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ABSTRACT

SCHEMA-AWARE KEYWORD SEARCH ON LINKED DATA

by

Ananya Dass

Keyword search is a popular technique for querying the ever growing repositories of RDF

graph data on the Web. This is due to the fact that the users do not need to master com-

plex query languages (e.g., SQL, SPARQL) and they do not need to know the underlying

structure of the data on the Web to compose their queries. Keyword search is simple and

flexible. However, it is at the same time ambiguous since a keyword query can be inter-

preted in different ways. This feature of keyword search poses at least two challenges: (a)

identifying relevant results among a multitude of candidate results, and (b) dealing with the

performance scalability issue of the query evaluation algorithms.

In the literature, multiple schema-unaware approaches are proposed to cope with

the above challenges. Some of them identify as relevant results only those candidate re-

sults which maintain the keyword instances in close proximity. Other approaches filter

out irrelevant results using their structural characteristics or rank and top-k process the re-

trieved results based on statistical information about the data. In any case, these approaches

cannot disambiguate the query to identify the intent of the user and they cannot scale satis-

factorily when the size of the data and the number of the query keywords grow. In recent

years, different approaches tried to exploit the schema (structural summary) of the RDF

(Resource Description Framework) data graph to address the problems above. In this con-

text, an original hierarchical clustering technique is introduced in this dissertation. This

approach clusters the results based on a semantic interpretation of the keyword instances

and takes advantage of relevance feedback from the user. The clustering hierarchy uses

pattern graphs which are structured queries and clustering together result graphs with the

same structure. Pattern graphs represent possible interpretations for the keyword query. By

navigating though the hierarchy the user can select the pattern graph which is relevant to



her intent.

Nevertheless, structural summaries are approximate representations of the data and,

therefore, might return empty answers or miss results which are relevant to the user in-

tent. To address this issue, a novel approach is presented which combines the use of the

structural summary and the user feedback with a relaxation technique for pattern graphs

to extract additional results potentially of interest to the user. Query caching and multi-

query optimization techniques are leveraged for the efficient evaluation of relaxed pattern

graphs. Although the approaches which consider the structural summary of the data graph

are promising, they require interaction with the user.

It is claimed in this dissertation that without additional information from the user,

it is not possible to produce results of high quality from keyword search on RDF data

with the existing techniques. In this regard, an original keyword query language on RDF

data is introduced which allows the user to convey his intention flexibly and effortlessly

by specifying cohesive keyword groups. A cohesive group of keywords in a query indi-

cates that its keywords should form a cohesive unit in the query results. It is experimen-

tally demonstrated that cohesive keyword queries improve the result quality effectively and

prune the search space of the pattern graphs efficiently compared to traditional keyword

queries. Most importantly, these benefits are achieved while retaining the simplicity and

the convenience of traditional keyword search.

The last issue addressed in this dissertation is the diversification problem for key-

word search on RDF data. The goal of diversification is to trade off relevance and diversity

in the results set of a keyword query in order to minimize the dissatisfaction of the av-

erage user. Novel metrics are developed for assessing relevance and diversity along with

techniques for the generation of a relevant and diversified set of query interpretations for a

keyword query on an RDF data graph. Experimental results show the effectiveness of the

metrics and the efficiency of the approach.
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CHAPTER 1

INTRODUCTION

Nowadays, a vast amount of information is available on the World Wide Web accommo-

dating all aspects of human activities, knowledge and experiences. The original vision of

Tim Berners-Lee [10], the inventor of World Wide Web, was to enable the publication and

interconnection of documents through the Internet. Over the years the number of docu-

ments kept increasing on the Web. Search engines were invented to aid users to discover

information from the Web that is relevant to their needs. Apart from the constant increase

in the number of documents on the Web, there is a current trend to publish data and to make

it easily discoverable, accessible, and available to all the Web users without any restriction

[49]. In recent days, due to the Open Data movement a plethora of data sources became

available on the Web from various domains, from government data to scientific datasets.

As a consequence, the Web evolved from a Web of documents to a Web of data. The cur-

rent need in this Web of data infrastructure is to have the data interlinked and integrated

so as to enable the users to combine information from different data sources and extract

composite knowledge. Currently, the Web users by themselves are performing this Web

data integration. An automatic process for the integration of all available online data would

simplify our everyday lives. The vision of the Semantic Web has been expressed to offer

solutions to the above problems [11]:

“The Semantic Web is an extension of the current Web in which information is

given well-defined meaning, better enabling computers and people to work in

cooperation.”

The Semantic Web extends the current Web by introducing machine-readable data

and metadata of the documents and information of how they are interconnected. With the

inclusion of intelligent and automatic processes that perform tasks on behalf of the users,

1
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the Web is evolving into the Semantic Web. The advocates of the Semantic Web envisioned

a standardized means for representing structured and meaningful information on the Web

in order to realize the goals of Semantic Web. Several data models have been proposed

for representing such information. The most prominent one is the Resource Description

Framework (RDF) [57]. RDF allows and provides a simple and abstract knowledge rep-

resentation for resources on the Web which are uniquely identified by Universal Resource

Identifiers (URIs). Each statement in RDF can be encoded as an RDF triple. Additionally,

ontologies are used to give meaning to resources by grouping them into classes and also to

identify the relationships between these classes. RDFS and OWL are the two most com-

monly used languages for encoding ontologies. The vocabulary language of RDF is RDF

Schema (RDFS) [36]. RDFS defines and specifies meanings to the terms that will be used in

RDF statements. Web Ontology Language (OWL) [41] can also be used for conceptualiza-

tion and provides further expressivity in stating relationships among the resources. A query

language is necessary for exploring and querying the structured information expressed in

RDF. During the past years, many query languages have been proposed for querying and

retrieving information from the RDF data model. Since January 2008, SPARQL has been

the official W3C recommendation language for querying RDF data [76].

Today, the Semantic Web is more than just a vision. This is manifested by the

publication of large datasets according to the principles of the Linked Data initiative1. The

Linked Data initiative aims at offering a new way of data integration and interoperability by

connecting data sources on the Web and exposing real life data using semantic technologies.

A Web of Data is the outcome of the Linked Data initiative and efforts. In this Web of

Data infrastructure, URIs identify real life things. RDF information about those things

can be obtained by following those URIs. Furthermore, this RDF information contains

related URIs which are links to other resources enabling further exploration. The Linked

Data community has established a set of best practices for collaboratively publishing and

1http://linkeddata.org/ (accessed on April 24, 2016)
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interlinking structured data on the Web [14, 40]. Ranging from community-driven efforts

to governmental bodies or scientific groups, there are numerous sources that publish their

data on the Web in the form of Linked Data. DBpedia2[26], BBC music information [82],

open government data3 are only a few examples of the constantly increasing Linked Data

cloud4.

With the proliferation of RDF graph data repositories, keyword search is by far the

most popular technique for querying linked data on the Web. Keyword search offers a

straightforward, intuitive, and flexible method for retrieving information. In this context,

users anticipate that with the sole use of some keywords they will be able to satisfy their

information needs. The success of keyword search is due to the following facts: (a) it

allows the user to retrieve information without knowing any formal query language (e.g.,

SPARQL), (b) it allows the user to retrieve information without being aware of the struc-

ture/schema of the data source against which the keyword query is issued, and (c) the same

keyword query can be used to extract data from multiple data sources with different struc-

tures.

1.1 Challenges of Keyword Search on Semi-structured Data

The advantages of keyword search on semi-structured data on the Web come with a number

of disadvantages. Keyword queries are ambiguous in determining both: the user intent and

the form of the results. For this reason, keyword search on tree and graph data faces three

major challenges:

(a) Determining the form of the results: In contrast to the IR domain where the answer

of a keyword query is a set of flat documents, in the domain of tree and graph databases,

2http://dbpedia.org (accessed on April 24, 2016)

3http://www.data.gov/, http://www.data.gov.uk/ (accessed on April 24, 2016)

4http://www4.wiwiss.fu-berlin.de/lodcloud/state/ (accessed on April 24, 2016)



4

each result in the keyword query answer is a database substructure (e.g., node, subtree, sub-

graph). This not only multiplies enormously the number of candidate results and, therefore,

makes the evaluation more complex, but it also raises the issue of determining an appropri-

ate form for the results. The goal is to return results (substructures) that are meaningful to

the user. Different approaches on tree data define the results as LCA nodes [93, 26], min-

imum connecting trees [44], instance trees [5], etc. In the context of graph data, multiple

approaches return trees [32, 47, 90] usually constrained by the adopted search algorithms.

Indeed, traditional keyword search algorithms on graphs associate keywords only to ver-

tices and, by construction, compute and return minimum spanning trees [12, 34, 39, 48].

However, tree structures do not appropriately capture the semantics of queries on graph

data which should naturally return graph structures. Further, in RDF data, semantics are

assigned to graph elements through their association to schema elements. This information

should be taken into account in the search process and integrated in the query results in or-

der to help disambiguating the queries and their results. In this direction, some approaches

attempt to exploit predicates [31, 47, 89].

(b) Identifying the relevant results: Because of the ambiguity of keyword queries there

is usually an overwhelming number of results matching the query keywords (candidate

results) of which only a tiny portion is relevant to the user intent. Multiple approaches

assign semantics to keyword queries by exploiting structural and semantic features of the

data in order to automatically filter out irrelevant results [68]. Although filtering approaches

are intuitively reasonable, they are sufficiently ad-hoc and they are frequently violated in

practice resulting in low precision and/or recall. A better technique followed by some other

approaches ranks the candidate results in descending order of their estimated relevance

[37, 68]. Given that users are typically interested in a small number of query results, some

of these approaches combine ranking with top-k algorithms for keyword search [32, 89, 90].

Keyword search over graph data returns a multitude of candidate results and of extended

diversity. Therefore, current algorithms compute candidate results in an approximate way
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by considering only those which maintain the keyword instances in close proximity [12,

28, 34, 39, 48, 50, 63, 78]. The ranking and top-k processing of the filtered results usually

employ IR-style metrics for flat documents (e.g., tf*idf or PageRank) [31, 37, 68, 90, 89]

adapted to the structural characteristics of the data. However, the occurrence statistics

alone can neither capture effectively the diversity of the results represented in a large graph

dataset nor identify the intent of the user. As a consequence the produced rankings are, in

general, of low quality.

(c) Coping with the performance scalability issue: As mentioned above, the number of

candidate results can be very large. Computing all the results of a certain form is intractable.

For instance, the problem of finding the Steiner trees for a set of keywords in a data graph

is NP-complete [50]. The current algorithms, which compute all the results of a certain

restricted form so that their size is below a certain threshold, are still of high complexity.

Consequently, these algorithms do not scale satisfactorily when the size of the data graph

and the number of query keywords increase.

1.2 Exploiting Semantic Result Clustering to Support Keyword Search

In this dissertation, we present a novel approach for keyword search on RDF graph data.

Our approach utilizes a semantic two-level hierarchical clustering of the keyword query

results. We define keyword query results as meaningful subgraphs of the data graph that

appropriately connect together keyword matching constructs (elementary subgraphs repre-

senting semantic interpretations of the keyword instances). This definition addresses the

problem of determining the form of query result. In our two-level hierarchical cluster-

ing, the first—fine-grained—level of clustering, partitions the results that share the same

structure and cluster them together as pattern graphs. These pattern graphs involve all the

matching constructs of the query keywords on the structural summary and express the pos-

sible interpretations of the keyword query on the graph data. The pattern graphs, when
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used as queries on the RDF graph, compute the results of the corresponding cluster. The

second—coarser—level of clustering, partitions the pattern graphs (and their results) based

on the different types of construct (e.g., class, property, value) each query keyword matches.

However, our approach does not exhaustively generate and cluster all the results and the

hierarchy components. Instead, it benefits from relevance feedback at different levels of

granularity to identify the pattern graphs which are relevant to the user intent. Our cluster-

ing hierarchy allows the user to disambiguate the query and compute the relevant results

while examining only a small portion of the hierarchy components. To shorten the user in-

teraction we devise ranking techniques for the hierarchy components that take into account

structural and semantic information and occurrence frequency statistics. We design an

algorithm which takes as input the matching constructs of the query keywords on the struc-

tural summary and compute pattern graphs forming r-radius Steiner graphs that involve

these matching constructs. Our algorithm computes the pattern graphs on the structural

summary without accessing the data graph. Only the selected pattern graphs are evaluated

on the data, returning all and only the relevant results. This way, our system addresses

efficiently the problems of relevant result identification and performance scalability. We

implemented and experimentally evaluated our approach. Our results on measuring reach

time show that the user can find the relevant pattern graphs in short time supported ef-

fectively by our ranking of the hierarchy components. They also showed that the system

efficiently computes the required hierarchy components on the structural summary and

evaluates the relevant pattern graph on the data.

1.3 Keyword Pattern Graph Relaxation to Retrieve Additional Relevant Results

In order to address the three major challenges of keyword search on graph data, recent

approaches to keyword search developed techniques which exploit a structural summary

of the data graph [22, 89, 90]. This is a concept similar to the 1-index [52] or data guide

[33] in tree databases. The structural summary summarizes the structure of an RDF graph
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Figure 1.1 (a) An RDF data graph D, (b) The structural summary SD of D.

Figure 1.2 (a), (b), (c), and (d) Pattern graphs.

and associates inverted lists of keyword instances (extensions) with nodes. A structural

summary is typically much smaller than its data graph. These aforementioned techniques

use the structural summary to produce pattern graphs for a given keyword query. The pat-

tern graphs are structured queries corresponding to alternate interpretations of an imprecise

keyword query. By evaluating the pattern graphs on the data graph, the candidate results

for the keyword query can be produced. Interestingly, a pattern graph can be expressed

as a SPARQL query, and all the machinery of query engines and optimization techniques

developed for SPARQL can be leveraged to efficiently evaluate the pattern graphs.

Example 1.1. Consider the RDF graph D shown in Figure 1.1(a). This is a database

about publications, projects, researchers and universities. Let us assume that the query

Q ={Ananya, NJIT, 2014} is issued against the database D. The user is looking

for publications by Ananya published in 2014 which have an author working for NJIT.

Figure 1.1(b) depicts the structural summary SD of D. Finding the instances of the key-

words Ananya, NJIT and 2014 on SD, the system will construct pattern graphs. Dif-
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ferent algorithms can be employed for this task which aim at constructing pattern graphs

by connecting the instances of the keywords in the structural summary in some minimal

way [22, 32, 89, 90, 92]. All these algorithms will basically construct the pattern graphs

shown in Figure 1.2. These pattern graphs are queries that can be matched against the

data graph to produce answers for the queries (X,Y,Z are variable nodes to be matched

against entity nodes in the data graph). Notice that these pattern graphs represent different

interpretations of the given keyword query. For instance, the first pattern graph looks for

publications by Ananya, who works at NJIT, published in 2014 while the last one is

looking for a project initiated in 2014 which employs a researcher named Ananya who

graduated from NJIT. Evaluating these queries on D will return all the results for the

initial keyword query Q on D.

1.3.1 Benefits of the Structural Summary

A structural summary-based approach can resolve the challenges mentioned above of: (a)

effectively identifying relevant results and (b) coping with the performance scalability is-

sue. Indeed, the pattern graphs (structured queries) can be ranked using a scoring function

and the top-k of them are presented to the user. As these structured queries represent dif-

ferent interpretations of the keyword query on the data graph, the user can choose one that

meets his intention, and only the corresponding structured query is evaluated against the

data graph [89, 90]. Our approach described in Chapter 4 exploits a hierarchical clustering

of the pattern graphs. In order to select a relevant pattern graph the user chooses semantic

interpretations for the query keywords and only the pattern graphs that correspond to these

interpretations are generated and presented to the user [22]. Effectiveness studies show that

the approaches based on the structural summary display good precision. Further, comput-

ing, ranking and identifying top-k subgraphs (query results) for a keyword query directly on

the data graph is very expensive even when answers are computed in an approximate way

[12, 48]. In contrast, since the structural summaries are much smaller than the actual data,
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generating and manipulating relevant pattern graphs can be done efficiently. Therefore, the

structural summary-based approaches scale satisfactorily and compute answers of keyword

queries efficiently even on large RDF graphs stored in the external memory [21, 22, 89].

1.3.2 The Missing Relevant Result Problem

Despite its advantages, the structural summary-based approach for keyword search on RDF

data has a drawback. The problem is that the pattern graph selected by the user might return

no result when evaluated against the RDF graph even though results that match the user

intent exist in the RDF graph. It is also possible that the pattern graph returns a non-empty

answer but misses relevant results. This might happen even if a pattern graph is correctly

selected by the user, that is, even if the selected pattern matches the user intent.

Example 1.2. In our running example the pattern graph of Figure 1.2(a) is relevant and

is selected by the user. One can see that this pattern graph does not have a match on the

RDF graph D shown in Figure 1.1(a). Indeed, Ananya has authored a paper in 2014 but

she does not work for NJIT. However, there is a result in the data graph D which matches

the user intent since there is a publication authored by Ananya in 2014 which has an

author (the co-author named Dimitri) working for NJIT. This relevant result cannot be

directly obtained from any of the pattern graphs of Figure 1.2. It is missed by the structural

summary-based approach.

As another example consider the keyword query Q ={publication,

describes, project, produces, Steiner} on the RDF graph D. The user is

looking for a publication which describes a project that produces a paper

titled Steiner graph algorithm. The structural summary-based approach will generate

one pattern graph shown in Figure 1.3(a). As one can easily see, this pattern graph does

not have a match on D. However, there is a result in D which matches the user intent.

Figure 1.3(b) shows a subgraph of D which reflects this result. This relevant result is again

missed by the structural summary-based approach. The reason for this discrepancy is that
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Figure 1.3 (a) Pattern graph (b) Result graph (c) Relaxed pattern graph.

the structural summary merges entity vertices of the same type of the RDF data graph into

one vertex and this coarse representation loses information as to how an entity vertex is

related to other entity vertices or is assigned to properties and values.

1.3.3 Our Solution: Keyword Pattern Graph Relaxation

In this dissertation, we provide an approach for keyword search over RDF graph data which

addresses the weakness of the structural summary-based approach while maintaining its

advantages. Our system allows the user to navigate through a clustering hierarchy to select

a relevant pattern graph. It then enables the gradual relaxation of this pattern graph so that

additional results of interest to the user are retrieved from the RDF graph, if needed (for

example, if the original pattern graph returns no result or if the user wants to extract more

semantically similar results). For instance, in the example of Figure 1.3, our system will

produce the relaxed pattern graph of Figure 1.3(c) from the pattern graph of Figure 1.3(a)

which can retrieve the relevant result shown in Figure 1.3(b) missed by the original pattern

graph of Figure 1.3(a).

In order to define relaxed pattern graphs we leverage pattern graph homomor-

phisms. Relaxed pattern graphs can expand the result space of an original pattern graph.

They can produce additional results of possible interest to the user based on her choice of

an original pattern graph. We define an operation on pattern graphs in order to allow the

construction of relaxed pattern graphs. A vertex split operation creates a split image of an

entity variable vertex in a pattern graph and partitions its incident edges between the two
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vertices in order to increase the chances for the relaxed pattern graph to have embeddings

to the RDF graph. We show that this operation is complete, that is it can produce all the

relaxed pattern graphs. Since we want to relax a pattern graph so that it is as close to the

initial pattern graph as possible, we introduce three metrics of decreasing importance to

measure the degree of relaxation of a pattern graph. All three metrics take into account

structural and semantic characteristics of the relaxed pattern graph and depend on the ver-

tex split operations applied to the original pattern graph. If an original pattern graph has

an empty answer on an RDF graph, we would like to identify its vertices which contribute

to this condition. These are vertices which if not split, the relaxed pattern graph will keep

producing an empty answer. We call these vertices empty vertices and we provide neces-

sary and sufficient conditions for characterizing them in a pattern graph. Empty vertices are

used to guide the relaxation process so that relaxed pattern graphs with non-empty answers

are produced. We design an algorithm which takes a pattern graph as input and gradually

generates relaxed pattern graphs having non-empty answers. The algorithm returns the

relaxed pattern graphs (and computes their answer on the RDF graph) in ascending order

of relaxation as this is defined by the three relaxation metrics mentioned above. We run

experiments to measure the effectiveness of our ranking of relaxed pattern graphs and the

efficiency of our system in computing relaxed pattern graphs and their answers.

1.4 Cohesive Keyword Queries: As Simple As Traditional Keyword Queries

The structural summary-based approaches described above, though promising, require in-

teraction with the user who has to select clusters of results and possibly navigate in a

clustering hierarchy in order to disambiguate the keyword query and eventually retrieve the

answer relevant to her query intent. We claim that existing techniques to keyword search

on RDF data are not sufficient to produce results of high quality without additional infor-

mation from the user. Current RDF graphs are very large and integrate data from various

application domains. Query keywords on RDF graphs can have not only numerous in-
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Figure 1.4 Result graphs of the query Q = (Andrew Job Gordon Network).

stances of the same type, but also numerous instances of different types. For example, the

keyword job can be the name of different people, the name of an employment agency, a

relationship between a person and his occupation, the name of a property of an entity per-

son, the name of a RDF class etc. These multiple instances generate a multitude of result

graphs corresponding to different interpretations of the user query.

