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ABSTRACT 

REVIEW OF STEGANALYSIS OF DIGITAL IMAGES 

by 

Xinlei Pan 

Steganography is the science and art of embedding hidden messages into cover multimedia 

such as text, image, audio and video. Steganalysis is the counterpart of steganography, 

which wants to identify if there is data hidden inside a digital medium. In this study, some 

specific steganographic schemes such as HUGO and LSB are studied and the steganalytic 

schemes developed to steganalyze the hidden message are studied. Furthermore, some new 

approaches such as deep learning and game theory, which have seldom been utilized in 

steganalysis before, are studied. In the rest of thesis study some steganalytic schemes using 

textural features including the LDP and LTP have been implemented. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Concept 

The objective of this thesis is to study and classify methods in steganalysis and to try show 

some improvement in steganalysis. 

Steganalysis is the study of detecting whether a suspected document has a payload 

encoded in it; in other words, steganalysis is the counter part of steganography. 

Steganography is the science and art of hiding secret messages into innocuous looking 

cover documents, such as speeches and images. Each steganographic communication 

system consists of data embedding part and the hidden date extraction part.  

A lot of steganographic schemes are freely available today on the internet such as 

J-Stego [1], EzStego [2], MB [5], OutGuess [40], F5 [4] etc. Most of these steganographic 

methods modify the redundant bits in a carrier to hide secret messages. This doing however 

changes the statistical properties of the cover medium as creating a stego medium. There 

are two most popular methods used for steganography: spatial domain embedding and 

transform domain embedding. 

Likely, steganalysis also can be classified in two types: specific and universal. The 

specific type focus on the particular steganographic algorithm and this type has a high 

success rate for detecting the presence of secret messages. The universal steganalysis 

algorithms are designed to be operatable all known and unknown steganography algorithms.  
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Universal steganalysis can be considered as a two-class pattern classification 

problem to classify the test images as a cover or a stego image. Generally, the classification 

consists of two procedures, the feature extraction and the pattern classification. Generally, 

a set of feature is a representation of an image with much lower dimensionality and is 

crucial for many pattern recognition problems, including steganalysis. The effective 

features for steganalysis should extract information about the changes incurred by data 

hiding rather and compress the content of the image. 

It has been about 15 years since the research on steganalysis has been developed. 

As a specific steganalysis algorithm, the Raw Quick Pair (RQP) was proposed by Fridrich 

et al. [7] in 1999. This method is based on analyzing the close colors by LSB embedding 

[6]. Because the number of close colors in an image with embedded code is obviously 

larger than it with a normal image. Hence, this algorithm works very well as long as the 

number of close colors in the cover image is less than 30% of the number of pixels. 

In 2001, Fridrich et al. [8] also claimed a new Specific Steganalysis called Regular 

and Singular group (RS Steganalysis) for detecting (least significant bit) LSB non-

sequential embedding. The image is divided into disjointed groups of fixed shapes. Each 

group noise is measured by the mean absolute value of the differences between adjacent 

pixels. Those groups will be classified as regular or singular depending on whether the 

pixel noise is increased when using a ‘mask’. When data are embedded into an image using 

LSB method, one can analysis the regular and singular groups. 

As the universal method, Li et al. [9] designed a feature extraction method 
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containing two parts. One is generated from the coefficient co-occurrence matrices which 

was proposed by Kodovsky et al. [18] in 2011, while another part is derived from the co-

occurrence matrices of coefficient differences. They trained those features by sub-

classifiers which are integrated by an ensemble classifier with a Bayesian mechanism [25]. 

In this way, the performance is improved by 2%. 

Fridrich et al. [10] introduced a spatial-domain steganalytic method (Rich Model) 

for detecting common steganography. The rich model is assembled by submodel, which is 

based on its detection error: the out-of-bag error calculated from the training set. They 

estimate the detection accuracy by observing the difference between how different 

submodels engage in detection. 

Shi et al. [3] had shown that textural features are a very helpful choice for 

steganalysis for Highly Undetectable Steganography (HUGO) in 2012 [19]. They learned 

and utilized the textural features from rich literature in the field of texture classification for 

further development of modern steganalysis. They use the local binary pattern as the 

textural feature framework with a group of textural feature masks, including Markov 

neighborhoods [30], cliques [3] and Laws’ masks [30]. 

