

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

An FPGA Implementation of a Sleep Enabled PON System

by

Zheyu Liu

Owing to the growing demand for bandwidth-hungry video-on-demand applications,

Passive Optical Network (PON) has been widely considered as one of the most promising

solutions for broadband access. Environmental concerns motivated network designers to

lower energy consumption of optical access networks. A well-known approach to reduce

energy consumption is to allow network elements to switch to the sleep mode.

In this framework, an improved Optical network Unit (ONU) architecture in

TDM-PON is proposed to reduce the handover time of status switching. Energy-saving

performances of current and improved architectures are compared in different scenarios.

The simulation results show that by applying a proper sleep mode mechanism, the

improved architecture can effectively reduce the ONU energy consumption. We further

implement the cycle sleep scheme on a multi-ONU testbed based on the improved ONU

architecture. The experimental results have substantiated the viability of the improved

ONU architecture.

AN FPGA IMPLEMENTATION OF A SLEEP ENABLED PON SYSTEM

by

Zheyu Liu

A Thesis

Submitted to the Faculty of

New Jersey Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Helen and John C. Hartmann Department of

Electrical and Computer Engineering

January 2016

APPROVAL PAGE

AN FPGA IMPLEMENTATION OF A SLEEP ENABLED PON SYSTEM

Zheyu Liu

Nirwan Ansari, Thesis Advisor Date

Distinguished Professor of Electrical and Computer Engineering, NJIT

John Carpinelli, Committee member Date

Professor of Electrical and Computer Engineering，NJIT

Edwin Hou, Committee member Date

Professor of Electrical and Computer Engineering，NJIT

BIOGRAPHICAL SKETCH

Author: 	 Zheyu Liu

Degree: 	 Master of Science

Date: 	 January 2016

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2016

• Master of Science in Electrical Engineering,
Xidian University, Shaanxi, China, 2011

• Bachelor of Science in Electrical Engineering,
Xidian University, Shaanxi, China, 2008

Major: 	 Electrical Engineering

iv

v

DEDICATION PAGE

This thesis work is dedicated to my husband, Yi Xu, who has been a constant

source of support and encouragement during the challenges of graduate school and life. I

am truly thankful for having you in my life.

This work is also dedicated to my parents, who have always loved me

unconditionally and whose good examples have taught me to work hard for the things

that I aspire to achieve

vi

ACKNOWLEDGMENT PAGE

Firstly, I would like to express my sincere gratitude to my advisor Prof. Nirwan

Ansari for the continuous support of my study, and for his patience, motivation, and

immense knowledge. His guidance helped me in all the time of research and writing of

this thesis. I could not have imagined having a better advisor and mentor for my study.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof.

John Carpinelli, and Prof. Edwin Hou, for their encouragement, and insightful comments.

I must also acknowledge Mina Taheri hosseinabadi, for her suggestions, and

provision of the materials evaluated in this study.

This thesis is based upon work supported by the National Science Foundation under

Grant No. CNS-1218181.

vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION……............................………………..…………………………. 1

 1.1 Evolution of PON ...…………….……………………………………………… 3

 1.2 Power Consumption in Current PON…………………………………………... 4

2 STATE OF ART……………………………….…………………………………… 8

 2.1 Solutions for Saving Energy in PON...………………………………………… 8

 2.2 Existing Schemes for Energy Saving in PON ….……………………………… 10

3 CYCLE SLEEP SCHEME AND AN IMPROVED ONU ARCHITECTURE …… 14

 3.1 Cycle Sleep Operation ………………………………...……...……...……...…. 14

 3.2 ONU Receiver Architecture ……………………………………………………

15

 3.2.1 Current ONU Receiver Architecture and Sleep Mode …………………. 15

 3.2.2 The Improved Architecture ……...……………………………………… 17

 3.3 Energy Saving Performance Analysis ………………………………...……...... 18

4 HARDWARE IMPLEMENTATION ………………………………………………

23

 4.1 FPGA Development Process …………………………………………………... 23

 4.2 Introduction of EDA Tool and Testbed …………………………………….…. 26

 4.3 Emulation of the PON Testbed …………………………………….….….…… 28

 4.3.1 Layered Architecture ………………….…………….…………….……. 28

 4.3.2 Control Message Format ……...………………………………………… 29

 4.3.3 Data Analysis……………………………………………………………. 31

5 CONCLUSIONS ……………………………………………………………………

35

viii

 TABLE OF CONTENTS

(Continued)

 Chapter Page

 APPENDIX A ………………………………………………………………………

36

 APPENDIX B ………………………………………………………………………

62

 APPENDIX C ……………………………………………………………………… 69

 REFERENCES………………………………………………………………………

75

ix

LIST OF TABLES

Table Page

1.1 Power Consumption Data of Each PON Generation …...……………………….. 7

3.1 Power Consumption Comparison for Different ONU Architectures ……….…… 17

3.2 Wake-up Overhead Comparison for Different ONU Architectures …………….. 17

x

LIST OF FIGURES

Figure Page

1.1 Structure of PON..……………………… ……………………………………….

1

2.1 Classification for Energy-Saving Solutions in PON …….………………………. 9

2.2 Cyclic Sleep Handshake Protocol ………………………………………………..

12

3.1 Receiver Architecture of Current ONUs ………………………………………… 16

3.2 Sleep Control Circuit for ONU ………………………………………………….. 18

3.3 Performance Comparison of Sleep Modes Against Sleep Time ………...………. 21

3.4 Performance Comparison of Sleep Modes Against the Number of ONUs…….... 21

4.1 FPGA Development Process ………...…………………………………………... 24

4.2 The SFP HSMC Card …………...……………………………………………….. 27

4.3 Testbed Picture ………...……...…………………………………………………. 28

4.4 The Layered Architecture of Cycle Sleep PON System……………… ………... 29

4.5 Format of the Control Message..………... ………………………………………. 30

4.6 Output Data of OLT (a) Overall Output and (b) Output Details …...………….... 31

4.7 Data Received at ONU1, (a) Overall DS Data at ONU1, (b) Control Message

for ONU1, and (c) Control Message for ONU2 ……...……...………...….…..…

32

1

CHAPTER 1

INTRODUCTION

A passive optical network (PON) is a telecommunications network that has a point to

multipoint network architecture as depicted in Figure 1.1.

PON does not require outside plant electronics. It uses a passive optical splitter

instead of placing an Ethernet switch at the outside plant. In the downstream, the splitter

divides the light sending from the Central Office (CO) and then broadcasts it to all Optical

Network Units (ONUs). In the upstream, the splitter combines the light coming from

ONUs, and or other active devices in the passive optical network [1].

Figure 1.1 Structure of PON.

OLT

ONU1

optical

splitter ONU2

ONU3

To
backbone

To users

2

PON consists of three main parts [1]:

 Optical Line Terminal: The OLT at the service provider’s central office

provides the interface between PON and the backbone network.

 Optical Network Unit: The ONU provides the service interface to end users.

Therefore, they are located close to the end users.

 Optical Distribution Network: The ODN in PON connects the OLT at the

central office to the ONUs close to the end users by using optical fibers and

splitters. The ODN usually forms a tree structure with the OLT as the root

of the tree and the ONUs as the leaves of the tree.

A PON is characterized by a simple point-to-multipoint topology, low-cost

implementation, and relative ease of deployment, thus making it the most flexible,

scalable, and future-proof optical access technology. A major factor in the success of PON

is the ability to share the underlying network resources, such as physical fiber plant,

communications channel capacity, and frequency spectrum among its subscribers.

Depending on the data multiplexing scheme, PONs can be divided into three types

[2]: Time division multiplexing (TDM) PON, Wavelength division multiplexing (WDM)

PON, and orthogonal frequency division multiplexing (OFDM) PON. In TDM PON, data

transmission is divided into time slots [3], and traffic from/to multiple ONUs are TDM

multiplexed onto the upstream/downstream wavelength. WDM PON efficiently exploits

the large capacity of optical fibers [4], and it increases capacity by utilizing optical devices

with multi-wavelength provisioning capability compared to TDM PON such as Ethernet

PON [5]. OFDM PON [6] employs a number of orthogonal subcarriers to transmit

upstream/downstream traffic.

3

1.1 Evolution of PON

Nowadays, PON has emerged as the most successful and widely deployed broadband

technology. Owing to its potential to meet the tremendous bandwidth requirements, several

PON technologies have been standardized and widely deployed over the last decade [7].

A. 1G-EPON

1G-EPNG is the first generation of EPON, specified by IEEE 802.3ah; it provides

bidirectional 1-Gb/s links using 1490-nm wavelength for downstream and 1310-nm

wavelength for upstream direction, with 1550 nm reserved for future extensions or

additional services, such as analog video broadcast. EPON uses the same MAC found in

any IEEE 802.3 (Ethernet) compliant devices. The point-to-multipoint connectivity is

supported by the multipoint control protocol (MPCP), which uses standard Ethernet frames

generated in the MAC layer. The adaptation of low-cost optics and flexible bandwidth

allocation has greatly spearheaded the mass deployment of 1G-EPON systems.

B. 10G-EPON

In 2009, 10G-EPON, a successor of 1G-EPON, was standardized by the IEEE

802.3av task force. This technology is currently being tested by various network operators

in preparation for commercial deployments. 10G-EPON supports symmetric 10-Gb/s

downstream and upstream, and asymmetric 10-Gb/s downstream and 1-Gb/s upstream data

rates [2]. 10G-EPON is compatible with legacy 1G-EPON and can coexist on the same

fiber plant. To lower the cost of 10G-EPON implementations, a balance between

performance of optical transceivers and complexity of electronics has been considered. To

extend the power budget while keeping the optical transceiver parameters relaxed, the

10G-EPON specifications include a mandatory forward error correction (FEC) encoding,

4

which also helps reduce the deployment cost. Considering the high capacity and low-cost

implementation possibilities of 10GEPON, it could be the de facto broadband solution in

foreseeable future.

C. GPON

GPON was developed by the ITU-T as the G.984 series of Recommendations. The

focus of this work was to develop a universal PON architecture which is able to deliver a

mix of variable-size frames, ATM cells, and native TDM traffic. GPON supports

asymmetric data rates of 2.488 Gb/s downstream and 1.244 Gb/s upstream. The GPON

architecture supports a two-wavelength Coarse Wavelength Division Multiplexing

(CWDM) scheme similar to EPON. An additional downstream wavelength is allocated for

distribution of analog video services.

