5

3 RGB2YIQ_32 1 2 0 1 0 1 0.83

4 FIR_64 1 1 1 0 1 1 0.83

5 DCT_64 1 1 1 2 0 1 1

6 DCT_32 0 0 0 0 0 1 0.16

7 DCT_16 1 2 1 1 0 0 0.83

8 MM_16 2 3 1 1 0 2 1.5

9 RGB2YIQ_64 1 0 2 1 1 0 0.83

10 FIR_32 1 0 1 0 1 0 0.5

11 VDP_64 3 2 0 0 1 1 1.16

12 VDP_32 0 2 1 0 0 0 0.5

13 FIR_16 1 0 1 4 1 0 1.16

14 VDP_16 0 1 0 0 1 0 0.33

Total Native Duration (ms) 21.4 23.38 21.33 20.2 8.79 11.5 17.77

Actual Duration (ms) 6.59 6.75 6.66 6.62 3.05 3.75 5.57

Speedup 3.25 3.46 3.20 3.05 2.88 3.06 3.15

Table 6.6 Detailed Task Arrivals and Execution Time for λ=1.

Task

ID
Application_VL

Number of Task Arrivals
Average

Slice1 Slice2 Slice3 Slice4 Slice5 Slice6

0 RGB2YIQ_16 2 1 1 0 0 1 0.83

1 MM_64 1 2 2 2 2 0 1.5

2 MM_32 1 0 0 1 0 1 0.5

3 RGB2YIQ_32 0 2 3 1 1 0 1.16

4 FIR_64 1 2 0 0 0 0 0.5

5 DCT_64 2 0 1 0 1 0 0.66

6 DCT_32 1 0 1 0 2 0 0.66

7 DCT_16 0 2 2 0 2 1 1.16

8 MM_16 2 3 3 1 0 0 1.5

9 RGB2YIQ_64 1 1 0 1 1 2 1

10 FIR_32 1 0 1 1 3 1 1.16

11 VDP_64 0 2 1 0 1 0 0.66

12 VDP_32 0 2 1 1 1 2 1.16

13 FIR_16 0 1 2 1 2 2 1.33

14 VDP_16 0 2 1 0 0 1 0.66

Total Native Duration (ms) 28.75 34.57 35.14 17.81 25.53 15.76 26.26

Actual Duration (ms) 8.44 10.29 9.81 6.17 7.83 5.53 8.01

Speedup 3.4 3.36 3.58 2.88 3.26 2.84 3.23

85

Figure 6.3 The average of the total execution time for all threads scheduled in a time

slice, with and without VP sharing, for λ= 0.5, 0.75 and 1. (Time slice: 10ms.)

0 5 10 15 20 25 30

0.5

0.75

1

w sharing

w/o sharing

Execution time (ms)

λ

86

CHAPTER 7

POWER ANALYSIS AND ENERGY CONSUMPTION

In this chapter, a comprehensive power analysis and energy consumption for the single

host system is presented (Section 7.1). For this system, as mentioned in Section 4.1, all the

results are based on a frequency of 50MHz for the VP and VM. Results are given for the

benchmarks suit presented in Section 4.1.2 for the single host system. In Section 7.2, the

power analysis is presented for the multi-host system which is based on a frequency of

100MHz for the VP and VM running the benchmark suit of Section 4.2.2. In this section

it is also discussed how proper scheduling and a power gating technique can reduce

significantly the energy consumption.

 Power Analysis for the Single Host System

For high accuracy in the estimation of the VP’s power and energy consumption, the Xilinx

Power Analyzer (XPA) is employed which can determine the power when the activity rate

for each signal and net in the hardware are specified. Power dissipation has two major

components. Static power dissipation is due to current leaking through the transistors, even

without any activities. Dynamic power depends on the design’s activities [Xilinx INC,

2011].

Estimating the dynamic power of a design requires knowledge of the activity rates

for all signals and nets in the hardware. This information is available in the Xilinx SAIF

(Switching Activity Interchange Format) and VCD (Value Change Dump) files which are

generated after performing timing simulation of the design. Timing simulation for each

benchmark instantiation is performed using the ISE simulator (ISim) tool that generates an

87

SAIF file that shows the exact activity rates in the placed-and-routed (RAP) design. The

design is first synthesized, translated and mapped to the target platform before RAP. The

SAIF file is generated between desired intervals during simulation and includes

information for the interval. The SAIF, NCD (Native Circuit Description) and PCF

(Physical Constraint) files are imported into XPA to obtain accurate estimation of the

power consumption before the configuration bit-stream is generated and downloaded into

the FPGA.

To find the maximum dynamic energy dissipation, maximum VP performance is

targeted. To this end, we focus on the kernel of each benchmark that involves in the

calculations the VP, private memories and shuffle engines. The respective vector

instructions are then applied directly to the VP instead of being issued by the MB (i.e.,

there is no delay between consecutive VP instructions). For each kernel, first behavioral

simulation is performed to obtain the interval for SAIF generation. The start point is the

moment that the first vector instruction from the kernel enters the VC whereas the end point

is when the last vector element is written back to the VRF or private memories. After

determining the desired interval, the post-RAP simulation is performed for the benchmark

and the SAIF file is generated for the desired interval. The device configuration and

environmental parameters are set to their default values (e.g., the ambient temperature is

500C and the airflow is 250LFM). The static power remains unchanged at 2.878W for all

benchmarks since the same target device is used (FPGAs do not support power gating).

For matrix multiplication with Algorithm 3, which is the most vectorizable in

Table 5.1, the innermost loop that involves three instructions is considered as the target

kernel. It is repeated VL times until one row of the product matrix is generated. This kernel

88

includes one load instruction, one vector-scalar multiplication and one vector-vector

addition. Table 7.1 shows the measured values for this benchmark under this maximum

power dissipation scenario that assumes no delay between issuing consecutive vector

instructions. “Kernel duration” shows the length of the chosen interval. “Application

duration” is obtained from the “ideal” numbers in Table 5.5. It can be seen that the clock

distribution network dominates the dynamic power, which is in agreement with earlier

results. In fact, as it will be seen in Section 7.2, the clock power is technically part of the

static power. The dynamic power does not include the clock distribution network power

dissipation.

Table 7.1 Power and Energy Consumption for Matrix Multiplication (f=50 MHz).

VL Kernel

Duration

(ns)

VC+4lanes+Memories

Dynamic Power (mW)

Application

Duration

(us)

Application

Dynamic

Energy

(uJ)

Kernel

Dynamic

Power

(mW)
Clock Signal &

Logic

BRAM

& IO

16 550 106.8 71.96 4.16 137 25.06 182.92

32 710 106.8 87.96 5.28 809 161.83 200.04

64 1030 106.8 104.2 6.84 5048 1099.66 217.84

For FIR filtering with Algorithm 2, which is the most vectorizable in Table 5.2, the

target kernel for power estimation is the internal loop that slides the coefficients four times

over the input sequence and carries out multiplications and additions to produce four

elements of the result. This kernel contains twelve vector instructions that consist of four

load, four vector-scalar multiplication and four vector-vector addition instructions, and

maximizes the VP utilization for this benchmark. The power and energy values are

presented in Table 7.2.