It is clearly that steganalysis is making progress. In recent years, game theory [11] 

and deep learning [17], which have never used before, are involved into steganalysis now. 

Tomáš et al. [11] introduced a powerful steganalytic method in the detection of content 

adaptive LSB Matching [26] with a gaming theory in 2014. They focused on the modern 

steganographic embedding paradigm based on minimizing an additive distortion function. 
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The strategies of both players are comprised of the probabilistic selection channel. In this 

paper, they demonstrate the example of a two-pixel cover that the Nash equilibrium that 

minimizes the KL divergence between cover and stego objects. 

Qian et al. [17] demonstrated that deep learning can be used in steganalysis in 2015. 

They proposed a new paradigm to learn features automatically via customized 

Convolutional Neural Networks (CNN) [28], which has never been used in steganalysis 

before. What’s more, the guidance of classification can be used during the feature 

extraction step. Even though the accuracy in HUGO cannot be higher than Spatial Rich 

Model (SRM), this technique still achieves comparable performances. 

In this thesis, an attempt has been made to make a note of various approaches 

proposed for steganalysis of digital images and the classification of them. The rest of the 

paper is organized as follows. Chapter 2 shows six classic steganalytic techniques, while 

Chapter 3 presents the newest approaches in steganalysis; In Chapter 4, we propose an 

improved method for Shi et al. [3], by replacing the local binary pattern (LBP) with the 

Local Derivative Patter (LDP) [12] and LTP [13]. Summary and conclusions drawn from 

the study have been given in Chapter 5. 
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1.2 Overview of Steganography 

1.2.1 General Concepts 

The Internet offers great convenience in transmitting large amounts of data to different 

parts of the world. However, the safety and security of long distance communication 

remains an issue. This problem has led to the development of steganography schemes. 

Steganography is an ancient idea of hiding information. If it works well, the message does 

not attract attention from eavesdroppers and attackers. 

 

 

Figure 1.1 Framework of steganography. 

 

Figure 1.1 shows how steganography operates over Cover Medium and the 

Embedded Message which may be text, or any other type of data, with a Stego Key which 

is a password to produce a Stego Medium.  
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1.3 Modern Techniques of Steganography 

Steganography is the science and art of hiding information. Steganography techniques can 

be defined into four categories: Physical steganography, Digital steganography, Network 

steganography and Printed steganography. In this thesis, we mainly talk about Image 

steganography. Image files like Bit Map Picture (MBP), Portable Network Graphics (PNG), 

Joint Picture Expert Group (JPEG) and etc. are used to hide data.  

 

1.3.1 LSB Embedding Algorithm 

The most widely used technique to hide secret data at the early stage is the Least 

Significant Bit (LSB) [13], which is an Image Domain technique. This method uses the 

least significant bits of early pixels in a digital image. When using a 24 bit color image, 

bits of red, green and blue color component can be used; in this way more secret bits can 

be embedded. 

Another category of image steganography techniques is transform domain 

techniques. Transform domain techniques encode secret messages in its transform areas of 

cover images which makes those messages more robust to attacks such as compression and 

cropping. The Discrete Cosine Transform (DCT) [29] domain is widely used in Transform 

Domain techniques, e.g. JPEG images used the DCT for compression. A JPEG encoder 

partitions an image into many 8 × 8  blocks. Each block is converted to frequency 

coefficients by using two-dimensional DCT. However many of the 8 × 8 coefficients are 

equal to zero, and it will have an effect on the compression rate if we change too many 
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zeros to non-zero values. It is the reason that the number of bits one could embed in to the 

DCT domain is less than the number by using LSB method. 

 

1.3.2 F5 Algorithm 

The F5 steganographic algorithm was introduced by Andreas Westfeld [4]. The goal of 

their research was to develop a practical embedding method for JPEG images that would 

provide high steganographic capacity without sacrificing security. Guided by their 𝜒2 

attack, they challenged the paradigm of replacing bits of information in the cover-image 

with the secret message while proposed a different paradigm of incrementing image 

components to embed message bits. 

Instead of replacing the LSBs of quantized DCT coefficients with the message bits, 

the absolute value of the coefficient is decreased by one. The authors argued that this type 

of embedding cannot be detected by using the 𝜒2 statistical attack. 

 

 

Figure 1.2 Permutative embedding scatters the changes (×). 