D. XG-PON

XG-PON architecture has been recently standardized in ITU-T (the G.987 series of

Recommendations) [7, 8]. It supports coexistence with GPON on the same fiber plant and

provides 10-Gb/s downstream and 2.5-Gb/s upstream data rates.

1.2 Power Consumption in Current PON

Energy efficiency in communications networks is currently drawing much attention.

Access networks (both fixed and mobile) are the major contributors to current

communications network energy consumption [9]. This is mainly attributed to the large

number of involved elements (i.e., the customer premise equipment). As a replacement of

digital subscriber line (DSL)-based wired access networks with optical access systems,

5

PONs have the potential of reducing the energy consumed by access networks.

Nevertheless, it is still desirable to further reduce energy consumption of PONs.

Within PONs, ONUs are customer premise equipment, and they are the energy

hungriest devices. Indeed, the ONUs are numerous and always on, and often lead to the

low utilization of PON capacity. It has been shown that over 65% of the total PON power

consumption is contributed by ONUs [10]. In other words, ONUs are the major target for

energy saving in PONs. By designing a proper scheme to turn off the idle ONUs, the

energy efficiency will be further improved.

Typically, an ONU consists of a transceiver and an electronic circuitry called

System on Chip (SoC), which implements the medium access control (MAC) layer

functions. The transceiver blocks consist of two components: optical and electronic

components.

The optical components are:

 A transmitter, typically a Fabry-Perot (F-P) laser, to optically transmit data

to the OLT in the upstream direction.

 An avalanche photo-diode (APD), to receive data from the OLT, and to

convert optical signals to electrical signals.

 A WDM coupler to couple downstream and upstream wavelengths into a

single optical fiber.

The electronic part of the transceiver includes:

 A burst mode laser driver (BM-LD) to drive the F-P laser for upstream

transmission.

 A trans-impedance amplifier (TIA) to translate and amplify downstream

photocurrent into voltage.

 A limiting amplifier (LA) to reshape the voltage coming from the TIA.

 A continuous mode clock and data recovery (CDR) system.

6

Several implementations of the ONU transceiver are available with different

degrees of integration and thus different power consumption levels. The main functional

block of the electronic circuitry is the serializer-deserializer (SERDES), which converts

serial signals to parallel signals and vice versa. In this work, the remaining functions of the

SoC are included in a back-end electronic circuit.

The ONU power consumption data can be obtained from component data sheets,

research papers, and standards [11]. Power consumption data for EPON, GPON,

10GEPON, and XG-PON are summarized in Table 1.1. Data have been collected by

analyzing the data sheets available online from tens of vendors. As shown in Table 1.1, the

CDR and the SERDES consume the highest power in both EPON and GPON, i.e., more

than 80 percent of the power of the entire ONU front-end. A similar behavior is expected

for 10G-EPON and XG-PON. However, the ONU receiver and transmitter generally share

the SERDES. Moreover, the collected data confirm that about 60–70 percent of the overall

ONU power consumption is attributed to the ONU transceiver and back-end electronic

circuit [12].

7

Table 1.1 Power Consumption Data of each PON Generation

Receiver

front-end

component

EPON GPON 10G-EPON XG-PON

Avg Range Avg Range Avg Range Avg Range

APD 2.6 2-3.75 2.6 2-3.75 2.6 2-3.75 2.05 0.5-

3.75

TIA 83.4 56-112 83.4 56-112 123 105-160 123 105-

160

LA 121 89-140 126 100-165 145 110-165 154 125-

180

CDR 545 540-580 520 260-790 356 N/A 365 N/A

SERDES 550 530-660 560 530-660

N/A

N/A Total

receiver

front-end

1302 1292

Transceiver 1350 1100-2500 1500 1040-

2250

1300-

2300

1800 1800 1800

Back-end

circuit

2700 3150 5850 6750

Whole ONU

(services)

6000 (Ethernet

data port+IPTV)

7000 (triple play

+ multicast

video)

13,000

(prediction)

15,000 (PoE

on Gigabit

Ethernet port)
Source: Conservation G P. ITU-T G-Series Recommendations-Supplement 45 (G. sup45)[J]. ITU-T, May,

2009.

The rest of this thesis is organized as follows. Chapter 2 discusses the current

solutions for energy saving in PON and existing sleep-control algorithms. Chapter 3 details

the improved scheme and describes how the ONU receiver architecture can affect the

synchronization process. Furthermore, simulation results are conducted to evaluate the

energy saving performance of the existing and improved ONU architectures. Chapter 4

provides an experimental implementation of the scheme described in Chapter 3 in a

multi-ONU testbed. This chapter provisions the main source code of the implemented PON

system. APPENDIX A is the top-level code, which defines the logic and entrance of the

whole project, APPENDIX B provides the code used to generate data, and APPENDIX C

is to extract control messages and valid data.

8

CHAPTER 2

STATE OF THE ART

In order to decrease the energy consumption, many solutions have been proposed to put

ONUs into the sleep mode when the ONU does not have downstream or upstream traffic.

Ideally, an ONU is desired to stay in the sleep mode with low power consumption when the

ONU does not have traffic, and to switch back into the active mode when traffic of an ONU

arrives.

2.1 Solutions for Saving Energy in PON

This section provides a classification of the existing solutions, which have been proposed

by standardization authorities and academia for implementing energy-efficient optical

access networks. As shown in Figure 2.1, the current solutions can be mainly classified into

three categories: physical layer, data link layer, and hybrid solution. It can be inferred from

the figure that both the physical layer and datalink layer solutions can be further divided

into two sub-categories.

9

Solutions

Physical layer

Hybrid

Datalink layer

Device-oriented

Service-oriented

MAC control

Traffic scheduling

Figure 2.1 Classification for Energy-Saving Solutions in PON.

Physical layer solutions [13] focus on reducing PON energy consumption by

modifying the physical layer of PON architectures without changing the upper layer

protocols. They can be further classified into device-oriented and service-oriented

solutions. Device-oriented solutions target at lowering energy consumption of the physical

devices. Service-oriented solutions try to improving the performance of the services

provided by the physical layer in order to enable upper layer solutions. Physical layer

solutions are often utilized in combination with data link layer solutions to implement

hybrid solutions.

Data link layer solutions [13, 14] target the data link layer of the IEEE 802.3

architecture (i.e., the medium access control MAC layer) or the transmission convergence

(TC) layer in GPON (ITU-T Recommendation G.984.3) and XG-PON (ITU-T

Recommendation G.987.3). They are based on the possibility of switching network

10

elements to a low power mode (e.g., sleep mode). In GPON, similar functionalities are also

defined in the ONU management and control interface layer (OMCI) (ITU-T

Recommendation 984.4 for GPON and ITU-T Recommendation G.988 for XG-PON).

They can be further divided into MAC control and traffic scheduling solutions. Most of the

schemes are proposed to reduce the energy consumption of PONs.

Hybrid solutions [13] are those that combine physical and data link layer solutions

to reduce energy consumption. This combination approach is commonly adopted in

applications.

2.2 Existing Schemes for Energy Saving in PON

A number of schemes have been proposed to reduce the energy consumption of the ONUs.

These proposed energy saving schemes mainly belong to datalink layer solutions which are

further divided into MAC control and traffic scheduling solutions. The first class tries to

design a proper MAC control scheme to convey the downstream (DS) queue status to

ONUs that always involves a handshake process, while the second class focuses on

investigating energy-efficient traffic scheduling schemes [15].

The Service Interoperability in Ethernet Passive Optical Networks (SIEPON)

standard described in [16] illustrates mechanisms and protocols for reducing the ONU

power consumption. This standard supports two power saving modes. In the Tx mode, the

ONU disables only the transmit data path, whereas in the TRx mode, both transmit and

receive data paths are disabled. In the mechanism, sleep cycles are established based on

mutual consent of the OLT and ONU. It is quite similar to the scheme described in [17],

which details the negotiation process between the OLT and ONUs.

11

Sleep and Periodic Wake-up (SPW) mechanism is proposed in [17]. In the cyclic

sleep mode, the ONU transceiver is switched to the sleep mode. During a sleep period, DS

traffic is buffered at the OLT and upstream (US) traffic is buffered at the ONU. The most

important tasks of a cyclic sleep control mechanism are to determine sleep related

decisions including when an ONU is switched to sleep and for how long the ONU can sleep

to minimize energy consumption without violating Quality of Service (QoS) constraints.

The decisions can be made by either the OLT alone or both the OLT and the ONU based on

information of one or both transmission directions. The sleep time can be constant or

variable depending on the implemented sleep control. The cyclic sleep is depicted in

Figure 2.2. A sleep request (Sleep req) is always originated by the OLT, based on a traffic

condition. The sleep request contains a desired sleep time. When the sleep request is sent,

the OLT stops transmitting DS frames, stores them into a DS buffer and waits for a

response from the ONU. Upon reception of the Sleep req message, depending on the

implemented sleep triggering method, the ONU either positively acknowledges with an

ACK message and goes to sleep, or it negatively acknowledges with a NACK and remains

active. In case of the ACK, the ONU stores all the incoming US traffic from users in an US

buffer until the expiration of the sleep duration. Upon waking up, the ONU first send a

bandwidth request to the OLT and wait for a response. If it receives the wake up message,

it can send the buffered data based on the allocated bandwidth. Once the OLT receives the

request, depending on the DS traffic condition, the OLT responds with either an Awake

message to force the ONU to wake up to receive DS traffic or a Sleep message to allow the

ONU stay asleep in a new sleep period.

12

Figure 2.2 Cyclic Sleep Handshake Protocol (adopted from Figure 1 of [6]).

Yan et al. [18] proposed the upstream centric schemes (UCS) and the downstream

centric schemes (DCS), and evaluated two energy management mechanisms. In the UCS

scheme, the status of the ONU highly depends on the US traffic. The ONU sleeps outside

its assigned US bandwidth allocation and during the sleep time US and DS traffic

transmission are stopped. In the DCS scheme, the ONU must be awake during its US

bandwidth allocation and when the OLT schedules DS transmission for it. The DS

transmission scheduling depends on DS traffic only, and thus it does not need to be

synchronized with US scheduling.

