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ABSTRACT 

A NOVEL APPROACH TO USER CONTROLLED AMBULATION OF LOWER 
EXTREMITY EXOSKELETONS USING ADMITTANCE CONTROL PARADIGM 

 
by 

Kiran Kartika Karunakaran  

The robotic lower extremity exoskeletons address the ambulatory problems 

confronting individuals with paraplegia. Paraplegia due to spinal cord injury (SCI) 

can cause motor deficit to the lower extremities leading to inability to walk. 

Though wheelchairs provide mobility to the user, they do not provide support to 

all activities of everyday living to individuals with paraplegia.  

Current research is addressing the issue of ambulation through the use of 

wearable exoskeletons that are pre-programmed. There are currently four 

exoskeletons in the U.S. market: Ekso, Rewalk, REX and Indego. All of the 

currently available exoskeletons have 2 active Degrees of Freedom (DOF) 

except for REX which has 5 active DOF. All of them have pre-programmed gait 

giving the user the ability to initiate a gait but not the ability to control the stride 

amplitude (height), stride frequency or stride length, and hence restricting users’ 

ability to navigate across different surfaces and obstacles that are commonly 

encountered in the community. Most current exoskeletons do not have motors for 

abduction or adduction to provide users with the option for movement in coronal 

plane, hence restricting user’s ability to effectively use the exoskeletons. These 

limitations of currently available pre-programmed exoskeleton models are sought 

to be overcome by an intuitive, real time user-controlled control mechanism 

employing admittance control by using hand-trajectory as a surrogate for foot 



 
 

trajectory. Preliminary study included subjects controlling the trajectory of the foot 

in a virtual environment using their contralateral hand. The study proved that 

hands could produce trajectories similar to human foot trajectories when provided 

with haptic and visual feedback. A 10 DOF 1/2 scale biped robot was built to test 

the control paradigm. The robot has 5 DOF on each leg with 2 DOF at the hip to 

provide flexion/extension and abduction/adduction, 1 DOF at the knee to provide 

flexion and 2 DOF at the ankle to provide flexion/extension and 

inversion/eversion. The control mechanism translates the trajectory of each hand 

into the trajectory of the ipsilateral foot in real time, thus providing the user with 

the ability to control each leg in both sagittal and coronal planes using the 

admittance control paradigm. The efficiency of the control mechanism was 

evaluated in a study using healthy subjects controlling the robot on a treadmill. A 

trekking pole was attached to each foot of the biped. The subjects controlled the 

trajectory of the foot of the biped by applying small forces in the direction of the 

required movement to the trekking pole through a force sensor. The algorithm 

converted the forces to Cartesian position of the foot in real time using 

admittance control; the Cartesian position was converted to joint angles of the hip 

and knee using inverse kinematics. The kinematics, synchrony and smoothness 

of the trajectory produced by the biped robot was evaluated at different speeds, 

with and without obstacles, and compared with typical walking by human 

subjects on the treadmill. Further, the cognitive load required to control the biped 

on the treadmill was evaluated and the effect of speed and obstacles with 

cognitive load on the kinematics, synchrony and smoothness was analyzed.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Objective 

 
‘My disability exists not because I use a wheelchair, but because the broader 

environment isn't accessible’- Stella Young 

Individuals with paraplegia due to spinal cord injury (SCI) have motor and/or sensory 

deficits leading to an inability to walk, and, therefore rely on wheelchairs for mobility. 

Although wheelchairs provide mobility, they do not support all activities of everyday 

living. Current research addresses mobility using wearable lower extremity 

exoskeletons. Most of the currently available wearable exoskeletons have only two 

degrees of freedom (DOF) per leg in the sagittal plane with some of them providing 

passive control of the ankle in the sagittal plane. Also, all of the currently available 

exoskeletons are pre-programmed with the user having the ability to initiate gait patterns 

but having no control over the stride length, stride frequency or stride amplitude (height), 

hence restricting the user’s ability to navigate irregular surfaces and obstacles. The 

objective of this dissertation is to address the current limitations by an intuitive, real time 

user- controlled control mechanism that uses hand-trajectory as a surrogate for foot 

trajectory. 

The control mechanism translates walking-like movements produced by the hand 

to kinematics of gait of the exoskeleton in real time. This approach was tested on a 10 

DOF, 1/2 scale robot. The robot has 5 DOF on each leg with 2 DOF at the hip to provide 

flexion/extension and abduction/adduction, 1 DOF at the knee to provide flexion and 2 

DOF at the ankle to provide flexion/extension and inversion/eversion. The control 

mechanism employs admittance control to translate the trajectory of each hand into the 
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trajectory of the ipsilateral foot in real time, thus providing the user with ability to control 

each leg in both sagittal and coronal planes.  

Hypothesis: The trajectory produced by the hands while replicating the human gait 

pattern can provide an intuitive control mechanism required to control an exoskeleton 

and also provide the user with the ability to perform the normal gait cycle and navigate 

obstacles.  

Preliminary Study: This study included mapping hand trajectories to foot trajectories in 

a virtual environment to validate the need for the use of haptic feedback in an effective 

control mechanism for the exoskeleton. 

Specific Aim 1: To design a real time control mechanism for a 10 DOF 1/2 scale 

exoskeleton prototype. 

Sub Aim 1: To build a 3 DOF leg for achieving swing cycle with joints at the hip, knee 

and ankle in the sagittal plane that will be controlled by the hand trajectories using 

admittance control. 

 The aim is to design a prototype for an exoskeleton for the lower extremities 

which would conform to the anthropometry of human lower extremities and provide 

users with the ability to control the amplitude (height of the stride) and stride length of 

the gait in real time in the sagittal plane. The prototype would be a ½ scale biped that 

would have actuators at the hip, knee and ankle to provide 3 DOF in the sagittal plane. 

Sub Aim 2: To add 2 more DOF to the leg, one at the hip and ankle to provide control in 

coronal plane. 

Humans navigate obstacles by abduction/adduction of the hip and ankle in the 

coronal plane in combination with flexion and extension of hip, knee and ankle in sagittal 

plane. The current exoskeletons do not have motors for abduction or adduction to 

provide users with the option for movement in coronal plane, hence restricting user’s 

ability to effectively use the exoskeletons in everyday activities. The aim is to design a 
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prototype to provide users with the ability to control the leg in coronal plane in addition to 

sagittal plane.  

Sub Aim 3: To develop an algorithm to control the gait cycle of both legs with transition 

from stance phase to swing phase and vice versa. 

Typical human gait cycle consists of approximately 40% swing phase and 60% 

stance phase. Gait comprises of one leg in stance phase and the other leg in swing 

phase or both legs in stance. The leg in stance phase has the hip and ankle joint 

contributing to the gait in accordance with that of the swing leg. The aim is to develop 

two control paradigms to control the gait cycle: Hybrid Control and Complete Control. 

The Hybrid Control algorithm involves mapping one hand trajectory to its ipsilateral foot 

trajectory of the swing leg while the algorithm moves the stance leg to the required joint 

angles to complete the gait step. The Complete Control algorithm allows the user’s 

hands to control both swing and stance legs. 

Specific Aim 2: To compare the gait of the biped with human gait patterns in terms of 

trajectory and obstacle navigation.  

The aim is to show that the kinematics generated using the hand resemble 

normal human gait kinematics and to identify if the user can navigate obstacles by 

controlling the gait using hands.  

Sub Aim 1: To compare gait patterns of human gait in varying speeds with that of biped 

gait on a treadmill. 

 The aim of this study is to evaluate the gait of the biped to that of normal human 

gait. The aim is to compare and prove that the gait of the robot can be controlled by the 

user under constant speed conditions and as well as under varying speed conditions. 

Sub Aim 2: Compare the gait patterns of exoskeleton and healthy subjects in the 

presence of obstacles. 



4 
 

The goal is to investigate the similarities in obstacle navigation of hand controlled 

bipeds and humans with normal functional lower extremities. Current exoskeletons are 

pre-programmed to gait patterns in sagittal plane and do not provide the option to 

change the stride length or stride amplitude (height of the stride). This aim evaluates this 

hand controlled biped robot’s foot trajectories with human gait trajectories in sagittal 

plane in the presence of obstacles. 

Specific Aim 3: To evaluate and compare the influence of cognitive load on gait of the 

biped with that of human gait pattern in terms of trajectory and obstacle navigation. 

Central pattern generators in spinal cord are believed to produce cyclic gait 

patterns leading, therefore to lower cognitive load during walking. The objective is to 

evaluate the effect of cognitive task on the kinematics of the biped walking and also to 

evaluate the cognitive load of controlling the gait of the biped with hands.  

Sub Aim 1: To compare gait patterns of human gait and of biped gait on a treadmill at 

varying speeds while also performing a cognitive task. 

The goal is to evaluate the cognitive load required to perform the task of 

controlling the biped using hands as compared to normal human walking at constant 

speeds and varying speeds. Also, evaluate the effect of the cognitive task on the 

kinematics of the biped gait. 

Sub Aim 2: To compare the gait patterns of exoskeleton and healthy subjects in the 

presence of obstacles at varying speeds while also performing a cognitive task. 

The objective is to investigate the cognitive load required to control the biped 

using hands as compared to normal human walking while navigating obstacles at 

constant speeds and varying speeds. 
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1.2 Background and Significance 

Spinal cord injury (SCI) is usually a result of fracture or dislocation of vertebrae caused 

by sudden traumatic blow to the spine (http://www.ninds.nih.gov/disorders/sci/sci.htm).  

As this spinal cord is a transmission line that carries neuronal signals, SCI affects 

communication between the brain and the extremities. SCI can be partial or complete 

depending on the severity of the injury.  In a complete spinal cord injury, the cord is 

severed and no signals are transmitted beyond the point of injury, resulting in a complete 

loss of motor and/or sensory functions on the regions below the injury. In partial spinal 

cord injury, some of the signals are transmitted; hence the individual with injury may 

retain some motor and/or sensory functions below the point of injury 

(http://www.ninds.nih.gov/disorders/sci/sci.htm).     

 Motor and/or sensory function that is lost is determined by the level of the 

injury/lesion on the spinal cord. There are, therefore, two main classifications of SCI 

based on the level of the injury/lesion on the spinal cord viz. paraplegia and tetraplegia. 

Tetraplegia (also known as quadriplegia) is caused by injuries or lesions to the cervical 

segments of spinal cord, resulting in complete or incomplete paralysis to both upper and 

lower extremities (http://www.spinalinjury101.org/details).  Paraplegia is caused by 

injuries or lesions to the thoracic, lumbar or sacral regions (i.e. T1 or below Figure 1.1 a) 

of the spinal cord, resulting in complete or partial paralysis of the lower extremities 

(http://www.spinalinjury101.org/details). 
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Figure1.1 a) Diagram showing the relationship between vertebrae and function. b) 
Diagram showing the relationship between vertebrae and level of injury and kind of 
injury. 
Sources: http://www.atlantainjurylawyer.com/spinal-cord-injury.html, 

http://www.bel13vefoundation.org/spinal-cord-injury. 
 

  Injury or lesion to thoracic nerves T1 –T5 affects mid back and abdominal 

muscles and results in the inability of the individual to use his/her trunk or legs. Injury or 

lesion to thoracic nerves T6 –T12 affects functions below the abdominal or back 

muscles, and the individual will have normal upper body movement with the ability to 

control and balance the trunk but will have no voluntary control of lower extremities. 

Injuries to lumbar and sacral regions also cause some loss of function to lower 

extremities especially legs and hips (http://www.spinalinjury101.org/details) as shown in 

Figure 1.1 b. Paraplegia and tetraplegia can further be classified as complete or 

incomplete; individuals with sensory and motor impairment to their lower extremities due 

to complete injuries or lesions to thoracic levels or below are referred to as individuals 

with complete paraplegia, and   individuals with sensory and motor impairment to their 

a) b) 
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upper and lower extremities due to complete injuries or lesions to cervical levels or 

below are referred to as individuals with complete tetraplegia.  

 One visible effect of paraplegia is the inability of individuals to walk, and hence 

their need to rely on wheelchairs for mobility. Inability to walk contributes to a number of 

medical complications including pressure ulcers (decubitus), thrombosis, fractures, 

cardiovascular conditioning, pulmonary embolism, decreased muscle mass, diabetes 

and obesity (http://www.spinalinjury101.org/details). Secondary medical complications 

play an important role in the continuing care for people with SCI as they increase the 

lifetime cost of care (McKinley, 1999). Allowing these individuals to walk and use their 

lower extremities would help in reducing the secondary complications and hence reduce 

the cost of care. Pressure ulcers and fractures in the lower extremity are the most 

frequent secondary complications (McKinley, 1999). A pressure ulcer is caused by 

reduction in capillary blood flow due to prolonged wheel chair use or staying in bed. 

Pressure ulcers are the most frequent secondary complication and the likelihood of 

contracting a pressure ulcer increases with years with the injury (McKinley, 1999). Also, 

the level of injury has no significant effect on the likelihood of individuals developing 

pressure ulcers, but the severity of the ulcer is higher in people with complete paraplegia 

and complete tetraplegia (McKinley, 1999). Sublesional osteoporosis due to inactivity is 

observed in individuals with SCI due to reduced muscle activity and mechanical loading, 

resulting in bone loss and muscle atrophy. The fracture rate especially in long bones in 

the lower extremities was observed to be high in people with SCI (McKinley, 1999). It 

was observed that bone loss does not plateau but continues through the years, hence 

leading to increase in number of fractures through the life time (Giangregorio, 2006, 

Frotzler, 2015). In addition to bone loss, alterations to bone area and geometry were 

also reported. Muscle atrophy was observed between 6 to 24 weeks post injury by about 

16% (Giangregorio, 2006). This reduction in muscle also leads to decreased metabolic 

http://en.wikipedia.org/wiki/Pressure_sore
http://en.wikipedia.org/wiki/Thrombosis
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rate and increased storage as the energy intake is not adequately adjusted to energy 

expenditure leading to obesity (Giangregorio, 2006). 

 Secondary complications are important to address as they can impair the 

individual’s functional ability, interfere with employment and educational pursuit. It could 

also lead to lost work days, necessity for increased attendant or skilled care (McKinley, 

1999).  

 Studies have shown that there is increased muscle mass and muscle area in 

individuals with acute SCI with treadmill training with body weight support but very little 

change was observed with just standing (McKinley, 1999). Hence, walking with 

exoskeletons could aid in mitigating the above mentioned secondary effects. 

There are currently 273,000 persons living in United States with Spinal cord 

injury (SCI) and there are approximately 12,000 new cases added every year. Also, 

more than half the injuries occurred among young adults between the ages of 16 and 30 

and their average life expectancy is 45 years for paraplegics and 40 years for low 

tetraplegics and 36 years for high tetraplegics. This statistics emphasizes the need to 

address the various difficulties faced by the individuals with paraplegia as the population 

of SCI is a growing population (http://www.sci-info-pages.com/facts.html). Estimated 

lifetime costs often exceed $1, 00, 000 and average yearly costs for rehospitalization, 

emergency room, physician visit costs exceed $5000 (McKinley, 1999).   

 The long term goal of research in SCI would be to cure paralysis by axonal 

growth/regeneration (Anderson, 2004). Until the last several decades, SCI was 

considered irreversible, which was proven wrong by the research advancement in 

axonal growth/regeneration. Researchers have shown significant advancement in 

regenerating neurons in rodents to enhance functions such as bladder control and 

respiratory function (Anderson, 2004). In spite of such great progress, there are still 

many unknowns with regard to successful regeneration of neurons and axons in chronic 
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SCI. The research on axonal growth/regeneration in humans is decades away. Hence a 

more realistic approach at this juncture would be to improve the quality of life of people 

with SCI. 

 

Table 1.1 Average Yearly Expenses and Estimated Lifetime Costs in SCI  
 

Severity Of 
Injury 

Average Yearly Expenses Estimated Lifetime Cost By 
Age At Injury 

 First Year Each Subsequent 
Year 

25 years old 50 years old 

High Tetraplegia 
(c1-c4) 

$1,044,197 $181,328 $4,633,137 $2,546,2954 

Low 
Tetraplegia(c5-

c8) 

$754,524 $111,237 $3,385,259 $2,082,237 

Paraplegia $508,904 $67,415 $3,265,84 $1,486,835 

Incomplete 
Motor Functional 

at any Level 

$ 340,787 $41,393 $1,547,858 $1,092,521 

Source: https://www.nscisc.uab.edu 

  

Anderson et al. studied the priorities of the individuals with paraplegia and 

tetraplegia in reference to improving the quality of life. They reported that individuals with 

paraplegia and tetraplegia considered walking as one among the top three priorities. 

Also, the time after injury did not influence the preference of walking; implying that 

walking remained a top priority for individuals with paraplegia and tetraplegia even after 

years of injury. Their study also noted that individuals with SCI believed exercise by 

walking was a major component of recovery (Anderson, 2004). A similar study by 

Ditunno et al. used consensus to compare walking functions to other functions to 

investigate the recovery preferences of individuals with SCI (Ditunno, 2008). Their study 

developed a survey for the individuals with SCI and as well for the rehabilitation 

professionals working with people with SCI to evaluate the difference in relative value of 
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various functional activities. The features assessed were 14 modified functional 

independent measures (MFIM) which included six items of self-care (eating, grooming, 

bathing, dressing, and toileting), sphincter management (bladder and bowel), wheelchair 

and walking. The survey asked each panelist to give their highest preference. The study 

concluded that for most consumer panels walking is a highly desired goal relative to 

other functions. Eight out of nine consumer panels placed walking at a high level next to 

bladder function. This supports the hypothesis that consumers with SCI express a 

preference for restoration of walking over most other functions on the MFIM. It is 

apparent that as early as stage 3, rehab professionals preferred wheelchairs and not 

walking, and while consumers ranked walking and not wheelchair use as high priority. 

Thus the discrepancy related to walk/wheelchair is also reflected between consumers 

and rehab professionals, where rehabilitation professionals give more importance to 

wheelchair while consumers prefer ambulation (Ditunno, 2008). 

 A study by Kilgore, K.L., et al. asked people with SCI to prioritize functions that 

would improve the quality of life, and the response showed that ‘being able to walk’ was 

one of the top priorities of this population. They also believed that being able to stand 

was alone not important but being able to walk and perform various activities was 

important. Hence these studies further emphasize the need to restore ambulation 

(Kilgore, 2001).  