 

Source: Andreas Westfeld, “F5—A Steganographic Algorithm High Capacity Despite Better Steganalysis,” 

4th International Workshop, IH 2001 Pittsburgh, PA, USA, April 25–27, 2001 Proceedings, pp. 289-302. 
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The straddling mechanism used with F5 shuffles all coefficients using a 

permutation firstly. Then, F5 embeds data into the permuted sequence. The transformation 

does not change the number of coefficients. The permutation depends on a password. F5 

delivers the steganographically changed coefficients in the original sequence to the 

Huffman coder. With the correct key, the receiver is able to repeat the permutation. The 

permutation has linear time complexity 𝑂(𝑛). Figure 1.2 shows the uniformly distributed 

changes over the whole image. 

The embedding process starts with a seed for a PRNG from the user password and 

generating a random walk through the DCT coefficients of the cover image. The PRNG is 

also used to encrypt the value 𝑘 using a stream cipher and embed it in a regular manner 

together with the message length in the beginning of the message stream. The body of the 

message is embedded using matrix embedding, inserting 𝑘 message bits into one group 

of 2𝑘– 1 coefficients by decrementing the absolute value of at most one coefficient from 

each group by one. 

The embedding process consists of the following six steps: 

1. Get the RGB representation of the input image. 

2. Calculate the quantization table corresponding to quality factor Q and compress 

the image while storing the quantized DCT coefficients. 

3. Compute the estimated capacity with no matrix embedding 𝐶 = ℎ𝐷𝐶𝑇 −
ℎ𝐷𝐶𝑇

64
−

ℎ(0) − ℎ(1) + 0.49ℎ(1), where ℎ𝐷𝐶𝑇 is the number of all DCT coefficients, 

ℎ(0) is the number of AC DCT coefficients equal to zero. 

4. The user-specified password is used to generate a seed for a PRNG that 

determines the random walk for embedding the message bits. 
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5. The message is divided into segments of k bits that are embedded into a group 

of 2𝑘– 1 coefficients along the random walk. 

The following example shows what happened with the Matrix Encoding. If we want 

to embed two bits 𝑥1, 𝑥2 in three modifiable bit places 𝑎1, 𝑎2, 𝑎3 changing one place at 

most. Here are all of the four cases: 

 

            𝑥1 = 𝑎1⊕𝑎3, 𝑥1 = 𝑎2⊕𝑎3 ⇒ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑛𝑜𝑡ℎ𝑖𝑛𝑔 

𝑥1 ≠ 𝑎1⊕𝑎3, 𝑥1 = 𝑎2⊕𝑎3 ⇒ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑎1 

𝑥1 = 𝑎1⊕𝑎3, 𝑥1 ≠ 𝑎2⊕𝑎3 ⇒ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑎2 

𝑥1 ≠ 𝑎1⊕𝑎3, 𝑥1 ≠ 𝑎2⊕𝑎3 ⇒ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑎3 

 

where ⊕ presents XOR operation. In general, we have a code word a with n modifiable 

bit places for 𝑘 secret message bits 𝑥. Let 𝑓 be a hash function that extracts 𝑘 bits from 

a code word. Matrix encoding enables us to find a suitable modified code word 𝑎 for 

every 𝑎 and 𝑥 with 𝑥 =  𝑓(𝑎′). 

F5 implements matrix encoding only for 𝑑𝑚𝑎𝑥 = 1. For (1, 𝑛, 𝑘), the code words 

have the length 𝑛 = 2𝑘 − 1. The desity: 

 

𝐷(𝑘) =
1

𝑛 + 1
=
1

2𝑘
  (1.1) 
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And the embedding rate 

 

𝑅(𝑘) =
𝑘

𝑛
=
1

𝑛
⋅ 𝑙𝑑(𝑛 + 1) =

𝑘

2𝑘 − 1
  (1.2) 

 

We can define the embedding efficiency 𝑊(𝑘): 

 

𝑊(𝑘) =
𝑅(𝑘)

𝐷(𝑘)
=

2𝑘

2𝑘 − 1
⋅ 𝑘 

 
(1.3) 

 

The embedding efficiency of the (1, 𝑛, 𝑘) code is always larger than 𝑘. 

 

1.3.3 HUGO Embedding Algorithm 

Pevný et al. [19] presented the highly-undetectable steganography (HUGO) for digital 

media, which learned from the technique, known as steganalysis technique, known as 

SPAM [27]. Because SPAM uses further higher statistics, however, it leads to high 

dimensionality, which is hard to possess for steganalysis.  