For FFT with Algorithm 2, which is the most vectorizable in Table 5.3, a single

stage of FFT calculation forms the target kernel. Each stage involves sixteen vector

89

Table 7.2 Power and Energy Consumption for FIR Filtering (f=50 MHz).

VL Kernel

Duration

(ns)

VC+4lanes+Memories

Dynamic Power (mW)

Application

Duration

(us)

Application

Dynamic

Energy

(uJ)

Kernel

Dynamic

Power

(mW)
Clock Signal &

Logic

BRAM

& IO

16 1150 106.8 93.52 5.36 9.2 1.89 205.68

32 1790 106.8 102.6 6 28.3 6.09 215.4

64 3070 106.8 109.52 6.52 106.8 23.80 222.84

instructions which include two data shuffle, six vector-vector multiplication, two load, two

store, two vector-vector addition and two vector-vector subtraction instructions. Table 7.3

contains the results. Since data shuffling does not interfere with internal VP operations,

the “ideal” numbers from Table 5.7 are assumed for the time. It can be seen that, when the

ratio of ALU to LDST instructions issued increases in the kernel (e.g., FFT), the dynamic

power of the signals and logic increases since more results are produced in the FPUs.

Table 7.3 Power and Energy Consumption for FFT (f=50 MHz).

VL

Kernel

Duration

(ns)

VC+4lanes+Memories

Dynamic Power (mW)

Shuffle

Engines+

Crossbar

Dynamic

Power

(mW)

Application

Duration

(us)

Application

Dynamic

Energy

(uJ)

Kernel

Dynamic

Power

(mW)
CLk Signal

&

Logic

BRAM

& IO

16 1350 106.8 107.36 5.52 22.12 7.9 1.91 241.8

32 2090 106.8 133.12 6.48 22.12 19.1 5.13 268.52

64 3690 106.8 144.16 7 22.12 45.6 12.77 280.08

For the RGB2YIO benchmark, the chosen kernel with the maximum VP utilization

converts the color space for one row of the input block. This kernel consists of 21 vector

instructions and includes three load, nine scalar-vector multiplication, six vector-vector

addition and three store instructions. The “ideal” numbers from Table 5.8 are used. The

results are shown in Table 7.3

90

Table 7.4 Power and Energy Consumption for RGB2YIQ (f=50 MHz).

VL Kernel

Duration

(ns)

VC+4lanes+Memories

Dynamic Power (mW)

Application

Duration

(us)

Application

Dynamic

Energy

(uJ)

Kernel

Dynamic

Power

(mW)
Clock Signal &

Logic

BRAM

& IO

16 2350 106.8 82.96 5.72 28.7 5.6 195.48

32 4230 106.8 93.16 5.64 103.3 21.2 205.2

64 7590 106.8 94.2 5.44 390.6 88.6 206.4

 Power Analysis for the Multiple Hosts System

In this section, the energy consumption for the benchmarks of Section 4.2.2 is investigated.

Based on the power dissipation of individual benchmarks, a projection is made of the total

energy consumption for the dynamic schedules of Subsection 6.3. In a more accurate

categorization, power consumption has three components: device static, design static and

design dynamic [Beldianu et al., 2015]. The device static power, also known as leakage

power, is a device specific constant not related to resource utilization or the switching

activity. Under our simulation conditions for an ambient temperature of 500C and an

airflow of 250LFM (linear feet per minute), the leakage power for our chosen FPGA is

2.88W. The design static power represents the power consumption when the device is

configured, but there is no switching activity. It includes the static power in I/O DCI

terminations, clock managers, etc., and is related to FPGA resource consumption. The

design dynamic power results from the switching of the user configured logic. Accounting

for the FPGA resources that the VP actually uses, the presented power model adds the

design’s static and dynamic powers to estimate the total dissipation.

91

7.2.1 VP Dynamic Power for the Multiple Hosts System

To reliably estimate the dynamic power, the VP design was fully implemented and all

signal switching activities of each system node were used as input for power calculation.

As for the single host system, the VP is fully implemented (i.e., synthesized, translated,

placed and routed) using the Xilinx ISE tool chain, and performed PAR ISE simulations.

The binaries of the vector instructions of each benchmark were generated to estimate the

dynamic power. The power measurements include all power consumed by VP subsystems

(i.e., VC, HDU, vector lanes, VRF and VM). Also, register name readings from TLT

contributed to the figure.

Due to the time consuming nature of PAR simulations, the average power

consumption for one iteration of each vector kernel is measured. For matrix multiplication

and FIR filtering, the same kernels as previously discussed for the single host system in

Section 7.1 are applied here. For MM, the innermost loop that involves three vector

instructions is considered as the target kernel. For FIR filtering, the target kernel for power

estimation is the internal loop which is unrolled four times, slides the coefficients four

times over the input sequence, and carries out multiplications and additions to produce four

elements of the result. This kernel contains twelve vector instructions. For VDP, the kernel

size depends on VL. This kernel contains 11, 14 and 18 vector instructions for VL=16, 32

and 64, respectively. For VL=16, the kernel consists of five loads, two stores, three vector-

vector additions and one vector-vector multiplication. For VL=32, one load, one store and

one vector-vector addition are added to the former case. For VL=64, two loads and two

vector-vector instructions are added to the VL=32 case. For DCT, the inner loop which

calculates the output result for one output coefficient is the kernel. This kernel contains six

92

instructions: two loads, two stores, one vector-vector multiplication and one vector-vector

addition. For RGB2YIO, the chosen kernel converts the color space for VL input pixels. It

contains 21 instructions: three loads, nine scalar-vector multiplications, six vector-vector

additions and three stores.

For VP power measurements of individual benchmarks, the VP is used exclusively

without competition. The total dynamic energy consumed by a benchmark is actually the

product of its vector kernel power consumption and its native duration. The dynamic power

and energy consumptions of individual benchmarks are shown in Table 7.5 to Table 7.9.

The energy numbers shown are based on the input data sizes of Section 5.2.1. Using the

measured power, the total dynamic energy consumption of each benchmark for various

native durations can be calculated; this approach aids the estimation of the energy

consumption in dynamic environments. The dynamic energy results for the predefined

tasks of Section 6.3 were included in Table 6.3. Using a task’s average number of arrivals

per time slice, its average dynamic energy consumption per slice can be produced.

Figure 7.1 shows that the dynamic energy consumption is related almost linearly to the task

arrival rate.

Table 7.5 Power and Energy Consumption for MM (f= 100MHz).

VL Kernel

Duration

(ns)

VC+4Lanes+Memories

Dynamic Power (mW)

Kernel

Dynamic

Power

(mW)

Application

Duration

(us)

Application

Dynamic

Energy

(uJ)
Signal &

Logic

BRAM &

IO

16 365 102.04 3.32 105.36 241 25.39

32 405 136.96 6.04 143 942 134.7

64 555 198.68 8.8 207.48 3819 792.3

93

Table 7.6 Power and Energy Consumption for FIR (f= 100MHz).

VL Duration

(ns)

VC+4Lanes+Memories

Dynamic Power (mW)

Dynamic

Power

(mW)

Duration

(us)

Dynamic

Energy

(uJ) Signals &

Logic

BRAM &

IO
16 895 153.68 5.44 159.12 27 4.29

32 935 239.6 10.48 250.08 51 12.75

64 1575 284.6 13 297.6 97 28.86

Table 7.7 Power and Energy Consumption for VDP (f= 100MHz).