Example 1.3. Consider the keyword query Q = (Andrew Job Gordon Network).

With this query the user is looking for an article authored by Andrew Job on Gordon

Network. Figure 1.4(a) shows a result graph which corresponds to the user intent. Un-

derlined words in a result graph indicate the instances of the keywords of Q. However,

existing algorithms [22, 32, 60, 89, 90, 92] will also compute other result graphs like those

shown in Figure 1.4(b), (c), (d) and (e) which correspond to different undesirable inter-

pretations of the query. These result graphs associate the keywords in a way which is not

the one intended by the user. For instance, the result graph of Figure 1.4(b) represents a

person named Andrew Gordon who has a job of a Network analyst.

Using scoring functions based on statistical information to rank the results might

help but certainly cannot by itself disambiguate the different interpretations and rank on

the top position the result graphs that correspond to the user intent. Indeed, the result graph
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that matches the user intent might be one with low probability which loosely correlates the

keyword instances.

To address this problem, we introduce the concept of cohesive group of keywords

in a query. The keywords of a cohesive group are to be interpreted as forming a cohe-

sive whole. That is, the instances of the keywords outside the group should not “pene-

trate” the subgraph defined by the instances of the keywords of the group in the result

graph. Cohesive groups of keywords are specified naturally and effortlessly by the user

while formulating the query. For instance, the previous example query Q can be written as

((Andrew Job) (Gordon Network)), where parentheses are used to delimit the

cohesive groups (Andrew Job) and (Gordon Network). This cohesive query ex-

cludes the graphs of Figures 1.4(b), (c), (d) and (e) from the set of legal result graphs since,

as we explain in more detail later, they breach the cohesiveness of the specified cohesive

groups. As an example, the keyword instance Job penetrates the subgraph defined by the

instances of the keywords Gordon and Network in the result graph of Figure 1.4(e).

Since result graphs not intended by the user are excluded, the precision of the answer im-

proves. Further, the evaluation time of the query is reduced since the system does not waste

time computing unwanted results. These benefits are obtained thanks to the grouping of the

keywords provided effortlessly by the user.

Cohesive groups can be nested within other cohesive groups in a query. An ex-

ample is the keyword query (((Person (Andrew Job)) (Gordon Network)).

Further, in contrast to flat keyword queries, cohesive keyword queries can contain repeated

keywords provided they occur in different cohesive groups. For instance, the keyword

query ((Andrew Job) job (Network Analyst)). These features of cohesive

queries increase their expressive power and their capacity to narrow down the search to

relevant results by excluding irrelevant ones. It is important to note that the user can nat-

urally specify cohesive groups. In fact, cohesive queries offer more flexibility to the users

and allow them to express queries with a clearer meaning. For instance, the user who is
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looking in a bibliographic data source for a paper authored by Johns Smith and edited by

s Brown can naturally formulate the query ((author (Johns Smith)) (editor

(Johns Brown))). In summary, cohesive queries are intuitive and as simple as flat

keyword queries while retaining both advantages of flat keyword search: the user does not

need to know any query language and he does not need to have knowledge of the structure

of the data sources.

Note that in IR, flat, document-based search engines like Google allow the user

to search for whole phrases (sequence of keywords) by enclosing them between quotes

to improve the accuracy of the search. Cohesiveness queries also aim at improving the

accuracy and execution time but they are different and more flexible than phrase matching

over flat documents since they are designed for data with some form of structure and they

do not impose any order on the keywords. The user naturally groups the keywords in

a cohesive query based on the associations she wants to express on them and she is not

required to know how these keywords are sequenced in the dataset.

In this dissertation, we formally define cohesive keyword queries which involve

cohesive groups of keywords and allow keyword group nesting and keyword replication.

Cohesive queries can better express the user intent. They are as simple as flat keyword

queries and they can be formulated naturally and effortlessly by the user. We provide se-

mantics for cohesive queries on RDF graphs which interprets cohesive keyword groups in

a query as cohesive units. This means that the instances of the query keyword occurrences

which are not in the cohesive group cannot penetrate and be part of the subgraph of a query

result graph representing the cohesive group. We design an algorithm to efficiently eval-

uate cohesive queries. Our algorithm exploits the structural summary of the RDF graph

to compute pattern graphs which are r-radius Steiner graphs with a minimal r. The pat-

tern graphs are structured queries representing alternative interpretations of the cohesive

queries and can be evaluated against the RDF data graph to produce the query results. The

algorithm constructs pattern graphs incrementally excluding early on graphs under con-
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struction which violate the cohesiveness of keyword groups. We ran experiments to assess

the effectiveness of cohesive queries and the efficiency of our algorithm. Our results show

that the pattern graphs of cohesive queries can be computed by our algorithm much faster

than the pattern graphs of flat keyword queries. Cohesive keyword queries considerably

improve the quality of the results compared to flat keyword queries, importantly reducing

the number of pattern graphs returned to the user.

1.5 Diversification of Keyword Search Results

As we have already discussed, keyword queries are ambiguous and allow for multiple in-

terpretations. For instance, a user issuing the query “apple” could be interested in searching

about the fruit “apple,” the American multinational technnology company selling consumer

goods and computer products, or the second largest chartered savings bank in New York

State. If results are returned to the user based on the most plausible interpretation of the

query (in this case “apple” as technology company) then there is an inherent risk of leaving

the user who is interested in “apple” bank or in “apple" fruit unsatisfied. This problem

is known as the over-specialization problem [80]. Diversifying the results retrieved for a

keyword query could be a meaningful solution to this problem. By introducing diversity in

the result set, the search mechanism can maximize the user’s chance of finding at least one

of the retrieved results relevant to her intent [19]. Additionally, even if a keyword query has

a single, clearly defined interpretation, it can still be under-specified to some extent. For

example, a user searching for “apple electronics” may be interested in laptops, desktops, or

the best selling apple electronics, or sale on apple electronics, or service centers for apple

electronics. Therefore, another motive for diversifying search results is to cover different

aspects of the entire result space and enable the user to explore and find desired results [29].

Search result diversification is a well-studied problem in both Information Retrieval

and Recommendation Systems [29, 35]. However, there is a limited amount of work on

diversification of keyword search on RDF graph data. There is a proliferation of RDF
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Figure 1.5 (a) An RDF graph D, (b) The Structural Summary of S.
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Figure 1.6 (a), (b), (c) and (d) are different patterns graphs of the keyword query

Q ={ Johns, Hopkins, Computer}.

repositories in recent years, and keyword search is the most popular technique for querying

linked data on the Web. While ranking ensures the most relevant results are ranked on top

for a given keyword query, it is often the case that the top results tend to be homogeneous,

making it difficult for users interested in less popular aspects to find relevant results. Thus,

result diversity can play a big role in ensuring that the users get a broad view of the different

aspects of the results and in guarantying that most users can find relevant results to their

queries in the top ranks.

As an example, consider the RDF data graph D in Figure 1.5(a) and its structural

summary S in Figure 1.5(b). Consider also the keyword query Q= {Johns, Hopkins,

Computer}. Figures 1.6(a)-(d) show the pattern graphs for Q on S, corresponding to

alternate interpretations of Q. For instance, the pattern graph of Figure 1.6(a) interprets

“Johns” as a student advised by Professor “Hopkins,” a chair of a department whose name

involves “Computer.” The pattern graph of Figure 1.6(d) views “Johns Hopkins” as the

name of a University which has a department whose name involves “Computer.” Every
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pattern graph in Figure 1.6 interprets the query Q differently. However, if one has to select

out of those pattern graphs in Figure 1.6 a subset that balances both diversity and relevance,

it is important to characterize the diversity of a set of pattern graphs. This can be done by

quantifying the semantic dissimilarity of pairs of pattern graphs. In this case, comparing the

pattern graphs of Figures 1.6(a) and 1.6(b), one can see that the keywords in both patterns

graphs have the same semantics, that is , “Johns” is a student, “Hopkins” is a professor

and “Computer” is a department. On the other hand, by comparing the pattern graphs of

Figures 1.6(a) and 1.6(c), one can see that none of the keywords in the two pattern graphs

have the same meaning. Therefore, the set of pattern graphs of Figures 1.6(a) and (c) is

more diverse than the set of the pattern graphs of Figures 1.6(a) and (b).

In this dissertation, we propose a novel technique for diversifying keyword search

results on RDF graph data. We formulate the diversification problem as an optimization

problem over pattern graphs (structured queries) representing alternate interpretations of a

keyword query. This is because, the computation of pattern graphs is cost efficient in com-

parison to the computation of all the relevant result graphs. Our diversification approach

aims at selecting a set of pattern graphs that balances relevance and diversity. Returning

to the users pattern graphs instead of plain result graphs already secures a certain degree

of diversification of the query results since the pattern graphs are clusters of results with

the same structure and semantics. In order to measure the relevance of a pattern graph to a

keyword query, we devise a metric based on the popularity score of individual elements of

the pattern graph. We also present a technique for assessing the semantic distance between

pattern graphs. We design an algorithm that employs greedy heuristics for computing top-k

pattern graphs trading off relevance and diversity. Finally, we implement and experimen-

tally evaluate the efficiency of our algorithm and the effectiveness of our proposed measures

for estimating the relevance and the diversity of a set of pattern graphs.
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1.6 Organization

This dissertation is organized as follows: Chapter 2, reviews the state-of-the-art for key-

word search on RDF data and the various categories of keyword search techniques on both

structured and semi-structured data. Chapter 3, provides the definition of the data model

we adopt and formally introduces different concepts that we extensively use in the disser-

tation. Chapter 4 presents a semantic hierarchical result clustering technique to support

keyword search on RDF data graphs. In Chapter 5, we introduce our approach for keyword

pattern graph relaxation. In Chapter 6, we propose our cohesive keyword query language.

In Chapter 7, the problem of diversification of keyword search results on RDF graph data

is addressed. Finally, Chapter 8 concludes the dissertation and provides direction for future

work.



CHAPTER 2

STATE OF THE ART

This chapter provides a background on keyword search on RDF graph data. It also reviews

the keyword-search based approaches proposed for both structured and semi-structured

data which are most relevant to our work.

2.1 Search on RDF Data

This section briefly discusses the RDF data model and the two major types of search prac-

tices on RDF data.

2.1.1 Resource Description Framework

The Resource Description Framework (RDF) is a data model for representing informa-

tion about various resources in the World Wide Web. Resources are identified using URIs

(Uniform Resource Identifiers)1. RDF consists of W3C2 recommendations that enable the

encoding, exchange and reuse of structured data, providing means for publishing both

human-readable and machine-processable vocabularies. Two possible representations of

RDF data are labeled graphs and triple sets. A triple consists of three elements: the subject,

the predicate and the object. A set of RDF triples forms an RDF graph. The RDF Schema

(RDFS) is a language for defining vocabularies for modeling RDF graphs. The RDFS vo-

cabulary includes concepts (e.g., classes, properties, entities, relationships) which are used

to describe groups of related resources in a domain modeled by an RDF graph. The RDF

graph model adopted in this dissertation is described in Chapter 3 in detail.

1http://labs.apache.org/webarch/uri/rfc/rfc3986.html[RFC3986] (accessed on April 24, 2016)

2http://www.w3.org/ (accessed on April 24, 2016)
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2.1.2 Structured Queries on RDF Data

During the past years, many structured query languages have been proposed for retriev-

ing information from the RDF data model. They include RQL [51], RDQL [83], SeRQL

[16], and TRIPLE [87]. The most noteworthy among all the RDF query languages is

SPARQL [76] which became the official W3C recommendation language for querying

RDF data in 2008. Using the SPARQL query language for RDF graphs, it is possible

to extract information about both the data and the schema. The basic task in SPARQL

query language is to match graph patterns against the RDF data graph. The simplest graph

patterns are triple patterns, which are like RDF triples except that any of the subject, predi-

cate or object position of the triples can hold variables. A query that contains a conjunction

of triple patterns is called a basic graph pattern. A basic graph pattern matches a subgraph

of the RDF data graph when the node or edge labels from the subgraph may be substi-

tuted with the variables of the graph pattern. The syntax of SPARQL follows an SQL-like

select-from-where paradigm.

2.1.3 Keyword Queries on RDF Data

In recent years, a number of papers address keyword search on graph data. However, the ap-

proaches that are proposed for generic graphs cannot be used directly for keyword search

over RDF graph data. This is because the edges of an RDF graph represent predicates,

which can also be matched by the keywords of a keyword query. The approaches pro-

posed for keyword search on RDF data can be classified into two categories: (a) data-based

approaches [30, 31] and (b) schema-based approaches [22, 32, 60, 74, 89, 90, 92]. Data-

based approaches rely on the data graph to produce answers. Although these approaches

generate precise answers, they fail to scale well when the size of the data increases. In

contrast, summary-based approaches rely on a reduced size structural summary extracted

from the data. In order to compute answers, these approaches focus on capturing the in-

terpretations of a keyword query by mapping the keywords to elements of the structural
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summary and constructing pattern graphs. Given that keyword search is ambiguous, these

approaches often exploit relevance feedback from the users in order to identify the users’

intent [22, 47, 89]. A hierarchical clustering mechanism and user interaction at multiple

levels of the hierarchy can be used to facilitate disambiguation of the keyword query and to

support the computation of the relevant results. Such a mechanism is suggested in [6, 67] in

the context of tree data. In this dissertation, a semantic clustering mechanism is proposed in

the context of RDF data [22]. Although summary based approaches proved to have better

performance scalability compared to data-based approaches, they provide an approximate

solution and they might miss relevant results for a given keyword query. As RDF data

graphs are practically schema free, a summary graph extracted from an RDF graph cannot

capture completely all the information in the RDF graph.

In Chapter 5, we provide a pattern graph relaxation technique [23] to address this

issue. Relaxation techniques are studied in [7, 15, 54] in a context different than ours

since they are applied to queries over tree (XML) data. Further, their goals and processes

are different: [7] relaxes weighted tree pattern queries with descendant edges in order to

permit approximate matching on XML data. [15] provides a framework for generating

similar satisfiable queries, when the user tree pattern query is unsatisfiable. [54] relaxes

the MaxMatch semantics [69] of keyword queries on XML data so that they also return

LCA (Lowest Common Ancestor) nodes which are not SLCA (Smallest Lowest Common

Ancestor) nodes. In contrast, we deal with pattern graphs and RDF graph data and we relax

pattern graphs by splitting vertices in order to produce and rank relaxed patterns graphs

that are semantically close to the original pattern graph. Though the above approaches are

promising, they require interaction with the user who has to select clusters of results and

possibly navigate in a clustering hierarchy.

In this dissertation, we claim that existing techniques to keyword search on RDF

data are not sufficient for producing results of high quality without additional information

from the user. This is because, unlike structured queries, traditional keyword queries do
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not provide a way to the user to express his intent. To address this issue, we introduced

in Chapter 6 cohesive keyword queries on RDF data [24]. Previous research work tries to

retain the expressive power of structured queries while incorporating the flexibility of flat

keyword queries [65, 75]. In [65], an entity relationship query language over unstructured

document data is introduced. Unlike our cohesive keyword query language which does not

follow a strict structure and allows a user to group keywords and terms, the query language

in [65] follows a strict structure and allows keywords only to express entity properties and

relationships. In [75], a keyword-based structured query language is presented, to be used

over structured knowledge bases extracted from the Web. The main goal of this work is

to extract entities from the knowledge base (possibly in conjunction with the relevant text

documents). Although the desire of trading off flexibility and convenience for expressivity

is common with our work, the structured queries in [75] are schema dependent: the user

needs to characterize some keywords as relations in order to build nested structured queries

beyond flat keyword queries. In contrast, in our query language, nesting is incorporated in

queries based on the desire of the user to form cohesive groups irrespectively of any schema

information. Cohesive queries were also introduced in [27]. However, those queries are for

tree-structured data. Therefore, their semantics is different than ours as it does not involve

any semantic information.

All the proposed techniques for keyword search on RDF graphs mentioned above

return the most relevant results, in the form of graphs or trees. The relevance of the results

in these cases are weighed in terms of: (a) content similarity between the elements that

comprise a result and the query terms, and (b) result compactness (smaller trees or graphs

are considered more relevant). As a consequence, the result sets that are returned to the

users are often characterized by a high degree of redundancy. Furthermore, significant in-

formation might be compromised since graph paths connecting two entities that denote a

significant relation between them might be omitted to satisfy the compactness requirement.

Moreover, general graph-based approaches do not consider the rich structure and seman-



23

tics provided by the RDF data model. An effective RDF keyword search method should

also give equal importance to the RDF properties (edges) as they might provide significant

information about the relations between the entities being searched. A way of address-

ing these drawbacks is to introduce the step of diversification into the result retrieval and

ranking process in order to return to the users a result set which is more meaningful and

informative.

The diversification problem has been extensively studied both in Information Re-

trieval [80] and recommendation systems [94, 95, 96]. The goal is to solve the over-

specialization problem [29] where a highly homogenous set of results is returned to the

user due to relevance-based ranking and/or personalization. Result diversification is a way

to minimize user dissatisfaction by providing a diverse set of results. In general, the diver-

sification problem is defined as selecting a subset of the retrieved result set with k results

such that the diversity among these k results is maximized. This is achieved in different

ways. In [17], the concept of maximal marginal relevance (MMR) is used to tradeoff be-

tween relevance and novelty. In [35] an axiomatic approach for result diversification is

adopted. The concept of query expansion is employed in [71] for search result diversifica-

tion. Reference [29] is a review of different definitions of diversity, and the algorithms and

evaluation metrics for diversification. It categorizes diversity definitions as content-based

[96], novelty-based [20, 95] and coverage-based [2]. Most of these approaches perform the

diversification as a post-processing or re-ranking step of candidate result retrieval. Unfor-

tunately, in the context of databases, the post-retrieval diversification process can incur a

huge computation cost since the number of candidate results can be extremely large for a

keyword query. In contrast, our diversification process is part of a query disambiguation

phase which takes place before extracting any search results. We compute pattern graphs

corresponding to alternate interpretations of a given keyword query since they offer clear

semantics and quality information for diversification. Additionally, this way we avoid, the

computation overhead of computing all relevant results.
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There are a few contributions on search result diversification on structured and

semi-structured databases which include [13, 25, 38, 64, 70]. However, diversifying search

results on RDF data is an open problem. Previous techniques cannot be directly applied in

this context as the semantic information in RDF data graphs requires different criteria and

methods. In this dissertation, we exploit structural and semantic characteristics of pattern

graphs for capturing the relevance of a pattern graph to a query, and also the similarity and

dissimilarity between pattern graphs. We use these measures to generate a set of pattern

graphs for a keyword query which trades off relevance and diversity.

2.2 Keyword Search Approaches on Structured and Semi-structured Databases

This section provides a brief survey on the literature related to relevant keyword search

approaches introduced in the context of both structured and semi-structured databases.

2.2.1 Form of the Answer

When a keyword query is issued to a Web search engine, a ranked set of Web pages con-

taining the keywords in the query are returned to the user as result. In contrast, keyword

queries on structured and semi-structured data return results which have structure. The

structure of these results reflect semantic information about how the query keywords re-

late to each other and provide possible interpretations of the results. These structured

results are generally a substructure of the underlying database and are in form of a tree

[3, 12, 28, 34, 39, 42, 43, 45, 48, 66, 72, 73, 77, 79], or a graph [50, 63, 78, 86] or just a

node/entity [1, 9, 56, 61, 91]. Some approaches in the context of RDF graph data compute

structured queries corresponding to different interpretation of the keyword query and allow

the user to choose among them the one that expresses his query intent [88, 89]. In this dis-

sertation, we defined a form of result that has graph structure and we cluster result graphs

into pattern graphs. These pattern graphs are structured queries corresponding to different
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possible interpretations of the keyword query [22, 23, 24].

2.2.2 Schema-agnostic Approaches

Schema-agnostic approaches on structured databases model tuples to nodes and edges to

primary-foreign key dependencies [12, 9, 39, 45, 48, 63]. In RDF, the data graph is im-

plicitly formed from the RDF triples [56, 63, 91]. These approaches explore the data graph

and retrieve subtrees/ subgraphs connectinng all the keywords of the query. It is to be

noted that in contrast to structured databases, in a semi-structured database setting there

are a lot of work which adopt a schema-agnostic approach. This is expected since un-

like semi-structured data, the data stored in relational databases must adhere to a specific

schema. The drawbacks of schema-agnostic techniques are that they are prone to produce

a plethora of candidate results posing a challenge in identifying relevant ones and they do

not scale satisfactorily with a growing size of the data and/or the number of keywords in a

query. Considering these shortcomings of schema-agnostic techniques in this dissertation

we adopted schema-aware techniques for effective keyword search on RDF graph data.

