
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

SEMANTICS AND RESULT DISAMBIGUATION
FOR KEYWORD SEARCH ON TREE DATA

by
Cem Aksoy

Keyword search is a popular technique for searching tree-structured data (e.g., XML,

JSON) on the web because it frees the user from learning a complex query language and

the structure of the data sources. However, the convenience of keyword search comes with

drawbacks. The imprecision of the keyword queries usually results in a very large number

of results of which only very few are relevant to the query. Multiple previous approaches

have tried to address this problem. Some of them exploit structural and semantic properties

of the tree data in order to filter out irrelevant results while others use a scoring function to

rank the candidate results. These are not easy tasks though and in both cases, relevant re-

sults might be missed and the users might spend a significant amount of time searching for

their intended result in a plethora of candidates. Another drawback of keyword search on

tree data, also due to the incapacity of keyword queries to precisely express the user intent,

is that the query answer may contain different types of meaningful results even though the

user is interested in only some of them.

Both problems of keyword search on tree data are addressed in this dissertation.

First, an original approach for answering keyword queries is proposed. This approach ex-

tracts structural patterns of the query matches and reasons with them in order to return

meaningful results ranked with respect to their relevance to the query. The proposed se-

mantics performs comparisons between patterns of results by using different types of ho-

momorphisms between the patterns. These comparisons are used to organize the patterns

into a graph of patterns which is leveraged to determine ranking and filtering semantics.

The experimental results show that the approach produces query results of higher quality

compared to the previous ones. To address the second problem, an original approach for



clustering the keyword search results on tree data is introduced. The clustered output al-

lows the user to focus on a subset of the results, and to save time and effort while looking

for the relevant results. The approach performs clustering at different levels of granularity

to group similar results together effectively. The similarity of the results and result clusters

is decided using relations on structural patterns of the results defined based on homomor-

phisms between path patterns. An originality of the clustering approach is that the clusters

are ranked at different levels of granularity to quickly guide the user to the relevant re-

sult patterns. An efficient stack-based algorithm is presented for generating result patterns

and constructing the clustering hierarchy. The extensive experimentation with multiple

real datasets show that the algorithm is fast and scalable. It also shows that the clustering

methodology allows the users to effectively retrieve their intended results, and outperforms

a recent state-of-the-art clustering approach. In order to tackle the second problem from

a different aspect, diversifying the results of keyword search is addressed. Diversification

aims to provide the users with a ranked list of results which balances the relevance and

redundancy of the results. Measures for quantifying the relevance and dissimilarity of re-

sult patterns are presented and a heuristic for generating a diverse set of results using these

metrics is introduced.



SEMANTICS AND RESULT DISAMBIGUATION
FOR KEYWORD SEARCH ON TREE DATA

by
Cem Aksoy

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

January 2016



Copyright © 2016 by Cem Aksoy
ALL RIGHTS RESERVED



APPROVAL PAGE

SEMANTICS AND RESULT DISAMBIGUATION
FOR KEYWORD SEARCH ON TREE DATA

Cem Aksoy

Dr. Dimitri Theodoratos, Dissertation Advisor Date
Associate Professor, Department of Computer Science, NJIT

Dr. Yi Chen, Committee Member Date
Associate Professor, School of Management, NJIT

Dr. James Geller, Committee Member Date
Professor and Associate Dean for Research, Department of Computer Science, NJIT

Dr. Michael Halper, Committee Member Date
Professor and Director, Information Technology Program, NJIT

Dr. Vincent Oria, Committee Member Date
Associate Professor and Associate Chair, Department of Computer Science, NJIT



BIOGRAPHICAL SKETCH 

Author: 	 Cem Aksoy 

Degree: 	 Doctor of Philosophy 

Date: 	 January 2016 

 

 

Undergraduate and Graduate Education: 

• Doctor of Philosophy in Computer Science, 
New Jersey Institute of Technology, Newark, New Jersey, 2016 

• Master of Science in Computer Engineering, 
Bilkent University, Ankara, Turkey, 2010 

• Bachelor of Science in Computer Engineering, 
Bilkent University, Ankara, Turkey, 2008 

Major: 	 Computer Science 

Presentations and Publications: 

Aksoy, C., Dimitriou, A., Dass, A., & Theodoratos, D., (2015) Clustering Query Result 
Patterns for Effective Keyword Search on Tree Data, Submitted to Transactions on 
Knowledge and Data Engineering, Under 2nd Review. 

Dass, A., Dimitriou, A., Aksoy, C., & Theodoratos, D., (2015) Incorporating Cohesiveness 
into Keyword Search on Linked Data, in The 16th International Conference on Web 
Information System Engineering (WISE), pp. 47-62. 

Aksoy, C., Dimitriou, A., & Theodoratos, D., (2015) Reasoning with Patterns to Effectively 
Answer XML Keyword Queries, The VLDB Journal, 24(3): 441-465. 

Dass, A., Aksoy, C., Dimitriou, A., & Theodoratos, D., (2015) Keyword Pattern Graph 
Relaxation for Selective Result Space Expansion on Linked Data, in The 15th Inter-
national Conference on Web Engineering (ICWE), pp. 287-306. 

Dass, A., Aksoy, C., Dimitriou, A., & Theodoratos, D., (2014) Exploiting Semantic Result 
Clustering to Support Keyword Search on Linked Data, in The 15th International 
Conference on Web Information System Engineering (WISE), pp. 448-463. 

Aksoy, C., Dass, A., Theodoratos, D., & Wu, X., (2014) Clustering Query Results to 
Support Keyword Search on Tree Data, in The 16th International Conference on 
Web-Age Information Management (WAIM), pp. 213-224. 

iv 



Aksoy, C., Dimitriou, A., Theodoratos, D., & Wu, X., (2013) XReason: A Semantic Ap-
proach That Reasons with Patterns to Answer XML Keyword Queries, in The 18th
International Conference on Database Systems for Advanced Applications (DAS-
FAA), pp. 299-314.

Aksoy, C., Can, F., & Kocberber, S., (2012) Novelty Detection for Topic Tracking, Journal
of the Association for Information Science and Technology, 63(4): 777-795.

Aksoy, C., Bugdayci, A., Gur, T., & Uysal, I., Can, F., (2009) Semantic Argument Frequency-
based Multi-document Summarization, in The 24th International Symposium on Com-
puter and Information Sciences (ISCIS), pp. 460-464.

v



To my late grandfather, Mustafa Kayacan,
To my parents, Hatice and Hasan Aksoy,

To my wife, Özlem Aksoy.

vi



ACKNOWLEDGMENT

I would like to express my gratitude to my dissertation advisor Dr. Dimitri Theodoratos for

his guidance during my Ph.D. studies. I especially appreciate his efforts to make sure that

my studies were always on track and to make me improve myself.

I also would like to thank Dr. Yi Chen, Dr. James Geller, Dr. Michael Halper and

Dr. Vincent Oria for being a part of my dissertation committee. I am very grateful for their

time and valuable comments on my work.

I would like to acknowledge Aggeliki Dimitriou for her contributions to my studies.

It has been a pleasure working with her. I also would like to thank my colleagues Ananya

Dass and Xiaoying Wu for their help.

I am also thankful to the Department of Computer Science at New Jersey Institute

of Technology for their financial support during the course of my Ph.D.

I thank my office mates Ananya Dass, Xiguo Ma, Sheetal Rajgure, Jichao Sun,

Arwa Wali and Xiangqian Yu for their companionship.

I would like to thank my family for supporting me with all my decisions and making

many sacrifices for my education. I am especially grateful to my wife, Özlem, for her

patience and support during my Ph.D. study. Her love has always been an anchor for my

soul.

vii



TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Focus of the Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Keyword Search Semantics . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Disambiguation of Results . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 STATE OF THE ART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Searching on XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Structured Query Languages . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Keyword Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Search Result Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Search Result Diversification . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 TREE DATA MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Keyword Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 SEMANTICS OF KEYWORD QUERIES OVER TREE DATA . . . . . . . . . 25

4.1 Instance Tree Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Pattern Homomorphism and Homomorphism Relation . . . . . . . . . . . . 26

4.3 Path Homomorphism and Path Homomorphism Relations . . . . . . . . . 28

4.4 XReason Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Analysis of XReason . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5.1 Containment Relationships between Keyword Search Semantics . . 38

4.5.2 Comparison of Filtering Semantics . . . . . . . . . . . . . . . . . . 41

viii



TABLE OF CONTENTS
(Continued)

Chapter Page

4.6 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6.1 Pattern Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6.2 Graph Construction and Ranking . . . . . . . . . . . . . . . . . . . 51

4.6.3 An Extension of PatternStack . . . . . . . . . . . . . . . . . . . . . 56

4.7 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.7.2 Effectiveness of Filtering Semantics . . . . . . . . . . . . . . . . . 60

4.7.3 Effectiveness of Ranking Semantics . . . . . . . . . . . . . . . . . 64

4.7.4 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 SEARCH RESULT CLUSTERING . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Clustering Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1.1 First (Bottom) Level of Clustering: Patterns . . . . . . . . . . . . . 73

5.1.2 Second Level of Clustering: Classes . . . . . . . . . . . . . . . . . 74

5.1.3 Third Level of Clustering: Collections . . . . . . . . . . . . . . . . 75

5.2 Cluster Ranking and Navigation among Clusters . . . . . . . . . . . . . . . 79

5.2.1 Ranking Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.2 Ranking Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.3 Ranking Collections . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.4 Cluster Navigation. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 Running Example of ClusterStack . . . . . . . . . . . . . . . . . . 91

5.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

ix



TABLE OF CONTENTS
(Continued)

Chapter Page

5.4.2 Effectiveness Experiments . . . . . . . . . . . . . . . . . . . . . . 98

5.4.3 Efficiency Experiments . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 DIVERSIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1 Formal Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Relevance of Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Similarity of Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . 118

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

x



LIST OF TABLES

Table Page

4.1 Formal Definitions of Different Previous Filtering Semantics in Terms of ITs . 39

4.2 Mondial, SIGMOD, DBLP and NASA Dataset Statistics . . . . . . . . . . . . 59

4.3 Definitions of XReal Semantics in Terms of ITs . . . . . . . . . . . . . . . . . 61

4.4 Queries Used in the Experiments on the Mondial Dataset . . . . . . . . . . . . 62

4.5 Queries Used in the Experiments on the SIGMOD Dataset . . . . . . . . . . . 63

4.6 Average Precision and Recall Scores for the Queries of Table 4.4 and 4.5 . . . 64

4.7 Best and Worst MAP Scores for the Queries of Tables 4.4 and 4.5 . . . . . . . 64

4.8 Average P@10exp Scores for the Queries of Tables 4.4 and 4.5 . . . . . . . . . 65

4.9 Queries Used in Scalability Experiments . . . . . . . . . . . . . . . . . . . . . 67

4.10 Queries on the DBLP Dateset Used to Compare the Performance of the Origi-
nal vs. the Extended Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Inverted Lists of Keywords in Query {Advanced, Database, Systems} on the
Data Tree T of Figure 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Patterns Under the Node courses of the Data Tree T . . . . . . . . . . . . . 93

5.3 Pattern Classes of Q on T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Descendant Path Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 ComputeCollections Running Example . . . . . . . . . . . . . . . . . . . . . 95

5.6 Mondial, SIGMOD, DBLP and NASA Dataset Statistics. . . . . . . . . . . . . 96

5.7 Average Reach Time Values (for Retrieving All Relevant Patterns) and Hierar-
chy Sizes for the Queries of Tables 4.4 and 4.5 . . . . . . . . . . . . . . . . . 99

xi



LIST OF FIGURES

Figure Page

1.1 A data tree T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Three patterns of the query Physics, James, Harrison on the data tree of Fig-
ure 1.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 A data tree T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 An XML tree T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 (a) An IT and (b) its MCT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Some patterns for Q = {Physics,James,Harrison} on the tree of Figure 3.1. . . 25

4.2 Pattern MCTs M, M′ and M′′ and homomorphisms between them. . . . . . . . 26

4.3 Pattern MCTs M2 and M1 and three path homomorphisms from the paths of
M2 to paths of M1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Pattern MCTs Ma and Mb and three path homomorphism from the paths of Ma

to paths of Mb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Two patterns P and P′ that are related with ≺aph. . . . . . . . . . . . . . . . . 32

4.6 A path homomorphism from a path of pattern P4 to a path of P5. . . . . . . . . 34

4.7 (a) The graph G≺, (b) Pattern order O. . . . . . . . . . . . . . . . . . . . . . . 35

4.8 Containment relationships between different filtering semantics. . . . . . . . . 38

4.9 An XML tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.10 PatternStack pattern encoding and combination for Q= {Physics, James, Harrison}
on the data tree of Figure 4.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.11 Precision scores for the queries of Table 4.4 on the Mondial dataset. . . . . . . 62

4.12 Precision scores for the queries of Table 4.5 on the SIGMOD dataset. . . . . . 63

4.13 Recall scores for the queries of Table 4.4 on the Mondial dataset. . . . . . . . . 64

4.14 Best and worst P@10 scores for the queries of Table 4.4 on Mondial dataset. . 65

xii



LIST OF FIGURES
(Continued)

Figure Page

4.15 Best and worst P@10 scores for the queries of Table 4.5 on SIGMOD dataset. . 65

4.16 XReason execution times (in secs) for the queries of Tables 4.4 and 4.5. . . . . 66

4.17 Computation time vs. output size for the original algorithm using queries with
4, 5 and 6 keywords. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.18 Computation time vs. input size for the extended algorithm using queries with
4, 5 and 6 keywords. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.19 (a) number of ITs, (b) number of generated patterns, and (c) the computation
time of the original and the extended algorithm on the DBLP dataset using the
queries of Table 4.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Some patterns for Q = {Advanced,Database,Systems} on the tree of Figure 1.3. 73

5.2 Path correspondances between two patterns, P4 and P5. . . . . . . . . . . . . . 75

5.3 A class of patterns consisting of four patterns. . . . . . . . . . . . . . . . . . . 75

5.4 Descendant path homomorphism from a path in P4 to a path in P8 . . . . . . . 76

5.5 A collection of classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 Two sample collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.7 One path isomorphism between two patterns P3 and P4. . . . . . . . . . . . . . 82

5.8 Graph of collections for our running example. . . . . . . . . . . . . . . . . . . 83

5.9 Stack states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.10 Reach time values (for retrieving all relevant patterns) for the queries of Table
4.4 on the Mondial dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.11 Reach time values (for retrieving all relevant patterns) for the queries of Table
4.5 on the SIGMOD dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.12 Average min, exp and max reach time values (for retrieving at most k patterns)
for RTCluster with and without ranking of the clusters for the queries of Tables
4.4 and 4.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xiii



LIST OF FIGURES
(Continued)

Figure Page

5.13 Average min, exp and max reach time values (for retrieving at most k patterns)
for RTCluster and XMean for the queries of Tables 4.4 and 4.5. . . . . . . . . . 101

5.14 Hierarchy sizes constructed by RTCluster and XMean for the queries of Table
4.4 on the Mondial dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.15 Hierarchy sizes constructed by RTCluster and XMean for the queries of Table
4.5 on the SIGMOD dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.16 Computation time (in msecs) for the queries of Table 4.4 on the Mondial dataset.103

5.17 Computation time (in msecs) for the queries of Table 4.5 on the SIGMOD dataset.103

5.18 Average computation time vs. number of keywords of ClusterStack using
queries with 2 to 7 keywords on the DBLP and NASA datasets. . . . . . . . . . 104

5.19 Computation time vs. input size for ClusterStack using queries with 5,6 and 7
keywords. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.1 A data tree which represents a university database consisting of courses and
seminars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 Four patterns for Q = {Quantum,Physics, Miller} on the tree of Figure 6.1 . . 111

6.3 Three patterns which match the keyword query {sarah,miller} . . . . . . . . . 112

6.4 Two paths p and p′ shown with bold edges and possible mappings between
their edges depicted with different dashed arrows . . . . . . . . . . . . . . . . 113

xiv



CHAPTER 1

INTRODUCTION

The amount of published data, both structured and unstructured, on the World Wide Web

(WWW) is increasing continuously [63]. In particular, tree structured data (e.g., XML,

JSON) is used commonly as a data model in various application areas including bioin-

formatics [52, 73], web mining [75, 91], and data integration and Web publishing [66].

Its popularity is largely due to the convenience of its self-descriptive and flexible semi-

structured characteristics [86].

The increased volume of tree data has led to the development of different techniques

for querying. Structured query processing has traditionally been a popular way of searching

on tree data [58]. Formal query languages such as XPath [22] and XQuery [23] have been

designed to take advantage of the tree structure of XML to retrieve information. In order to

formulate queries with these languages, the users have to learn their syntax and be familiar

with the schema of the data (including element tags and attribute names).

Keyword search techniques have been employed as a technique for retrieving infor-

mation from tree data to allow a more flexible search. Keyword search has been established

in recent years as the most popular technique for searching on the web. It became initially

popular as a technique for searching flat (unstructured) documents [5] but it soon expanded

its popularity to structured [34] and semi-structured data [58]. The reason of the popularity

of keyword search on tree-structured data is twofold: (a) the users can retrieve information

from the web without mastering a complex query language (e.g., XQuery), and (b) they can

issue queries against the data without having full or even partial knowledge of the structure

(schema). Therefore, the same query can be issued against multiple, differently structured

data sources on the web. Following is an example of application of keyword search on tree

data.

1



2

Example 1.1. Figure 1.1 shows a sample data tree. This tree contains information about

courses offered in a university. Consider also the keyword query {Physics, James, Harri-

son} against this data tree. As one can see, each keyword has multiple instances (nodes that

contain the keyword) in the tree which are shown in bold. There are courses on Physics of-

fered by one or two instructors whose name contains James and/or Harrison, and therefore

it is reasonable to assume that the user is looking for such courses. The candidate results

of a keyword query on a data tree can be defined as the minimum connecting trees (MCTs)

[35] in the data tree that contain an instance of all the keywords. The roots of the MCTs

are the lowest common ancestors (LCA) of the included keyword instances and are often

used to identify the candidate results [35, 32, 71, 88, 89]. Assuming that our results are

represented by LCA nodes, there are five candidate results for our keyword query whose

node ids are shown in the figure encircled.

Figure 1.1 A data tree T.

1.1 Focus of the Investigation

As shown in the example above, keyword search is very convenient from the users’ end.

However, there are several issues related to keyword search that has to be addressed in order

to develop effective and efficient keyword search systems over tree data. Two different

aspects of keyword search on tree data are investigated in this dissertation: (a) assigning



3

semantics to keyword queries and (b) disambiguating keyword search results for facilitating

browsing.

1.1.1 Keyword Search Semantics

Keyword queries are inherently imprecise both on structured and unstructured data [37, 58].

The imprecision becomes even more apparent on structured data since the queries cannot

specify structural constraints. Since the results of keyword search on tree data are not

whole documents but fragments of trees, an exponential explosion of candidate results

is possible. As a consequence, keyword queries usually return a very large number of

results on structured data of which only a tiny portion are relevant to the query. The large

number of candidate results makes it difficult or even impossible for the users to identify

the interesting results.

Many recent works focus on addressing the problem of the multitude of candidate

LCAs by appropriately assigning semantics to keyword queries on XML data. A number

of these semantics, characterized as filtering, aim at filtering out a subset of the candi-

date LCAs that are irrelevant. Some filtering semantics prune LCAs based exclusively on

structural information (e.g., SLCA semantics [35, 55, 88] and ELCA semantics [32, 89])

while others take also into account semantic information, that is, the labels of the nodes

in the data tree (e.g., the Valuable LCA or VLCA semantics [21, 43], and the Meaningful

LCA or MLCA semantics [48]). Other recent works assign ranking semantics to keyword

queries, that is, they rank the results aiming at placing on top those that are more relevant

[6, 18, 21, 32, 65, 79]. Ranking the results improves the usability of the system by allowing

the users to find their intended results in the top ranks of the list. In order to perform the

ranking these works exploit: (a) structural characteristics of the results, and/or (b) statistical

information or information theory metrics adapted to the tree structure of the data. All the

ranking approaches rank the results based on some scoring function which assigns scores



4

to the results.

The problems. Although filtering approaches are intuitively reasonable for specific cases

of data, they are ad-hoc and they are frequently violated in practice resulting in low pre-

cision and/or recall [79]. Further, most ranking approaches are combined with filtering

approaches, that is, they rank only the LCAs accepted by the respective filtering semantics,

this way inheriting the low recall of the filtering semantics. This weakness is due to the fact

that most existing filtering semantics do not examine and compare the way the keyword

instances are combined in the data tree to form tree patterns. Instead, most of them depend

on the structural relationships of the keyword instances and LCAs locally in the data tree.

However, local relationships are not sufficient and a global view of the results is neces-

sary in order to decide effectively on their relevance. Consider for instance the following

example.

Example 1.2. Consider again Figure 1.1 as the data tree and the keyword query {Physics,

James, Harrison}, there are five candidate results whose node ids are shown in the figure

encircled. Among them only node 3, 11 and 20 are relevant results since node 30 represents

the prerequisites of a course and node 2 represents the set of all the courses offered by the

University. The ELCA semantics filters out candidate LCAs whose keyword instances are

descendants of other descendant candidate LCAs, while SLCA prunes candidate LCAs that

are ancestors of other candidate LCAs. In the context of our example, both ELCA and

SLCA return the wrong result 30 and SLCA misses the correct result 11. One version of the

MLCA semantics excludes candidate LCAs if the LCA of two of its keyword instances is not

also an ELCA node of the labels of these instances. Therefore, it fails to return the correct

result 3 because the LCA of the keyword fname (the label of the instance 6 of keyword

James) and lname (the label of the instance 10 of keyword Harrison) is not also an

ELCA of fname and lname (the label lname of node 10 comes closer to the label fname

of node 9). Further, it incorrectly returns the node 30 (prerequisites).

The reason of these failures is that all these approaches are based on the relation-



5

ship of the keyword instances locally (e.g., whether two LCAs have an

ancestor-descendant relationship) and they miss a global view of how the keyword in-

stances are combined in the data tree.

Our approach. In this dissertation, we argue that a meaningful semantics for keyword

queries does not depend on the local properties of the keyword instances in the data tree

but on the patterns the keyword instances define on the data tree. Each pattern might

and usually does represent many results. For instance, Figure 1.2 shows three patterns

for the query {Physics, James, Harrison} on the data tree of Figure 1.1. These patterns

which are minimal trees rooted at the root of the XML tree and containing all the keywords

indicate different ways the keyword instances in the data tree are combined to form results.

Pattern (a) represents the LCAs 3 and 11, pattern (b) the LCA 20 and pattern (c) the LCA

30.

Figure 1.2 Three patterns of the query Physics, James, Harrison on the data tree of Fig-
ure 1.1.

Further, we argue that assigning simply a score to the results is not sufficient for

producing a ranking of high quality. Rather, a ranking or a filtering of the results should

be obtained by directly comparing the different structural and semantic properties of their

patterns, that is, by reasoning on the patterns. For instance, by comparing the patterns of

Figure 1.2 one can easily see that pattern (c) is not relevant in the presence of patterns (a)

and (b) and if one wants to rank the patterns in terms of relevance to the query, patterns



6

(a) and (b) should precede pattern (c). These considerations apply to all the results these

patterns represent. That is, the patterns act as representatives of the respective results.

Different techniques could be devised to compare patterns. In the present work, this

comparison is realized based on homomorphisms between patterns. We define two types

of homomorphisms between patterns and we use them to define different kinds of homo-

morphism relations on patterns. As the number of patterns is typically much smaller than

the number of the results they represent, we show that this comparison is computationally

feasible. Based on these relations, we organize the patterns of a keyword query into a graph

of patterns which we leverage to determine a ranking for patterns and ranking semantics

for queries thereof. We also provide filtering semantics for queries by selecting the top-k

patterns in the ranking.

A number of approaches define filtering or ranking semantics without relying on the

structural relationships of the keyword instances locally in the XML tree. As an example,

Cohen et al. [21] filter out a query match containing a pair of keyword instances linked

through a path in the XML tree which has duplicate labels. Schema-level SLCA [42] ex-

cludes LCAs whose label paths from the root of the XML tree are a proper prefix of that of

another LCA. More recently, Liu et al. [53] cluster query results based on the patterns they

comply with, and define filtering semantics based on the conceptual relationships between

entity nodes (in the sense of the Entity-Relationship model) in the XML tree. Finally, Co-

herency Ranking [79] ranks query results based on an extension of the concepts of data

dependencies and mutual information. None of these approaches define ranking or filtering

semantics by globally comparing the structural and semantic properties of the query result

patterns as we do in this work.

In Chapter 4, we describe in detail our approach called XReason, and the algo-

rithms we designed to implement it. Comprehensive experiments on multiple datasets with

different characteristics, presented in Section 4.7, compared our approach with previous

ones in order to assess the effectiveness of XReason and the efficiency of our algorithms.



7

The results show that the XReason filtering and ranking semantics outperform previous ap-

proaches with respect to various metrics and our algorithms are fast and scale well with

respect to the input and output size.

1.1.2 Disambiguation of Results

Another drawback of keyword search on tree data, also due to inherent imprecision of the

keyword queries in expressing user intent, is the ambiguity of the type of the desired results.

The answer of keyword queries on tree data usually contain different types of results which

are meaningful with respect to the query even though the user is interested in only some of

them. Consider the following example.

Example 1.3. Consider the query Q = {Advanced, Database, Systems} on the data tree

of Figure 1.3, which represents a university database recording courses and seminars.

There are courses with title “Advanced Database Systems” and a seminar whose topic also

contains all the query keywords. The user might be interested in both courses and seminars

or she can be interested only in one of them. Usually, the search systems do not group

results and interleave in the answer results representing different concepts (e.g., courses or

seminars). The users might have to examine many results which are not of interest to them

in order to find their intended results. Even worse, assume there are multitudes of courses

that match the keyword query but only a few seminars, a relevance ranked list might place

all the courses at the top and the user might think that there are not any matches for

seminars since they are not included in the top results.

Result filtering [43, 48, 88, 89] and result ranking [6, 65] or a combination of them

[2, 21, 32] have been proposed to address the problem of the large number of candidate

results. In addition, some papers developed top-k algorithms for ranking and selecting the

top-k results without necessarily generating of all the results [18, 44, 65]. The answers

provided by these semantics are not satisfactory since still a large number of results may



8

Figure 1.3 A data tree T.

qualify in the answer and the quality of ranking is low [79]. Further, without disambigua-

tion of the results (i.e., identification of the different types of results), the users may still

need to examine a large number of results which are not of interest to them.

In this dissertation, we address the ambiguity problem from two aspects: (a) clus-

tering of keyword search results and (b) diversification of keyword search results.

