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ABSTRACT 

INSTRUCTION FUSION AND VECTOR PROCESSOR VIRTUALIZATION FOR 

HIGHER THROUGHPUT SIMULTANEOUS MULTITHREADED 

PROCESSORS 

 

by 

Yaojie Lu 

The utilization wall, caused by the breakdown of threshold voltage scaling, hinders 

performance gains for new generation microprocessors. To alleviate its impact, an 

instruction fusion technique is first proposed for multiscalar and many-core processors. 

With instruction fusion, similar copies of an instruction to be run on multiple pipelines or 

cores are merged into a single copy for simultaneous execution. Instruction fusion applied 

to vector code enables the processor to idle early pipeline stages and instruction caches at 

various times during program implementation with minimum performance degradation, 

while reducing the program size and the required instruction memory bandwidth. 

Instruction fusion is applied to a MIPS-based dual-core that resembles an ideal multiscalar 

of degree two. Benchmarking using an FPGA prototype shows a 6-11% reduction in 

dynamic power dissipation as well as a 17-45% decrease in code size with frequent 

performance improvements due to higher instruction cache hit rates.  

The second part of this dissertation deals with vector processors (VPs) which are 

commonly assigned exclusively to a single thread/core, and are not often performance and 

energy efficient due to mismatches with the vector needs of individual applications. An 

easy-to-implement VP virtualization technology is presented to improve the VP in terms of 

utilization and energy efficiency. The proposed VP virtualization technology, when 

applied, improves aggregate VP utilization by enabling simultaneous execution of multiple 

threads of similar or disparate vector lengths on a multithreaded VP. With a vector register 



 

file (VRF) virtualization technique invented to dynamically allocate physical vector 

registers to threads, the virtualization approach improves programmer productivity by 

providing at run time a distinct physical register name space to each competing thread, thus 

eliminating the need to solve register name conflicts statically. The virtualization technique 

is applied to a multithreaded VP prototyped on an FPGA; it supports VP sharing as well as 

power gating for better energy efficiency. A throughput-driven scheduler is proposed to 

optimize the virtualized VP’s utilization in dynamic environments where diverse threads 

are created randomly. Simulations of various low utilization benchmarks show that, with 

the proposed scheduler and power gating, the virtualized VP yields a larger than 3-fold 

speedup while the reduction in the total energy consumption approaches 40% compared to 

the same VP running in the single-threaded mode. 

The third part of this dissertation focuses on combining the two aforementioned 

technologies to create an improved VP prototype that is fully virtualized to support thread 

fusion and dynamic lane-based power-gating (PG). The VP is capable of dynamically 

triggering thread fusion according to the availability of similar threads in the task queue. 

Once thread fusion is triggered, every vector instruction issued to the virtualized VP is 

interpreted as two similar instructions working in two independent virtual spaces, thus 

doubling the vector instruction issue rate. Based on an accurate power model of the VP 

prototype, two different policies are proposed to dynamically choose the optimal number 

of active VP lanes. With the combined effort of VP lane-based PG and thread fusion, 

compared to a conventional VP without the two proposed capabilities, benchmarking 

shows that the new prototype yields up to 33.8% energy reduction in addition to 40% 

runtime improvement, or up to 62.7% reduction in the product of energy and runtime. 
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1 

CHAPTER 1  

INTRODUCTION 

 

This dissertation consists of three major parts: the instruction fusion technique, the vector 

processor (VP) virtualization technique, and the method to combine the two techniques. In 

this chapter, the two core technologies proposed by this dissertation are briefly introduced. 

The problems to be solved are defined first, and then the solutions to the problems are 

briefly introduced. At the end of this chapter, potential benefits of combining the two 

techniques are discussed. 

 The Utilization Wall  1.1

Increased requirements for energy consumption, memory size and system bandwidth have 

always been major concerns in the design of System-on-Chip (SoC) embedded systems. 

The situation became really insurmountable around 2005 when we entered the era of 

post-Dennardian scaling [Taylor, 2012]. The utilization wall [Goulding-Hotta et al., 2012], 

also known as the dark silicon problem, states the following: “With a constant power 

budget, the percentage of transistors on a chip that can switch at full frequency decreases 

exponentially with each process generation.” This implies that an increasing portion of 

on-chip transistors will have to stay idle or even be power gated (i.e., to get in the sleep 

mode) with each new generation, thus giving rise to the name “dark silicon”. 

The utilization wall is caused by the breakdown of Dennard’s MOSFET scaling 

law that was proposed in 1974 [Dennard et al., 1974]. When the CMOS process scales by a 

factor of k in the Dennard regime, it increases by k
3
 the computational capabilities of a chip 

of fixed size due to increased operating frequency (f) and transistor density. On the other 



 

2 

hand, the accompanied decreases in the capacitance (C) and supply voltage (Vdd) lead to a 

decrease of k
3
 in the energy consumption of each computation, therefore keeping the total 

power consumption almost constant.  

Unfortunately, Dennard scaling has stopped since 2005 due to the breakdown of 

Vdd scaling caused by current leakage associated with threshold voltage scaling 

[Goulding-Hotta et al., 2012]. Without the downward scaling of Vdd in this 

post-Dennardian CMOS era, the performance of a fixed size chip still grows as k
3
 in theory 

but the energy per computation only drops by k, thus limiting the on-chip resource usage 

when power consumption is constrained. 

Experiments as well show that CMOS may have already hit the utilization wall; 

with a 45nm TSMC process, only 7% of a 300mm
2
 die can switch at full frequency to stay 

under an 80W power budget [Venkatesh et al., 2010]. As CMOS technology continues to 

scale in the post-Dennardian era, this problem’s impact worsens exponentially. This 

challenge requires microprocessor architects to focus on energy efficiency while achieving 

required performance levels. In fact, improved energy efficiency may facilitate higher 

performance by enabling more transistors to switch. 

 Inefficient VP Usage 1.2

Single instruction multiple data (SIMD) architectures are highly efficient in exploiting data 

level parallelism (DLP) in applications due to their specialization. A VP, also known as 

array processor, employs an SIMD architecture capable of processing an array of data 

elements simultaneously by executing a single vector instruction. As an accelerator, a VP 

can offload the DLP workload from general-purpose processors, thus enhancing the overall 

performance and energy efficiency. The VIRAM’s multi-lane architecture is the basis of 



 

3 

several VP designs [Kozyrakis and Patterson, 2003]. VIRAM has separate pipeline 

structures for load-store (LDST) units and arithmetic logic units (ALUs). Vector registers 

are distributed evenly across the vector lanes.  Each lane carries out ALU array operations 

on data within its local VRF. Vector elements in a lane are processed sequentially due to 

the ALU’s pipelined architecture while all lanes work in parallel on different array parts. 

SODA [Lin et al., 2006] is a fully programmable VP that realizes the W-CDMA and 

IEEE802.11a protocols. [Lee et al., 2013] compared accelerators having MIMD 

(Multiple-Instruction Multiple-Data), vector SIMD and vector thread (VT) architectures in 

reference to programmability and implementation efficiency; it confirmed that SIMD 

vector architectures exploit DLP more efficiently than MIMD even for irregular data 

pattern accesses. 

Multicores with embedded VPs have been implemented on FPGAs. They are often 

referred to as soft vector processors (SVPs). [Cho et al., 2006] introduced an SVP that 

eliminates memory bank conflicts by using address generation and rearrangement units in 

the vector memory. VESPA [Yiannacouras et al., 2008] allows the addition of vector lanes 

with minimum hardware modifications. Benchmarking shows a speedup of 6.3 under 

saturation with 16 lanes compared to a single lane. VIPERS achieves a speedup of 44 

compared to the Nios II scalar processor [Yu et al., 2008]. Its number of functional units 

and register file bandwidth are configured by software; it occupies 25 times more area 

compared to its host scalar core. VEGAS [Chou et al., 2011] improves VIPERS’s 

area-delay product. Using scratchpad memory instead of a VRF, it achieves a speedup of 

up to 208 compared to Nios II. Further improvements to reduce ALU bottlenecks produced 

VENICE [Severance and Lemieux, 2012] that doubles the performance-per-logic block 



 

4 

compared to VEGAS. With the integration of a streaming pipeline in the data path, a 

speedup of 7000 over a scalar processor was reported for the N-body problem [Severance 

et al., 2014]. 

Application specific VPs are optimized for certain applications. Multimedia 

applications containing video processing kernels deal with massive DLP. SIMD vector 

architectures are the best candidates to exploit the parallelism in video frames. Many 

researchers have tried to optimize codecs for the implementation of new video coding 

standards such as H.264 or MPEG4. [Iranpour and Kuchcinski, 2004; Lee et al., 2004; Kim 

et al., 2005; Shengfa et al., 2006; Lee et al., 2008] propose SIMD-based video codecs. A 

major challenge in video applications is irregular data accesses for video compression.  [Lo 

et al., 2011] overcome this issue by inserting a crossbar between the ALUs and the VRF. 

[Yang et al., 2005] propose an application-specific VP prototyped on an FPGA for sparse 

matrix multiplication. IBM’s PowerEN processor integrates five hardwired 

application-specific accelerators in a heterogeneous architecture for key functions such as 

compression, encryption, authentication, intrusion detection and XML processing. This 

approach facilitates energy-proportional performance scaling [Heil et al., 2014]. 

Unfortunately, single-thread dedicated VPs are often not efficiently utilized for the 

following reasons. First, every application contains some serial code for flow control or 

other system management, thus vector instructions may not be issued at a rate sufficient to 

keep the VP highly utilized. Second, data dependencies within some applications’ vector 

instruction flows can cause frequent stalls, wasting precious clock cycles in the VP’s 

super-pipelined floating-point units (FPUs). Finally, it may be preferable that applications 

with small vectorizable code be executed on the scalar host in order to give another 



 

5 

highly-vectorized application exclusive VP access. However, the former applications as 

well could benefit from using simultaneously the VP. Benchmarking shows that 

applications with VP utilization as low as 8.5% can yield a speedup of 84 by executing on 

a VP compared to a scalar processor with the same clock frequency: an 8*8 Matrix 

Multiplication performed by a MicroBlaze (MB) scalar processor takes 20.5ms to 

complete, while the VP used in this dissertation only requires 241μs as shown in Section 

6.2. Given the 100MHz clock rate of its implementation, the 4-lane VP’s average ALU 

utilization is calculated to be 8.5%.  

The issue of inefficient usage worsens as VPs scale in the number of lanes: 

Traditional VPs designed to service exclusively one host scalar processor are normally 

optimized for applications of a certain level of DLP, and scale easily so that more vector 

lanes can be added to exploit other applications of higher DLP [Kozyrakis and Patterson, 

2003; Yiannacouras et al., 2008; Yu et al., 2008]. However, an increased number of lanes 

will further reduce the already low VP utilization for the lower-DLP applications. 

 Motivation and Objectives 1.3

To alleviate the impact of the utilization wall as mentioned in Section 1.1, an instruction 

fusion technique is proposed in this dissertation. The technique can be applied to 

multiscalar and many-core processors to fuse similar instructions within vector code, and 

therefore reduce processor dynamic power by idling early processor stages. When running 

in the proposed fused mode, the multicore processor only fetches one instruction per clock 

cycle while executing multiple copies of the fetched instruction, thus saving energy in the 

fused early pipeline stages as well as in the instruction cache.  



 

6 

To address the challenges imposed by inefficient VP utilization as mentioned in 

Section 1.2, virtualization for VP sharing with simultaneous multithreading (SMT) is 

introduced in this dissertation. The SMT approach is similar to Intel’s Hyper-Threading 

Technology (HTT) for general-purpose processors that “makes a single physical processor 

appear as multiple logic processors” [Marr et al., 2002]. However, in this dissertation, 

SMT is applied to vector code. This approach achieves high aggregate VP utilization 

independent of individual vector thread DLP rates. VP virtualization solves register name 

conflicts among threads using a novel VRF virtualization algorithm that can dynamically 

allocate physical registers of varying lengths to threads. With easy-to-use VRF 

management kernel functions, programmers are provided with a fixed register name space 

and VRF management becomes transparent. To prove its viability, VP virtualization is 

realized on a multi-lane VP [Rooholamin and Ziavras, 2015], and the VP is interfaced with 

a multicore processor system to benchmark its performance and energy consumption.  

Related work will be discussed in Chapter 2. All the details of the proposed 

instruction fusion technique will be discussed in Chapter 3, followed by the discussion of 

the VP virtualization technology in Chapter 4 to Chapter 8. Chapter 3 covers the approach 

that applies fusion (Section 3.1), the architecture of the FPGA prototype (Section 3.2), and 

the simulation results of eight loop intensive benchmarks (Section 3.3). Topics related to 

the VP virtualization technique will be covered in Chapter 4 to Chapter 8. Details of the 

innovative VP virtualization technique are covered in Chapter 4. The architecture and 

FPGA implementation of the prototype system, including the host subsystem (that consists 

of five scalar processors) and the VP subsystem, are described in Chapter 5. The 

benchmarks and VP performance of homogeneous multithreading are discussed in Chapter 
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6. The proposed throughput-driven scheduling algorithm designed for both static and 

dynamic heterogeneous multithreading is covered in detail in Chapter 7. Power analysis of 

the VP is given in Chapter 8.  

An improved VP prototype that incorporates both the virtualization and the 

instruction fusion techniques is presented in Chapter 9. The improved prototype supports 

scheduler-triggered thread level vector instruction fusion. Due to the complete 

virtualization of the VP, fused threads can be easily interpreted by the hardware as multiple 

independent threads working in separate virtual spaces. The new prototype also supports 

dynamic VP lane power gating. To optimize VP efficiency for various applications, an 

accurate VP power model is derived based on the VP’s ALU and LDST utilization. Two 

optimization policies are proposed to achieve minimum energy consumption or minimum 

execution time and energy product. The optimal number of active VP lanes can be 

dynamically chosen by the scheduler based on the optimization policy and applications’ 

ALU and LDST utilization.  

All the VP prototypes introduced in this work incorporate a private memory 

architecture where each VP lane has its dedicated memory bank and cannot access data 

elements in other banks. Inter-lane data exchanges are performed by the host scalar 

processor and this approach adversely affects performance. To overcome this issue, a high 

throughput pipelined data shuffle network with an innovative reordering algorithm is 

proposed. The network allows high throughput pipelined inter-lane data shuffle and is 

presented in Chapter 10.  

Part of this work that primarily relates to VP virtualization is a collaborative 

research project with another CAPPL (Computer Architecture & Parallel Processing 
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Laboratory) PhD student, Seyedamin Rooholamin. The main contributions of the author 

include the introduction of the basic instruction fusion technique, the design of the 

multicore host architecture for evaluating the SMT VP, the invention of the VRF 

virtualization technique and the throughput-driven scheduler, the proposal of the improved 

VP prototype which supports thread fusion and dynamic lane configuration, and the 

invention of the data shuffle network.  
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CHAPTER 2  

RELATED WORK 

 

In this chapter, related works are compared against the techniques proposed in this 

dissertation. Instruction fusion related work is covered in Section 2.1, and work related to 

VP virtualization and SMT is covered in Section 2.2.   

 Work Related to Instruction Fusion 2.1

Thread fusion [Rakvic et al., 2010] dynamically fuses (i.e., combines) instructions by 

exploiting any parallelism between two parallel threads in simultaneous multi-threaded 

(SMT) processors. When a synchronous point is reached by the two threads at run time, 

similar instructions from the two threads are merged to save energy in the front end of the 

pipeline. Dynamic vectorization [Pajuelo et al., 2002] attempts to exploit SIMD 

parallelism in superscalar processors by using historical information to predict if certain 

scalar operations are likely to be repeated and may be, therefore, vectorizable. Once 

predicted to be vectorizable, multiple instances of these scalar instructions will be 

combined for simultaneous execution in the vector mode, which has some similarities with 

the fused mode execution technique introduced later in this dissertation. VPs [Beldianu and 

Ziavras, 2015] employ specialized hardware to execute vector instructions which are 

identified at static time either by programmers or optimizing compilers. Better energy 

efficiency and performance are achieved due to hardware customization.  

The proposed instruction fusion technique looks at assembly-language code 

produced by loop unrolling to identify similar RISC instructions that can be fused at static 

time for simultaneous SIMD execution at run time. Loops involving vector code are very 
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common due to existing applications (e.g., matrix operations, solving dense systems of 

linear equations [Wang et al., 2013], power flow analysis [Wang et al., 2007]) and 

emerging data streaming applications (e.g., MPEG and JPEG encoding, cryptography 

[Ansari and Hasan, 2008]) that often require high-performance implementations with 

reduced energy budgets. Compared to the earlier work on dynamic techniques mentioned 

above, which incorporate dedicated hardware that constantly consumes energy throughout 

the entire code execution in order to make dynamic decisions, the proposed static approach 

is more energy efficient. It consumes extra energy only when the processor switches 

execution mode.  

The instruction fusion technique enables SIMD execution with minimum 

modifications to multiscalar or many-core processors. It actually transforms the target 

hardware into a novel hybrid of a VP and a general-purpose processor. Compared to a 

standard VP, the proposed processor is capable of executing branch instructions even in the 

SIMD mode. Plus, with the employment of suitable compiler techniques, SIMD execution 

using the instruction fusion technique can support memory access strides that are 

non-constant, thus competing with advanced VPs. Since the proposed design also 

consumes a drastically reduced number of logic resources compared to VPs with 

controlling general-purpose processors, it is a better candidate for FPGA-based 

realizations (FPGAs have constrained resource counts). 