The main design process is to minimize a suitably-defined distortion by means of 

efficient coding algorithm. The distortion is defined as a weighted difference of extended 

state-of-the-art feature vectors already used in steganalysis. This allows them to ‘preserve’ 

the model used by steganalysis and thus be undetectable even for large payloads. What’s 

more, the high dimensional model is necessary to avoid known security weaknesses which 
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is acceptable in this technique.  

As same as SPAM, HUGO algorithm uses second order Markov Process. 

 

𝑫𝑖,𝑗⃗⃗⃗⃗ = 𝑰𝑖,𝑗 + 𝑰𝑖,𝑗+1  (1.4) 

 

where 𝐷 is the difference array, which is for horizontal left to right, 𝐼 is an image.  

 

𝑴𝑑1,𝑑2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = Pr (𝑫𝑖,𝑗+1⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑑1, 𝑫𝑖,𝑗⃗⃗⃗⃗ = 𝑑2)  (1.5) 

 

And the second-order Markov process is used, 

 

𝑴𝑑1,𝑑2,𝑑3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = Pr (𝑫𝑖,𝑗+2⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑑1|𝑫𝑖,𝑗+1⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑑2, 𝑫𝑖,𝑗⃗⃗⃗⃗ = 𝑑3)  (1.6) 

 

It is known that, the 2nd order Markov process is equivalent to the 3rd order co-

occurrence, under certain condition, which can be satisfied. 

 

𝑪𝑑1,𝑑2,𝑑3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = Pr (𝑫𝑖,𝑗+2⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑑1, 𝑫𝑖,𝑗+1⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑑2, 𝑫𝑖,𝑗⃗⃗⃗⃗ = 𝑑3)  (1.7) 
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Figure 1.3 shows the individual steps of the HUGO algorithm. 

 

Figure 1.3 High-level diagram of HUGO. 

 

Source: Tomáš Pevný, Tomáš Filler, Patrick Bas, “Using high-dimensional image models to perform highly 

undetectable steganography,” Information Hiding. Springer, Heidelberg, 2010, pp. 161-177. 

 

The accuracy is evaluated by examine the minimal average decision error equal of 

cover and stego images: 

 

𝑃𝐸 = min
1

2
(𝑃𝐹𝑃 + 𝑃𝐹𝑛)  (1.5) 

 

where 𝑃𝐹𝑃  and 𝑃𝐹𝑛  stand for the probability of false alarm and probability of missed 

detection. The additive distortion measure: 

 

𝐷(𝑋, 𝑌) =∑𝜌𝑖|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 
 

(1.6) 

 

where the constants 0 ≤ 𝜌𝑖 ≤ ∞ are fixed parameters expressing cost of pixel changes. 

Cover 
Medium

Distortion 
Computation

Coding
Model 

correction
Stego

Medium

High Dimensional Model 
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In order to stress those parts of the co-occurrence matrices that are more important for 

steganalysis, the Equation 1.7 is defined as a weighted sum of differences. 

 

𝐷(𝑋, 𝑌) = ∑ [𝑤(𝑑1, 𝑑2, 𝑑3) | ∑ 𝐶𝑑1𝑑2𝑑3
𝑋,𝑘 − 𝐶𝑑1𝑑2𝑑3

𝑌,𝑘

𝑘∈{→,←,↑,↓}

|

𝑇

𝑑1,𝑑2,𝑑3=−𝑇

+ 𝑤(𝑑1, 𝑑2, 𝑑3) | ∑ 𝐶𝑑1,𝑑2,𝑑3
𝑋,𝑘 − 𝐶𝑑1,𝑑2,𝑑3

𝑌,𝑘

𝑘∈{↘,↖,↙,↗}

|] 

(1.7) 

 

where 𝑤(𝑑1, 𝑑2, 𝑑3) is a weight function: 

 

𝑤(𝑑1, 𝑑2, 𝑑3) =
1

[√𝑑1
2 + 𝑑2

2 + 𝑑3
2 + 𝜎]

𝛾  (1.8) 

 

where 𝜎, 𝛾 > 0 are parameters that can be tuned in order to minimize the detectability. 

Pevný et al. derived the algorithm to hide the message into the image parts so that 

it is difficult to be detected. The HUGO embedding algorithm is shown in Figure 1.4. 
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Figure 1.4 Code of the HUGO embedding algorithm. 

