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ABSTRACT 

GENERALIZED DFT: 
EXTENSIONS IN COMMUNICATIONS 

by 
Yuewen Wang 

Discrete Fourier Transform (DFT) is a restricted version of Generalized DFT (GDFT) 

which offers a very limited number of sets to be used in a multicarrier communication 

system. In contrast, as an extension on Discrete Fourier Transform (DFT) from the linear 

phase to non-linear phase, the proposed GDFT provides many possible carrier sets of 

various lengths with comparable or better performance than DFT. The availability of the 

rich library of orthogonal constant amplitude transforms with good performance allows 

people to design adaptive systems where user code allocations are made dynamically to 

exploit the current channel conditions in order to deliver better performance. 

 For MIMO Radar systems, the ideal case to detect a moving target is when all 

waveforms are orthogonal, which can provide an accurate estimation. But this is not 

practical in distributed MIMO radars, where sensors are at varying distances from a target. 

Orthogonal waveforms with low auto- and cross-correlations are of great interest for 

MIMO radar applications with distributed antennas. Finite length orthogonal codes are 

required in real-world applications where frequency selectivity and signal correlation 

features of the optimal subspace are compromised. In the first part of the dissertation, a 

method is addressed to design optimal waveforms which meets above requirements for 

various radar systems by designing the phase shaping function (PSF) of GDFT 

framework with non-linear phase. 
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 Multicarrier transmission such as orthogonal frequency-division multiplexing 

(OFDM) has seen a rise in popularity in wireless communication, as it offers a promising 

choice for high speed data rate transmission. Meanwhile, high peak-to-average power 

ratio (PAPR) is one of the well-known drawbacks of the OFDM system due to reduced 

power efficiency in non-linear modules. Such a situation leads to inefficient amplification 

and increases the cost of the system, or increases in interference and signal distortion. 

Therefore, PAPR reduction techniques play an essential role to improve power efficiency 

in the OFDM systems. There has been a variety of PAPR reduction methods emphasizing 

different aspects proposed in the literature. The trade-off for PAPR reduction in the 

existing methods is either increased average power and/or added computational 

complexity. A new PAPR reduction scheme is proposed that implements a pre-designed 

symbol alphabet modifier matrix (SAM) to jointly modify the amplitude and phase values 

of the original data symbol alphabets prior to the IFFT operation of an OFDM system at 

the transmitter. The method formulated with the GDFT offers a low-complexity 

framework in four proposed cases devised to be independent of original data symbols. 

Without degrading the bit error rate (BER) performance, it formulates PAPR reduction 

problem elegantly and outperforms partial transmit sequences (PTS), selected mapping 

technique (SLM) and Walsh Hadamard transform (WHT-OFDM) significantly for the 

communication scenarios considered in the dissertation. 
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CHAPTER 1 

MOTIVATION AND OVERVIEW 

 

1.1  Introduction 

Multicarrier transmission such as orthogonal frequency-division multiplexing (OFDM) 

with rising popularity in wireless communication has been successfully used in various 

communication technologies. The OFDM system brings the advantages of avoiding 

frequency selective fading, narrow band interference and inter-symbol interference (ISI) 

[1], [2]. The easy implementation of this system, by using Fast Fourier Transform (FFT), is 

also quite attractive.  

In this dissertation, the framework of Generalized Discrete Fourier Transform 

(GDFT) proposed by Prof. Ali N. Akansu and Dr. Handan Agirman-Tosun [3], [4] is 

introduced to communication systems. As an extension on Discrete Fourier Transform 

(DFT) from the linear phase to non-linear phase, several close-form phase functions of 

GDFT are summarized into G  matrix families, through shifting the phases of the function 

in DFT in various ways for different purposes. Furthermore, to provide a larger research 

space, the amplitudes of the basis function in DFT can also be pursued. It was shown that 

not only is DFT a special solution of GDFT [4], but some popular orthogonal block 

transforms, such as Discrete Sine Transform (DST), Discrete Cosine Transform (DCT) [5], 

[6] and other block transforms can also be expressed within the GDFT framework with 

their unique full G  matrices [3], [4].  

It is noteworthy that infinitely possible GDFT sets are available with constant or 

non-constant amplitudes along with non-linear phase functions, the optimal basis 
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(amplitude and phase) for the desired codes of merit can be designed by exploiting 

different types of G  matrices. The GDFT with full G  matrix will be more complicated 

but has more freedom to exploit both in phase and amplitude spaces and brings more 

possibilities to design codes in various communication scenarios.  

 
1.1.1  MIMO Radar Waveforms 

With the rapid development of Multiple Input Multiple Output (MIMO) based 

technologies in many communications applications, MIMO radars implementing OFDM 

signals have also become popular in view of their ability to sense and register a target with 

multiple waveforms from a variety of angles. Thus, they offer improvements to detect and 

classify the target more accurately [7], [8].  

To extract the target information, waveforms emitted by multiple antennae and 

returned from a target need to be separated at the MIMO radar receivers. Ideally, the 

waveforms should be orthogonal to each other for the purpose of decorrelation, but this 

condition cannot be met in the distributed MIMO radars, where sensors are at varying 

distances from a target. Thus, designing orthogonal waveforms with low auto- and 

cross-correlations are of great interest for MIMO radar applications with antennas in 

distributed allocations. Waveforms employed in MIMO radars should be carefully chosen 

in order to minimize self-interference. 

For high localization resolutions, the auto-correlation functions of waveforms 

should have low-peak sidelobe levels in any radar system. In MIMO radars, in addition to 

demanding low peak sidelobes in auto-correlation functions, the cross-correlations 

between waveforms are also required to be low in order to detect multiple targets with high 

resolution. Therefore, the optimal design of orthogonal waveform sets with low 
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auto-correlation and low cross-correlation properties is crucial for the detection 

performance of MIMO radar systems.  

For these techniques comprised of time and frequency domain signal processing, 

the Ambiguity Function is also very important with respect to examination on radar 

estimation and detection. In radar and sonar signal processing, the ambiguity function 

shows the distortion of the receiver matched filter’s response in consequence of the time 

delay and Doppler shift. Time delay indicates the distance between the target and radar 

sensor stations while Doppler shift reflects the motion variation of the moving target. This 

is a two-dimensional function of time delay and Doppler frequency which is shown as [9] 

 

 ( ) ( ) ( )* 2, .j ftf s t s t e dtπχ τ τ
∞ −

−∞
= −∫   (1.1) 

 
Here τ  and f  denote time delay and Doppler frequency shift, respectively. A sharp 

delta-like ambiguity function would be the ideal case for the resolution of time delay and 

Doppler shift, just as in a non-interfering environment to detect the stationary target, but 

it’s not practical in real MIMO radar systems. 

 In this dissertation, the phase design of the waveforms is relaxed to have non-linear 

phase function and forms complex orthogonal sets to pursue optimal waveforms for 

various radar system configurations [49]. The GDFT is used to generate optimal constant 

amplitude waveforms for MIMO radar applications in terms of optimizing correlation 

properties. These GDFT designed waveforms are shown to have lower peak-to-sidelobe 

ratio and better ambiguity function performance than the popular codes sets such as 

Multifrequency Complementary Phase Coded (MCPC) and Oppermann waveforms 

reported in the literatures [10], [11], [12].  
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1.1.2  Peak to Average Power Ratio of OFDM Signal 

Presently, the phenomenon of increased demand on explosive information growth requires 

technologies to support high speed and quality transmissions. With the advantages of 

taking efficient use of the frequency spectrum, as well as providing resistant to frequency 

selective fading, the orthogonal frequency division multiplexing  (OFDM) signals are 

computationally competent with the introduction of adapting its rapid algorithm, namely 

FFT techniques to realize the modulation and demodulation operations[13]. Therefore, 

OFDM signal offers a promising choice for high speed data rate transmission. On the other 

hand, the high peak-to-average power ratio (PAPR) of the transmitted signal is one of the 

major drawbacks of multicarrier transmission such as OFDM communication system. 

Since the OFDM signal is a sum of orthogonal frequency modulated subcarriers, 

when subcarriers weighted with the corresponding symbol alphabet values are added 

coherently, the resulting high peak-to-average power ratio becomes a major deficiency of 

the OFDM systems due to reduced power efficiency and signal distortion in non-linear 

modules such as power amplifier (PA) and digital-to-analog converter (DAC) [14].  

High peak power of OFDM frame (signal) prevents the PA from operating within 

its linear region, and consequently causes additional interference. It also induces bit error 

rate (BER) performance degradation where BER is also an important factor that is closely 

related to the power increase in the transmitted signal. Moreover, in order to avoid such 

situations, it calls for a wider dynamic range in PA and DAC to accommodate the large 

peaks of the OFDM frame and reduce the signal distortion because of the nonlinearity. 

Such a case leads to inefficient amplification and increases the cost of the system as a 

sacrifice. Therefore, PAPR reduction techniques play an essential role to improve power 
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efficiency in the OFDM systems.  

A plethora of research studies on PAPR reduction techniques has been reported in 

the literature [15], and can be classified into different approaches including Clipping and 

Filtering [16], [17], [18], Coding Technique [19], [20], [21], Selected Mapping Technique 

(SLM) [22], [23], Partial Transmit Sequences (PTS) [24], [25], [26], Tone Reservation 

(TR) [27], [28], Tone Injection (TI) [29], [30] and Active Constellation Extension (ACE) 

[31], [32]. All of these techniques have their advantages and disadvantages in terms of 

performance distortion, average power increase, date rate reduction or considerable high 

computational complexity. Clipping does not increase the overall signal power, but results 

in signal distortion which leads to out-of-band interference. The Coding Technique without 

signal distortion requires low PAPR codes to be chosen but leaving the largest Hamming 

distances in their signaling space. The techniques of TR, TI and ACE methods all introduce 

the higher average power, which cause the power inefficiency. 

Among these PAPR reduction methods, the techniques such as selected mapping 

(SLM) and partial transmit sequences (PTS) modify the phase and/or amplitude of symbols 

in the original symbol alphabet (SA). These two techniques are very similar in the 

principles which do not increase average power or signal distortion, therefore, both have 

been successfully used in OFDM communication systems and also popularly adapted in 

the MIMO-OFDM systems. 

On the other hand, such methods have shortcomings of heavy computational 

burden and implementation costs caused by required multiple inverse fast-Fourier 

transform (IFFT) operations at a single transmitter. Furthermore, the side information (SI) 

is require to be sent to the receiver in order to retrieve the original data symbol alphabets by 
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getting rid of the transmitter selected phase shifting sequence set employed in the SLM and 

PTS methods. If the side information is received in error, the entire data block may be lost 

during transmission and as a consequence, it causes the degradation in BER performance. 

Therefore, the SLM and PTS techniques provide a good PAPR performance without signal 

distortion but bring high system complexity and computational cost with the data rate loss 

that need to reserve bits for side information. 

 There are a flurry of extension methods on the SLM and PTS techniques, for the 

purposes of eliminating SI transmission [33]-[36], or lowering system complexity [37]-[40] 

and so on. Some techniques may have an degradation in BER at the receiver if the transmit 

signal power is increased when such methods are modifying not only phase but also 

amplitudes on the original data symbols [38], [39], [41]. 

In this dissertation, a low complexity PAPR reduction method utilizing only one 

symbol alphabet modifier matrix and a single pair of FFT/IFFT operations is proposed 

which is the case of GDFT with full G  matrix framework [42]. This work represents a 

prominent improvement in PAPR reduction that permits the reduction of the complexity 

and cost of the transmitter significantly. It is also shown that the SLM and PTS techniques 

are special cases of this proposed GDFT framework method called Symbol Alphabet 

Modifier Matrix (SAM).  

The performance improvements of the proposed SAM method for various OFDM 

communication scenarios including the Space-Time Block Coding (STBC) MIMO-OFDM 

system are evaluated by simulation comparison on PAPR and BER performances.  
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1.2  Dissertation Outline 

In this section, the organizations and contributions of this dissertation will be outlined. 

 Chapter 2: In this chapter, some famous orthogonal block transforms such as 

Discrete Fourier Transform (DFT) and Walsh-Hadamard Transform (WHT) used for 

comparisons in other chapters are introduced. The mathematical preliminaries of 

Generalized Discrete Fourier Transform (GDFT) which is implemented throughout the 

whole dissertation are stated. The different G  matrix families are also summarized in 

terms of close form phase function representations. 

 Chapter 3: The method to design optimal waveforms is presented for various radar 

system configurations. The GDFT with nonlinear phase is used to design optimal constant 

amplitude waveforms with optimized correlation properties for MIMO radar applications. 

These waveforms are shown to have better peak-to-sidelobe ratio than the Multi-frequency 

Complementary Phase Coded (MCPC) and Oppermann waveforms that reported in the 

literature [4-6]. The presentation of ambiguity functions for different waveforms are also 

provided to show an outperformance of GDFT based waveforms over the others. 

Additionally, the Partial Matched Filter Bank [52]-[54] sampled the exponential part of the 

received signal in a radar system is combined with the promising correlation minimized 

GDFT super-frame waveforms for Doppler estimation. 

Chapter 4: In this chapter, the basic and the main drawback of OFDM 

communications is discussed. The typical techniques for reducing Peak-to-Average Power 

Ratio (PAPR) are introduced to modify the original symbol alphabet through phase 

rotation and/or amplitude change pre- or post-IFFT operator. The representational 

techniques such as partial transmit sequences (PTS), selective mapping (SLM) and 
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Walsh-Hadamard transform (WHT) methods are explained. An extension on SLM 

technique is also stated for comparisons. 

Chapter 5: A low-complexity PAPR reduction framework is outlined to jointly 

modify phase and amplitude values of the original symbols in the alphabet such as M-PSK 

and M-QAM. The design procedure is explained in detail. This framework utilizes only 

one IFFT/FFT operator pair for transmultiplexing of symbols without any SI. The merit of 

the proposed method to design a symbol alphabet modifier matrix (SAM) for PAPR 

reduction is shown through performance comparisons for the application scenarios 

presented in this chapter. The theoretical analysis of Bit Error Rate (BER) on AWGN and 

multipath Raleigh fading channels is presented in Appendix A and B. Performance and 

system complexity evaluations are given at the end of this chapter. 

Chapter 6: The proposed symbol alphabet modifier matrix is also employed in the 

design of PAPR reduction for Space-Time Block Coding (STBC) MIMO-OFDM system. 

With the advantages of implementing SAM method and comparing it with the popularly 

used SLM technique, a further reduced PAPR performance is exhibited without BER 

degradation. 

