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ABSTRACT 

PROCESSING AND CHARACTERIZATION OF                          
GRAPHENE AND GRAPHENE ON SILICON 

by 
Cheng Peng 

 

 

Graphene has become a promising material for applications in many areas including 

electronic devices, batteries and space crafts. Although it has a bright future, the 

commercial production of graphene has not yet been realized. In this thesis, an 

overview of the properties and applications of graphene is presented. The early research 

of preparing graphene and its composites is summarized, which gives the basis to 

synthesize graphene and improve the process. In this study, graphene oxide (GO) and 

graphene have been successfully made using graphite; graphene layer has been coated 

on the surface of a silicon wafer. The resulting specimens are characterized by Raman 

spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy to identify the 

composition of the resulting films. Current-Voltage (I-V) measurements are performed 

to determine the electrical properties of graphene on silicon. Conclusions are made 

based on the test results.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Due to its excellent properties, graphene offers many unique advantages. It is the 

thinnest and strongest material ever known in the universe. Its charge carriers exhibit 

giant intrinsic mobility, have zero effective mass, and can travel for micrometers 

without scattering at room temperature. Graphene can sustain current densities six 

orders of magnitude higher than that of copper, shows record thermal conductivity and 

stiffness, is impermeable to gases, and reconciles such conflicting qualities as 

brittleness and ductility. Electron transport in graphene is described by a Dirac-like 

equation, which allows the investigation of relativistic quantum phenomena in a 

benchtop experiment. 

Graphene is a single atomic plane of graphite. It can be sufficiently isolated 

from its environment to be considered free-standing.  Though atomic planes are 

familiar to us as constituents of bulk crystals, we know so little about one-atom-thick 

materials such as graphene. This is because nature strictly forbids the growth of 

low-dimensional crystals [1]. Crystal growth requires high temperatures; therefore, 

thermal fluctuations are detrimental for the stability of macroscopic one dimensional 

(1D) and two dimensional (2D) objects. One can grow flat molecules and 
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nanometer-sized crystallites, but as their lateral size increases, the phonon density 

integrated over the three dimensional (3D) space available for thermal vibrations 

rapidly grows, diverging on a macroscopic scale. This forces 2D crystallites to morph 

into a variety of stable 3D structures. 

Though it is challenging to grow 2D crystals in natural environment, it does not 

actually mean that they cannot be made artificially. Indeed, one can grow a monolayer 

inside or on top of another crystal and then remove the bulk at sufficiently 

low temperature, such that the thermal fluctuations are unable to break atomic bonds 

even in macroscopic 2D crystals and mold them into 3D shapes. 

There are two principal routes to make single-layer crystals. The first one is to 

mechanically split strongly layered materials such as graphite into individual atomic 

planes. This is the way graphene was made at the beginning. This method is well 

known as the scotch-tape technique. Regardless of needing significant time and the 

very detailed process, it does provide high quality crystals, which can reach millimeter 

size. The other approach is to start with graphitic layers epitaxially grown on top of 

other crystals [2]. This is the 3D growth during which epitaxial layers remain bound to 

the underlying substrate and the bond-breaking fluctuations are suppressed. After the 

epitaxial structure is cooled down, one can remove the substrate by chemical etching. 

However, it seems too difficult for the single-layer crystal to remain undamaged with 

this technology. But, recently, this method has been tried by isolating the epitaxial 

monolayers and transferring onto weakly binding substrates [3-5]. 
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Figure 1.1 Large graphene crystal prepared on an oxidized Si wafer by the scotch-tape 
technique. [Courtesy of Graphene Industries Ltd.] 
 
Source: K. V. Emtsev et al., Nat. Mater. 8, 203 (2009).  

 

Figure 1.2 The first graphene wafers are now available as polycrystalline one- to 
five-layer films grown on Ni and transferred onto a Si wafer. [Courtesy of A. Reina and 
J. Kong, MIT.] 
 
Source: K. V. Emtsev et al., Nat. Mater. 8, 203 (2009). 

 

1.2 Properties 

1.2.1 Structure 

The graphene honeycomb lattice is composed of two equivalent sub-lattices of carbon 

atoms bonded together with σ bonds, as shown in Figure 1.3. Each carbon atom in the 
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lattice has a π orbital that contributes to a delocalized network of electrons. By Monte 

Carlo simulation and transmission electron microscopy (TEM), we know that freely 

suspended graphene has ‘intrinsic’ ripples [6, 7]. Apart from ‘intrinsic’ corrugations, 

graphene, in real 3D space, can have other ‘defects’, including topological defects, 

vacancies, adatoms, edges/cracks, adsorbed impurities, and so on. 

Fig 1.3 Structure of graphene. 
 
Source: Ali Zain Alzahrani (2011). Structural and Electronic Properties of Graphene upon Molecular 
Adsorption: DFT Comparative Analysis, Graphene Simulation, Prof. Jian Gong (Ed.), ISBN: 
978-953-307-556-3, InTech, DOI: 10.5772/20356. Available from: 
http://www.intechopen.com/books/graphene-simulation/structural-and-electronic-properties-of-graphen
e-upon-molecular-adsorption-dft-comparative-analysis 

 

1.2.2 Electronic Properties 

The most explored aspect of graphene physics is its electronic properties. Unlike 

common 3D materials, pure graphene is a kind of semimetal or zero gap semiconductor. 