 

1.3 Restoring Ambulation 

1.3.1 Functional Electrical Stimulation  

Functional electrical stimulation (FES) has been considered as a possible way to restore 

ambulation.  FES involves stimulating the neurons by passing electricity using 

electrodes. Electrodes can be placed on the surface of the skin or be embedded in the 
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body to achieve highly precise stimulation of the neurons (Kilgore, 2001). A current FES 

system allows the user to be able to stand upright and be able to walk a few steps with 

full body support but do not allow the user to control the gait (Kilgore, 2001).  

 Using FES, walking is deemed approximately 20 to 30 percent achieved. In 

order to approach 100 percent, improvements include having far fewer wires and 

electrodes in the system, better noise cancellation, and better balance and coordination, 

and user control of gait pattern. Also, smoother gait and better energy efficiency need to 

be attained. Even if the engineering problems are addressed, many consumers have 

stated that they had become quite proficient using their wheelchair for mobility and any 

alternative means of mobility would have to be more effective for them to even consider 

it (Kilgore, 2001). They were not interested in disrupting their lives for little or no practical 

gains. Yet, even among those with this opinion was heard the willingness to “go for it” if 

the outcomes could be guaranteed with some high degree of certainty. Users of 

implantable FES systems identified “reversibility” as an important feature of the systems 

they selected. Also, downtime that the procedure would require and the risk of surgery 

were also major deterrents against using FES. (Kilgore, 2001).  All the above 

disadvantages have not made FES not a viable option for mobility. 

 

1.3.2 Wearable Lower Extremity Exoskeletons 

Current research on restoring the functionality of gait is focused on using wearable 

exoskeletons for mobility. Lower extremity exoskeletons are active electromechanical 

devices that have links and joints corresponding to those of the user, and work in 

tandem with the user (Dollar, 2008).   Lower extremity exoskeletons have actuators that 

actively produce torque to the joints, thus assisting in movement when not possible by 

the human body (Anam, 2012). 
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 Wearable lower extremity exoskeleton robots can be classified into three 

groups: assistive, rehabilitative and power enhancing robots. Power enhancing robots 

amplify the power (efficiency) of the user, thus enabling the user to perform tasks which 

otherwise the user finds difficult to perform (Dollar, 2008). Assistive and rehabilitative 

robots aid the user to perform everyday tasks which the user is not able to perform 

otherwise (Dollar, 2008). Rehabilitative lower extremity exoskeletons are predominantly 

used in stroke and incomplete SCI rehabilitation where the exoskeleton helps the user to 

stand and perform repetitive gait patterns which are initiated by the user, thus aiding in 

the recovery of functionality over time (Dollar, 2008). This is based on the principles of 

motor learning and cortical representation that repetitive task oriented movements can 

improve muscular strength and movement coordination in individuals with impairments 

such as stroke, I-SCI (Kwakkel, 1999). Assistive lower extremity exoskeletons are 

predominantly intended for long term use by individuals with complete SCI to perform 

the gait patterns for them as the user is completely unable to perform the movement. 

They provide support and perform gait patterns for the user. 

 

Figure 1.2 Power Enhancing Exoskeletons: a) HARDIMAN Exoskeleton (Left) b) MIT 
Exoskeleton (Right). 
Source: Dollar, 2008. 
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I. Power Enhancing Robots 

The earliest device resembling an exoskeleton was built in 1890; the invention used long 

springs operating in parallel to the leg which helped augment the running and jumping 

(Dollar, 2008).  The first working exoskeleton was designed as a power enhancing robot 

as part of the first phase of DARPA (Defense Advanced Research Projects Agency) to 

augment the performance of soldiers; “HARDIMAN” (Human Augmentation research and 

development investigation) was developed in the 1960’s and included enormous 

hydraulics (680 kg, 30DOF) to amplify strength of arms and legs (Dollar, 2008). Though 

HARDIMAN was able to amplify the power of the upper extremities, it could not assist 

with the lower extremities; hence was never tested with a human subject. In the mid 80’s 

other exoskeletons were built with similar outcomes (Dollar, 2008).  

The second phase of the DARPA project included exoskeletons for human 

performance augmentation (EHPA). Three working exoskeletons were built under this 

program: BLEEX, SARCOS and MIT Exoskeleton. The first generation of BLEEX 

included the first energetically autonomous, load bearing exoskeleton for the lower 

extremity (Kazerooni, 2006, Zoss, 2000). Each leg included 3 DOF at the hip, 1 DOF at 

the knee and 3 DOF at the ankle. The hip and the ankle were actuated using linear 

hydraulic actuators, while the inversion/eversion and the flexion at the ankle were spring 

loaded (Kazerooni, 2006, Zoss, 2000). The exoskeleton included 8 encoders and 16 

linear accelerometers to determine angular velocity and acceleration of all joints. Also, 

each foot included force sensors to determine the distribution of load in each foot 

(Kazerooni, 2006, Zoss, 2000). The control mechanism sensed the movement of the 

user with 8 single axis force sensors and would move the exoskeleton in the direction 

intended by the user (Kazerooni, 2006, Zoss, 2000). The MIT exoskeleton, on the other 

hand, did not rely on actuators for adding power. Instead the design used the energy 

stored in springs during phases of walking to enhance the power.  It had 3 DOF at the 
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hip that were spring loaded, 1 DOF at the knee that used a magnetorheological damper, 

and 2 DOF that employed springs for performing rotation and flexion/extension at the 

ankle (Dollar, 2008). The control mechanism for the exoskeleton used sensory 

information from strain gages and potentiometers to sense the force applied by the user 

in a direction and assist the user with the movement in the direction of the force. The 

SARCOS exoskeleton is the product of SARCOS Corporation, which uses rotary 

hydraulic actuators. It is able to successfully support loads up to 84 kgs and walk at a 

speed of 1.6 m/s. Though there have been numerous improvements to SARCOS from 

the initial version, their work has been predominantly restricted to load bearing 

capabilities and not in assistive/rehabilitative technology (Dollar, 2008). 

 Many other successful exoskeletons have been built as load bearing 

exoskeletons such as the Hanyang Exoskeleton Assistive Robot (HEXAR) that has 7 

DOF per leg, two of which are powered by an electrical motor to assist the user in load 

bearing capabilities. (Kim, 2014). ExoClimber and ExoHiker by Berkeley and Human 

Universal Load Carrier (HULC) by Lockheed Martin enhances the user’s strength i.e. 

can help carry load up to 200 pounds as well as decrease the metabolic cost of the user 

(http://bleex.me.berkeley.edu/research/exoskeleton/hulc).  

II. Rehabilitation Robots 

The lessons learnt from power enhancing exoskeletons emboldened researchers to 

design robots for repetitive motions to help with rehabilitation of individuals with disability 

requiring repetitive exercises to restore mobility.  This led to the rehabilitative 

exoskeletons or gait trainers such as Lokomat, ALEX, LOPES. All the gait trainers have 

a rigid frame that provide assistance to the users as needed, and help them train by 

repeating the gait movement over and over again (Dollar, 2008). Some of the above 

devices have also been integrated with virtual environment to make the task goal 
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oriented which in turn, helps accelerate the rehabilitation of the individual with disability 

(Dollar, 2008).  

 The Lokomat is fixed to a rigid frame providing assistance to perform highly 

repetitive gait using two active joints at the hip and knee and has a passive joint at the 

ankle (Reiner, 2012). It provides rehabilitative assistance for individuals with stroke or I-

SCI.  

ALEX is a bilateral exoskeleton for gait rehabilitation for lower extremity. The 

exoskeleton comprises of a support platform and two robotic legs with 12 DOF providing 

assistance as required. Its unique characteristic is the possibility to actively control 12 

DOF while the user walks on the treadmill when the body weight is supported to provide 

assistance in sagittal and coronal plane. The stiffness and assistance provided can be 

varied by the physician to improve the rehabilitation (Zanotto, 2013).  

 LOPES was designed as a rehabilitative device to be used for training on a 

treadmill. It has 3 DOF with 2 DOF for flexion/extension at the hip and flexion at the knee 

and one DOF at the hip for adduction/abduction. The adduction/abduction provides the 

balance of the hip in the sideways direction. Thus LOPES helps the user in the sagittal 

plane as well as the coronal plane. LOPES uses cable driven actuators to allow the 

robot to be back drivable. (Ekkelenkamp, 2007).  

 ANdROS exoskeleton is a 2DOF wearable and portable gait rehabilitation 

exoskeleton, and the control mechanism uses impedance control to help individual with 

lower limb paralysis. The exoskeleton has 2DOF at the hip for flexion/extension and 

adduction/abduction (Unluhisarcikli, 2011). 
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Figure 1.3 Rehabilitation Exoskeletons: a) ALEX Exoskeleton b) LOKOMAT c) 
LOPES. 
Sources:http://engineering.columbia.edu/web/newsletter/fall_2014/sunil_agrawal%E2%80%94per
sonalized_medicine, http://www.rcsismj.com/2009-2010-issue/wii-habilitation, 

http://www.neurocontrol.nl/projects/current. 
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Table 1.2 Characteristics of Assistive Exoskeletons 

Exoskeleton 

 

Active 
DOF  

Pre- 
Programmed 

Gait  

Control Mechanism Ankle 

ALEX  12 Yes  Force-field controller 
is used to create a 

force field around the 
foot to conform the 

gait to a selected gait 
pattern. The gait 
pattern is either 

selected by trainer or 
the gait of the 

unimpaired leg is 
used. 

Active 

LOKOMAT 2 Yes  Gait pattern selected 
by the Trainer. 

 Allows the gait of the 
user but when it 

deviates away from 
the reference 

trajectory corrects 
the leg to the desired 

trajectory. 

Passive 

LOPES 3 Yes  Gait pattern selected 
by the Trainer. 

 Complementary 
Limb Motion 

Estimation (CLME) 
to use physiological 
inter joint couplings 
to control movement 
of one leg with the 
real time motion of 

the other leg. 

 

Passive 

ANdROS 2 Yes  Gait pattern selected 
by the Trainer. 

 

Sources:http://engineering.columbia.edu/web/newsletter/fall_2014/sunil_agrawal%E2%80%94per

sonalized_medicine,https://www.utwente.nl/ctw/bw/RESEARCH/PROJECTS/LOPES/INDEX.HT

ML, Unluhisarcikli, 2011 
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III. Assistive Robots 

Frontiers were further pushed and current research is engaged in developing 

exoskeletons to assist mobility of those who otherwise cannot perform gait. These 

exoskeletons can also be used as assistive exoskeletons. Kazeerooni et al. researched 

the first assistive exoskeleton: BLEEX (Kazeerooni, 2006). The mechanical design was 

similar to the power enhancing exoskeleton but the control mechanism included using 

accelerometers and a gyroscope at the arm to measure the swing angle and force 

sensor embedded on the crutches to measure the landing of the crutch. When the swing 

angle exceeds a threshold value while both crutches are on ground, a pre-programmed 

step is initiated on the contralateral leg (Strausser, 2011).  

Hybrid Assistive Limb (HAL) was developed as a full body suit but the 

rehabilitative version of HAL is a lower extremity exoskeleton with 2 DOF with one at the 

hip and knee, respectively. The control mechanism involves using myoelectric signals 

from the flexors and extensors to sense the user’s intention, and thus assist the user’s 

legs to move forward. The assistance provided by the exoskeleton can be varied to 

provide assistance as needed to enhance rehabilitation/ assistance. (Lee, 2002, 

Hayashi, 2005). 

 Goldfarb et al. built the lightest of all exoskeletons which was later 

commercialized as the Indego exoskeleton (Farris, 2012). It has two DOF, hip and knee, 

but no ankle support in the sagittal plane. It uses Hall effect sensors, potentiometers and 

accelerometers to detect the center of pressure (COP) (Farris, 2012, Quintero, 2012, 

and Farris, 2012). As the user’s intention is detected when the user leans forward, the 

COP is shifted in the direction of movement, thus instructing the exoskeleton to initiate 

the gait in the contralateral leg (Quintero, 2012, and Farris, 2012).  
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Figure 1.4 Current Assistive Exoskeletons: a) BLEEX, b) HAL. 
Sources: Kazerooni, 2005, Hayashi, 2005.   

 

Rewalk is the only exoskeleton currently available with FDA approval. It has two 

active DOF’s at the hip and knee, with the ankle consisting of a simple orthotic joint with 

limited motion and spring assisted dorsiflexion. The control system includes a tilt sensor 

to determine changes in trunk motion and center of gravity, the tilt sensor determines the 

angle of torso and initiates the preprogrammed hip and knee displacement in the 

appropriate leg (Esquenazi, 2012).  

 Ekso by Ekso Bionics has two options to control the gait cycle. The first is by 

using a button pad. The user uses buttons to transition between steps or to transition 

between different states i.e. between sit to stand and vice versa. The other option uses 

sensors embedded in the suit to detect changes in the hip position. The step is initiated 

by the user by moving the hip forward and laterally (Strickland, 2012, 

http://www.eksobionics.com). 
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 In contrast, Rex Bionics has 5 DOF and is the only available assistive 

exoskeleton to provide support in all planes. It has 3 DOF at the hip, 1 DOF at the knee 

and 1DOF at the ankle, and uses joysticks to control the gait cycle. Though it provides 

balance, it is extremely slow and it is the heaviest of all exoskeletons. It does not provide 

the user with the ability to control the gait cycle or the stride length 

(http://www.rexbionics.com/).  

Most of the above exoskeletons have two active degrees of freedom, one at the 

hip and the other at the knee.  

 

 

Figure 1.5 Commercial Exoskeletons: a) Rex Exoskeleton b) Ekso, c) Rewalk d) Indego. 
Sources: Rex bionics Personal Exoskeleton, 2015, Ekso bionics, 2011, Rewalk, 2015, Indego, 
2015 
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Table 1.3 Assistive and Rehabilitative Exoskeletons  
 

Exoskeleton 

 

Active 
DOF  

Pre- 
Programmed 

Gait  

Control 
Mechanism 

Ankle Weight
/Speed 

REX 5 Yes Joy stick Active 38 kg/ 
.05m/s 

Rewalk 2 Yes Trunk 
movement 
and center 
of gravity & 
Wrist pad 
controller 

Passive 21kg/ 

1.4mph 

 

Ekso 2 Yes Hips 
forward and 

shifting 
them 

laterally 

Button 
commands  

Passive 20 kg/ 

2 mph 

 

Indego 2 Yes Trunk 
movement 

and location 
of center of 
pressure 

Passive 11.8kg 

 

BLEEX 5 Yes Joy stick Active 38 kg/ 
.05m/s 

HAL 2 Yes EMG Passive 21kg/ 

1.4mph 

 
Source: Rex bionics Personal Exoskeleton, 2015. Rewalk, 2015. Ekso bionics, 2011.  Indego, 
2015, Strausser, 2011, Hayashi, 2005 

 

1.3.3 Limitations of Current Assistive Exoskeletons 

All the current research and commercial exoskeletons provide the user with the ability to 

initiate the movement but provide no control over the amplitude of the gait cycle or the 

length of the gait cycle and do not provide any proprioceptive feedback. Though 

preprogrammed gait is a big leap towards giving the people the ability to walk, these 
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exoskeletons suffer from the major disadvantage of not being able to provide complete 

user control of the gait pattern, hence making it difficult to navigate through obstacles, 

stairs, or uneven surfaces (Ferris,2005, Hasegawa, 2009, Dollar, 2008, Mohammed, 

2008). Also, humans constantly use abduction/adduction of hip and ankle to navigate 

obstacles which is not possible with these exoskeletons (Kobetic, 2009). The user relies 

on constant visual feedback to control the movement of the exoskeleton as most of the 

users lack sensory (force or haptic) feedback. As stated by Riener et al. “Rehabilitation 

devices work with patients in a “master-slave” relationship thus forcing the patients to 

follow a predetermined motion without consideration for voluntary efforts” (Reiner, 2014). 

These limitations call for better control mechanism for the user, where the user can not 

only initiate but also control the foot movement in real time. 

 

1.3.4 Alternate Control Mechanisms 

The current control mechanisms use either joy sticks to control the movement or simply 

provide the user only with the ability to initiate the movement. Any control mechanism for 

exoskeletons should include complete control of stride length and amplitude at all times 

to effectively use the exoskeletons. This could either be achieved by using signals from 

the central nervous system (CNS) or peripheral nervous system (PNS) or from physical 

interaction by the user using other articulators with sensors (Dellon, 2007, Del-Ama, 

2012, and  Lee, 2012).  

I. Brain Computer Interface 

The user intention is detected from EEG (electroencephalogram) signal from central 

nervous system and is translated to kinematics of the lower extremity. Brain Computer 

Interfaces (BCI) have been developed over the last decade, where EEG signals are 

recorded, interpreted and translated to actions. BCI’s have been explored to 
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communicate the intention of the user to the lower extremity exoskeletons, thus 

providing the user with ability to control the gait cycle. Gancet et al.  have tried to 

interpret EEG signals from the motor cortex to calculate the kinematics of the gait cycle. 

A dynamic recurrent neural network was used to train the network to detect the gait 

patterns in the EEG signal as shown in Figure 1.6 (Gancet, 2012).The Walk Again 

Project by Nicolelis et al.  also used BCI to communicate the user’s intention to 

kinematics of gait cycle. The complete gait control was to be demonstrated during the 

soccer World Cup by Nicolelis et al but when the user with paraplegia was driven into 

the soccer field, and a soccer ball was placed at his feet, all the user could do was 

initiate a kick as shown in Figure 1.7 (Nicolelis ,2003). This demonstration is testament 

to the infancy of BCI’s ability to give individuals the ability to walk. 

Limitations of BCI Control of Exoskeletons 

Both groups have reported numerous challenges with the recording of EEG; identifying 

the user intention for each joint was not possible, mechanical artifacts due to relative 

movement of EEG cap producing random noises that are difficult to filter and 

physiological artifacts due to muscle activity in the vicinity of the cap. Even with 

extensive filtering, they were not able to completely isolate the relevant signals at all time 

periods (Gancet, 2012, Contreras-Vidal, 2013). Though BCI would be an ideal solution 

to control the exoskeleton as the control directly translates the user’s intentions, it is in 

its infancy where the electrodes need to be implanted on the surface of the brain to 

remove artifacts and requires extensive training to perform the simplest tasks as current 

algorithms rely on identifying patterns of signals for a task 

(http://www.nicolelislab.net/?p=584). 
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Figure 1.6 BCI control in Mindwalker project. 
Source:http://www.robaid.com/bionics/mindwalker-mind-controlled-exoskeleton-could-help-

disabled-people.htm 

 

 

Figure 1.7 BCI control in Walk again project showing a user kicking a soccer ball.  
Source: http://neurogadget.com/2014/06/13/paraplegic-man-mind-controlled-robotic-suit-kicks-
world-cup-2014-video/10434 
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II. Electromyography Control 

Signals from peripheral nervous system i.e. Electromyography (EMG) has also been 

used for control of lower extremity exoskeletons. Surface electrodes are attached on the 

surface of the skin to collect electrical activity due to active motor units in the muscles 

(Hasegawa, 2009). EMG signals obtained from the lower extremity could provide the 

kinematic information required to control each joint to produce the movement of the 

exoskeleton gait. Ferris et al. have used EMG signals as proportional control where the 

rectified EMG signals when above the set threshold were used to provide torque 

proportional to the magnitude and direction of EMG to move the joints to the desired 

position (Ferris, 2009). Hasegawa et al. placed electrodes on multiple muscles in the 

lower extremity in order to accurately determine the intention of the user’s movement. 

