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ABSTRACT 

UNSUPERVISED GENE REGULATORY NETWORK INFERENCE ON 

MICROARRAY DATA 

 

by 

Nidhi Radia 

Obtaining gene regulatory networks (GRNs) from expression data is a challenging and 

crucial task. Many computational methods and algorithms have been developed to infer 

gene networks for gene expression data, which are usually obtained from microarray 

experiments. A gene network is a method to depict the relation among clusters of genes. 

To infer gene networks, the unsupervised method is used in this study.  The two types of 

data used are time-series data and steady-state data.  The data is analyzed using various 

tools containing different algorithms and concepts. GRNs from time-series data tools are 

obtained using the Time-delayed Algorithm for the Reconstruction of Accurate Cellular 

Networks (TD-ARACNe), the Bayesian Network Inference with Java Objects (BANJO), 

and causality. For steady-state data tools such as ARACNe, Gene Network Inference with 

Ensemble of trees (GENIE3), Context Likelihood or Relatedness Network (CLR), and 

Maximum Relevance Minimum Redundancy (MRNET) are used. The performance of 

time-series data as well as steady-state data based tool algorithms is compared by 

calculating their accuracy. The accuracy is calculated by comparing gene interactions 

between predicted and true networks. From the experimental studies it was found that the 

TD-ARACNe gives the highest accuracy on time-series gene expression data while for 

steady-state data, the ARACNe tool gives the highest accuracy.  Overall, these analyses 

suggest that the suitability of the tools depends on the types of gene expression data 

available. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Objective 

The objective of this thesis is to find the accuracy of bioinformatics tools used for 

obtaining gene regulatory networks (GRNs). This thesis primarily focused on two types 

of microarray data, namely time-series data and steady-state data. 

         For time-series data, tools such as TD-ARACNe, BANJO, and causality are used to 

infer networks. Then results are analyzed using golden standard data to find the accuracy 

of the tools, and the ranking of tools is decided later on.  

         For steady-state data, ARACNe, GENIE3, CLR and MRNET are used to produce 

GRNs. Afterwards, results are analyzed in the same manner as the time-series results.  

 

1.2 Background Information 

Gene networking is a method to depict clusters of genes and the relations among them. 

Many computational methods and algorithms have been developed to infer gene 

networks for gene expression data which is usually obtained from microarray 

experiments. Obtaining GRN models is quicker and cheaper than lab experiments GRNs 

is a model consisting a network which is composed of nodes and edges. The nodes 

represent genes, proteins or metabolites, and the edges comprise of molecular interactions 

such as between proteins and DNA, between two genes or between two proteins. Another 

important role of GRNs in system biology is to help to understand life processes such as 

cell differentiation, metabolism, the cell cycle, and signal transduction. This role further 
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helps to give better ideas about mechanisms of diseases that occur when these cellular 

processes are dysregulated. Hence, these mechanisms give more insight on gene-

pathways, phenotype expression, and genes responsible for cancer. For example, 

understanding the interaction between genes can help to identify molecular targets for 

specific drugs, or drugs for specific targets. This knowledge combined with more 

information on the network behavior and biological models helps to find disease-specific 

cures and design drugs for personalized medicines. 

         In this thesis, GRNs are deduced between two genes using microarray data. Two 

types of microarray data are used namely, time-course experiments, and perturbation 

experiments. The method used to infer GRNs is unsupervised.   
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CHAPTER 2 

DATASET 

 

In this Chapter, the datasets and their types will be discussed. Later in this chapter, focus 

will be on the description of data used for the thesis and how they were processed using 

R studio.  

 

2.1   Microarray  Data 

Microarray is a method where thousands of genes are expressed using probes that are 

complementary to the sequences of either DNA or RNA. It obtains raw data in the form 

of a matrix. Hence, data are required to be pre-processed data to analyze similarities and 

differences of the genes expressed in the experiment. Hence, the microarray data is also 

known as gene expression profile. Gene expression means the amount of a gene 

expressed in given conditions. Usually the gene expression matrix is composed of rows 

and columns where genes are present in the row while the columns represent conditions 

such as an array, gene-chip, or experiments. Experiments usually correspond to time-

points for time-series dataset, and to conditions or treatments for steady-state dataset.  

 

2.1.1 Types of Microarray Datasets 

1) Knockdown: Knockdown data is a type of expression data where one or more 

genes are reduced.  Genes can be reduced either by genetic modification or by 

treating genes with reagents.  

 

2) Knockout:  In this type of data, one or more genes have been knocked out, 

meaning genes are being inactivated. In this type of data, inactivation of genes 

can be done either by replacing or disrupting DNA piece artificially. Hence, the 

loss of genes changes characteristics such as phenotypes.   
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3) Wildtype: Wildtype data are expression values from the most common phenotype 

of a given organism. 

 

4) Multifactorial:  In this type of data more than one perturbation is applied to a set 

of genes. It is steady-state data meaning expression value are not changing or are 

changing very slowly. Perturbation can also be applied to either all genes or some 

genes in the experiments. 

 

5) Time-series:  In time series data, genetic or chemical perturbation is applied to a 

set of genes, and readings are noted while expression is changing in the 

experiment. 

 

2.2 Time-Series Dataset 

Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenge 4 data 

were used for time-series tool analysis. DREAM4 data was created for experiments and 

theories in the area of cellular network inference and quantitative model building in 

systems biology.  This data have 10 genes with 21 different time points. In the data 

matrix, the rows represent different time points while the columns contain various genes. 

It has five different sets of network data. The initial condition in the data is considered as 

a steady-state measurement of the wild-type. A perturbation is applied at time (t) = 0 

minutes (mins).  From t = 0 mins to t = 500 mins, meaning the first half of the time series 

matrix, the results show the response of the gene expression to the perturbation that was 

applied. After recording the responses, the perturbation is removed at t = 500 mins for the 

second half of the time series till the last time point t = 1000 mins, the results show how 

the gene expression levels go back from the perturbed to the wild-type state.  In short, the 

wild-type network is restored again in the expression profile.   

          In the following Tables from 2.1 to 2.5, G represents various genes, and various 

time- points are measured in minutes. 
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Table 2.1 DREAM4 size 10 Network 1 Time-Series Data 

