

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

TERMINATION, CORRECTNESS AND RELATIVE CORRECTNESS

by
Nafi Diallo

Over the last decade, research in verification and formal methods has been the

subject of increased interest with the need of more secure and dependable software.

At the heart of software dependability is the concept of software fault, defined in

the literature as the adjudged or hypothesized cause of an error. This definition,

which lacks precision, presents at least two challenges with regard to using formal

methods: (1) Adjudging and hypothesizing are highly subjective human endeavors;

(2) The concept of error is itself insufficiently defined, since it depends on a detailed

characterization of correct system states at each stage of a computation (which is

usually unavailable). In the process of defining what a software fault is, the concept

of relative correctness, the property of a program to be more-correct than another with

respect to a given specification, is discussed. Subsequently, a feature of a program is a

fault (for a given specification) only because there exists an alternative to it that would

make the program more-correct with respect to the specification. Furthermore, the

implications and applications of relative correctness in various software engineering

activities are explored. It is then illustrated that in many situations of software

testing, fault removal and program repair, testing for relative correctness rather than

absolute correctness leads to clearer conclusions and better outcomes. In particular,

debugging without testing, a technique whereby, a fault can be removed from a

program and the new program proven to be more-correct than the original, all without

any testing (and its associated uncertainties/imperfections) is introduced. Given

that there are orders of magnitude more incorrect programs than correct programs

in use nowadays, this has the potential to expand the scope of proving methods

significantly. Another technique, programming without refining, is also introduced.

The most important advantage of program derivation by correctness enhancement is

that it captures not only program construction from scratch, but also virtually all

activities of software evolution. Given that nowadays most software is developed by

evolving existing assets rather than producing new assets from scratch, the paradigm

of software evolution by correctness enhancements stands to yield significant gains, if

we can make it practical.

TERMINATION, CORRECTNESS AND RELATIVE CORRECTNESS

by
Nafi Diallo

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

May 2016

Copyright © 2016 by Nafi Diallo

ALL RIGHTS RESERVED

APPROVAL PAGE

TERMINATION, CORRECTNESS AND RELATIVE CORRECTNESS

Nafi Diallo

Dr. Ali Mili, Dissertation Advisor Date
Professor of Computer, New Jersey Institute of Technology

Dr. Narain Gehani, Committee Member Date
Professor of Computer Science, New Jersey Institute of Technology

Dr. Marek Rusinkiewicz, Committee Member Date
Professor of Computer Science, New Jersey Institute of Technology

Dr. Kurt Rohloff, Committee Member Date
Associate Professor of Computer Science, New Jersey Institute of Technology

Dr. Thomas Wies, Committee Member Date
Assistant Professor of Computer Science, New York University

Dr. Kazunori Sakamoto, Committee Member Date
Assistant Professor of Information Systems Architecture Science Research Division,
National Institute of Informatics

BIOGRAPHICAL SKETCH

Author: 	 Nafi Diallo

Degree: 	 Doctor of Philosophy

Date: 	 May 2016

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,

New Jersey Institute of Technology, Newark, NJ, 2016

• Master of Science in Financial Mathematics,
Worcester Polytechnic Institute, Worcester, MA, 2005

• Master of Science in Civil Engineering,
Gunma University, Gunma, Japan, 2000

• Bachelor of Science in Applied Mathematics and Computer Science,
Universite Gaston Berger de Saint-Louis, Saint-Louis, Senegal, 1997

Major: 	 Computer Science

Presentations and Publications:

Submitted Journal Papers

J. Desharnais, N. Diallo, W. Ghardallou, and A. Mili, “Projecting programs on
specifications: definition and implications” (Submitted to Elsevier), 2016.

N. Diallo, W. Ghardallou, J. Desharnais, and A. Mili, “Convergence = Termination
+ Abort-Freedom”, (Submitted to Journal of Symbolic Computation), 2015.

Published Conference Papers

W. Ghadallou, N. Diallo, and A. Mili, “Software evolution by correctness
enhancement”, The 28th International Conference on Software Engineering
and Knowledge Engineering (SEKE), San Francisco, CA, USA, July 1-4, 2016.

N. Diallo, W. Ghardallou, and A. Mili, “Program repair by stepwise correctness
enhancement”, First International Workshop on Pre- and Post-Deployment
Verification Techniques(PrePost), Reykjavk, Iceland, June 2016.

iv

W. Ghardallou, N. Diallo, M. Frias, and A. Mili, “Debugging without testing”,
International Conference on Software Testing, Verification and Validation
(ICST), Chicago, April 10-15, 2016.

J. Desharnais, N. Diallo, W. Ghardallou, M. Frias, A. Jaoua and A. Mili, “Relational
Mathematics for Relative Correctness”, Relational Methods in Computer
Science, Braga, Portugal, September 2015, (Springer Verlag: Lecture Notes
in Computer Science).

N. Diallo, W. Ghardallou and A. Mili, “Program derivation by correctness
enhancements”, Refinement Workshop, Formal Methods 2015, Oslo, Norway,
June 2015.

N. Diallo, W. Ghardallou and A. Mili, “Absolute Correctness and Relative
Correctness”, Proceedings, 37th International Conference on Software
Engineering, Firenze, Italy 2015.

W. Ghardallou, N. Diallo and A. Mili, “Merging Termination with Abort Freedom”,
RISC Report Series No. 14-11, Symbolic Computation in Software Science
(SCSS), Tunis, Tunisia, December 7-11, 2014.

N. Diallo and W. Ghardallou, “Work-In-Progress: Repairing a Loop by Constructive
Transformation using Mutation Analysis”, RISC Report Series No. 14-11,
Symbolic Computation in Software Science (SCSS), Tunis, Tunisia, December
7-11, Tunis, Tunisia 2014.

v

To my mother, Marie Ba, and all the little girls who are
denied the opportunity of education because they have
to stay home and help in household chores.

To my precious little girls and mommy’s cheerleaders,
Marie and Houleye Sow, may you dream big!

vi

ACKNOWLEDGMENT

”Try not to become a person of success, but rather try to become a person of value.”

Albert Einstein

I thank Dr. Ali Mili for his invaluable, heartfelt guidance and support. His expertise

and continuous feedback made this dissertation possible. His constant motivation

and confidence in me have ensured the best work from me.

I thank all of my committee members, Dr. Narain Gehani, Dr. Marek

Rusinkiewicz, Dr. Kurt Rohloff, Dr.Thomas Wies and Dr. Kazunori Sakamoto,

for their time and effort.

I thank Dr.Wided Ghardallou for her contribution to the work in this

dissertation. I also thank the many students who contributed their time and skills to

the software projects that made this dissertation possible.

I thank Ms.Angel Butler and Ms.Kathy James for their wonderful support and

encouragement, these women rock!

I also thank Ms. Clarisa Gonzalez-Lenahan for the constant support and useful

advice provided over my years at NJIT. I cannot name all my good friends at NJIT, so

I say thank you to all, especially Mr Nafize Paiker and his lab mates for the invaluable

feedback during practice presentations.

My heartfelt thanks go to Amadou Tidiane Ba for his unconditional support

and cheering, Maman Nene Thiam, for all the prayers.

Behind the success of a married mom is a great husband, I deeply thank Papa

Ibrahima Sow for his unconditional support, love and pride in seeing me accomplish

my passion.

vii

Lastly, I would like to thank my daughters Marie Khadija and Houleye Sow,

and all my family and friends for their support and encouragement over the course of

my doctoral studies.

viii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Background . 1

1.3 Research Problems . 4

1.4 Contributions . 5

1.5 Organization of this Dissertation . 6

2 THEORETICAL FOUNDATIONS . 8

2.1 Introduction . 8

2.2 Relational Mathematics . 8

2.2.1 Definitions and Notations . 8

2.2.2 Operations on Relations . 9

2.2.3 Properties of Relations . 10

2.2.4 Relational Laws . 11

2.3 A Refinement Calculus . 13

2.3.1 Refinement Ordering . 14

2.3.2 Refinement Lattice . 15

2.4 Program Semantics . 16

2.5 Conclusion . 18

3 INVARIANT RELATIONS . 19

3.1 Introduction . 19

3.2 Invariant Relations . 19

3.2.1 Invariant Functions . 21

3.2.2 Invariant Assertions . 23

3.2.3 Ordering Invariant Relations by Refinement 25

3.2.4 Comparative Analysis . 26

ix

TABLE OF CONTENTS
(Continued)

Chapter Page

3.3 Conclusion . 32

4 CONVERGENCE . 34

4.1 Introduction: The Case for Merger 34

4.1.1 Motivation . 35

4.1.2 Illustration . 36

4.1.3 Premises . 38

4.1.4 Contributions and Limitations 39

4.2 Characterizing Convergence Conditions 40

4.2.1 A Necessary Condition of Termination 40

4.2.2 Abort Freedom . 41

4.3 Applications . 47

4.3.1 Simple Loops . 47

4.3.2 Nested Loops . 49

4.4 Related Work . 50

4.4.1 Loop Termination . 50

4.4.2 Pointer Semantics . 53

4.5 Conclusion . 55

5 THE FXLOOP TOOL . 57

5.1 Introduction . 57

5.2 From Source Code to Relational Representation 57

5.2.1 Invariant Relation Generation 58

5.2.2 Other Invariant Relations . 59

5.2.3 Recognizers . 60

5.3 Architecture . 63

5.3.1 Web Interface . 63

5.3.2 CCA Compiler Generator . 64

x

TABLE OF CONTENTS
(Continued)

Chapter Page

5.3.3 Http Server . 65

5.3.4 Modeler . 67

5.4 Domain Coverage . 67

5.5 FxLoop Tour . 68

5.5.1 Main Interface . 68

5.5.2 Examples . 69

5.5.3 Invariant Relation Generator 69

5.5.4 Computing Convergence Conditions 71

5.5.5 Evaluating Correctness . 72

5.6 Limitations . 73

6 RELATIVE CORRECTNESS . 74

6.1 Introduction . 74

6.2 Absolute Correctness . 76

6.3 Relative Correctness . 78

6.3.1 Deterministic Programs . 78

6.3.2 Non-Deterministic Programs 80

6.4 Validation of Relative Correctness . 83

6.4.1 Litmus Tests . 83

6.4.2 Passing the Tests . 84

6.4.3 Absolute Correctness as the Culmination of Relative Correctness 84

6.4.4 Relative Correctness and Reliability 85

6.4.5 Relative Correctness and Refinement 86

6.5 Faults and Fault Removal . 87

6.6 Implications of Relative Correctness 90

6.6.1 Counting Faults . 90

6.6.2 A Bridge Between Testing and Proving 98

xi

TABLE OF CONTENTS
(Continued)

Chapter Page

6.7 Testing for Relative Correctness . 99

6.8 Related Work . 100

6.9 Conclusion . 103

7 APPLICATIONS OF RELATIVE CORRECTNESS 105

7.1 Introduction . 105

7.2 Debugging Without Testing . 105

7.2.1 Proving Correctness and Incorrectness of Loops 106

7.2.2 Proving Relative Correctness for Loops 108

7.2.3 Uninitialized Loops . 111

7.2.4 Initialized While Loops . 119

7.3 Mutation Based Program Repair . 124

7.3.1 Illustration 1 . 124

7.3.2 Illustration 2 . 125

7.4 Programming Without Refinement 130

7.4.1 Producing A Correct Program 130

7.4.2 Producing A Reliable Program 134

7.5 Software Evolution . 136

7.5.1 Program Merger . 136

7.5.2 Program Upgrade . 139

7.6 Software Maintenance . 141

7.6.1 Corrective Maintenance . 141

7.6.2 Adaptive Maintenance . 142

7.7 Related Work . 143

7.8 Conclusion . 145

8 CONCLUSIONS AND FUTURE WORK 147

8.1 Summary and Assessment . 147

xii

TABLE OF CONTENTS
(Continued)

Chapter Page

8.1.1 Conditions of Convergence . 147

8.1.2 Relative Correctness . 149

8.2 Future Work . 151

8.2.1 Condition of Convergence . 151

8.2.2 Relative Correctness . 152

BIBLIOGRAPHY . 154

xiii

LIST OF TABLES

Table Page

3.1 Characterizing invariants . 33

5.1 Example of 1-recognizer . 62

5.2 Example 2-recognizer . 62

5.3 Example of 3-recognizer . 62

5.4 C/C++/Java grammar supported by CCA compiler generator 66

xiv

LIST OF FIGURES

Figure Page

2.1 Lattice structure of refinement. 17

5.1 fxLoop architecture. 63

5.2 fxLoop main interface. 64

5.3 Numeric recognizer database. 68

5.4 Examples by feature. 69

5.5 Invariant relations. 71

5.6 Convergence condition options. 72

5.7 Correctness condition options. 72

6.1 Enhancing correctness without duplicating behavior: P ′ wR P 79

6.2 Ordering candidate programs by relative correctness. 80

6.3 Relative correctness for non-Deterministic programs: P ′ wR P 82

6.4 Monotonic and non-monotonic fault removals. 90

7.1 Ranking candidates by relative correctness. 124

7.2 Program repair by stepwise correctness enhancement. 126

7.3 Relative correctness-based repair: stepwise fault removal. 130

7.4 Alternative program derivation paradigms. 131

7.5 Merger and upgrade. 139

7.6 Corrective maintenance. 142

7.7 Adaptive maintenance. 143

xv

CHAPTER 1

INTRODUCTION

1.1 Motivation

Today, ensuring software quality, dependability and safety is of paramount importance

in software design and development[1, 2, 3]. Considerable responsibility rests on the

hand of modern days software engineers [1]. Because software is pervasive in the life

of modern societies [1, 4], it is important for software engineers to control the quality

of software products that they produce and maintain. Because software is used in

critical applications [1, 4], quality standards that are expected of software may be very

high. Because software products are large and complex, and their size and complexity

increase with time, controlling their quality is an ongoing challenge: the demands on

software technology are putting relentless pressure on software research to deliver ever

more capable methods, tools, and processes.

1.2 Background

Despite the emergence of multiple programming languages and paradigms, the vast

majority of software being developed and maintained nowadays is written in C-like

languages, where the bulk of complexity stems from iterative constructs. Most

automated tools that are used today to analyze source code in C-like languages are

unable to build the inductive argument that is required to analyze loops, hence, resort

to unrolling the loop a limited (user-specified) number of times. In this dissertation,

an orthogonal approach, based on the concept of invariant relations, is explored.

Invariant relations enable the approximation of the function of a loop. The choice

between capturing all the functional details of a loop whose iterations are bounded,

and approximating its functions for all possible executions, can be viewed as a

trade-off between knowing everything about some executions and knowing something

1

about all executions. This dissertation argues in favor of the latter approach on

the grounds that knowing everything is not necessary (many properties of interest

can be established with partial information) and that making claims about bounded

executions is not sufficient (a property may hold for bounded executions and fail to

hold for unbounded executions).

In this dissertation, invariant relations are used to compute or approximate its

termination condition, to prove or disprove its correctness, and to prove or disprove

that a modification to the loop makes it monotonically more-correct.

In [5], Mili et al. isolate invariant relations as a worthy concept that carries

intrinsic value, rather than being an auxiliary to computing invariant assertions.

Previous works exist where invariant relations, or special forms thereof, are computed

and used in the analysis of while loops. In [6], Carrette and Janicki derive properties

of numeric iterative programs by modeling the iterative program as a recurrence

relation, then solving these equations. Typically, the equations obtained from the

recurrence relations by removing the recurrence variable are nothing but the reflexive

transitive relations that we are talking about. However, whereas the method of

Carrette and Janicki is applicable only to numeric programs, ours is applicable to

arbitrary programs, provided we have adequate recognizers to match their control

structure, and adequate axiomatizations of their data structure. Recognizers are

aggregate patterns that allows us to analyze the source code. In [7], Podelski and

Rybalchenko introduce the concept of transition invariant, which is a transitive (but

not symmetric) superset of the loop body’s function. Of special interest are transitive

invariants which are well-founded (hence, asymmetric); these are used to characterize

termination properties or liveness properties of loops. Transitive invariants are related

to invariant relations in the sense that they are both transitive supersets of the loop

body. However, transition invariants and invariant relations differ on a very crucial

attribute: whereas the latter are reflexive, and are used to capture what remains

2

invariant from one iteration to the next, the former are asymmetric, hence, not

reflexive, and are used to capture what changes from one iteration to the next. In

[8], Kovacs et. al. deploy an algorithm (Aligator) they have written in Mathematica

to generate invariant assertions of while loops using Cousot’s Abstract Interpretation

[9, 10]. They proceed by formulating then resolving the recurrence relations that

are defined by the loop body, much in the same way (except for the automation)

as Carette and Janicki advocate [6]; once they solve the recurrence relations, they

obtain a binary relation beween the initial states and the current state, from which

they derive an invariant assertion by imposing the pre-conditions on the initial state.

Typically, this operation correspond to the formula we propose in Chapter 2: the

relation they find between initial and current states is an invariant relation (R); and

initial conditions they dictate on the initial state correspond to vector C in proposition

8 of Chapter 2. Aligator does not take the converse of the invariant relation, nor

does it have to, since R is typically symmetric. In [11], Furia and Meyer present an

algorithm for generating loop invariants by generalizing the postcondition of the loop.

To this effect, they deploy a number of generalization techniques, such as constant

relaxation (replacing a constant by a variable), uncoupling (replacing two occurrences

of the same variable by different variables), term dropping (removing a conjunct), and

variable aging (replacing a variable by an expression it had prior to termination). This

work differs from ours in many ways, obviously, including that it does not distinguish

between what is dependent on the loop and what is dependent on its context (hence,

must be redone for the same loop whenever the postcondition changes), that it is

of a highly heuristic nature, and that it is highly syntactic (the same postcondition

written differently may yield a different result). Another important distinction, of

course, is that we analyze the loop as it is (without consideration of its specification),

whereas Furia and Meyer analyze it as it should be (assuming it is correct).

3

1.3 Research Problems

Termination: Liveness and safety properties are important aspects of software

security. The question of whether a program, most notably iterative, terminates or

if a program executes without causing an abort(such as a division by zero, an array

reference out of bounds, a reference to a nil pointer, or any other illegal operation)

of a program, have both concurrently attracted much research[12, 13, 7, 14, 15, 16,

17, 18, 10]. They also have, consequently, used very different mathematical models.

Yet knowing that a program terminates after 100 iterations when it aborts after

10 iterations is not sufficient. Also knowing that a program will abort after 100

iterations when the program terminates after 50 iterations is not necessary. So the

research problem we set to investigate is concerned with the possibilities of merging

these two aspects using the same mathematical model, namely invariant relations.

Debugging: The cost of software production is still largely consumed by debugging,

which involves finding bugs in software and repairing them. While a great deal of

research has been done on automated bug finding, the programmer is still left with

the daunting task of repair while assuring that no regression is introduced. Recently,

lots of researchers have turned their attention to automated repair [19, 2, 20, 21].

This dissertation explores the possibility of achieving debugging, namely localize a

bug, suggest and validate a repair through static analysis of the code.

Program Derivation: Despite having been the subject of significant research

effort [22, 23], program development approaches still struggle to deliver the promise

of a formally derived software, that would ensure the quality of the end-product.

Complexity is the enemy of security yet program derivation is fraught with difficulties;

there are many steps between involved from analyzing the program to its efficient

implementation [23], usually involving complex decisions. In times where software

security is paramount due to ubiquitous use of software in modern societies,

production of software that is formally guaranteed to be correct with respect to

4

its specification is highly needed. This dissertation explores the possibility of

program derivation through correctness enhancements while ensuring that inter-

mediate programs are executable.

1.4 Contributions

The contributions of this work are as follow:

Termination: For iterative programs, using invariant relations, we are able to

capture both termination as finite number of iterations and absence of abort, to

which we refer as convergence. The theoretical foundation of this work is summarized

through two theorems. One theorem maps an invariant relation into a necessary

condition of convergence while the other gives a general format of an invariant relation

used to capture the absence of abort properties.

Through this work, a prototype tool is developed to automatically generate

invariant relations and compute the convergence conditions. Source code in (C/C +

+/Java) is converted into an intermediate representational language of analysis.

The generation of invariant relations is done against a database of recognizers. A

recognizer is the aggregate made up of a code pattern and the corresponding invariant

relation. Mathematica is used to both generate invariant relations and to analyze

them for the purpose of computing convergence conditions.

Debugging: In [24, 25, 26], we explore the use of the concept of relative correctness

introduced in [27] to support a number of software engineering processes. In

particular, in [25], we present a relative correctness-based static analysis method

that enables us to locate and remove a fault from a program, and prove that the

fault has been removed all without testing. This technique, which we call debugging

without testing, shows that we can apply static analysis to an incorrect program to

prove that, although it may be incorrect, it is still more correct than another. Given

that there are orders of magnitude more incorrect programs than there are correct

5

programs, the pursuit of this idea may expand the scope of static analysis methods.

in [26], we explore the use of relative correctness in program repair. Specifically, we

discuss how to perform program repair when we test candidate mutants for relative

correctness rather than absolute correctness. We analyze current practice, try to show

how a relative-correctness-based approach may offer better outcomes, and supporting

our case with analytical arguments as well as a simple illustrative example.

Program Derivation: It is accepted wisdom that software quality should be part

of the software development process rather than an after the fact concern. This is

the motivation behind this part of out work, namely provide a model for deriving

program with a built-in correctness proof.

In [28], we discuss how relative correctness can be used in the derivation of a

correct program from a specification. Whereas traditional programming calculi derive

programs from specifications by successive refinement-based correctness-preserving

transformations starting from the specification, we show that we can derive a program

by successive correctness-enhancing transformations (using relative correctness)

starting from the trivial program abort. We refer to this technique as programming

without refining [28]. Subsequently, we explore software evolution in [29] and envision

expanding these methods as part of future research plans.

1.5 Organization of this Dissertation

Chapter 2 lays out the theoretical foundations of this dissertation. In particular, it

presents the mathematical concepts to support the discussion of this work. It also

describes the refinement calculus which is used in this work as well some program

semantics. Chapter 3 also discusses the concept of invariant relation, fundamental

to the approaches presented in this dissertation. Chapter 4 elaborates on the use

of invariant relations to model and compute convergence conditions of while loops.

Chapter 5 describes the implementation a tool to analyze while loops, automatically

6

generating invariant relations for the loop and computing convergence conditions,

evaluating correctness with respect to a specification and computing invariant

assertions based on pre/post conditions. Chapter 6 presents the concept of relative

correctness, discusses how it relates to (absolute) correctness. The same chapter

also discusses how to test for relative correctness and its implications in various

software engineering practices. Some applications of relative correctness are presented

in Chapter 7. Activities such as program repair stepwise by correctness-enhancement

debugging without testing and programming without refining are illustrated by mean

of illustrative examples. Chapter 8 describes some future work and concluding

remarks.

7

CHAPTER 2

THEORETICAL FOUNDATIONS

2.1 Introduction

The foundations of this work lay in relational mathematics and set theory; we use the

concept of relation to capture specifications, as well as program semantics and sets

are used to represent the values of program variables. We assume the reader familiar

with relational algebra, and we generally adhere to the definitions of [30, 31].

2.2 Relational Mathematics

2.2.1 Definitions and Notations

We represent sets using a programming-like notation, by introducing variable names

and associated data types (sets of values). For example, if we represent set S by the

variable declarations

x : X; y : Y ; z : Z,

then S is the Cartesian product X × Y × Z. Elements of S are denoted in lower

case s, and are triplets of elements of X, Y , and Z. Given an element s of S, we

represent its X-component by x(s), its Y -component by y(s), and its Z-component

by z(s). When no risk of ambiguity exists, we may write x to represent x(s), and x′

to represent x(s′).

A relation on S is a subset of the Cartesian product S×S. Given a pair (s, s′)

in R, we say that s′ is an image of s by R. Special relations on S include :

� the universal relation L = S × S,

� the identity relation I = {(s, s′)|s′ = s}, and

8

� the empty relation φ = {}.

Given a predicate t, we define the relation T : T = {(s, s′)|t(s)}

2.2.2 Operations on Relations

Operations on relations (say, R and R′) include the set theoretic operations of union

(R ∪R′), intersection (R ∩R′), difference (R \R′) and complement (R).

They also include the relational product, denoted by (R◦R′), or (RR′, for short)

and defined by:

RR′ = {(s, s′)|∃s′′ : (s, s′′) ∈ R ∧ (s′′, s′) ∈ R′}.

The power of relation R is denoted by Rn, for a natural number n, and defined

by R0 = I, and for n > 0,

Rn = R ◦Rn−1.

The transitive closure of relation R is denoted by R+ and defined by

R+ = {(s, s′)|∃n > 0 : (s, s′) ∈ Rn}.

The reflexive transitive closure of relation R is denoted by R∗ and defined by

R∗ = {(s, s′)|∃n ≥ 0 : (s, s′) ∈ Rn}.

We admit without proof that R∗R∗ = R∗ and that R∗R+ = R+R∗ = R+.

The converse of relation R is the relation denoted by R̂ and defined by

R̂ = {(s, s′)|(s′, s) ∈ R}.

The nucleus of a relation R, denoted by µ(R), is defined as

µ(R) = RR̂.

9

The domain of a relation R is defined as the set dom(R) = {s|∃s′ : (s, s′) ∈ R},

and the range of relation R is defined as the domain of R̂.

The pre-restriction (resp. post-restriction) of relation R to predicate t is the

relation defined by {(s, s′)|t(s) ∧ (s, s′) ∈ R} (resp. {(s, s′)|(s, s′) ∈ R ∧ t(s′)}).

Operator precedence is applied as follows: unary operators evaluate first,

followed by product, then intersection, then union.

To represent subsets of S in a relational form, we use vectors. A relation R is

said to be a vector if and only if RL = R; a vector on space S is a relation of the

form R = A × S, for some subset A of S; we use vectors to represent subsets of S,

and we may by abuse of notation write s ∈ R to mean s ∈ A.

A non-empty vector p on S is said to be a point if and only if it satisfies the

condition pp̂ ⊆ I. Whereas a mere vector represents a subset of C, a point represents

a singleton; the same symbol may be used to represent a point and the single element

of S that defines it.

2.2.3 Properties of Relations

A relation R is said to be

� reflexive if and only if I ⊆ R,

� symmetric if and only if R = R̂,

� antisymmetric if and only if R ∩ R̂ ⊆ I,

� asymmetric if and only if R ∩ R̂ = φ,

� transitive if and only if RR ⊆ R

� anti-reflexive if and only if R ∩ I = ∅, i.e. it has no pairs of the form (s, s)

Relation R is said to be inductive if there exists a vector A such that R = A∩ Â

10

Also, a relation R is said to be total if and only if I ⊆ µ(R). We also represent

this property as RL = L.

Finally a relation R is said to be deterministic (or: a function) if and only if

µ(R̂) ⊆ I. The following property is of special interest to this work: two functions f

and f ′ are identical if and only if f ⊆ f ′ and f ′L ⊆ fL.

A relation is said to be a partial ordering if and only if it is reflexive,

antisymmetric, and transitive.

An equivalence relation is a relation that is reflexive, symmetric and transitive.

In particular, the nucleus of a deterministic relation f can be written as

µ(f) = {(s, s′|f(s) = f(s′)}.

2.2.4 Relational Laws

We briefly present some relational laws that will be needed throughout this

dissertation. They are presented without proofs as they are typically straightforward

consequences of definitions. We let R and Q be arbitrary relations, C be an arbitrary

vector on S, p be a point on S, V be a total function on S, and F be an arbitrary

11

function on S. Then, the following stand:

(C ∩Q)R = C ∩QR, (2.1)

CL = C, (2.2)

LĈ = Ĉ, (2.3)

ĈR = L(C ∩R), (2.4)

RC = (R ∩ Ĉ)L, (2.5)

ĈC = φ, (2.6)

(Q ∩ Ĉ)R = Q(C ∩R), (2.7)

C ∩R = (I ∩ C)R = (I ∩ Ĉ)R, (2.8)

Ĉ ∩R = R(I ∩ Ĉ) = R(I ∩ C), (2.9)

I ∩RL = I ∩RR̂ = I ∩ LR̂ (2.10)

Q ⊆ RL⇔ QL ⊆ RL (2.11)

Q ⊆ LR⇔ LQ ⊆ LR (2.12)

R ⊆ I ⇒ R̂ = R (2.13)

R 6= φ⇒ LRL = L (2.14)

Rp = Rp (2.15)

p̂R = p̂R (2.16)

RV ⊆ Q⇔ R ⊆ QV̂ (2.17)

V̂ R ⊆ Q⇔ R ⊆ V Q (2.18)

RF ⊆ Q⇔ LF̂ ∩R ⊆ QF̂ (2.19)

F̂R ⊆ Q⇔ FL ∩R ⊆ FQ (2.20)

Q ∪R(R∗Q) = R∗Q (2.21)

R ⊆ F ∧ FL ⊆ RL⇔ R = F. (2.22)

12

2.3 A Refinement Calculus

A fundamental concept in programming calculus is that of refinement ordering. The

exact definition of refinement (the property of a specification to refine another) varies

from one calculus to another [32, 33, 34, 35, 36, 37]. This section describes our version

of refinement calculus as introduced in [38, 39].

Definition 1 Given two relations R and R′, we say that R′ refines R (abbr.: R′ w R)

if and only if:

RL ∩R′L ∩ (R ∪R′) = R.

The following proposition provides an alternative characterization of refinement,

which we may use in our proofs throughout this dissertation, as well as an intuitive

interpretation of the refinement relation.

Proposition 1 Given two relations R and R′, R′ refines R if and only if

RL ⊆ R′L ∧RL ∩R′ ⊆ R.

Proof. Proof of Sufficiency. Let R and R′ satisfy the conditions RL ⊆ R′L and

RL ∩R′ ⊆ R. We compute:

RL ∩R′L ∩ (R ∪R′)

= {hypothesis RL ⊆ R′L}

RL ∩ (R ∪R′)

= {distributing pre-restriction}

RL ∩R ∪RL ∩R′

= {identity, hypothesis RL ∩R′ ⊆ R}

R.

Hence R′ refines R.

Proof of Necessity. Let R′ refine R; we must prove RL ⊆ R′L and RL∩R′ ⊆ R.

For the first clause, we proceed as follows:

13

RL

= {hypothesis}

RL ∩R′L ∩ (R ∪R′)L

= {distributivity, associativity}

(RL ∩R′L) ∩ (RL ∪R′L)

= {the first term is a subset of the second}

RL ∩R′L.

Hence (by set theory) RL ⊆ R′L. For the second clause, we proceed as follows:

RL ∩R′

⊆ {monotonicity}

RL ∩ (R ∪R′)

= {since RL ⊆ R′L}

RL ∩R′L ∩ (R ∪R′)

= {hypothesis}

R. qed

Interpretation: by proposition 1, R′ refines R if and only if it has a larger

domain and assigns fewer images to elements in the domain of R.

2.3.1 Refinement Ordering

The following proposition provides an important property of refinement. The proof

can be found in [40].

Proposition 2 The refinement relation is a partial ordering between relations on a

space S.

For the sake of readability, we do not include the proof of this proposition here,

but place it in the appendix instead. Because the refinement relation is a partial

14

ordering, we may refer to it as the refinement ordering. The following proposition

provides simple properties of refinement in two special cases.

Proposition 3 Let R and R′ be two relations on set S.

� If R and R′ have the same domain, then R′ w R if and only if R′ ⊆ R.

� If R and R′ are deterministic, then R′ w R if and only if R′ ⊇ R.

Proof. If R and R′ have the same domain, then the condition of refinement can be

written as: (R ∪R′) = R, which means R′ ⊆ R.

To prove the second clause of the proposition, we consider the lemma introduced

in the proof of proposition 2. The proof of sufficiency is trivial: if R and R′ are

functions and R ⊇ R′ then R′ = R′L ∩ R. As for the proof of necessity, let R and

R′ be functions such that R w R′, and let R′′ be defined as R′L ∩R. By hypothesis,

R′′ ⊆ R′; on the other hand,

R′L

⊆ by hypothesis, and by construction

RL ∩R′L

= by construction

R′′L.

Hence R′′ = R′, from which we infer (by construction of R′′) that R′ ⊆ R. qed

2.3.2 Refinement Lattice

Since refinement is a partial ordering between specifications, it is legitimate to ponder

its lattice-like properties. Let R = 〈R,v〉 be a structure in which R is the set of

specifications on some space S, and v is the ‘is-refined-by’ relation. Then, from

proposition 2, R is a partial ordering. The following Proposition, due to [38],

summarizes the main findings with regards to the lattice of relational specifications.