Scientists have long noticed that, for low energy electrons near the six corners of the 2D 
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 hexagonal Brillouin zone, the energy-momentum is linear dispersion relation [8]: 

 

E is energy, ћ is reduced Planck constant, vF≈106 is Fermi velocity, kx and ky are 

the x and y axis component of wave vector, respectively. 

According to Equation 1.1, the effective mass of electron and electron hole 

equals zero [9]. Because of this linear dispersion relation, the physical behavior of 

electrons and holes near these corners can be described by an equation that is formally 

equivalent to the massless Dirac equation [8, 10]. Therefore, electrons and holes in 

graphene are called Dirac Fermions; the six corners in Brillouin zone are named Dirac 

Point, also known as neutral point. This pseudo-relativistic description is restricted to 

the chiral limit, i.e., to vanishing rest mass M0, which leads to interesting additional 

features [1, 11]:  

 

Here, vF≈106 m/s is the Fermi velocity in graphene,  is the vector of the Pauli 

matrices,  is the two-component wave function of the electrons, and E is their 

energy. 

 

1.2.3 Electron Transport 

Experimental results from transport measurements show that graphene has a 

(1.1) 

(1.2) 
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remarkably high electron mobility at room temperature, with reported values in excess 

of 15,000cm2·V−1·s−1 [12]. The symmetry of the conductance data shows that the 

mobility of electrons and holes should be the same. Moreover, it is nearly independent 

of temperature between 10K and 100K, which implies that the dominant scattering 

mechanism is defect scattering. The corresponding resistivity of the graphene sheet 

would be 10−6 Ω·cm. This is less than the resistivity of silver, the lowest known at room 

temperature. So graphene is an outstanding conductor. Carrier density near the Dirac 

point is zero; graphene exhibits a minimum conductivity on the order of 4e2/h. Also, it 

may be the perfect material to make any sub-element for a quantum computer. 

 

1.2.4 Optical Properties 

According to theory, suspending graphene would absorb white light which is πα≈2.3%, 

where α is the fine-structure constant [13]. It is unusual that a single-atom thickness 

matter has such a high opacity. The unique electron property leads to this property. 

Even more amazing, the opacity is only related to α, which is normally used only in 

quantum electrodynamics. The unusual low-energy electronic structure of monolayer 

graphene features electron and hole conical bands meeting each other at the Dirac point; 

this is the reason for the high opacity.  

Such unique absorption could become saturated when the input optical intensity 

is above a threshold value. This nonlinear optical behavior is termed saturable 

absorption and the threshold value is called the saturation fluence. Graphene can be 
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saturated readily under strong excitation over the visible to near-infrared region, due to 

the universal optical absorption and zero band gap. This has relevance for the mode 

locking of fiber lasers, where full band mode locking has been achieved by 

graphene-based saturable absorber. Due to this special property, graphene has wide 

applications in ultrafast photonics. Moreover, the optical response of 

graphene/graphene oxide layers can be tuned electrically [14]. 

 

1.2.5 Other Properties 

Graphene is an ideal material in spintronics, concerning that its spin-orbit interaction is 

so little and carbon barely has nuclear magnetic moment. Electrical spin 

current injection and detection has been demonstrated up to room temperature. Spin 

coherence length, above one micrometer, at room temperature was observed, and 

control of the spin current polarity with an electrical gate was observed at low 

temperature. 

Quantum Hall effect only occurs in 2D conductor; this leads to a new 

metrological standard called resistivity quantum (h/e2). This e is unit quality of 

electricity, h is the Planck constant. For a current-carrying conductor, where the current 

is perpendicular to the applied external magnetic field, its transverse conductivity will 

become quantized; this is called Hall conductivity. The equation is expressed as:  

 

(1.3) 
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N is in integers, called Landau level index.  

The thermal conductivity of graphene is better than carbon nanotubes (CNTs), 

which is 5300W/mK. Thermal conductivity of normal CNTs is 3500W/mK. This 

excellent property makes graphene a promising thermal interface material in large scale 

nano integrated circuits [29]. 

In 2014, researchers magnetized graphene by placing it on an atomically 

smooth layer of magnetic yttrium iron garnet. The electronic properties of graphene 

were unaffected. Prior approaches involved doping graphene with other substances. 

The presence of the dopant negatively affected its electronic properties [15]. 

 

1.3 Applications 

Since the challenges in mass production and large size have been solved step by step, 

the industrial application of graphene will become more and more real. Based on the 

research achievements so far, the most likely field would be mobile equipment, 

aerospace and new energy battery. 

Flexible screens are attractive in many recent electronic shows. This is the trend 

of future development of screens for mobile devices. Flexible screens have broad 

prospects in future market, with graphene as the basic material. The Korean company, 

Samsung, has developed glassy flexible screens made with multilayer graphene, as 

shown in Figure 1.4. It is believed that large scale commercialization can be expected 

soon. 
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Figure 1.4 Glassy flexible screen made with multilayer graphene. 
 