In relation to the work in [Rakvic et al., 2010] and [Pajuelo et al., 2002], the main 

difference is that the proposed approach makes decisions about instruction fusion at static 

time instead of run time; run time approaches are more difficult to implement and require 

additional logic to constantly monitor program execution, thus they consume extra energy 
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even when fusion is not applied. The proposed approach, on the other hand, reduces power 

consumption in early pipeline stages when the processors are executing loop code in the 

fused mode. The scheme is designed specifically to optimize the execution of loop code in 

the fused mode without introducing any time or energy overheads for unfused mode 

execution.  One further advantage of static fusion is that cache utilization is reduced by 50% 

for fused code, thus making more cache space available for code that results in increased 

cache hit rates and improved performance.  

 Work Related to VP Virtualization  2.2

Multicores with embedded VPs do not normally support sharing [Yang and Ziavras, 2005; 

Yiannacouras et al., 2008; Yu et al., 2008; Chou et al., 2011; Severance and Lemieux, 

2012]. VP sharing for multiple threads or cores was first proposed in [Beldianu and Ziavras, 

2013]. Three sharing policies were introduced for a multi-lane VP, namely coarse-grain 

temporal sharing (CTS), fine-grain temporal sharing (FTS) and vector lane sharing (VLS). 

Under CTS, a core reserves the entire VP exclusively until its current vector thread stalls or 

completes execution, and then hands over VP access to another core. FTS provides 

finer-grain time sharing of the VP, under which vector instructions from different threads 

compete for per clock cycle VP access. CTS and FTS support sharing for threads of similar 

VL (vector length that represents the number of elements in a vector). VLS is the only 

mode allowing threads of different VLs to coexist in the VP which is split into distinct sets 

of vector lanes, one set per core; VLS uses multiple vector controllers (VCs) to control the 

sets. FTS achieves the best VP utilization and may double the speedup compared to CTS 

while reducing the dynamic energy by 50% for a dual core [Beldianu and Ziavras, 2015]. 
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The VP sharing proposed in this dissertation is similar to FTS where all cores access the 

entire VP concurrently and resource conflicts are resolved by a single arbitrator. 

To improve the performance of the VP introduced in [Beldianu and Ziavras, 2013], 

[Rooholamin and Ziavras, 2015] introduced a multi-lane VP with separate pipelines for the 

ALU and LDST units. A lane’s LDST unit exclusively accesses a port of a distinct vector 

memory (VM) bank, thus eliminating contentions that can lead to delays or stalls for 

sequential read/write operations. All non-sequential memory accesses (e.g., data shuffling 

and index addressing) are handled by per-lane dedicated shuffle engines that utilize a 

second port of each VM bank. This VP is highly flexible for applications with varying VL, 

thus allowing the VL value to be specified by each individual vector instruction; the 

instruction decoder in each lane is then in charge of vector instruction synchronization. 

Threads of disparate VLs running on the same scalar processor can exploit the VP in a 

CTS-like fashion as long as they do not result in vector register name conflicts. 

Benchmarking showed speedups of up to 1500 compared to running vector code on a 

scalar processor with the same clock frequency. 

In this dissertation, the proposed VP virtualization technique was applied to a 

multithreaded VP similar to that of [Rooholamin and Ziavras, 2015] with minor hardware 

modifications. Whereas the latter prototype employed two cores without SMT, the new VP 

prototype interfaces five cores (without loss of generality), supports SMT and power 

gating, and carries out high throughput runtime scheduling of vector threads. Four cores 

can share the VP simultaneously while running vector codes of different VLs. The fifth 

core does VP management and vector thread scheduling. Any vector register name 

conflicts between threads are resolved via an innovative VRF virtualization technique. 
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Virtualization involves an effective register management algorithm run on the control core 

and a hardwired translation look-up table (TLT) for fast virtual-to-physical register name 

(i.e., ID) translation. With VRF virtualization, the management of physical vector register 

names becomes transparent to application programmers who assume a virtual register 

space.  

The proposed VP sharing also differs from [Beldianu and Ziavras, 2013] in four 

major aspects. Most importantly, in this dissertation, VRF virtualization is introduced for 

VP sharing to improve FTS. Second, their work does not support FTS for threads of 

different VLs. In contrast, the proposed sharing technique maximized VP utilization by 

allowing multiple threads of different VL to run simultaneously that yields substantial 

throughput increases. Third, contrary to their work where all cores directly interfaced the 

VP, in this dissertation a distinct FIFO is added between the VP and each core to eliminate 

frequent core stalls due to vector instruction arbitration. Under low VP utilization, an 

application’s speed is bounded by its host core. The distinct FIFOs allow a core to keep 

sending vector instructions until its FIFO becomes full. Finally, in this implementation the 

crossbar between the vector lanes and VP memory banks (VM) is removed by connecting a 

bank’s dedicated port to the attached lane’s LDST unit. This modification eliminates 

arbitrator delays in the crossbar and improves VP throughput for sequential memory 

accesses that are omnipresent due to VP pipelined units that target array operations. 

Inter-lane data exchange is supported by the scalar cores, which have access to all VM 

banks in a low-order interleaved fashion. Removing the crossbar also improves VP 

scalability. With both the VM and VRF distributed across the VP lanes, scalability is 

achieved since the individual lane complexity is independent of the number of lanes.  
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Although a general-purpose GPU (GPGPU) can run hundreds of vector threads 

simultaneously using streaming multiprocessors (SMs), all threads must be homogeneous 

and invoked by the same host. In contrast, the proposed virtualized VP can execute 

simultaneously heterogeneous host threads. VPs also consume drastically reduced 

resources and energy compared to GPGPUs [Beldianu and Ziavras, 2015]; e.g., Nvidia’s 

Maxwell GPU GTX 980 consists of 16 SMs, each having 128 CUDA cores, and 5.2 billion 

transistors [Nvidia Corp., 2014]. Without highly sustained DLP and a much needed 

fine-grain power management mechanism, a lot of CUDA cores in each SM may be 

frequently idle while consuming prohibitively high static energy.  
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CHAPTER 3  

IMPLEMENTATION AND EVALUATION OF INSTRUCTION FUSION 

 

In this chapter, the details of the instruction fusion technique are discussed. The first part 

(Section 3.1) explains how instruction similarity can be utilized to facilitate instruction 

fusion. A processor with a special execution mode known as the fused mode is prototyped 

to evaluate the benefit of the fusion technique. The processor architecture and its FPGA 

implementation details are covered in the second part (Section 3.2). The third part (Section 

3.3) covers the benchmarking and simulation results of the prototyped processor. 

 How Instruction Fusion Works 3.1

3.1.1 Instruction Similarity 

After a loop is unrolled twice, there exist two very similar instruction blocks in the code. 

Without any further code manipulation, pairs of respective instructions from the two 

blocks differ only in their use of operand registers, but the patterns of data flow are 

identical in both blocks. Such two instruction blocks are said to be fusible if there are not 

any interdependencies between them. Sometimes one or more sub-blocks within the blocks, 

or individual instruction pairs, may be fusible depending on existing interdependencies. 

Figure 3.1 gives a very simple example of a loop that is unrolled to generate two 

fusible instruction blocks. The loop in Figure 3.1a simply adds two integer arrays, a and b, 

of length 100 each to generate a third integer array c. In the unrolled loop of Figure 3.1b, 

respective pairs from instruction sequences 1-7 and 8-14 can be fused, which means that 

these 14 instructions can be represented using only seven instructions. This example can be 
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easily extrapolated for loops unrolled more than twice. Such fused code, when executed on 

a multiscalar processor, enables the pipeline to fetch and decode only one instruction each 

time and then issue it to multiple ALUs, therefore saving energy in the instruction fetch and 

decode stages of the disabled units as well as in their respective instruction caches. In 

addition, instruction cache space requirements can be reduced by avoiding code replication 

for such loop iterations. Of course, it is assumed that a register renaming technique for loop 

unrolling is applied at static time and the register file is modular to allow different ALUs to 

simultaneously operate on different register banks 

For the sake of simplicity and without loss of generality, it is demonstrated in this 

dissertation the case where the processor can fetch and execute two instructions in each 

clock cycle. This concept can be easily extended to a multiscalar processor that can execute 

four or even eight instructions per clock cycle, or to a many-core processor of comparable 

hardware complexity. 
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Figure 3.1 Example of MIPS-like code for loop unrolling and instruction fusion. a. 

Original loop. b. Loop after unrolling it twice. c. The unrolled loop of part b after pair-wise 

instruction fusion. 

 

3.1.2 Instruction Fusion 

When executing a fused instruction that represents a pair of similar machine-language 

instructions, the ALU registers employed by the two original instructions must be the ones 

used in the actual operations. To achieve this without extending the length of the fused 

instructions, a simple method of register renaming was introduced, along with a special 

execution mode for the processor, called the fused mode. In the fused mode, the processor 

will fetch only one instruction per clock cycle, then decode it and do the register renaming 

//r1 is set to array length(100)
//r2 is set to address of a[0]
//r3 is set to address of b[0]
//r4 is set to address of c[0]
loop:
(1)    r5 = load 0(r2)
(2)    r6 = load 0(r3)
(3)    r6 = r5 + r6
(4)    store r6 0(r4)
(5)    r2 = r2 + 4
(6)    r3 = r3 + 4
(7)    r4 = r4 + 4
(8)    r1 = r1 - 1
(9)    bgtz r1, loop
//loop finishes

//r1 is set to array length(100)
//r2 is set to address of a[0]
//r3 is set to address of b[0]
//r4 is set to address of c[0]
//r7 is set to address of a[1]
//r8 is set to address of b[1]
//r9 is set to address of c[1]
loop:
(1)    r5 = load 0(r2)
(2)    r6 = load 0(r3)
(3)    r6 = r5 + r6
(4)    store r6 0(r4)
(5)    r2 = r2 + 8
(6)    r3 = r3 + 8
(7)    r4 = r4 + 8  
//end of  fusable block 1
(8)    r10 = load 0(r7)
(9)    r11 = load 0(r8)
(10)  r11 = r10 + r11
(11)  store r11 0(r9)
(12)  r7 = r7 + 8
(13)  r8 = r8 + 8
(14)  r9 = r9 + 8
//end of  fusable block 2
(15)  r1 = r1 - 2
(16)  bgtz r1, loop
//loop finishes

//r1 is set to array length(100)
//r2 (r18) is set to address of a[0] (a[1])
//r3 (r19) is set to address of b[0] (b[1])
//r4 (r20) is set to address of c[0] (c[1])
(1)   fuse switch; //special instruction to 
switch execution mode
loop:
(2)    r5 = load 0(r2); [r21 = load 0(r18)]
(3)    r6 = load 0(r3); [r22 = load 0(r19)]
(4)    r6 = r5 + r6;    [r22 = r21 + r22]   
(5)    store r6 0(r4); [store r22 0(r20)]
(6)    r2 = r2 + 8;  [r18 = r18 + 8]
(7)    r3 = r3 + 8;  [r19 = r19 + 8]
(8)    r4 = r4 + 8;    [r20 = r20 + 8]
(9)    r1 = r1 - 2;   [r17 = r17 - 2]
(10)   bgtz r1, loop;   [bgtz r17,  loop]
//loop finishes

a

b

c
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to generate two slightly different copies of control signals for the two pipelines running in 

parallel. These two copies of signals will be treated by the execution units as two regularly 

decoded instructions. An extra one-bit signal, called the fuse state, is used to represent the 

pipelines’ execution mode; ‘0’ is used for normal execution and ‘1’ for the fused mode. 

The switching between the normal and fused modes is implemented by a compiler-inserted 

special instruction called “fuse switch”. 

Register renaming in the fused mode is done in the way shown in Figure 3.1c, 

which illustrates how the doubly unrolled loop in Figure 3.1b can be modified to run in the 

fused mode. In Figure 3.1b, r7 is preset to hold the address of the second element in array a, 

and its role in block 2 is identical to r2’s role in block 1 with the only difference being that 

they access consecutive odd- and even-addressed elements, respectively, of array a. This 

represents the output of the compiler. After fusing this pair of instructions, the processor 

will only fetch the instruction which operates on r2. To produce the second copy of signals 

that operate on r7, hardwire-driven runtime register renaming is needed.  

For the purpose of simple hardware implementation, register r18 is used instead of 

r7 when applying the fusion technique, as shown in Figure 3.1c, and the reason follows. 

Assuming a processor with 32 general-purpose registers, the addresses of r18 and r2 only 

differ in the most significant bit, so producing at run time r18’s ID from that of r2 can be 

easily done by changing to 1 the most significant bit of the operating register’s ID. 

Applying this register renaming scheme to all the registers in the fused mode, the processor 

can recover instruction block 2 from block 1. The assumption is that the compiler does not 

assign the upper register bank for other programming purposes, or code is embedded to 

move around register values. As shown in Figure 3.1c, registers are configured to hold the 
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desired values before the “fuse switch” instruction is executed. After “fuse switch” has 

been executed, the processor enters the fused mode where it begins to fetch one instruction 

per clock cycle which is followed by the execution of two copies of it, one copy being the 

fetched instruction itself and the other being the register-renamed copy.  

In Figure 3.1c, the fused code only contains nine instructions excluding the “fuse 

switch” instruction. However, there are actually 18 executable instructions in the code 

because all the register-renamed instructions displayed in brackets will be executed in 

parallel with the ones outside the brackets. It is worth mentioning that there are 16 

instructions in the unrolled loop under the normal mode, but only 14 of them are fusible. 

After the instruction fusion, the 14 fusible instructions are merged into seven, but the two 

loop control instructions remain unchanged, resulting in a total of nine instructions (18 

executable instructions) under the fused mode. The fused mode yields two obvious 

disadvantages: the first one is that the number of registers available to the programmer is 

effectively reduced by half. The second problem is that the loop control instructions, such 

as instructions nine and ten in Figure 3.1c, have to be executed twice, and one of the results 

is redundant. 

 Processor Implementation for Fused Mode Execution 3.2

3.2.1 MIPS-I Like Multiscalar Architecture 

The processor architecture was prototyped using two copies of an in-order scalar processor 

based on the MIPS-I instruction set. The two scalars share a common register file and are 

merged to form a very simple multiscalar processor, on which the proposed fusion 
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technique is applied. The processor contains two pipelines, namely pipeline 0 and pipeline 

1, each with the classic five stages known as per the following: 

• Fetch: Instructions are fetched from the instruction cache and stored in a buffer, 

waiting to be sent to the next stage. Fetch unit 1 will be put to idle when the processor is 

executing instructions in the fused mode. 

 

• Decode: Instructions are decoded and operands are read from the register file or the 

bypass unit. In fused mode, decode unit 1 is in the idle state; decode unit 0 will decode the 

instruction, read the operands for both the original instruction and the register-renamed 

instruction, and finally send them to the two units in the next pipeline stage. 

 

• Execution: Decoded instructions are executed. Starting from the execution stage, 

the pipelines are always in the on state and no longer affected by the fused state.  

 

• Memory: Memory accesses to the data cache are performed in this stage.  

• Write Back: ALU results and data from memory are written to the register files. 

Figure 3.2 illustrates pipeline stage usage for normal and fused execution. In Figure 

3.2a, all functional units are working while fetching in parallel two instructions from the 

instruction caches in each clock cycle. In Figure 3.2b, the processor runs in the fused mode 

so everything before the execution stage is idling in pipeline 1. Only one instruction fetch 

and decode is performed per clock cycle but actually two instructions are then executed. 
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Figure 3.2 Pipeline stage and Icache usage for a MIPS-like multiscalar processor with two 

complete pipelines or a dual-core processor. a. Normal execution mode. b. Fused 

execution mode. 

 

Many-core or massively multi-core processors of the future will contain hundreds 

of basic cores. Within a quad-core or octa-core cluster of such a many-core processor, the 

proposed instruction fusion technique will be applied using a similar to the presented 

dual-core approach with simple modifications to the extensions shown in Figure 3.2b. The 

various cores will execute their own instructions independently before they reach a 

synchronization point designating the start of fused-mode execution for the involved 

cluster cores. Once synchronous execution begins, the core in charge of loop control will 

be fetching and decoding sequences of fused instructions and then broadcasting control 

signals for the fused instructions to all other cores. All the cores will be executing fused 

instructions synchronously until the end of the fused loop is reached. For a multi-core 

implementation, register renaming can be omitted since each core is expected to own an 

independent register space. However, future many-core processors may support the fusion 

of register files across involved cores, thus implying the need for register renaming. 
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3.2.2 FPGA Implementation 

The design was implemented on a Xilinx Virtex-7 xc7vx330t FPGA device, which is built 

with the 28nm process technology. The multiscalar processor is written in VHDL, and two 

16KB block memories generated using the Xilinx Core Generator are used as the 

instruction and data caches. The system is fully synthesized, translated and routed to 

operate at 100MHz. The entire design flow is performed using the Xilinx ISE Design Suite 

14.7. Due to the low clock frequency of the processor, which is expected for FPGA 

realizations, all memory accesses can be completed within one clock cycle. Therefore, the 

performance numbers given in Section 3.3 reflect the situation where all instruction and 

data accesses result in a cache hit rate of 100%. This assumption is reasonable since when 

executing loop code the cache is kept hot. 

 Benchmarking for Instruction Fusion 3.3

3.3.1 Evaluation Procedure 

Since the proposed instruction fusion technique aims to optimize the power consumption 

of loop code, eight loop-intensive benchmark applications were created to evaluate the 

proposed processor design that supports the execution of instruction pairs in the fused 

mode. They are: 8x8 matrix multiplication (MM8), 16-point discrete Fourier transform 

(DFT16), 32-tap finite impulse response filter (FIR32), 32x32 matrix transpose (MT32), 

RGB to YIQ conversion (RYC), vector dot product with a vector length of 32 (VDP32), 

2D discrete cosine transform (DCT) shuffling with a vector length of 64 (DCT64), and fast 

Fourier transform (FFT) reordering with a vector length of 128 (FRO128). For the sake of 

simplicity, only the transformation of the real-number component was performed in the 
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implementation of DFT16 since operations on the imaginary component are almost 

identical; they involve a mere change of the coefficients. 