Further the torque required was determined using neural networks or recursive least 

square algorithm (Hasegawa, 2009). Yin et al. used neuro fuzzy controller which 

integrates the EMG signal with joint information to predict movement trajectory (Yin, 

2012). Though EMG provides a better mechanism to decode the kinematics, it suffers 

from the disadvantage such as movement artifacts, cross talk, amount of tissue between 

the motor units and electrode, inability to accurately decode trajectory from the EMG 

signal. These disadvantages make it extremely difficult to reliably obtain EMG signals 

and to further provide complete control of the gait cycle. 

III. Control through other articulators 

The goal of this dissertation is to develop an intuitive control mechanism to generate real 

time gait while also providing proprioceptive feedback to the user. The control 

mechanism includes using other articulators to express the neural encoding of the 

desired trajectory instead of BCI. The project uses trajectories produced by the hand 

while performing walking-like movements to control foot movement. The form of neural 
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coding of intended movement signals is not known, thus making it difficult to detect 

complete user intention (Feldman, 2005). The forces and the torques required to 

generate the movement of the foot may be computed and developed centrally or in 

combination with the periphery. The study by Guo et al (2014) has shown evidence that 

the signals from the spinal cord may contain the reference trajectories from the CNS 

(Guo, 2014). Churchland et al (2007) have shown that some cortical signals correlate 

with some movement parameters and that they do not generalize across different tasks 

(Churchland, 2007). Cisek observed that “the role of the motor system is to produce 

movement not to describe it”. (Cisek, 2006). This suggests that trajectories similar to foot 

could be generated from other articulators such as hands or fingers allowing a natural, 

biological decoding of user intention (Karunakaran, 2013).  

The control paradigm presented in this work uses force sensors connected to the 

hands to read the user-intention in real time, with the proprioceptive feedback, provided 

by a physical link between the foot and the hands, providing information on when the 

foot makes contact with the ground. An admittance control paradigm is used to translate 

the forces to Cartesian position of the foot. Admittance control is based on Newton’s 

second law of motion: the relationship between an object's mass m, its acceleration a, 

and the applied force F is ∑F = ma. When a force is applied, an object with a fixed mass 

will move in the direction of the net force with an acceleration proportional to the force. 

The acceleration is computed from force by considering the object to be of a constant 

virtual mass; the double integration of the acceleration provides the position in Cartesian 

space for each time period. Since the mass of the object can be set to be very low, the 

user feels the object to be virtually weightless. Admittance control allows the user to 

input a force and translates the force into motion in the direction of the force. The 

advantages of using admittance control are force amplification, intuitive control (as the 

user applies force in the direction of movement desired), back-drivability as the object 
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acts a pseudo-passive object, and proportional control (Van der linde, 2002). Studies 

have shown that admittance control needs to operate at minimum of 100Hz for optimal 

human interaction (Van der linde, 2002). Admittance control is exceptional in facilitating 

human-robot interactions where the person has physical contact with the robot and 

moves it along a path defined by the user’s movements.  

 

1.4 Human Gait 

Human gait involves periodic movements of the leg to propel the center of gravity 

forward in order to move the body forward. The gait of an individual is a highly variable 

activity that differs from individual to individual based on age, sex, body type, physical 

condition, fatigue, etc. but there are characteristics in a gait cycle that can be used to 

define a normal human gait cycle (Hughes, 1979). The description of the gait cycle is 

confined to a single cycle (Vaughan, 1992) assuming the following cycles are all the 

same. The gait cycle is characterized by the set of events between heel strike (0%) to 

heel strike (100%) of the same foot (Dollar, 2008). 

 

1.4.1 Phases of Gait Cycle 

The normal human gait cycle has two distinct phases: swing phase and a stance phase. 

The swing phase and stance phase are defined as periods when the foot is off the 

ground and on the ground, respectively. The stance phase can be further classified as 

single stance and double stance. Single stance is when one foot is on the ground while 

the other foot is off the ground. Double stance is when both feet are on the ground 

(Vaughan, 1992).  
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Figure 1.8 Normal human gait cycle. 
Source: Vaughan, 1992 

 

1.4.2 Kinematics of Gait Cycle 

The gait cycle commences with a double stance phase, and at its half-way mark again 

the same leg is in double stance phase, and terminates with a swing phase as shown in 

Figure 1.8. The initial double stance consists of right knee that extends and right heel 

that makes contact with the ground which is known as heel strike, with the ankle held at 

a right angle (90 degrees) to the leg. Simultaneously, the left leg is in preparation for toe-

off with left heel off the ground with only the toe in contact with ground, in preparation to 

move to single stance. During the single stance, the weight is shifted to the right leg 

where the foot is flat on the ground, while the left leg is in its initial swing phase with its 

knee bent and its toe swinging forward. This period is marked by the clearance of the 

foot and a period of acceleration of the foot forward and the initial swing phase ends 

when the foot is apposition to the stance foot (Hughes, 1979). The mid stance occurs at 

the end of loading response and continues until the body weight is aligned over the 

forefoot. The terminal of single stance that makes the half-way mark of the gait cycle 

consists of left heel in contact with the ground, and the right heel lifted off the ground. 

Next, follows the final double stance, but this time with the left heel that makes contact 

with the ground, and the right leg is in preparation for toe-off i.e. in pre-swing phase with 

heel off the ground and right toe on the ground. The faster the speed of walking, the 
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shorter the duration spent on double support phase. During the succeeding swing phase 

of the right leg, there is a pre-swing phase when the initial contact ends and the rapid 

unloading of the weight occurs to the left leg. This is followed by the initial swing phase 

of the right leg where the right knee is bent and the right toe swings forward. The mid 

swing starts when both ankles are in apposition and terminates when the swinging foot 

is forward.  The swing terminates by decelerating the foot and ends with the right heel on 

the ground, and the left heel off the ground. This marks a complete gait as shown in 

Figure 1.9. Though the nomenclature described starts with the right leg, the same could 

be applied for the left leg (Vaughan, 1992). Dynamic ambulation involves a stance phase 

of 60 percent at normal walking speed and reduces as speed increases and a swing 

phase of 40 percent at normal walking speed and increases as speed increases 

(Vaughan, 1992).  

 

Figure 1.9 Phases of the human gait cycle 
Source: Vaughan, 1992 
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1.4.3 Joint Kinematics 

The two phases of stance and swing of the leg are made possible by the DOF available 

to the hip, knee and ankle joints of human leg (Vaughan, 1992). The angular position of 

the hip, knee and ankle contribute to each phase of a gait cycle.  

a) Double Stance: The right hip during the start of the gait cycle is at 30 degrees of 
flexion and knee is at 5 degree of flexion. 
 

b) Single Stance: During the single stance phase when the foot is flat on the ground 
with the loading response from the leg, the hip flexes by 30 degrees and knee 
continues to flex with it being at max of 20 degrees. 
 

c) Mid Stance: The hip during the midstance extends towards neutral position and 
the knee during midstance is extending and is at about 8 degree of flexion.  
 

d) Terminal Stance: During the terminal stance phase the hip goes into about 15 
degree extension and the knee at the beginning of the terminal stance is at about 
5 degrees flexion then the motion is reversed and the knee begins flexing to 
about 12 degrees. Now, the leg enters the pre-swing phase where the knee 
begins rapid flexion to about 40 degrees and the hip starting to flex to about 10 
degrees.  
 

e) Initial Swing: The pre-swing is followed by initial swing where the hip continues to 
flex to about 25 Degrees and the knee flexes to another 20 degrees which is 
followed by extension to 5 degrees.  
 

f)   Mid-swing: During the mid-swing the flexion slows down to a stop while the knee 
flexes to 35 degrees and the hip reaches a flexion of 30 degrees. 
 

g) Terminal Swing: During the terminal swing phase the hip holds the positions and 
extends to about 5 degree while knee continues to extend and maintain the 
neutral 0 degree position (Vaughan, 1992).  
 

 The human leg has 7 DOF, with 3DOF at the hip, one at the knee and 3 DOF at 

the ankle. The most important DOF at the hip is in the sagittal plane and provides 

flexion/extension of the leg during the walking. The kinematics of the hip starts with the 

hip providing the clearance during the initial swing phase, then helps propel the leg 

through swing, and finally helps the transition from flexion to extension during swing 

(Vaughan, 1992). Movements in the coronal and transverse planes of the hip are less 

compared to movement in the sagittal plane; however, the rotational DOF in coronal 
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plane helps with obstacle navigation (Vaughan, 1992). The user uses the 

abduction/adduction of the hip to shift the weight and to provide clearance in order to 

navigate obstacles. The transverse plane helps with changing directions thus helping the 

user to turn. The knee has one DOF, which is flexion/extension in the sagittal plane. This 

DOF also helps the leg in clearance of foot, and advance the leg during the swing 

phase. The ankle joint has 3 DOF with the rotation in sagittal plane (plantar flexion and 

dorsiflexion) being the most important of them, where it provides torque to toe off the 

ground just before the swing phase. The rotation about the coronal plane helps with 

balance (Vaughan, 1992).  

From the foregoing, it is clear that to obtain gait cycles similar to human gait 

cycle, it is essential to have rotations about the hip, knee, and ankle in the sagittal plane 

and have rotations about the hip and ankle in coronal plane for obstacle navigation and 

rotation about the hip in transverse plane for turning. 
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CHAPTER 2  

IMPORTANCE OF HAPTICS IN ALTERNATE CONTROL 

 

2.1  Introduction 

Rhythmic behaviors are those where parts of the body produce cyclic movements that 

are repeated over and over again, ex: walking, juggling, tapping, swimming, breathing, 

etc. Walking is a complicated repetitive motor task requiring multiple joints to work 

together to produce the required movement and balance (MacKay-Lyons, 2002). For 

long, scientists have wondered about the working of the central nervous system (CNS) 

to produce such a complicated motor movement. There were two main hypotheses for 

producing such movements. The first hypothesis is that of peripheral control, where the 

sensory feedback provides cues for the rhythmic movement. Each phase of the 

movement is considered to produce sensory cues necessary for producing the 

rhythmicity and the phases of the movement. The loss of sensory cues would therefore 

cause the complete disruption of the movement. The second hypothesis is that there 

exist neural oscillators or central pattern generators which are specialized neurons that 

can provide timing for muscle contraction to generate the required rhythmic movement. 

Studies indicate that both hypotheses seem to be true, where rhythmic movement by 

neural oscillators or central pattern generators is modulated by sensory cues to produce 

what is known as human gait. Therefore, the work to replicate human gait pattern also 

involves capturing the sensory cues for use in the intuitive control mechanism (Pearson, 

1993). 
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2.1.1 Central Pattern Generators 

Central pattern generators (CPG) are neural networks that work autonomously to 

produce rhythmic patterned output without sensory afferent feedback or input from the 

brain. CPG’s are thought to exist in the vertebrates and mammals, and they are believed 

to produce variant rhythmic motor patterns such as walking, running etc.  (Duysens, 

1998).  

The first evidence of CPG’s was shown in the study on decerebrate cats, where 

the spinal cord was severed at the level of brain stem and the cats could perform 

movements (Duysens, 1998). This theory was further confirmed by studies by Brown, 

who made a similar observation in cats that performed simple stepping movements in 

the hind limbs though they were decerebrate and deafferented (Duysens, 1998). In spite 

of cutting off the inputs from the brain and afferent feedbacks these cats could still 

produce movements in the hind limbs. Hence, from this study Brown et al. concluded 

that CPG’s in the spinal cord are sufficient to produce movements in the hind limbs of 

the cats (Duysens, 1998). This concept of motor program was defined by Marsdeb et al 

(1984) as “a set of muscle commands which are structured before a movement begins 

and which can be sent to the muscle with the correct timing so that the entire sequence 

is carried out in the absence of peripheral feedback”. 

Currently, there are numerous studies in vertebrates that have validated that 

there are nerve cells that produce specific autonomous rhythmic movements without 

afferent signals. Motor control of human walking is also theorized to be using CPG’s 

generated from the spinal cord. The existence of CPG’s in human walking has been only 

indirectly observed as in vivo experiments cannot be performed (Pearson, 1993).  

Supported treadmill studies provide evidence regarding the existence of CPG’s in 

humans. These studies have shown that subjects with incomplete SCI have been shown 

to regain some or most of their motor function when trained with body weight support, 
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but the same results could not be replicated with subjects with complete SCI (Duysens, 

1998). The fact that researchers have thus been able to obtain movements in subjects 

with incomplete SCI should not be interpreted as to mean ‘afferent inputs are not 

important to pattern generation by humans during walking’. Though it has been shown 

that rhythmic movements are produced by CPG’s in spinal cord as shown in studies 

involving deafferented nervous system, such movements are not identical to the patterns 

produced with intact nervous system (MacKay-Lyons, 2002). 

 

2.1.2 Impact of Afferent Feedback on CPG  

Although the basic locomotor pattern can be present in fictive locomotion (i.e. in 

complete absence of afferent input), it is seen that the role of afferents is very important 

in shaping the rhythmic pattern, to control phase-transitions and to reinforce the ongoing 

activity in cats (Duysens, 1998). Therefore, a rhythm generating structure without its 

normal afferent input can be very artificial and, therefore, cannot entirely reproduce the 

motor output as seen in the intact cat. Pearson described that afferent feedback plays a 

major role in rhythmic movement. He states that sensory feedback provides information 

to ensure that the motor output is appropriate for the biomechanical state of the moving 

body part in terms of position, direction of movement, and force (Pearson, 1993). 

Human two legged walking is a complex rhythmic movement that involves phase 

changes that are influenced by the environment i.e. fast walking/slow walking etc. These 

rhythmic tasks often consist of discrete events often due to contact with the environment. 

These events provide the body with information regarding the current state of the body 

and regarding the environment, thus helping with the transition from one state to another 

effectively. Pearson also states that the sensory feedback facilitates the transition 

between the different phases of the rhythmic movements (Pearson, 1993).Thus CPG’s 
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in CNS may be modulated by the sensory feedback from the peripheral receptors to 

control the frequency and amplitude of the centrally generated motor pattern. 

Ivanenko et al. evaluated the importance of ground contact forces as sensory 

cues in the trajectory of subjects’ feet as they walked with reduced body weight. Weight 

reduction was achieved by mechanical body weight support. In this study, it was 

observed that leg kinematics were dramatically affected when no ground contact forces 

were present (i.e. walking in the air), but were largely unchanged during partial body 

weight support (Ivanenko, 2002).  Results show that even though subjects were 

instructed to make walking movements, including mimicking ground contact patterns, the 

trajectories of the feet under the condition of complete body weight support (i.e. walking 

in the air) changed dramatically and were erratic.  The frequency of the leg movements 

became quite variable compared to normal gait, indicating that ground force feedback 

contributes to the cyclic (i.e. rhythmic) nature of gait. Furthermore, when walking with no 

ground force feedback, subjects converted their foot movements to a simpler cycling 

pattern. However, when body weight was not fully supported, the subjects’ foot 

trajectories remained similar to biological gait. This implies that ground force feedback is 

vitally important for biological gait kinematics, but that the amplitude of the force does 

not exert significant influence on the kinematics.   Hence, to effectively develop an 

interface to control walking, haptic feedback or tactile cues of ground contact needs to 

be provided to the nervous system during each phase of gait to modify (i.e. modulate) 

the central patterns and produce what is known to be biological gait. Ivanenko et al 

suggest that ground contact feedback could provide a preferred modulation of the cyclic 

central patterns or could signal a transition between distinct locomotor patterns of stance 

and swing (Ivanenko, 2002). This also suggests that the gait pattern is not fully specified 

by higher cortical regions, but is modified (modulated) by important sensory feedback. 

Further, Ankarali et al. have shown in their study that providing sensory feedback-like 
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force impulse to the hand while performing rhythmic motor tasks, such as virtual paddle 

juggling, enhances performance by reducing variability in the rhythmic movement 

(Ankarali, 2013). They state that the haptic feedback produces the necessary feedback 

to determine the phase transition while performing the rhythmic movement. 

Studies of upper extremity training have shown that performance increases when 

both haptic and visual feedback are present, compared to when haptic-only or Visual-

only feedback is present. Feygin et al. concluded that spatial aspects of movement 

improved with visual training, while temporal aspects improved with haptic training 

(Feygin, 2002). Gunn et al. observed improved speed and accuracy when haptic 

feedback was introduced along with visual feedback in a virtual environment (Gunn, 

2009). Both studies suggest that combination of haptic and visual feedback improved 

performance compared to haptic-only or Visual-only feedback conditions. 

 Proprioceptive, vestibular and visual feedbacks are needed to achieve normal 

gait trajectories in non-disabled subjects (Karunakaran, 2014). Proprioceptive feedback 

consists of haptic feedback. While vestibular feedback plays an important role in balance 

and equilibrium of the system, haptic feedback helps maintain the rhythmic patterned 

gait trajectory while walking. It is observed that upper extremity control relies heavily on 

visual feedback for guidance while lower extremity control uses visual feedback 

predominantly to scan the environment for obstacles without directly influencing the gait 

(Feygin, 2002) 

Koritnik et al. demonstrated that lower limb rehabilitation yielded better spatial 

and temporal adaptation in the haptic-only when compared to Visual-only mode. Also, 

visual and haptic feedback can improve performance of lower extremity training more 

than Visual-only or haptic-only modes (Koritnik, 2010). In a recent study, Turchet et al 

showed that vibrotactile feedback (haptic feedback) provided to the foot increased the 
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realism of walking when the subjects were asked to walk in a virtual environment 

(Turchet, 2013).  

The control mechanism proposed here for lower extremity exoskeletons uses 

hand movements as surrogates that express neurally intended foot trajectories 

(Karunakaran, 2013 and Karunakaran, 2014). This study evaluates the need for haptic 

feedback in addition to visual feedback to allow hand trajectories to produce exoskeleton 

gait that resembles biological gait.   