Clustering keyword search results

In order to provide the users with a result structure that they can browse easily and reach

their intended results easily, we propose applying clustering to the results of keyword

search. The main idea is that if the results can be clustered effectively with respect to

the semantics they represent, the users can only examine the clusters which are of interest

to them and prune a huge number of results that are not interesting to them.

Clustering has been used as an alternative method of retrieving results in infor-

mation retrieval [13, 40, 92]. The results of a query are clustered and the clusters form

categories from which the users can choose their category of interest. Unfortunately, the

techniques applied for clustering web search results are not directly applicable to keyword

search over tree data because: (a) tree data have a structure, and (b) the granularity of the

results is different, i.e., flat documents vs. fragments of documents with structure.

Clustering of tree data has been studied extensively before for data mining purposes



9

[24, 49, 51]. However, these techniques are not query-aware and they are applied at the

document-level instead of at the result-level. Some recent studies have applied clustering

on the results of keyword search on XML data. Liu et al. [53] introduce a methodology

which clusters the XML search results based on the semantics that they represent. They

cluster the results based on the patterns that they define. Liu and Chen [57] cluster the

results based on the categories of the terms in the results, return nodes and predicates. Users

can also specify the granularity of the clustering and input a requested number of clusters.

The clustering methodology we present is a more refined one in the sense that it not only

clusters the patterns of the results, but further clusters patterns according to the common

subpatterns that they share by utilizing homomorphism relations defined on patterns. Also,

we provide an ordering among clusters, a concept which has not been suggested before.

Our approach. The introduced clustering approach is a multi-level methodology for clus-

tering the results of a keyword query on tree data. The results are clustered in three different

levels. The clusters at every level are nested within the clusters of the higher level. For each

cluster at each level, an appropriate representative is chosen as an interface to the user. The

clusters of the bottom level consist of structural patterns of the keyword query results.

These patterns represent the different interpretations of the query results. The clusters of

the higher levels are formed by exploiting different homomorphism relations we introduce

on patterns. The clusters at the highest (third) level and the clusters at the second level

which are nested within the same parent (third level) cluster are organized into graphs. The

edges in the graphs represent a partial order on the clusters and this partial order is ex-

ploited to produce a ranking for the clusters of the graph. The users can navigate through

the system by selecting clusters initially at the top level and by drilling down to their nested

clusters and finally to the results. The selection of clusters at every level is facilitated by

the ranking of the relevant clusters which is provided to the user.

In Chapter 5 the details of the clustering methodology and our algorithm for its

implementation are described. The experimental results obtained through extensive exper-



10

imentation on different real datasets show that our clustering hierarchy helps the users to

effectively retrieve the relevant results and our approach outperforms a previous state-of-

the-art clustering methodology in terms of reach time. Our algorithm constructs the result

patterns and the clustering hierarchy efficiently, displaying interactive times. It also scales

smoothly when the number of keywords and the size of the data increase.

Diversification of Keyword Search Results

Another possible solution to the ambiguity problem is through diversification of the

results. Diversification aims to return the users a list of results (a subset of all results) that

balances the relevance and diversity of the results in the list. Definition of diversity might

vary according to different applications. For example, when a keyword query is applied to

a set of news documents, diversity is mostly about the novelty of the information contained

in the documents but in the regular keyword search it is possibly defined as the dissimilarity

of the content of the documents [28].

Example 1.4. Consider again the query Q = {Advanced, Database, Systems} on the data

tree of Figure 1.3, which represents a university database recording courses and seminars.

If we want to retrieve a diverse list of results with only 2 results, an ideal list would contain

a pattern that represents one of the relevance course results and the seminar pattern.

There are also queries which do not focus only on a subset of results but rather

they want an overview of the results. These exploratory queries should return a diverse

set of results which covers different aspects of the result set [28]. Consider the following

example.

Example 1.5. Consider a bibliography database (possibly including the texts of the papers

as well) and a user who wants to investigate the papers working on the topic of result

diversi f ication. Since the user is probably new to the area, she would like to see the big

picture first and then, she might want to specialize on different domains. Providing first a



11

diverse set of results to the user would summarize the entire result set better.

Search result diversification attracted a lot of attention in both information retrieval

and recommendation systems [28, 30, 99]. With the help of a diversified result set, the

systems can address the problems of result multitude and keyword query ambiguity, and

support exploratory search. When the user intent cannot be inferred from a keyword query,

result diversification can minimize the user dissatisfaction. It can also address the over-

specialization problem which might be caused by a relevance ranked list. For example,

consider the keyword chelsea. With this query, a user might be referring to the Chelsea

district in London, the Chelsea Football Club in UK or the Chelsea neighborhood in Man-

hattan, New York. A ranked list solely based on relevancy may exhaustively return results

of one of the types above, and other types might be ranked very low. A diverse set should

include results of different aspects by keeping a balance between relevancy and diversity.

The diversification problem is usually defined as an optimization problem of se-

lecting a subset of the result set of a query such that the diversity among these k results is

maximized [28, 30]. One of the earliest works which focused on diversity among retrieved

results is [12]. Carbonell and Goldstein [12] describe the concept of maximal marginal

relevance (MMR) as a trade-off between relevance and novelty. There is a limited amount

of work which elaborates on diversification of keyword search results on structured data

which is surveyed in Section 2.3.

In this dissertation, we propose applying diversification techniques on the results of

keyword search over tree data to provide the users with a diverse set of results. To this end,

we formally define the diversification problem in the domain of tree data. We introduce

a similarity measure between the patterns of keyword search results that can effectively

be used to maximize the diversity of the results included in the result set. We also devise

a relevance measure that can be combined with our similarity measure for building the

diverse result set. Finally, we present a heuristic algorithm which builds a diverse result set

incrementally by choosing the patterns to be included in a greedy fashion. The proposed



12

experimentation and an analysis of different evaluation metrics that can be applied to the

diversification problem are also presented. We further elaborate on this issue in Chapter 6.

1.2 Organization

This dissertation is organized as follows. In Chapter 2, a review of the state-of-the-art is

given for different aspects of keyword search on tree data. In Chapter 3, definitions and

notation are provided for the data model we adopt. Chapter 4 introduces the proposed

keyword search semantics for answering keyword queries over tree data. In Chapter 5, the

clustering methodology for keyword search results over tree data is presented. In Chapter 6,

we introduce the diversification of search results problem in the domain of tree data and

propose our diversification scheme. Finally, Chapter 7 presents the conclusion and the

directions for future work.



CHAPTER 2

STATE OF THE ART

This chapter reviews the literature on searching, result clustering and result diversification

on tree data. Most of the studies reviewed in this chapter focus on XML data specifically

but techniques are applicable to any kind of tree structured data with similar characteristics.

2.1 Searching on XML

XML documents are usually modeled as trees (in few studies, they are also modeled as

graphs due to circular references [16, 85]). Nodes in this tree model represent elements

and attributes. Also, the text associated with the XML elements or attribute values are

either represented as separate text nodes or they are attached to their element or attribute

node in the data tree. Description of the tree model considered in this work is given in

Chapter 3.

Since XML has become a standard for exporting and exchanging data on the web,

techniques to allow users query XML data have been developed over the years. In this

section, two most frequently studied and popular techniques are mentioned.

2.1.1 Structured Query Languages

Due to the semi-structureness of XML, different structured query languages have been

introduced. Two of the most well-known ones are XPath [22] and XQuery [23].

XPath [22] utilizes the tree structure of the XML documents and can retrieve nodes

based on the provided path specifications in the user query. Paths can be specified as a

series of element tags delimited by “/” or descendant paths are also accepted which are

shown as “//”. For example, consider the XML tree in Figure 1.3 and the XPath expression

//instructor/fname. This expression returns nodes 16, 18 and 20 in Figure 1.3.

13



14

XQuery [23] is another important XML querying language which is based on path

expressions similar to XPath [22] but it has more advanced language constructs. It is a

functional language where one can define loops and join information from different XML

databases. For example, consider again the XML tree in Figure 1.3. The following query

will return the first names of instructors who teach a course with a title containing the word

Advanced.

for $a in //course/[contains(title, ‘‘Advanced’’]

return $a/instructor/fname

Processing of tree pattern queries is the basis of structured query languages on

XML. This problem has been addressed quite extensively in the literature [11, 31, 38, 87].

As a less restricted version of tree pattern queries, partial tree pattern queries have also

been investigated on XML data [74, 81].

2.1.2 Keyword Search

Information Retrieval (Flat Documents) Keyword search is the most popular way of ac-

cessing information on the web. Search engines provide simple user interfaces to enter

keyword queries and usually, the results are returned to the user in a ranked list which

is ordered by the relevance of the results. There are different measures which are used

to quantify the relevance of results (documents in WWW). PageRank [10] is a technique

which estimates importance of a web page by the importance of other pages which have a

link to that web page. The vector space model is a very commonly used model to repre-

sent documents in the literature [70]. Using the vector space model and a scoring function

such as Term Frequency-Inverse Document Frequency (TF-IDF) [70], similarity of docu-

ments and the keyword queries can be computed. The TF-IDF function scores terms in a

document based on their frequency of occurrence in the document (proportional) and their



15

frequency of occurrence in the entire document base (inversely proportional).

Structured Databases. Keyword search on databases is a complicated task. In contrast

to the flat documents in the classical information retrieval model, the proposed approaches

should also take into account the structure of the databases. The structure of the databases

have two very important effects. First, the information which can be gained from the

structure should be utilized by the approaches. Second, the results of keyword queries

on databases is not the whole database but rather a portion of the database: In case of

XML, this might be a subtree of the XML tree whereas in case of relational databases, this

might be a subgraph.

Keyword search has been addressed in structured databases [8, 34, 50, 62]. Key-

word search techniques applied on the Web cannot be applied directly on relational

databases. This is due to the fact that the information in relational databases are spread

over multiple tables and the structure of the data should also be utilized during the keyword

search [62]. Relational databases and the query answers are usually modeled as graphs

[8, 34] and some adaptations of information retrieval techniques have been used for assign-

ing semantics to keyword queries [62].

Semi-structured Databases. Semi-structured databases such as XML usually do not fol-

low a strict schema, so combining data from different parts of the database is more challeng-

ing than in fully structured databases [42]. Since keywords can be related through different

instances in the XML tree, an important task of XML keyword search is to be able to iden-

tify results with meaningful interpretations of the query. Because of this, several papers

elaborate on filtering semantics for keyword search on XML data. The results are usually

modeled as the lowest common ancestors (LCAs) of the keyword instances or subtrees of

the XML tree which contains a query match. Most of the filtering semantics are based ex-

clusively on the structural properties of the results and only few of them take into account

the semantic information (that is the labels of the nodes). The SLCA [77, 88], ELCA [32],

XSearch [21], VLCA [43] and MLCA [48] and their properties are extensively reviewed



16

in Section 4.5. Schema-level SLCA [42] excludes LCAs whose label paths from the root

of the XML tree are a proper prefix of that of another LCA. In [80], tree pattern queries

are extracted from the structural summary and those which present a meaningful result are

used. MaxMatch [55] groups SLCA nodes and eliminate some keyword matches under

these subtrees by considering additional rules. Consistency and monotonicity concepts are

also introduced in MaxMatch as an axiomatic framework for evaluation of keyword search

semantics. Kong et al. [39] improve over MaxMatch by considering all LCAs instead of

only SLCAs, and address MaxMatch’s false positive and redundancy issues. XMean [53]

defines conceptually related entity nodes to find relevant results. Ancestor entity nodes of

two nodes in the XML data are utilized to decide if they are meaningfully related.

Ranking semantics for answering XML keyword queries return a ranked list of re-

sults (LCA nodes or subtrees) with respect to their relevance to the user query. XRank [32]

uses a variation of PageRank algorithm to rank the results. XSearch [21] ranks the results

using a TF-IDF function [70] adapted to the tree structure of XML documents. XReal [6]

introduces a similarity function to rank nodes with respect to their similarity to the query.

Termehchy and Winslett [79] exploit mutual information to calculate coherency ranking

measures for ranking the query answer. Nguyen and Cao [65] use mutual information to

compare results and to define a dominance relationship between the results for ranking.

SAIL [44] introduces the concept of minimal-cost trees and identifies the top-k answers by

using link analysis and keyword-pair relevancy.

The proposed approach in this dissertation contains both filtering and ranking se-

mantics [2]. It is different from the previously proposed semantics because it considers

patterns of results both for filtering and ranking instead of relying on local properties of

results as, e.g., SLCA [77, 88] and ELCA [32] does. In addition, for ranking, instead of as-

signing simply a score to the results, the proposed approach obtains the ranking by directly

comparing the different structural and semantic properties of patterns. Further explanation

of the semantics is given in Chapter 4.



17

Some works focus on developing efficient algorithms for XML keyword search se-

mantics. Algorithms for finding SLCAs and ELCAs for a keyword query are presented in

[88, 89, 95, 98]. Hristidis et al. [35] develop efficient algorithms for finding a compact rep-

resentation of the result subtrees. In [26, 27], a multi-stack algorithm to return a size-ranked

result list to a keyword query is presented. Chen and Papakonstantinou [18] introduce al-

gorithms to support top-k SLCA and ELCA calculation. The common-ancestor-repetition

(CAR) problem has been addressed by [96, 97]. While trying to find SLCA/ELCA nodes,

approaches perform two basic operations: testing the order of two nodes and computing

the LCA of two nodes. Usually the Dewey encoding scheme is used for labelling nodes.

Since Dewey labels consists of components of all of the ancestors, these operations are

equal to visiting all of the common ancestor nodes [97]. In [97], a new indexing structure

is introduced to overcome this problem which assigns a unique id to each node which is

consistent with the document order.

Additionally, different problems within the context of XML keyword search have

been addressed in some studies. XReal [6, 7] and XBridge [46] propose approaches to find

the user-intented result type. XReal [6, 7] defines the type of a node as the label path from

the root to the node in the XML tree. A variation of TF-IDF is used to find the candidate

result type of a query. XBridge [46] uses a scoring measure for the types as well, but

it also takes into account the structure of the results while scoring the type. XSeek [54]

utilizes entity, attribute or connection nodes to decide upon the nodes to be returned in

the results. XMean [53], and Liu and Chen [57] address the problem of clustering XML

keyword search results. XMean [53] uses patterns of the results to define clusters. In order

to facilitate browsing the results, a relaxation graph for the patterns is created. Liu and

Chen [57] built on XSeek [54] to detect the nodes to be included in the results and the

results are clustered by using the types of keyword instance nodes (i.e., entity or attribute).

A system called eXtract is introduced in [36] to address the problem of creating snippets

for XML keyword search results. Context-sensitive keyword search on XML is addressed



18

in [9]. The context is defined in the form of a path in the XML tree and the results are

ranked by taking into account the specified context. Materialized views for supporting

the evaluation of XML keyword queries have been proposed in [56, 72]. Keyword query

refinement and/or keyword suggestion techniques in the XML keyword search context are

studied in [61, 67]. Most of these problems have been summarized in [58].

2.2 Search Result Clustering

Even though querying a data source with keyword queries is convenient, it has an ambiguity

problem. Keyword queries are limited in terms of the information that they can represent.

In WWW, one can usually provide additional keywords to make the search space narrower.

Even then, there might be different types of results where the user is interested in only some

of them.

Result clustering has been applied to solve the ambiguity problem in the domain

of information retrieval [40, 92]. Results of a query are clustered, the clusters are labeled

with representative terms [41, 84] and then users can choose their cluster of interest by

examining the cluster labels. Some commercial examples are also available such as the

clustering engine, Carrot [14, 76]. Unfortunately, the techniques applied for clustering web

search results are not directly applicable to XML keyword search results because XML

documents are structured and the granularity of clustering is different, i.e., flat documents

vs. fragments of documents with structure.

Clustering XML keyword search results has not been studied extensively. In addi-

tion to the problem of query ambiguity, multitude of keyword search results on XML is an-

other motivation of application of clustering to the XML keyword search results. Clustering

of whole XML documents has been studied before for data mining purposes [24, 49, 64].

However, these techniques are not query-aware and they are applied on the document-level

instead of the result-level. Some recent studies have applied clustering on the results of

keyword search on XML data. Liu et al. [53] introduces a methodology which clusters



19

the XML search results based on the semantics that they represent. They cluster the results

based on the patterns that they define. Liu and Chen [57] clusters the results based on the

categories of the terms in the results; return nodes and predicates. Users can also specify

the granularity of the clustering and input a requested number of clusters.

In addition to clustering, XReal [6, 7] and XBridge [46], as mentioned above, ad-

dresses the problem of identification of user intent. These approaches might also serve as a

basis of disambiguation but still they lack clustering of semantically similar results together

which would further help the users.

The clustering methodology presented in this dissertation [3] is a refined one in the

sense that it not only clusters the patterns of the results, but further clusters patterns accord-

ing to the common subpatterns that they share by utilizing homomorphism relations that

are defined. Also, an ordering among the clusters is provided which has not been studied

before. More details about the proposed clustering methodology is given in Chapter 5.

2.3 Search Result Diversification

Search result diversification attracted a lot of attention in both information retrieval and rec-

ommendation systems. The first reason of this interest is again the ambiguity of the query

in expressing the user intent. Result diversification aims to present a diverse set of results

to minimize user dissatisfaction. This is also an attempt to solve the over-specialization

problem [28] where a highly homogeneous set of results is returned to the user due to

relevance-based ranking and/or personalization. Over-specialization problem has been ad-

dressed in recommendation systems [90, 93, 99] and information retrieval [68] by trying to

retrieve items which are dissimilar to each other.

In addition to the ambiguity of keyword queries, there are users who do not focus

only on a subset of results but rather they want an overview of the results. These queries are

in exploratory nature [28] and in this case, providing a diverse set of results which covers

different aspects of the entire result set is more important than providing a ranked list solely



20

based on relevance.

In general, the diversification problem is defined as selecting a subset of the re-

sult set with k results such that the diversity among these k results is maximized [28, 30].

One of the earliest works which focused on diversity among retrieved results is [12]. Car-

bonell and Goldstein [12] describe the concept of maximal marginal relevance (MMR), a

trade-off between relevance and novelty. Gollapudi and Sharma [30] give an axiomatic

approach for result diversification. Liu et al. [60] address the problem of query expansion

by expanding queries from clustered results. Expanded queries can be taken as different

interpretations of the original query. Drosou and Pitoura [28] review different definitions

of diversity, and examine the algorithms and evaluation metrics. They categorize diversity

definitions as content-based [99], novelty-based [19, 94] and coverage-based [1]. Tian et

al. [82, 83] consider the ambiguity problem in the context of web search by suggesting

query completions for homonyms.

There is a limited amount of works on diversification of search results on databases.

Demidova et al. [25] proposed a technique to diversify keyword search results on structured

databases. Li et al. [47] addressed the ambiguity of XML keyword queries by expanding

the keyword queries with additional keywords to narrow down their result set. Liu et al.

[59] introduce an approach to differentiate search results which can be used as a basis

for diversification. Hasan et al. [33] introduced an extension of tree edit distance for

diversification of XML search results for structured queries.



CHAPTER 3

TREE DATA MODEL

3.1 Data Model

In this dissertation, we address keyword search and result disambiguation problems on tree

data. The most frequently used type of tree data is XML data. Therefore, we define our

data model in accordance with the XML data but it is generic enough to handle any kind of

conventional tree data.

As is usual, we view XML documents as ordered node labeled trees. In our study,

nodes represent and are labeled by elements and attributes. The leaf nodes may have a

content which is text. Edges represent element to element and element to attribute relation-

ships. For any two nodes n and n′ in an XML tree T , n < n′ (n > n′) denotes that n is an

ancestor (descendant) of n′ in T . Without loss of generality, we assume that the label of the

root of the XML tree is unique. A function label on a node returns the label of that node.

We want to allow keywords to match not only the content of a node but also its label. To

this end, we define a function value on nodes in Definition 3.1.1.

Definition 3.1.1. Let n be a node in a data tree T , value(n) returns the set of words in the

content and the label of the node.

If value(n) of a node n includes a keyword k we say that n contains keyword k and

that node n is an instance of k. We assume that XML tree nodes are enumerated using

the Dewey encoding scheme [78]. The Dewey encoding scheme allows easily determining

the LCA of multiple nodes and can be efficiently exploited by stack based algorithms for

computing query matches.

Figure 3.1 shows an XML tree which is a variation of the one shown in the introduc-

tion. The data tree represents a university database which consists of courses and seminars.

The values of the leaf nodes are presented in double quotation marks. Dewey indices of the

21



22

nodes are omitted for clarity. Plain numbers are used instead to identify the nodes. Note

that the indices of the nodes are assigned in a depth first manner.

Figure 3.1 An XML tree T.

3.2 Keyword Queries

A (keyword) query Q is a set of keywords {k1,k2, . . . ,kn}. In the context keyword search

over XML data, keyword queries are embedded to XML trees. Next, we define the instance

of a query on a data tree.

Definition 3.2.1. Let Q be a query and T be an XML tree. An instance of Q on T is an

embedding of Q to T (i.e., a function from Q to the nodes of T that maps every keyword k

in Q to an instance of k in T ).

We overload the term “query instance” and we use it to refer both to the function

that maps the query keywords to the tree nodes and to the images of the query keywords

under this function. Note that two query keywords can be mapped to the same tree node.

We define the trees that represent query instances in Definition 3.2.2.

Definition 3.2.2. Let Q be a query, T be an XML tree, and I be an instance of Q on T . The

instance tree (IT) of I is the minimum subtree S of T such that: (a) S is rooted at the root of

T and comprises all the nodes of I, and (b) every node n in S is annotated by the keywords



23

which are mapped by I to n. The minimum connected tree (MCT) of I is the minimum

subtree of S that comprises the nodes of I.

Clearly, the root of the MCT is the Lowest Common Ancestor (LCA) of the nodes

of I in T .

Consider the XML tree of Figure 3.1 and the keyword query Q = {Physics, James,

Harrison, 2012}. Figures 3.2(a) and (b) show the IT and the MCT, respectively, of the

instance {(Physics, 24), (James, 25), (Harrison, 25), (2012, 22)} of Q on T . In the

figures, the annotation of the nodes is shown between square brackets by the nodes. The

MCT of this IT is rooted at node 21 (the LCA of the keyword instances). The IT also

contains the path from the root of T to node 21. In the following we identify an IT and an

MCT by their corresponding query instance.

Figure 3.2 (a) An IT and (b) its MCT.

Note that, MCTs and ITs comprise besides the structural information also semantic

information (the labels of the nodes). An IT of an instance of a query Q on an XML tree

T is also called IT of Q on T. Several previous approaches return to the users LCAs as

results. In our approach we study keyword search on XML trees by assuming that the

results of keyword queries are ITs. An IT is much of a richer construct than an LCA in

terms of the information it provides as it shows both: (a) how the keyword instances are

combined under their LCA to form an MCT, and (b) how the LCA is linked to the root of



24

the XML tree.

Given a keyword query Q and an XML tree T , the set C of the ITs of all the

instances of Q on T is the set of the candidate results of Q on T . The answer of a keyword

query Q on an XML tree T is a subset of C . Which specific subset forms the answer of

a query depends on the semantics adopted. In our approach, the answer is determined by

comparing the patterns (to be defined in 4) of the ITs. For the needs of this dissertation, this

comparison is realized based on different types of homomorphisms. In the next chapter,

we define formally these homomorphisms and then we use them to provide ranking and

filtering semantics to the queries. Other semantics will be presented in terms of ITs and

compared with our approach in Section 4.5.



CHAPTER 4

SEMANTICS OF KEYWORD QUERIES OVER TREE DATA

In order to define semantics for queries we introduce patterns of ITs and homomorphisms

between patterns and study their properties.

4.1 Instance Tree Patterns

Definition 4.1.1 (Instance tree pattern). A pattern P of a query Q on an XML tree T is a

tree which is isomorphic (including the annotations) to an IT of Q on T . The MCT of a

pattern P refers to P without the path that links the LCA of the annotated nodes to the root

of P.

Multiple ITs of Q on T can share the same pattern. Figure 4.1 shows eight patterns

(out of 15 in total) of the keyword query Q = {Physics, James, Harrison} on the XML

tree T of Figure 3.1. All patterns except pattern P8 have one IT. Pattern P8 has two

ITs which comply with it: the IT of the query instance {(Physics, 5), (James, 25),

Figure 4.1 Some patterns for Q = {Physics,James,Harrison} on the tree of Figure 3.1.

25



26

(Harrison, 25)} and the IT of the query instance {(Physics, 16), (James, 25),

(Harrison, 25)}.

The function ann(n) on a node n of a pattern returns the annotation of n if the node

is annotated or, an empty set, otherwise. We also define a function size(P) which returns

the number of edges of P. The size of pattern P3 is 8 and that of its MCT is 7. The size of

pattern P1 is 9 and that of its MCT is 7.

4.2 Pattern Homomorphism and Homomorphism Relation

Definition 4.2.1 (Pattern homomorphism). Let S and S′ be two subtrees of patterns of a

query on an XML tree. A homomorphism from S to S′ is a function h from the nodes of S to

the nodes of S′ such that:

(a) for every node n in S, n and h(n) have the same labels.

(b) if n2 is a child of n1 in S, h(n2) is a child of h(n1) in S′, and

(c) for every node n in S, ann(n)⊆ ann(h(n)).

Figure 4.2 shows the MCTs M, M′, and M′′ of three patterns of the query Q = {2012,

James, Harrison} on an XML tree. As we can see in this figure there are homomorphisms

from M to M′ and from M′ to M′′ but not from M′ to M or from M′′ to M′. Observe that

M′ can be obtained from M (and M′′ from M′) by merging paths with the same sequence of

labels starting from the same node and by unioning their annotations. For instance, M′′ can

Figure 4.2 Pattern MCTs M, M′ and M′′ and homomorphisms between them.



27

be obtained from M′ by merging the paths seminars/seminar/speaker from the

node speaker and by unioning the annotations [James] and [Harrison]. One can see that,

in general, this is also a necessary condition for the existence of a homomorphism between

two patterns when those two patterns are not identical.

Clearly, if there is a homomorphism from the MCT of a pattern P to the MCT of a

pattern P′, the keyword instances are more closely related in any instance of P′ than in P.

Thus, we consider the ITs of P′ to be more relevant to the query than those of P.

Based on the existence of a homomorphism between two patterns, we can define a

relation≺h (called homomorphism relation) on patterns in order to compare their relevance

to the query.

Definition 4.2.2 (≺h relation). Let P and P′ be two patterns of a query Q on an XML tree

T . P ≺h P′ iff there is a homomorphism from the MCT of P′ to the MCT of P but not vice

versa.