Source: http://news.hexun.com/2013-01-24/150553242.html 
 

New energy battery is another product based on graphene. Massachusetts 

Institute of Technology (MIT) has successfully invented flexible photovoltaic panels 

with graphene layer, which could greatly reduce the cost of flexible solar cells. This 

kind of solar cell can be used in small electronic devices such as cameras and night 

vision goggles. Besides, the invention of graphene super cell can also increase the 

driving distance of electric cars; this has been a serious limitation of electric cars for 

quite a long time. 

Since graphene has the properties of high conductivity, high toughness and is 

super slim, it has tremendous advantages in applications in aerospace and military 

related industries. Lately NASA has developed a graphene sensor that can be used on 

spacecrafts. It can detect microelements in earth’s upper atmosphere and find structural 

defects in aircrafts. Graphene also has potential applications in the field of ultra-light 

aircraft materials.

http://news.hexun.com/2013-01-24/150553242.html
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CHAPTER 2 

EXPERIMENTAL APPROACH 

 

2.1 Research Goal 

In this research study, the goal is to synthesize graphene from graphite, make different 

states of graphene (graphene hydro-gel, aero-gel, film etc.) and pattern graphene on 

silicon wafers. The idea is to make the patterns to be controllable, including the size and 

thickness.  

 

2.2 Preparation of Graphene 

The first step is to make graphene. The following methods of preparation of graphene 

have been reported in the literature:  

2.2.1 Physical Methods 

Scientists who prepare graphene by physical methods usually use low-cost graphite or 

expandable graphite (EG) as raw material.  

Novoselovt et al. used the mechanical cleavage method to obtain graphene from 

Highly Oriented Pyrolytic Graphite (HOPG) and confirmed the existence of monolayer 

graphene [16]. 

Peter W. Sutter et al. used rare metal ruthenium as matrix and “grew” graphene 

on it, called epitaxy growth method [17]. 
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Liquid and gas phase dissection method is to put graphite or EG in certain 

organic solvents, using ultrasonic, heating or airflow action to make graphene with 

certain density [18]. 

2.2.2 Chemical Methods 

Chemical methods are mainly used in laboratories. First, a benzene ring is used as core; 

after several coupled reactions, bigger aromatic systems are formed and, finally, 

graphene layer with certain size is formed.  

Chemical vapor deposition method involves the introduction of several gases in 

a reactor at various temperatures and pressures; a new material is formed as the under 

layer. Utilizing this approach, Srivastava et al. have successfully made graphene on 

silicon under layer wrapped with nickel [19]. 

Graphite oxide reduction method is the most potential and promising way to 

synthesize graphene. It involves the dispersion of graphite sheet into a mixture of 

various strong acids, such as concentrated nitric acid and concentrated sulfuric acid, 

followed by the addition of potassium permanganate and the use of ultrasonic to 

create graphene oxide (GO) hydrosol as shown in Figure 2.1. GO is then reduced to 

obtain graphene. This is the most common way to prepare graphene. In the present 

study, this method is used to obtain graphene.   
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Figure 2.1 Graphite oxide reduction method. 

2.2.3 Improved Methods 

Normally, there are three methods to make GO: Standenmaier’s method, Bordie’s 

method and Hummer’s method [20-22]. Daniela C. Marcano et al. used a method 

basically from Hummer’s method and have successfully improved the synthesis 

process [23]. This improved method, shown in Figure 2.2, provides a greater amount of 

hydrophilic oxidized graphene material as compared to Hummers’ method or Hummers’ 

method with additional KMnO4. This method has been used in the present study. 

 
Figure 2.2 Representation of the procedures followed starting with graphite flakes 

 
GO 
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(GF). Under-oxidized hydrophobic carbon material is recovered during the purification 
of IGO, HGO, and HGO. The increased efficiency of the IGO method is indicated by 
the very small amount of under-oxidized material produced.  
 
Source: Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Slesarev, A., Alemany, L. B., Lu, W., Tour, J. M., 
Improved Synthesis of Graphene Oxide, AcsNano, 4, 8, 4806-4814, (2010). 

 

2.3 Preparation of Graphene Sol-Gel 

Hydrogels and aerogels are two typical kinds of 3D macroscopic assemblies.  They 

consist of microporous and mesoporous networks that allow access and diffusion of 

ions and molecules, offer attractive potentials for applications in electrode materials, 

catalysis and water treatment. 

 

2.3.1 Hydrogel 

Self-assembly has been recognized as one of the most powerful techniques for 

integrating various nanostructured building blocks into macroscopic materials that can 

translate properties at the nanoscale into resulting macroscopic devices with 

hierarchical microstructures and novel functionalities. Furthermore, the assembled 

superstructures are of novel collective physiochemical properties that are different from 

individual components and the bulk material, which enriches the species in the 

materials field and improves their capacities for practical applications [24, 25]. 

SHENG Kai-xuan et al. fabricated graphene hydro-gel via chemical reduction 

of graphene oxide with sodium ascorbate [26]. A photograph of an aqueous mixture of 

GO with sodium ascorbate and the SEM image are shown in Figure 2.3. 
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Figure 2.3 (a) Photograph of an aqueous mixture of GO (2 mg· mL-1) and sodium 
ascorbate before (left) and after (right) chemical reduction at 90oC for 1.5 h. (b) SEM 
image of SGHs.  
 