Time G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

0 0.6665 0.1272 0.3551 0.7746 0.1004 0.2755 0.6068 0.7431 0.6656 0.6951

50 0.3258 0.1218 0.3464 0.7229 0.1925 0.3108 0.6097 0.7568 0.5554 0.7327

100 0.1775 0.0444 0.5713 0.5868 0.2333 0.3570 0.4647 0.6657 0.7211 0.6717

150 0.1839 0.0615 0.4850 0.6338 0.4045 0.3376 0.4200 0.7324 0.6402 0.6970

200 0.0931 0.1398 0.3436 0.5354 0.5583 0.2994 0.4145 0.6771 0.5479 0.7513

250 0.0653 0.0886 0.3124 0.5256 0.6429 0.3677 0.5789 0.8026 0.5983 0.6089

300 0.1502 0.0948 0.4126 0.4600 0.5350 0.2993 0.5994 0.6182 0.7289 0.6660

350 0.0913 0.0905 0.3765 0.4214 0.5642 0.3430 0.6775 0.5235 0.7737 0.7444

400 0.1359 0.1182 0.5189 0.5030 0.6719 0.2333 0.5143 0.6088 0.6844 0.8365

450 0.1667 0.0766 0.3769 0.4831 0.6740 0.3816 0.4996 0.5959 0.7487 0.7173

500 0.1170 0.0755 0.4322 0.5403 0.7355 0.3345 0.5091 0.7153 0.6726 0.6326

550 0.4709 0.0937 0.3453 0.6184 0.4853 0.3585 0.4479 0.7052 0.7919 0.5868

600 0.5545 0.1443 0.4763 0.6234 0.3258 0.3239 0.4197 0.7299 0.5792 0.6030

650 0.5718 0.1580 0.3528 0.6429 0.2634 0.2929 0.4525 0.7211 0.6633 0.6928

700 0.6437 0.0906 0.3818 0.7448 0.1907 0.3050 0.6357 0.6836 0.8094 0.7287

750 0.6989 0.0959 0.4026 0.6478 0.1278 0.2935 0.5680 0.7436 0.6820 0.8214

800 0.6002 0.1251 0.3520 0.7884 0.1340 0.3429 0.5652 0.6701 0.7549 0.6814

850 0.7517 0.0985 0.4542 0.7087 0.1392 0.3147 0.3950 0.6563 0.6583 0.6836

900 0.7058 0.0824 0.4255 0.7010 0.0960 0.3309 0.4628 0.6610 0.6866 0.7454

950 0.6863 0.1131 0.3168 0.6602 0.1390 0.3387 0.5904 0.6152 0.7002 0.6451

1000 0.6786 0.0781 0.3340 0.6695 0.1182 0.2846 0.5939 0.6824 0.7702 0.6068  

Table 2.2 DREAM4 size 10 Network 2 Time-Series Data 

Time G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

0 0.6629 0.1479 0.6120 0.7147 0.1672 0.6486 0.0417 0.7280 0.6067 0.5978

50 0.6762 0.2663 0.5867 0.6211 0.1768 0.2115 0.0958 0.7279 0.6161 0.3535

100 0.6499 0.2271 0.5552 0.7286 0.2841 0.1475 0.1594 0.6161 0.6102 0.2467

150 0.7366 0.3119 0.6120 0.6364 0.2322 0.1166 0.1082 0.6998 0.6555 0.2297

200 0.6697 0.3594 0.5522 0.6019 0.1690 0.0843 0.0391 0.6284 0.6063 0.2421

250 0.7655 0.3480 0.5896 0.8418 0.2197 0.0368 0.0302 0.5903 0.5750 0.2617

300 0.6713 0.3012 0.5642 0.6612 0.1955 0.0546 0.0192 0.4982 0.6052 0.2322

350 0.6531 0.3964 0.5156 0.6545 0.2205 0.0567 0.0101 0.5552 0.8884 0.2834

400 0.7095 0.4858 0.7352 0.6959 0.2654 0.0984 0.0140 0.5764 0.5945 0.3155

450 0.6442 0.3658 0.6183 0.7552 0.1891 0.0743 0.0121 0.5709 0.5913 0.2744

500 0.7321 0.3768 0.5533 0.7484 0.1736 0.0686 0.0209 0.4771 0.6506 0.3445

550 0.7683 0.2599 0.5805 0.6934 0.0679 0.4207 0.0564 0.5144 0.6625 0.6782

600 0.7135 0.0946 0.6226 0.7316 0.0502 0.5567 0.1188 0.6730 0.6116 0.6946

650 0.5405 0.0657 0.7016 0.6596 0.0637 0.4946 0.1145 0.6814 0.7677 0.6962

700 0.7235 0.0698 0.6252 0.7474 0.1991 0.5933 0.0661 0.6835 0.6244 0.6351

750 0.7445 0.1791 0.6708 0.7099 0.2486 0.5812 0.0688 0.7071 0.8015 0.7254

800 0.6565 0.2643 0.5605 0.8040 0.1119 0.6017 0.1092 0.6559 0.5745 0.7505

850 0.6644 0.1535 0.6601 0.7343 0.0559 0.7040 0.1106 0.6533 0.5741 0.6199

900 0.5947 0.0480 0.7683 0.7035 0.0614 0.7472 0.0781 0.6549 0.6811 0.6628

950 0.7603 0.0464 0.6377 0.6772 0.1621 0.5347 0.0546 0.7131 0.5368 0.7113

1000 0.5853 0.1089 0.5751 0.7424 0.1135 0.6229 0.0561 0.7519 0.5974 0.6970  
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Table 2.3 DREAM4 size 10 Network 3 Time-Series Data 

Time G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

0 0.402 0.182 0.619 0.522 0.491 0.291 0.151 0.69 0.65 0.684

50 0.436 0.436 0.512 0.493 0.5 0.275 0.164 0.648 0.796 0.321

100 0.583 0.523 0.482 0.453 0.498 0.145 0.102 0.597 0.676 0.13

150 0.647 0.645 0.511 0.496 0.408 0.192 0.049 0.394 0.665 0.234

200 0.636 0.581 0.473 0.43 0.63 0.183 0.073 0.255 0.658 0.192

250 0.602 0.52 0.446 0.376 0.557 0.185 0.12 0.246 0.664 0.207

300 0.664 0.547 0.472 0.344 0.619 0.133 0.106 0.258 0.864 0.154

350 0.608 0.745 0.463 0.385 0.532 0.168 0.119 0.333 0.872 0.161

400 0.695 0.639 0.438 0.361 0.549 0.181 0.143 0.31 0.638 0.139

450 0.555 0.627 0.432 0.259 0.534 0.14 0.084 0.317 0.583 0.165

500 0.643 0.64 0.375 0.288 0.66 0.161 0.068 0.259 0.682 0.265

550 0.721 0.394 0.297 0.356 0.656 0.144 0.067 0.177 0.749 0.492

600 0.681 0.307 0.454 0.334 0.513 0.173 0.149 0.384 0.743 0.701

650 0.506 0.32 0.49 0.373 0.607 0.161 0.213 0.413 0.803 0.72

700 0.476 0.35 0.449 0.523 0.539 0.216 0.229 0.573 0.604 0.68

750 0.33 0.4 0.423 0.513 0.604 0.279 0.252 0.667 0.616 0.695

800 0.28 0.357 0.458 0.471 0.591 0.179 0.186 0.688 0.682 0.839

850 0.45 0.346 0.483 0.549 0.669 0.233 0.157 0.682 0.743 0.649

900 0.572 0.33 0.542 0.682 0.666 0.189 0.194 0.627 0.642 0.788

950 0.388 0.298 0.48 0.52 0.583 0.264 0.185 0.683 0.786 0.72

1000 0.455 0.337 0.512 0.629 0.456 0.28 0.302 0.548 0.69 0.74  

Table 2.4 DREAM4 size 10 Network 4 Time-Series Data 

Time G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

0 0.557 0.197 0.581 0.17 0.531 0.623 0.39 0.739 0.691 0.675

50 0.501 0.204 0.757 0.222 0.656 0.678 0.553 0.619 0.763 0.912

100 0.313 0.175 0.653 0.188 0.687 0.705 0.692 0.609 0.66 0.554

150 0.238 0.184 0.685 0.191 0.595 0.639 0.599 0.716 0.68 0.587

200 0.222 0.356 0.651 0.18 0.736 0.609 0.639 0.669 0.694 0.73

250 0.191 0.381 0.626 0.19 0.615 0.732 0.628 0.788 0.733 0.672

300 0.188 0.283 0.404 0.188 0.757 0.651 0.794 0.696 0.692 0.757

350 0.224 0.427 0.303 0.183 0.65 0.625 0.628 0.718 0.584 0.657

400 0.223 0.398 0.304 0.206 0.597 0.637 0.671 0.73 0.479 0.655

450 0.246 0.333 0.31 0.275 0.686 0.637 0.726 0.646 0.539 0.703

500 0.162 0.385 0.343 0.255 0.748 0.692 0.7 0.657 0.668 0.719

550 0.314 0.443 0.334 0.178 0.76 0.592 0.437 0.882 0.545 0.721

600 0.262 0.354 0.363 0.303 0.858 0.912 0.319 0.747 0.524 0.781

650 0.368 0.343 0.345 0.205 0.664 0.727 0.252 0.716 0.627 0.699

700 0.499 0.24 0.335 0.235 0.683 0.707 0.332 0.62 0.637 0.726

750 0.474 0.19 0.404 0.265 0.641 0.788 0.292 0.697 0.748 0.66

800 0.429 0.221 0.482 0.277 0.74 0.726 0.405 0.69 0.635 0.767

850 0.393 0.249 0.649 0.154 0.785 0.759 0.311 0.662 0.674 0.631

900 0.402 0.165 0.639 0.148 0.695 0.804 0.323 0.748 0.706 0.771

950 0.471 0.17 0.668 0.18 0.7 0.723 0.358 0.696 0.738 0.566

1000 0.47 0.181 0.663 0.137 0.581 0.673 0.259 0.685 0.681 0.681  
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Table 2.5 DREAM4 size 10 Network 5 Time-Series Data 

Time G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

0 0.709 0.522 0.631 0.139 0.04 0.073 0.02 0.462 0.21 0.655

50 0.228 0.848 0.562 0.134 0.195 0.043 0.02 0.592 0.198 0.217

100 0.08 0.793 0.479 0.14 0.173 0.168 0.014 0.396 0.18 0.122

150 0.008 0.556 0.506 0.141 0.225 0.294 0.016 0.355 0.107 0.078

200 0.005 0.637 0.429 0.144 0.204 0.438 0.041 0.261 0.192 0.065

250 0.003 0.704 0.388 0.217 0.193 0.515 0.04 0.172 0.252 0.038

300 8E-04 0.653 0.357 0.162 0.195 0.573 0.107 0.119 0.389 0.073

350 0 0.668 0.398 0.233 0.213 0.627 0.12 0.185 0.571 0.093

400 0.002 0.622 0.329 0.14 0.23 0.649 0.121 0.136 0.76 0.07

450 0.002 0.548 0.452 0.222 0.223 0.677 0.145 0.14 0.672 0.05

500 0.005 0.663 0.339 0.199 0.223 0.711 0.095 0.105 0.688 0.092

550 0.171 0.517 0.129 0.239 0.093 0.538 0.171 0.165 0.589 0.661

600 0.272 0.493 0.206 0.512 0.102 0.46 0.102 0.24 0.555 0.627

650 0.277 0.388 0.33 0.428 0.067 0.253 0.083 0.207 0.546 0.779

700 0.368 0.53 0.34 0.171 0.073 0.115 0.055 0.398 0.668 0.801

750 0.338 0.648 0.423 0.2 0.05 0.1 0.038 0.446 0.422 0.804

800 0.543 0.74 0.464 0.166 0.049 0.072 0.042 0.463 0.331 0.693

850 0.683 0.647 0.431 0.168 0.084 0.083 0.014 0.441 0.224 0.697

900 0.694 0.647 0.514 0.098 0.023 0.062 0.062 0.484 0.255 0.662

950 0.744 0.627 0.531 0.158 0.031 0.072 0.02 0.515 0.193 0.655

1000 0.774 0.877 0.426 0.135 0.044 0.063 0.014 0.618 0.281 0.906  

 

2.3 Steady-State Dataset 

DREAM4 challenge multifactorial data were used for steady-state tool analyses. The data 

have 10 genes with 10 different perturbations. In the data matrix, row represents different 

conditions while column contains genes (G). Different conditions in these data were 

noted at steady point. The multifactorial data have five different sets of network data. 

Networks were obtained by applying multifactorial perturbations to the original 

networks.  The Multifactor in the experiments can be different chemicals in different 

amounts, drugs or other factors. Hence, the conditions affect all genes simultaneously in 

the experiment.   