Chapter 7: Finally, the conclusions of the contributions of the dissertation and the 

future work are discussed in this chapter. 
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CHAPTER 2 

MATHEMATICAL PRELIMINARIES 

 

2.1  Orthogonal Block Transforms 

The orthogonal block transforms are widely employed in multi-user communication 

systems and signal analysis applications. In these signal processing systems, the input 

signal linearly combined with each function of the block transform and assigned to each 

user. Among the various orthogonal transforms, the complex block transform such as 

Discrete Fourier Transform (DFT), Walsh-Hadamard Transform (WHT) are signal 

independent orthogonal transforms, all basis functions of which, as a transform matrix or 

codes set, are consisting of linear phases. All popular fixed length and signal independent 

transforms have either real value or linear phase symmetrically in their basis. In signal 

processing and communications, DFT successfully put in use of several applications due to 

its easy implementation of Fast Fourier Transform (FFT) and frequency spectrum 

efficiency of its perfect orthogonality. 

First, the function set of the orthogonal complex function is defined as 

 
 ( ) ( )2      , 0,1,..., 1.j N kn

k n e k n Nπφ = = −   (2.1) 

 
Here N denotes the size of the orthogonal matrix or codes set. They satisfy the 

orthogonality condition expressed as 

 

 ( ) ( ) ( )( ) ( )
1 1

2*

0 0
.

N N
j N k l n

k l
n n

n n e k lπφ φ δ
− −

−

= =

= = −∑ ∑   (2.2)  
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The kth basis function corresponds to the kth row of the DFT matrix which is shown 

as 

 

 ( )
2

*     , 0,..., 1.
knj

N
DFT k DFT

A n e k n N
π

φ
− 

 = = = −  
 

  (2.3) 

 
Here, the notation (*) indicates the matrix conjugate operation. Therefore, the Inverse DFT 

(IDFT) is defined as 

 

 ( )
2

*     , 0,..., 1.
knj

N
IDFT k DFT

A n e k n N
π

φ
 

 = = = −  
 

  (2.4) 

 
Accordingly, the phase function of the kth basis of the DFT matrix is shown as 

 
 ( ) ,       , 0,1,..., 1.k n kn k n Nθ = = −   (2.5) 

 
The constant value of 2 Nπ  is omitted in the phase function (2.5) in order to emphasize 

the linearity of the function (2.4). 

 The discrete-time Walsh-Hadamard transform function set is composed of N 

orthogonal sequences, where the elements of each sequence are either +1 or -1 valued. The 

basis sequences of the WHT set with given length are defined as [43] 

 

 
1

2

1 11
1 12

1 ,
2

N N
N N N

N N

H

H H
H H H

H H

 
=  − 

 
= = ⊗ − 

  (2.6) 

 
where the notation ⊗  indicates the matrix Kronecker product operator [44]. It can be 

observed that the Walsh-Hadamard transform have even or odd symmetry of sequences in 
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the time domain, according to the Fourier Transform property, they are exhibiting linear 

phase in the frequency domain. 

 

2.2  Generalized Discrete Fourier Transform with Non-linear Phase 

 

2.2.1 Introduction 

The traditional DFT with linear phase is extended to explore the phase space, from linear to 

non-linear, as expressed in the modified transform kernel [3] 

 

 
( )

( ) ( ) ( ) ( ) ( ) ( )2 2 2 ,k k

GDFT k GDFT

j N n n j N kn j N n n
k

A n

n e e eπ ϕ π π ψ

φ

φ

 =  

= = ⋅





  (2.7) 

 
and the phase shaping function (PSF), as the exponential part of the kernel, is decomposed 

into two functions, one of which is the basis function of DFT, can be defined as 

 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

ˆ

ˆ

ˆ0,1,..., 1,   1,..., 1;  ,  0 0 .

k k k

k k k

k k k

n n n kn n

n n kn n k n

k N n N n

ϕ ϕ ψ

ψ ϕ ϕ

ψ ϕ ψ

= = +

= − = −  
= − = − ∈ =

  (2.8) 

 
The resulting orthogonal set is called the Generalized Discrete Fourier Transform 

(GDFT). 

GDFT kernel offers an uncountable set, and therefore, there are infinitely many 

constant modulus sets whereas DFT basis is the unique one with the linear phase function 

of integer-only slopes that is ( ) ,  ,  k n k k nϕ = ∈ ∀ , and zero PSF for the set, ( ) 0nϕ =  as 
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seen in (2.8). Hence, one might methodically design such GDFT sets based on 

performance metrics of interest. 

 
2.2.2 GDFT Design 

The GDFT in the matrix form can be written as 

 

 
1

1

    
    ,

GDFT DFT GDFT GDFT
H H

GDFT GDFT

A A G A A I
A A GG I

−

−

= =

= =
  (2.9) 

 
where the notation [ ] 1−⋅ , [ ]*⋅  and [ ]H⋅  indicates the matrix inverse, conjugate and 

Hermitian (conjugate transpose) operators, respectively, and I is used to represent the 

identity matrix. 

 There are several summarized G matrix families used for generating GDFT 

matrices.  

1) Diagonal G Matrix Family 

The diagonal elements of G matrix must be constant modulus for the orthonormal GDFT 

matrix in equation (2.9), and can be defined in following three forms. 

Constant Valued Diagonal Elements: All elements of this diagonal matrix have the same 

constant amplitude complex value as expressed in 

 

 ( )(2 / )

, 0,1,..., 1

( , ) 0 .kj N n

j

k n N

k n
G k n k n

e
e π ψ

θ

= −

=

= ≠

 
 =  
 
 

  (2.10) 

 
This type generates a phase shifted version of the DFTA  matrix with θ  radians as the 

GDFTA  matrix. Hence, the linear phase property is still preserved in this case. 
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Non-constant Valued Diagonal Elements: In this case, all elements have constant 

amplitude, non-constant phases complex values which are defined as 

 

 ( )(2 / )

, 0,1,..., 1

( , ) 0 .k

kk

j N n

j

k n N

k n
G k n k n

e
e π ψ

θ

= −

=

= ≠

 
 =  
 
 

  (2.11) 

 
The rows of GDFTA  are obtained as element-wise multiplication of the DFTA  rows with the 

elements of diagonal G matrix in this scenario. It can be observed that in the basis function 

of DFTA , each sample is phase shifted, independent of others. On the other hand, each 

element in one column of DFTA  has the same amount of phase rotation.  

Therefore, the phase function in this case of GDFTA  is not linear any more, but the 

phase difference between rows keeps the linearity.  

Non-constant Two Diagonal Matrices G1 and G2: In this type of diagonal G matrix, a 

more flexible phase shaping function for GDFT is redefined in such a way as shown in the 

following matrix set 

 

 1

, 0,1,..., 1

( , ) 0 ,

kkj

k n N

k n
k n k nG

e θ

= −

=

≠

 
 =  
 
 

  (2.12) 

 
and another one is 

 

 2

, 0,1,..., 1

( , ) 0 .

nnj

k n N

k n
G k n k n

e γ

= −

=

≠

 
 =  
 
 

  (2.13) 
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The kernel used to generate GDFTA  for this case becomes 

 
 ( ) ( )2    , 0,1,..., 1,kk nnj N kn

k n e k n Nπ θ γφ + +  = = −   (2.14) 

 
and in the matrix form is expressed as 

 

 
*

1 2

1 1 2 2

        
                      .

T
GDFT DFT GDFT GDFT

H H

A G A G A A I
G G I G G I

= ⋅ ⋅ ⋅ =

⋅ = ⋅ =
  (2.15) 

 
This design method allows people to uniquely modify the elements of the kth column in 

DFTA  matrix with the shifted phase kkθ  and nth row with the shifted phase nnγ . 

2) Full G Matrix Family  

In this family, the elements in the G matrix are constant or non-constant amplitude 

complex values and can be defined as 

 
 ( ) ,

,,      , 0,1,..., 1.k nj
k nG k n g e k n Nθ= = −   (2.16) 

 
Here the amplitude is positive real value as ,k ng +∈ . The expression of GDFTA  is defined 

as 

 

 
( )

( ) ,
,

(2 / )      , 0,1,..., 1.k n

GDFT DFT k GDFT
j

k k n
j N kn

A A G n

n g e e k n Nθπ

φ

φ ⋅

 = ⋅ =  

= ⋅ = −





  (2.17) 

 
From all above definitions on the G matrix families of Generalized Discrete Fourier 

Transforms, it can be seen that Discrete Fourier Transform is a restricted solution of GDFT. 

It offers one and only one set in a fixed size to be used in a multicarrier communication 
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system. It is also highlighted that other well-known constant modulus code families such as 

Walsh codes [45], Oppermann codes [12] and Zadoff-Chu (ZC) sequences [46] are also the 

special solutions of GDFT framework [3], [4]. 

 Furthermore, the proposed GDFT provides many possible code sets of the same 

and various lengths with comparable or better performance than DFT. It applies the design 

advantages of the non-linear phase shaping function in the GDFT framework for 

generating multiple OFDM frames. The availability of a rich library of such transforms 

exploited with good performance allows people to design adaptive systems dynamically, 

for the purpose of delivering better communications performance. The computational cost 

of Generalized Discrete Fourier Transform will be raised due to the combined 

implementation cost of DFT and G matrices. GDFT with full G matrix will be more 

complicated but also brings more freedom to exploit both in phase and amplitude spaces to 

meet different design objectives in signal processing and communication systems.  
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CHAPTER 3 

IMPLEMENTATION IN MIMO RADARS WAVEFORMS 

 

3.1  Correlation Performance of MIMO Radar Waveforms 

In MIMO Radar systems, an orthogonal waveform set with constant modulus (amplitude) 

is desired to detect a moving target such that an accurate estimation can be achieved. The 

constant modulus property of transmitted waveforms is wanted in many radio 

communications systems. For such an application, the optimal subspace is the set of 

band-limited ideal brick-wall functions in frequency, thus all possible undesired intra- and 

inter-correlation terms in the signal domain are zero. Consequently, these codes are 

non-causal and infinitely long sequences.  

In real-world applications, finite length orthogonal codes are required where 

frequency selectivity, auto- and cross-correlation features of the optimal subspace are 

compromised. For the synchronous communication environment, orthogonality is 

sufficiently good enough for signal decorrelation. But in distributed MIMO radars, where 

sensors are at varying distances from a target, the asynchronous situation destroys the 

strength of orthogonality for eliminating interferences. For this reason, orthogonal 

waveform set with low auto- and cross-correlations, which plays a crucial role, is of great 

interest for MIMO radar applications with distributed antennas. 

 

3.2  Multi-frequency Complementary Phase Coded 

The Multi-Frequency Complementary Phase Coded (MCPC) waveform family proposed 

by Nadav Levanon [10], [11] employs P4 phase sequence as its principal phase sequence 
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(PPS) [47], [48]. The PPS employs P4 codes and exhibits periodic auto-correlation 

properties. Further sidelobes reduction can be reached by using a train of PPS. 

 The phase sequence of the P4 code is described by [47] 

 

 ( ) ( )21 1 ,      1,2,... .m m m m M
M
πφ π= − − − =   (3.1) 

 
Here M denotes the length of the P4 sequence.  

As an example, taking length 5M =  for all phase sequence design will be taken 

into consideration for the comparisons in Section 3.4.2.  

Following the OFDM signal approach, M sequences with M chips (components) of 

each will be transmitted. The 5 5×  MCPC pulse is first constructed from the length M 

sequence as the PPS, e.g., for length 5, 1
4 4 4 4

[0, , , , ]
5 5 5 5

T π π π πθ − −= . Levanon uses the 

cyclically left shifted version of PPS to generate four other phase sequences. The rest of 

them are calculated as 

 

 

2

3

4

5

4 4 4 4
[ , , , ,0],  

5 5 5 5
4 4 4 4

[ , , ,0, ],
5 5 5 5
4 4 4 4

[ , ,0, , ],  
5 5 5 5

4 4 4 4
[ ,0, , , ].

5 5 5 5

T

T

T

T

θ π π π π

θ π π π π

θ π π π π

θ π π π π

= − −

= − −

= − −

= − −

  (3.2) 

 
 Therefore, the Original Phase Sequence Set (OPSS) matrix in MCPC codes is 

populated in 
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 [ ] 1 2 3 4 5( , ) , , , ,OPSS T
k n θ θ θ θ θΘ = Θ =      (3.3) 

 
The typical auto-correlation of a P4 pulse exhibits a narrow main lobe at zero delay. 

 

3.3  Oppermann Codes 

Oppermann waveforms are a family of constant modulus orthogonal function set with a 

wide range of correlation properties, and are also considered another type for radar 

waveforms in correlation property comparison in this chapter. It has been shown that the 

well-known Zadoff-Chu sequences [46] are the special case of the Oppermann code 

family.  

The Oppermann code contains three parameters { }, ,m p n  in their kernel [12] and is 

described by 

 

 ( ) ( ) ( )
, 1 exp ,     , 1,..., ,

m p n
ki

OPP

j k i i
A k i k i M

M
π +

 = − =
 
 

  (3.4) 

 
where k is an integer in the range of [1, )N  and prime to N. It was proven that the 

Oppermann codes are orthogonal only for the case of 1p = , and m is any positive nonzero 

integer number. Meanwhile, all the functions in the set OPPA  have the same 

auto-correlation magnitudes and differed only in phases [12]. 

 

3.4  Generalized DFT Waveforms for MIMO Radar 

GDFT kernel suggests an uncountable set, and accordingly, there are infinitely many 

constant modulus GDFT sets whereas DFT basis only has linear phase functions of integer 
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slopes. The correlation property of these sets are different in the time and frequency 

domains [49]. Herein, the method which takes the advantage of the flexible phase space is 

presented by designing the PSF of GDFT framework with non-linear phase. The GDFT 

framework is employed for MIMO radar waveforms in the generation of complex 

orthogonal function sets with optimized auto- and cross-correlation properties. 

 In this section, it is shown that the MCPC waveform family can be expressed as a 

special case of the proposed GDFT waveforms. The length- M  MCPC code is presented as 

an example of the proposed method as follows. 

 As mentioned in Section 3.2, the Original Phase Sequence Set (OPSS) matrix 

OPSSΘ  is populated. Then, shuffling and disturbing the orders of the original rows in OPSSΘ  

results in a Phase Sequence Ses (PSS) ( , )l lk nΘ = Θ   , where its rows are labeled by 

1,2,...,k M= , and the superscript 1 !l M≤ ≤  is the index corresponding to a unique row 

order of a PPS matrix. The OPSS is indexed as 1l = that is 1 OPSSΘ = Θ . Finally, an 5 5×  

MCPC signal train set has a total of 5 factorial different permutations. 

Next, the OFDM waveform matrix is generated as the exponent function of lΘ  and 

defined as 
ll jS e Θ= , each row of which mapping onto the subcarriers by inverse DFT and 

consequently, generating up to M OFDM frames. The kth row of the exponent function lS  

is written as 

 
 ( )( ) exp      1,2,..., ,l T l

k ks j k Mθ = =    (3.5) 

 
where (.)T  represents the transpose operation.  