Zhang et al. [15] proposed a simple and efficient sleep control scheme to tackle the

downstream challenge. First, they set certain DS traffic scheduling rules at the OLT and let

the rules be known to the ONUs. Since an ONU possesses the information of the DS traffic

13

scheduling rules, it can infer its current DS queue status based on historical arrival DS

traffic. Second, according to the inferred queue status, ONUs make their own sleep

decisions based on some sleep control rules. These sleep control rules implemented at the

ONU side is also known to the OLT. Third, based on the sleep control rules, the OLT is

aware the status of the ONUs, and buffers the incoming DS traffic of asleep ONUs

accordingly. Essentially, there are four key components of the sleep control scheme: the

DS traffic scheduling rules, the DS queue inference at ONUs, the sleep control rules, and

the ONU sleep status inference at the OLT.

14

CHAPTER 3

CYCLE SLEEP TRIGGERING ALGORITHM AND A NEW

SYNCHRONIZATION ARCHITECTURE

In this chapter, the Cycle Sleep scheme is described and evaluated. The performance of the

current ONU receiver architecture and the improved ONU receiver architecture are

compared under the Cycle Sleep scheme.

3.1 Cycle Sleep Operation

Before discussing the operating mechanism of cyclic sleep, we need a clear definition of

Transmission Cycle. In this thesis, a transmission cycle means a specific time period

during which every ONU is assigned some time slots to complete its transmission.

cycle

1

=
N

k

slot

k

T T



(3.1)

 where 𝑇𝑠𝑙𝑜𝑡
𝑘 indicates the time for the k-th ONU to receive data.

The cycle sleep considered in this paper can be described as follows. At beginning

of each Transmission Cycle, the OLT schedules the DS traffic to every ONU based on the

incoming traffic and application requirements. Then, the scheduled information is

packaged as a control message and broadcasted to all ONUs. The format of the control

message is predefined in the PON system and known to the OLT and all ONUs, which will

be discussed in Section 4.3.2. Upon receiving the control message, ONUs extract the

scheduling information and so they know when they need to wake up in this Transmission

Cycle. Every ONU easily knows when to sleep and how long it can sleep, and acts in

15

accordance with the schedule. In the sleep period, the OLT stops transmitting DS frames to

this ONU, and will store these frames into a DS buffer for the next Transmission Cycle.

The sleep time of each ONU could be constant or variable. The constant sleepT is

predefined regardless of DS traffic conditions while the variable sleepT is defined by the

OLT according to the DS estimated transmitting time.

3.2 ONU Receiver Architecture

Most of the studies conducted within both the research community [19] and working

groups in the standard bodies [20] build upon the idea of allowing PON network elements,

specifically ONUs, to switch to the sleep mode when it is idle for saving energy. However,

to implement the ONU sleep mode, some issues must be addressed. In the current TDM

PON, ONUs synchronize their local clock by recovering it from the OLT continuous

downstream traffic through the CDR circuit [21, 22]. Therefore, if an ONU stops receiving

DS transmission, the clock synchronization is lost and a period of time is needed to resume

the transmission. Moreover, the absence of synchronization among different ONUs clocks

might cause upstream data collision at the OLT [23].

This section first describes the synchronization process in the sleep-enabled PON

system, and further introduces drawbacks of the current ONU receiver architecture. An

improved ONU receiver architecture is then proposed that can significantly reduce the

clock recovery time in the wake-up process.

3.2.1 Current ONU Receiver Architecture and Sleep Mode

Figure 3.1 shows the receiver architecture of current ONUs. In this architecture, the

received optical signal is first converted into the photocurrent signal through a signal

16

converter, typically an avalanche photodiode. The amplifier (TIA and LA) amplifies the

electrical signal before sending it into the clock and data recovery circuit, where TIA

translates and amplifies downstream photocurrent into voltage and LA reshapes the

outgoing voltage from the TIA. The CDR forwards the recovered data and clock to the

de-serializer, which then converts serial signals to parallel signals and sends them to the

lower speed digital circuit for further processing. The digital circuit varies depending on

different applications [24].

Figure 3.1 Receiver Architecture of Current ONUs.

In the current model, the sleep control is added before the signal converter, and thus

the entire analog circuit is turned off during the sleep period. When the ONU wakes up

from the sleep mode, the current ONU architecture uses CDR to recover the OLT clock.

Significant time is required for CDR to recover the OLT clock, i.e., 2-5ms [25]. As shown

in Table 3.1, the long recovery time (Trecovery) significantly increases the wake-up

overhead that degrades the achievable energy saving performance.

17

In this architecture, when an ONU enters its sleep mode, the entire analog circuit

and part of the digital circuit are turned off. Some parts of the digital circuit must be left

ON, such as the clock and volatile memory. Thus, the ONU still consumes some power

during the sleep status. Table 3.1 summarizes the expected power consumptions during the

active and sleep mode for the current ONU. All power consumption data are extracted from

a list of well-known PON component vendors [22, 23, 25].

Table 3.1 Power Consumption Comparison for Different ONU Architectures

 Front-End Analog Circuit Back-End

Digital

Circuit

Total Power

Consumption APD TIA LA CDR DMUX

Active N/A 100

mW

100m

W

330mW 470mW 2.85W 3.85W

Current Off Off Off Off Off 750mW 750mW

Improved On On On On Off 750mW 1.28W
Source: http: //www.maxim-ic.com/en/ds/MAX3886.pdf.

Table 3.2 Wake-up Overhead Comparison for Different ONU Architectures

Architecture Clock Recovery

Time

Max

Synchronization

Time

Total Overhead

Current 2-5ms 125us 5.125ms

Improved none 125us 125us
Source: http: //www.maxim-ic.com/en/ds/MAX3886.pdf.

3.2.2 The Improved Architecture

Figure 3.2 shows the improved ONU architecture. In this architecture, an additional sleep

mode control circuit is placed before de-serializer instead of before the signal converter.

Other parts of the analog circuit remain the same as in the current ONU. Different from the

current architecture, the CDR circuit is always ON to keep synchronizing with the OLT

while the de-serializer is turned off when the ONU enters the sleep mode. The sleep control

block calculates and sends the sleep time duration to the decision block. The decision block

18

chooses the counter path and sets the counter to time the sleep period. When the counter

expires, it sends a TIMEOUT signal to the sleep control block. Then, the sleep control

block forwards the signal to the decision block, which switches the recovered clock and

data to the DMUX to resume the receiving mode.

Signal converter Amplifier CDR circuit Sleep control
Decision:
Awake?

Counter

De-serializer
Yes

NO

Analog circuit Digital circuit

Sleep control circuit

Figure 3.2 Sleep Control Circuit for ONU.

The advantage of the improved ONU is to eliminate clock recovery time using

counter path. Although the CDR circuit is on during the sleep mode, it only requires small

incremental power consumption as compared to the current architecture. This is a

significant outcome, because reducing overhead time helps saving energy especially in the

condition that needs frequent change of the status.

3.3 Energy Saving Performance Analysis

The energy saving performance of the two ONU receiver architectures are analytically

computed and compared in this section. Energy consumed by an ONU can be determined

as the sum of energy spent in the active mode plus that in the sleep mode, shown as

Equation (3.2). Given Transmission Cycle active sleep=T +TcycleT ,

active active sleep sleep* + *ONUE T P T P

(3.2)

19

Where the values of activeP and sleepP are retrieved from Table 3.1 in the analysis.

The following parts present the energy saving performance for two ONU

architectures under two different traffic scenarios.

The first scenario considers traffic from the perspective of a single ONU, where the

ONU periodically wakes up for a fixed period of time activeT . In this scenario, each ONU is

assigned 2ms for receiving data. sleepT is parameterized and active overhead=2ms+T T . overheadT is

extracted from Table 3.1.

The second scenario considers traffic for all ONUs. The traffic is scheduled using

fixed TDM, and the slot size
k

slotT is assumed to be the same for all ONUs slot =2msT . Each

kONU turns on to receive data for a fixed period of time, and therefore the active time for

k-th ONU can be defined by Equation (3.3).

k k

active slot overhead= +T T T
 (3.3)

The definition for TDM cycle is defined by Equation (3.1).

In this scenario, the number of ONUs in system varies, and N is parameterized in

the analysis. The amount of time that an ONU spends in the sleep mode in one cycle can be

determined according to Equation (3.4).

sleep cycle active slot overhead= - =(T T T T TN-1)

(3.4)

20

In the subsequent analysis, the energy saving performance is evaluated by using the

percentage of energy savings savings , which is calculated as follows:

cycle active

(1)*100%
*

ONU
savings

E

T P
  

(3.5)

Figure 7 demonstrates the results of the analysis for a single ONU. The current

ONU architecture saves more energy when the sleep time is much longer than the active

time. This is expected because the current architecture has less power consumption in the

sleep mode than the improved one. On the other hand, the improved ONU architecture has

higher performance than the current one when the sleep time is less than 25ms. This is

because when the sleep time is reduced, the overhead time for the current ONU becomes a

significant factor in ONU energy consumption.

The finding indicates that the current ONU design provides significant power

saving when the ONU goes to sleep for a long period of time. However, in some

applications, an ONU does not know about its future traffic demand and it needs to wake

up more often to be aware of the traffic. In these situations, our improved architecture is

more desirable. In Figure 3.3, for example, the improved ONU architecture provides more

than 10% energy saving when the sleep time is between 2ms to 15ms.

21

Figure 3.3 Performance Comparison of Sleep Modes Against Sleep Time.

Under a TDM scheduled traffic scenario, an ONU receives traffic periodically and

waits for a full TDM cycle in which all the other ONUs receive traffic. In this analysis, the

improved ONU architecture is compared with the current one. The analysis considers

energy saving performance when the number of ONUs ranges from 1 to 32. The TDM slot

is set to 2ms. Figure 3.4 shows that the improved ONU architecture has better performance

when PON has a less number of ONUs. For 17 ONUs, the improved architecture has the

same performance as the current one. Especially when the number of ONUs is less than 13,

the energy saving difference is more than 10%. Based on the above discussion, the

improved architecture has excellent performance if the system contains less than 17 ONUs

when time slot is 2ms. Note, however, that a PON system is normally implemented with

the number of ONUs in the 2 to the nth power, where n is a positive integer.