VL Duration

(ns)

VC+4Lanes+Memories

Dynamic Power (mW)

Dynamic

Power

(mW)

Duration

(us)

Dynamic

Energy

(uJ) Signals &

Logic

BRAM &

IO
16 765 136.26 11.24 147.5 12 1.77

32 1235 187.4 19.04 206.44 15 3.09

64 2275 243.28 24.92 268.2 18 4.82

Table 7.8 Power and Energy Consumption for DCT (f= 100MHz).

VL Duration

(ns)

VC+4Lanes+Memories

Dynamic Power (mW)

Dynamic

Power

(mW)

Duration

(us)

Dynamic

Energy

(uJ) Signals &

Logic

BRAM &

IO
16 525 110.16 9.32 119.48 87 10.39

32 605 149 16.64 165.64 87 14.41

64 775 212.28 27.92 240.2 87 20.89

Table 7.9 Power and Energy Consumption for RGB2YIQ (f= 100MHz).

VL Duration

(ns)

VC+4Lanes+Memories

Dynamic Power (mW)

Dynamic

Power

(mW)

Duration

(us)

Dynamic

Energy

(uJ) Signals &

Logic

BRAM &

IO
16 1465 152 5 157 244 38.3

32 1805 209.64 8.2 217.84 123 26.79

64 2295 267.76 13.52 281.28 63 17.72

94

Figure 7.1 Average total dynamic energy consumption per time slice for λ=0.5, 0.75 and

1.

7.2.2 Total Energy Consumption in the Multiple Hosts System

The VP’s static power is measured without running instructions but just applying the clock

signals. For a 100µs measurement after system reset, the average static power is 214mW.

Without pending instructions for the VP, power-gating (PG) can be applied to shut off the

VP and zero its static power dissipation. Implementing PG requires sleep transistors,

isolation cells and circuits to control power signals. It can reduce the design static power

by 85% [Beldianu et al., 2015].

Although commercial FPGAs currently lack PG support, PG in association with

proposed dynamic scheduler of Section 6.3 could yield not only performance gains but also

substantial reduction in the overall energy consumption. In each time slice, once the task

queue becomes empty, the VP is PGed until the beginning of the next time slice. Using the

static power measurements, the assumption of a 85% static power reduction with PG and

the measured average execution time in Figure 6.3, the VP’s average static energy

consumption is projected per time slice for a given task arrival rate. Combining the results

with the dynamic energy of Figure 7.1, Figure 7.2 shows the effect of PG on the VP’s

0

1

2

3

4

5

6

0.5 0.75 1

E
n

er
g

y
(m

J
)

λ

95

energy consumption with and without VP sharing. The total energy saved by combining

VP sharing, proper scheduling and PG is 33.9%, 36.1% and 37% under task arrival rates

of λ=0.5, 0.75 and 1, respectively. These are major energy savings on top of our very

substantial performance improvements.

Figure 7.2 Total energy consumption with (w/) and without (w/o) VP sharing, and with

power gating, for λ=0.5, 0.75 and 1.

0

2

4

6

8

10

12

w/ w/o w/ w/o w/ w/o

0.5 0.75 1

static

dynamic

E
n

er
g

y
 (

m
J

)

λ

96

CHAPTER 8

VIRTUALIZED SMT VP AND OPTIMIZATION VIA THREAD FUSION AND

LANE CONFIGURATION

In this chapter, architectural VP modifications are described in Section 8.1. Some of the

improvements and modifications are made to increase VP utilization, while others result in

a virtualized SMT VP. Resource utilization and performance benchmarking results for the

virtualized SMT VP are included in Sections 8.2 and 8.3, respectively. An accurate power

dissipation model for this new VP is introduced in Section 8.4, and energy optimization

scenarios and scheduling processes using this power model are discussed in Section 8.5.

 Virtualized VP Architecture

Subsection 8.1.1 covers those modifications which result in increasing VP performance

and utilization. Subsection 8.1.2 introduces a novel architecture for performing the data

shuffle instruction. The detailed architectural implementation of this pipelined structure is

discussed and its performance evaluation is presented. Subsections 8.1.3 to 8.1.5 cover

hardware modifications applied to the VP to increase flexibility and realize VRF and VM

virtualization processes in the VP data path. Subsection 8.1.6 describes how the new VP

architecture can be exploited in the fused mode.

8.1.1 Increasing the VP Saturation Level

As mentioned earlier in Section 5.2, the developed VP has a limitation on its maximum

achievable utilization level, namely its saturation level. The main reason contributing to

this problem is having an idle clock cycle between fetching consecutive instructions in

97

either the LDST or ALU data path from the instruction FIFOs. Although this idle cycle

eases the process of functional verification, it also puts an undesirable bound on VP

utilization. This causes the maximum theoretical utilization of the VP to be 80% for

VL=16, 88% for VL=32 and 94% for VL=64. By a slight modification of the ALU and

LDST decoder state machines in Figure 3.3, the idle high impedance state between

successive instructions is removed. Saving this precious clock cycle can results in a

theoretical maximum utilization of 100% for the VP resources. As a result, the performance

of the VP for single thread execution is also slightly improved, which can be noticed from

the benchmarking of Section 8.3.

Using open source code for FPU ALU units causes another bottleneck in VP

performance. Using RTL code for developing the FPU adder and multiplier is beneficial

when the VP is designed to be prototyped on ASIC platforms. Since our design is

prototyped on an FPGA platform (for proof of concept), the Xilinx IPs replace open source

FPUs. As a result, the VP uses more Xilinx DSP modules rather than registers and LUTs

(as presented in Section 8.2) and is no longer limited by the critical path delay in open

source blocks (it results in 15% improvement in the critical path delay).

8.1.2 VP Pipelined Data Shuffle Network

The data shuffle engine structure which was used in the single host system of Section 3.1

has some limitations. First of all, it is not pipelined. It uses a host side VM port to read the

source, and destination address as well as shuffle index for each element. Since the VM

bandwidth is bounded by one element per clock cycle, a total of eight clock cycles are

needed per element in the lane to perform shuffling. Three clock cycles are needed per

element to fetch the source, destination and corresponding index address from the memory,

98

one for generating the physical address and four more clock cycles to apply round-robin

scheduling between memory banks to avoid any possible contention. All the shuffle

engines work concurrently. So, for example, for VL=32 with 8 elements in each lane the

shuffle engine architecture takes 64 clock cycles to complete shuffling. Secondly, shuffle

instructions use their own controller. Having a dedicated controller removes the

unnecessary stall of the VP during shuffling. As a drawback, it makes the synchronization

of threads complex under SMT since each thread has two interfaces to the VP.

To alleviate these problems, a new data shuffle network is designed and

implemented. This design is completely pipelined and works on elements that reside within

the VRF rather than the VM. The shuffle network shuffles data among lanes. A data shuffle

instruction is issued like a regular ALU instruction through the VC. The previous

synchronization problem no longer exists since all requests are issued to the VP through a

single interface (VC). The total clock cycles needed for shuffling is equal to the number of

elements per lane since the design is fully pipelined (e.g., 8 clock cycles for VL=32).