2.2.3 Schema-aware Approaches

Schema-aware approaches on relational databases model the data as a graph based on their

schemas. In the literature of structured databases schema-aware approaches are studies

and adopted extensively [3, 42, 43, 72, 66, 73, 77, 79]. In RDF, schema-aware approaches

create a structural summary by mapping RDF classes to nodes and the properties between

the entities of two classes to edges between these class nodes labeled by the property names

[61, 88, 89]. The process of keyword query evaluation with schema-aware approaches

involve two phases. The first phase involves finding the schema elements that matche the

query keywords and generating the schema for all possible possible results of the query in

the form of pattern graphs. These pattern graphs can be expressed as structured queries
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(e.g., SPARQL). The second phase consists of evaluating these structured queries over

the data graph to retrieve query answers. In this dissertation, we adopted schema-aware

approach for keyword search on RDF graph data as the structural summary of an RDF

graph is typically much smaller that its corresponding data graph. This approach allows

for an efficient exploration of the structural summary and generation of all possible pattern

graphs (structured queries). Furthermore, we take advantage of relevance feedback from

the user in order to disambiguate imprecise keyword queries and to return high quality

relevant results [22, 23].

2.2.4 Keyword Query Evaluation Algorithms

Several algorithms were proposed to explore the data and generate tree or graph structured

results connecting the keywords in a query. In [12], a backward search algorithm, called

BANK is presented for finding Steiner trees. The Steiner tree problem is superficially

similar to the minimum spanning tree problem. For a given set of vertices, a Steiner tree

interconnects these vertices by paths of shortest length, where the length is the number of

edges. The difference between the Steiner tree problem and the minimum spanning tree

problem is that, in the Steiner tree problem, extra intermediate vertices and edges may be

added to the tree in order to reduce the length of the spanning tree. These new vertices

introduced to decrease the total length of connection are known as Steiner points or Steiner

vertices. The problem of finding Steiner trees is NP-complete. Different techniques are

used to work around NP-completeness. In [28], a dynamic programming approach appli-

cable to only few keywords and having an exponential time complexity is employed. In

[34], a polynomial delay algorithm is introduced. The algorithm in [48] produced trees

rooted at distinct vertices. This algorithm was supplemented by BLINK [39] with an effi-

cient indexing structure. Tree-based methods produce succinct answers but answers from

graph-based methods are more informative.

A recent graph-based approach [63] computes all possible r-radius Steiner graphs
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and indexes them. An r−radius Steiner graph is a graph, which has a connecting vertex

and the length of the path from the connecting vertex to any of the vertices in the graph

is r or less. The method in [63] is prone to produce redundant results since it is possible

that a highly ranked r-radius Steiner graph is included in another Steiner graph having a

larger radius. The algorithm in [78] finds multi-centered subgraphs called communities

containing all the keywords, such that there exists at least one path of distance less than or

equal to Rmax between every keyword instance and a center vertex. Later in [50], r-cliques

containing all the keywords are found such that the distance between any two keyword

matching vertices is no more than r. Finding r-clique with the minimum weight is an

NP-hard problem. Hence, the authors provided an algorithm with polynomial delay to

find the top-k r-cliques where r is an input to the algorithm. Predicting an optimal r for

producing r-cliques is a challenge because it is possible that there exists no clique with

that r or less. Unlike traditional graph-based keyword searh, on RDF graphs, keywords

can match both a vertex and an edge label of the graph [89, 30]. In this dissertation we

define meaningful subgraphs of the RDF data graph as results, and adopted and extended

the r-radius Steiner graph algorithm in the context of RDF graphs to generate structured

queries over the structural summary of the data graph [22, 23, 24].

2.2.5 Relevance Assessment of the Results

It is always a challenge to identify among a plethora of candidate keyword search re-

sults, the ones those are relevant to the user. This is because keyword search is inher-

ently ambiguous. Various ranking schemes are proposed in the literature, which consider

both the properties of the data nodes (e.g., tf/idf and complex measures adopted from IR,

node/edge weight, ranking in the style of page rank) and the properties of the whole query

result (e.g., path length, number of nodes/edges, weight of nodes/edges, size normaliza-

tion) [3, 12, 34, 39, 42, 43, 45, 48, 63, 66, 72, 89, 91] in order to sort the list of the retrieved

results hoping that only the top results in the sorted list are relevant to the user. In [12, 45],
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the results are ranked using the notion of proximity coupled with a notion of prestige of

nodes based on incoming links, similar to Web search techniques. Contributions such as

[39, 63, 66, 72, 89] employ a number of IR measures to rank the results. IR techniques

built-in in RDBMS are exploited by [39, 72], while in [66] they are extended to include

novel and more fine-grained scoring measures (e.g., tree normalization, inter-document fre-

quency normalization, different scoring schemes for schema and value matching keyword

term).

A novel index which materializes tf/idf-based IR rankings is proposed by [63]. In

contrast, [89] employs the Lucene index to textual ranking. The authors of [72] consider

results which are relevant to any subset of the query keywords. Some approaches [66, 72]

use non-monotonic functions, in which the score of an answer is independent to its compo-

nents for top-k query processing. In this dissertation, we proposed novel ranking techniques

considering both structural characteristics and semantics of RDF data to rank the retrieved

results. We adapted the ranking techniques discussed in [89] to our context considering sta-

tistical information about the data [22, 24]. We also introduced a new paradigm for ranking

the relaxed pattern graphs obtained by relaxing an original pattern graph chosen by the user

as the most relevant to his intent [23].
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RDF DATA MODEL AND QUERY LANGUAGE SEMANTICS

In this chapter, we formally define the RDF data model that we have considered in this dis-

sertation. We also introduce and provide definitions for different novel concepts (e.g., key-

word matching constructs, query signature, inter-construct connections). We define query

results as meaningful subgraphs of the data graph. Furthermore, we discuss and define the

extraction of structural summary graph from the RDF data graph. Finally, we introduce the

concept of pattern graphs which are structured queries on the structural summary and they

represent different interpretations of a keyword query.

3.1 RDF Data Model

Resource Description Framework (RDF) provides a framework for representing informa-

tion about web resources in a graph form. RDF vocabulary includes elements, that can

be broadly classified into Classes, Properties, Entities and Relationships. All the elements

are resources. RDF has a special class, called Resource class and all the resources that are

defined in an RDF graph belong to the Resource class. Our data model is an RDF graph

defined as follows:

Definition 3.1.1 (RDF Graph). An RDF graph is a quadruple G = (V,E,L, l) where:

V is a finite set of vertices, which is the union of three disjoint sets: VE (representing

entities), VC (representing classes) and VV (representing values).

E is a finite set of directed edges, which is the union of four disjoint sets: ER (inter-

entity edges called Relationship edges which represent entity relationships), EP (en-

tity to value edges called Property edges which represent property assignments), ET

(entity to class edges called type edges which represent entity to class membership)

29
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Figure 3.1 An RDF graph.

and ES (class to class edges called subclass edges which represent class-subclass

relationship ).

L is a finite set of labels that includes the labels “type,” “subclass” and “resource.”

l is a function from VC ∪VV ∪ER∪EP to L. That is, l assigns labels to class and value

vertices and to relationship and property edges.

Entity and class vertex and edge labels are Universal Resource Identifiers(URIs).

Vertices are identified by IDs which in the case of entities and classes are URIs. Every

entity belongs to a class. Figure 3.1 shows an example RDF graph (a subgraph of the

Jamendo Dataset 1).

3.2 Queries and Answers

A query is a set of keywords. The answer of a query Q on an RDF graph G is a set of sub-

graphs (result graphs) of G, where each result graph involves at least one instance of every

keyword in Q. A keyword instance of a keyword k in Q is a vertex or edge label containing

1http://dbtune.org/jamendo/ (accessed on April 24, 2016)
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k. In order to facilitate the interpretation of the semantics of the keyword instances, every

instance of keyword in a query is matched against a small subgraph (matching construct)

of the graph G which involves this keyword instance. Each matching construct provides

a deeper insight about the context of a keyword instance in terms of classes, entities and

relationship edges. We link one matching construct for every keyword in the query Q

through edges (inter-construct connection) and common vertices into a connected compo-

nent to form a result graph. A query Q can have multiple signatures, representing different

interpretations for the keywords. Each signature can generate multiple result graphs.

Next, we provide definitions for all the important concepts of keyword matching

constructs, query signature, an inter-construct connection and result graph in order to for-

mally define a query answer.

Definition 3.2.1 (Matching Construct). Given a keyword k of a query and an RDF graph

G, for every instance of k in G, we define a matching construct as a small subgraph of G.

If the instance i of k in G is:

• the label of a class vertex vc ∈ VC, the matching construct of i is the vertex vc (class

matching construct).

• the label of a value vertex vv ∈ VV , the matching construct of i comprises the value

vertex vv, the corresponding entity vertex, and its class vertices along with the prop-

erty and type edges between them (value matching construct).

• the label of relationship edge er ∈ ER, the matching construct of i comprises the

relationship edge er, its entity vertices and their class vertices along with the type

edges between them (relationship matching construct).

• the label of property edge ep ∈ EP, the matching construct of i comprises the property

edge ep, its value and the entity vertices, and the class vertices of the entity vertex

along with the type edges between them (property matching construct).
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Figure 3.2 Matching constructs (a) class (b) value (c) relationship (d) property.

Figures 3.2(a), (b), (c) and (d) show a class, value, relationship and property match-

ing construct, respectively, for different keyword instances in the RDF graph of Figure

3.1. Underlined labels in a matching construct denote the keyword instances on which the

matching construct is defined (called active keyword instances of the matching construct).

Definition 3.2.2 (Query Signature). Given a query Q and an RDF graph G, a signature of Q

is a function from the keywords of Q that matches every keyword k to a matching construct

of k in G.

Figures 3.2(a), (b), (c) and (d) show a query signature for the query {Playlist, Re-

birth, tagged, name}. Note that a signature of a query Q can have less matching constructs

than the keywords in Q, since one matching construct can have more than one active key-

word instance.

Definition 3.2.3 (Inter-construct Connection). Given a query signature S, an inter-construct

connection between two distinct matching constructs C1 and C2 in S is a simple path aug-

mented with the class vertices of the intermediate entity vertices in the path (if not already

Figure 3.3 Inter-construct connection.



33

in the path) such that: (a) one of the terminal vertices in the path belongs to C1 and the

other belongs to C2, and (b) no vertex in the connection except the terminal vertices belong

to a construct in S.

Figure 3.3 shows an inter-construct connection between the matching constructs

for keywords Tag and Cicada in the RDF graph of Figure 3.1. The matching constructs

are shaded and the active keyword instances are underlined in the figure. In Figure 3.3 the

inter-construct connection is circumscribed by a dashed line and it consists of the vertices

Tag, T 1, R2 and M1 where R2 is augmented with its class vertex Record.

In order to define result graph,s we need the concept of acyclic subgraph with re-

spect to a query signature. Let Gs be a subgraph of the RDF graph that comprises all the

constructs in the signature of a query. We construct an undirected graph Gc as follows:

there is exactly one vertex in GC for every matching construct and for every vertex not in a

matching construct in Gs. Further: (a) if v1 and v2 are non-construct vertices in Gc, there

is an edge between v1 and v2 in Gc iff there is an edge between the corresponding vertices

in Gs, (b) if v1 is a construct vertex and v2 is a non-construct vertex in Gc, there is an edge

between v1 and v2 in Gc iff there is an edge between a vertex of the construct corresponding

to v1 and the vertex corresponding to v2 in Gs, and (c) if v1 and v2 are two construct ver-

tices, there is an edge between them in Gc iff there exists in Gs, an edge between a vertex

of the construct corresponding to v1 and a vertex of the construct corresponding to v2 that

edge does not occur in any one of the constructs. Graph Gs is said to be connection acyclic

if there is no cycle in Gc.

Consider the query Q = {Cicada, musical, Playlist} on the RDF graph G of Figure

3.1. Figure 3.4 shows two subgraphs of G which comprise a signature of Q on G. The

active keyword instances are underlined and the corresponding matching constructs are

shaded. One can see that the subgraph in Figure 3.4(a) is connection cyclic while the other

subgraph Figure 3.4(b) is connection acyclic.

Definition 3.2.4 (Result Graph). Given a signature S for a query Q over an RDF graph G, a
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Figure 3.4 (a) Invalid result graph (b) Valid result graph (c) and (d) result graphs with

overlapping matching constructs.

result graph of Q for S is a connected connection acyclic subgraph GR of G which contains

only the matching constructs in S and possibly inter-construct connections between them.

Therefore, a result graph of a query contains all the matching constructs of a sig-

nature of the query and guarantees that they are linked with inter-construct connections

into a connected whole. Note that a result graph might not contain any inter-construct con-

nection (this can happen if every matching construct in the query signature overlaps with

some other matching construct). However, if inter-construct connections are used within

the result graph, no redundant (cycle creating) inter-construct connections are introduced.

Consider the query Q = {Authentic, Rebirth} on the RDF graph G of Figure 3.1.

Figure 3.4(c) shows a result graph for Q in G that is formed by overlapping matching

constructs without any inter-construct connections. The result graph in Figure 3.4(d) has

the same overlapping matching constructs but it also includes an inter-contruct connection

between them. This is permissible since this subgraph is connection acyclic.

We now define the answer of a query Q.

Definition 3.2.5 (Query Answer). The answer of a query Q on an RDF graph G is the set

of result graphs of Q on G.
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3.3 The Structural Summary: Summarized RDF Data

We formally introduce in this section the structural summary of a data graph. Intuitively,

the structural summary of an RDF graph G is a special type of graph which summarizes

the data graph showing vertices and edges corresponding to the class vertices and property,

relationship and subclass edges in G. A structural summary graph is typically much smaller

than its underlying RDF data graph.

Definition 3.3.1 (Structural Summary). The structural summary of an RDF graph G(V,E,L, l)

is a vertex and edge labeled graph G′(V ′,E ′,L′, l′) where

• V ′ =V ′C∪V ′v where:

(a) V ′C is a set of class vertices which has a one to one mapping f onto VC,

(b) V ′v is a set of value vertices which contains a vertex for every distinct pair (c, lp)

such that there exists an entity of class c in the RDF graph G having a property

labeled by lp.

A class vertex c in VC is labeled by the label of the corresponding class vertex f (c)

in G.

• E ′ = E ′p∪E ′r ∪E ′s where:

(a) E ′p is a set of edges from vertices in V ′c to vertices in V ′v such that there is an edge

(c,v) ∈ E ′p labeled by lp iff there is an entity of class f (c) in G which has a property

edge labeled by lp,

(b) E ′r is a set of edges from a vertex in V ′C to another vertex in V ′C such that there is

an edge (c1,c2) ∈ E ′r labeled by lr iff there is an edge from an entity of f (c1) to an

entity of f (c2) in G labeled by lr.

(c) E ′s is a set of edges from a vertex in V ′C to another vertex in V ′C such that there is

an edge (c1,c2) ∈ E ′s labeled by subclass iff there is an edge from f (c1) to f (c2) in

G labeled by subclass.

• L′ is the set of labels of vertices in V ′ and edges in E ′.
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(d)

(e)

Figure 3.5 (a) Structural Summary, (b), (c), (d) and (e) are value, class, property, and

relationship MCs, respectively.

• l′ is a function assigning labels to vertices and edges in G′ as already described above.

Figure 3.5(a) shows the structural summary for the RDF graph G of Figure 3.1.

Similarly to matching constructs on the data graph we define matching constructs on the

structural summary and we refer to them as MC. However, structural summaries do not

have entity vertices. Therefore, an MC of a keyword on a structural summary possesses

one distinct entity variable vertex, for every class vertex labeled by a distinct variable. We

formally define MC as follows:

Definition 3.3.2 (Matching Construct on Structural Summary). A matching constructs on

structural summary (MC) for a keyword in a query Q is a graph similar to a matching

construct on the data graph for the same keyword, but with the following two exceptions:

(a) the labels of the entity vertices in the property, relationship and value matching con-

structs over the data are replaced by distinct variables in the MC. These variables are

called entity variables and they range over entity labels.

(b) The labels of the value vertices in the property matching constructs over the data are

replaced by distinct variables. These variables are called value variables and they range

over value labels in the RDF graph.

Figures 3.5(b), (c), (d), and (e) show the value, class, property, and relationship

MCs for different keyword instances on the structural summary of Figure 3.5(a) for the
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Figure 3.6 Query Pattern Graph.

RDF graph G of Figure 3.1. The underlined label in every MC determines the keyword

instance for which the MC is defined.

3.4 Pattern Graphs: Structured Queries on Structural Summary

Pattern graphs represent different interpretations of the imprecise keyword query. They are,

in fact, structured queries that can be evaluated against the RDF graph data to compute the

keyword query answer. Pattern graphs are constructed over the structural summary. They

comprise MCs for every keyword in the query and the connections between them without

forming any cycle, on the structural summary.

Definition 3.4.1 (Pattern Graph). A (result) pattern graph for a keyword query Q is a graph

similar to a result graph for Q, and with the same keyword instances, but with the following

two exceptions:

(a) the labels of the entity vertices in the result graph, if any, are replaced by distinct entity

variables in the pattern graph.

(b) The labels of the value vertices are replaced by distinct value variables whenever these

labels are not the keyword instances in the result graph.

Figure 3.6 shows an example of a pattern graph, for the keyword query Q = {Ci-

cada, Rebirth, musical}. X , Y and Z are entity variables.

We will be using these definitions of the RDF data model, queries and answers, the

structural summary and pattern graphs in all the following chapters of the dissertation.



CHAPTER 4

EXPLOITATION OF SEMANTIC RESULT CLUSTERING

This chapter introduces the semantic clustering hierarchical system that we have developed

to address the typical problems of keyword search discussed in Chapter 1. This system is

built on the RDF data model described in Section 3.1 and exploits the structural summary

(Section 3.3) of the RDF data graph. Our hierarchical system comprises two levels. The

matching constructs of the query keywords on the structural summary of the RDF data

graph are the top level hierarchy components. The second level of the hierarchy consists of

pattern graphs (Section 3.4). These pattern graphs are computed over the structural sum-

mary, strictly consisting of one matching construct for every keyword in the keyword query

without forming any cycle. We present in this chapter an algorithm for computing pattern

graphs on the structural summary, followed by a detailed description of our clustering hi-

erarchical system. A user can navigate through our hierarchy system and provide feedback

to enable the system to identify the most relevant pattern graph that represents his intent.

On selection of the relevant pattern graph by the user, the system evaluates the pattern

graph against the RDF data graph and returns result graphs to the user. Finally, we report

the results of the experiments conducted to evaluate the effectiveness of our approach and

efficiency of the algorithm in generating pattern graphs.

4.1 An Algorithm for Computing Query Pattern Graphs

Our algorithm computes r-radius Steiner pattern graphs. The r-radius Steiner graph com-

putation is inspired by the algorithm of [63]. However, unlike that algorithm, our algorithm

allows the keywords to match the edge labels of the graph.

Our algorithm is shown in Algorithm 1. It takes as input the structural summary G′

of a data graph and a signature S of a query Q on G′ (the set of MCs for the keywords of

38
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Algorithm 1 : Query Pattern Graphs Computation

Input: S: signature, G′: structural summary.

Output: P: set of pattern graphs.

1: K ← extract distinct class vertices from S;

2: A ← adjacency matrix encoding class vertices V ′C and rel. edges E ′R in G′;
3: r← 1; ⊲ radius of the Steiner graph

4: P← /0;

5: C ← /0; ⊲ set of connecting vertices

6: while C = /0 do

7: for all rows i ∈A do

8: conn← A (i,0); ⊲ adding class id to set conn

9: for all cols j ∈A do

10: if A (i, j) 6= /0 then

11: conn = conn∪ (A (0, j)); ⊲ adding class id to set conn

12: if K ⊆ conn then

13: C ←A (i,0); ⊲ a connecting node is found

14: P← GeneratePattern(G′ ,r,S ,A (i,0));
15: if P /∈P then

16: P←P ∪P;

17: conn← /0;

18: if C = /0 then

19: r=r+1;

20: A ′← modify adjacency matrix A to represent how the class vertices are connected to

each other at a distance less than or equal to r;

21: A ←A ′

Q on G′). It produces as output r-radius Steiner query pattern graphs on G′ that contain S,

and whose radius r is minimum.