15

� Any two relations R and R′ have a greatest lower bound, denoted by R u R′
and referred to as the meet of R and R′. In particular,

R uR′ = RL ∩R′L ∩ (R ∪R′).

� Two relations R and R′ admit a least upper bound if and only if they satisfy
the condition

RL ∩R′L = (R ∩R′)L.

This condition is called the consistency condition.

� Any two relations that satisfy the consistency condition admit a least upper
bound, denoted by R tR′ and referred to as the join of R and R′. The join is
expressed as:

R tR′ = (RL ∩R′) ∪ (R′L ∩R) ∪ (R ∩R′).

The join of two specifications (or programs) R and R′ is very important, because
it captures the specification that represents all the functional attributes of R,
all the functional attributes of R′, and nothing else. It is possible to capture all
the functional attributes of R and R′ only if R and R′ do not contradict each
other: this is what the consistency condition represents.

� Two relations R and R′ have a least upper bound if and only if they have an
upper bound. Consequently, if R and R′ satisfy the consistency condition and
R refines Q and R′ refines Q′ then a fortiori Q and Q′ satisfy the consistency
condition. Conversely, as R and R′ are refined, it becomes less and less likely
that they satisfy the consistency condition.

� The empty relation is the universal lower bound of this ordering.

� This ordering admits no universal upper bound. Total deterministic relations
are the maximal elements of this ordering.

Figure 2.1 shows the overall structure of the lattice of specifications.

2.4 Program Semantics

We consider a simple programming notation that includes variable declarations,

as well as a number of C-like executable statements. The semantics of variables

declarations allows us to define the state space of the program as discussed Section

16

φ


```
```

```
```̀

�
�
�
�
��

@
@

@
@
@@

@
@
@
@
@@

�
�

�
�
��R R′

R uR′

R tR′
�
�
�

@
@
@

�
�
�

@
@
@

�
�
�

@
@
@

�
�
�

@
@
@

�
�
�

@
@
@

Total Functions

Figure 2.1 Lattice structure of refinement.

2.2.1. The semantics of executable statements are defined by means of a relation that

captures the effect of the execution on the state of the program. Given a program or

program part p, we let its semantics be represented by [p] (or by upper case P) and

be defined by:

[p] = {(s, s′)|if program p executes on state s then it terminates in state s′}.

We represent programs by means of C-like programming constructs, which we

present below along with their semantic definitions:

� Abort: [abort] ≡ φ.

� Skip: [skip] ≡ I.

� Assignment: [s = E(s)] ≡ {(s, s′)|s ∈ δ(E) ∧ s′ = E(s)}, where δ(E) is the set
of states for which expression E can be evaluated.

� Sequence: [p1; p2] ≡ [p1] ◦ [p2].

17

� Conditional: [if (t) {p}] ≡ T ∩ [p] ∪ T ∩ I, where T is the vector defined as:
T = {(s, s′)|t(s)}.

� Alternation: [if (t) {p} else {q}] ≡ T ∩ [p] ∪ T ∩ [q], where T is defined as
above.

� Iteration: [while (t) {b}] ≡ (T ∩ [b])∗ ∩ T̂ , where T is defined as above.

� Block: [{x : X; p}] ≡ {(s, s′)|∃x, x′ ∈ X : (〈s, x〉, 〈s′, x′〉) ∈ [p]}.

The semantic definition of a program written in this notation is a deterministic

relation, i.e., a function, which we call the program’s function. As a notational

convention, lower case letters [p] (possibly indexed) are used to represent the function

of the program, and the same letters in upper case P to represent the relational

semantic denotation of these programs. For the sake of readability, a program is

sometimes identified with its function, i.e., we may use the program and its function

interchangeably.

2.5 Conclusion

In this chapter, we present the theory needed to support the subsequent parts of this

dissertation. The approach taken by this work relies on relational mathematics and

uses a refinement calculus described above. The next chapter introduces invariant

relations, a fundamental building block of our proposed methods.

18

CHAPTER 3

INVARIANT RELATIONS

3.1 Introduction

In the analysis and verification of loops, loop invariants also called invariant assertions

have played a very important role [41, 6, 13, 42, 43, 44, 45, 46], since they were

introduced by C.A.R. Hoare in his seminal work in 1969 [12]. Indeed, invariant

assertions have been essential in proving correctness of indeterminate loops with

respect to a pair of precondition and postcondition. In this chapter, we revisit the

concept of invariant relation as introduced by [39]. The interest of invariant relations

is that they lend themselves well for loop analysis and correctness verification.

3.2 Invariant Relations

Informally, an invariant relation of a while loop of the form w : while (t) {b} is a

relation that contains all (but not necessarily only) the pairs of program states that

are separated by an arbitrary number of iterations of the loop. Invariant relations

are introduced in [47], their relation to invariant assertions is explored in detail in

[40], and their applications are explored in [48]. This section is merely an excerpt

from [48]. We refer to it for more details. We also present invariant assertions and

invariant functions to highlight their relationship with invariant relations.

An invariant relation is defined formally as follows.

Definition 2 Given a while loop of the form w : while (t) {b} on space S, we

say that relation R is an invariant relation for w if and only if it is a reflexive and

transitive superset of (T ∩B).

To illustrate the concept of invariant relation, we consider the following while

loop on integer variables n, f , and k such that 0 < k ≤ n:

19

1 w: whi l e (k!=n) {k=k+1; f=f *k ; } .

Listing 3.1 Factorial computation

We consider the following relation:

R =

{
(s, s′)| f

k!
=
f ′

k′!

}
.

This relation is reflexive and transitive, since it is the nucleus of a function; to

prove that it is a superset of (T∩B) we compute the intersection R∩(T∩B) and easily

find that it equals (T ∩ B). Other invariant relations include R′ = {(s, s′)|n′ = n},

and R′′ = {(s, s′)|k ≤ k′}.

The interest of invariant relations is that they are approximations of (T∩B)∗, the

reflexive transitive closure of (T ∩B); smaller invariant relations are better, because

they represent tighter approximations of the reflexive transitive closure; the smallest

invariant relation is (T ∩B)∗. We quote the following theorem, due to [39], which we

use as the semantic definition of a while loop.

Theorem 1 We consider a while statement of the form w : while (t) {b}. Then

its function W is given by:

W = (T ∩B)∗ ∩ T̂ ,

where B is the function of b, and T is the vector defined by: {(s, s′)|t(s)}.

Also the following proposition stems readily from the definition.

Proposition 4 Given a while loop of the form w : while (t) {b} on space S, we

have the following results:

1. The relation (T ∩B)∗ is an invariant relation for w.

2. If R is an invariant relation for w, then (T ∩B)∗ ⊆ R.

20

3. If R0 and R1 are invariant relations for w then so is R0 ∩R1.

The main difficulty of analyzing while loops is that we cannot, in general,

compute the reflexive transitive closure of (T ∩ B) for arbitrary values of T and

B. Thus the motivation for using invariant relations.

3.2.1 Invariant Functions

Invariant functions are functions whose value remains unchanged by application of

the loop body’s function [49].

Definition 3 Let w be a while statement of the form {while t do b} that terminates

normally for all initial states in S, and let V be a total function on S. We say that

V is an invariant function for w if and only if (T ∩B)V ⊆ V .

In other words, an invariant function is a total function V on S if and only if

(T ∩B) preserves function V

The following Proposition provides an alternative characterization.

Proposition 5 Let w be a while statement of the form {while t do b} that

terminates normally for all initial states in S, and let V be a total function on S.

Function V on S is an invariant function of w if and only if:

T ∩BV = T ∩ V.

Proof. Sufficiency. From T∩BV = T∩V we infer (by identity 2.1) (T∩B)V = T∩V

from which we infer (by set theory) (T ∩B)V ⊆ V .

Necessity. Since T ∩ V is a function, we can prove T ∩BV = T ∩ V by proving

T ∩ BV ⊆ T ∩ V and (T ∩ V)L ⊆ (T ∩ BV)L. We proceed as follows: From

(T ∩ B)V ⊆ V we infer (by identity 2.1) T ∩ BV ⊆ V . Combining this with the set

theoretic identity T ∩BV ⊆ T , we find (by set theory) T ∩BV ⊆ T ∩ V .

21

As for proving that (T ∩V)L is a subset of (T ∩BV)L, we note that because w

terminates for all states in S, T is necessarily a subset of (or equal to) BL (if not any

state in T \BL will cause the loop not to terminate), and we proceed as follows:

(T ∩ V)L ⊆ (T ∩BV)L

⇔ { identity 2.1, applied twice }

T ∩ V L ⊆ T ∩BV L

⇔ { totality of V , applied twice }

T ∩ L ⊆ T ∩BL

⇔ { left: algebra; right: hypothesis T ⊆ BL }

T ⊆ T

⇔ { set theory }

true.

qed

This condition can also be written using monotypes rather than vectors:

I(t) ◦ V = I(t) ◦B ◦ V.

To illustrate the concept of invariant function, we consider the loop of example

3.1, and propose the following function:

V

n

f

k

 =

f

(k−1)!

0

0

 .

This function is total, since its value can be computed for any state in S. To

check the preservation condition, we compute:

22

T ∩ (BV)

⊆ { substitution, simplification }

{(s, s′)|n′ = n ∧ f ′ = f × k ∧ k′ = k + 1} ◦ {(s, s′)|n′ = f
(k−1)!

∧ f ′ = 0 ∧ k′ = 0}

= { relational product }

{(s, s′)|n′ = f×k
(k+1−1)!

∧ f ′ = 0 ∧ k′ = 0}

= { simplification }

{(s, s′)|n′ = f
(k−1)!

∧ f ′ = 0 ∧ k′ = 0}

= { substitution }

V .

3.2.2 Invariant Assertions

Traditionally [14, 12, 50], an invariant assertion α for the while loop

w = { while t do b}

with respect to a precondition/ postcondition pair (P , Q) is defined as a predicate

on S that satisfies the following conditions:

� P ⇒ α.

� {α ∧ t}b{α}.

� α ∧ ¬t⇒ Q.

As defined, the invariant assertion is dependent not only on the while loop,

but also on the loop’s specification, in the form of a precondition/ postcondition

pair. This precludes meaningful comparisons with invariant relations and invariant

functions, which are dependent solely on the loop. Hence we redefine the concept

of invariant assertion in terms of the second condition alone. Also, to represent

23

an invariant assertion, we map the predicate on S into a vector (a relation) on S.

Specifically, we represent the predicate α by the vector A defined by

A = {(s, s′)|α(s)}.

Definition 4 Given a while statement on space S of the form

w = {while t do b}

that terminates for all initial states in S, and a vector A on S, we say that A is an

invariant assertion for w if and only if (A ∩ T ∩B) ⊆ Â.

In other words, A is an invariant assertion for w if and only if T ∩B preserves A.

This is a straightforward interpretation, in relational terms, of the second condition

of Hoare’s rule,

{α ∧ t}B{α}.

For the running example, we claim that the following vector satisfies the

condition of Definition 4:

A = {(s, s′)|f = (k − 1)!}.

To verify that α is an invariant assertion, we compute the left hand side of the

definition:

Proof. A ∩ T ∩B

= { substitutions }

{(s, s′)|f = (k − 1)! ∧ k 6= n+ 1 ∧ n′ = n ∧ f ′ = f × k ∧ k′ = k + 1}

⊆ { deleting conjuncts }

{(s, s′)|f = (k − 1)! ∧ f ′ = f × k ∧ k′ = k + 1}

24

= { substitution }

{(s, s′)|f = (k − 1)! ∧ f ′ = (k′ − 1)! ∧ k′ = k + 1}

⊆ { deleting conjuncts }

{(s, s′)|f ′ = (k′ − 1)!}

= { substitution }

Â. qed

Note that we have not proved that the assertion f = (k − 1)! holds after each

iteration; rather we have only proved that if this assertion holds at one iteration, then

it holds at the next iteration, hence, (by induction) after each iteration thereafter.

This is in effect an inductive proof without a basis of induction.

3.2.3 Ordering Invariant Relations by Refinement

Invariant relations are ordered by refinement, which, as we have discussed in Section

2.3.2, has lattice-like properties. More refined relations give more information on loop

behavior. Because they are by definition reflexive, invariant relations are total. If we

consider the definition of refinement (Definition 1), we find that it can be simplified

as follows

RL ∩R′L ∩ (R ∪R′) = R′

⇔ { R and R′ are total }

L ∩ L ∩ (R ∪R′) = R′

⇔ { Set Theory }

R ∪R′ = R′

⇔ { Set Theory }

25

R ⊆ R′.

Hence for invariant relations, refinement is synonymous with set inclusion. We

illustrate this ordering with a simple example. We leave it to the reader to check that

the following two relations are invariant relations for our running sample program.

R0 = {(s, s′)| f

(k − 1)!
=

f ′

(k′ − 1)!
}.

R1 = {(s, s′)| f

(k − 1)!
=

f ′

(k′ − 1)!
∧ n = n′}.

Invariant relation R1 is a subset of, therefore (because they are both total) a

refinement of, invariant relation R0. Clearly, the latter also provides more information

on loop properties than the former.

3.2.4 Comparative Analysis

Invariants and Loop Functions In this section, we put forth two propositions

that elucidate the relation between invariant relations and loop functions. The first

proposition shows us how to derive an invariant relation from the function of the loop.

Proposition 6 Given a while loop w on space S of the form {while t do b}; we

assume that w terminates for all s in S, and we let W be the function defined by w.

Then R = µ(W) is an invariant relation for w.

Proof. Relation R = µ(W) is reflexive and transitive because W is total and

deterministic. According to Mills’ Theorem, the loop functionW satifies the condition

T ∩W = T ∩ BW . According to Proposition 5, this is equivalent to T ∩ BW ⊆ W ,

which we rewrite (according to identity 2.1) as (T ∩ B)W ⊆ W . By identity 2.17,

this is equivalent to (T ∩B) ⊆ WŴ . qed

26

Proposition 6 shows us how to derive an invariant relation from the loop

function; a much more useful result in practice is how to derive the function of the

loop (or an approximation thereof) from an invariant relation. This is the subject of

the following proposition. We refer to [51] for a detailed proof.

Proposition 7 We consider a while loop w on space S of the form {w: while t

do b}, which terminates for any element in S. If R is an invariant relation of w

then W refines R ∩ T̂ .

The interest of this proposition is that it enables us to use any invariant relation

to build a lower bound for the function of the loop. Because the function of the loop

is total and deterministic, it is maximal in the lattice of refinement. Hence we can

compute or approximate it using only lower bounds.

Hence, to summarize, we can derive an invariant relation from the loop function,

and we can approximate (provide a lower bound of) the loop function from an

invariant relation.

Invariants Relations and Invariant Assertions The first question that we raise

in this section is: can an invariant relation be used to generate an invariant assertion?

The answer is provided by the following proposition.

Proposition 8 Let R be an invariant relation of w = {while t do b} on space S

and let C be an arbitrary vector on S. Then R̂C is an invariant assertion for w.

Proof. Relation R̂C is a vector since C is a vector. We must prove R̂C∩T∩B ⊆ ̂̂RC.

To do so, we proceed as follows:

R̂C ∩ T ∩B ⊆ ̂̂RC
⇐ { Since T ∩B ⊆ R }

R̂C ∩R ⊆ ĈR

27

⇐ { since R̂C ∩R ⊆ L(R̂C ∩R) }

L(R̂C ∩R) ⊆ ĈR

⇔ { vector identity 2.4 }

ĈRR ⊆ ĈR

⇐ { monotonicity }

RR ⊆ R,

which holds by virtue of the transitivity of R. qed

This proposition is interesting to the extent that it shows how to derive an

invariant assertion from an invariant relation, but also because it shows that an

invariant relation can generate (potentially) an infinity of invariant assertions, one

for each vector C. We consider the following example, pertaining to the sample loop

in listing 3.1. where we take an invariant relation

R = {(s, s′)| f
(k−1)!

= f ′

(k′−1)!
},

and a set of vectors, say

C0 = {(s, s′)|f(s) = 1 ∧ k(s) = 1}

C1 = {(s, s′)|f(s) = 1 ∧ k(s) = 2}

C2 = {(s, s′)|f(s) = 2 ∧ k(s) = 3}

C3 = {(s, s′)|f(s) = 6 ∧ k(s) = 4}

C4 = {(s, s′)|f = (k − 1)!}

C5 = {(s, s′)|f(s) = 2 ∧ k(s) = 5}.

28

The invariant assertion that stems from vector C0 is:

A = {(s, s′)|∃s′′ : f

(k − 1)!
=

f”

(k”− 1)!
∧ f” = 1 ∧ k” = 1},

which can be simplified to

A = {(s, s′)|f = (k − 1)!}.

We leave it to the reader to check that the invariant assertions derived from

vectors C1, C2, C3 and C4 are the same as the relation given above, since in all cases

we have f”
(k”−1)!

= 1. The invariant assertion that stems from vector C5 is:

A5 = {(s, s′)|∃s′′ : f

(k − 1)!
=

f”

(k”− 1)!
∧ f” = 2 ∧ k” = 5},

which can be simplified to:

A = {(s, s′)| f

(k − 1)!
=

1

12
},

or to

A = {(s, s′)|f =
(k − 1)!

12
}.

Through this example, we want to illustrate the idea that in the formula of

invariant assertion provided by Proposition 8, the term R̂ pertains to the while

loop alone, whereas C pertains to the context in which the loop is placed, viz its

initalization. So that if the same loop is used with different initializations, we change

C but maintain R.

We now consider the question of generating an invariant relation from an

invariant assertion, for which we have the following proposition.

Proposition 9 Given an invariant assertion A for while loop w = {while to do

b} on space S, the relation R = A ∪ Â is an invariant relation for w.

29

Now that we find that we can derive an invariant assertion from any invariant

relation and an invariant relation from any invariant assertion, we need to ask the

following questions: can any invariant assertion be derived from an invariant relation,

and can any invariant relation be derived from an invariant assertion? The answers

are provided below.

Proposition 10 Given an invariant assertion A, there exists an invariant relation

R and a vector C such that A = R̂C.

Proof. If A is empty then this proposition holds vacuously for C = φ. Given a

non-empty invariant assertion A, we let R = A ∪ Â and C = A, and we prove that

A = R̂C; we already know, by Proposition 9 that R is an invariant relation. What

remains to prove:

R̂C

= { substitutions }

̂
(A ∪ Â)A

= { distributing the converse operation }

(Â ∪ A)A

= { distributivity }

ÂA ∪ AA

= { identity 2.6 }

AA

= { definition of a vector }

ALAL

= { associativity, and identity 2.14 (A 6= φ) }

30

AL

= { definition of a vector }

A.

qed

As to the matter of whether any invariant relation can be generated from

an invariant assertion, the answer appears to be no, though we have a substitute:

any invariant relation can be generated as an intersection of elementary invariant

assertions. To formulate this result, we recall the concept of point, which is a special

type of vector. While a vector is defined by a subset of S, a point is defined by a

singleton. As an illustration, we consider the set S defined by natural variables n, f

and k, and we write a few vectors and a few points, to illustrate the distinction.

C0 = {(s, s′)|f = 1},

C1 = {(s, s′)|f = (k − 1)!},

C2 = {(s, s′)|f = 1 ∧ k = 1},

p0 = {(s, s′)|n = 6 ∧ f = 1 ∧ k = 1},

p1 = {(s, s′)|n = 6 ∧ f = 120 ∧ k = 7},

p2 = {(s, s′)|n = 9 ∧ f = 2 ∧ k = 5}.

To conclude, from an invariant relation, we can derive as many invariant

assertions as there are vectors on S (infinitely many, if S is infinite); and it takes

a large number (possibly infinity) of invariant assertions (one for each element of S)

to produce an invariant relation; furthermore, any invariant assertion stems from an

invariant relation.

31

Summing up: Figure 3.1, borrowed from [40], compiles in tabular form the

distinguishing characteristics of invariant assertions, invariant relations, and invariant

functions.

3.3 Conclusion

In this chapter, we introduce the concept of invariant relations. In particular, we

showed how they relate to invariant assertions. The next chapter introduces our

approach to integrating termination with abort-freedom for while loops.

32

T
a
b

le
3
.1

C
h
ar

ac
te

ri
zi

n
g

in
va

ri
an

ts

C
ri

te
ri

on
In

va
ri

an
t

A
ss

er
ti

on
In

va
ri

an
t

F
u
n
ct

io
n

In
va

ri
an

t
R

el
at

io
n

N
am

e,
A

tt
ri

b
u
te

A
,

ve
ct

or
V

,
to

ta
l

d
et

er
m

in
is

ti
c

R
,

re
fl
ex

iv
e

tr
an

si
ti

ve

C
on

d
it

io
n

A
∩
T
∩
B
⊆
Â

T
∩
B
V
⊆
V

(T
∩
B

)
⊆
R

E
x
am

p
le

A
=
{(
s,
s′

)|f
=

(k
−

1)
!}

V

 n f k

 =

0 f

(k
−

1
)!

0

R

=
{(
s,
s′

)|
f

(k
−

1
)!

=
f
′

(k
′ −

1
)!
}

S
u
p

er
se

ts
of

(T
∩
B

)
(A
∪
Â

)
(V
V̂

)
R

R
el

at
io

n
to

L
o
op

F
u
n
ct

io
n

A
=
W
C

fo
r

ar
b
it

ra
ry

ve
ct

or
C

V
=
W

R
=
W
Ŵ

O
rd

er
in

g
Im

p
li
ca

ti
on

In
cl

u
si

on
In

je
ct

iv
it

y
R

efi
n
em

en
t

W
ea

ke
st

tr
u
e

C
on

st
an

t
fu

n
ct

io
n
s

L

O
p
ti

m
al

/
A

d
eq

u
at

e
In

va
ri

an
ts

A
=
{(
s,
s′

)|W
(s

)
=
W

(s
0
)}

fo
r

so
m

e
s 0
∈
S

V
=
W

R
=

(T
∩
B

)∗

33

CHAPTER 4

CONVERGENCE

4.1 Introduction: The Case for Merger

The condition (on initial states) under which a computation terminates, and the

question of whether a computation terminates for a given initial state, have been the

focus of much research interest since the early days of computing. The question of

termination arises, by definition, in the context of iterative programs. Traditionally,

researchers have analyzed iterative programs by means of two constructs: they use

invariant assertions [12] to capture functional properties of iterative programs, and

variant functions (also referred to as ranking functions) [52, 53] or well founded

orderings [14] to model operational properties, including termination. We argue that

the derivation of a ranking function of a loop is amenable to the derivation of a

transitive asymmetric superset of the function of the loop body, which Podelski and

Rybalchenko introduce under the name of transition invariant [?]. What makes the

derivation of ranking functions or, equivalently, transition invariants, very difficult

is the fact that the transitive closure of a union of relations is not the union of the

transitive closures of the individual relations; so that whenever the function of the loop

body is structured as a union of relations, it is not sufficient to compute a transitive

superset of each term of the union; this has been the driving motivation behind much

of the work on the generation of composite ranking functions [54, 55, 56, 57] and

composite transition invariants [58].

Non-termination is not the only issue we have to worry about with regards to the

execution of a program; we also have to worry about the possibility that the program

encounters an exceptional condition, such as an array reference out of bounds, an

arithmetic overflow, the attempt to execute an illegal arithmetic operation (such as

34

a division by zero, the square root of a negative number, an arithmetic overflow, a

reference to a nil pointer, etc). We refer to all these events as aborts, and we refer

to the property of a program that avoids them as abort freedom. Most other authors

refer to this property as safety, but we prefer to be compatible with the terminology

of Avizienis et al. [59], where safety refers to correctness with respect to high stakes

requirements. Traditionally, abort-freedom has been investigated separately from

termination, and has, consequently, used totally distinct mathematical models, such

as abstract interpretation [17, 18, 60].

When a program terminates without causing an abort, we say that it converges;

and we use the term convergence to refer to the property of a program that terminates

without causing an abort. When a program fails to converge, we say that it diverges.

4.1.1 Motivation

One of our main contributions in this chapter is that we want to capture termination

and abort freedom by a single model; to explain the motivation for this decision,

we consider a while loop whose execution may lead to an abort, and discuss why it

is advantageous to compute the condition under which this loop terminates without

causing an abort (as opposed to computing separately the condition under which it

terminates, and the condition under which it causes no abort).

� Knowing that a loop does not exceed 100 iterations does not help us if it turns
out that it will cause an abort at the 10th iteration. Hence the condition of
termination is insufficient unless we also know the condition of abort-freedom.

� Knowing that a loop does not cause an abort for the next 100 iterations is not
necessary if it turns out that the loop exits after only 10 iterations. Hence the
condition of abort-freedom is unnecessary unless we also know the condition of
termination.

� The condition of convergence of a loop is not the conjunction of the condition
of termination with the condition of abort-freedom. As we will see throughout
this chapter, the condition of convergence weaves conditions of termination and
conditions of abort freedom in non-trivial ways.

35

4.1.2 Illustration

We consider the following loop on integer variables i, x and y, and we wish to compute

the condition under which this loop terminates without attempting a division by zero;

in other words, we want the condition under which this loop terminates after a finite

number of iteration, and such that no single iteration will fail to execute properly.

1 whi le (i !=0)
2 {
3 i=i +2;
4 x=x−5;
5 y=y−y/x ;
6 }

The abort condition we are concerned about in this loop is the possibility of a

division by zero in the statement {y=y-y/x;}. Application of our analytical approach

(which we discuss later in this chapter) to the source code of this loop yields the

following condition of convergence:

(i = 0)∨(i < 0∧imod 2 = 0∧(x < 5∨(5 < x <
−5× i

2
∧xmod 5 6= 0)∨x > −5× i

2
)).

If we analyze this condition, we find that it stipulates that either (i = 0) (in which

case the loop does not iterate at all) or (i < 0 ∧ i mod 2 = 0) (in which case the

number of iterations is finite —note that if i is odd, then it will skip over zero and

never terminate) then either x < 5 (in which case x never takes value 0 as it is

decremented by 5 at each iteration) or (5 < x < −5×i
2
∧ x mod 5 6= 0) (in which

case x flies over zero on its way down but does not hit zero) or (x > −5×i
2

) (in which

case i reaches 0 and terminates the loop before x gets near zero). If (i > 0) or if

(i < 0 ∧ i mod 2 6= 0) then this loop does not terminate since i never hits 0 as it is

incremented by 2 at each iteration.

As additional illustrations, we consider the following loops and analyze their

condition of convergence:

36

ID Loop
Convergence

Condition

P1 for (int j=-100;j<=100;j++) {i=j; x=x0; y=y0; False

while (i!=0) {i=i+2; x=x-5; y=y-y/x;}}

P2 for (int j=0;j<=100;j++) {i=j; x=x0; y=y0; False

while (i!=0) {i=i+2; x=x-5; y=y-y/x;}}

P3 for (int j=1;j<=100;j++) {i=j; x=x0; y=y0; False

while (i!=0) {i=i+2; x=x-5; y=y-y/x;}}

P4 for (int z=10;z<=100;z++) {x=z; i=i0; y=y0; i = 0 ∨ i = −2

while (i!=0) {i=i+2; x=x-5; y=y-y/x;}}

P5 for (int z=-100;z<=100;z++) {x=z; i=i0; y=y0; i = 0

{while (i!=0) {i=i+2; x=x-5; y=y-y/x;}}

P6 for (int z=0;z<=100;z++) {x=z; i=i0; y=y0; i = 0

{while (i!=0) {i=i+2; x=x-5; y=y-y/x;}}

Experimentation bears this analysis out, in the following sense:

� Execution of programs P1, P2, and P3 fails to converge for any initial value
x0 of x and y0 of y; if the initial value of x is a positive multiple of 5,
then execution of these programs fails due to an abort (our run-time system
announces: Floating Exception); if the initial value of x is negative or is not
a multiple of five, then the program fails to terminate. In both cases, we simply
say that it fails to converge.

� Execution of program P4 converges only for initial values 0 and -2 of variable
i; for all other initial values of i, it fails because it attempts a division by zero
(hence, the execution yields the Floating Exception). For i = 0 it converges
because the inner loop does not iterate at all; for i = −2 it converges because,
even though the inner loop executes, it exits before x becomes 0.

� Execution of programs P5 and P6 converge only for initial value 0 of variable
i. For positive initial values of i, and for negative initial values that are not
divisible by 2, the programs fail to converge because they fail to terminate; for
other values (also different from -2 and 0), the programs fail to converge because
they attempt a division by zero.

37

4.1.3 Premises

There is a vast literature on termination analysis, and on abort-freedom analysis; we

discuss some of the relevant work in Section 4.4. In this section, we characterize our

approach by a number of premises, which ought to elucidate how our work differs from

related literature; we characterize our work by its unique ends, then by its unique

means.

Ends As our foregoing discussions makes it clear, our goal is to compute the

condition under which a program, in particular an iterative program, terminates

without causing an abort; we argue that computing the termination condition

separately or the abort-freedom condition separately produces incomplete results,

and that taking the conjunct of these conditions computed separately does not lead

to the complete convergence condition. Our goal can further be characterized by

the premise that we are interested in computing the condition of convergence of a

program, rather than merely proving that a program does indeed converge. Finally,

our analysis is focused on uninitialized loops rather than initialized loops, on the

grounds that computing the convergence condition of an unitialized loop enables us to

infer the converge (or divergence) of the loop for any initialization, whereas analyzing

the convergence of an initialized loop produces a result for a single initialization.

Means Whereas termination is usually analyzed by means of variant functions

or transition invariants, we analyze it by means of invariant relations. This is a

fitting choice, from our standpoint, because we model the condition of convergence

of any program as the condition under which an initial state of the program is in

the domain of the program’s function. Since we use invariant relations to compute

or approximate loop functions, it is only natural that we use the same artifact to

compute the domain of loop functions, since the domain of a function is an integral

part of the definition of the function, rather than an orthogonal attribute. Like

38

invariant relations, transition invariants [61] are required to be transitive supersets

of the function of the guarded loop body; but whereas transition invariants must be

asymmetric (and well founded) because they aim to capture termination properties,

invariant relations can be reflexive and symmetric, since they aim to capture all the

functional properties of while loops (including equivalence relations between inputs

and outputs). The case we make in this chapter is that invariant relations can take

a wide range of forms, therefore, can be used to model a wide range of properties,

including termination and abort-freedom.

4.1.4 Contributions and Limitations

The core idea of this approach can be summed up in two theorems: Theorem 2

maps any given invariant relation into a necessary condition of convergence; and

Theorem 3 gives a general format of invariant relations that capture abort-freedom

properties. Because invariant relations can be arbitrarily large, hence, capture

arbitrarily little functional information of the loop, it is only fitting that Theorem

2 produces necessary, but not necessarily sufficient, conditions of convergence. We

could appeal to another theorem, Theorem 1, to characterize necessary and sufficient

conditions of convergence, but this theorem offers little guidance in practice; thus, we

resort to heuristics, which we discuss in section 8.1.1, that enable us to compute

sufficient conditions of termination using partial (but still sufficient) information

about the loop. Note that because the intersection of invariant relations is an invariant

relation, we do not distinguish between invariant relations that capture termination

and invariant relations that capture abort-freedom; rather the set of invariant relation

forms a continuum, where the same relation can capture the two aspects to varying

degrees. The main limitation of our work is that it offers ideas and algorithms,

but does not offer an integrated operational tool that we could match up against

existing tools; then again, given that no tool we know of computes the condition of

39

convergence per se, all we can do is compare our approach to tools that compute

termination conditions (or prove termination) and tools that compute abort-freedom

conditions (or warn of possible abort occurrences).

In Section 4.2 we discuss a general framework for analyzing the convergence of

programs, which we then specialize to iterative programs, by means of a necessary

condition of convergence. In Section 4.3, we consider several conditions of abort

avoidance and apply the necessary condition of convergence to them, then we discuss

in section 8.1.1 under what condition the computed necessary conditions can be

deemed sufficient. Finally in Section 4.5 we summarize our findings, compare them

to related work, and sketch directions of future research.

4.2 Characterizing Convergence Conditions

The purpose of this section is to lay a foundation for the analysis of loop convergence

by means of two theorems: the first gives a general formula for mapping any invariant

relation into a necessary condition of convergence; and the second theorem gives

guidance on how to generate invariant relations to target specific abort freedom

properties.

4.2.1 A Necessary Condition of Termination

We consider a while loop w of the form w: while (t) {b} on space S, and we are

interested to compute its domain, which we represent by the vector WL (where W

is the function of w and L is the universal relation). The following theorem, due to

[48], gives a necessary condition of convergence.