All eight applications are executed with loops unrolled twice, assuming identical 

input data sets under both the normal and fused modes. Without loss of generality, all 

assembly-language codes were hand written and manually optimized. To obtain reliable 

results, application execution is simulated in the Xilinx ISE Simulator (ISim) using the 

fully placed and routed model. A Switching Activity Interchange Format (SAIF) file is 

obtained during simulation to record all the switching activities of signals in the design. 

The SAIF file is then used by the Xilinx XPower analyzer to calculate the precise power 

consumption under each execution scenario. 

3.3.2 Analysis of Results 

The detailed performance and dynamic power measurements are shown in Table 3.1. As 

expected, all the scenarios have the same leakage power, 180mW, which is determined by 

the FPGA model. For MM8, DFT16, FIR32, MT32 and VDP32, the execution times are 

measured based on the average time needed to produce each element in the output. For 

RYC, the execution time per pixel is given. For DCT64 and FRO128, the execution time 

for an entire output vector is measured. The dynamic power and energy reduction of each 

application under the fused mode are calculated and shown in Figure 3.3. According to the 

figure, the dynamic power of applications under the fused mode is reduced by up to 11.9% 

compared to the normal mode. Although under the fused mode there is a performance loss 

of less than 1% for most applications, it is very minor compared to the power reduction, 

and the energy for each application is still reduced by more than 6%. 
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Table 3.1 Performance/Power/Energy Benchmarking (Normal and Fused Execution) 

Scenario Fused Normal 

Power (mW) Time (ns) Energy (nJ) Power (mW) Time (ns) Energy (nJ) 

MM8 272 720.9 196.1 303 715.3 216.7 

DFT16 294 1336.3 392.9 320 1328.1 425.0 

FIR32 316 1230.6 388.9 338 1225.0 414.0 

MT32 271 61.0 16.5 289 60.8 17.6 

RYC 302 332.5 100.4 343 333.8 114.5 

VDP32 266 1389.4 369.6 294 1383.8 406.8 

DCT64 285 2791.3 795.5 310 2775.0 860.3 

FRO128 243 2311.3 561.6 263 2295.0 603.6 

 

 

Figure 3.3 Dynamic power/energy reduction. 

 

As mentioned at the end of Section 3.1.2, loop control instructions introduce 

limited redundant execution in the fused mode. Therefore, higher control instruction 

occurrence in the execution flow will lead to higher performance loss and less energy 

reduction under the fused mode. To study the impact of this effect as a function of the 

vector length, in depth experiments was performed on the vector dot product (VDP) and 

matrix transpose (MT) benchmarks with a vector length of 4, 8, 16 and 32. The 

performance loss and power reduction in the fused mode under various vector sizes are 

shown in Figure 3.4 and 3.5. It can be seen in Figure 3.4 that the performance loss increases 

with the decrease in the vector length. This agrees with the previous prediction since a 
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lower vector length causes the execution flow to execute loop control instructions more 

frequently. As shown in Figure 3.5, changes in the vector length do not affect the power 

reduction significantly; therefore, changes in the overall energy reduction in the fused 

mode, as a function of the vector length, will mostly depend on the performance 

differences. 

 

Figure 3.4 Performance loss in the fused mode for various vector lengths.  

 

 

Figure 3.5 Dynamic power reduction in the fused mode for various vector lengths. 
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The proposed system was implemented on an FPGA platform for fast prototyping. 

However, compared to an application specific integrated circuit (ASIC) implementation, 

an FPGA sacrifices both performance and energy efficiency, and more importantly in this 

case, the percentage of energy that can be saved by using the fused mode. In this FPGA 

implementation, a block RAM (Xilinx BRAM) was used to emulate the function of the 

instruction cache, and the simulation showed that under the normal mode it only consumed 

approximately 20% of the total dynamic power of the processor. Even though the 

instruction cache dynamic power was reduced by nearly 40% under the fused mode in the 

dual-port cache, the benchmarks show that it contributed to less than 10% in total dynamic 

power savings. This is due to at least two facts: (a) the logic circuits needed to realize 

processor components on FPGAs are mainly implemented using LUT techniques; 

therefore, they consume much more power than their ASIC counterparts; (b) the proposed 

design uses a dual-port cache implemented in a BRAM but the savings can improve further 

with two separate caches that can reduce not only the dynamic but also the static power via 

power gating. 

It is worth mentioning that L1 instruction caches in high speed processors consume 

a much larger portion of the total power compared to the one in this implementation. 

Instruction caches have the highest utilization among all the components in processors, and 

are extremely power hungry due to the requirement for high performance; for example, 

fetching each instruction requires accessing all N ways in the N-way set-associative cache 

and reading N tags. In an embedded processor, supplying instructions may dissipate up to 

42% of the total dynamic energy [Dally et al., 2008]. With this assumption, one could 

expect that the energy saved (as a percentage of the total energy) by introducing the fused 
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instruction mode will be dramatically increased for an ASIC implementation of the 

proposed fused processor. The proposed technique’s impact can become more dramatic by 

involving four or eight pipelines. 

Given the average energy savings of 8% in the benchmarks and that the major 

energy savings in the fused mode are due to reduced memory accesses, it can be projected 

the total energy savings under the fused mode for a multiscalar processor. Furthermore, it 

can be safely assumed, based on the assumption discussed previously, that the percentage 

of energy savings under the fused mode will almost double for an ASIC implementation. 

Figure 3.6 shows the projected energy savings in the fused mode for multiscalars of various 

degrees realized with FPGA and ASIC technologies. 

 

 

Figure 3.6 Projection for FPGA and ASIC energy savings. Fused mode. Various 

multiscalar degrees. 

 

In addition to the reduction in energy, the instruction fusion technique also reduces 

the code size for unrolled loops. Figure 3.7 compares the number of instructions stored in 

the cache memory for each application under the two execution modes. The 

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

0 2 4 6 8 10

FPGA

ASIC

Multiscalar Degree 



 

28 

assembly-language codes of an application for the fused and normal modes take about the 

same number of instructions to pre-configure the register file before actually executing the 

application. Once the pre-configuration is completed, the number of non-loop-control 

instructions in the fused mode is reduced by 50%. For the benchmarking in this chapter, 

where all the codes were manually optimized, the fused mode yields 17% to 45% in code 

size reduction, as shown in Figure 3.7. If the design was implemented in ASIC, the reduced 

code size will have further benefit other than reduced memory requirements: higher cache 

hit rates may be achieved due to the reduced code size under the fused mode, and, therefore, 

the fused mode will have both better performance and lower power compared to the normal 

mode. 

 

 

Figure 3.7 Numbers of instructions in Icache. 
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CHAPTER 4  

VP VIRTUALIZATION 

 

The VRF virtualization technique is the core to efficient VP multithreading. Without the 

dynamic VRF resource allocation support, it is hardly possible for programmers to decide 

in advance the vector register usage of various combinations of simultaneous threads. This 

chapter introduces the details of the scalable VRF virtualization technique and its 

application on the chosen target VP. 

 Virtual Register Name Space for Multithreading 4.1

The proposed prototype supports simultaneous VP sharing for four threads with a thread’s 

VL being 16, 32 or 64. Virtualization resolves register conflicts among active threads using 

a software algorithm accelerated by minor hardware modifications.  Each vector thread is 

programmed with its own virtual register name space that is mapped at runtime to physical 

VRF registers based on their availability. The virtualization technique involves two 

components: (1) a register management algorithm run by a scalar processor that determines 

virtual to physical vector register mappings; and (2) a hardwired TLT that facilitates the 

fast translation of IDs between virtual and physical registers after the former algorithm 

completes a mapping. TLT name translation uses one pipeline stage in the VP, and it is the 

only VP hardware modification needed. With the programming interface for the proposed 

prototype, applications have access to virtual vector registers 0-31 for VL=16 or 32, and 

0-15 for VL=64. 
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 The VRF Structure 4.2

The physical VRF consists of 16 vector registers where each register can store 64 (i.e., 

VL=64) 32-bit elements. If needed, each register of VL=64 can be split into two registers 

of VL=32, and each register of VL=32 can be further split into two registers of VL=16. The 

notation reg_64(n-1) is used to represent the n-th physical vector register for VL=64, 

where n=1, 2, …, 16. As illustrated in Figure 4.1, reg_64(0) can be split into reg_32(0) and 

reg_32(1), or further to become reg_16(0), reg_16(1), reg_16(2) and reg_16(3). The 

vector instruction decoder needs both a register’s physical name and an instruction’s VL to 

physically locate a register in VRF. In the proposed VP prototype, each instruction 

contains a 2-bit thread ID, the 5-bit IDs of involved virtual registers, and the instruction’s 

VL encoded in a 2-bit field. The thread ID and virtual register IDs are used to obtain 

physical register IDs from TLT. The VRF can be easily expanded since it is distributed 

across multiple lanes. The proposed VRF management algorithm also scales well to 

manage any VRF with a power of two register size. More simultaneous threads can be 

supported by linearly expanding the number of entries in the TLT and the instruction 

arbitrator’s state machine. It is only demonstrated in this chapter the case where up to four 

threads share simultaneously the VP, and the VRF has the structure of Figure 4.1 
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.  

Figure 4.1 VRF structure. 

 

 The Vector Register Management Module (RMM) and Algorithm 4.3

The functional blocks of the RMM and its TLT interface are shown in Figure 4.2. The 

register management algorithm supports a virtual space of 32 vector registers for each 

thread. RMM receives as input a request to either allocate or release a number of registers 

of certain VL; for a release, it just receives the ID of a retiring vector thread since RMM 

maintains detailed lists of assigned resources. After processing the request and updating 

TLT, RMM assigns a vector thread ID to the new allocation and sends it to the requesting 

core. To minimize vector register fragmentation, the register access queues as well as the 

register split, allocation, release and merge/recovery mechanisms give priority to the 

preservation of registers with larger VL. For current benchmarking in this dissertation, the 

functionality of RMM is realized in software by MB0. A hardwired RMM is a future 
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objective towards even higher performance and lower energy consumption. The register 

management algorithm is written in C. 

 

 

Figure 4.2 RMM and its TLT interface. 

 

Figure 4.3 shows two data structures for VRF management. Struct vp_control 

contains data for VRF management. Each register is an instance of struct vp_reg; there are 

three vp_reg arrays in vp_control for VL=16, 32 and 64, respectively. A register’s vp_reg 

record is located by using its physical ID as the index into one of the three arrays. If the 
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register is available, vp_reg can also be accessed using the quick access queue. Inside 

vp_reg, rname is the physical name of the register; it initializes to the index in the array. 

in_queue is set to ‘1’ when a register is put into the fast access queue; it can become 

available to a thread or to be split for a smaller VL. After a register is assigned or split, 

in_queue is set to ‘0’ and used is set to ‘1’. Fields prev and next are for the fast access 

queue (a doubly linked list). The latter is accessed to identify an available register for 

allocation or splitting. Using one of the head_16, head_32 and head_64 pointers in 

vp_control, the vp_reg record of the first available register in a queue is found and its 

fields are modified accordingly. Before any thread accesses the VP, vp_control is 

initialized. No register is used initially, therefore the fields representing the number of 

registers available for VL=16, 32 or 64 are 64, 32 and 16, respectively. Initially, all 16 

registers with VL=64 are ready to be accessed or split; they are arranged into the fast access 

queue pointed to by head_64. The other two access queues for VL=32 and 16 are initially 

empty. in_que_64, in_que_32 and in_que_16 are initialized to 16, 0 and 0, respectively. 

 

 

Figure 4.3 Data structures used to manage the VRF. 

 

struct vp_reg 
{ 
int rname; //Register's physical name 
int in_que, used; //Register's status 
vp_reg *prev, *next; //Pointers for implementing the access queue 
}; 
 
struct vp_control 
{ 
vp_reg reg_16[64], reg_32[32], reg_64[16]; //Array of all the registers 
vp_reg *head_16, *head_32, *head_64; //Head of access queue for each VL  
int avail_16, avail_32, avail_64; //Number of registers available for each VL 
int in_que_16, in_que_32, in_que_64; //Number of registers in the fast access queue  
int thread_len[4]; //VL for each thread 
int thread_num[4]; //Number of registers used by each thread 
int tlt_table[32][4]; //Mapping of virtual name to physical name 
}; 
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 Assigning/Releasing VRF Resources 4.4

When a thread requests VP access, its VL and needed number of registers are provided. 

Based on VL’s value, avail_16, avail_32 or avail_64 within vp_control is compared with 

the latter number. If the remaining number of available registers is not enough for the 

thread, VP access is denied. Otherwise, the thread is assigned an ID (0 to 3) for unique 

identification while using the VP, and register allocation begins. thread_len[ID] and 

thread_num[ID] in vp_control are modified to record the thread’s VL and number of 

registers. Only vector registers in the fast access queue are allocated. When registers of 

VL=16 are needed, their available number in the queue is checked; if the number is not 

sufficient, registers in the queue of VL=32 are split. If registers in the queue of VL=32 are 

not sufficient, registers in the queue of VL=64 are split. Whenever a register of VL=N is 

split, for N=64 or 32, the respective number of VL=N registers in the queue and the 

potentially available number of registers are decremented by one. However, for registers of 

VL=N/2, their number in the queue is incremented by two while their number of 

potentially available remain unchanged until the register is actually allocated. 

After register splitting, there are sufficient registers in the fast access queue 

representing the VL of the assigned thread. Chosen registers are removed from the queue 

for allocation. The physical IDs of the registers are stored into TLT and tlt_table in 

vp_control. The physical names in tlt_table are used later to release VP registers. TLT has 

three read ports and contains the same information with array tlt_table; it supports three 

VP register name readings per clock cycle. VP uses the 2-bit thread ID concatenated with 

the 5-bit register ID to form an index into the 128-entry TLT for locating the physical 

register ID used by a vector instruction. When a thread finishes execution, the tlt_table 
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entries assigned to the thread are identified for releasing its registers. Instead of putting it 

back into the fast access queue, a released register may be combined with its “sister” 

register to form a register of higher VL depending on the current status of VRF. For 

example, reg_16(15) is checked when reg_16(14) is released. If reg_16(15) is not in the 

access queue, reg_16(14) is returned to the queue. Otherwise, the two registers are 

combined into reg_32(7); it may trigger the recovery of reg_64(4) based on the status of 

reg_32(6). 

 Fragmentation Analysis 4.5

The proposed VRF management algorithm is designed to minimize register fragmentation 

by forming registers of larger VL upon releasing VP threads. However, if the VP threads 

do not complete execution in the reverse order of their VP instantiation, fragmentation can 

still occur. To evaluate the efficiency of the proposed algorithm, an experiment involving 

random VP request/release calls was performed. After each request/release call, the 

number of fragmented reg_32 and reg_64 are counted. The number of request failures due 

to register fragmentation is also counted. Random calls are generated using the rand() C 

function for random integer number generation. When the VP is not occupied by any 

thread, the call is a request; when the VP is fully occupied by four threads, it is a release; 

otherwise, release and request have equal probability. For a VP request, all three VLs have 

the same probability; once the VL is set, all possible numbers of registers for that VL are 

chosen with equal probability. For a VP release, all the current VP threads have the same 

probability of being released. Such random calls were repeated 10
9
 times. The numbers of 

fragmented reg_32 and reg_64 and their duration (measured in number of calls) are plotted 

in logarithmic scale in Figure 4.4. In the worst case, two out of the thirty-two reg_32 and 
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three out of the sixteen reg_64 are fragmented. However, fragmented registers are not 

present more than 98% of the time. 591,441,754 of the 10
9
 random calls are for VP 

requests, and 408,558,246 of them succeed. Among the request failures, only 155,865 are 

due to fragmentation, thus fragmentation may impact a request only with a 0.026% 

probability. 

 

 

Figure 4.4 Duration of fragmented registers for VL=32 and 64. 

 

 Performance of the VRF Management Algorithm 4.6

The VRF management algorithm is designed with performance in mind to minimize the 

per thread overhead. To measure the runtimes of the VRF management kernels, a MB 

processor of 100MHz clock rate is attached to a 32-bit timer with accuracy of 10ns for time 

stamping, and thread request and release functions of various VLs and number of registers 

are performed by the MB. The measured runtimes of request and release functions for 

various conditions are shown in Figure 4.5. All measurements are performed on a real 

system implemented on a ZedBoard all programmable SoC, with VRF kernels and data 
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structures stored in the fast local memory of the MB, and therefore, the cache hit rates for 

the kernels are 100%. 

 

 

Figure 4.5 Thread request and release functions runtimes under various VLs and number 

of registers. 

 

As shown in Figure 4.5, the kernels runtimes are linearly related to the number of 

registers required by the thread. The results also show very impressive performance. For a 

typical vector application like the 64*64 matrix multiplication in the benchmarking 
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(Section 6.1), the overall VRF kernel overhead is about 18μs for requesting and releasing 

two registers of VL = 64. Compared to the application runtime of 3819μs for one matrix 

multiplication (shown in Table 6.1), the overhead is almost negligible (less than 0.5%). 
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CHAPTER 5  

VIRTUALIZED VP ARCHITECTURE AND FPGA IMPLEMENTATION 

 

The prototype in Figure 5.1 contains two sub-systems: the scalar processors sub-system 

(SPS) with five cores and VP. SPS does system management, runs the control flow in 

applications and issues VP instructions. TLT has hardware support for run time VP register 

renaming, and it is managed by SPS. 