In the pilot study, conducted prior to the formal dissertation proposal, the 

importance of providing both position and ground force feedback to subjects’ hands as 

they employed their hands to operate virtual feet in a graphically-rendered walking task 

was explored. This study addresses whether hand trajectories could produce trajectories 

similar to that of foot trajectories and the different feedbacks required to produce such a 

trajectory. 

 

2.2 Methodology 

The experimental setup for the study included a virtual environment (VE) consisting of 

two feet on an infinite path which was designed and built using Simulink 3d toolbox in 

MATLAB. The VE provided the users with a 2-dimentional view with depth perception. 

Two Geometric Phantom Omni, 3- Degree of freedom (DOF) haptic devices were used 

for rendering haptics. The Ascension Technologies electromagnetic position tracker the 

Nest of Birds (NOB) was attached to the distal end of the omni. The position of the NOB 

was mapped to virtual environment, thus moving the hands also moved the feet on the 

pathway in real time. The Phantom Omni was synchronized with the virtual environment 

to produce haptic feedback of magnitude 0.88N (maximum allowable force feedback of 

the Omni) when the feet were in contact with the floor. Eighteen subjects consented to 

participate in the study approved by the Internal Review Board of NJIT. All subjects self-
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reported no disabling conditions, and had full function in upper and lower extremities and 

normal vision. Exclusion criteria included disability to upper or lower extremities or non-

correctable visual impairment. 

The study consisted of three experimental groups: Visual-only (VO), Haptic-only 

(HO) and Haptic & Visual (HV). Subjects were randomly assigned to the three groups of 

six individuals that were age and gender matched. All subjects were under the age of 40. 

All subjects in each group participated in five sessions, where each session consisted of 

eleven trials of 60 seconds’ ambulation followed by 60seconds’ rest. These trial and rest 

durations minimized muscle fatigue. Subjects were instructed to hold the omni and 

perform walking like movements using their hands and to walk the feet as far as possible 

during the trial duration. They were informed that ambulation (forward movement) was 

possible only when at least one shoe was in contact with the virtual pathway (stance) 

and the other shoe was in its swing phase. The pathway works as a manual treadmill. 

Therefore, there was no movement when both shoes were above or below the virtual 

pathway, or if the stance shoe was below the pathway when the other shoe is in swing 

phase. Stride length (horizontal distance), vertical height and speed of shoes were 

controlled by the user’s hand movements. A black drape (not shown in Figure 2.1) 

prevented subjects from seeing their hands. Thus, feedback was limited to 

proprioceptive sensation from the arms and visual observation of the shoes and moving 

walkway. The first trial was used to acquaint the subjects with the procedure where all 

three groups were provided with both forms of feedback. This ensured all three groups 

trained for the task equally and performed the task with equal ability. Data analysis was 

performed only on trials two to eleven, with the practice trial omitted. 
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Figure 2.1 Experimental setup :(Left) A) VE monitor. B) NOB sensor on Phantom 
Omnis. (Right): Phantom device with NOB sensor.   

 

A) Protocol for Visual-only (VO) Group 

Subjects provided with Visual-only feedback saw the shoes on an infinite virtual pathway 

presented on the computer monitor. Subjects were expected to control the movement of 

the shoes with visual feedback.  Shoes were lost from view when the user’s hands 

placed them below the walkway and appeared to float above the walkway when placed 

too high; also a visual cue of red dot was provided to let the user know that both their 

feet were above the ground.  The treadmill-like movement did not occur when the stance 

foot was incorrectly placed. 

B) Protocol for the Haptics-only (HO) Group 

A haptic surface was rendered to simulate foot contact and provide force feedback from 

the pathway when the virtual shoes made contact. The force feedback simulated walking 

on a flat surface. Applied vertical hand forces greater than .88N resulted in the shoe 

dropping below the virtual pathway (fall throughs), and hence there is no forward 

movement on the pathway. The shoe needs to be on the floor to move forward. Hence 

subjects received haptic cues from the Phantoms about their success in providing an 

appropriate vertical hand force to make contact and prevent falling below the surface. 

This discouraged subjects from using excessive force while coming in contact with the 
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floor. Cues regarding both feet off the floor were not necessary as the subjects used 

haptics as cue to place at least one foot on the ground while walking unlike the visual 

group which could not place their foot on the ground. The monitor was turned off for 

Haptic-only subjects to prevent them from having visual feedback. 

C) Protocol for Haptic & Visual (HV) Group 

Subjects in the third group experienced both visual and haptic feedback as described 

above. 

 

Figure 2.2 a) Typical virtual gait cycle: The orange hand represents the movement of 
the hand. The blue shoe rises as the hand is elevated and the shoe is returned to the 
ground as the NOB sensor reaches ground threshold. The ground threshold is defined 
by the region between the green and red line. The shoe drops below the virtual pathway 
when the hand goes below the ground threshold, which is referred to as a fall through. b) 
The shoe drop below the threshold is shown. c) The boot shoes are above the ground, 
which is cued by a red dot on the top d) VE shoes and virtual pathway: the pathway acts 
as an infinite treadmill to allow forward progress of the shoe, while remaining within the 
range of motion of the Phantom Omnis. 
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2.2.1. Data Analysis 

MATLAB was used to analyze the hand trajectory data from the NOB and to evaluate 

the performance of subjects.  

2.2.1.1 Horizontal and Vertical Trajectories. Horizontal and vertical trajectories 

were collected at 100 Hz and filtered at 25 Hz cut-off frequency using an effective 4th 

order, zero-lag Butterworth low-pass filter. These filtered data were further analyzed to 

determine the time synchrony of hands.  

 The time synchrony was calculated by standard deviation between the inter-peak 

intervals for the horizontal trajectory of each hand for each trial.  An average of the 

standard deviation across trials for all subjects in each group for each session was 

computed. The Kruskal-Wallis non-parametric test and Mann-Whitney U test with 

Bonferroni correction for multiple comparisons were performed to determine the 

statistical difference between the groups. 

2.2.1.2 Fall Throughs. The average number of fall throughs (subject misestimate 

the location of the virtual walkway) per unit distance across subjects for each session in 

each group was computed. Kruskal-Wallis non-parametric test and Mann-Whitney U test 

with Bonferroni correction was performed to determine the statistical difference between 

the groups for both hands. Friedman’s Test was used to evaluate the performance 

differences between sessions in each group. 

 The learning in terms of accuracy was evaluated in each group by comparing 

between the fall through in each session and in each trial. A repeated measure of one 

way Analysis of Variance (ANOVA) was used to evaluate performance differences 

between sessions and trials in each group. 
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2.2.1.3 Distance Travelled.  Average distance traveled was computed for each hand 

and the performance of each group was assessed. One way ANOVA and Tukey’s post 

hoc test were performed to determine the statistical difference between the groups. 

 The learning in terms of speed was evaluated in each group by comparing the 

distance travelled in each session and in each trial. A repeated measure ANOVA was 

used to evaluate performance differences between sessions and between trials in each 

group. 

2.2.1.4 Duty Cycle. The duty cycle of the gait cycle was calculated. The average 

relative percentage of stance and swing phase for each session was calculated for all 

three groups for all sessions using the below formulae:  

Duty cycle= Stance Phase + Swing Phase 

Stance Phase % = 100 * Stance phase/ Duty Cycle 

Swing Phase % = 100 * Swing phase/ Duty Cycle 

ANOVA was used to determine the statistical significance between each group. 

Independent sample t-test with Bonferroni correction was used to determine the 

significance between groups. 

 

2.2  Results 

2.3.1 Horizontal and Vertical Trajectory 

Significant difference was observed between all three groups, with Haptics & Visual 

group doing better than Haptic-only (p<.017) and Visual-only (p<.017) group and Haptic-

only group doing better than Visual-only group (p<.017) in both left and right hands as 

shown in Figure 2.5. Thus groups with haptic feedback showed lower variability in their 

trajectories, implying that the movements are more consistent when haptics is provided. 

 

 



43 
 

2.3.2 Fall Throughs 

Figure 2.6 shows average fall throughs for each session for all five sessions. Significant 

group differences were observed between the Haptic-only and Visual-only group, 

between the Haptic & Visual and Haptic-only group and between the Haptic & Visual and 

Visual-only groups for both hands. No significant difference was observed between 

sessions in all three groups. No significant differences were observed between trials in 

each session for all three groups except for session 4 in the left hand for the Visual-only 

group and session 4 in the right hand for the HO group. Figure 2.7 shows that fall 

throughs for the Visual-only continues to show no improvement between Sessions 1 and 

5, indicating no learning within session. Also, there is no significant improvement within 

trial in session 1 or session 5. These results signify that the user will not learn even with 

training.   

 

2.3.3 Distance Travelled 

Figure 2.8 shows the average distance travelled by each group for each session. 

Significant difference was observed between Haptic & Visual and Visual-only groups 

(p<.05), and between Haptic-only and Visual-only groups (p<.05) for both hands. No 

significant difference was observed between the Haptic & Visual and Haptic-only groups 

for both hands. Significant difference was observed among sessions for Haptic & Visual 

group, but no significant difference was observed among sessions for Visual-only and 

Haptic-only groups. Further, no significant differences were observed among trials within 

sessions for all three groups 
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Figure 2.3 Vertical Position of trial 11 in session 5 of subject 5 in each of the following 
groups:  a) Haptic &Visual b) Haptic-only c) Visual-only feedback. The ground threshold 
is defined by the two blue lines in a, b & c. Shoe dropping below the threshold is referred 
to as a fall through. Horizontal Position of trial 11 in session 5 of subject 5 in each of the 
following groups:  d) Haptic & Visual e) Haptic-only f) Visual-only feedback. 
 

 

 

 

a) 

b) 

c) 

d) 

e) 

f) 
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Figure 2.4 x and y position of the left and right hand during a) Haptic & Visual feedback 

b) Haptic-only feedback c) Visual-only feedback. 
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Figure 2.5 Average standard deviation between peaks of horizontal trajectory (SEM) for 
a) Right hand b) Left hand for with each session. Significant difference was observed 
between all groups.  
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Figure 2.6 Average Fall throughs per unit distance (SEM) for each session for a) Left 
Hand and b) Right Hand.  
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Figure 2.7 Mean Fall throughs/distance travelled per trial for sessions 1 (Top) and 5 
(Bottom) by left hand with SEM. 
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Figure 2.8 Average distance travelled/session by a) Right Hand b) Left Hand with SEM. 
 
 
 

 

a) 
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Figure 2.9 Mean distance travelled in Session 1 (top) and 5 (bottom) by left hand with 

SEM. 
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2.4. Discussion 

Results show that Haptic & Visual feedback groups achieved better time and amplitude 

synchrony as demonstrated by gait cycle (Figure 2.3) , fall throughs (accuracy, Figure 

2.6) and distance travelled (speed, Figure 2.8) . Normal gait cycle is divided into two 

phases - swing and stance.  Figure 2.3 shows that when one hand is in stance the other 

is in swing phase, as observed during human gait. A typical gait stance phase 

represents 60% of the cycle and swing phase 40% of the cycle (Winter, 1990). Analysis 

of hand trajectories demonstrated groups with haptic feedback fared better than the 

Visual-only group and also compared well with the natural gait cycle.  

The standard deviation between the peaks of the horizontal trajectory was used 

as a measure to evaluate the time synchrony. A small standard deviation between the 

peaks signifies synchrony. Figure 2.5 shows Haptic & Visual feedback group have 

smaller standard deviation than both Visual-only and Haptic-only groups. This signifies 

greater synchronicity in Haptic & Visual group compared to the other two groups. The 

Haptic-only group showed better synchrony than the Visual-only group. Our findings are 

in accordance with Turchet et al. that haptic feedback plays a relevant role in the 

perception of both real and simulated surfaces during the act of walking (Turchet, 2013). 

This indicates haptic feedback is essential for motor control of rhythmic movement. 

Results also suggest that hand movements, when provided with real-time ground 

contact information, share considerable similarity with the foot movements of natural 

human gait as shown in Figure 2.4, where the trajectory conforms to walking patterns  

while when only visual feedback is provided, it conforms to cyclic pattern.  These 

findings are very consistent with those of Ivanenko et al. in which ground forces applied 

to the feet result in relatively consistent kinematic trajectories when body weight support 

is varied from 0% to nearly 100%.  However, at 100% body weight support, with no 

ground contact forces, the movements of the feet (i.e. walking in air) take on a 
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dramatically different kinematic appearance (Ivanenko, 2002).  In Figure 2.3, we see that 

the rhythmicity of the trajectories is well maintained when haptic feedback is present.  In 

panels ‘a’ and‘d’ the timing and the vertical and horizontal excursions of the hands 

shows very little variability over multiple simulated steps when both Visual & haptic 

feedback are provided, compared with panels ‘c’ and ‘f’ in which the timing and vertical 

and horizontal excursions are much more varied in the absence of haptic information 

(analogous to walking in the air).  A striking example is the comparison between panels 

‘a’ and ‘c’, where with visual and haptic feedback, there are clearly observed flat portions 

of the vertical trajectory that correspond to the placement of the hand during ground 

contact (at the simulated floor height) during stance, while panel ‘c’, without force 

feedback shows no such flat stance. Also, the phase change from stance phase to swing 

phase and vice versa between the two legs are more synchronized in groups with haptic 

feedback than in groups with only visual feedback. 

While Ivanenko et al. found significant kinetic changes resulting from the varying 

magnitude of ground force reactions; this is of less importance to the eventual work.  We 

propose employing hand trajectories only to define the kinematics and not the kinetics of 

the foot trajectory. 

     Figure 2.6 shows the average fall throughs per unit distance. The Haptic & 

Visual feedback group had fewer fall throughs per unit distance, followed by Haptic-only 

feedback group, followed by Visual-only feedback implying haptic feedback is important 

in spatial awareness during ambulation. In session 4, subject 4 in the Visual-only group 

displayed fewer fall throughs per unit distance compared to all other Visual-only 

subjects. This reduced the mean as observed in Figure 2.6.  The fall throughs per unit 

distance within session and within trial analysis showed no significant change implying 

that there is no significant learning occurring after successive trials or session. In fact, 

the curve of fall throughs per unit distance is almost flat as can be observed in Figure 2.7 
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for the Visual-only group, indicating little learning. This suggests that even with extensive 

training, the Visual-only feedback group will continue to lag behind other two groups in 

their performance. 

Distance travelled by the Haptic-only and Haptic & Visual feedback groups was 

significantly better than Visual-only group (Figure 2.8). This implies that Visual-only 

feedback does not play a role in virtual horizontal movement. Also, it was observed in 

the Visual-only group, the distance travelled by using left and right hand was different. 

We believe it is because the Visual-only group were not able to identify the ground and 

were unaware that they were taking shorter steps with one leg and longer steps with the 

other. The haptic group performs better with successive sessions with respect to 

distance travelled but they make the same number of errors per unit distance implying 

they gain confidence with the task to walk faster without however improvement in 

accuracy. It is therefore seen that there is learning, not with regard to fall throughs but 

with regard to improving the distance travelled. Though there was non-significant 

learning observed for groups, the learning plateaued from session 3 (Figure 2.8). It was 

also observed that learning was better for the Haptic & Visual feedback group than 

Haptic-only group between trials in the initial sessions (session 1 & 2) but there was no 

learning observed between trials in latter sessions (Figure 2.9). However the distance 

travelled, though not statistically significant, is less in the Haptic & Visual group 

compared to the Haptic-only group in almost every trial and session.  This may be 

because the visual feedback when added to haptic feedback reduces errors at the 

expense of speed. Distance travelled by Haptic & Visual group improved in successive 

trials as shown in Figure 2.9 to almost catch up with Haptic-only group as practice 

improves performance. Studies by Woodworth et al. have shown that visual feedback 

reduced the error in movement (Proteau, 1992). Karniel et al. have shown that subjects 

performed larger and faster movements when not provided with visual feedback as 
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compared to when provided with visual feedback during rhythmic forearm movements 

(Levy-Tzedek, 2012). This observation is in accordance with the results shown in our 

study where subjects performed faster movement when provided with only haptic 

feedback and were able to maintain the frequency of the movement but not the 

accuracy. 

Ivanenko et al. showed the importance of ground force reaction on the feet in 

modulating the trajectories of the distal portions of the legs.  The study has shown that 

the neural control of hand movements, used to define foot trajectories, requires 

equivalent force input.  Even though human hand movements are not used to control 

gait, subjects who received visual & haptic, or Haptic-only feedback, quickly adapted to 

the haptic feedback and produced adequate and reliable simulated gait with their hands.  

No significant learning period was necessary. 

 

2.5. Conclusion 

Haptic and visual feedback is important for production of a normal gait cycle. Haptic 

feedback is vital to maintain the rhythmicity, pattern, to induce the phase changes of the 

gait pattern and to trigger changes in the foot trajectory. Visual feedback is required to 

navigate obstacles and reduce errors, but visual feedback alone cannot provide the 

necessary feedback required for the normal gait cycle even after extensive training. This 

study confirms that haptic feedback to the hands is essential to allowing the hand 

trajectories to be surrogates for neural signals for gait that are otherwise prevented from 

reaching the legs due to spinal cord injury.  Furthermore, the current performance in 

spite of lack of extensive learning indicates that subjects are likely to adapt well to using 

their hands to manipulate their legs.  



55 
 

CHAPTER 3 

 CONTROL ALGORITHM FOR EXOSKLETON 

 

3.1 Introduction 

The study from Chapter 2 demonstrated that trajectories from hand could produce 

trajectories similar to normal gait cycle when provided with appropriate feedback. 

Proprioceptive feedback, especially relating to position and force is necessary to help 

produce the desired trajectories.  It is therefore necessary to develop a control method 

that can provide the feedback. The goal of this work was to develop an intuitive control 

mechanism to translate the intentions of the hand in real time while also providing haptic 

feedback to the user. This work addresses specific aim 1. Key to the development of the 

control mechanism is the use of the admittance control paradigm. 

Broadly there are two control paradigms in robotics; impedance control and 

admittance control. Impedance control uses the position detected from the user’s 

intention using sensors to compute the force or torque required to move the robot 

(Carignan, 2000, Glosser, 1994). The control objective of impedance control paradigm is 

to impose (i.e. impede), along each direction of the task space, a dynamic relation 

between the manipulator position and end effector force (Hogan, 1984, Hogan 1985). It 

can be described as ‘displacement in, force out’ as the user moves the mechanical 

device, the device will react with a force (Van der linde 2002). Impedance control 

devices are very light and achieve back drivability by cable driven mechanism ex. 