          In the following Tables from 2.6 to 2.10, G represents various genes. 
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Table 2.6 DREAM4 size 10 Network 1 Multifactorial Steady-State Data 

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

0.75 0.0145 0.2768 0.5925 0.1137 0.4200 0.6705 0.7873 0.5851 0.6379

0.2 0.0667 0.4668 0.7665 0.5201 0.2496 0.3280 0.7171 0.7696 0.6548

0.77 0.1396 0.1299 0.6305 0.0016 0.2795 0.5784 0.6209 0.5910 0.6678

0.42 0.1072 0.3394 0.6284 0.2198 0.3295 0.6402 0.6728 0.4712 0.8043

0.65 0.0237 0.3495 0.5408 0.0477 0.1340 0.5039 0.4542 0.6125 0.6829

0.22 0.1880 0.3619 0.5945 0.4412 0.3384 0.4117 0.5655 0.6212 0.7914

0.68 0.1318 0.1523 0.7434 0.1429 0.3288 0.6494 0.7462 0.8482 0.6229

0.51 0.1414 0.4101 0.6492 0.0629 0.3404 0.4030 0.6686 0.7033 0.6574

0.68 0.2225 0.4616 0.6675 0.0320 0.6964 0.4223 0.0247 0.7339 0.7638

0.41 0.2649 0.5388 0.7322 0.2661 0.6220 0.1792 0.1225 0.6937 0.8356  

Table 2.7 DREAM4 size 10 Network 2 Multifactorial Steady-State Data 

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

0.6593 0.4455 0.7103 0.5501 0.3063 0.4587 0.3318 0.3076 0.5751 0.783338

0.5714 0.3575 0.6382 0.6608 0.2413 0.4871 0.1773 0.4188 0.7982 0.573654

0.3712 0.2762 0.5225 0.5969 0.2493 0.4129 0.2060 0.5136 0.5473 0.381006

0.6701 0.5445 0.6009 0.7643 0.3548 0.5790 0.4001 0.2215 0.4718 0.708948

0.5559 0.5499 0.7060 0.2935 0.4472 0.3855 0.3462 0.2327 0.5860 0.742855

0.7721 0.4343 0.7696 0.4531 0.3480 0.4478 0.2891 0.2843 0.2297 0.524547

0.6573 0.0975 0.6275 0.6842 0.1837 0.6873 0.0218 0.6287 0.5885 0.585772

0.7384 0.1209 0.5960 0.6310 0.0526 0.5887 0.2022 0.7028 0.8131 0.741225

0.557 0.475 0.58 0.704 0.307 0.435 0.317 0.441 0.272 0.240268

0.518 0.091 0.702 0.657 0.13 0.791 0.012 0.45 0.584 0.589867  

Table 2.8 DREAM4 size 10 Network 3 Multifactorial Steady-State Data 

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

0.19 0.449 0.596 0.156 0.41 0.082 0.45 0.794 0.658 0.826

0.39 0.421 0.505 0.655 0.494 0.16 0.093 0.474 0.404 0.772

0.1 0.416 0.513 0.263 0.651 0.34 0.377 0.755 0.704 0.614

0.14 0.249 0.536 0.303 0.474 0.106 0.555 0.689 0.61 0.771

0.23 0.617 0.218 0.483 0.624 0.047 0.328 0.589 0.463 0.627

0.25 0.526 0.08 0.571 0.564 0.017 0.27 0.68 0.436 0.808

0.08 0.32 0.476 0.524 0.21 0.155 0.279 0.848 0.679 0.485

0.45 0.107 0.711 0.352 0.399 0.382 0.031 0.072 0.778 0.5

0.15 0.591 0.296 0.347 0.565 0.044 0.567 0.663 0.689 0.541

0.1 0.379 0.183 0.649 0.699 0.055 0.341 0.627 0.678 0.683  
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Table 2.9 DREAM4 size 10 Network 4 Multifactorial Steady-State Data 

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

0.08 0.583 0.325 0.186 0.567 0.604 0.553 0.507 0.775 0.697

0.4 0.233 0.261 0.289 0.545 0.52 0.329 0.242 0.296 0.649

0.12 0.378 0.576 0.137 0.376 0.638 0.655 0.614 0.804 0.68

0.17 0.306 0.598 0.223 0.571 0.602 0.562 0.622 0.884 0.624

0.78 0.032 0.602 0.179 0.632 0.736 0.336 0.737 0.641 0.51

0.41 0.069 0.392 0.224 0.585 0.549 0.361 0.598 0.421 0.7

0.05 0.626 0.464 0.027 0.85 0.693 0.032 0.512 0.54 0.587

0.18 0.408 0.66 0.121 0.691 0.676 0.493 0.696 0.38 0.477

0.36 0.081 0.694 0.182 0.529 0.592 0.477 0.867 0.65 0.715

0.54 0.039 0.699 0.124 0.638 0.738 0.377 0.567 0.602 0.432  

Table 2.10 DREAM4 size 10 Network 5 Multifactorial Steady-State Data 

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

0.2 0.582 0.432 0.169 0.505 0.847 0.104 0.199 0.899 0.656

0.36 0.65 0.522 0.127 0.146 0.208 0.058 0.36 0.446 0.63

0.17 0.237 0.479 0.165 0.367 0.671 0.247 0.092 0.674 0.465

0.24 0.462 0.184 0.349 0.621 0.582 0.235 0.089 0.524 0.756

0.86 0.568 0.466 0.208 0.255 0.802 0.119 0.089 0.196 0.616

0.27 0.506 0.424 0.177 0.458 0.624 0.403 0.087 0.302 0.556

0.51 0.58 0.476 0.062 0.157 0.382 0.322 0.149 0.317 0.659

0.25 0.445 0.263 0.31 0.658 0.608 0.435 0.046 0.721 0.581

0.21 0.654 0.427 0.15 0.015 0.002 0.01 0.748 0.255 0.728

0.15 0.59 0.487 0.021 0.473 0.714 0.117 0.089 0.808 0.655  

 

2.4 Dataset Pre-Processing 

Data pre-processing was done using R studio. Most of the tools used for this thesis are R 

packages which were run and analyzed in R studio. 

 

2.4.1 R studio  

R studio was downloaded on a computer. It is an integrated development environment for 

programming language R, to compute statistical functions and graphics.  In this thesis, it 
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was used to format and analyze data. Many R packages with different algorithms were 

downloaded for analyzing gene expression data and obtaining output for GRNs.   
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CHAPTER 3 

METHODS 

In Chapter 3, methods used for the thesis are discussed. Methods, described in detail, 

include tools used to infer GRNs.  

 

3.1 Cytoscape 

Cytoscape is a bioinformatics tool that helps to visualize molecular interaction network 

dealing with gene expression data sets. It is an open source software available platform 

for analyzing biological pathways by implementing these networks with annotations, 

gene expression profiles, and other data. It is specially designed for biological research, 

but now it provides a platform to study and illustrate complex gene networks as well.  It 

is a Java-based application which can be easily downloaded on Windows.  In this thesis, 

Cytoscape is used to obtain GRNs as mentioned in sources of all Figures. 

 

3.2 Time-Series Tools 

 

3.2.1 TD-ARACNe 

TD-ARACNe is Time DelayedAlgorithm for the Reconstruction of Accurate Cellular 

Networks. It is based on dependencies between two genes at different time-points, which 

consider a measure of these dependencies using mutual information. The main idea of the 

algorithm is to identify time-delayed dependencies between the expression profiles by 

undertaking probabilistic model of a stationary Markov Random Field. It infers gene-

gene interactions GRNs at certain time expression of gene to previous time point of gene 
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expression level. Algorithm has three steps in which initially, it detects time-points and 

expressions of all genes present in the data, then network is constructed, and finally 

network pruning. The main functions of TD-ARACNe are as follow:  

1) Z: is the input data in the form of eSet. eSet is the ExpressionSet object. Data 

were converted into eSet for experimental running.  

 

2) N: is number of bins used in normalizations. For this experiment number 100 was 

used. 

 

3) delta: is the maximum time delay allowed for infer connections. In this 

experiment, value 3 was used for delta to obtain GRN.  

 

4) likehood: It is the fold change used as threshold to state the initial change 

expression (IcE). For this experiment, value 1 was used for likehood. 

 

5) norm: normalization; Row normalization==1, rank normalization==2. Rank 

normalization was used in this experiment.  

 

6) logarithm: if z is log put logarithm == 0. In this experiment, logarithm 1 was 

used.  

 

7) thresh: it is the Influence threshold. 0 is used for no threshold. Default value 0 

was used to run data in the experiment. 

 

8) ksd: ksd is the standard deviation multiplier. Value 1 was used for the experiment. 

 

9) tolerance: tolerance is the DPI tolerance; 0 for no tolerance;1 for no DPI; 0.15 is 

the default ARACNE tolerance as it is for TDARACNE. Default value was used 

for the experiment. 

 

10) plot : plot must be TRUE to obtain the graph in R studio. 

 

11) dot:  returns .dot file in working directory if it’s TRUE. 

 

12) Adj= TRUE, returns adjacency matrix in RSTUDIO. 

          Based on above functions commands TD-ARACNe algorithm is run on R studio. 

Dot file was obtained as output which was imported into cytoscape to infer networks. 
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3.2.2 BANJO 

BANJO stands for BAyesian Network inference with Java Objects. It is based on 

statistical concept of Bayesian Network. It is a graphical representation of a joint 

probability distribution, depicting dependence and conditional independence 

relationships. BANJO was designed from the ground up to provide efficient structure 

inference to analyze large research-oriented datasets. Since it is implemented in Java, the 

framework is easy to maintain and extend. Banjo algorithm does greedy search where it 

takes input such as gene expression data and gives output in Banjo dot format. It selects 

random network as it starting point called “Current network”. It is handled by a 

component called “Proposer” which also proposes new network(s). Based on Bayesian 

Dirichlet (BD) score, all the neighbors of current Bayesian Network are evaluated which 

is handled by “Cycle checker.” Another component called “Decider” which decides 

whether to accept proposed network(s) or not based on best score computed. Lastly, 

computing the score of the proposed network is handled by “Evaluator” computing.   

This process continues until none of the neighbors have a BD score higher than the 

current network. BD score is calculated based on conditional probability distribution that 

quantifies the effect of parents on nodes. Since BANJO considers Markov Model 

resulting in conditional independence giving it parents node which is conditionally 

independent of its non-decedents. Inferred network(s) is built from influence scores. 

Influence score is defined as metric representing the degree. It helps to predict the sign of 

networks edges. It gives output file in the directory with network score, influence score 

and other variables. These scores can be used to infer network in cytoscape to obtain 

graphical GRNs. 



 

 

 

14 

 

3.2.3 Causality 

Causality is defined as the relationship between first event and a second event, where the 

first event is responsible for the second event. In the gene expression profile, gene A 

interacts with gene B. The interaction between genes can be either up-regulation or 

down-regulation. In other words, it also inhibits or promotes transcription in the cell 

when gene A and gene B expressed. This tool is based on algorithm regarding causal 

effects. This R package contains implementations of the algorithms PC, FCI, RFCI, GES 

and GIES, as well as of the IDA method and the generalized Pearl's backdoor criterion. 