 The Host Subsystem Architecture 5.1

AXI4 (Advanced eXtensible Interface 4.0) interconnects SPS components. Two AXI4 

types, AXI4-Stream (AXI4-S) and AXI4, are also present. AXI4-S pairs realize 

bidirectional handshaking [Xilinx Inc., 2011]. The interface between SPS and VP is 

pipelined, and VP can read up to one 32-bit instruction/datum and three 6-bit physical 

register names from SPS per clock cycle. 

MicroBlaze, a Xilinx 32-bit RISC soft processor [Xilinx Inc., 2010], forms SPS 

cores MB0-MB4. In Figure 5.1, its Harvard architecture interfaces a fast local memory 

(LM) via a local memory bus (LMB); LM contains frequently used library functions. LM 

blocks are initialized from the FPGA’s flash memory upon power up; these connections are 

omitted. The libraries can be modified at runtime by MBs. In addition to regular load/store 

instructions that access memory and I/O devices mapped within the 4GB address space, 

MB also supports AXI4-S. AXI4-S is used with put/get instructions; its interface consists 

of one input and one output port, providing a low latency dedicated link to the processor’s 

pipeline. AXI4-S is used for inter-core and core to VP connections. The put/get 

instructions each has two versions: blocking and non-blocking. Blocking stalls MB if the 



 

40 

receiver/sender is not ready. With non-blocking, MB keeps executing instructions even 

without needing acknowledgment. 

 

 

Figure 5.1 Multicore architecture for VP sharing (Instr Arb: vector instruction arbitrator). 

 

MB0 is connected to four MBs and TLT using AXI4-S. MB0 performs these tasks: 

i) It runs the register management algorithm for VRF virtualization. ii) It updates TLT 

based on the former algorithm’s mapping of a thread’s virtual vector registers to physical 

VRF registers. iii) It estimates VP utilization using information for active vector threads 

before scheduling new threads. iv) To simplify benchmarking on the proposed prototype, 
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MB0 notifies application cores (ACs) MB1-MB4 about new tasks assigned to them. v) 

And, it polls MB1-MB4 for task completion before releasing VP resources. 

MB0 is connected to TLT using the output port of its AXI4-S, and uses a 

non-blocking put since it knows if TLT is ready. Connections between MB0 and slave 

cores are bi-directional. MB0 assigns tasks to idle cores. With a non-blocking get, MB0 

polls each slave for task completion, which is denoted by a task completion flag, for 

avoiding premature release of VP resources. MB0 is attached to a fast 32KB LM that 

contains the register management and thread scheduler codes. 

MB1-MB4 serve as ACs running applications that may contain function calls to 

vector kernels. These vector kernels are stored in a library in the attached 16KB LM.   For 

benchmarking simplicity, ACs receive commands from MB0 to execute vector kernels and 

acknowledge to MB0 their successful completion. ACs apply blocking put/get to 

communicate with MB0. Another AXI4-S interface connects an AC to its dedicated vector 

instruction FIFO (see Figure 5.1). An AC generating vector instructions (covered in 

Section 5.2) forwards them to this FIFO. Each vector instruction goes through the VP 

instruction arbitrator before reaching the VP. 

Each First Word Fall Through (FWFT) vector instruction FIFO contains 16 32-bit 

words. An AC sends vector instructions or relevant data using blocking puts. An AC keeps 

issuing vector instructions until its FIFO is full. The latter condition implies VP saturation 

due to a round-robin arbitrator that gives equitable access to all ACs; it polls non-empty 

FIFOs. The pipelined arbitrator has two stages for arbitration and handshaking with the VP, 

respectively. FIFO and arbitrator interconnects accommodate 32-bit transfers per clock 

cycle. 
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An AXI4 connects all MBs to the vector and 128 KB system memories with 

separate read and write channels, and supports incremental bursts for up to 256 32-bit 

transfers. The vector memory is also accessible by VP. Vector data initially stored in the 

system memory are moved to VM for processing. A direct memory access (DMA) engine 

expedites transfers. Each VM bank has two ports; one port directly connects to a lane’s 

LDST unit. With four direct connections between VP lanes and VM banks, a four-fold 

bandwidth increase is achieved between VP and VM compared to a system with a crossbar 

[Beldianu and Ziavras, 2013]. The other port of each bank is connected to the system bus in 

low-order interleaved fashion; sequential data communicated by a MB or the DMA engine 

are low-order interleaved among the four banks to support fast pipelined access. I/O 

devices on the system bus support debugging, display and I/O. 

 The VP Architecture 5.2

VP consists of a VC, data hazard detection unit (HDU), VRF of 1024 32-bit elements, 

64KB VM, and four vector lanes; each lane has a LDST unit and a FPU. VM is divided into 

four low-order interleaved banks; each bank is a true dual-port RAM with one port 

connected to a distinct vector lane and the other port to the system bus. Each vector lane 

can only access its own dedicated VM bank; all cores and the DMA controller can access 

all four VM banks. Application data are initially stored in the system memory, and are 

transferred for VP processing to VM using either the DMA engine or an AC. 

5.2.1 VP ISA and Pipeline 

Figure 5.2 shows the architecture of the VP in the proposed prototype. Two types of vector 

instructions are used. The first type is for vector-vector ALU operations and the instruction 
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is 32 bits; it does not contain data. The second type contains a 32-bit operand in addition to 

the 32-bit instruction; e.g., vector-scalar ALU instructions and vector LDST instructions 

are of this type. Vector instructions are generated by ACs using macro definitions in C and 

are sent to the VP via the arbitrator interface. 

 

 

Figure 5.2 Detailed architecture of the four-lane VP (FP: Floating-point). 

 

The first three pipeline stages in the proposed VP’s data path are inside VC, which 

handles register renaming, hazard detection, and assignment of ALU and LDST 

instructions into separate data paths. The ALU and LDST pipeline stages are shown in 

Figure 5.3. Two clock cycles are consumed in the ALU or LDST FIFO to pass an 

instruction and its data to VP. The ALU decode unit consumes four clock cycles for 

decoding, fetching operands and feeding them to the execution unit. The FPU takes six 

clock cycles and an extra cycle is needed by write back (WB). The total latency to fill up 
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the pipeline with ALU instructions is 16 clock cycles (considering both the lane and VC 

delays). 

 

Figure 5.3 Pipeline structure in the LDST and ALU data paths. 

 

Memory access instructions are decoded by the LDST decode unit, which uses six 

stages with store instructions for data fetching and address generation. For a load from VM, 

two more clock cycles are added for memory access and WB data latching. Fetching two 

consecutive vector instructions from a FIFO produces an idle clock cycle between them to 

ease functional verification and instruction tracking in behavioral simulation. To fill up the 

pipeline, 11 and 13 clock cycles are needed for a store and a load, respectively. ALU and 

LDST instructions share the first three stages in VC. The VP’s complete ISA for vector as 

well as control instructions for VP virtualization are listed in Table 5.1. The control 

instruction __VP_REQ is implemented as a C function which takes an application’s VL 

and the number of registers as input. Upon a successful VP request, the thread ID is 

returned. The __VP_REL function takes as parameter the thread ID and releases all vector 

registers occupied by the corresponding thread. Vector application development for the 
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virtualized VP is almost identical to that for a single-threaded VP. Programmers only have 

to use the __VP_REQ function to obtain a thread ID and then use it as the ID field for every 

VP instruction. When an application completes, VP resources must be released using a 

__VP_REL call. 

 

Table 5.1 ISA of the VP 

Target Instruction Description 

MB __VP_REQ Requesting VP resources 

__VP_REL Releasing VP resources 

 

 

 

ALU 

__VADD Vector_vector addition 

__VADD_S Vector_scalar addition 

__VSUB Vector_vector subtraction 

__VSUB_S Vector_scalar subtraction 

__VMUL Vector_vector multiplication 

__VMUL_S Vector_scalar multiplication 

 

LDST 

__VLD Vector load (unit stride addressing) 

__VLD_S Vector load (stride addressing) 

__VST Vector store (unit stride addressing) 

__VST_S Vector store (stride addressing) 

 

5.2.2 VP-MB Interface 

The arbitrator in the SPS interfaces the VP via the VC. The latter has a pipelined 

architecture that consists of three stages for register renaming, hazard detection and data 

path separation, respectively. The VC always gives transaction permission to the arbitrator 

unless VP resources are not available (i.e., the lane FIFO is full) or a previous instruction 

has been stalled due to a data dependency. Register renaming is performed by reading 

physical register names/IDs from the TLT, which is managed and updated by MB0 in the 

SPS. Each vector instruction uses at most three vector registers, and therefore the TLT is 

triple-ported. Each vector instruction contains up to three register name fields, which 

represent the virtual names of the source and destination registers. In the first stage of the 
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VC (the renaming stage), these virtual names are replaced by their corresponding physical 

names, which are mapped using the VRF virtualization technique introduced in Chapter 4. 

5.2.3 Hazard Detection Unit (HDU) 

After updating the register name fields, instructions enter HDU. RAW (Read-After-Write), 

WAW (Write-After-Write) and WAR (Write-After-Read) data hazards are detected HUD. 

Hazard information is forwarded to VC that may stall instructions. It can be assumed that 

there is no dependency across threads. Each HDU module has two separate slots that buffer 

the previous ALU and LDST instructions of a thread that entered the vector lanes, and two 

counters that count the number of remaining same-thread ALU and LDST instructions in 

the lanes. Each buffered instruction is a potential cause of hazard since an incoming 

instruction may depend on it. The counter of the corresponding instruction type is 

incremented by one upon issuing a new instruction from the same thread; it is decreased by 

one when an instruction of its corresponding type completes execution. The ALU and 

LDST units broadcast an acknowledgment with the thread ID to HDU modules when an 

instruction completes; the module with the matching thread ID then updates its counters. A 

zero count implies no pending instruction of its corresponding type in the lane for this 

thread; thus, there is no need to check the buffered instruction for hazards. When an 

instruction enters HDU, the HDU module that corresponds to the instruction’s thread-ID 

performs hazard detection. The instruction is compared against both buffered instructions 

in the module; upon data hazard detection, the instruction is stalled from entering the lanes 

until any related counter is reduced to zero. 

This mechanism adds only one extra pipeline stage and does not decrease the 

throughput without hazards. With a data hazard, the instruction in the HDU stage stalls 



 

47 

until its dependent has gone through the safe point; by the time the former starts fetching its 

first operand, the latter will have written its first result. For longer VL instructions, the 

pipeline will still be fully filled even with a hazard. With VL=16, at most three bubbles will 

be injected into the pipeline due to a stall. The stall cannot be avoided with in-order 

execution. However, since the proposed design targets SMT assuming no dependencies 

among threads, the HDU’s performance impact is almost negligible. 

5.2.4 Vector Lane Structure 

The lane architecture is depicted in Figure 5.4. To reduce the complexity in order to track 

the progress of instructions through pipelines, simple execution units are chosen. Once a 

vector instruction passes hazard checking, it is broadcasted to all vector lanes. A lane’s 

VRF consists of 256 32-bit (single-precision FP) elements.  It is accessed using three read 

and two write ports since the ALU and load units need two and one read port, and the WB 

and store units require one write port each. The design needs one clock cycle to send an 

output. All read ports are configured with an “enable” for power efficiency. The ALU 

decode unit requires two read ports when reading a pair of operands for vector-vector 

operations. A lane’s ALU execution unit contains a floating-point adder/subtractor and a 

multiplier derived from open source code. Compared to a FP multiplier, an IEEE-754 

adder/subtractor includes two to three extra stages for exponent comparison and mantissa 

alignment [Ehliar, 2014]. Hence, it has six pipeline stages for addition and subtraction, and 

four for multiplication. The results are sent to the WB block, which is connected to a write 

port of VRF for writing one element per clock cycle in a pipelined fashion. 
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Figure 5.4 Vector lane architecture. 

 

LDST instructions use absolute memory addressing with a unit or non-unit stride. 

Each lane is connected to a private VM bank, and therefore memory accesses are never 

stalled. Arbitration deteriorates performance if all memory banks are accessible to all lanes 

[Beldianu and Ziavras, 2013]. The ALU and LDST decode blocks in each lane include 

counters for synchronization across lanes; counts are initialized based on the VL value in 

instructions. Vector instructions with different VLs may coexist in VP. 

 FPGA Implementation 5.3

The proposed prototype uses a Xilinx Virtex6 xc6vlx240t FPGA device. The entire VP, 

arbitrator and TLT are custom designed in VHDL. The rest of the system uses IP cores in 

Xilinx ISE. The system is fully synthesized and routed. The chosen clock frequency of 

100MHz is the result of the open source FPU codes. Critical path delay analysis shows that 

the VP’s clock cycle could be as low as 7.01 ns (i.e., representing 142.65 MHz) 
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corresponding to the adder. This delay is due to 32 levels of logic. The earliest and latest 

signal arrival times are 1.897 ns and 2.126 ns, respectively. 

Table 5.2 shows the resource consumption. This FPGA contains 37,680 slices; 

each slice has eight registers and four 6-input lookup tables (LUTs). Each register is 

implemented with flip-flops or latches, and each LUT may be composed of a pair of 

5-input LUTs. Some LUTs are implemented as small RAM blocks which are known as 

distributed RAMs. Large RAM memory can be realized using 36Kbit BRAM blocks 

(RAMB36E1). Embedded digital signal processor (DSP) slices (DSP48E1) contain a 

hardwired 25x18 two's complement multiplier/accumulator. The proposed FPUs are 

designed with custom ASIC logic without DSP slices. Only four DSP48E1s are used, one 

for each lane’s address calculator in the LDST unit. The VP subsystem and its SPS 

interface (including the vector instruction FIFOs, arbitrator and TLT) consume 13.9% and 

45.8% of the total registers and LUTs. The resource consumption of FPGA-based designs 

is also affected by the randomness of the routing process. Some registers and LUTs are 

used as wires and buffers to reduce critical path delays. In this dissertation, benchmarking 

relies on cycle accurate behavioral system simulation. For highly accurate power 

measurements, post place-and-route simulation is performed at a fine detail, down to the 

switching of individual LUTs. The binaries for each benchmark are generated and used as 

testbenches to obtain Switching Activity Interchange Format (SAIF) files, which are then 

used by the Xpower Analyzer to derive accurate power consumption. 
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Table 5.2 Resource Consumption of the VP Prototype 

Entity 
Slice Registers 

(% Utilization) 

Slice LUTs 

(% Utilization) 

RAMB36E1s 

(% Utilization) 

DSP48E1s 

(% Utilization) 

A Vector Lane 10247 (3.4%) 17035 (11.3%) 0 (0%) 1 (<1%) 

VM (4 Banks) 16 (<1%) 272 (<1%) 16 (3.8%) 0 (0%) 

VC (Including HDU) 358 (<1%) 305 (<1%) 0 (0%) 0 (0%) 

VP (VC+4 Lanes+VM) 41378 (13.7%) 68717 (45.6%) 16 (3.8%) 4 (<1%) 

VP/SPS Interface 388 (<1%) 283 (<1%) 0 (0%) 0 (0%) 

VP + VP/SPS Interface 41766 (13.9%) 69000 (45.8%) 16 (3.8%) 4 (<1%) 

SPS 9962 (3.3%) 15268 (10.1%) 73 (17.5%) 23 (3%) 
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CHAPTER 6  

BENCHMARKING AND HOMOGENEOUS SMT 

 

This chapter covers all the benchmarks used throughout the dissertation for evaluating the 

proposed VP virtualization technique. Homogeneous multithreading runs of multiple 

copies of each benchmark are also performed to illustrate the effect of VP utilization 

saturation. 

 Benchmark Details 6.1

As shown in Figure 6.1, two basic types of vector instructions are sent to VP: without (type 

V_instr_a) and with a scalar operand (type V_instr_b). Macro definitions ease 

programming by providing an assembly-like VP programming interface. As an example, 

Figure 6.1  shows the macro definition for the 32-bit __ADD (vector-vector add) type a 

instruction, and the __VLD (unit-stride load) and __VST (unit-stride store) type b 

instructions that hold an extra 32-bit scalar operand as address. The main function in Figure 

6.1 loads two 16-element vectors from VM and stores the summation result back into VM. 

To compile benchmarks written in C that also contain macros and assembly code for vector 

instructions, the MB GNU mb-gcc tool without optimization (i.e., option o0) is applied. 

The first benchmark is matrix multiplication (MM) for square matrices of size 

16*16, 32*32 and 64*64. All elements in a row of the result matrix are calculated in one 

loop iteration to maximize the vectorization ratio (i.e., ratio of vector to scalar code). It 

multiplies a single element of the first matrix with all elements on a row of the second 

matrix to produce partial products. To calculate row i in the result, each element on row i of 

the first matrix is multiplied with the respective row in the second matrix and appropriate 
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partial products are summed up. All multiplications are performed using scalar-vector 

multiplications, and additions are of the vector-vector type. Using an optimal approach, 

only two vector registers of size VL are needed. The execution time measured for MM is 

based on the time needed to generate the entire result matrix. Through some simple 

calculations of the results shown in Table 6.1, it can be seen by increasing the 

dimensionality of the matrix and consequently VL, the time needed to generate each 

element in the result decreases slightly (due to a higher vectorization ratio). 

 

 

Figure 6.1 Macros to define vector instructions. 