More significantly, the results also show that the current ONU architecture fails to

save any energy at some specific time (i.e., in the simulation, when the number of ONUs is

less than 5). This is because the overhead time exceeds the length of the TDM cycle, which

prevents the ONU from switching into the sleep mode.

22

Figure 3.4 Performance Comparison of Sleep Modes Against the Number of ONUs.

The sleep time for an ONU in TDM-PON is not expected to be too long when TDM

traffic is involved. Essentially, an ONU might need to wake up shortly after it switches to

the sleep mode. Furthermore, the inter-ONU scheduling cycle in TDM-PON typically lasts

only a few milliseconds to satisfy the quality of service (QoS) requirement incurred by

delay sensitive applications. As a result, the improved ONU could effectively reduce the

ONU energy consumption by using the sleep mode mechanism under real-time traffic.

23

CHAPTER 4

HARDWARE IMPLEMENTATION

This section first lists the required steps in the FPGA development process. Then, the

FPGA boards used in the implementation are introduced, and the specific interfaces and

modules are explained. Section 4.3 describes the system architecture in the form of a

layered stack with major functioning blocks, details the format of control messages, and

implements the cycle sleep scheme in a multi-ONUs testbed.

4.1 FPGA Development Process

Figure 4.1 shows the flow-chart of an FPGA development process.

 Plan phase

An FPGA development process starts with system requirements, which are

decomposed into lower levels of the design, i.e. sub-systems.

Legacy requirements can often be leveraged for the new design to minimize the

time spent in this phase. Requirements are vital to the success of any project. This is often a

balancing act to find what is “good enough” to move the design forward. It is a mistake to

start sub-system level designs without requirements and generally leads to a conflict

between functional teams and longer overall design cycles.

Language selection is a key of this phase. VHDL or Verilog for design is a typical

choice. Verification is also decided at this phase. During this phase, selecting a third party

Intellectual Property (IP) can help complete the design faster. This will also open the door

for using standard verification IP to streamline the verification activity.

24

System Requirements

Requirements

Decomposition

FPGA Requirements

Design Description

RTL Design

(VHDL or Verilog)

Other Subsystem

Requirements

Test Plan

Test Bench

Simulation

Correct ? Input Check

On-board Verification

Correct ?

Finish

No

Yes

Yes

(1) Planning

(2) Execution

(3) Functional

Verification

(4) On-board

Verification

No

Figure 4.1 FPGA Development Process.

25

The FPGA requirements provide the foundation on how the design is partitioned

and how it is tested. Also, an appropriate hardware architecture or proper partitioning of

the design can optimize design re-use, complexity, power, quality and reliability.

Generally, the test plan provides a list of requirements and a plan to test them.

 Execute phase

This is the coding phase of the design. Both the design and the testing environment

are created. This should be the shortest phase if the PLAN phase is as complete as possible.

VHDL and Verilog are the two main languages used to develop Register-Transfer

Level (RTL). VHDL is more structured but more involved in programming and Verilog is

less structured and can cause unforeseen behavior in the code.

Constraint verification is needed to create meaningful random simulation stimulus

for a design that minimizes the need to stress the design through directed test patterns. It

also minimizes the effort to create test patterns and reduces the size and effort of managing

the test suite.

 Verification phase

The Verification phase is divided into two distinct stages. The first phase is

Functional Verification followed by the Lab Verification phase. This feature provides

leverage in a couple of ways. First, using simulations as the primary form of debug

provides a shorter loop to fix the inevitable shortcomings of simulation problems, and

finding these problems in the simulation stage rather than the in-circuit verification stage

greatly reduces the development time. Second, the two-stage verification allows the project

to schedule staged hardware for the software organization.

26

The reason for simulation centric flow is two-folded. First, it is much easier to

debug a design in simulation than the hardware. Second, it reduces the overall churn

because software is testing on verified hardware and hardware can focus on hardware

verification rather than responding to problems found during software testing.

In-circuit verification work is always necessary in the design process. However,

putting the bulk of the effort into simulation makes the hardware work faster and more

efficient. Industry has found that for every month spent in the simulation, you save about

two to three months of in-circuit testing.

4.2 Introduction of EDA Tool and Testbed

The Electronic Design Automation (EDA) tool used for synthesizing and configuring the

FPGAs is Quartus II 14.0.

The cycle sleep scheme is implemented in two Altera Transceiver Signal Integrity

Development Kits equipped with Arria V GX FPGA (i.e., featured device

5AGXFB3H4F35C5ES or 5AGXFB3H4F40C5NES).

The FPGA board contains High Speed Mezzanine Card (HSMC) interface. This

physical interface provides eight channels of 6.5536 Gbps-capable transceivers. The

HSMC specification defines the electrical and mechanical properties of a high speed

mezzanine card adapter interface for FPGA-based motherboards. This specification should

allow for the design of interoperable motherboards and add-on cards by different

manufacturers that can interoperate and utilize the high-performance I/O features found in

today’s FPGA devices. In this work, we expand the functionality of the board through the

addition of SFP HSMC (Small Form-Factor Pluggable) daughtercards.

27

The SFP HSMC card (Figure 4.2) is a hardware platform for evaluating the

interoperation of Altera FPGA, specifically Stratix IV GX, Arria V GX, and Arria II GX,

with generic SFP modules. The optical modules that are of particular importance are

Gigabit Media-Independent Interface (SGMII) Ethernet, Fiber channel, Common Public

Radio Interface/Open Base Station Architecture Initiative (CPRI/OBSAI), and

Synchronous optical networking (SONET). Furthermore, the SFP HSMC card is intended

to implement both telecommunications and data communications applications. The

electrical and optical specifications of SFP should be compatible with those enumerated in

the appropriate standards (i.e., the IEEE 802.3z Gigabit Ethernet standard and the ITU

G.957 Synchronous Digital Hierarchy standard).

Figure 4.2 The SFP HSMC Card.

Source:http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=39&No=342.

Testbed in this work includes three parts: one OLT and two ONUs. Figure 4.3

shows a picture of the real testbed. The Optical Distribution Networks (ODN) is not

implemented because the experiments aim at testing the cycle sleep mode function which

is independent from the ODN and implemented in electronics. The output and input of the

OLT and ONUs can be directly interconnected by means of Active Optical Direct Attach

Cable.

28

Figure 4.3 Testbed Picture.

4.3 Emulation of the PON Testbed

4.3.1 Layered Architecture

Figure 4.4 is the layered architecture of the cycle sleep PON system. The OLT and ONU

functions partly use the IP cores, such as altera_xcvr_custom_phy. This section mainly

describes how to implement the sleep scheme by some major blocks, whereas the MAC

and physical layer are out of the scope of this work.

The OLT and ONU block diagrams both contain Sleep Control blocks. The OLT

Sleep Control determines the active time interval of each ONUs according to the DS

traffic. Meanwhile, the ONU Sleep Control part calculates its estimated sleeping time.

29

Both data frame and control message are generated by the OLT Generator as shown in

Figure 4.4, implemented within the FPGAs. The DS FIFO is a buffer used to store DS data

frames during the ONU inactive time, i.e., when the ONU sojourns in the sleep state. The

ONU Monitor receives data frames and collects the relevant statistics for the DS

transmission. The ONU Extractor extracts the received frames to hunt for control messages

and forwards the extracted headers, such as sleep time, to the corresponding Sleep Control.

OLT Sleep

Control

OLT Generator

DS FIFO

Tx FIFO

Tx MAC

ONU Sleep

Control

ONU Extrator

ONU Monitor

Rx FIFO

Rx MAC

SFP SFP

OLT FPGA ONU FPGA

Figure 4.4 The Layered Architecture of the Cycle Sleep PON System.

4.3.2 Control Message Format

The control message format depicted in Figure 4.5 includes three segments. Transmission

header is a specific 8-byte opcode for the start of a transmission. In this work, we set the

30

header to be four AA55h, which can be predefined according to the application. The 16-bit

opcode of the Identification No. field is used to identify the destination ONU of the

following data. The value ranges from 0001h to FFFFh, which satisfies the requirements

for various standards. The Sleep period notification segment contains a 16-bit field that

indicates the desired sleep time specified by the OLT in terms of the number of data frames

to be transmitted. Data segment is the valid data to be transmitted.

Transmission Header Identification No. Sleep Period Notification

8 Bytes 2 Bytes 2 Bytes

...

...

Data

Figure 4.5 Format of the Control Message.

4.3.3 Data Analysis

Because of the hardware resource limitation, two ONUs are used for implementing the

cycle sleep scheme. SignalTap is used to capture and display real time signals in the FPGA

design.

Figure 4.6(a) shows the data transmitted by the OLT and Figure 4.6(b) shows the

control message in magnification, that in one cycle. In Figure 4.6(a), we mark the

Transmission cycle of our PON system, and we can observe the value of each bit in Figure

4.6(b).

31

(a)

(b)

Figure 4.6 Output data of OLT: (a) Overall Output, and (b) Output Details.

Data captured on ONU1 are depicted in Figure 4.7 (a), (b) and (c).

Figure 4.7 (a) is an overall data view of ONU1. The DS data are a continuous signal

emitting from the OLT, while the ONU1 shows discontinuous reception. In comparison

between R_rx_data_stream in Figure 4.7 (b) and the tx_data in Figure 4.6 (b), it is easy to

see that the two signals are essentially the same.

32

(a)

(b)

(c)

Figure 4.7 Data Received at ONU: (a) Overall Downstream Data at ONU1, (b) Control

Message for ONU1, and (c) Control Message for ONU2.

Description of parameters used in the emulation:

 R_rx_data_stream: the DS data stream from the OLT.

 R_fetch_valid: a flag to indicate the beginning of valid data.

 R_rx_fetch_en: enable signal; pulled high when the ONU begins to receive

data.

 R_rx_fetch_data: data received from the OLT.

33

 Compare_data: reference data used to check whether errors exist.

 Error_flag_reg: pulled high when an error exists.

 Error_cnt: a counter to store the total number of errors.

Figure 4.7 (b) shows the detailed information of the captured data. It can be seen

that the control message is AA55h AA55h AA55h AA55h 0001h 0064h. The four

consecutive AA55h implies the sign for transmission, and the following 0001h indicates

the destination ID is 1, which represents ONU1, and 0064h means that the following one

hundred 16-bit data are going to be transmitted.