Source: Sheng, K. X., Xu, Y. X., Li, C., Shi, G. Q., High-performance self-assembled graphene 
hydrogels prepared by chemical reduction of graphene oxide, New Carbon Materials, 2, 9-15, (2011). 

2.3.2 Aerogel 

In March, 2013, Professor Gao C et al. [27], from Zhejiang University, China, made a 

material which is super light (shown in Figure 2.4). They called it carbon sponge. In 

fact, it is a graphene aerogel, one of the lightest materials in the world. It only weighs 

0.16mg/cm3, even lighter than helium. 

Graphene can change its shape optionally and has very good elastic properties, 

which can be compressed 80% and return to its original shape. Graphene aerogel has a 

very high and quick adsorption capacity for organic solvents. It can adsorb oil that 

weighs 900 times heavier than itself without adsorbing water. With this property, 

carbon sponge can be used to deal with oil spill in the sea. Moreover, graphene aerogel 

is the ideal material for energy storage, insulation, catalyst carrier and 

high-performance composites. 
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Figure 2.4 Graphene aerogel. 
 
Source:http://baike.baidu.com/picture/10346843/10515620/0/0dd7912397dda1449ca563c3b3b7d0a20c
f48616.html?fr=lemma&ct=single#aid=0&pic=0dd7912397dda1449ca563c3b3b7d0a20cf48616 

In order to make graphene aerogel, it would be much easier if it begins with the 

hydrogel. The only step is to lyophilize the graphene hydrogel. In this study, graphene 

hydrogel was processed; this was followed by the formation of aerogel. 

 

2.4 Preparation of Coatings on Silicon 

Tetra-valent silicon is relatively inert, but still reacts with halogens and dilute alkalis, 

but most acids (except for some hyper-reactive combinations of nitric acid and 

hydrofluoric acid) have no known effect on it. So the reduction of GO directly on the 

surface of a silicon wafer requires a non-alkaline condition. It means that the normal 

way of using hydrazine hydrate (N2H4·H2O) is not practicable here, because it needs an 
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alkaline environment. Also, high temperature reduction (HTR) is not fit for lab 

preparation, as it needs more than 1000oC and can be quite dangerous.  

Therefore, a new method was found to reduce GO in a weak acid environment, 

which can be done in a lower temperature (under 100oC). According to the Metal 

Institute of the Chinese Academy of Sciences, hydroiodic acid (HI) can be used to 

reduce GO effectively in a one-step reaction [28]. 
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CHAPTER 3 

RAW MATERIALS AND CHARACTERIZATION METHODS 

 

3.1 Preparation of GO 

The following raw materials are used in this study: Natural graphite powder (1000 

mesh, 15μm), potassium permanganate (KMnO4), hydrochloric acid (HCl), sulfuric 

acid (H2SO4, 98%), sodium nitrate (NaNO3), hydrogen peroxide (H2O2, 30%) 

deionized water and anhydrous ethanol. 

The following equipment and lab supplies are used: Beakers of different sizes, 

measuring cylinders of different sizes, several droppers, three-necked flask, iron 

support, funnel and separator funnel, water bath cauldron, ultrasonic instrument, 

vacuum oven, centrifuge, electronic scale, agitator.  

 

3.2 Preparation of Graphene Sol-Gel 

The following raw materials are used: Graphene oxide (made earlier), deionized water, 

sodium ascorbate, ammonia solution. 

The following equipment and lab supplies are used: Beakers of different sizes, droppers, 

ultrasonic instrument, vacuum oven, freezing dryer. 

 

 



18 
 

3.3 For Graphene Coating on Silicon 

The following raw materials are used: Graphene oxide (made earlier), deionized water, 

hydroiodic acid (HI, 57%wt), saturated sodium bicarbonate (5×100 ml), acetone 

(2×100 ml), acetic acid. 

The following equipment and lab supplies are used: Beakers, droppers, ultrasonic 

instrument, vacuum oven. 

 

3.4 Methods of Characterization 

3.4.1 Raman Spectra 

Raman spectroscopy is a spectroscopic technique used to observe vibrational, 

rotational, and other low-frequency modes in a system [30]. Raman spectroscopy is 

commonly used in chemistry to provide a fingerprint by which molecules can be 

identified. 
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Figure 3.1 Raman spectra 
 
Source:http://upload.wikimedia.org/wikipedia/commons/thumb/4/41/Raman_energy_levels.svg/850px-
Raman_energy_levels.svg.png 
 

Raman Spectroscopy relies on inelastic scattering or Raman scattering, 

of monochromatic light, usually from a laser in the visible, near infrared, or near 

ultraviolet range. The laser light interacts with molecular vibrations, phonons or other 

excitations in the system, resulting in the energy of the laser photons being shifted up or 

down. The shift in energy gives information about the vibrational modes in the 

system. Infrared spectroscopy yields similar, but complementary information. 

Typically, a sample is illuminated with a laser beam. Electromagnetic radiation 

from the illuminated spot is collected with a lens and sent through a monochromator. 

Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh 
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scattering) is filtered out, while the rest of the collected light is dispersed onto a detector 

by either a notch filter or a band pass filter. 