 

Source: Tomáš Pevný, Tomáš Filler, Patrick Bas, “Using high-dimensional image models to perform highly 

undetectable steganography,” Information Hiding. Springer, Heidelberg, 2010, pp. 161-177. 

 

The security of HUGO has been verified and compared to the prior art on a wide 

range of payloads in their experiments. When the fixed classification error 𝑃𝐸 is 40% of 

SVM-based [32] in 2nd-order SPAM, the HUGO increases the secure payload from 0.25 

bpp to 0.4 bpp. In contrast with the LSB matching, when 𝑃𝐸 = 40% on BOWS dataset, 

HUGO allows the embedder to hide 7 times longer message with the same security. 
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CHAPTER 2 

STEGANALYSIS METHODS 

 

There are two categories in steganalysis: specific and universal. Specific steganalysis direct 

at particular image features, which are modified by the specific embedding algorithm. A 

steganalysis technique would perform well when tested only on that method and might fail 

on all others. Some specific steganalysis methods are even be able to estimate the length 

of hidden message. Unlike specific steganalysis concerting on a specific steganalysis 

techniques, the universal techniques try to identify the all of steganography algorithms. 

Hence, the general steganalysis methods are more flexible and practical. Universal 

techniques are, however, sometimes cannot detect the targeted embedding algorithms more 

effectively than the specific method designed for breaking the steganographic method. In 

this Chapter, six kinds of classic steganalysis schemes are presented according to their 

publication time. The effective features for steganalysis should be able to catch the changes 

incurred by data hiding. 

 

2.1 Chi-Square Attack 

2.1.1 Concept 

This method is specific to LSB embedding based on powerful first order statistical analysis 

rather than visual inspection. LSB embedding overwrite least significant bits transforms 

values into each other. [1] 
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Figures 2.1 and 2.2 show that the total number of occurrence of two members of 

certain pairs of values (PoV) remains same after message embedding. This concept of pair 

wise dependencies is exploited to design a statistical Chi-square test to detect the hidden 

messages. 

 

Figure 2.1 The color histogram before embedding. 

 

Figure 2.2 The color histogram after embedding. 

 

Source: Andreas Westfeld, Andreas Pfitzmann, “Attacks on steganographic systems, in: Proc. of Information 

Hiding,” 3rd Int. Workshop, Dresden, Germany, September 28–October 1, 1999, pp. 61–75. 
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A critical point is how to obtain the theoretically expected frequency distribution. 

In the original, the theoretically expected frequency is the arithmetic mean of the two 

frequencies in a PoV. Since swapping one value into another does not change the sum of 

occurrences of both values in each pair, the arithmetic mean of the two frequencies for each 

pair is the same in both cover and stego image. 

 

2.1.2 Implement 

This test performs the following steps: 

A. Supposing there are k categories and we have a random sample of observations. Each 

observation must fall in only one category. Without restricting, we concentrate on the 

odd values of PoVs of the attacked carrier medium. For example, for a palette image 

with 256 color, which means most 128 PoVs and k=128. 

B. The theoretically expected frequency in category 𝑖  after embedding an equally 

distributed message is 

 

𝑛𝑖
∗ =

|{𝑐𝑜𝑙𝑜𝑟|𝑠𝑜𝑟𝑡𝑒𝑑 𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 (𝑐𝑜𝑙𝑜𝑟) ∈ {2𝑖, 2𝑖 + 1} }|

2
  (2.1) 

 

C. The measured frequency of occurrence in random sample is 

 

𝑛𝑖 = {𝑐𝑜𝑙𝑜𝑟|𝑠𝑜𝑟𝑡𝑒𝑑 𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 (𝑐𝑜𝑙𝑜𝑟) ∈ {2𝑖, 2𝑖 + 1} }  (2.2) 
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D. The 𝜒2 statistic is given as: 

 

𝜒𝑘−1
2 =∑

(𝑛𝑖 − 𝑛𝑖
′)2

𝑛𝑖
′

𝑘

𝑖=1

 
 (2.3) 

 

with 𝑘 − 1 degrees of freedom. 