Figure 4.7 (c) demonstrates the end of transmission to ONU1 following the control

message for the next transmission. R_fetch_valid is drawn to low to illustrate the end of

valid data for the current destination. R_rx_fetch_data register keeps the last data in

preparing the switching to the sleep mode. Error_flag_reg is driven low if an error occurs,

and Error_cnt counts the number of errors. The values of these two parameters are 0 if this

transmission is error free.

According to the definition of the transmission cycle and the observed results, we

obtain

2
1 2

1

(0064 0032)

(150)

k

cycle slot slot slot

k

transmit h h data

T T T T

T

T





  







.

 In this equation, k is the sequence number of ONU. In this implementation, the

sleep time of each ONU is constant. Based on the emulation and assuming t is the time

needed for transmitting one 16-bit data, we can calculate the percentage of energy savings

as follows,

34

cycle active

100 3.85 50 1.28
(1)*100%= -

* 150 3.85

ONU
savings

E t t

T P t


  
 


（1 ）=77.75%

It can be concluded in this implementation that the cycle sleep scheme can save up

to 77.75% of energy consumption of one ONU.

35

CHAPTER 5

CONCLUSIONS

This thesis describes the wake-up process and compares the power consumption in the

active mode and sleep mode for ONU with the current receiver architecture. An improved

ONU architecture has been proposed to allow ONUs to switch to the sleep mode and

quickly recover the OLT clock. The effects of the sleep mode on the energy saving

performance are analytically computed and compared for the two architectures. The

simulation results show that the improved architecture significantly reduces the clock

recovery overhead of the current architecture as the ONU wakes up from the sleep mode.

This work further implements the cycle sleep scheme on a multi-ONU testbed

based on the improved ONU architecture. The emulation results illustrate that the

improved architecture can effectively reduce energy consumption b using the proper sleep

mode approach under live traffic.

36

APPENDIX A

TOP-LEVEL CODE

Top-level code is the entrance of the whole project, which combines all the sub-functional

modules by designing a proper logic sequence.

37

`include "definition.v"

module custom_PHY_test_top(

 input clkintop_125_p ,

 input cpu_resetn ,//2.5V, CPU Reset Pushbutton, comment out if dev_clrn

function is set

 //

 //HIGH-SPEED-MEZZANINE-CARD interface ------------//198 pins

 //xcvr: 8

 //IO: 85

 output [3 :0] hsma_d ,

 //Bank 1 (transceivers)

 output [1 :0] hsma_tx_p ,//1.5V PCML, HSMA Transmit Data

 input [1 :0] hsma_rx_p ,//1.5V PCML, HSMA Receive Data-req's OCT

 //

 input refclk2_qr1_p ,//1.5-V PCML, default 125MHz

 //input refclk3_qr1_p ,//1.5-V PCML, HSMC CLKIN2 (differential)

 //user LED

 //IO: 6

 input [3:0] user_dipsw ,

 output [3:0] user_led ,//2.5V, Green User LEDs

 output hsma_tx_led ,//2.5V, User LED - Labeled HSMA TX

 output hsma_rx_led //2.5V, User LED - Labeled HSMA RX

);

//==

//parameters definition

//==`ifdef SIM

38

parameter REPEAT_ALIGN_CYCLE = 5000;

`else

parameter REPEAT_ALIGN_CYCLE = 40000;

`endif

parameter ALIGN_CYCLE = 2000;

//==

wire [1:0] pll_powerdown ;//pll_powerdown.pll_powerdown

wire [1:0] tx_analogreset ;//tx_analogreset.tx_analogreset

wire [1:0] tx_digitalreset ;//tx_digitalreset.tx_digitalreset

wire [0:0] tx_pll_refclk ;//tx_pll_refclk.tx_pll_refclk

wire [1:0] tx_serial_data ;//tx_serial_data.tx_serial_data

wire [1:0] pll_locked ;//pll_locked.pll_locked

wire [1:0] rx_analogreset ;//rx_analogreset.rx_analogreset

wire [1:0] rx_digitalreset ;//rx_digitalreset.rx_digitalreset

wire [0:0] rx_cdr_refclk ;//rx_cdr_refclk.rx_cdr_refclk

wire [1:0] rx_serial_data ;//rx_serial_data.rx_serial_data

wire [1:0] rx_is_lockedtoref ;//rx_is_lockedtoref.rx_is_lockedtoref

wire [1:0] rx_is_lockedtodata ;//rx_is_lockedtodata.rx_is_lockedtodata

wire [1:0] rx_seriallpbken ;//rx_seriallpbken.rx_seriallpbken

wire [87:0] tx_parallel_data ;//tx_parallel_data.tx_parallel_data

wire [127:0] rx_parallel_data ;//rx_parallel_data.rx_parallel_data

wire [1:0] tx_std_coreclkin ;//tx_std_coreclkin.tx_std_coreclkin

wire [1:0] rx_std_coreclkin ;//rx_std_coreclkin.rx_std_coreclkin

wire [1:0] tx_std_clkout ;//tx_std_clkout.tx_std_clkout

wire [1:0] rx_std_clkout ;//rx_std_clkout.rx_std_clkout

39

wire [1:0] tx_std_pcfifo_full ;//tx_std_pcfifo_full.tx_std_pcfifo_full

wire [1:0] rx_std_pcfifo_empty ;//rx_std_pcfifo_empty.rx_std_pcfifo_empty

wire [1:0] rx_std_wa_patternalign; // rx_std_wa_patternalign.rx_std_wa_patternalign

wire [9:0] rx_std_bitslipboundarysel; // rx_std_bitslipboundarysel.rx_std_bitslipboundarysel

reg [1:0] rx_std_bitslip=0 ;//rx_std_bitslip.rx_std_bitslip

wire [1:0] tx_cal_busy ;//tx_cal_busy.tx_cal_busy

wire [1:0] rx_cal_busy ;//rx_cal_busy.rx_cal_busy

wire [279:0] reconfig_to_xcvr ;//reconfig_to_xcvr.reconfig_to_xcvr

wire [183:0] reconfig_from_xcvr ;//reconfig_from_xcvr.reconfig_from_xcvr

wire [1:0] tx_ready ;

wire [1:0] rx_ready ;

//==

wire hw_reset_n ;

wire phy_mgmt_clk ;

wire locked ;

reg heartbeat_led=0 ;

reg [31:0] heartbeat_cnt=0 ;

reg [15:0] tx_data=0;

wire tx_reset ;

wire rx_reset ;

reg [31:0] tx_test_cnt ;

reg [1 :0] rx_align_done=2'b0 ;

reg [5:0] wait_cnt_0 = 6'd30 ;

reg [5:0] wait_cnt_1 = 6'd30 ;

reg rx_data_valid_0 ;

40

reg rx_data_valid_1 ;

reg [15:0] rx_data_0 ;

reg [15:0] rx_data_1 ;

reg [15:0] test_data = 16'hacef ;

wire [15:0] tx_bus_data ;

wire [15:0] rx_data_temp_0 ;

wire [15:0] rx_data_temp_1 ;

wire rx_fetch_en_0 ;

wire [15:0] rx_fetch_data_0 ;

wire rx_fetch_en_1 ;

wire [15:0] rx_fetch_data_1 ;

reg rx_data_valid_reg0 ;

reg [15:0] rx_data_reg0 ;

reg rx_data_valid_reg1 ;

reg [15:0] rx_data_reg1 ;

reg R_rx_fetch_en_0 ;

reg [15:0] R_rx_fetch_data_0 ;

reg R_rx_fetch_en_1 ;

reg [15:0] R_rx_fetch_data_1 ;

reg compare_en_0=0 ;

reg compare_en_1=0 ;

reg [15:0] compare_data_0 ;

reg [15:0] compare_data_1 ;

wire error_falg_0 ;

reg error_flag_reg_0 ;

41

reg [15:0] error_cnt_0 ;

wire error_falg_1 ;

reg error_flag_reg_1 ;

reg [15:0] error_cnt_1 ;

reg tx_active ;

reg [1 :0] rx_active ;

reg [13:0] rx_align_cnt_0 ;

reg [13:0] rx_align_cnt_1 ;

reg tx_en ;

reg [15:0] tx_en_time ;

reg rx_valid_en ;

reg rx_valid_en_reg ;

reg [15:0] rx_valid_data_cnt_0 ;

reg [15:0] rx_valid_data_cnt_1 ;

reg [31:0] rx_reset_cnt=0 ;

//==

reset_debounced#(

 .FR (125),//125MHz

 .DELAY (15) //15ms

)reset_debounced_inst(

 .I_clk (clkintop_125_p),

 .I_reset_in_n (cpu_resetn),

 .O_reset_out_n (hw_reset_n)

);

sys_pll sys_pll_inst (

42

 .refclk (clkintop_125_p),

 .rst (1'b0),

 .outclk_0 (phy_mgmt_clk),

 .locked (locked)

);

delay_reset delay_reset_inst(

 .I_clk (phy_mgmt_clk),

 .I_locked (locked),

 .O_rst (phy_mgmt_clk_reset)

);

delay_reset delay_reset_inst_tx(

 .I_clk (tx_std_clkout[0]),

 .I_locked (pll_locked[0]),

 .O_rst (tx_reset)

);

delay_reset delay_reset_inst_rx(

 .I_clk (rx_std_clkout[1]),

 .I_locked (pll_locked[1]),

 .O_rst (rx_reset)

);

always@(posedge phy_mgmt_clk)

begin

 if(heartbeat_cnt==32'd62500000)

 begin

 heartbeat_cnt <= 32'd0;

43

 heartbeat_led <= ~heartbeat_led;

 end

 else

 begin

 heartbeat_cnt <= heartbeat_cnt + 32'd1;

 end

end

//==

assign hsma_d = 4'b11_11 ;

assign rx_seriallpbken = 2'b0 ;

assign tx_pll_refclk = refclk2_qr1_p ;

assign rx_cdr_refclk = refclk2_qr1_p ;//refclk3_qr1_p ;

assign tx_std_coreclkin = tx_std_clkout ;

assign rx_std_coreclkin = rx_std_clkout ;

assign pll_powerdown[1] = {1{pll_powerdown[0]}};

assign rx_serial_data[0] = hsma_rx_p[0] ;

assign hsma_tx_p[0] = tx_serial_data[0] ;

assign rx_serial_data[1] = hsma_rx_p[1] ;

assign hsma_tx_p[1] = tx_serial_data[1] ;

assign tx_parallel_data =

{{25'b0,tx_data[15:8],3'b0,tx_data[7:0]},{25'b0,tx_data[15:8],3'b0,tx_data[7:0]}};

assign rx_data_temp_0 = {rx_parallel_data[23:16],rx_parallel_data[7:0]};

assign rx_data_temp_1 = {rx_parallel_data[64+23:64+16],rx_parallel_data[64+7:64+0]};

assign hsma_tx_led = ~rx_is_lockedtodata ;

assign hsma_rx_led = ~rx_is_lockedtoref ;

assign user_led[0] = ~pll_locked ;