The original PC is the order-dependent, in which the output depends on the order of the 

given variables. The predefined function in the command used is Gaussian which is a 

conditional independence test and creates the corresponding sufficient statistic, consisting 

of the correlation matrix of the data and the sample size. Each conditional independence 

test can be performed at a certain significance level alpha. Then, the pc function is used 

to produce an estimate of the underlying causal structure. At the end, results were 

graphed with directed edges called directed acrylic graph. Similar to TD-ARACNe, 

commands for this R package is run on R studio and then output was imported into 

cytoscape to obtain gene network diagrams.  

 

3.3 Steady-State Tools 

 

3.3.1 ARACNe  

ARACNe is Algorithm for the Reconstruction of Accurate Cellular Networks. It is an 

algorithm applied to identify transcriptional interactions between gene products using 
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microarray gene expression profile data. It requires data samples with data statistically 

independent from each other. It performs two kinds of calculation as explained below: 

1) Mutual Information (MI):  It compares gene expression profiles using a pairwise 

correlation coefficient and does not require a monotonic relationship. MI for a 

pair of random variables, x and y is defined as MIxy = Hx + Hy – Hxy ,  where H is 

the entropy of an arbitrary variable m.  It is defined as follow equation 

                                                      n  

Hm = -∑ p(xk) log (p(xk)) 
k=1 

 

(3.1) 

 

MI = 0 if the two variables are statistically independent while MI > 0 means that    

the two variables are non-randomly associated to each other. A computationally 

efficient Gaussian kernel estimator is used for MI calculation. Threshold I0 is used 

to choose interactions and computed for a specific p-value, p0.  

 

 

2) Data Processing Inequality (DPI): it calculates MI values of each marker and then 

removes weakest interaction between markers. If genes g1 and g3 interact only 

through a third gene g2, then the following  

I (g1, g3) ≤ min [ I(g1,g2); I(g2, g3)] (3.2) 

 

The DPI is applied to triplets of small subsets for whom all three edges can hold 

and manage the mutual information thresholding. Hence, DPI removes all the 

indirect interactions. 

 

          ARACNE's complexity is O (N
3 

+ N
2
M

2
), where M is the number of samples and N 

is the number of genes. In the equation, N3
 
relates to the DPI analysis while N

2
M

2 
is the 

mutual information estimation. 

          Minet R package was used to run ARACNe algorithm with three types of statistical 

methods are used namely Kendell, Spearman and Pearson. After obtaining the output 

consists of gene interaction with their weight scores, cytoscape is used for GRNs figures. 
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3.3.2 GENIE3 

It stands for GEne Network Inference with Ensemble of trees. It is well performed tool 

for steady-state data.  Algorithm contains three steps:  

1) Initially, it creates an ensemble of regression tress for each gene in the network. It 

predicts the behavior of each gene in the dataset. In this step, it breaks huge data 

into small subsets. Based on the threshold value of expressed genes it creates 

group. Random forest is used to split data and construct regression trees. An 

important score is calculated for each decision point in the tree. It is defined as a 

following  

I(N)= #SVar(S) - #St Var(St) - #Sf Var(Sf) (3.3) 

          In this formula, N is the decision point; S is the subset of experiment below 

decision    point, St and Sf subset of experiments on two branches that is true and 

false, # is the number experiments and its subset, var is variance of target gene in 

a subset. 

 

2) Possible regulators are ranked from each regression trees. It can be done by 

ranking influence of every other gene when tree is created. A score for a potential 

regulator gene is calculated by summing all of the important scores from the 

nodes where gene was selected for splitting. Afterwards, based on scores ranking 

it is determined what genes are important for regulating gene.  

 

3) Ranks the inferred edges overall. In this step, important scores are generated for 

each tree in each forest, which gives list of potential regulators for each tree. 

Based on tree for each target genes are grouped together then important scores for 

potential regulators are averaged together and ranked for each genes. 

 

        The computational complexity of this tool is O (pTKN log N) where T is the 

number of trees, N is the learning sample size, p is the each genes and K is the main 

parameter of the two tree-based methods. 

       GENIE3 provides commands for R environment hence it is ran on R studio to 

obtain the output which later imported into cytoscape for gene network diagram.  

 



 

 

 

17 

 

3.3.3 CLR 

CLR stands for Context Likelihood of Relatedness. CLR calculates the mutual 

information value from data to infer networks. Mutual information is used as a metric of 

similarity between two gene expression data. The mutual information score suggests how 

much information is being shared among genes. For instance, value 0 indicates no 

information is involved between two genes.  

The algorithm of this tool is as follows:  

1) The mutual information score is calculated between each pair of genes in the data. 

 

2) Once the mutual information score is calculated, the score is compared to the 

background distribution. Background distribution is the row of all mutual 

information values for two genes. In this step, the likelihood of each mutual 

information value within its network context is produced. Hence, one will get z 

scores.  

 

3) After the 2
nd

 step is performed, it calculates the CLR score. It is again calculated 

for each pair of genes by using z scores calculated from the background 

distribution.  

 

          CLR has a complexity in O(N
2
) after the mutual information matrix is calculated. 

          A Minet R package was used to run the CLR algorithm which has three types of 

statistical methods; Kendell, Spearman, and Pearson. After obtaining the output which 

consists of gene interactions with their weight scores, Cytoscape is used for GRNs 

figures. 

 

3.3.4 MRNET 

MRNET stands for Minimum Redundancy NETworks. This method is based on the 

maximum relevance or minimum redundancy (MRMR), which is an effective 

information theoretic technique for feature selection. The MRMR principle comprises 
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selecting the least redundant variables with the highest mutual information towards the 

target. MRNET uses this principle to infer networks from microarray data.  It calculates 

mutual information similar to the ARACNe algorithm.  

           The MRNET algorithm selects the variable which has the highest mutual 

information with its target. Then in the next step, the selected variable chooses the 

variable that maximizes the scores on the basis of a redundancy concept. The weight of 

each pair of variables will be the maximum score between the one computed of the one 

target and the one computed of the second target. The MRNET repeats this selection 

procedure for each target gene in the set of the gene expression profile. The MRNET 

algorithm returns a matrix which is the weighted adjacency matrix of the network as 

output for GRNs.  

        The complexity of the MRNET algorithm is defined as O(fxn
2
) as the feature 

selection step is repeated for each of n genes in the dataset. 

        A Minet R package was used to run the MRNET algorithm which has three types of 

statistical methods; namely Kendell, Spearman, and Pearson. After obtaining the output 

which, consists of gene interactions with their weight scores, Cytoscape is used for GRNs 

figures         
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

In this Chapter, results of time-series and steady-state tools will be described. The 

accuracy of bioinformatics tools will be found and compared with respective types of 

data.  

 

4.1 Comparison of Network Obtained from Time-series Tools 

 

4.1.1 TD-ARACNe 

 

Figure 4.1 DREAM4 size 10 network 1 obtained by TD-ARACNe. 
Source: Cytoscape 

 

          As seen in Figure 4.1, the GRN of DREAM4 size 10 network 1 was obtained by 

TD-ARACNe. It shows gene 8 interacts with gene 10. Similarly, gene 1 is interacting 

with both genes, namely 4 and 5. Genes 2, 3, 4, 6, 7, and 9 are not corresponding with 

any genes in the network diagram. 
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Figure 4.2 DREAM4 size 10 network 2 obtained by TD-ARACNe. 
Source: Cytoscape 

 

          As seen in Figure 4.2, an inferred network is produced from DREAM4 size 10 

network 2 data in which gene 2 is interacting with gene 8. Gene 6 and gene 10 both 

interface with gene 2. As depicted in the diagram, gene 10 is also communicating with 

gene 6. Genes such as 1, 3, 4, 5, 7 and 9 are solo ones as clearly seen in the obtained 

GRN. 

 

Figure 4.3 DREAM4 size 10 network 3 obtained by TD-ARACNe. 
Source: Cytoscape 

 

          Gene 10 is interacting with many genes such as genes 1, 2, 4 and 6 as seen in 

Figure 4.3. Gene 7 is communicating with two gene numbers, namely gene 1 and 8. Also, 
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the inferred network also depicts that a gene 2 interfaces with gene 6. On the other hand, 

genes such as 3, 5 and 9 do not interact with any corresponding gene in the diagram.  

 

Figure 4.4 DREAM4 size 10 network 4 obtained by TD-ARACNe. 
Source: Cytoscape 

 

           As seen in Figure 4.4, an inferred gene network was obtained by TD-ARACNe 

from DREAM4 size 10 network 4 dataset. In the diagram, gene 7 interacts with many 

genes such as numbers 1, 2, 3, 6, and 9 while genes 5, 8 and 10 do not communicate with 

any genes. Also, correlation among pairs of genes is between gene 1 with gene 2, gene 2 

with gene 9, gene 3 with genes 4 and 9 and lastly gene 4 with genes 6 and 7 as clearly 

seen in the above GRN. 

 

Figure 4.5 DREAM4 size 10 network 5 obtained by TD-ARACNe. 
Source: Cytoscape 
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          Figure 4.5 is the inferred network of DREAM4 size 10 network 5 obtained by TD-

ARACNe in which genes, namely 2, 3 and 4 do not interact with any genes. Gene 

numbered 5 is communicating with genes 1, 6 and 8. Also, gene 1 is interacting with two 

genes 6 and 8. Gene 6 interfaces with three genes numbered 7, 8 and 9.  Two genes 

numbered 7 and 8 only connect with gene 9. Lastly, gene 10 interacts with genes 6 and 8.   

 

4.1.2 BANJO 

 

Figure 4.6 DREAM4 size 10 network 1 produced by BANJO tool. 
Source: Cytoscape 

 

          Figure 4.6 depicts the gene inference network of DREAM4 size 10 network 1 

produced by BANJO tool. In this diagram, gene 1 interacts with genes 2, 4, 5, and 6. As 

seen in Figure 4.6, gene 4 communicates with two genes, namely 5 and 6. Gene 3 only 

interfaces with gene 6. Similarly, gene 5 connects with gene 4 as they are bidirected.  

Lastly, gene 2 edges with genes 4 and 6.  Gene 7 to gene 10 are solo, meaning not 

interacting with any corresponded genes. 
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Figure 4.7 DREAM4 size 10 network 2 produced by BANJO tool. 
Source: Cytoscape 

 

         In this Figure 4.7, Gene 4 is communicating with many genes namely 6, 7 and 10.  