 

The second benchmark is Finite Impulse Response (FIR) digital filter that uses the 

outer product [Sung and Mitra, 1987]. 16, 32 and 64 tap FIR filters are implemented with 

the input sequence having the same size as the filter; the resulting sequence has twice the 

input’s length. A loop unrolling technique expands the kernel four times and increases the 

vectorization ratio. Two vector registers of size VL were used for this benchmark. The 

// Functions defining two types of vector instructions, with and w/o data 
#define V_instr_a(instr)  asm volatile("put\t%0,rfsl1\t\n" ::"d"(instr)) 
#define V_instr_b(instr,data)  asm volatile ("cput\t%0,rfsl1\t\n" \ 
"put\t%1,rfsl1\t\n"  ::"d"(instr),"d"(data)) 
 
// Based on the above, define vector instructions as macros 
// Constant X_SHIFT determines the location of field X within 32-bit instruction 
#define __VADD(VDst,VSrc_1,VSrc_2,VL,Id)\ 
V_instr_a((OP_VADD<<OP_SHIFT)|(VDst<<DST_SHIFT)|(VSrc_1<<SRC1_SHIFT)|\ 
(VSrc_2<<SRC2_SHIFT)|(VL<<VL_SHIFT)|(Id<<THREAD_ID_SHIFT)) 
 
#define __VLD(VDst,BaseAddr,VL,Id)   V_instr_b((OP_VLD<<OP_SHIFT)|(VDst<<DST_SHIFT|\ 
(VL<<VL_SHIFT)|( Id<<THREAD_ID_SHIFT), BaseAddr) 
 
#define __VST(VSrc,BaseAddr,VL,Id)   V_instr_b((OP_VST<<OP_SHIFT)|(VSrc<<SRC_SHIFT|\ 
(VL<<VL_SHIFT)|(Id<<THREAD_ID_SHIFT), BaseAddr) 
 
int main(){  // For VL=16 & thread=0 
__VLD(0,adr1,16,0);    // Load from location adr1 to r0 
__VLD(1,adr2,16,0);    // Load from location adr2 to r1 
__VADD(2,0,1,16,0);    // r2  r0+r1 
__VST(2,adr3,16,0);    // Store r2 into location adr3 
}; 
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execution time for FIR is measured based on the time needed to generate an entire result 

vector which has twice the size of the filter. 

The third benchmark is vector-dot product (VDP) with VL= 16, 32 and 64. A 

vector-vector multiplication is followed by two vector-vector additions. Four VL-sized 

vector registers are used. The execution time of VDP is measured for an input of one pair of 

array having VL elements per thread. 

The fourth benchmark is the discrete cosine transform (DCT) which is common in 

video processing. Since DCT is usually applied on fixed-sized pixel blocks, like 8*8 or 4*4, 

one-dimensional 8-point DCT on blocks of size 8*8 were performed in the benchmark. 2, 4 

and 8 adjacent blocks are used as input with VL=16, 32 and 64, respectively. Three vector 

registers of size VL are used. The execution time measured for DCT is based on the time to 

produce 2, 4, and 8 blocks of 8-point DCT for VL 16, 32, and 64, respectively.  

The last benchmark is RGB to YIQ color space mapping (RGB2YIQ). It has the 

highest portion of vector code among all benchmarks and uses seven vector registers. 

Configurations of VL=16, 32 and 64 were used to perform the calculation on a 1024-pixel 

block. The execution time for RGB2YIQ is measured based on the time needed to handle a 

block of 1024 pixels. Since the input size is independent of VL, higher VL leads to fewer 

loop iterations, and therefore shorter execution times. 

 Homogeneous SMT Results 6.2

In this chapter only, it is assumed each time simultaneous VP runs of up to four threads 

from the same benchmark. The only exception is RGB2YIQ with VL=64 since it requires 

seven registers per thread while the proposed VP has 16 registers of VL=64; up to two 

threads of SMT was performed for RGB2YIQ. 58 simulations are done for various VLs 



 

54 

and degrees of multithreading. For clarity, the times for task request and register 

management are excluded from the obtained measurements. Since the threads start 

execution at the same time and the SPS’s VP interface involves a round-robin arbitrator, all 

threads finish execution at the same time. Tables 6.1 to 6.5 show the execution times and 

VP utilization of these benchmarks for various numbers of VL and active cores (i.e., 

threads). The execution times are for the input size described above. 

 

Table 6.1 Matrix Multiplication Performance (Input Matrix Size: VL*VL, 1 Iteration per 

Core) 

VL 
# of 

cores 

LDST 

NWT 

ALU 

FLOP 

Execution 

Time (μs) 

Million 

FLOP/S 

% LDST 

Utilization 

% ALU 

Utilization 
Speedup 

16 

1 4608 8192 241 53.11 4.78 8.49 84.97 

2 9216 16384 241 106.22 9.56 16.99 169.95 

3 13824 24576 241 159.33 14.34 25.49 254.93 

4 18432 32768 241 212.44 19.12 33.99 339.91 

32 

1 34816 65536 942 106.53 9.23 17.39 173.38 

2 69632 131072 942 213.06 18.47 34.78 346.76 

3 104448 196608 942 319.59 27.72 52.17 520.19 

4 139264 262144 942 426.12 36.96 69.57 693.53 

64 

1 270336 524288 3819 208.07 17.69 34.32 337.8 

2 530672 1048576 3819 416.14 35.39 68.64 675.69 

3 811008 1572864 4221 564.76 48.03 93.15 917.01 

4 1081344 2097152 5625 565.06 48.05 93.20 917.5 

NWT: Number of Word Transactions 

 

Table 6.2 FIR Performance (Input Vector Size: VL, 1 Iteration per Core) 

VL 
# of 

cores 

LDST 

NWT 

ALU 

FLOP 

Execution 

Time (μs) 

Million 

FLOP/S 

% LDST 

Utilization 

% ALU 

Utilization 
Speedup 

16 

1 576 1024 27 59.25 5.3 9.4 78.8 

2 1152 2048 27 118.51 10.6 18.9 157.4 

3 1728 3072 27 177.77 16 28.4 236.1 

4 2304 4096 27 237.04 21.3 37.9 314.8 

32 

1 2176 4096 51 122.98 10.6 20 153.07 

2 4352 8192 51 245.96 21.3 40 306.15 

3 6528 12288 51 368.94 32 60 459.23 

4 8704 16384 51 491.92 42.6 80 612.31 

64 

1 8448 16384 97 256 21.77 42.22 354.13 

2 16896 32768 97 512 43.54 84.44 708.26 

3 25344 48152 133 552.6 47.63 90.0 774.83 

4 33792 65536 177 561.17 47.72 92.56 776.29 
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Table 6.3 VDP Performance (Input Vector Size: VL, 1 Iteration per Core) 

VL 
# of 

cores 

LDST 

NWT 

ALU 

FLOP 

Execution 

Time (μs) 

Million 

FLOP/S 

% LDST 

Utilization 

% ALU 

Utilization 
Speedup 

16 

1 112 64 2.4 73.33 11.6 6.6 4.88 

2 224 128 2.4 146.66 23.2 13.3 9.77 

3 336 192 2.4 220 34.8 20 14.65 

4 448 256 2.4 293.33 46.4 26.6 19.54 

32 

1 288 160 3 149.33 24 13.33 8.1 

2 576 320 3 298.66 48 26.6 16.2 

3 864 480 3 448 72 40 24.3 

4 1152 640 3.4 527.05 84.7 47.05 28.58 

64 

1 704 448 3.6 320 48.8 31.1 13.05 

2 1408 896 4 576 88 56 23.5 

3 2112 1344 6 576 88 56 23.5 

4 2816 1792 8 576 88 56 23.5 

 

Table 6.4 DCT Performance (Input: VL/8 Blocks of Size 8*8, 1 Iteration per Core) 

VL 
# of 

cores 

LDST 

NWT 

ALU 

FLOP 

Execution 

Time (μs) 

Million 

FLOP/S 

% LDST 

Utilization 

% ALU 

Utilization 
Speedup 

16 

1 4224 2048 87 72.09 12.13 5.96 7.98 

2 8448 4096 87 144.18 24.27 11.92 15.97 

3 12672 6144 87 216.27 36.41 17.89 23.96 

4 16896 8192 87 23.85 48.55 23.85 31.95 

32 

1 8448 4096 87 144.18 24.24 11.57 19.2 

2 16896 8192 87 288.36 48.55 23.51 38.4 

3 25344 12288 87 432.55 72.82 32.25 57.65 

4 33792 16384 94 533.78 89 43.15 71.14 

64 

1 16896 8192 87 288.36 48.55 23.53 48.55 

2 33792 16384 109 460.33 77.5 37.57 77.50 

3 50688 24576 132 557.51 93.86 45.51 93.86 

4 67584 32768 176 557.51 93.86 45.51 93.86 

 

Table 6.5 RGB2YIQ Performance (Input: 1024 Pixels, 1 Iteration per Core) 

VL 
# of 

cores 

LDST 

NWT 

ALU 

FLOP 

Execution 

Time (μs) 

Million 

FLOP/S 

% LDST 

Utilization 

% ALU 

Utilization 
Speedup 

16 

1 6144 15360 244.2 88.05 6.29 15.72 358.13 

2 12288 30720 244.2 176.11 12.58 31.45 716.26 

3 18432 46080 244.2 264.17 18.87 41.74 1074.39 

4 24576 61440 244.2 352.23 25.16 62.9 1432.53 

32 

1 6144 15360 123.6 173.98 12.43 31.06 707.57 

2 12288 30720 123.7 347.68 24.83 62.08 1415.14 

3 18432 46080 155.8 414.06 29.57 73.49 1690.51 

4 24576 61440 204.1 421.44 30.10 75.25 1713.98 

64 

1 6144 15360 63.74 337.37 24.09 60.24 1372.07 

2 12288 30720 96.7 444.57 31.76 79.43 1808.8 

3 18432 46080 NA NA NA NA NA 

4 24576 61440 NA NA NA NA NA 

 

 



 

56 

In this chapter, simultaneously active threads from an application are homogeneous 

but independent, and their control flows are executed on different MBs. Threads operate on 

their own input data for higher throughput. Chapter 7 deals with the simultaneous 

execution of heterogeneous threads with different VLs arriving from different MBs. VP 

utilization with a single thread is very low for all benchmarks when VL=16; as more 

threads/cores are involved, the utilization improves substantially. As VL increases, the 

utilization of a thread increases up to a saturation point. As explained earlier, an idle clock 

cycle between issuing successive instructions decreases the maximum utilization but eases 

the verification of functional behavior. Due to this effect, the nominal maximum utilization 

that can be achieved for VL=16, 32 and 64, is calculated as 80%, 88.88% and 94.11%, 

respectively. For a low VP-utilization benchmark, the total execution time of multiple 

threads may be almost the same as the benchmark’s native duration (i.e., a thread’s 

execution time with exclusive VP usage). When the total VP utilization with many 

simultaneous threads exceeds the VP’s nominal maximum, all threads’ execution are 

slowed down proportionally due to resource competition. When either the ALU or LDST 

unit saturates, the other unit’s utilization may not increase further since ALU and LDST 

operations may depend on each other. Among the five basic benchmarks, MM, FIR and 

RGB2YIQ have higher ALU utilization that leads to VP saturation. VDP and DCT have 

higher LDST utilization that may lead to LDST saturation. Upon VP saturation, the 

slowdown amount is determined by the higher of the ALU and LDST utilizations. Figure 

6.2 shows the larger of ALU and LDST utilizations for various benchmarks, VLs and core 

numbers. The performance of RGB2YIQ with VL=64 saturates for two cores although the 

ALU utilization is not close to the nominal maximum of 94%. It happens when threads 
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produce high VP utilization and many data hazards, causing frequent VC stalls. For each 

benchmark, sequential C code with identical functionality and behavior was also run on a 

100 MHz MB. The last column in the tables is the speedup of VP versus scalar core runs. 

 

 

Figure 6.2 Utilization of the LDST or ALU units for various benchmarks, VLs, and 

number of simultaneous threads. 
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 Comparison with Prior Works 6.3

To perform a fair performance comparison with prior works that focused on VP sharing for 

multicores, a common reference point is chosen. Since VP speedups against host 

processors were listed in these works, the same is done in this dissertation. Moreover, the 

chosen benchmark scenarios are similar (including identical VLs). Table 6.6 shows 

comparisons with [Beldianu and Ziavras, 2013] that implemented an 8-lane shared VP for 

two cores using the CTS, FTS and VLS policies. FTS has the best performance among 

these policies. As per Section 2.2, FTS is similar to the proposed VP sharing technique. 

[Rooholamin and Ziavras, 2015] used a VP with many similarities to ours. It utilized a 

hardware scheduler and a register renaming block to support VP sharing for two threads 

with identical VL. It relied on compiler optimizations to increase the instruction issue rate. 

The proposed virtualization yields better speedup than other techniques even with half the 

lanes. 

 

Table 6.6 Speedup Comparison with Prior Works 

SYSTEM   \   BENCHMARK MM FIR RGB2YIQ VL 

[Rooholamin and Ziavras 2015], 4 lanes,1 core 92.66 73.32 383.32 
16 

The proposed VP, 4 lanes, 4 cores 339.91 314.8 1432.53 

 [Beldianu and Ziavras  2013], CTS,  8 lanes, 1 core 12.97 10.93 NA 

32 
 [Beldianu and Ziavras  2013], FTS, 8 lanes, 2 cores 25.89 21.83 NA 

[Rooholamin and Ziavras 2015], 4 lanes,1 core 193.06 150.94 762.22 

The proposed VP, 4 lanes, 4 cores 693.53 612.31 1713.98 

[Rooholamin and Ziavras 2015], 4 lanes,1 core 403.50 360.12 1512.44 
64 

The proposedVP, 4 lanes, 4 cores 917.50 776.29 1808.80 
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CHAPTER 7  

SCHEDULING VECTOR THREADS  

 

The focus of this chapter is on throughput-maximizing thread scheduling. Each application 

is profiled to determine its ALU and LDST utilizations, as well as its native duration (i.e., 

its execution time with exclusive VP access). Using the profile information, it is possible to 

evaluate combinations of simultaneously executing benchmarks (from the set of 15 in 

Chapter 6) for: i) A closed system with a fixed number of threads. ii) An open system with 

randomly arriving threads. 

 The Scheduling Algorithm 7.1

As observed in Chapter 6, when the ALU and LDST utilizations are both far below 90%, 

the performance is upper bounded by the speed of the ACs that issue vector instructions, 

and therefore multiple threads could share the VP with only negligible increase in the 

per-thread execution time. Due to the one clock cycle delay between consecutive 

instructions (Section 5.2.1), the proposed VP’s saturation threshold is not 100% but a 

number from 80% to 94% depending on the active threads’ VLs. The assumption of a 

saturation threshold of 90% is used to design a scheduling algorithm that keeps the VP 

highly busy either with zero or minimum saturation. 

With a closed system, no new threads are added into the queue before all threads in 

the current queue have been completely executed. Once a thread is picked by the scheduler 

for execution, it will keep executing until the end and then releases the VP resources for 

other pending threads. All pending threads are arranged in descending order of their native 

duration. The ALU and LDST utilization as well as the VRF usage of each thread are 
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provided to the scheduler as input. The scheduler keeps picking pending threads for 

execution until the VP is filled with four threads, or no pending thread can be 

accommodated by the VP due to unavailable VRF resources. As shown in the flowchart of 

Figure 7.1, the scheduler searches down the queue until a fitting thread is found which does 

not lead to saturation. If no such thread is found, the thread update mechanism ensures that 

the scheduler has to search down the queue only once to find a fitting thread that results in 

the minimum saturation. 

 

 

Figure 7.1 Software flowchart of the throughput-driven scheduler. 
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The scheduler always starts checking from the first pending thread that has the 

longest native duration among all threads. If the available VRF resources are sufficient to 

accommodate the thread, utilization saturation check is performed to see whether this 

thread will lead to an ALU or LDST overall utilization that exceeds 90%. If no saturation 

will occur, the thread will be chosen for scheduling. Otherwise, the thread will not be 

directly picked but will become the “potential thread” for scheduling.  When another 

thread in the queue is found to lead to utilization saturation, it will be compared against the 

currently potential thread. If the former thread is expected to yield smaller ALU and LDST 

overall utilizations than the currently potential thread, then the former will replace the 

latter as the potential thread for scheduling. When the entire queue has been searched and 

all threads are either not fitting or leading to saturation, the currently potential thread will 

be chosen for immediate scheduling. 

 Queues of Fixed Length 7.2

The scheduler was tested for a closed system with two queue sizes: 8 and 16 pending 

threads. Six successive schedules of random thread combinations were tested. Threads and 

their input data size were chosen with equal probability from the list of 15 benchmarks of 

Chapter 6. The average execution time per schedule is shown in Figure 7.2. To identify the 

optimal solution for the six schedules with queue length 8, exhaustive search was applied 

(i.e., a C program produced the total execution time of all permutations of involved 

threads). Compared to the optimal case, which cannot be implemented in practice, the 

achieved execution time is only 14.7% slower on the average and actually achieves 

optimality in one of the six schedules. For a queue length of eight, the achieved average 

speedup is 2.83 compared to the case without VP sharing; when the queue length increases 
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to 16, the average speedup increases to 3.33. With increases in the thread queue, the 

speedup approaches four, this is ideal since it matches the maximum thread population. 

One of the six schedules for each queue length was chosen to generate tables with detailed 

simulation information (Table 7.1 and 7.2). 

 

 

Figure 7.2 Average execution time per schedule for pending thread queues of length;  (a) 8, 

(b) 16. 