Now, define the following GDFT diagonal G matrix as 
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 ,ll

kkG I s=   (3.6) 

 
that leads to the GDFT framework, or in other words, the OFDM frames stated as 

 
 , 1     1,2,..., .k l l l

GDFT k DFT kA F A G k N−= = =   (3.7) 

 
The kth OFDM frame denoted as l

kf , is the thk  row of GDFT set l
kF . In the MCPC 

example here, 5N M= = . 

Finally, the resulting lth MCPC MIMO radar waveform is expressed as a sum of all 

OFDM frames as follows 

 

 
5

1
( ) ( )   ( ) [ ( )]   1,2,..., .l l l T l

k
k

x n f n x x n n N
=

= = =∑   (3.8) 

 
It is noted that the GDFT framework expressed MCPC in (3.8) offers additional 

waveform options with the same correlation performance since 1 5!l≤ ≤ . 

 Now, the design of GDFT waveforms is described in detail, and they are coupled 

with the MCPC family. Several phase sequences of MCPC waveforms of length 5N =  in 

(3.6) is placed in a larger size diagonal matrix of GDFT framework as follows 

 

 2 2

1

2

3

4

5

[ ] [0] [0] [0] [0]
[0] [ ] [0] [0] [0]
[0] [0] [ ] [0] [0]
[0] [0] [0] [ ] [0]
[0] [0] [0] [0] [ ]

l

l

l l
N N

l

l

G
G

G G
G

G

×

 
 
 
 =
 
 
 
 

  (3.9) 
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where 2 2
l
N N

G
×

 is equal to G as shown in equation (2.11). This representation simply links 

MCPC and GDFT waveform families together. 

 
3.4.1 Optimization Metrics of Waveform Design 

In this design method, the 2 2
l
N N

G
×

 matrix of (3.9) is optimized, namely G matrix of GDFT 

as expressed in (2.9) and (2.12), by a proper numerical search method in order to minimize 

auto- and cross-correlations peak sidelobes of the resulting MIMO waveforms for the 

single and multi-antenna radar scenarios as follows. The software tool to be used is called 

‘fminsearch’ in Matlab for this optimization task. The following metrics defined in terms 

of the aperiodic correlation function are utilized for optimization objectives. 

a) RMS of auto-correlation sidelobes ( acRMS ) 

The auto-correlation function of a sequence lX  is expressed as 

 

 
1

*

0
( ) ( ) ( )    0 1,l l

N i
l l

X X
k

R i X k X k i i N
− −

=

= + ≤ ≤ −∑   (3.10) 

 
where lX  is any function (row) of the orthonormal GDFT matrix and that is taken as one 

of the OFDM fames (waveforms). The value of i denotes the time delay of the correlations. 

 Note that the auto-correlation of orthogonal constant modulus sets are the same for 

all basis functions. Now, the criterion to search for GDFT set of size N N×  with 

minimized Root Mean Square (RMS) of the auto-correlation sidelobes is expressed as 

 

 
1

1 2
2

1

1 ( ) .l l

N
l
ac X X

i
RMS R i

N

−

=

 =  
 
∑   (3.11) 
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b) RMS of cross-correlation sidelobes ( ccRMS ) 

The cross-correlation function of a pair of sequences lX  and mX  is expressed as 

 

 
1

*

0
( ) ( ) ( )    0 1,l m

N i
l m

X X
k

R i X k X k i i N
− −

=

= + ≤ ≤ −∑   (3.12) 

 
where lX  and mX  are any two functions (rows) of the orthonormal GDFT matrix. 

Similarly, the criterion to search for GDFT set of size N N×  with minimized RMS of the 

cross-correlation sidelobes is described as 

 

 
1

1 2
, 2

1

1 ( ) .l m

N
l m
cc X X

i
RMS R i

N

−

=

 =  
 
∑   (3.13) 

 
These two optimization metrics are employed in GDFT waveform design examples 

for various correlation performance comparisons. It can be realized that these two criterion 

l
acRMS  and ,l m

ccRMS  are functions of ( )k nψ  in (2.8). Therefore, the design problem can 

be simply and directly reduced to the issue of optimization on phase shaping function, 

( )k nψ , of the GDFT in order to minimize l
acRMS  and/or ,l m

ccRMS  defined in (3.11) and 

(3.13). Different weights put on the auto- and cross-correlation can be designed that 

depending on various scenarios and application requirements, different emphases given on 

auto- and cross-correlation is optional. 

 

 
3.4.2 Correlation Performance Comparisons 

The optimal parameters { },m n  of Oppermann codes that minimized l
acRMS  of equation 
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(3.8) are searched. The 5-tap optimal Oppermann codes with the corresponding set 

{ }0.5805, 1, 2.9079m p n= = =  is obtained by using toolbox ‘fminsearch’ in MATLAB 

which is Nelder-Mead Simplex Algorithm based [50]. Similarly, the optimized parameter 

set { }5.1606, 1, 1.2880m p n= = =  gives the minimum ,l m
ccRMS  of equation (3.13). 

 Figure 3.1 displays the auto-correlation functions of GDFT waveforms designed 

based on minimization of the given auto-correlation metric of (3.11) along with MCPC and 

Oppermann codes. Table 3.1.a tabulates the values of optimal phase sequences used in this 

case. 

 

 

Figure 3.1 Auto-correlation functions of GDFT ( l
acRMS  based), MCPC and Oppermann 

waveforms ( acRMS  based) for N=5. 
 

It can be observed from Figure 3.1 that the blue curve denoted for MCPC waveform 

displays a periodic auto-correlation property, but some of its sidelobes reaches -15 dB, 

while Oppermann code has an approximately peak sidelobe value of -13 dB. In contrast, 

the highest sidelobes of GDFT waveforms is much lower and around -25 dB. 
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Figure 3.2 Pair-wise cross-correlations of GDFT ( ,l m
ccRMS  based), MCPC and Oppermann 

waveforms ( ccRMS  based) for N=5. 
 

 Similarly, Figure 3.2 displays the cross-correlations of GDFT based on the 

minimization of cross-correlation metric of (3.13) with the phase sequences tabulated in 

Table 3.1.b, along with the examples of MCPC for the sequence orders of {1,2,3,4,5} and 

{3,4,5,1,2}[10], [11], and the Oppermann waveform families considered. Significantly, 

GDFT waveform outperforms MCPC and Oppermann ones and constrains the sidelobes 

below -25 dB, whereas MCPC presents the peak value at -5dB and the Oppermann is 

around -20 dB for the cases [51]. 

The sidelobes of auto- and corss-correlation of GDFT proposed, MCPC and 

Oppermann based waveforms are compared in Table 3.2 in terms of the criterion given in 

root mean square of auto- and cross-correlation sidelobes. 
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Table 3.1.a  Phase Sequence Set of Diagonal 25 25G ×  Matrix Optimized Based on l
acRMS  

and [ ]( , ) ,lk n π πΘ ∈ −  

1
lθ  2

lθ  3
lθ  4

lθ  5
lθ  

0.0049 0.2069 -2.0727 -1.1614 2.9697 
-1.1563 -0.0701 -1.9514 -2.1261 -1.0947 
-3.0906 -1.2493 -0.4423 -0.6024 -0.3054 
-0.0296 0.9166 -2.5216 0.8718 0.0502 
2.2087 2.9952 1.7669 -2.3486 -2.2989 

 

Table 3.1.b  Phase Sequence Set of Diagonal 25 25G ×  Matrix Optimized Based on 
,l m

ccRMS and [ ]( , ) ,lk n π πΘ ∈ −  

1
lθ  2

lθ  3
lθ  4

lθ  5
lθ  

2.5937 1.5587 0.1340 -0.1980 -1.4230 
-1.0988 2.4046 1.5025 -0.9587 1.9019 
1.5911 -2.9088 -2.5797 -2.6627 -1.0022 
-0.2508 -2.0277 -0.1217 0.4614 -2.4405 
-2.0413 0.4505 1.0868 0.8109 1.5327 

 

Table 3.2  Auto- and Cross-Correlation Sidelobe Comparisons (in RMS) of GDFT, MCPC 
and Oppermann Waveforms for N=5 

(normalized) l
acRMS  ,l m

ccRMS  
GDFT 0.0375 0.0314 
MCPC 0.0770 0.1482 

Oppermann 0.0725 0.0477 
 

Figures 3.3.a, 3.3.b and 3.3.c display the corresponding ambiguity functions [9] 

introduced in Section 1.1.1 with respect to correlation performance of the MCPC, 

Oppermann and GDFT waveforms ( l
acRMS  and .l m

ccRMS based individually) for the size of 

OFDM super-frame as 2 25N M= = .  
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Figure 3.3.a  Ambiguity function of MCPC waveforms for N=25. 

 

 
Figure 3.3.b  Ambiguity function of Oppermann waveforms ( l

acRMS based) for N=25. 

 

 
Figure 3.3.c  Ambiguity function of GDFT waveforms ( ,l m

ccRMS based) for N=25. 
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 It is observed from these performance comparisons that GDFT based waveforms 

significantly outperform MCPC and Oppermann families with respect to all metrics 

considered in this section. In GDFT, the entire phase space of constant modulus orthogonal 

basis has the freedom to be thoroughly exploited for the optimization of waveforms. Note 

that GDFT set has uncountable waveform designs that depends on different criteria and it 

provides many possible waveforms of good quality. 

Moreover, it is shown that popular waveforms like MCPC and Oppermann types 

are the special cases of the GDFT family. The design examples presented can be extended 

to much larger values of N. It is expected to see better performance of GDFT based 

waveforms implemented in future radar systems. 

 

3.5  Generalized DFT Based Partial Matched Filter Bank  
for Doppler Estimation 

Partial Matched Filter Bank (PMFB) with orthogonality is a method to sample the phase 

functions of the received radar signals offering robust Doppler tolerance. Generalized 

Discrete Fourier Transform (GDFT) with nonlinear phase functions provides engineering 

flexibility over the traditional Discrete Fourier Transform (DFT). The design freedom of 

exploiting the entire phase space of constant modulus orthogonal basis brings significant 

values for the minimization of waveform auto- and cross-correlations that is not possible in 

the DFT set. In this section, utilization of GDFT waveforms with optimized correlations in 

a PMFB framework is proposed. It is shown that GDFT based PMFB performs quite 

promising for Doppler estimation in radar systems [55]. 

 In radar systems, range delay bears information for the distance of the target, and 

Doppler shift represents the speed of its movement. In an ideal situation where codes are of 
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infinite length, orthogonal waveforms may simultaneously offer perfect auto- and 

cross-correlation properties. In practice, perfect correlations are not available due to the 

limits of implementation and various disturbances including channel noise, target 

movements and others.  

For target detection with high range resolution, the auto-correlation functions of 

waveforms are required to have low sidelobe levels [11]. Furthermore, the waveform 

cross-correlations are desired to be low in the case of multiple antenna systems.  

 The design of constant modulus waveform sets with low auto- and 

cross-correlations is important for performance improvements in MIMO radar systems 

which has been discussed in Section 3.4 by employing the introduced Generalized Discrete 

Fourier Transform (GDFT) framework to optimize waveforms with respect to correlations 

where non-linear phase provides more freedom compared to the traditional DFT with 

linear phase [2].  

Partial Matched Filter Bank (PMFB) with orthogonality and constant modulus 

properties facilitates an efficient method to sample the exponent function of the received 

signals, basically the phase, that convey inherent Doppler information. The use of GDFT 

with minimized correlations in PMFB presents an easy way to estimate Doppler in radar 

systems with a high level of accuracy. 

 
3.5.1 Partial Matched Filter Bank 

A Partial Matched Filter Bank (PMFB) to improve Doppler tolerance was proposed in 

[52-54]. In this method, the transmitted waveform 1
T

PNU ×  is a super-frame of aggregated P 

orthogonal frames (sub-pulses) with length N where each as expressed in a vector form 
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1 1 2[ , ,..., ]T T T T
PN PU u u u× = . Those P frames are chosen from the rows of a constant modulus, 

N N× orthogonal matrix where P N≤ . 

 At the receiver, the received constant modulus waveform (super-frame) with the 

Doppler shift of fd is formulated in the time domain as 2( , ) ( ) dj f n
du n f u n e π= , 

0,1,..., -1n NP= . A bank of P partial matched filters is constructed at the receiver for 

Doppler estimation where each filter corresponds to one of the P orthogonal frames in the 

transmitted super-frame.  

Note that the breaking of a single match filter (super-frame) into its orthogonal 

building blocks (frames), and processing partial segments of the super-frame 

independently provides a convenient way to sample the Doppler phase at the detector. This 

is due to the fact that the frames are constant modulus and orthogonal.  

It is emphasized that the Doppler phase sampling interval in the exponent of the 

received signal is defined by the dimensionality of the N N× orthogonal set. Figure 3.4 

displays the block diagram of a Partial Matched Filter Bank along with filter outputs in 

magnitude domain. 

 

 

Figure 3.4  Block diagram of Partial Matched Filter Bank and filter outputs in magnitude. 
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3.5.2 GDFT Based Method for Doppler Estimation 

The received signal goes through matched filters of PMFB as depicted in Figure 3.4. The 

transmitted super-frame may be comprised of a subset or the entire set of the GDFT basis 

functions of size N, and as an example, optimized with respect to acRMS . Hence, in 

addition to the additive white Gaussian noise ( )w n  of the channel, filter outputs are 

dictated by the auto-correlation and cross-correlation functions of the orthonormal GDFT 

set employed in the transmitted waveform.  

A bank of thresholds is utilized at filter outputs to locate sampling points in time. 

Then, the corresponding phase estimates are measured in order to obtain the Doppler 

information of interest as expressed in ( )( , ) , 1,2,...,Dj pN
p dy pN f e p Pψ= = . The estimated 

Doppler phase samples ( )D nψ  with the sampling interval of N chip durations are easily 

calculated from samples of filter outputs as  ( ) ln[ ( , )],  0,1,..., 1D p dn y n f n NP Nψ = = + − . 

 Suppose that the received waveform 1
T

PNU ×  has detected a moving object with a 

Doppler shift of fd, then, one can easily calculate  ( ) ln[ ( , )]  1,2,...,p dD pN y pN f p Pψ = = . 

The received phase signal samples measured as filter outputs of PMFB are displayed for 

the cases of 1,2,3,4,5.5,6.5,7.5,8.5df =  Hz, P=256, N=512 in Figure 3.5. Note that one 

can efficiently estimate Doppler shifts through calculating the slope of the two consecutive 

estimated phase samples for the case of constant slope in time. 
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Figure 3.5  Sampled exponent function of filter outputs in a PMFB for various constant 
Doppler frequencies. 
 