E. 𝑝 is the probability of the statistic with the distributions of 𝑛𝑖  and 𝑛′𝑖  which are 

equal. It is calculated by integration of the density function: 

 

𝑝 = 1 −
1

2
𝑘−1
2 Γ (

𝑘 − 1
2 )

∫ 𝑒−
𝑥
2𝑥

𝑘−1
2
−1𝑑𝑥

𝜒𝑘−1
2

0

  (2.4) 

 

 

Figure 2.3 Probability of embedding with EzStego in the flooring tile image. 

 

Source: Andreas Westfeld, Andreas Pfitzmann, “Attacks on steganographic systems, in: Proc. of Information 

Hiding,” 3rd Third Int. Workshop, Dresden, Germany, September 28–October 1, 1999, pp. 61–75. 
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2.1.3 Accuracy 

The diagram in Figure 2.3 presents the 𝑝-value of the Chi-square test as a function of an 

increasing sample. This p-value is roughly the probability of embedding. Initially, the 

sample comprises 1 % of the pixels, starting from the upper border. For this sample, 𝑝 =

 0.8826. The 𝑝-value increase to 0.9809 when the next sample comprises an additional 2 % 

of the pixels. As long as the sample comprises pixels of the upper half only, in which has 

been embedded, the p-value does not drop below 0.77. The pixels of the lower half of the 

picture are unchanged, because the message to be embedded was not such long. 

 

2.2 Raw Quick Pair 

2.2.1 Introduction 

Fridrich et al. [7] introduced a powerful steganalytic technique that enables us to reliably 

detect the presence of a pseudo-random binary message randomly spread in a color image 

based on analyzing close pairs of colors created by LSB embedding. They estimated the 

probability of both false detections and missing a secret message. 

Writers had observed that the number of unique colors for true-color images is 

significantly smaller than the number of pixels in an image. The ratio of the number of 

unique colors to the number of pixels from 1/2 for high quality scans to 1/6 or even lower 

for JPEG images.  

This observation is very important because it means that many true-color images 

have a relatively small "palette". After LSB embedding, the new color palette will have a 
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very distinct feature. 

 

2.2.2 Encoding 

They proposed to test the presence of messages in true-color images using the 

following idea: 

1. To find out whether or not an image has a secret message in it, calculate the ratio 

R between the number of all pairs of close colors P and the number of all color 

pairs (recall that U is the number of unique colors in the image): 

 

R =
𝑃

(
𝑈
2
)
  (2.5) 

 

2. Using LSB embedding in randomly selected pixels (and channels for color M×

N images), embed a test message of the size 𝛼3𝑀𝑁 bits. Smaller values of 𝛼 

will lead to faster techniques. 

 

3. Denoting the corresponding quantities for the new image after embedding the 

test message as 𝑈′ and 𝑃′, and calculate the ratio 𝑅′ for the new image with 

the test message. 

 

R =
𝑃′

(𝑈′
2
)
  (2.6) 

 

Obviously, if the secret message size is too small, the two ratios will be very close 

to each other and as a result we will not be able to distinguish images whether embedded 
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with messages or not. 

Fridrich et al. ran the detection algorithm for both databases and tested the message 

presence by embedding a test message of size 𝛼 ≅  1/30. As a result, the values of 𝑅/𝑅′ 

were obtained for both databases. The results are shown in Figure 2.4. If the image has 

already had a large message hidden inside, those two ratios will be almost the same, if the 

image did not steganography it, we expect 𝑅′ > 𝑅. 

The dashed curve corresponds to the database of images with messages and the 

solid curve corresponds to the original database without messages, both after embedding 

the 1kB test message. To separate the two curves, we choose the threshold 𝑇ℎ as 1.1. 

It is difference that enables to distinguish between cover images and stego images 

for the case of LSB steganography. The method works reliably well as long as the number 

of unique colors in the cover image is less than 30% of the number of pixels.  

As reported, the method has higher detection rate than the method given by 

Westfeld [1], which is mentioned at Section 2.1. And it is possible to reliably detect the 

presence of secret message embedded in digital images using the LSB technique. The 

reliability of the detection method increases with decreasing number of unique colors in 

the original image. From the result, they had to notice that some high-quality scans stored 

losslessly may have a very high number of unique colors and the results of the detection 

technique may become unreliable. 
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Figure 2.4 The ratio R'/R for 300 images. The thin dashed curve corresponds to images 

with an embedded message of length equal to 2/3 of the total available number of LSBs 

(3MN). The bold solid curve corresponds to images without any embedded messages.  