 

Table 7.1 Detailed Results for a Schedule with Pending Thread Queue Length of 8 

Task 

ID 
Application VL 

Native 

Duration 

(μs) 

% ALU 

Utilization 

% LDST 

Utilization 

Issue  

Time 

(μs) 

Commit 

Time 

(μs) 

Actual 

Duration 

(μs) 

0 MM 16 4820 9 5 11 4905 4894 

1 VDP 64 3600 31 49 30 4348 4318 

2 DCT 64 2610 24 49 3075 6083 3008 

3 FIR  16 2025 9 5 44 2109 2065 

4 MM 32 1884 17 9 60 1967 1907 

5 RGB2YIQ 64 1268 60 24 2680 4655 1975 

6 VDP 16 960 7 12 1994 3048 1054 

7 FIR 32 510 20 11 2132 2642 510 
Practical issue order based on static scheduling: 0,1,3,4,6,7,5,2. 

Optimal order based on simulation of all permutations: 0,3,6,4,1,2,5,7. 

Actual execution time = 6.083ms. Optimal execution time = 5.215ms. 

Total native duration w/o VP sharing = 17.677ms. Speedup = 2.91. 
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Table 7.2 Detailed Results for a Schedule with Pending Thread Queue Length of 16 

Task 

ID 
Application VL 

Native 

Duration 

(μs) 

% ALU 

Utilization 

% LDST 

Utilization 

Issue  

Time 

(μs) 

Commit 

Time 

(μs) 

Actual 

Duration 

(μs) 

0 MM 64 3819 34 18 11 3829 3818 

1 MM 32 2826 17 9 24 2873 2849 

2 RGB2YIQ 32 1483.2 31 12 54 1705 1651 

3 MM 16 964 8 5 1111 2080 969 

4 DCT 32 860 12 24 1740 2606 866 

5 DCT 64 783 24 49 2632 3460 828 

6 DCT 16 693 6 12 78 771 693 

7 FIR 64 679 42 22 3533 4338 805 

8 FIR 16 675 9 5 2101 2789 688 

9 RGB2YIQ 64 634 60 24 4030 4815 785 

10 VDP 32 630 13 24 3511 4357 846 

11 FIR 32 561 20 11 2907 3468 561 

12 RGB2YIQ 16 488.4 16 6 2837 3470 633 

13 VDP 64 356.4 31 49 3863 4397 534 

14 DCT 32 348 12 24 3559 3988 429 

15 VDP 16 240 7 12 820 1070 250 
Practical issue order based on static scheduling: 0,1,2,6,15,3,4,8,5,12,11,10,7,14,13,9. 

Actual execution time = 4.815ms. 

Total native duration w/o VP sharing = 16.053ms. Speedup = 3.33. 

 

 Open System with Randomly Arriving Threads 7.3

To simulate an open system with randomly arriving tasks, a time slice of 10ms is chosen 

and all tasks arriving within each 10ms time slice will be scheduled together as a queue of 

fixed length. A fixed input size was chosen for each benchmark to create 15 distinct tasks. 

The characteristics of each task are listed in Table 7.3. Dynamic energy measurement is the 

focus of Section 8.1. The average task native duration is 0.182ms. Task arrival follows the 

Poisson distribution with a rate of λ tasks arriving per time slice. Tasks arriving in a time 

slice form a queue which is scheduled for execution in the next time slice. The evaluation is 

for λ=0.5, 0.75 and 1; for a given λ, queues for six consecutive time slices were generated, 

and all the average values for the six schedules were calculated. The average of the total 

execution time for all threads scheduled in a time slice is shown in Figure 7.3. Details of 

task arrivals and execution times are shown in Tables 7.4 to 7.6. The speedup compared to 
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the VP without sharing is 2.59, 3.15 and 3.22 for λ=0.5, 0.75 and 1, respectively. The 

speedups concur with the results obtained earlier for fixed thread queue lengths where the 

speedup increased with the thread population. Without VP sharing and scheduling, even 

for the lowest thread arrival rate the queue increases faster than the system can process. 

With the proposed scheduling, the VP is active only 80% of the time slice for the highest 

λ= 1. The rest of the time the VP can be power gated to reduce the static energy (Section 

8.2). 

 

Table 7.3 Characteristics of Chosen Tasks for an Open System 

Task  

ID 
Application_VL 

Native 

Duration (μs) 

% ALU 

Utilization  

% LDST 

Utilization  

Vector 

Registers 

Dynamic 

Energy (μJ) 

0 RGB2YIQ_16 4884 16 6 7 766 

1 MM_64 3819 34 18 2 792.3 

2 MM_32 2826 17 9 2 404.1 

3 RGB2YIQ_32 2472 31 12 7 535.8 

4 FIR_64 1940 42 22 2 577.2 

5 DCT_64 1740 24 49 3 417.8 

6 DCT_32 1740 12 24 3 288.2 

7 DCT_16 1740 6 12 3 207.8 

8 MM_16 1446 8 5 2 152.34 

9 RGB2YIQ_64 1268 60 24 7 354.4 

10 FIR_32 1020 20 11 2 255 

11 VDP_64 720 31 49 4 192.8 

12 VDP_32 600 13 24 4 123.6 

13 FIR_16 540 9 5 2 85.8 

14 VDP_16 480 7 12 4 70.8 

 

 

Figure 7.3 The average of the total execution time for all threads scheduled in a time slice, 

with and without VP sharing, for λ= 0.5, 0.75 and 1. (Time slice: 10ms.) 
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Table 7.4 Detailed Task Arrivals and Execution Time for λ=0.5 

Task 
ID 

Application_VL 
Number of Task Arrivals 

Average 
Slice1 Slice2 Slice3 Slice4 Slice5 Slice6 

0 RGB2YIQ_16 1 1 1 1 0 0 0.66 

1 MM_64 1 0 0 0 0 2 0.5 

2 MM_32 0 0 0 0 0 0 0 

3 RGB2YIQ_32 2 0 0 0 0 0 0.33 

4 FIR_64 1 0 1 1 0 0 0.5 

5 DCT_64 0 1 0 0 1 1 0.5 

6 DCT_32 0 1 0 0 0 0 0.16 

7 DCT_16 0 0 0 1 0 1 0.33 

8 MM_16 3 2 1 0 0 1 1.16 

9 RGB2YIQ_64 2 0 0 0 0 1 0.5 

10 FIR_32 0 0 0 1 0 0 0.16 

11 VDP_64 1 0 1 0 1 0 0.5 

12 VDP_32 2 1 1 1 2 0 1.16 

13 FIR_16 0 1 2 2 1 2 1.33 

14 VDP_16 2 0 1 0 0 0 0.5 

Total Native Duration (ms) 25.3 12.39 11.15 11.26 4.2 14.9 13.21 

Actual Duration (ms) 8.22 4.9 4.9 4.9 1.8 4.7 4.9 

Speedup 3.08 2.52 2.26 2.28 2.26 3.12 2.59 

 

Table 7.5 Detailed Task Arrivals and Execution Time for λ=0.75 

Task 

ID 
Application_VL 

Number of Task Arrivals 
Average 

Slice1 Slice2 Slice3 Slice4 Slice5 Slice6 

0 RGB2YIQ_16 0 0 2 0 0 0 0.33 

1 MM_64 0 1 0 2 0 0 0.5 

2 MM_32 2 0 0 0 1 0 0.5 

3 RGB2YIQ_32 1 2 0 1 0 1 0.83 

4 FIR_64 1 1 1 0 1 1 0.83 

5 DCT_64 1 1 1 2 0 1 1 

6 DCT_32 0 0 0 0 0 1 0.16 

7 DCT_16 1 2 1 1 0 0 0.83 

8 MM_16 2 3 1 1 0 2 1.5 

9 RGB2YIQ_64 1 0 2 1 1 0 0.83 

10 FIR_32 1 0 1 0 1 0 0.5 

11 VDP_64 3 2 0 0 1 1 1.16 

12 VDP_32 0 2 1 0 0 0 0.5 

13 FIR_16 1 0 1 4 1 0 1.16 

14 VDP_16 0 1 0 0 1 0 0.33 

Total Native Duration (ms) 21.4 23.38 21.33 20.2 8.79 11.5 17.77 

Actual Duration (ms) 6.59 6.75 6.66 6.62 3.05 3.75 5.57 

Speedup 3.25 3.46 3.20 3.05 2.88 3.06 3.15 
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Table 7.6 Detailed Task Arrivals and Execution Time for λ=1 

Task 
ID 

Application_VL 
Number of Task Arrivals 

Average 
Slice1 Slice2 Slice3 Slice4 Slice5 Slice6 

0 RGB2YIQ_16 0 0 2 0 0 0 0.33 

1 MM_64 0 1 0 2 0 0 0.5 

2 MM_32 2 0 0 0 1 0 0.5 

3 RGB2YIQ_32 1 2 0 1 0 1 0.83 

4 FIR_64 1 1 1 0 1 1 0.83 

5 DCT_64 1 1 1 2 0 1 1 

6 DCT_32 0 0 0 0 0 1 0.16 

7 DCT_16 1 2 1 1 0 0 0.83 

8 MM_16 2 3 1 1 0 2 1.5 

9 RGB2YIQ_64 1 0 2 1 1 0 0.83 

10 FIR_32 1 0 1 0 1 0 0.5 

11 VDP_64 3 2 0 0 1 1 1.16 

12 VDP_32 0 2 1 0 0 0 0.5 

13 FIR_16 1 0 1 4 1 0 1.16 

14 VDP_16 0 1 0 0 1 0 0.33 

Total Native Duration (ms) 21.4 23.38 21.33 20.2 8.79 11.5 17.77 

Actual Duration (ms) 6.59 6.75 6.66 6.62 3.05 3.75 5.57 

Speedup 3.25 3.46 3.20 3.05 2.88 3.06 3.15 
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CHAPTER 8  

VP ENERGY CONSUMPTION 

 

In this chapter, the energy consumption for the benchmarking of Section 6.1 is investigated. 

Based on the power dissipation of individual benchmarks, a projection is made of the total 

energy consumption for the dynamic schedules of Section 7.3. Power consumption has 

three components: device static, design static and design dynamic [Beldianu and Ziavras, 

2015]. The device static power, also known as leakage power, is a device specific constant 

not related to resource utilization or switching activity. Under the default simulation 

conditions for an ambient temperature of 50
0
C and an airflow of 250LFM (linear feet per 

minute), the leakage power for the chosen FPGA is 2.88W. The design static power 

represents the power consumption when the device is configured but there is no switching 

activity. It includes the static power in I/O DCI terminations, clock managers, etc., and is 

related to FPGA resource consumption. The design dynamic power results from the 

switching of the user configured logic. Accounting for the FPGA resources that the 

proposed VP actually uses, the power model in this chapter adds the design’s static and 

dynamic powers to estimate the total dissipation. 

 VP Dynamic Power 8.1

To reliably estimate the dynamic power, the proposed VP design was fully implemented 

and all signal switching activities of each system node were used as input for power 

calculation. The proposed VP was fully implemented (i.e., synthesized, translated, placed 

and routed) using the Xilinx ISE tool chain, and post place-and-route (PAR) ISE 

simulations were performed. The binaries of the vector instructions of each benchmark 
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were generated to estimate the dynamic power. All signal switching activities during each 

simulation were recorded in an SAIF File. The SAIF file, with two other files generated 

during the implementation of the design, namely the Native Circuit Description and 

Physical Constraint files, were fed into the Xilinx power analyzer (XPA) to produce the 

VP’s accurate power dissipation for each benchmark [Xilinx Inc., 2012] . The power 

measurements here include all power consumed by VP subsystems (i.e., VC, HDU, vector 

lanes, VRF and VM). Also, register name readings from TLT contributed to the figure. 

Due to the time consuming nature of PAR simulations, only the average power 

consumption for one iteration of each vector kernel was measured. For matrix 

multiplication, the innermost loop that involves three vector instructions is considered as 

the target kernel. It is repeated VL times to produce one row of the resulting matrix. This 

kernel includes one load, one vector-scalar multiplication and one vector-vector addition. 

For FIR filtering, the target kernel for power estimation is the internal loop which is 

unrolled four times, slides the coefficients four times over the input sequence, and carries 

out multiplications and additions to produce four elements of the result. This kernel 

contains twelve vector instructions: four loads, four vector-scalar multiplications and four 

vector-vector additions. For VDP, the kernel size depends on VL. This kernel contains 11, 

14 and 18 vector instructions for VL=16, 32 and 64, respectively.  For VL=16, the kernel 

consists of five loads, two stores, three vector-vector additions and one vector-vector 

multiplication. For VL=32, one load, one store and one vector-vector addition are added to 

the former case. For VL=64, two loads and two vector-vector instructions are added to the 

VL=32 case. For DCT, the inner loop which calculates the output result for one output 

coefficient is the kernel. This kernel contains six instructions: two loads, two stores, one 
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vector-vector multiplication and one vector-vector addition. For RGB2YIO, the chosen 

kernel converts the color space for VL input pixels. It contains 21 instructions: three loads, 

nine scalar-vector multiplications, six vector-vector additions and three stores. 

For VP power measurements of individual benchmarks, the VP is used exclusively 

without competition. The total dynamic energy consumed by a benchmark is actually the 

product of its vector kernel power consumption and its native duration. The dynamic 

power and energy consumptions of individual benchmarks are shown in Table 8.1. The 

energy numbers shown are based on the input data sizes of Section 6.1. Using the measured 

power, it can be calculated the total dynamic energy consumption of each benchmark for 

various native durations; this approach aids the estimation of the energy consumption in 

dynamic environments. The dynamic energy results for the predefined tasks of Section 7.3 

were included in Table 7.3. Using a task’s average number of arrivals per time slice, its 

average dynamic energy consumption per slice can be obtained easily. Figure 8.1 shows 

that the dynamic energy consumption is related almost linearly to the task arrival rate. 

 

Table 8.1 Power and Energy Consumption for Benchmarks 

Applic-ation VL 

Kernel 

Duration 

(ns) 

VC+4Lanes+Memories 

Dynamic Power (mW) 
Kernel 

Dynamic 

Power 

(mW) 

Application 

Duration 

(μs) 

Application 

Dynamic 

Energy  

(μJ) 
Signal & 

Logic 

BRAM & 

IO 

MM 

16 365 102.04 3.32 105.36 241 25.39 

32 405 136.96 6.04 143 942 134.7 

64 555 198.68 8.8 207.48 3819 792.3 

FIR 

16 895 153.68 5.44 159.12 27 4.29 

32 935 239.6 10.48 250.08 51 12.75 

64 1575 284.6 13 297.6 97 28.86 

VDP 

16 765 136.26 11.24 147.5 2.4 0.35 

32 1235 187.4 19.04 206.44 3 0.62 

64 2275 243.28 24.92 268.2 3.6 0.96 

DCT 

16 525 110.16 9.32 119.48 87 10.39 

32 605 149 16.64 165.64 87 14.41 

64 775 212.28 27.92 240.2 87 20.89 

RGB2YIQ 

16 1465 152 5 157 244 38.3 

32 1805 209.64 8.2 217.84 123 26.79 

64 2295 267.76 13.52 281.28 63 17.72 
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Figure 8.1 Average total dynamic energy consumption per time slice for λ=0.5, 0.75 and 1. 

 

 Total Energy Consumption 8.2

The VP’s static power is measured without running instructions but just applying the clock 

signals. For a 100µs measurement after system reset, the average static power is 214mW. 

Without pending instructions for the VP, power-gating (PG) can be applied to shut off the 

VP and zero its static power dissipation. Implementing PG requires sleep transistors, 

isolation cells and circuits to control power signals. It can reduce the design static power by 

85% [Beldianu and Ziavras, 2015]. 

Although commercial FPGAs currently lack PG support, PG in association with the 

proposed dynamic scheduler of Section 7.3 could yield not only performance gains but also 

substantial reduction in the overall energy consumption. In each time slice, once the task 

queue becomes empty, the VP is PGed until the beginning of the next time slice. Using the 

obtained static power measurements, the assumption of a 85% static power reduction with 

PG and the measured average execution time in Figure 7.3, it can be projected the VP’s 

average static energy consumption per time slice for a given task arrival rate. Combining 

the results with the dynamic energy of Figure 8.1, Figure 8.2 shows the effect of PG on the 
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VP’s energy consumption with and without VP sharing. The total energy saved by 

combining VP sharing, proper scheduling and PG is 33.9%, 36.1% and 37% under task 

arrival rates of λ=0.5, 0.75 and 1, respectively. These are major energy savings on top of 

the already achieved very substantial performance improvements. 

 

 

Figure 8.2 Total energy consumption with (w/) and without (w/o) VP sharing, and with 

power gating, for λ=0.5, 0.75 and 1. 
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CHAPTER 9  

VIRTUALIZED VP FOR THREAD FUSION AND DYNAMIC LANE 

CONFIGURATION 

 

In this chapter an improved VP prototype is presented that combines the virtualization and 

instruction fusion technologies. Thread fusion can be triggered once similar threads are 

identified in the vector task queue. In the fused mode, one vector instruction is interpreted 

as multiple instructions each working in a per thread independent VRF and VM address 

space, and therefore the effective vector instruction issue rate from the host processor is 

multiplied. The new VP prototype is also capable of dynamically deactivating some of its 

lanes to minimize unnecessary static power consumption with minimum impact to 

performance. Through the complete virtualization of the VP, vector applications can 

execute properly under different fusion state and various numbers of active lanes and do 

not to be recompiled. An accurate power model of the new prototype is derived to help 

choose the optimal number of active lanes for different applications. Two optimization 

policies are proposed to minimize the total energy consumption of an application, or to 

minimum the product of energy consumption and application runtime.  

 Virtualized VM Address Space 9.1

The new VP prototype still features a distributed VM design, where one of each VM 

bank’s dual ports is assigned exclusively to one VP lane, and yet all VM banks can be 

accessed by the host processors via a mux connected to the second port of every VM bank. 