3.5.3 Implementation in Multiple Antenna System 

In a multiple antenna system, multiple super-frames co-exist in the same channel. 

Therefore, their orthogonality and correlation properties need to be considered in such a 

system. Hence, the single antenna case is extended as presented in Section 3.5.2 for this 

case where the correlation measurements in the optimized design become more involved as 

expected. 

 As an example, the system here is focused on the two-antenna case where each 

waveform of length N2 is comprised of the aggregated rows of a size N N×  GDFT matrix. 

Now, two of such matrices are needed. In addition to minimization of their individual auto- 

and cross-correlations, these two super-frames need to have their pair-wise 

cross-correlations. 

 Note that one can create multiple super-frames when P N< . The trade-off is the 

fact that these super-frames will have their cross-correlations completely generated by 

auto-correlation of building orthogonal frames. Naturally, this leads to a cross-correlation 

sequence that is not very desirable. 
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 Figures 3.6 and 3.7 present auto-correlation and cross-correlation sequences of 

super-frame examples where 5N P= = . A super-frame waveform of length 2N  is 

examined in each figure. Each case is generated from an independently optimized 5 5×  

GDFT matrix (two matrices in Figure 3.7 examples) based on the corresponding 

correlation metric. Table 3.3 provides the values of phase shaping functions in GDFT base 

super-frame waveforms that are optimized based on the Root Mean Square of 

auto-correlation, cross-correlation and a combination of these two metrics as defined in 

Section 3.4.1. 

 

 

(a)    (b)     (c) 

Figure 3.6  Auto-correlations of super-frames generated from GDFT with minimized 
correlation metrics of a) acRMS , b) ccRMS , and c) ac ccRMS RMS+  . 
 

 

(a)    (b)     (c) 

Figure 3.7  Pair-wise cross-correlations of super-frames generated from GDFT with 
minimized correlation metrics of a) acRMS , b) ccRMS , and c) ac ccRMS RMS+ . 
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Table 3.3.a  Phase Shaping Functions of the Optimal Design Example Based on 
Minimized acRMS  in Radians 

1st Waveform 0.9823 -0.9701 -1.0469 -0.7767 -2.6426 
2nd Waveform 1.3723 0.4248 -0.5226 1.6714 -2.4176 

 

Table 3.3.b  Phase Shaping Functions of the Optimal Design Example Based on 
Minimized ccRMS  in Radians 

1st Waveform -1.2951 1.2035 -0.2928 1.0929 -1.5163 
2nd Waveform -1.5616 -1.57628 0.6972 -0.4302 0.7304 

 

Table 3.3.c  Phase Shaping Functions of the Optimal Design Example Based on 
Minimized ac ccRMS RMS+  in Radians 

1st Waveform 0.0112 2.9499 0.7756 -0.1637 0.0671 

2nd Waveform -1.5711 0.0976 2.7613 0.7539 -0.2586 
 

 The optimal waveform design examples show that the joint correlation metric 

ac ccRMS RMS+  leads to superior auto- and cross-correlations in the case of two antennas. 

Also note that the longer waveform length offers better correlation properties for all the 

cases considered in the section. 
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CHAPTER 4 

PAPR REDUCTION METHODS FOR OFDM COMMUNICATIONS 

 

Presently, the multicarrier transmission such as orthogonal frequency-division 

multiplexing (OFDM) has rising popularity in wireless communication, with advantages of 

making efficient use of the frequency spectrum, providing strong resistance to frequency 

selective fading than single carrier systems, offering computationally efficient by the 

introduction of FFT techniques that implement the modulation and demodulation functions 

[1], [2]. Furthermore, an OFDM system also provides the properties that can be against 

narrow band interference and Inter-Symbol-Interference (ISI). Orthogonality in frequency 

domain also ensures to mitigate Inter-carrier Interference (ICI) between carriers and 

subchannels. 

On the other hand, the high peak-to-average power ratio (PAPR) is one of the 

well-known drawbacks of OFDM systems since the OFDM signal is a sum of orthogonal 

frequency modulated subcarriers. When subcarriers weighted with the corresponding 

symbol values are added coherently, the resulting PAPR is high, which leads to serial 

issues. 

In order to achieve maximum efficiency, the power amplifier (PA) should 

preferably operate near the saturation region so that sufficient transmission power is 

offered. Large peaks in instantaneous signal power will induce in-band and out-band 

interferences, so the transmitter power amplifier must avoid nonlinearities that causes the 

corruption of the transmitted signal, and reduces PA’s power efficiency. Due to the 

existing large peaks of the OFDM signal, it cannot operate in a linear region and will 
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introduce additional interference into the system, which leads to an increasement of BER 

[56]. To avoid this, one has to increase the cost of PA’s power range as the compensation. 

The non-linear digital-to-analog converter (DAC) module faces similar situations. Either 

the inefficiency power transmission cost of non-linear modules or increased interferences 

caused by signal distortions becomes the main deficiency of OFDM signals. These 

problems calls for a variety of research activities on PAPR. 

 

4.1  OFDM System Structure and PAPR 

An OFDM frame is generated by multiplexing independent symbols modulated with 

orthogonal frequency subcarriers. The incoming data bit stream is modulated into a 

sequence of symbols from the predefined symbol alphabet constellations of M-ary 

Phase-Shift Keying (M-PSK) or M-ary Quadrature Amplitude Modulation (M-QAM) that 

populate the symbol vector ( ) ( ) ( )[ 0 , 1 ,..., 1 ]TX X X X N= − , where [ ]T⋅  denotes a 

transpose operator, N is the number of subcarriers employed. M is the power of 2 such as 4 

(QPSK), 8 (8-PSK), 16 (16-QAM), and others. The continuous-time baseband multicarrier 

signal is the summation of N subcarriers weighted by symbols and expressed as [15] 

 

 ( )
1

2

0

1( ) ,     0 .k

N
j f t

s
k

x t X k e t Nt
N

π
−

=

= ≤ <∑   (4.1) 

 
 Subcarriers are orthogonal where ,  1k sf k f f Nt= ∆ ∆ = , st  is the symbol period 

and 1j = − . Then, the discrete-time OFDM frame is the sampled version of (4.1) at the 

Nyquist rate st nt=  and written as 
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 ( )
21

0

1( ) ,     0,1,..., -1.
knN j

N

k
x n X k e n N

N

π−

=

= =∑   (4.2) 

 

Let ( ) ( ) ( )0 , 1 ,..., 1
T

x x x x N= −    denote the resulting discrete-time OFDM frame in a 

vector form. The PAPR of an OFDM frame due to signal amplitudes fluctuation is defined 

as 

 

 
( )

( )

2

0,1,..., 1
2

max
PAPR ,n N

x n

E x n
= −=

 
 

  (4.3) 

 
where [ ]E ⋅  denotes the expectation operator. 

 

 

Figure 4.1  Block diagram of the OFDM communication system. 
 

 Figure 4.1 displays the block diagram of the traditional OFDM system. The 

complementary cumulative distribution function (CCDF) is a commonly used measure to 

evaluate PAPR performance [57]. The CCDF of the PAPR indicates the probability that 

the PAPR of a signal exceeds a given threshold, i.e. 0Pr{PAPR PAPR }> . 
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4.2  Popular PAPR Reduction Method 

There has been a variety of PAPR reduction methods emphasizing different research 

aspects proposed in the literatures [15]. One typical technique modifies the original symbol 

alphabet through performing phase rotation and/or an amplitude change pre- or post-IFFT 

operator in order to reduce PAPR. Representational techniques such as selective mapping 

(SLM) [22], [23], partial transmit sequences (PTS) [24], [25], [26], and Walsh-Hadamard 

transform (WHT) [43] methods have been widely used for such a task.  

Although the SLM and PTS methods provide PAPR reduction, their computational 

complexity and the cost of utilizing multiple IFFT operators are relatively high. In addition, 

for a set of OFDM signal candidates used in the SLM and PTS methods, bits of side 

information (SI) represented in the index of the selected one must be transmitted error-free 

along with the OFDM frame in the system for recognition by the receiver. Due to these 

shortcomings, there are extensions of SLM [33]-[39] and PTS [36], [40] that also modify 

power levels of symbols in the alphabet in order to reduce PAPR [37], [38], [41] or to 

eliminate SI [33-36]. The WHT method improves PAPR without any power increase and 

no side information is required in a low-complexity system, but it offers less PAPR 

reduction compared to the SLM and PTS methods [40]. 

 
4.2.1 Selective Mapping Technique and Extensions 

The basic principle of SLM is based on a type of probabilistic algorithm that generates 

several OFDM signal candidates represented same information. It then selects the one with 

the lowest PAPR for transmission, thereby statistically reducing the possibility of high 

PAPR. The SLM technique avoids signal distortion at the cost of some redundant 

searching. For implementation, each of these OFDM signal candidates is generated as a 
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product of original symbols multiplied subcarrier-wise with one of the randomly populated 

phase shifting sequences denoted as uB . This results in total U phase rotated data vectors 

along with U IFFT blocks, therefore it needs 2log U  bits of side information. The 

procedure is presented in Figure 4.2, where each phase sequence is a 

vector 0 1 1[b ,b ,..., b ], 0,1,..., 1u u u u
NB u U−= = − , b

u
kju

k e ψ=  and [ )0,2u
kψ π∈ . For 

simplification, the researcher could randomly choose the phase set { }2,u
kψ π π∈ ± ± . After 

applying individual IFFT, the OFDM signal candidate becomes: 

 

 ( )
1

2

0

1 ,     0,1,..., -1, 0,1,..., 1
N

u u j kn
k k

k
x n X b e n N u U

N
π

−

=

= ⋅ = = −∑   (4.4) 

 
SLM makes the selection judgment of best PAPR performance sequence after 

going through the entire set of IFFT blocks, where the same number of IFFT blocks are 

required for all data streams. As a consequent, this causes a high cost and computational 

complexity accordingly.  

When signal length N is 64, SLM technique produces the candidates takes U=8 

IFFT blocks as example. The side information at least 2log =3U  bits is demanded for the 

purpose of recovering the signal, but errors happen when SI is lost and mistakenly 

determined by the receiver. Intuitively, the more signal candidates to choose from, the 

better PAPR performance can be reached due to the probabilistic nature. But it should be 

noted that large SI bits are unwanted and impractical when considering the cost of IFFT 

blocks. In general, SLM technique could be used to reduce PAPR efficiently, however, it 

causes BER degradation and applying many IFFT blocks is cumbersome. 
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Figure 4.2  Block diagram of the SLM technique in the OFDM communication system. 
 

With the advent of phase rotation techniques such as the frequently used SLM, 

there are many derivative approaches developed based on SLM that jointly modify 

amplitudes of signal candidates. Those works add non-constant amplitudes on original 

symbols, the purpose of which is addressed from different aspects such as to minimize 

PAPR or to eliminate SI to overcome the shortcomings of the SLM.  

In paper [58] the researcher proposed a phase rotation method for PAPR reduction 

that includes minimizing the peak value of OFDM signal amplitudes over the signs, and 

alternating amplitudes of each subcarrier by implementing two individual optimization 

algorithm. This method contributes to the further reduction on PAPR than the conventional 

SLM technique, however, this method still requires SI, additionally increased signal power 

and computational complexity.  

Paper [38] describes PIAT, a derivative of SLM that applies a power coefficients 

vector after the IFFT blocks to reshape OFDM signal amplitudes. It then selects the lowest 

one for transmission along with SI.  

Paper [41] proposes a new SLM technique. Prior to the IFFTs, it utilizes a set of 

sequences that either enlarges magnitude with extension factor D or rotates the phase with 
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π  on original symbols. At the receiver, through calculating the Hamming distance to 

estimate position of factor D, it allows to retrieve information about amplitude and phase 

modification sequence which have been selected to help recovering the original data 

symbols, without transmitting any SI. The expression of sequence which jointly modifies 

the phase and amplitude is defined as 

 

 ( ) { },   0,1 ,
uj pu

uP De p
π

= ∈   (4.5) 

 
where D is the magnitude extension factor.  

In this dissertation, this method is used for performance comparisons in Chapter 5 and 

briefly named as A-SLM, indicating amplitude modified SLM method. This method 

reduces the risk of unrecoverable data error caused by sending SI, but relatively increases 

transmitted signal power accordingly.  

 
4.2.2 Partial Transmit Sequences 

The partial transmit sequence (PTS) technique performs the PAPR reduction using as 

many IFFT operations as the number of subblocks, and exhaustively searching the optimal 

combinations of subblocks and phase rotation coefficients throughout a given phase set. 

Figure 4.3 displays the block diagram of the partial transmit sequence (PTS) technique for 

PAPR reduction. 

The PTS technique partitions an input data vector of N symbols into V subblocks as 

follows 

 
 0 1 1, ,..., ,

TVX X X X − =     (4.6) 
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where vX  is one of the subblocks that are consecutively located and evenly partitioned. It 

is unlike the SLM method in which each duplicated signal is multiplied with a phase 

sequence vector, each subblock in the PTS is rotated with a phase coefficient 

independently by multiplying a corresponding complex factor called weighting coefficient 

( )expv vb jψ= . The V shifting phases of these weighing coefficients are selected inside a 

given phase set consisted of W complex weighting coefficients as 

[ ){ }0,2 , 0,1,..., 1v w w Wψ ψ π= ∈ = − , 0,1,..., 1v V= − . 

 

 

Figure 4.3  Block diagram of partial transmit sequence (PTS) technique for PAPR 
reduction. 
  

 PTS is methodologically similar to the SLM except  a set of V subblocks partitioned 

from the original data symbol vector are first multiplexed by the IFFTs individually. Then, 

the transmit signal with the minimum PAPR is generated by optimally combining these 

sub-blocks with phase shifting coefficients selected from W complex weighting 

coefficients set [25], [26]. 
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Therefore, a set of IFFT operators is required for all candidate OFDM frames at the 

transmitter both in the SLM and PTS methods. Moreover, for the purpose of recovering 

original data symbols by recognition on the corresponding phase shifting 

sequence/coefficients, side information per OFDM frame is requested to be sent to the 

receiver in an error-free fashion. In particular, the exhaustive search for minimum PAPR 

leads to an exponential increase in the computational complexity which is proportional to 

the number of subblocks [59]. 

 
4.2.3 Walsh-Hadamard Transform 

In the Walsh-Hadamard transform precoded OFDM (WHT-OFDM) system [43], the 

original symbol vector is transformed by WHT before passing through the IFFT block at 

the transmitter without increasing power. The block diagram is shown in Figure 4.4.  

 

 

Figure 4.4  Block diagram of Walsh-Hadamard transform precoded OFDM (WHT-OFDM) 
for PAPR reduction. 
 