Every MC in S is associated with one or two class vertices. Set K is initialized

with all the class vertices in S. The adjacency matrix A is a square matrix of order n+1,

where n is the number of class vertices in G′. The first row and column of A record the

class identifiers. A (i, j) holds information about the relationship edges connecting the

classes A (i,0) and A (0, j). Initially the algorithm tries to find Steiner pattern graphs with

radius r = 1. If no graph is found, r is gradually increased. Sets P and C represent the

data structures recording the pattern graphs and their corresponding connecting vertices,

respectively. Procedure GeneratePattern generates the pattern graphs using the information

recorded about the relationship edges between the connecting vertex and the class vertices

in K and the MCs in S.
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4.2 Semantic Hierarchical Clustering and Ranking

We now describe our result clustering hierarchy and how the user navigates through the

hierarchy and pattern graph ranking.

Semantic Hierarchical Clustering. The hierarchy has two levels on top of the result graph

layer. The pattern graphs of a query Q on an RDF graph G define a partition of the result

graphs of Q on G. The pattern graphs constitute the first level of the clustering hierarchy.

Multiple pattern graphs can share the same signature. The signatures determine a partition

of the pattern graphs of Q on G. They, in turn, define a partition of the results which is

coarser than that of the pattern graphs. The signatures constitute the second (top) level of

the hierarchy.

Hierarchy Navigation. In order to navigate through the hierarchy after issuing a query the

user starts from the top level. The top level may have numerous signatures. However, the

user does not have to examine all the signatures. Instead, she is presented with the MC

list for one of the query keywords. We describe below how this list of MCs is ranked. As

mentioned earlier, the MCs of a keyword provide all the possible interpretations for this

keyword in the data. The user selects the MC that she considers relevant to her intent.

Subsequently, she is presented with the MC lists of the other query keywords, though some

of the MC lists can be skipped. This can happen if the user selects an MC which involves

more than one keyword instances that she wants to see combined together in one MC. Once

MCs for all keywords have been selected, that is, a query signature has been determined,

the system presents a ranked list of all the pattern graphs that comply with the signature.

The user chooses the pattern graph of her preference which is evaluated by the system. The

result graphs are returned to the user.

Ranking. The MCs for a keyword are ranked in an MC list based on the following rules:

(a) MCs that involve more than one active keyword instances are ranked first in order of

the number of active keyword instances they contain, (b) class MCs, relationship MCs and
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property MCs are ranked next in that order, (c) value MCs follow next and are ranked in

descending order of the frequency of their value. The value frequency f v
m of a value MC

m with property p, class c and value (keyword) v is the number nv
p,c of occurrences of the

value v in matching constructs involving p and c in the data graph divided by the number

np,c of occurrences of property matching constructs in the data graph involving p and c.

That is,

f v
m = nv

p,c/np,c

This ranking of the MCs favors MCs with multiple keyword instances based on

the assumption that keywords that occur in close proximity are more relevant to the user’s

intent. Further, it favors MCs whose active keyword matches a schema element (class,

relationship or property), favoring most class MCs which have unique occurrences in the

data graph. Finally, value MCs are ranked at the end since they are more specific. The

value frequency of a value MC reflects the popularity of this MC in the data. Therefore,

value MCs with high value frequency are ranked higher than value MCs for the same value

with low value frequency.

The pattern graphs the system ranks share the same signature. Thus, they are r-

radius graphs with the same r. In almost all the cases they have the same number of

edges and they differ only in the relationship edges which are not part of any MC. For

this reason, the pattern graphs are ranked in descending order of their connecting edge

frequency defined next. Given a pattern P, its connecting edge frequency, fc(P), is the sum

of the number ne occurrences in the data graph of the relationship edges e in P that do

not occur in an MC in P divided by the total number |ER| of relationship edges in the data

graph. That is, if Ec is the set of these relationship edges in P,

fc(P) = ∑
e∈Ec

ne/|ER|

In order to rank MCs and pattern graphs, our system needs statistics about value
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MCs and their property edges and about connecting relationship edges in pattern graphs.

This information is precomputed and stored with the structural summary when this one is

constructed. Therefore, no access to the data graph is needed.

4.3 Experimental Evaluation

We implemented our approach and ran experiments to evaluate our system. The goal of our

experiment is to assess: (a) the effectiveness of our clustering approach, (b) the efficiency

of our techniques in providing suggestions to the user and in obtaining results from the

selected pattern graphs in real time. It is not meaningful to run experiments to measure

precision and recall since our approach exploits relevance feedback and returns all and

only the results which are relevant to the user intent (perfect precision and recall).

4.3.1 Dataset and Queries

We use Jamendo, a large repository of Creative Commons licensed music. Jamendo is a

dataset of 1.1M triples and of 85MB size containing information about musicians, music

tracks, records, licenses of the tracks, music categories, track lyrics and many other details

related to them. Its structural summary was extracted and stored in a relational database.

Experiments are conducted on a standalone machine with an Intel i5-3210M @ 2.5GHz

processors and 8GB memory.

Users provided different queries on the Jamendo dataset and navigated through our

hierarchical clustering system to select a relevant MC (for every keyword) and a relevant

pattern graph (when more than one were proposed by the system for the selected MCs). We

report on 10 of them. The queries cover a broad range of cases. They involve from 3 to 7

keywords. Table 4.1 shows the keyword queries and statistics about them. For every query

it shows the total number of keyword instances in the data graph (#I), the number of MCs

(for all the keywords) in the structural summary (#MC), and the total number of signatures
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Table 4.1 Queries used in the Experiments and their Statistics

Query keywords #I #MC #S

1 Track Obsession Divergence format title mp32 699 29 2,646

2 biography guitarist track lemonade 633 18 216

3 Knees Cicada recorded_as 59 7 9

4 sweet recorded_as Signal onTimeLine 104734 177 17 48

5 Track Nuts chillout ACExpress 618 21 252

6 Mako La deux date love time 2846 36 24,300

7 Fantasie recorded_as factor published_as format date title 145 25 588

8 Fantasie recorded_as Performance Paure 68 8 8

9 Briareus Vampires Infirmary Cool 154 18 288

10 Fantasie text Paure Document 144 13 42

(#S). As we can see, a query can have many pattern graphs (their number is greater than or

equal to that of the signatures). However, thanks to our hierarchical clustering approach,

the user has to examine only one or at most two of them. Further, exploiting our ranking of

the MCs, the user has to examine only a fraction of the MCs for every query.

4.3.2 Effectiveness of Hierarchical Clustering

In order to measure the retrieval effectiveness of our hierarchical clustering, we adapted the

reach time metric used in [55, 67]. The reach time sets forth to quantify the time spent by

a user to locate the relevant results. In our case, the relevant results are represented by the

relevant pattern graph. The relevant results in terms of subgraphs of the data graph can then

be retrieved by evaluating the pattern graph against the database. For simplicity, we assume

that the user always selects one relevant pattern graph. We employ different versions of

reach time in two different settings: when the components (MCs and pattern graphs) are

ranked, and when they are not. rtavg and rtmax apply to the case the components are not

ranked. rtavg (resp. rtmax) denotes the average (resp. maximum) number of components the

user needs to examine in order to retrieve the relevant pattern. rtrank denotes the number of

components the user examines in order to retrieve the relevant pattern when the components

are ranked. For instance, if a query has k keywords and the user needs to examine mi of the



44

Figure 4.1 Reach times of the two clustering approaches.

ranked MCs for keyword i and p of the ranked pattern graphs for the selected MCs,

rtrank =
k

∑
i=1

mi + p

Figure 4.1 shows the reach times for the queries of Table 4.1.

As one can see, the user has to examine on the average a small number of com-

ponents even for queries with many keywords. Further, when the components are ranked,

rtrank is smaller than rtavg in most cases and never comparable to rtmax. This demonstrates

the feasibility of our hierarchical clustering system and the quality of the component rank-

ing process.

4.3.3 Efficiency of the System

In order to asses the efficiency of our system, we measured the time needed to compute

the ranked list of MCs for the query keywords and the time needed to evaluate the selected

pattern graphs.

Figure 4.2(a) shows the total time (totalMC) needed to compute and rank the MCs
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Figure 4.2 (a) Time to compute the MCs for the query keywords (b) Evaluation time for

the selected pattern graphs.

for the keyword queries. It also shows the shortest(minMC) and the longest (maxMC) time

needed to compute the rank list of MCs of a keyword in a given query. The list of MCs for

the first keyword in the query is presented to the user for selection as soon as it is computed.

The plot displays interactive time for the all the queries which do not delay the selection

process. The time needed to compute the pattern graphs on the structural summary after the

MCs for the query keywords are selected by the user are insignificant and are not displayed

here. This is expected since the pattern graphs are computed using exclusively the structural

summary whose size is very small compared to the size of the data.

Figure 4.2(b) displays the time needed to evaluate the selected pattern graphs on

the data graph. This diagram again shows interactive times even though it is a prototype

system and no optimizations have been applied.

4.4 Conclusion

We have presented a novel approach to address the problems related to keyword search on

large RDF data. Our approach hierarchically clusters the result graphs and leverages rele-

vance feedback from the user. In order to form the clustering hierarchy, we use matching

constructs and pattern graphs which are subgraphs representing semantic interpretations
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for keywords and queries, respectively. We presented an algorithm to efficiently compute

r-radius Steiner pattern graphs. All hierarchy components are computed efficiently on the

structural summary without accessing the (much larger) data graph. We presented a tech-

nique that ranks the hierarchy components based on their structural and semantic features

and occurrence frequencies. Our approach allows the user to explore only a tiny portion of

the clustering hierarchy in selecting the relevant graph patterns supported by the component

ranking. The experimental evaluation of our approach shows its feasibility by demonstrat-

ing short reach times to the relevant pattern graphs and efficient computation of the relevant

result graphs on the data graph.



CHAPTER 5

KEYWORD PATTERN GRAPH RELAXATION

In Chapter 1, we have discussed the benefits of structural summary-based approaches for

keyword search on RDF data and also identified their drawbacks. In this chapter, we ad-

dress the shortcomings of structural summary-based approaches while still leveraging the

structural summary for keyword query processing on RDF data. We present a novel ap-

proach which combines the use of the structural summary and the user feedback with a

relaxation technique for pattern graphs. We leverage pattern graph homomorphisms to de-

fine relaxed pattern graphs that are able to extract more results potentially of interest to the

user. We introduce an operation on pattern graphs and we prove that it is complete, that is,

it can produce all relaxed pattern graphs. To guarantee that the relaxed pattern graphs are as

close to the initial pattern graph as possible, we devise different metrics to measure the de-

gree of relaxation of a pattern graph. We design an algorithm that computes relaxed pattern

graphs with non-empty answers in relaxation order. To improve the successive computa-

tion of relaxed pattern graphs, we suggest subquery caching and multiquery optimization

techniques adapted to the context of this computation. Finally, we run experiments on dif-

ferent real datasets which demonstrate the effectiveness of our ranking of relaxed pattern

graphs, and the efficiency of our system and optimization techniques in computing relaxed

pattern graphs and their answers.

5.1 Computing and Selecting Pattern Graphs

We use the same definition of the data model, and the notions of structural summary, match-

ing constructs on structural summary, inter-construct connections, signature and pattern

graphs as defined in Chapter 3. Figure 5.1(a) shows an example of the RDF data graph

over which all the other examples of this chapter are drawn. Figure 5.1 also have exam-

47
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Figure 5.1 (a) An RDF graph, (b), (c), (d) and (e) class, relationship, value and property

matching constructs, respectively, (f) inter-construct connection and result graph.

ples of different matching constructs (Figures 5.1(b), (c), (d) and (e)) and inter-construct

connection (Figure 5.1(f)) over the RDF data graph in Figure 5.1(a).

For computing the pattern graphs of a query on the structural summary, we can

use the algorithm, described in Section 4.1, which computes r-radius Steiner graphs [22].

The user selects a pattern graph by navigation through a two-level semantic hierarchical

clustering system [22]. Nevertheless, the way the pattern graph is selected by the user is

orthogonal to the relaxation method we present in this chapter. Any other approach like

those in [32, 89, 90, 92] can be used for selecting the relevant pattern graph which will be

relaxed.

5.2 Computing Relaxed Pattern Graphs

A pattern graph selected by the user might return no results, or if it does, it might miss

some interesting results the user would like to see. In order to expand the result set of this

pattern graph chosen by the user and get additional results for the same query signature

that involve the same classes, relationships, properties and values but additional entities,

we relax this pattern graph. In this section, we first define relaxed pattern graphs. We then



49

introduce an operation on pattern graphs, called vertex split operation, and we show that

a pattern graph can be relaxed by applying vertex split operations. Pattern graphs which

are less relaxed are preferable over pattern graphs which are more relaxed since, they are

closer to the original pattern graph selected by the user. Therefore, we introduce different

metrics to characterize the degree of relaxation of a relaxed pattern graph.

5.2.1 Relaxed Pattern Graphs

In order to define relaxed pattern graphs, we need the concept of homomorphism between

pattern graphs.

Definition 5.2.1 (Pattern Graph Homomorphism). Let P1 and P2 be two pattern graphs.

A homomorphism from P1 to P2 is a function h from the variable vertices (entity variable

and value variable vertices) of P1 to the variable vertices of P2 such that, if X is an entity

variable vertex in P1:

(a) for any type edge (X ,c) in P1, there is a type edge (h(X),c) in P2. That is, X in P1

and h(X) in P2 are of the same type c.

(b) for every relationship edge (X ,Y ) in P1 labeled by r, where Y is another entity vari-

able in P1, there is a relationship edge (h(X),h(Y)) in P2 labeled by the same label r.

(c) for every property edge (X ,Y) in P1 labeled by p, where Y is a value variable vertex,

there is a property edge (h(X),h(Y)) in P2 labeled by the same label p.

(d) for every property edge (X ,v) in P1 labeled by p, where v is a value vertex labeled by

the value (keyword) V , there is a property edge (h(X),v′) in P2 labeled by the same

label p, where v′ is a value vertex also labeled by V .

Figure 5.2 shows four pattern graphs P1, P2, P3 and P4 and a homomorphism from

the pattern graph P2 to the pattern graph P1. The vertex mapping is illustrated with dashed
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Figure 5.2 An original pattern graph P1 and relaxed pattern graphs P2, P3, P4.

arrows. One can see that there are also homomorphisms from the pattern graphs P3 and P4

to the graph pattern P1. However, there is no homomorphism from pattern graph P1 to any

one of the other pattern graphs.

We use the concept of homomorphism to define a relation on pattern graphs.

Definition 5.2.2 (Relation ≺). Let P1 and P2 be two pattern graphs. We say that P2 is a

relaxation of P1 or that P2 is a relaxed version of P1 if there is a homomorphism from P2 to

P1 but there is no homomorphism from P1 to P2. In this case, we write P1 ≺ P2.

In the example of Figure 5.2, P1 ≺ P2 and P1 ≺ P3 ≺ P4. No other ≺ relationship

holds between these pattern graphs.

Clearly, relation ≺ is a strict partial order on the set of pattern graphs (it is irreflex-

ive, asymmetric and transitive). We call its minimal elements original pattern graphs. In

an original pattern graph, every class vertex is connected through a type edge exactly to

one entity variable vertex. The patterns initially presented to the user are original pattern

graphs and one of them is selected and possibly relaxed. If an (original) pattern graph P has

an embedding to an RDF graph, a relaxed version of P also has an embedding to the same

RDF graph. The opposite is not necessarily true. Therefore, with relaxed pattern graphs
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we can expand the result set of an original pattern graph.

5.2.2 Vertex Splitting

A pattern graph is relaxed by applying the vertex split operation to one or more of its entity

variable vertices. The split operation “splits” an entity variable vertex in a pattern graph

into two entity variable vertices of the same type and partitions the incident edges of the

original entity variable vertex between the two new vertices as indicated by the operation.

Definition 5.2.3 (Vertex split operation). Let P be a pattern graph, v be an entity variable

vertex in P connected with a type edge to a class vertex c, and E = {e1, . . . ,ek}, k ≥ 1,

be a proper subset of the set of non-type edges incident to v in P. Assume the edges

e1, . . . ,ek, are connecting the pairs of vertices (v,v1), . . . ,(v,vk), respectively. The vertex

split operation split(P,v,E) returns a pattern graph constructed from P as follows:

(a) Add to P a new entity variable vertex v′ of type c.

(b) Remove all the non-type edges (incident to v) that occur in E.

(c) Add k edges (v′,v1), . . . ,(v
′,vk) having the same labels as the edges e1, . . . ,ek, re-

spectively.

Splitting one or more of the vertices of an original pattern graph P results in a

relaxed pattern graph (a relaxed version of P). Applying the split operation in sequence can

create a pattern graph where the non-type edges incident to v are partitioned into more than

two sets attached to different vertices, as desired.

Not all the entity variable vertices are interesting for splitting. This operation is

defined only on candidate split vertices. An entity variable vertex is a candidate split vertex

if it has at least two non-type edges.

As an example, consider the original pattern graph P1 of Figure 5.2. This is a pattern

graph for the keyword query {Cicada, Authentic, Girl}. Applying
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split(P1,X ,{maker}) to P1 results in the pattern graph P2. Applying split(P1,Y,{track})

to P1 results in the pattern graph P3. Applying, in turn, split(P3,Y,{title}) to P3 produces

the pattern graph P4.

Since any partitioning of the edges incident to a vertex in an original pattern graph

can be obtained in a relaxed pattern graph by a successive application of vertex split oper-

ations, the following proposition can be shown.

Proposition 5.2.1. Let P1 and P2 be two pattern graphs. Then, P1 ≺ P2 iff P2 can be pro-

duced from P1 by applying a sequence of vertex split operations.

Proof: If part: If P2 can be produced from P1 by applying a vertex split operation then,

as stated in Definition 5.2.3, the non-type edges of an entity variable vertex X in P1 are

partitioned into two sets of edges which are incident to vertex X and its split image in

P2. Then clearly, there is a homomorphism from P2 to P1. If a sequence of vertex split

operations is applied then this homomorphism exists by transitivity. That is, P1 ≺ P2.

Only-if part: Since P1 and P2 are both pattern graphs, there is a homomorphism

from P2 to P1 only if for any entity variable vertex X in P1 there are X1, . . . ,Xk, k ≥ 1,

vertices of the same type as X in P2 and the non-type edges of X are partitioned among

these vertices such that each one of X1, . . . ,Xk has at least one non-type edge (Definition

5.2.1). Then clearly, P2 can be obtained from P1 by applying in sequence k−1 vertex split

operations for every vertex in P1 where k > 1.

The above proposition shows that the vertex split operation is sound and complete

with respect to relaxed pattern graphs.

5.2.3 Measuring Pattern Graph Relaxation

Usually, we want to relax a pattern graph so that it is as close to the initial pattern graph as

possible. To this end, we introduce three metrics of decreasing importance to measure the

degree of relaxation of a pattern graph. All these three metrics depend on the vertex split
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operations applied to the original pattern graph. The first one is called connectivity of the

pattern graph. In order to define the connectivity of a pattern graph, we use the concept of

tightly connected pair of keyword instances. Two keyword instances in a pattern graph P

are tightly connected if there exists a simple path between them which does not go through

a class vertex. For instance, in the pattern graph of Figure 5.3(b), the keyword instances

Rebirth and mp3 are tightly connected whereas the keyword instances Cicada and

Rebirth are not.

Definition 5.2.4 (Pattern graph connectivity). The connectivity of a pattern graph is the

number of unordered keyword instance pairs that are strongly connected divided by the

total number of unordered keyword instance pairs.

In an original pattern graph, all pairs of keyword instances are strongly connected.

Therefore, its connectivity is 1. Relaxing such a pattern graph by applying the vertex

split operation to any entity variable vertex produces a pattern graph of lower or same

connectivity. Relaxing an acyclic original pattern graph by applying vertex splitting to any

entity variable vertex always reduces the connectivity of the original pattern graph. For

instance, the connectivity of the pattern graph in Figure 5.3(a) is 1. The connectivity of

the relaxed pattern graphs of Figures 5.3(b) and (d) is 0.4 and the connectivity of those of

Figures 5.3(c), (e) and (f) is 0.3.

In order to distinguish between relaxed pattern graphs of the same pattern graph

which have the same connectivity, we introduce another metric called “dispersion” of the

keyword instances of a pattern graph. Roughly speaking, this metric is used to capture

how much the keywords are dispersed as a result of vertex split operations in the pattern

graph. To formally define the keyword instance dispersion metric, we introduce the concept

of “split distance.” The split distance of two keyword instances in a pattern graph P is the

minimum number of class vertices in the simple paths between these two keyword instances

in P excluding the terminal vertices. The term “split distance” is explained by the fact that

a class vertex is introduced in a simple path between two keyword instances only as a result
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Figure 5.3 (a) Original pattern graph, (b), (c), (d), (e) and (f) relaxed pattern graphs.

of the application of a split operation. For instance, in the pattern graph of Figure 5.3(c),

the split distance of the keyword instances of Gimma and mp3 is 1 and that of Gimma and

Rebirth is 2. The more split operations we apply to the vertices on a path between two

keyword instances, the more syntactically dispersed these keyword instances become in the

pattern graph, reflecting a weaker semantic connection between these keywords.