The Raman Effect occurs when electromagnetic radiation impinges on 

a molecule and interacts with the polarizable electron density and the bonds of the 

molecule in the phase (solid, liquid or gaseous) and environment in which the 

molecule finds itself. For spontaneous Raman effect, which is a form of inelastic light 

scattering, a photon (electromagnetic radiation of a specific wavelength) excites 

(interacts with) the molecule in either the ground rovibronic state (lowest rotational 

and vibrational energy level of the ground electronic state) or an excited rovibronic 

state. This results in the molecule being in a so-called virtual energy state for a short 

period of time before an inelastically scattered photon results. The resulting 

inelastically scattered photon which is "emitted"/"scattered" can be of either 

lower (Stokes) or higher (anti-Stokes) energy than the incoming photon. In Raman 

scattering, the resulting rovibronic state of the molecule is a 

different rotational or vibrational state than the one in which the molecule was 

originally, before interacting with the incoming photon (electromagnetic radiation). 

The difference in energy between the original rovibronic state and this resulting 

rovibronic state leads to a shift in the emitted photon frequency away from the 

excitation wavelength, the so-called Rayleigh line. The Raman Effect is due to 

inelastic scattering and should not be confused with emission 

(fluorescence or phosphorescence) where a molecule in an excited electronic state 
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emits a photon of energy and returns to the ground electronic state, in many cases to a 

vibrationally excited state on the ground electronic state potential energy surface. 

If the final vibrational state of the molecule is more energetic than the initial 

state, the inelastically scattered photon will be shifted to a lower frequency for the 

total energy of the system to remain balanced. This shift in frequency is designated as 

a Stokes shift. If the final vibrational state is less energetic than the initial state, then 

the inelastically scattered photon will be shifted to a higher frequency, and this is 

designated as an anti-Stokes shift. Raman scattering is an example of inelastic 

scattering because of the energy and momentum transfer between the photons and the 

molecules during the interaction. Rayleigh scattering is an example of elastic 

scattering, the energy of the scattered Rayleigh scattering is of the same frequency 

(wavelength) as the incoming electromagnetic radiation. 

A change in the molecular electric dipole-electric polarizability with respect to 

the vibrational coordinate corresponding to the rovibronic state is required for a 

molecule to exhibit Raman Effect. The intensity of the Raman scattering is 

proportional to the electric dipole-electric dipole polarizability change. The Raman 

spectra (Raman scattering intensity as a function of the Stokes and anti-Stokes 

frequency shifts) is dependent on the rovibronic (rotational and vibrational energy 

levels of the ground electronic state) states of the sample. This dependence on the 

electric dipole-electric dipole polarizability derivative differs from infrared 

spectroscopy where the interaction between the molecule and light is determined by 
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the electric dipole moment derivative, the so-called atomic polar tensor (APT); this 

contrasting feature allows one to analyze transitions that might not be IR active via 

Raman spectroscopy, as exemplified by the rule of mutual 

exclusion in centrosymmetric molecules. Bands which have large Raman intensities 

in many cases have weak infrared intensities and vice versa. For very symmetric 

molecules, certain vibrations may be both infrared and Raman inactive (within the 

harmonic approximation). In those instances, one can use the technique of inelastic 

incoherent neutron scattering to determine the vibrational frequencies. The selection 

rules for inelastic incoherent neutron scattering (IINS) are different from those of both 

infrared and Raman scattering. Hence, the three types of vibrational spectroscopy are 

complementary, all giving in theory the same frequency for a given vibrational 

transition, but the relative intensities giving different information due to the types of 

interaction between the molecule and the electromagnetic radiation for infrared and 

Raman spectroscopy and with the neutron beam for IINS. 
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3.4.2 Fourier Transform Infrared (FTIR) Spectroscopy  

Fourier transform infrared spectroscopy (FTIR) is a technique which is used to obtain 

an infrared spectrum of absorption, emission, photoconductivity or Raman 

scattering of a solid, liquid or gas [31]. An FTIR spectrometer simultaneously collects 

high spectral resolution data over a wide spectral range. This confers a significant 

advantage over a dispersive spectrometer which measures intensity over a narrow 

range of wavelengths at a time.  

The goal of FTIR is to measure how well a sample absorbs light at each 

wavelength. The most straightforward way to do this, the "dispersive spectroscopy" 

technique, is to shine a monochromatic light beam at a sample, measure how much of 

the light is absorbed, and repeat for each different wavelength. 

Fourier transform infrared spectroscopy is a less intuitive way to obtain the 

same information. Rather than shining a monochromatic beam of light at the sample, 

this technique shines a beam containing many frequencies of light at once, and 

measures how much of that beam is absorbed by the sample. Next, the beam is 

modified to contain a different combination of frequencies, giving a second data point. 

This process is repeated many times. Afterwards, a computer takes all these data and 

works backwards to infer what the absorption is at each wavelength. 

The beam described above is generated by starting with a broadband light 

source—one containing the full spectrum of wavelengths to be measured. The light 

shines into a Michelson interferometer—a certain configuration of mirrors, one of 
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which is moved by a motor. As this mirror moves, each wavelength of light in the beam 

is periodically blocked, transmitted, blocked, transmitted, by the interferometer, due 

to wave interference. Different wavelengths are modulated at different rates, so that at 

each moment, the beam coming out of the interferometer has a different spectrum. 