The Walsh-Hadamard transform has been introduced in Section 2.1. As 

aforementioned, the constant modulus orthogonal transform matrix does not alternate the 

total power of original data symbols. Therefore, the WHT method improves PAPR without 

any power increase and side information requirement in a low-complexity system, and 
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accordingly does not induce BER degradation. But its PAPR performance is inferior to 

SLM, A-SLM and PTS methods. The WHT-OFDM based PAPR reduction method is used 

for PAPR and BER performance comparison in Chapter 5. 
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CHAPTER 5 

SYMBOL ALPHABET MODIFIER MATRIX 

 

The trade-off in the introduced PAPR reduction methods is existed such as increased 

average power, degraded BER performance, and added computational complexity. A new 

PAPR reduction scheme is proposed in this chapter that implements a pre-designed symbol 

alphabet modifier matrix (SAM) to change the amplitude and phase values of the original 

data symbols prior to the IFFT operation of an OFDM system at the transmitter. The 

receiver can recover original data symbols by employing the corresponding inverse SAM 

after FFT without BER degradation.  

The proposed method is a marked departure from the existing ones and offers a 

simple framework devised to be independent of original data symbols, elegantly 

formulates the PAPR reduction problem, and significantly outperforms PTS, SLM and 

WHT-OFDM for the communication scenarios considered in the chapter. 

 

5.1  Design Objective 

Herein a low complexity PAPR reduction method is introduced for the OFDM systems that 

jointly modifies phase and amplitude of the original symbol alphabet such as M-PSK and 

M-QAM modulations. 

The difference between peak power and mean power that is expressed 

as ( ) ( )2 2

0,1,..., 1
max

n N
x n E x n

= −
 −
 

 should be minimized by any PAPR reduction method. 

Conceptually, in the ideal case, all components of the OFDM frame vector x  which have 

the same amplitude can limit the PAPR to be 1 (0 dB) and the power difference to be zero. 
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The design motivation for a proper symbol alphabet modifier is first to find such an 

N N×  matrix 1C−  instead of the inverse discrete Fourier transform (DFT) matrix 1
DFTA−  

that can map a symbol vector into an OFDM frame with constant amplitude components. 

Here superscript ‘-1’ is used to indicate the inverse matrix such that all matrices designed 

at the transmitter are identical to the denotation of the inverse DFT matrix 1
DFTA−  and also 

implied to be invertible, this conversely at the receiver. Hence, it is necessary to define the 

design constraints such that the matrix C-1 must be invertible at the receiver and factorable 

to the 1
DFTA−  matrix which served as the frequency selective orthogonal multiplexer. 

 

5.2  Design Procedure 

The design steps are explained as follows: 

a) First, define an N N×  transform matrix 1C−  consists of complex value elements as  

 
 ( ) ( )1

,     , 0,1,..., 1,nj k
n k nC c k e k n Nϕα−  = = ⋅ = −       (5.1) 

 
where the amplitude of matrix elements is ,k nα +∈ , k and n denote for column and row 

indices of a matrix. Then, the OFDM frame in time domain is expressed as 

 

 
1

0
( ) ( )X( )        0,1,..., 1.

N

n
k

x n c k k n N
−

=

= = −∑   (5.2) 

 
Again, the ( )X k  is the kth component in the M-PSK or M-QAM modulated data symbol 

alphabet vector ( ) ( ) ( )[ 0 , 1 ,..., 1 ]TX X X X N= −  in frequency domain. The amplitude of 

each component is calculated as 
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1

0
( ) ( )X( ) .

N

n
k

x n c k k
−

=

= ∑   (5.3) 

 
Then, by inspection, forcing the equality of two arbitrary components in an OFDM 

frame as the following relationship 
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

   (5.4) 

 
where ,m nφ∆  denotes the phase difference between the nth and mth components of the 

OFDM frame vector. From (5.4), an intuitive design of the nth and mth rows of matrix 1C−  

is given as follows 
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( ) ( )
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e e e
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= ⋅ ≠ = −

⇒ ⋅ = ⋅ ⋅

⇒ = = = + ∆ = + ∆



  (5.5) 

 
where 0,n nφ φ=  , ( ) ( )0k kϕ ϕ=  is the phase of the kth element in the first row ( 0m = ) of 

the matrix 1C− . 

b) Now, express 1C−  as 

 
 ( ) ( )( )1     , 0,1,..., 1nj k

n kC c k e k n Nϕ φα +∆−  = = ⋅ = −       (5.6) 
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where [ ) 0 0,0,  ( ) and 0,2 ,  0k nkα ϕ φ π φ φ+∈ ∈ = =    . Note that the matrix 1C−  is a 

constant modulus matrix when =1kα . 

Such a transform matrix can always map or multiplex any original symbol vector 

into a constant modulus OFDM frame vector. However, this matrix is not invertible 

because the rank of such a matrix is 1 and the data symbol vector cannot be recovered at the 

receiver [60]. In order to make the matrix 1C−  invertible, the diagonal elements of the 

matrix 1C−  is adjusted to be constant but non-unit amplitude α , and the remaining 

elements to have another amplitude β  such that it has the full rank N. Moreover, if all 

rows or columns of such a matrix are permutated, it still maintains the full rank property 

[61]. The PAPR of the OFDM frame vector also remains the same. Accordingly, the 

modified matrix 1C−  can be designed in different permutation forms of the initial adjusted 

matrix that provides many possible transformation sets as presented in following part c).  

After modification on the amplitudes of matrix 1C− , those data symbols generated 

from the M-PSK can be transformed into a constant modulus OFDM frame when setting 

β  to zero. Although the M-QAM modified symbols cannot be multiplexed into a constant 

modulus OFDM frame, a significant improvement on the PAPR compared to the PTS, 

SLM and WHT will be shown in Section 5.5. 

c) Define a given permutation N  with N elements that { } { }: 0,1,..., 1 0,1,..., 1N N N− → −  

[62]. For example, when 4N = , the permutated order can be { }: 2,0,3,1N . The modified 

matrix 1C−
  that is invertible can be employed as follows 
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( )

( )( ) ( )
( )( ) ( )

( ) ( ) ( )( )( ) 1 ( )

      

      

,    , 0,1,..., -1

n

n

N n N n n

j k

n j k

I k I k j k

e k N n
c k

e k N n

e k n N

ϕ φ

ϕ φ

ϕ φ

α

β

α β

+∆

+∆

− +∆

 ⋅ == 
⋅ ≠

= ⋅ ⋅ = 





   (5.7) 

 
where ( ) [ ) [ ) 00, , 0, , ,  ( ) and 0,2 ,  0nkα β α β ϕ φ π φ∈ ∞ ∈ ∞ > ∈ =  , 

( ) ( )= 0 kk Aϕ ϕ π+ for simplicity and kA ∈ .  

( )n kΙ  is called Indicator Function [63], having the value 1 for element k equals to 

element n and the value 0 for element k different than set n, which is defined as 

 

 
1        if

( ) .
0       ifn

k n
k

k n
=

Ι =  ≠
  (5.8) 

 
To express the modified matrix -1C  more intuitively, let vector ( ) 1

0

NT j k

k
e ϕη

−

=
 =   , 

vector 1

0
n

NT j

n
e φψ

−∆

=
 =   , matrix ( )1 diag ηΣ = , ( )2 diag ψΣ =  and a real matrix displayed as 

 

 ,

N N

α β

β α
×

 
 Γ =  
 
 

   (5.9) 

 
with its arbitrarily permutated columns (or rows) as 

 

  .

N N

β β
β β
β β
β β

β

α
α

α

β
α

α
×

 
 
 
 Γ =
 
 
 
 

 

 

 

 

 

  (5.10) 
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Then, the modified matrix is expressed as 1
1 2C− = Σ ΓΣ . 

Some possible cases are invoked to build various matrices 1C−
  by assigning 

different amplitude and phase values to the elements of the matrix, which will be discussed 

in detail in Section 5.3.  

d) Now, -1C  should be factorized into an inverse DFT matrix 1
DFTA−  and a matrix 1B−  since 

the OFDM system needs to be built up with utilization of the IFFT operator. The invertible 

matrix 1B−  is called Symbol Alphabet Modifier matrix (SAM) and is expressed in the 

matrix form as 

 

 
1 1 1 1

1 1 1

      

      ,
DFT

DFT

C A B C C I

B A C B B I

− − − −

− − −

= ⋅ ⋅ =

= ⋅ ⋅ =

  



  (5.11) 

 
where 1B−  is derived from (5.7) and (5.11) as 

 

 
( )

( ) ( ) ( ) ( )
( )

1

221 1 ( ) 1 ( )

0 0

        , 0,1,..., 1

.
nN n N n

k SAM

klklN N j lj I l I l NN
k n

l l

B b n k n N

b n e c l e
ππ ϕ φ

α β

−

 − − +∆ −−  −  

= =

 = = − 

= ⋅ = ⋅ ⋅∑ ∑  







  (5.12) 

 
One can normalize the power of the modified symbols close to the original ones 

before the IFFT operator by dividing with a normalization factor of Frobenius matrix norm 

as 1

F
B N−  [64]. The SAM matrix 1B−  is rewritten as 

 

 ( )

( )

1

1 1 2

0 0

        , 0,1,..., 1.k

N N

k
k n SAM

b n
B k n N

b n N

−

− −

= =

 
 
 = = −
 
 
 
∑∑





  (5.13) 
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The Figure 5.1 displays the block diagram of the OFDM system employed with the 

proposed SAM method over additive white Gaussian noise (AWGN) and multipath fading 

channels. 

 

 
Figure 5.1  Block diagram of the OFDM system with the proposed PAPR reduction 
method. 
 

 

5.3  Frameworks of the Symbol Alphabet Modifier Matrix 

In this section, some possible cases are pursued and investigated based on function (5.7).  

5.3.1 Invertible SAM Matrix (Case 1) 

Case 1: in this case, the amplitudes ,α β  are positive real numbers and α β> , the matrix 

-1C can be normalized to ( ) ( ) ( )( )( )N n nI k j k
nc k e ϕ φα +∆= ⋅

 , here α α β= . For readability, use α  

instead of α , and has 
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 ( )
( )( ) ( )

( )( ) ( )
     ,  , 0,1,..., -1

.
         

n

n

j k

n j k

e k N n k n N
c k

e k N n

ϕ φ

ϕ φ

α +∆

+∆

 ⋅ = == 
≠







  (5.14) 

In case 1, the SAM matrix 1B−  is not a constant modulus matrix such that it modifies the 

amplitude as well as average power of the original data symbols. But the difference 

between the modified power and the original one is subtle and trivial, where the numerical 

results tabulated in Table 5.1 has validated. The theoretical derivation on the predictable 

dynamic range of signal amplitudes in Appendix A also confirmed this. 

 
5.3.2 Orthogonal SAM Matrix (Case 2) 

Case 2: where β  is zero, the matrix -1C  becomes a constant modulus diagonal matrix and 

the value of parameter α  can be normalized to 1 as 

 

 ( )
( )( ) ( )

( )
     ,  , 0,1,..., -1

.
0                 

nj k

n

e k N n k n N
c k

k N n

ϕ φ+∆ = == 
≠







  (5.15) 

 
As a result, according to the function (5.11), it can be obtained in case 2 that the SAM 

matrix 1B−  is an orthogonal matrix which modifies the amplitude of original data symbols 

without alternating total signal power.  

Remark: It is observed that when 1B−  is a constant modulus diagonal matrix, it 

represents one of the phase sequences in the ordinary SLM technique. Moreover, the 

matrix factorization in (5.11) leads to the Generalized DFT (GDFT) framework reported 

in [3]as follows 

 

 ,

2
1 1 1

,       0,1,..., 1.k n
j kn jN

GDFT DFT k nA A G e g e k n N
π

θ− − −= ⋅ = ⋅ = = −   (5.16) 
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where ,k ng  and ,k nθ  denote for the amplitude and phase of the kth column and nth row 

element in G matrix. 

As introduced in Section 4.2.1, each phase sequence in the SLM is a 

vector 0 1 1[b ,b ,...,b ]u u u u
NB −= , 0,1,..., 1u U= − , b

u
kju

k e ψ=  and phase u
kψ  is uniformly 

selected in range of [ )0,2π . Each phase sequence multiplied with inverse DFT matrix 

resulting in the new composition matrix expressed as 

 

 ( )
22

1 b     , 0,1,..., 1,
u
kj knj knuu u NN

SLM DFT kA A diag B e e k n N
ππ ψ + −  = ⋅ = ⋅ = = −   (5.17) 

 
which reveals the fact that the SLM is a special solution of the proposed SAM framework.  

In Appendix A, the dynamic range of the amplitudes of OFDM frame applying 

SAM method in case 1 and case 2 is discussed. It verifies that, due to the axial symmetry in 

the M-point symbol alphabet constellation, the amplitude value of the OFDM component 

yields no more than ( )( )2 1 2M M+ −  possible values for M-QAM and only one value 

for M-PSK with an increase of α  times value, which can be normalized to be 1 as shown 

in (5.15). Accordingly, the boundary of the peak power can be estimated, and the PAPR 

performance is varied over the value of α  in case 1 while case 2 is an orthogonal (unitary) 

matrix with normalized 1α = .  

Compared to the amplitude values of the OFDM frame modified by the inverse 

DFT (original OFDM frame) that have many more possibilities, the amplitude variations of 

the proposed SAM method with case 1 and case 2 in the time domain are shown in Figure 

5.2 ( =100α  is taken for case 1 and =1α  in case 2). It is seen that amplitudes of OFDM 
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frame modified by the proposed SAM method are more concentrated and less fluctuating 

in the time domain. Hence, the PAPR performance is significantly improved.  

 In Section 5.3.3 and 5.3.4, the extension frameworks of the previous matrix 1C−
  

shown as case 3 and case 4 are discussed. 

 

 
(a) 

 
(b) 

Figure 5.2  Amplitudes of the OFDM frame with case 1 and case 2 for a) QPSK and b) 
16-QAM. 
 

 
5.3.3 Extension on Orthogonal SAM Matrix (Case 3) 

In the above, the proposed framework of matrix -1C  with two cases is designed for PAPR 

reduction by reducing the dynamic range of the time domain signals. The matrix format 
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expression is provided by the product function 1
1 2C− = Σ ΓΣ  as shown in (5.9) or its 

arbitrarily permutated columns (or rows) as in (5.10). In case 2, the matrix -1C  becomes an 

unitary (diagonal ) matrix expressed as 

 

 

( )( )

( )( )

0

1

0

1

1

,
0

0 N

j

j N
N N

e
C

e

ϕ φ

ϕ φ −

+∆

−

− +∆

×

 
 

=  
 
 



   (5.18) 

 
and thus the corresponding SAM matrix is an orthogonal matrix due to the unitary property 

of discrete Fourier transform and accordingly has HB B I⋅ = . It is proved in function 

(5.16), (5.17) and (5.20) that when 0β = , the PAPR performance of OFDM frames has 

been enhanced to reach an optimum reduction performance and is independent of the 

original data symbols.  