For instance, for the patterns P, P′ and P′′ whose MCTs M, M′ and M′′, respectively,

are shown in Figure 4.2, P′′ ≺h P′ and P′ ≺h P, but P′ ̸≺h P′′ and P ̸≺h P′. That is, P′ is

more relevant than P, and P′′ is more relevant than P′. Similarly, for the patterns P5 and P6

of our running example shown in Figure 4.1, one can see that P5 ≺h P6.

One can easily see that if P ≺h P′, size(M) < size(M′) where M and M′ are the

MCTs of P and P′, respectively. The following property which will be used later can be

easily shown for the ≺h relation.

Proposition 4.2.1. The relation ≺h on the set of patterns of a query on an XML tree is a

strict partial order.

Proof. ≺h relation satisfies all three conditions of a strict partial order.

(a) The ≺h relation is irreflexive: P ≺h P′ iff there is a homomorphism from the MCT of

P′ to the MCT of P but not vice versa. Therefore, P cannot be equal to P′.



28

(b) The ≺h relation is transitive: for any three patterns P,P′ and P′′ with MCTs M,M′

and M′′, respectively if P ≺h P′ ≺h P′′ then there is a homomorphism from M′′ to

M′ and M′ to M. Therefore, there is also a homomorphism from M′′ to M. Since

size(M) < size(M′) < size(M′′), there is no homomorphism from M to M′′. Thus,

P≺h P′′.

(c) The ≺h relation is antisymmetric: for any two distinct patterns P and P′, if P ≺h P′,

there is a homomorphism from the MCT of P′ to the MCT of P but not vice versa.

Therefore, P′ ̸≺h P.

Even though ≺h correctly characterizes relevance, it is not sufficient. Consider for

instance the MCTs M1 and M2 of the patterns P1 and P2, respectively, shown in Figure 4.3

(ignore the dashed arrows for the moment). Even though P2 ̸≺h P1, P2 is more relevant than

P1. Indeed, P2 relates two instructors to a course they offer while P1 relates two instructors

to a prerequisite of a course they offer. In the next section we further exploit different kinds

of relations in order to better capture this relevance relationship between patterns and their

ITs thereof.

4.3 Path Homomorphism and Path Homomorphism Relations

In order to define additional relations on patterns, we introduce below a new type of homo-

morphism.

Definition 4.3.1 (Path homomorphism). Let p and p′ be two paths of two patterns, such that

p ends at a node n annotated by a keyword k. We say that there is a path homomorphism

from p to p′ if there is a function ph from the nodes of p to the nodes of p′ such that:

(a) for every node n1 in p, n1 and ph(n1) have the same labels.

(b) if n2 is a child of n1 in p, ph(n2) is a child of ph(n1) in p′, and

(c) k ∈ ann(ph(n))∪ label(ph(n)).



29

Figure 4.3 shows the MCTs M2 and M1 of the corresponding patterns P2 and P1

(shown in Figure 4.1) for the query {Physics,James,Harrison} on the XML tree of

Figure 3.1. For every path from the root of M2 to a node annotated by a keyword, there is

a path homomorphism to a path in M1 (the different types of dashed arrows indicate these

path homomorphisms). However, the opposite is not true that is, there is at least one path

of M1 (in fact, only the path course/prerequisites/course/title[Physics])

that does not have a path homomorphism to a path in M2.

Figure 4.3 Pattern MCTs M2 and M1 and three path homomorphisms from the paths of M2
to paths of M1.

Our intuition is that if P and P′ are two patterns of a query on an XML tree, and

every path from the root of the MCT of P to a keyword annotated node has a path homomor-

phism to a path in the MCT of P′, then the keyword instances in P are more meaningfully

related than in P′ because every sequence of labels from the LCA to a keyword instance in

P also appears in P′.

In order to compare the relevance of query patterns, we use now path homomor-

phisms to define a relation ≺aph (called all_path_homomorphism relation) on patterns.

Definition 4.3.2 (≺aph relation). Let P and P′ be two patterns of a query Q on an XML tree

T . P≺aph P′ iff the following two conditions hold:

(a) for every path p from the root of the MCT of P to a node annotated by a keyword, there

is a path homomorphism from p to a path of the MCT of P′.

(b) Property (a) does not hold in the opposite direction that is, from P′ to P.



30

As an example, observe that for the pattern MCTs M2 and M1 of Figure 4.3,

P2 ≺aph P1. That is, the ≺aph relation correctly characterizes P2 as more relevant than

P1.

Consider also another example which involves mapping a keyword to a label or a

value of a node: Figure 4.4 shows the MCTs Ma and Mb of two query patterns Pa and Pb, re-

spectively. As it can be seen from the annotations, the keyword query is {Seminar, Abstract,

Mathematics}. Pa ≺aph Pb since the three paths seminar[seminar], seminar/

abstract[abstract] and seminar/abstract[mathematics] in Pa have a path ho-

momorphism to a path in Pb but the path seminar/title[abstract] of Pb does not have

a path homomorphism to path in Pa. Here again ≺aph correctly favors Pa over Pb.

Figure 4.4 Pattern MCTs Ma and Mb and three path homomorphism from the paths of Ma
to paths of Mb.

We now show a property of relation ≺aph.

Proposition 4.3.1. The relation ≺aph on the set of patterns of a query on an XML tree is a

strict partial order.

Proof. ≺aph relation satisfies all three conditions of a strict partial order. In the following,

we refer to a root-to-annotated-node path of an MCT as a path for simplicity.

(a) The ≺aph relation is irreflexive: According to Definition 4.3.2, P ≺aph P′ iff for every

path p from the root of the MCT of P to a node annotated by a keyword, there is a path

homomorphism from p to a path of the MCT of P′ but not vice versa. Therefore, P

cannot be equal to P′.



31

(b) The ≺aph relation is transitive: for any three patterns P,P′ and P′′ with MCTs M,M′

and M′′, respectively, if P ≺aph P′ ≺aph P′′ then property (a) of Definition 4.3.2 holds

from M to M′ and from M′ to M′′. Therefore, this property also holds from M to M′′.

Since property (a) of Definition 4.3.2 does not hold from M′ to M and M′′ to M′, then

there is at least one path in M′′ that cannot be mapped with a path homomorphism to

a path in M. Thus, property (a) of Definition 4.3.2 does not hold from M′′ to M. As a

consequence, P≺aph P′′.

(c) The≺aph relation is antisymmetric: for any two distinct patterns P and P′, if P≺aph P′,

then for every path p from the root of the MCT of P to a node annotated by a keyword,

there is a path homomorphism from p to a path of the MCT of P′ but not vice versa.

Therefore, P′ ̸≺aph P.

We next examine how ≺h and ≺aph are related. In Figure 4.2, one can see that

besides homomorphisms from M to M′, and M′ to M′′, for every path p from the root to an

annotated node of an MCT there is a path homomorphism to a path in any one of the other

MCTs. This is expected due to the following proposition.

Proposition 4.3.2. Let M and M′ be two pattern MCTs of a query on an XML tree. If there

is a homomorphism from M to M′, then: (a) for every path p from the root of M to a node

annotated by a keyword, there is a path homomorphism from p to a path of M′, and (b)

for every path p′ from the root of M′ to a node annotated by a keyword, there is a path

homomorphism from p′ to a path of M.

Nevertheless, if for every path p from the root of M to a node annotated by a key-

word, there is a path homomorphism from p to a path of M′, then there is not necessarily a

homomorphism from M to M′ or from M′ to M.

Proof. This proposition can be derived using the properties of the pattern homomorphism.

We mentioned that if there is a pattern homomorphism from an MCT M to another MCT



32

M′, M can be transformed into M′ by merging some paths on the nodes with the same

labels and unioning their annotations. This means that M and M′ contains the same root-

to-annotated-node paths. So, all paths of M can be mapped to a path in M′ and vice versa.

However, such a reasoning is not true for path homomorphisms.

As a consequence of Proposition 4.3.2 and Definition 4.3.1, if P ≺h P′, then

P ̸≺aph P′ and P′ ̸≺aph P.

For two patterns P and P′ with MCTs M and M′, respectively, if P≺aph P′, size(M)

does not have to be smaller than size(M′). Figure 4.5 shows an example for this case where

size(MCT (P)) = 5 and size(MCT (P′)) = 4.

Figure 4.5 Two patterns P and P′ that are related with ≺aph.

Often, it is the case that an XML tree integrates data for entity types which are

unrelated. For instance, the University XML tree of Figure 3.1 involves courses and semi-

nars. Instances of these entity types are not related other than that they share the root of the

XML tree as the only common ancestor. In such a context, the ≺aph relation does not help

us compare effectively the relevance of patterns that involve labels from different entity

types with patterns that involve labels from the same entity type.

Consider, for instance, the patterns P4 and P5 of Figure 4.6 for the query {Physics,

James, Harrison} on Figure 3.1. These patterns are not related with respect to ≺aph.

However, P4 is more relevant than P5 since it meaningfully brings together a speaker of a

seminar with the topic of the seminar. In contrast, P5 involves both a course and a seminar

and brings together the speaker of a seminar with the instructor and title of a course.

Our intuition is that if two patterns share the same root-to-leaf path (including the



33

annotations) the pattern P1 whose MCT root R1 is a descendant of the MCT root R2 of

the other pattern P2 in this path (that is, R1 is deeper than R2 in the common path) more

meaningfully relates the keyword instances than P2.

In order to enable relevance comparisons between patterns that involve

unrelated parts of an XML tree, we define below a relation ≺pph (called

partial_path_homomorphism relation) on query patterns.

Definition 4.3.3 (≺pph relation). Let P and P′ be two patterns of a query Q on an XML tree

T , and p be a path from the root of P to an annotated node of P. P ≺pph P′ iff there is a

path homomorphism ph of p to a path in P′ such that:

(a) the root of P is mapped by ph to the root of P′.

(b) the root of the MCT of P is mapped by ph to a node which is a descendant (not self) of

the root of the MCT of P′, and

(c) P′ ̸≺h P and P′ ̸≺aph P.

Condition (c) is included for the purpose of guaranteeing the acyclicity of the rela-

tions ≺aph and ≺pph between two patterns.

Consider again the patterns P4 and P5 of Figure 4.6. As shown in the figure, there is

a path homomorphism from the path university/events/seminars/seminar/

speaker[Harrison] of P4 to the same path of P5 and the image of the root of the MCT

of P4 (seminar) under this homomorphism is a descendant of the root of the MCT of P5

(university). Therefore, P4 ≺pph P5. That is, the ≺pph relation correctly finds P4 to be

more relevant than P5.

Because the roots of the MCTs of two patterns related through a ≺pph relation

are required to have a descendant relationship, it is easy to see that ≺pph relation has the

following property.

Proposition 4.3.3. The relation ≺pph is acyclic.

Proof. Property (b) of Definition 4.3.3 requires the MCTs of two patterns related through



34

Figure 4.6 A path homomorphism from a path of pattern P4 to a path of P5.

a ≺pph relation to have a descendant relationship. Because of this property all of the fol-

lowing statements hold and hence ≺pph is acyclic:

(a) For any pattern P, clearly P ̸≺pph P because property (b) of Definition 4.3.3 does not

hold.

(b) For any chain of patterns P1, . . . ,Pn where n ≥ 2, s.t. P1 ≺pph . . . ≺pph Pn, Pj ̸≺pph Pi

holds where j ≥ i because the root of MCT of Pj is an ancestor of the root of the MCT

of Pi.

4.4 XReason Semantics

We use homomorphism relations to define filtering and ranking semantics to keyword

queries called XReason semantics. We first define a precedence relation, ≺, on patterns

which combines the three homomorphism relations1.

Definition 4.4.1. Let P and P′ be two patterns of a query Q in an XML tree T . P ≺ P′ iff

P≺h P′ or P≺aph P′ or P≺pph P′.

Based on the previous discussion one can see that with the exceptions of some

1The homomorphism relations can also be related to the concept of preference relation in measurement
theory.



35

impractical cases the relation ≺ on the set of patterns of a query on an XML tree is acyclic.

Given the relation≺ on the set of patterns of a query Q on an XML tree T , consider

a directed graph G≺ such that: (a) the nodes of G≺ are the patterns of Q on T , and (b)

there is an edge in G≺ from node P to node P′ iff P≺ P′. Clearly, since ≺ is acyclic, G≺ is

acyclic. Figure 4.7(a) shows the graph G≺ for the relation ≺ on the set of patterns of query

Q= {Physics, James,Harrison} on the XML tree of Figure 3.1. There are 15 such patterns

and eight of them (patterns P1 - P8) are shown in detail in Figure 4.1. The edges are labeled

by letters h, a and/or p to indicate which of the relations, respectively, ≺h, ≺aph and ≺pph

relate its nodes. Transitive a-edges which are not p-edges are omitted to reduce the clutter.

Since G≺ is acyclic, it has at least one source node (i.e., a node without incoming edges).

The one of Figure 4.7 has two source nodes (pattern P2 and P4).

Figure 4.7 (a) The graph G≺, (b) Pattern order O.

In the graph of Figure 4.7(a), observe that all the nodes (patterns) can be partitioned



36

in levels (separated by lines in the figure) based on their maximum distance (GLevel) from

a source node. For instance, in level 3 there are patterns P3 and P7. The patterns in one

level can also be further distinguished based on the depth of their MCT root in the pattern

(MCT Depth) and the size of their MCT (MCT Size). We create an order O for the pat-

terns in G≺ which ranks them in: (a) ascending order of GLevel, (b) descending order of

MCT Depth, and (c) ascending order of MCT Size. Note that two patterns might be placed

at the same rank in O . The order O does not distinguish between these patterns. In our

running example, one can see that the fifteen patterns of Figure 4.7(a) are ordered with

respect to O as shown in Figure 4.7(b).

Definition 4.4.2 (Ranking XReason semantics). According to the ranking XReason seman-

tics an answer of a query Q on an XML tree T is a list of the ITs of Q on T ranked in an

order which complies with the order O of their patterns.

In our running example, we have 15 patterns and 16 ITs. An ordering of these ITs

which complies with the order O of patterns shown in Figure 4.7(b) is an answer of the

query Q = {Physics, James, Harrison} on the XML tree of Figure 3.1.

We use the patterns at the top-k levels of G≺ to define filtering semantics.

Definition 4.4.3 (Filtering XReason semantics). According to the filtering XReason se-

mantics the answer of Q on T is the set of ITs of the patterns of Q on T with the smallest k

GLevel values.

Parameter k is user defined. Usually, k is chosen to be equal to one (i.e., we choose

the top level patterns) in which case the answer of Q on T is the set of ITs whose patterns

are source nodes in the G≺ graph.

Based on the previous definition and for k=1, the answer of query Q = {Physics,

James, Harrison} on the XML tree of Figure 3.1 is the set of ITs which comply with

patterns P2 or P4 (the two source nodes in graph G≺ of Figure 4.7(a)). There are only two

ITs which comply with these patterns—one for each pattern: the IT of P2 with leaf nodes



37

5, 7 and 11 whose MCT is rooted at course and the IT of P4 with leaf nodes 24 and 25

whose MCT is rooted at seminar.

It is interesting to note that according to XReason semantics, an IT might more

meaningfully relate its keyword instances than another IT even though these ITs do not

have any location proximity that is, they do not share any node and their LCAs are not

in ancestor-descendant-or-self relationship. This feature departs from previous traditional

filtering semantics (e.g., ELCA [32, 89], SLCA [18, 35, 88], MLCA [48]) where the location

proximity is required in order to privilege one IT over another. In the next section we

analyze the filtering XReason semantics in relation to previous semantics.

4.5 Analysis of XReason

In this section, we compare the XReason filtering semantics with different previous filtering

semantics from the literature. For determining the query answer with XReason, only ITs of

the top level patterns in G≺ are retained.

Many approaches to keyword search in the literature return LCA nodes as answers

to keyword queries. In this dissertation, the answer of a keyword query is a set of ITs (see

Definition 3.2.2). The ITs more precisely capture the subtleties of the different semantics

than the LCAs since the same LCA can be the root of multiple MCTs of different ITs

for a query. In order to set up a common ground for comparison, we define the previous

approaches in terms of ITs. We go through these approaches with an example but we

provide before a summary of their formal definitions. Let Q = {k1,k2, ...,kn} denote a

keyword query, and T denote an XML tree. Let also LCAset(Q,T ) be the set of LCAs of

Q on T , and IT set(Q,T ) be the set of ITs of the instances of Q on T . Table 4.1 provides

formal definitions of the previous semantics in terms of ITs.

We first examine relationships between semantics in terms of result containment.

This is important to understand the overall view of different XML keyword search seman-

tics. Then, we show cases where the other approaches miss meaningful answers or return



38

meaningless answers while XReason does not. This demonstration proves also that XRea-

son is different than all the previous approaches.

4.5.1 Containment Relationships between Keyword Search Semantics

If the answer of a query according to semantics A is a subset of the answer of this query

according to semantics B for any query and on any XML tree, we say that B contains A and

we write A⊆ B. Containment relationships between the different approaches based on the

definitions of Table 4.1 are shown in Figure 4.8. Containment relationships between some

filtering approaches are also provided in [58]. However, the semantics defined in [58] are

based on LCAs while the semantics we defined in this dissertation are based on ITs.

Figure 4.8 Containment relationships between different filtering semantics.

In the following, we provide proofs for the containment relationships depicted in

Figure 4.8.

Proposition 4.5.1. SLCA⊆ ELCA.

Proof. Let t ∈ SLCAset(Q,T ). Then, ∄ t ′ ∈ IT set(Q,T ) s.t. root(MCT (t ′)) is a descendant

of root(MCT (t)). Therefore, t ∈ ELCAset(Q,T ).



39

Table 4.1 Formal Definitions of Different Previous Filtering Semantics in Terms of ITs

Semantics Definition of the answer of Q on XML tree T

SLCA {t | t ∈ IT set(Q,T ),n = root(MCT (t)), and ̸ ∃ t ′, n′ (t ′ ∈ IT set(Q,T ),
[18, 35, 88] n′ = root(MCT (t ′)) and n′ > n)}

ELCA {t | t ∈ IT set(Q,T ),n = root(MCT (t)), and ̸ ∃ n′(n′ is a node in MCT (t),
[32, 89] n ̸= n′ and n′ ∈ LCAset(Q,T )}

V LCA [21, 43] {t | t ∈ IT set(Q,T ) and ∀ pair of annotated nodes ni,n j in t, ̸ ∃ distinct
(all pairs related) nodes nk,nl in the path between ni and n j s.t. label(nk) = label(nl) unless

nk = ni and nl = n j}

CV LCA [43] V LCAset(Q,T )∩ELCAset(Q,T ) where V LCAset(Q,T ) (resp. ELCAset(Q,T ))
is the answer of Q on T according to V LCA (resp. ELCA) semantics

MLCAlabel {t | t ∈ IT set(Q,T ) and ∀ pair of annotated nodes ni,n j in MCT (t) of two
[48, 79] distinct keywords, ̸ ∃ node n in T s.t. label(n) = label(n j) and

LCA(ni,n)> LCA(ni,n j) in T }

MLCAvalue[48]= {t | t ∈ IT set(Q,T ) and ∀ pair of nodes ni and n j in MCT (t) annotated by the
pairwiseELCA keywords ki and k j, respectively, ̸ ∃ instance n′j of k j in T s.t.

LCA(ni,n′j)> LCA(ni,n j) in T }

MLCAlabel+value {t | t ∈ IT set(Q,T ) and ∀ pair of nodes ni and n j in MCT (t) annotated by the
[48] keywords respectively, ki and k j, ̸ ∃ instance n′j of k j in T s.t.

label(n′j) = label(n j) and LCA(ni,n′j)> LCA(ni,n j) in T }

MaxMatch [55] {t | t ∈ SLCAset(Q,T ) and ∀ node n in MCT (t), ̸ ∃ sibling node n′ of n in T s.t.
the set of keywords occurring in the subtree rooted at n in T is a proper subset of
the set of keywords occurring in the subtree rooted at n′ in T }

pairwiseSLCA {t | t ∈ IT set(Q,T ) and ∀ pair of nodes ni and n j annotated by keywords ki and k j,
respectively in MCT (t), ̸ ∃ instances n′i and n′j of the same keywords in T s.t.
LCA(n′i,n

′
j)> LCA(ni,n j) in T }

Schema-level {t | t ∈ IT set(Q,T ) and ̸ ∃ t ′ ∈ IT set(Q,T ) s.t.the root-to-LCA label path of t is a
SLCA [42] proper prefix of the root-to-LCA label path of t ′}

Proposition 4.5.2. MaxMatch⊆ SLCA.

Proof. By the definition of MaxMatch (see Table 1), if t ∈ MaxMatchset(Q,T ),

t ∈ SLCAset(Q,T ).

Proposition 4.5.3. pairwiseSLCA⊆MaxMatch.

Proof. Let t ∈ IT set(Q,T ) and t ̸∈MaxMatchset(Q,T ). Then, there exist two sibling nodes

n and n′ in T , n appearing in MCT (t), s.t., the set S of keywords occurring in the subtree

rooted at n in T is a proper subset of the set S′ of keywords occurring in the subtree rooted



40

at n′ in T . Thus, there exist two keywords k1,k2 ∈ Q, s.t., k1 ∈ S∩S′ and k2 ∈ S′−S. Let

n1 and n′1 be two instances of k1 in the subtrees rooted at n and n′, respectively, s.t. k1

annotates n1, let also n2 be the node annotated by k2 in t, and n′2 be an instance of k2 in the

subtree rooted at n′. Then, LCA(n1,n2) < LCA(n′1,n
′
2), i.e., t ̸∈ pairwiseSLCAset(Q,T ).

We conclude that pairwiseSLCA⊆MaxMatch.

Proposition 4.5.4. CV LCA⊆V LCA.

Proof. By the definition of CVLCA (see Table 1), if t ∈ CV LCAset(Q,T ),

t ∈V LCAset(Q,T ).

Proposition 4.5.5. CV LCA⊆ ELCA.

Proof. By the definition of CVLCA (see Table 1), if t ∈ CV LCAset(Q,T ),

t ∈ ELCAset(Q,T ).

Proposition 4.5.6. MLCAvalue ⊆ ELCA.

Proof. Let t ∈ IT set(Q,T ) and t ̸∈ ELCAset(Q,T ). Then, ∃t ′ ∈ IT set(Q,T ), s.t.,

root(MCT (t ′)) occurs in MCT (t) and root(MCT (t ′)) ̸= root(MCT (t)). Thus, there exist

two keywords k1 and k2 in Q s.t., (a) k1 annotates a node n1 in t, and n1 is a descendant-

or-self of root(MCT (t ′)), (b) k2 annotates a node n2 in t and a node n′2 in t ′, and (c) n2 is

not in t ′. Then, LCA(n1,n2)< LCA(n1,n′2), i.e., t ̸∈MLCAvalueset(Q,T ). We conclude that

MLCAvalue ⊆ ELCA.

Proposition 4.5.7. XReason⊆ ELCA.

Proof. Let t ∈ IT set(Q,T ) and t ̸∈ ELCAset(Q,T ). Then, ∃t ′ ∈ IT set(Q,T ), s.t.,

root(MCT (t ′)) occurs in MCT (t) and root(MCT (t ′)) ̸= root(MCT (t)). Therefore, t and

t ′ share a common root-to-annotated-node path and root(MCT (t))< root(MCT (t ′)). As a

consequence, the pattern P′t of t ′ precedes the pattern Pt of t with respect to ≺pph (P′t ≺pph

Pt) and thus, t (and all the ITs of Pt) is eliminated from the answer of Q on T according to

XReason. Thus, t ̸∈ XReasonset(Q,T ). We conclude that XReason⊆ ELCA.



41

Proposition 4.5.8. Schema-level SLCA⊆ SLCA.

Proof. Let t ∈ IT set(Q,T ) and t ̸∈ SLCAset(Q,T ). Then, ∃t ′ ∈ IT set(Q,T ), s.t.,

root(MCT (t)) < MCT (root(t ′)). Thus, the root-to-LCA label path of t is a proper pre-

fix of the root-to-LCA label path of t ′ and t ̸∈ Schema-levelSLCAset(Q,T ). We conclude

that Schema-level SLCA⊆ SLCA.

Proposition 4.5.9. MLCAlabel ⊆MLCAlabel+value.

Proof. By the definition of MLCAlabel (see Table 1), if t ∈ MLCAlabelset(Q,T ),

t ∈MLCAlabel+valueset(Q,T ).

Proposition 4.5.10. MLCAvalue ⊆MLCAlabel+value.

Proof. By the definition of MLCAvalue (see Table 1), if t ∈ MLCAvalueset(Q,T ),

t ∈MLCAlabel+valueset(Q,T ).

Proposition 4.5.11. pairwiseSLCA⊆MLCAvalue.

Proof. Let t ∈ IT set(Q,T ) and t ̸∈MLCAvalueset(Q,T ). Then, for a pair of nodes ni and

n j in MCT (T ) annotated by keywords ki and k j, respectively, there exists an instance n′j of

k j in T s.t. LCA(ni,n j) < LCA(ni,n′j) in T . Then, by the definition of pairwiseSLCA (see

Table 1), t ̸∈ pairwiseSLCA. We conclude that pairwiseSLCA⊆MLCAvalue.

4.5.2 Comparison of Filtering Semantics

Consider the query, Q = {Physics, James,Harrison} on the XML tree of Figure 4.9. With

this query, the user requests information about a course or seminar on physics which is

offered by James Harrison or by James and Harrison. The relevant ITs to Q are, IT1 =

{(Physics, 4),(James, 6),(Harrison, 10)}, IT2 = {(Physics, 13),(James, 16),(Harrison,

15)} and IT3 = {(Physics, 40),(James, 41),(Harrison, 41)}. The LCAs of their keyword

instances are (3, course), (12, course) and (39, seminar) and are labeled l1, l2 and

l3, respectively, in Figure 4.9.



42

Figure 4.9 An XML tree.

SLCA [18, 35, 88] eliminates an IT whose LCA is an ancestor of another IT’s LCA.

Therefore, it fails to return IT1 because there is another IT, IT2, whose LCA (node 12)

is a descendant of IT1’s LCA (node 3). Missing correct results reduces the recall of the

approach. Moreover, SLCA returns IT4 = {(Physics, 24),(James, 31),(Harrison, 27)}

with LCA (22, prerequisites) which is an irrelevant result since it involves two dif-

ferent courses. Irrelevant results affect the precision of SLCA.

ELCA [32, 89] returns ITs whose MCT does not comprise an LCA of the query

keywords other than the MCT root. For this reason IT2 is a result for ELCA. IT1 is also

a result of ELCA even though it is not a result of SLCA since its MCT does not comprise

any LCA of the query keywords other than (3, course). This is an improvement of ELCA

over SLCA. However, it fails to eliminate wrong results. For instance, ELCA returns IT4 as

there does not exist another IT with a descendant LCA. In some cases, ELCA has no way

of eliminating an irrelevant answer. This weakness affects its precision.