As mentioned earlier, computer processing is required to turn the raw data (light 

absorption for each mirror position) into the desired result (light absorption for each 

wavelength). The processing required turns out to be a common algorithm called 

the Fourier transform. The raw data is sometimes called an "interferogram". 
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3.5 Apparatus 

The following equipment was used for the characterization: Thermo DXR Raman 

spectra microscopy (from USA); Vector 22 FTIR spectroscope (Bruker from 

Switzerland) - shown in Figure 3.2. 

 

Figure 3.2 Thermo DXR and Vector 22. 
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CHAPTER 4 

EXPERIMENTS AND CHARACTERIZATION 

 

4.1 Preparation of GO 

Gaphene oxide was prepared basically using hummer’s method; meanwhile, we also 

changed some parameters to increase the productivity and success ratio. 

Concentrated H2SO4 (69 mL) was added to a mixture of graphite flakes (3.0 g, 1 wt 

equiv) and NaNO3 (1.5 g, 0.5 wt equiv), and the mixture was cooled to 0 °C using ice 

water bath.  

KMnO4 (15-18 g, 5-6 wt equiv) was added slowly with a funnel in portions to 

keep the reaction temperature below 20 °C.  

The reaction beaker was warmed to 35 °C and stirred for 6 hours, at which time 

water (138 mL) was added slowly with a separator funnel, producing a large exotherm 

to 98 °C, as shown in Figure 4.1. 
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Figure 4.1 Processing of GO. 

External heating was introduced by hot water bath to maintain the reaction 

temperature at 98 °C for 15 minutes; then the heat was removed and the reaction beaker 

was cooled using a water bath until the temperature dropped down below 10oC.  
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Additional water (420 mL) and 30% H2O2 (3 mL) were added, producing 

another exotherm. With the added H2O2, the suspension liquid turned golden yellow, as 

shown in Figure 4.2. 

Figure 4.2 Suspension liquid before (right) and after (left) H2O2 was added. 

After air cooling, hydrochloric acid (HCl) was added to the mixture to remove 

the rest of H2O2. Centrifuge was used to wash GO with anhydrous ethanol as solvent for 

three to five times, until the PH approached 7. Upper clear liquid was removed leaving 

behind the mud-like graphene oxide. 



29 
 

 GO was taken out and spread on a tinfoil in a tray. The tray was put into the 

vacuum oven at the temperature of 40oC for 24 hours. Then the GO dispersion was 

prepared as shown in Figure 4.3. 

Figure 4.3 Graphene oxide. 

 

4.2 Preparation of Graphene Sol-Gel. 

The second part is to make the graphene oxide (GO) into hydrogel. GO powders were 

added to deionized water. Using ultra-sound and strong mechanical stirring for 2 hours, 

GO was made into an aqueous dispersion (2mg/ml). 10ml of GO aqueous dispersion 

was put in a glass vial. Then, 40mg sodium ascorbate was added. After sonication for 5 

minutes to dissolve the sodium ascorbate, a homogeneous yellow-brown dispersion 
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was obtained. This dispersion was heated in a drying oven at 90oC for 1.5 hours to 

produce the self-assembled graphene hydrogels (SGH), as shown in Figure 4.4. 

Figure 4.4 Graphene hydrogel. 
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The graphene hydrogel was put in a chamber containing ammonia, at room 

temperature, for 24 hours. It was lyophilized in a freezing dryer. Then graphene aerogel 

was prepared as shown in Figure 4.5. 

 

Figure 4.5 Graphene aerogel. 

 

4.3 Coating on Silicon Wafer 

4.0g of GO was dispersed in 1.5L of acetic acid. This dispersion was subjected to 

ultrasonic frequencies in an ultrasonic bath cleaner until it became clear. HI (80.0 ml) 

was then added and the mixture was stored at 40 °C for 40 hours with constant stirring. 

Then the product was isolated by filtration, washed with saturated sodium bicarbonate 

(5×100 ml), distilled water (5×100 ml) and acetone (2×100 ml). A homogeneous liquid 
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dispersion was formed in the ultrasonic bath. Small droplets of the liquid were dropped 

on the surface of the silicon wafer. The wafers were vacuum dried overnight, at room 

temperature, to yield reduced graphene oxide on silicon wafers. 

 

4.4 Characterization 

The prepared GO samples were characterized by Raman spectroscopy and FTIR to 

identify the ingredients. The microstructures of graphene sol-gel were obtained by 

Scanning Electron Microscopy. Current-Voltage (I-V) measurements were made to 

analyze the electrical properties of graphene on silicon. 
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CHAPTER 5 

DATA ANALYSIS AND CHARACTERIZATION 

 

5.1 Analysis of Raman Spectra 

In graphene, the Stokes phonon energy shift, caused by laser excitation, creates two 

main peaks in the Raman spectrum: G (1580cm-1), a primary in-plane vibrational mode, 

and 2D (2690cm-1), a second-order overtone of a different in plane vibration, D 

(1350cm-1) [32]. D and 2D peak positions are dispersive depending on the laser 

excitation energy. 