 In case 1, although the matrix 1C−
  and SAM matrix 1B−  are invertible and provide 

similarity to orthogonal transform activities with respect to the PAPR and BER 

performance when parameter α  approaching a large value, they are not orthogonal 

matrices in fact. Only when α  takes a value such as 100 or larger (verified in Appendix A), 

the matrix 1C−
  and SAM are getting close to the activities that orthogonal matrix achieved, 

and also reflected on PAPR and BER performance which are numerically validated in 

Section 5.4.  

In case 2 ( =0  =1β α， ), the matrix 1C−
  becomes an unitary matrix (diagonal 

matrix), without permutation the sequence of each row in matrix Γ is the cyclic shifted 

version of the previous row. Regarding the orthogonality of SAM matrix derived from 
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matrix 1C−
  in (5.12), the received signal can be retrieved without BER degradation 

compared to the original OFDM signal which is theoretically verified in Appendix A. 

Instead of using the complex sequence with amplitudes of [ ], ,...,α β β  as the basis 

one in the previous design, a new sequence S  denoted as basis sequence, along with its 

cyclic shifted ones, build up a new size of N N×  matrix -1C  namely case 3. The constrain 

of matrix -1C  should be a unitary matrix that always promise no BER degradation at the 

receiver. 

The new matrix -1C  in case 3 is expressed as 

 

 
(1)

1

(N 1)

.

T

T

T
N N

S

SC

S

−

−
×

 
 
 =  
 
 
 





  (5.19) 

 
Here, the superscript (n), 0,1,..., 1n N= −  indicates the n times right cyclic shift of the 

basis sequence TS . 

Hence, for the purpose of eliminating unwanted BER degradation, this basis 

sequence denoted as [ ]0 1 1, ,..., T
NS s s s −=  is required to be a complex value sequence 

having perfect periodic auto-correlation property that is described as 

 

 ( ) [ ] ( ) ( )
1

*

0
mod  mod ,

N

S S
k

R m S k S k m N E m Nδ
−

=

= + =  ∑   (5.20) 

 
where m as the cyclically shifted delays is an integer and SE  is the peak energy in a single 

period of auto-correlation. 
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The auto-correlation of matrix -1C  reveals the reason of requesting perfect periodic 

auto-correlation sequences, which is proved by the derivation as 

 

 

( )

*

(1) (1)*
1 1
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  
  
  

 
 
 
 
 
 
 

 
 =  
 
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 

 



 







  (5.21) 

 
This satisfies the constraint of ( )1 1 H

C C I− −⋅ =   after normalization and 

thereby ( )1 1 H
B B I− −⋅ = . 

 By looking at the previous design of case 2, it can be found that when strengthening 

a few data symbol values by parameter α  and weakening others by parameter β , as the 

output of the matrix -1C , the OFDM signal’s power will be reduced into a smaller dynamic 

range compared to the original OFDM signal’s. When 0β = , the emphasis brings an 

optimal effect on PAPR reduction.  

Therefore, case 3 as an extension of case 1 for matrix -1C  is proposed to have the 

basis sequence which is defined as 

 0 1 1,0,..., ,0,...,..., ,0,... ,

T

L

N L N LN L

S s s s −

 
 =
  

 

  (5.22) 
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and the nth row is generated as the n times shifted version of (5.22), for instance, taking 

n N L=  is shown to have 

 

 ( )
1 0 1 2,0,..., ,0,..., ,0,...,..., ,0,... ,

T

N L
L L

N L N L N LN L

S s s s s− −

 
 =
  
  

  (5.23) 

 
where the non-zero tapping sequence [ ]0 1 1

ˆ , ,..., T
LS s s s −= is a perfect periodic 

auto-correlation sequence such as Zadoff-Chu sequence given by [65] 

 

 [ ] ( )ˆ exp 1 ,       0,1,..., 1.jS k k k k L
N
π = + = − 

 
  (5.24) 

 
Herein, utilizing the Zadoff-Chu sequence of length 4 (L=4) as the non-zero tapping 

sequence Ŝ  to populate the basis sequence in (5.22). The PAPR performance is simulated 

for this design in case 3 and provided in Section 5.5, with QPSK and 16-QAM modulated 

respectively. From the observation of PAPR and BER performance obtained in case 3, it 

can be seen that although the promise of no BER degradation is achieved, an acquisition of 

competitive PAPR reduction needs to be further pursued for the M-QAM modulated data 

symbols. 

 

 
5.3.4 Extension on Orthogonal SAM Matrix Case 3 (Case 4) 

Nonetheless, the aforementioned constant amplitude polynomial sequences having perfect 

periodic auto-correlation property such as Zadoff-Chu sequence cannot bring an 
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outstanding peak power reduction for OFDM signals without any emphasis impacted on 

the data symbols.  

In view of this, to achieve a better PAPR performance in the new extensive 

framework of -1C , the improved design for the basis sequence is proposed to have two 

non-zero components as  

 

 
 

0 1
2 12 1

,0,..., , 0,... ,
T

NN

S s s
−−

 
=  
  

  (5.25) 

 
where 0s  and 1s  are non-constant amplitude complex values used to emphasize the data 

symbols.  

Intuitively, such sequence should promise the perfect periodic auto-correlation as 

shown in (5.19), thus, it can be derived as 

 

 

* *
0 1 1 0

* *
0 0 1 1

0
0

s s s s
s s s s
 + =


+ ≠
  (5.26) 

 
Let 0

0
js e θα=  and 1

1
js e θβ= , where α  and β +∈ . Substitute them into the function 

(5.25), it yields 

 

 
( )( ) ( )( )

( )

* *
0 1 1 0 0 1 0 1

0 1

exp exp

                cos 0

s s s s j jαβ θ θ θ θ

αβ θ θ

 + = ⋅ − + − − 
= ⋅ − =

  (5.27) 

 
and also has 
 
 * * 2 2

0 0 1 1 0.s s s s α β+ = + ≠   (5.28) 
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As a result, it should have { }0 1 2, 3 2θ θ π π− = ± ± , 0θ  and [ )1 0,2θ π∈ . 

 Due to the existing zero tapping inside the basis sequence, the periodic 

auto-correlation ( )SR m  in (5.20) is always zero when the correlation shifting delay at the 

moment of ( ) mod 2 0m N ≠  for this case. Therefore, the n times right shifted sequence 

( )nS  denoted as the nth row of the new matrix -1C  could be relaxed and not necessarily the 

cyclic shifted version of the first row that is the basis function S  expressed in function 

(5.25), while 1,2,..., 2 1n N= − . 

For 0,1,..., 2 1n N= − , propose the nth row sequence of the new matrix -1C  to be 

 

 0 1

22

0,...,0, ,0,...,0, ,0,...,0 ,

T

n n n

n N nN

S s s
−

 
 =
  




  (5.29) 

 
For 2,..., 1n N N= − , the nth row sequence becomes the flipping version of the sequence 

at the row index of 2n N−  as 

 

 2 2
1 0

2 2

0,...,0, ,0,...,0, ,0,...,0 ,

T

n n N n N

n N N N n

S s s− −

− −

 
 =
  




  (5.30) 

 
where 0

0

nn n js e θα=  and 1
1

nn n js e θβ= , nα  and nβ +∈ .  

Here, the phase difference between the two elements remains as 

{ }0 1 2, 3 2n nθ θ π π− = ± ± , 0
nθ  and [ )1 0,2nθ π∈ . Note that instead of using ( )n  to 
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indicate the nth cyclic shifting on the basis sequence, n  is used to denote the nth distinct 

sequence in the matrix 1C−
 . 

Besides, in order to achieve the design motivation and objective, for the purpose to 

simplify the expression of the new matrix, let nα α= , nβ β= . As a result, such new 

matrix -1C  is a unitary matrix as well as its column permutated matrices. After 

normalization for SAM matrix to avoid unnecessary power increasing, the components of 

the sequence are changed as 

 

 
( )

( )

0 02 2

1 12 2

exp ,

exp .

n n

n n

s j

s j

α θ
α β
β θ

α β

= ⋅
+

= ⋅
+

  (5.31) 

 
Let 1β = , α̂ α β= , for continuity, still use α  instead of α̂ . To instantiate this 

design, the matrix -1C  of size 8 8×  is shown below 

 

 

0 1

1 1
0 1

2 2
0 1

3 3
0 11

1 0

1 1
1 0

2 2
1 0

3 3
1 0 8 8

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

s s

s s

s s

s s
C

s s

s s

s s

s s

−

×

 
 
 
 
 
 

=  
 
 
 
 
 
  

   (5.32) 

 
The amplitudes of the OFDM frame populated by the inverse DFT (original OFDM 

frame) and the proposed SAM method with case 3 and case 4 in the time domain are shown 
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in Figure 5.3 a and b ( 100α =  is chosen for the case 4 as explained in Appendix B). It is 

seen that amplitudes of OFDM frame modified by the proposed SAM method in case 4 is 

more concentrated and less fluctuating in the time domain. Although it is not satisfied on 

minimizing the difference between mean and peak amplitudes (same to peak power) in 

case 3, but it still lessens the peak amplitude value than original OFDM signal. According 

to this, the PAPR performance is significantly improved in case 4 with 100α = . The 

numerical simulation and comparisons in Section 5.5 show the PAPR performance by 

employing SAM in case 3 and case 4 when α  takes different values. 

 
(a) 

 
(b) 

Figure 5.3  Amplitudes of the OFDM frame with case 3 and case 4 for a) QPSK and b) 
16-QAM. 
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The dynamic range of the peak power for OFDM signals which employ the 

proposed case 4 with M-PSK or M-QAM modulated can be estimated in a constrained 

boundary. It is stated and evaluated in Appendix B that the performance of PAPR is 

dependent on the value of parameter α . 

 

5.4  PAPR and BER Performance Estimation 

The performance of the PAPR reduction technique can be quantified in terms of achieving 

an expected bit error rate (BER) at a given signal-to-noise ratio (SNR). With the main 

focus of improving PAPR performance, it is sometimes compensated at the expense of 

increased BER, such as SLM and PTS techniques require side information to be 

transmitted, along with the aforementioned amplitude modified SLM (A-SLM) method 

which increases signal power. Below, it is verified that the proposed method approaches 

PAPR reduction without BER degradation when the SAM matrix 1B−  is an orthogonal 

matrix presented in case 2, case 3 and case 4. In case 1, the evaluating results given in 

Figures 5.7 and 5.8 have shown that when parameter α  is at a large enough value such as 

100, the BER performance of it is approximately the same to the other three orthogonal 

cases. 

The estimation of received data symbols adapting SAM method after IFFT and 

inverse SAM matrix B is obtained in frequency domain as 

 
 1

0 0 ,Y B B X B W I X B W−= ⋅ + ⋅ = ⋅ + ⋅   (5.33) 

where 0W  denotes the complex additive white Gaussian noise (AWGN) vector with zero 

mean and variance 
0

2
wσ .  
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At the receiver, after passing through the inverse SAM matrix (the orthogonal ones 

in case 2 ,case 3 and case 4), ( )( )
0

2
0 0 0 0
H H H

wE W B BW E W W Iσ   = =   , where [ ]H⋅ denotes 

the Hermitian operator, I is the identity matrix, the noise vector 0BW  has the same mean 

and variance as AWGN vector 0W . Accordingly, the proposed SAM matrix won’t cause 

BER degradation in AWGN channel, which can be shown in Section 5.5. 

 

5.5  PAPR and BER Performance Comparisons 

The performance simulation results are presented in this section. Table 5.1 tabulates the 

average power fluctuation (in dB) of the proposed SAM in four cases (superscripts such as 

1 and 2 denote for case 1 and case 2 respectively), WHT, PTS, SLM, A-SLM methods for 

QPSK and 16-QAM with 64N =  subcarriers. In the A-SLM, the number of amplitude 

modified symbols in each sequence is uniformly distributed in the interval [0, Smax] where 

parameters Smax = 6, and D = 2.4 with QPSK and D = 4.4 with 16-QAM were used as 

suggested in [41]. As seen from the Table 5.1, in case 1, when the value of α  is larger, the 

power fluctuation of OFDM frame is approaching zero. In case 2, case 3 and case 4, the 

SAM matrix B-1 is orthogonal, accordingly without inducing additional power or any 

sacrifice on signal distortion, the power of the original symbols will not be changed with 

power normalization as in (5.13). 

 The OFDM system simulations are performed for all four cases (choose 100α =  in 

case 1 and case 4, 1α =  in case 2, 4L =  in case 3) of the proposed SAM method with 

[ )(0) 0,2ϕ π∈  as selected randomly, and choosing ( ) ( )0l lϕ ϕ π= + , 4n nφ π=  in 

function (5.12). Besides, { }0 1 2, 3 2n nθ θ π π− = ± ± , 0
nθ  or 1

nθ  is stochastically chosen in 
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the range of [ )0,2π  for function (5.30) in case 4, where the permutation N  is arbitrarily 

generated for all cases. 

 
Table 5.1  Average Power Variations of SAM in Four Cases, PTS, SLM, A-SLM and 
WHT for QPSK and 16-QAM with N = 64 

N = 64 Power varied 
  

Power varied 
  WHT 0 0 

PTS 0 0 
SLM 0 0 

A-SLM 2.5 4.2 
SAM1 α =103 <10-3 <10-3 

SAM1 α =100 0.03 0.1 
SAM2 0 0 
SAM3 0 0 
SAM4 0 0 

 

The complexities of various methods considered in the dissertation are tabulated in 

Table 5.2. In PTS and SLM techniques, U and V IFFT operations are required. Besides, 

side information bits are used along with OFDM signal transmission to the receiver. On the 

other hand, the proposed SAM and WHT need only one pair of FFT/IFFT operations and 

no SI bits are required at the receiver.  

In the calculation of -1C  in case 1 and case 2, vector ( ) 1

0

NT j k

k
e ϕη

−

=
 =    and vector 

1

0
n

NT j

n
e φψ

−∆

=
 =    totally require 2N multiplications and zero additions. When ( ) 0nlϕ φ= ∆ = , 

zero multiplications and additions are needed. Matrix Γ requires N multiplications and 

2 1N −  additions for Case 1 (where 1β = ), and zero multiplications and additions for 

Case 2 (where 1α = , 0β = ). In the approach of case 3, when the matrix -1C  consists of 

only one basis sequence along with its all cyclically shifted versions, there are LN 

multiplications and N(L-1) additions required, where 4L =  is taken to implement 
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Zadoff-Chu sequence for the following simulation on PAPR and BER performance 

comparisons. As proposed in case 4, 2N multiplications and N additions are needed. In 

addition, the Discrete Fourier transform of the modified matrix -1C  yields the SAM matrix 

as shown in (5.11). Therefore, adapting IFFT operation in (5.11) to obtain the SAM matrix 

requires 2log ( ) 2N N  multiplications and 2log ( )N N  additions.  