SensAble’s PHANToM. An admittance on the contrary represents the inverse of 

impedance control. It detects the force commanded by the operator and controls (i.e. 

admits) the velocity and/or displacement of the device (Dautenhahn, 2011). Admittance 
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control can thus be summarized as ‘force in displacement out’. In its simplest form, it is a 

computer implementation of Newton’s 2nd Law; ∑ force= mass X acceleration. Here, the 

mass can be set to a desired low value, hence the user feels the inertia of the low mass 

and not of the entire robot. This control mechanism reduces/minimizes the inertia and 

backlash of the system while allowing higher stiffness and high forces, thus allowing for 

varying mechanical designs ex. Haptic Master (Dautenhahn, 2011). Thus, admittance 

control or force control enables human-like compliant motion and manipulation in 

complex environments. It is also called interaction control, as the algorithms are capable 

of controlling the robot’s position along the direction of the task space (Haidegger, 2009). 

Admittance control devices are capable of rendering very high stiffnesses and minimal 

friction, giving a very free feel to the motion. They are very suitable for larger 

workspaces, and also for master-slave applications and for carrying complex end 

effectors with many degrees of freedom. Also, they intrinsically register forces 

encountered, and are therefore very suitable for haptics and neurological research. Also, 

with admittance control, the device can be made back drivable, and therefore, like any 

back drivable device the device can overcome/resist the forces presented by system 

(Van der linde 2002).  

Admittance control is appropriate for use with human/robot interaction as it is a 

very intuitive control mechanism, where the object or robot will move in the direction of 

the force applied by the user and also will move proportional to the force applied by the 

user.  The amount of force required to activate the system can be varied to 

accommodate the user needs. Since the system is back drivable, it is safe and easy for 

human interaction. 
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3.2  Robot Design 

 Mechanical Design 3.2.1

A 1/2 scale biped robot representation for lower extremity exoskeleton was built to test 

the control mechanism. The robot has 2 links, from hip to knee, and from knee to ankle 

complying with the anthropometric scale of the human leg. The two legs are joined at the 

hip. A foot was custom printed in ABS Plastic to be fitted at the ankle (Appendix C). It 

also has a provision to mount Phidget force sensors to detect ground contact. A 3 DOF 

force sensor is attached to the ankle of each leg using custom made constructs in ABS 

(Appendix C). A trekking pole is mounted on the force sensor to be controlled with hand 

movement as shown in Figure 3.1.  

 

 Electrical Design 3.2.2

The robot has 5 DOF in each leg, the hip has 2DOF for flexion/extension and 

abduction/adduction, knee has 1DOF for flexion and ankle has 2 DOF for plantar 

flexion/dorsi-flexion and inversion/eversion. The hip and knee flexion/extension are 

provided by the Dynamixel MX-106 motors and the ankle flexion/extension is provided 

by Dynamixel MX- 64 motor on each leg of the biped.  

The hip abduction/adduction is provided by an additional Dynamixel- MX-106 

motor and the ankle inversion/eversion is provided by an additional Dynamixel- MX-64 

motor. Since the hip and the knee have higher torque requirements during the swing 

phase to clear the ground the higher rated torque motor (MX-106) is used at both these 

joints. Dynamixel motors are fast industrial quality servo motors that have internal 

microcontrollers that provide proportional/integrative/derivative (PID) control. All motors 

are daisy chained by a 3-wire bus on which they were individually addressed from 

MATLAB software using the serial protocol at 1 Mbits/second. The motors are integrated 
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with temperature and torque sensors which turn off the motors when the temperature 

and torque values exceed the preset values. The maximum speed of the motor is 45 

RPM in no load condition and at an operating load of 80%, the speed decreases to 10 

RPM, hence the speed of the biped is dependent on the speed of operation of the motor. 

3DOF 35 mm Flattop Optoforce sensors are mounted at the ankle of each leg to 

detect the forces exerted by the user. A carbon fiber rod serves as the trekking pole 

connecting the sensor to the user’s hands. Forces obtained are digitized and 

preprocessed by the Optoforce’s custom DAQ device.  

The completed design of the biped is shown in Figure 3.1 

 
 
Figure 3.1 Front view of 10 DOF biped robot designed based on anthropometric data.

 

 

 

Dynamixel Motors for hip flexion /abduction 

Aluminum rod 

Dynamixel Motors for ankle flexion /abduction 

 

Extrusion built in ABS plastic to mount the rod and 

sensor 

3 DOF Optoforce Force sensor 

Dynamixel Motors for knee flexion 
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3.3 Control Algorithm 

The control algorithm for each leg consists of three outer admittance loops (one for each 

force/torque direction) to produce Cartesian position, inverse kinematics to convert 

Cartesian positions to joint angles and an impedance loop associated with each motor. 

The admittance loop and inverse kinematics are accomplished in MATLAB on a 

computer running Windows 7 and the inner impedance loop is executed by the 

embedded processor in each motor. 

 

  Sagittal Plane Control 3.3.1

The forces in the x and y directions are read at 1000 Hz from the 3 DOF Optoforce force 

sensor. The Cartesian position in each direction is computed by solving the differential 

equation (Equation 3.1) using CVode (Ordinary Differential Equation Solver) developed 

at Eindhoven University (Van riel, 2012) for each interval of .01 s.  

 

x′′(t) =
F(x)

𝑀
−

B ∗ x′(t)

M
 

(3.1) 

Where F(x) = Force (N), M=Mass (kg), B = damping (Ns/m), x’ (t) =velocity (m/s), x’’ (t) 

=acceleration (m/s2) 

 

The x and y foot position values are converted to the corresponding joint angles 

of the knee and hip using custom developed inverse kinematics. The joint angle of the 

ankle is computed from the hip and knee to keep the foot parallel to the floor. The joint 

angles are in turn converted to hip, knee and ankle motor positions at each .01s time 

interval in the sagittal plane. These motor values are in turn fed to the corresponding 
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motors to generate the required torque to perform the movement intended by the user. 

The control paradigm is described by the flow diagram shown in Figure 3.2.  

Inverse Kinematics 

The inverse Kinematics algorithm uses the positions of the foot and converts to angles of 

the hip, knee and ankle in sagittal plane. The angles are calculated using the law of 

cosines (Equations 3.2, 3.3 and 3.4), where X1 and Y1 are the positions obtained from 

the admittance control paradigm. θ1 is the hip angle, θ2 is the knee angle, and θ3 is the 

ankle angle. 

 

𝜃2 = −2𝑡𝑎𝑛−1 √
(𝐿1 + 𝐿2)2 − (𝑋1 + 𝑌1)2

(𝑋1 + 𝑌2)2 − (𝐿1 + 𝐿2)2
 

(3.2) 

𝜃1 = tan (
𝐿2𝑠𝑖𝑛𝜃2

𝐿1 + 𝐿2𝑐𝑜𝑠𝜃2
) − tan (

Y1

X1
) 

(3.3) 

𝜃3 =  θ2 − tan (
𝑌1

𝑋1
) + tan (

𝐿2𝑠𝑖𝑛𝜃2

𝐿1 + 𝐿2𝑐𝑜𝑠𝜃2
)   

(3.4) 

 

Where, X1, Y1 are the end effector position, L1 is the link length between hip and knee, 

L2 is the Link length between knee and ankle. θ1 is hip angle, θ2 is knee angle, θ3 is 

ankle angle.   
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Figure 3.2 Control Algorithm for sagittal plane: The control algorithm consists of the 
entire control running at 100 Hz. The impedance control running at 1000 Hz. The 
admittance loop includes our custom admittance control algorithm. Here, θ1-hip angle, 
θ2-knee angle, θ3-ankle angle. px, py ax, ay vx and vy are position, acceleration and 
velocity in Cartesian x and y direction, respectively. 

 

 

  Coronal Plane Control 3.3.2

The foot position in the z axis is computed by reading the force in the z-direction from 

the force sensor at 1000Hz. The force is converted to torque by multiplying the force by 

the moment arm. Angular acceleration is computed by dividing the torque by inertia 

(Acceleration =Torque/Inertia); the double integration of the angular acceleration 

provides the angular position in z direction. The angular position is obtained by solving 

the differential equation (Equation 3.5) using CVode (Ordinary Differential Equation 

Solver). The joint angle of the ankle to keep the foot parallel to the floor is computed. 

The joint angles are in turn converted to hip and ankle motor positions at every point of 

time. These motor values are in turn fed to the corresponding motors to generate the 

required torque to perform the movement intended by the user. The ankle angle is 

computed from hip angle as shown in Equation 3.6. All the algorithms are written and 

executed using MATLAB.  
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x′′(t) =
T(x)

𝐼
−

B ∗ x′(t)

I
 

(3.5) 

𝜃5 = 180 − 𝜃4 (3.6) 

 

Where, T(x) = Torque (Nm), I=Inertia (kgm2), B = damping (Ns/m), x’ (t) =velocity (m/s), 

x’’ (t) =acceleration (m/s2), θ4 is the hip angle, and θ5 is the ankle angle. 

 

 

Figure 3.3 Control Algorithm for Coronal Plane: The control algorithm consists of an 
admittance control running at 120 Hz and an impedance control running at 1000 Hz. 
Here, θ4 is the hip angle, θ5 is the ankle angle. ay vx and vy are angular acceleration 
and angular velocity in x and y directions, respectively.
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3.4  Gait Control 

The gait cycle involves both swing and stance phase, when one leg is in swing the other 

leg is in stance according to the gait cycle. Swing phase involves the hip, knee, and the 

ankle joints of the leg. The stance phase involves the hip and ankle joints of the leg. Two 

control paradigms have been designed to control the gait cycle; Hybrid Control and 

Complete Control. 

  

  Hybrid Control 3.4.1

The hybrid control involves the user controlling only the swing leg of the robot using the 

admittance control algorithm while the stance foot positions are programmed in real time 

based on the swing foot positions to aid the robot to move forward.  

The hybrid control algorithm computes the joint angle of the swing phase based 

on the force exerted in x, y, z directions by the user on the rod mounted on each leg. 

The joint angle of the stance phase is determined based on the stride length and 

amplitude of the swing phase. These motor values are in turn fed to the corresponding 

motors to generate the required torque to perform the movement intended by the user. 

Four strain gage single axis force sensors are mounted on the four corners of the bottom 

of each of the custom designed feet of the biped robot. The forces from sensors are read 

every 8 ms into MATLAB. The readings are used to determine if the leg has reached 

stance from swing phase and vice versa. The swing phase of either foot is possible only 

if the other foot is on the ground. The haptic feedback is provided by the floor and is felt 

by the hand when the foot in stance phase is in contact with the floor. The user controls 

the gait pattern with only the swing leg while the synchronization of the stance leg with 

the swing leg is performed by the algorithm. 
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Figure 3.4 Control Flow of Hybrid Control Mechanism. 

  Complete Control 3.4.2

The complete control involves the user independently controlling both the swing leg and 

stance leg of the robot using the admittance control algorithm.  

The complete control algorithm computes the joint angle of the swing phase and 

stance phase based on the force exerted in x, y, z directions by the user on the rod 

mounted on each leg. These angle values are converted into motor values and are in 

turn fed to the corresponding motors to generate the required torque to perform the 

movement intended by the user. The haptic feedback is provided by the floor and is felt 

by the hand when the foot in stance phase is in contact with the floor. The user needs to 

swing the leg forward while the trekking pole of the stance leg is pushed backwards. 

Since the stance foot is unable to move, the hip joint, and hence the entire robot is 

propelled forward. Here, the user needs to synchronize the movement between both the 

leg as well maintain the gait pattern.  
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3.5  Evaluation of the Design 

A slow gait-like movement was performed for a period of 60 s to demonstrate the user 

control. The accuracy of the algorithm, time delay, and horizontal trajectories was 

evaluated to validate the working of the control algorithm. 

 

  Accuracy 3.5.1

The accuracy of the algorithm was evaluated by comparing the lag in cm between the 

desired and the actual position of the feet in x and y direction while performing the gait-

like movements using the hand. The accuracy in the sagittal plane was evaluated using 

the forward kinematics algorithm. The motor angles were read at each time point in the 

sagittal plane from hip, knee motors. The motor positions were converted to joint angles 

of the hip and knee. A forward kinematics algorithm was developed and applied to obtain 

the x and y position reached by the motor in Cartesian space. This position was in turn 

compared with the desired x and y positions (x and y position computed using the 

admittance control) to evaluate the accuracy of the inverse kinematics algorithm and 

accuracy of the motor. 

The actual and desired angular position in z axis was also evaluated for the 

accuracy of algorithm. The hip abduction and adduction motor position were read from 

hip motor. The motor position was converted to joint angle. The joint angle was in turn 

compared with the joint angle of the computed angular position in z axis. 

 

  Time Period 3.5.2

The time period required to perform each iteration of the algorithm was evaluated. A 

longer time period leads to poor user experience as the user would experience the 

movement afresh at each time point; hence it is important to evaluate the lag time for 

understanding the user experience. 
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  Horizontal Trajectories 3.5.3

The foot trajectories in sagittal plane were compared to the normal foot trajectories to 

evaluate the effectiveness of the control using hand trajectories by one subject. 

 

3.6  Results and Discussion 

  Accuracy of the Algorithm 3.6.1

As shown in Figure 3.5, the desired trajectory followed the actual trajectory closely in 

both x and y direction. The average lag in cm between the actual and desired trajectory 

was computed to be .1 cm in the x direction and .13 cm in the y direction.  

As shown in Figure 3.6, the actual angular position followed the desired angular 

position closely in z direction. The average lag in radians between the actual and desired 

trajectory was computed to be .04 radians in z direction.  

 
 
Figure 3.5 a) Desired foot position (red) and actual foot position (black) in x axis. b) 
Desired foot position (red) and actual foot position (black) in y axis. 
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Figure 3.6 Desired angular position (blue) and actual angular position (red) in z axis.  

 

3.6.2 Time Duration of the Algorithm 

The time duration was computed for each iteration to be 10 ms for each leg with read 

function. This time was further reduced to 8 ms for both legs by using sync write function 

and removing the read function. Since the algorithm to control does not require the 

position of motors, the read function was not used in the algorithm. 

Studies have shown that control loop of 100 Hz is sufficient for human operators 

to feel smooth, nearly passive movements of a robot (Van der Linde, 2002).   
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3.6.3 Foot Trajectory 

Hybrid Control Trajectories 

Figure 3.7 shows the complete gait cycle produced by the control algorithm which 

resembles the gait trajectory produced during normal walking. Also, it can be observed 

that there is smooth transition between the stance to swing and vice versa (Figure 3.8). 

 

Figure 3.7 Foot trajectory of left leg (top) and the right leg (bottom) during gait cycle.  
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Figure 3.8 Horizontal trajectory of left leg (top) and the right leg (bottom) of the robot 
during gait cycle.  
 

Complete Control Trajectories 

Figure 3.9 shows the complete gait cycle produced by the control algorithm which 

resembles the gait trajectory produced during normal walking. Also, it can be observed 

that there is smooth transition between the stance to swing and vice versa (Figure 3.10). 
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Figure 3.9 Foot trajectory of left leg (top) and the right leg (bottom) during gait cycle.  

 

 
 

Figure 3.10 Horizontal trajectory of left leg (top) and the right leg (bottom) during gait 
cycle.  
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The progression in a normal gait cycle is achieved by two main forces; the swing 

leg generates the force during the onset of the swing to move the torso forward and the 

force generated by the contralateral stance leg during single stance helps with the 

movement of the torso forward, as the ankle dorsiflexes beyond neutral and accelerates 

with heel rise further propelling the torso forward. The moment generated by these two 

forces is further used by the next stance phase during the heel contact. Thus, throughout 

the stance period the heel, ankle, and forefoot serially serve as a rocker that allows the 

torso to advance over the supporting foot, while the hip helps by providing moment to 

move the torso forward. 

In the case of biped, the flat footed nature of your biped gait greatly reduces the 

contribution of the swing leg in translating the torso forward. Hence, the motor at the 

stance ankle has to provide considerably more torque than the biological stance ankle to 

provide the rocker movement to propel the torso forward. The Hybrid and the Complete 

control mechanism have actuation about the ankle to provide the torque required to 

perform the movement to propel forward. 

 

3.7 Conclusion 

An admittance control based user-robot control strategy has been developed and tested 

that allows the user’s neurally generated foot trajectories to be redirected through the 

hands, with hand-generated movements and forces precisely controlling the movement 

of the biped.  Such a system will allow complete user control of real-time ambulation, 

and will provide haptic (proprioceptive) feedback through the hands, that is essential for 

modifying gait in the everyday world. 
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CHAPTER 4 

EVALUATION OF THE BIPED CONTROL MECHANISM 

 

4.1  Introduction 

 
Human gait is highly coordinated movement that involves both legs synchronized to 

propel the body forward. Though gait is a highly rhythmic movement, it is often 

influenced by the environment; changes in walking conditions can have effects on the 

patterns. There are many factors in walking activity, such as speed, stride frequency; 

obstacles etc. that influence the gait pattern (Tanawongsuwan, 2003).  

The objective of this study was to evaluate the gait pattern of the biped under all 

walking conditions when controlled by users using the complete control approach 

described in Chapter 3. This converts the user intentions of the hand into real time joint 

angles. The control strategy was tested using naïve healthy subjects on the treadmill to 

evaluate the kinematics of hand walking control mechanism.  

   The gait kinematics is defined by the joint angles and duty cycle. Other gait 

parameters (pattern, speed, time and amplitude synchrony) are used to define user’s 

dynamic stability. The gait can be defined by its pattern, speed, time and amplitude 

synchrony and inter limb co-ordination. Stride variability in time and amplitude is an 

important characteristic of stability. Maki et al. found that increased variability of speed 

and stride length increased the likelihood of a fall (Maki,1997).  Hausdorff et. al. found 

that variability in stride time or decreased time synchrony predicted fall (Hausdorff, 

2001). Both studies show that increased variability in time synchrony or stride amplitude 

lead to instability of gait. Further, it was found the inter limb co-ordination also plays an 

important role in the stability of gait. Variability in symmetry between the time and 
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amplitude between the limbs also are predictors of instability (Paterson, 2011, Yogev, 

2007).  

    A practiced task inherently produces a smooth trajectory without jerk. Hogan 

et al. describe smoothness as minimization of mean squared jerk (Flash, 1985).This 

quantitative measurement of smoothness was utilized to demonstrate that the 

smoothness of simple, novel, movements increased as the skill level of the task 

improved, or became better learned (Schneider, 1989). A smooth end point trajectory 

also defines a planned movement. In gait, this end point is represented by the foot 

(Hreljac, 2000). Here, the smoothness of the foot trajectory of biped walking was 

evaluated to understand the jerk associated with performing the movement with different 

conditions. 