Theorem 2 We consider a while loop w of the form w: while (t) {b} on space S,

and we let R be an invariant relation for w. Then WL ⊆ RT.

This Theorem converts an invariant relation of w into a necessary condition of

convergence; we seek to derive the smallest possible invariant relations, in order to

40

approximate or achieve the necessary and sufficient condition of convergence. The

proof of this Theorem is given in [48]; it stems readily from Theorem 1, and from

relational identities. In practice, we compute the convergence condition of a loop by

means of the following steps:

� Using the invariant relation generator, we generate all the invariant relations
we can recognize; whenever a code pattern of the loop matches a recognizer
pattern from our recognizer database, we generate the corresponding invariant
relation. These relations are represented in Mathematica syntax (©Wolfram
Research).

� We compute the intersection of the invariant relations we are able to generate,
by merely taking the conjunct of their Mathematica representation.

� Given R the aggregate invariant relation computed above, we simplify the
following logical formula, which is the logical representation of the formula of
Theorem 2.

∃s′ : (s, s′) ∈ R ∧ ¬t(s′).

The result is a logical expression in s, which represent a necessary condition of
convergence of the loop.

As an illustration of this Theorem, we consider the sample factorial loop

discussed earlier, namely:

w: while (k!=n) {k=k+1; f=f*k;}.

We consider the following invariant relation of w: R = {(s, s′)|k ≤ k′}.

Application of Theorem 2 to this invariant relation yields the following necessary

condition: k ≤ n. Indeed, this condition is necessary to ensure that the number of

iterations of the loop is finite.

4.2.2 Abort Freedom

Theorem 2 converts any invariant relation into an approximation of (more precisely:

a superset of) the domain of the while loop; in logical terms, this produces a

necessary condition of convergence. The domain of W is limited by failure of the

41

loop to terminate, as well as failure of abort-prone statements to execute successfully;

Theorem 2 applies equally well to either of these circumstances. Depending on our

choice of invariant relations, we can capture one aspect of non-convergence or the

other, or a combination thereof. In this subsection, we present a general format

of invariant relations that enable us to capture arbitrary aspects of abort-freedom

(freedom from: array reference out of bounds, nil pointer reference, division by zero,

arithmetic overflow, etc).

The following discussion builds an intuitive argument for the proposed theorem,

and explains how we derived it. As a general rule, a program convergence whenever

it is applied to a state within its domain, and fails to convergence otherwise. Hence,

at a macro-level, the condition of convergence of program g can merely be written as:

s ∈ dom(G).

If g is a sequence of two subprograms, say g = g1; g2 then this condition can

be rewritten as:

s ∈ dom(G1) ∧G1(s) ∈ dom(G2).

We can prove by induction that if g is written as a sequence of arbitrary length,

say g = (g1; g2; g3; ...; gn), then the condition of convergence can be written

as:

s ∈ dom(G1) ∧G1(s) ∈ dom(G2) ∧G2(G1(s)) ∈ dom(G3) ∧ ...∧

Gn−1(Gn−2(...(G3(G2(G1(s))))...)) ∈ dom(Gn),

or, equivalently, as:

∀h : 0 ≤ h < n : Gh(Gh−1(...(G3(G2(G1(s))))...)) ∈ dom(Gh+1). (4.1)

42

If we specialize this equation to while loops, where all the Gi’s are instances of the

loop body, we find the following equation:

∀h : 0 ≤ h < n : (T ∩B)h(s) ∈ dom(B). (4.2)

In practice it is difficult to compute (T ∩ B)h for arbitrary values of h;

fortunately, it is not necessary to compute them either, as usually only a small set

of program variables (and only some of their functional properties) are involved in

characterizing convergence. Hence, we substitute in the above equation the term

(T∩B) by a superset thereof (which we call B′), that captures only the transformation

of convergence-relevant variables. This equation can then be written as:

∀h : 0 ≤ h < n : B′h(s) ∈ dom(B). (4.3)

We want to change this formula from a quantification on the number of iterations

to a quantification on intermediate states; to this effect, we use the change of variables:

u = (T ∩ B)h(s), and we represent the initial state (that corresponds to h = 0) by s

and the final state (that corresponds to h = n) by s′. With these change of variables,

the inequality 0 ≤ h can be written as (s, u) ∈ B′∗, and the inequality (h < n) can

be written as (u, s′) ∈ B′∗. Equation 4.3 can then be written as:

∀u : (s, u) ∈ B′∗ ∧ (u, s′) ∈ B′+ ⇒ u ∈ dom(B). (4.4)

Interestingly, this equation defines an invariant relation between s and s′; this

is the object of Theorem 3. Before we present this theorem and its proof, we write

the proposed invariant relation in algebraic form.

R

= { denotation }

{(s, s′)|∀u : (s, u) ∈ B′∗ ∧ (u, s′) ∈ B′+ ⇒ u ∈ dom(B)}

43

= { rewriting u ∈ dom(B) }

{(s, s′)|∀u : (s, u) ∈ B′∗ ∧ (u, s′) ∈ B′+ ⇒ (u, s′) ∈ BL}

= { De Morgan }

{(s, s′)|∃u : (s, u) ∈ B′∗ ∧ (u, s′) ∈ B′+ ∧ (u, s′) 6∈ BL}

= { Associativity }

{(s, s′)|∃u : (s, u) ∈ B′∗ ∧ (u, s′) ∈ (B′+ ∩BL}

= { Relational Product }

B′∗(B′+ ∩BL).

This discussion introduces, though it does not prove, the following theorem; its

proof is given below.

Theorem 3 We consider a while loop w of the form w: while (t) {b} on space S,

and we let B′ be a superset of (T ∩B). If B′ satisfies the following conditions:

� B′+ is anti-reflexive.

� The following relation Q = B′∗(B′+ ∩ V) is transitive, for an arbitrary vector
V .

� T ∩B ∩B′+B′ = φ.

then R = (B′∗(B′+ ∩BL)) is an invariant relation for w.

This theorem provides, in effect (when applied in conjunction with Theorem

2), that if the loop converges for initial state s (i.e. s is in dom(W)), then any

intermediate state s′ generated from s by an arbitrary number of iterations of the

loop causes no abort at the next iteration (i.e. s′ is in dom(B)). It is in this sense

that this theorem links dom(W) and dom(B).

Proof. We have to show three properties of R, namely reflexivity, transitivity, and

invariance (i.e. that R is a superset of (T ∩B)).

44

Reflexivity. In order to show that I is a subset of R, we show that I ∩ R = φ.

We find:

I ∩R

= { substitution }

I ∩ (B′∗(B′+ ∩BL)

⊆ { monotonicity }

I ∩B′∗B′+

= { relational identity }

I ∩B′+

= { anti-reflexivity of B′+ }

φ.

Transitivity. Transitivity is a trivial consequence of the second condition of the

theorem, by taking V = BL.

Invariance. In order to prove that (T ∩ B) ⊆ R, it suffices (by set theory) to

prove that (T ∩ B) ∩ R = φ. To this effect, we analyze the expression (T ∩ B) ∩ R.

But first, we introduce a lemma to the effect that for any relation C, C+C = C+C+.

Indeed, C+C+ can be written CC∗C∗C by decomposing C+ as CC∗ then as C∗C.

Now, C∗C∗ is equal to C∗: C∗C∗ ⊆ C∗ because of transitivity, and C∗ ⊆ C∗C∗

(because I ⊆ C∗). Hence C+C+ = CC∗C = C+C. Now, we consider the expression

(T ∩B) ∩R.

(T ∩B) ∩R

= { substitution, double complement }

(T ∩B) ∩ (B′∗(B′+ ∩BL))

= { decomposing the reflexive transitive closure }

(T ∩B) ∩ (I ∪B′+)(B′+ ∩BL)

= { distributing the union over the product }

((T ∩B) ∩B′+ ∩BL) ∪ ((T ∩B) ∩B′+(B′+ ∩BL))

45

= { associativity, and relational identity: B ∩BL = φ }

(T ∩B) ∩B′+(B′+ ∩BL)

⊆ { monotonicity }

(T ∩B) ∩B′+B′+

= { lemma above }

(T ∩B) ∩B′+B′

= { by hypothesis }

φ. qed

The first condition of this theorem ensures that B′ captures variant properties

of (T ∩ B), hence, does not revisit the same state after a number of iterations; we

refer to this as the anti-reflexivity condition. The second condition ensures that the

resulting relation is transitive (a necessary condition to be an invariant relation); this

condition involves B′ and the structure of R, but does not involve B; we refer to this as

the transitivity condition. The third condition ensures that B′, while approximating

(T ∩ B), remains in unison with it, i.e. does not iterate faster than (T ∩ B); this

condition is needed to ensure that R is a superset of (T ∩ B); we refer to it as the

concordance condition. Note that there is a one-to-one correspondence between the

properties of B′ and the resulting properties of R: The anti-reflexivity of B′+ yields

the reflexivity of R; the transitivity of (B′∗(B′+ ∩V)) yields the transitivity of R and

the concordance of B′ yields the invariance of R (i.e. the property that (T ∩ B) is a

subset of R).

The interest of this theorem is that it captures, in the form of an invariant

relation, the property of abort-freedom of a while loop (as we illustrate subsequently).

To understand how it does that, consider the logical form of such invariant relations:

R = {(s, s′)|∀u : (s, u) ∈ B′∗ ∧ (u, s′) ∈ B′+ ⇒ u ∈ dom(B)},

46

where B′ is a superset of B. In practice, we use B′ to approximate B, by focusing on

the variables that are of interest to us (that are involved in abort-prone statements)

and recording how B transforms them. As for dom(B), we use it to capture/ represent

the abort condition we are paranoid about: for example, if we want to model the

condition that arithmetic operations in the loop body do not cause overflow, then

we let dom(B) include a clause to the effect that all operations produce a result

within the range of representable values; if we want to model the condition that

no division by zero arises in the execution of the loop body, then we include a

condition in dom(B) that ensures that all divisors in B are non-zero; if we want

to avoid nil pointer references, then we capture in dom(B) the condition that all

dereferenced pointer variables are non-nil, etc. So that relation R, as written above,

provides that all intermediate states generated by successive iterations of B cause

no abort conditions. When we apply Theorem 2 using invariant relations generated

by Theorem 3 (for various choices of B′ and various possible characterizations of

dom(B)), we find conditions on the initial states of the loop, that ensure a terminating

abort-free execution.

As we have discussed in Section 3.2, smaller invariant relations are better. If

we consider the template of invariant relations generated by Theorem 3,

R = B′∗(B′+ ∩BL),

we find that R grows smaller (better) when B′ grows larger (i.e. provides a looser

approximation of B) and when BL (i.e. the domain of B) grows smaller (i.e. we

capture more and more abort conditions).

4.3 Applications

4.3.1 Simple Loops

As an illustration, we consider the following loop on integer variables i, j, and k.

47

while (i>1) {j=j+1; i=i+2*j-1; k=k-1;}

The parameters of this loop are:

� T = {(s, s′)|i > 1}.

� B = {(s, s′)|j′ = j + 1 ∧ i′ = i+ 2j + 1 ∧ k′ = k − 1}.

We derive the following invariant relations (using recognizers from our existing

database [62]):

� The elementary invariant relation, R0 = I ∪ T (T ∩B).

� Symmetric invariant relations: R1 = {(s, s′)|j+k = j′+k′}, R2 = {(s, s′)|i−j2 =
i′ − j′2}.

� Antisymmetric invariant relations (one of them suffices, given that we already
have R1, but we write them both): R3 = {(s, s′)|j′ ≥ j}, R4 = {(s, s′)|k′ ≤ k}.

Taking their intersection R = R0 ∩ R1 ∩ R2 ∩ R3 ∩ R4, and applying Theorem

2 to R, we find the following convergence condition:

(i ≤ 1) ∨ (i > 1 ∧ j ≤ −
√
i− 1).

This condition is provably a necessary condition of termination; we believe that

it is also a sufficient condition of convergence, because the invariant relations we have

used to generate it capture all the relevant information for termination: relation R0

captures relevant boundary conditions; relation R3 captures the progression of the

program state; relation R2 links variable j which counts the number of iterations

and variable i, which is used in the loop condition. Note that relations R1 and R4

were redundant for our purposes, and are not needed to compute the convergence

condition, if we have R0, R2 and R3. As an illustration, we consider a data sample

that satisfies the convergence condition, e.g., i = 10∧ j = −5 and a data sample that

does not satisfy the condition, e.g., i = 10 ∧ j = 0, and verify that the first sample

yields to convergence and the second leads to divergence.

48

4.3.2 Nested Loops

So far, we have focused on one loop at a time, and considered how to compute

necessary (and possibly sufficient) conditions to ensure that the loop terminates

without raising an abort condition. In this section we briefly review how to analyze

nested loops: Let w be a loop of the form:

w: while (t) {... w’: while (t’) {b’;};}

where w and w′ are labels in the source code (to identify the loops). To analyze

this nested loop, we first consider the inner loop and derive its convergence condition,

which we call C ′(s). Then we apply Theorem 3 to the outer loop, using C ′(s) for

s ∈ dom(B), assuming no other source of abort exist in the loop body of w (if other

sources did exist, we just take their conjunct with C ′(s)). The rationale for this

process is very straightforward: when we apply Theorem 3 to a loop, we capture in

dom(B) the condition under which the loop body is assured to converge; in the case

of a nested loop, that condition is precisely C ′(s) (if no other cause of divergence

existed). As an illustration of this approach, consider again the example of programs

P1 to P6 presented in Section 4.1.2: Given that the condition of convergence of the

inner loop was found to be

C ′(i, x, y)⇔

(i = 0)∨(i < 0∧imod 2 = 0∧(x < 5∨(5 < x <
−5× i

2
∧xmod 5 6= 0)∨x > −5× i

2
)),

the condition of convergence of P4 (for example) stems from simplifying the expression

∀x, 10 ≤ x ≤ 100 : C ′(i, x, y).

The result is i = −2 ∨ i = 0.

49

4.4 Related Work

4.4.1 Loop Termination

Analysis of termination is a very active research area for which there is a vast

bibliography; it is impossible to do justice to all the relevant work in this area, so we

will just discuss some work that has influenced our research.

Boyer and Moore [63] propose a technique based on semi-automatic theorem

proving where termination arguments have to be user-supplied. The work of Gupta

et al.[64] uses templates to identify recurrent sets, but for the sole purpose of

characterizing infinite loops; also focused on non termination is the work of Velroyen

and Ruemmer[65]. In these two cases, the analysis is restricted to linear programs.

Linear programs are also the focus of other researchers, such as [66, 67, 68, 52]. In

[69], Burnim et. al. propose a dynamic approach to detecting infinite loops, based

on concolic executions (a combination of concrete execution and symbolic analysis);

the technique is generally incomplete, in the sense that the iterative analysis may

lack the resources needed to solve complex constraints. In [70] Falke et. al. critique

existing approaches to the analysis of termination of iterative program, on the grounds

that treating bitvectors and bitvector arithmetic as integers and integer arithmetic

is unsound and incomplete; also, they propose a novel method for modeling the

wrap-around behavior of bitvector arithmetic, and analyze loop termination within

this model.

In [53], Podelski and Rybalchenko propose a complete method for computing

linear ranking functions; their approach is complete in the sense that if the loop

can be bound by a linear ranking function, one such a function will be found by

their method; Lee et al.[71] use the results of Podelski and Rybalchenko[53, 72]

and propose an approach based on algorithmic learning of Boolean formula in

order to compute disjunctive, well founded, transition invariants; the technique

appears to be particularly effective when dealing with simple programs dealing

50

with linear arithmetic. In [16], Cook et. al. give a comprehensive survey of loop

termination, in which they discuss transition invariants; whereas invariant relations

are approximations of (T ∩ B)∗, transition invariants are in fact approximations of

(T ∩B)+; this slight difference of form has a significant impact on the properties and

uses of these distinct concepts. Whereas transition invariants are used by Cook et al.

to characterize the well founded property of (T ∩ B)+, we use invariant relations to

approximate the function of a loop, and its domain.

In [73], Chawdhary et. al. use abstract interpretation to synthesize ranking

functions; their technique is subsequently improved by Tsitovitch et. al.[74], where

loop summaries allow them to increase the scalability of the technique. In [75],

Cook et. al. propose to under approximate weakest liberal preconditions in order to

synthesize simpler predicates that still enable them to prove termination in cases

where other tools would return a spurrious warning of possible non-termination.

In [65], Velroyen and Ruemmer propose to synthesize invariants from a set of

prerecorded invariant templates, and deploy a theorem prover to prove that the final

states characterized by the invariants is unreachable, hence, disproving termination;

because it provides a necessary condition of termination, our work can be used to

disprove termination: whenever the necessary condition is violated, the loop does not

terminate. In [76], Cook et al. introduce a technique for proving the non-termination

of non-linear, non-deterministic and heap-based programs. Their approach is based

on an over-approximation of non-linear behaviors by means of non-deterministic

behaviors, and is based on the concept of closed recurrence set. We are interested

in this approach because of its analogy with our work: an invariant relation is an

overapproximation of the program’s function, and Theorem 2 maps each invariant

relation into a necessary condition of termination, whose negation is a sufficient

condition of non-termination.

51

Abstract interpretation[77, 9, 10] is a broad scoped technique that aims to infer

properties of programs by successive approximations of their execution traces; as

such, it bears some resemblance to our invariant relations-based approach (which

infer properties of while loops by approximations of the transitive closure (T ∩B)∗).

Also, abstract interpretation has been used to, among others, analyze the properties

of abort freedom of arbitrary programs [78]. The work on abstract interpretation

has given rise to a widely used automated tool that analyzes programs and issues

reports pertaining to their correctness, termination, abort-freedom, etc [18, 17]. In

[79], Ancourt et. al. analyze loops by some form of abstract interpretation, but

they dispense with the fix-point semantics of loops by attempting to approximate the

transitive closure of the loop body abstraction. While the calculation of transitive

closures is complex in general, the authors attempt it using affine approximations

of the loop body transformations, which they define in terms of affine equalities

and inequalities of state variables. Using techniques of discrete differentiation and

integration, they derive an algorithm that computes affine invariant assertions from

this analysis, and use the generated assertions to monitor abort-freedom conditions

on the state of the program. They illustrate their algorithm by running it on many

published sample loops. Overall, it is fair to say, perhaps, that all the work on

ensuring termination by means of ranking functions and well founded orderings is an

attempt to approximate (i.e. find a superset of) the transitive closure of the loop

body, i.e. (T ∩B)+.

In summary, we can characterize our approach (and contrast it with other

approaches) by means of the following premises: unlike all other approaches, we

compute an integrated convergence condition rather than merely a termination

condition; we use the same artifact, namely invariant relations, to capture functional

properties and operational properties (termination, abort-freedom) of iterative

programs; we can handle any data type (not limited to numeric types) and any

52

numeric transformation (not limited to linear transformations). Limitations of

our approach include: we can only handle programs for which we have pre-stored

recognizers; and we can only ensure that the conditions we generate are necessary

conditions of convergence. Our future work aims to address these weaknesses.

4.4.2 Pointer Semantics

Heap data structures manipulate potentially unbounded data structures, which do

not lend themselves to simple modeling; as such, they represent one of the biggest

challenges to scalable and precise software verification. In order to model the property

that a loop causes no illegal pointer reference, we have to capture some aspects of

pointer semantics; in our work, we use invariant relations to represent unbounded

pointer references, and to reason about them. In this section, we review some of the

alternative approaches to pointer semantics, and compare them to ours; we have been

able to classify it into five broad categories, which we review in turn below.

� Shape Analysis. These approaches proceed by identifying some structure into
the pattern of pointers between nodes. In [80] Sagiv et. al. use three-valued
logic as a foundation for a parameterized framework for carrying out shape
analysis; the framework is instantiated by supplying predicates that capture
different relationships between nodes, and by supplying the functions that
specify how the predicates are updated by particular assignments. In [81],
Bhargav et. al. propose a new shape analysis algorithm, which is presented as an
inference system for computing Hoare triplets summarizing heap manipulation
programs. These inference rules are used as a basis for a bottom-up shape
analysis of data structures.

� Path-Length Analysis. In [82], Spoto et al. prove the termination of programs
written in Java Bytecode by mapping them into a constraint logic program
which is built on the basis of a path-length analysis of the original program. The
proof is based on the proposition that the termination of the logic constraint
program is a sufficient condition to the termination of the original program.
The path-length analysis of a Java bytecode program derives an upper bound
of the maximal length of a path of pointers that can be followed from each
variable of the program; the concepts of maxDepth and maxHeight presented
in this chapter bear some resemblance to Spoto et al.’s path-length function,
and the overapproximations derived for the path-length function bears some

53

resemblance to the type of approximations that are produced by invariant
relations. But while Spoto et al. are interested in proving program termination,
we are interested in computing termination conditions; while Spoto et al. are
interested in termination as the property that the program executes a finite
number of steps, we are interested to model termination as well as abort
freedom; while Spoto et al.’s approach is focused primarily on the data structure
of the program, our approach is focused primarily on its control structure.

� Alias Analysis. This approach focuses on determining whether two pointers
refer to the same heap cell [83]. In [84], Hackett and Aiken use a combination of
predicate abstraction, bounded model checking, and procedure summarization
to compute a precise path-sensitive and context-sensitive pointer analysis. Alias
analysis is only useful for reasoning about explicitly named heap cells, and
cannot model general unbounded data structures.

� Separation Logic. This approach makes it possible to reason about heap
manipulation programs [85] by extending Hoare logic [12] with two operators,
namely separation conjunction and separation implication; these operators are
used to formulate assertions over disjoint parts of the heap. In [86], O’hearn
et. al. define a logic for reasoning about programs that alter data structures;
to this effect they define a low-level storage model based on a heap with
associated access operations, along with axiomatizations for these operations.
The resulting model supports local reasoning, whereby only those cells that a
program accesses are referenced in specifications and proofs.

� Reachability Predicates. This approach defines and uses predicates that
characterize reachable nodes in an arbitrary data structure [87]. Indexed
predicate abstraction [88] and Boolean heaps [89] generalize the predicate
abstraction domain so that it enables the inference of universally quantified
invariants. In [90], Gulwani et. al. show how to combine different abstract
domains to obtain universally quantified domains that capture properties of
linked lists. Craig interpolation has also been used to find universally quantified
invariants for linked lists [91]. In [92], Mehta and Nipkow model heaps as
mappings from addresses to values, and pointer structures are mapped to higher
level data types for the verification of inductively defined data types like lists
and trees. In [93], Filliatre and Marche introduce a method for proving that
a program satisfies its specification and is free of null pointer referencing and
out-of-bounds array access. Their approach is based on Burstall’s model for
structures extended to arrays and pointers. Similar tools have been developed
for C-like languages, including Astree [17], Caveat [94], and SDV [95], but they
are bounded to specific provers. In [96, 97], Meyer presents a comprehensive
theory for modeling pointer-rich object structures and proving their properties;
the model proposed by Meyer comes in two versions, a coarse-grained version
that supports the analysis of the overall properties of the object structures, and

54

a fine-grained version, that analyzes object structures at the level of individual
fields. Meyer’s approach is represented in Eiffel syntax, and uses simple discrete
mathematics.

Our interest in pointer semantics is much more recent than all these authors, and

is driven by (and limited to) our interest in capturing conditions of abort avoidance

as they pertain to illegal pointer references. Whereas we had thought initially that

we could produce invariant relations that represent the scope equation of pointer

references in loops for arbitrary data structures, we have subsequently resolved to

generate invariant relations for well known data structures instead, for several reasons:

First, generating invariant relations for the general case is very difficult; second, many

authors whose work we have reviewed above appear to focus on well-known data

structures rather than to arbitrary pointer-based structures; third, existing algorithms

of shape analysis give us confidence that we can proceed by first analyzing the shape

of our data, then deploying specialized invariant relations according to the shape that

has been identified.

4.5 Conclusion

In this chapter, we present our approach to computing convergence conditions that

takes a purely semantic approach to defining the condition of convergence. We say

that a program converges for an initial state s if and only if the program can produce

a final state s′ as an image of s by the program function. Whether the program fails

to produce a final state because it fails to terminate or because it fails to apply an

intermediate function in its finite execution sequence does not matter to us, as it

is a syntactic distinction, not a semantic distinction. In keeping with this premise,

our definition of convergence applies to iterative programs as much as it applies

to non-iterative programs; also, as far as while loops are concerned, our approach

provides a way to map any given invariant relation of the loop onto a necessary

condition of termination. We can generate many invariant relations for the loop,

55

each capturing a specific aspect of convergence, and obtain a convergence condition

that ensures freedom from all causes of non-termination; to the best of our knowledge,

our approach is unique in this feature.

56

CHAPTER 5

THE FXLOOP TOOL

5.1 Introduction

Chapters 2 and 4 introduced invariant relations and the model for integrating

termination with abort-freedom, what we dubbed as convergence. In the first part of

this chapter, the approach taken to generate invariant relations, for a given loop, is

described. The second part presents the fxLoop software tool. This tool is dedicated

to implementing the methods presented so far to allow the analysis of a while loop.

This chapter is organized into two sections as follows: Section 5.2.1 presents

the method used for invariant relation generation, describing in particular the

representation of the knowledge in the form of recognizers in Section 5.2.1. Section

5.3 describes the tool, its architecture, its input and output, its functionalities, each

associated with an example.

5.2 From Source Code to Relational Representation

The first step in our approach is to transform the source code into a notation that

allows to achieve two purposes:

� to have a uniform representation of knowledge, that is independent of the
programming language, so that subsequent steps can be reused and,

� to prepare for the generation of invariant relations which are our basis for loop
analysis.

Because invariant relations are supersets of the function of the loop body, it is

advantageous to write the function of the loop body as an intersection of terms;

T ∩B = B1 ∩B2 ∩B3 ∩B4 ∩ ∩Bm

57

then, any superset of a term of the intersection is a superset of T ∩ B, any superset

of a pair of terms of the intersection is a superset of T ∩ B, any superset of a

triplet of terms of the intersection is a superset of T ∩ B, etc. If we consider a

loop body that is made up of a sequence of assignment statements, we can rewrite it

as an intersection by eliminating the sequential dependencies between statements and

writing, for each program variable, the cumulative effect of all relevant assignment

statements. We obtain what is called concurrent assignments, or more generally

conditional concurrent assignments (abbreviated: CCA) [98, 99]. The following 2

listings illustrate the transformation from C/C + + code to CCA notation. Notice

the semi-colon separators in the C/C++ code and the comma separators in the CCA

code.

1 i n t x = 0 , y=0;
2 const i n t n=100;
3 whi le (x!= n) {
4 x=x+1;
5 y=y+x ; }
Listing 5.1 C/C++ source code example

1 i n t x = 0 , y=0;
2 const i n t n=100;
3 whi le (x!= n) {
4 n=n ,
5 x=x+1,
6 y=y+x+1}
Listing 5.2 CCA code example

5.2.1 Invariant Relation Generation

The elementary invariant relation Given a while loop, the first (free) invariant

relation can be derived following this proposition from [40].

Proposition 11 Let w: while (t) {b} be a while loop on space S. The relation

R = I ∪ T (T ∩B) is an invariant relation for w.

58

This relation can be computed constructively from T and B, and includes pairs

(s, s′) such that s′ = s (case when no iterations are executed) and pairs (s, s′) such

that s verifies t and s′ is in the range of (T ∩B) (case when one or more iterations are

executed). We refer to it as the elementary invariant relation of w, and in practice

we generate it systematically whenever we analyze a loop.

5.2.2 Other Invariant Relations

For all other invariant relations, we have to inspect and analyze the loop in detail.

The key ideas that underpin our algorithm are the following:

� Under the hypotheses of our study, we are interested in while loops written
in a (deterministic) C-like programming language that terminate for all initial
states.

� Because invariant relations are supersets of the loop body’s function, we can
prepare the loop for the extraction of invariant relations by writing its function
as an intersection of terms; once it is written as an intersection, any superset of
any term or combination of terms is a superset of the function of the loop body.

� When the loop body includes if-then-else statements, the outer structure of its
function is a union rather than an intersection; in that case, we find a superset
for each term of the union, then we merge them using a specially programmed
function. The role of this function is to take several reflexive transitive relations
(which represent the invariant relations corresponding to each branch of the loop
body) and find a (preferably the smallest) reflexive transitive superset thereof
(while the union of reflexive relations is reflexive, the union of transitive relations
is not necessarily transitive). The current version of fxLoop does not support
this feature.

� The invariant relations of individual branches are generated by pattern matching,
using patterns that are developed off-line by means of invariant functions. These
patterns, which we call recognizers, described in Section 5.2.3, capture all the
programming knowledge and domain knowledge that is needed to analyze the
loop.

Having invariant relations, we can carry out the analysis of the loop and compute

artifacts such as convergence conditions, invariant assertions and correctness. Hence

59

invariant relations are derived from the source code in a 2-phase process and artifacts

computed through a 3rd step as follow:

1. sourcecode2cca: The first step is to transform the source code onto a form
that represents the function of the loop body as an intersection, or as a
union of intersections. For this purpose, we use CCA (conditional concurrent
assignments) notation. This step is carried out by a compiler generator
described in 5.3.2

2. cca2mat: Using the database of recognizers, we search for patterns in the
CCA code, for which we have a corresponding pattern of an invariant relation;
whenever a match is successful, we generate the corresponding invariant
relation, which we represent as a set of Mathematica equations between initial
states and final states. This step is carried out by a component, described in
5.3.4, that converts CCA code into Mathematica equations, involving unprimed
program variables (representing initial states) and primed program variables
(representing final states). In its current version, this program proceeds
by performing semantic match of the source code against code patterns of
pre-stored recognizers. This enables us to do more with fewer, more generic,
recognizers.

3. mat2nb. The equations stemming from the lower bounds are submitted to
Mathematica for resolution; they are solved in the output values as a function
of the input values, yielding an explicit expression of the function of the loop.

5.2.3 Recognizers

The aggregate made up of a code pattern and the corresponding invariant relation

pattern is called a recognizer. We distinguish between 1-recognizers, whose code

pattern includes a single statement, 2-recognizers, whose code pattern includes two

statements, and 3-recognizers, whose code pattern includes three statements; to keep

combinatorics under control, we seldom use recognizers of more than 3 statements.

For some recognizers, the invariant relations are dependent on some conditions on

the variables they involved. We called such recognizers, conditional recognizers.

60

1-Recognizer 1-recognizers involve a single variables. They provide us information

about the function of the loop body when this single statement is executed an

arbitrary number of times. Table 5.1 shows an illustration of 1-recognizers.

2-Recognizer 2-recognizers involve two variables. They provide us information

about the function of the loop body when these two statement are executed an

arbitrary number of times. Table 5.2 shows an illustration of 1-recognizers.

3-Recognizer 3-recognizers involve three variables. They provide us information

about the function of the loop body when these three statement are executed an

arbitrary number of times. Table 5.3 shows an illustration of 1-recognizers.

61

T
a
b

le
5
.1

E
x
am

p
le

of
1-

re
co

gn
iz

er

L
e
v
e
l

V
a
ri

a
b
le

s
C

o
n

st
a
n

ts
C

o
n

d
it

io
n

P
a
tt

e
rn

In
v
a
ri

a
n

t
R

e
la

ti
o
n

1
x
:i
n
t

a:
in

t
tr

u
e

x
=
x

+
a
{(
s,
s′

)|a
x
≤
a
x
′ }

1
x
:i
n
t

a:
in

t
x
%

2=
0

x
=
x
/a

{(
s,
s′

)|f
ra
c(
lo
g a

(x
))

=
f
ra
c(
lo
g a

(x
′)

)}

T
a
b

le
5
.2

E
x
am

p
le

2-
re

co
gn

iz
er

L
e
v
e
l

V
a
ri

a
b
le

s
C

o
n

st
a
n

ts
C

o
n

d
it

io
n

P
a
tt

e
rn

In
v
a
ri

a
n

t
R

e
la

ti
o
n

2
x
,y

:i
n
t

a:
in

t
tr

u
e

x
=
a
x
,y

=
a
y

{(
s,
s′

)|x
y
′
=

=
x
′ y
}

2
x
,y

:i
n
t

a,
b

:i
n
t

tr
u

e
x

=
a
x
,y

=
bx

+
y
{(
s,
s′

)|y
+
b(
x
/(

1
−
a
))

=
=
y
′
+
b(
x
′ /

(1
−
a
))
}

T
a
b

le
5
.3

E
x
am

p
le

of
3-

re
co

gn
iz

er

L
e
v
e
l

V
a
ri

a
b
le

s
C

o
n

st
a
n

ts
C

o
n

d
it

io
n

P
a
tt

e
rn

In
v
a
ri

a
n

t
R

e
la

ti
o
n

3
x
,y

,z
:i
n
t

a,
b
:i
n
t

tr
u
e

x
=
x
−
a
,y

=
y

+
bz
,z

=
z
{(
s,
s′

)|z
=

=
z′
∧
bx
z

+
a
y

=
=
bx
′ z
′
+
a
y
′ }

3
x
,y

,z
:r

ea
l

a,
b
:i
n
t

tr
u
e

x
=
x

+
a
,y

=
zy
,z

=
z

{(
s,
s′

)|z
=

=
z′
∧
a
lo
g
(|y
|)
−
x
lo
g
(|z
|)

=
=
a
lo
g
(|y
′ |)
−
x
′ l
og

(|z
′ |)
}

62

5.3 Architecture

Recognizer Database

MathematicaCCA Compiler Generator Modeler

Web Interface

Http Server

Figure 5.1 fxLoop architecture.

fxLoop is designed as a client server application since we rely on Mathematica, a

commercial software as a solver. It is made of multiple components as shown in

Figure 5.3. The tool is built in C++, mainly using the Boost C++ Libraries, a

peer-reviewed, open collaborative development effort.