 
Table 5.2  System Complexity of SAM, PTS, SLM and WHT Methods for OFDM System 

N=64 
SI 

(Bit) 

# of 

IFFTs 

# of 

Complex Multip. 

# of 

Complex Add. 

Original No 1 2log ( ) 2N N  2log ( )N N    
WHT No 1 2

2log ( ) 2N N N+   2log ( ) ( 1)N N N N+ −   
PTS Yes V 1

2log ( ) 2 VVN N VW −+   2log ( )VN N   
SLM Yes U 2log ( ) 2NU N UN+   2log ( )UN N   
SAM1 No 1 2log ( )N N N+   22 log ( ) 2 1N N N+ −   
SAM2 No 1 2log ( )N N   22 log ( )N N   
SAM3 No 1 2log ( )N N LN+  ( )22 log ( ) 1N N N L+ −  
SAM4 No 1 2log ( ) 2N N N+  22 log ( )N N N+  

 

The SAM method has raised the computational complexity to original OFDM 

systems, but apparently, the proposed method has much lower computational complexity 

than the other methods where the comparisons on multiplication and addition complexities 

are plotted in Figure 5.4. While there is only 3 bits SI chosen for comparative study in 

Figure 5.4, the computational cost of SLM and PTS methods grow fast as the number of 

candidates/sub-blocks increases. It should be noted that, in the following BER 

performance comparisons, it is assumed an error free situation of SI transmission in SLM 



 
 

66 

and PTS methods such that no data loss caused by SI will be considered. But in practical 

term, this is inevitable unless additional cost are paid to cover it. 

 

 

Figure 5.4  Computational complexity comparison of the proposed SAM in four cases, 
WHT-OFDM, PTS, and ordinary SLM methods. 
 

 Figure 5.5 displays the PAPR performance of the proposed SAM method in case 1 

and case 2, along with several values of parameter α  comparable for case 1 with QPSK, 

16-QAM and 64-QAM. Similarly, Figure 5.6 is plotted for case 3 and case 4.    

 

 
Figure 5.5  PAPR performance of the proposed SAM in case 1 and case 2 for QPSK, 
16-QAM, 64-QAM and N=128 in the OFDM system. 
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Figure 5.6  PAPR performance of the proposed SAM in case 3 and case 4 for QPSK, 
16-QAM, 64-QAM and N=128 in the OFDM system. 
 

Figures 5.7 and 5.8 illustrate the CCDFs performance (aforementioned in Section 4.1) 

of the proposed SAM in case 1 and case 2, WHT-OFDM, PTS, ordinary SLM and A-SLM 

methods. For QPSK and subcarriers 128N = , the OFDM signals in the SLM and A-SLM 

have candidates 8U =  and 64, Smax =12, D=2.4, while subblocks 8V =  and 32, phase 

coefficients 2W =  are used for PTS. Also 8U =  and 128, Smax=25, D=4.4, 8V =  and 

64, 2W = for 16-QAM and signal length 256N = , respectively. The CCDFs are 

simulated by randomly generating 100,000 OFDM frames for each method.  

 

 
Figure 5.7  PAPR performance of the proposed SAM in case 1 and case 2, WHT-OFDM, 
PTS, ordinary SLM, and A-SLM methods for QPSK and N=128. 
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Figure 5.8  PAPR performance of the proposed SAM in case 1 and case 2, WHT-OFDM, 
PTS, ordinary SLM, and A-SLM methods for 16-QAM and N=256. 
 

Figures 5.9 and 5.10 display the BER performance comparisons over the AWGN 

channel and the multipath fading channel with utilization of  high power amplifier (HPA). 

The multipath fading channel is assumed to be a three-path Rayleigh fading channel with 

equal power. The HPA is modeled as Rapp’s solid state power amplifier (SSPA) given as 

[66], the output signal of the SSPA is defined as 

 

 
( )

1
2 21
in

out
p p

in

rr
r

=
+

，  (5.34) 

 
where inr  and outr  denote the amplitude of input and output signals, and 2p =  is chosen to 
approximate a practical power amplifier as suggested in [66]. 
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Figure 5.9  BER performance comparisons of the proposed SAM in case 1 and case 2, 
WHT-OFDM, PTS, ordinary SLM, and A-SLM methods for 16-QAM and N=256 over 
AWGN channel. 
 

 
Figure 5.10  BER performance comparisons of the proposed SAM in case 1 and case 2, 
WHT-OFDM, PTS, ordinary SLM, and A-SLM methods for 16-QAM and N=256 over 
multipath fading channel. 
 

The PAPR performance of the proposed SAM method in case 3 and case 4 are also 

compared and presented for QPSK and 16-QAM with the signal length 256N = , 

implementing Zadoff-Chu sequence with 4L =  in case 3, and { }= 1 10 100α ，，  in case 4 as 

illustrated in Figures 5.11 and 5.12.  
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Figure 5.11  PAPR performance of the proposed SAM in case 3 using ZC sequence and 
case 4 (with different α  values), WHT-OFDM, PTS, ordinary SLM, and A-SLM methods 
when L=4, N=256, for QPSK.  

 

 
Figure 5.12  PAPR performance of the proposed SAM in case 3 using ZC sequence and 
case 4 (with different α  values), WHT-OFDM, PTS, ordinary SLM, and A-SLM methods 
when L=4, N=256, for 16-QAM. 
 

It can be seen that when α  gets larger in case 4, the PAPR provides better 

performance, especially in M-PSK modulated data symbols, the considerable 

improvements on PAPR over SLM and PTS are achieved even when 1α = . When 

100α =  in case 4 with QPSK, the PAPR is approaching the value of 1 (0dB), which has 

been reached in case 2 and was shown in Figure 5.7. The design of sequence in case 4 
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provides a better PAPR reduction than the same framework in case 3 using Zadoff-Chu 

sequence. Also, the design of SAM method in case 4 outperforms PTS, SLM and WHT 

methods both in QPSK and 16-QAM when 10α >  in Figures 5.11 and 5.12. 

 
  

 

Figure 5.13  BER performance comparisons of the proposed SAM in case 3 using ZC 
sequence, case 4 when 100α = , WHT-OFDM, PTS, ordinary SLM, and A-SLM methods 
for 16-QAM and N=256 over AWGN channel. 
 

 

Figure 5.14  BER performance comparisons of the proposed SAM in case 3 using ZC 
sequence, case 4 when 100α = , WHT-OFDM, PTS, ordinary SLM, and A-SLM methods 
for 16-QAM and N=256 over multipath fading channel. 
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Similarly, the BER performance comparisons with SAM method employed in case 

3 and case 4 over the AWGN channel and the multipath fading channel with SSPA 

customized in (5.34) are also displayed in Figures 5.13 and 5.14. The BER performance of 

the SAM method has validated the design motivation for case 3 and case 4. 

These performance results confirm that the proposed SAM method significantly 

outperforms PTS, SLM and WHT techniques in PAPR reduction. Case 2 as the ultimate 

form of case 1, at the CCDF rate of 10-3 as a threshold, yields a PAPR gain of 0 dB for 

QPSK and 3 dB for 16-QAM. Case 1 yields 0.8 dB for QPSK and 3.9 dB for 16-QAM, 

whereas the original OFDM signal is 10.2 dB and 11.1dB respectively. In Case 4, as 

discussed in Appendix B, where =100α  is chosen for comparison, displays considerable 

improvement on PAPR reduction. Due to the orthogonality, case 2, 3 and 4 retain the 

original OFDM signal’s BER theoretically, while case 1 with a large α also approached 

the same performance as shown in Figures 5.9 and 5.10.  

The Table 5.3 shows the comparisons between all proposed cases in SAM method 

and other popular techniques introduced with respect to the PAPR gain of CCDF at a given 

rate of 10-3, where =100α  in case 1 and case 4, 4L =  in case 3 with Zadoff-Chu 

sequence.  

It can be seen from the Table 5.3 that the proposed method in case 2 and case 4 

prominently reduced the PAPR for various constellation scenarios. Meanwhile, case 1 and 

case 3 also powerfully enhanced the PAPR performance over other popularly implemented 

methods for OFDM systems. 
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Table 5.3  PAPR Gain (dB) at the CCDF Rate of 10-3 of SAM in Four Cases, PTS, SLM, 
A-SLM and WHT for QPSK and 16-QAM Modulations with N = 256 

N=256 QPSK 16-QAM 

Original 10.9 11.1 

WHT 10.0 10.5 
PTS 6.8 7.0 

SLM 6.7 6.9 
A-SLM 6.8 7.0 
SAM1 1.2 3.9 

SAM2 0 3.0 
SAM3 5.2 8.8 

SAM4 0.1 3.0 
 

 A significant PAPR improvement is achieved by the proposed SAM method, 

especially in case 2 and case 4, it presents a better performance than case 1 and case 3, also 

outperforms all other methods for PAPR reduction without BER degradation. Hence, the 

OFDM system with the proposed SAM method reduces power consumption of HPA and 

avoids BER degradation caused by in-band interference. It should be noted that PTS and 

SLM methods require SI bits to be transmitted without any error tolerance such that the 

receiver can recover the original data without failure. On the other hand, it should be 

highlighted that the SAM method does not need to reserve bits for the transmission of the 

SI, resulting in the increase of the data rate, and is simple to implement with respect to the 

lower computational complexity as well as only one pair FFT/IFFT operations.  
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CHAPTER 6 

PAPR REDUCTION FOR STBC MIMO-OFDM SYSTEMS 

 
In this chapter, an implementation of the proposed symbol alphabet modifier matrix (SAM) 

that elegantly formulates PAPR reduction problem in STBC MIMO-OFDM will be 

described. Moreover, the proposed method significantly improves PAPR without BER 

degradation that permits much lower computational complexity and implementation cost 

compared to the SLM based systems for the application scenarios also presented in this 

chapter. 

 

6.1  STBC MIMO-OFDM Systems 

MIMO wireless communication systems offer great interest due to its potential for 

different sources of diversity and spatial multiplexing, which can be properly exploited by 

a proper coding and transmission scheme. Multiple antennas and space time codes can be 

used to obtain spatial diversity. Frequency diversity can be utilized in an orthogonal 

frequency division multiple access system. However, the MIMO-OFDM systems still 

suffer from high PAPR as the main drawback caused by OFDM signals. 

 
6.1.1 Alamouti MIMO-OFDM Systems 

The maximum diversity can be realized using the space-time block codes proposed by 

Alamouti by providing a simple transmit diversity scheme in a flat fading multiple-input 

multiple(MIMO) channel [67]. The OFDM methodology converts a wide band frequency 

to multiple narrow bands which almost have flat frequency in an efficiency use, so one can 

use MIMO with OFDM to transmit data in wide band frequencies achieving high 
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efficiency and low bit error rate. Space time or space frequency along with OFDM can 

utilize the orthogonal transmission by Alamouti MIMO systems. 

 Here, the Alamouti MIMO-OFDM system is considered to adopt space-time block 

coding (STBC) method with two transmit antennas and one or more receive antennas. First, 

the incoming data bit stream is mapped to a sequence of symbols ( ) , 0,1,..., 1X k k N= −  

from a predefined Symbol Alphabet (SA) that populate the symbol vector 

0 1 1[ , ,..., ]T
NX X X X −= , where N is the number of subcarriers and [ ]T⋅ denotes 

vector/matrix transpose operator. At time period 0t , one input data symbol vector 0X  is 

multiplexed by IDFT and transmitted from the first antenna TX0. Similarly, another data 

symbol vector 1X  is also inverse transformed by IDFT and transmitted from the second 

antenna TX1. During the next signal period 0t T+ , data symbol vector *
1X−  is transmitted 

by the first antenna TX0 and vector *
0X  by the second antenna TX1, where T is OFDM 

frame duration. The two data symbol vectors inverse transformed and transmitted from the 

two antennas are expressed as 

 

 0

1

*
2 2 1

*
2 1 2

      0,1,...,TX m m

TX m m

X X X
m

X X X
+

+

   −
= =        

  (6.1) 

 
where ( )*⋅  denotes a complex conjugate operator and m denotes mth set transmitted STBC 

symbol vectors during every time period T. 

 The OFDM frame transmitted by the ith antenna, [ ](0), (1),..., ( 1)
i

T
TX i i ix x x x N= − , 

is obtained through IDFT as [67]  
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21

0

1( ) ( ) ,     0,1,..., -1  0,1.
i i

knN j
N

TX TX
k

x n X k e n N i
N

π−

=

= = =∑   (6.2) 

 
 PAPR of the signal fluctuation in an OFDM frame at each antenna is defined by 

 

 

2

0,1,..., 1
2

max ( )
     0,1,i

i

TXn N
i

TX

x n
PAPR i

E x
= −= =

 
  

  (6.3) 

 
where [ ]E ⋅  denotes the expectation operator. Therefore, the overall PAPR of the STBC 

MIMO-OFDM system is given as 

 
 { }

0,1
PAPR max .ii

PAPR
=

=   (6.4) 

 
Here, i is the index number of the transmitting antenna. 

 By conjugating the signal transmitted from the second antenna, at one of the 

receivers, the received signals at the time slots of t and t+T, after demodulation to the 

frequency domain through FFT, are written as 

 

 0 0 2 1 2 1 0
* *

1 0 2 1 1 2 1,
m m

m m

Y H X H X W
Y H X H X W

+

+

= + +

= − + +
  (6.5) 

 
where W denotes complex additive white Gaussian noise (AWGN), and H represents the 

multipath fading channels between the transmitted antennas and the received antenna with 

subscript ‘0’ and ‘1’ indicating from antenna TX0 and TX1, respectively. 

 Rewritten in the matrix form, (6.5) is given as 
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 0 1 20 0
* ** *
1 0 2 11 1

.m

m

H H XY W
H H XY W+

      
= +      −      

  (6.6) 

 
 Assuming that the channels’ responses are perfectly estimated at the receiver, the 

output of the space-time decoder is derived from (6.6) to be  

 

 
1

2 0 1 0
* * **
1 0 12 1

ˆ
.