The new data shuffle network consists of four stages of pipelining. No extra read

or write port is needed on the VRF to perform shuffling. The ALU decoder reads the source

data and the shuffle index from the VRF and sends them to the shuffle unit. In each pipeline

stage, the shuffle unit registers both the data and index per element, and sends them to the

next level on a clock edge. The targeted next level can be located in the lane shuffle unit

or in the next neighboring lane’s shuffle unit. So each pipeline stage in a lane shuffle unit

can accept data and an index from its own higher stage or from the higher stage of the

previous lane’s shuffle unit. The off lane passing decision is made based on the

corresponding input index (I_indx) and lane index (L_indx). If (I_indx mod 4= L_indx),

99

then that data is located in the correct lane and no longer needs to be passed to the

neighboring lane. Since there are four lanes in the developed VP, at most four clock cycles

are needed for an element to reach its destination lane. The result of the shuffle unit (both

the data and index), which is ready after four clock cycles, is buffered in the WB unit. The

data will be written in the correct destination in the VRF based on the index and destination

information provided to the WB unit by the decoder. Figure 8.1 gives an example of how

the pipelined shuffle network works. The input for level 1 is provided by the lane’s ALU

decoder. The index numbers in the figure represent (I_indx mod 4) values. The elements

“A” to “D” represent four successive elements in the vector register. Since the VRF has a

low order interleaved structure, elements reside in the four different lanes.

Figure 8.1 Data shuffling example for the pipelined shuffle network.

It can be seen from Figure 8.1 that when an element’s index matches the lane index

(I_indx mod 4= L_indx), there is no need to pass the element to the next lane. This can

happen only after four stages. Since the shuffle network consists of four stages, three levels

100

of passing elements will be needed between stages. The overall architecture of the

pipelined data shuffle network is depicted in Figure 8.2.

It can be observed from Figure 8.1 that, in the last stage of the shuffle unit, four

elements may need to be written into the VRF. This can happen only if four elements are

to be written into four different lanes’ VRFs. This fact imposes a limitation on the proposed

pipelined structure. Based on this limitation, only certain shuffle patterns could be realized

in the pipelined architecture and the rest may require the help of a scalar host processor. If

four successive indexes in the shuffle index register target four different lanes’ indexes,

then the pattern can be realized directly with the pipelined structure. Fortunately this is the

case for most of the desired shuffling patterns in a practical application such as FFT.

Figure 8.2 Overall architecture of the pipelined data shuffle network.

To evaluate the new shuffle architecture, the FFT benchmark is rearranged to be

run on the single host system with a modified VP architecture that includes the new

pipelined shuffle network. Comparisons in Table 8.1 are against the previous architecture

for FFT. It shows that the new architecture can accelerate FFT around 2-3 times, compared

to the old VP with the unpipelined shuffle engine network.

101

Table 8.1 FFT Performance and Utilization Comparison Between the Previous VP with

the Shuffle Engines and the Modified VP with the Pipelined Data Shuffle Network

(f=100MHz)
VL Platform ALU (%) LDST (%) SHF (%) Execution Time (ns)

16 Pipeline shuffle 40.2 20.1 N/A 3980

Shuffle engines 4.7 12.3 7.4 13000

32 Pipeline shuffle 65.04 31.22 N/A 6150

Shuffle engines 10.3 26 15.4 15500

64 Pipeline shuffle 78.81 36.78 N/A 12180

Shuffle engines 15.4 38.4 23.1 25000

8.1.3 Virtualized VM Address Space

Each vector lane in the VP contains an ALU unit as well as a LDST unit that interfaces the

VM. As discussed in detail in Section 3.1.1, the VP features a distributed VM design where

one of each VM bank’s dual ports is assigned exclusively to one VP lane, and yet all VM

banks can be accessed by the host processors via a mux connected to the second port of

every VM bank. Since the VM is accessed by two heterogeneous types of masters (i.e., the

on-chip host cores and the VP), it is assigned two different address domains with regard to

each one of its masters. The host-to-VM mux accesses VM banks in low-order interleaved

fashion to hide the bank selection details from the hosts; therefore, all VM banks appear as

one large memory module with a continuous address space on the system bus. Each VP

lane, on the other hand, can only access and process elements within its dedicated VM bank

based on the VP-to-VM issued address and VL information.

 All vector instructions from the hosts go through the VC that handles hazard

detection and virtualization, and then broadcasts them to the ALU or LDST pipeline

interface in each lane. To ensure the correct execution of a vector application under various

numbers of active lanes, both address domains of the VM as well as the VL information

must be virtualized. This is essential for runtime VP lane configuration, since all address

102

values and the VL for a vector application are determined statically, and therefore the same

values must be properly interpreted by the hardware under disparate VP configurations. To

facilitate address virtualization, the host-to-VM mux and the VC are modified to be

configurable by host requests. Before starting a new vector thread, a host will submit a

request to configure state registers based on the optimal number of lanes needed by the

thread.

8.1.4 Configurable Components

Figure 8.3 illustrates how a data array with base host-to-VM address of 4N and VL=8 can

be accessed by the virtualized VP correctly under different lane configurations. The figure

shows the cases of two-lane (Figure 8.3.a) and four-lane (Figure 8.3.b) configurations in a

VP with four lanes; however, this scheme can be easily adapted for any 2N active lanes

with any VL = 2M, where N and M are both natural numbers and M ≥ N. The VP’s lane

state register, which can be configured dynamically by the hosts via a simple control

instruction, stores the number of active lanes and determines how the VP behaves in the

following cases.

 In the case of all lanes being active (four in this example), the lowest two bits of

the host-to-VM address will be used as the select signal for the host-to-VM mux, and the

remaining bits will be used as the actual physical address for every VM bank. As shown in

Figure 8.3.b, the data array is mapped to the physical address [N, N+1] of each VM bank,

with two elements per bank. Therefore, the array’s base VP-to-VM address is compiled to

be N, which is the same as its physical address in each bank. The LDST unit within each

lane will start accessing the array with base address N, and based on the VL = 8 and four

103

active lanes information passed from the VC, the instruction decoder will set the counter

to two so that each lane will access two elements per instruction.

Figure 8.3 Mapping of VL, host-to-VM address and VP-to-VM address via

virtualization.

When the host dynamically deactivates two VP lanes and their attached VM banks,

only two banks remain and therefore the mux must be configured to take only the LSB of

the host-to-VM address as the bank select signal. All remaining bits will be used as each

bank’s physical address, and since the host-to-VM address is compiled at static time and

does not change, under the new configuration the array will be mapped to the physical

address [2N, 2N+3] of each remaining VM bank, with four elements per bank. To ensure

that the VP can still reach the array with the unchangeable VP-to-VM address of N, the

104

VC’s virtualization stage simply has to shift left the address by one bit and pass it to all

lanes’ LDST units. The new configuration also requires that the VC shift left the VL by

one bit to make each lane access four elements per instruction. Since the decoder unit in

each lane relies on the register name and VL value to locate the right vector registers,

shifting VL also ensures that each lane will use the right location and number of registers

under the new configuration.