The V LCA semantics [21, 43] takes into account also the labels of the nodes in

the XML tree. It eliminates an IT if for some pair of annotated nodes, the path between

them comprises two distinct nodes with the same label and at least one of them is an inter-

nal node in the path. V LCA fails to return IT1 because nodes 9 and 10 have the same

label, instructor. Even though, V LCA is intuitive in specific cases, it is prone to



43

missing relevant results in the general case. In addition, it is not able to eliminate irrel-

evant results when they do not contain duplicate labels. For instance, it fails to eliminate

IT5 = {(Physics, 34),(James, 41),(Harrison, 41)} (whose LCA (1, university) is la-

beled as l5 in Figure 4.9) which is irrelevant as it links information from a course and a

seminar through the root of the XML tree.

CV LCA [43] returns an answer which is a subset of V LCAset by enforcing a stricter

rule. If an IT is in the CVLCAset: (a) the IT is in V LCASet, and (b) its MCT does not

comprise an LCA of the query keyword instances other than the MCT root. Condition

(b) amounts to forcing the IT to be part of the ELCAset. Therefore, an IT is returned by

CV LCA if and only if it is in the intersection of V LCAset and ELCAset. Since CV LCA is a

subset of V LCAset and ELCAset, it inherits the recall problems from both approaches. For

instance, it fails to return IT1 which as mentioned above does not belong to V LCAset.

The MLCA semantics [48] requires all keyword instances in a result IT to be pair-

wise meaningfully related. However, the original definition of the meaningfulness relation-

ship in [48] does not distinguish between a keyword matching the content of a node and the

label of a node. Therefore, there are three ways to interpret this relationship in the XML

keyword search context, which lead to three alternative definitions for MLCA semantics,

named here MLCAlabel , MLCAvalue and MLCAlabel+value. MLCAlabel and MLCAlabel+value

take the labels of the nodes in the XML tree into account. According to MLCAlabel two

keyword instances ni and n j are meaningfully related if there exists no other node nk in

T , with the same label as ni, such that LCA(n j,nk) > LCA(ni,n j) in T . In the example

of Figure 4.9, MLCAlabel misses IT1 as it does not meaningfully relate nodes (6, fname)

and (10, lname). Also, it fails to eliminate IT5 as all pairs of keyword instances in IT5

are meaningfully related. MLCAvalue is purely structural that is, it is independent of the

node labels in the XML tree. According to MLCAvalue, two instances ni and n j of the

keywords ki and k j, respectively, are meaningfully related if there exists no other instance

nk of ki in T such that LCA(n j,nk) > LCA(ni,n j) in T . One can see that MLCAvalue is



44

equivalent to pairwiseELCA. The pairwiseELCA semantics returns an IT if the LCA of

any two annotated instances of two distinct keywords in it is also an ELCA of these two

keywords in T . MLCAvalue fails to eliminate the irrelevant result IT4. Finally, according to

MLCAlabel+value, two instances ni and n j of the keywords ki and k j, respectively, are mean-

ingfully related if there exists no other instance nk of ki in T such that label(nk) = label(ni)

and LCA(n j,nk)> LCA(ni,n j) in T . In other words, MLCAlabel+value defines the meaning-

fulness relationship by imposing the conditions of both MLCAlabel and MLCAvalue. Since

MLCAlabel+value =MLCAlabel∪MLCAvalue, it inherits the precision problems of MLCAlabel

and MLCAvalue.

MaxMatch [55] refines SLCA by excluding ITs accepted by SLCA when they in-

volve “disqualified” keyword instances in the XML tree. MaxMatch is a purely structural

semantics since it uses structural criteria to identify disqualified nodes. The formal defini-

tion is shown in Table 4.3. The query answer of MaxMatch is a subset of that of SLCA.

One can see that MaxMatch is less restrictive than pairwiseSLCA which accepts an IT if

the LCA of any two annotated instances of two distinct keywords in it is also an SLCA of

these two keywords in the XML tree. Since, MaxMatch is contained in SLCA, it inherits

the bad recall of SLCA. For instance, in our running example, it misses the relevant IT1.

Moreover, it fails to eliminate IT4 which is irrelevant since, as mentioned earlier, it groups

together two distinct courses.

Schema-level SLCA [42] also refines SLCA by excluding ITs accepted by SLCA

leveraging both structural and semantic information. It excludes an IT accepted by SLCA

if its root-to-LCA label path is a proper prefix of that of another IT. By definition, Schema-

level SLCA is contained in SLCA and as such it demonstrates the poor recall performance

of SLCA but it can even worsen it by excluding relevant ITs retained by SLCA. Figure 1.1

(and not Figure 4.9) shows such an example for query {Physics, James,Harrison} where

the relevant IT whose LCA is node 3 is rejected even though it is accepted by SLCA.

Our approach, XReason, successfully returns all relevant ITs, and eliminates the



45

irrelevant ones. Results IT1, IT2 and IT3 conform to top level patterns in the G≺ graph and

they are retained. The irrelevant IT4 is eliminated because the pattern P1 of IT1 precedes

the pattern P4 of IT4 with respect to the ≺aph relation (P1 ≺aph P4). The pattern P5 of IT5 is

preceded by the pattern P3 of IT3 with respect to the ≺pph relation (P3 ≺pph P5). Thus, the

IT5 is eliminated. All other irrelevant ITs are eliminated using ≺pph.

The ≺pph relation is particularly useful for eliminating irrelevant ITs that link key-

word instances through the root of the XML tree and are almost in all cases meaningless.

In Section 4.6.3 we present a heuristic extension of our algorithms which eliminates pat-

terns connecting keyword instances through the root of the XML tree in order to improve

performance.

4.6 Algorithms

Our implementation of XReason comprises two components. The first one uses a stack-

based algorithm to generate the query patterns and their associated ITs. The second one

constructs the precedence graph G≺ based on the ≺h, ≺aph and ≺pph relations and ranks

the patterns and their respective ITs. We have maintained these processes separate in our

system in order to be able to modify the semantics of query answers (pattern graph con-

struction and pattern ranking) but also to include additional metrics in producing a ranking

for the patterns, if desired. We also present in this section an improvement of the pattern

generation algorithm which avoids generating patterns that are not meaningful and would

be placed in low ranks based on the homomorphism relations, thereby substantially im-

proving the performance of the system. Aggeliki Dimitriou from NTUA also contributed

to the design of the algorithms.



46

4.6.1 Pattern Generation

The algorithm that extracts the query patterns is named PatternStack and is outlined in

Algorithm 1. PatternStack takes as input the keyword query and the inverted lists of the

keyword instances (XML tree nodes) for the query keywords. It returns the patterns of the

query answers associated with their ITs. The helper functions pop, push, constructNewPat-

terns and extendToParent of the PatternStack algorithm are outlined in Algorithm 2.

PatternStack does not wait to extract patterns until after all the result ITs of the

query are computed. Instead, it follows a dynamic approach: it incrementally computes

the patterns on the fly while computing the result ITs and links the ITs to their respective

patterns. A notable feature of PatternStack is that it does not require auxiliary structures

for computing patterns and ITs.

Every entry in an input inverted list consists of the Dewey code of a keyword in-

stance and the label path from the root of the XML tree to this instance. In order to reduce

space consumption, the labels are numerically encoded. The inverted lists are produced

with a single pass of the XML document. Patterns in PatternStack are tree structures. Ev-

ery node in a pattern is associated with the set of keywords which annotate this node and

its descendants in the pattern. This keyword set is encoded as a bitmap over the list of all

keywords. During the pattern construction phase, PatternStack constructs patterns which

do not involve all the keywords and are called partial patterns. These patterns are repre-

sented similarly to complete patterns. Partial patterns are progressively augmented into

complete patterns. Partial and complete patterns are identified by ids (pids). Figure 4.10

shows (among other concepts which will be explained later) how patterns are represented

by PatternStack.

PatternStack processes nodes from the keyword inverted lists in document order.

The algorithm uses a stack to progressively construct the patterns of a query on an XML

tree in a bottom-up way. Each stack entry corresponds to a node of the XML tree and

is associated with the set of all the MCTs that involve its descendant keyword instances.



47

(a) partial patterns

joinRoots

joinRoots

1.2.3.4.3.6

7 8

+

5

+

[010] [001]

[100]

pid=1 pid=2

pid=4pid=5

[010] [001]
1.2.3.4.3.6

1.2.3.4.3 1.2.3.4.3

6

7
[010]

8
[001]

[011]

[100] [011]

1, 2 3

5, 4 6

jointPatterns

3 4

parentPatterns

6

completePatterns

university 1

label ids

courses 2

course 3

prerequisites 4

title 5

instructor 6

7

lname 8

fname

6

pid=3

pid=6

7
[010]

8
[001]

1.2.3.4.3.6
[011]

7
[010]

8
[001]

[011]5
[100]

1.2.3.4.3
[111]

(b) encoded partial patterns

Figure 4.10 PatternStack pattern encoding and combination for Q = {Physics,
James, Harrison} on the data tree of Figure 4.9.

These MCTs can be complete (i.e., they involve instances of all the query keywords) or

partial (i.e., they involve instances of a proper subset of the query keywords). They are

represented in the stack entry by their corresponding partial or complete patterns. For each

pattern only an id (pid) is stored.

In order for a node n to be pushed into a stack, the top stack node should be the

parent of n. This is guaranteed by appropriate pops of non-ancestor nodes and pushes of all

the ancestors of n (Algorithm 1, lines 8-12). For each new node, a partial pattern MCT is

constructed (Algorithm 2, line 13). If this pattern has been constructed before, it appears in

the list patterns and its pid is known. Otherwise, it is added to patterns and gets a new pid

(Algorithm 2, line 14). Then, it is combined with all the existing patterns of the top stack



48

node to build new patterns. The resulting new pattern set is unioned with the old pattern

set of the top stack node (Algorithm 2, lines 15-16).

Algorithm 1: PatternStack algorithm.
1 PatternStack(IN: k1, . . . ,kn: keyword query, invL: inverted lists)
2 pattern[] patterns /* Array of patterns. The array indexes

are pattern ids */
3 int[] completePatterns /* Array of complete patterns’ ids */
4 int[][][] jointPatterns /* Mappings from pairs of patterns to

their joint patterns */
5 int[][] parentPatterns /* Mappings from patterns to their

parent patterns */
6 s = new Stack()
7 while currentNode = getNextNodeFromInvertedLists() do
8 while s.topNode is not ancestor of currentNode do
9 pop(s)

10 while s.topNode is not parent of currentNode do
11 push(s, ancestor of currentNode at
12 s.topNode.depth+1, "")

13 push(s, currentNode, keyword)

14 while s is not empty do
15 pop(s)

During a pop action, all complete patterns are removed from the top stack entry

(Algorithm 2, lines 3-5). The Dewey code of the top stack node is associated with all com-

plete patterns, since it is the root of the MCTs of the ITs corresponding to these complete

patterns (Algorithm 2, line 6). The remaining (partial) patterns are extended to the parent

of the top node (Algorithm 2, line 8 and 32-41). Note that only the root node of a pat-

tern MCT is associated with a path of label ids, while the rest of the nodes are associated

only with their own label id (Figure 4.10b). This scheme is implemented in lines 37-38 of

Algorithm 2. The annotation of the former root is also propagated to the new one (Algo-

rithm 2, line 37). The top entry is popped (Algorithm 2, line 9) and its extended patterns

are combined with the patterns of the parent stack entry to produce new ones (Algorithm 2,

line 10). The patterns are combined through an operation called joinRoots (Algorithm 2,



49

Algorithm 2: PatternStack algorithm.
1 pop(Stack s)
2 for tempId = s.top.patterns.next() do
3 if temp is complete then
4 s.top.removePatternId(tempId)
5 completePatterns.add(tempId)
6 patterns[tempId].addLCA(s.top.dewey())

7 else
8 childPatterns.add(extendToParent(tempId))

9 s.pop()
10 newPatternIds = constructNewPatterns(s.top.patterns, childPatterns)
11 s.top.addPatternIds(newPatternIds)

12 push(Stack s, Node n, String keyword)
13 newP = new Pattern(n.labelId, flags.set(id(keyword)))
14 newPid = addToPatternsIfNotExists(newP)
15 newPatternIds = constructNewPatterns(s.top.patterns, array(newPatternId))
16 s.top.unionPatternIds(newPatternIds)

17 int[] constructNewPatterns(int[] currentPatternIdsA, int[] currentPatternIdsB)
18 foreach currentPatternIdsA as idA do
19 foreach currentPatternIdsB as idB do
20 if patterns[idA].keywordFlags AND patterns[idB].keywordFlags == 0

then
21 if jointPatterns[min(idA, idB), max(idA, idB)] is set then
22 newPatterns.add(jointPatterns[min(idA, idB),
23 max(idA, idB)])

24 else
25 newP = new Pattern(joinRoots(patterns[idA], patterns[idB]))
26 newP.keywordFlags = patterns[idA].kwFlags OR
27 patterns[idB].kwFlags
28 newPid = addToPatternsIfNotExists(newP)
29 newPatterns.add(newPid)
30 jointPatterns[min(idA, idB), max(idA, idB)] = newPid

31 return newPatterns

32 int extendToParent(int childPid)
33 if parentPatterns[childPid] is set then
34 return parentPatterns[childPid]

35 else
36 childP = copyOf(patterns[childPid])
37 parentP = new Pattern(parentLabel(childP.label), childP.kwFlags)
38 childP.label = tail(childP.label)
39 parentP.addChild(childP)
40 parentPid = patterns.add(parentP)
41 parentPatterns[childPid] = parentPid



50

line 25) which simply merges their roots. The resulting pattern is called jointPattern. Fig-

ure 4.10 shows examples of joinRoots operations on partial patterns. Finally, the extended

patterns together with newly combined ones are added to the parent stack entry.

Algorithm PatternStack considers any alternative way of combining partial patterns

into a complete pattern only once. It stores the patterns in the patterns array and keeps

only their pids in the stack entries. Every time two patterns are combined to produce a

new one, the pids of the combined patterns and that of the jointPattern are kept in the

table jointPatterns (Algorithm 1, line 4). Another table (parentPatterns in line 5 of Al-

gorithm 1) associates each pattern MCT childP with the pattern parentP produced when

childP is augmented with an edge to the parent node of its root (Algorithm 2, lines 32-41).

These two tables are consulted before any pattern is constructed (Algorithm 2, lines 21 and

33) in order to avoid extending a pattern which has already been extended or combining

two patterns that have already been combined. Function addToPatternsIfNotExists() (Algo-

rithm 2, lines 14 and 28) checks if a newly constructed pattern has been constructed before.

This function compares the new pattern only with stored patterns having: (a) the same root

label path and (b) the same root annotation. The comparison is performed exploiting a

unique string representation of each pattern, which uses the label encodings and the anno-

tation bitmaps of the pattern nodes. Function checkIfExistsOrAddToPatterns() returns the

existing pid or the new pid assigned to the new pattern added to the array patterns.

The example of Figure 4.10 shows how PatternStack combines and extends pat-

terns. Patterns P1 and P2 are combined to construct P3. Pattern P3 is extended to produce

P4. Pattern P4 combined with P5 produces P6. The figure shows also the encoded labels

and label paths as well as the bitmap keyword annotations.

The previous discussion in this section proves the following proposition.

Proposition 4.6.1. The PatternStack algorithm correctly computes all the patterns of a

keyword query on the set of inverted lists of an XML tree.

Let d be the depth of the data tree and |S| be the total number of nodes in the



51

inverted lists. Each insertion of a node from the inverted lists may require at most d pops

from and d pushes onto the stack. Let p be the number of partial patterns a stack entry can

contain. When a node is pushed onto the stack, it may be combined with at most p patterns

of the parent stack entry. This takes O(p) time. When a node is popped from the stack, all

its partial patterns are extended with an edge to their parent node (the new top entry in the

stack). Assuming all the patterns of the popped node are partial, this takes O(p). They are

also combined with the partial patterns of the parent node to produce new patterns which

takes O(p2). The whole process takes O(|S|d p2).

4.6.2 Graph Construction and Ranking

The second component of our system constructs the precedence graph G≺ and ranks the

patterns. This is implemented by algorithm PatternGraph. Algorithm PatternGraph takes

as input the patterns produced by PatternStack and incrementally constructs G≺ by check-

ing for the existence of the homomorphism relations ≺h,≺aph and ≺pph between each new

pattern and the patterns in G≺. Then, it uses the graph to rank the patterns as described in

Section 4.4. There are two sources of complexity in this process: (a) checking for the ex-

istence of the ≺h,≺aph and ≺pph relations between two patterns (which involves checking

for the existence of the different types of homomorphisms), and (b) applying these checks

to a large number of pairs of patterns.

In order to deal with (a), PatternGraph exploits the properties of the ≺h, ≺aph and

≺pph relations as this is shown by the next four propositions.

Property 1. Let P and P′ be two patterns of a query on an XML tree. If the number of

root-to-leaf paths of P is greater than the number of root-to-leaf paths of P′, then P ̸≺h P′.

The proof of Property 1 is derived from the fact that the annotation (subset of the

keywords) of an annotated node n′ in P′ which is mapped by a homomorphism to a node n

in P should be a subset of the annotation of n. Since the numbers of annotating keywords



52

in two patterns are equal, the number of root to leaf paths in P cannot exceed that of P′.

Property 2. Let P and P′ be two patterns of a query on an XML tree. If the height of the

MCT of P is greater than that of the MCT of P′, then P ̸≺aph P′.

Clearly, if the height of the MCT of P is greater than that of the MCT of P′, the

longest path in the MCT of P cannot be mapped by a path homomorphism to any path in

the MCT of P′, and therefore, P ̸≺aph P′.

Property 3. Let P and P′ be two patterns of a query on an XML tree. If the labels of nodes

annotated by the same keyword in P and P′ are not the same, then P ̸≺h P′, P ̸≺aph P′,

P′ ̸≺h P and P′ ̸≺aph P.

Indeed, it is easy to see that there is no homomorphism from the MCT of P to that

of P′ and path homomorphisms from the paths of the MCT of P to those of the MCT of P′

if the labels of their nodes annotated by the same keywords are not the same.

Property 4. Let P and P′ be two patterns of a query on an XML tree. P ̸≺pph P′, if one of

the following conditions does not hold: (a) the LCA depth of P′ is smaller than the LCA

depth of P, (b) the root to LCA path of P′ is a prefix of the root to LCA path of P, and (c)

the maximum length MCT path in P′ is longer than the minimum length MCT path in P.

The proof of Property 4 can be directly derived from the definition of path homo-

morphism and the ≺pph relation.

Based on these properties, PatternGraph avoids initiating in most cases the check-

ing for the existence of homomorphisms or path homomorphisms between patterns by stor-

ing numeric information (e.g., the number of root to leaf paths, the height of the MCT, the

LCA depth) with every pattern at construction time.

To support checking for path homomorphisms when this is needed, the MCT root-

to-annotated-node paths, including the annotations, are represented as strings. Then, check-

ing for the existence of path homomorphisms reduces to string matching starting with the

annotations.



53

In order to address the complexity related to the large number of checks between

patterns (which are needed in order to determine the existence of edges between nodes),

PatternGraph avoids constructing some paths in the graph G≺ which do not affect the final

ordering of the patterns. This is based on the following proposition.

Proposition 4.6.2. Let P and P′ be two nodes in the graph G≺. If there is an edge from P to

P′ in G≺ (that is P≺ P′) any edge from the ancestors of P to P′ does not alter the ordering

of the patterns produced by G≺.

Proof. The ordering of the patterns produced by G≺ depends on their levels (GLevel) in

the graph G≺ . The GLevel value of a pattern is the maximum distance of the pattern from

a source node in G≺. Since the transitive edges have smaller distances to the source nodes,

they do not affect the GLevel value of a pattern. Therefore, they do not alter the ordering

of the patterns produced by G≺.

Clearly, because of Proposition 4.6.2, transitive edges can be removed from the G≺

graph.

Graph G≺ is stored in the form of an adjacency list. For each pattern (node) P, a list

of pointers to the parent nodes and a list of pointers to the child nodes are maintained. We

also maintain the list of source nodes and the list of sink nodes in G≺. When a new pattern

is considered PatternGraph checks the existence of homomorphisms starting with a sink

node of G≺ and proceeds in a bottom-up way. The sink node list supports the bottom-up

computation and the source node list is used for easily detecting the minimal patterns at the

end of the process.

The outline of algorithm PatternGraph is shown in Algorithm 3. Algorithm Pat-

ternGraph compares every pattern Pnew in the input list PList of patterns with the patterns

Pold in the Lsink list by calling procedure Compare (lines 6-12). If Pold ≺ Pnew, an edge

from Pold to Pnew is added to G≺ and Lsink is updated if needed (lines 21-24). If Pnew ≺ Pold

or Pnew and Pold are incomparable w.r.t. ≺, procedure Compare is recursively called for all



54

parents P0 of Pold (lines 24-29). If P0 ≺ Pnew and Pnew ≺ Pold , the transitive edge from P0

to Pold is removed (lines 28-29). If Pnew ≺ Pold an edge from Pnew to Pold is added to G≺

and Lsource is updated if needed (lines 30-33). Further optimizations based on Proposition

4.6.2 (not shown in the outline of Algorithm 3) are implemented in PatternGraph to avoid

adding transitive edges.

The previous discussion in this section justifies the next proposition about Algo-

rithm PatternGraph.

Proposition 4.6.3. Algorithm PatternGraph correctly constructs the graph G≺ given a set

of patterns as input.

Let m be the number of patterns. Procedure Compare compares each pattern to at

most m other patterns. That is, it performs O(m2) comparisons. Comparing one pattern to

another for the ≺h relation can be done in linear time on the size of the pattern assuming

every node is annotated by the keywords of its descendant nodes and sibling nodes are

ordered based on the annotating keywords. Thus, this takes O(dk), where d is the depth

of the XML tree and k is the number of keywords. Comparing two patterns for the ≺pph

relation takes O(dk2) since a node annotated by keyword ki is allowed to map to a node

which is not annotated by ki but labeled by ki. Finally, comparing two patterns for the≺aph

relation takes O(d2k2) since, in this case, a path can even map different subpaths of another

path. Therefore, the PatternGraph algorithm constructs the graph G≺ in O(m2d2k2) time.

In practice, by exploiting the properties of the homomorphism relations mentioned earlier

the algorithm very efficiently avoids most of these comparisons and checks.

After the graph G≺ is constructed, the order O is extracted by using the GLevel,

MCT Depth and MCT Size values of each pattern. MCT Depth and MCT Size are calculated

and stored during the generation of the patterns. In order to calculate the GLevel values, the

graph G≺ is traversed and the GLevel value for each pattern is set to the maximum GLevel

value of its parents incremented by one.

The filtering semantics for XReason depends on the number k of top levels in the



55

Algorithm 3: PatternGraph algorithm.
1 PatternGraph(IN: PList: list of patterns)
2 boolean[] visited /* Boolean visited flags for patterns */
3 Lsink = [] /* List of sink patters */
4 Lsource = [] /* List of source patterns */
5 G≺ = [] /* Empty precedence graph */
6 foreach P in PList do
7 if G≺ is empty then
8 Lsink.add(P)
9 Lsource.add(P)

10 else
11 foreach P′ in Lsink do
12 Compare(P, P′)

13 if P.parents is empty then
14 Lsource.add(P)

15 if P.children is empty then
16 Lsink.add(P)

17 Reset all visited flags

18 Compare(Pnew, Pold)
19 if Pold .visited=false then
20 Pold .visited=true
21 if Pold ≺ Pnew then
22 Add edge(Pold,Pnew) to G≺
23 if Pold in Lsink then
24 Lsink.remove(Pold)

25 else
26 foreach P0 in Pold .parents do
27 Compare(Pnew, P0)
28 if P0 ≺ Pnew and Pnew ≺ Pold then
29 remove edge(P0,Pold) from G≺

30 if Pnew ≺ Pold then
31 add edge(Pnew,Pold) to G≺
32 if Pold in Lsource then
33 Lsource.remove(Pold)

graph G≺. The patterns (nodes) that satisfy this condition (and their ITs thereon) are ob-

tained through a depth first traversal of G≺ up to level k.



56

4.6.3 An Extension of PatternStack

In this section, we present an extension of PatternStack. This extension is based on the

observation that the patterns in which the MCT root coincides with the pattern root are

usually meaningless. Indeed, these are patterns that link the keyword instances through the

root of the XML tree which suggests that these keyword instances are not meaningfully

related. We name these patterns root patterns. Root patterns usually represent a large

percentage of all the patterns. Similar remarks about the meaninglessness of root patterns

have been made in the context of different semantics [79] in order to avoid their processing.

The semantics of XReason is expected to capture the meaninglessness of such pat-

terns and eventually rank them in low ranks (in the case of ranking semantics), or exclude

them from the query answer (in the case of filtering semantics). Both ≺aph and ≺pph rela-

tions (but in particular the≺pph relation) are effective in pushing down in the G≺ graph the

root patterns. Further, MCT Depth and MCT Size rank low the root patterns among patterns

with the same GLevel value.

Nevertheless, even though we do not expect to have an improvement in the effec-

tiveness of XReason from the pruning of root patterns, terminating their construction before

they are even generated substantially improves the performance of PatternStack. Further,

invoking PatternGraph on a much smaller number of patterns, greatly reduces the number

of pattern comparisons and the execution time of that algorithm too.

It is important to note that the extended ordering O ′ of the non-root patterns pro-

duced by the extended PatternStack complies with the original ordering O of all the patterns

produced by PatternStack. That is, the extended PatternStack does not alter the order of the

remaining patterns. In order to support this claim we first show the following proposition.

Proposition 4.6.4. Let P1 and P2 be two patterns. If P1 ≺ P2 and P1 is a root pattern then

P2 is also a root pattern.

Proof. Let P1 and P2 be two patterns. If P1 ≺ P2, then one of the following relations hold:



57

P1 ≺h P2, P1 ≺aph P2 or P1 ≺pph P2. We prove the proposition above by considering these

cases:

(a) If P1 ≺h P2 or P1 ≺aph P2, and P1 is a root pattern, for the needs of≺h or≺aph relations,

the root of the MCT of P1 has to be mapped to a node in the MCT of P2. Since, the

label of the root of the XML tree is unique, P2 is also a root pattern.

(b) If P1 ≺pph P2, the root of the MCT of P1 is mapped to a descendant of the root of the

MCT of P2. Therefore, P1 cannot be a root pattern.