ˆ
m

m

X H H Y
H H YX

−

+

     
=     −     

  (6.7) 

 
 Therefore, the output signals of the space-time decoder can be separated by 

 

 

* *
0 0 1 1

2 2 2
0 1

* *
1 0 0 1

2 1 2 2
0 1

ˆ ,

ˆ .

m

m

H Y H YX
H H

H Y H YX
H H

+

+
=

+

−
=

+

  (6.8) 

 
This is the so called zero-forcing algorithm. Such methodology brings the 

advantage of reducing the complexity at receiver with the received signal copies at two 

time slots that can be benefited by utilizing the information redundancy. 

 
6.1.2 SLM Employed Alamouti MIMO-OFDM Systems 

The SLM is a probabilistic algorithm to reduce the possibility of high PAPR by first 

generating several OFDM frames (a library of frames) for the same symbol vector, and 

then selecting the one with the lowest PAPR prior to transmission. In the implementation 

in STBC MIMO-OFDM [68], [69], each one of duplicates of the original data symbol 

vector X  in frequency domain is multiplied with phase shifting sequence (Phase Modifier) 
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uB  and goes through the IFFT of each, as shown in Figure 4.1. The U phase modifier 

vectors are described as 

 
 { }( )( ) , 0,1,..., 1      0,1,..., 1.

uu u j kB b k e k N u Uψ= = = − = −   (6.9) 

 
where [ )( ) 0,2u kψ π∈ . The modified symbol vector uX  at the uth branch is generated as 

 
 ( ) ( ) ( )             0,1,..., -1.u uX k b k X k k N= =   (6.10) 

 
The modified OFDM frame set with the minimum PAPR is identified and transmitted, 

where the optimal phase shifting sequence is selected as 

 
 { }

0,..., 1
ˆ arg min    0,1.u

i iu U
u PAPR i

= −
= =   (6.11) 

 
Then, two symbol vectors 0ˆ

0
uX and 1̂

1
uX  are encoded by the Alamouti STBC to 

generate data symbol vectors in the next time period. These vectors are transformed into 

time domain with an IFFT operator. In general, 2log U  bits of side information per OFDM 

frame for each transmitter need to be sent to the receiver in an error-free fashion [68]. This 

procedure is depicted in Figure 6.1.  

 

 
Figure 6.1  Block diagram of transmitters employed SLM technique for PAPR reduction 
in STBC MIMO-OFDM system. 
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6.2  Implementation of SAM Matrix in STBC MIMO-OFDM Systems 

As addressed in Chapter 5, the proposed SAM is implemented in the STBC MIMO-OFDM 

system. The block diagram of the framework is illustrated in Figure 6.2. After the received 

signals are transformed by the forward Fourier transform block and inverse SAM matrix B, 

the estimation functions of them are gives as 

 

 

* *
0 0 1 1

0 2 2
0 1

* *
1 0 0 1

1 2 2
0 1

ˆ ,

ˆ .

H Y H YX B
H H

H Y H YX B
H H

+
=

+

−
=

+

  (6.12) 

 
The amplitude values of the original OFDM frames that were modified by the inverse 

DFT have many possible outcomes. For comparison, the amplitudes of the MIMO-OFDM 

frame which employed the proposed SAM method with all four cases in the time domain 

are depicted in Figures 5.3 and 5.4. It can be seen that amplitudes of OFDM frame 

modified by the proposed SAM method are more concentrated and less fluctuating in the 

time domain, especially in case 2 and case 4 when constant amplitude modulation such as 

QPSK is applied, the amplitude of the OFDM signal is constant, providing the ideal PAPR 

property for the design motivation and objective. Accordingly, the PAPR of STBC 

MIMO-OFDM performance is significantly improved for every transmitter.  
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Figure 6.2  Block diagram of the proposed SAM technique employed in STBC 
MIMO-OFDM system. 
 

 

6.3  PAPR and BER Performance 

Table 6.1 tabulates the average power fluctuation (in dB) of the proposed SAM and SLM 

methods compared to original OFDM signals for QPSK when N=64, and 16-QAM when 

N=128. When the value of α  is larger than 30, the power fluctuation of OFDM frame is 

almost zero. The power variation is negligible, less than 0.01dB, even when α  gets 

smaller. 

The PAPR and BER performance simulations are performed for all four cases 

( 100α =  in case 1 and case 4) with QPSK and 16-QAM for the proposed SAM method 

with [ )0 (0) 0,2ϕ π∈ , ( ) ( )0 0 0n nϕ ϕ π= + , m n Nφ π= as described in function (5.12), 

and { }0 1 2, 3 2n nθ θ π π− = ± ±  in case 4 where ( )
0

nθ  or ( )
1

nθ  is randomly chosen in the range of 

[ )0,2π  for function (5.30). The permutation order with length N  is arbitrarily generated. 

The CCDFs are simulated by randomly generating 100,000 OFDM frames for each method. 
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The multipath fading channel of each is assumed to be a five-path Rayleigh fading channel 

with equal power and combined with complex AWGN channel. 

 
Table 6.1  Average Power Variations of SLM and the Proposed SAM Methods for QPSK 
with N=64 and 16-QAM with N=128 

 SI (Bit)/ 
Single Tx 

# of 
IFFTs/ 

Single Tx 

Power Varied 
(QPSK) [dB] 

Power Varied 
(16-QAM) 

[dB] 
SLM 3 8 0 0 
SLM 6 64 0 0 

SAM1 30α =  0 1 <10-5 <10-5 
SAM1 10α =   0 1 0.001 0.002 

SAM2 0 1 0 0 
SAM3 0 1 0 0 
SAM4 0 1 0 0 
 

 Figures 6.3 and 6.4 provide the CCDFs of the ordinary SLM method and the 

proposed SAM method with four cases ( 100α =  in case 1 and case 4, 1α =  in case 2, 

4L =  in case 3) in the four transmitters STBC MIMO-OFDM system. The corresponding 

BER performance at one of the receivers is displayed in Figure 6.5 with QPSK and 

16-QAM modulated data symbol alphabets. 

 
Figure 6.3  PAPR performance of the proposed SAM for various α  and ordinary SLM 
(SI=3 and 6) for QPSK and N=128 in four transmitters STBC MIMO-OFDM system. 
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Figure 6.4  PAPR performance of the proposed SAM for various α  and ordinary SLM 
(SI=3 and 6) for 16-QAM and N=256 in four transmitters STBC MIMO-OFDM system. 
 

 
Figure 6.5  BER performance comparison of the proposed SAM in three cases, ordinary 
SLM and PTS (SI=3 and 6) over multipath fading channel for N=256 when QPSK and 
16-QAM are employed respectively. 
 

It is observed from Figures 6.3, 6.4 and 6.5 that the SAM method significantly 

outperforms the SLM method in PAPR reduction and also in BER. PAPR and BER 

performances are enhanced when the value of α  is larger in case 1 and case 4. It is noted 

that the SLM method requires additional SI bits to be transmitted without any error 

tolerance. Theoretical analysis and simulation results show that the proposed method has 

the ability to provide outstanding PAPR reduction performance without BER degradation, 
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and also offers a low computational complexity without SI in the STBC MIMO-OFDM 

systems. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

 
The performance comparisons presented in the dissertation highlight the improvements 

offered by the Generalized Discrete Fourier Transform (GDFT) framework to design 

optimum waveforms for MIMO radar applications. GDFT is a marked departure from 

linear phase DFT, such that the entire phase space of constant modulus orthogonal bases is 

thoroughly exploited for the optimization of waveforms. 

In addition to the orthogonality, the GDFT based waveforms are optimized for 

generating good auto- and cross-correlation properties for accurately estimating the 

moving target in radar systems.  Moreover, it is shown that popular waveforms like MCPC 

and Oppermann types are special cases of the GDFT family. The examples of GDFT 

framework presented in the Chapter 3 provide design flexibility and can easily be extended 

for larger values of N. It is expected to see engineering implementations of GDFT based 

waveforms in the future with better performance. 

Furthermore, the orthogonal Partial Matched Filter Bank offers a mechanism to 

sample the phase function of the received signal in a radar system where minimized 

correlations are desirable. Through combining it with the promising Generalized DFT in 

the proposed framework which samples the received waveform in the exponent part for 

Doppler estimation in radar, it is expected that the proposed approach may find its use in 

future radar systems. 

In Chapter 5 of the dissertation, a new peak-to-average power ratio reduction 

method is proposed based on the phase and amplitude joint modifications in the symbol 

alphabet. The Symbol Alphabet Modifier matrix (SAM) technique provides a dramatic 
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reduction in PAPR performance and outperforms the WHT-OFDM, PTS and SLM based 

methods, especially for case 2 and case 4, which also form an orthogonal SAM matrix. 

Moreover, the proposed method has low-complexity framework to implement in OFDM 

systems and does not require any side information compared to other popular conventional 

PAPR reduction methods such as SLM and PTS. 

The efficient PAPR reduction method SAM in the four proposed cases is 

implemented in the Space-Time Block Coding (STBC) MIMO-OFDM system. The 

method utilizes a predesigned symbol alphabet modification (SAM) matrix along with a 

single IFFT/FFT block pair in STBC MIMO-OFDM system. Here, the SAM technique 

provides dramatic reduction in PAPR performance over the ordinary SLM method. It also 

offers better BER than the latter. Moreover, its implementation and computational cost is 

significantly less than the popular SLM scheme. 

As an extension of Discrete Fourier Transform (DFT) from the linear phase to 

non-linear phase, there are infinitely possible GDFT sets available in the phase space with 

constant or non-constant power and nonlinear phase functions. In comparison with several 

popular methods such as SLM and PTS mentioned in the dissertation, the proposed method 

is shown to be powerful in signal processing and communications. The GDFT framework 

offers its potential in correlation improvements, which can be largely exploited and 

employed in the MIMO radar system. One can design the optimal basis for the desired 

requirements and purposes by exploiting different types of G  matrix which offers the 

large and pleasant freedom in the phase space. For future wireless communication systems, 

the combination of massive MIMO-OFDM with low complexity orthogonal block 

transforms will be one of the most expected candidates. 
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APPENDIX A 

DYNAMIC RANGE OF OFDM SIGNAL AMPLITUDE IN CASE 1 AND CASE 2 

Due to the properties imposed in the design of case 1 and case 2 of matrix -1C , the 

amplitude of the components in an OFDM frame vector becomes 
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Suppose the arbitrary permutation on the rows of the matrix -1C  has 

( ) ( )1 2,N n k N m k= =  , 1 2k k≠  for the nth and mth components of the OFDM frame. Based 

on the theorem [70] a b a b− ≤ − , the amplitude difference between these two 

components is derived as 
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and 
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The original symbol vector ( ) ( ) ( )[ 0 , 1 ,..., 1 ]TX X X X N= − is generated from an 

M-point symbol alphabet constellation such as M-PSK or M-QAM. Here, the phase 

function of the matrix is ( ) ( )= 0 kk Aϕ ϕ π+ , such that ( ){ }e ( ), 0,1,..., 1j k X k k Nϕ = − ∈{M-

PSK or M-QAM shifted by ( )0ϕ }. Therefore, ( ) ( ) ( ) ( )1 2
1 2X Xj k j ke k e kϕ ϕ−  has no more 

than ( )( )2 1 2M M+ −  possible values in the symbol alphabet modulation. Note that 

when α  is much larger than β , amplitudes of the
 
components will be dominated by and 

approximately equivalent to the largest symbol in each summation function of (A.1). 

Accordingly, for case 1 (where =1β ) the difference between the arbitrary two 

components will be  
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As a result, this outcome is approximately the same as case 2 ( =0β ). After the 

normalization for case 2, the parameter 1α = . The M-PSK modulated data symbol 

alphabets are constant amplitudes, such that any two data symbols have ( ) ( )1 2X X 0k k− = . 

For the M-QAM modulated data symbols, the maximum amplitude difference is given 

depending on the constellation map. In short, the dynamic range of the OFDM signal 
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amplitudes is straightforwardly pre-decided through calculating the largest amplitude 

difference in the data symbol vector X  . 

From (A.5), it is also observed that the PAPR performance is independent of the 

phase vector ψ  in matrix -1C , and also independent of the phase vector η  in (A.5). 

Hence, infinite SAM matrices can be generated while retaining the same PAPR 

performance. 
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APPENDIX B 

DYNAMIC RANGE OF OFDM SIGNAL AMPLITUDE IN CASE 4  

The data symbols modulated by M-PSK or M-QAM is defined as  

( ) ( ) ( )[ 0 , 1 ,..., 1 ]TX X X X N= − . After applying the proposed SAM method in case 4 

along with IFFT operation, the average power of OFDM signal x  is derived as 
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When substituting the basis sequence defined in equation (5.29), (5.30) and (5.31,) the 

amplitude of the nth component in the OFDM frame vector, which is employed case 4, is 

calculated and derived as 
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 When data symbols are M-PSK modulated, these conditions yields constant 

amplitudes such that 0 1 =1xX X P= =  . Since { }2, 3 2nθ π π∆ ∈ ± ± were given in 

Section 5.3.4, and the phase differences between arbitrary two data symbol alphabets is 

{ }0, 2, ,3 2X π π π∆∠ ∈ , the phase addition of these two alphabets is always in the phase 

set, as a result of { }0, 2, ,3 2n Xθ π π π∆ + ∆∠ ∈ . Correspondingly the exponent value 

of the phase summation turns to be ( ) { }exp 1, , 1,nj X j jθ ∆ + ∆∠ ∈ − − 
 .  

Therefore, the amplitude of the OFDM frame for M-PSK, as defined in (B.2), yields 
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Accordingly, the peak power of the OFDM signal becomes 
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Note that the peak power happens at the moment when 2n X dθ π∆ + ∆∠ =  and obtains 

the value of ( ) 21 1xPα α+ + . In practical application, the maximum amplitude 

difference depends on the symbol alphabets that data vector contains. (B.4) provides the 

theoretical peak power boundaries for M-PSK modulated signals. 

 The function of (B.4) with 1xP =  for M-PSK is plotted in Figure B.1. It can be 

seen that when 100α = , the peak power of OFDM signal is converging and approaching 
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to the design objective, as the ideal case of constant power of OFDM signals, with M-

PSK modulated symbol alphabets. 

 

 

Figure B.1  Peak power of the OFDM frame with case 4 for M-PSK. 

 

Besides, for M-QAM modulated symbols, when two constellation alphabets, 0X  

and 1X , involve the phase difference of { }2, 3 2nX θ π π∆∠ = −∆ ∈ ± ±  and 
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As aforementioned, the equation (B.5) calculates the theoretical highest boundary 

for the peak power of data symbols modulated by M-QAM. In practical application, the 

peak power may be smaller than that boundary depending on the actual data symbols. 

From equation (B.5) it can be observed that as the value of parameter α  increases, the 

peak power of the signal is also minimized, and the boundary of peak power is close to 

the known maximum value of data symbol alphabets modified by M-QAM.  
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