44

assign user_led[1] = ~& rx_align_done ;

assign user_led[2] = ~(|error_cnt_0) | ~(|error_cnt_1) | ~error_flag_reg_0 |

~error_flag_reg_1;

assign user_led[3] = heartbeat_led ;

//==

always@(posedge tx_std_coreclkin[0])

begin

 tx_active <= user_dipsw[0];

end

always@(posedge tx_std_coreclkin[0])

begin

 if(tx_reset)

 begin

 tx_test_cnt <= 32'd0;

 tx_data <= 16'd0;

 end

 else if(tx_active)

 begin

 if(tx_ready[0])

 begin

 `ifdef SIM

 if(tx_test_cnt[11])

 `else

 if(tx_test_cnt[27])

 `endif

 begin

45

 if(tx_en)

 tx_data <= tx_bus_data;

 else

 tx_data <= test_data;

 end

 else

 begin

 tx_data <= test_data;

 tx_test_cnt <= tx_test_cnt + 32'd1;

 end

 end

 end

 else

 begin

 tx_data <= 16'd0;

 tx_test_cnt <= 32'd0;

 end

end

always@(posedge tx_std_coreclkin[0])

begin

 if(tx_reset)

 begin

 tx_en_time <= 16'd0;

 tx_en <= 1'b0;

 end

46

 else if(tx_test_cnt[11])

 begin

 if(tx_en_time>=(REPEAT_ALIGN_CYCLE+ALIGN_CYCLE))

 begin

 tx_en_time <= 16'd0;

 tx_en_time <= tx_en_time;

 end

 else

 begin

 if(tx_en_time<REPEAT_ALIGN_CYCLE)

 begin

 tx_en <= 1'b1;

 end

 else

 begin

 tx_en <= 1'b0;

 end

 end

 end

end

tx_data_gen tx_data_gen_inst(

 .clk (tx_std_coreclkin[0]),

 .reset (tx_reset),

 .en (tx_en),

 .data_out (tx_bus_data)

47

);

//==

always@(posedge rx_std_coreclkin[0])

begin

 rx_active[0] <= user_dipsw[1];

end

always@(posedge rx_std_coreclkin[0])

begin

 if(rx_reset)

 begin

 rx_std_bitslip[0] <= 1'b0;

 rx_align_done[0] <= 1'b0;

 wait_cnt_0 <= 6'd30;

 rx_align_cnt_0 <= 13'd0;

 rx_valid_data_cnt_0 <= 16'd0;

 end

 else if(rx_active[0])

 begin

 if(rx_ready[0])

 begin

 if(!rx_align_done[0])

 begin

 if(rx_data_temp_0==test_data)

 begin

 wait_cnt_0 <= 6'd30;

48

 //

 `ifdef SIM

 if(rx_align_cnt_0[4])

 `else

 if(rx_align_cnt_0[12])

 `endif

 begin

 rx_std_bitslip[0] <= 1'b0;

 rx_align_done[0] <= 1'b1;

 end

 else

 begin

 rx_align_cnt_0 <= rx_align_cnt_0 + 13'd1;

 rx_std_bitslip[0] <= 1'b0;

 end

 end

 else if(wait_cnt_0<6'd5)

 begin

 rx_std_bitslip[0] <= 1'b1;

 //

 if(wait_cnt_0==6'd0)

 wait_cnt_0 <= 6'd30;

 else

 wait_cnt_0 <= wait_cnt_0 - 6'd1;

 //

49

 rx_align_cnt_0 <= 13'd0;

 end

 else

 begin

 rx_std_bitslip[0] <= 1'b0;

 wait_cnt_0 <= wait_cnt_0 - 6'd1;

 rx_align_cnt_0 <= 13'd0;

 end

 end

 end

 end

 else

 begin

 rx_std_bitslip[0] <= 1'b0;

 rx_align_done[0] <= 1'b0;

 wait_cnt_0 <= 4'd15;

 end

end

//==

always@(posedge rx_std_coreclkin[1])

begin

 rx_active[1] <= user_dipsw[1];

end

always@(posedge rx_std_coreclkin[1])

begin

50

 if(rx_reset)

 begin

 rx_std_bitslip[1] <= 1'b0;

 rx_align_done[1] <= 1'b0;

 wait_cnt_1 <= 6'd30;

 rx_align_cnt_1 <= 13'd0;

 rx_valid_data_cnt_1 <= 16'd0;

 end

 else if(rx_active[1])

 begin

 if(rx_ready[1])

 begin

 if(!rx_align_done[1])

 begin

 if(rx_data_temp_1==test_data)

 begin

 wait_cnt_1 <= 6'd30;

 //

 `ifdef SIM

 if(rx_align_cnt_1[4])

 `else

 if(rx_align_cnt_1[12])

 `endif

 begin

 rx_std_bitslip[1] <= 1'b0;

51

 rx_align_done[1] <= 1'b1;

 end

 else

 begin

 rx_align_cnt_1 <= rx_align_cnt_1 + 13'd1;

 rx_std_bitslip[1] <= 1'b0;

 end

 end

 else if(wait_cnt_1<6'd5)

 begin

 rx_std_bitslip[1] <= 1'b1;

 //

 if(wait_cnt_1==6'd0)

 wait_cnt_1 <= 6'd30;

 else

 wait_cnt_1 <= wait_cnt_1 - 6'd1;

 //

 rx_align_cnt_1 <= 13'd0;

 end

 else

 begin

 rx_std_bitslip[1] <= 1'b0;

 wait_cnt_1 <= wait_cnt_1 - 6'd1;

 rx_align_cnt_1 <= 13'd0;

 end

52

 end

 end

 end

 else

 begin

 rx_std_bitslip[1] <= 1'b0;

 rx_align_done[1] <= 1'b0;

 wait_cnt_1 <= 4'd15;

 end

end

//==

always@(posedge rx_std_coreclkin[0])

begin

 if(rx_align_done[0])

 begin

 if(rx_ready[0])

 begin

 rx_data_valid_0 <= 1'b1;

 rx_data_0 <= rx_data_temp_0;

 end

 else

 begin

 rx_data_valid_0 <= 1'b0;

 end

 end

53

 else

 begin

 rx_data_valid_0 <= 1'b0;

 end

end

rx_data_fetch#(.ch(0))rx_data_fetch_inst0(

 .clk (rx_std_coreclkin[0]),

 .reset (rx_reset),

 .rx_valid (rx_data_valid_0),

 .rx_data (rx_data_0),

 .rx_fetch_en (rx_fetch_en_0),

 .rx_fetch_data (rx_fetch_data_0)

);

//==

always@(posedge rx_std_coreclkin[1])

begin

 if(rx_align_done[1])

 begin

 if(rx_ready[1])

 begin

 rx_data_valid_1 <= 1'b1;

 rx_data_1 <= rx_data_temp_1;

54

 end

 else

 begin

 rx_data_valid_1 <= 1'b0;

 end

 end

 else

 begin

 rx_data_valid_1 <= 1'b0;

 end

end

rx_data_fetch#(.ch(1))rx_data_fetch_inst1(

 .clk (rx_std_coreclkin[1]),

 .reset (rx_reset),

 .rx_valid (rx_data_valid_1),

 .rx_data (rx_data_1),

 .rx_fetch_en (rx_fetch_en_1),

 .rx_fetch_data (rx_fetch_data_1)

);

//==

//RX error detcter

//==

always@(posedge rx_std_coreclkin[0])

begin

 rx_data_valid_reg0 <= rx_fetch_en_0;

55

 rx_data_reg0 <= rx_fetch_data_0;

 R_rx_fetch_en_0 <= rx_data_valid_reg0;

 R_rx_fetch_data_0 <= rx_data_reg0 ;

 rx_data_valid_reg1 <= rx_fetch_en_1;

 rx_data_reg1 <= rx_fetch_data_1;

 R_rx_fetch_en_1 <= rx_data_valid_reg1;

 R_rx_fetch_data_1 <= rx_data_reg1 ;

end

always@(posedge rx_std_coreclkin[0])

begin

 if(rx_align_done[0])

 begin

 if(rx_data_valid_reg0 && ((R_rx_fetch_data_0==test_data) &&

(rx_data_reg0==~test_data)))

 begin

 compare_en_0 <= 1'b1;

 end

 end

end

always@(posedge rx_std_coreclkin[0])

begin

 if(rx_reset)

56

 begin

 compare_data_0 <= 16'h0;

 end

 if(R_rx_fetch_en_0)

 begin

 compare_data_0 <= compare_data_0 + 16'd1;

 end

 else

 begin

 compare_data_0 <= 16'h0;

 end

end

assign error_falg_0 = (compare_data_0==R_rx_fetch_data_0)? 1'b0 : 1'b1;

always@(posedge rx_std_coreclkin[0])

begin

 if(rx_reset)

 begin

 error_cnt_0 <= 16'd0;

 error_flag_reg_0 <= 1'b0;

 end

 else if(R_rx_fetch_en_0 & error_falg_0)

 begin

 error_cnt_0 <= error_cnt_0 + 16'd1;

 error_flag_reg_0 <= 1'b1;

 end

57

 else

 begin

 error_flag_reg_0 <= 1'b0;

 end

end

//==always@(posedge

rx_std_coreclkin[1])

begin

 if(rx_align_done[1])

 begin

 if(rx_data_valid_reg1 && ((R_rx_fetch_data_1==test_data) &&

(rx_data_reg1==~test_data)))

 begin

 compare_en_1 <= 1'b1;

 end

 end

end

always@(posedge rx_std_coreclkin[1])

begin

 if(rx_reset)

 begin

 compare_data_1 <= 16'h0;

 end

 if(R_rx_fetch_en_1)

 begin

 compare_data_1 <= compare_data_1 + 16'd1;