Only gene 3 is not interacting with any gene.  A gene with only a single gene to gene 

interaction is 2 with 8, 6 with 2, 10 with 6 and 1 with 5.  Gene 9 communicates with two 

genes namely 6 and 10. Lastly, gene 7 interfaces with 6, 8 and 10 as clearly depicted 

from the GRN obtained by BANJO tool.  

 

Figure 4.8 DREAM4 size 10 network 3 produced by BANJO tool. 
Source: Cytoscape 
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          Figure 4.8 is of DREAM4 size 10 network 3 produced by the BANJO tool. In this 

diagram, gene 9 is the only gene not interacting with any corresponding genes. Gene 8 is 

communicating with three genes, namely 2, 4 and 6.  In the same manner, gene 7 

interacts with gene 1, 3 and 8 as seen in the network. Genes with two interactions are 

gene 3 with 6 and 10, gene 5 with 2 and 10, and gene 10 with 6 and 7.  Lastly solo 

interfaces among genes pairs are gene 4 with 3, 2 with 6 and 6 with 3.  

 

Figure 4.9 DREAM4 size 10 network 4 produced by BANJO tool. 
Source: Cytoscape 

 

          As seen in Figure 4.9, all genes are interacting to corresponding genes. Gene 7 is 

bidirected with genes, namely 1 and 6, meaning they are interacting with each other. 

Hence, birdirected edges are shown in curved arrows as clearly seen in the diagram. Gene 

2 is communicating with four genes namely 3, 8, 9 and 10, and gene 1 with gene 2.  

Genes 6 and 7 also interface with gene 4.  Genes such as 4, 5, 8 and 10 interact with only 

one gene, namely 10, 10, 3 and 6 respectively.  As seen in the network, gene 6 

communicates with gene 2 and 4.  Also, gene 9 connects with gene 10 and 4.  Lastly, 

gene 3 interacts with gene 4 and gene 10.  
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Figure 4.10 DREAM4 size 10 network 5 produced by BANJO tool. 
Source: Cytoscape 

 

         The Figure 4.10 is of DREAM4 size 10 network 5 produced by BANJO tool.  As 

seen in the diagram, genes 8 and 10 interact with four genes, namely 3, 4, 7, and 9 and 1, 

5, 6 and 8 respectively. Genes such as 2, 3, 4, and 9 connect with one gene as clearly seen 

in the network.  Genes numbered 5 and 6 are communicating with two genes.   

 

4.1.3 Causality 

 

Figure 4.11 Gene inference of DREAM4 size 10 network 1 by causality algorithm. 
Source: Cytoscape 
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          As seen in Figure 4.11, all genes are interacting with their corresponding genes. 

Genes such as 3, 4 6, 7, and 8 connect with only one gene.  Two genes are interacting 

with two genes, namely 1 with 4 and 9, and number 5 with 1 and 4 as seen in the 

diagram.  Only gene number 2 is interacting with three genes in the network. 

 

Figure 4.12 Gene inference of DREAM4 size 10 network 2 by causality algorithm. 
Source: Cytoscape 

 

          As seen in Figure 4.12, there is one bidirected edge between genes 9 and 4.  Gene 2 

and gene 10 have two interactions with genes. The remaining genes number 1, 3, and 6 

have one interface with corresponding genes 5, 6 and 2 respectively as clearly observed 

from the network diagram.  

 

Figure 4.13 Gene inference of DREAM4 size 10 network 3 by causality algorithm. 
Source: Cytoscape 
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          As seen in the GRN 4.13, there are two bidirected edges among pairs of two genes 

namely 4 and 6 and 1 and 7. Gene 9 is a solo gene not communicating with any of the 

gene in the network.  The remaining genes have one interaction. For instance, gene 2 

interfaces with gene 10. 

 

Figure 4.14 Gene inference of DREAM4 size 10 network 4 by causality algorithm. 
Source: Cytoscape 

 

           In this Figure, there is no bidirected edge.  Gene 4 is interacting with four genes, 

namely 6, 8, 9 and 10.  Genes 1, 2 and 5 are communicating with two corresponding 

genes as seen in Figure 4.14.  Last, only one interaction happens between gene 6 and 

gene 7 as well as gene 3 with gene 4.  
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Figure 4.15 Gene inference of DREAM4 size 10 network 5 by causality algorithm. 
Source: Cytoscape 

 

         This is the Figure of DREAM4 size 10 network 5 by causality algorithm. In this 

gene network diagram, there are three bidirected edges between genes 1 and 5, 3 and 4as 

well as 5 and 10.  As clearly observed in the obtained GRN, the remaining gene interacts 

with only one corresponding gene. 
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4.2 Comparison of Network Obtained from Steady-State Tools 

 

4.2.1 ARACNe 

 

Figure 4.16 DREAM4 size 10 network 1 created by ARACNe using Kendell algorithm.  
Source: Cytoscape 

 

          As seen in Figure 4.16, gene 7 interacts with two genes, namely 8 and 9.  Also, 

gene 1 communicates with four genes, 3, 5, 7 and 10, as observed in the diagram. Genes 

namely 4 and 8 interface with only one gene such 9 and 10 respectively. Lastly, gene 3 is 

interacting with three genes, namely 6, 7 and 9. Similarly gene 2 communicates with 6, 7 

and 8.    
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Figure 4.17 DREAM4 size 10 network 1 created by ARACNe using Pearson algorithm. 
Source: Cytoscape 

 

          This is the DREAM4 size 10 network 1 created by ARACNe using the Pearson 

algorithm. In this gene network diagram, there are single gene to gene interactions. For 

instance, genes 6 and 7 both communicate with gene 8.  Gene 1 interfaces with genes 5 

and 3, and gene 2 with 6 and 10 as clearly observed in the obtained GRN.  

 

Figure 4.18 DREAM4 size 10 network 1 created by ARACNe using Spearman 

algorithm. 
Source: Cytoscape 

 

          As seen in the GRN 4.18, there are two genes interacting with two corresponding 

genes, namely genes 3 and 4 both with 7 and 9.  There is only one interaction between 
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gene 8 and gene 10. The remaining genes have three interfaces with genes. For instance, 

gene 1 communicates with 3, 5 and 10.  

 

 

Figure 4.19 DREAM4 size 10 network 2 created by ARACNe using Kendell algorithm. 
Source: Cytoscape 

 

         In this Figure 4.19, gene 1 interacts with four genes, namely 3, 6, 8 and 10.  There 

are two genes that are interacting with three genes. For instance, gene 2 communicates 

with genes 4, 8 and 10.  As clearly observed in the network, gene 5 interfaces with two 

genes numbered 8 and 9. There is one gene to gene interaction which is between genes 9 

and 10. 
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Figure 4.20 DREAM4 size 10 network 2 created by ARACNe using Pearson algorithm.  
Source: Cytoscape 

 

         As seen in the GRN 4.20, there are two genes interacting with two corresponding 

genes. For example, gene 5 interfaces with genes 8 and 9. There are two genes which 

have one gene to gene interaction, such as gene 9 communicates with 10. The remaining 

genes have three connections with genes. For instance, gene 1 communicates with 3, 7 

and 10.  

 

Figure 4.21 DREAM4 size 10 network 2 created by ARACNe using Spearman 

algorithm. 
Source: Cytoscape 

 

         This Figure 4.21 is of DREAM4 size 10 network 2 created by ARACNe using 

Spearman algorithm. In this gene network diagram, there is a single gene to gene 
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interaction. For instance, gene 9 interfaces with 10. As seen in the Figure 4.21, gene 2 

connects with two genes namely 5 and 7. Gene 5 communicates with genes 6, 8 and 9 as 

clearly observed in the obtained GRN.  

 

Figure 4.22 DREAM4 size 10 network 3 created by ARACNe using Kendell algorithm. 
Source: Cytoscape 

 

         As seen in Figure 4.22, gene 1 interacts with four genes, namely 5, 7, 8 and 9.  

Also, gene 3 communicates with three genes 4, 5, and 6 as observed in the diagram. Gene 

4 interfaces with 7 and 9. Lastly, there are three genes which have one to one gene 

interactions.  

 

Figure 4.23 DREAM4 size 10 network 3 created by ARACNe using Pearson algorithm. 
Source: Cytoscape 
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          As seen in the GRN 4.23, gene 4 interacts with two genes, namely 7 and 9. There is 

double communication between two genes as seen in the obtained network. For example, 

gene 1 interfaces with 7 and 8. Similarly gene 2 interacts with 3 and 9. Gene 3 has three 

connections with genes, namely genes numbered 4, 5 and 6. 

 

Figure 4.24 DREAM4 size 10 network 3 created by ARACNe using Spearman 

algorithm. 
Source: Cytoscape 

 

         This Figure 4.24 is of DREAM4 size 10 network 3 created by ARACNe using the 

Spearman algorithm. In this gene network diagram, there is a single gene to gene 

interaction. For instance, gene 9 interfaces with 10. As seen in Figure 4.24, gene 2 

connects with two genes namely 7 and 9. Genes 4 and 6 both interact with the same two 

genes, namely 7 and 9 as clearly observed in the obtained GRN. Lastly, gene 3 

communicates with genes 4, 5 and 6. 
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Figure 4.25 DREAM4 size 10 network 4 created by ARACNe using Kendell algorithm. 
Source: Cytoscape 

 

         As seen in Figure 4.25, gene 1 interacts with three genes, namely 2, 3 and 7.  Also, 

gene 3 communicates with two genes 6 and 8 as observed in the diagram. Gene 4 

interfaces with 5 and 6. Lastly, there are two genes which have one to one gene 

interaction. For example, gene 6 communicates with 10 and gene 7 with 9. 

 

Figure 4.26 DREAM4 size 10 network 4 created by ARACNe using Pearson algorithm. 
Source: Cytoscape 

 

          As seen in the GRN 4.26, gene 4 interacts with two genes, namely 6 and 5. There is 

a gene 1 which has three interactions with genes 2, 9 and 10 as seen in the obtained 
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network. Gene 3 interfaces with two genes, namely gene 6 and 8. There are two single 

gene to gene interactions, namely gene 8 with 9 as well as gene 2 with 4.  