In the following sections , we describe each of the components in detail.

5.3.1 Web Interface

The web interface is designed with HTML and PHP. It’s a very thin client with the

following functions:

63

� Collect the input file (currently C/C++/Java source code) and user selected

options,

� Form an http request and sends it to the server,

� Wait for response from the server,

� Display server response to the screen.

Figure 5.2 fxLoop main interface.

5.3.2 CCA Compiler Generator

This component allows to generate, from the source code, the Conditional Concurrent

Assignment (CCA) code, which is the our language of analysis. This has the

advantage to make the analysis programming language independent. We can add

support for new languages by just updating the CCA compiler generator.

64

The compiler is built using the Boost C++ Spirit, a set of C++ libraries for

parsing and output generation implemented as Domain Specific Embedded Languages

(DSEL) using Expression templates and Template Meta-Programming. The Spirit

libraries enable a target grammar to be written exclusively in C++. The compiler

currently supports the C/C++ and Java programming languages. The grammar

currently supported for each language is shown in Figure 5.4. In the lexical and

syntax rules given in the table,

� Alternatives are separated by vertical bars: i.e., ’a | b’ stands for ”a or b”.

� Square brackets indicate optionality: ’[a]’ stands for an optional a, i.e., ”a |
epsilon” (here, epsilon refers to the empty sequence).

� Curly braces indicate repetition: ’{a}’ stands for ” a | aa | aaa | ...”

The source code must include a ’main’ function and at least one while loop. However

currently, we only support analysis of a simple while loop, as described in Section

5.2.2 . The implementation for nested loop is planned as part of the future work.

5.3.3 Http Server

The Boost C++ libraries provide a ready made http server that serves as the basis

of this component. The source code was customized to fit the need of fxTool. In

particular, the following stream of actions are done by the server :

� Parsing the incoming request,

� Notifying the CCA compiler to produce the CCA code,

� then passing the handle to the modeler,

� sending the reply, in the form of an XML structure, to the front end after
completion of the task, an error message otherwise.

65

T
a
b

le
5
.4

C
/C

+
+

/J
av

a
gr

am
m

ar
su

p
p

or
te

d
b
y

C
C

A
co

m
p
il
er

ge
n
er

at
or

p
ro

g
:
{d
cl
′ ;
′ |f
u
n
c}

as
sg

:
id

[
’[
’

ex
p
r

’]
’

]
=

ex
p
r

d
cl

:
ty

p
e

va
r

d
ec

l
{

’,
’

va
r

d
ec

l
}

ex
p
r

:
’’

ex
p
r

|
[

ex
te

rn
]

ty
p

e
id

’(
’

p
ar

m
ty

p
es

’)
’
{

’,
’

id
’(

’
p
ar

m
ty

p
es

’)
’
}

|
’!

’
ex

p
r

va
r

d
ec

l
:

id
[

’[
’

in
tc

on
’]
’

]
|

ex
p
r

b
in

op
ex

p
r

m
o
d
ifi

er
:

’p
u
b
li
c’
|’

p
ro

te
ct

ed
’
|’

p
ri

va
te

’
st

at
ic

m
o
d

:
’s

ta
ti

c’

ty
p

e
:

’S
tr

in
g[

]’
|’

vo
id

’
|’

ch
ar

’
|’

sh
or

t’
|’

in
t’
|’

lo
n
g’
|’

fl
oa

t’
|’

d
ou

b
le

’
|’s

ig
n
ed

’
|’

u
n
si

gn
ed

|
ex

p
r

re
lo

p
ex

p
r

p
ar

m
ty

p
es

:
ty

p
e

id
[

’[
’

’]
’

]
{

’,
’

ty
p

e
id

[
’[
’

’]
’

]
}

|
ex

p
r

lo
gi

ca
l

op
ex

p
r

fu
n
c

:
ty

p
e

id
’(

’
p
ar

m
ty

p
es

’)
’

’{
’
{

ty
p

e
va

r
d
ec

l
{

’,
’

va
r

d
ec

l
}

’;
’
}
{

st
m

t
}

’}
’

|
id

[
’(

’
[e

x
p
r
{

’,
’

ex
p
r
}

]
’)

’
|’

[’
ex

p
r

’]
’

]

st
m

t
:

if
’(

’
ex

p
r

’)
’

st
m

t
[

el
se

st
m

t
]

|
’(

’
ex

p
r

’)
’

|
w

h
il
e

’(
’

ex
p
r

’)
’

st
m

t
|

in
tc

on

|
fo

r
’(

’
[

as
sg

]
’;
’

[
ex

p
r

]
’;
’

[
as

sg
]

’)
’

st
m

t
|

ch
ar

co
n

|
re

tu
rn

[
ex

p
r

]
’;
’

|
st

ri
n
gc

on

|
as

sg
’;
’

b
in

op
:

+

|
id

’(
’

[e
x
p
r
{

’,
’

ex
p
r
}

]
’)

’
’;
’

|

|
’{

’
{

st
m

t
}

’}
’

|
*

|
’;
’

|
/

re
lo

p
:

=
=

lo
gi

ca
l

op
:

&
&

|
!=

|
||

|
<

=

|
<

|
>

=

|
>

66

5.3.4 Modeler

This component is implemented in C/C++, using the Boost C++ string processing

libraries. It handles the following tasks:

� Generating invariant relations through semantic matching of CCA code against
the recognizer databases using Mathematica

� Computing the termination condition

� Evaluating correctness with respect to a specification

� Deriving invariant assertions for a given pre/post conditions

The modeler uses ©Mathematica as a solver through the C language API provided

by ©Mathematica.

5.4 Domain Coverage

Even though we have recognizers for the numeric data type domain, the linear algebra

domain and some advanced data types such as list, currently, the tool offer support

for the numeric and the linear algebra domains only. The semantic recognizers used

for each domain are listed on the Recognizer Database tab.

67

Figure 5.3 Numeric recognizer database.

5.5 FxLoop Tour

5.5.1 Main Interface

The main interface is the Analyzer which is the portal to application. This is the

main interface of the tool. The interface is divided in two sections. The top portion

is used to get user selections and the bottom part is used to display the result of the

analysis.

To use the tool, you can download the examples (Figure 5.4). The tool

computes various loop artifacts. The default option is to only generate the invariant

relations. Termination condition, loop function can also be computed and correctness

verification can be done.

Convergence can be computed as finite iteration or in combination with abort.

There are 3 abort-freedom options:

� Arithmetic Overflow,

68

� Array out of Bound and,

� Illegal Arithmetic Operation

Correctness verification is done in conjunction with a specification file provided

in Mathematica format.

A domain needs to be selected to guide which recognizers to use. Currently we

only support Numeric data types, which are the default option.

5.5.2 Examples

Figure 5.4 Examples by feature.

5.5.3 Invariant Relation Generator

The semantic match against the recognizer database is done via ©Mathematica using

the following function written in ©Mathematica scripting language:

69

1 SemanticMatch [scode , rcode , svar , rvar , ovar , IR] :=Module [{
matchResults , theSystem , semMatch , i sResL i s t , svarP , rvarP ,
svarNotZero , rvarNotZero } ,

2 (**Build primed va r i a b l e s **)
3 svarP = f @@@ Li s t /@ svar ; rvarP = f @@@ Li s t /@ rvar ;
4 theSystem =(scode == rcode) && (svar == rvar) ;
5 matchResults = SolveAlways [El iminate [Fu l l S imp l i f y [Reduce [

theSystem , Join [svar , rvar]] , TimeConstraint −>60] , rvar] ,
Union [svar , ovar]] ;

6 (* check i f r e s u l t s i s in the form o f a l i s t *)
7 semMatch = El iminate [S imp l i f y [theSystem / . matchResults ,

TimeConstraint −>60] , svar] ; I f [TrueQ [semMatch] , IR / .
matchResults / . Inner [Rule , Join [rvar , rvarP] , Join [svar , svarP
] , L i s t] , Fa l se]] / / S imp l i f y

Listing 5.3 Semantic matching script written in ©Mathematica scripting language

When this script is executed through the ©Mathematica provided API, a list

is returned with invariant relations instantiated with the correct constant values if

there is a match, otherwise false is returned.

The following are an C/C++ and a Java sample source code files , which when

submitted to the invariant relation generator, lead to the output of figure 5.5. The

C/C++/Java grammar is currently supported is described in table 5.4.

1 i n t main () {
2 /*comment*/
3 i n t i , j , k ;
4 whi le (i > 1) {
5 j=j +1;
6 i=i+2* j −1;
7 k=k−1;
8 }
9 re turn 0 ;}
Listing 5.4 C/C++ invariant relation generation example

1 pub l i c s t a t i c void main (St r ing [] a rgs) {
2 /** comment */
3 i n t i , j , k ;
4 whi le (i > 1) {
5 j=j +1;
6 i=i+2* j −1;
7 k=k−1;
8 }}
Listing 5.5 Java invariant relation generation example

70

Figure 5.5 Invariant relations.

5.5.4 Computing Convergence Conditions

When the user checks the termination condition, more options open to computing

convergence conditions, integrating a condition of abort of interest. Figure 5.6 shows

the options currently available. For more details, refer to [100].

71

Figure 5.6 Convergence condition options.

5.5.5 Evaluating Correctness

Figure 5.7 Correctness condition options.

72

5.6 Limitations

One may argue that our approach lacks generality because it depends on a pre-coded

database of recognizers. We put forth the following observations:

� It is impossible to build a system to analyze programs without codifying
the programming knowledge and the domain knowledge that are needed for
this task; we argue that the recognizers are our way to capture the relevant
programming knowledge and domain knowledge.

� We are currently exploring ways to do away with pre-coded recognizers for
simple numeric calculations; indeed, many of our numeric invariant relations
can be generated automatically from the source code by converting the code
to recurrence relations (according to the work of Janicki and Carrette [6]) and
eliminating the recurrence variable.

� The focus of this dissertation is the generation of convergence conditions from
invariant relations; we deploy some automated tools in the process of analyzing
while loops, but these tools are not integrated, and they require some level of
human intervention.

73

CHAPTER 6

RELATIVE CORRECTNESS

6.1 Introduction

In [101, 59, 102, 103] Laprie et al. define the hierarchy of faults, errors and failures

as part of the conceptual basis of dependable computing. In this hierarchy, faults are

defined as the adjudged or hypothesized cause of an error [59]; we argue that, as far as

software is concerned, this definition is not sufficiently precise, first because adjudging

and hypothesizing are highly subjective human endeavors, and second because

the concept of error is itself insufficiently defined, since it depends on a detailed

characterization of correct system states at each stage of a computation (which is

usually unavailable). We further argue that a formal/unambiguous definition of

faults is indispensable, given that faults play a crucial role in the study of software

dependability, that they are the basis of the classification of methods of dependability

(fault avoidance, fault removal, fault tolerance), and that they play an important role

in several software engineering concepts, such as fault density, fault proneness, and

fault forecasting. But defining software faults is fraught with difficulties:

� Discretionary determination. Usually we determine that a program part is
faulty because we think we know what the designer intended to achieve in that
particular part, and we find that the program does not fulfill the designer’s
intent; clearly, this determination is only as good as our assumption about the
designer’s intent.

� Contingent determination. The same faulty behavior of a software product may
be repaired in more than one way, possibly involving more than one location;
hence, the determination that one location is a fault is typically contingent upon
the assumption that other parts are not in question.

� Tentative determination. The determination that a program part is faulty is
usually made in conjunction with a substitution that would presumably repair

74

the program; clearly, this determination is valid only to the extent that the
substitution is an adequate repair.

� Inconclusive determination. Usually, we determine that a fault has been
removed from a program if upon substituting the allegedly faulty part by an
allegedly correct part, we find that the program runs satisfactorily on some
test data T . In fact, the successful execution of the program on test data T is
neither a necessary condition nor a sufficient condition to the actual removal of
the fault.

In order to overcome the difficulties raised above, we resolve to proceed as

follows:

� We introduce a concept of relative correctness, i.e. the property of a program
to be more correct than another program with respect to a specification [27].

� We define a fault in a program as any program part (be it a simple statement,
a lexical token, an expression, a compount statement, a block of statements,
a set of non-contiguous statements, etc.) for which there exists a substitution
that would make the program more-correct than the original with respect to a
relevant specification [27].

With such a definition, we address all the difficulties raised above, namely:

� A Fault as an Intrinsic Attribute. The definition of a fault is not dependent on
any design assumptions, but involves only the (incorrect) program, the faulty
program part, and the specification with respect to which correctness (and
failure) is defined.

� A Fault as a Definite Property. If we let a fault be any program part that
admits a substitution that makes the program more-corect, then the designation
of a fault is no longer contingent on any hypothesis; we need not make any
assumption on whether other parts of the program are faulty or not.

� A Fault as an Opportunity for Correctness Enhancement. By definition, every
fault represents an opportunity to make the program more-correct, i.e. closer to
being correct; the challenge of the tester is to find an appropriate substitution,
knowing that one does exist.

� Fault Removal as a Verifiable Process. Whether a fault has been removed is not
dependent on the program’s behavior on some (partial) test data, but rather
on a formally verifiable property.

75

In order to reap all these benefits, we introduce a definition of relative

correctness; this is the subject of Section 6.3. Whereas absolute correctness

characterizes a program with respect to a specification, relative correctness ranks two

programs with respect to a specification; in order to discuss the latter, we first review

the former in 6.2, to see how it is defined in our notation. In Section 6.4, we consider

in turn several properties that we would want a concept of relative correctness to

satisfy, and we prove that our proposed definition does satisfy all of them; the goal

of this section is to give the reader a measure of confidence in the soundness of the

proposed definition, as a prelude to the subsequent discussions. We then discuss about

the implications of relative correctness. Then the next issue we wish to address is:

how do we establish relative correctness, i.e. how to build the case that a program

is more-correct than another with respect to a specification; this is the subject of

Section 6.7. Section 6.9 summarizes and assesses our findings.

6.2 Absolute Correctness

We define program correctness using the refinement ordering introduced in Chapter

2.

Definition 5 Let p be a program on space S and let R be a specification on S.

� We say that program p is correct with respect to R if and only if P (the function
defined by program p on space S) refines R.

� We say that program p is partially correct with respect to specification R if and
only if P refines R ∩ PL.

Whenever we want to contrast correctness with partial correctness, we may refer

to it as total correctness. This definition is consistent with traditional definitions of

partial and total correctness [12, 14, 104, 32, 33]. The following proposition gives a

simple characterization of correctness, and sets the stage for the definition of relative

correctness.

76

Proposition 12 Program g is correct with respect to specification R if and only if

(G ∩R)L = RL.

Proof. Proof of necessity: The condition (G ∩ R)L ⊆ RL stems readily from set

theory, hence, we focus on proving the condition RL ⊆ (G ∩ R)L. Given that g

is correct with respect to R, we know that G refines R. By virtue of the lemma

introduced in the proof of proposition 2, we have the hypotheses: RL ⊆ GL and

RL ∩ G ⊆ R. Let s be an element of the domain of R; by the first clause, it is

necessarily an element of the domain of G. By virtue of the second clause, (s,G(s)) is

necessarily an element of R. Because (s,G(s)) is an element of R and G (by definiton),

it is an element of (G ∩R); hence, s is an element of the domain of (G ∩R).

Proof of sufficiency: From RL = (G ∩ R)L (hypothesis) and (G ∩ R)L ⊆ GL

(set theory) we infer RL ⊆ GL. Let (s, s′) be an element of (RL ∩ G); then s is in

the domain of R and s′ = G(s). By hypothesis, we know that s is in the domain of

(G ∩ R), which means that (s,G(s)) is in R. Since G(s) = s′, we infer that (s, s′) is

in R. qed

In [105], Mills et al. define correctness of a program p with function P with

respect to the specification R, by the formula (R∩P)L = RL; hence, this proposition

is inspired by their definition (though for us it is a proposition rather than a definition

because we define correctness by means of refinement). Note that we could likewise

characterize partial correctness by the formula: (R∩P)L = RL∩PL; but since relative

correctness is a generalization of (total) correctness rather than partial correctness,

proposition 12 only talks about (total) correctness.

In this dissertation, we are only interested in total correctness, to which we refer

by correctness. The following definition introduces the concept of relative correctness;

to contrast correctness to relative correctness, we may refer to the former as absolute

correctness.

77

6.3 Relative Correctness

6.3.1 Deterministic Programs

Definition 6 Let R be a specification on space S and let p and p′ be two deterministic

programs on space S whose functions are respectively P and P ′.

� We say that program p′ is more-correct than program p with respect to
specification R (denoted by: P ′ wR P) if and only if: (R ∩ P ′)L ⊇ (R ∩ P)L.

� Also, we say that program p′ is strictly more-correct than program p with respect
to specification R (denoted by: P ′ AR P) if and only if (R ∩ P ′)L ⊃ (R ∩ P)L.

Interpretation: (R∩P)L represents (in relational form) the set of initial states on

which the behavior of P satisfies specification R. We refer to this set as the competence

domain of program P . Relative correctness of P ′ over P with respect to specification

R simply means that P ′ has a larger competence domain than P . Whenever we want

to contrast correctness (given in Definition 5) with relative correctness, we may refer

to it as absolute correctness. Note that when we say more-correct we really mean

more-correct or as-correct-as; we use the shorthand, however, for convenience. Note

also that in order for program p′ to be more-correct than program p, it does not need

to duplicate the behavior of p over the competence domain of p; see Figure 6.3.1. In

the example shown in this figure, we have:

(R ∩ P)L = {1, 2, 3, 4} × S,

(R ∩ P ′)L = {1, 2, 3, 4, 5} × S,

where S = {0, 1, 2, 3, 4, 5, 6}. Hence p′ is more-correct than p with respect to R.

In order to highlight the contrast between relative correctness and absolute

correctness, we consider the specification R on space S = nat

R = {(s, s′)|s2 ≤ s′ ≤ s3},

and we consider the following programs, where along with each program we indicate

its function, then its competence domain with respect to R:

78

6

5

4

3

2

1

0

6

5

4

3

2

1

0

6

5

4

3

2

1

0

6

5

4

3

2

1

0

6

5

4

3

2

1

0

6

5

4

3

2

1

0

���
���

���:

XXXXXXXXXz���
��

���
�:

XXXXXXXXXz���
��

���
�:

XXXXXXXXXz���
���

���:

XXXXXXXXXz���
���

���:

���
���

���:

��
���

���
�:

��
���

���
�:

���
���

���:

���
���

���:

���
���

���:

XXXXXXXXXzXXXXXXXXXzXXXXXXXXXzXXXXXXXXXzXXXXXXXXXzXXXXXXXXXz

R P P ′�

�

�

�

�

�

�

�

Figure 6.1 Enhancing correctness without duplicating behavior: P ′ wR P .

p0: {abort}. P0 = φ. CD0 = ∅.

p1: {s=0;}. P1 = {(s, s′)|s′ = 0}. CD1 = {0}.

p2: {s=1;}. P2 = {(s, s′)|s′ = 1}. CD2 = {1}.

p3: {s=2*s**3-8;}. P3 = {(s, s′)|s′ = 2s3 − 8}. CD3 = {2}.

p4: {skip;}. P4 = I. CD4 = {0, 1}.

p5: {s=2*s**3-3*s**2+2;}. P5 = {(s, s′)|s′ = 2s3 − 3s2 + 2}. CD5 = {1, 2}.

p6: {s=s**4-5*s;}. P6 = {(s, s′)|s′ = s4 − 5s}. CD6 = {0, 2}.

p7: {s=s**2;}. P7 = {(s, s′)|s′ = s2}. CD7 = S.

p8: {s=s**3;}. P8 = {(s, s′)|s′ = s3}. CD8 = S.

p9: {s=(s**2+s**3)/2;}. P9 = {(s, s′)|s′ = s2+s3

2
}. CD9 = S.

Figure 6.2 shows how these ten programs are ordered according to their relative

correctness with respect to R; in this sample, programs P7, P8, P9 are (absolutely)

correct while programs P0, P1, P2, P3, P4, P5, P6 are incorrect because their competence

domain is strictly smaller than the domain of R.

79

�
�
�
�
�
�
�
�

@
@

@
@
@

@
@
@

@
@
@
@
@
@
@
@

�
�

�
�
�

�
�
�

@
@
@
@
@
@
@
@

�
�
�
�
�
�
�
�

�
�
�

�
�
�

�
�

@
@
@

@
@
@

@
@

P0

P3

P5

P2

P6

P7, P8, P9

P1

P4

Figure 6.2 Ordering candidate programs by relative correctness.

6.3.2 Non-Deterministic Programs

In this section we extend the definition of relative correctness to non deterministic

program. There are several reasons why this is important/ useful:

� Non-determinacy is a convenient means to model deterministic programs whose
detailed behavior is difficult to capture, unknown, or irrelevant to a particular
analysis.

� We may want to reason about the relative correctness of deterministic programs
without having to compute their function is all its minute details.

� We may want to apply relative correctness, not only to finished software
products, but also to partially defined intermediate artifacts, such as designs.

We submit the following definition.

Definition 7 We let R be a specification on set S and we let P and P ′ be (possibly

non-deterministic) programs on space S. We say that P ′ is more-correct than P with

respect to R (abbrev: P ′ wR P) if and only if:

(R ∩ P)L ⊆ (R ∩ P ′)L ∧ (R ∩ P)L ∩R ∩ P ′ ⊆ P.

80

Interpretation: P ′ is more-correct than P with respect to R if and only if it

has a larger competence domain, and for the elements in the competence domain of

P , program P ′ has fewer images that violate R than P does. As an illustration, we

consider the set S = {0, 1, 2, 3, 4, 5, 6, 7} and we let R, P and P ′ be defined as follows:

R = {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3), (3, 4),

(4, 3), (4, 4), (4, 5), (5, 4), (5, 5)}

P = {(0, 2), (0, 3), (1, 3), (1, 4), (2, 0), (2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (5, 2), (5, 3)}

P ′ = {(0, 2), (0, 3), (1, 2), (1, 3), (2, 0), (2, 3), (3, 1), (3, 4), (4, 2), (4, 5), (5, 2), (5, 3)}

From these definitions, we compute:

R ∩ P = {(2, 1), (3, 2)},

(R ∩ P)L = {2, 3} × S,

R ∩ P ′ = {(1, 2), (2, 3), (3, 4), (4, 5)}

(R ∩ P ′)L = {1, 2, 3, 4} × S

(R ∩ P)L ∩ P ′ = {(2, 0), (2, 3), (3, 1), (3, 4)}

(R ∩ P)L ∩R ∩ P ′ = {(2, 0), (3, 1)}

By inspection, we do find that (R ∩ P)L = {2, 3} × S is indeed a subset of

(R∩P ′)L = {1, 2, 3, 4}×S. Also, we find that (R∩P)L∩R∩P ′ = {(2, 0), (3, 1)} is a

subset of P . Hence the two clauses of Definition 7 are satisfied. Figure 6.3 represents

relations R, P and P ′ on space S. Program P ′ is more-correct than program P

with respect to R because it has a larger competence domain ({2, 3} vs. {1, 2, 3, 4},

highlighted in Figure 6.3) and because on the competence domain of P (={2, 3}),

program P ′ generates no incorrect output unless P also generates it ({(2, 0), (3, 1)}).

81

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0R

-

-

-

-

-

-

���
���

���:
���

���
���:

���
���

���:
��

���
���

�:���
���

���:

XXXXXXXXXz

XXXXXXXXXz

XXXXXXXXXz

XXXXXXXXXz

XXXXXXXXXz

P

��
��

�
��

��*

��
�
��

�
��
�*

�
�
�
�
�
�
�
��>

�
�
�
�
�
�
�
��>

���
���

���:
��

���
���

�:

��
��

�
��

��*

�
��

�
��

�
��*

Z
Z
Z
Z
Z
Z
Z
ZZ~

Z
Z
Z
Z
Z
Z
Z
ZZ~

H
HHH

HHH
HHj

HH
HHH

HHHHj

P ′

��
��

�
��

��*

��
�
��

�
��
�*

��
��

�
��

��*

��
��

��
�
��*

�
�
�
�
�
�
�
��>

XXXXXXXXXz

XXXXXXXXXz

XXXXXXXXXz

XXXXXXXXXz

Z
Z
Z
Z
Z
Z
Z
ZZ~

HH
HHH

HHHHj

H
HHH

HHH
HHj

�
�
�
�

�

�

�

�

Figure 6.3 Relative correctness for non-Deterministic programs: P ′ wR P .

We show in [106] that if P ′ is deterministic, then the conditions (R ∩ P)L ⊆

(R ∩ P ′)L and P ′ wR P are logically equivalent, which means that Definition 7 can

be used in general for relative correctness.

How do we know that our definition of relative correctness is valid? We have

reviewed a number of properties that we would want a definition of relative correctness

to have, and found that our definition features them all:

� Relative Correctness Culminates in Absolute Correctness. Indeed, it is very
easy to see, from the definitions of correctness and relative correctness that if a
program p is correct with respect to R, then it is more-correct than any program
with respect to R.

� Relative Correctness Implies Higher Reliability. The probability of successful
execution of a randomly chosen initial state is equal to the integral of the
probability distribution over the competence domain of the program; hence,
the larger the competence domain, the higher the probability.

� Relative Correctness as Point-wise Refinement. We have found in [27] that if
and only if a program p refines a program p′, then p is more-correct than p′ with
respect to any specification R. We will see in Section 7.4 that this property has
an implication on program design.

82

6.4 Validation of Relative Correctness

6.4.1 Litmus Tests

Now that we have defined the concept of relative correctness, how do we know that our

definition is sound? To answer this question, we list in this section some properties

that, we believe, a definition of relative correctness ought to meet; then, in the next

section, we check that our definition does indeed meet these conditions. For each

property cited below, we discuss why we believe that a definition of relative correctness

needs to satisfy this property.

� Reflexivity and Transitivity, and non-Antisymmetry. Referring to the loose
version of relative correctness (more-correct-than-or-as-correct-as), we feel that
this property ought to be transitive and reflexive, for obvious reasons. We also
feel that it must not be antisymmetric: In other words, two programs may be
mutually more-correct (each is more-correct than the other), and still be distinct
(not only syntactically distinct, but computing different functions as well). In
particular, we want to maintain the possibility that a given specification admit
more than one correct program: all the correct programs are more-correct than
one another, without necessarily being identical.

� Absolute Correctness as the Culmination of Relative Correctness. Relative
correctness ought to be defined in such a way that if a program keeps getting
more and more-correct with respect to a specification, it will eventually be
(absolutely) correct. Alternatively, we want relative correctness to be defined in
such a way that a correct program is more-correct than any candidate program.

� Relative Correctness as a Sufficient Condition of Higher Reliability, but not a
Necessary Condition Thereof. If program p′ is more-correct than program p,
then of course we want p′ to be more reliable than p; but we do not want more-
correct to be equivalent to more reliable, as the former is a logical/functional
property, whereas the latter is a stochastic property.

� Refinement Implies Relative Correctness with respect to any Specification. When
program p′ refines program p, we interpret that to mean that whatever p can
do, p′ can do as well or better; in particular, it means that p′ is more-correct
than (or as-correct-as) p with respect to R, for any specification R.

� Relative Correctness with respect to Arbitrary Specifications Implies Refinement.
The only way for a program p′ to be more-correct than a program p with respect

83

to all possible specifications is for p′ to refine p; that way, we are assured that
whatever p can do, p′ can do as well or better.

6.4.2 Passing the Tests

In this section, we review in turn the desirable properties we have listed above, and

show that our definition of relative correctness satisfies every one of them.

Reflexivity, Transitivity, and Non-Antisymmetry Program p′ is more-correct

than program p if and only if (R ∩ P ′)L ⊇ (R ∩ P)L. Transitivity and reflexivity

stem readily from the definition, as does non-antisymmetry: Indeed, two functions

P and P ′ may satisfy (R ∩ P)L = (R ∩ P ′)L while P and P ′ are distinct. Consider

R = {(0, 1), (0, 2)}, P = {(0, 1)} and P ′ = {(0, 2)}.

6.4.3 Absolute Correctness as the Culmination of Relative Correctness

A program is more-correct than another if it has a larger competence domain, where

the competence domain of a program p with respect to specification R is defined as

(R ∩ P)L. By set theory, the competence domain of a program p is necessarily a

subset of RL; when it actually equals RL, the program is correct.

Proposition 13 Let R be a specification on space S and let p be a program on S.

Then p is correct with respect to R if and only if p is more-correct with respect to R

than any program on S.

Proof. Proof of necessity: Let p′ be correct with respect to R; then, according to

proposition 12, RL = (R ∩ P ′)L. Let p be an arbitrary program on space S; by set

theory, we have RL ⊇ (P ∩R)L. Hence p′ is more-correct with respect to R than p.

Proof of sufficiency: Let p′ be more-correct with respect to R than any candidate

program p on S. Let p′′ be a correct program with respect to R; then (R∩P ′′)L = RL.

Since p′ is more correct with respect to R than p′′, (R ∩ P ′)L ⊇ (R ∩ P ′′)L, hence,

84

(R ∩ P ′) ⊇ RL, which is equivalent to (R ∩ P ′)L = RL since the inverse inclusion is

a tautology. qed

This proposition provides in effect that (absolute) correctness is the ultimate

form of relative correctness: to be correct with respect to a specification a candidate

program must be more-correct than any candidate program. We write this as:

P ′ w R⇔ (∀P : P ′ wR P) .

6.4.4 Relative Correctness and Reliability

The next proposition links the concept of relative correctness to a familiar property:

reliability.

Proposition 14 Let p and p′ be two programs on space S and let R be a specification

on S. If program p′ is more-correct than program p with respect to specification R

then p′ is more reliable than p.

Proof. We interpret more reliable to mean less likely to fail. Reliability is

usually estimated with respect to a probability distribution over the input domain

(specifically, the domain of specification R), which reflects the likelihood of occurrence

of each element of the domain. Given a candidate program p and a probability

distribution θ on the domain of R, the probability that a random execution of p

succeeds is the integral of θ over the competence domain of p; clearly, the larger the

competence domain (with respect to inclusion), the bigger the probability of successful

execution. qed

If a program is more-correct than another, then it is more reliable. The reverse

is not true, of course: a program may be more reliable than another without being

85

more-correct; it may be more reliable because it runs successfully on more frequently

occuring input states, and fails on seldom occuring input states. We write:

P ′ wR P ⇒
∫

(R∩P ′)L
θ(s)ds ≥

∫
(R∩P)L

θ(s)ds .

6.4.5 Relative Correctness and Refinement

The following proposition links relative correctness with the concept of refinement,

by casting relative correctness as a form of pointwise refinement.

Proposition 15 Let p and p′ be programs on space S. Then p′ refines p if and only

if p′ is more-correct than p with respect to any specification R on S.

Proof. Proof of necessity: We have seen in proposition 3 that if P and P ′ are two

functions that P ′ refines P if and only if P ′ ⊇ P . The condition (P ′∩R)L ⊇ (P ∩R)L

stems readily, by monotonicity (from set theory).

Proof of sufficiency: Let p′ be more-correct than p with respect to any

specification R on S. Then p′ is more-correct than p with respect to specification

R = P . This can be written as: (P ∩ P ′)L ⊇ (P ∩ P)L, which we simplify as:

(P ∩ P ′)L ⊇ PL. On the other hand, we have, by construction, (P ∩ P ′) ⊆ P .