58

 end

 else

 begin

 compare_data_1 <= 16'h0;

 end

end

assign error_falg_1 = (compare_data_1==R_rx_fetch_data_1)? 1'b0 : 1'b1;

always@(posedge rx_std_coreclkin[1])

begin

 if(rx_reset)

 begin

 error_cnt_1 <= 16'd0;

 error_flag_reg_1 <= 1'b0;

 end

 else if(R_rx_fetch_en_1 & error_falg_1)

 begin

 error_cnt_1 <= error_cnt_1 + 16'd1;

 error_flag_reg_1 <= 1'b1;

 end

 else

 begin

 error_flag_reg_1 <= 1'b0;

 end

end

//===

===

59

transceiver_native_PHY transceiver_native_PHY_inst (

/*input wire [0:0] */.pll_powerdown

(pll_powerdown),//pll_powerdown.pll_powerdown

/*input wire [0:0] */.tx_analogreset (tx_analogreset),//tx_analogreset.tx_analogreset

/*input wire [0:0] */.tx_digitalreset (tx_digitalreset),//tx_digitalreset.tx_digitalreset

/*input wire [0:0] */.tx_pll_refclk (tx_pll_refclk),//tx_pll_refclk.tx_pll_refclk

/*output wire [0:0] */.tx_serial_data (tx_serial_data),//tx_serial_data.tx_serial_data

/*output wire [0:0] */.pll_locked (pll_locked),//pll_locked.pll_locked

/*input wire [0:0] */.rx_analogreset (rx_analogreset),//rx_analogreset.rx_analogreset

/*input wire [0:0] */.rx_digitalreset (rx_digitalreset),//rx_digitalreset.rx_digitalreset

/*input wire [0:0] */.rx_cdr_refclk (rx_cdr_refclk),//rx_cdr_refclk.rx_cdr_refclk

/*input wire [0:0] */.rx_serial_data (rx_serial_data),//rx_serial_data.rx_serial_data

/*output wire [0:0] */.rx_is_lockedtoref

(rx_is_lockedtoref),//rx_is_lockedtoref.rx_is_lockedtoref

/*output wire [0:0] */.rx_is_lockedtodata

(rx_is_lockedtodata),//rx_is_lockedtodata.rx_is_lockedtodata

/*input wire [0:0] */.rx_seriallpbken (rx_seriallpbken),//rx_seriallpbken.rx_seriallpbken

/*input wire [43:0] */.tx_parallel_data

(tx_parallel_data),//tx_parallel_data.tx_parallel_data

/*output wire [63:0] */.rx_parallel_data

(rx_parallel_data),//rx_parallel_data.rx_parallel_data

/*input wire [0:0] */.tx_std_coreclkin

(tx_std_coreclkin),//tx_std_coreclkin.tx_std_coreclkin

/*input wire [0:0] */.rx_std_coreclkin

(rx_std_coreclkin),//rx_std_coreclkin.rx_std_coreclkin

/*output wire [0:0] */.tx_std_clkout (tx_std_clkout),//tx_std_clkout.tx_std_clkout

/*output wire [0:0] */.rx_std_clkout (rx_std_clkout),//rx_std_clkout.rx_std_clkout

/*output wire [0:0] */.tx_std_pcfifo_full

(tx_std_pcfifo_full),//tx_std_pcfifo_full.tx_std_pcfifo_full

60

/*output wire [0:0] */.rx_std_pcfifo_empty

(rx_std_pcfifo_empty),//rx_std_pcfifo_empty.rx_std_pcfifo_empty

/*input wire [0:0] */.rx_std_wa_patternalign (rx_std_wa_patternalign), //

rx_std_wa_patternalign.rx_std_wa_patternalign

/*output wire [4:0] */.rx_std_bitslipboundarysel(rx_std_bitslipboundarysel), //

rx_std_bitslipboundarysel.rx_std_bitslipboundarysel

/*input wire [0:0] */.rx_clkslip (rx_std_bitslip),//rx_std_bitslip.rx_std_bitslip

/*output wire [0:0] */.tx_cal_busy (tx_cal_busy),//tx_cal_busy.tx_cal_busy

/*output wire [0:0] */.rx_cal_busy (rx_cal_busy),//rx_cal_busy.rx_cal_busy

/*input wire [139:0] */.reconfig_to_xcvr

(reconfig_to_xcvr),//reconfig_to_xcvr.reconfig_to_xcvr

/*output wire [91:0] */.reconfig_from_xcvr (reconfig_from_xcvr)

//reconfig_from_xcvr.reconfig_from_xcvr

);

transceiver_PHY_reset transceiver_PHY_reset_inst (

/*input wire */.clock (phy_mgmt_clk),//clock.clk

/*input wire */.reset (phy_mgmt_clk_reset),//reset.reset

/*output wire [0:0] */.pll_powerdown

(pll_powerdown[0]),//pll_powerdown.pll_powerdown

/*output wire [0:0] */.tx_analogreset (tx_analogreset),//tx_analogreset.tx_analogreset

/*output wire [0:0] */.tx_digitalreset (tx_digitalreset),//tx_digitalreset.tx_digitalreset

/*output wire [0:0] */.tx_ready (tx_ready),//tx_ready.tx_ready

/*input wire [0:0] */.pll_locked (pll_locked),//pll_locked.pll_locked

/*input wire [0:0] */.pll_select (0),//pll_select.pll_select

/*input wire [0:0] */.tx_cal_busy (tx_cal_busy),//tx_cal_busy.tx_cal_busy

/*output wire [0:0] */.rx_analogreset (rx_analogreset),//rx_analogreset.rx_analogreset

/*output wire [0:0] */.rx_digitalreset (rx_digitalreset),//rx_digitalreset.rx_digitalreset

61

/*output wire [0:0] */.rx_ready (rx_ready),//rx_ready.rx_ready

/*input wire [0:0] */.rx_is_lockedtodata

(rx_is_lockedtodata),//rx_is_lockedtodata.rx_is_lockedtodata

/*input wire [0:0] */.rx_cal_busy (rx_cal_busy) //rx_cal_busy.rx_cal_busy

);

transceiver_PHY_reconfig transceiver_PHY_reconfig_inst (

/*output wire */.reconfig_busy (),//reconfig_busy.reconfig_busy

/*input wire */.mgmt_clk_clk (phy_mgmt_clk),//mgmt_clk_clk.clk

/*input wire */.mgmt_rst_reset (phy_mgmt_clk_reset),//mgmt_rst_reset.reset

/*input wire [6:0] */.reconfig_mgmt_address (0),//reconfig_mgmt.address

/*input wire */.reconfig_mgmt_read (0),//.read

/*output wire [31:0] */.reconfig_mgmt_readdata (),//.readdata

/*output wire */.reconfig_mgmt_waitrequest (),//.waitrequest

/*input wire */.reconfig_mgmt_write (0),//.write

/*input wire [31:0] */.reconfig_mgmt_writedata (0),//.writedata

/*output wire [139:0] */.reconfig_to_xcvr

(reconfig_to_xcvr),//reconfig_to_xcvr.reconfig_to_xcvr

/*input wire [91:0] */.reconfig_from_xcvr (reconfig_from_xcvr)

//reconfig_from_xcvr.reconfig_from_xcvr

);

endmodule

62

APPENDIX B

DATA GENERATOR CODE

This module is used to generate incremental data to be transmitted.

63

module tx_data_gen(

 input clk ,

 input reset ,

 input en ,

 output [15:0] data_out

);

//==

reg [15:0] R_data_out ;

reg [15:0] R_data_tx ;

reg [7 :0] R_traffic_cycle ;

reg R_traffic_valid0 ;

reg R_traffic_valid1 ;

reg R_id_change ;

reg [2 :0] R_id ;

//==

always@(posedge clk)

begin

 if(reset)

 begin

 R_traffic_cycle <= 8'd0;

 end

 else if(en)

 begin

 if(R_traffic_cycle<=8'd166)

64

 R_traffic_cycle <= R_traffic_cycle + 8'd1;

 else

 R_traffic_cycle <= 8'd0;

 end

end

always@(posedge clk)

begin

 if((R_traffic_cycle<=8'd106) || ((R_traffic_cycle>8'd107) && (R_traffic_cycle<=8'd164)))

 R_traffic_valid0 <= 1'b1;

 else

 R_traffic_valid0 <= 1'b0;

end

always@(posedge clk)

begin

 R_traffic_valid1 <= R_traffic_valid0;

end

always@(posedge clk)

begin

 if(reset)

 begin

 R_id <= 3'd0;

 end

 else if(en)

 begin

65

 if(R_traffic_valid0)

 begin

 if(R_id<3'd7)

 R_id <= R_id + 3'd1;

 end

 else

 begin

 R_id <= 3'd0;

 end

 end

 else

 begin

 R_id <= 3'd0;

 end

end

always@(posedge clk)

begin

 if(reset)

 R_id_change <= 1'b0;

 else if(!R_traffic_valid0 & R_traffic_valid1)

 R_id_change <= ~R_id_change;

end

always@(posedge clk)

begin

 if(reset)

66

 begin

 R_data_out <= 16'd0;

 end

 else if(en)

 begin

 if(R_traffic_valid0)

 begin

 if(!R_id_change)

 begin

 case(R_id)

 3'd1,3'd2,3'd3,3'd4:

 begin

 R_data_out <= 16'haa55;

 end

 3'd5:

 begin

 R_data_out <= 16'd1;

 end

 3'd6:

 begin

 R_data_out <= 16'd100;

 end

 3'd7:

 begin

 R_data_out <= R_data_tx;

67

 end

 endcase

 end

 else

 begin

 case(R_id)

 3'd1,3'd2,3'd3,3'd4:

 begin

 R_data_out <= 16'haa55;

 end

 3'd5:

 begin

 R_data_out <= 16'd2;

 end

 3'd6:

 begin

 R_data_out <= 16'd50;

 end

 3'd7:

 begin

 R_data_out <= R_data_tx;

 end

 endcase

 end

 end

68

 else

 begin

 R_data_out <= R_data_out + 16'h1;

 end

 end

end

always@(posedge clk)

begin

 if(R_id==3'd7)

 begin

 R_data_tx <= R_data_tx + 16'd1;

 end

 else

 begin

 R_data_tx <= 16'd0;

 end

end

assign data_out = R_data_out;

endmodule

69

APPENDIX C

DATA EXTRACT CODE

This module is used to receive and extract data from the data stream.