   The aim here is to show that the robot gait trajectory, produced at varying 

speeds, with and without obstacles by the real time control of the foot of the biped 

resembles the normal gait under such varying walking conditions. Described below is the 

design & methodology of the experimental protocol and the data obtained. Analyses of 

these results show presence of synchrony, smoothness and similarity to human gait, 

showing that the users were able to control our biped robot’s complete gait cycle such 

that the biped gait compared well with normal human gait. This Chapter addresses 

specific aim 2.                        
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4.2  Design and Methodology 

 Experimental Setup 4.2.1

Biped Walking 

The experimental setup included a Pro-form J6 treadmill around which custom frame 

was built at NJIT using 80-20 aluminum to support the biped on the treadmill. The 

custom frame allows the users to have complete view of the treadmill and the robot. 

Optitrak motion capture system Trio was mounted on the treadmill to record the 

movement of the biped. The treadmill speed was reduced by adding a high voltage 

resistor in series with the motor. Optitrak markers were placed on the hip, knee and 

ankle of both the legs to track the movement of legs. 

Human Walking 

The experimental setup included the same Pro-form J6 treadmill. An Optitrak 

motion capture system Trio was placed behind the subject to record the movement of 

the subject on the treadmill. A custom construct was designed and printed in ABS to 

strap the Trakstar (Appendix C) and Optitrak markers at hip, knee and ankle of both the 

legs. A Data Acquisition system from National instruments was used to sync the Optitrak 

cameras with MATLAB. 

Subject population 

The study included fourteen subjects divided equally into two groups, with one group 

controlling the biped on the treadmill and the other group performing normal human 

walking on the treadmill. The subjects were randomly assigned to the groups. All 

subjects were able bodied subjects under the age of 35, with fully functional upper and 

lower extremities. The groups were age and gender matched. Exclusion criteria included 

any disability to the upper or lower extremities or inability to perform normal gait. The 
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study was approved by the NJIT IRB and the experiment was performed with the 

subjects’ consent. 

 

  Experiment 4.2.2

The experiment was designed to measure kinematics, synchrony, smoothness under 

varying walking conditions such as speed and obstacles so as to evaluate the biped 

robot’s gait in comparison to normal human gait. The subjects who participated in the 

experiment were divided into two major groups: Biped control group and the Human 

walking group. The biped control group controlled the gait of the biped on a treadmill 

using their hand movements while the human walking group performed normal gait on a 

treadmill. The study consisted of a total of eight sessions. Each session comprised of 

eight trials. Each trial was for duration of one minute followed by a thirty second rest. 

The speed of the treadmill during each trial was as shown in Table 4.1. The speed was 

varied after thirty seconds in Sessions 3, 4, 7 & 8. Sessions 5-8 included users stepping 

over obstacles. The number of obstacles presented to each leg was the same, though 

not in the same sequence. Twice the numbers of obstacles were included for the biped 

group in order to offset for their reduced speed. Both groups avoided obstacles with only 

one foot during a trial. The obstacle avoidance was alternated between both feet in the 

successive trials. 

Table 4.1 Speed of Treadmill for Each Trial During Each Session 
 

 Sessions1&2 Sessions 3 &4 Sessions 5&6 Sessions 7&8 

Trial 1 Medium  Medium to High  Medium  Medium to High  

Trial 2 Medium  Medium to Low  Medium  Medium to Low  

Trial 3 High  High to Low  High  High to Low  

Trial 4 Low  Low to High  Low  Low to High  

Trial 5 Medium  High to Low  Medium  High to Low  

Trial 6 High  Low to Medium  High  Low to Medium  

Trial 7 Low  High to Low Low  High to Low 

Trial 8 Medium  Low to High Medium  Low to High 
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I. Biped Control Walking 

All subjects of the biped control group control the gait of the biped using the trekking 

pole extending from the foot of the robot as shown in Figure 4.1 for eight trials in each of 

the eight sessions. The biped control group performed two additional familiarization 

sessions before the start of the actual sessions, these sessions were not included as 

part of the analysis. The first familiarization session was performed without the treadmill. 

The subjects controlled the leg of robot in the air to get accustomed to kinematics of the 

leg. Following this, the second familiarization session included eight trials which were 

performed on the treadmill with the lowest speed (.5 mph).  

   The biped was placed on the treadmill and the user was seated in a 

comfortable chair behind the treadmill. The users were instructed to control gait pattern 

of the biped during each trial by applying small forces to the pole extending from the 

sensor on each leg in the direction of the intended movement. The control involved 

ipsilateral control, i.e. the right hand of the subject controlled the movement of the right 

leg and vice versa. They were instructed to walk the robot on a straight path. The first 

four sessions involved no obstacles and last four sessions involved navigating obstacles. 

Obstacles in the form of visual markers were placed in the path of the biped at random 

intervals on the treadmill, requiring the user to change the stride length of a leg. The 

subjects were instructed to step over the obstacles. During the obstacle navigation 

session, a black tarp covered part of the treadmill to keep the subjects from seeing the 

obstacles in advance. The speed of walking was varied between the trials to test the 

smoothness of the gait with varying speed. The speed variations for the biped were 0.1, 

0.2 and 0.3 mph (0.04 to .16 m/s). 
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Figure 4.1 User control of biped a & b) User controlling the biped on treadmill. C) User 
controlling the biped in air during familiarization session. 

 

II. Human Walking 

Subjects were instructed to perform normal ambulation for eight sessions with eight trials 

each on a treadmill, with each trial lasting one minute followed by thirty seconds rest. 

Not more than one session was performed on a given day. Subjects were instructed to 

walk in a straight path. The speed of treadmill was varied between the trials (1-2 

miles/hr) depending on the subject’s normal walking speed. All the subjects’ speed was 

calibrated before the beginning of the first session. This was performed by asking the 

user to walk at their normal walking speed, then the high and low speeds were derived 
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by adding and subtracting .4mph respective to their normal walking speed. Similar to the 

biped walking protocol, the first four sessions involved no obstacles and last four 

sessions involved navigating obstacles. Obstacles in the form of visual markers were 

placed at random intervals on the treadmill, requiring the user to change the stride 

length. The subjects were instructed to step over the obstacles. One subject was asked 

to walk at low speed with a foot orthosis. Due to the orthosis, the subject performed a flat 

footed gait. The speed was a constant low speed and no obstacles were present. 

The data was processed using MATLAB and all statistical analysis was 

performed using SPSS. 

 

 Data Analysis 4.2.3

Horizontal and vertical trajectories collected at 120 Hz of the ankle, hip and knee were 

filtered using an effective 4th order, zero-lag Butterworth low-pass filter. The cutoff 

frequency was determined using the power spectrum. The filtered data were used for 

further analysis.  

 

4.2.3.1 Foot Trajectory. 

i. Root Mean Square Error 

The Root Mean Square Error (RMSE) was determined as  a measure to evaluate the 

differences in gait cycle between  trials for Sessions 1 and 2, in other words to evaluate 

the synchrony between steps. The trajectories were divided into individual complete gait 

trajectories of all steps during a trial. The gait cycles were further normalized based on 

the toe off.  Following normalization, the first gait cycle (in other words, first step) was 

excluded and the RMSE distance between the following complete gait cycles (was 

considered the first step) and all other remaining steps were computed. By comparing 
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with the first gait cycle, we can determine how the subsequent steps differ during the trial 

with respect to start of the trial. To do so, we computed the standard deviation of RMSE 

for each trial of each session for all subjects. Greater the standard deviation of RMSE 

between first step and remaining steps, lower is the ability to generate a synchronous 

trajectory during the duration of a trial.  

 In order to identify any possible learning, we compared Sessions 1 and 2 using 

Paired Sample T-test. Further, the influence of speed was analyzed to determine, if the 

speed affected RMSE, i.e. the ability to produce synchronous steps. Independent 

sample t-test was used to compare between biped and human walking in left hand in 

session2. 

ii. Amplitude and Frequency Synchrony 

The rhythmicity of the movement was evaluated using amplitude and frequency 

synchrony. The time taken for a gait cycle was computed for all the gait cycles in a trial 

for Sessions 1 and 2 for the human walking and biped walking. Human walking and 

biped walking differ by their physical size, and would therefore result in different time and 

distance. Hence the measures were made comparable through normalization by dividing 

the collected values by the maximum value during a particular trial for human walking 

and biped walking independently.  

 The amplitude synchrony was computed by calculating the inter peak distance 

between the horizontal and vertical trajectory with similar normalization as frequency 

synchrony. The standard deviations of amplitude and frequency synchrony were 

computed to determine the variation in the amplitude and frequency of the gait cycles in 

a trial. 

A) Human vs. Biped walking 

The amplitude and frequency synchrony were compared between the normal human 

walking and the biped control group to determine synchronicity differences between the 
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two groups. Based on the assumptions of statistics, Independent sample t- test was 

employed to compare the values of time synchrony and amplitude synchrony between 

the two groups at Sessions 1 and 2. 

B) Biped Walking Session 1 vs. Session2  

The amplitude and frequency synchrony in the biped groups were also compared 

between Sessions 1 and 2. As synchrony is a measure of differences in reproducible 

actions, synchrony in gait amplitude and frequency was therefore used as a measure to 

determine the improvement in periodicity of the movement with practice. Paired sample 

t-test was used to compare the values of synchrony between Sessions 1 and 2 for biped 

walking. Pearson’s correlation was used to correlate the left and right leg synchrony. 

4.2.3.2 Smoothness of the Foot Trajectory.  The smoothness of the 

trajectory can be calculated as a function of jerk. Hogan et al. quantified smoothness of 

a trajectory as a function of jerk, which is the time derivative of acceleration. The 

smoothness can be quantified as a square of the third derivative of the position as 

shown by Equation 4.1. Hence the jerk was computed for a position in x and y plane and 

further the normalized smoothness of the trajectory were calculated per trial. The 

measure of the jerk of movement should be without any dependency on the duration and 

amplitude of the measure i.e. must be dimensionless. The integrated squared jerk has 

dimensions of length squared divided by the 5th power of time (Hogan, 2009). Hence a 

dimensionless measure is used as shown in Equation 4.1.The smoothness of the 

trajectory was analyzed between sessions to determine the influence of speed and 

obstacles. 

 The smoothness of trajectory was also compared with the computed 

smoothness of trajectory during human walking. 
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                                          𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 = √
𝑡𝑖𝑚𝑒5

2∗𝐿𝑒𝑛𝑔𝑡ℎ2 ∫ 𝑗𝑒𝑟𝑘2𝑑𝑡
𝑇

0
                                           (4.1) 

Where, Length is the total length of trajectory. 

A) Smoothness differences between Human vs. Biped walking 

The jerk of Sessions 1 and 2 of human walking was compared with biped 

walking. 

B) Constant Speed 

The jerk of Sessions 1 and 2 of biped walking was compared to determine 

learning between sessions. 

C) Effect of speed change in a trial on Smoothness 

The Smoothness of Sessions 2 and 3, and Sessions 2 and 4 of biped walking 

were compared to determine influence of speed on jerk. Also, Sessions 3 and 4 were 

compared to determine learning between sessions. 

D) Effect of obstacle navigation with constant speed in a trial on Smoothness 

The Smoothness of Sessions 2 and 5, and Sessions 2 and 6 of biped walking 

were compared to determine the difference in Smoothness due to obstacles. Also, 

Sessions 5 and 6 were compared to determine learning between sessions. 

E) Effect of obstacle navigation with varying speed in a trial on Smoothness 

The Smoothness of Sessions 2 and 7, and Sessions 2 and 8 of biped walking 

were compared to determine the difference in Smoothness due to obstacles and speed. 

Also, Sessions 7 and 8 were compared to determine learning between sessions. 

 As the data violated assumptions of normality for parametric tests, Man Whitney 

U test was used to compare the values of jerk between Human and biped and Wilcoxon 

Paired test was used to compare values between different sessions. 
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4.2.3.3 Joint Angles.  The joint angles of hip and knee of both the 

legs of the biped robot walking for all subjects were computed from the filtered 

Cartesian position from the Optitrak data using inverse kinematics for Sessions 1 

and 2. The joint angles were also computed for single human subject who 

performed the flat footed gait on the treadmill and also for all other normal human 

walking subjects.  

4.2.3.4 Duty Cycle. The duty cycle of the gait cycle was calculated. The 

average relative percentage of stance and swing phase was calculated for 

Sessions 1 and 2 using the formula given below:  

Duty cycle= Stance Phase + Swing Phase 

Stance Phase % = 100 * Stance phase/ Duty Cycle 

Swing Phase % = 100 * Swing phase/ Duty Cycle 

4.2.3.5 Frequency Variation. Sessions 3 and 4 included trials with 

change in speed after thirty seconds. The hypothesis is that as the speed 

changes the length of steps and the number of steps should change. The trial 

was divided into two by dividing the trial at thirty seconds. The frequency with 

maximum power was determined for each trial from absolute square of fast 

Fourier transform (fft) signal. This frequency is the frequency of walking during 

the first thirty seconds and last thirty seconds. Correlation between the speed of 

the treadmill and the frequency of walking during each time period was 

determined. The Pearson’s r was determined for the correlation values. 

4.2.3.6 Accuracy of the Foot trajectory in Obstacle Navigation. The 

number of obstacles navigated and missed was determined for every trial for all 
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subjects. The percentage of obstacles successfully navigated was evaluated as a 

measure to determine the accuracy of obstacle navigation, which is an indicator 

of accuracy of the foot trajectory. Mann Whitney U test was used for statistical 

analysis. 

 
4.3 Results 

  Foot Trajectory 4.3.1

The foot trajectory between the human ground walking and biped walking was 

found to be very similar as seen in Figure 4.2. 

 
 
  Figure 4.2 Foot trajectory of a) Biped b) Human on treadmill. 
 

4.3.2 Synchrony 

The time between steps of a trial between the right and left leg for Sessions 1 

and 2 was found to be highly correlated. This implies that the left and right leg had the 

same time duration for steps for a subject during a trial (Figure 4.3).  Also, time 

synchrony between human and biped walking showed that human walking had 

statistically significant better synchronicity than biped walking (Figure 4.3c). Human 

walking showed that synchronicity increased with speed but no such influence was 

observed with biped walking. The amplitude synchrony results showed no difference 

between human walking and biped walking and high correlation between left and right 

leg as shown in Figure 4.3 d and e. 

a) b) 
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Figure 4.3 Correlation between right and left time of each step for each subject for a) 
Session 1 and b) Session 2 for biped walking. c) average time synchrony (SEM) of 
human walking and biped walking by right hand in Session 1. 
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Figure 4.3 (continued) Correlation between right and left amplitude of each step for 
each subject for d) Session 1 and e) Session 2 for biped walking. 
 

4.3.3 Root Mean Square Error 

The RMSE showed statistically significant differences between the Sessions 1 and 2 for 

both left and right hand as shown in Figure 4.4. No significant difference was observed 

between human walking and biped walking in Session 2 in left hand. Statistically 

significant differences were also observed between slow and fast speeds in Session 1 

as shown in Figure 4.6. Similar effect of speed on the RMSE was observed  in the earlier 

trials of Session 2 but no significant difference was observed in the later trials of Session 
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2 between the high and low speed. Also, when the sessions were compared with respect 

to the speeds, fast speed showed significant difference between the two sessions in left 

hand as shown in Figure 4.5. 

 

 
 

Figure 4.4 Mean Root Mean Square difference between Sessions 1 and 2 for right (Top) 
and left hand (Bottom). 
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Figure 4.5 Mean Root Mean Square difference of all subjects between Sessions 1 and 2 
for left hand with respect to fast speed (trial 3). Significant Difference (p<.05) was 
observed. 
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Figure 4.6 Mean Root mean square difference between fast and slow speed in Session 
1 for right hand (Top) and left (Middle) hand. Significant Difference (p<.05) was 
observed. Mean Root mean square difference between fast and slow speed in Session 2 
for right hand (Bottom). Significant Difference (p<.05) was observed. 
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4.3.4 Smoothness of the Foot Trajectory 

i)     Human Vs Biped Comparison 

The Smoothness of trajectory showed that there was no difference between the 

smoothness of the trajectory in the stance phase but the swing phase showed 

statistically significant difference in smoothness with the biped trajectories having 

smoother movement. 

 
 
Figure 4.7 Mean Smoothness of stance and swing phase between Human righ leg and 
biped walking  by right leg (SEM).  
 
 
 

ii) Biped Between Session Comparison 

 
a) Smoothness during constant speed trials 

The smoothness of the trajectory between Sessions 1 and 2 showed lower jerk with 

increased session, though not statistically significant in both right and left hand as shown 

in Figure 4.8.  

0

5000000

10000000

15000000

Biped  Human

M
e
a
n
 S

m
o
o
th

n
e
s
s
 

Smoothness Of Stance Phase 

0

5000000

10000000

15000000

Biped  Human

M
e
a
n
 S

m
o
o
th

n
e
s
s
 

Smoothness Of Swing Phase 



90 
 

 
 

Figure 4.8 Mean Smoothness of biped walking  in Sessions 1 and 2 for all trials by right 
hand (SEM). 

 
b) Effect of change in Speed on jerk during a trial 

The smoothness of the trajectory increased from Session 3 to Session 4, though not 

statistically significant in both right and left hand. The smoothness of the trajectory was 

further compared with the smoothness of the trajectory from Session 2 to determine the 

influence of speed on the smoothness. There was no statistically significant difference in 

the value of smoothness between Sessions 3 and 2 or Sessions 2 and 4 in all trials 

except trial 8 in right hand, but as shown in Figure 4.9 the average value of smoothness 

was lower with session even with varying speed of right leg. 

 
 

Figure 4.9: Mean Smoothness of biped walking  in Session 2, Session 3 and 
Session 4 for all trials by right hand(SEM). 
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c) Effect of obstacle with constant speed on jerk 

The smoothness of the trajectory showed improvement from Session 5 to Session 6 

though it was not statistically significant. The smoothness was further compared with the 

smoothness from Session 2 to determine the effect of obstacles on the smoothness. 

There was statistically significant difference in the value of smoothness in trials 3 and 4 

in left hand and in trial 8 in right hand between Sessions 2 and 5 but no statistical 

significance was observed between Sessions 2 and 6 in left hand but there was 

significant difference observed in in trial 8 in right hand. Though the smoothness of the 

trajectory decreased with obstacle in Session 5, with practice they were able to learn to 

navigate obstacles in Session 6 as shown by the decreased jerk as shown in Figure 

4.10.  

d) Effect of obstacle with varying speed on jerk during trial  

The smoothness of the trajectory showed improvement from Session 7 to Session 8 

though not statistically significant in both hands. The smoothness was further compared 

with the smoothness from Session 2 to determine the effect of obstacle and change in 

speed on the jerk. Statistically significant difference was observed in trial 7 and 8 in right 

hand and in trial 8 in left hand between Sessions 2 and 7 and no statistically significant 

difference in the value of smoothness between Sessions 2 and 8 in left and right hand. 