Combining the two conditions, we obtain: (P ∩P ′) = P , from which we infer (by set

theory) P ′ ⊇ P and, by proposition 3, P ′ w P . qed

This proposition provides in effect that traditional refinement is the ultimate

form of relative correctness: whereas relative correctness is a tripartite relation

linking two programs and a specification, refinement is a bipartite relation linking

two programs when one is systematically more-correct than the other regardless of

the specification being considered. We can write this as:

P ′ w P ⇔ (∀R : P ′ wR P) .

86

6.5 Faults and Fault Removal

Now that we have a definition for relative correctness, we are ready to define faults,

and to characterize monotonic fault removal (i.e., fault removal that makes the

program provably better, rather than to make the program work successfully for

some inputs only to find that this was done at the expense of other inputs). In

these definitions, we use the term program part to refer to any set of lexemes of the

program’s source code; these may range from a single lexeme (e.g. a comparison

operator) to an expression to a simple statement to a compound a statement to a

set of non-contiguous lexemes or statements spread across the source code of the

program.

Definition 8 Faults, and Fault Removals. Let p be a program on space S and R

be a specification (relation) on S;

� let f be a program part of p. We say that f is a fault if and only if there exists

a substitution f ′ of f such that the program p′ obtained from p by substituting

f by f ′ is strictly more-correct than p.

� Let f be a fault in p and let f ′ be a substitute for f . We say that the pair (f, f ′)

is a (monotonic) fault removal if and only if the program p′ obtained from p by

substituting f by f ′ is strictly more-correct than p.

Whereas fault is an intrinsic property of a program part, monotonic fault removal

is a binary property involving a fault and a corresponding substitution. We argue

that the qualifier monotonic is redundant (though we may still use it, for emphasis),

as no substitution ought to be considered a fault removal unless it does make the

program strictly more-correct than the original.

For illustration, we consider the following program, say p, taken from [107] (with

some modifications):

87

1 #inc lude <iostream>
2 void main (char q []) {
3 i n t l e t , dig , other , i , l ;
4 char c ;
5 i =0; l e t =0; d ig=0; other=0; l=s t r l e n (q) ;
6 whi le (i<l) {
7 c = q [i] ;
8 i f (’A’<=c && ’Z’>c) l e t +=2;
9 e l s e i f (’ a’<=c && ’ z’>=c) l e t +=1;

10 e l s e i f (’0 ’<=c && ’9’>=c) dig+=1;
11 e l s e other+=1;
12 i++;
13 }
14 p r i n t f (”%d %d %d\n” , l e t , dig , other) ;
15 }

Listing 6.1 Initial program with modifications

To define the space of this program, we introduce the following notations:

� αA =′ A′ . . .′ Z ′.

� αa =′ a′ . . .′ z′.

� ν =′ 0′ . . .′ 9′.

� σ = {′+′,′−′,′=′, ...′/′}, the set of all the ascii symbols.

We let list〈T 〉 denote the set of lists of elements of type T, and we let #A, #a,

#ν and #σ be the functions that to each list l assign (respectively) the number of

upper case alphabetic characters, lower case alphabetic characters, numeric digits and

symbols; also, we let #α be defined as #α(l) = #a(l) + #A(l), for an arbitrary list

l. We let the space of this program be defined by all the variables declared in line 2.

Also, by virtue of the include statement of line 1, we add a variable of type stream,

that serves as the stream variable of the output file (in the parlance of C++). We

let this variable be named os (for output stream), we assume (for the purposes of our

example) that the stream is a sequence of natural numbers. Using these notations,

we write the following specification on S:

88

R ={(s, s′)|q ∈ list〈αA ∪ αa ∪ ν ∪ σ〉 ∧ os′ = os⊕#α(q)⊕#ν(q)⊕#σ(q)},

where ⊕ represents the concatenation operator. We introduce the following

programs, which are derived from p by some modifications of its source code:

p01 The program obtained from p when we replace (let+=2) by (let+=1).

p10 The program obtained from p when we replace (’Z’>c) by (’Z’>=c).

p11 The program obtained from p when we replace (let+=2) by (let+=1) and

(’Z’>c) by (’Z’>=c).

We compute the expression (R∩P)L for each candidate program, and find the

following:

� (R ∩ P)L = {(s, s′)|q ∈ list〈αa ∪ ν ∪ σ〉}.

� (R ∩ P01)L = {(s, s′)|q ∈ list〈(αA \ {′Z ′}) ∪ αa ∪ ν ∪ σ〉}.

� (R ∩ P10)L = {(s, s′)|q ∈ list〈αa ∪ ν ∪ σ〉}.

� (R ∩ P11)L = {(s, s′)|q ∈ list〈αA ∪ αa ∪ ν ∪ σ〉}.

Figure 6.4 illustrates the ‘more-correct-than’ relationships between programs p,

p01, p10, and p11, with respect to specification R; each ordering relationship is labeled

with the corresponding substitution. From this Figure, we can make the following

observations:

� The statement (let+=2) is a fault in p, and its substitution by (let+=1) is a

monotonic fault removal, yielding the more-correct program p01.

� The statement (’Z’>c) is a fault in p01, and its substitution by (’Z’>=c) is a

monotonic fault removal, yielding the more-correct program p11.

89

� The program part defined by the two statements (let+=2) and (’Z’>c) is a

fault in p, and its substitution by (let+=1) and (’Z’>=c) is a monotonic fault

removal, yielding the more-correct program p11.

� The program p11 is correct with respect to R, hence, it has no faults.

Note that the statement (’Z’>c) is a fault in p01 but it is not a fault in p; also

note that the statement (’Z’>c), in combination with the statement (let+=2) forms

a program part which is a fault in p, but it not a fault in p by itself. The reason is

that program p fails for all upper case letters due to the fault (let+2), so whether it

tests correctly for ’Z’ or not does not matter.

p

p01

p11

p10

6

6

@
@
@

@
@

@
@
@

@
@
@
@I

let+=2→let+=1

’Z’>c→’Z’>=c

let+=2→let+=1

’Z’>c→’Z’>=c

Figure 6.4 Monotonic and non-monotonic fault removals.

6.6 Implications of Relative Correctness

6.6.1 Counting Faults

In [59], Laprie et al. go to great lengths to define concepts and terminology pertaining

to system dependability. In particular, they define the standard hierarchy of fault,

error, and failure: a fault is the adjudged or hypothesized cause of an error; an

error is the state of the system that may lead to its subsequent failure; a failure

is the event whereby the system fails to meet its specification. In the context of

software, it is fairly straightforward to characterize a failure: it is the event when the

90

program produces an output that violates the specification. It is much more difficult

to characterize errors, because to do so assumes that we have a clear definition of

what state the program must be in at any stage in its execution; it is even more

difficult to characterize faults, because to do so assumes that we can trace every error

to a single feature of the program. In fact, the same program failure can be remedied

in more than one way, involving more than one location in the program, and possibly

involving more than one type of remedy (adding statements, removing statements,

altering existing statements, etc). Hence in practice, neither the number, nor the

location, nor the nature of faults can be uniquely defined.

With our definition of relative correctness as a partial ordering that ranks

candidate programs by how close they are to being (totally) correct with respect

to a given specification, we define program faults: A fault in a given program with

respect to a given specification is a program part (which can be a statement, a block

of statements, or a set of non contiguous statements) which can be altered in such a

way as to produce a more-correct program with respect to the specification.

Elementary faults Let p be a program on space S and R be a specification on S;

let f1 be a fault in p, f1′ be a monotonic substitution of f1, let p′ be the program

obtained from p by substituting f1 by f1′, and let f2 be a fault in p′. We argue

that the program part made up of f1 and f2 is a fault in p, since there exists a

substitution of (f1, f2) that would make p more-correct: we can substitute f1 by

f1′ to obtain program p′, and since by hypothesis f2 is a fault in p′, there exists a

substitution f2′ of f2 that would produce a program p′′ that is more-correct than

p. This raise the question: how many faults do we count in program p, one fault

(program part (f1, f2)), two faults (program part f1 and program part f2), or three

faults (program parts f1, f2 and (f1, f2)). In order to settle this matter, we have to

introduce the following definition.

91

Definition 9 Let f be a fault in program p on space S with respect to specification

R on S. We say that f is an elementary fault in p if and only if no part of f is a

fault in p with respect to R.

So that if we are going to count faults, we need to count elementary faults rather than

arbitrarily large faults. If we consider the program we introduced in Section 6.5, we

find that the statement {let+2} is an elementary fault with respect to R, and that

the program part ({’Z’>c}, {let+2}) is a fault but is not an elementary fault.

1 #inc lude <iostream>
2 void main (char q []) {
3 i n t l e t , dig , other , i , l ;
4 char c ;
5 i =0; l e t =0; d ig=0; other=0; l=s t r l e n (q) ;
6 whi le (i<l) {
7 c = q [i] ;
8 i f (’A’<=c && ’Z’>c) l e t +=2;
9 e l s e i f (’ a’<=c && ’ z’>=c) l e t +=1;

10 e l s e i f (’0 ’<=c && ’9’>=c) dig+=1;
11 e l s e other+=1;
12 i++;
13 }
14 p r i n t f (”%d %d %d\n” , l e t , dig , other) ;
15 }

Listing 6.2 Program from Section 6.5

Multi-site faults The foregoing discussion about elementary (and non-elementary)

faults may leave the reader with the impression that elementary faults are merely

single-site faults, i.e. faults that involve a single statement (or, more broadly, a

single contiguous program part). The purpose of this section is to dispel this notion,

and to characterize multi-site elementary faults. The distinction between elementary

multi-site faults and multiple elementary faults is important from the standpoint of

multiple mutation generation.

We consider the following space S, specification R, and program p:

� Space, S: {x: real; i: int; a: array [0..N] of real;}.

92

� Specification, R = {(s, s′)|x′ =
∑N

i=1 a[i]}.

� Program p: {x=0; i=0; while (i<=N-1) {x=x+a[i]; i=i+1;}}

We compute the function of this program, then its competence domain:

P = {(s, s′)|a′ = a ∧ i′ = N ∧ x′ =
∑N−1

j=0 a[j]}.

(R ∩ P) = {(s, s′)|a′ = a ∧ i′ = N ∧ a[0] = a[N]}.

(R ∩ P)L = {(s, s′)|a[0] = a[N]}.

Since (R ∩ P)L is not equal to RL, which is L, this program is not correct;

indeed, it computes the sum of the array from 0 to N1 while the specification mandates

computing the sum between indices 1 and N . One way to correct this program is to

change {i=0} to {i=1} and to change {i<=N-1} to {i<=N}. The question that we

raise here is: do we have two faults here ({i=0} and {i<=N-1}) or just one fault that

spans two sites? To answer this question we consider the proposed substitutions and

check whether they produce more-correct programs. We find:

� p01 = {x = 0; i = 1;while(i <= N − 1){x = x+ a[i]; i = i+ 1; }}.
P01 = {(s, s′)|a′ = a ∧ i′ = N ∧ x′ =

∑N−1
j=1 a[j]}.

(R ∩ P01) == {(s, s′)|a[N] = 0 ∧ a′ = a ∧ i′ = N ∧ x′ =
∑N

j=1 a[j]}.
(R ∩ P01)L == {(s, s′)|a[N] = 0}.

� p10 = {x = 0; i = 0;while(i <= N){x = x+ a[i]; i = i+ 1; }}.
P10 = {(s, s′)|a′ = a ∧ i′ = N + 1 ∧ x′ =

∑N
j=0 a[j]}.

(R ∩ P10) = {(s, s′)|a[0] = 0 ∧ a′ = a ∧ i′ = N + 1 ∧ x′ =
∑N

j=1 a[j]}.
(R ∩ P10)L = {(s, s′)|a[0] = 0}.

Since the competence domain of p is not a subset of the competence domains of

p01 and p10, neither p01 nor p10 is more-correct than p. We extrapolate: no substitution

to {i=0} can cause program p to include cell a[N] in the sum it is computing in x,

and no substitution to {i<=N-1} can preclude program p from including cell a[0]

in the sum it is computing in x. Hence neither program part {i=0} nor program

part {i<=N-1} is a fault in program p with respect to R, but program part ({i=0},

{i<=N-1}) is a fault in program p with respect to R, since substitution of this fault

93

by ({i=1}, {i<=N}) produces a more-correct (and actually correct) program. We say

about this fault

Fault density and fault depth It is common for software researchers and

practitioners to talk about fault density of a program as a measure of program quality

and/or as a measure of the effort that it takes to transform the program into a correct

program. In this section we show that fault density reflects neither quality nor fault

removal effort: we can show a simple example of a program with a single fault that

may still go through several monotonic fault removals before it is correct; also, we can

show an example of a program that has several faults, but can be corrected in one

elementary fault removal. In this discussion, we use the term fault density to mean:

the number of faults in a program; strictly speaking, fault density is the number of

faults per line of code, but for a given program size, these quantities are linearly

related.

As an example of a program with a single fault but many fault removals, consider

the following space S, specification R, and propgram p:

� Space, S: int i; float a[0..N]; // N ≥ 2.

� Specification, R = {(s, s′)|∀j : 0 ≤ j ≤ N : a′[j] = 0}.

� Program, p: {i=2; while (i<=N) {a[i]=0; i=i+1;}}

Clearly, RL = L. To determine correctness, we must compute (R ∩ P)L and

compare it to RL. We find:

P = {(s, s′)|a[0] = a′[0] ∧ a[1] = a′[1] ∧ ∀j : 2 ≤ j ≤ N : a′[j] = 0}.

R ∩R = {(s, s′)|a[0] = a′[0] ∧ a[1] = a′[1] ∧ ∀j : 2 ≤ j ≤ N : a′[j] = 0}.

(R ∩ P)L = {(s, s′)|a[0] = 0 ∧ a[1] = 0}.

94

Hence p is not correct with respect to R. We can check easily that {i=2} is a

fault in p with respect to R, and we show that the substitution of {i=2} by {i=1}

produces a more-correct program:

� p′: {i=1; while (i<=N) {a[i]=0; i=i+1;}},

� P ′ = {(s, s′)|a[0] = a′[0] ∧ ∀j : 1 ≤ j ≤ N : a′[j] = 0}.

� (R ∩ P ′) = {(s, s′)|a[0] = a′[0] ∧ ∀j : 1 ≤ j ≤ N : a′[j] = 0 ∧ ∀j : 0 ≤ j ≤ N :
a′[j] = 0}

� (R ∩ P ′)L = {(s, s′)|a[0] = 0}.

Since RL is (still) L, program P ′ is not correct with respect to R. We perform

another fault removal when we replace {i=1} by {i=1; a[0]=0;}. We find:

� p′′: {{i=1; a[0]=0;} while (i<=N) {a[i]=0; i=i+1;}}.

� P ′′ = {(s, s′)|∀j : 0 ≤ j ≤ N : a′[j] = 0}.

� (R ∩ P ′′) = {(s, s′)|∀j : 0 ≤ j ≤ N : a′[j] = 0}.

� (R ∩ P ′′)L = L.

Hence the same fault {i=2} has been corrected twice, first when we replaced it

by {i=1} then we replaced {i=1} by {i=1; a[0]=0;} (we could have replaced {i=1}

by {i=0}, though that would have looked far too artificial).

As for an example of a program with several faults that can be corrected with

a single elementary fault removal, consider the following space, specification, and

program:

� Space, S: {x: real; i: int; a: array [0..N] of real;}.

� Specification, R = {(s, s′)|x′ =
∑N

i=1 a[i]}.

� Program p: {x=0; i=0; while (i<=N-1) {x=x+a[i]; i=i+1;}}

95

We compute the function of this program then its competence domain with

respect to R:

P = {(s, s′)|a′ = a ∧ i′ = N ∧ x′ =
∑N−1

j=0 a[j]}.

(R ∩ P) = {(s, s′)|a′ = a ∧ i′ = N ∧ a[0] = a[N]}.

(R ∩ P)L = {(s, s′)|a[0] = a[N]}.

Since this is not equal to RL (which is L), we conclude that this program is

not correct with respect to R. We see at least two faults in this program, i.e. two

program parts that admit substitutions that would make the program more-correct:

� The multi-site fault that we had identified in section 6.6.1, namely the program
part ({i=0},{i<=N-1}).

� The single-site fault {a[i]} in the body of the loop; this is a fault since replacing
it by {a[i-1]} yields a correct program.

If we do substitute {a[i]} by {a[i-1]} then we obtain a program p′ where

the multi-site program part ({i=0},{i<=N-1}) is not a fault, hence, the same fault

removal action has removed more than one fault. This leads us to introduce the

following definition, as a possible alternative metric to fault density.

Definition 10 We consider a specification R on space S and a program p on space

S. The fault depth of program p with respect to specification R is the minimal number

of elementary fault removals that are required to transform p into a correct program.

In light of this definition, we find that the depth of the array sum program

above is 1, the depth of the array initialization program is also 1, and the depth of

the character-counting program (Section 6.1) is 2. Note that the array sum program

has a fault density of two, but a fault depth of 1; interestingly, the fault density,

which is usually perceived as indicative of a flaw, in this case appears to be a sign

of quality, since it gives us two distinct opportunities to correct the program. Hence

not only is fault density a poor measure of program unsoundness, it may sometimes

96

reflect quite the opposite: it may measure the range of possibilities for making the

program correct.

We argue that this metric is a more meaningful reflection of program quality,

and certainly more directly related to the effort required to make the program correct;

also, unlike fault density, this metric does decrease by one whenever we remove a fault

(provided the fault is in the minimal path). Given a faulty program p and a program

p′ obtained from p by monotonic fault removal; if the fault removal is in a minimal

sequence of faults removals to a correct program, then we can write:

depth(p) = 1 + depth(p′).

If p′′ is obtained from p by an arbitrary monotonic fault removal then all we

can claim about the depths of p and p′ is:

depth(p) ≤ 1 + depth(p′′).

Revisiting the sample program above, we find that if we remove the multi-site

fault in the original program p, we find the following program p′, which is also correct:

p′′: {x=0; i=1; while (i<=N) {x=x+a[i]; i=i+1;}}

Interestingly, note also that if we proceed to remove both faults at once, this

yields the following program, which is not correct:

p′′′: {x=0; i=1; while (i<=N) {x=x+a[i+1]; i=i+1;}}

This program has a fault density of 2 and a fault depth of 1; removing one fault

makes it correct; but removing two faults makes it incorrect. The only meaningful

characterization of fault density is whether the program has no faults (if it is correct)

or whether it has at least one fault (if it is not correct); once we determine that it

has at least one fault, then we need to remove that fault then ask the same question

about the new program; the answer to that question depends on what substitution

we have used to remove the first fault. In other words, fault density can take only

97

two meaningful values: 0, or > 0; fault depth, by contrast, takes its values in the set

of natural numbers.

6.6.2 A Bridge Between Testing and Proving

Whereas traditionally we distinguish between two categories of candidate programs

for a given specification R, namely correct programs and incorrect programs, relative

correctness enables us to arrange candidate programs over a partial ordering structure,

whose maximal elements are the correct programs, and all non-maximal elements are

incorrect.

Also, traditionally, proving methods and testing methods have been used on

different sets of programs:

� Proving methods are deployed on correct programs to prove their correctness;
they are useless when deployed on incorrect programs because even when a
proof fails, we cannot conclude that the program is incorrect, since we cannot
tell whether the proof failed because the program is incorrect or because it was
improperly documented (re: invariant assertions, intermediate assertions, etc).

� Testing methods are deployed on incorrect programs to detect, locate and
remove their faults; they are useless when deployed on correct programs, because
no matter how often a program runs failure-free under test, we can never (in
practice) conclude with certainty that it is correct.

We argue that consideration of relative correctness (rather than traditional

absolute correctness) has the potential to have a significant impact on both proving

methods and testing methods:

� Once we have a formal definition of relative correctness, we can deploy proving
methods to an incorrect program to prove that while it may be incorrect, it
is still more-correct than another. In particular, we can take a faulty program
(say P), remove a fault from it (to obtain a program P ′) and prove that the
fault has been removed by showing that P ′ is more-correct than P . Given that
there are orders of magnitude more incorrect programs than there are correct
programs, the ability to apply proving methods to incorrect programs expands
the scope of these methods significantly. This approach is discussed in Section
7.2 in Chapter 7.

98

� Relative Correctness can also alter the practice of software testing by recognizing
the difference between testing for relative correctness and testing for (tradi-
tional) absolute correctness. Indeed, when we remove a fault from a program,
we ought to test it for relative correctness rather than absolute correctness,
unless we have reason to believe (how do we ever?) that the fault we have just
removed is the last fault of the program. Yet in the current practice of software
testing, programs are routinely tested for absolute correctness, even when we
have no reason whatsoever to believe that they are correct (due to the presence
of other faults). This matter is discussed in Section 6.7.

� It has long been a cornerstone of software engineering wisdom that programs
should not be developed then checked for correctness, but should instead be
developed hand-in-hand along with their proof, with the proof leading the way
[104]; echoing David Gries, Carrol Morgan talks about developing programs by
calculation from their specification, in the same way that a mathematician
solves an equation by computing its root [36]. The favorite paradigm for
developing programs from specifications has always been that of refinement,
whereby a program is derived from a specification through a sequence of
correctness-preserving transformations based on refinement. In Chapter 7 ,
Section 7.4 we present an alternative paradigm based on relative correctness,
illustrate it with a simple example, then briefly discuss some of its advantages.

In Chapter 2 we introduce the mathematical background that is needed to carry

out our discussions.

6.7 Testing for Relative Correctness

The usual process of software debugging proceeds as follows: We observe a failure

of the program; we analyze the failure and formulate a hypothesis on its cause; we

modify the source code on the basis of our hypothesis; and finally we test the new

program to ensure that it is now correct. But there is a serious flaw in this process:

when we remove a fault from an incorrect program, we have no reason to expect the

new program to be correct, unless we know (how do we ever?) that the fault we

have just removed is the last fault of the program; hence, when a fault is removed

from a program, the new program ought to be tested for relative correctness over

the original program, rather than for absolute correctness. When a doctor treats a

patient for one condition (e.g. bacterial infection) then tests him/her for another (e.g.

99

diabetes) we would consider that a serious case of medical malpractice and grounds for

career-ruining medical malpractice lawsuit. But when a software engineer removes

a fault from a program then tests it for absolute correctness, we consider that as

routine professional practice, even though it is essentially the same type of misconduct

(incompatibility between the treatment and the test).

This raises the question: how do we test a program for relative correctness over

another program, and how does that differ from testing it for absolute correctness. We

argue that testing a program for relative correctness has an impact on three aspects of

testing, namely test data selection, test oracle design, and test coverage assessment.

� Test data selection. The problem of test data selection can be summarized as
follows: We are given a large or infinite test space S, and we must select a
small subset thereof T such that the behavior of candidate programs on T is
a faithful predictor of their behavior on S. The difference between absolute
correctness and relative correctness is that for absolute correctness with respect
to specification R, the test space S is dom(R) whereas for relative correctness
over P with respect to R the test space S is dom(R ∩ P).

� Test oracle design. Let Ω(s, s′) be the test oracle for absolute correctness derived
from specification R. Because relative correctness over program P tests a
candidate program P ′ for Ω only for those states on which P is successful,
the oracle for relative correctness ω(s, s′) can be written as:
ω(s, s′) ≡ Ω(s, P (s))⇒ Ω(s, s′).

� Test Coverage Assessment. It is not sufficient to know that some program P ′ has
executed successfully on a test data set of size N using oracle ω(s, s′); it is also
necessary to know what percentage of the test data set satisfy the precondition
ω(s, P (s)).

In Chapter 7, we show examples of the difference between testing for relative

correctness and testing for absolute correctness .

6.8 Related Work

In [108], Logozzo et al. introduce a technique for extracting and maintaining semantic

information across program versions: specifically, they consider an original program P

100

and a variation (version) P ′ of P , and they explore the question of extracting semantic

information from P , using it to instrument P ′ (by means of executable assertions),

then pondering what semantic guarantees they can infer about the instrumented

version of P ′. The focus of their analysis is the condition under which programs P

and P ′ can execute without causing an abort (due to attempting an illegal operation),

which they approximate by sufficient conditions and necessary conditions. They

implement their approach in a system called VMV (Verification Modulo Versions)

whose goal is to exploit semantic information about P in the analysis of P ′, and to

ensure that the transition from P to P ′ happens without regression; in that case, they

say that P ′ is correct relative to P . The definition of relative correctness of Logozzo et

al. [108] is different from ours, for several reasons: whereas [108] talk about relative

correctness between an original program and a subsequent version in the context of

adaptive maintenance (where P and P ′ may be subject to distinct requirements), we

talk about relative correctness between an original (faulty) software product and a

revised version of the program (possibly still faulty yet more-correct) in the context

of corrective maintenance with respect to a fixed requirements specification; whereas

[108] use a set of assertions inserted throughout the program as a specification, we

use a relation that maps initial states to final states to specify the standards against

which absolute correctness and relative correctness is defined; whereas [108] represent

program executions by execution traces (snapshots of the program state at assertion

sites), we represent program executions by functions mapping initial states into final

states; finally, whereas Logozzo et al. define a successful execution as a trace that

satisfies all the relevant assertions, we define a successful as simply an initial state/

final state pair that falls with the specification (relation).

In [109], Lahiri et al. introduce a technique called Differential Assertion

Checking for verifying the relative correctness of a program with respect to a previous

version of the program. Lahiri et al. explore applications of this technique as a

101

tradeoff between soundness (which they concede) and lower costs (which they hope

to achieve). Like the approach of Logozzo et al. [108] (from the same team), the

work of Lahiri uses executable assertions as specifications, represents executions by

execution traces, defines successful executions as traces that satisfy all the executable

assertions, and targets abort-freedom as the main focus of the executable assertions.

Also, they define relative correctness between programs P and P ′ as the property that

P ′ has a larger set of successful traces and a smallest set of unsuccessful traces than P ;

and they introduce relative specifications as specifications that capture functionality

of P ′ that P does not have. By contrast, we use input/ output (or initil state/

final state) relations as specifications, we represent program executions by functions

from initial states to final states, we characterize correct executions by initial state/

final state pairs that belong to the specification, and we make no distinction between

abort-freedom (a.k.a. safety, in [109]) and normal functional properties. Indeed, for

us the function of a program is the function that the program defines between its

initial states and its final states; the domain of this function is the set of states for

which execution returns terminates normally and returns a well-defined final state.

Hence execution of the program on a state s is abort free if and only if the state is in

the domain of the program function; the domain of the program function is part of the

function rather than being an orthogonal attributes; hence, we view abort-freedom

as a special form of functional attribute, rather than being an orthogonal attribute.

Another important distinction with [109] is that we do not view relative correctness

is a compromise that we accept as a substitute for absolute correctness; rather we

argue that in many cases, we ought to test programs for relative correctness rather

than absolute correctness, regardless of cost.

In [110], Logozzo and Ball introduce a definition of relative correctness whereby

a program P ′ is correct relative to P (an improvement over P) if and only if P ′

has more good traces and fewer bad traces than P . Programs are modeled with

102

trace semantics, and execution traces are compared in terms of executable assertions

inserted into P and P ′; in order for the comparison to make sense, programs P and

P ′ have to have the same (or similar) structure and/or there must be a mapping from

traces of P to traces of P ′. When P ′ is obtained from P by a transformation, and when

P ′ is provably correct relative to P , the transformation in question is called a verified

repair. Logozzo and Ball introduce an algorithm that specializes in deriving program

repairs from a predefined catalog that is targeted to specific program constructs,

such as: contracts, initializations, guards, floating point comparisons, etc. Like the

work cited above ([108, 109]), Logozzo and Ball model programs by execution traces

and distinguish between two types of failures: contract violations, when functional

properties are not satisfied; and run-time errors, when the execution causes an abort;

for the reasons we discuss above, we do not make this distinction, and model the two

aspects with the same relational framework. Logozzo and Ball deploy their approach

in an automated tool based on the static analyzer cccheck, and assess their tool for

effectiveness and efficiency.

6.9 Conclusion

In this chapter, we have introduced the concept of relative correctness, used it to

propose a definition for program faults, then explored the implications of these

two concepts on a variety of aspects of testing and fault removal. Particularly, we

presented the following:

� A definition of relative correctness, and an analysis of the proposed definition to
ensure that it meets all the properties that one wants to see in such a concept.

� A definition of fault and fault removal, and the analysis of monotonic fault
removal, as a process that transforms a faulty program into a correct program
by a sequence of correctness-enhancing transformations.

� An analysis of mutation-based program repair, highlighting that when repair
candidates are evaluated by testing them for absolute correctness rather than

103

relative correctness, one runs the risk of selecting programs that are not
adequate repairs, and rejecting programs that are.

� A critique of the concept of fault density, and the introduction of fault depth
as perhaps a more meaningful measure of the degree of imperfection of a faulty
program; also the observation that for a given fault depth, the higher the fault
density the better (which is the opposite of what fault density purports to
represent).

� An analysis of techniques for testing that a program is more-correct than
another with respect to a specification, and discussion of the difference between
testing a program for relative correctness and testing it for absolute correctness.

� A study of techniques for proving, by static analysis, that a program is
more-correct than another with respect to a given specification, as well as
techniques for decomposing a proof of relative correctness with respect to a
compound specification into proofs of relative correctness with respect to its
building components

104

CHAPTER 7

APPLICATIONS OF RELATIVE CORRECTNESS

7.1 Introduction

In Chapter 6, we discuss about the concept of relative correctness, i.e., the property

of a program to be more-correct than another with respect to a given specification.

In this chapter, we explore the impact of relative correctness in software engineering,

in software testing, and in software design. Further, we build upon our results on

program design by showing that relative correctness can be used not only for program

development from scratch, but also for various forms of program evolution. We argue,

in fact, that virtually all software evolution is nothing but an effort to make some

program more-correct with respect to some specification. Given that today most

software is developed, not from scratch, but rather by evolving existing software

products, we feel that exploration of this avenue may yield substantial returns across

software engineering practice. Our purpose, in doing so, is not to offer polished/

validated/ scalable solutions; rather, it is merely to highlight some of the opportunities

that are opened by relative correctness in the field of software evolution.

7.2 Debugging Without Testing

It is so inconceivable to debug a program without testing it that these two words

are used nearly interchangeably. Yet we argue that using the concept of relative

correctness, as described in Section 7.2.2, we can indeed remove a fault from a program

and prove that the fault has been removed, by proving that the new program is more

correct than the original. This is a departure from the traditional roles of proving

and testing methods, whereby static proof methods are applied to a correct program

to prove its correctness, and dynamic testing methods are applied to an incorrect

program to expose its faults Broadly speaking, this method has the same advantages

105

and disadvantages as traditional methods for proving correctness by static analysis:

namely that it offers the confidence and certainty of formally provable results, at

the cost of mathematical formalisms and limited scalability. At the same time as

we present the method, we also discuss means to capitalize on its advantages while

mitigating its disadvantages. In the following , we present illustrative examples of

the method.

7.2.1 Proving Correctness and Incorrectness of Loops

The analysis of while loops by means of invariant relations provides a way to infer

the relative correctness of iterative programs from partial semantic information.

Invariant Relations and Absolute Correctness In [112], Mili et al. present

a method to prove the correctness or incorrectness of a loop with respect to a

specification, using invariant relations. This method is based on the following two

propositions, which give, respectively, a sufficient condition and a necessary condition

of correctness of a (uninitialized) while loop with respect to a specification R. Even

though correctness is defined in terms of the program function, invariant relations

enable us to rule on correctness or incorrectness long before we have collected all the

necessary information to compute the loop function.

Proposition 16 Sufficient condition of correctness. Given a while loop w of the form

while (t) {b} that terminates for all states in its space S, and given a specification

C on S, if an invariant relation V of w satisfies the condition

V T ∩RL ∩ (R ∪ V ∩ T̂) = R

then w is correct with respect to R.

This proposition provides, in effect, that if an invariant relation R meets this

condition, then it contains sufficient information to subsume the specification, and to

prove the correctness of the loop with respect to C.

106

Proposition 17 Necessary condition of correctness. Let w be a while loop of the

form w = while (t) {b} that terminates for all states in S, let V be an invariant

relation for w, and let R be a specification on S. If w is correct with respect to R

then

(R ∩ V)T = RL.