 

Figure 4.27 DREAM4 size 10 network 4 created by ARACNe using Spearman 

algorithm. 
Source: Cytoscape 

 

           This Figure 4.27 is of DREAM4 size 10 network 4 was created by the ARACNe 

using the Spearman algorithm. In this gene network diagram, there is a single gene to 

gene interaction. For instance, gene 4 interfaces with 6. As seen in Figure 4.27, gene 3 

connects with two genes, namely 6 and 8. Gene 5 and 6 both interact with the same gene, 

namely 10 as clearly observed in the obtained GRN. Last, gene 1 communicates with 

genes 2, 7 and 9. 
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Figure 4.28 DREAM4 size 10 network 5 created by ARACNe using Kendell algorithm. 
Source: Cytoscape 

 

         As seen in Figure 4.28, gene 5 interacts with three genes, namely 6, 8 and 9.  Also, 

gene 3 communicates with two genes 4 and 5 as observed in the diagram. Gene 7 

interfaces with 8 which is a single gene to gene interaction. Last, genes such as 1 and 6 

both communicate with gene 9.  

 

Figure 4.29 DREAM4 size 10 network 5 created by ARACNe using Pearson algorithm. 
Source: Cytoscape 

 

         As seen in the GRN 4.29, gene 2 interacts with two genes, namely 7 and 10. There 

is a one common interaction with gene 8 by genes 6 and 7 as seen in the obtained 
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network. Gene 3 interfaces with two genes, namely gene 4 and 5.  Last, there is a single 

gene to gene interaction between gene 1 and 9. 

 

Figure 4.30 DREAM4 size 10 network 5 created by ARACNe using Spearman 

algorithm. 
Source: Cytoscape 

 

         This Figure 4.30 is of DREAM4 size 10 network 5 was created by the ARACNe 

using the Spearman algorithm. In this gene network diagram, there are many gene to gene 

interactions. For instance, gene 3 interfaces with 4. As seen in Figure 4.30, gene 2 

communicates with genes such as 4, 7 and 10. 
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4.2.2 GENIE3 

 

Figure 4.31 DREAM4 size 10 network 1 built by GENIE3. 
Source: Cytoscape 

 

          As seen in the GRN 4.31, there are many bidirected edges among pairs of two 

genes. For example, gene 2 has bidirected connections with genes 6, 8 and 10. Gene 3 

interacts with two genes such as 6 and 8.  Last, there are two single gene to gene 

interactions between gene 8 and 10 and gene 10 communicates with gene 9 as clearly 

observed in the obtained gene network. 

 

Figure 4.32 DREAM4 size 10 network 2 built by GENIE3. 
Source: Cytoscape 
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          This Figure 4.30 is of DREAM4 size 10 network 2 was built by GENIE3. As seen 

in the GRN 4.32, there are many bidirected edges among pairs of two genes. For 

example, gene 2 has bidirected connections with genes 5, 6, 7 and 8. Gene 3 interacts 

with two genes such as 1 and 10.  Last, there is only one gene to gene interaction between 

gene 6 and 1 as clearly observed in the obtained gene network. 

 

Figure 4.33 DREAM4 size 10 network 3 built by GENIE3. 
Source: Cytoscape 

 

          As seen in the GRN 4.33, there are many bidirected edges among pairs of two 

genes. For example, gene 7 has bidirected connections with genes 4 and 8. Gene 9 

interacts with two genes such as 6 and 8.  Last, there are many single gene to gene 

interactions as seen in the obtained diagram. For instance, there is a connection between 

gene 8 and 5 and gene 5 communicates with gene 3 as clearly observed in Figure. 
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Figure 4.34 DREAM4 size 10 network 4 built by GENIE3. 
Source: Cytoscape 

 

          As seen in the gene network 4.34, there are many bidirected edges among pairs of 

two genes. For example, gene 1 has bidirected connections with gene 2. Gene 6 interacts 

with two genes such as 1 and 8. As seen in Figure, gene 4 interfaces with four genes 

number 3, 7, 8 and 10. Last, there are two single gene to gene interactions between gene 

2 and 7 and gene 7 communicates with gene 9 as clearly observed in the obtained gene 

network. 

 

Figure 4.35 DREAM4 size 10 network 5 built by GENIE3. 
Source: Cytoscape 
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         This Figure 4.35 is of DREAM4 size 10 network 5 was built by GENIE3. As seen 

in the GRN 4.35, there are many bidirected edges among pairs of two genes. For 

example, gene 4 has bidirected connections with gene 3. Gene 6 interacts with two genes 

such as 5 and 1. Gene 5 interfaces with three genes, namely 3, 4 and 8.  Lastly, there is 

one gene to gene connection between gene 8 and 4 as clearly observed in the obtained 

gene network. 

 

4.2.3 CLR 

 

Figure 4.36 DREAM4 size 10 network 1 generated by CLR using Kendell algorithm. 
Source: Cytoscape 

 

         This Figure 4.36 is of DREAM4 size 10 network 1 was generated by the CLR using 

the Kendell algorithm. In this gene network diagram, there are two gene to gene 

interactions. For instance, gene 7 interfaces with 8 and gene 8 with 10. As seen in Figure 

4.36, gene 3 connects with two genes, namely 4 and 6. Gene 2 communicates with four 

genes, namely 6, 7, 8 and 10 as clearly observed in the obtained GRN. Last, gene 1 

communicates with genes 3, 5 and 7. 
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Figure 4.37 DREAM4 size 10 network 1 generated by CLR using Pearson algorithm. 
Source: Cytoscape 

 

           As seen in Figure 4.37, gene 1 interacts with three genes, namely 3, 5 and 7.  Also, 

gene 6 communicates with two genes 8 and 10 as observed in the diagram. Gene 2 has 

four connections with 4, 7, 8 and 10. Last, genes such as 9 and 8 both communicate with 

gene 10 which is a single gene to gene interaction.  

 

Figure 4.38 DREAM4 size 10 network 1 generated by CLR using Spearman algorithm. 
Source: Cytoscape 

 

           This Figure 4.38 is of DREAM4 size 10 network 1 was generated by the CLR 

using the Spearman algorithm. In this gene network diagram, there are many gene to gene 

interactions. For instance, gene 7 interfaces with 8.  Gene 4 connects with two genes, 
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namely 7 and 9. As seen in Figure 4.38, gene 1 communicates with genes 3, 7 and 5. 

Last, gene 3 interfaces with four genes such as 5, 6, 7 and 8 as clearly seen in the 

obtained gene network. 

 

Figure 4.39 DREAM4 size 10 network 2 generated by CLR using Kendell algorithm. 
Source: Cytoscape 

 

          In this gene network diagram, there is no single gene to gene interaction. As seen 

in Figure 4.39, there are five genes, namely 1, 2, 3, 5 and 7 which are interacting with 

gene 8. Gene 6 interfaces with two genes, namely 7 and 10. Last, gene 2 communicates 

with genes 6, 5 and 7. 

 

Figure 4.40 DREAM4 size 10 network 2 generated by CLR using Pearson algorithm. 
Source: Cytoscape 
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          As seen in Figure 4.40, gene 3 interacts with three genes, namely 4, 8 and 10.  

Also, gene 1 communicates with two genes 3 and 10 as observed in the diagram. Gene 5 

has four connections with genes 6, 7, 8 and 9.  As observed in the network, gene 9 is 

connected to gene 10 and 8 with gene 9. Last, gene 2 interacts with genes number 5, 6, 7, 

8 and 9. 

  
Figure 4.41 DREAM4 size 10 network 2 generated by CLR Spearman algorithm. 
Source: Cytoscape 

 

         This Figure 4.41 is of DREAM4 size 10 network 2 was generated by the CLR the 

Spearman algorithm. In this gene network diagram, there are two gene to gene 

interactions. For instance, gene 9 interfaces with 10.  Gene 4 connects with two genes, 

namely 6 and 10. As seen in Figure 4.41, gene 5 communicates with genes 6, 7, 8 and 9. 

Last, gene 2 interfaces with five genes such as 5, 6, 7, 8 and 9 as clearly seen in the 

obtained gene network. 
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Figure 4.42 DREAM4 size 10 network 3 generated by CLR using Kendell algorithm. 
Source: Cytoscape 

           In this gene network diagram, there are two single gene to gene interactions 

between gene 9 and 10 and gene 6 and 9. As seen in Figure 4.42, gene 1 interacts with 

genes 7, 8 and 9. Gene 4 interfaces with two genes, namely 7 and 9. Last, gene 2 

communicates with four genes, namely 3, 6, 5 and 10. 

 

Figure 4.43 DREAM4 size 10 network 3 generated by CLR using Pearson algorithm. 
Source: Cytoscape 

 

         This Figure 4.43 is of DREAM4 size 10 network 3 was generated by the CLR using 

the Pearson algorithm. As seen in Figure 4.43, there are two single gene to gene 

interactions between genes 9 and 10 as well as genes 7 and 8. Also, gene 1 communicates 
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with two genes 7 and 8 as observed in the diagram. Gene 2 has four connections with 

genes 3, 5, 6 and 9.   

 

Figure 4.44 DREAM4 size 10 network 3 generated by CLR using Spearman algorithm. 
Source: Cytoscape 

 

            In this gene network diagram 4.44, there are three gene to gene interactions. For 

instance, gene 5 interfaces with gene 6, gene 7 with 8 and gene 9 with gene 10.  Gene 4 

connects with three genes, namely 7, 8 and 9. As seen in Figure 4.44, gene 1 

communicates with two corresponding genes namely 7 and 8.  

 

Figure 4.45 DREAM4 size 10 network 4 generated by CLR using Kendell algorithm. 
Source: Cytoscape 
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           This Figure 4.45 is of DREAM4 size 10 network 4 was generated by the CLR 

using the Kendell algorithm. In this gene network diagram, there are two gene to gene 

interactions. For instance, gene 6 interfaces with 10.  Gene 4 connects with three genes, 

namely 4, 6 and 10. As seen in Figure 4.45, gene 5 communicates with genes 6, 7, 10 and 

9. Last, gene 1 interfaces with two genes such as 2 and 7 as clearly seen in the obtained 

gene network. 