Definition 5.2.5 (Pattern graph keyword dispersion). The keyword dispersion of a pattern

graph P is the sum of the split distances of all unordered pairs of keyword instances in P.

A relaxed pattern graph with smaller keyword dispersion is preferred over a pattern

graph of the same connectivity but higher keyword dispersion since its keywords are as-

sumed to be more closely related. For example, the pattern graphs of Figures 5.3(b) and
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(d) have the same connectivity of 0.4 whereas their keyword dispersion is 6 and 12, respec-

tively. Hence, the pattern graph of Figure 5.3(b) will be ranked higher than that of Figure

5.3(d). Similarly, the connectivity of the pattern graphs of Figures 5.3(c), (e) and (f) is

0.3. However, the keyword dispersion of the pattern graphs of Figures 5.3(c) and (e) is 8

and that of Figure 5.3(f) is 13. Hence, the pattern graphs of Figures 5.3(c) and (e) will be

ranked higher than that of Figure 5.3(f).

In order to differentiate between the degree of relaxation of pattern graphs having

same connectivity and dispersion, we employ a third metric called scatteredness of a pattern

graph. We first define the distance between two tightly connected keyword instances in a

pattern graph as the number of vertices in a shortest path between them. The distance

between a keyword instance which is the label of a value vertex and a keyword instance

which is the label of a property edge incident to this vertex is 0. In the pattern graph of

Figure 5.3(c), the distance between the tightly connected keyword instances of Cicada

and mp3 is 3 while the distance between the tightly connected keyword instances of mp3

and good is 4.

A relaxed pattern graph partitions its keyword instances into sets of tightly con-

nected keyword instances such that any two keyword instances which are tightly connected

belong to the same set. The scatteredness of a pattern graph measures how sparsely are

positioned the keyword instances within the sets of the partition.

Definition 5.2.6 (Scatteredness of a pattern graph). Let N be the sum of the distances be-

tween all the unordered keyword instance pairs that are tightly connected, and S be the

total number of tightly connected unordered keyword pairs in a pattern graph P. The scat-

teredness of the tightly connected keyword instances of P (scatteredness of P for short) is

N/S.

In the example of Figure 5.3, the pattern graphs (c) and (e) have the same connectiv-

ity of 0.3 and the same keyword dispersion of 8. However, the scatteredness of the pattern

graph of Figure 5.3(c) is 3.67 and that of the pattern graph of Figure 5.3(e) is 3. We use
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Figure 5.4 (a) Original pattern graph (b) and (c) relaxed pattern graphs.

the pattern graph scatteredness to rank the relaxed pattern graphs having the same connec-

tivity and keyword dispersion. In our running example, the pattern graph of Figure 5.3(e)

is ranked before the pattern graph of Figure 5.3(c), since the tightly connected keyword

instances of the latter pattern graph are more sparsely positioned than that of the tightly

connected keyword instances of the former pattern graph.

As another example, consider the pattern graph of Figure 5.4(a) and two relaxations

of it shown in Figures 5.4(b) and (c). The relaxed pattern graphs of Figures 5.4(b) and (c)

have the same connectivity and keyword dispersion but the scatteredness of the pattern

graph Figure 5.4(b) is 2 and the pattern graph of Figure 5.4(c) is 3. Therefore, the pattern

graph of Figure 5.4(b) should precede the pattern graph of Figure 5.4(c) in a ranking.

5.2.4 Relaxation Order

Given two pattern graphs P1 and P2, we say that, P2 is “equally relaxed as” or “more

relaxed than” P1, and we write P1 ≤r P2, if: (a) connectivity(P1) ≥ connectivity(P2),

or (b) connectivity(P1) = connectivity(P2) and dispersion(P1) ≤ dispersion(P2),

or (c) connectivity(P1) = connectivity(P2) and dispersion(P1) = dispersion(P2) and

scatteredness(P1) ≤ scatteredness(P2). Clearly, ≤r is reflexive and transitive and any two

pattern graphs are comparable w.r.t. ≤r. If a set of pattern graphs is ranked with respect to

≤r, with the less relaxed pattern graphs ranked first, we say that it is ranked in relaxation

order.
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Since split operations introduce additional type edges in a pattern graph it is not

difficult to see that the following statement holds.

Proposition 5.2.2. Given two pattern graphs P1 and P2, if P1 ≺ P2 then P1 ≤r P2.

Proof: By Proposition 5.2.1, if P1 ≺ P2, there is a sequence of split operations which

produce P2 from P1. Let now, P′ be a pattern graph produced by applying split operation s

to another pattern P. Since, s cannot not increase the number of tightly connected keyword

instance pairs in P, connectivity(P′) ≤ connectivity(P). Similarly, since it cannot reduce

the split distance of any pair of keyword instance in P, dispersion(P) ≤ dispersion(P′).

Finally, if s does not change the connectivity and keyword dispersion of P, P can only be

a cyclic pattern graph, and P′ is produced by applying a vertex split operation to an entity

variable vertex which lies on a cycle in P. Hence, the sets of tightly connected keywords

instances of P are not affected by s. Further, the distance between two tightly connected

keyword instances within a set in P can only increase or remain the same when s is applied.

Therefore, scatteredness(P) ≤ scatteredness(P′). Consequently, P≤r P′. Since this is true

for all the split operations in the sequence that produced P2 from P1, and ≤r is transitive,

P1 ≤r P2.

Proposition 5.2.2 states that P1 ≺ P2 is compatible with P1 ≤r P2. If P2 is produced

by applying a vertex split operation to P1, P1 ≤r P2.

5.3 Computing Relaxed Pattern Graphs

In this section, we elaborate on the reasons for a pattern graph having an empty answer.

Then, we design an algorithm which computes relaxed pattern graphs with non-empty an-

swers ranked in ascending order of their degree of relaxation. Finally, we show how view

materialization and multiquery optimization techniques can be exploited to support the

computation of relaxed pattern graphs and their evaluation on the RDF graph.
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5.3.1 Identifying Empty Vertices for Relaxation

If an original pattern graph for a query has an empty answer on an RDF graph, we would

like to identify vertices in the pattern graph which if not split, the relaxed pattern graph

will keep producing an empty answer. Splitting these vertices does not guarantee that the

relaxed query does have a non-empty answer. However if we omit splitting any one of

these vertices, the relaxed pattern graph will not return any results. We call these vertices

empty vertices.

Definition 5.3.1 (Empty vertex). An entity variable vertex X in a pattern graph P on a data

graph G is an empty vertex iff P or any relaxed version of P where X is not split has an

empty answer on G.

The following proposition characterizes empty vertices in a pattern graph. Let

X be an entity variable vertex of type c in a pattern graph P, p′1(X ,Z′1), . . . , p′m(X ,Z′m)

be the property edges incident to X whose value vertices Z′1, . . . ,Z
′
m are variables,

p1(X ,v1), . . . , pn(X ,vn) be the property edges incident to X whose value vertices v1, . . . ,vn

are not variables (they are keyword instances), r1(X ,Y1), . . . ,rk(X ,Yk) be the relationship

edges from X to some other entity variable vertices Y1, . . . ,Yk of type c1 . . .ck, respectively,

and r′1(X ,Y ′1), . . . ,r
′
l(X ,Y ′l ) be the relationship edges to X from some other entity variable

vertices Y ′1, . . . ,Y
′
l of type c′1, . . . ,c

′
l, respectively (see Figure 5.5). We call the graph of

Figure 5.5 the star-join view of the entity variable vertex X in P.

Figure 5.5 Star-join view of entity variable vertex X.
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Proposition 5.3.1. An entity variable vertex X is an empty vertex of a pattern graph P on

an RDF graph G iff the star-join view for X in P has an empty answer on G.

Proof: If part: If the star-join view VX of X has an empty answer, then P or any relaxed

version of P where X is not split has an empty answer since VX is a subgraph of this graph.

Therefore, X is an empty vertex.

Only-if part: Let us assume that X is empty and the star-join view of X is non-

empty. We will show that this is a contradiction. Since X is empty, the pattern graph P

or any relaxed version of it where X is not split do not have an answer on G. Let P′ be

a pattern graph obtained from P by splitting all entity variable vertices except X until no

more split operations can be applied. Since the star-view join of X is non-empty, P′ has an

answer on G. This is a contradiction since we assumed that X is empty.

All empty vertices need to be split when relaxing a query in order to possibly get a

nonempty answer for the query.

5.3.2 An Algorithm for Computing Relaxed Pattern Graphs

We provide now an algorithm which, given a pattern graph P chosen by the user (for in-

stance, by navigating through the clustering hierarchy discussed in Chapter 4), gradually

generates relaxed pattern graphs of P having non-empty answers. The algorithm returns

these pattern graphs and their answers in ascending relaxation order. The number of re-

laxed pattern graphs returned is controlled by the user.

We provide now the intuition behind the algorithm. The chosen pattern graph might

have an empty answer on the RDF data graph. For example, for the keyword query Q =

{Gimma, Cicada, Rebirth, mp3, good}, the user chosen pattern graph shown

in Figure 5.3(a) does not have a match on the RDF data graph of Figure 5.1. Hence, it

needs to be relaxed. One can see that this pattern graph has an empty entity variable vertex

(vertex X ) since the star join view of this vertex is empty (Proposition 5.3.1). All the empty
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Algorithm 2 : Pattern Graph Relaxation Algorithm

Input: P: An original pattern graph.

Output: A list of relaxed pattern graphs of P with non-empty answers in ascending relaxation

order. Every pattern graph is returned along with its answer.

1: R = {P};
2: MoreResults = True;

3: Ans = /0;

4: while R 6= /0 and MoreResults do

5: PTop← the pattern graph in R with the highest rank;

6: R← R−{PTop};
7: EV ←ComputeEmptyVertices(PTop);
8: Mark the new non-empty vertices in PTop;

9: if EV 6= /0 then

10: NewR← GetRelaxedFromEmptyVertices(PTop ,EV );
11: Rank the pattern graphs in NewR in ascending relaxation order;

12: R ← merge R and NewR into one list of patterns ranked in ascending relaxation

order;

13: else

14: Ans← Evaluate(PTop);
15: if Ans 6= /0 then

16: Output (PTop,Ans);
17: MoreResults← input from the user on whether more results are needed;

18: if Ans = /0 or MoreResults then

19: MoreR← GetRelaxed(PTop);
20: Rank the pattern graphs in R in ascending relaxation order;

21: R ← merge R and MoreR into one list of patterns ranked in ascending

relaxation order;

22: function GETRELAXED(P)

23: R = /0

24: for every candidate split vertex X in P do

25: RX = {pattern graphs obtained by applying one vertex split operation to X in all

possible ways}

26: R = R ∪RX

27: return R

28: function GETRELAXEDFROMEMPTYVERTICES(P,EV )

29: R = {P}
30: for every vertex X in EV do

31: RX = /0

32: for every pattern graph P′ in R do

33: RX = RX ∪ {pattern graphs obtained by applying one vertex split operation

to X in P′ in all possible ways}

34: R = R−P′

35: R = RX

36: return R
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vertices of a pattern graph need to be split in order for the resulting pattern graph to have a

non-empty answer (Definition 5.3.1). Therefore, vertex X needs to be split. Nevertheless,

splitting all the empty vertices of a pattern graph does not guarantee that the resulting

pattern graph will not have empty vertices. For instance, the pattern graphs 5.3(b) and

(d) which are obtained from the pattern graph 5.3(a) by splitting its only empty vertex X ,

still have an empty vertex. Further, even if a relaxed pattern graph does not have empty

vertices, it might still have an empty answer. In our running example of Figure 5.3 the

relaxed pattern graphs of Figures 5.3(c) and (e) do not have empty vertices but have an

empty answer on the RDF graph of Figure 5.1. In both the above cases, additional split

operations need to be applied to candidate split vertices in order to reach a pattern graph

with non-empty answer. On the other hand, splitting the empty vertices of a graph might

result on a pattern graph which has a non-empty answer and this is the case of the pattern

graph of Figure 5.3(f) which is obtained by applying a split operation to the only empty

vertex X of the pattern graph of Figure 5.3(d). Since we want to return to the user relaxed

pattern graphs with higher rank (w.r.t. ≤r) first, we chose for relaxation a pattern graph

with the highest rank at every iteration of the algorithm. For the same reason, if the pattern

graph chosen for relaxation does not have empty nodes, we apply a split operation (in

all possible ways) to all candidate split vertices separately. By choosing a pattern graph

with the highest rank for relaxation at every iteration of the algorithm, we also avoid the

redundant generation of relaxed pattern graphs.

Algorithm Description

The outline of our algorithm is shown in Algorithm 2. The input of this algorithm is an

original pattern graph P. The algorithm generates as output a list of relaxed pattern graphs

and their corresponding result graphs on the data graph in increasing order of relaxation.

The data structure R is a list used to store pattern graphs (both original and relaxed). The

variable MoreResults reflects the user’s choice of fetching more answers by further relaxing
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the pattern graphs in R. The algorithm first chooses a pattern graph PTop with the highest

rank from R (line 5). The pattern graph PTop is then checked for empty vertices (line 7).

If PTop has non-empty vertices, they are marked (line 8) and they (and their split images)

remain marked in the relaxations of PTop. If EV , the set of empty vertices in PTop is non-

empty, the function GetRelaxedFromEmptyVertices(PTop,EV ) is called (line 10). This

function relaxes PTop by applying one vertex split operation to all of its empty vertices

in all possible ways (lines 30-35). The resulting relaxed pattern graphs form a new list

NewR of relaxed pattern graphs, which is then ranked in ascending relaxation order and is

merged with the list R (lines 11-12). Otherwise, if PTop does not have empty vertices, it

is evaluated over the data graph and if the set Ans of result graphs is non-empty, PTop is

returned to the user along with Ans (lines 14-16). In case the user wants more results, or

the pattern graph PTop produces an empty answer when evaluated over the data graph, the

function GetRelaxed(PTop) is evoked (lines 18-19). This function relaxes PTop by applying

one vertex split operation to all of its candidate split vertices in all possible ways (lines

24-26). The list of relaxed pattern graphs returned by GetRelaxed(PTop) is stored in a list

MoreR. The relaxed pattern graphs in MoreR are then ranked and merged with the list R

of pattern graphs (lines 20-21). The whole process, as described in lines 5-21, continues

until the user is satisfied with the results or no more pattern graphs are left in R. The above

discussion suggests the next proposition.

Proposition 5.3.2. Algorithm 2 correctly computes in relaxation order the relaxed pattern

graphs with non-empty answers for a given input pattern graph.

Note that during the execution of the algorithm, the user can provide input on how

to split empty or non-empty vertices when a pattern graph comes up for relaxation either

because it has empty vertices or because it does not have empty vertices but has an empty

answer. In this case, the number of split operations applied in this iteration of the algorithm

is reduced since only the alternative dictated by the user is applied to the relevant vertex. We
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have omitted this feature in the outline of the algorithm, showing only the fully automated

version, for simplicity of presentation.

The execution cost of our pattern graph relaxation algorithm depends on: (a) the

cost for determining the empty vertices (by evaluating star-join views over the data graph),

(b) the evaluation cost of relaxed pattern graphs over the data graph, and (c) the cost for gen-

erating relaxed pattern graphs using the functions GetRelaxed(P) and GetRelaxedFrom-

EmptyVertices(P,EV). The star-join views can be computed efficiently by exploiting the

indexes defined on entity attributes of the relations for properties and relationships. For the

efficient evaluation of the relaxed pattern graphs we devise and discuss in the next section

evaluation plans for answering queries using materialized views and multiquery optimiza-

tion techniques. Functions GetRelaxed(P) and GetRelaxedFromEmptyVertices(P,EV)

can produce up to (Cn
1 + . . .+Cn

n−1)/2 = 2n−1−1 relaxed pattern graphs by applying ver-

tex split operations on one vertex X , where n is the number of keywords. The worst case

scenario can happen when each one of the n keyword instances in the pattern graph is linked

to X through a different non-overlapping path. Since every pattern graph is a Steiner graph,

it can have up to nr+1 entity variable vertices, where r is the radius of the Steiner graph.

In the worst case, all of them are needed to be split. Nevertheless, even though in the worst

case scenario an exponentially large number of relaxed pattern graphs can be produced,

in practice only few of them are produced. Further, only a tiny portion of those produced

are evaluated for empty vertices and empty results since otherwise the produced relaxed

pattern graphs would be very irrelevant to the original pattern graph and not of interest to

the user. This intuition is also confirmed in our experimental results.

5.3.3 Optimization Techniques to Support Query Relaxation and Evaluation

Materializing views in the main or secondary memory is a well-known technique for im-

proving the performance of queries. This technique has been studied extensively over the

years for queries on relational databases [85, 81], but the contributions for queries over
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RDF databases are limited [58, 59]. Queries to be evaluated are rewritten (inclusively or

exclusively) using the stored views [62] in order to produce a query evaluation plan in-

volving the materialized views which is more efficient than a plan involving exclusively

the base relations. The technique is useful both in a horizontal and in a vertical setting.

In a vertical setting (query caching) queries and subqueries are cached on the assumption

that they will be useful for evaluating subsequent queries. A new query to be evaluated is

rewritten equivalently using previously cached views. The expectation is that the produced

evaluation plan will be cheaper and the savings will amortize the cost for deciding what

subqueries to cash and for finding a rewriting of the query using the materialized views. In

a horizontal setting (multiquery optimization) multiple queries need to be evaluated con-

currently. To this end, common subexpressions among the queries in a given workload are

detected on the fly and a global evaluation plan for all the queries is derived, which might be

more efficient to evaluate than evaluating each query in the workload separately. A global

evaluation plan reflects rewritings of the given queries over the views (common subexpres-

sions) which remain materialized until all the queries in the workload that use them are

evaluated. The expectation is that the savings produced from the global evaluation plan

will amortize the cost for detecting the common subexpressions and producing the alterna-

tive global evaluation plans. The multiquery optimization problem is a complex one. Not

surprisingly, it has been shown to be NP-hard even for conjunctive relational queries [84].

There are different sources of complexity to these problems in the general relational con-

text: (a) deciding whether a query Q can be answered using a set of materialized views and

producing an equivalent rewriting of Q using the views, (b) detecting common subexpres-

sions among queries in a query set, and (c) deciding which views/common subexpressions

to materialize in order to produce an efficient evaluation plan.

Our pattern graph relaxation algorithm generates multiple queries to be evaluated

sequentially or concurrently. We discuss in this section how the techniques discussed above

can be leveraged to design a global evaluation plan for all the queries that need to be com-
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Figure 5.6 A global evaluation plan for relaxed queries.
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puted. The goal is to exploit extensively common subexpressions among the generated

queries. We consider a relational setting where the base relations are property and relation-

ship relations. Initially, the value matching construct views of a given original pattern graph

are evaluated and cached. Subsequently the star-join views are evaluated using the value

matching constructs cached. Some of the generated queries are to be evaluated sequentially

(when the pattern graphs with the highest rank is chosen for evaluation) while others are

to be evaluated concurrently (when value matching construct views or star-join views are

evaluated). Fortunately, these queries are not random queries but subgraphs of the original

pattern graph or of its relaxations. As a consequence, common subexpressions among dif-

ferent queries can be detected easily based on the overlapping of the corresponding graphs

because they are subgraphs of these graphs. Query rewritings can also be produced easily

by simply joining the materialized subqueries (graphs) on their common entity variable

vertices. Finally, common subexpressions among queries are selected so as to maximize

the number of common entity variable vertices.

Figure 5.6 shows an example of caching and utilization of different subqueries for

the successive evaluation of relaxed pattern graphs. The flow, from top to bottom, follows

the execution of our algorithm. On the top of figure 5.6, the input original query is shown.

Next follow the based tables needed to compute relaxations of this query. The global eval-

uation plan involves computing and caching the value matching constructs of the original

query and its star-join views which are shown in the next two layers. The fifth layer dis-

plays a ranked list of relaxed pattern graphs produced by splitting the empty vertices of the

original pattern graph. The first relaxed pattern graph is considered and checked for empty

vertices by evaluating the star-join views of the unmarked entity variable vertices which

are also cached. As no empty vertex is found, this relaxed pattern graph is evaluated. Its

evaluation involves the computation of the maximal common subexpression of the relaxed

pattern graphs and the cached star-join views of the entity variable vertices. The process

continues with the next relaxed pattern graph.
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5.4 Experimental Evaluation

We implemented our approach and run experiments to evaluate our system. The goal of

our experiments is to assess: (a) the effectiveness of the metrics introduced in ranking the

relaxed pattern graphs, and (b) the feasibility of our system in producing and presenting to

the user the relaxed pattern graphs and their answers in real time.