The benefit of this feature is that when a lane is power gated based on the optimization 

policy, its dedicated VM bank can also be deactivated, thus further reducing the static 
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power dissipation. Since the VM is accessed by two heterogeneous types of masters (i.e., 

the on-chip host cores and the VP), it is assigned two different address domains with regard 

to each one of its masters. The host-to-VM mux accesses VM banks in low-order 

interleaved fashion to hide the bank selection details from the hosts; therefore, all VM 

banks appear as one large memory module with a continuous address space on the system 

bus. Each VP lane, on the other hand, can only access and process elements within its 

dedicated VM bank based on the VP-to-VM issued address and VL information, which is 

within vector instructions sent from the hosts. 

All vector instructions from the hosts go through the VC that handles hazard 

detection and virtualization, and then broadcasts them to the ALU or LDST pipeline 

interface in each lane. To ensure the correct execution of a vector application under various 

numbers of active lanes, both address domains of the VM as well as the VL information 

must be virtualized. This is essential for dynamic VP lane configuration, since all address 

values and the VL for a vector application are determined statically, and therefore the same 

values must be properly interpreted at runtime by the hardware under disparate VP 

configurations. To facilitate address virtualization, the host-to-VM mux and the VC are 

designed to be configurable by host requests. Before starting a new vector thread, a host 

will submit a request to configure state registers based on the optimal number of lanes 

needed by the thread. 

Figure 9.1 illustrates how a data array with base host-to-VM address of 4N and 

VL=8 can be accessed by the virtualized VP correctly under different lane configurations. 

The figure shows the cases of two-lane (Figure 9.1a) and four-lane (Figure 9.1b) 

configurations in a VP with four lanes; however, this scheme can be easily adapted for any 



 

74 

2
N
 active lanes with any VL = 2

M
, where N and M are both natural numbers and M ≥ N. 

The VP’s lane state register, which can be configured dynamically by the hosts via a simple 

control instruction, stores the number of active lanes and determines how the VP behaves 

in the following cases. 

 

 

Figure 9.1 Mapping of VL, host-to-VM address and VP-to-VM address via virtualization. 

 

In the case of all lanes being active (four in this example), the lowest two bits of the 

host-to-VM address will be used as the select signal for the host-to-VM mux, and the 

remaining bits will be used as the actual physical address for every VM bank. As shown in 

Figure 9.1b, the data array is mapped to the physical address [N, N+1] of each VM bank, 
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with two elements per bank. Therefore, the array’s base VP-to-VM address is compiled to 

be N, which is the same as its physical address in each bank. The LDST unit within each 

lane will start accessing the array with base address N, and based on the VL = 8 and four 

active lanes information passed from the VC, the instruction decoder will set the counter to 

two so that each lane will access two elements per instruction. 

When the host dynamically deactivates two VP lanes and their attached VM banks, 

only two banks remain active and therefore the mux must be configured to take only the 

LSB of the host-to-VM address as the bank select signal. All remaining bits will be used as 

each bank’s physical address, and since the host-to-VM address is compiled at static time 

and does not change, under the new configuration the array will be mapped to the physical 

address [2N, 2N+3] of each remaining VM bank, with four elements per bank. To ensure 

that the VP can still reach the array with the unchangeable VP-to-VM address of N, the 

VC’s virtualization stage simply has to shift left the address by one bit and pass it to all 

lanes’ LDST units. The new configuration also requires that the VC shift left the VL by one 

bit to make each lane access four elements per instruction. Since the decoder unit in each 

lane relies on the register name and VL value to locate the right vector registers, shifting 

VL also ensures that each lane will use the right location and number of registers under the 

new configuration. 

 SMT VP and Thread Fusion 9.2

The new VP prototype is modified based on the SMT capable VP introduced in Section 5.2, 

which already supports per instruction VRF virtualization. To achieve true SMT where 

instructions from multiple threads can coexist inside the VP pipeline without interference, 

further support of VM space virtualization is added on a per instruction basis. To simplify 
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the hardware design, the current VP implementation only supports two simultaneous 

virtual threads. With the two threads set up, the software VRF management algorithm 

introduced in Section 4.3 is no longer needed and both VRF and VM virtualization can be 

performed by hardware. However, the number of virtual threads can be easily expanded by 

using the software VRF management algorithm and by using a memory management unit 

with the VP. With SMT virtualization, one SMT capable VP appears as multiple logical 

VPs (LVPs) to multiple hosts/cores. Shown in Figure 9.2 is a simple example of an SMT 

VP of degree two. The VP has only one physical instruction input channel; however, the 

FIFOs and arbitrator structure create two virtual channels. The VP input arbitrator accepts 

instructions from two different FIFOs in round-robin fashion, and each FIFO can be 

assigned to a host; in this example, only one host is used and the two LVPs are used to 

exploit thread level parallelism via thread fusion. Each instruction has its LSB as the thread 

ID that is filled by the arbitrator based on the source FIFO. For ID = 0, all VRF names are 

unchanged. When ID = 1, the virtualization stage in the VC properly flips a few bits in each 

register name based on the instruction’s VL. The scheme ensures that LVP0 occupies the 

lower half of the VRF and LVP1 occupies the higher half. The mechanism achieves VRF 

resource sharing with significant flexibility in that it allows both LVPs to function 

correctly as long as (a) the total VRF usage does not exceed the available physical VRF 

resources, and (b) in the single LVP mode, either LVP0 or LVP1 can occupy the entire 

VRF space. 

 

 

 



 

77 

 

 

Figure 9.2 System architecture of a fusion capable VP of degree two. 

 

As shown in Figure 9.2, the host-to-VM mux supports data transfers between the 

hosts’ RAM space and both LVPs’ virtual VM spaces. Based on the thread state register, 

which can be configured by the hosts, part of the host-to-VM address is flipped to map the 

LVP1’s virtual address space to the higher half of the VM banks. The data transfer only 

happens at the beginning and the end of a vector application, and therefore no per 

instruction switching between LVP0 and LVP1 is required for data transfers. The thread 

state register can be configured by the hosts using a simple control instruction which is 

similar to that used for dynamic lane configuration (introduced in Section 9.1). The 

virtualization for SMT capability does not conflict with that for dynamic lane 
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configuration, and therefore the prototype is extremely versatile; without recompilation, 

any two applications can simultaneously function properly on the VP regardless of their 

assigned thread ID or the number of active VP lanes. 

For frequently used computation intensive operations, highly optimized VP 

routines are implemented and stored in a library. When multiple pending tasks are of the 

same operation, it is possible to fuse these operations thanks to the VP’s per thread virtual 

VM and VRF space. Figure 9.3 shows how two Discrete Cosine Transform (DCT) 

operations are accelerated by fusing the threads. Without fusion (Figure 9.3a), the two 

operations will be executed sequentially. When two threads are fused (Figure 9.3b), the 

major parts of their execution are merged, so that the hosts’ domain issues vector 

instructions only once while the VP receives two copies. The switch in Figure 9.2 is set to 

the fusion state for duplicating each vector instruction from the host domain and sending it 

to both FIFOs. A scheduler of vector threads decides on fusion. Pending threads are 

ordered in their operation ID (i.e., type of operation performed by the thread) within the 

task queue. Every time the scheduler picks a thread, it checks the next thread in the queue 

to compare the operation ID. When a match is found, thread fusion will be triggered and 

the two threads performing the same operation will be executed in fused mode. Due to the 

independent virtual nature of each LVP, the two identical instruction flows will perform 

the same operation but on different input data within each virtual space. 
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Figure 9.3 Fusion of two DCT operations. 

 

Vector thread fusion has many benefits: (a) it significantly increases the vector 

instruction issue rate for all hosts; (b) the VP utilization is effectively multiplied by the 

degree of fusion as long as the aggregate utilization does not exceed 100%; (c) it reduces 

the overall energy consumption since the host domain only has to run the flow control 

program once to send out vector instructions for fused threads; (d) since the VP’s SMT 

virtualization is compatible with dynamic lane configuration, fusion can be combined with 

lane configuration to optimize performance and energy figures 

 System Architecture and FPGA Implementation 9.3

To evaluate the benefit of dynamic lane configuration and thread fusion, a dual-threaded 

VP interfaced with a hosts system is prototyped on a Xilinx XC7Z045-1fbg676 FPGA. The 

system architecture is similar to that in Figure 9.2, with the hosts system replaced by a MB 

processor that issues vector threads. Various vector kernels are stored in the 16KB local 
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memory of the MB processor. The system RAM and VM are 64KB each. A DMA engine is 

attached to the system bus for fast data transfers between the system RAM and VM. The 

mux connecting the VM and system bus is configurable by the MB to support the 

virtualization for lane configurability and SMT, as per Sections 9.2 and 9.3. I/O 

components on the bus are used for debugging purposes and an 8-bit LED is implemented 

to show the system status. A cycle accurate timer (not shown in the figure) that measures 

application runtime can interrupt the MB. 

The VP has four lanes and is capable of running with 1, 2, or 4 active lanes. Each 

lane’s dedicated VM bank can be deactivated with its assigned lane. The VRF can store 

1024 32-bit elements, with all the registers evenly distributed across the four vector lanes. 

Without loss of generality, the VP supports three VLs (16, 32, and 64) in this 

implementation. A vector register of length N contains N register elements, and therefore 

the number of available vector registers depends on the VL of each register. The VP, the 

fusion switch, the VM data mux and the vector instruction arbitrator are custom hardware 

designed in VHDL, and the rest of the system components are Xilinx IPs. The target FPGA 

has a speed grade of -1. The minimum achievable critical delay is 6.01ns; for simplicity, 

the system is implemented at 100MHz. The resource consumption breakdown for the VP is 

shown in Table 9.1. The rest of the custom hardware components are not shown as they 

consume negligible amount of resources compared to the VP (< 1%). RAMB36E1 is a 

Xilinx block RAM IP that can be configured to various data widths and depths as long as 

the total memory capacity is within 32Kbits. 
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Table 9.1 Resource Consumption and Utilization Percentage of the New VP Prototype  

Entity 
Registers 

U(%) 
LUTs 

U(%) 

RAMB36E1s 

U(%) 

DSP48E1s 

U(%) 

One Lane 9571 (2%) 17437 (7%) 0 5 (<1%) 

VM  16 (<1%) 272 (<1%) 16 (2%) 0 

VC 287 (<1%) 451 (<1%) 0 0 

VP  38674 (8%) 70143 (32%) 16 (2%) 20 (2%) 

 

 Benchmarking 9.4

Four vector applications are picked, namely DCT, FIR, RGB, and VDP. Since the current 

VP implementation supports three different VLs, each picked application is evaluated 

using all supported VLs, creating a total of 12 benchmarks. The VP has separate pipelines 

for ALU and LDST operations; each benchmark is characterized by its ALU utilization 

(UALU) and LDST utilization (ULDST). Each benchmark is executed under various 

configurations to measure the corresponding runtime, and the corresponding utilizations of 

the pipelines are calculated. The utilization is defined as Ototal /O4lanes, where Ototal is the 

total number of operations for an application and O4lanes is the maximum number of 

operations that can be performed by the four lanes during the application’s runtime. Tables 

9.2 to 9.4 show the runtime and utilization figures under three VP configurations (a. Four 

lanes active without fusion. b. Four lanes active with fusion. c. Two lanes active without 

fusion.) 
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Table 9.2 Performance Profile Data for Unfused VP with Four Active Lanes 

APP VL T(μs) ALU(%) LDST(%) 

DCT 

16 75 6.8 14.1 

32 75 13.6 28.2 

64 75 27.3 56.4 

VDP 

16 23.7 6.7 11.8 

32 28.3 14.1 25.4 

64 34.4 32.5 51.1 

RGB 

16 243.6 15.8 6.3 

32 123.8 31.0 12.4 

64 64.0 60.0 24.0 

FIR 

16 25.7 10.6 5.5 

32 46.8 22.7 11.5 

64 89.1 47.8 24.0 

 

Table 9.3 Performance Profile Data for Fused VP with Four Active Lanes  

APP VL T(μs) ALU(%) LDST(%) 

DCT 

16 75 13.6 28.2 

32 75 27.2 56.4 

64 86.5 47.36 97.6 

VDP 

16 23.7 13.4 23.6 

32 28.3 28.2 50.8 

64 35.8 62.6 98.4 

RGB 

16 243.7 31.6 12.6 

32 123.5 62.1 24.9 

64 78.3 98.1 39.2 

FIR 

16 25.9 21.1 10.9 

32 46.7 45.5 22.9 

64 89.2 95.7 47.9 

 

Table 9.4 Performance Profile Data for Unfused VP with Two Active Lanes 

APP VL T(μs) ALU(%) LDST(%) 

DCT 

16 75 6.8 14.1 

32 75 13.6 28.2 

64 84.9 24.1 49.8 

VDP 

16 23.7 6.7 11.8 

32 28.3 14.1 25.4 

64 35.7 31.3 49.2 

RGB 

16 243.6 15.8 6.3 

32 123.8 31.0 12.4 

64 77.7 49.4 19.8 

FIR 

16 25.7 10.6 5.5 

32 46.8 22.7 11.5 

64 89.03 47.8 24.0 

 

An application’s figures under configuration a. are denoted as native utilization (U) 

and native runtime (T). Utilization and runtime figures under other configurations are 

represented by U’ and T’. With two active lanes, the maximum achievable utilization is 
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50%; it is the average with two active lanes at 100% and the other two lanes at 0%. For 

benchmarks with ALU and LDST native utilizations below 50%, the runtime and 

utilizations will not be affected by lane deactivation. For other benchmarks, from UALU and 

ULDST the higher will hit the 50% saturation level while the other will decrease 

proportionally. The runtime increase is related to the higher of UALU and ULDST. The 

relation between each benchmark’s actual figures for two active lanes and their native 

figures is shown in Equation 9.1.  
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The maximum utilization achievable is 50% when two lanes are deactivated. The 

equation agrees with the measurements shown in Tables 9.2 to 9.4. U’ALU_1lane , U’LDST_1lane 

and T’1lane with one active lane can be derived using a similar approach and changing the 

threshold to 25%. A fused benchmark can be considered as a new one with new native 

runtime and utilizations, as shown in Table 9.3. The runtime scheduler will use the 

utilization information to choose the optimal number of active lanes based on the 

scheduling policy. The scheduler will be discussed after the introduction of the power 

model. 
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 The Power Model 9.5

A highly accurate VP power consumption model is needed for optimization purposes. To 

obtain the needed data, simulations are performed based on the fully placed and routed VP 

implementation. By combining the VP’s Native Circuit Description (NCD) with the 

testbenches of different scenarios, the detailed Switching Activity Information File (SAIF) 

for various VP utilizations can be obtained. The NCD and SAIF file are fed to the Xilinx 

Power Analyzer (XPA) tool to calculate exact dynamic and static power. By using 

testbenches that issue instructions to the VP at various rates, the VP’s static and dynamic 

power under various utilizations can be measured. Figure 9.4 shows dynamic power 

results. 

 

 

Figure 9.4 Dynamic power vs. utilization for both ALU and LDST data paths. 
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All VP lanes’ dynamic power can be broken down into four components 

corresponding to the: VRF, VM banks, LDST data path (including LDST FIFO and 

decoder, address generator, and write back unit) and ALU data path (including ALU FIFO 

and decoder, execution and write back units). Each component’s dynamic power is linear 

to its utilization, and is therefore related to UALU and ULDST. Each LDST operation involves 

one memory access and one VRF access, and each ALU operation involves reading two 

operands from the VRF and writing one result back to the VRF. Therefore, the relation 

between VP lanes’ dynamic power and their utilizations can be described by Equation 9.2. 

Each coefficient K is the power per utilization in mW/% for each corresponding 

component. On the other hand, VC is a common block that processes both ALU and LDST 

instructions, and therefore its power consumption is linear to the total issue rate (IR) of 

both types of instruction, and that can be described by Equation 9.3. 

 

                          (9.2) 

 

                      (9.3) 

 

By adding together the terms in Equations 9.2 and 9.3, Equation 9.4 can be 

obtained which represents the VP’s dynamic power as a simple linear function of UALU and 

ULDST. This power model matches the measurements of the VP’s dynamic power vs. ULDST 

with idle ALU (Figure 9.4a), and power vs. UALU with idle LDST (Figure 9.4b). From the 

measured data, the coefficient K for each component can be extracted; the two most 
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important coefficients of interest are for the ALU and LDST units: K’ALU = 2.838mW/%, 

and K’LDST = 1.415mW/%. 