 

Source: Jessica Fridrich, Rui Du and Long Meng, “Steganalysis of LSB Encoding in Color Images,” ICME 

2000, New York City, July 31-August 2, New York, USA. 

 

 

2.3 RS Analysis 

A more sophisticated technique Regular and Singular group (RS) steganalysis is presented 

by Fridrich for detection of LSB embedding in color and grayscale images in 2001 [8]. 

This method originated by analyzing the capacity for lossless data embedding in the LSBs. 

 

2.3.1 Implement 

Firstly, the image is divided into disjoint groups of fixed shape. Within each group 

noise is measured by the mean absolute value of the differences between adjacent pixels. 

Each group is classified as regular or singular depending on whether the pixel noise within 



 

23 

the group is increased or after flipping the LSBs using a mask. 

Assuming the cover image with 𝑀 ×𝑁 pixels and its pixel values from the set P. 

For example, for an 8-bit grayscale image,  𝑃 =  {0, … , 255} , with 𝑛  adjacent pixels 

 (𝑥1, … , 𝑥𝑛).  

To capture the spatial correlation, a discrimination function 𝑓 is defined as the 

mean absolute value of the differences between adjacent pixels. 

 

𝑓(𝑥1, … , 𝑥𝑛) = ∑|𝑥𝑖+1 − 𝑥𝑖|

𝑛−1

𝑖=1

 
 (2.7) 

 

Then, writers defined an invertible operation 𝐹 on 𝑃 called flipping. Flipping 

will be a permutation of gray levels that entirely consists of 2-cycles. Thus, 𝐹 will have 

the property that 𝐹2  =  𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 or 𝐹(𝐹(𝑥))  =  𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑃. 

 

𝐹1: 0 ↔  1, 2 ↔  3, … , 254 ↔  255𝑓(𝑥1, … , 𝑥𝑛) = ∑|𝑥𝑖+1 − 𝑥𝑖|

𝑛−1

𝑖=1

 
 (2.8) 

 

𝐹−1 : − 1 ↔  0, 1 ↔  2, 3 ↔  4, … , 253 ↔  254, 255 ↔  256  (2.9) 

 

𝐹0: 𝐹0(𝑥) = 𝑥  (2.10) 

 

the discrimination function 𝑓 and the flipping operation 𝐹 to define three types of pixel 
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groups: 𝑅, S and 𝑈 

 

Regular groups: 𝐺 ∈  𝑅 ⇔  𝑓(𝐹(𝐺))  >  𝑓(𝐺) 

 

Singular groups: 𝐺 ∈  𝑆 ⇔  𝑓(𝐹(𝐺))  <  𝑓(𝐺) 

 

Unusable groups: 𝐺 ∈  𝑈 ⇔  𝑓(𝐹(𝐺))  =  𝑓(𝐺). 

 

From the expressions above, 𝐹(𝐺)  means that the flipping function 𝐹  were 

applied to the components of the vector 𝐺 = (𝑥1, . . . , 𝑥𝑛) 

Fridrich defined the flipped group 𝐹(𝐺) = (𝐹𝑀(1)(𝑥1), 𝐹𝑀(2)(𝑥2), … , 𝐹𝑀(𝑛)(𝑥𝑛)), 

where 𝑀(𝑖), 𝑖 = 1,2, … , 𝑛 is the element of mask 𝑀 which takes on the values -1, 0 and 

1. The purpose of the flipping 𝐹 is perturbing the pixel values in an invertible way by 

some small amount thus simulating the act of invertible noise adding. 

Since the LSB flipping simulates the act of adding pixel noise, it more frequently 

results in an increase in the value of the discrimination function 𝑓 rahter than a decrease. 

Thus the total number of the regular groups will be larger than that of singular groups. Let 

𝑅𝑀 and 𝑆𝑀 be the realtive number of regular groups and singular groups. the expected 

value of 𝑅𝑀 is equal to that of 𝑅−𝑀, and the same is true for 𝑆𝑀 and 𝑆−𝑀 :  

 

𝑅𝑀  ≅  𝑅−𝑀 𝑎𝑛𝑑 𝑆𝑀  ≅ 𝑆−𝑀  (2.11) 
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The same for the relationship between 𝑆+𝑀 and 𝑆−𝑀. Randomization of the LSB 

plane forces the difference between RM and SM to zero as the length m of the embedded 

message increases. After flipping the LSB of 50% of pixels, 𝑅𝑀  ≅  𝑆𝑀 can be obtained. 