As shown in Figure 4.11, the average value of smoothness was lower with obstacles but 

increased with learning.   
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Figure 4.10 Mean Smoothness of biped walking  in Sessions 2, 5 and 6 for all trials by 
right hand (SEM). 

 

 

Figure 4.11 Mean Smoothness of biped walking  in Sessions 2, 7 and 8 for all trials by 
right hand (SEM). 
 

4.3.5 Joint Angles 

The joint angles computed for the biped walking, human walking, and human walking 

with flat foot showed that knee and hip angles of biped walking were similar to the 

angles of human walking with flat foot as shown in Figures 4.12 and 4.13. 
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Figure 4.12 Knee Joint angles a) Biped b) Human with flat foot walking c) Typical 
Human walking 

 

 

 

 
Figure 4.13 Hip Joint angles a) Biped b) Human with flat foot walking c) Typical Human 
walking 
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4.3.6  Duty Cycle 

The duty cycle for Session 1 and of biped walking was computed to be an average of 

58.02 for the stance phase and 42.08 for the swing phase for Session 1 and 54.18 for 

the stance phase and 45.80 for the swing phase for all subjects in Session 2. 

 

4.3.7 Frequency Variation 

High correlation was observed between speed and frequency of steps for all trials in 

Session 4 for 5 of the seven subjects in right hand and left hand as shown in Figure 4.14 

and high correlation was observed between speed and frequency of steps for all trials 

among all subjects in Session 3 as shown in Figure 4.15.  

 

4.3.8 Accuracy of the Foot Trajectory in Obstacle Navigation 

The percentage of total number of successfully navigated obstacles was evaluated and 

the results in Figure 4.16 show that there was no significant difference in the success 

percentage between human and biped walking. Though the average percentage of 

number of obstacles navigated successfully showed that the biped walking trailed the 

human walking (Figure 4.16), Session 2 trial 6 and Session 3 trial 4 showed significant 

differences where the biped walking performed better than human walking as shown in 

Figure 4.17. 
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Figure 4.14 Frequency of steps in comparison with the speed of treadmill in Session 4 
for right (top) and left (bottom) hand. 
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Figure 4.15 Frequency of steps in comparison with the speed of treadmill in Session 3 
for right (bottom) and left (top) hand. 

0.028

0.03

0.032

0.034

0.036

0.038

0.04

F
re

q
u
e
n
c
y
 o

f 
S

te
p
s
 (

H
z
) 

Speed of treadmill 

Frequency Variation of steps by left leg with in Session 3 

First 30 second 30

0.028

0.03

0.032

0.034

0.036

0.038

0.04

F
re

q
u
e
n
c
y
 o

f 
S

te
p
s
 (

H
z
) 

Speed of treadmill 
 

Frequency Variation of steps by right leg with in Session 3 
 

First 30 second 30



97 
 

 
 

Figure 4.16 Average percentage of obstacles successfully navigated during human 
walking and biped walking. 

 

 

Figure 4.17 Average percentage of obstacle successfully navigated during human 
walking and biped walking.
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4.4 Discussion 

A gait pattern is a rhythmic movement of each leg that is influenced by the phase of the 

other leg to obtain a gait cycle. Hence, an effective exoskeleton control method should 

be able to reproduce the same pattern of the movement over a period of time, minimize 

the time variation between the movement as well as coordinate inter limb movement 

(Pearson,1993 Vaughan, 1992).  Inter limb coordination is defined as the ability to 

assemble and maintain a series of proper relations between the movement of both legs 

to produce a sequential movement (Forte, 2002). 

   Differences observed during gait cycles in each of the following four 

parameters, gait time variability or gait synchrony, inter limb variability (between left and 

right leg), smoothness of trajectory (with and without obstacles), and gait speed (the 

correlation between gait speed and gait frequency and between gait speed and stride 

length) was used as a measure to evaluate the above mentioned criteria for gait cycle.  

Joint angles and duty cycle were also compared to determine the accuracy of the gait 

cycle. 

The RMSE was used to identify the differences between the gait cycles during 

each trial. The RMSE showed that the trajectories produced by the hand are of similar 

pattern within a trial signifying that hands can reproduce the movement consistently over 

a trial period. The RMSE showed that variation between the gait cycles in a given trial 

was low and that with increased sessions (i.e. more practice), the subject continued to 

perform better i.e. the RMSE continued to decrease. 

Gait time variability, that is, the variability of gait timing in a trial was evaluated. 

Though it was significantly different from the human walking, the results showed that the 

variability decreased in successive sessions indicating the subjects improved with 

successive sessions. An explanation of the observation is that the subjects are still in the 
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learning phase and that with continued practice they would improve with time. Another 

possibility is that the observed time variability could be due to the decreased speed of 

operation of the biped. Beauchet et al. have shown that gait time variability was more at 

lower gait speeds and it improved with higher speeds suggesting walking-speed related 

changes influence stride time variability. Hence, the variability observed could be 

because of the low operating treadmill speed for biped walking (Beauchet, 2009). There 

was, however, no difference in amplitude synchrony implying that the subjects were able 

to maintain the amplitude of the stride consistently at different speeds. 

Inter limb gait Synchrony was measured as a correlation of the time duration 

and amplitude of steps between right leg and left leg for each subject in all trials. The 

results showed that both the right and left leg were correlated implying that there was 

synchrony between the right leg and left leg. The average duty cycle for Sessions 1 and 

2 was also observed to be respectively 54% and 58% for the stance phase, and 46% 

and 42% for the swing phase of the gait cycle. This is almost similar to the normal gait 

cycle where a typical stance phase was 60 % and swing phase was 40 % (Vaughan, 

1992).  The slight variation in the biped cycle is attributable to the biped having a flat 

footed gait lacking therefore initial double stance in the gait cycle and consequently 

having a comparatively lower stance phase.  As such, the biped’s whole phase of gait 

cycle matched well to the normal human gait from the toe off to heel strike. The gait 

synchrony in time and amplitude and inter limb coordination show that the gait produced 

by the biped walking is a stable gait.  

The stance and swing involve changes in the angles of the hip, knee and foot. 

The joint angles of the hip and knee showed that the joint angles closely resembled the 

joint angles of a flat footed human gait. The knee angle did not show flexion during the 

end of stance phase as there is no initial double stance in a flat footed gait. 
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Smoothness of trajectory was better than the human trajectory. The 

smoothness of the trajectory was not influenced by the change in speed; this indicates 

that the subject was able to transition their speed of walking without influencing the 

smoothness of the trajectory. The results however showed that there was an effect of 

obstacles on the smoothness.  

Gait Speed: Gait maintains its speed by either varying the frequency of the steps 

(number of steps taken) or by varying the step length of the gait cycle (Vilas-boas, 2004, 

Salo, 2012 and Bezodis, 2012). Here, high correlation was observed between the gait 

speed and frequency of the gait, implying that the subjects were able to vary their gait 

speed or adjust to the varying speed of the treadmill by varying the number of the steps. 

Obstacle Avoidance: The percentage of successful obstacle navigation showed 

that there was no significant difference between the human walking and biped walking 

group. 

 

4.5 Conclusion 

The results show that the users were able to control through their hands the biped 

robot’s complete gait cycle such that the biped gait compared well with normal human 

gait. This also implies that the reaction of users of the biped robot to sensory inputs 

compared well to that of the normal human gait walking group. The users were able to 

produce synchronous gait rhythm under all walking conditions by the biped robot that 

was similar to that of normal human gait.  As the hand was required to exert only little 

force to move the biped robot, the task was not strenuous and hence fatigue did not set 

in as was evident from performance not deteriorating in successive trials. Subjects 

successfully walked the robot on a treadmill with very little learning period and they were 

also able to adapt quickly the gait of the robot to varying speed and obstacle conditions 

ascertaining, therefore, that the biped control was simple and easy. Control task being 
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simple, repetitive, and not strenuous will make the user have in due course absolute 

control over walking with our biped robot under all walking conditions with more ease. 

This is the telling and welcome difference from pre-programed exoskeletons.  
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CHAPTER 5 

EFFECT OF COGNITIVE LOAD ON CONTROL OF BIPED WALKING 

 

5.1  Introduction 

Every day walking requires only little conscious attention, despite the complex 

movement and synchronization involved in performing the movement. It is considered a 

relatively autonomous task (Sparrow, 2002). Smyth et al. described an autonomous 

process as a task that does not inhibit the capacity to do other processes. In other 

words, the capacity to perform an autonomous process cannot be inhibited by other 

processes when performed simultaneously (Smyth, 1996).  Studies on older individuals 

have shown that performing cognitive task while walking impacts the speed of walking 

(Mulder, 1993). Hence, walking cannot be concluded as an completely autonomic 

process as per the derivation from the definition by Smyth et. al. This capacity inhibition 

can be explained as a consequence of competing claim simultaneously over attention 

resources of the brain by different processes when they are not autonomous and hence 

require conscious attention (Pashler, 1998, Patel, 2013). Performing two such different 

‘attention demanding tasks’ simultaneously is referred to as dual tasking. Dual task 

performance causes competition for attention resources and the brain decides on the 

prioritization of the task (Yogev-Seligmann, Galit, 2010). Deterioration of either motor or 

cognitive performance when performing a dual task due to task prioritization is known as 

cognitive motor interference (Plummer-D'Amato, 2012). Based on capacity sharing 

theory in dual-task control paradigm (Pashler, 1994), the performance of an additional 

task during walking may alter (impede) gait properties (e.g., speed and variability) or the 

execution of the cognitive task across domains such as visuomotor processing, verbal 

fluency, working memory etc. (Dubost, 2008). In particular, two closely related cognitive 
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domain’s, executive function and attention influence gait (Beauchet, 2005, Beauchet, 

2002). It is especially relevant to our study because both limb co-ordination and dual-

tasking controls are processed centrally in the nervous system. Moreover, attention is an 

important mediator for motor coordination. Thus, it seems inducing cognitive load on 

motor tasks such as walking would affect motor coordination.  

In the context of walking, prioritization has been said to be given to gait stability 

over other tasks. It has been shown in many studies with healthy adults, where they give 

priority to stability and balance of the gait while performing cognitive task when no 

explicit instruction on prioritization is given. This “posture-first” strategy, a concept 

originally introduced by Shumway-Cook et al in 1997, suggests that balance, stability 

and less gait variability gets priority (Shumway-Cook, 1997). On the contrary, studies 

have shown that dual task increases the gait variability in older adults as compared to 

single task while such gait variability was not observed in young adults suggesting that 

young adults are able to compensate for the cognitive load during task prioritization (Al-

Yahya, 2011, Holtzer, 2012, Schaefer, 2014), though reduced speed in young and old 

adults was observed with cognitive load. Yogev-Seligmann et al. recently expanded this 

model of ‘posture first’ strategy to include “cognitive first” strategy as an equal substitute 

(Yogev‐Seligmann, 2012). This new strategy postulates that postural reserve and hazard 

estimation is a significant intrinsic factors contributing to the selection of the task 

prioritization strategy. This was validated by Liston et al. where they demonstrated that 

older adults did not prioritize postural tasks while dual tasking, in contrast to younger 

adults who did adhere to the “posture first” paradigm (Liston, 2014). Though, posture 

first strategy might be more appropriate from the ecologic perspective as it ensures 

safety.  

The aim here is to study the effect of cognitive load on the user’s ability to control 

the walking of the biped. Cognitive tasks such as serial subtraction and word list 
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generation task have shown to have an effect on the gait speed in young adults and on 

gait time and amplitude variability in older adults suggesting that locomotion shares 

central processing resources with semantic memory task and working memory task. The 

study described here used serial subtraction, a working memory task to evaluate the 

cognitive motor interference in biped walking control. The effect of performing a cognitive 

task on biped walking was evaluated by comparing the time and amplitude synchrony 

and RMSE with biped walking with no cognitive load and the cognitive performance was 

evaluated by comparing the cognitive task performed by human walking with biped 

walking. 

This Chapter addresses Specific aim 3.  

 
 

5.2 Design and Methodology 

5.2.1 Experimental Setup 

The experimental setup for biped walking and human walking are same as the 

experimental setup described in Figure 4.2.1. 

Subject population 

The study included 14 subjects divided equally into two groups, with one group 

controlling the biped on the treadmill and the other group performing normal human 

walking on the treadmill. The subjects were randomly assigned to the groups. All 

subjects were able bodied subjects between ages of 21 and 35 with fully functional 

upper and lower extremities. The groups were matched based on age, gender, 

educational qualification and socio-economic status. Exclusion criteria included any 

disability to the upper or lower extremities, inability to perform normal gait or any 

cognitive disability. The study was approved by the NJIT IRB and the experiment was 

performed with the subjects’ consent. 



105 
 

 

5.2.2 Experiment 

The experiment was designed to measure kinematics, synchrony, smoothness under 

varying walking conditions such as speed and obstacles when provided with cognitive 

load. The subjects who participated in the experiment were divided into two major 

groups: Dual task (Biped and Human walking groups) and Single Task (Biped and 

Human walking groups). The biped control group controlled the gait of the biped on a 

treadmill using their hand movements while the human walking group performed normal 

gait on a treadmill. Dual task groups performed a cognitive task of counting backward by 

seven from a random three digit number below 500 during each trial. All subjects started 

from the same number in a trial but the starting number was varied between trials. The 

single task group is the same group from Chapter 4. The study consisted of a total of 

eight sessions. Each session comprised of eight trials. Each trial was for duration of one 

minute followed by a thirty second rest. The speed of the treadmill during each trial was 

as shown in Table 4.1. The speed was varied after thirty seconds in Sessions 3, 4, 7 & 

8. Sessions 5-8 included users stepping over an obstacle. The number of obstacles 

presented to each leg was the same, though not in the same sequence. Twice the 

number of obstacles was included for the biped group in order to offset for their reduced 

speed. Both groups avoided obstacles with only one foot during a trial and the obstacle 

avoidance was alternated between both feet in the successive trials.  

The dual task biped walking and human walking groups performed the task of 

walking as described in Section 4.2.2. In addition, both these groups performed the 

cognitive task of counting backwards by 7 from a three digit number below 500. The data 

was processed using MATLAB and all statistical analysis was performed using SPSS. 
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5.2.3 Data Analysis 

Horizontal and vertical trajectories collected at 120 Hz of the ankle, hip and knee were 

filtered using an effective 4th order, zero-lag Butterworth low-pass filter. The cutoff 

frequency was determined using the power spectrum. The filtered data were used for 

further analysis.  

 

5.2.3.1 Foot Trajectory. 

i. Root Mean Square error: 

The RMSE was determined as a measure to evaluate the differences in gait cycle 

between trials for Sessions 1 and 2, in other words, to evaluate the synchrony between 

steps. The RMSE was calculated as described in Section 4.2.3.1. The RMSE was also 

compared with gait cycle of the single task group (biped control with no cognition task). 

Mann Whitney U test was used to compare between single task group and dual 

group. 

     In order to identify possible learning, we compared Sessions 1 and 2 using 

Wilcoxson non parametric measure. Further, the influence of speed was analyzed to 

determine, if the speed affected RMSE. 

ii. Amplitude and Frequency Synchrony 

The rhythmicity of the movement was evaluated using amplitude and frequency 

synchrony. The time taken for a gait cycle was computed for all the gait cycles in a trial 

for Sessions 1 and 2.  

a) Biped walking with and without cognition task in Sessions 1 and 2 

The amplitude and frequency synchrony of dual task group was compared with that of 

single task group. 

b) Biped walking between Sessions 1 and 2 
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The amplitude and frequency synchrony in the biped groups were also compared 

between Sessions 1 and 2. As synchrony is a measure of differences in reproducible 

actions, synchrony in gait amplitude and frequency was therefore used as a measure to 

determine the improvement in periodicity of the movement with practice. Paired sample 

t-test was used to compare the values of time synchrony between Sessions 1 and 2 for 

biped walking. Pearson’s correlation was used to correlate the left and right leg 

synchrony. The standard deviations of amplitude and frequency synchrony were 

computed to determine the variation in the amplitude and frequency of the gait cycles in 

a trial. 

5.2.3.2 Smoothness of the Foot Trajectory. The smoothness of 

trajectory was calculated as described in Section 4.2.3.2 

 

I.  Constant Speed 

The Smoothness of Sessions 1 and 2 of biped walking with cognitive task was compared 

with that of biped walking without cognitive task to determine the influence of cognitive 

task on trajectory smoothness. 

II. Effect of speed change in a trial on Smoothness between Dual task and Single Task 

The Smoothness of Sessions 3 and 4 of biped walking with cognitive task was compared 

with that of biped walking without cognitive task to determine the influence of cognitive 

task on trajectory smoothness when speed is varied.  

III. Effect of obstacle navigation with constant speed in a trial on Smoothness   

   between Dual task and Single Task 

The Smoothness of trajectory in Sessions 5 and 6 of biped walking with cognitive task 

was compared with that of biped walking without cognitive task to determine the 

influence of cognitive task on trajectory smoothness due to obstacle navigation. 
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IV. Effect of obstacle navigation with varying speed in a trial on Smoothness     

  between Dual task and Single Task 

 
The Smoothness of trajectory of Sessions 7 and 8 of biped walking with cognitive task 

was compared with that of biped walking without cognitive task to determine the 

influence of cognitive task on trajectory smoothness due to obstacles and speed. Man 

Whitney U test was used to compare the values of jerk between Human and biped as 

the data was not normal and Wilcoxon Paired test was used to compare values between 

different sessions. 
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5.2.3.3 Accuracy of the Foot Trajectory in Obstacle Navigation. The 

number of obstacles navigated and missed was determined for every trial for all 

subjects. The Percentage of obstacles successfully navigated was evaluated as a 

measure to determine the accuracy of obstacle navigation, which is an indicator of 

efficiency of the foot trajectory. The percentage of obstacles successfully navigated by 

Biped group was compared to Human group in conjunction with presence or absence of 

a cognitive task. We applied a Kruskal-Wallis ANOVA with one factor at four levels to 

compare obstacle navigation performance in a) Human group during cognitive load, b) 

Human group with no cognitive load, c) Biped group with cognitive load and d) Biped 

group with no cognitive load.  