5.4.1 Datasets and Queries

We used two real datasets Jamendo1 and YAGO 1.0.02. Jamendo is a large repository

of Creative Commons licensed music. It consists of 1.1M triples and its size is 85MB.

It contains information about musicians, records, music tracks and their licenses, music

categories, track lyrics and many other details related to music production. This dataset

has nearly 300,000 entities belonging to 12 classes. Jamendo has 14 properties and 10

relationships. Much larger, YAGO is an open domain dataset combining information about

resources from different aspects of life extracted from Wordnet3 and Wikipedia4. YAGO

contains nearly 20 million triples about approximately 2 million entities belonging to over

180,000 classes. The entities in the YAGO dataset are characterized by 32 properties. The

entities are associated to each other with 58 relationships.

The structural summary of each dataset was stored in a relational database which

contains tables for classes, properties and relationships. The database also store in a table

the set of values associated with each property of the dataset. The experiments are con-

ducted on a standalone machine with an Intel i7-5600U@2.60GHz processors and 8GB

memory.

1http://dbtune.org/jamendo/ (accessed on April 24, 2016)

2http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/

(accessed on April 24, 2016)

3https://wordnet.princeton.edu/ (accessed on April 24, 2016)

4https://www.wikipedia.org/ (accessed on April 24, 2016)
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Table 5.1 The Keyword Queries in the Two Datasets

Query Keywords Structure of

# Pattern Graph

Jamendo Dataset

J1 teenage, text, fantasie, Document star-chain

J2 signal, onTimeLine, 10002, recorded_as, sweet chain

J3 kouki, recorded_as, knees star-chain

J4 briareus, reflectin, cool, girl star

J5 kouki, revolution, electro, good star

J6 nuts, spy4, chillout, track star

J7 biography, guitarist, track, lemonade chain

J8 divergence, track, obssession, format, mp32 star-chain

J9 fantasie, performance, recorded_as, slipstream chain

J10 signal, recorded_as, fantasie, onTimeLine, 10001 chain

YAGO Dataset

Y1 sonai, influences, poet, 1414, born, discovers, whirling chain

Y2 dunderberg, interested, nyc, industrialist, influences, victor star

Y3 richard, louis, pulitzer, award, american, book star-chain

Y4 delhi, actor, shahrukh, acted, produced, india, films cyclic

Y5 ridley, directed, gladiator, douglas, prize cyclic

Y6 married, actor, wrestler, produced, directed, movie, tripper cyclic

Y7 aristotle, influences, heliocentrism, astronomer, cambridge star-chain

Y8 yoko, artist, grammy, huckleberry star

Y9 neal, world, interface, cover, jensen star-chain

Y10 grammy, sonny, produced, howard, created, westlife, songs cyclic

Users were provided with different queries on those two datasets and in every in-

stance they selected the most relevant pattern graph among those provided by the system.

The queries are chosen in such a way so that the most plausible pattern graphs for the

queries will have an empty answer when evaluated over the RDF data graph. We report on

20 queries (10 queries for each dataset). The queries cover a broad range of cases. They

involve from 3 to 7 keywords, while the selected relevant pattern graphs form a star or a

chain or a combination of them and in the case of YAGO dataset, they also form a cycle.

Table 5.1 shows the keyword queries and information about their relevant pattern graph on

both datasets.
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5.4.2 Effectiveness in Ranking Relaxed Pattern Graphs

For our effectiveness experiments, we used expert users to determine the ground truth. For

each query, the system produced the candidate pattern graphs. A user selected among them

the pattern graph which is most relevant to the query. This is the original pattern graph.

We then run our pattern graph relaxation algorithm until the third relaxed pattern graph

with a non-empty answer is produced and collected the relaxed pattern graphs generated

(which are many more). The generated relaxed pattern graphs are ranked by our system

in relaxation order as described in Section 5.2.3. These relaxed pattern graphs are also

provided to the user who ranks them based on their closeness to the original pattern graph.

In order to measure the effectiveness of our technique in generating a ranked list of relaxed

pattern graphs, we are using two metrics: (a) normalized Discounted Cumulative Gain

(nDCG) [8], and (b) Kendall tau-b rank correlation coefficient [4]. Both of them allow

comparing two ranked lists of items. Note that the list produced by the user and the one

produced by our system might not form a strict total order. That is, there might be ties

(relaxed pattern graphs with the same rank). We call a set of relaxed pattern graphs that

have the same rank in a ranked list equivalence class of relaxed pattern graphs. Equivalence

classes need to be taken into account in measuring the similarity of the ranked lists.

The nDCG metric was first introduced in [46] based on two key arguments: (a)

highly important items are more valuable than marginally relevant items, and (b) the lower

the position of the relevant item in the ranked list, the less valuable it is for the user because

the less likely it is that the user will ever examine it. The first argument suggests that the

relevance score of an item in the ranked list be used as a gained value measure. Then, the

cumulative gain (CG) for position n in the ranked list is the sum of the relevance scores

of the items in the ranked positions 1 to n. The second argument emphasizes that an item

appearing at a lower position in the list should have a smaller share of its relevance score

added to the cumulative gain. Hence, a discounting function is used over cumulative gain

to measure discounted cumulative gain (DCG) for position n, which is defined as the sum
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of the relevance scores of all the items at positions 1 to n, each divided by the logarithm of

its respective position in the ranked list. The DCG value of a ranked list is the DCG value

at position n of the list where n is the size of the list. The normalized discounted cumulative

gain (nDCG) is the result of normalizing DCG with the DCG of the list that is correctly

ranked (the ground truth list produced by the expert user). Thus, nDCG favors a ranked list

which is similar to the correct ranked list. The DCG at n is given by the following formula:

DCGn =
n

∑
i=1

2reli−1

log2(i+1)

where reli, the relevance score of the item at position i in the ranked list, is the rank of this

item’s equivalence class in the inverse ground truth equivalence class list. For instance, if

an item belongs to the 2nd equivalence class in a ground truth list of 5 equivalent classes,

its relevance score is 3.

In order to take into account equivalent classes of pattern graphs in the system’s

ranked lists, we have extended nDCG by introducing minimum, maximum and average

values for it. The nDCGmax value of a ranked list RLe with equivalence classes corresponds

to the nDCG value of a strictly ranked (that is, without equivalence classes) list obtained

from RLe by ranking the pattern graphs in the every equivalence classes correctly (that

is, in compliance with their ranking in the ground truth list). The nDCGmin value of RLe

corresponds to the nDCG value of a strictly ranked list obtained from RLe by ranking the

pattern graphs in every equivalence classes in reverse correct order. The nDCGavg value of

RLe is the average nDCG value over all strictly ranked lists obtained from RLe by ranking

the pattern graphs in every equivalence classes in all possible ways. The nDCG values

range between 0 and 1.

Figure 5.7 shows the nDCGmin, nDCGmax and nDCGavg values for the queries of

Table 5.1 on the Jamendo and YAGO datasets. As one can see, all the values are very close

to 1 and the min and max values of nDCG are close to each other.

The Kendall tau rank correlation coefficient [53] was proposed to address the prob-
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(a) Jamendo dataset (b) YAGO dataset

Figure 5.7 nDCGmax, nDCGmin and nDCGavg for the queries on the Jamendo and YAGO

datasets.

lem of measuring the association between two different rankings of the same set of items.

For example, suppose that a set of items is given an order A which is correctly defined with

reference to some quality q. An observer ranks the same set of items in an order B. A

characteristic question that arises here is if the comparison of the orders B and A suggests

that the observer possesses a reliable judgment of the quality q. In our context, we want to

see if the comparison of the ranked list produced by our system (the relaxation order) with

the correctly ranked list which is defined by the user suggests that the former possesses a

reliable judgment of the closeness of the relaxed pattern graphs to the original pattern graph

(which expresses the user’s intention). However, the Kendall tau coefficient is useful when

the ranked lists to be compared are strictly ranked. For this reason, we adopt here a variant

called Kendall tau-b coefficient [4], which can deal with equivalent classes of items in the

ranked lists. The Kendall tau-b coefficient is given by the following formula:

τb =
(number of concordant pairs)− (number of discordant pairs)

√

Ng×
√

Ns

where Ng and Ns are the number of pairs of items which do not belong to the same equiv-

alence class in the ground truth list and the system generated list, respectively. The value

of τb ranges from -1 to 1. If two items have the same (resp. different) relative rank order

in the two lists, then the pair is said to be concordant (resp. discordant) pair. If two items
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(a) Jamendo dataset (b) YAGO dataset

Figure 5.8 Kendall tau-b coefficient for the queries on the Jamendo and YAGO datasets.

are in an equivalence class in at least one of the lists then the pair is neither concordant nor

discordant. If the number of concordant pairs is much larger than the number of discordant

pairs, then the two lists are positively correlated (the coefficient is close to 1). If the number

of concordant pairs is much less than the discordant pairs, then the two lists are negatively

correlated (the coefficient is close to -1). Finally, if the number of discordant and concor-

dant pairs are about the same, then the two lists are weakly correlated (the coefficient is

close to 0). In this case, there is no association between the lists. Figure 5.8 shows the

Kendall tau-b rank correlation coefficient for the queries of Table 5.1 on the Jamendo and

YAGO datasets. As we can see, all the values are positive and in most cases very close to 1.

5.4.3 Efficiency of the System in Producing Relaxed Results

In order to asses the feasibility of our system, we ran our algorithm on the pattern graphs

selected by the user for the queries of Table 5.1, and we measured the time needed to

produce the first three consecutive nonempty relaxed pattern graphs and their answers.

Many more relaxed pattern graphs are typically produced and ranked in the background,

and a number of them are checked for empty answers. The queries were selected so that

the original pattern graph for almost all of them has an empty answer. The Yago and

the Jamendo datasets are stored in a relational database with one fully indexed relation

for every distinct property and relationship in the datasets. To assess the efficiency of the
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(a) Jamendo dataset (b) YAGO dataset

Figure 5.9 Efficiency improvement achieved by Multiquery optimization on the Jamendo

and YAGO datasets.

system we evaluated the queries: (a) over the base relations with a cold cache, and (b) using

the multi-query optimization and caching techniques presented in Section 5.3.3. Figure 5.9

shows the measured times. One can see that the displayed times for all the queries are

interactive. Further, the optimization techniques are shown to substantially improve the

execution time of the algorithm in most cases by more than one order of magnitude.

5.5 Conclusion

Exploiting the structural summary has emerged in recent years as a promising technique

for evaluating keyword queries over RDF graphs. Structural summary-based approaches

compute pattern graphs (structured queries) as possible interpretations of the unstructured

keyword query and often rely on user feedback to identify the pattern graph which is most

relevant to the user intent. However, since structural summaries are approximate repre-

sentations of the data, these approaches might return empty answers or miss results which

are relevant to the user intent. To address the drawback while maintaining the advantages

of these approaches, we have presented a novel approach that permits the relaxation of the

most relevant pattern graph selected by the user and expands its result space with similar re-

sults. We used pattern graph homomorphisms to introduce relaxed pattern graphs. We then

defined an operation on pattern graphs and we proved that it is sound and complete with
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respect to relaxed pattern graphs. In order to characterize the semantic closeness of relaxed

pattern graphs to the original pattern graph, we introduced different syntax and semantic-

based metrics that allow us to compare the degree of relaxation of relaxed pattern graphs.

We identified the reasons for a pattern graph having an empty answer and we designed an

algorithm which computes relaxed pattern graphs with non-empty answers in ascending

relaxation order. We devised optimization techniques that exploit subquery caching and

multiquery optimization to support the computation of relaxed pattern graphs. Our experi-

mental results demonstrate the effectiveness of our approach in ranking the relaxed pattern

graphs and the efficiency of our system and optimization techniques in producing relaxed

pattern graphs and their answers.



CHAPTER 6

INCORPORATING COHESIVENESS INTO KEYWORD SEARCH

In the previous chapters 4, and 5, we proposed techniques that address the challenges posed

by keyword search (Chapter 1). Our techniques take advantage of relevance feedback from

the user in order to effectively identify relevant and high quality results. However, the users

might not always be able or willing to provide feedback. Therefore, in this chapter we in-

troduce a novel keyword query language that enables the user to convey his intent flexibly

and effortlessly using cohesive keyword groups. A cohesive group of keywords in a query

indicates that the keywords of the group should form a cohesive unit in the query results.

We provide formal semantics of cohesive queries. We design a query evaluation algorithm

which relies on the structural summary of the RDF graph to generate pattern graphs that

satisfy the cohesiveness constraints. Pattern graphs are structured queries that can be eval-

uated over the RDF data to compute the query results. Our experiments demonstrate the

efficiency of our algorithm and the effectiveness of cohesive keyword queries in improv-

ing the result quality and in pruning the space of pattern graphs compared to flat keyword

queries. Most importantly, these benefits are achieved while retaining the simplicity and

convenience of traditional keyword search.

6.1 Data Model and Flat Keyword Queries

Data Model. We follow the same RDF data model definition as in Chapter 3. Figure

6.1(a) shows an example RDF graph which is an excerpt from a large bibliographic RDF

database. For simplicity, vertex and edge identifiers are not shown in the figure. All the

other examples made in this chapter are based on this figure of the data graph.

Query Instance. A traditional keyword query Q on an RDF graph G is a set of keywords.

An instance in G of a keyword k in Q is an occurrence of k (in a vertex or edge label) in G.

75
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Figure 6.1 (a) An RDF Graph, (b), (c), (d) and (e) class, relationship, value and property

matching constructs respectively, (f) inter-construct connection and query instance.

The answer of Q on G is a set of result graphs of Q on G.

In order to facilitate the interpretation of the semantics of the keyword instances, ev-

ery instance of a keyword in Q is matched against a small subgraph of G which involves this

keyword instance and the corresponding class vertex or vertices. This subgraph is called

matching construct as defined in Chapter 3. Figures 6.1(b), (c), (d) and (e) show a class,

relationship, value and property matching construct, respectively, for different keyword

instances in the RDF graph of Figure 6.1(a). Underlined labels in a matching construct de-

note the keyword instances based on which a matching construct is defined. Each matching

construct provides information about the semantic context of the keyword instance under

consideration. For example, the matching construct of Figure 6.1(d) shows that Grace is

the name of an entity R2 of type Researcher.

A signature of Q is a function that matches every keyword k in Q to a matching

construct for k in G. Given a query signature S, an inter-construct connection between

two distinct matching constructs C1 and C2 in S is a simple path augmented with the class

vertices of the intermediate entity vertices in the path (if not already in the path). The

formal definition is stated in Chapter 3. Figure 6.1(f) shows an inter-construct connection
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between the matching constructs for keywords Project and Grace in the RDF graph

of Figure 6.1(a). The matching constructs are shaded and the inter-construct connection

is circumscribed. A subgraph of G is said to be connection acyclic if there is no cycle in

the graph obtained by viewing its matching constructs as vertices and its inter-construct

connections between them as edges. Given a signature S for Q on G, an instance of S

on G is a connected, connection acyclic subgraph of G which contains only the matching

constructs in S and possibly inter-construct connections between them. An instance for Q

on G is an instance for a signature of Q on G. Figure 6.1(f) shows an instance for the query

{Grace, Project} on the RDF graph of Figure 6.1(a). The instances of a flat query

Q on G are all considered to be results of Q that together form the answer of Q on G. As

we will see in the next section, if a query Q′ has the same keyword occurrences as Q and

involves in addition, cohesive keyword groups, only some of these instances are considered

to be results that form the answer of Q′ on G. The rest of the query instances are excluded

as irrelevant. Therefore, the instances of Q′ are its candidate results.

6.2 Keyword Queries with Cohesive Keyword Groups

We define in this section the syntax and semantics of keyword queries with cohesive key-

word groups (called cohesive keyword queries).

6.2.1 Syntax

We start by providing a recursive definition of the concept of term which corresponds to a

cohesive group of keywords: a term is a set of at least two keywords and/or terms.

Definition 6.2.1 (Cohesive Query). A cohesive query is: (a) a set of a single keyword, or

(b) a term. Notation: sets are delimited in a query using parentheses, and elements are

separated within sets using spaces.

For instance, Q1 =(Publication (Grace Hopper) (Project
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Semantics 2015)) is a cohesive keyword query and (Grace Hopper) and

(Project Semantics 2015) are two terms in it. Query Q2 = ((RDF Project)

publication) (author (Tom Hopper))) is another cohesive keyword query

where the term (Tom Hopper) is nested within the term (author (Tom Hopper))

and the term (RDF Project) is nested within the term ((RDF Project)

Publication).

The same keyword may appear multiple times in a query but, of course, the same

keyword or term cannot appear multiple times as an element of a set. For instance, in the

cohesive keyword query Q3 = ((author Grace) Publication (Conference

(Grace Hopper))), the keyword Grace occurs twice: once in the term (author

Grace) and once in the term (Grace Hopper). In the following unless stated differ-

ently, ‘query’ refers to a cohesive keyword query.

6.2.2 Semantics

The queries are matched against a data graph G. An instance I of a cohesive query Q on

G is defined similarly to an instance of the flat query that involves the same keywords. A

difference appears only when Q involves multiple occurrences of the same keyword k. In

this case, I might contain multiple instances of k and the occurrences of k in Q can be

matched to the same or different instances of k in I.

Figures 6.2(a), (b) and (c) show different instances of the query (Publication

(Project (Semantics 2015)) (author (Grace Hopper))) on a bibliog-

raphy database. This bibliography database encompasses the one of Figure 6.1 and is not

shown here for the sake of space.

As mentioned above, a term in a cohesive query contains keywords and/or other

terms. A term expresses a cohesiveness relationship on its elements. Intuitively, a term

states that the instances of its keyword occurrences in a result of the query should form a

cohesive unit. That is, in a result graph of a query, they should form a subgraph where the
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Figure 6.2 (a) result graph, (b) and (c) query instances which are not result graphs

for the query (Publication (Project (Semantics 2015)) (author

(Grace Hopper))).

instances of the keyword occurrences which are external to the term do not interfere. More

formally, let I be an instance of a query Q on G, and t be a term in Q. The instance It of

t in I is a minimal connected subgraph of I that comprises the matching constructs of the

keyword occurrences of t in I.

Definition 6.2.2 (Query result). A result of Q on G is an instance I of Q on G such that for

every term t in Q and for every keyword occurrence k in Q which is not in t, the following

conditions hold:

(a) The instance of k in I does not occur in It unless it is a class vertex label,

(b) The instance of k in I is not the label of a property edge or a value of an entity vertex

in It unless this entity vertex in It is incident to only one non-type edge (that is, only one

relationship or property edge).

The answer of a query Q on G is the set of the results of Q on G.

Consider again the query and the query instances of Figure 6.2. With this query

the user is looking for publications authored by Grace Hopper which were produced by a

project on Semantics that started in 2015. The query instance of Figure 6.2(a) is a result

graph for this query as it satisfies the conditions of Definition 6.2.2. In contrast, the query

instance of Figure 6.2(b) is not a result graph for the query. Indeed, the instance of the key-

word author, which is not in the term (Grace Hopper), occurs within the instance

of this term in the query instance (condition (a) in Definition 6.2.2). Similarly, the query

instance of Figure 6.2(c) is not a result graph of the query since the instances of keyword
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Grace and Hopper, which are not in the term (Semantics 2015), are values of an

entity vertex (vertex R1) in the instance of this term in the query instance (condition (b) in

Definition 6.2.2).

6.3 An Algorithm for Evaluating Cohesive Queries

In this section, we describe an algorithm for evaluating cohesive keyword queries over RDF

graph data. Our algorithm follows a recent trend which exploits a structural summary of

data to compute pattern graphs [22, 89]. These pattern graphs represent different inter-

pretations of the imprecise keyword query and are, in fact, structured queries that can be

evaluated against the RDF data graph to compute the keyword query answer. Structural

summaries are typically much smaller than the actual RDF data. Therefore, the pattern

graphs can be generated efficiently. Moreover, this process scales smoothly when the size

of the data increases. Our algorithm computes pattern graphs which are r-radius Steiner

graphs and satisfy the cohesiveness of the terms in the keyword query. The algorithm pro-

ceeds bottom up in the cohesive query hierarchy to prune the search space of pattern graphs

by excluding early on pattern subgraphs that breach the cohesiveness of terms (cohesive

keyword groups) in the query.

6.3.1 Structural Summary and Pattern Graphs

Roughly speaking, the structural summary is a graph which summarizes an RDF graph. The

details of structural summary construction and definition in provided in Chapter 3. Figure

6.3(a) shows the structural summary for the RDF graph G of Figure 6.1(a). Similarly to

matching constructs on the data graph, we define matching constructs on the structural

summary. Since the structural summary does not have entity vertices, a matching construct

on a structural summary possesses one distinct entity variable vertex, for every class vertex,

labeled by a distinct variable.
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Figure 6.3 (a) Structural Summary (b) Query Pattern Graph.