This proposition provides, in effect, that any while loop that while this is a

necessary condition of correctness, it is best to interpret it by considering that its

negation is a sufficient condition of incorrectness. This proposition provides in effect

that any while loop that admits an invariant relation V that does not satisfy this

condition could not possibly be correct with respect to R. In other words, any while

loop that admits an invariant relation V that satisfies the condition (note the change

from = to 6=)

(R ∩ V)T 6= RL.

is necessarily incorrect with respect to R. Any invariant relation V that satisfies this

condition is said to be incompatible with respect to specification R. Any invariant

relation that is not incompatible is said to be compatible. In [113], Mili et al. present

an algorithm for proving the correctness or incorrectness of a loop with respect to a

specification, which proceeds as follows:

� Using an invariant relations generator, we generate invariant relations one by
one, and test the sufficient condition and necessary condition.

� If the aggregate of invariant relations found so far satisfy the sufficient condition
then we conclude that the loop is correct, and we exit.

� If one of the invariant relations proves to be incompatible with R, we conclude
that the loop is incorrect, and we exit.

� If we run out of invariant relations before we reach the conclusion that the loop
is correct or that the loop is incorrect, then we conclude that we do not know

107

enough about the loop to rule on its correctness (hence, we must upgrade our
invariant relations generator), and we exit.

In the next section we discuss how we can use a variation of this algorithm to

establish relative correctness, rather than absolute correctness.

7.2.2 Proving Relative Correctness for Loops

In this section, we explore how they can be used to prove relative correctness of a loop

over another with respect to a given specification. Given a while loop w of the form

while (t) {b} on space S and a specification R on S, we are interested to determine

whether w is correct with respect to R, and if not how we can locate and remove a

fault in w. Ideally, we want to support all the steps in this process, namely:

� Determine that the loop is incorrect (for else there is no fault to remove).

� Determine the location of the fault.

� Determine what to replace the fault with.

� Prove that the substitution constitutes a monotonic fault removal.

To this effect, we consider the following proposition, which we give without

proof.

Proposition 18 Let R be a specification on space S and let w be a while loop on

S of the form, w: {while (t) {b}} which terminates for all s in S. Let Q be an

invariant relation of w that is incompatible with R, i.e. such that (R ∩ Q)T 6= RL;

and let C be the largest invariant relation of w such that W = (C ∩ Q) ∩ T̂ . Let w′

be a while loop that has C as an invariant relation, terminates for all s in S, and

admits an invariant relation Q′ that is compatible with R and satisfies the condition

W ′ = (C ∩Q′) ∩ T̂ . Then w′ is strictly more-correct than w.

108

Interpretation: This proposition provides that if we change the loop in such a

way as to replace an incompatible invariant relation (Q) with a compatible invariant

relation (Q′) of equal strength (so that ((C ∩Q′) ∩ T̂) is deterministic, just as

((C ∩Q)∩ T̂)), while preserving all the other invariant relations (C), then we obtain

a more-correct while loop.

Proof. By hypothesis, Q is incompatible with R, hence, we write:

(R ∩Q)T 6= RL

⇒ { by set theory (R ∩Q)T ⊆ (R ∩Q)L ⊆ RL }

(R ∩Q)T ⊂ RL

⇒ { By hypothesis, Q′ is compatible }

(R ∩Q)T ⊂ (R ∩Q′)T

⇒ { Taking the intersection with C on both sides }

(R ∩Q ∩ C)T ⊂ (R ∩Q′ ∩ C)T

⇒ { For any vector v and relation R, Rv = (R ∩ v̂)L }

(R ∩Q ∩ C ∩ T̂)L ⊂ (R ∩Q′ ∩ C ∩ T̂)L

⇒ { associativity }

(R ∩ (Q ∩ C ∩ T̂))L ⊂ (R ∩ (Q′ ∩ C ∩ T̂))L

⇒ { substitution }

(R ∩W)L ⊂ (R ∩W ′)L.

Hence w′ is strictly more-correct than w with respect to R. qed

Using this Proposition, we propose the following algorithm for fault removal in

while loops:

1. Determination that the loop is faulty. Given the specification R and the while
loop w, we generate all the invariant relations we can, and place them in
two separate columns, one for compatible relations and one for incompatible
relations.

109

� If the incompatible column has at least one invariant relation, then the
loop is incorrect, hence, it has a fault.

� If the incompatible column is empty and the intersection of all the
compatible invariant relations satisfies the sufficient condition of correctness,
then the loop is correct.

� If neither of the conditions above hold, then we cannot rule on the
correctness of the loop, and the algorithm fails (the invariant relations
generator needs to be upgraded).

2. Localization of the Fault. We consider the incompatible column and select from
it an invariant relation that involves the fewest possible variables; for the same
number of variables, we select the invariant relation (say Q) whose variables
are involved in the smallest number of statements in the loop. We select one of
these statements as the feature that we want to correct.

3. Guidance to modify the selected statement. We need to modify the selected
statement in such a way as to replace the current incompatible invariant relation
(Q) with a compatible invariant relation (Q). But we want to do so without
affecting the compatible invariant relations. This constraint is used to generate
a condition that guides us in the modification process. Let C be the intersection
of all the compatible invariant relations, let x1, x2, x3, ... xn be the variables of
the program, and let x1 and x2 be the two variables that appear in Q. Then,
to preserve the compatible invariant relations of the loop, variables x1, x2, x′1,
x′2 must satisfy the following constraint:

∃x3, x4, ...xn, x
′
3, x
′
4, ...x

′
n :

x1

x2

...
xn

,

x′1
x′2
...
x′n

 ∈ C.
We refer to this condition as the condition of compatibility preservation.

4. Verification of Fault Removal. Once we have changed the selected statement in
such a way as to preserve the compatible invariant relations, we recompute the
invariant relations and ensure that the selected incompatible invariant relation
is now replaced by a compatible invariant relation. This ensures that we now
have a more-correct program than we did before. This sends us back to step 1,
to check whether the loop has now become correct (if its compatible relations
subsume the specification) or whether it is still incorrect (if the incompatible
column is still not empty).

We now illustrate this approach on initialized and uninitialized while loops.

110

7.2.3 Uninitialized Loops

Illustration 1 We reconsider example 6.1 from Chapter 6 with some modifications.

We recall that the space of the specification is defined by the following variable

declarations:

char q[]; int let, dig, other, i, l; char c;.

We let the specification R that we use for relative correctness be:

R = {(s, s′)|q ∈ list(αA ∪ αa ∪ ϑ ∪ σ) ∧ let′ = let + #a(q) + #A(q) ∧ dig′ =

dig + #ϑ(q) ∧ other′ = other + #σ(q)}

where list < T > denotes the set of lists of elements of type T , #A, #a, #ϑ and

#σ the functions that to each list l assign (respectively) the number of upper case

alphabetic characters, lower case alphabetic characters, numeric digits and symbols.

The (faulty) program that we consider is w:

1 #inc lude <iostream>
2 void main (char q []) {
3 i n t l e t , dig , other , i , l ;
4 char c ;
5 i =0; l e t =0; d ig=0; other=0; l=s t r l e n (q) ;
6 whi le (i<l) {
7 i++;
8 c = q [i] ;
9 i f (’A’<=c && ’Z’>=c) l e t=l e t −1;

10 e l s e i f (’ a’<=c && ’ z’>=c) l e t=l e t −1;
11 e l s e i f (’0 ’> c && ’9’>=c) dig=dig+1;
12 e l s e other=other+1;
13 }
14 }

Listing 7.1 Uninitialized loop: Initial program with modifications

We find the following invariant relations of this while loop:

� V0 = {(s, s′)|q = q′}

� V1 = {(s, s′)|i ≤ i′}

� V2 = {(s, s′)|dig ≤ dig′}

111

� V3 = {(s, s′)|other ≤ other′}

� V4 = {(s, s′)|let ≥ let′}

� V5 = {(s, s′)|let−#a∪A(q[i..l − 1]) = let′ −#a∪A(q′[i′..l − 1])}

� V6 = {(s, s′)|dig + #σ1(q[i..l − 1]) = dig′ + #σ1(q′[i′..l − 1])}

� V7 = {(s, s′)|other + #σ2∪ϑ(q[i..l − 1]) = other′ + #σ2∪ϑ(q′[i′..l − 1])}

The following table table shows which of these invariant relations are compatible,

and which are incompatible.

Compatible Invariant Relations Incompatible Invariant Relations

V0, V1, V2, V3 V4, V5, V6, V7

Because the incompatible column is non-empty, we conclude that the program is

incorrect with respect to R, hence, we must enhance its correctness. To this effect, we

select the incompatible invariant relation V4 for remediation, which leads us to focus

on variable let for fault removal. Preservation of the compatible invariant relations

mandates that let be modified under the following condition: let ≤ let′. We propose:

let=let+1;. The generation of invariant relations of the new loop yields the following

table:

Compatible Invariant Relations Incompatible Invariant Relations

V0, V1, V2, V3, V ′4 , V ′5 V6, V7

Application of the same process one more time yields the following program:

1 #inc lude <iostream>
2 void main (char q []) {
3 i n t l e t , dig , other , i , l ;
4 char c ;
5 i =0; l e t =0; d ig=0; other=0; l=s t r l e n (q) ;
6 whi le (i<l) {
7 i++;
8 c = q [i] ;
9 i f (’A’<=c && ’Z’>=c) l e t=l e t +1;

112

10 e l s e i f (’ a’<=c && ’ z’>=c) l e t=l e t +1;
11 e l s e i f (’0 ’<=c && ’9’>=c) dig=dig+1;
12 e l s e other=other+1;
13 }
14 }

Listing 7.2 Uninitialized loop: program with faults removed

Analysis of this program produces 8 invariant relations, which are all compatible.

Compatible Invariant Relations Incompatible Invariant Relations

V0, V1, V2, V3, V ′4 , V ′5 , V ′6 , V ′7

This does not prove that the program is now correct, all it proves is that we have

no evidence (in the forms of an incompatible invariant relation) that it is incorrect.

To establish correctness, we must ensure that the intersection of all the available

invariant relations satisfies the sufficient condition provided by Proposition 16, which

it does. All the faults have been removed; we now have a correct program.

Illustration 2 As an illustrative example, we consider the state space S defined by

the following variable declarations:

1 const f l o a t ups i l on = 0 .00001 ;
2 const f l o a t a= 0 . 1 5 ;
3 const f l o a t b= 0 . 0 8 ;
4 // we always have : 0<b<a<1.0 ;
5 f l o a t r , p , n , x , m, l , k , y , w, y , z , v , u , d ; i n t t ;

Listing 7.3 initialized loop: program with modifications

and we consider program w on a state space S defined by:

1 p1 : whi l e (abs (r−p)>ups i l on)
2 {
3 t=t+1;
4 n=n+x ;
5 m=m−l ;
6 l=(1+b) * l ;
7 k=k+1000;
8 y=n+k ;
9 w=w+z ;

10 z=(1+a)+z ;
11 v=w+k ;

113

12 r=(v−y) /y ;
13 u=(m−n) /n ;
14 d=r−u ;
15 }

The invariant relations generator produces fourteen invariant relations:

� V1 = {(s, s′)|x′ = x}.

� V2 = {(s, s′)|t ≤ t′}.

� V3 = {(s, s′)|k ≤ k′}.

� V4 = {(s, s′)||l| ≤ |l′|}.

� V5 = {(s, s′)|z ≤ z′}.

� V6 = {(s, s′)|k − 1000t = k′ − 1000t′}.

� V7 = {(s, s′)|l(1 + b)−z = l′(1 + b)−z
′}.

� V8 = {(s, s′)|l(1 + b)(−k/1000) = l′(1 + b′)(−k′/1000)}.

� V9 = {(s, s′)|l(1 + b)−z/(1+a) = l′(1 + b′)−z
′/(1+a)}.

� V10 = {(s, s′)|z − (1 + a)t = z′ − (1 + a)t′}.

� V11 = {(s, s′)|1000z − (1 + a)k = 1000z′ − (1 + a)k′}.

� V12 = {(s, s′)|m+ l/b = m′ + l′/b}.

� V13 = {(s, s′)|w + z(z − 1− a)/(2(1 + a)) = w′ + z′(z′ − 1− a)/(2(1 + a))}.

� V14 = {(s, s′)|1000n− kx = 1000n′ − k′x′}.

We consider the following specification R on space S:

R = {(s, s′)|b < a < 1 ∧ x′ = x ∧ w′ = w − z × 1− (1 + a)t
′−t

a
∧m′ ≥ 0 ∧ l′ ≥ 0

114

We review all the invariant relation for compatibility with respect to R; this is

done using Mathematica (©Wolfram Research), by writing a logical formula that

corresponds to the condition of compatibility discussed above. We find:

Compatible Incompatible

V1, V2, V3, V4, V5, V6, V11, V14 V7, V8, V9, V10, V12, V13

We select invariant relation V7 for remediation; the variables that appear in this

relation are l and z. We compute the condition of compatibility preservation, and we

find:

|l| ≤ l′ ∧ z ≤ z′

We focus on variable z, consider the statement where this variable is modified,

and consider alternative statements that satisfy the constraint. For each alternative,

we recompute the new invariant relation that stems from the new statement and

check for compatibility. We find the following substitute:

z=(1+a)*z;

Hence the new program:

1 p2 : whi l e (abs (r−p)>ups i l on) {
2 t=t+1;
3 n=n+x ;
4 m=m−l ;
5 l=(1+b) * l ;
6 k=k+1000;
7 y=n+k ;
8 w=w+z ;
9 z=(1+a) *z ;

10 v=w+k ;
11 r=(v−y) /y ;
12 u=(m−n) /n ;
13 d=r−u ;
14 }

Listing 7.4 Uninitialized loop: 2 faults removed

115

We do not know whether this program is correct, but we know that it is more-

correct than the original program; if we test it and it fails, it will not be because our

fault removal was wrong; rather it will be because it has other faults. When we run

the invariant relations generator on this program, we find the following list.

� V1 = {(s, s′)|x′ = x}.

� V2 = {(s, s′)|t ≤ t′}.

� V3 = {(s, s′)|k ≤ k′}.

� V4 = {(s, s′)||l| ≤ |l′|}.

� V5 = {(s, s′)|z ≤ z′}.

� V6 = {(s, s′)|k − 1000t = k′ − 1000t′}.

� V7 = {(s, s′)|l ≤ l′}.

� V8 = {(s, s′)|1000l − (1 + b)k = 1000l′ − (1 + b)k′}.

� V9 = {(s, s′)|(1 + b)z − (1 + a)l = (1 + b)z′ − (1 + a)l′}.

� V10 = {(s, s′)|1000z − (1 + a)k = 1000z′ − (1 + a)k′}.

� V11 = {(s, s′)|1000n− kx = 1000n′ − k′x′}.

� V12 = {(s, s′)|(1 + b)n− xl = (1 + b)n′ − x′l′}.

� V13 = {(s, s′)|z(1 + a)−t = z′(1 + a)−t
′}.

� V14 = {(s, s′)|z(1 + a)−k/1000 = z′(1 + a)−k
′/1000}.

� V15 = {(s, s′)|w − z
a

= w − z
a
}.

� V16 = {(s, s′)|m+ l
b

= m+ l
b
}.

116

Checking these invariant relations for compatibility against specification R, we

find the following classification:

Compatible Incompatible

V1, V2, V3, V4, V5, V6,V7, V8, V9, V10 V11, V12, V13, V14 ,V15 V16

Note that the same fault removal can turn several incompatible relations into

compatible relations; also, when we change a statement in a loop, our invariant

relations generator may have to use different code patterns to generate invariant

relations. Relation V16 refers to variables l and m, hence, these are the variables we

may modify. We generate the condition on variables l and m under which modification

of these variables does not affect compatible invariant relations, and find the following:

((l = 0 ∧ l′ = 0) ∪ (l ≤ l′ ∧ (l ≥ 0 ∪ l + l′ ≥ 0)))

Looking at the statement that updates variable l, we find that it meets (the

second clause of) this condition as it is; hence, if we do not change it, we are assured

not to affect any compatible invariant relation. We focus on variable m, and we

suggest to change statement (m = m− l) into (m = m+ l). This yields the following

program:

1 p3 : whi l e (abs (r−p)>ups i l on) {
2 t=t+1;
3 n=n+x ;
4 m=m+l ;
5 l=(1+b) * l ;
6 k=k+1000;
7 y=n+k ;
8 w=w+z ;
9 z=(1+a) *z ;

10 v=w+k ;
11 r=(v−y) /y ;
12 u=(m−n) /n ;
13 d=r−u ;
14 }

Listing 7.5 Uninitialized loop: 3 faults removed

117

We compute the invariant relations of this program and find:

� V1 = {(s, s′)|x′ = x}.

� V2 = {(s, s′)|t ≤ t′}.

� V3 = {(s, s′)|k ≤ k′}.

� V4 = {(s, s′)||l| ≤ |l′|}.

� V5 = {(s, s′)|z ≤ z′}.

� V6 = {(s, s′)|k − 1000t = k′ − 1000t′}.

� V7 = {(s, s′)|l ≤ l′}.

� V8 = {(s, s′)|1000l − (1 + b)k = 1000l′ − (1 + b)k′}.

� V9 = {(s, s′)|(1 + b)z − (1 + a)l = (1 + b)z′ − (1 + a)l′}.

� V10 = {(s, s′)|1000z − (1 + a)k = 1000z′ − (1 + a)k′}.

� V11 = {(s, s′)|1000n− kx = 1000n′ − k′x′}.

� V12 = {(s, s′)|(1 + b)n− xl = (1 + b)n′ − x′l′}.

� V13 = {(s, s′)|z(1 + a)−t = z′(1 + a)−t
′}.

� V14 = {(s, s′)|z(1 + a)−k/1000 = z′(1 + a)−k
′/1000}.

� V15 = {(s, s′)|w − z
a

= w − z
a
}.

� V16 = {(s, s′)|m− l
b

= m− l
b
}.

When we check these invariant relations against specification R for compati-

bility, we find that they are all compatible.

Compatible Incompatible

V1, V2, V3, V4, V5, V6,V7, V8, V9, V10 V11, V12, V13, V14 ,V15, V16

118

This does not mean that program p3 is correct. All it means is that program p3

is more-correct than programs p2 and p1; the absence of incompatible relations is not

sufficient to ensure correctness; all it means is that we did not prove the program

incorrect). We do find that program p3 is correct with respect to R, by virtue of the

proposition of sufficient correctness, because we find that relation V , the intersection

of all the invariant relations of p3, satisfies the sufficiency condition:

V T ∩RL ∩ (R ∪ V ∩ T̂) = R

7.2.4 Initialized While Loops

As a second illustrative example, we consider the following program that purports to

compute Fibonacci numbers; its space is defined by the following declarations:

1 const i n t cN = ;
2 i n t i , j , fb , nc , np ;

The source code of the loop w is:

1 g : whi l e (j !=cN) {
2 j=j+i ;
3 nc=fb ;
4 i=i +1;
5 fb=np+nc ;
6 np=nc ;
7 j=j−i ;
8 }
Listing 7.6 Initialized loop: program with modifications

Deployment of the invariant relations generator produces the following invriant

relations (where F is the Fibonacci function):

� V1 = {(s, s′)|i ≤ i′}.

� V2 = {(s, s′)|j ≥ j′}.

� V3 = {(s, s′)|i+ j = i′ + j′}.

� V4 = {(s, s′)|np′ = fb× F (i′ − i) + np× F (i′ − i− 1)}.

119

� V5 = {(s, s′)|fb′ = fb× F (i′ − i+ 1) + np× F (i′ − i)}.

We consider the following specification:

R = {(s, s′)|j > cN ∧ fb′ = F (j + 2− cN)∧

nc′ = F (j + 1− cN) ∧ np′ = F (j + 1− cN) ∧ i′ = i+ j ∧ j′ = cN}

In the table below, we show how the invariant relations listed above are classified

between compatible relations and incompatible relations with respect to specification

R.

Compatible Incompatible

V1, V2, V3 V4,V5

Because we have found invariant relations that are incompatible with specifi-

cation R, we infer that this loop is incorrect with respect to R; hence, there is a

fault.

A theorem by H.D. Mills[114] provides a condition under which a function W

can be computed by an uninitialized while loop:

(LW ∩ I)W = (LW ∩ I).

In [115], Mili et al. generalize this result to give a condition on a relation R to

admit an uninitialized while loop as a correct program (i.e. a condition under which

specification R can be refined by a function W that satisfies Mills condition, above):

RL ⊆ R(R ∩ I)L.

Interestingly, we find that our relation R given above does not satisfy this

condition. Indeed, we find:

RL = (s, s′)|j > cN.

120

On the other hand, we find

R ∩ I = {(s, s′)|s′ = s ∧ j > cN ∧ fb′ = F (j + 2− cN)∧

nc′ = F (j + 1− cN) ∧ np′ = F (j + 1− cN) ∧ i′ = i+ j ∧ j′ = cN}

This relation is empty, since it is a subset of

(s, s′)|j > cNj = cN,

which is itself empty. Hence R(RI)L is empty, and the condition

RL ⊆ R(R ∩ I)L.

does not hold. So that specification R cannot be satisfied by an uninitialized while

loop; in other words, even though w is incorrect with respect to R (as shown by the

existence of incompatible relations), there is nothing we can do to w to correct it;

instead, any correction must be outside the loop, say in the initialization. In light of

this example, we may want to refine the algorithm discussed above (in Section 7.2.2)

by adding a step where we check the condition RL ⊆ R(R ∩ I)L. before attempting

to remedy the loop; indeed, if this condition is not satisfied, then no loop can satisfy

specification R, hence, the focus of fault removal ought to divert away from the loop

(e.g. towards its initialization). To get some guidance for how to initialize this loop,

we compute its competence domain with respect to R. To this effect, we calculate

the function of w from its invariant relations using a formula provided by [5]; this

calculation is done automatically, using the computer algebra program Mathematica

(Wolfram Research). We find:

W = {(s, s′)|j ≥ cN ∧ i′ = i+ j − cN ∧ j′ = cN∧

np′ = np× F (j − cN − 1) + fb× F (j − cN)

∧ nc′ = np′ ∧ fb′ = np× F (j − cN) + fb× F (j − cN + 1)}.

121

The competence domain of w can be computed in©Mathematica by simplifying

the following logical expression (where each relation is represented by its characteristic

predicate):

∃s′ : R(s, s′) ∧W (s, s′).

We find:

CD = (s, s′)|j > cN ∧ ((fb = 1 ∧ np = 1) ∩ (fb× (1 + 5) + 2× np = 3 + 5)).

Because variables fb and np are of type integer, this competence domain can be

written simply as:

CD = (s, s′)|j > cN ∧ fb = 1 ∧ np = 1.

In order for w to behave according to specification R, variables fb and np have

to be 1; this suggests that the required initialization is

fb = 1;np = 1;

We find (as shown below) that these initializations ensure that the program is

now correct with respect to R. Interestingly, we also find that doing only one of these

two initializations produces more-correct (albeit not absolutely correct) programs, as

we show below. Let p1 be the program obtained from w by adding the initialization

fb = 1; We find

P1 = {(s, s′)|j ≥ cN ∧ i′ = i+ j − cN ∧ j′ = cN∧

np′ = np× F (j − cN − 1) + F (j − cN)

∧ fb′ = np× F (j − cN) + F (j − cN + 1) ∧ nc′ = np′}

From which we infer the competence domain of p1 as:

CD1 = {(s, s′)|j > cN ∧ np = 1}

122

Likewise, we compute the function then competence domain of p2, obtained by

adding np = 1; to the while loop, and we find:

P2 = {(s, s′)|j ≥ cN ∧ i′ = i+ j − cN∧

j′ = cN ∧ np′ = F (j − cN − 1) + fb× F (j − cN)

∧ fb′ = F (j − cN) + fb× F (j − cN + 1) ∧ nc′ = np′},

Whence,,

CD2 = {(s, s′)|j > cN ∧ fb = 1}.

Finally, we compute the function and competence domain of the program p3

obtained from w by adding the two initializations,fb = 1;np = 1;, and we find

P3 = {(s, s′)|j ≥ cN ∧ i′ = i+ j − cN∧

j′ = cN ∧ np′ = F (j − cN + 1) ∧ fb′ = F (j − cN + 2) ∧ nc′ = np′},

Whence,

CD3 = {(s, s′)|j > cN}.

Hence to summarize:

CD = (s, s′)|j > cN ∧ fb = 1np = 1

CD1 = (s, s′)|j > cN ∧ np = 1

CD2 = (s, s′)|j > cN ∧ fb = 1

CD3 = (s, s′)|j > cN

RL = (s, s′)|j > cN

This is reflected in the following figure:

123

p3

p1 p2

w

Figure 7.1 Ranking candidates by relative correctness.

7.3 Mutation Based Program Repair

7.3.1 Illustration 1

To illustrate the difference between absolute correctness and relative correctness, we

consider the same program as Section 7.2.3, and we resolve to remove its faults not by

static analysis, as we did there, but by testing for relative correctness after each fault

removal. To this effect, we proceed iteratively as follows, starting from the original

program:

1. Using muJava [116], we generate mutants of the program, and submit each

mutant to three tests:

� A test for absolute correctness, using oracle Ω(s, s′) derived from specifi-

cation R.

� A test for relative correctness, using oracle ω(s, s′) derived from Ω(s, s′).

� A test for strict relative correctness, which in addition to relative
correctness also ensures that there is at least one state on which the mutant
satisfies Ω whereas the base program fails it.

2. We select those mutants which prove to be strictly more-correct than the base
program, make each one of them a base program on which we apply recursively
the same procedure, starting from step 1 above.

124

We invoke muJava with the option of mutating statements and conditions and

we test every mutant for relative correctness, strict relative correctness and absolute

correctness using randomly generated test data of size 1000. Every invokation of

muJava generates exactly 64 mutants, which we label by indices 1 through 64; hence,

for example m4.53.8 is mutant 8 of mutant 53 of mutant 4 of the original program.

The outcome of this experiment is illustrated in the graph in Figure 7.2. The arcs

represent relative correctness relationships; at the bottom of this graph is the original

program, and at the top is the corrected version of the program. Note that the test for

absolute correctness kept coming empty-handed every time except whenever muJava

produced the correct program P ′. i.e. as many times as there are arcs pointing to P ′

(six times). The test for relative correctness returned true for every arc in Figure 7.2

i.e. 25 times; it enabled us to remove faults one at a time, and to follow the path of

increased relative correctness in a stepwise manner. Note also that many mutations

prove to be perfectly commutative, i.e. they can be applied in an arbitrary order;

such is the case for 4, 8 and 53. Note further that, if we assume for the sake of

argument that our test is exhaustive, then the number of arcs emerging from each

program represents the number of faults in that program. For example, program P

has four faults even though it is three fault removals away from being correct (P , m4,

m4.8, P ′ = m4.8.53); we say that P has a fault density of 4 and a fault depth of 3.

7.3.2 Illustration 2

Experimental Setup To illustrate the distinction between program repair by

absolute correctness and by relative correctness, we consider a program that performs

the Fermat decomposition of a natural number, in which we introduce three changes

(that we find, subsequently, to be three faults). The space of a Fermat decomposition

is defined by three natural variables, n, x and y and the specification is defined as

125

P

P ′ =
m4.8.53 = m4.53.8 = m8.4.53 = m8.53.4 = m53.4.8 = m53.8.4

m51.4.8.53 = m51.4.53.8 = m51.8.4.53 = m51.8.53.4 = m51.53.4.8 = m51.53.8.4

m51.4.8
= m51.8.4

m51.4.53
= m51.53.4

m51.8.53
= m51.53.8

m4.8
= m8.4

m4.53
= m53.4

m8.53
= m53.8

m51.4 m51.8 m51.53

m4 m8 m53 m51

�
�
�
�
���

A
A
A
A
AAK

�
�
�
�
�
�
�
��3

Q
Q
Q

Q
Q
Q

Q
QQk

6

@
@
@

@
@I 6

HH
HH

H
HH

H
HH

HY

@
@
@

@
@I

HH
HH

H
HH

H
HH

HY
6

@
@
@

@
@I

�
�
�
�
��

6

�
�
�
�
��

@
@
@

@
@I

�
�
�
�
��

@
@
@

@
@I 6

6

�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
�
�
�
��� 6

@
@
@

@
@I

HH
HH

H
HH

H
HHY

Figure 7.2 Program repair by stepwise correctness enhancement.

follows:

R = {(s, s′)|((n mod 2 = 1) ∨ (n mod 4 = 0)) ∧ n = x′2 − y′2}.

A correct Fermat program (which we call p′) is:

1 void f e rmatFac to r i z a t i on () {
2 i n t n , x , y ; // input /output v a r i a b l e s
3 i n t r ; // work va r i ab l e
4 x = 0 ; r = 0 ;
5 whi le (r < n) { r = r + 2 * x + 1 ; x = x + 1 ; }
6 whi le (r > n) { i n t r save ; y = 0 ; r save = r ;
7 whi le (r > n) { r = r − 2 * y − 1 ; y = y + 1 ; }
8 i f (r < n) { r = rsave + 2 * x + 1 ; x = x + 1 ; }}}
Listing 7.7 Fermat factorization

The three changes we introduce in this program are shown below; we do not

call them faults yet because we do not know whether they meet our definition of a

fault (Chapter 6, Definition 8). We call this program p:

126

1 void basep (i n t& n , i n t& x , i n t& y) {
2 i n t r ; x = 0 ; r = 0 ;
3 whi le (r < n) { r = r + 2 * x − 1 ; /* change in r */ x =x+1;}
4 whi le (r > n) { i n t r save ; r save = r ; y = 0 ;
5 whi le (r > n) { r =r−2*y+1; /* change in r */ y =y+1;}
6 i f (r < n) { r =rsave+2*x−1; /* change in r */ x =x+1;}}}
Listing 7.8 Fermat factorization with 3 modifications

To repair this program, we apply muJava to generate mutants using the

single mutation option with the AORB operator (Arithmetic Operator Replacement,

Binary). Whenever a set of mutants are generated, we subject them to three tests:

� A test for absolute correctness, using the oracle Ω(s, s′).

� A test for relative correctness, using the oracle ω(s, s′).

� A test for strict relative correctness, which in addition to relative correctness
checks the presence of at least one state in the competence domain of the mutant
that is not in the competence domain of the base program.

The main iteration of the test driver is given below.

1 i n t main () {
2 f o r (i n t mutant =1; mutant<= nbmutants ; mutant++)
3 {// t e s t mutant vs spec . R f o r abs and r e l c o r r e c t n e s s
4 bool cumulabs=true ; bool cumulre l=true ; bool cumu l s t r i c t=

f a l s e ;
5 whi le (moretestdata) {
6 i n t n , x , y ; i n t in i tn , i n i t x , i n i t y ; // i n i t i a l , f i n a l s t a t e s
7 bool abscor , r e l c o r , s t r i c t ;
8 i n i t n=td [t d i] ; t d i++; // g e t t i n g t e s t data
9 n=i n i t n ; x=i n i t x ; y=i n i t y ; // sav ing i n i t i a l s t a t e

10 ca l lmutant (mutant , n , x , y) ;
11 abscor = abso ra c l e (i n i tn , i n i t x , i n i t y , n , x , y) ;
12 cumulabs = cumulabs && abscor ;
13 n=i n i t n ; x=i n i t x ; y=i n i t y ; // re− i n i t i a l i z i n g
14 basep (n , x , y) ;
15 r e l c o r = ! ab so ra c l e (i n i tn , i n i t x , i n i t y , n , x , y) | | abscor ;
16 s t r i c t = ! ab so ra c l e (i n i tn , i n i t x , i n i t y , n , x , y) && abscor ;
17 cumulre l = cumulre l && r e l c o r ;
18 cumu l s t r i c t = cumu l s t r i c t | | s t r i c t ;
19 }}}
20 bool R (i n t in i tn , i n t i n i t x , i n t i n i t y , i n t n , i n t x , i n t y) {
21 re turn ((i n i t n%2==1) | | (i n i t n%4==0)) && (i n i t n==x*x−y*y) ;

127

22 }
23 bool domR (in t in i tn , i n t i n i t x , i n t i n i t y) {
24 re turn ((i n i t n%2==1) | | (i n i t n%4==0)) ;
25 }
26 bool ab so ra c l e (i n t in i tn , i n t i n i t x , i n t i n i t y , i n t n , i n t x , i n t y) {
27 re turn (! (domR(in i tn , i n i t x , i n i t y)) | | R(in i tn , i n i t x , i n i t y

, n , x , y)) ;
28 }

Listing 7.9 Test driver

The main program includes two nested loops; the outer loop iterates over

mutants and the inner loop iterates over test data. For each mutant and test datum,

we execute the mutant and the base program on the test datum and test the mutant

for absolute correctness (abscor), relative correctness (relcor) and strict relative

correctness (strict); these boolean results are cumulated for each mutant in variables

cumulabs, cumulrel and cumulstrict, and are used to diagnose the mutant. As for

the Boolean functions R, domR and absoracle, they stem readily from the definition

of R and from the oracle definitions given in Section 6.7.