Proposition 4.6.4 states that if a pattern in the G≺ graph is a root pattern, all its

descendant patterns are also root patterns. Consider the ordering O of the patterns induced

by the G≺. If we eliminate all root patterns and their incident edges from G≺, the order

between the remaining non-root patterns will be preserved in the ordering O ′ of the pat-

terns induced by the resulting graph G′≺ (which is the graph produced by the extended

PatternStack). This is formalized by the next proposition.

Proposition 4.6.5. Let P1 and P2 be two non-root patterns. If P1 precedes P2 in the original

ordering O then P1 also precedes P2 in the extended ordering O ′.

Proof. Rank of a pattern with respect to the XReason semantics depend on GLevel,

MCT Depth and MCT Size, respectively. Within these metrics, only GLevel is affected

by the organization of the graph.

Based on Proposition 4.6.4, one can see that root patterns are always preceded by

non-root patterns with respect to ≺, thus they are placed farther from the source nodes

compared to non-root patterns. So, the exclusion of root patterns from the G≺ graph does

not affect the GLevel values of non-root patterns. Therefore, in the extended ordering O ′,

the original order of non-root patterns is preserved.

Depending on Proposition 4.6.5, the extended PatternStack algorithm can be safely

used to improve the performance of PatternStack.



58

The modification of PatternStack for the implementation of the extension under

discussion is confined to the pop() procedure of Algorithm 2. The extended PatternStack

treats in a different way the nodes that are children of the document root. The patterns that

are rooted on them are not extended to their parent (i.e., the document root) in order to

construct new patterns. Thus, if the stack contains exactly two entries (i.e., the document

root and one of its children), lines 6, 8 and 9 are not executed. This way, the children of the

root node may contribute only complete patterns, while their partial ones are not further

processed.

4.7 Experimental Evaluation

We performed experiments to measure the efficiency and effectiveness of XReason as a

filtering and ranking system. We compare the quality of our results to that of previous

approaches.

In contrast to the IR domain [20], there is no standard benchmark to evaluate the

effectiveness of keyword search on data-oriented XML [79].

We use Mondial, SIGMOD, EBAY, NASA and DBLP datasets for the experiments

which are obtained from the UW XML Data Repository2. Statistics for these datasets

are depicted in Table 4.2. We do not distinguish between elements and attributes, and

we represent attributes in these datasets as elements. For the effectiveness experiments,

we use Mondial and SIGMOD datasets which are often used for this purpose in XML

keyword search research [6, 53]. We used NASA and DBLP datasets which are larger

for the scalability experiments. NASA and DBLP datasets show different characteristics:

DBLP is a large but shallow dataset whereas NASA is a relatively smaller but deep dataset.

Because of these different characteristics, we can measure the efficiency of our algorithms

in a representative environment. The experiments were conducted on a 2.9 GHz Intel Core

2http://www.cs.washington.edu/research/xmldatasets/



59

Table 4.2 Mondial, SIGMOD, DBLP and NASA Dataset Statistics

Mondial SIGMOD DBLP NASA
Size 1 MB 467 KB 127 MB 23 MB
# nodes 69,846 15,263 3,736,406 523,963
# distinct tags 50 12 50 70
# distinct label paths 119 12 145 111
Average depth 3.00 4.60 1.93 4.56
Maximum depth 5 6 5 7

i7 machine with 3 GB memory running Ubuntu.

We first introduce the metrics we use for the experimental evaluation; then, we

present our results on effectiveness for both filtering and ranking semantics, and finally we

present our efficiency experiments.

4.7.1 Metrics

Since the ranking approaches we consider may view a number of results as equivalent (i.e.,

having the same rank) we extend below the metrics that are usually used to measure the

quality of ranking. In order to determine the ground truth for the effectiveness experiments,

we employed five expert users who are not involved in this project which characterized the

query patterns as relevant or irrelevant to the query. The relevancy of each pattern (relevant

or irrelevant) was determined by the majority of the characterizations of the expert users.

Filtering Experiments. Since XReason works with patterns, if a pattern is among those

with the smallest k GLevel values, all candidate results that conform to it are regarded as

relevant and are returned to the user. We use precision and recall to measure the effective-

ness of filtering semantics. Precision is the ratio of the number of relevant results in the

result set of the system to the total number of results returned by the system. Recall is the

ratio of the number of relevant results in the result set of the system to the total number of

relevant results.

Ranking Experiments. For the ranking experiments, we employ two metrics: Mean Av-



60

erage Precision (MAP) and precision@N.

MAP is the mean average precision of a set of queries with average precision of

a query being the average of precision scores after each relevant result of the query is re-

trieved. As a ranking effectiveness metric, MAP takes the order of the results into account.

We extend MAP so that it takes into account equivalence classes of results. An

equivalence class in a ranked list is a set of all the results which have the same rank. Dif-

ferent orderings of these results in the ranked list would affect the value of MAP [69]. For

this reason, we define and compute worst and best versions for MAP. In the worst (resp.

best) version, the ranked list is assumed to have the correct results ranked at the end (resp.

beginning) of each equivalence class. This extension allows us to compute upper and lower

bounds for the ranking metrics between which the scores of all the possible rankings lie. We

denote these metrics as MAPworst and MAPbest . We also computed the expected MAP value

by averaging over all the queries, the average AP of the possible rankings of the results of

every query. This latter metric is denoted MAPexp. Clearly, MAPworst ≤MAPexp ≤MAPbest .

When the possible rankings was too numerous to be computed exhaustively, we used sam-

pling to compute MAPexp.

In order to assess the effect of answer set size on precision in ranking experiments,

we also measure precision with a cutoff point for the number N of results which is called

precision@N (P@N). Similarly to MAP, we consider two versions of P@N: P@Nworst and

P@Nbest , and also compute the expected P@N value.

4.7.2 Effectiveness of Filtering Semantics

For the filtering experiments, we compare XReason with k = 1 (that is, we consider only

the patterns with the smallest GLevel value) with three well-known baseline approaches:

SLCA [18, 35, 88], ELCA [32, 89] and VLCA [21, 43]. We also compare with two more

recent approaches, XReal [6, 7] and the Coherency Ranking (CR) approach [79].

In order to allow the comparison of XReason, which returns ITs and not simply



61

LCAs with the other approaches, we use the definitions of SLCA, ELCA and VLCA se-

mantics in terms of ITs provided in Table 4.1. XReal infers promising result node types

(label paths from the root) and ranks and returns the nodes that match these node types. In

order to compare XReal with XReason we adjusted XReal in Table 4.3 so that it returns ITs

and we named this new approach ITReal. For a query Q on an XML tree T , IT set(Q,T )

denotes the set of ITs of the instances of Q on T. XRealNodes denotes the set of nodes in T

that match the node type inferred by XReal.

Table 4.3 Definitions of XReal Semantics in Terms of ITs

Approach Definition of answer of Q on T
IT Real {t | t ∈ IT set(Q,T ),n = root(MCT (t)), and ∃ n′ (n′ ∈ XRealNodes and n′ < n)}

CR does not need an adjustment as it returns subtrees similar to the ITs of XReason.

CR can be directly compared to XReason because, like XReason, it partitions the results

into patterns. It also characterizes the relevance of the patterns, not of individual results.

Since CR excludes root patterns, we consider in the effectiveness experiments non-root

patterns. As in [79], the factor f (n) of NTC is set to n2/(n−1)2 and the threshold of NTC

is set to zero.

We run 20 queries on Mondial and SIGMOD datasets shown in Tables 4.4 and 4.5,

respectively. Most of the queries are chosen from previous papers: M1-M7 and S1-S8 from

[57], M8-M12 and S9-S11 from [53], M13 from [54], M14-M16 from [55], and S12-S15

from [45]. Tables 4.4 and 4.5 also show the total number of patterns (results) and the num-

ber of relevant patterns (results) for each query. Precision scores of the different approaches

for all the queries on the Mondial and SIGMOD datasets are presented in Figures 4.11 and

4.12, respectively. Recall scores are only shown for the queries on Mondial in Figure 4.13.

The recall scores for the queries on SIGMOD are all equal to 1.0 for all approaches with

the exception of XReason on query S2 which is 0.95.

Table 4.6 provides average precision and recall scores for all approaches on both

datasets. All approaches show good recall with CR and ITReal topping the list and XReason



62

Table 4.4 Queries Used in the Experiments on the Mondial Dataset

Query Keywords # relevant # patterns # relevant # resultsID patterns results
M1 torneaelv, country, province 1 1 1 1

M2
roman, catholic, percentage,

1 8 2 36
united, states

M3 population, 87, albania, city 1 7 12 504
M4 organization, name, members 2 2 10,111 10,111
M5 country, government, republic 2 17 115 3,579
M6 country, ethnicgroups, german 2 14 19 3,066
M7 city, washington, province 3 37 6 149,352
M8 france, territory 1 1 3 3
M9 lake, located 2 3 97 124
M10 singapore, country 3 4 4 6
M11 religions, christian, muslim 2 6 86 111
M12 province, houston, dallas 1 6 1 294
M13 belarus, population 2 2 4 4

M14
united, states, birmingham,

2 12 6 3,198
population

M15
ethnicgroups, chinese, indian,

2 6 16 183
capital

M16 country, muslim 2 8 101 2,209

M17
international, monetary, fund,

1 1 1 1
established

M18 government, democracy, muslim 2 2 17 17
M19 jewish, percentage 2 9 17 109
M20 japan, tokyo, population 2 10 4 244

and ELCA doing almost equally well. However, in terms of precision ITReal and CR

display the worst scores closely followed by ELCA and SLCA. Both ITReal and CR, as

XReason, are also ranking systems and they can use their ranking capacity to reduce the

�� �� �� �� �� �� �� �	 �
 ��� ��� ��� ��� ��� ��� ��� ��� ��	 ��
 ���

��

��

��

��

�	

���

������ ������ ���� ���� ���� ��

Figure 4.11 Precision scores for the queries of Table 4.4 on the Mondial dataset.



63

Table 4.5 Queries Used in the Experiments on the SIGMOD Dataset

Query Keywords # relevant # patterns # relevant # resultsID patterns results

S1
author, position, 01,

1 217 2 74,392,500
harry, article

S2
jim, gray, title, initpage,

2 67 19 8,976,784
endpage

S3 initpage, 3, endpage, 7 1 65 4 56,210
S4 author, nicolas 1 3 2 197
S5 article, title, author 2 10 3,738 11,309,368
S6 initpage, 7, article, endpage 2 55 20 1,940,838
S7 volume, 11, article 1 9 12 934
S8 asuman, pinar, article 1 5 4 135
S9 directions, database, research 1 5 1 366

S10
jennifer, widom, jeffrey, d,

1 47 2 294
ullman

S11 relational, model, author, date 1 10 1 238
S12 karen, title 1 2 2 51
S13 anthony, data 1 2 2 55
S14 article, data, john 1 5 3 7,801
S15 database, volume, number 1 3 347 374
S16 divesh, srivastava, database 1 5 2 174
S17 michael, stonebraker, postgres 1 6 3 23
S18 database, systems, security 1 5 1 417

S19
christos, faloutsos, signature,

1 2 1 2
files

S20
efficient, maintenance,

1 24 1 36materialized,views,
subrahmanian

�� �� �� �� �� �� �� �	 �
 ��� ��� ��� ��� ��� ��� ��� ��� ��	 ��
 ���

��

��

��

��

�	

���

������ ������ ���� ���� ���� ��

Figure 4.12 Precision scores for the queries of Table 4.5 on the SIGMOD dataset.

negative effect of a large size answer set on precision. For this reason, in the next section we

also measure P@N. As we can see, XReason largerly outperforms all the other approaches

in terms of precision and shows almost perfect recall on both datasets.



64

�� �� �� �� �� �� �� �	 �
 ��� ��� ��� ��� ��� ��� ��� ��� ��	 ��
 ���

��

��

��

��

�	

���

������ ������ ���� ���� ���� ��

Figure 4.13 Recall scores for the queries of Table 4.4 on the Mondial dataset.

Table 4.6 Average Precision and Recall Scores for the Queries of Table 4.4 and 4.5

Dataset Metric XReason ITReal SLCA ELCA VLCA CR

Mondial
Avg. Prec. 0.84 0.45 0.46 0.50 0.66 0.47
Avg. Rec. 0.96 1.00 0.94 0.96 0.95 1.00

SIGMOD
Avg. Prec. 0.96 0.25 0.50 0.52 0.88 0.10
Avg. Rec. 1.00 1.00 1.00 1.00 1.00 1.00

4.7.3 Effectiveness of Ranking Semantics

In order to evaluate the effectiveness of the ranking semantics of XReason we computed

the queries of Tables 4.4 and 4.5 under XReason, ITReal and CR semantics on the datasets

and we measured best and worst bounds and expected values for MAP and P@N.

Table 4.7 shows the MAP scores. XReason outperforms CR and largerly outper-

forms ITReal. Since XReason ranks the correct results almost always higher than the in-

correct ones, it has almost perfect MAP scores.

Table 4.7 Best and Worst MAP Scores for the Queries of Tables 4.4 and 4.5

Dataset Semantics MAPworst MAPbest MAPexp

Mondial
XReason 0.97 0.97 0.97
ITReal 0.48 0.76 0.51

CR 0.71 0.71 0.71

SIGMOD
XReason 1.00 1.00 1.00
ITReal 0.34 0.63 0.37

CR 0.90 0.90 0.90

Best and worst P@N scores are shown in Figures 4.14 and 4.15. For a given query

and a given approach, best and worst scores are shown on the same column with worst



65

scores superimposing best scores, i.e., if the scores are the same, only worst scores are

visible. N = 10 for all datasets because most of the queries have few correct results. The

average P@10exp scores are displayed in Table 4.8. For ITReal, limiting the result set size

did not have a significant effect on the precision for most of the queries, which means that

some incorrect results are ranked high in the result list. XReason has perfect P@10 scores

in almost all cases.

�� �� �� �� �� �� �� �	 �
 ��� ��� ��� ��� ��� ��� ��� ��� ��	 ��
 ���

��

��

��

��

��

��

��

��

�	

�


���


����������� 
������������ �����������������

������������������ ���������������� �����������������

Figure 4.14 Best and worst P@10 scores for the queries of Table 4.4 on Mondial dataset.

�� �� �� �� �� �� �� �	 �
 ��� ��� ��� ��� ��� ��� ��� ��� ��	 ��
 ���

��

��

��

��

��

��

��

��

�	

�


���


����������� 
������������ �����������������

������������������ ���������������� �����������������

Figure 4.15 Best and worst P@10 scores for the queries of Table 4.5 on SIGMOD dataset.

Table 4.8 Average P@10exp Scores for the Queries of Tables 4.4 and 4.5

Dataset XReason ITReal CR
Mondial 0.97 0.44 0.60
SIGMOD 1.00 0.27 0.28



66

4.7.4 Efficiency

In order to evaluate the efficiency of the algorithms we proposed: (a) we compared the

computation time of our original algorithm to a naïve algorithm, (b) we run scalability

experiments for the original and the extended algorithms, and (c) we compared the original

vs. the extended algorithm.

The naïve algorithm for implementing the XReason semantics generates all the ITs

of the query using the inverted lists of the keywords and iterates over them to extract the

patterns. Then, it checks for the existence of homomorphisms between the pairs of patterns

in a straightforward way and computes the query results. Figure 4.16 shows the compu-

tation times of the odd numbered queries of Tables 4.4 and 4.5 for our original algorithm

and the naïve algorithm on the Mondial and SIGMOD datasets. We only report on half of

the queries. Note that the y-axis is in logarithmic scale. Times exceeding 10,000 seconds

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

M1 M3 M5 M7 M9 M11 M13 M15 M17 M19

XReason Naive

(a) Mondial

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

S1 S3 S5 S7 S9 S11 S13 S15 S17 S19

XReason Naive

(b) SIGMOD

Figure 4.16 XReason execution times (in secs) for the queries of Tables 4.4 and 4.5.



67

Table 4.9 Queries Used in Scalability Experiments

Algorithm Dataset Keywords

Original DBLP
osawa, sculptured, cricket,

algorithm
marriages, erhebung, ilpo

NASA
iccd, brightnesses, colloquium,
hendry, perugia, attribute

Extended DBLP
srinivas, elias, masao,

algorithm
divyakant, sums, lectures

NASA
medium, dr, seen,
heii, oxygen, comparing

for the naïve algorithm are shown with arrows. Our algorithm is at least two orders of

magnitude faster than the naïve algorithm in most of the cases. The average computation

times for our algorithm over 20 queries on Mondial and SIGMOD datasets are 0.50 and

0.51 seconds, respectively. This performance is acceptable for real-time search systems

even without additional optimizations.

For our scalability experiments, we used DBLP and NASA datasets. For the origi-

nal algorithm, we measured the computation time in relation to the output size (the number

of ITs). The original algorithm depends heavily on the output size. For the experiments, we

use the most frequent four, five and six keywords to form three different queries from the

randomly chosen keywords shown in Table 4.9. Table 4.9 lists the keywords in descending

order of their frequencies. For each query, we truncated the keyword inverted lists at 20%,

40%, 60% and 80% of their length. The computation times are presented in Figure 4.17.

Obviously, the higher the number of keywords, the higher the number of ITs returned. As

we can see in Figure 4.17, the original algorithm scales well even though the number of

ITs increases very fast with the percentage of the inverted lists being used.

For the scalability experiments on the extended algorithm, we measured the compu-

tation time in relation to the input size (the total number of keyword instances in the XML

tree of all the query keywords). The extended algorithm depends mainly on the input size

since it eliminates non-root patterns and returns a restricted number of ITs. We selected

queries from Table 4.9 and truncated keyword inverted lists as we did in the previous scal-



68

� ������� ������� ������� ������� �������
�

���

	��

���

���

���

���

���


��

���
�
�

�
�

�
�

������������������������� !

�
��

��
��

 �
" 

!

(a) NASA dataset

� ������� ������� ������� ������� �������
�

��

���

���

	��

	��

���

���

���

��


��


��

�
��
���������
������������

�
��

��
��

��
 �
�

(b) DBLP dataset

Figure 4.17 Computation time vs. output size for the original algorithm using queries with
4, 5 and 6 keywords.

ability experiment. We present the measured computation times in Figure 4.18. As shown

in the figure, the extended algorithm scales smoothly (it is almost linear). This is due to the

fact that the extended algorithm prunes partial patterns early on in the computation before

they become complete patterns as long as they are rooted at the root of the XML tree.

For our experiments on comparing the original and the extended algorithm, we run

five queries on the DBLP dataset to measure the number of ITs, the number of generated

patterns, and the computation time of the two algorithms. The queries are shown in Table

4.10. We selected real-world queries in order to guarantee that they return a reasonable

number of non-root patterns and therefore, to highlight the differences in the performance

of two algorithms. The results are shown in Figure 4.19. In Figures 4.19a and 4.19b, we

show the number of ITs and the number of generated patterns for each query, respectively.



69

�� ��� ��� ��� ��� ��� ��� ��� 	��
�

��

��

��

��

��

��

��


��


��

�
����������������
���������
�� ��!��
"��
#�"��������
�� ��!"$

�
��
��
��
"�
#"
$

(a) NASA dataset

��� ��� ��� ��� ��� ��� ��� 	�� 
�� �����
�

�

��

��

��

��

��

�
�

�
�

�
�

�������������������������� ���!"��#���$���%�$�� �������!"��#$&

�
��

��
��

$�
%$

&

(b) DBLP dataset

Figure 4.18 Computation time vs. input size for the extended algorithm using queries with
4, 5 and 6 keywords.

The y-axes are in logarithmic scale. The number of root patterns is significantly greater

than the number of non-root patterns for all queries. The same remark applies to the num-

ber of root and non-root ITs. In Figure 4.19c, we show the computation time of both

algorithms. As we can see in this figure, the extended algorithm significantly outperforms

the original algorithm. These results show that the extended algorithm is a good substitute

of the original one in real-world applications.

4.8 Conclusion

We have proposed XReason, a novel approach for providing ranking and filtering semantics

to keyword queries on XML data which is based on reasoning with patterns. The patterns

record the structural and semantic characteristics of the query matches. In order to rea-



70

Table 4.10 Queries on the DBLP Dateset Used to Compare the Performance of the Original
vs. the Extended Algorithm

Query ID Keywords
Q1 xml, keyword, search
Q2 query, analysis
Q3 sequence, alignment
Q4 collaborative, filtering, recommendation
Q5 dynamic, incremental, clustering

son with patterns, we introduced homomorphisms between patterns which are leveraged to

define homomorphism relations on patterns. Our approach benefits from a global view of

the query matches and avoids the pitfalls of previous semantics which rely on comparing

query matches locally in the XML tree or rank them based simply on a scoring function.

By reasoning with patterns whose number is typically very small compared to the number

(a) (b)

(c)

Figure 4.19 (a) number of ITs, (b) number of generated patterns, and (c) the computation
time of the original and the extended algorithm on the DBLP dataset using the queries of
Table 4.10.



71

of query matches, we make this global and multi-feature comparison feasible. We designed

an efficient stack-based algorithm to implement XReason and we also devised a heuristic

extension to improve its performance. Contrary to most previous algorithms, ours works

with the keyword inverted lists and does not require any auxilary data structures and prepro-

cessing of the data. Our experimental studies over several real datasets show that XReason

outperforms previous approaches in precision, precision@N, recall and mean average pre-

cision. Further, they showed that our algorithms are fast and scale smoothly and therefore,

our approach is computationally feasible and can be applied in practice.



CHAPTER 5

SEARCH RESULT CLUSTERING

Usually, there is a large number of results that match a user query (candidate results) of

which very few are relevant to the query. Different filtering semantics [32, 43, 48, 88,

89] have been introduced which try to exploit structural and/or semantic properties of the

results and the data in order to filter out irrelevant results. In addition, ranking semantics

[6, 18, 32, 65, 79] have been proposed which exploit, in general, statistical information and

attempt to rank the results placing on top those that are more relevant. Both the filtering

and ranking semantics are ad-hoc and, in the general case, fail to produce results of high

quality [79].

An alternative view to keyword search involves clustering the results using struc-

tural and semantic information [13, 53, 57]. In this direction, we elaborate in this disser-

tation on a novel approach which clusters the results at different levels of granularity and

then, exploits user input to navigate among the clusters in order to retrieve the relevant

results.

5.1 Clustering Methodology

Our approach clusters results in three different levels. The clusters at the lowest level par-

tition the results. Clusters in higher levels contain clusters from lower levels. In this sense,

the clusters at different levels define groups of results of different granularities — coarser

at the top level and more refined in the lowest level. Every cluster has a representative. The

users can navigate through the system by selecting clusters initially at the top level and by

drilling down to their nested clusters and finally to the results. The selection of clusters at

every level is facilitated by the ranking of the relevant clusters which is used to present the

results to the user.

72



73

5.1.1 First (Bottom) Level of Clustering: Patterns

In practice, multiple distinct ITs can match the keywords in the same way and share the

same structural and semantic properties (that is, they share the same pattern). These indi-

vidual ITs are not usually of particular interest as query results. In contrast, the users are

interested on the patterns that they define. Therefore, we use patterns (defined next) for

clustering the results at the first level of our clustering scheme.

Definition 5.1.1 (IT pattern). A pattern P of a query Q on a data tree T is a tree which is

isomorphic (including the annotations) to an IT of Q on T . The MCT of a pattern P refers

to P without the path that links the LCA of the annotated nodes to the root of P.

A pattern has all the information of an IT except the physical location of that one

in the data tree. As an example, Figure 5.1 shows four patterns (out of 32 in total) of

the keyword query Q = {Advanced,Database, Systems} on the data tree T of Figure 1.3.

Pattern P3 is the pattern of the IT of Figure 3.2(a). Pattern P2 has two ITs which comply

with it: the IT of the query instance {(Advanced, 8), (Database, 8), (Systems, 8)} and

the IT of the query instance {(Advanced, 10), (Database, 10), (Systems, 10)}.

Figure 5.1 Some patterns for Q = {Advanced,Database,Systems} on the tree of Fig-
ure 1.3.

At the first clustering level, a cluster is the set of ITs which comply with a pattern

and is represented by this pattern. Patterns are used as representatives for clusters at all

levels. We denote the representative of a cluster C as repr(C ).



74

A pattern represents a possible interpretation of a query on an XML tree. The first

level of clustering comprises all possible interpretations of the query on the XML tree since

all the ITs of the query on the XML tree are grouped into patterns and the only information

missing in a pattern is the physical location of the ITs in the XML tree.

5.1.2 Second Level of Clustering: Classes

Different patterns can be similar in the sense that they match the keywords in the same way

(that is, they have the same root-to-annotated-node paths), and they have the same LCA.

These patterns are semantically very close since they only differ in the way they combine

keyword instances to form partial LCAs. We put such patterns in the same cluster to form

the second level of clustering. These clusters of patterns are called classes.

We formally introduce classes using the concept of the ≈ relation which is defined

next.

Definition 5.1.2 (≈ relation). Let P and P′ be two patterns of a query on a data tree. We

say that P≈ P′ if both of the following conditions hold:

(a) the root-to-LCA-paths of P and P′ are the same, and

(b) for every keyword in the query, the LCA-to-keyword instance path in P and P′ is the

same.

Clearly, ≈ is an equivalence relation. Figure 5.2 shows two patterns, P4 and P5. As

the arrowed lines indicate, the paths of these patterns satisfy both conditions of Definition

5.1.2. Therefore, P4 ≈ P5.

Definition 5.1.3 (Class). Given the set of patterns of a query Q on a data tree T , a class of

Q on T is an equivalence class of patterns with respect to the ≈ relation.

Figure 5.3 shows four patterns. Clearly, these patterns belong to the same class. If

all the patterns of our running example are examined, one can see that patterns of Figure

5.3 form a class.



75

Figure 5.2 Path correspondances between two patterns, P4 and P5.

We call size of a pattern P the number of edges in P. A pattern with the smallest size

is chosen as a representative of a class (in case of a tie, a representative is chosen randomly

among the patterns with the smallest size). For instance, for the class of Figure 5.3 we

chose pattern P4 as a representative of the class among the equal sized patterns P4,P5 and

P6 (size = 5). Pattern P7 is of larger size (size = 7).

Figure 5.3 A class of patterns consisting of four patterns.

5.1.3 Third Level of Clustering: Collections

The ≈ relation identifies similarities between patterns by detecting identical path subpat-

terns between these patterns. However, similarities between patterns can also be identified

by detecting common path subpatterns in a more relaxed way in the sense that the paths

of one pattern can be embedded to the paths of another pattern. Embedding a path p1 into

a path p2 means that the edges of p1 are mapped to sequences of edges in p2. That is,

an edge in p1 is viewed not as a child but as a descendant relationship between its nodes.