Pattern graphs are subgraphs of the structural summary strictly consisting of one

matching construct for every keyword in a query Q and the connections between them

without these connections forming a cycle. Formal definition of a pattern graphs is stated

in Chapter 3.

Figure 6.3(b) shows an example of a pattern graph for the query Q2 = (((Project

RDF) publication) (author (Tom Hopper))) on the structural summary graph

of Figure 6.3(a).

The pattern graphs of a cohesive query satisfy or violate the cohesiveness of its

terms specified in it in the same way the instances of the query do. As mentioned above,

pattern graphs are structured queries. Those pattern graphs that satisfy the cohesiveness

of the query terms can be used to compute the results of the query. Interestingly, pattern

graphs can be expressed as SPARQL queries, and all the machinery of query engines and

optimization techniques developed for SPARQL can be leveraged to efficiently compute

the results.

6.3.2 The Basic Components of the Algorithm

Our algorithm proceeds by first parsing the cohesive query. Then, it uses the produced

query hierarchy to incrementally construct r-radius Steiner pattern graphs. During the pro-

cess of pattern graph generation, it checks whether the pattern graph under construction
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satisfies the cohesiveness constraints.

(a) Parsing the Query. The parsing of a cohesive query produces a parse tree. An ex-

ample of such a parse tree for the query Q2 =(((Project RDF) publication)

(author (Tom Hopper))) is shown in Figure 6.4(a). The leaf vertices of the parse

tree are labeled by the query keyword occurrences. The root represents the query and the

internal vertices represent the query terms. The level of a vertex in the tree is the number

of edges on its path from the root and the height of the tree is the number of edges in the

longest path from root to leaf.

(b) Computing r-radius Steiner Graphs on the Structural Summary. Given a set of

query keyword matching constructs and/or query term instances on the structural sum-

mary, the algorithm identifies a connecting vertex cv in the structural summary such that

the distance between cv and any one of the vertices in the matching constructs and term in-

stances is no more than r. The algorithm chooses the smallest r for the connecting vertex.

There can be more than one connecting vertex connected to the matching constructs and

term instances with paths of length r or less. There can also be different ways of connect-

ing the same connecting vertex with all the matching constructs and term instances with

paths of length r or less. All the alternative ways to link the connecting vertices to the

matching constructs and term instances define alternative r-radius Steiner graphs. Given a

term t in a query, we use the algorithm presented in [22] to compute all the r-radius Steiner

graphs with minimal r for the matching constructs and the term instances corresponding to

the keywords and nested terms, respectively, of t. This algorithm extends the one in [63],

which computes r-radius Steiner graphs on general graphs, to allow for keyword instances

on the edges. Once the r-radius Steiner graphs for a term of a query are computed, they

can be used for computing the r-radius Steiner graphs of the parent term in the tree.

(c) Checking Cohesiveness Semantics. Given a set of matching constructs for the key-

words and the term instances for the nested terms of a term t, the algorithm checks whether
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Algorithm 3 : CohesivePGGen (Cohesive Pattern Graph Generation)

Input: Q: a cohesive keyword query.

Output: a set of pattern graphs.

1: for every keyword k ∈ Q do

2: Ik← set of matching constructs of k on the structural summary;

3: ∆← ParseQuery(Q);

4: l = height(∆);
5: while l ≥ 0 do

6: for every vertex n at level l of ∆ do

7: if n is a leaf node labeled by keyword k then

8: In = Ik

9: if n is a term or the root of the tree then

10: L← Ic1
× . . .× Icm

; ⊲ c1, . . . ,cm are the children of n.

11: if n contains a term then

12: for every combination Li ∈ L do

13: if CheckCohessivenessSemantics(Li) = false then

14: L← L−Li;

15: for every combination Li ∈ L do

16: In ← In ∪ rRadiusSteinerGraphs(Li); ⊲ In is the set of instances

of term n on the structural summary

17: l← l−1

18: Return In

any two elements of the set overlap in a way that breaches the cohesiveness of t (Definition

6.2.2). If this is the case, the algorithm discards this set of matching constructs and term

instances for term t, and does not use it to construct minimal r-radius Steiner graphs to be

propagated to the parent term of t in the query parse tree.

6.3.3 Algorithm Description

Our Algorithm, called CohesivePGGen (Cohesive Pattern Graph Generation), is outlined

in Algorithm 3. It takes as input a cohesive keyword query Q, and outputs a set of r-

radius Steiner pattern graphs which satisfy the cohesiveness semantics. We assume that the

structural summary of the RDF data graph is available. Initially, the algorithm computes

the matching constructs for all the keywords in Q over the structural summary (lines 1-2),

parses the query into the parse tree ∆ (line 3), and instantiates a variable l representing the

level of a node in ∆ to the height of ∆ (line 4). The algorithm constructs pattern graphs
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Figure 6.4 (a) Parse tree (b) Generation of pattern graphs of the query by the algorithm.

incrementally, in a bottom up manner over the parse tree ∆, starting with the deepest leaf

vertices (lines 5-17). For a vertex n, variable In represents the set of matching constructs if

n is a leaf (keyword) vertex (lines 7-8), and the set of term instances of n on the structural

summary if n is a term or the root of ∆ (lines 9-16). For a term vertex n, variable L denotes

the Cartesian product of the sets Ici
for the children ci of n (line 10). Every element of L

which violates the cohesiveness of at least one term instance in it is removed from L (lines
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11-14). The rest of the elements of L are used to produce r-radius Steiner graphs with

minimal r which are instances of the term vertex n (lines 15-16). The process continues

until the root vertex is reached. At this point, In represents the pattern graphs of Q, which

are returned to the user.

Figure 6.4 exemplifies the construction of the pattern graphs for the query

Q2 =(((Project RDF) publication) (author (Tom Hopper))).

6.4 Experimental Evaluation

We implemented our approach and ran experiments to evaluate: (a) the effectiveness of

cohesive keyword queries, and (b) the efficiency of CohesivePGGen.

6.4.1 Datasets and Queries

We used DBLP and Jamendo1 real datasets for our experiments. DBLP is a bibliography

database of 600MB of size, containing 8.5M triples. Jamendo is a repository of Creative

Commons licensed music of 85MB of size, containing 1.1M triples. The extracted struc-

tural summaries and the keyword inverted lists for both datasets were stored in a Rela-

tional database. The experiments were conducted on a standalone machine with an Intel

i5-3210M @2.5GHz processor and 8GB memory.

We experimented with a large number of cohesive keyword queries and we report

on 10 of them for each dataset. The queries cover a broad range of cases. They involve

4 to 6 keywords and 1 to 3 levels of term nesting. Table 6.1 shows the queries used and

their statistics. #MCs denotes the total number of matching constructs for the keywords of

a query, #Sigs denotes the total number of matching constructs combinations for a query

(signatures), and #PGs denotes the number of pattern graphs of a query on the structural

summary ignoring the cohesiveness semantics.

1http://dbtune.org/jamendo/ (accessed on April 24, 2016)
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Table 6.1 Queries on Jamendo and DBLP Datasets

Dataset Q# Cohesive keyword query #MCs #Sigs #PGs

Ja
m

en
d

o

1 (document (teenage (text fantasie))) 16 105 162

2 ((lyrics sweet) recorded_as onTimeLine) 18 64 64

3 ((MusicArtist Cicada) performance (track knees)) 21 405 488

4 ((Record (date title)) track (Lyrics good)) 43 127,008 185,916

5 ((MusicArtist Briareus) (cool (girl Reflections))) 27 1,440 1,950

6 (time Mako (record (track (down passion)))) 39 39,690 49,070

7 (Kouki (electro (record revolution (track good)))) 43 119,070 172,541

8 (Nuts track (chillout (record spy4))) 28 1,764 2,248

9 ((biography guitarist) (track (title Lemonade))) 25 1,512 2,538

10 ((record (title divergence)) (track obsession)) 27 1,323 1,805

D
B

L
P

1 ((journal design) creator (person (phdthesis CAD))) 49 69,120 447,086

2 ((name Charles) creator (Proceedings forward)) 33 68,200 25,324

3 ((article editor person) creator (inproceedings hybridization)) 32 4,320 12,519

4 ((person name) creator (performance 2002)) 59 100,800 479,542

5 (Oliver (Article (Linux year)) 21 480 2,960

6 (inproceedings Tolga (mastersthesis warehouses)) 8 5 22

7 (((compiler cite) Charles) (creator peephole)) 34 5,280 20,660

8 (creator (decentralized IEEE) (coscheduling 2004)) 51 25,300 141,531

9 ((Milne 2005) homepage person) 35 1,320 3,788

10 (((name Yahiko) person) (editor (conceptual springer))) 34 18,900 97,512

6.4.2 Effectiveness of the Cohesive Queries

In order to evaluate the effectiveness of the cohesive queries, we measured: (a) the reduc-

tion in the number of pattern graphs of a query, and (b) the improvement in the quality of

the results of a query due to the cohesiveness constraints.

(a) Reduction in the Space of Pattern Graphs. We compare, for each cohesive key-

word query, the number of pattern graphs generated with the number of pattern graphs of

the corresponding flat keyword query (i.e., the flat keyword query obtained by removing

cohesiveness constraints and keyword duplicates). Figure 6.5 reports on the percentage

reduction of the number of pattern graphs for the queries of Table 6.1 on both datasets. As

one can see, the cohesiveness constraints reduce substantially the number of pattern graphs

from which the user has to choose the relevant ones.

(b) Improvement in the Quality of Results. The number of pattern graphs of a query can

be very large in order to allow an expert user go through them and select the relevant ones.
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Figure 6.5 % reduction on the number of pattern graphs for the queries on the two datasets.

For instance, observe that in Table 6.1 some queries have hundreds of thousands of pattern

graphs. Therefore, we adopt the path length and popularity score metrics introduced in [89]

to rank the pattern graphs of a query. We then select the top-k pattern graphs and have an

expert user identify those of them which are relevant. In order to measure the quality of the

results, we use the precision@k (p@k) metric. The precision@k is the ratio of the number

of relevant pattern graphs in the first k positions to k. Figure 6.6 displays the average p@k

over the queries of Table 6.1, for different values of k, on the two datasets. For comparison,

the figure displays both: the average p@k of the cohesive queries and the average p@k

of their corresponding flat queries. The results show that in all cases, the quality of the

cohesive queries is several times higher than that of their corresponding flat queries. This

Figure 6.6 Average precision@k for cohesive queries and their corresponding flat queries

varying k on the two datasets.
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Figure 6.7 Execution time of CohesivePGGen on cohesive and flat queries.

is not surprising, since the cohesive queries benefit from the cohesiveness constraints that

the user specified expressing her intention.

6.4.3 Efficiency of Algorithm CohesivePGGen

We compare the execution time of our algorithm on cohesive queries with the computation

time of the pattern graphs of their corresponding flat keyword queries. Figure 6.7 shows the

execution times of CohesivePGGen for the queries of Table 6.1 on the two datasets. Note

that the Y axis is in logarithmic scale. Algorithm CohesivePGGen on cohesive queries

is much faster, in some cases by more than one order of magnitude. In fact, algorithm

CohesivePGGen on cohesive queries has to check for the satisfaction of cohesiveness con-

straints and this incurs additional cost. However, the algorithm does not produce all the

pattern graphs of the flat version of the query to check if they satisfy the cohesiveness con-

straints. Instead, it stops the construction of a pattern graph as soon as the cohesiveness of

a term is violated, and this early pruning of the search space ultimately pays off.

6.5 Conclusion

In this paper we claim that without additional information from the user, keyword queries

cannot effectively retrieve information from RDF graph data. Therefore, we introduce a
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novel keyword query language which allows the user to better express her intention by per-

mitting the specification of cohesive keyword groups, keyword group nesting and keyword

repetition. We provide formal semantics for cohesive keyword queries, and we design a

query evaluation algorithm, called CohesivePGGen, which exploits the structural summary

of the RDF graph to produce r-radius Steiner pattern graphs. Our algorithm prunes early on

the search space of pattern graphs by retaining only those that satisfy the cohesiveness con-

straints. Our experiments show that CohesivePGGen largely outperforms the generation of

pattern graphs for flat keyword queries. They also show that cohesive queries substantially

improve the precision@k of flat keyword queries allowing the search for relevant pattern

graphs in a much smaller set while retaining the simplicity and convenience of flat keyword

queries.



CHAPTER 7

INTRODUCING DIVERSITY IN THE RESULT SETS OF KEYWORD QUERIES

Keyword queries are vague representations of users’ information needs. In Chapter 1, we

discussed different challenges posed by keyword search because of its ambiguous nature.

Chapters 4, 5, and 6 address these challenges and tried to identify relevant results by filter-

ing out irrelevant results with the enforcement of structural constraints, or by ranking the

results using scoring functions, or by leveraging relevance feedback from the users. Al-

though, these approaches are successful in retrieving high quality relevant results, they still

might fail to capture users’ intent as they ignore the diversity of the result interpretations.

To address this issue, in this chapter, we introduce a novel technique for balancing the rel-

evance and diversity of keyword search results on RDF graph data. We generate pattern

graphs which are structured queries corresponding to alternative interpretations of a given

keyword query. We model the problem as an optimization problem aiming at selecting k

pattern graphs which maximize an objective function on relevance and diversity. We devise

measures to estimate the diversity of a set of pattern graphs and its relevance to the user

query. We design an algorithm that employs a greedy heuristic to generate a list of k rele-

vant and diverse pattern graphs for a given keyword query. Our experimental results show

that our relevance and diversity measures are effective and our algorithm can efficiently

compute a list of top-k pattern graphs.

7.1 Data Model and Pattern Graph Computation

The same definition of the data model, and the notions of structural summary, matching

constructs on structural summary, inter-construct connections, signature and pattern graphs

as defined in Chapter 3 are exploited in this chapter. Figure 7.1(a) shows an example of

an RDF data graph. This RDF data graph has been used to draw all the other examples of

90
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Figure 7.1 (a) An RDF graph, (b), (c), (d) and (e) class, relationship, value and property

matching constructs, respectively, (f) inter-construct connection and result graph.

this chapter. Figure 7.1 also includes examples of different matching constructs (Figures

7.1(b), (c), (d) and (e)) and an inter-construct connection (Figure 7.1(f)) over the RDF data

graph in Figure 7.1(a).

We compute pattern graphs of a keyword query on the structural summary of an

RDF data graph. An example of structural summary, matching constructs on the structural

summary and a pattern graph are shown in Figure 7.2. Figure 7.2(a) is the structural sum-

mary of the RDF data graph shown in Figure 7.1(a). Figures 7.2(b), (c), (d), and (e) are

the matching constructs for the keywords Project, author, Tom, and title of the

(a)
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Figure 7.2 (a) Structural Summary G′, (b), (c), (d), and (e) are matching constructs for

keywords in the keyword query Q1={Tom, author, Project, title} on G′, (f)

Pattern Graph of Q on G′.
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keyword query Q1={Tom, author, Project, title} on the structural summary

of Figure 7.1(a), respectively. The keywords are underlined in the matching constructs.

The pattern graph shown in Figure 7.1(f) is computed on the structural summary of Figure

7.1(a) for the query Q1 and consists of the matching constructs shown in the Figures 7.1(b),

(c), (d), and (e).

7.2 Balancing Relevance and Diversity

We provide in this section a formal definition of the problem we address in this chapter and

then elaborate on its components: how to assess the relevance and the diversity of sets of

pattern graphs.

7.2.1 Problem Statement

Our goal is to provide the user with a set of pattern graphs which is relevant and diverse.

To this end, we define the problem as an optimization problem. Let G denote an RDF data

graph, Q be a keyword query on G, P be the set of pattern graphs of Q on G and k be a

positive integer. Given a subset S of P, let relevance(S ,Q) denote the relevance of S

with respect to Q, and diversity(S ) denote the diversity of set S . We aim at selecting a

subset S of P which maximizes the objective function α ∗ relevance(S ,Q)+ (1−α) ∗

diversity(S ), where α ∈ [0,1], is a parameter which tunes the importance of relevance and

diversity. In other words,

S ∈ argmax
S ′⊆S , |S ′|=k

(α ∗ relevance(S ′,Q)+(1−α)∗diversity(S ′))

The tuning parameter α allows us to give more importance to the relevance or the

diversity of the pattern graph set to be selected. If α = 1, the selected pattern graph set will

contain the most relevant pattern graphs without considering diversity. If α = 0, the pattern

graph set will be selected solely based on its diversity.
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7.2.2 Assessing the Relevance of a Pattern Graph Set

We show now how the relevance of a set of pattern graphs is estimated. Our approach

exploits statistical information for the popularity (frequency) of the class and value vertices

and the property and relationship edges of the pattern graphs in the RDF graph. In doing so,

it also takes into account structural and semantic information of the pattern graphs. In this

sense, two edges with the same label are different if they involve entity variable vertices of

different types. In order to assess the popularity of value vertices with keyword instances

in the pattern graph we employ the well known tf*idf (term frequency, inverse document

frequency) metric [82] of Information Retrieval(IR) adapted to the syntactic and semantic

features of the RDF data model.

Consider a pattern graph P over an RDF data graph G. Let C1, . . . ,Cn be the class

vertex labels in P. Let also |VCi
| denote the number of entities of type Ci in the RDF graph

G, and |VE | denote the total number of entities in G. The popularity of the class vertices of

P is given by the formula:

popc(P) = 1/n∗ ( ∑
Ci∈{C1,...,Cn}

|VCi
|/|VE | )

Let P1, . . . ,Pm denote the distinct (owner class vertex, property edge label) pairs in

P. Let also |EPi
| denote the number of property edges complying with Pi in the RDF graph

G, and |EP| denote the total number of property edges in G. The popularity of the property

edges of P is given by the formula:

popp(P) = 1/m∗ ( ∑
Pi∈{P1,...,Pm}

|EPi
|/|EP| )

Let R1, . . . ,Ru denote the distinct (domain class vertex, relationship edge label,

range class vertex) triples in P. Let also |ERi
| denote the number of relationship edges

complying with Ri in the RDF graph G, and |ER| denote the total number of relationship
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edges in G. The popularity of the relationship edges of P is given by the formula:

popr(P) = 1/u∗ ( ∑
Ri∈{R1,...,Ru}

|ERi
|/|ER| )

For defining the popularity of value vertices with keyword instances in a pattern

graph, we modify the tf*idf metric so that it applies to RDF graphs as explained below.

The metric tf*idf used in IR reflects how important a term is to a document in a corpus of

documents. t f denotes the frequency of a term in a document while id f is the logarithmi-

cally scaled inverse fraction of the documents that contain the term. In the context of an

RDF graph G, a document corresponds to the set of property edges in G which have the

same label L and are incident to entity vertices of type C. This set of property edges is

denoted by E(C,L). Given a keyword ki and a set of property edges E(C,L), let E(ki,C,L)

be the subset of E(C,L) which contains only those property edges whose value comprises

ki. Then:

t f (ki,E(C,L)) = |E(ki,C,L)|/|E(C,L)|

Let W denote the set of all property edge sets E(C,L) in G. For a given keyword ki, let Wi be

the subset of W consisting of those property edge sets E(C,L) such that t f (ki,E(C,L))> 0

(that is, property edge sets where ki occurs in the value of at least one of their property

edges). Then:

id f (ki) = log(|W |/|Wi|)

Let k1, . . . ,k j denote the keywords which appear in the labels of value vertices in a

pattern graph P. Note that, multiple keywords can appear in the label of a value vertex in

P. Let vi denotes the value vertex whose label contains the keyword ki and Li is label of the

property edge connecting vi to an entity variable vertex of type C in P. Therefore, ki also

appears in the values for the set of property edges for (Ci,Li) pair. Then, the popularity of

value vertices containing keywords in P is given by the formula:
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popv(P) = 1/ j ∗ ( ∑
ki∈{k1,...,k j}

t f (ki,E(Ci,Li))∗ id f (ki) )

We define the relevance of pattern graph P to keyword query Q as the sum of the

popularity of the components of P as follows:

relevance(P,Q) = 1/4∗ ( ∑
i∈{c,p,r,v}

popi(P) )

Clearly, the values of popi(P) are in range [0,1]. By dividing the sum by 4, we guarantee

that relevance(P,Q) is also between 0 and 1.

We assume that the relevance of one pattern graph is independent of the relevance

of another pattern graph. The relevance of a set of pattern graphs S of size k to a keyword

query Q is the average relevance of its pattern graphs:

relevance(S,Q) = 1/k ∗ (∑
P∈S

relevance(P,Q) )

7.2.3 Assessing the Diversity of a Pattern Graph Set

In order to measure the diversity of a set of pattern graphs for a keyword query, we introduce

a distance metric to measure the similarity of two pattern graphs. Our metric takes into

account both structural and semantic features of the pattern graphs.