 

Figure 4.46 DREAM4 size 10 network 4 generated by CLR using Pearson algorithm. 
Source: Cytoscape 

 

          This Figure 4.46 is of DREAM4 size 10 network 4 was generated by the CLR 

using the Pearson algorithm. As seen in Figure 4.46, there are two single gene to gene 

interactions between gene 1 and 2 and gene 6 and 10. Also, genes 8 and 7 both 

communicate with gene 9 as observed in the diagram.  Gene 4 interfaces with genes 5 

and 6. Last, gene 3 has three connections with genes 8, 9 and 10.   
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Figure 4.47 DREAM4 size 10 network 4 generated by CLR using Spearman algorithm. 
Source: Cytoscape 

 

           In this gene network diagram 4.47, there are four gene to gene interactions. For 

instance, gene 1 interfaces with gene 2, gene 2 with 8, gene 7 with 9 and finally gene 6 

with gene 10.  Gene 4 connects with three genes, namely 5, 6 and 10. As seen in Figure 

4.47, gene 5 communicates with four corresponding genes namely 6, 7, 9 and 10.  

 

Figure 4.48 DREAM4 size 10 network 5 generated by CLR using Kendell algorithm. 
Source: Cytoscape 

 

          This Figure 4.48 is of DREAM4 size 10 network 5 was generated by the CLR 

using the Kendell algorithm. In this gene network diagram, there are two gene to gene 

interactions. For instance, gene 8 interfaces with 10.  Gene 4 connects with two genes, 

namely 5 and 8. As seen in Figure 4.48, gene 5 communicates with three genes 6, 8, and 
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9. Last, gene 2 interfaces with seven genes such as 3, 4, 5, 7, 8 and 10 as clearly seen in 

the obtained gene network. 

 

Figure 4.49 DREAM4 size 10 network 5 generated by CLR using Pearson algorithm. 
Source: Cytoscape 

 

          As seen in Figure 4.49, gene 3 interacts with two genes, namely 4, and 5. Also, 

gene 1 communicates with two genes 5 and 9 as observed in the diagram. Gene 5 has four 

connections with genes 6, 7, 8 and 9.  Last, there are two gene to gene connections 

between gene 4 and 5 as well as between gene 8 and 10. 

 

Figure 4.50 DREAM4 size 10 network 5 generated by CLR using Spearman algorithm. 
Source: Cytoscape 
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         This Figure 4.50 is of DREAM4 size 10 network 5 was generated by the CLR using 

the Spearman algorithm. In this gene network diagram, there is no gene to gene 

interaction. Gene 4 connects with two genes, namely 5 and 8. As seen in Figure 4.50, 

gene 5 communicates with three genes 6, 8, and 9. Last, gene 2 interfaces with seven 

genes such as 3, 4, 5, 7, 8 and 10 as clearly seen in the obtained gene network. 

 

4.2.4 MRNET 

 

Figure 4.51 Gene network of DREAM4 size 10 network 1 using Kendell method by 

MRNET. 
Source: Cytoscape 

 

        As seen in Figure 4.51, gene 3 interacts with four genes, namely 6, 7, 8 and 9.  Also, 

gene 1 communicates with four genes 3, 5, 7 and 10 as observed in the diagram. Gene 2 

has five connections with genes 4, 6, 7, 8 and 10.  Last, there are four gene to gene 

connections in this gene network. For example, genes 8 and 9 both interact with only 

gene number 10. 
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Figure 4.52 Gene network of DREAM4 size 10 network 1 using Pearson method by 

MRNET. 
Source: Cytoscape 

 

          This Figure 4.52 is Gene network of DREAM4 size 10 network 1 using the 

Pearson method by the MRNET. As seen in Figure 4.52, gene 1 interacts with four genes, 

namely 3, 5, 7 and 10.  Also, gene 3 has four connections with genes 6, 7, 8 and 10.  As 

observed in the network, gene 7 interfaces with genes 9 and 8. Last, there are two gene to 

gene connections in this gene network. For example, gene number 6 only connects with 

gene 8 as observed in the obtained gene network diagram 4.52.

 

Figure 4.53 Gene network of DREAM4 size 10 network 1 using Spearman method by 

MRNET. 
Source: Cytoscape 
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          This Figure 4.53 is gene network of DREAM4 size 10 network 1 using the 

Spearman method by the MRNET. In this gene network diagram, there are three gene to 

gene interactions. For instance, genes 8 and 9 both communicate with gene number 10. 

Gene 4 connects with two genes, namely 5 and 9. Also, as observed in the network, gene 

7 interfaces with genes 9 and 8. As seen in Figure 4.53, gene 3 communicates with four 

genes 6, 7, 8, and 9. Last, gene 2 interfaces with five genes such as 4, 7, 6, 8 and 10 as 

clearly seen in the obtained gene network. 

 

Figure 4.54 Gene network of DREAM4 size 10 network 2 using Kendell method by 

MRNET. 
Source: Cytoscape 

 

           This Figure 4.54 is the gene network of DREAM4 size 10 network 2 using the 

Kendell method by the MRNET. In this gene network diagram, there are two gene to 

gene interactions. For instance, gene 8 interfaces with 9 and gene 9 interact with gene 10.  

Gene 4 connects with two genes, namely 6 and 7. As seen in the Figure 4.54, gene 5 

communicates with four genes 6, 7, 8, and 9. Last, gene 1 interfaces with three genes 

such as 6, 7 and 9 as clearly seen in the obtained gene network. 
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Figure 4.55 Gene network of DREAM4 size 10 network 2 using Pearson method by 

MRNET. 
Source: Cytoscape 

 

          In this gene network diagram 4.55, there are four gene to gene interactions. For 

instance, gene 9 communicates with gene number 10. Gene 4 connects with three genes, 

namely 5, 6 and 10. As seen in Figure 4.55, gene 5 communicates with four genes 6, 7, 8, 

and 9. Last, gene 2 interfaces with five genes such as 5, 7, 6, 8 and 9 as clearly seen in the 

obtained gene network. 

 

Figure 4.56 Gene network of DREAM4 size 10 network 2 using Spearman method by 

MRNET. 
Source: Cytoscape 
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            This Figure 4.56 is gene network of DREAM4 size 10 network 2 using the 

Spearman method by the MRNET. In this gene network diagram, there are three gene to 

gene interactions. For instance, genes 8 and 9 both communicate with gene number 10. 

Gene 6 connects with two genes, namely 7 and 9. Also, as observed in the network, gene 

7 interfaces with three genes 10, 9 and 8. As seen in Figure 4.56, gene 3 communicates 

with four genes 4, 5, 8, and 10. Last, gene 1 interfaces with five genes such as 3, 7, 6, 8 

and 10 as clearly seen in the obtained gene network. 

 

Figure 4.57 Gene network of DREAM4 size 10 network 3 using Kendell method by 

MRNET. 
Source: Cytoscape 

 

         In this gene network diagram, there are two gene to gene interactions. For instance, 

gene 9 interfaces with 10 and gene 7 interact with gene 8.  Gene 4 connects with three 

genes, namely 9, 8 and 7. As seen in Figure 4.57, gene 1 communicates with four genes 

5, 7, 8, and 9. Last, gene 6 interfaces with two genes such as 7 and 9 as clearly seen in the 

obtained gene network. 
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Figure 4.58 Gene network of DREAM4 size 10 network 3 using Pearson method by 

MRNET. 
Source: Cytoscape 

 

          This Figure 4.58 is gene network of DREAM4 size 10 network 3 using the Pearson 

method by the MRNET. As seen in figure 4.58, gene 1 interacts with five genes, namely 

3, 8, 7, 9 and 10.  Also, gene 3 has four connections with genes 6, 9, 5 and 4.  As 

observed in the network, gene 6 interfaces with two genes 7 and 10.  Last, there are three 

gene to gene connections in this gene network. For example, gene number 7 connects 

with gene 8. In addition, genes 8 and 9 both connect to gene 10 as seen in the gene 

network. 
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Figure 4.59 Gene network of DREAM4 size 10 network 3 using Spearman method by 

MRNET. 
Source: Cytoscape 

 

         This Figure 4.59 is gene network of DREAM4 size 10 network 3 using the 

Spearman method by the MRNET. In this gene network diagram, there are two gene to 

gene interactions. For instance, gene 9 communicates with gene number 10. Gene 6 

connects with two genes, namely 7 and 10. Also, as observed in the network, gene 5 

interfaces with three genes 10, 7 and 8. As seen in Figure 4.59, gene 3 communicates 

with four genes 4, 5, 6, and 9. Last, gene 1 interfaces with five genes such as 3, 7, 9, 8 

and 10 as clearly seen in the obtained gene network. 
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Figure 4.60 Gene network of DREAM4 size 10 network 4 using Kendell method by 

MRNET. 
Source: Cytoscape 

 

          In this gene network diagram, there are three gene to gene interactions. For 

instance, genes 8 and 7 both interface with gene number 9.  Gene 1 connects with three 

genes, namely 3, 2 and 7. As seen in Figure 4.60, gene 2 communicates with two genes 5 

and 6. Last, gene 3 interfaces with five genes such as 4, 5, 10, 6 and 8 as clearly seen in 

the obtained gene network. 

 

Figure 4.61 Gene network of DREAM4 size 10 network 4 using Pearson method by 

MRNET. 
Source: Cytoscape 
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          This Figure 4.61 is gene network of DREAM4 size 10 network 4 using the Pearson 

method by the MRNET. As seen in Figure 4.61, gene 1 interacts with three genes, 

namely 2, 9 and 10.  Also, gene 3 has four connections with genes 6, 9, 8, and 10.  As 

observed in the network, gene 7 interfaces with genes 8 and 9.  Last, there are three gene 

to gene connections in this gene network. For example, gene number 8 connects with 

gene 9. In addition, genes 6 and 5 both connect to gene 10 as seen in the gene network. 