5.2.3.4 Cognitive Load. The cognitive load’s impact on controlling the biped was 

evaluated by comparing the number of responses in serial subtraction task in 60s with 

that of the number of responses given during normal human walking. Independent 

samples t-test was used to calculate the statistical difference between the biped walking 

group and human walking group. 

A correlation of the number of responses for all trials for all sessions for human 

and biped group was performed to evaluate the effect of speed and obstacles while 

human walking and biped walking on cognitive task. 

 

5.3 Results 

5.3.1 Foot Trajectory 

The foot trajectory between the human ground walking and biped walking while 

performing cognitive task was found to be very similar as shown in Figure 5.1. The x and 

y trajectory plot while walking on the treadmill shows that the pattern of the trajectory is 

similar to normal human walking. 
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Figure 5.1 Foot trajectory of a) Biped (single task) b) Biped (Dual task) c) Human (Dual 
task) on treadmill. 
 

5.3.2  Synchrony 

The time between steps of a trial between the right and left leg for Sessions 1 and 2 was 

found to be highly correlated for each subject. This implies that the left and right leg had 

the same time duration for steps for a subject during a trial (Figure 5.4). Also, time 

synchrony between biped walking with and without cognition (i.e., cognitive task/load) 

showed that there was no statistical difference between the synchronicity of biped 

walking with and without cognitive load (Figures 5.2 and 5.3). In fact, Session 1 showed 

b) 

c) 

a) 
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that with cognitive load group had better synchrony that without cognitive load group. 

Synchrony between Sessions 1 and 2 showed no statistical difference. 

The horizontal and vertical amplitude synchrony results showed no difference 

between biped walking between single task and dual task groups. The correlation 

between horizontal synchrony of the right leg with the left leg showed high correlation. 

This shows the step length of right leg and left leg was same. The time and amplitude 

correlation between the legs shows inter limb coordination. 
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Figure 5.2 Standard deviation (SEM) in time synchrony in Session 1 for a) left and b) 
right leg of biped with and without cognition.  
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Figure 5.3 Standard deviation (SEM) in time synchrony in Session 2 for a) left leg and b) 
right leg of biped with and without cognition.  
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Figure 5.4 Correlation between right leg and left leg time synchrony of biped while 
performing cognitive task in a) Session 1 b) Session 2. 
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Figure 5.4 (continued) Correlation between right leg and left leg amplitude synchrony of 
biped while performing cognitive task in c) Session 1 d) Session 2. 
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5.3.3 Root Mean Square Error 

The RMSE showed no significant differences between the dual task group (group with 

cognitive load) and single task group (group with no cognitive load) in Sessions 1 and 2 

across all trials for both legs as shown in Figure 5.5. There was no significant difference 

between Sessions 1 and 2. Also, there was no effect of speed on the RMSE. 

 

 
 

Figure 5.5 Standard deviation Root mean square error between with cognitive load and 
with no cognitive load group for a) Session 1 (top) and b) Session 2 (bottom) for right 
leg. 
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5.3.4 Smoothness of the Foot Trajectory 

Smoothness across sessions did not show any difference between the single task group 

and dual task group as shown in Figure 5.6 

 
 

Figure 5.6 Mean Smoothness of biped walking with and without cognitive load for all 
sessions by right leg (SEM). 

 

5.3.5 Number of Responses  

A correlation of the number of responses for all trials for all sessions for human walking 

and biped walking group was performed. A high correlation was observed in the serial 

subtraction task performed by the humans and biped walking across all trials and 

subjects as shown in Figure 5.7. 

The results for serial subtraction showed that there is no statistical difference 

between the human walking and biped walking in the number of responses given in 60s 

across all sessions and subjects, though the average number of responses was less for 

the biped group with cognitive load in all sessions as shown in Figure 5.8. 
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Figure 5.7 Correlation between average number of responses by the biped walking 
group and human walking group for all trials in all sessions.  
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Figure 5.8 Total number of responses during serial subtraction in 60s by Human and 
biped walking in all sessions. Solid plots show sessions without Speed Change. 
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5.3.6 Accuracy of the Foot Trajectory in Obstacle Navigation 

The percentage of total number of successfully navigated obstacles was evaluated. 

Significant difference between four groups (Single task (Human walking and biped 

walking) and Dual task (Human walking and biped walking)) in Trial 3 (trial with highest 

speed) of Session 5 and Trial 4 (slowest speed) of Session 7. By further performing 

post-hoc analysis using Mann-Whitney U test on trial 3 of 5th session we observed 

significant difference between Human group with cognition and Human group without 

cognition with better navigation observed during the absence of cognitive load. Likewise, 

Biped group during cognition and Biped group without cognition showed a similar effect 

with absence of cognition resulting in better navigation among subjects, however, failed 

to pass the statistical threshold possibly due to small sample size. Next, post-hoc 

analysis using Mann-Whitney U test on trial 4 of 7 th session showed significant 

difference between Human group without cognition and Biped group without cognition.  
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Figure 5.9 Percentage of Obstacle navigated in Sessions 5 (top) and 7(bottom). 
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5.4 Discussion 

The results show that there is no difference in the time and amplitude synchrony or the 

root mean square error or the smoothness of the trajectory of the gait cycle produced by 

the biped walking with the cognitive load when compared with the gait produced by the 

biped walking with no cognitive load in the conditions without obstacles. Increased gait 

variability have shown to result in decline in balance and leading to fall (Young, 2011, 

Hausdorff,2001, Maki, 1997),  hence the results showing that time and amplitude 

synchrony and RMSE showing comparable results with Biped walking with no cognitive 

load shows that the cognitive load did not affect the gait synchrony. Further, study by 

Paterson et al. have shown that reduced inter limb co-ordination is an early indicator for 

falling and that lower inter limb co-ordination resulted in falls even when change in other 

measures of physical function, balance and gait were not present (Paterson, 2011). Our 

results show that there was high correlation in time and amplitude synchrony of the gait 

between the right and left leg of the biped walking even with cognitive load showing that 

there was lower inter limb variability, hence, providing the user with more optimal gait 

performance. 

The smoothness is a measure to evaluate the jerk of a trajectory. A planned 

trajectory will have lower jerk (Hreljac, 2000). Smoothness comparison between biped 

walking with and without cognitive load showed no difference in the smoothness. Thus, 

planning of the trajectory was not affected by the cognitive load. 

The number of responses to the serial subtraction for the dual task group was 

less than human walking group for all trials suggesting that there was cognitive load due 

to biped control. The results show that subjects prioritized the biped walking task over 

the cognitive task of serial subtraction. This implies that the cognitive task does not 

affect the gait trajectory and that like a typical dual task involving gait, the subjects 

prioritized the walking over the cognitive task even though the task of controlling the gait 
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was performed by the hands. This result is in accordance with the finding of Bloem et al. 

who postulated that both young and old healthy adults prioritized gait stability over 

success of secondary task when no specific instruction is given on the prioritization of 

the task.  

Also, the average number of responses to subtraction by seven showed a high 

correlation between the human walking and biped walking suggesting that though the 

cognitive load was higher for biped walking than the human walking but the effect of 

speed variations between trails and in trials and obstacles on the cognitive task was 

similar to that of human walking. This shows that the prioritization of the task while 

performing a dual task was very similar to young adults performing treadmill. 

The mean obstacle navigation performance was in fact better in Biped group as 

compared to Human group however the subject variability is much greater in Biped as 

seen by interquartile range shown in Figure 5.9. Further, the absence of difference due 

to cognitive load between these groups beyond Session 5 raises the possibility that this 

variability in biped walkers may be due to the fact that they encountered a novel task; 

and may have become proficient in the subsequent sessions. 

The results show that hands can produce gait trajectories similar to that of the 

typical human gait when provided with the haptic feedback. The algorithm was able to 

translate the trajectories produced by the hand to joint angles in the sagittal plane for 

further control of the joint angles of biped. The evaluation of the biped walking using 

hand control showed that the control was intuitive, easy to learn and required very little 

cognitive attention, unlike BCI which requires extensive training and attention to perform 

the simplest task and currently cannot translate the EEG signals to kinematics. 

The study further showed that the prioritization of the task by the user performing 

obstacle navigation and serial subtraction while controlling the biped walking was similar 

to human walking leading to the theory that there might be some similarities in higher 
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cortical planning strategies between the hand walking and human walking. Although the 

current study did not prove that there are similar motor control strategies between the 

human walking and biped walking, the similarity between the human walking and hand 

walking raises the question of whether they share the same motor control strategies. 

 

5.5 Conclusion 

The biped walking kinematics, synchrony and smoothness was not affected by the 

cognitive load, though the performance of the cognitive task was comparatively lower 

than normal human walking. This proves that with increased cognitive load the priority is 

given to the walking of the biped over the cognitive task. This is very similar to our young 

adults walking, where adults perform varying cognitive task while walking and still be 

able to perform the task of walking with smoothness, maintaining less variability in gait.  
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CHAPTER 6 

CONCLUSION 

 
 
Currently, wheelchairs provide mobility to the user, and any alternate device would have 

to be very effective in giving complete independence and mobility in order to replace 

wheelchairs. Current exoskeletons, though a big leap towards giving users mobility, it 

falls short in granting the user the independence of control over their stride length, height 

and frequency.  

An alternate control mechanisms using brain computer interface to translate 

intensions to provide control over stride length, height and frequency is a cognitively 

intensive and, is not efficient or intuitive. 

The control mechanism described in this dissertation will, on the other hand, 

provide users with a realistic, intuitive, real time control of the leg with minimum cognitive 

load.  

The control mechanism was developed using an admittance control paradigm 

where trajectories from hands were employed as surrogates to control the foot trajectory 

of the biped. The algorithm was able to convert the forces applied by the user into 

Cartesian positions. The inverse kinematics converted those Cartesian positions into hip 

and knee angle that resemble those of human gait. The control also provided haptic 

feedback to the hands to produce the required gait trajectory. 

The control mechanism was evaluated for the synchronicity in time and 

amplitude, inter limb coordination, smoothness, and gait kinematics in varying speeds 

and with obstacles, and with cognitive task. 

The results show that the complete gait cycle produced by the control algorithm 

is rhythmic and follows the kinematics of normal human gait cycle. Naïve subjects were 
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able to successfully control the gait of the biped by applying small forces in the intended 

direction and were able to control the walking of the biped on a treadmill with little to no 

learning period. They produced consistent ankle trajectories with changes in treadmill 

speed, in the presence of obstacles, and while also performing a working memory 

cognitive task (counting backwards by 7). The evaluation proves that hands could be 

used as an alternate control mechanism to control the gait of an exoskeleton.  

Future Directions 

The limitations of the study is that it was evaluated only in the sagittal plane; further 

exploration should involve adding other degrees of freedom for turning and 

abduction/adduction to evaluate if the user can control the gait of the biped with the 

added degrees of freedom. 

Future enhancement to the control mechanism should include toe off and heel 

strike at the ankle to provide the torque for the swing cycle. It would also need to 

address balance of the exoskeleton while walking. Future studies should include 

enhancing the algorithm to accommodate for higher speeds and further test with full 

scale exoskeletons.  
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APPENDIX A  

COGNITIVE RESPONSES AND OBSTACLES NAVIGATED 
 
 

The data and plots for cognitive responses obstacle navigated are shown below. 
 
Table A.1 Average Number of Cognitive Responses from Human Walking Group During 

Each Trial of Each Session.  

Session Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 

1 16.14286 17.42857 18.28571 16.28571 19.14286 19.28571 20 19.71429 

2 21.57143 20.71429 22.28571 19.57143 24.71429 20.14286 20 22 

3 23.57143 23.42857 23.57143 22.28571 25.85714 25.42857 24.42857 24.14286 

4 23.28571 25.71429 25.28571 26.42857 23.42857 24.85714 23.71429 24.85714 

5 17.14286 17.57143 17.57143 19.28571 22.57143 19.85714 26.57143 23.71429 

6 22.33333 22.33333 27.66667 25 28.33333 21.66667 24.33333 25 

7 26.2 28.8 27 23.6 26 30.8 28.2 24.5 

8 26.83333 28.33333 28.66667 28.66667 25.33333 28.5 27.5 27.66667 

Note Sessions 5, 6, 7 and 8 included obstacle navigation. 
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Table A.2 Average Number of Cognitive Responses from Biped Walking Group During  

Each Trial of Each Session.  

Session Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 

1 
11.71429 13 13.42857 11.71429 13.71429 13.85714 14.42857 13.71429 

2 14.28571 16 15.28571 15.57143 17.28571 16.14286 17.42857 17.28571 

3 16.42857 15.85714 16.57143 16.71429 16.71429 16.85714 16.85714 16.42857 

4 
18.85714 19.42857 19 18 19.14286 20.71429 19.85714 21.28571 

5 14.85714 14.42857 15.57143 15.42857 15.28571 15.71429 17.42857 15.71429 

6 
19.42857 20.85714 20 20.71429 20.71429 19.57143 22.57143 19.57143 

7 20.71429 21.14286 20.57143 20.71429 20.85714 21.85714 24 21.42857 

8 
23.42857 23.57143 23.28571 23.14286 23.57143 23.57143 23.57143 24 

Note Sessions 5, 6, 7 and 8 included obstacle navigation. 

Figures A.1 and A.2 are the percentage of total obstacles successfully navigated by 

single task groups. 

 

Figure A.1 Percentage of total obstacles navigated successfully by Human Walking 

Group during each trial of Sessions 5, 6, 7 and 8. Error bars indicate standard error of 

mean. 
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Figure A.2 Percentage of total obstacles navigated successfully by Biped Walking 

Group during each trial of Sessions 5, 6, 7 and 8. Error bars indicate standard error of 

mean. 

Figures A.3 and A.4 are percentage of total obstacles successfully navigated by dual 

task groups. 

 

Figure A.3 Percentage of total obstacles navigated successfully by dual task Human 

Walking Group during each trial of Sessions 5, 6, 7 and 8. Error bars indicate standard 

error of mean. 
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Figure A.4 Percentage of total obstacles navigated successfully by dual task Human 

Walking Group during each trial of Sessions 5, 6, 7 and 8. Error bars indicate standard 

error of mean. 
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APPENDIX B 

COMPLETE CONTROL ALGORITHM 
 
 
 

Appendix B is the code in MATLAB for the complete control algorithm to control the leg 

in sagittal plane. 
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%ODE for x & y direction Sagittal control 
    [t,positionyLeft] = odeF(tspan, y0,[Fy(1,i),.06,.05],[0],[1e-6, 1e-

8, 10]);% ODE for x 
    sizes=size(positionyLeft); 
    positionsArray(2,i)=(positionyLeft(1,sizes(1,2)));%initial 

condition for y 
    y0=[positionyLeft(1,end) positionyLeft(2,end)]; 
    velocity(2,i)=positionyLeft(2,end); 

     
    [t,positionzLeft] = odeF(tspan, z0,[Fz(1,i),.05,.05],[0],[1e-6, 1e-

8, 10]);% ODE for x 
    sizes=size(positionzLeft); 
    positionsArray(3,i)=(positionzLeft(1,sizes(1,2)));% initial 

condition for y 
    z0=[positionzLeft(1,end) positionzLeft(2,end)]; 
    velocity(3,i)=positionzLeft(2,end); 

     

   
    % calculate thetas for hip knee and ankle 
    

positionSqr1(1,i)=sqrt((positionsArray(2,i))^2+(positionsArray(3,i))^2)

; 
    positionSqr=((positionsArray(2,i))^2+(positionsArray(3,i))^2); 
    positionsArrayOld(2,i)=positionsArray(2,i); 
    positionsArrayOld(3,i)=positionsArray(3,i); 
    if(i>50 && (positionSqr1(1,i) == 39.95 || positionSqr1(1,i) > 

39.95)) 

         
        ratio(1,i)= 39.94/positionSqr1(1,i); 
        positionsArray(2,i)=positionsArray(2,i)* ratio(1,i); 
        positionsArray(3,i)=positionsArray(3,i)* ratio(1,i); 
        y0=[positionsArray(2,i) positionyLeft(2,end)]; 
        z0=[positionsArray(3,i) positionzLeft(2,end)]; 
        positionSqr=((positionsArray(2,i))^2+(positionsArray(3,i))^2); 
    end 
    

positionSqrss(1,i)=sqrt((positionsArray(2,i))^2+(positionsArray(3,i))^2

); 

%ODE for z direction 
  

    [t,positionx] = odeF(tspan2, 

x0,[Fx(1,i)*positionSqrss(1,i)/100,3,.8],[0],[1e-6, 1e-8, 10]);% ODE 

for x 
    sizes=size(positionx); 
    positionsArray(1,i)=(positionx(1,sizes(1,2)));% abduction angle   

for hip 
    x0=[positionx(1,end) positionx(2,end)];% Setting initial condition 

for x 
    velocity(1,i)=positionx(2,end); 
    positionsArray(5,i)=pi-positionsArray(1,i);%Setting abduction angle 

for 

 
    %%Inverse Kinematics     

    Ttheta2(1,i) =(((l1+l2)^2)-positionSqr)/(positionSqr-((l1-l2)^2)); 
    % there are two solution while using the inverse of tan 
    theta2Up(1,i)= 2*atan(sqrt(Ttheta2(1,i)));% knee angle 
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    theta2Down(1,i)=-2* atan(sqrt(Ttheta2(1,i))); 
    % calculating the hip angle using the knee angle 
    phi(1,i)=atan2(positionsArray(2,i),positionsArray(3,i)); 

     
        

uptao(1,i)=atan2((l2*sin(theta2Up(1,i))),(l1+(l2*cos(theta2Up(1,i))))); 
        

downtao(1,i)=atan2((l2*sin(theta2Down(1,i))),(l1+(l2*cos(theta2Down(1,i

))))); 
        theta1Up(1,i)=phi(1,i)-uptao(1,i); 
        theta1Down(1,i)=phi(1,i)-downtao(1,i); 
        % code to keep the foot horizontal to the ground 
        test1(1,i)=phi(1,i)-pi/2; 
        test2(1,i)=pi-(downtao(1,i)+ pi/2-theta2Down(1,i)); 
        footAngle(1,i)=test1(1,i)+test2(1,i); 
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APPENDIX C 

 
3D DESIGN AND SCHEMATICS 

 
 
Pro-E designs for the foot and extrusions. 
 

 
  
Figure C.1 Schematic of the foot.  
 

Units: mm 
Scale: 0.75 
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Figure C.2 Schematic of the trekker pole mount.  

 

 
 

Figure C.3 Schematic of the mount for Phidget force sensor. 

 

Units: mm 
Scale: 1 
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Figure C.4 Schematic of the Optitrak marker mounts. 

 
 

 

Units: mm 
Scale: 1 
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