The first factor we consider in assessing the distance of two pattern graphs is the

similarity of their matching constructs. Remember that the matching constructs are small

graphs that involve only a single keyword instance and provide a context for interpreting

the keywords. Given a pattern graph P for a keyword query Q = {k1, . . .kn}, let mc(P)

denote the set of matching constructs of Q—one for every keyword in Q. The larger the

number of keywords which are interpreted in the same way in the two pattern graphs, the

more similar the pattern graphs are. The similarity of the matching constructs in the two
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Figure 7.3 Five pattern graphs for the keyword query Q={Tom, semantics,

publication, hopper, project} on the structural summary of Figure 7.2(a).

pattern graphs is given by the formula

mc_sim(P1,P2) = (|mc(P1)∩mc(P2)|)/n

where n is the number of matching constructs in mc(P1) or mc(P2). Clearly, mc_sim(P1,P2)=

1 if P1 and P2 share the same matching constructs, and mc_sim(P1,P2) = 0 if they have no

common matching constructs.

For instance, Figure 7.3 shows 5 pattern graphs of a query with 5 keywords. Intu-

itively, P2 and P3 are more similar to P1 than P4 and P5 because P4 and P5 interpret the key-

word semantics differently. Metric mc_sim catches this intuition since mc_sim(P1,P2)=

mc_sim(P1,P3) = 5 while mc_sim(P1,P4) = mc_sim(P1,P5) = 4.

Although P2 and P3 have the same common matching constructs with P1, P2 looks

more similar to P1 than P3 does. Therefore, we consider the second factor which is to what

extent matching constructs for the same keywords are connected in the same way in the two

pattern graphs. The higher the number of pairs of keywords in P1 and P2 whose matching

constructs are connected in the same way in the two pattern graphs, the more similar P1 and

P2 are. Of course, if the matching constructs of two keywords are not the same in P1 and P2,

their connections cannot be the same in the two pattern graphs and this pair of keywords



97

does not contribute to the similarity of P1 and P2. We define a connection between two

keywords ki and k j of Q in a pattern graph P of Q as a graph consisting of the matching

constructs of ki and k j, respectively, and a simple path between these matching constructs

in P augmented with type edges and class vertices for every entity variable vertex in the

path. Let z be the number of unordered pairs of query keywords which have the same

connection in the two pattern graphs. The similarity of the keyword pair connections in P1

and P2 is given by:

conn_sim(P1,P2) = z/(n(n−1)/2)

where n is the number of keywords in Q. The denominator reflects the number of unordered

keyword pairs for the keywords in Q. Similarly to mc_sim(P1,P2), conn_sim(P1,P2) ranges

between [0,1], with 1 indicating that the matching constructs for all the keywords and all

the connections between them are the same.

In the example of Figure 7.3 both pattern graphs P2 and P3

have five common matching constructs with P1. However, conn_sim(P1,P2) = 6 and

conn_sim(P1,P3) = 4. Intuitively, P2 looks more similar to P1 than P3 to P1.

Measuring the similarity of two pattern graphs P1 and P2 based solely on

the similarity of matching constructs and matching construct connections,

mc_sim(P1,P2) and conn_sim(P1,P2), cannot entirely capture their semantic closeness.

Compare, for instance, the pattern graphs P4 and P5 with the pattern graph P1 in Figure

7.2. Both P4 and P5 have 4 keyword matching constructs and 6 pairs of matching construct

connections in common with P1. However, our intuition suggests that P5 is less similar

(more dissimilar) to P1 than P4 as it has the class vertex (concept) “Journal” which does not

appear in P1. In contrast, P1 and P4 have the same class vertices. Therefore, we introduce

the metric of concept dissimilarity to capture the dissimilarity of two pattern graphs. Let

c(P) denote the set of class vertices in a pattern graph P. Given two pattern graphs P1 and
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P2 of a keyword query,

concept_dsim(P1,P2) = |(c(P1)∪ c(P2))− (c(P1)∩ c(P2))|/ |c(P1)∪ c(P2)|

concept_dsim(P1,P2) ranges between 0 (when P1 and P2 have all their class vertices in

common) and 1 (when P1 and P2 do not have common class vertices). The higher the value

of concept_dsim(P1,P2), the more distant the pattern graphs P1 and P2 are.

Taking into account all the factors, we define the distance dist(P1,P2) of two pattern

graphs P1 and P2 as follows. Note that concept_dsim(P1,P2) is considered with a negative

sign since it expresses dissimilarity.

dist(P1,P2) =
1− [(mc_sim(P1,P2)+ conn_sim(P1,P2))/2− concept_dsim(P1,P2)]

2

dist(P1,P2) = 0 when the two pattern graphs are the same and dist(P1,P2) = 1 when the

concept_dsim(P1,P2) = 1.

We now define the diversity of a set of pattern graphs S of size k as:

diversity(S) = ∑
Pi,Pj∈S,Pi 6=Pj

dist(Pi,Pj)/k(k−1)

Dividing the sum by the total number of pattern graph pairs, normalizes diversity(S)

in the [0,1] range.

7.3 Algorithm

In this section, we present an algorithm for the problem of balancing the relevance and

diversity of sets of pattern graphs stated in Section 7.2.1. Exhaustively generating all size-

k subsets of a set of pattern graphs and computing their relevance and diversity in order

to find an optimal one has exponential complexity in the number of the pattern graphs. In

fact, different versions of the diversification problem have previously been shown to be NP-
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Algorithm 4 : PGDiversification (Pattern Graph Diversification)

Input: Q = {k1, . . . ,kn}: a keyword query with n keywords, S: Structural Summary of the data

graph, α : tuning factor, k: size of the output list.

Output: Pdiv: set of diversified pattern graphs of size k.

1: for all ki ∈ Q do

2: Li←{set of all matching constructs of ki on S};

3: P←ComputePatternGraphs({×n
i=1Li},S);

4: P← SortByRelevance(P);
5: Pdiv←P[0];
6: i = 1;

7: while i < k do

8: j = i;

9: NextIndex =−1;

10: NextScore = 0;

11: while j ≤ |P| do

12: distance = 0;

13: for all pi ∈Pdiv do

14: distance = distance+dist(pi,P[ j])

15: CurrentScore = α ∗ relevance(P[ j],Q)+ (1−α)∗distance/|Pdiv |;
16: if CurrentScore > NextScore then

17: NextScore =CurrentScore;

18: NextIndex = j;

19: j = j+1;

20: Pdiv.add(P[NextIndex]);
21: swapPGs(P[i],P[NextIndex]);
22: i = i+1;

hard [2, 18, 29, 35]. Therefore, we design a heuristic algorithm, called PGDiversification,

which greedily selects a new pattern graphs at every iteration and incrementally computes

the relevance and diversity of pattern graph sets. Algorithm PGDiversification takes as

input a keyword query Q, the structural summary S of an RDF graph, the tuning parameter

α , and a positive integer k. The output is a subset of the set of pattern graphs of Q on S of

size k.

The algorithm starts by finding all the matching constructs of the keywords in query

Q on S (lines 1-2) and then generates the set P of pattern graphs for all possible signatures

of Q (line 3). The pattern graphs are generated as r-radius Steiner graphs using the algo-

rithm in [22]. The pattern graphs of P are ranked in descending order of their relevance

(line 4). The variable Pdiv represents the output set of size k which is a subset of the set of
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pattern graphs P . Initially, the set Pdiv contains a pattern graph with the highest relevance

(line 5). Subsequently, at every iteration, a pattern graph is chosen for inclusion in Pdiv so

that the new Pdiv set maximizes the objective function (line 8-22). The process terminates

when |Pdiv|= k.

7.4 Experimental Results

We implemented our approach and ran experiments to examine: (a) the effectiveness of

our distance metric in assessing the semantic similarity of pattern graphs, and the quality of

our approach in retrieving relevant results, and (b) the efficiency of our PGDiversi f iciation

algorithm in computing the set of pattern graphs that trades off relevance for diversity.

7.4.1 Datasets and Queries

We used the DBLP and Jamendo1 real datasets for our experiments. DBLP is a bibli-

ography database of 600MB of size, containing 8.5M triples. Jamendo is a repository of

Creative Commons licensed music of 85MB of size, containing 1.1M triples. The extracted

structural summaries and the keyword inverted lists for both datasets were stored in a Re-

1http://dbtune.org/jamendo/ (accessed on April 24, 2016)

Table 7.1 Keyword Queries on Jamendo and DBLP Datasets

Keyword Queries on Jamendo Keyword Queries on DBLP

Q ID Keywords Q ID Keywords

J1 doument, teenage, fantasie D1 concatenable, aspectisation, oliver

J2 nuts, spy4, lemonade D2 dataflow, quantization

J3 divergence, obsession, lyrics D3 donatella, intermittent, congestion

J4 reflection, record D4 balvinder, coscheduling, article

J5 document, cool, divergence D5 springer, inproceedings

J6 cicada, performance D6 skogstad, tensorial, morphology

J7 extraordinary, blissful, madness D7 hierarchical, hybridization

J8 awesome, passion, spy4 D8 person, tolga, coscheduling

J9 guitarist, lemonade D9 charles, peephole, inproceedings

J10 disgusting, revenge, fantasie D10 tolga, forward, normalizability
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lational database. The experiments were conducted on a standalone machine with an Intel

i7-5600U@2.60GHz processor and 8GB memory. We experimented with a large number

of queries and we report on 10 of them for each dataset. Table 7.1 shows the queries used.

7.4.2 Effectiveness Results

Effectiveness of the Distance Metric. We first want to examine the quality of our distance

metric. To this end, for each of the queries in Table 7.1, we select five of their pattern

graphs. We ask an expert user to score the semantic similarity of each one of these five

pattern graphs with another pattern graph (the pattern graph with the highest relevance).

The scores are integers in the range [0, 3]. A score of 0 denotes that the two pattern

graphs are totally dissimilar. We also use our distance metric dist(P1,P2) to rank the five

pattern graphs in descending order of their distance from the most relevant pattern graph.

We assess the quality of the ranking based on dist(P1,P2) using the normalized Discounted

Cumulative gain (nDCG) metric which is defined as follows. The cumulative gain (CG) for

position n in the ranked list is the sum of the scores of the items in the ranked positions 1 to

n. A discounting function is used over cumulative gain to measure discounted cumulative

gain (DCG) for position n. The DCG at n is given by the following formula:

DCGn =
n

∑
i=1

2reli−1

log2(i+1)

The DCG value of a ranked list is the DCG value at position n of the list where n is the size

of the list. The normalized discounted cumulative gain (nDCG) is the result of normalizing

DCG with the DCG of the correct list (the one that reflects the scoring of the expert user),

that is, by dividing the DCG value of the system’s ranked list by the DCG value of the

correct ranked list. Thus, nDCG favors a ranked list which is similar to the correct ranked

list.

In order to take into account equivalent classes of pattern graphs in the ranked lists
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Jamendo dataset DBLP dataset

Figure 7.4 nDCGmax, nDCGmin and nDCGavg for the queries of Table 7.1 on the two

datasets.

(that is, pattern graphs which have the same rank), we have extended nDCG by introducing

minimum, maximum and average values for it. The nDCGmax value of a ranked list RLe

with equivalence classes corresponds to the nDCG value of a strictly ranked (that is, without

equivalence classes) list obtained from RLe by ranking the pattern graphs in the equivalence

classes correctly (that is, in compliance with the scores given by the expert user). The

nDCGmin value of RLe corresponds to the nDCG value of a strictly ranked list obtained

from RLe by ranking the pattern graphs in the equivalence classes in reverse correct order.

The nDCGavg value of RLe is the average nDCG value over all strictly ranked lists obtained

from RLe by ranking the pattern graphs in the equivalence classes in all possible ways.

The nDCG values range between 0 and 1. Figure 7.4 shows the nDCGmin, nDCGmax and

nDCGavg values for the queries on DBLP and Jamendo datasets. As one can see, all the

values are very close to 1. This implies that our distance metric successfully assesses the

semantic similarity of two pattern graphs.

Effectiveness of the Approach. In order to evaluate the quality of the approach in retriev-

ing relevant results, we measure the relevant results retrieved by Algorithm PGDiversifi-

cation for different queries when only our relevance metric, and when our metric which

balances relevance and diversity is taken into account. An expert user characterizes the

retrieved pattern graphs as relevant or not to the query based on whether the pattern graphs
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Jamendo dataset DBLP dataset

Figure 7.5 Prec@k for k = 3, 5 and 10, for the queries of Table 7.1 on the Jamendo and

DBLP datasets based solely on the relevance metric.

express meaningful interpretations of the query. The quality of our approach on a query is

expressed by precision@k (prec@k), which is the ratio of the number of relevant pattern

graphs in the set of k pattern graphs returned by our algorithm to k. Figure 7.5 displays

prec@k for k = 3, 5 and 10 for the queries of Table 7.1 on the two datasets when only the

relevance metric is taken into account (that is, when the tuning parameter α in the objec-

tive function is set to 1). Figure 7.6 displays prec@k for k = 3, 5 and 10 for the queries of

Table 7.1 on the two datasets when both the relevance and diversity metrics are taken into

account (that is, when the tuning parameter α in the objective function is set to 0.5). As

we can see, for all values of k and for both datasets the precision@k is the same or better

in most cases. This observation demonstrates the benefit of introducing diversity in the

process of selecting the set of k pattern graphs as a larger number of users can be satisfied

by the returned pattern graph set.

7.4.3 Efficiency Results

We ran Algorithm PGDiversification for the queries of Table 7.1 on the two datasets. The

execution time is reported in Figure 7.7 for pattern graphs sets of size k = 5 and tuning pa-

rameter α = 0.5. The execution time for each query comprises three components: (a) the

generation of possible pattern graphs, (b) the computation of the relevance of the pattern
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Jamendo dataset DBLP dataset

Figure 7.6 Prec@k for k = 3, 5 and 10, for the queries of Table 7.1 on the Jamendo and

DBLP datasets based on the relevance and diversity metrics.

Jamendo dataset DBLP dataset

Figure 7.7 Processing time of PGDiversification algorithm for the queries on the Jamendo

and DBLP datasets.

graphs and the selection of one with with highest relevance, and (c) the application of

the greedy heuristic for generating the list of k pattern graphs which is both relevant and

diversified. One can see that the execution time is dominated by the pattern graph gener-

ation process. This is expected since computing the pattern graphs requires access to the

database for finding all the matching constructs for the query keyword and then generating

the pattern graphs using the structural summary of the data graph. In contrast, the other two

processes need much less time, especially the pattern graph selection process as it benefits

from the greedy heuristic.
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7.5 Conclusion

In this chapter, we presented a novel technique for trading off relevance for diversity in the

result sets for keyword queries on RDF data graphs. We have formally defined the problem

of diversification as an optimization problem. The goal of our problem is to generate a

result set that provides a broad overview of the aspects of a keyword query and ensures

relevance of the results. We have applied our diversification scheme to pattern graphs

which are clusters of result graphs having the same structural and semantic features and

represent alternative interpretations of a keyword query. In doing so, we ensure diverse

query interpretations in the result set. Furthermore, we introduced metrics for estimating

the relevance of pattern graphs to a keyword query and the diversity of pattern graph sets.

We designed and implemented a greedy algorithm for incrementally generating a set of

pattern graphs which maximizes our objective function on relevance and diversity. We

conducted experiments to establish the effectiveness of our proposed metric for measuring

the semantic similarity of pattern graphs and the overall quality of our approach. The

experiments also showed that our algorithm is efficient in generating a set of pattern graphs

which is relevant and diverse.



CHAPTER 8

CONCLUSION AND RESEARCH DIRECTIONS

This dissertation investigates different issues related to the efficient and effective evaluation

of keyword queries on RDF data graphs. Keyword search over RDF data departs from tra-

ditional keyword search over unstructured (flat), semistructured and structured data due to

the semantic nature of RDF graph data. As keyword queries are imprecise and ambiguous,

they typically return a huge of candidate results of which very few are relevant to the user

intent. This characteristic of keyword search entails three fundamental problems of key-

word search over RDF data graphs: (a) identify an appropriate form for the query results,

(b) selecting the relevant results among a plethora of candidates, and (c) designing query

evaluation techniques which can scale when the size of the data graph and/or the number

of keyword queries increases. We address these problems following an approach which

exploits a structural summary of the graph data and additional information from the user.

Our first contribution defined query results as meaningful subgraphs of the RDF

data graph that appropriately connect together elementary subgraphs representing semantic

interpretations of the keyword instances. We presented an alternative solution to keyword

search over RDF graphs which hierarchically clusters the results based on a semantic inter-

pretation of the keyword instances and takes advantage of relevance feedback from the user.

Our clustering hierarchy exploits pattern graphs which are structured queries clustering to-

gether result graphs with the same structural and semantic characteristics and represent

possible interpretations for the keyword query. We designed an algorithm which computes

r-radius Steiner patterns graphs using exclusively the structural summary of the data graph.

The user selects relevant pattern graphs by exploring only a small portion of the hierarchy

supported by a ranking of the hierarchy components. Our experimental results showed the

feasibility of our system by demonstrating short reach times and efficient computation of

the relevant results.

106
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Although structural summary-based approaches are promising, they suffer from a

drawback: as structural summaries are approximate representations of the data the com-

puted pattern graphs might return empty answers or miss results which are relevant to the

user intent. To address this problem, we introduced a novel relaxation technique on pattern

graphs that can extract more results potentially of interest to the user. We leveraged pattern

graph homomorphisms to define relaxed pattern graphs. We introduced an operation on

pattern graphs which was proved to be complete, that is, it can produce all relaxed pattern

graphs. The goal of our relaxation process is to guarantee that the produced relaxed pattern

graphs are as close to the initial pattern graph as possible. We devised different metrics

in descending order of importance to estimate the degree of relaxation of a relaxed pat-

tern graph. We designed an algorithm to compute relaxed pattern graphs with non-empty

answers in relaxation order. We adapted subquery caching and multiquery optimization

techniques to the context of relaxed pattern graphs in order to improve the successive com-

putation and evaluation of relaxed pattern graphs. Lastly, we ran experiments on different

real datasets to assess the effectiveness of our ranking of relaxed pattern graphs, and the ef-

ficiency of our algorithm and optimization techniques in computing relaxed pattern graphs

and their answers.

The success of the previous two approaches largely relies on the users’ relevance

feedback. However, a user might not always be able or willing to provide feedback. In

the absence of users’ interaction with the system, identifying relevant results in very chal-

lenging. To address this problem, we introduced cohesive keyword queries on RDF data.

Using cohesive queries a user can flexibly and effortlessly convey her information need by

specifying cohesive keyword groups in it. A cohesive group of keywords in a query indi-

cates that the keywords of the group should form a cohesive unit in the query results. We

provided formal semantics of cohesive queries. We designed a query evaluation algorithm

to generate pattern graphs satisfying cohesiveness constraints over the structural summary

of an RDF graph. The pattern graphs can be expressed as structured queries which are then
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evaluated over the RDF data to compute the query results. Experimental results demon-

strated that our algorithm is efficient in computing all the pattern graphs that satisfy the

cohesiveness constraints. Additionally, our experiments showed the effectiveness of co-

hesive keyword queries in improving the result quality and in pruning the search space of

pattern graphs compared to flat keyword queries. It is to be noted, that these benefits are

achieved while retaining the simplicity and convenience of traditional keyword search.

The techniques discussed above deal with the problems of keyword search on RDF

data by solely taking into account the criteria of relevance of the retrieved pattern graphs to

the user intent. Although these approaches are successful in retrieving high quality relevant

results, they might still fail to capture some user’s intent as they do not consider the diversity

of the returned pattern graph set. Therefore, we addressed the problem of diversifying

keyword search results over RDF data, by devising a novel technique that returns to the user

a relevant and diverse set of pattern graphs. We modeled the problem as an optimization

problem that selects a set of k pattern graphs which maximizes an objective function on

relevance and diversity. We proposed metrics to estimate the relevance and diversity of a

set of pattern graphs. We designed a greedy heuristic algorithm for trading relevance and

diversity in a computed set of k pattern graphs for a given keyword query. Finally, we ran

experiments that demonstrate the effectiveness of our relevance and diversity metrics and

the efficiency of our algorithm.

A number of research directions might deserve further attention. In relation to the

pattern graph relaxation problem, it can be observed that by combining multiple relaxed

pattern graphs it might be possible to identify results which are relevant and cannot be com-

puted by any one of these pattern graphs separately. It would then be interesting to design

algorithms which identify which relaxed pattern graphs to examine and how to combine

them in order to discover such relevant results. In relation to the cohesive query language,

it is important to further study and refine the semantics of cohesive keyword queries on

RDF data in order to reduce more the search space of pattern graphs considered and return
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results of higher quality. Finally, in relation to the pattern graph set diversification prob-

lem, the design of metrics for assessing diversity customized to the diversification problem

on RDF graphs would benefit the selection of diverse sets of pattern graphs for keyword

queries.
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