Experimental Results Starting with program p, we apply muJava repeatedly to

generate mutants, taking mutants which are found to be strictly more-correct as base

programs and repeating until we generate a correct program. This proceeds as follows:

� When muJava is executed on program p, it produces 48 mutants, of which two
(m12 and m44) are found to be strictly more-correct than p, and none are found
to be absolutely correct with respect to R; we pursue the analysis of m12 and
m44.

� Analysis of m44. When we apply muJava to m44, we find 48 mutants, none of
them prove to be absolutely correct, nor relatively correct, nor strictly relatively
correct.

� Analysis of m12. We find by inspection that m12 reverses one of the
modifications we had applied to p′ to find p; since m12 is strictly more-correct
than p with respect to R, we conclude that the feature in question was in fact
a fault in p with respect to R. When we apply muJava to m12, it generates
48 mutants, three of which prove to be strictly more-correct than m12: we

128

name them m12.19, m12.20 and m12.28. All the other mutants are found to be
neither absolutely correct with respect to R, nor more correct than m12.

– Analysis of m12.19. When we apply muJava to m12.19, it generates 48
mutants, none of which is found to be absolutely correct nor strictly more-
correct than m12.19, but one (m12.19.24) proves to be identical to m12.20
and is more-correct than (but not strictly more-correct than, hence, as
correct as) m12.19.

– Analysis of m12.20. When we apply muJava to m12.20, it generates 48
mutants, none of which is found to be absolutely correct nor strictly more-
correct than m12.20, but one (m12.20.24) proves to be identical to m12.19
and is more-correct than (but not strictly more-correct than, hence, as
correct as) m12.20.

– Analysis of m12.28. We find by inspection that m12.28 reverses a second
modification we had applied to p′ to obtain p; since m12.28 is strictly
more-correct than m12, this feature is a fault in m12; whether it is a fault
in p we have not checked, as we have not compared m12.28 and p for
relative correctness. When we apply muJava to m12.28, we find a single
mutant, namely m12.28.44 that is absolutely correct with respect to R,
more-correct than m12.28 with respect to R, and strictly more-correct
than m12.28 with respect to R.

* Analysis of m12.28.44. We find by inspection that m12.28.44 is
nothing but the original Fermat decomposition program we have
started out with: p′.

The results of this analysis are represented in Figure 7.3.

129

P

P ′=
m12.28.44

m44m12

m12.19 =
m12.20.24 m12.28

m12.20 =
m12.19.24

�

� �

� � �

�

�
�
�
�
���

@
@
@

@
@@I
�
�
�
�
���6

@
@
@

@
@@I

6

-�

Figure 7.3 Relative correctness-based repair: stepwise fault removal.

7.4 Programming Without Refinement

The paradigm of program derivation by relative correctness is shown in Figure 7.4;

in this section, we illustrate this paradigm on a simple example, where we show in

turn, how to conduct the transformation process until we find a correct program or (if

stakes vs cost considerations warrant) until we reach a sufficiently reliable program.

7.4.1 Producing A Correct Program

We let space S be defined by three natural variables n, x and y, and we let specification

R be the following relation on S (borrowed from [117]):

R = {(s, s′)|n = x′2 − y′2 ∧ 0 ≤ y′ ≤ x′}.

Candidate programs must generate x′ and y′ (if possible) for a given n. The

domain of R is the set of states s such that n(s) is either odd or a multiple of 4;

indeed, a multiple of 2 whose half is odd cannot be written as n = x′2 − y′2, since

this equation is equivalent to n = (x′− y′)× (x′+ y′), and these two factors ((x′− y′)

and (x′ + y′)) have the same parity, since their difference (x′ + y′ − x′ + y′ = 2× y′)

130

Correct Program

Specification R abort

v

v

v

v

v

Correctness
Preserving
Transfor-
mations

vR

vR

vR

vR

vR

Correctness
Enhancing

Transformations

�
�
�

�
�
�

�
�
�

�
�
�

�
��	

-

?

Figure 7.4 Alternative program derivation paradigms.

is even. Hence we write:

RL = {(s, s′)|n mod 2 = 1 ∨ n mod 4 = 0}.

Starting from the initial program P0 =abort, we resolve to let the next program

P1 be the program that finds this factorization for y′ = 0:

1 void p1 () {
2 nat n , x , y ; // input /output va r i ab l e ;
3 nat r ; // work va r i ab l e
4 x=0; y=0; r=0;
5 whi le (r<n) { r=r+2*x+1; x=x+1;}
6 }
Listing 7.10 Fermat factorization, computing perfect squares

We compute the function of this program by applying the semantic rules given

in Section 2.4, and we find:

P1 = {(s, s′)|n′ = n ∧ y′ = 0 ∧ x′ = d
√
ne}.

Whence, we compute the competence domain of P1 with respect to R:

(R ∩ P1)L

131

= {substitution, simplification}

{(s, s′)|n = x′2 ∧ n′ = n ∧ y′ = 0} ◦ L

= {taking the domain}

{(s, s′)|∃x′′ : n = x′′2}.

In other words, P1 satisfies specification R, whenever n is a perfect square.

We now consider the case where r exceeds n by a perfect square, making it

possible to fill the difference with y2; this yields the following program:

1 void p2 () {
2 nat n , x , y ; // input /output v a r i a b l e s
3 nat r ; // work va r i ab l e
4 x=0; r=0;
5 whi le (r<n) { r=r+2*x+1; x=x+1;}
6 i f (r>n) {y=0; whi l e (r>n) { r=r−2*y−1; y=y+1;}}
7 i f (r !=n) { abort ;}
8 }
Listing 7.11 Fermat factorization, factoring perfect squares and more

This program preserves n, places in x the ceiling of the square root of n, and

places in y the integer square root of the difference between n and x′2, and fails if this

square root is not an integer. We write its function as follows:

P2 = {(s, s′)|n′ = n ∧ x′ = d
√
ne ∧ y′2 = x′2 − n ∧ y′ ≥ 0}.

We compute the competence domain of P2 with respect to R:

(R ∩ P2) ◦ L

= {Substitutions}

{(s, s′)|n = x′2 − y′2 ∧ 0 ≤ y′ ≤ x′ ∧ n′ = n ∧ x′ = d
√
ne ∧ y′2 = x′2 − n

∧y′ ≥ 0} ◦ L

= {Simplifications}

{(s, s′)|n′ = n ∧ x′ = d
√
ne ∧ y′2 = x′2 − n ∧ y′ ≥ 0} ◦ L

= {Computing the domain}

{(s, s′)|∃n′′, x′′, y′′ : n′′ = n ∧ x′′ = d
√
ne ∧ y′′2 = x′′2 − n ∧ y′′ ≥ 0}

132

= {Simplifications}

{(s, s′)|∃y′′ : y′′2 = d
√
ne2 − n}.

In other words, the competence domain of P2 is the set of states s such that

n(s) satisfies the following property: the difference between n(s) and the square of

the ceiling of the square root of n(s) is a perfect square. For example, a state s such

that n(s) = 91 is in the competence domain of P2, since d
√

91e2− 91 = 102− 91 = 9,

which is a perfect square. The competence domain of P2 is clearly a superset of the

competence domain of P1, hence, the transition from P1 to P2 is valid.

The next program is derived from P2 by resolving that if the ceiling of the integer

square root of n does not exceed n by a square root, then we try the next perfect

square (whose root we assign to x) and we check whether the difference between that

perfect square and n is now a perfect square; we know that this process converges,

for any state s for which n(s) is odd or a multiple of 4. This yields the following

program:

1 void p3 () {
2 nat n , x , y ; // input /output v a r i a b l e s
3 nat r ; // work va r i ab l e
4 x=0; r=0;
5 whi le (r<n) { r=r+2*x+1; x=x+1;}
6 whi le (r>n) {
7 i n t r save ; y=0; r save=r ;
8 whi le (r>n) { r=r−2*y−1; y=y+1;}
9 i f (r<n) { r=rsave+2*x+1; x=x+1;}

10 }
11 }

Listing 7.12 Final Fermat factorization

This program preserves n, places in x the smallest number whose square exceeds

n by a perfect square and places in y the square root of the difference between n and

x2. If we let µ(n) be the smallest number whose square exceeds n by a perfect square,

we write the function of P3 as follows:

P3 = {(s, s′)|n′ = n ∧ x′ = µ(n) ∧ y′ =
√
µ(n)2 − n}.

133

We compute the competence domain of P with respect to R:

(R ∩ P3) ◦ L

= {Substitutions}

{(s, s′)|n = x′2 − y′2 ∧ 0 ≤ y′ ≤ x′ ∧ n′ = n ∧ x′ = µ(n) ∧ y′ =
√
µ(n)2 − n} ◦ L

= {Simplifications}

{(s, s′)|n = x′2 − y′2 ∧ n′ = n ∧ x′ = µ(n)} ◦ L

= {Computing the domain}

{(s, s′)|∃n′′, x′′, y′′ : n = x′′2 − y′′2 ∧ n′′ = n ∧ x′′ = µ(n)}

= {Simplifications}

{(s, s′)|∃x′′, y′′ : n = x′′2 − y′′2}

= {By inspection}

RL.

Hence P3 is correct with respect to R (by proposition 12) hence, it is more-

correct than P2 with respect to R. Hence we do have:

P0 vR P1 vR P2 vR P3.

Furthermore, we find that P3 is correct with respect to R; this concludes the

derivation.

7.4.2 Producing A Reliable Program

We interpret the reliability of a program as the probability of a successful execution of

the program on some initial state selected at random from the domain of R according

to some probability distribution θ. Given a probability distribution θ on dom(R),

the reliability of a candidate program P is then the probability that an element of

dom(R) selected according to the probability distribution θ falls in the competence

domain of P with respect to R. Clearly, the larger the competence domain, the

higher the probability. Hence the sequence of programs that we generate in the

134

proposed process feature higher and higher reliability. So that if we are supposed

to derive a program under a reliability requirement, we can terminate the stepwise

transformation process as soon as we obtain a program whose estimated reliability

matches or exceeds the specified threshold. So far this is a theoretical proposition, but

an intriguing possibility nevertheless. The sample program developed in the previous

subsection may be used to illustrate this idea, though it does not show a uniform

reliability growth. For the sake of argument, we suppose that n ranges between 1

and 10000, and we estimate the reliability of each of the programs generated in the

transformation process.

� P0: The reliability of P0 is zero, of course, since it never runs successfully.

� P1: If n takes values between 1 and 10000, then the domain of R has 7500
elements (since 1 out of four is excluded: even numbers whose half is odd are
not decomposable); out of these 7500 elements, only 100 are perfect squares (12

to 1002). Hence the reliability of P1 under a uniform probability distribution is
100
7500

= 0.01333.

� P2: The competence domain of P2 includes all the elements n that can be written
as: n = d

√
ne2 − y2 for some non-negative value y. To count the number of

such elements, we consider all possible values of x (between 1 and 100) and
all possible values of y such that (x − 1)2 < x2 − y2 ≤ x2. By inverting the
inequalities and adding x2 to all sides, we obtain:

0 ≤ y2 < 2x− 1.

Hence the number of elements in the competence domain of P2 can be written
as

100 +
100∑
x=1

√
2x− 1.

We find this quantity to be equal to 996, which yields a probability of 996
7500

=
0.1328.

� P3: Because the competence domain of P3 is all of dom(R), the reliability of
this program is 1.0.

We obtain the following table.

135

Program Reliability

P0 0.0000

P1 0.0133

P2 0.1328

P3 1.0000

7.5 Software Evolution

In [29], we build upon our results of [28] by showing that relative correctness

can be used not only for program development from scratch, but also for various

forms of program evolution. In the following, we use relative correctness to model

several aspects of software evolution, including: merging programs, the upgrade of

a program with a new feature; the removal of a fault from a program (corrective

maintenance); and the transformation of a program to satisfy a new specification

(adaptive maintenance).

7.5.1 Program Merger

We consider a specification R and two candidate programs P1 and P2 (i.e. programs

that are written to satisfy R –they may or may not satisfy it in fact), each of which

fulfills the requirements of R to some limited extent, but not necessarily to the full

extent. We are interested to merge programs P1 and P2 into a program that fulfills

the requirements of R to the extent that P1 fulfills them, and to the extent that P2

fulfills them. We submit the following definition.

Definition 11 Given a specification R and two candidate programs P1 and P2, a

merger of P1 and P2 with respect to R is any program P ′ that is more-correct than P1

and more-correct than P2 with respect to R.

We mandate that a merger program be merely more-correct than programs P1

and P2, rather than to refine them, for the following reasons:

136

� Refinement is Unnecessary. When we resolve to refine a program, we commit to
refine all its functional attributes, those that are mandated by the specification
as well as those that stem from design decisions. But we have no reason to
preserve design decisions of P1 and P2 that do not advance the cause of relative
correctness.

� Relative Correctness is Sufficient. If program P ′ is more-correct than P1 and P2

with respect to specification R, then it delivers all the specification-mandated
behavior of P1 and all the specification-mandated behavior of P2.

� Refinement may be Impossible. Not only is it unnecessary to refine the
design-related information of P1 and P2, it may actually be impossible: whereas
the specification-mandated information of P1 and P2 is bounded by R, hence,
(according to Section 2.3) can be combined by the least upper bound operation,
the design-related information of P1 and P2 may be incompatible, hence, cannot
be combined.

We consider the space S defined by three variables x, y and z of type integer,

and we let R be the following specification: R = {(s, s′)|x′ = x+ y ∧ z′ ≥ z + 2}. Let

p1 and p2 be the following candidate programs for specification R:

p1: {z=z+2; while (y!=0) {y=y-1; x=x+1;}}

p2: {z=z+3; while (y!=0) {y=y+1; x=x-1;}}

The functions of these programs are, respectively:

P1 = {(s, s′)|y ≥ 0 ∧ x′ = x+ y ∧ y′ = 0 ∧ z′ = z + 2}

P2 = {(s, s′)|y ≤ 0 ∧ x′ = x+ y ∧ y′ = 0 ∧ z′ = z + 3}.

Indeed, the first program terminates only for initial y greater than or equal to

zero, and when it terminates, the final value of x contains x+ y, the final value of y

is zero, and z is incremented by 2. As for the second program, it terminates only for

non-positive y, and when it does terminate, the final value of y is zero, z is increased by

3 and x contains x+y. So that each program does some of what R asks, but neither is

correct. A merger of these two programs is any program P ′ that is more-correct than

P1 and more-correct than P2 with respect to R. We omit the systematic derivation

of the merger of two programs and content ourselves with presenting a candidate

program then showing that it satisfies the definition of a merger. We propose:

137

p’: {z=z+4;

if (y>0) {while (y!=0) {y=y-1; x=x+1;}}

else {while (y!=0) {y=y+1; x=x-1;}}}

As far as x and y are concerned, this program imitates the behavior of P1 for

non-negative values of y, and the behavior of P2 for non-positive values of y; as far as

z is concerned, this program overrides the behavior of both P1 and P2 and increments

z by 4. We argue that this program is more-correct than P1 and more-correct than

P2 with respect to R. The function of this program is:

P ′ = {(s, s′)|x′ = x+ y ∧ y′ = 0 ∧ z′ = z + 4}.

Space restrictions preclude us from showing details, but it is easy to verify that

the competence domain of P ′ ((R∩P)L) is equal to L, hence, P ′ is more-correct than

P1 and P2. Note that while we found a program that is more-correct than P1 and

P2, we could not find a program that refines P1 and P2. Indeed we can easily check

that P1 and P2 do not sarisfy the consistency condition, hence, they admit no joint

refinement. Indeed, no program can simultaneously increase z by 2 (to refine P1)

and by 3 (to refine P2). This discrepancy between what P1 does and what P2 does

precludes P1 and P2 from having a joint refinement, but does not preclude them from

having a program P ′ that is more-correct than them. The reason is: the statements

{z=z+2} (in P1) and {z=z+3} (in P2) are not mandated by the specification (which

only requires {z′ ≥ z + 2}) but stem instead from arbitrary design decisions; hence,

both can be overridden by the merger program P ′. The difference between refinement

and relative correctness is that the former attempts to refine all the behavior of a

program, regardless of its source, whereas the latter only refines the behavior that

is mandated by the specification. As we see in this simple example, refining all

the behavior of P1 and all the behavior of P2 is not only unnecessary, it is actually

impossible. See Figure 7.5 (a), where R1 and R2 represent the specification-mandated

behavior of P1 and P2 (we have explicit formulae for these).

138

� �

� �

�

@
@
@
@
@
@
@@

�
�

�
�

�
�
��

B
B
B
B
B
B
B
B
B
B
B

�
�
�
�
�
�
�
�
�
�
�

@
@
@
@

�
�

�
�

P1

R1 R2

P2

P ′

ww

ww

wRwR

(a)

Merger of P1 and P2

�

� �

�

@
@
@
@
@
@
@@

�
�

�
�

�
�
��

�
�
�
�
�
�
�
�
�
�
�

@
@
@
@

P1

R1

Q

P ′

w

w

wwR

(b)

Upgrading P1 with Feature Q

Figure 7.5 Merger and upgrade.

7.5.2 Program Upgrade

We are given a specification R and a candidate program P , and we are interested to

augment program P with a new feature that is specified by some relationQ. Typically,

P may be a large, complex, comprehensive application that delivers a wide range of

services, andQ is a punctual additional function or service that we want to incorporate

into P (for example, P is a sprawling corporate data processing application, and Q

specifies an additional report to be delivered, or an additional output screen, or an

additional statistic on corporate transactions, etc). In transforming P into P ′, we

have every expectation that P ′ refines Q, because Q is a fairly simple requirement

and because it is the main goal of the operation. But we have no expectation that P ′

refine P , because the implementation of Q may require that some of the behavior of

P be altered. Nor do we expect that P ′ refines R, because in fact we are not even sure

P refines R (P is typically incorrect, i.e. it fails to correctly deliver all the required

services in all circumstances). While we do not expect P ′ to refine P nor R, we most

certainly expect P ′ to be more-correct than P with respect to R; in other words, we

do not want that in the process of adding feature Q to P , we degrade the correctness

of P with respect to R.

139

Definition 12 Given a specification R and a candidate program P , and given a

feature Q that we want to add to P , an upgrade P ′ of P with feature Q is any

program that refines Q and is more-correct than P with respect to R.

Given a specification R on space S defined by integer variables x and y, R =

{(s, s′)|x′ = x+ y} and given the following candidate program,

p1: {x=x+10; while (y!=10) {y=y-1; x=x+1;}}

we consider the problem of upgrading program P1 with feature Q defined by: Q =

{(s, s′)|y > 0 ∧ y′ = 0}. The function of program p1 is:

P1 = {(s, s′)|y ≥ 10 ∧ x′ = x+ y ∧ y′ = 10}.

Note that P1 and Q do not satisfy the consistency condition, since P1 sets y to

10 while Q mandates that we set it to 0 (for positive values of y). Therefore it is

impossible to fulfill requirement Q without altering the behavior of P1. Fortunately,

the feature of P1 that precludes us from refining Q, namely the clause y′ = 10, is

not a specification-mandated requirement, but stems instead from the specific design

of P1. Hence while it is impossible for the upgrade program P ′ to refine P , it is

not impossible for P ′ to be more-correct than P with respect to R. We consider the

following program:

p’: {while (y!=0) {y=y-1; x=x+1;}}

The function of this program is:

P ′ = {(s, s′)|y ≥ 0 ∧ x′ = x+ y ∧ y′ = 0}.

It is easy to check that P ′ does refine Q. On the other hand, we can easily check

that the competence domain of P1 is {(s, s′)|y ≥ 10} whereas the competence domain

of P ′ is {(s, s′)|y ≥ 0}. Hence P ′ is more-correct than P1 with respect to R. While it

is not possible to satisfy Q while preserving all the behavior of P1, it is possible, and

sufficient, to satisfy Q while enhancing the correctness of P1; this is what P ′ does.

See Figure 7.5 (b).

140

7.6 Software Maintenance

7.6.1 Corrective Maintenance

We argue in this section that corrective maintenance is nothing but an instance of

program transformation by relative correctness: in fact it is merely a step in the

process we have outlined for program derivation by correctness enhancement; it starts

at the current program (rather than abort) and it ends a step later (rather than

necessarily at a correct program). See Figure 7.6. As an illustration, we reconsider

the program 6.1 from Chapter 6:

1 p : #inc lude <iostream>
2 void main {(char q [])
3 {
4 i n t l e t , dig , other , i , l ;
5 char c ;
6 i =0; l e t =0; d ig=0; other=0; l=s t r l e n (q) ;
7 whi le (i<l) {
8 c = q [i] ;
9 i f (’A’<=c && ’Z’>c) l e t +=2;

10 e l s e i f (’ a’<=c && ’ z’>=c) l e t +=1;
11 e l s e i f (’0 ’<=c && ’9’>=c) dig+=1;
12 e l s e other+=1;
13 i++;
14 p r i n t f (”%d %d %d\n” , l e t , dig , other) ;
15 }
16

We define the following sets: αA = {′A′ . . .′ Z ′}. αa = {′a′ . . .′ z′}. ν =

{′0′ . . .′ 9′}. σ = {′+′,′−′,′=′, ...′/′}, the set of all the ascii symbols. We let list〈T 〉

denote the set of lists of elements of type T, and we let #A, #a, #ν and #σ be

the functions that to each list l assign (respectively) the number of upper case

alphabetic characters, lower case alphabetic characters, numeric digits, and symbols.

We consider the following specification on S:

R = {(s, s′)|q ∈ list〈αA∪αa∪ν∪σ〉∧let′ = #a(q)+#A(q)∧dig′ = #ν(p)∧other′ =

#σ(q)}.

141

The competence domain of P is:

(R ∩ P)L = {(s, s′)|q ∈ list〈αa ∪ ν ∪ σ〉}.

This is different from the domain of R, which is

RL = {(s, s′)|q ∈ list〈αA ∪ αa ∪ ν ∪ σ〉},

hence, P is not correct with respect to R. If we let P ′ be the program obtained

from P by changing {let=+2} into {let=+1}, we find:

(R ∩ P ′)L = {(s, s′)|q ∈ list〈(αA \ {′Z ′}) ∪ αa ∪ ν ∪ σ〉}.

Clearly, (R∩P ′)L ⊃ (R∩P)L. Hence statement {let+=2} is a fault in P with

respect to specification R and the substitution of {let+=2} by {let+=1} is a fault

removal in P with respect to R.

Correct
Program P ′

Specifi-

cation R
abort Initiali-

zation

?

v

v

v

v

v

�

A
A
A
A
A
A
A
A
AAU

vR

vR

vR

vR

vR

Faulty

Program
-

Corrected
Program

�

Figure 7.6 Corrective maintenance.

7.6.2 Adaptive Maintenance

Adaptive maintenance consists in taking a program P which was originally developed

to satisfy some specification R and changing it to make it satisfy some new

specification R′. We view this as simply trying to make P more-correct with respect

to R′ than it is in its current form. Clearly, one does this if one believes that P is

close enough to satisfy R′ that it is more economical to evolve P than to start from

abort. Be that as it may, we argue that adaptive maintenance is again a process of

making a program more-correct with respect to a given specification. See Figure 7.7.

142

Correct
Program wrt R

Specifi-

cation R
abort

Initialization

?

v

v

v

v

v

�

A
A
A
A
A
A
AU

vR

vR

vR

vR′

vR′

�
�
�
���

Correct
Program wrt R′

Figure 7.7 Adaptive maintenance.

7.7 Related Work

In [118], Nguyen et al. present an automated repair method based on symbolic

execution, constraint solving, and program synthesis; they call their method SemFix,

on the grounds that it performs program repair by means of semantic analysis. This

method combines three techniques: fault isolation by means of statistical analysis

of the possible suspect statements; statement-level specification inference, whereby a

local specification is inferred from the global specification and the product structure;

and program synthesis, whereby a corrected statement is computed from the local

specification inferred in the previous step. The method is organized in such a

way that program synthesis is modeled as a search problem under constraints, and

possible correct statements are inspected in the order of increasing complexity. When

programs are repaired by SemFix, they are tested for (absolute) correctness against

some predefined test data suite; as we argue throughout this chapter, it is not sensible

to test a program for absolute correctness after a repair, unless we have reason to

believe that the fault we have just repaired is the last fault of the program (how do

we ever know that?). By advocating to test for relative correctness, we enable the

tester to focus on one fault at a time, and ensure that other faults do not interfere with

our assessment of whether the fault under consideration has or has not been repaired

143

adequately. In [119], Weimer et al. discuss an automated program repair method that

takes as input a faulty program, along with a set of positive tests (i.e. test data on

which the program is known to perform correctly) and a set of negative tests (i.e. test

data on which the program is known to fail) and returns a set of possible patches.

The proposed method proceeds by keeping track of the execution paths that are

visited by successful executions and those that are visited by unsuccessful executions,

and using this information to focus the search for repairs on those statements that

appear in the latter paths and not in the former paths. Mutation operators are

applied to these statements and the results are tested again against the positive and

negative test data to narrow the set of eligible mutants. While, to the best of our

knowledge, our work is the first to apply relative correctness to program derivation,

it is not the first to introduce a concept of relative correctness. In [108], Logozzo

discusses a framework for ensuring that some semantic properties are preserved by

program transformation in the context of software maintenance. In [109], Lahiri et al.

present a technique for verifying the relative correctness of a program with respect

to a previous version, where they represent specifications by means of executable

assertions placed throughout the program, and they define relative correctness by

means of inclusion relations between sets of successful traces and unsuccessful traces.

Logozzo and Ball [110] take a similar approach to Lahiri et al. in the sense that

they represent specifications by a network of executable assertions placed throughout

the program, and they define relative correctness in terms of successful traces and

unsuccessful traces of candidate programs. Our work differs significantly from all

these works in many ways: first, we use relational specifications that address the

functional properties of the program as a whole, and are not aware of intermediate

assertions that are expected to hold throughout the program; second, our definition

of relative correctness involves competence domains (for deterministic specifications)

and the sets of states that candidate programs produce in violation of the specification

144

(for non-deterministic programs); third we conduct a detailed analysis of the relations

between relative correctness and the property of refinement.

Also related to our work are proposals by Banach and Pempleton [120] and by

Prabhu et al. [121, 122, 123] to find alternatives for strict refinement-based program

derivation. In [120], Banach and Pempleton introduce the concept of retrenchment,

which is a property linking two successive artifacts in a program derivation, that are

not necessarily ordered by refinement; the authors argue that strict refinement may

sometimes be inflexible, and present retrenchment as a viable substitute, that trades

simplicity for strict correctness preservation, and discuss under what conditions the

substitution is viable. In [121, 122, 123] Prabhu et al. propose another alternative to

strict refinement, which is approximate refinement. Whereas strict refinement defines

a partial ordering between artifacts, whereby a concrete artifact is a correctness-

preserving implementation for an abstract artifact, approximate refinement defines a

topological distance between artifacts, and considers that a concrete implementation

is acceptable if it is close enough (by some measure of distance) to the abstract artifact.

Retrenchment and Approximate refinement are both substitutes for refinement and

are both used in a correctness-preserving transformation from a specification to a

program; by contrast, relative correctness offers an orthogonal paradigm that seeks

correctness enhancement rather than correctness preservation.

7.8 Conclusion

In this chapter, we present the applications of the concept of relative to various

software engineering practices.

We show that it pervades software evolution, and is potentially more flexible,

without being less effective, than refinement-based program transformations. In

particular, we find that this concept can provide a formal model for a wide range

of software evolution activities, including software design, corrective maintenance,

145

adaptive maintenance, software upgrade, program merger, etc. As a consequence,

we argue that by evolving a technology of program transformation with relative

correctness, we stand to enhance a wide range of software engineering activities.

The study of this concept has led us to highlight the distinction between two sources

of functional attributes of a program: functional properties that are dictated by the

specification that we are trying to satisfy; and functional properties that stem from

decisions we have taken as we design the program. This distinction is important

because to make a program more-correct we must preserve or enhance the former but

not the latter; and we may arbitrarily alter the latter in the process.

We also discuss how we can use the concept of relative correctness to refine the

technique of program repair by mutation testing. We argue that when we remove a

fault from a program, in the context of program repair, we have no reason to expect

the resulting program to be correct unless we know (how do we ever?) that the fault

we have just removed is the last fault of the program. Therefore we should, instead, be

testing the program for relative correctness rather than absolute correctness. We have

found that testing a program for relative correctness rather than absolute correctness

has an impact on test data selection as well as oracle design, and have discussed

practical measures to this effect. As an illustration of our thesis, we take a simple

example of a faulty program, which we can repair in a stepwise manner by seeking to

derive successively more-correct mutants; by contrast, the test for absolute correctness

keeps excluding all the mutants except the last, and fails to recognize that some

mutants, while being incorrect, are still increasingly more correct than the original.

We are not offering a seamless validated solution as much as we are seeking to draw

attention to some opportunities for enhancing practices.

146

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Summary and Assessment

8.1.1 Conditions of Convergence

In this dissertation, we present a framework to integrate termination as finite

iterations with absence of abort from conditions such as illegal arithmetic operations,

array out of bound. We define this as the concept of convergence. For this purpose, we

build upon the result of [39] to use invariant relations as a unifying model to compute

or approximate the termination condition of a while loop. Invariant relations are

reflexive transitive superset of the loop function. They represent the set of initial/final

states separated by zero or more iterations of the loop body. The advantage of using

invariant relations is two-fold:

� They can be used to model conditions of abort-freedom of interest

� They can be combined through the intersection operation to obtain tighter
approximation of convergence conditions of a loop.

To the best of our knowledge, our work is the only approach to computing

convergence conditions that interprets convergence in the general sense of: ending

in a well-defined final state. We say that a program converges for an initial state

s if and only if the program can produce a final state s′ as an image of s by the

program function. Whether the program fails to produce a final state because it

fails to terminate or because it fails to apply an intermediate function in its finite

execution sequence does not matter to us.

In keeping with this premise, our definition of convergence applies to iterative

programs as much as it applies to non-iterative programs; also, as far as while loops

147

are concerned, our approach provides a way to map any given invariant relation of

the loop onto a necessary condition of convergence. We can generate many invariant

relations for the loop, each capturing a specific aspect of convergence, and obtain

a convergence condition that ensures normal termination in a well-defined state; to

the best of our knowledge, our approach is unique in this feature. Traditionally, the

analysis of loop termination is studied separately from the analysis of its functional

properties, with the latter relying on invariant assertions and the former relying on

variant functions. By contrast, we use the same concept, namely invariant relations,

to characterize the termination conditions and the functional properties of loops.

From a conceptual viewpoint, we find it appealing to use the same approach/ means

to analyze the function of the loop and the convergence condition of the loop, as the

domain of a function is an integral part of the function, rather than an orthogonal

attribute.

Condition of Sufficiency : In Chapter 4, we have considered several

examples of programs for which we have given a necessary condition of termination,

and claimed that we thought the condition was sufficient, in addition to being provably

necessary. In this section, we discuss two questions, namely: why can’t we derive a

provably sufficient condition of termination? How can we claim that our necessary

conditions are sufficient? We address these questions in turn, below.

� Why can’t we derive a sufficient condition?

It is hardly surprising that arbitrary (arbitrarily large) invariant relations
can only generate necessary conditions, since they capture arbitrarily partial
information about the loop, hence, cannot be used to make claims about a
global property of the loop. Yet strictly speaking, we can formulate a sufficient
condition of termination, but it is of little use in practice. A sufficient condition
of termination would read as follows: Given a while loop of the form w: while
(t) {b}, and given the invariant relation R = (T ∩B)∗, then RT ⊆ WL.

As we recall from Proposition 4, R = (T ∩ B)∗ is an invariant relation of the
loop, and is in fact the smallest invariant relation of the loop. In practice, it is
very difficult to compute this reflexive transitive closure for arbitrary T and B.
One of the main interests of invariant relations is in fact that:

148

– First they enable us to compute or approximate the reflexive transitive
closure of (T ∩B).

– Second and perhaps most importantly, they enable us to dispense with the
need to compute the reflexive transitive closure of (T∩B); in particular, one
of the main motivations for using invariant relations is that they enable
us, with relatively little scrutiny of the loop, to answer many questions
pertaining to the loops.