Figure 5.1 Typical Raman spectrum of graphene oxide [33]. 

Source: Shahriary, L., Athawale, A. A., Graphene Oxide Synthesized by using Modified Hummers 
Approach, International Journal of Renewable Energy and Environmental Engineering, ISSN 2348-0157, 
02, 01, (2014). 
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In Graphene Oxide, the main features in the Raman spectra are the G and D peaks 

and their overtones. As shown in Figure 5.1, the first-order G and D peaks, both arising 

from the vibrations of sp2 carbon, appear at around 1580 cm-1 and 1350 cm-1, 

respectively. The G peak correspond to the optical E2g phonons at the Brillouin zone 

center resulting from the bond stretching of sp2 carbon pairs in both, rings and chains. G 

peak would also increase with the larger number of layers. The D peak represents the 

breathing mode of aromatic rings arising due to defect in the sample. Therefore, the D 

peak intensity is often used as a measure of the degree of disorder [33]. The 2D peak is 

attributed to double resonance transitions resulting in the production of two phonons 

with opposite momentum. Besides, unlike the D peak, which is Raman active only in 

presence of defects, the 2D peak is active even in the absence of any defects. 

Raman spectrum of GO is shown in Figure 5.2 after the baseline was corrected.  
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Figure 5.2 Raman spectrum of GO. 

The first-order D peak itself is not visible in pristine graphene because of crystal 

symmetries. In GO, the charge carriers are excited and inelastically-scattered by a 

phonon.  In Figure 5.2, the prominent D peak at ~1480cm-1 and the G peak at 

~1750cm-1 are indicative of significant structural disorder in GO. Weak and broad 2D 

peaks are another indication of disorder. As the GO samples that were made had very 

small crystal size, the amount of disorder can be very high, which leads to very strong D 

peaks. 

Figure 5.2 shows that graphene oxide of high degree of dispersion has been 

prepared successfully. Combined with the results of the FTIR spectra, a more accurate 

characterization will be made. 
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5.2 Analysis of FTIR 

Figure 5.3 shows sample FTIR spectra from the literature [34]. While no significant 

peak was found in graphite, the presence of different types of oxygen functionalities in 

graphene oxide was confirmed at 3430 cm-1 (-OH stretching vibrations), at 1725 cm-1 

(stretching vibrations from C=O), at 1618 cm-1 (skeletal vibrations from unoxidized 

graphitic domains), at 1225 cm-1 (C-OH stretching vibrations), and at 1057 cm-1 (C-O 

stretching vibrations). The peak in the FTIR spectra of reduced graphene shows that the 

-OH stretching vibrations, observed at 3430 cm-1, was significantly reduced due to 

deoxygenation. While stretching vibrations from C=O at 1720 cm-1 were still observed, 

they were caused by the remaining carboxyl groups.  

Figure 5.3 Assignation (cm-1): for graphene oxide 1725 C=O (carbonyl/carboxy); 1618 
C=C (aromatics); 1407 C-O (carboxy); 1225 C-O (epoxy); 1057 C-O (alkoxy). The 
peaks of the oxygen functional groups become weaker, showing that they are almost 
entirely removed in reduced graphene oxide. 
 
Source: Nanoinnova Technologies SL http://www.nanoinnova.com/Uploads/Features/7665255.pdf 
(accessed March 10, 2015). 
  

http://www.nanoinnova.com/Uploads/Features/7665255.pdf
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After data collection of FTIR, the GO and rGO curves were put together to 

make it more intuitive to analyze, as shown in Figure 5.4. 

 

Figure 5.4 FTIR spectra of GO and reduced GO. 

As can be seen in Figure 5.4, for GO, there is a wide, strong absorption peak 

near 3430cm-1, which is the stretching vibration peak of hydroxyl groups (-OH). The 

peak near 1725cm-1 is due to C=O in the carboxyl group of GO. The peak next to it is 

the absorption peak of C=C groups near 1618cm-1. The peak near 1057cm-1 is due to the 

vibration peak of C-O-C groups. The spectra of GO indicates that there are at least –OH, 

-C=C, C-O-C and –C=O groups existing in the graphene oxide that was processed in 

this study. These results are in accord with the structure of GO reported in the literature. 
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The presence of these oxygen-containing groups reveals that the graphene has been 

successfully oxidized. The polar groups, especially the surface hydroxyl groups, result 

in the formation of hydrogen bonds between graphite and water molecules; this further 

explains the hydrophilic nature of graphene oxide.  

When graphene oxide is restored into rGO, the peak near 3430cm-1 decreases 

sharply, and so does the C=O peak near 1725cm-1. This phenomenon shows that the 

graphene oxide was well restored by the process that was considered in this study. 

Meanwhile, it can be found that the peaks near 1618cm-1 and 1057cm-1 of C=C and 

C-O-C also became weaker, which further verified the decrease in the content of 

oxygen, suggesting the success of preparing graphene sol-gel. However, it is 

impossible to get rid of all the oxygen during the reduction of GO; so the graphene that 

was made in this study still had some oxygen-containing groups in it.  
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5.3 Scanning Electron Microscopy (SEM) Studies of Graphene Sol-Gel 

The microstructures of graphene sol-gel were studied by scanning electron 

microscopy (SEM).  The micrographs are shown in Figure 5.5. 