76

We capture this type of similarity between patterns using the concepts of descendant path

homomorphism and ≺d ph relation. We then use the ≺d ph relation to cluster classes into

collections which is the third level of clustering.

Definition 5.1.4 (Descendant Path Homomorphism). Let p1 and p2 be two pattern paths

whose last nodes have the same label and are annotated by the same keyword. There is a

descendant path homomorphism from p1 to p2 iff there is a function d ph from the nodes of

p1 to the nodes of p2 such that:

(a) for every node n in p1, n and d ph(n) have the same labels.

(b) if n′ is a child of n in p1, d ph(n′) is a descendant of d ph(n) in p2 (that is, there is a

path from d ph(n) to d ph(n′) in p2).

For instance, in Figure 5.4, the path courses/course/title[Database] of

pattern P4 has a descendant path homomorphism to courses/course/prerequisite

/course/title[Database] of pattern P8. Similarly, the path courses/course/

title[Advanced] of P4 has a descendant path homomorphism to courses

/course/title[Advanced] of P8 since they are identical.

Figure 5.4 Descendant path homomorphism from a path in P4 to a path in P8

We use the concept of descendant path homomorphism to define the ≺d ph relation

between patterns:

Definition 5.1.5 (≺d ph relation). Let P and P′ be two patterns of a query Q on a data tree.

P≺d ph P′ iff

(a) P and P′ share the same root-to-LCA path.



77

(b) for every keyword k in Q, the path from the LCA to the node annotated by k in P has a

descendant path homomorphism to a path in the MCT of P′.

Consider the patterns P4 and P8 of Figure 5.4. As one can see, P4 ≺d ph P8 since

for each one of the keywords advanced, database, systems, the path from courses to

the node annotated by this keyword has a descendant path homomorphism to a path in the

MCT of P8.

The following proposition shows how ≺d ph relates to ≈ .

Proposition 5.1.1. Let P and P′ be two patterns of a query Q in an XML tree T. P≺d ph P′

and P′ ≺d ph P iff P≈ P′.

Proof. We prove the proposition above by proving the following two cases: (a) For any

two patterns, P and P′, if P ≺d ph P′ and P′ ≺d ph P, then the root-to-LCA-path of P and

P′ are the same. Also, since the MCT paths of P can be mapped to those of P′ with a

descendant path homomorphism and vice versa, for every keyword in P and P′, the LCA-

to-keyword-instance path in P and P′ is the same. Therefore, P ≈ P′. (b) If P ≈ P′, then

for every keyword in the query, the LCA-to-keyword instance path in P and P′ is the same.

Hence, existence of descendant path homomorphisms is trivial in both directions. There-

fore, P≺d ph P′ and P′ ≺d ph P.

The following proposition characterizes the ≺d ph relation when restricted to the

representatives of the classes of a query in relation to ≺d ph .

Proposition 5.1.2. Let R be the set of representatives of the classes of a query on an

XML tree. The relation ≺d ph is a partial order on R (i.e., it is reflexive, transitive and

antisymmetric).

Proof. ≺d ph relation satisfies all three conditions of a partial order on R.

(a) The ≺d ph relation is reflexive on R: for any pattern P, P ≺d ph P is trivial since both

conditions of Definition 5.1.5 are satisfied.



78

(b) The ≺d ph relation is transitive on R: for any three patterns P,P′ and P′′, if P ≺d ph

P′ ≺d ph P′′ then both properties of Definition 5.1.5 holds from P to P′ and from P′ to

P′′. Therefore, this property also holds from P to P′′. Thus, P≺d ph P′′.

(c) The ≺d ph relation is antisymmetric on R: for any two distinct patterns P and P′, if

P ≺d ph P′, both properties of Definition 5.1.5 holds from P to P′. For property (b) of

Definition 5.1.5 to hold from P′ to P, P and P′ should be equal. Therefore, P′ ̸≺d ph P.

Since ≺d ph is a partial order on R, it has at least one minimal element in R. We

now use ≺d ph to introduce the notion of collection.

Definition 5.1.6 (Collection). Consider the set of classes of a query on a data tree. Let R

be the set of class representatives. A collection is a set L of classes which contains exactly:

(a) a class C whose representative is a minimal element in R w.r.t. ≺d ph, and

(b) all the classes C′ such that repr(C)≺d ph repr(C′).

That is, for L and C, we have that ∀C′ ∈ L,C′ ̸=C, repr(C) ≺d ph repr(C′) and for

every class C′′ ̸∈ L, repr(C) ̸≺d ph repr(C′′) and repr(C′′) ̸≺d ph repr(C).

Clearly, repr(C) is the least element in the set of representatives of classes in L

with respect to ≺d ph. We define the representative of collection L to be the representative

of class C. That is, repr(L) = repr(C).

There are as many collections for Q on T as there are minimal elements in the set

of class representatives R w.r.t. ≺d ph. Note that the collections can overlap. However,

they cannot overlap on a representative class (that is, a class whose representative is also

the representative of a collection). Therefore, no collection can be included into another

collection.

Figure 5.5 shows a collection which includes four classes. One can see that the

collection groups together patterns which, even though they are structurally different, they

have semantic similarities since they all represent a set of courses and match the keywords



79

to the titles of these courses. The edges between the classes in the figure correspond to the

≺d ph relations between the representatives of these classes (the edge from C1 to C4 is not

shown as it can be derived by transitivity). Pattern P4 is the representative of the collection

since it is the least element among the representatives of the four classes w.r.t. ≺d ph.

Figure 5.5 A collection of classes.

We present two other sample collections in Figure 5.6. Collection L1 consists of

a single pattern and according to our ranking, is returned as the top collection to the user.

Collection L8 consists of two classes.

5.2 Cluster Ranking and Navigation among Clusters

We now explain how the user proceeds in order to find the relevant results of a query. In or-

der to facilitate this process, we provide techniques for ranking the clusters: all collections

are ranked at the top level, classes are ranked within collections, and patterns are ranked



80

Figure 5.6 Two sample collections

within classes. The goal of the ranking is to present to the user first the clusters which

are more likely to contain relevant results in order to reduce the total number of clusters

examined by the user in her search for relevant results.

5.2.1 Ranking Patterns

Within a class, the patterns are ranked based on their size in ascending order. Patterns of

the same size have the same rank. If the size of a pattern is smaller than the size of another

pattern in the same class, it is assumed to be more relevant to the query as it more closely

relates the query keyword instances.



81

5.2.2 Ranking Classes

The ≺d ph relation is used to rank the classes within a collection. As stated in Proposition

5.1.2, ≺d ph is a partial order. Definition 5.1.6 determines that the representative of a col-

lection is the least element in the set of representatives of classes in the collection with

respect to ≺d ph. Therefore, every collection is a rooted DAG where the nodes correspond

to classes and the directed edges correspond to ≺d ph relationships between the representa-

tives of the classes. There is an edge from class C1 to class C2 if repr(C1) ≺d ph repr(C2).

The class of the representative of the collection is the unique source node of the DAG. We

rank the classes within a collection based on the maximum distance of a node (class) in the

DAG from the source node of the DAG. The distance is measured in terms of the number of

edges. Classes with smaller maximum distance are ranked higher. The relative order of two

classes with the same maximum distance in the DAG is irrelevant. For instance, in the col-

lection depicted in Figure 5.5, max_dist(C2) = max_dist(C3) = 1 and max_dist(C4) = 2.

Therefore, a possible ranking for the classes in this collection is C1, C2, C3, C4.

5.2.3 Ranking Collections

The highest level of clustering is formed by the collections. In order to provide an ordering

of collections, we define a new relation ≺opi on patterns. The notation opi abbreviates

“one-path isomorphism”, a term which the next definition justifies.

Definition 5.2.1 (≺opi relation). Let P and P′ be two patterns of a query on an XML tree.

P≺opi P′ iff there are two paths p and p′ in P and P′, respectively, from the root to a node

annotated by the same keyword such that:

(a) p and p′ are isomorphic and

(b) the LCA node of P is a descendant of the LCA node of P′ in p.

The ≺opi relation relates two patterns, P and P′ which share a common root-to-

annotated-node path. P is assumed to be more relevant than P′ since P represents a more



82

specific relationship of its keyword instances compared to P′: its MCT root (LCA) is lo-

cated more deeply in the data tree. In Figure 5.7, P3 ≺opi P4. Because of condition (b) in

Definition 5.2.1, relation ≺opi is acyclic.

Figure 5.7 One path isomorphism between two patterns P3 and P4.

As with classes, in order to rank collections, we build a graph of collections. The

nodes of this graph are collections. There is an edge from collection L1 to collection L2

iff repr(L1)≺opi repr(L2). Since ≺opi is acyclic, this graph is a DAG. Figure 5.8 shows a

graph of collections for our running example. The representatives of the collections L1, L2

and L3 are the patterns P1, P2 and P3, respectively, which are shown in Figure 4.1. We use

topological ordering to rank the collections, using also the maximum distance from a source

node in the DAG to rank incomparable nodes. Further, collections with the same maximum

distance are ranked based on (a) the length of the root-to-LCA-path of their representatives

(which also reflects the depth of the LCAs in these patterns), and (b) the size of their

representatives. Patterns with deeper LCAs are preferred as are patterns with smaller sizes.

In both cases, they are assumed to be more relevant as they bring the keyword instances

closer. Collections with the same values for all three metrics are ranked randomly. As an

example, a possible ranking for the collections of our running example shown in Figure 5.8

is L1, L2, L3, L4, L5, L6, L7, L8, L9, L10.

5.2.4 Cluster Navigation.

The navigation of the clusters starts at the third level. The user is presented with the list of

collections in ranked order. At this point, there are two possible ways a user can choose



83

Figure 5.8 Graph of collections for our running example.

to navigate the cluster hierarchy: a depth first traversal (DFT) or a breadth first traversal

(BFT). If the user chooses a DFT, she selects a relevant collection and she drills down into

it. The classes of the chosen collection are shown to the user in ranked order. The user

chooses a class that she finds relevant and the ranked list of the patterns of this class are

presented. Finally, the user chooses a relevant pattern to retrieve its results. If more results

are desired, the next pattern in the class is examined. If the current pattern is the last pattern

in the class, the system backtracks to the next class/collection. The process continues

until no more results are desired or the last collection in the hierarchy is examined. If the

user chooses a BFT, instead of following a single path in the hierarchy, she drills down

level by level. That is, the user chooses collections that are relevant. Then, the classes of

these collections are presented ranked in an order which respects the order of the parent

collections and the user selects relevant ones among them. At the end, the system presents

the patterns of these classes in an order which complies with the order of the parent classes

and relevant patterns among them and their results thereof are selected. With BFT, no

backtracking is needed as the user can choose multiple clusters at any level.

If all the relevant results in the data tree are sought, both traversal techniques are

equally appropriate. However, if at most k (k≥ 1) results are sought, DFT is more efficient

since the user can avoid examining successor clusters (patterns, classes or collections) of

the current cluster in the DFT order as soon as k results are retrieved. With BFT, this is not

possible, and the only way to constrain the number of clusters examined is to restrict the



84

number of clusters selected at every level to k.

5.3 The Algorithm

Algorithm ClusterStack is a stack-based algorithm. It takes as input a keyword query and

the inverted lists of the query keywords. It computes the results (ITs) and their patterns and

concurrently produces the classes of these patterns. Subsequently, it produces and ranks

the collections of classes. The computation of the results is performed in a stack-based

manner. The classes generated are organized into graphs based on the ≺d ph relation to

produce collections. These graphs are used to rank the classes within the collections. The

last step involves the construction of the graph of collections based on the ≺opi relation

on their representatives from which the ranking of the collections is obtained. The body

of the algorithm and the stack-based operations performed during the first phase of the

computation are shown in Algorithm 4. Some of the helper functions used in Algorithm 4

are presented in Algorithm 5. Aggeliki Dimitriou from NTUA also contributed to the

design of the algorithms.

Algorithm 4: ClusterStack
1 ClusterStack(IN: k1, . . . ,kn: keyword query, invL: inverted lists)
2 s← new Stack()
3 while n← getNextNodeFromInvertedLists() do
4 annotatedLabelPaths.addIfNotExists(n.kw, n.labelPath)
5 while s.topNode is not ancestor of n do
6 pop(s)

7 push(s, n)

8 while s is not empty do
9 pop(s)

10 classCollections← computeCollections(patternClasses)
11 collectionsGraph← generateOPIgraph(classCollections)

ClusterStack uses one stack. The entries of the stack correspond to the nodes of the

data tree and they are associated with a set of partial and complete patterns. Contrary to



85

Algorithm 5: ClusterStack
1 push(Stack s, Node n)
2 while s.topNode is not parent or self of n do
3 push(s, ancestor or self of n at s.topNode.depth+1, "")

4 newP← new Pattern(n.labelPath,flags.set(id(n.kw)))
5 newPid← checkIfExistsOrAddToPatterns(newP)
6 newPatternIds← composePatterns(s.top.patterns, newPatternId)
7 s.top.PatternIds← union(s.top.PatternIds, newPatternIds)

8 pop(Stack s)
9 for curPid← s.top.patterns.next() do

10 curP← patterns.get(curPid)
11 if curP is complete then
12 s.top.removePatternId(curPid)
13 completePatterns.add(curPid)
14 curP.addLCA(s.top.dewey())
15 if curP.LCApath and curP.signature are not in patternClasses then
16 newclass← new PatternClass(curP)
17 patternClasses.add(newClass)

18 newclass.add(curPid)

19 else
20 childPatterns.add(extendToParent(curPid))

21 s.pop()
22 newPatternIds← composePatterns(s.top.patterns, childPatterns)
23 s.top.add(newPatternIds)

24 composePatterns(patternIdsA, patternIdsB)
25 foreach PatternIdsA as idA do
26 patA← patterns[idA]
27 foreach currentPatternIdsB as idB do
28 patB← patterns[idB]
29 if patA.kwFlags AND patB.kwFlags = 0 then
30 if jointPatterns[min(idA,idB),max(idA,idB)] is set then
31 idAB← jointPatterns[min(idA,idB),max(idA,idB)]

32 else
33 patAB← joinRoots(patA,patB)
34 idAB← checkIfExistsOrAddToPatterns(patAB)
35 jointPatterns[min(idA,idB),max(idA,idB)]← idAB

36 newPatterns.add(idAB)

37 return newPatterns

38 joinRoots(patternA, patternB)
39 patAB← patB.replaceRoot(patA.root)
40 patAB.kwFlags← patA.kwFlags OR patB.kwFlags
41 patAB.size← patA.size + patB.size



86

partial patterns, complete patterns are annotated by all the query keywords. The inverted

lists of the keywords contain for each keyword instance: (a) the Dewey code [78] of the

instance, and (b) its encoded root-to-instance label path in the data tree. The Dewey en-

coding scheme is convenient for stack based algorithms where a tree node corresponds to

a stack entry and consecutive entries reflect parent-child relationships between two nodes.

For instance, a stack entry corresponding to a node with Dewey code 1.2.3.4 is preceded

by a stack entry corresponding to the node 1.2.3 lower in the stack. Popping of a node from

the stack corresponds to the removal of the last component from a Dewey code. The label

path of an instance is encoded by assigning a unique integer id to each label.

Keyword query results and their patterns are computed in the while loops of lines

3-7 and 8-9 in Algorithm 4. Each keyword instance in the inverted lists is pushed into the

stack in document order. If the instance’s annotated label path has not been seen before, it

is stored in the annotatedLabelPaths array (line 4 in in Algorithm 4). In order to push an

instance into the stack, the top stack entry must correspond to the parent of the instance in

the data tree. This requirement entails a number of pop actions of entries corresponding to

nodes that are not ancestors of the node to be pushed (lines 5-6 in Algorithm 4). Then, in

the push procedure (lines 1-7 in Algorithm 5), for all ancestors of the node to be pushed

which are not present in the stack, an empty stack entry is pushed into the stack (lines

2-3 in Algorithm 4). The push action of the new instance entails the construction of an

initial pattern consisting of the instance’s label path annotated by the instance’s keyword

(lines 4-5 in Algorithm 5). If the stack entry of the node to be pushed already exists, it

may contain a number of patterns. In this case, the new one-path pattern is examined for

possible combination with patterns already in the top stack entry (line 6 in Algorithm 5). If

a new set of patterns is produced, it is unioned with the set of the existing ones in this stack

entry (line 7 in Algorithm 5). Finally, when the last node of the inverted lists is processed,

the stack is emptied through a series of pop actions (lines 8-9 in Algorithm 4).

Query results and their patterns are constructed within procedure pop (lines 8-23 in



87

Algorithm 5). If complete patterns exist in the top stack entry, they are removed from the

stack, and they are added to the set of complete patterns together with the LCA nodes of

their ITs (lines 12-14 in Algorithm 5). Pattern classes are generated along with patterns,

according to Definition 5.1.2: a class is defined for each root-to-LCA label path and for

each set of LCA-to-keyword instance label paths. ClusterStack encodes label paths with

unique ids. These are used to build a signature for each pattern which reveals the pattern’s

root-to-leaf paths. If the class of a complete pattern does not exist, it is generated, and this

pattern becomes its first member (lines 15-18 in Algorithm 5). The partial patterns of the

top stack entry are propagated to the parent node entry with the appropriate adjustments

(line 20 in Algorithm 5) and they are combined with patterns of that entry to produce new

ones (lines 22-23 in Algorithm 5).

The composition of patterns (lines 24-37 in Algorithm 5) consists of merging their

roots (line 49 in Algorithm 5). The composed pattern obtains the annotations of the com-

ponent patterns and its size becomes the sum of the component sizes (lines 40-41 in Al-

gorithm 5). The generation of new patterns throughout the algorithm ClusterStack is per-

formed either by composePatterns (lines 6, 22 in Algorithm 5) or by extendToParent (line

20 in Algorithm 5). In order to avoid the repeated construction of the same pattern from

the same component patterns, two variables, namely jointPatterns and parentPatterns are

consulted before the construction of a new pattern in the two procedures, respectively.

After the pattern construction phase is completed, the processing moves on by call-

ing procedure computeCollections (line 10 in Algorithm 4) which creates and ranks collec-

tions of the generated classes based on the ≺d ph relation. Procedure computeCollections

is shown in Algorithm 6. Initially, the annotated label paths of each keyword are pairwise

compared to identify existing descendant path homomorphisms. The outcome of this pro-

cess is stored in the variable pathHomomorphisms (line 3) and is exploited in discovering

≺d ph relationships between classes. ClusterStack avoids the exhaustive examination of all

pairs of classes for finding ≺d ph relationships. Instead, it prunes the search space based on



88

the following remark.

Algorithm 6: computeCollections procedure
1 computeCollections(patternClasses, annotatedLabelPaths)
2 collections← /0
3 descPathHomomorphisms← generateDPH(annotatedLabelPaths)
4 for each lca in classes do
5 lcaClasses← getLcaClasses(classes, lca)
6 for each maxPatternSize observed in lcaClasses, in ascending order do
7 sizeClasses← getSizeClasses(lcaClasses, maxPatternSize)
8 if maxPatternSize is the minimum in the sizeClasses then
9 for each cl in sizeClasses do

10 col← new Collection(cl)
11 collections.add(col)

12 else
13 connected← false
14 for each childClass in sizeClasses do
15 for each mps < mps(childClass) in descending size order do
16 smallerSizeClasses← getSizeClasses(lcaClasses, mps)
17 for each parentClass in smallerSizeClasses do
18 if parentClass.hasDPHRto(childClass) then
19 parentClass.connectTo(childClass)
20 childClass.rank← parentClass.rank+1
21 connected← true

22 if not connected then
23 col← new Collection(childClass)
24 collections.add(col)

25 return collections

We first define the maximal pattern size of a class C. For a pattern P in a class C,

let l be the root-to-LCA path in P and pi, i = 1, . . . ,n, the LCA-to-annotated-node path, for

each one of the n annotating keywords in the pattern. Then, the maximal pattern size of C

is

mps(C) = length(l)+
n

∑
i=1

length(pi)

The mps(C) is the maximum possible size for a pattern in C and corresponds to the pat-

tern whose LCA-to-annotated-node paths do not share any node other than the LCA. This



89

pattern may or may not appear in C.

Remark 5.3.1. Let repr(C1) and repr(C2) be the representative patterns of two distinct

classes C1 and C2 of the same collection. If repr(C1) ≺d ph repr(C2) then mps(C1) <

mps(C2).

Procedure computeCollections in Algorithm 6 partitions the classes based on their

root-to-LCA paths (lines 4-5). Further, it partitions classes with the same root-to-LCA path

based on their mps (lines 6-7). Leveraging Remark 5.3.1, computeCollections checks the

existence of ≺d ph relationships only between classes with the same root-to-LCA path and

different mps. All the classes with the same root-to-LCA path are examined in ascending

mps order (lines 6-7). For each class with minimum mps, one collection is created (lines

8-11), since according to Remark 5.3.1 these classes are minimal elements w.r.t. ≺d ph. In

order to find ≺d ph relationships between classes, a class is compared only with classes of

smaller mps in descending mps order (lines 15-21). If such a relationship is discovered, the

classes are connected with an edge (line 19) and the class with the larger mps is attached

to the collections of the class with the smaller mps. The rank of the newly connected

class is set equal to the rank of the parent class increased by 1 (line 20). If a class cannot

be connected to any class of smaller mps, a new collection for this class is created (lines

22-24).

Quite similarly, procedure generateOPIgraph constructs the graph of collections

based on the ≺opi relation, and uses it to produce the ranking of collections. It proceeds by

examining collections in ascending LCA depth order. Checking for ancestor-descendant

relationships between the LCAs of a pair of patterns further prunes the number of com-

parisons needed for discovering ≺opi relationships between collections. The listing of the

generateOPIgraph is omitted for brevity.

Analysis. The time cost of ClusterStack involves the cost of the pattern and class generation

phase and the cost of the cluster hierarchy construction phase. During the first phase which

is stack based, the push and pop actions of the instances of the inverted lists determine the



90

time complexity. Let k be the number of keywords of a query and Li be the inverted list

of the ith keyword. The total number of keyword instances of the query is |L|= ∑i |Li|, i ∈

[1,k]. Each insertion of an instance from the inverted lists may require at most h pops from

and h pushes onto the stack, with h denoting the height of the data tree. If there are p partial

patterns in the top stack entry, the single path pattern of the instance pushed into the stack

may be combined with at most p patterns, which takes O(p) time. When an entry is popped

from the stack, all its partial patterns are extended with an edge to their parent node, which

will become the new top entry of the stack. Assuming that there are no complete patterns

in the popped entry, this action needs O(p) time. The partial patterns are also combined

with the partial patterns of the parent node to produce new patterns and this takes O(p2).

The whole stack-based process takes O(|L|hp2).

During the generation of the graphs for classes and collections, each class (collec-

tion) under consideration is connected with edges to other classes (collections). The num-

ber of classes is determined by the number of different label paths to the keyword instances

and the height of the data tree. If l is the maximum number of distinct label paths per

keyword, the maximum number of classes that can be produced is hlk, i.e., the number of

combinations of all label paths with all possible LCAs at all depths. The maximum number

of distinct LCAs is hl, which means that computeCollections examines groups of at most

lk−1 classes. The number of class comparisons in each group is maximized when there all

possible max pattern sizes occur in the group. In this case, lk−1k2l2 comparisons are per-

formed for each group. Thus, the time cost of computeCollections is O(hk2lk). Procedure

generateOPIgraph shows similar time complexity in the worst case. This happens when a

distinct collection is produced for each class. Since the stack-based phase dominates the

time cost of ClusterStack, its time complexity is O(|L|hp2).



91

5.3.1 Running Example of ClusterStack

In this section, we present a running example of ClusterStack where the query {Advanced,

Database, Systems} is issued against the data tree T depicted in Figure 1.3. The keyword

instances of the inverted lists are listed in Table 5.1. Table 5.1 also shows the label paths

of the instances as well as an abbreviated representation of the annotated label paths which

are used in the following discussion for the sake of space.

Table 5.1 Inverted Lists of Keywords in Query {Advanced, Database, Systems} on the
Data Tree T of Figure 1.3

Keyword ID
Label path Abbreviated annotated

label path
Advanced 8 university.courses.course.title u.cs.c.t [Advanced]

10 university.courses.course.title u.cs.c.t [Advanced]
12 university.courses.course.title u.cs.c.t [Advanced]
23 university.events.seminars.seminar.topic u.e.ss.s.to [Advanced]

Database 8 university.courses.course.title u.cs.c.t [Database]
10 university.courses.course.title u.cs.c.t [Database]
25 university.courses.course.prerequisite.course.title u.cs.c.p.c.t [Database]
23 university.events.seminars.seminar.topic u.e.ss.s.to [Database]

Systems 8 university.courses.course.title u.cs.c.t [Systems]
10 university.courses.course.title u.cs.c.t [Systems]
25 university.courses.course.prerequisite.course.title u.cs.c.p.c.t [Systems]
23 university.events.seminars.seminar.topic u.e.ss.s.to [Systems]

Algorithm ClusterStack uses a stack. Push actions on the stack correspond to

traversing the data tree downwards and pop actions upwards. Figure 5.9 shows three states

of the stack during the processing of the inverted lists shown in Table 5.1. Each entry in

the stack corresponds to a node of the data tree and contains the patterns constructed in that

node based on the patterns of its subtree. Consecutive entries in the stack correspond to

nodes in the data tree that satisfy a parent-child relationship (e.g., in Figure 5.9 in state 4 of

the stack, node 8 is a child of node 4). Popping a node from the stack results in combining

its patterns with patterns of its parent which have been constructed from the subtrees of the

parent already processed.

For our running example, the algorithm proceeds examining keyword instances



92

1

2

4

8 12

5

t

Advanced

2

1

t
Advanced

Systems

cs

c

t

Database

c

t
Advanced

Database

cs

c

t

Systems

c... ...

t

Advanced

t

Database

t

Systems

P6P4

State 4 State 12

t
Advanced

Database

t
Advanced

Systems

t
Database

Systems

t
Advanced

Database

Systems

P2

1

5

2

10

t

Advanced

cs

c

t

Database

cs

c

t

Systems

cs

c

t
Advanced

Database

cs

c

t
Advanced

Systems

cs

c

t
Database

Systems

cs

c

t

Advanced

t

Database

t

Systems

State 8

Figure 5.9 Stack states

in document order, i.e., in the order 8, 10, 12, 25 and finally 23. Once finished with

node 8, ClusterStack produces the first result, which is the IT 1.2.4.8. The correspond-

ing pattern P2 shown in Figure 5.1 is also constructed based on the annotated label paths

u.cs.c.t [Advanced], u.cs.c.t [Database] and u.cs.c.t [Systems]. Figure 5.9 shows this pat-

tern in state 4 of the stack. Note that each pattern is displayed without the path from

the root of the data tree to the LCA of the pattern to avoid cluttering the figure. For

each distinct combination of annotated label paths in a pattern and its LCA label path,

the algorithm creates a pattern class. In our example, the first class is created for the

combination of the three annotated label paths examined so far and the LCA label path

university.courses.course.title (u.cs.c.t in short). In a similar way, the

algorithm proceeds to produce the IT 1.2.5.10 for the instances of the keywords at node

10. This IT also conforms to the pattern P2. No new patterns or pattern classes are created.

Next, the keyword instances at nodes 12 and 25 are examined, and new patterns and pattern

classes are produced.