8.1.5 VRF and VM Virtualization Under SMT

The VP is originally designed to support vector-based SMT and sharing among many

processors. To achieve true SMT where instructions from multiple threads can coexist

inside the VP pipeline without interference, both the VRF name space and the VM space

are virtualized on a per instruction basis. With SMT virtualization, one SMT capable VP

appears as multiple logical VPs (LVPs) to multiple hosts/cores. Shown in Figure 8.4 is a

simple example of an SMT VP of degree two. The VP has only one physical instruction

input channel; however, the FIFOs and arbitrator structure create two virtual channels. The

VP input arbitrator accepts instructions from two different FIFOs in round-robin fashion,

and each FIFO can be assigned to a host; in this example, only one host is used and the two

LVPs are used to exploit TLP via thread fusion. The thread ID for each instruction is filled

by the arbitrator based on the source FIFO. For ID = 0, all VRF names are unchanged.

When ID = 1, the virtualization stage in the VC properly flips a few bits in each register

name based on the instruction’s VL. The scheme ensures that LVP0 occupies the lower

half of the VRF and LVP1 occupies the higher half. The mechanism achieves VRF resource

sharing with significant flexibility in that it allows both LVPs to function correctly as long

105

as (a) the total VRF usage does not exceed the available physical VRF resources, and

 (b) in the single LVP mode, either LVP0 or LVP1 can occupy the entire VRF space.

 As shown in Figure 8.4, the host-to-VM mux supports data transfers between the

hosts’ RAM space and both LVPs’ virtual VM spaces. Based on the thread state register,

which can be configured by the hosts, part of the host-to-VM address is flipped to map the

LVP1’s virtual address space to the higher half of the VM banks. The data transfer only

happens at the beginning and the end of a vector application, and therefore no per

instruction switching between LVP0 and LVP1 is required for data transfers. The thread

state register can be configured by the hosts using a simple control instruction which is

similar to that used for dynamic lane configuration. The virtualization for SMT capability

does not conflict with that for dynamic lane configuration, and therefore the prototype is

extremely versatile; without recompilation, any two applications can simultaneously

function properly on the VP regardless of their assigned thread ID or the number of active

VP lanes.

For simplicity, an FPGA-based prototype capable of executing two threads

simultaneously is built. However, the max number of simultaneous threads can be easily

increased by increasing the number of instruction FIFOs and modifying the arbitrator’s

state machine. VRF virtualization for more than two threads can be supported by using a

VRF renaming algorithm presented in section 3.3.2 which dynamically maps the threads’

virtual VRF names to physical names while minimizing register fragmentation. Virtual VM

for multiple threads can be implemented by using a memory management unit.

106

8.1.6 Fusion of Similar Threads

For frequently used computation intensive operations, highly optimized VP routines are

implemented and stored in a library. When multiple pending tasks are of the same

operation, it is possible to fuse these operations thanks to the VP’s per thread virtual VM

and VRF space. Figure 8.5 shows how two DCT operations are accelerated by fusing the

threads. Without fusion (Figure 8.5.a), the two operations will be executed sequentially.

When two threads are fused (Figure 8.5.b), the major parts of their execution are merged,

so that the hosts’ domain issues vector instructions only once while the VP receives two

copies. The switch in Figure 8.4 is set to the fusion state for duplicating each vector

instruction from the host domain and sending it to both FIFOs. A scheduler of vector

threads decides on fusion. Due to the independent virtual nature of each LVP, the two

identical instruction flows will perform the same operation but on different input data

within each virtual space.

Vector thread fusion has many benefits: (a) it significantly increases the vector

instruction issue rate for all hosts; (b) the VP utilization is effectively multiplied by the

degree of fusion as long as the aggregate utilization does not exceed 100%; (c) it reduces

the overall energy consumption since the host domain only has to run the flow control

program once to send out vector instructions for fused threads; (d) since the VP’s SMT

virtualization is compatible with dynamic lane configuration, fusion can be combined with

lane configuration to optimize performance and energy figures.

107

Figure 8.4 System architecture of a fusion capable VP of degree two

Figure 8.5 Fusion of two DCT operations

 System Architecture and FPGA Implementation

To evaluate the two proposed techniques, a dual-threaded modified VP interfaced with a

hosts system is prototyped on a Xilinx XC7Z045-1fbg676 FPGA. The system architecture

108

is similar to that in Figure 8.4, with the hosts system replaced by a MB processor that issues

vector threads. Various vector kernels are stored in MB 16KB local memory. The system

RAM and VM are 64KB each. A DMA engine is attached to the system bus for fast data

transfers between the system RAM and VM. The mux connecting the VM and system bus

is configurable by the MB to support the virtualization for lane configurability and SMT.

I/O components on the bus are used for debugging purposes and we implemented an 8-bit

LED to show the system status. A cycle accurate timer (not shown in the figure) that

measures application runtime can interrupt the MB.

The VP has four lanes and is capable of running with 1, 2, or 4 active lanes. Each

lane’s dedicated VM bank can be deactivated with its assigned lane. A vector register of

length N contains N register elements, and therefore the number of available vector

registers depends on the VL of each register. The VP, the fusion switch, the VM data mux

and the vector instruction arbitrator are custom hardware designed in VHDL, and the rest

of the system components are Xilinx IPs. The target FPGA has a speed grade of -1. The

minimum achievable critical delay is 6.01ns and it is improved by 15% compare to old VP

as open source FPUs are substituted with Xilinx IPs; for simplicity, a 100MHz system is

implemented. The resource consumption breakdown for the VP is shown in Table 8.2.

Table 8.2 Resource Consumption and Utilization Percentage

Entity
Registers

U(%)

LUTs

U(%)

RAMB36E1s

U(%)

DSP48E1s

U(%)

One Lane 9571 (2%) 17437 (7%) 0 5 (<1%)

VM 16 (<1%) 272 (<1%) 16 (2%) 0

VC 287 (<1%) 451 (<1%) 0 0

VP 38674 (8%) 70143 (32%) 16 (2%) 20 (2%)

109

 Benchmarking the Virtualized VP

Four vector applications, which were introduced in Chapter 4, are picked for proposed

system benchmarking. The applications are DCT, FIR , RGB2YIQ and VDP. Since the

current VP supports three different VLs, each picked application is evaluated using all

supported VLs, creating a total of 12 benchmarks. Each benchmark is characterized by its

ALU utilization (UALU) and LDST utilization (ULDST). Each benchmark is executed

under various configurations, measured the corresponding runtime, and calculated the

utilization the pipelines. The utilization is defined as Ototal /O4lanes, where Ototal is the

total number of operations for an application and O4lanes is the maximum number of

operations that can be performed by the four lanes during the application’s runtime.

Table 8.3 to 8.5 show the runtime and utilization figures under three VP configurations

(a. Four lanes active without fusion. b. Four lanes active with fusion. c. Two lanes active

without fusion.)