70

module rx_data_fetch#(

 parameter ch = 0

)(

 input clk ,

 input reset ,

 input rx_valid ,

 input [15:0] rx_data ,

 output rx_fetch_en ,

 output [15:0] rx_fetch_data

);

//==

reg R_rx_valid_0 ;

reg [15:0] R_rx_data_stream ;

reg R_rx_valid_1 ;

reg [15:0] R_rx_data_1 ;

reg R_rx_valid_2 ;

reg [15:0] R_rx_data_2 ;

reg R_rx_valid_3 ;

reg [15:0] R_rx_data_3 ;

reg R_rx_valid_4 ;

reg [15:0] R_rx_data_4 ;

reg R_rx_valid_5 ;

reg [15:0] R_rx_data_5 ;

reg [15:0] R_fetch_count ;

reg [15:0] R_fetch_len ;

71

reg R_fetch_valid ;

reg R_rx_fetch_en ;

reg [15:0] R_rx_fetch_data ;

//==

always@(posedge clk)

begin

 R_rx_valid_0 <= rx_valid ;

 R_rx_data_stream <= rx_data ;

 R_rx_valid_1 <= R_rx_valid_0;

 R_rx_data_1 <= R_rx_data_stream ;

 R_rx_valid_2 <= R_rx_valid_1;

 R_rx_data_2 <= R_rx_data_1 ;

 R_rx_valid_3 <= R_rx_valid_2;

 R_rx_data_3 <= R_rx_data_2 ;

 R_rx_valid_4 <= R_rx_valid_3;

 R_rx_data_4 <= R_rx_data_3 ;

 R_rx_valid_5 <= R_rx_valid_4;

 R_rx_data_5 <= R_rx_data_4 ;

end

always@(posedge clk)

begin

 if(reset)

 begin

 R_fetch_len <= 16'd0;

72

 R_fetch_valid <= 1'b0;

 //

 R_fetch_count <= 16'd0;

 R_rx_fetch_en <= 1'b0;

 R_rx_fetch_data <= 16'd0;

 end

 else if(R_rx_valid_5 | R_rx_valid_4 | R_rx_valid_3 | R_rx_valid_2 | R_rx_valid_1)

 begin

 if((R_rx_data_5==16'haa55) && (R_rx_data_4==16'haa55) && (R_rx_data_3==16'haa55)

&& (R_rx_data_2==16'haa55))

 begin

 if(ch==0)

 begin

 if(R_rx_data_1==16'h0001)

 begin

 R_fetch_len <= R_rx_data_stream;

 R_fetch_valid <= 1'b1;

 end

 else

 begin

 R_fetch_valid <= 1'b0;

 end

 end

 else if(ch==1)

 begin

 if(R_rx_data_1==16'h0002)

73

 begin

 R_fetch_len <= R_rx_data_stream;

 R_fetch_valid <= 1'b1;

 end

 else

 begin

 R_fetch_valid <= 1'b0;

 end

 end

 end

 end

 //==

 if(R_fetch_valid)

 begin

 if(R_fetch_count<=R_fetch_len)

 begin

 R_fetch_count <= R_fetch_count + 16'd1;

 //

 R_rx_fetch_en <= 1'b1;

 R_rx_fetch_data <= R_rx_data_stream;

 end

 else

 begin

 R_fetch_count <= 16'd0;

 R_fetch_valid <= 1'b0;

74

 R_rx_fetch_en <= 1'b0;

 end

 end

 else

 begin

 R_rx_fetch_en <= 1'b0;

 end

end

assign rx_fetch_en = R_rx_fetch_en;

assign rx_fetch_data = R_rx_fetch_data;

endmodule

75

REFERENCES

[1] Ansari, Nirwan, and Jingjing Zhang. Media Access Control and Resource Allocation:

For Next Generation Passive Optical Networks. Springer Science & Business

Media, ISBN: 978-1461439387, 2013.

[2] Lee, C.H., Sorin, W.V. and Kim, B.Y., “Fiber to the home using a PON infrastructure,”

Journal of Lightwave Technology, vol. 24, no. 12, pp. 4568-4583, 2006.

[3] Luo, Y., Yin, S., Ansari, N. and Wang, T., "Resource Management for Broadband

Access over TDM PONs," IEEE Network, vol. 21, no. 5, pp. 20-27, Sep./Oct. 2007.

[4] Zhang, J. and Ansari, N., "Design of WDM PON with tunable lasers: The upstream

scenario," IEEE/OSA Journal of Lightwave Technology, vol. 28, no..2, pp. 228-236,

Jan. 2010.

[5] Luo, Y. and Ansari, N., "Bandwidth allocation for multiservice access on EPONs."

IEEE Communications Magazine, vol. 43, no. 2, pp. S16-S21, Feb. 2005.

[6] Zhang, J. and Ansari, N., “On OFDMA Resource Allocation and Wavelength

Assignment in OFDMA-based Radio-over-fiber Picocellular Systems with

Wavelength Reuse,” IEEE Journal of Selected Areas in Communications, vol. 29,

no. 6, pp. 1273-1283, June 2011.

[7] Kramer, G., De Andrade, M., Roy, R., and Chowdhury, P., "Evolution of optical access

networks: Architectures and capacity upgrades." Proceedings of the IEEE, vol.

100, no. 5, pp. 1188-1196, 2012.

[8] Zhang, J., Ansari, N., Luo, Y., Effenberger, F. and Ye, F., " Next-Generation PONs: A

Performance Investigation of Candidate Architectures for Next-Generation Access

Stage 1," IEEE Communications Magazine, vol. 47, no. 8, pp. 49-57, August 2009.

[9] Lange, C., Kosiankowski, D., Weidmann, R., and Gladisch, A., "Energy consumption

of telecommunication networks and related improvement options," IEEE Journal

on Selected Topics in Quantum Electronics, vol. 17, no. 2, pp. 285-295, 2011.

[10] Tucker, R.S., “Green optical communications—Part II: Energy limitations in

networks.” IEEE Journal on Selected Topics in Quantum Electronics, vol. 17, no. 2,

pp. 261-274, 2011.

[11] GPON Power Conservation. ITU-T G-Series Recommendations-Supplement 45 (G.

sup45). ITU-T, May, 2009.

[12] Trojer, E. and Eriksson, P.E., “Power saving modes for GPON and VDSL2.” 13th

European Conf. Networks & Optical Commun. and 3rd Conf. Optical Cabling &

Infrastructure, Krems, Austria. 2008.

[13] Valcarenghi, L., Van, D.P., and Raponi, P.G., "Energy efficiency in passive optical

networks: where, when, and how?" IEEE Network, vol. 26, no. 6, pp. 61-68,

Nov./Dec. 2012.

[14] Zhang, J. and Ansari, N., “Towards Energy-efficient 1G-EPON and 10G-EPON with

Sleep-aware MAC Control and Scheduling,” IEEE Communications Magazine,

76

Special Feature on Advances in Passive Optical Networks, vol. 49, no. 2, pp.

S33-S38, Feb. 2011.

[15] Zhang, J., Hosseinabadi, M.T. and Ansari, N., "Standards-compliant EPON sleep

control for energy efficiency: Design and analysis," IEEE/OSA Journal of Optical

Communications and Networking, vol. 5, no. 7, pp. 677-685, 2013.

[16] IEEE Standard for Service Interoperability in Ethernet Passive Optical Networks

(SIEPON), IEEE Std 1904.1-2013, DOI: 10.1109/IEEESTD.2013.6605490, June

2013.

[17] Kubo, R., Kani, J.I., Ujikawa, H., Sakamoto, T., Fujimoto, Y., Yoshimoto, N. and

Hadama, H., “Study and demonstration of sleep and adaptive link rate control

mechanisms for energy efficient 10G-EPON,” IEEE/OSA Journal of Optical

Communications and Networking vol. 2, no. 9, pp. 716-729, 2010.

[18] Yan, Y., Wong, S.W., Valcarenghi, L., Yen, S.H., Campelo, D.R., Yamashita, S.,

Kazovsky, L. and Dittmann, L., "Energy management mechanism for Ethernet

passive optical networks (EPONs)," Communications (ICC), 2010 IEEE

International Conference, Cape Town, South Africa, pp. 1-5, May 23-27, 2010.

[19] Smith, T., Tucker, R.S., Hinton, K. and Tran, A.V., "Implications of sleep mode on

activation and ranging protocols in PONs," IEEE LEOS 2008-21st Annual Meeting

of the IEEE Lasers and Electro-Optics Society, pp. 604-605, 2008.

[20] Mandin, J., “EPON power saving via sleep mode.” IEEE P802. 3av 10GEPON task

force meeting. vol. 3. 2008.

[21] Kramer, Glen. Ethernet Passive Optical Networks. McGraw-Hill, ISBN-13:

978-0071445627, 2005.

[22] Lam, Cedric F., ed. Passive Optical Networks: Principles and Practice. Academic

Press, ISBN-13: 978-0123738530 , 2007.

[23] Frazier, H., "The 802.3z Gigabit Ethernet Standard," IEEE Network, vol. 12, no. 3, pp.

6-7, 1998.

[24] Wong, S.W., Valcarenghi, L., Yen, S.H., Campelo, D.R., Yamashita, S., and

Kazovsky, L., “Sleep Mode for Energy Saving PONs: Advantages and

Drawbacks,” in 2009 IEEE GLOBECOM Workshops, 2009, pp. 1–6.

[25] Multirate CDR with Integrated Serializer/Deserializer for GPON and BPON ONT

Applications. Maxim Integrated, 19-3103; Rev 0; July, 2012. [Online]

https://datasheets.maximintegrated.com/en/ds/MAX3886.pdf . [Accessed: Oct. 17,

2015].

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment Page
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: State of the Art
	Chapter 3: Cycle Sleep Triggering Algorithm and a New Synchronization Architecture
	Chapter 4: Hardware Implementation
	Chapter 5: Conclusions
	Appendix A: Top-Level Code
	Appendix B: Data Generator Code
	Appendix C: Data Extract Code
	References

	List of Tables
	List of Figures