After finishing with the instances at node 25, ClusterStack pops nodes from the

stack backtracking to the root in order to reach the last node with keyword instances, which

is node 23. While the processing is at node 2, several combinations of the instances located

in the subtree of node 2 are performed to produce different ITs with LCA 1.2. Some of

the corresponding patterns are depicted in entry 2 of state 12 of the stack (Figure 5.9).



93

They are shown in detail in Figure 7. All these patterns share the same LCA label path

(university.courses). A different selection of annotated label paths designates a

different class. Table 5.2 shows the details:

Table 5.2 Patterns Under the Node courses of the Data Tree T

Class Patterns Annotated label paths Representative
C1 P4, P5, P6, P7 u.cs.c.t [Advanced] P4

u.cs.c.t [Database]
u.cs.c.t [Systems]

C2 P8, P9, P10 u.cs.c.t [Advanced] P9

u.cs.c.p.c.t [Database]
u.cs.c.t [Systems]

C3 P11, P12, P13 u.cs.c.t [Advanced] P11

u.cs.c.t [Database]
u.cs.c.p.c.t [Systems]

C4 P14 u.cs.c.t [Advanced] P14

u.cs.c.p.c.t [Database]
u.cs.c.p.c.t [Systems]

When the root of the tree is popped from the stack, all patterns under the root

university of the data tree T have been constructed and organized in classes according

to the annotated label paths of their keywords. Procedures computeCollections and genera-

teOPIgraph are then executed. Suppose that the classes shown in Figures 5.5 and 5.6 have

been constructed. Table 5.3 shows for each of these classes, the representative pattern, the

label path of the LCA of the class, the annotated label paths for the query keywords and the

maximum pattern size (mps) of the class.

Procedure computeCollections identifies first descendant path homomorphisms be-

tween annotated label paths of the same keyword. These homomorphisms will be used

later for determining descendant path homomorphism relations between classes. The cor-

respondences listed in Table 5.4 are stored in the array descPathHomorphisms.

Procedure computeCollections continues in steps as shown in Table 5.5. For each

LCA path and for each maximum pattern size in ascending order, the algorithm examines



94

Table 5.3 Pattern Classes of Q on T

Class Repr. Ann. label paths LCA path mps
C1 P4 u.cs.c.t [Advanced] u.cs 7

u.cs.c.t [Database]
u.cs.c.t [Systems]

C2 P9 u.cs.c.t [Advanced] u.cs 9
u.cs.c.p.c.t [Database]
u.cs.c.t [Systems]

C3 P11 u.cs.c.t [Advanced] u.cs 9
u.cs.c.t [Database]
u.cs.c.p.c.t [Systems]

C4 P14 u.cs.c.t [Advanced] u.cs 11
u.cs.c.p.c.t [Database]
u.cs.c.p.c.t [Systems]

C5 P1 u.e.ss.s.to [Advanced] u.e.ss.s.to 3
u.e.ss.s.to [Database]
u.e.ss.s.to [Systems]

C6 P15 u.cs.c.t [Advanced] u 9
u.e.s.to [Database]
u.cs.c.t [Systems]

C7 P17 u.cs.c.t [Advanced] u 11
u.e.ss.s.to [Database]
u.cs.c.p.c.t [Systems]

Table 5.4 Descendant Path Homomorphisms

Keyword Descendant path homomorphism

Advanced 2 u.e.ss.s.to [Advanced]
d ph→ u.e.ss.s.to [Advanced]

Database 4 u.cs.c.t [Database]
d ph→ u.cs.c.p.c.t [Database]

6 u.e.ss.s.to [Database]
d ph→ u.e.ss.s.to [Database]

Systems 8 u.cs.c.t [Systems]
d ph→ u.cs.c.p.c.t [Systems]

10 u.e.ss.s.to [Systems]
d ph→ u.e.ss.s.to [Systems]

if there are any descendant path homomorphisms between the representative patterns of the

class under examination and any class of smaller mps (maximum pattern size). If such a

relationship exists between any two classes, an edge is added to connect them in the graph



95

Table 5.5 ComputeCollections Running Example

LCA path mps New collection Assigned classes Collection graph
u.e.ss.s.to 3 L1 C5 C1

u.cs 7 L4 C1 C1

C2 C3

C4

9 C2

9 C3

11 C4

u 9 L8 C6 C1 C2
11 C7

of the collection. If no such relationship is discovered, no edge is added to the graph. This

is the case of collection L8 in Table 5.5.

Finally, procedure generateOPIgraph computes the graph of collections in a sim-

ilar manner based on relation ≺opi. The graphs of the clusters are used to produce their

rankings.

5.4 Experimental Evaluation

We performed experiments to assess the retrieval effectiveness of our clustering methodol-

ogy and also the efficiency of our algorithm. We also compare the quality of our clustering

to that of a recent state-of-the-art approach, XMean [53].

We use the DBLP1, Mondial2, SIGMOD2 and NASA datasets2. Statistics for these

datasets are depicted in Table 5.6. For the effectiveness experiments, we use Mondial and

SIGMOD datasets which are often used for this purpose in XML keyword search research

[6, 53]. We used DBLP and NASA datasets for the scalability experiments which are larger.

In order to further increase the size of NASA dataset, we replicated it 40 times under the

same root. The experiments were conducted on a 2.9 GHz Intel Core i7 machine with 3

GB memory running Ubuntu.

1http://dblp.uni-trier.de/xml/

2http://www.cs.washington.edu/research/xmldatasets/



96

Table 5.6 Mondial, SIGMOD, DBLP and NASA Dataset Statistics.

Mondial SIGMOD DBLP NASA
Size 1 MB 467 KB 1.15 GB 956 MB
# nodes 69,846 15,263 34,141,216 21,318,481
# distinct tags 50 12 44 70
# distinct label paths 119 12 196 111
Average depth 3.00 4.60 1.93 4.56
Maximum depth 5 6 5 7

We first introduce the metrics we use for the experimental evaluation; then, we

present our results for the effectiveness of the clustering methodology and finally we present

our efficiency experiments.

5.4.1 Metrics

As also pointed out in [53], standard IR metrics such as precision and recall are not suit-

able to assess the retrieval effectiveness of a hierarchical interface with user input. For this

purpose, we adapt the reach time metric originally introduced in [40]. The reach time is

defined to quantify the time spent by a system user locating his/her desired results. We

assume that all the results (ITs) that comply with the same pattern are equally interesting

to the user and if a pattern is found to be relevant all its results are retrieved. The value of

reach time might vary depending on the system interface and the retrieval scenario under

consideration. As discussed in Section 5.2.4, the user navigates through our cluster hierar-

chy starting from the collections. We assume that the hierarchy is traversed in a depth first

manner. In order to assess the effect of ranking on reach time, we consider two different

variations of our system interface: (a) where clusters are presented to the user in a ranked

order using the ranking criteria we introduced in Section 5.2, and (b) where clusters are

ranked arbitrarily.



97

We formally define the reach time as shown below:

treach = (
h

∑
i=1

ni) (5.1)

where ni stands for the number of clusters that are examined by the user at level i, and h is

the number of levels in the hierarchy. In the case of our system, h is equal to 3. Examining

a cluster consists of checking its representative to decide if the cluster contains relevant

results or not.

The value of ni depends on the retrieval scenario and also on whether the clusters

are ranked or not. We compute the value of ni as follows for different scenarios:

Retrieving all relevant patterns and results. The users has to examine all the top-level

clusters and then, recursively examine all the child clusters of clusters that are identified

as relevant. In this case, the ranking of the clusters is insignificant since it does not affect

treach.

Retrieving at most k relevant patterns. Since the users follow a DFT, they can stop

examining any further clusters after they identify k relevant patterns. Given that treach

depends on the order of presentation of the clusters to the user, we compute the minimum,

maximum and expected values for ni by considering all the possible orderings of clusters at

level i under the same parent cluster. If the clusters are ranked, we produce only orderings

which comply with the ranking (by changing only the position of clusters with the same

rank).

In order to determine the ground truth for the effectiveness experiments, we em-

ployed five expert users, not involved in this project, who characterized the query patterns

as relevant or irrelevant to the query. The relevancy of each pattern (relevant or irrelevant)

was determined by the majority of the characterizations of the expert users.



98

5.4.2 Effectiveness Experiments

For the effectiveness experiments, we compare our system (referred to as Result Tree

Cluster—RTCluster) with XMean [53] which is a recent hierarchical clustering method-

ology of XML results. XMean also extracts the patterns of the results and constructs an

initial cluster hierarchy by structurally relaxing the patterns (through the removal of nodes

and edges in all possible ways up to the root of the pattern). This is a graph called relaxation

graph. It subsequently decreases the size of the hierarchy by reducing it into a hierarchy

tree. It exploits DTD information to characterize nodes in the data tree as entity nodes to

filter out results. In order to allow a fair comparison of the clustering methodologies of our

system and XMean, in our implementation of XMean we disable the entity node charac-

terization which is is orthogonal to the clustering process. This way the two systems are

compared over the same result set. As pointed out in [4, 79], results whose LCA coincides

with the root of the data tree are meaningless as they relate the keyword instances loosely.

Therefore, in the experiments, we consider only patterns whose MCT root (LCA) is not the

root of the data tree.

Retrieving all relevant results. We run 20 queries (shown in Tables 4.4 and 4.5) on the

Mondial and SIGMOD datasets. All of the queries are chosen from previous papers by

different authors [4, 53, 54, 55, 57]. The reach time values for the RTCluster and XMean

approaches for all the queries on the Mondial and SIGMOD datasets are presented in Fig-

ures 5.10 and 5.11, respectively. As one can see from the experimental results, our approach

outperforms XMean on almost all the queries of both datasets achieving lower reach time

values. This shows that the clustering hierarchy produced by RTCluster better helps the

users to retrieve their results of interest. The average reach time values over all the queries

for both approaches on the Mondial and SIGMOD datasets displayed in Table 5.7 confirm

this observation.

Retrieving at most k relevant patterns. In this scenario, the ranking of the clusters affects



99

Figure 5.10 Reach time values (for retrieving all relevant patterns) for the queries of Table
4.4 on the Mondial dataset.

Figure 5.11 Reach time values (for retrieving all relevant patterns) for the queries of Table
4.5 on the SIGMOD dataset.

Table 5.7 Average Reach Time Values (for Retrieving All Relevant Patterns) and Hierarchy
Sizes for the Queries of Tables 4.4 and 4.5

Dataset Approach Average Reach time Average Hierarchy size

Mondial
RTCluster 5.35 14.60

XMean 7.35 23.30

SIGMOD
RTCluster 3.75 33.35

XMean 5.55 142.25

the values of reach time. Therefore, we first compare retrieving at most k relevant patterns

with and without cluster ranking in order to assess the effect of our ranking technique

on reach time. Figures 5.12a and 5.12b provide average reach time values for these two

variations of RTCluster on the queries of Tables 4.4 and 4.5 on the Mondial and SIGMOD

datasets, respectively, for k = 1 and k = 2. Recall that a single pattern can contain multiple

results. For each variation, three reach time values are given: minimum, expected and



100

maximum. As one can see, the ranking of the clusters reduces the average expected reach

time by almost 50% on the average on both datasets. This improvement is even more visible

on the maximum reach time. Therefore, our ranking technique substantially improves the

quality of our clustering system by successfully pruning the number of representatives the

user has to examine.

(a) Mondial dataset

(b) SIGMOD dataset

Figure 5.12 Average min, exp and max reach time values (for retrieving at most k patterns)
for RTCluster with and without ranking of the clusters for the queries of Tables 4.4 and 4.5.

We also compare the effectiveness of RTCluster (with cluster ranking) and XMean

in retrieving at most k relevant patterns. Figures 5.13a and 5.13b show the average reach

time values (min, exp and max) for RTCluster and XMean for k = 1 and k = 2 on the

queries of Tables 4.4 and 4.5 on the Mondial and SIGMOD datasets, respectively. As

in the retrieve-all-relevant-patterns scenario, RTCluster outperforms XMean in all cases.



101

However, the improvement over XMean is more pronounced in the retrieve-at-most-k-

relevant-patterns scenario since, as shown in the previous paragraph, our ranking technique

(a feature not available in XMean) boosts the effectiveness of RTCluster.

(a) Mondial dataset

(b) SIGMOD dataset

Figure 5.13 Average min, exp and max reach time values (for retrieving at most k patterns)
for RTCluster and XMean for the queries of Tables 4.4 and 4.5.

Clustering hierarchy size. We also compare the effectiveness of the two approaches in

terms of the size of the hierarchies constructed. The size of a hierarchy is expressed by

the number of nodes (clusters) it contains. Figures 5.14 and 5.15 present the size of the

hierarchies constructed by RTCluster and XMean for the queries of Tables 4.4 and 4.5.

Table 5.7 provides average sizes over all the queries. Note that, the y-axis in Figure 5.15 is

in logarithmic scale. The hierarchy sizes constructed by RTCluster are significantly smaller



102

than those of XMean in most cases. XMean usually generates a large hierarchy of relaxed

patterns even from a small number of base patterns. Instead, RTCluster generates a smaller

hierarchy and allows the user to navigate faster to the relevant patterns.

Figure 5.14 Hierarchy sizes constructed by RTCluster and XMean for the queries of Table
4.4 on the Mondial dataset.

Figure 5.15 Hierarchy sizes constructed by RTCluster and XMean for the queries of Table
4.5 on the SIGMOD dataset.

5.4.3 Efficiency Experiments

In order to evaluate the efficiency of our algorithm, we measured the computation time of

queries and we ran experiments to study how the computation time scales with respect to

the number of keywords and the input size.

Computation time. Figures 5.16 and 5.17 present the computation times of ClusterStack

for the queries of Table 4.4 and 4.5 on the Mondial and SIGMOD datasets, respectively.



103

The computation time is the time needed by our algorithm for generating the results, clus-

tering them and building the cluster hierarchy after the query is issued. As one can see, all

the measured computation times are smaller than half of a second on both datasets. This

performance is comparable to that of real life systems even though no optimizations of a

commercial system have been applied.

Figure 5.16 Computation time (in msecs) for the queries of Table 4.4 on the Mondial
dataset.

Figure 5.17 Computation time (in msecs) for the queries of Table 4.5 on the SIGMOD
dataset.

Scalability. For the scalability experiments, we used the DBLP and NASA datasets which

are larger and they have long keyword inverted lists that can be truncated.

In order to study the scalability with respect to the number of keywords experi-

ments, we randomly generated 10 queries with 7 keywords each on both datasets. For each

of these queries, we constructed six subqueries containing from two to seven keywords by

gradually removing keywords. In total, for each query cardinality from two to seven, we



104

obtained a set of 10 queries. Figure 5.18 presents the average computation times for each

query cardinality over the 10 queries in the corresponding set. As one can see in the figure,

the computation time scales smoothly increasing from 300 to less than 800 milliseconds

for DBLP and from 700 to less than 1200 milliseconds for NASA when the number of

keywords varies from 2 to 7 keywords.

Figure 5.18 Average computation time vs. number of keywords of ClusterStack using
queries with 2 to 7 keywords on the DBLP and NASA datasets.

In order to study scalability with respect to the input size, we measured the compu-

tation time in relation to the total number of keyword instances in the data tree for all the

query keywords. We randomly chose the two sets of 7 keywords {anwendung, karin, wi32,

ft, wirtz, mullerdew90, namsgruber} and {nebula, galaxies_distances_and_redshifts, uk,

287, ukst, h_0, flair} from the DBLP and NASA datasets, respectively. For each of these

two keyword sets, we constructed three queries containing five, six and seven keywords.

Further, for each query, we truncated the inverted lists of each keywords at 20%, 40%, 60%

and 80% of their length. The measured computation times are presented in Figures 5.19a

and 5.19b. As shown in the figures, the curves are almost linear and the computation time

scales smoothly increasing in the worst case by 40% when the input size quintuples.



105

(a) NASA dataset

(b) DBLP dataset

Figure 5.19 Computation time vs. input size for ClusterStack using queries with 5,6 and 7
keywords.

5.5 Conclusion

We have addressed the problem of clustering the results of keyword search on tree data in

order to support the user in her quest for meaningful answers. We introduced a multi-level

clustering methodology which groups together results with similar structural and semantic

features. In order to define our cluster hierarchy, we introduced different relations on pat-

terns of results based on homomorphisms between pattern paths. In our system, the users

navigate through the hierarchy by drilling down from clusters to subclusters while novel

techniques for ranking the clusters at different levels facilitate and shorten their search. We

designed an efficient algorithm for generating and clustering result patterns, and for build-

ing the cluster hierarchy. Our experimental studies showed that the proposed algorithm is



106

fast and scalable. They also showed that the proposed clustering methodology allows the

users to effectively retrieve their intended results and outperforms a recent state-of-the-art

competitor approach.



CHAPTER 6

DIVERSIFICATION

In this section, we introduce our approach for diversification of result patterns. We initially

provide a formal definition of the diversification problem on the results of keyword search

over tree data. Then, we present the different components of our diversification scheme.

6.1 Formal Problem Definition

Diversification aims to provide the users with a result set that contains relevant and diverse

results. We define the problem of diversification of keyword search result patterns as an

optimization problem. Previous works [1, 12, 25] have also defined diversification as an

optimization problem but in a different way and on different data models (web data, flat

documents, structured databases etc.). Given a data tree T and a query Q, let S be the set

of result patterns of Q on T and k be a positive integer. The goal of diversification is to

choose a subset R of S of size k whose elements are both relevant and diverse. Therefore,

R is defined as:

R ∈ argmax
R′⊆S,|R′|=k

(λ relevance(R′,Q)+(1−λ ) diversity(R′))

where λ is a parameter in the [0,1] range which tunes the importance of relevance and di-

versity. This tuning factor allows us to give more importance to the relevance or diversity. If

λ = 1, the result set would be formed solely based on the relevance of the patterns, whereas

if λ = 0, the result set will contain the most diverse set of patterns without considering the

relevance of the patterns. We call the function λ relevance(R′,Q)+(1−λ ) diversity(R′),

diversication function.

Here, we assume that the relevance of a result is independent of the relevance of the

107



108

other results in R′. Therefore, the relevance of R′ with respect to Q is defined as:

relevance(R′,Q) =
1
k ∑

P∈R′
rel(P,Q)

where rel(P,Q) stands for the relevance of result pattern P with respect to Q. We define

later rel(P,Q) as a value in the interval [0,1]. Since the sum is divided by the number k of

results in R′, relevance(R′,Q) ranges between 0 and 1.

A set of patterns is diverse when the pairwise dissimilarity of its patterns is maxi-

mized. We define the pairwise dissimilarity of two patterns as the negative of their similar-

ity. Therefore, the diversity of R′ is given by the following formula:

diversity(R′) =− 1
k(k−1) ∑

P,P′∈R′,P′ ̸=P
sim(P,P′)

where sim(P,P′) denotes the similarity between the patterns P and P′, and is defined later

as a value in the range [0,1]. The sum is divided by the number of pairs of patterns in R′ to

guarantee that diversity(R′) ∈ [0,1].

One can see from the formula above that we need to quantify the relevance of a

given pattern and the similarity of two given patterns. In the next sections, we describe

how the relevance of a pattern and the similarity between two patterns can be measured.

Our main goal in this work is the formulation of the diversification problem in the domain

of keyword search over tree data and a measure of the diversification of a set of patterns

in terms of the dissimilarity between pairs of patterns. However, we also introduce a sim-

ple way for quantifying the relevance of a pattern. Other relevance measures can also be

adopted to design a diversification scheme for keyword search result patterns.

Our definition of the diversification problem does not involve ranking of the pat-

terns. We only select a set of patterns. However, the patterns returned to the user are

ranked.



109

6.2 Relevance of Patterns

In this section, we introduce our relevance scoring scheme. We adapt a statistical approach

that incorporates both semantic and structural information of the patterns. Our approach

utilizes the TF-IDF metric customized to tree data. TF-IDF [70] has been widely used in

information retrieval for assigning weights to the terms. It combines the term frequency of

a term in a document and its inverse document frequency. Inverse document frequency is

computed as the reciprocal of the number of documents that contain a term. Intuitively, a

term’s occurrence frequency in a single document implies its importance for that document

but if the same term occurs in many different documents, this is used to lower the term’s

importance. TF-IDF has also been adapted by some keyword search approaches applied on

tree structured data [6, 46]. Our approach is an adaptation of the one presented in [46].

We define the weight of a keyword instance node nk annotated by keyword k in a

pattern as follows: weight(nk) = log2(ie f (k)) where ie f is the inverse element frequency

of keyword k in the data tree. The value of ie f of keyword k is calculated as the ratio of

the number of elements in the data tree over the number of elements in the data tree that

contain k in the subtrees rooted at them. This weighting scheme gives nodes that contain the

same keyword the same weight value. Consider, for instance, the data tree in Figure 6.1.

The ie f of keyword physics is log2(24/18) = 0.42 and ie f of the keyword quantum is

log2(24/13) = 0.88. These numbers also indicate the importance of the nodes that contain

them in a result pattern and therefore, we use them to represent the nodes’ contribution to

the total relevance of the pattern. However, using merely the node weights is not enough

for designing an accurate relevance score.

In order to take into account the structure of the result patterns, we reduce the weight

of each keyword instance node accordingly by its distance from the LCA node, denoted as

dist(nk,LCA(P)). This reduced score is then aggregated to compute the relevance scores of

patterns. The reason behind this reduction is that intuitively, the nodes that appear farther

from the LCA node contribute to the relevance of the patterns to a lesser extent. Given a



110

Figure 6.1 A data tree which represents a university database consisting of courses and
seminars

result pattern P for a query Q that consists of n keywords,

rel(P,Q) =
n

∑
k=1

weight(nk)

dist(nk,LCA(P))

Let d be the distance of node nk from the LCA node of pattern P and avg_depth be

the average depth of the data tree. dist(nk,LCA(P)) is defined as follows:

dist(nk,LCA(P)) =


1 if d = 0

d if d≤ avg_depth

avg_depth + (d -avg_depth)µ otherwise

We normalize the distance of the nodes to the LCA node by the average depth of

the data tree in order to reduce the penalty of the nodes in trees which have a high average

depth. We let µ be 0.5.

Consider the patterns shown in Figure 6.2 for the keyword query Q = {Quantum,

Physics, Miller} on the tree of Figure 6.1. Patterns P, P′ and P′′ represent courses that

contain all the keywords under their subtrees. Pattern P contains the keyword physics



111

under the title of a prerequisite course, whereas P′ and P′′ contain all the information un-

der a single course (a course titled “Quantum Physics” and taught by an instructor whose

first name or last name is “Miller”). Pattern P′′′ represents a seminar that contains all

the query keywords. According to the relevance formula given above, rel(P,Q) = 0.70,

rel(P′,Q) = 0.82, rel(P′′,Q) = 0.82 and rel(P′′′,Q) = 0.78. One can see that patterns that

have keywords closer to their LCA node usually represent a more meaningful relationship

between the keywords (as a counter example, pattern P represents a loose relationship be-

tween the keywords). The relevance scores are normalized into the [0,1] range before being

combined with the similarity scores in the diversification function.

Figure 6.2 Four patterns for Q = {Quantum,Physics, Miller} on the tree of Figure 6.1

6.3 Similarity of Patterns

We define the similarity of patterns based on the similarities of their corresponding paths.

The similarity of the paths, in turn, is defined based on the similarity of the edges they

contain. This similarity scoring takes advantage of both structural and semantic information

of the patterns.

Given an edge e = (n1,n2), let ck(e) be the set of annotating keywords which occur

in the subtree rooted at n2. Let e = (n1,n2) and e′ = (n′1,n
′
2) be two edges in two patterns P

and P′, respectively, such that label(n1) = label(n′1) and label(n2) = label(n′2). The simi-



112

larity of e and e′, sim(e,e′) = |ck(e)∩ ck(e′)|. Intuitively, the number of shared annotating

keywords under two edges indicates the shared context under the subtrees below these

edges. For instance, consider the patterns depicted in Figure 6.3. These patterns represent

keyword query results for the query sarah,miller on a university database. The correspond-

ing edges in the paths of the patterns are depicted with the same subscript followed by a dot

and an index. The similarity of edges e1 and e1.1 and the similarity of e1 and e1.2 are both

2, since these edges have the same set of annotating keywords. All three patterns contain

the edge (university/courses) in all their root-to-annotated-node paths so this edge

indicates a strong shared information about the patterns. For courses/course edges,

sim(e2,e2.1) = 2 whereas sim(e2,e2.2) = 1. This shows that e2 and e2.1 are more similar

because they contain both of the keywords under their subtrees but e2.2 and e2.3 contain

only one of the keywords under their subtrees.

Figure 6.3 Three patterns which match the keyword query {sarah,miller}

Given two patterns P and P′ for the same keyword query Q and two root-to-annotated-

node paths p and p′, respectively, with the same annotated leaf node, a similarity mapping

between p and p′ is a one-to-one function m from edges of p to edges of p′ satisfying the

following properties: (a) the mapped edges have the same labels (that is, if e = (n1,n2),

e′ = (n′1,n
′
2) and m(e) = e′, then label(n1) = label(n2) and label(n′1) = label(n′2)), and (b)

the domain of m, dom(m), is maximal in the sense that m cannot be extended to map any

additional edges from p. Clearly, a similarity mapping might not map all the edges of p to



113

edges of p′. Further, there can be many similarity mappings between p and p′ since there

can be more than one edges in p (or in p′) with the same labels. Consider, for instance the

two paths in Figure 6.4. There are two possible mappings, say m and m′, from the the edges

of p to p′ which are depicted with different dashed arrows. The difference between m and

m′ is the mapping of courses/course edge, e in p to either e′ or e′′ in p′. According to our

edge scoring scheme, mapping e to e′ gives a better score because these edges share more

annotated keywords under their subtrees.

Figure 6.4 Two paths p and p′ shown with bold edges and possible mappings between their
edges depicted with different dashed arrows

Let now M(p, p′) be the set of all similarity mappings between two paths p and p′.