Hence requiring that we compute the strongest possible invariant relation to

secure a sufficient condition of termination defeats the purpose of using invariant

relations.

� How can we claim sufficiency?. We are currently developing heuristics that
enable us to recognize when an invariant relation is small enough to ensure
that the formula of Theorem 2 provides a sufficient condition of termination.
As far as ensuring that the number of iterations is finite, we can proceed by
identifying the variables that intervene in the loop condition, and generating all
the invariant relations that involve these variables, and any variable that affects
their value (through assignment statements). As for ensuring freedom from
aborts, we also want to include any invariant relation that links the variables
identified above with the variables that are involved in the abort condition
(array indices, denominators of fractions, arithmetic expressions, etc). Another
heuristic that we are considering is to define a set of recognizers that specialize
in computing a sufficient condition of termination, by focusing on termination-
related details; for example, if the loop body includes a clause of the form x′ =
x+a[i] for some real variable x, real array a, and index (integer) variable i, then
the complete recognizer would generate the invariant relation {(s, s′)|x+ Σa =
x′ + Σa′} whereas the termination-related recognizer would merely record that
array a has been accessed at index i. A final heuristic, invoked in [62] for the
purpose of minimizing the number of invariant relations generated by our tool,
involves generating just enough invariant relations to link all the statements of
the loop body into a connected graph.

8.1.2 Relative Correctness

In Chapter 7 was discussed how we can use the concept of relative correctness to

refine the technique of program repair by mutation testing. We argue that when we

remove a fault from a program, in the context of program repair, we have no reason

to expect the resulting program to be correct unless we know (how do we ever?)

149

that the fault we have just removed is the last fault of the program. Therefore we

should, instead, be testing the program for relative correctness rather than absolute

correctness. We have found that testing a program for relative correctness rather

than absolute correctness has an impact on test data selection as well as oracle

design, and have discussed practical measures to this effect. As an illustration of

our thesis, we take a simple example of a faulty program, which we can repair in a

stepwise manner by seeking to derive successively more-correct mutants; by contrast,

the test for absolute correctness keeps excluding all the mutants except the last,

and fails to recognize that some mutants, while being incorrect, are still increasingly

more correct than the original. We are not offering a seamless validated solution

as much as we are seeking to draw attention to some opportunities for enhancing

the practice of software testing. Our research agenda includes further exploration

of the technique proposed in this paper to assess its feasibility and effectiveness

on software benchmarks, as well as techniques to streamline test data selection to

enhance the precision of relative-correctness-based program repair. This dissertation

is founded on the following work: In [27], we introduce relative correctness for

deterministic programs, and explore the mathematical properties of this concept;

in [106], we generalize the concept of relative correctness to non-deterministic

programs and study its mathematical properties. In [28]. (Programming without

Refinement) we argue that while we generally think of program derivation as the

process correctness preserving transformations using refinement, it is possible to

derive programs by correctness-enhancing transformations using relative correctness;

one of the interesting advantages of relative correctness-based correctness enhancing

transformations is that they capture, not only the derivation of programs from

scratch, but also virtually all software maintenance activities. We can argue in fact

that software evolution and maintenance is nothing but an attempt to enhance the

correctness of a software product with respect to a specification. In [25], (Debugging

150

without Testing) we show how relative correctness can be used to define faults and

fault removals, and that we can use these definitions to remove a fault from a program

and prove that the fault has ben removed, all by static analysis, without testing. This

work is clearly in its infancy; it includes the definition of a new concept, the premise

that this concept can be used for a provably monotonic fault removal process, and

some initial results that enable us to apply this concept with some automated support,

and without getting involved into the minute functional details of the program and the

specification. The question that arises with this type of work is, of course, whether

it scales up to programs of realistic size and complexity. We argue that relative

correctness scales up to the same degree as absolute correctness. The fact that it

cannot be readily employed to software products of arbitrary size and complexity

does not make it any less worthy of investigation, just as the same constraints do not

make absolute correctness less worthy of study; it is still useful as a logical reasoning

framework; and it can be applied in practice with the proper balance of formality,

expressiveness, and usability, and with judicious automated support where possible.

Also, we argue that in software quality assurance as in other endeavors, the law

of diminishing returns advocates the use of diverse methods and tools to maximize

impact; the use of relative correctness to support fault diagnosis and removal stands

to play an important role as a tool in the engineers toolbox.

8.2 Future Work

8.2.1 Condition of Convergence

All the heuristics discussed in Section 8.1.1 are intended to enable us to claim

sufficiency of our termination condition without having to generate all the invariant

relations of the loop; we envision to organize these heuristics into a cohesive algorithm,

as part of our future research plans.

151

On the automation side, we envisage to expand the tool to cover more data

types, provide more support for Java/C/C + +. We also plan on working on ways of

scaling our implementation so that we are able to support the analysis of large scale

program input.

8.2.2 Relative Correctness

This work is clearly in its infancy; We envision to continue exploring applications of

relative correctness in fault removal, to enhance and integrate our tool support, and

to consider other results (theorems) that enable us to streamline the verification of

relative correctness. We also envision exploring automation of the methods exposed

in this dissertation, wherever applicable.

One area that we are exploring concerns the projection of a program on a

specification so as to find which part of the program is relevant to a specification.

The concept of projection of a program on a specification comes about as a byproduct

of the definition of relative correctness. The definition and implications are discussed

in [124].

Projecting Programs on Specifications : Given a specification R and a program

P that is written to satisfy R, we refer to P as a candidate program for specification

R, and we refer to R as the target specification of program P , regardless of whether

P does or does not satisfy specification R. Given a specification R and a candidate

program P , the program P could well be falling short of some of the requirements

of R, while at the same time exceeding (i.e. doing more than needed) on some other

requirements. There is no shortage of reasons why a program may fall short of the

requirements mandated by the specification, but there are also ample reasons why a

program may do more than required: these include cases where excess functionality

is a byproduct of normal design decisions, cases where it stems from programming

language constructs, and more generally the need to bridge the gap between a non-

152

deterministic specification and a deterministic program. Consider for example the

following relational specification on space S defined by integer variables x and y:

R = {(〈x, y〉, 〈x′, y′〉)|x′ = x+ y},

and consider the following program on the same space:

{while (y!=0) {x=x+1; y=y-1;}}.

For non-negative values of y, this program computes the sum of x and y in x

while placing 0 in y; for negative values of y, it fails to terminate. Hence its function

can be written as:

P = {(〈x, y〉, 〈x′, y′〉)|y ≥ 0 ∧ x′ = x+ y ∧ y′ = 0}.

This program does not do everything that specification R requires, since it fails

to compute the sum of x and y into x for negative values of y; on the other hand,

it puts 0 in y even though the specification did not ask for it (but this is a side

effect of the algorithm we have chosen to satisfy the specification). Hence looking at

specification R and program P , we would like to think that the functionality of P

that is relevant to (mandated by) R is captured by the following relation:

π = {(〈x, y〉, 〈x′, y′〉)|y ≥ 0 ∧ x′ = x+ y}.

Whatever else P does (e.g. it sets y to 0) is not relevant to specification R; on

the other hand, whatever else the specification mandates (computing the sum of x

and y into x for negative values of y), program P is not delivering. In other words,

relation π fails to specify y′ = 0 because that is not mandated by the specification,

and it fails to specify the case y < 0 because that is not delivered by the candidate

program P .

153

BIBLIOGRAPHY

[1] E. J. Braude and M. E. Bernstein, Software engineering: modern approaches.
Hoboken, NJ: J. Wiley Sons, 2016.

[2] C. LeGoues, S. Forrest, and W. Weimer, “Current challenges in automatic software
repair,” Software Quality Journal, vol. 21, no. 3, pp. 421–443, 2013.

[3] L. Feinbube, P. Tröger, and A. Polze, “The landscape of software failure cause
models,” arXiv preprint arXiv:1603.04335, 2016.

[4] C. Kolias, A. Stavrou, J. Voas, I. Bojanova, and R. Kuhn, “Learning internet-of-things
security ”hands-on”,” IEEE Security Privacy, vol. 14, no. 1, pp. 37–46, Jan
2016.

[5] A. Mili, S. Aharon, and C. Nadkarni, “Mathematics for reasoning about loop,” Science
of Computer Programming, pp. 989–1020, 2009.

[6] J. Carette and R. Janicki, “Computing properties of numeric iterative programs by
symbolic computation,” Fundamentae Informatica, vol. 80, no. 1-3, pp. 125–
146, March 2007.

[7] A. Podelski and A. Rybalchenko, “Transition invariants,” in Proceedings, 19th Annual
Symposium on Logic in Computer Science, 2004, pp. 132–144.

[8] M. T. C. Group, “Demo of Aligator,” Ecole Polytechnique Federale de Lausanne,
Lausanne, Switzerland, Tech. Rep., 2010.

[9] P. Cousot and R. Cousot, “Automatic synthesis of optimal invariant assertions:
Mathematical foundations,” vol. 12, no. 8. ACM, 1977, pp. 1–12.

[10] P. Cousot, “Abstract interpretation,” Ecole Normale Superieure, Paris, France, Tech.
Rep. www.di.ens.fr/c̃ousot/AI/, August 2008, accessed: 12-10-2012.

[11] C. A. Furia and B. Meyer, “Inferring loop invariants using postconditions,” in
Festschrift in honor of Yuri Gurevich’s 70th birthday, ser. Lecture Notes in
Computer Science, N. Dershowitz, Ed. Springer-Verlag, August 2010.

[12] C. Hoare, “An axiomatic basis for computer programming,” Communications of the
ACM, vol. 12, no. 10, pp. 576 – 583, Oct. 1969.

[13] M. A. Colon, S. Sankaranarayana, and H. B. Sipma, “Linear invariant generation
using non linear constraint solving,” in Proceedings, Computer Aided
Verification, CAV 2003, ser. Lecture Notes in Computer Science, vol. 2725.
Springer Verlag, 2003, pp. 420–432.

[14] Z. Manna, A Mathematical Theory of Computation. McGraw Hill, 1974.

154

[15] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv, “Proving
conditional termination,” in Proceedings of the 20th international conference
on Computer Aided Verification, ser. CAV ’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 328–340. [Online]. Available: http://dx.doi.org/10.
1007/978-3-540-70545-1-32

[16] B. Cook, A. Podelski, and A. Rybalchenko, “Proving program termination,”
Communications of the ACM, vol. 54, no. 5, 2011.

[17] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Mine, D. Monniaux,
and X. Rival, “The astree static analyzer,” Ecole Normale Superieure,
http://www.astree.ens.fr/, Tech. Rep., 2012.

[18] P. Cousot, R. Cousot, J. Feret, A. Miné, L. Mauborgne, D. Monniaux, and X. Rival,
“Varieties of static analyzers: A comparison with astree,” in TASE, 2007, pp.
3–20.

[19] Q. Gao, Y. Xiong, Y. Mi, L. Zhang, W. Yang, Z. Zhou, B. Xie, and H. Mei, “Safe
memory-leak fixing for c programs,” in Proceedings of the 37th International
Conference on Software Engineering-Volume 1. IEEE Press, 2015, pp. 459–
470.

[20] J. Clause and A. Orso, “Leakpoint: pinpointing the causes of memory leaks,” in
Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1. ACM, 2010, pp. 515–524.

[21] A. Arcuri and X. Yao, “A novel co-evolutionary approach to automatic software bug
fixing,” in Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress
on Computational Intelligence). IEEE Congress on. IEEE, 2008, pp. 162–168.

[22] J. Cai and R. Paige, “Program derivation by fixed point computation,” Science of
Computer Programming, vol. 11, no. 3, pp. 197 – 261, 1989. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0167642388900330

[23] H. Partsch and R. Steinbrüggen, “Program transformation systems,” ACM
Comput. Surv., vol. 15, no. 3, pp. 199–236, Sep. 1983. [Online]. Available:
http://doi.acm.org/10.1145/356914.356917

[24] N. Diallo, W. Ghardallou, and A. Mili, “Correctness and relative correctness,” in
Proceedings, 37th International Conference on Software Engineering, Firenze,
Italy, May 20–22 2015.

[25] W. Ghardallou, N. Diallo, M. Frias, and A. Jaoua, “Debugging without testing,” in
Proceedings, ICST 2016, 2016.

[26] N. Diallo, W. Ghardallou, and A. Mili, “Program repair by stepwise correctness
enhancement,” in First International Workshop on Pre- and Post-Deployment
Verification Techniques, Reykjavk, Iceland, June 2016.

155

http://dx.doi.org/10.1007/978-3-540-70545-1-32
http://dx.doi.org/10.1007/978-3-540-70545-1-32
http://www.sciencedirect.com/science/article/pii/0167642388900330
http://doi.acm.org/10.1145/356914.356917

[27] A. Mili, M. Frias, and A. Jaoua, “On faults and faulty programs,” in Proceedings,
RAMICS: 14th International Conference on Relational and Algebraic Methods
in Computer Science, ser. Lecture Notes in Computer Science, P. Hoefner,
P. Jipsen, W. Kahl, and M. E. Mueller, Eds., vol. 8428. Marienstatt, Germany:
Springer, April 28–May 1st 2014.

[28] N. Diallo, W. Ghardallou, and A. Mili, “Program derivation by correctness
enhancements,” in Refinement 2015, Oslo, Norway, June 2015.

[29] W. Ghadallou, N. Diallo, and A. Mili, “Software evolution by correctness
enhancement,” in The 28th International Conference on Software Engineering
and Knowledge Engineering, San francisco, CA, USA, July 1-4, 2016.

[30] G. Schmidt and T. Stroehlein, Relationen und Graphen. Berlin, Germany: Springer-
Verlag, 1990.

[31] C. Brink, W. Kahl, and G. Schmidt, Relational Methods in Computer Science.
Springer Verlag, January 1997.

[32] E. Dijkstra, A Discipline of Programming. Prentice Hall, 1976.

[33] E. Hehner, A Practical Theory of Programming. Prentice Hall, 1992.

[34] C. Hoare and J. He, “The weakest prespecification,” Fundamentae Informaticae,
vol. IX, pp. Part I: pp 51–58. Part II: pp 217–252, 1986.

[35] R. Linger, H. Mills, and B. Witt, Structured Programming. Addison Wesley, 1979.

[36] C. Morgan, Programming from Specifications, ser. International Series in Computer
Sciences. London, UK: Prentice Hall, 1998.

[37] D. L. Parnas, “Precise description and specification of software,” in Software
Fundamentals, D. M. Hoffman and D. M. Weiss, Eds. Addison Wesley, 2001,
ch. 5.

[38] N. Boudriga, F. Elloumi, and A. Mili, “The lattice of specifications: Applications to a
specification methodology,” Formal Aspects of Computing, vol. 4, pp. 544–571,
1992.

[39] A. Mili, S. Aharon, and C. Nadkarni, “Mathematics for reasoning about loop,” Science
of Computer Programming, pp. 989–1020, 2009.

[40] O. Mraihi, A. Louhichi, L. L. Jilani, J. Desharnais, and A. Mili, “Invariant
assertions, invariant relations, and invariant functions,” Science of Computer
Programming, vol. 78, no. 9, pp. 1212–1239, September 2013. [Online].
Available: http://dx.doi.org/10.1016/j.scico.2012.05.006

156

http://dx.doi.org/10.1016/j.scico.2012.05.006

[41] E. R. Carbonnell and D. Kapur, “Program verification using automatic generation of
invariants,” in Proceedings, International Conference on Theoretical Aspects
of Computing 2004, vol. 3407. Lecture Notes in Computer Science, Springer
Verlag, 2004, pp. 325–340.

[42] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz,
and C. Xiao, “The Daikon system for dynamic detection of likely invariants,”
Science of Computer Programming, 2006.

[43] J. Fu, F. B. Bastani, and I.-L. Yen, “Automated discovery of loop invariants for high
assurance programs synthesized using ai planning techniques,” in HASE 2008:
11th High Assurance Systems Engineering Symposium, Nanjing, China, 2008,
pp. 333–342.

[44] L. Kovacs and T. Jebelean, “Automated generation of loop invariants by recurrence
solving in theorema,” in Proceedings of the 6th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC04),
D. Petcu, V. Negru, D. Zaharie, and T. Jebelean, Eds. Timisoara, Romania:
Mirton Publisher, 2004, pp. 451–464.

[45] L. I. Kovacs and T. Jebelea, “An algorithm for automated generation of invariants for
loops with conditionals,” in Symbolic and Numeric Algorithms for Scientific
Computing, 2005. SYNASC 2005. Seventh International Symposium on.
IEEE, 2005, pp. 5–pp.

[46] S. Sankaranarayana, H. B. Sipma, and Z. Manna, “Non linear loop invariant
generation using Groebner bases,” in Proceedings, ACM SIGPLAN Principles
of Programming Languages, POPL 2004, 2004, pp. 381–329.

[47] A. Mili, S. Aharon, C. Nadkarni, O. Mraihi, A. Louhichi, and L. L. Jilani, “Reflexive
transitive invariant relations: A basis for computing loop functions,” Journal
of Symbolic Computation, vol. 45, pp. 1114–1143, 2009.

[48] W. Ghardallou, O. Mraihi, A. Louhichi, L. L. Jilani, K. Bsaies, and A. Mili, “A
versatile concept for the analysis of loops,” Journal of Logic and Algebraic
Programming, vol. 81, no. 5, pp. 606–622, May 2012.

[49] A. Mili, J. Desharnais, and J. R. Gagne, “Strongest invariant functions: Their use in
the systematic analysis of while statements,” Acta Informatica, April 1985.

[50] R. Floyd, “Assigning meaning to programs,” Proceedings of the American
Mathematical Society Symposium in Applied mathematics, vol. 19, pp. 19–31,
1967.

[51] A. Louhich, W. Ghardallou, K. Bsaies, L. L. Jilani, O. Mraihi, and A. Mili,
“Verifying while loops with invariant relations,” Submitted to a Special Issue
of a Journal, 2012. [Online]. Available: http://web.njit.edu/∼mili/ccb.pdf

157

http://web.njit.edu/ ~ mili/ccb.pdf

[52] M. Colón and H. Sipma, “Practical methods for proving program termination,” in
Proc. International Conference on Computer Aided Verification, ser. CAV ’02.
London, UK, UK: Springer-Verlag, 2002, pp. 442–454.

[53] A. Podelski and A. Rybalchenko, “A complete method for the synthesis of linear
ranking functions,” in VMCAI, 2004, pp. 239–251.

[54] A. Bradley, Z. Manna, and H. Sipma, “The polyranking principle,” in Proceedings,
ICALP 2005, 2005.

[55] A. R. Bradley, Z. Manna, and H. B. Sipma, “Linear ranking with reachability,” in
Computer Aided Verification. Springer, 2005, pp. 491–504.

[56] B. Cook, A. See, and F. Zuleger, “Ramsey vs. lexicographic termination proving,”
in Proceedings, TACAS 2013: 19th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer Verlag,
2013, pp. 47–61.

[57] V. D’Silva and caterina Urban, “Complexity of bradley-manna-sipma lexicographic
functions,” in CAV 2015: Computer Aided Verification, ser. Lecture Notes
in Computer Science, D. Kroening and C. S. Pasareanu, Eds., no. 9206, San
Francisco, CA, USA, July, 18-24 2015.

[58] D. Kroening, N. Sharygina, S. Tonetta, A. L. Jr, S. Potiyenko, and T. Weigert,
“Loopfrog: Loop summarization for static analysis,” in Proceedings, Workshop
on Invariant Generation: WING 2010, Edimburg, UK, July 2010.

[59] A. Avizienis, J. C. Laprie, B. Randell, and C. E. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions on
Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.

[60] P. Cousot, “Abstract interpretation,” Ecole Normale Superieure, Paris, France, Tech.
Rep. www.di.ens.fr/c̃ousot/AI/, August 2008.

[61] A. Podelski and A. Rybalchenko, “Transition invariants and transition predicate
abstraction for program termination,” in TACAS, 2011, pp. 3–10.

[62] L. L. Jilani, O. Mraihi, A. Louhichi, W. Ghardallou, K. Bsaies, and A. Mili, “Invariant
relations and invariant functions: An alternative to invariant assertions,”
Journal of Symbolic Computation, vol. 48, pp. 1–36, May 2013.

[63] R. Boyer and J. Moore, A Computational Logic Handbook. Academic Press inc.,
1988.

[64] A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G. Xu, “Proving
non-termination,” in POPL, 2008, pp. 147–158.

[65] H. Velroyen and P. Rümmer, “Non-termination checking for imperative programs,”
in Tests and Proofs, Second International Conference, TAP 2008, Prato, Italy,
ser. lncs, B. Beckert and R. Hähnle, Eds., vol. 4966. spv, 2008, pp. 154–170.

158

[66] K. Durant, W. Visser, and C. Pasareanu, “Investigating termination of affine loops
with jpf,” in Java PathFinder Workshop, Lawrence, KS, 2012.

[67] A. R. Bradley, Z. Manna, and H. B. Sipma, “Termination analysis of integer linear
loops,” in CONCUR, 2005, pp. 488–502.

[68] A. Tiwari, “Termination of linear programs,” in CAV, 2004, pp. 70–82.

[69] J. Burnim, N. Jalbert, C. Stergiou, and K. Sen, “Looper: Lightweight detection of
infinite loops at runtime,” in ASE, 2009, pp. 161–169.

[70] S. Falke, D. Kapur, and C. Sinz, “Termination analysis of imperative programs using
bitvector arithmetic,” in VSTTE, 2012, pp. 261–277.

[71] W. Lee, B.-Y. Wang, and K. Yi, “Termination analysis with algorithmic learning,”
in CAV, 2012, pp. 88–104.

[72] B. Cook, A. Podelski, and A. Rybalchenko, “Termination proofs for systems
code,” in Proceedings of the 2006 ACM SIGPLAN conference on
Programming language design and implementation, ser. PLDI ’06. New
York, NY, USA: ACM, 2006, pp. 415–426. [Online]. Available: http:
//doi.acm.org/10.1145/1133981.1134029

[73] A. Chawdhary, B. Cook, S. Gulwani, M. Sagiv, and H. Yang, “Ranking abstractions,”
in ESOP, 2008, pp. 148–162.

[74] A. Tsitovich, N. Sharygina, C. M. Wintersteiger, and D. Kroening, “Loop summa-
rization and termination analysis,” in Proc.International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, 2011, pp. 81–95.

[75] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv, “Proving
conditional termination,” in Proceedings of the 20th international conference
on Computer Aided Verification, ser. CAV ’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 328–340. [Online]. Available: http://dx.doi.org/10.
1007/978-3-540-70545-1-32

[76] B. Cook, C. Fuhs, K. Nimkar, and P. O’Hearn, “Disproving termination with
overapproximation,” in Proceedings, FMCAD, Lausanne, CH, October 2014.

[77] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints,”
in Proceedings, Fourth ACM Symposium on Principles of Programming
Languages, Los Angeles, CA, 1977.

[78] D. Kästner, S. Wilhelm, S. Nenova, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, and X. Rival, “Astrée: Proving the absence of runtime errors,” in
Embedded Real Time Software and Systems (ERTS2 2010), May 2010, pp. 1–9.

159

http://doi.acm.org/10.1145/1133981.1134029
http://doi.acm.org/10.1145/1133981.1134029
http://dx.doi.org/10.1007/978-3-540-70545-1-32
http://dx.doi.org/10.1007/978-3-540-70545-1-32

[79] C. Ancourt, F. Coelho, and F. Irigoin, “A modular static analysis approach to affine
loop invariants detection,” Electronic Notes on Theoretical Computer Science,
vol. 267, no. 1, pp. 3–16, 2010.

[80] S. Sagiv, T. W. Reps, and R. Wilhelm, “Parametric shape analysis via 3-valued logic,”
ACM Transactions on Programming Logics and Systems, vol. 24, no. 3, pp.
217–298, 2002.

[81] B. S. Gulavani, S. Chakraborty, G. Ramalingam, and A. V. Nori, “Bottom up
shape analysis using lisf,” ACM Transactions on Programming Languages and
Systems, vol. 33, no. 5, 2011.

[82] F. Spoto, F. Mesnard, and E. Payet, “A termination analyzerfor java bytecode based
on path length,” ACM Transactions on Programming Languages and Systems,
vol. 32, no. 3, 2010.

[83] S. Muchnick, Advanced Compiler Design and Implementation. Morgan Kaufman,
1997.

[84] B. Hackett and A. Aiken, “How is aliasing used in systems software,” in Proceedings,
14th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2006, pp. 69–80.

[85] J. C. Reynolds, “Separation logic: A logic for shared mutable data structures,” in
Proceedings, LICS, 2002, pp. 55–74.

[86] P. O’Hearn, J. Reynolds, and H. Yang, “Local reasoning about programs that alter
data structures,” in Proceedings, CSL, 2001, pp. 1–19.

[87] G. Nelson, “Verifying reachability invariants of linked structures,” in Proceedings,
POPL 1983: Principles of Programming Languages, 1983, pp. 38–47.

[88] S. Lahiri and R. Bryant, “Constructing quantified invariants via predicate
abstraction,” in Proceedings, VMCAI, 2004, pp. 267–281.

[89] A. Podelski and T. Wies, “Boolean heaps,” in Procedings, SAS, 2005, pp. 267–282.

[90] S. Gulwani, B. McCloskey, and A. Tiwari, “Lifting abstract interpreters to quantified
logic domains,” in 35th ACM Symposium on Principles of Programming
Languages. ACM, january 2008, pp. 235–246.

[91] K. L. McMillan, “Quantified invariant generation using an interpolating saturation
prover,” in Proceedings, TACAS, 2008, pp. 413–427.

[92] F. Mehta and T. Nipkow, “Proving pointer programs in higher order logic,” Inf.
Comput., vol. 199, no. 1-2, pp. 200–277, 2005.

[93] J. Filliatre and C. Marche, “Multi prover verification of c programs,” in Procedings,
ICFEM, 2004, pp. 15–29.

160

[94] C. team, “caveat project,” Commissariat a l’Energie Atomique, http://www-
drt.cea.fr/Pages/List/Ise/LSL/Caveat/, Tech. Rep., 2012.

[95] B. Cook, “Static driver verifier,” Microsoft Inc.,
http://www.microsoft.com/whdc/devtools/, Tech. Rep., 2012.

[96] B. Meyer, “Proving pointer program properties. part i: Context and overview,”
Journal of Object Technology, vol. 2, no. 2, pp. 87–108, 2003.

[97] M. Bertrand, “Proving pointer program properties. part 2: The overall object
structure.” Journal of Object Technology, vol. 2, no. 3, pp. 77–100, 2003.

[98] R. W. Collins, G. H. Walton, A. R. Hevner, and R. C. Linger, “The CERT function
extraction experiment: Quantifying FX impact on software comprehension
and verification,” Software Engineering Institute, Carnegie Mellon University,
Tech. Rep. CMU/SEI-2005-TN-047, December 2005.

[99] A. R. Hevner, R. C. Linger, R. W. Collins, M. G. Pleszkoch, S. J. Prowell, and G. H.
Walton, “The impact of function extraction technology on next generation
software engineering,” Software Engineering Institute, Tech. Rep. CMU/SEI-
2005-TR-015, July 2005.

[100] N. Diallo, “fxloop analyzer,” Software Engineering Lab, New Jersey Institute of
Technology, https://selab.njit.edu/tools/fxloop.php, Tech. Rep., 2015.

[101] J. Laprie, “Dependability —its attributes, impairments and means,” in Predictably
Dependable Computing Systems. Springer Verlag, 1995, pp. 1–19.

[102] J. C. Laprie, Dependability: Basic Concepts and Terminology: in English, French,
German, Italian and Japanese. Heidelberg: Springer Verlag, 1991.

[103] J.-C. Laprie, “Dependable computing: Concepts, challenges, directions,” COMPSAC-
NEW YORK-, pp. 242–243, 2004.

[104] D. Gries, The Science of programming. Springer Verlag, 1981.

[105] H. Mills, V. Basili, J. Gannon, and D. Hamlet, Structured Programming: A
Mathematical Approach. Boston, Ma: Allyn and Bacon, 1986.

[106] J. Desharnais, N. Diallo, W. Ghardallou, M. Frias, A. Jaoua, and A. Mili,
“Mathematics for relative correctness,” in Relational and Algebraic Methods
in Computer Science, 2015, Lisbon, Portugal, September 2015.

[107] A. Gonzalez-Sanchez, R. Abreu, H.-G. Gross, and A. van Gemund, “Prioritizing
tests for fault localization through ambiguity group reduction,” in proceedings,
Automated Software Engineering, Lawrence, KS, 2011.

[108] F. Logozzo, S. Lahiri, M. Faehndrich, and S. Blackshear, “Verification modulo
versions: Towards usable verification,” in Proceedings, PLDI, 2014, p. 32.

161

[109] S. K. Lahiri, K. L. McMillan, R. Sharma, and C. Hawblitzel, “Differential assertion
checking,” in Proceedings, ESEC/ SIGSOFT FSE, 2013, pp. 345–455.

[110] F. Logozzo and T. Ball, “Modular and verified automatic program repair,” in
Proceedings, OOPSLA, 2012, pp. 133–146.

[111] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix: Program repair
via semantic analysis,” in Proceedings, ICSE, 2013, pp. 772–781.

[112] A. Louhichi, W. Ghardallou, K. Bsaies, L. L. Jilani, O. Mraihi, and A. Mili, “Verifying
loops with invariant relations,” International Journal of Critical Computer
Based Systems, vol. 5, no. 1/2, pp. 78–102, 2014.

[113] A. Louhichi, O. Mraihi, L. L. Jilani, and A. Mili, “Invariant assertions, invariant
relations and invariant functions,” in Proceedings, 2nd International Workshop
on Invariant Generation, York, UK, 2009.

[114] H. Mills, “The new math of computer programming,” Communications of the ACM,
vol. 18, no. 1, January 1975.

[115] A. Mili, J. Desharnais, and F. Mili, “Relational heuristics for the design of
deterministic programs,” Acta Informatica, vol. 24, no. 3, pp. 239–276, 1987.

[116] Y. S. Ma, J. Offutt, and Y. R. Kwon, “Mu java: An automated class mutation
system,” Software Testing, Verification and Reliability, vol. 15, no. 2, pp. 97–
133, June 2005.

[117] G. Dromey, “Program development by inductive stepwise refinement,” University of
Wollongong, Australia, Tech. Rep. Working Paper 83-11, 1983.

[118] H. D. T. i. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix: program
repair via semantic analysis,” in Proceedings of the 2013 International
Conference on Software Engineering. IEEE Press, 2013, pp. 772–781.

[119] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically finding
patches using genetic programming,” in Proceedings of the 31st International
Conference on Software Engineering. IEEE Computer Society, 2009, pp.
364–374.

[120] R. Banach and M. Poppleton, “Retrenchment, refinement and simulation,” in ZB:
Formal Specifications and Development in Z and B, ser. Lecture Notes in
Computer Science. Springer, December 2000, pp. 304–323.

[121] A. Ghosal, M. Jurdzinski, R. Majumdar, and V. Prabhu, “Approximate refinement
for hybrid systems,” University of California at Berkeley, Tech. Rep.

[122] J. V. Deshmukh, R. Majumdar, and V. Prabhu, “Quantifying conformance using
the skorokhod metric,” in Proceedings, CAV: Computer Aided Verification.
Springer Verlag, 2015, pp. 234–250.

162

[123] K. Chaterjee and V. S. Prabhu, “Quantitative temporal simulation and refinement
distancess for timed systems,” IEEE Transactions for Automatic Control,
vol. 60, no. 9, pp. 2291–2306, 2015.

[124] J. Desharnais, N. Diallo, Ghadallou, and A. Mili, “Projecting programs
on specifications: Definition and implications,” NJIT, Newark, NJ,
http://web.njit.edu/˜mili/prj.pdf, Tech. Rep., 2016.

163

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment (1 of 2)
	Acknowledgment (2 of 2)

	Table of Contents (1 of 5)
	Table of Contents (2 of 5)
	Table of Contents (3 of 5)
	Table of Contents (4 of 5)
	Table of Contents (5 of 5)
	Chapter 1: Introduction
	Chapter 2: Theoretical Foundations
	Chapter 3: Invariant Relations
	Chapter 4: Convergence
	Chapter 5: The Fxloop Tool
	Chapter 6: Relative Correctness
	Chapter 7: Applications of Relative Correctness
	Chapter 8: Conclusions and Future Work
	Bibliography

	List of Tables
	List of Figures