Table 8.3 Performance Profile Data for 4Lanes Unfused VP

APP VL T(μs) ALU(%) LDST(%)

DCT

16 75 6.8 14.1

32 75 13.6 28.2

64 75 27.3 56.4

VDP

16 23.7 6.7 11.8

32 28.3 14.1 25.4

64 34.4 32.5 51.1

RGB2YIO

16 243.6 15.8 6.3

32 123.8 31.0 12.4

64 64.0 60.0 24.0

FIR

16 25.7 10.6 5.5

32 46.8 22.7 11.5

64 89.1 47.8 24.0

The native utilization (U) and native runtime (T) are called an application’s figures

under configuration a. Utilization and runtime figures under other configurations are

110

represented by U’ and T’. With two active lanes, the maximum achievable utilization is

50%; it is the average with two active lanes at 100% and the other two lanes at 0%. For

benchmarks with ALU and LDST native utilizations below 50%, the runtime and

utilizations are not affected due to lane deactivation.

Table 8.4 Performance Profile Data for 4Lanes Fused VP

APP VL T(μs) ALU(%) LDST(%)

DCT

16 75 13.6 28.2

32 75 27.2 56.4

64 86.5 47.36 97.6

VDP

16 23.7 13.4 23.6

32 28.3 28.2 50.8

64 35.8 62.6 98.4

RGB2YIQ

16 243.7 31.6 12.6

32 123.5 62.1 24.9

64 78.3 98.1 39.2

FIR

16 25.9 21.1 10.9

32 46.7 45.5 22.9

64 89.2 95.7 47.9

Table 8.5 Performance Profile Data for 2Lanes Unfused VP

APP VL T(μs) ALU(%) LDST(%)

DCT

16 75 6.8 14.1

32 75 13.6 28.2

64 84.9 24.1 49.8

VDP

16 23.7 6.7 11.8

32 28.3 14.1 25.4

64 35.7 31.3 49.2

RGB

16 243.6 15.8 6.3

32 123.8 31.0 12.4

64 77.7 49.4 19.8

FIR

16 25.7 10.6 5.5

32 46.8 22.7 11.5

64 89.03 47.8 24.0

For other benchmarks, from UALU and ULDST the higher will hit the 50% saturation

level while the other will decrease proportionally. The runtime increase is related to the

higher of UALU and ULDST. The relation between each benchmark’s actual figures for two

active lanes and their native figures is shown in Equation 8.1.

111

_ 2 _ 2 2

_ 2 _ 2 2

_ 2

if (<50 and 50) then

 ' ; ' ; '

else if () then

 ' 50; ' 50; '
50

else

 '

ALU LDST

ALU lanes ALU LDST lanes LDST lanes

ALU LDST

LDST ALU
ALU lanes LDST lanes lanes

ALU

ALU
ALU lanes

L

U U

U U U U T T

U U
U U

U U T T
U

U
U

U



  



  

 _ 2 250; ' 50; '
50

LDST
LDST lanes lanes

DST

U
U T T 

(8.1)

The maximum utilization achievable is 50% when two lanes are deactivated. The

Equation 8.1 agrees with the measurements shown in

Table 8.3 to Table 8.5. U’ALU_1lane , U’LDST_1lane and T’1lane with one active lane can

be derived using a similar approach and changing the threshold to 25%. A fused benchmark

can be considered as a new one with new native runtime and utilizations, as shown in

Table 8.4. The runtime scheduler will use the utilization information to choose the optimal

number of active lanes based on the scheduling policy. The scheduling policy will be

discussed in Section 8.5.

 Power Model

A highly accurate VP power consumption model is needed for optimization purposes. By

combining the VP’s NCD file with the testbenches of different scenarios, the detailed SAIF

for various VP utilizations is obtained. By using testbenches that issue instructions to the

VP at various rates, the VP’s static and dynamic power under various utilizations is

measured. Figure 8.6 shows dynamic power results.

All VP lanes’ dynamic power can be broken down into four components

corresponding to the: VRF, VM banks, LDST data path (including LDST FIFO and

112

decoder, address generator, and write back unit) and ALU data path (including ALU FIFO

and decoder, execution and write back units). Each component’s dynamic power is linear

to its utilization, and is therefore related to UALU and ULDST. Each LDST operation involves

one memory access and one VRF access, and each ALU operation involves reading two

operands from the VRF and writing one result back to the VRF. Therefore, the relation

between VP lanes’ dynamic power and their utilizations can be described by Equation 8.2.

Each coefficient K is the power per utilization in mW/% for each corresponding

component. On the other hand, the VC is a common block that processes both ALU and

LDST instructions, and therefore its power consumption is linear to the total issue rate (IR)

of both types of instruction, and that can be described by Equation 8.3.

Figure 8.6 Dynamic power vs. utilization for both ALU and LDST data paths.

113

_

_

(3*)ALU dynamic ALU ALU VRF ALU

LDST dynamic LDST LDST VRF LDST BRAM LDST

P K U K U

P K U K U K U

 

  

(8.2)

()*4
* *() ' ()ALU LDST

VC VC VC VC ALU LDST

U U
P K IR K K U U

VL


   

(8.3)

By adding together the terms in Equation 8.2 and Equation 8.3, the Equation 8.4

is obtained the VP’s dynamic power as a simple linear function of UALU and ULDST.

_ (3*)

 ' ()

 = ' '

VP dynamic LDST LDST ALU ALU VRF ALU LDST

BRAM LDST VC ALU LDST

ALU ALU LDST LDST

P K U K U K U U

K U K U U

K U K U

   

  



(8.4)

This power model matches the measurements of the VP’s dynamic power vs. ULDST

with idle ALU (Figure 8.6.a), and power vs. UALU with idle LDST (Figure 8.6.b). From the

measured data the coefficient K for each component is extracted; the most important are

for the ALU and LDST units: K’ALU = 2.838mw/%, and K’LDST = 1.415mW/%.

The VP’s total power is given by Equation 8.5. The measured VC static power is

2.2mW, and each lane’s static power is 26.5mW with its dedicated memory bank. Since

the FPGA does not support power gating, it is implemented using extra logic to isolate the

power signal. Power gated components still dissipate about 15% of their original static

power [Beldianu et al., 2015]. Pstatic is 108.2mW, 63.15mW and 40.63mW for the 4, 2, and

1 lane configuration, respectively. In Equation 8.5, UALU and ULDST are the applications’

actual utilizations under various situations. Combining Equation 8.5 with Equation 8.1,

114

Equation 8.6 is obtained that describes the relation of an application’s power consumption

with two active lanes and its native utilizations. A similar equation can be derived with one

active lane.

' 'static ALU ALU LDST LDSTtotalP P K U K U  

(8.5)

_ 2

_ 2

_ 2

if (50 and 50) then

 63.15 ' '

elseif () then

 63.15 50 ' 50 '

else

 63.15 50 ' 50 '

ALU LDST

total lanes ALU ALU LDST LDST

ALU LDST

LDST
total lanes ALU LDST

ALU

ALU
total lanes LDST AL

LDST

U U

P K U K U

U U
U

P K K
U

U
P K K

U

 

  



  

   U

(8.6)

 The Scheduling Policy

So far a vector application’s P4lanes, P2lanes and P1lane are obtained as function of their

native utilizations. The execution times T2lanes and T1lane are also related to T4lanes, and the

example for T2lanes is shown in Equation 8.1. The set of P and T values form two-

dimensional matrices with UALU and ULDST as indexes. Two different scheduling policies

using P and T are proposed. The first policy is to achieve minimum energy consumption.