The similarity of p and p′ is

sim(p, p′) = max{s | s = ∑
e∈dom(m)

sim(e,e′) where e′ = m(e) and m ∈M(p,p′)}

On the paths of Figure 6.4, sim(p, p′) = 6 which is given by the mapping m.

We aggregate the similarity of corresponding root-to-annotated-node paths in pat-

terns to compute the similarity of the patterns. Let P and P′ be two patterns for the

same keyword query Q. We first define the path mapping similarity between P and P′

as pathmap(P,P′) = ∑p∈P,p′∈P′ sim(p, p′). The similarity of patterns P and P′ is defined as



114

follows:

sim(P,P′) =
pathmap(P,P′)

1
2(pathmap(P,P)+ pathmap(P′,P′))

The denominator of the formula guarantees that the similarity value lies in the [0, 1] range.

For example, consider the four patterns in Figure 6.2. Similarity of P and P′, sim(P,P′),

is 0.91 and sim(P,P′′′) is 0.03. One can see that patterns that represent similar concepts

(same node types) will get higher similarity values which is very useful in chosing a diverse

set of results. Even though the patterns P′ and P′′ have the highest relevance scores, the

diversification scheme will choose P′′′ over P′′ since it is less similar to P′ than P′′ and

therefore, P′′′ will contribute to a higher value for the diversification function.

6.4 Algorithm

As described in Section 6.1, selecting a diverse set of results from the set of all results is

an optimization problem. Given a query Q on a data tree T and the set S of all patterns that

match Q on T , the brute force solution to this optimization problem would be to generate all

the k-sized subsets of S and select the ones that maximize the objective function. Clearly,

this solution is not computationally feasible as the number of possible subsets is
(|S|

k

)
.

Different variations of the diversification problem have been proven to be NP-complete

[1, 15, 28, 29]. Therefore, in this section, we introduce a heuristic algorithm, Algorithm 7,

for computing the diverse set of keyword search results. This algorithm incrementally

builds the result set by making greedy choices for the inclusion of every new result in the

diverse result set. The resulting diverse result set is an approximation of the optimal set.

The algorithm takes as input the set of patterns of a query Q on a data tree and a

parameter k which is the desired size for the diverse result set. The patterns of the query

result are generated efficiently using the PatternStack algorithm [2]. We sort the input

patterns with respect to their relevance to the query in descending order. The first pattern,

the most relevant pattern, is included in the result set by default. Indeed, if k = 1 this would



115

Algorithm 7: Diversify algorithm
1 Diversify(Q = {k1, . . . ,kn}: keyword query,
2 S: set of patterns,
3 k: size of diverse set)
4 R = {} /* empty list of patterns */
5 L = sortByRelevance(S)
6 R.add(L[0])
7 i = 1
8 while i < k do
9 j = i

10 maxScore = 0
11 maxIndex =−1
12 while j < |S| do
13 if λ rel(L[ j],Q)< maxScore then
14 break

15 sumSimilarity = 0
16 l = 0
17 while l < |R| do
18 sumSimilarity = sumSimilarity+ sim(L[ j],R[l])
19 l = l +1

20 curScore = λ rel(L[ j],Q)− (1−λ )(sumSimilarity/|R|)
21 if curScore > maxScore then
22 maxScore = curScore
23 maxIndex = j

24 j = j+1

25 R.add(L[maxIndex])
26 tmp = L.remove(maxIndex)
27 L.insert(i, tmp)
28 i = i+1

29 return R

be a trivial choice (line 5). Then, we iterate over the remaining list of patterns in L to find

the next pattern to be included in the result list R (lines 8-28). The iteration terminates

when all patterns in L have been examined or the score of a pattern cannot be greater than

the current maximum score (line 13). The algorithm stops when the size of R is equal to k.

The worst case complexity of the algorithm is O(|S|k2) where k is the desired size of R.



116

6.5 Experimental Evaluation

In this section, we elaborate on the proposed experimental evaluation to assess the effec-

tiveness of our diversification scheme and the efficiency of the heuristic algorithm.

6.5.1 Evaluation Metrics

Different metrics have been used in measuring the success of diversification methods. In

[19], α-NDCG is introduced as an adaptation of NDCG (normalized discounted cumula-

tive gain). The α-NDCG is adapted in a way that the gain from the retrieval of a document

is reduced by the extent that the information nuggets of the document is included in the

previously retrieved documents. The definition of information nuggets in keyword search

over tree data results is not straightforward. In [25], authors define primary keys in rela-

tional databases to be the information nuggets. The construct that corresponds to primary

keys in the context of tree data might be the LCA nodes of the results. However, since the

inclusion of LCA nodes is binary, it is not possible to accurately decide for the redundancy

of a result.

S-recall [17] is another diversification related evaluation metric. However, S-recall

requires either a taxonomy or pre-defined topics on the dataset so that the metric can quan-

tify the coverage of unique subtopics by the returned result set. This kind of taxonomy is

not available for tree data.

Another class of metrics are the redundancy metrics introduced in [94]. Zhang et

al. [94] adapt precision and recall metrics to measure the elimination success of redun-

dant results. Redundancy-Precision is defined as the ratio of eliminated redundant results

to the total eliminated results. Redundancy-Recall is defined as the ratio of the eliminated

redundant results to the total number of redundant results. This metric requires binary re-

dundancy decisions by human experts for each result. The expert decisions are done based

on a ranked list and the expert decides redundancy of a result considering the previously

retrieved results.



117

6.5.2 Experiments

As described in the previous section, defining an evaluation metric that measures the diver-

sification quality of the result set is not a straightforward task. Therefore, one can evaluate

the accuracy of our relevance and similarity metrics separately. Top-k retrieval experiments

can be conducted with our relevance measure, and precision and recall metrics can be com-

puted over the top-k results. In order to measure the effectiveness of our similarity measure

(and our diversification scheme, in general), redundancy-precision and redundancy-recall

measures can be utilized. Finally, experiments to assess the efficiency and scalability of

our proposed algorithm can be conducted.

6.6 Conclusion

We have formulated the problem of diversification of results of keyword search on tree data.

Diversification aims to balance the relevance and diversity of the results contained in the

result set. A diverse result set helps the users to see different aspects of the results. To this

end, we formalized the diversification problem in the domain of tree data as an optimization

problem. We introduced a simple relevance measure. This measure can be computed

easily through statistical information which is extracted from the data offline. As our main

contribution, we devised a similarity measure between the patterns of a keyword query over

tree data. This measure takes into account both the structural and semantic information

of the patterns. Finally, we presented a heuristic algorithm that incrementally builds the

diverse result set in a greedy fashion. We also suggested experiments to be conducted

to measure the accuracy of the proposed diversification scheme and the efficiency of the

heuristic algorithm.



CHAPTER 7

CONCLUSION AND FUTURE WORK

Keyword search is a convenient way of querying data on the web. Recently, it also gained

popularity in the area of tree data. However, its flexibility comes with multiple drawbacks.

In this dissertation, we have proposed solutions to two different problems in the domain

of keyword search over tree structured data. First, we tackled the problem of selecting

relevant results of a keyword query. To this end, we presented a new keyword search

approach, XReason, which provides filtering and ranking semantics to keyword queries on

tree data. XReason semantics are based on reasoning with patterns of the results instead of

simply assigning scores to the results or patterns. We introduced relations on patterns using

different types of homomorphisms and utilized these relations to define our semantics.

Instead of processing individual results on the data tree, our approach benefits from a global

view of these results. We also have conducted an in-depth comparison of our approach

with previous approaches. We presented a stack-based algorithm to efficiently compute the

result patterns. Our exhaustive experimental results showed that our algorithm is efficient

and scales smoothly. They also showed that XReason outperforms previous approaches

both as a filtering and ranking semantics.

As a second problem, we addressed the problem of result disambiguation. Key-

word queries, in all domains of data, are inherently imprecise. This imprecision become

more pronounced on the domain of tree data since the users cannot also specify structural

constraint. In order to tackle the result disambiguation problem, we have proposed the

application of clustering of the keyword search results in order to support the user in her

quest for meaningful answers. Clustering has also been proposed on the Web as a differ-

ent way of organizing and browsing the results. We introduced a multi-level clustering

methodology for keyword search over tree data which groups together results with similar

structural and semantic features. In order to define our cluster hierarchy, we introduced

118



119

different relations on patterns of results based on homomorphisms between pattern paths.

In our system, the users navigate through the hierarchy by drilling down from clusters to

subclusters while novel techniques for ranking the clusters at different levels facilitate and

shorten their search. We designed an efficient algorithm for generating and clustering re-

sult patterns, and for building the cluster hierarchy. Our experimental studies showed that

the proposed algorithm is fast and scalable. They also showed that the proposed clustering

methodology allows the users to effectively retrieve their intended results and outperforms

a recent state-of-the-art competitor approach.

In order to address the result disambiguation problem from a different aspect, we

also investigated the task of diversification of keyword search results. Diversification of

search results aims to provide the users with a diverse subset of results without substan-

tially compromising relevancy. It has been studied in different domains to tackle the prob-

lems of result disambiguation, over specialization and exploratory search. We proposed

applying diversification to the results of keyword search on tree data. We formalized the

diversification problem in the domain of tree data. In order to select a set of patterns whose

elements are both relevant and diverse, we introduced a relevance measure for patterns and

a similarity measure between two patterns of a keyword query. We also presented a greedy

heuristic which computes an approximation of the optimal diverse result set. Finally, we

elaborated on different possible experiments that can be conducted to assess the efficiency

of our heuristic algorithm and the effectiveness of our diversification scheme. Future work

includes the experimental assessment of the accuracy of our diversification scheme and the

efficiency of our heuristic algorithm.



REFERENCES

[1] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying search results. In
International Conference on Web Search and Data Mining, pages 5–14, 2009.

[2] C. Aksoy, A. Dimitriou, D. Theodoratos, and X. Wu. XReason: A semantic approach
that reasons with patterns to answer XML keyword queries. In International Con-
ference on Database Systems for Advanced Applications, pages 299–314. 2013.

[3] C. Aksoy, A. Dass, D. Theodoratos, and X. Wu. Clustering query results to support
keyword search on tree data. In International Conference on Web-Age Information
Management, pages 213–224, 2014.

[4] C. Aksoy, A. Dimitriou, and D. Theodoratos. Reasoning with patterns to effectively
answer XML keyword queries. The VLDB Journal, 24(3):441–465, 2015.

[5] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Information Retrieval. ACM Press
/ Addison-Wesley, Boston, MA, USA, 1999.

[6] Z. Bao, T. W. Ling, B. Chen, and J. Lu. Effective XML keyword search with relevance
oriented ranking. In International Conference on Data Engineering, pages 517–
528, 2009.

[7] Z. Bao, J. Lu, T. W. Ling, and B. Chen. Towards an effective XML keyword search.
IEEE Transactions on Knowledge and Data Engineering, 22(8):1077–1092, 2010.

[8] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword search-
ing and browsing in databases using banks. In International Conference on Data
Engineering, pages 431–440, 2002.

[9] C. Botev and J. Shanmugasundaram. Context-sensitive keyword search and ranking for
XML. In International Workshop on the Web and Databases, pages 115–120, 2005.

[10] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems, 30(1-7):107–117, 1998.

[11] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: Optimal XML pattern
matching. In ACM SIGMOD/PODS Conference, pages 310–321, 2002.

[12] J. Carbonell and J. Goldstein. The use of mmr, diversity-based reranking for reordering
documents and producing summaries. In International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 335–336, 1998.

[13] C. Carpineto, S. Osiński, G. Romano, and D. Weiss. A survey of Web clustering
engines. ACM Computing Surveys, 41(3):17:1–17:38, 2009.

[14] Carrot2. Carrot2 Clustering Engine. http://search.carrot2.org/
stable/search, Retrieved on December 7 2015.

120



121

[15] B. Carterette. An analysis of np-completeness in novelty and diversity ranking. Infor-
mation Retrieval, 14(1):89–106, 2011.

[16] B. Chen, J. Lu, and T. W. Ling. Exploiting id references for effective keyword search
in xml documents. In International Conference on Database Systems for Advanced
Applications, volume 4947, pages 529–537. Springer Berlin Heidelberg, 2008.

[17] H. Chen and D. R. Karger. Less is more: Probabilistic models for retrieving fewer
relevant documents. In International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 429–436, 2006.

[18] L. J. Chen and Y. Papakonstantinou. Supporting top-K keyword search in XML
databases. In International Conference on Data Engineering, pages 689–700, 2010.

[19] C. L. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A. Ashkan, S. Büttcher,
and I. MacKinnon. Novelty and diversity in information retrieval evaluation. In
International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 659–666, 2008.

[20] P. Clough and M. Sanderson. Evaluating the performance of information retrieval
systems using test collections. Information Research, 18(2), 2013.

[21] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A semantic search engine for
XML. In International Conference on Very Large Data Bases, pages 45–56, 2003.

[22] W. W. W. Consortium. XML Path Language (XPath). http://www.w3.org/TR/
xpath/, Retrieved on December 7 2015.

[23] W. W. W. Consortium. XQuery 1.0: An XML Query Language. http://www.w3.
org/TR/xquery/, Retrieved on December 7 2015.

[24] T. Dalamagas, T. Cheng, K.-J. Winkel, and T. Sellis. A methodology for clustering
XML documents by structure. Information Systems, 31(3):187 – 228, 2006.

[25] E. Demidova, P. Fankhauser, X. Zhou, and W. Nejdl. Divq: Diversification for key-
word search over structured databases. In International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 331–338, 2010.

[26] A. Dimitriou and D. Theodoratos. Efficient keyword search on large tree structured
datasets. In International Workshop on Keyword Search and Data Exploration on
Structured Data, pages 63–74, 2012.

[27] A. Dimitriou, D. Theodoratos, and T. Sellis. Top-k-size keyword search on tree struc-
tured data. Information Systems, 47(0):178 – 193, 2015.

[28] M. Drosou and E. Pitoura. Search result diversification. SIGMOD Records, 39(1):
41–47, Sept. 2010.

[29] E. Erkut, Y. Ulkusal, and O. Yenicerioglu. A comparison of p-dispersion heuristics.
Computers & Operations Research, 21(10):1103 – 1113, 1994.



122

[30] S. Gollapudi and A. Sharma. An axiomatic approach for result diversification. In
International World Wide Web Conference, pages 381–390, 2009.

[31] G. Gou and R. Chirkova. Efficient algorithms for evaluating xpath over streams. In
ACM SIGMOD/PODS Conference, pages 269–280, 2007.

[32] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked keyword
search over XML documents. In ACM SIGMOD/PODS Conference, pages 16–27,
2003.

[33] M. Hasan, A. Mueen, V. Tsotras, and E. Keogh. Diversifying query results on semi-
structured data. In International Conference on Information and Knowledge Man-
agement, pages 2099–2103, 2012.

[34] V. Hristidis and Y. Papakonstantinou. Discover: keyword search in relational
databases. In International Conference on Very Large Data Bases, pages 670–681,
2002.

[35] V. Hristidis, N. Koudas, Y. Papakonstantinou, and D. Srivastava. Keyword proximity
search in XML trees. IEEE Transactions on Knowledge and Data Engineering, 18
(4):525–539, 2006.

[36] Y. Huang, Z. Liu, and Y. Chen. Query biased snippet generation in XML search. In
ACM SIGMOD/PODS Conference, pages 315–326, 2008.

[37] A. Hulgeri, G. Bhalotia, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword search
in databases. IEEE Data Engineering Bulletin, 24(3):22–31, 2001.

[38] V. Josifovski, M. Fontoura, and A. Barta. Querying XML streams. The VLDB Journal,
14(2):197–210, 2005.

[39] L. Kong, R. Gilleron, and A. L. Mostrare. Retrieving meaningful relaxed tightest
fragments for XML keyword search. In International Conference on Extending
Database Technology, pages 815–826, 2009.

[40] K. Kummamuru, R. Lotlikar, S. Roy, K. Singal, and R. Krishnapuram. A hierarchical
monothetic document clustering algorithm for summarization and browsing search
results. In International World Wide Web Conference, pages 658–665, 2004.

[41] Y. Kural, S. Robertson, and S. Jones. Deciphering cluster representations. Information
Processing & Management, 37(4):593 – 601, 2001.

[42] K.-H. Lee, K.-Y. Whang, W.-S. Han, and M.-S. Kim. Structural consistency: enabling
XML keyword search to eliminate spurious results consistently. The VLDB Journal,
19(4):503–529, 2010.

[43] G. Li, J. Feng, J. Wang, and L. Zhou. Effective keyword search for valuable LCAs
over XML documents. In International Conference on Information and Knowledge
Management, pages 31–40, 2007.



123

[44] G. Li, C. Li, J. Feng, and L. Zhou. SAIL: Structure-aware indexing for effective and
progressive top-k keyword search over XML documents. Information Sciences, 179
(21):3745–3762, 2009.

[45] J. Li and J. Wang. XQSuggest: An interactive XML keyword search system. In Inter-
national Conference on Database and Expert Systems Applications, pages 340–347.
2009.

[46] J. Li, C. Liu, R. Zhou, and W. Wang. Suggestion of promising result types for XML
keyword search. In International Conference on Extending Database Technology,
pages 561–572, 2010.

[47] J. Li, C. Liu, and J. Yu. Context-based diversification for keyword queries over xml
data. IEEE Transactions on Knowledge and Data Engineering, 27(3):660–672,
March 2015.

[48] Y. Li, C. Yu, and H. V. Jagadish. Schema-free XQuery. In International Conference
on Very Large Data Bases, pages 72–83, 2004.

[49] W. Lian, D.-L. Cheung, N. Mamoulis, and S.-M. Yiu. An efficient and scalable algo-
rithm for clustering XML documents by structure. IEEE Transactions on Knowl-
edge and Data Engineering, 16(1):82–96, 2004.

[50] F. Liu, C. Yu, W. Meng, and A. Chowdhury. Effective keyword search in relational
databases. In ACM SIGMOD/PODS Conference, pages 563–574, 2006.

[51] J. Liu, J. Wang, W. Hsu, and K. Herbert. XML clustering by principal component
analysis. In International Conference on Tools with Artificial Intelligence, pages
658–662, 2004.

[52] J. Liu, J. Wang, J. Hu, and B. Tian. A method for aligning RNA secondary structures
and its application to rna motif detection. BMC Bioinformatics, 6(1):89, 2005.

[53] X. Liu, C. Wan, and L. Chen. Returning clustered results for keyword search on
XML documents. IEEE Transactions on Knowledge and Data Engineering, 23
(12):1811–1825, 2011.

[54] Z. Liu and Y. Chen. Identifying meaningful return information for XML keyword
search. In ACM SIGMOD/PODS Conference, pages 329–340, 2007.

[55] Z. Liu and Y. Chen. Reasoning and identifying relevant matches for XML keyword
search. The Proceedings of the VLDB Endowment, 1(1):921–932, 2008.

[56] Z. Liu and Y. Chen. Answering keyword queries on XML using materialized views.
In International Conference on Data Engineering, pages 1501–1503, 2008.

[57] Z. Liu and Y. Chen. Return specification inference and result clustering for keyword
search on XML. ACM Transactions on Database Systems, 35(2):10:1–10:47, 2010.



124

[58] Z. Liu and Y. Chen. Processing keyword search on XML: a survey. World Wide Web,
14(5-6):671–707, 2011.

[59] Z. Liu, P. Sun, and Y. Chen. Structured search result differentiation. The Proceedings
of the VLDB Endowment, 2(1):313–324, Aug. 2009.

[60] Z. Liu, S. Natarajan, and Y. Chen. Query expansion based on clustered results. The
Proceedings of the VLDB Endowment, 4(6):350–361, Mar. 2011.

[61] Y. Lu, W. Wang, J. Li, and C. Liu. XClean: Providing valid spelling suggestions for
XML keyword queries. In International Conference on Data Engineering, pages
661–672, 2011.

[62] Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: top-k keyword query in relational
databases. In ACM SIGMOD/PODS Conference, pages 115–126, 2007.

[63] J. Madhavan, S. Jeffery, S. Cohen, X. Dong, D. Ko, C. Yu, and A. Halevy. Web-scale
data integration: You can only afford to pay as you go. Conference on Innovative
Data Systems Research, 2007.

[64] R. Nayak. Fast and effective clustering of XML data using structural information.
Knowledge and Information Systems, 14(2):197–215, 2008.

[65] K. Nguyen and J. Cao. Top-k answers for XML keyword queries. World Wide Web,
15(5-6):485–515, 2012.

[66] P. Ogden, D. Thomas, and P. Pietzuch. Scalable XML query processing using parallel
pushdown transducers. The Proceedings of the VLDB Endowment, 6(14):1738–
1749, Sept. 2013.

[67] K. Q. Pu and X. Yu. Keyword query cleaning. The Proceedings of the VLDB Endow-
ment, 1(1):909–920, 2008.

[68] F. Radlinski and S. Dumais. Improving personalized web search using result diversi-
fication. In International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 691–692, 2006.

[69] V. Raghavan, P. Bollmann, and G. S. Jung. A critical investigation of recall and preci-
sion as measures of retrieval system performance. ACM Transactions on Informa-
tion Systems, 7(3):205–229, 1989.

[70] G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.
Information Processing and Management, 24(5):513–523, 1988.

[71] A. Schmidt, M. Kersten, and M. Windhouwer. Querying XML documents made easy:
nearest concept queries. In International Conference on Data Engineering, pages
321–329, 2001.



125

[72] F. Shao, L. Guo, C. Botev, A. Bhaskar, M. Chettiar, F. Yang, and J. Shanmugasun-
daram. Efficient keyword search over virtual XML views. The VLDB Journal, 18
(2):543–570, 2009.

[73] B. A. Shapiro and K. Zhang. Comparing multiple rna secondary structures using tree
comparisons. Computer Applications in the Biosciences, 6(4):309–318, 1990.

[74] S. Souldatos, X. Wu, D. Theodoratos, T. Dalamagas, and T. Sellis. Evaluation of
partial path queries on XML data. In International Conference on Information and
Knowledge Management, pages 21–30, 2007.

[75] J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan. Web usage mining: Discovery
and applications of usage patterns from web data. ACM SIGKDD Explorations
Newsletter, 1(2):12–23, 2000.

[76] J. Stefanowski and D. Weiss. Carrot and language properties in web search results
clustering. In International Atlantic Web Intelligence Conference, pages 240–249,
2003.

[77] C. Sun, C. Y. Chan, and A. K. Goenka. Multiway SLCA-based keyword search in
XML data. In International World Wide Web Conference, pages 1043–1052, 2007.

[78] I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram, E. J. Shekita, and C. Zhang.
Storing and querying ordered XML using a relational database system. In ACM
SIGMOD/PODS Conference, pages 204–215, 2002.

[79] A. Termehchy and M. Winslett. Using structural information in XML keyword search
effectively. ACM Transactions on Database Systems, 36(1):4, 2011.

[80] D. Theodoratos and X. Wu. An original semantics to keyword queries for XML using
structural patterns. In International Conference on Database Systems for Advanced
Applications, pages 727–739, 2007.

[81] D. Theodoratos and X. Wu. Eager evaluation of partial tree-pattern queries on XML
streams. In International Conference on Database Systems for Advanced Applica-
tions, pages 241–246, 2009.

[82] T. Tian, J. Geller, and S. Chun. Improving web search results for homonyms by sug-
gesting completions from an ontology. In Current Trends in Web Engineering,
pages 175–186. 2010.

[83] T. Tian, J. Geller, and S. Chun. Enhancing the interface for ontology-supported
homonym search. In Conference on Advanced Information Systems Engineering
Workshops, pages 544–553. 2011.

[84] A. Turel and F. Can. A new approach to search result clustering and labeling. In Asia
Information Retrieval Symposium, pages 283–292, 2011.



126

[85] H. Wang, W. Wang, X. Lin, and J. Li. Labeling scheme and structural joins for graph-
structured XML data. In Asia Pacific Web Conference, pages 277–289. 2005.

[86] X. Wu. Semantics and efficient evaluation of partial tree-pattern queries on XML.
PhD thesis, New Jersey Institute of Technology, 2010.

[87] X. Wu, S. Souldatos, D. Theodoratos, T. Dalamagas, and T. Sellis. Efficient evaluation
of generalized path pattern queries on XML data. In International World Wide Web
Conference, pages 835–844, 2008.

[88] Y. Xu and Y. Papakonstantinou. Efficient keyword search for smallest LCAs in XML
databases. In ACM SIGMOD/PODS Conference, pages 537–538, 2005.

[89] Y. Xu and Y. Papakonstantinou. Efficient LCA based keyword search in XML data.
In International Conference on Extending Database Technology, pages 535–546,
2008.

[90] C. Yu, L. Lakshmanan, and S. Amer-Yahia. Recommendation diversification using
explanations. In International Conference on Data Engineering, pages 1299–1302,
2009.

[91] M. J. Zaki. Efficiently mining frequent trees in a forest: Algorithms and applications.
in IEEE Transaction on Knowledge and Data Engineering, 17:1021–1035, 2005.

[92] O. Zamir and O. Etzioni. Web document clustering: A feasibility demonstration. In
International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 46–54, 1998.

[93] M. Zhang and N. Hurley. Avoiding monotony: Improving the diversity of recommen-
dation lists. In ACM Recommender Systems Conference, pages 123–130, 2008.

[94] Y. Zhang, J. Callan, and T. Minka. Novelty and redundancy detection in adaptive
filtering. In International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 81–88, 2002.

[95] J. Zhou, Z. Bao, W. Wang, T. W. Ling, Z. Chen, X. Lin, and J. Guo. Fast SLCA
and ELCA computation for XML keyword queries based on set intersection. In
International Conference on Data Engineering, pages 905–916, 2012.

[96] J. Zhou, X. Zhao, W. Wang, Z. Chen, and J. X. Yu. Top-down keyword query pro-
cessing on XML data. In International Conference on Information and Knowledge
Management, pages 2225–2230, 2013.

[97] J. Zhou, Z. Bao, W. Wang, J. Zhao, and X. Meng. Efficient query processing for XML
keyword queries based on the idlist index. The VLDB Journal, 23(1):25–50, 2014.

[98] R. Zhou, C. Liu, and J. Li. Fast ELCA computation for keyword queries on XML
data. In International Conference on Extending Database Technology, pages 549–
560, 2010.



127

[99] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommen-
dation lists through topic diversification. In International World Wide Web Confer-
ence, pages 22–32, 2005.


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: State of the Art
	Chapter 3: Tree Data Model
	Chapter 4: Semantics of Keyword Queries Over Tree Data
	Chapter 5: Search Result Clustering
	Chapter 6: Diversification
	Chapter 7: Conclusion and Futurework
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)