 

                   (9.4) 

 

The VP’s total power is given by Equation 9.5. The measured VC static power is 

2.2mW, and each lane’s static power is 26.5mW with its dedicated memory bank. Since the 

FPGA does not support power gating, it is implemented using extra logic to isolate the 

power signal. Power gated components still dissipate about 15% of their original static 

power [Roy et al., 2009]. Using this assumption and the measured data, Pstatic under 

different VP configurations can be calculated. Pstatic is 108.2mW, 63.15mW and 40.63mW 

for the 4, 2, and 1 lane configuration, respectively. As shown in Equation 9.5, the VP’s 

total power can be represented by UALU and ULDST, which are the applications’ actual 

utilizations under various situations. Combining Equation 9.5 with Equation 9.1, Equation 

9.6 can be obtained that describes the relation of an application’s power consumption 

under two active lanes configuration and its native utilizations. A similar equation can be 

derived for one active lane configuration. 
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                             (9.6) 

 

 The Scheduling Policy 9.6

A vector application’s power consumption under various VP configurations, P4lanes, P2lanes 

and P1lane as a function of its native utilizations can be obtained using the equations 

described above in Section 9.5. The execution times T2lanes and T1lane are also related to 

T4lanes, and the example for T2lanes as a function of T4lanes is shown in Equation 9.1. The set 

of P and T values form two-dimensional matrices with UALU and ULDST as indexes. Two 

different scheduling policies are proposed in this section using P and T. The first policy is 

to achieve minimum energy consumption. The energy matrix for each configuration can be 

calculated by ENlanes = PNlanes * TNlanes. By comparing E4lanes, E2lanes and E1lane, it can be 

determined the utilization boundary for different optimal configuration. Figure 9.5a shows 

a generic contour for minimum energy consumption; the actual values depend on the 

application. All applications whose native utilizations fall into region A consume 

minimum energy when executed with one active lane, while region B is for two lanes and 

region C is for four lanes. Using a similar approach, the boundary for the second 

scheduling policy can be obtained, which minimizes the product of an application’s 

execution time and energy consumption; it is shown in Figure 9.5b. 
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Figure 9.5 Optimal utilization boundaries for a. minimum energy b. minimum 

energy-execution time product. 
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The two scheduling policies (Emin and ETmin) are tested using an open system 

model where tasks that arrive within a time slice of size 10ms are scheduled in the 

following 10ms slice. The arrival of every task follows the Poisson distribution; six arrival 

rates λ = 1, 3, 5, 7, 9, 11 are tested. Tasks in the queue are ordered by their task type; since 

similar tasks are adjacent in the queue, the scheduler can easily identify fusable tasks. The 

tasks are the benchmarks introduced Section 9.4. For each optimization policy, every task 

has two optimal execution configurations: unfused and fused modes. All optimal 

configurations can be obtained by combining each task’s UALU and ULDST with the results 

shown in Figure 9.5. As mentioned previously at the end of Section 9.4, the scheduler will 

treat a fused task as a new task with its own UALU and ULDST. The task queues for 1000 time 

slices are generated using the MATLAB random number generator, and the average 

parameters are calculated for the two scheduling policies and also for the VP without the 

proposed techniques. As shown in Figure 9.6, for the Emin policy, the proposed techniques 

reduce the average energy consumption by up to 33.8% while improving the runtime by 

40%. The ETmin policy reduces the product of energy and runtime by up to 62.7%. For the 

VP without fusion and lane configuration, the average execution time at λ = 11 is close to 

10ms and the system is about to overflow. 
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Figure 9.6 Comparison of the Emin, ETmin policies against a VP w/o fusion and lane 

configuration over the average of 1000 time slices. a. energy b. runtime c. energy-runtime 

product. 
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CHAPTER 10  

A PIPELINED INTER-LANE NETWORK FOR EFFICIENT DATA SHUFFLING 

 

The VPs introduced in this work all have a lane-dedicated memory bank architecture. This 

architecture has the benefit of higher throughput due to the elimination of potential stalls 

introduced by the access arbitrations in the memory crossbar. However, inter-lane data 

communication is critical for some applications such as FFT, matrix transpose, etc. In this 

chapter, a pipelined network is proposed with a novel lane decoder virtualization technique. 

The pipelined network is capable of performing stall-free high throughput inter-lane data 

shuffle operations with certain shuffle pattern limitation. The decoder virtualization 

technique reorders the data access sequences in each VP lane and alleviates network 

limitations.  

 The Benefits of the Network 10.1

In [Rooholamin and Ziavras, 2015], a data shuffle engine with a separate data path for the 

ALU unit was introduced to facilitate inter-lane data communications. However, the 

shuffle engine has very low throughput due to its non-pipelined nature. In addition, the 

engine utilizes the second port of each VM bank and, therefore, can potentially compete 

with host-to-VM data transactions. It is also very difficult to synchronize the data shuffles 

with the rest of the vector application due to significant speed mismatches, and in an SMT 

VP only one thread may claim ownership of the shuffle engine at any given time for 

ensuring proper execution. 

The data shuffle network proposed in this section is improved using a novel 

decoder virtualization technique. With the resulting optimization, the shuffle network can 
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perform pipelined arbitrary data shuffles within a vector. The proposed design has the 

following benefits; i) Each node within the network has a constant number of fan-in and 

fan-out, and therefore the implementable design clock frequency is constant regardless of 

the size of the network (related to the number of VP lanes). ii) The network is fully 

pipelined and never stalls, thus yielding a throughput as high as the rest of the VP 

components. iii) The shuffle instruction works with the VRF and is incorporated into the 

ALU data path of the VP, and therefore data dependencies can be detected easily using the 

VP’s existing hazard detection mechanism. iv) The shuffle instruction is considered a 

regular VP ALU instruction, thus the shuffle network works perfectly in an SMT 

environment. The shuffle network is prototyped here for the SMT VP with four lanes, thus 

supporting up to four simultaneous threads.  

 Structure of the Shuffle Network 10.2

To help better understand the shuffle network, the basic knowledge of the target VP model 

should be reviewed. The VP implementation consists of four VP lanes each having its 

dedicated ALU and LDST units, VRF, and VM module. The ALU and LDST units have 

separate data paths and only stall for each other when dependencies are detected. Both the 

ALU and LDST units have dedicated VRF ports for reading and writing, and the ALU unit 

does not access the VM due to the LDST architecture of the VP. A vector instruction of 

vector VL=16 will have all its elements interleaved in all four lanes, with elements 0, 4, 8, 

and 12 in lane 0. While all four lanes can simultaneously process data elements, multiple 

elements within each lane are processed sequentially. The decoder unit in each lane 

increments a counter based on the VL, and uses the value as an offset to physically locate 

the register and issue the operations to the ALU/LDST unit in ascending order. For 
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example, as shown in Figure 10.1, elements 0, 4, 8, and 12 within the array have the local 

order 0, 1, 2, and 3, respectively, inside lane 0. 

 

 

Figure 10.1 Execution order of elements within an array of VL=16. 

 

The structure of the proposed pipelined shuffle network is shown in Figure 10.2. It 

only illustrates the case of four VP lanes and VM modules. However, the network can be 

easily expanded to accommodate more lanes and VM modules. As the network grows, the 

complexity of each node will not increase, and therefore the same clock frequency can be 

achieved. Although the pipeline will become deeper, the throughput will also increase 

accordingly. As long as the data shuffle pattern meets certain limitations, the network can 

always achieve a throughput of N elements per clock cycle, where N is the number of VP 

lanes. The pattern limitations will be introduced within the next two paragraphs, along with 

more details of the network structure. The shuffle pattern limit can be removed by applying 

the decoder virtualization technique, which will be covered in Section 10.3. 
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Figure 10.2 The ring-based structure of the data shuffle network. 

 

The network servicing N VP lanes consists of N-1 pipeline stages for switching and 

one stage for writing results to the VRF. It uses the ALU data path and performs VRF to 

VRF shuffling. The shuffle instruction takes three vector registers that represent the 

sources, indices/offsets and destinations. RS contains the source data array to be shuffled, 

and register RT contains the shuffle indices of elements in the source register RS. RD is the 

destination register that will receive the source data after they have been re-ordered as per 

the indices in RT. Due to the potentially out-of-order vector element access nature of the 

shuffle instruction, RT, RS, and RD must be different registers or the behavior will be 

undefined. The source data and shuffle offsets enter the network in the first stage, and 

travel through the network together as a packet. The first two bits of the offset indicate the 
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destination lane of the packet and are used by the network to perform inter-lane shuffling. 

When a packet eventually reaches its destination lane, the rest of the bits in the offset are 

used to write the data into the correct local VRF address. 

As shown in Figure 10.2, each packet can only travel to the neighboring lane in 

each pipeline stage (packet in lane 3 can travel to lane 0, thus the ring structure). Each node 

checks the header of a packet and passes it on when the packet has not reached its 

destination lane. When a packet reaches its destination lane, it will bypass future switching 

and stay within its destination lane; therefore, it is also possible for a node to pass a packet 

within the same lane, only one stage later. Since there are only four VM banks, a maximum 

of three switches are needed to send a packet. The network is completely pipelined and can 

accept four packets per clock cycle. The data shuffle pattern limitation is defined as follows: 

any four packets that enter the network in the same clock cycle must be destined to VRF 

locations that belong to four different lanes. As long as this requirement is met, it is easy to 

see that at any given point there can be a maximum of two packets at a node, one of which 

is waiting to be switched and the other is in the bypass state (i.e., in the destination lane and 

needs no more switching). Therefore, in addition to the switching packet buffer, each node 

is also designed with a bypass packet buffer for storing packets that can potentially reach 

their destination lanes before the final switching stage. With the pattern limitation, no 

congestion or buffer overflow could occur within the switching network. At the output end 

of the network, the writing back to VRF also will not be stalled due to arbitration, since 

each lane will have only one data element to be written in any given clock cycle. 
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 The Decoder Virtualization Technique 10.3

As described in Section 10.2, to prevent congestion in the switching network and 

arbitration in the write back stage, a certain requirement must be met. An example data 

shuffle pattern is shown in this section that does not explicitly meet this requirement; it is 

used to illustrate how the novel decoder virtualization technique removes the requirement 

through the reordering of data accesses. A 4*4 matrix can be stored in a vector of VL=16. 

The transpose operation of the matrix is a good shuffle example that does not meet the 

requirement described in Section 10.2. Figure 10.3a shows the destination lane of each 

element. Based on the normal operation issue order of the decoder, the shuffle operation 

would cause congestion in the network since multiple elements that enter the network in 

the same clock cycle try to reach the same destination lane. 

To make the network capable of performing the transpose operation without any 

stalls, a decoder virtualization technique is proposed that solves the problem in the 

following way: the network requires that all four elements entering it within the same clock 

cycle have different destination lanes. While it is not true for each clock cycle in the 

example data shuffle pattern, the overall destinations of all the elements within the array 

are evenly distributed across all four lanes. Smart operation reordering would enable the 

network to shuffle any arbitrary data pattern while still maintaining the non-congestion 

requirement physically. A reorder lookup table (RLT) is implemented within each decoder 

unit, and the RLT can be programmed by a special vector instruction. Instead of directly 

issuing operations using its local counter, each decoder unit can now use the counter value 

as a virtual order, and use it to index into the RLT and get the real offset of the operation to 

be issued. Using the RLT setup shown in Figure 10.3b, the decoder unit in each lane would 
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issue operations in different orders and the matrix transpose operation will have the real 

operation order shown in Figure 10.3c. The new operation order complies with the 

network’s non-congestion requirement. 

 

 

Figure 10.3 Execution order and element destinations of a 4*4 matrix transpose. a. The 

original order. b. The RLT setup. c. The new order after RLT order translation. 

 

Using the decoder virtualization introduced above, the network is capable of 

shuffling any data pattern without any stalls, thus achieving throughput of four transactions 

per clock cycle. For a VP with more than four lanes, the network can be easily expanded 
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without increasing the complexity of individual nodes, and the throughput scales linearly. 

The RLT’s resource consumption is very minor. 16 entries per lane are needed, and each 

entry only requires four bits, since the maximum VL supported by the current VP 

implementation is 64 and there are at most 16 elements per lane. The RLT reorder pattern 

can be generated by the programmer/compiler at static time, and therefore the shuffle 

operation is extremely energy efficient compared to memory-memory data shuffles. In an 

SMT VP, a per thread RLT can be implemented to give SMT support for the shuffle 

instruction. 
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CHAPTER 11  

CONCLUSIONS AND FUTURE WORK 

 Conclusions 11.1

This dissertation mainly presents two techniques, namely instruction fusion and VP 

virtualization, to efficiently exploit DLP using either general-purpose multicore and 

multi-scalar processors or specialized SIMD processors. The two techniques are also 

combined to further improve performance. In addition, power analysis is carried out to 

optimize the energy efficiency of DLP applications based on these techniques. The primary 

motivation of this work is to apply innovative optimization techniques to improve the 

exploitation of DLP in terms of performance, energy efficiency and resource utilization. 

 The instruction fusion technique is first introduced. It utilizes the similarity 

between instruction blocs within an unrolled loop to enable energy efficient SIMD 

execution on a general-purpose multicore or multi-threaded processor. To evaluate the 

technique, a MIPS-like multiscalar processor with fused mode is prototyped on an FPGA, 

and benchmarking is performed to compare the performance and energy consumption of 

fused execution with that of normal execution. Compared to normal execution, the 

dynamic energy consumption of unrolled loops is reduced by up to 11.9% when executed 

under the fused mode. The power and performance of non-vector code execution is hardly 

affected due to the processor’s hardware modification to support instruction fusion. 

Moreover, the code size for unrolled loops is reduced by up to 45% through instruction 

fusion, which is of tremendous value for embedded systems and FPGAs that have limited 

on-chip memories. Furthermore, the reduced code size can potentially improve 

performance due to higher instruction cache hit rates.  
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The VP virtualization technique is then introduced. The technique is proposed to 

improve SMT execution of the VP. The most important component of the virtualization 

technique is the software VRF management algorithm, which dynamically maps the virtual 

VRF space of each simultaneous thread to the available physical VRF space. The 

virtualization technique significantly improves programmer productivity by eliminating 

the need to solve VRF name conflicts statically, which is complicated and sometimes 

prohibitive. The algorithm also enables sharing of the VP between threads with different 

VLs. The register fragmentation effect of the algorithm is evaluated using random 

experiments and it turns out that its impact is negligible. The performance overhead of the 

algorithm is also measured and is also minor compared to the execution time of an average 

vector application.  

To evaluate the virtualization technique, an SMT VP interfaced with a subsystem 

having five RISC processors as hosts is prototyped on an FPGA. The VP supports efficient 

SMT through the usage of a per instruction thread ID and VL mechanism. The hosts 

subsystem interfaces the SMT VP via a FIFO and arbitrator interface. The FIFO removes 

potential VP clock cycle wastage due to the arbitration among multiple host processors. 

The round-robin arbitrator, together with the VP’s per instruction thread ID mechanism, 

facilitates fine-grain SMT where instructions from multiple threads can enter the VP every 

other clock cycle and can coexist within the pipeline.  

Benchmarking for the prototype is performed using both homogeneous and 

heterogeneous threads. Each benchmark’s utilization is characterized through single 

threaded execution. The VP’s utilization saturation effect is observed in the homogeneous 

execution of multiple copies of certain high utilization benchmarks. Under homogeneous 
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execution, the throughput and VP utilization can be multiplied by the number of 

simultaneous threads as long as the aggregate utilization does not reach the VP’s saturation 

level. Using the utilization characteristics of the benchmarks, a throughput-driven 

scheduling algorithm is proposed for the SMT VP. The scheduler picks the threads within 

the thread queue in proper order to achieve best average VP utilization. Under dynamic 

thread creation of different benchmarks with diverse VLs, the scheduler improves the SMT 

VP’s performance by up to 333% compared to a single threaded VP. Power measurement 

and projection also show that, with proper power gating, compared to a similar-sized 

single-threaded VP, the SMT VP consumes 37% less energy in addition to boosting the 

performance significantly. 

Eventually, the idea of combining the VP virtualization technique with the 

instruction fusion technique is proposed. A new VP prototype is implemented which is 

fully virtualized to support thread level vector instruction fusion. Thread fusion can be 

triggered by the scheduler once similar tasks are identified in the pending tasks queue. 

Under fused execution, the effective vector instruction issue rate from the host processor is 

multiplied, and therefore performance is improved and the host processor’s energy 

consumption is also significantly reduced. The new VP prototype is also capable of 

dynamically deactivating some of its lanes to minimize static power. An accurate power 

model for the new VP prototype is derived and two optimization policies are proposed to 

optimize the VP energy configuration based on a given application. With the virtualization 

and instruction fusion techniques, the minimum energy policy reduces VP energy 

consumption by up to 33.8% and improves the runtime by 40%. The other policy reduces 

the product of energy and runtime by up to 62.7%.  
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At the end of the dissertation, a pipelined inter-lane data shuffle network is 

proposed to overcome the most significant insufficiency of the VP used throughout this 

work. Combined with a novel decoder virtualization technique, the network is capable of 

performing unconstrained data shuffles within a vector register using the VP’s ALU data 

path. The shuffle instruction is a normal vector instruction and therefore data dependencies 

can be easily detected.   

 Future Work 11.2

There are a few possible architectural improvements that can be applied to further increase 

the efficiency and flexibility of the SMT VP framework proposed in this dissertation.  

Hardware implementation of the software VRF virtualization algorithm. The 

software-based VRF management algorithm can be implemented using hardwired logic, 

and therefore become extremely fast and energy efficient. With the negligible overhead of 

the hardwired VRF management, finer-grain SMT could be achieved where vector 

applications could be broken down into lighter threads so that the scheduler can have a 

longer queue in order to achieve near optimal utilization.  

Sharing of the SMT VP across multiple multicore processor groups. With a 

carefully designed sharing switch, each SMT VP can be shared among multiple processor 

groups. On top of the high utilization already achieved through SMT, the energy efficiency 

of the new system could be further improved by merging the workload of multiple 

processor groups targeting one SMT VP, thus power gating unused VPs. An example of 

such architecture is shown in Figure 11.1. In this system, each VP functions as multiple 

LVPs and any host processor can trigger thread fusion using multiple LVPs. A scheduler 
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can be used to optimize the overall system behavior (i.e., determine the number of LVPs to 

be used and how many VPs need to stay active based on the system workload).  

 

 

Figure 11.1 An example of multiple SMT VPs shared across two processor groups.  

 

Programmable vector instruction arbitrator. The vector instruction arbitrator 

could be modified to be programmable by the host processors. Host processors could 

modify the arbitration policy (by modifying some state registers in the state machine of the 

arbitrator) to support priority based scheduling. Vector applications with higher priority 

could then occupy a larger portion of the VP execution time and therefore complete sooner.  
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