The energy matrix for each configuration can be calculated by ENlanes = PNlanes * TNlanes. By

comparing E4lanes, E2lanes and E1lane, the utilization boundary for optimal configuration can

be determined. Figure 8.7.a shows a generic contour for minimum energy consumption;

the actual values depend on the application. All applications whose native utilizations fall

into region A consume minimum energy when executed with one active lane, while region

115

B is for two lanes and region C is for four lanes. Using a similar approach, the boundary

for the second scheduling policy which minimizes the product of an application’s execution

time and energy consumption can be obtained; it is shown in Figure 8.7.b.

Figure 8.7 Optimal utilization boundaries for a. minimum energy b. minimum energy-

execution time product

The two scheduling policies (Emin and ETmin) were tested using an open system

model where tasks that arrive within a time slice of size 10ms are scheduled in the

following 10ms slice. The arrival of every task follows the Poisson distribution; six arrival

rates λ = 1, 3, 5, 7, 9, 11 are tested. Tasks in the queue are ordered by their task type; since

similar tasks are adjacent in the queue, the scheduler easily identifies fusable tasks. The

116

tasks are those in Section 8.3. For each optimization policy, every task has two optimal

execution configurations: unfused and fused modes. All configurations can be obtained by

combining each task’s UALU and ULDST with the results shown in Figure 8.7. As mentioned

previously, the scheduler will treat a fused task as a new task with its own UALU and ULDST.

Figure 8.8 Comparison of the Emin, ETmin policies against a VP w/o fusion and lane

configuration over the average of 1000 time slices. a. energy b. runtime c. energy-runtime

product.

The task queues for 1000 time slices are generated using the MATLAB random

number generator, and calculated the average parameters for the two scheduling policies

117

and also for the VP without the proposed techniques. As shown in Figure 8.8, for the Emin

policy, the proposed techniques reduce the average energy consumption by up to 33.8%

while improving the runtime by 40%. The ETmin policy reduces the product of energy and

runtime by up to 62.7%. For the VP without fusion and lane configuration, the average

execution time at λ = 11 is close to 10ms and the system is about to overflow.

118

CHAPTER 9

COCNCLUSION AND FUTURE WORK

 Conclusion

This dissertation presented a multi-lane VP architecture as a high-performance coprocessor

for data-parallel applications in multicore/multithreaded processors. More specifically, the

main motivation of this work was to introduce a multithreaded VP framework realizing

SMT and eventually resource virtualization. This coprocessor is applied to three system

architectures.

In the single host system, the VP is exclusively dedicated to a scalar processor and

improves system performance via exploiting DLP. The proposed VP has a VIRAM-like

architecture with dedicated data paths in each lane for LDST and ALU instructions. This

data path separation makes the VP capable of exploiting ILP as well. Assigning a private

memory to each vector lane and specifying one set of memory ports exclusively for

transactions between that memory and the corresponding lane increases the speedup for

memory-based vector instructions. Data shuffling and index addressing are realized using

distributed data shuffle engines and a crossbar which is placed between the private and

global memories. A benchmark suite to evaluate the system performance is introduced

which shows an up to 1500-fold speedup over a scalar processor; the area is increased 11-

fold. Detailed performance and power dissipation results for each benchmark are provided.

The results prove the viability of our approach.

In the multiple hosts system, the scalar cores share the VP resources via VP

virtualization that improves the aggregate utilization and performance with SMT.

Virtualization can be applied in a multicore environment where the VP is shared by

119

multiple cores via a bus or in a unicore environment where the core is designed to support

SMT. An easy-to-use interface makes VP sharing transparent to application programmers

while improving the throughput many-fold. More specifically, the proposed VP can

simultaneously execute multiple threads of similar or disparate vector lengths to improve

VP throughput. The virtualization technique is prototyped for a multi-core processor

embedded in an FPGA as a multiple hosts system. Under the dynamic creation of threads

with diverse needs for vector sizes and types of operations, benchmarking results show

impressive VP speedups of up to 333% and total energy savings of up to 37% with proper

thread scheduling and power gating compared to a single host system that allows VP access

to just one thread at a time. Finally, the performance improvements compared to the single

host system and other prior works for VP sharing that did not support VP virtualization

further prove the viability of our approach since the obtained speedups are impressive.

Subsequently, the VP architecture is improved to increase its functionality and

configurability as well as its throughput. The new version is called virtualized SMT VP.

By combining the proposed dynamic lane configuration and fusion techniques in the design

of a shared virtualized SMT VP, the VP’s energy consumption and energy runtime product

are improved substantially under two proposed optimization policies. As VPs scale up in

the number of vector lanes, fine-grain power management provided by lane configuration

becomes more critical. The benefit of the fusion technique will also be amplified when the

fusion degree grows above two.

 Future Work

The VP pipeline can be improved to support more operations, such as the square root and

negation. Adding a data reduction instruction to the VP for fully associative operations

120

(e.g. adding all the elements in a vector register) would also be extremely beneficial. These

kinds of instructions were always performed on the scalar host for all previously proposed

VPs and resulted in performance degradation for several practical applications.

Developing a distributed, rather than a centralized system, where each scalar core

has access to more than one virtualized SMT VP can further improve parallelism. In this

system, instruction fusion will be applied on top of VP virtualization to increase DLP

exploitation. In fact, with instruction fusion the effective rate of issuing vector instructions

will be doubled, while the total dynamic energy consumption due to vector application

flow control on the host processor will be reduced by 50%. In such a system, each host can

request fusion in order to achieve higher performance by exploiting more parallelism. In

the case of request granting, the host can take advantage of many vector logical threads to

run an application. Similar copies of a vector instruction will be sent to different virtualized

vector logical cores to perform the same function on different resources. These virtualized

vector cores can be located within the same or different physical vector coprocessors. A

very abstracted overall architecture of such a distributed system is presented in Figure 9.1.

Each virtualized SMT VP in this system will provide two logical cores to perform SMT.

Figure 9.1 Abstracted architecture of a distributed system with enhanced VPs.

121

Having all the profiled data regarding performance and power analysis, a

comprehensive high level model of the system can be developed in C. This model will be

used for further exploration.

122

REFERENCES

Beldianu, S. F., & Ziavras, S. G. (2013). Multicore-based vector coprocessor sharing for

performance and energy gains. ACM Transactions on Embedded Computing

Systems, 13(2).

Beldianu, S. F., & Ziavras, S. G. (2015, March). Performance-energy optimizations for

shared vector accelerators in multicores. IEEE Transactions on Computers, 64(3),

pp. 805-817.

Cho, J., Chang, H., & Sung, W. (2006, May). An FPGA based SIMD processor with a

vector memory unit. IEEE International Symposium on Circuits and Systems, pp.

525-528.

Chou, C. H., Severance, A., Brant, A. D., Liu, Z., Sant, S., & Lemieux, G. G. (2011,

February). VEGAS: soft vector processor with scratchpad memory. 19th

ACM/SIGDA International Symposium on Field Programmable Gate Arrays, pp.

15-24.

Cooley, J. W., & Tukey, J. W. (1965). An algorithm for the machine calculation of complex

Fourier series. Mathematics of computation, 19(90), pp. 297-301.