 

Figure 4.62 Gene network of DREAM4 size 10 network 4 using Spearman method by 

MRNET. 
Source: Cytoscape 

 

          This Figure 4.62 is gene network of DREAM4 size 10 network 4 using the 

Spearman method by the MRNET. In this gene network diagram, there are four gene to 

gene interactions. For instance, genes 9 and 6 both communicate with gene number 10. 

Gene 4 connects with two genes, namely 5 and 6.  Also, as observed in the network, gene 

5 interfaces with three genes 10, 7 and 6. Last, as seen in Figure 4.62, gene 2 interfaces 

with four genes 4, 3, 8, and 7. 
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Figure 4.63 Gene network of DREAM4 size 10 network 5 using Kendell method by 

MRNET. 
Source: Cytoscape 

 

          In this gene network diagram, there are two gene to gene interactions. For instance, 

gene 8 interfaces with gene number 10 and gene 4 connects with gene 8.  Gene 1 

communicates with three genes, namely 9, 4 and 7. As seen in Figure 4.63, gene 2 

communicates with six genes 4, 5, 7, 8, 10 and 6. Last, gene 7 interfaces with two genes 

such as 10, and 8 as clearly seen in the obtained gene network. 

 

Figure 4.64 Gene network of DREAM4 size 10 network 5 using Pearson method by 

MRNET. 
Source: Cytoscape 
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          This Figure 4.64 is gene network of DREAM4 size 10 network 5 using the Pearson 

method by the MRNET. In this gene network diagram, there are three gene to gene 

interactions. For instance, genes 9 and 8 both communicate with gene number 10. Gene 6 

connects with three genes, namely 8, 9 and 10. Also, as observed in the network, gene 5 

interfaces with four genes 9, 6, 7 and 8. As seen in Figure 4.59, gene 2 communicates 

with five genes 4, 5, 8, 7 and 10 as clearly seen in the obtained gene network. 

Figure 4.65 Gene network of DREAM4 size 10 network 5 using Spearman method by 

MRNET. 
Source: Cytoscape 

 

          This Figure 4.65 is gene network of DREAM4 size 10 network 5 using the 

Spearman method by the MRNET. In this gene network diagram, there is only one gene 

to gene interaction. For instance, gene 8 communicates with gene number 10. Gene 4 

connects with two genes, namely 5 and 8.  Also, as observed in the network, gene 5 

interfaces with four genes 8, 9, 7 and 6. Last, as seen in the Figure 4.65, gene 6 interfaces 

with three genes 8, 9, and 10. 
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4.3 Comparison of Time-Series Tools Accuracy 

The accuracy of the tool is calculated using the following formula:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
True positives+True negatives

True positives+True negatives+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                    (4.1) 

 

 In this formula 4.1, components are defined as follow: 

1) True positives: it means the predicted tool has an edge between genes as well as 

an edge present in the golden standard.  

 

2) True negatives: it means the predicted tool has no edge between genes and no 

edge present in the golden standard. 

 

3) False positives: it means the predicted tool has an edge between genes while no 

edge is present in the golden standard. 

 

4) False negatives: it means the predicted tool has no edge between genes and 

there is an edge present between genes in the golden standard. 

 

4.3.1 TD-ARACNe 

Table 4.1 Accuracy of TD-ARACNe Tool Obtained from DREAM4 Dataset 

Data True positives False positives True negatives False negatives Accuracy  

Network 1 2 1 74 13 0.8444 

Network 2 1 3 71 15 0.8 

Network 3 3 5 70 12 0.8111 

Network 4 4 7 70 9 0.8222 

Network 5 4 8 70 8 0.8222 

 

 

4.3.2 BANJO 

Table 4.2 Accuracy of BANJO Tool Obtained from DREAM4 Dataset 

Data True positives False positives True negatives False negatives Accuracy  

Network 1 3 7 68 12 0.7717 

Network 2 2 10 64 14 0.7333 

Network 3 6 9 67 8 0.8111 

Network 4 7 14 63 6 0.7777 

Network 5 5 12 66 7 0.7888 
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4.3.3 Causality 

Table 4.3 Accuracy of Causality Tool Obtained from DREAM4 Dataset 

Data True positives False positives True negatives False negatives Accuracy  

Network 1 2 10 64 14 0.7333 

Network 2 2 7 67 14 0.7666 

Network 3 2 10 65 13 0.7444 

Network 4 4 8 69 9 0.8111 

Network 5 3 8 70 9 0.8111 

 

        The TD-ARACNe performs well on time-series gene expression data while the 

BANJO and the causality give the same accuracy as seen in the Tables 4.2 and 4.3 

respectively 

 

4.4 Comparison of Steady-State Tools Accuracy 

4.4.1 ARACNe  

Table 4.4 Accuracy of ARACNe Tool using Kendell Algorithm Obtained from 

DREAM4 dataset 
Data True positives False positives True negatives False negatives Accuracy  

Network 1 3 11 64 12 0.7444 

Network 2 4 10 64 12 0.7555 

Network 3 5 10 65 10 0.7777 

Network 4 1 12 65 12 0.7333 

Network 5 3 8 70 9 0.8111 

 

Table 4.5 Accuracy of ARACNe Tool using Pearson Algorithm Obtained from 

DREAM4 dataset  
Data True positives False positives True negatives False negatives Accuracy  

Network 1 4 6 69 11 0.8111 

Network 2 4 8 66 12 0.7777 

Network 3 2 10 65 13 0.7444 

Network 4 1 12 65 12 0.7333 

Network 5 2 7 71 10 0.8111 
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Table 4.6 Accuracy of ARACNe Tool using Spearman Algorithm Obtained from 

DREAM4 dataset  
Data True positives False positives True negatives False negatives Accuracy  

Network 1 3 8 67 12 0.7777 

Network 2 3 9 65 13 0.7555 

Network 3 4 10 65 11 0.7666 

Network 4 2 10 67 11 0.7666 

Network 5 2 8 70 10 0.8 

 

4.4.2 GENIE3 

Table 4.7 Accuracy of GENIE3 Tool Obtained from DREAM4 Dataset  

Data True positives False positives True negatives False negatives Accuracy  

Network 1 7 18 57 8 0.7111 

Network 2 3 22 52 13 0.6111 

Network 3 6 19 56 9 0.6888 

Network 4 2 23 54 11 0.6222 

Network 5 6 19 59 6 0.7222 

 

4.4.3 CLR  
 

Table 4.8 Accuracy of CLR Tool using Kendell Algorithm Obtained from DREAM4 

 
Data True positives False positives True negatives False negatives Accuracy  

Network 1 3 12 64 11 0.7444 

Network 2 6 17 57 10 0.7 

Network 3 4 12 64 10 0.7555 

Network 4 2 12 65 11 0.7444 

Network 5 4 17 61 8 0.7222 

 

Table 4.9 Accuracy of CLR Tool using Pearson Algorithm Obtained from DREAM4 

 
Data True positives False positives True negatives False negatives Accuracy  

Network 1 4 14 61 11 0.7222 

Network 2 7 13 61 9 0.7555 

Network 3 5 13 62 10 0.7444 

Network 4 1 12 65 12 0.7333 

Network 5 4 14 64 8 0.7555 
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Table 4.10 Accuracy of CLR Tool using Spearman Algorithm Obtained from DREAM4 

 
Data True positives False positives True negatives False negatives Accuracy  

Network 1 3 12 63 12 0.7333 

Network 2 6 16 60 10 0.7333 

Network 3 4 12 63 11 0.7444 

Network 4 2 12 65 11 0.7444 

Network 5 4 17 61 8 0.7222 

 

4.4.4 MRNET 

Table 4.11 Accuracy of MRNET Tool using Kendell Algorithm Obtained from 

DREAM4 

 
Data True positives False positives True negatives False negatives Accuracy  

Network 1 4 16 59 11 0.7 

Network 2 7 18 56 9 0.7 

Network 3 6 16 59 9 0.7222 

Network 4 2 16 61 11 0.7 

Network 5 4 17 61 8 0.7222 

 

 

Table 4.12 Accuracy of MRNET Tool using Pearson Algorithm Obtained from 

DREAM4 

 
Data True positives False positives True negatives False negatives Accuracy  

Network 1 4 18 57 11 0.6777 

Network 2 7 17 57 9 0.7111 

Network 3 6 18 57 9 0.7 

Network 4 2 18 59 11 0.6777 

Network 5 5 20 58 7 0.7 

 

Table 4.13 Accuracy of MRNET Tool using Spearman Algorithm Obtained from 

DREAM4 

 
Data True positives False positives True negatives False negatives Accuracy  

Network 1 5 16 58 11 0.7 

Network 2 7 18 56 9 0.7 

Network 3 6 17 58 9 0.7111 

Network 4 3 19 58 10 0.6777 

Network 5 4 21 57 8 0.6777 
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        The ARACNe performs well on steady-state multifactorial data. The CLR is the 

next tool which performed well after the ARACNe while the GENIE3 is with the least 

calculated accuracy as seen in the Table 4.7.  
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CHAPTER 5 
 

 
CONCLUSION 

GRNs play vital role in system biology making it an important area of research. Gene 

network inference of gene expression data is a challenging task. Hence, many methods 

have been developed to overcome this problem. The three methods to obtain GRNs are 

unsupervised, semi-supervised and supervised. This thesis is based on unsupervised 

methods. GRNs play an important role in system biology which is why more research is 

performed.  

           The objective of this thesis was to find the accuracy of different tools and compare 

their outcomes. This study used two types of data, namely time-series data and steady-

state gene expression data to infer gene networks. To obtain GRNs from time-series data, 

tools such as TD-ARACNe, BANJO, and causality are used while for steady-state data, 

tools such as ARACNe, GENIE3, CLR and MRNET are used to implicit GRNs. All these 

tools are based on different algorithms and concepts. As seen in previous sections, TD-

ARACNe performs well on time-series gene expression data while BANJO and causality 

gives the same accuracy. For steady-state data, the ARACNe tool works the best when 

accuracy was calculated. This gives an idea which tools are more suitable for relevant 

data available for gene expression. 

          In retrospect, more commercially available tools could have been used to infer 

networks to compare the results obtained with greater accuracy. 
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