 

Figure 5.5 (a-c) SEM images with different magnifications of the Graphene sol-gel 
interior microstructures. 

The sol-gel has a well-defined and interconnected 3D porous network as can 

be seen in SEM micrographs. The pore sizes are from less than 1micrometer to 

several micrometers. The walls of the pores are composed of stacked graphene sheets, 

which contribute to the cross-linked structure of graphene sol-gel. This structure is 

also the main reason why the sol-gel is light in weight and flexible. 

 

5.4 Electrical Properties of Graphene on Silicon 

In the past few years, developing carbon nanotube (CNT)-silicon solar cells has been a 

growing interest. After several efforts by scientists, the power conversion efficiency has 

continuously improved to the range of 10-15%. The devices are typically made by 

depositing a transparent single-walled CNT film on the surface of a single-crystal Si 

wafer to form CNT-Si junction and subsequent chemical doping on the CNT film and 
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junction to optimize electronic property. Compared to traditional Si solar cells 

involving high-temperature dopant diffusion and additional metal grids as top contacts, 

the fabrication of CNT-Si heterojunctions is a low-temperature process based on 

commercial wafers while still leading to high efficiency [35]. 

Figure 5.6 Electrical characterization of Graphene-Si. 

When it comes to graphene, it can be considered as a structure obtained by 

unrolling a CNT into a flat sheet. As shown in Figure 5.6, it is also practicable to make 

Graphene-Silicon solar cells. In fact, the 2D structure, atomic thickness, and high 

carrier mobility make graphene an ideal electrode material to be applied in a variety of 

thin film devices. Since CNT-Si solar cell has been a success, it is anticipated that the 

Graphene-Si solar cell should also perform well. 
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Figure 5.7 J−V characteristics of Graphene on Silicon. Current Density (mA/cm2) 

Figure 5.7 shows the J-V characteristics of graphene/silicon (G-Si). As can be 

seen in the figure, the resulting of G-Si cell shows potentially good device parameters 

including an open-circuit voltage (VOC) of 0.4V and a short-circuit current density (JSC) 

of 24mA/cm2, which are both relatively low. The efficiency of this cell can be 

enhanced by chemical doping or doping by concentrated HNO3 vapors and coating an 

antireflection TiO2 layer. These methods are similar to coating on CNT-Si. 
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CHAPTER 6 

CONCLUSIONS AND PROSPECTS 

 

Graphene is one of the world’s most promising materials. It is therefore critical that 

we can process graphene oxide, graphene hydro-gel, aero-gel and related layers. 

Utilizing Raman spectroscopy and Fourier Transform Infrared Spectroscopy, the 

compositional analyses of graphene and graphene related materials has been presented 

in this study. The micrographs obtained using scanning electron microscopy (SEM) 

show the structure and morphology of the gel. Electrical measurements have been 

performed on Graphene/Si.  

The graphene gel has a unique 3D network structure. It behaves like a sponge 

and exhibits super strong absorption towards organic solvents. It has high mechanical 

strength and is thermally stable (from -200oC to 100oC). Moreover, it is electrically 

conductive.  

It has been reported that graphene gel can be used in drug-delivery, tissue 

scaffolds, high performance nano-composites and supercapacitors. Graphene is 

innoxious; therefore, it can be put into human body as carriers of medicine or 

substitute of organs. 

In order to realize the large-scale manufacture of high quality graphene sheets, 

the approach is to improve synthetic techniques.  
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Graphene/Silicon should be an ideal material configuration to make solar cells 

as graphene has shown great potential for applications in photovoltaics due to its high 

optical transmittance, electrical conductivity and surface area. But the relatively low 

conversion efficiency has limited its applications in photovoltaics. There is a way to 

increase the efficiency by replacing planar silicon wafer with silicon nanowire. 

Compared to planar silicon, the nanowire can provide more surface area for sun light, 

and can suppress light reflection. The starting point for this method is to change the 

structure of silicon. Meanwhile, more attention should be paid to Schottky barrier 

contacts and PN junctions of graphene on silicon. 

When graphene comes in contact with silicon, it not only forms PN junction, 

but also Schottky barrier. This causes a large parasitic resistance to the current flow. It 

is the main reason for energy consumption and poor device performance. One of the 

methods to help reduce the resistance is to do chemical doping with graphene. 

Xiaochang Miao et al doped graphene with bis (trifluoromethanesulfonyl)-amide 

[((CF3SO2)2NH)] (TFSA) to increase the device power conversion efficiency to 8.6% 

[36]. Besides, HNO3 doping can also increase the efficiency to a certain extent. Thus, 

doping and coatings on graphene/Si is a way to control the PN junction performance 

of graphene.  
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APPENDIX A 

SEM IMAGES OF GRAPHENE SOL-GEL INTERIOR MICROSTRUCTURES 

 

These are the SEM micrographs with different magnifications of graphene sol-gel. 
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APPENDIX B 

PRESENTATION SLIDES 

 

These are the presentation slides of my thesis defense. 
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