Espasa, R., & Valero, M. (1997). Simultaneous multithreaded vector architecture: Merging

ILP and DLP for high performance. 4th IEEE International Conference on High-

Performance Computing, pp. 350-357.

Hagiescu, A., and Wong, W. F. (2011, February). Co-synthesis of FPGA-based

application-specific floating point SIMD accelerators. 19th ACM/SIGDA

International Symposium on Field Programmable Gate Arrays, pp. 247-256.

Heil, T., Krishna, A., Lindberg, N., Toussi, F., & Vanderwiel, S. (2014). Architecture and

performance of the hardware accelerators in IBM’s PowerEN processor. ACM

Transactions on Parallel Computing, 1(1).

Iranpour, A. R., & Kuchcinski, K. (2004, August). Evaluation of SIMD architecture

enhancement in embedded processors for MPEG-4. IEEE Euromicro Symposium

on Digital System Design, pp. 262-269.

Kennedy, K., & McKinley, K. S. (1992, August). Optimizing for parallelism and data

locality. 6th international conference on Supercomputing, pp. 323-334.

Kim, Y. H., Yoo, J. W., Lee, S. W., Paik, J., & Choi, B. (2005, January). Optimization of

H. 264 encoder using adaptive mode decision and SIMD instructions. IEEE

International Conference on Consumer Electronics, Digest of Technical Papers,

pp. 289-290.

Kozyrakis, C. E., & Patterson, D. A. (2003). Scalable, vector processors for embedded

systems. IEEE Micro, 23(6), pp. 36-45.

123

Kozyrakis, C., & Patterson, D. (2002, November). Vector vs. superscalar and VLIW

architectures for embedded multimedia benchmarks. 35th Annual ACM/IEEE

International Symposium on Microarchitecture, pp. 283-293.

Kuon, I., & Rose, J. (2007, February). Measuring the gap between FPGAs and ASICs.

IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems,

26 (2), pp. 203-215.

Lee, J., Jeon, G., Park, S., Jung, T., & Jeong, J. (2008, June). SIMD Optimization of the H.

264/SVC decoder with efficient data structure. IEEE International Conference on

Multimedia and Expo, pp. 69-72.

Lee, J., Moon, S., & Sung, W. (2004, December). H. 264 decoder optimization exploiting

SIMD instructions. IEEE Asia-Pacific Conference on Circuits and Systems, 2, pp.

1149-1152.

Lee, Y., Avizienis, R., Bishara, A., Xia, R., Lockhart, D., Batten, C., & Asanović, K.

(2013). Exploring the tradeoffs between programmability and efficiency in data-

parallel accelerators. ACM Transactions on Computer Systems, 31(3).

Lin, Y., Lee, H., Woh, M., Harel, Y., Mahlke, S., Mudge, T., & Flautner, K. (2006, June).

SODA: a low-power architecture for software radio. ACM SIGARCH Computer

Architecture News, 34(2), pp. 89-101.

Lo, W. Y., Lun, D. P., Siu, W. C., Wang, W., & Song, J. (2011). Improved SIMD

architecture for high performance video processors. IEEE Transactions on Circuits

and Systems for Video Technology, 21(12), pp. 1769-1783.

Lu. Y, Rooholamin. SA, & Ziavras. S.G. (2015, Oct). Vector Processor Virtualization for

Simultaneous Multithreading, ACM Transactions on Embedded Computing

Systems, Accepted for publication.

Marr, D. T., F. Binns, F., Hill, D. L., Hinton, G., Koufaty, D. A., Miller, J. A. & Upton, M.

(2002, Feb.). Hyper-Threading technology architecture and microarchitecture. Intel

Technology Journal, 6(2), pp. 1–12.

Nvidia Corp.(2014). Featuring Maxwell, the most advanced GPU ever made. Nvidia

Gefore GTX 980 White Paper.

Open Cores. 2012. http://www.opencores.org/projects (accessed on Sept. 10, 2013).

Rakvic, R., González, J., Cai, Q., Chaparro, P., Magklis, G & A. Gonzalez, A. (2010)

Energy efficiency via thread fusion and value reuse. IET Computers Digital

Techniques., 4(2), pp.114-125.

Rooholamin. SA, and Ziavras. S.G. (2015, June). Modular vector processor architecture

targeting at data-level parallelism, Microprocessors and Microsystems. 39(4), pp.

237-249.

Severance, A, & Lemieux, G.(2012). VENICE: A compact vector processor for FPGA

applications. IEEE International Conference on Field-Programmable Technology,

pp. 261-268.

124

Severance, A., Edwards, J., Omidian, H., & Lemieux, G. (2014, February). Soft vector

processors with streaming pipelines. ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, pp. 117-126.

Shengfa, Y., Zhenping, C., & Zhaowen, Z. (2006, June). Instruction-level optimization of

H. 264 encoder using SIMD instructions. IEEE International Conference on

Communications, Circuits and Systems, 1, pp. 126-129.

Sung, W., & Mitra, S. K. (1987). Implementation of digital filtering algorithms using

pipelined vector processors. Proceedings of the IEEE, 75(9), pp. 1293-1303.

Suresh, S., Beldianu, S. F., & Ziavras, S. G. (2013, June). FPGA and ASIC square root

designs for high performance and power efficiency. 24th IEEE International

Conference on Application-specific Systems, Architectures and Processors, pp.

269-272.

Xilinx INC. 2010. MicroBlaze Processor Reference Guide,

http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf

(accessed on Oct. 10, 2013).

Xilinx INC. 2012. AXI Reference Guide.

http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/la

test/ug761_axi_reference_guide.pdf (accessed on Oct. 10, 2013).

Xilinx INC. 2011. Power Methodology Guide, http://www.xilinx.com/support/

documentation/sw_manuals/xilinx13_1/ug786_PowerMethodology.pdf (accessed

on Jan. 15, 2014).

Yang, H., & Ziavras, S. G. (2005, September). FPGA-based vector processor for algebraic

equation solvers. IEEE International Conference on System on Chip, pp. 115-116.

Yiannacouras, P., Steffan, J. G., & Rose, J. (2008, October). VESPA: portable, scalable,

and flexible FPGA-based vector processors. ACM International Conference on

Compilers, Architectures and Synthesis for Embedded Systems, pp. 61-70.

Yu, J., Lemieux, G., & Eagleston, C. (2008, February). Vector processing as a soft-core

CPU accelerator. 16th International ACM/SIGDA Symposium on Field

Programmable Gate Arrays, pp. 222-232.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Related Work
	Chapter 3: Proposed Vector Coprocessor
	Chapter 4: Benchmarking
	Chapter 5: Performance Analysis
	Chapter 6: Scheduling Vector Threads
	Chapter 7: Power Analysis and Energy Consumption
	Chapter 8: Virtualized SMT VP and Optimization Via Thread Fusion and Lane Configuration
	Chapter 9: Cocnclusion and Future Work
	References

	List of Tables (1 of 3)
	List of Tables (2 of 3)
	List of Tables (3 of 3)

	List of Figures (1 of 2)
	List of Figures (2 of 2)

	List of Abbreviations (1 of 2)
	List of Abbreviations (2 of 2)