Here is a simple explanation for the peculiar increase in the difference between 

𝑅−𝑀 and 𝑆−𝑀 for the mask 𝑀 = [0 1 1 0]. Writers defined sets 𝐶𝑖  =  {2𝑖, 2𝑖 + 1}, 𝑖 =

0, … , 127, and cliques of groups 𝐶𝑟𝑠𝑡  =  {𝐺 | 𝐺 ∈ 𝐶𝑟 × 𝐶𝑠 × 𝐶𝑡}. There are 1283 cliques, 

each clique consisting of 8 groups. Figure 2.5 demostrates 𝑅𝑀, 𝑆𝑀 as functions of the 

number of pixels with flipped LSBs.  

 

 

Figure 2.5 RS-diagram of an image taken by a digital camera. The x-axis is the percentage 

of pixels with flipped LSBs, the yaxis is the relative number of regular and singular groups 

with masks M and −M, M=[0 1 1 0]. 

 

Source: Jessica Fridrich, Miroslav Goljan, Rui Du, “Detecting LSB steganography in color and gray-scale 

images,” IEEE Multimedia Magaz., Special Issue on Security 22–28, 2001. 

The general shape of the four curves in the diagram varies with the cover-image 
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from almost perfectly linear to curved. They had collected experimental evidence that the 

𝑅−𝑀  and 𝑆−𝑀  curves are well modeled with straight lines, while second-degree 

polynomialscan approximate the inner curves 𝑅𝑀 and 𝑆𝑀 reasonably well. 

By flipping the LSBs of all pixels in the image and calculating the number of 𝑅 

and 𝑆  groups, the four points 𝑅𝑀(1 − 𝑝/2), 𝑆𝑀(1 − 𝑝/2), 𝑅−𝑀(1 − 𝑝/2),  and 

𝑆−𝑀(1 − 𝑝/2)can be calculated. The midldle points 𝑅𝑀(1/2)  and 𝑆𝑀(1/2)  will be 

obtained by randomizing the LSB plane of the stego image.  

In this way, Fridrich fitted straight linesthrough the points 𝑅−𝑀(𝑝/2), 𝑅−𝑀(1 −

𝑝/2)  and 𝑆−𝑀(𝑝/2) , 𝑆−𝑀(1 − 𝑝/2). The points 𝑅𝑀(𝑝/2), 𝑅𝑀(1/2), 𝑅𝑀(1 − 𝑝/2) 

and 𝑆𝑀(𝑝/2), 𝑆𝑀(1/2) and 𝑆𝑀(1 − 𝑝/2) determin two parabolas. Each parabola and a 

corresponding line intersect to the left. 

To estimation of the middle points by accepting two more assumptions: 

1. The point of intersection of the curves 𝑅𝑀  and 𝑅−𝑀  has the same 𝑥 

coordinate as the point of intersection for the curves 𝑆𝑀 and 𝑆−𝑀  

2. The curves 𝑅𝑀 and 𝑆𝑀 intersect at 𝑚 = 50%, or 𝑅𝑀(1/2)  =  𝑆𝑀(1/2). 

This assumption is like saying that the lossless embedding capacity for a 

randomized LSB plane is zero. 

Rescaling the x axis so that 𝑝/2 becomes 0 and 100 − 𝑝/2 becomes 1, the x-

coordinate of the intersection point is a root of the following quadratic equation 

 

2(𝑑1 + 𝑑0) 𝑥
2 + (𝑑−0 − 𝑑−1 − 𝑑1 − 3𝑑0) 𝑥 + 𝑑0 − 𝑑−0 = 0  (2.12) 
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where 𝑑0 = 𝑅𝑀(𝑝/2) − 𝑆𝑀(𝑝/2), 𝑑1 = 𝑅𝑀(1 − 𝑝/2) − 𝑆𝑀(1 − 𝑝/2), 𝑑−0 = 𝑅−𝑀(𝑝/

2) − 𝑆−𝑀(𝑝/2) , 𝑑−1 = 𝑅−𝑀(1 − 𝑝/2) − 𝑆−𝑀(1 − 𝑝/2). 

The message lenth 𝑝 from the root 𝑥 whose absolte value is smaller by  

 

𝑝 = 𝑥/(𝑥 − 1/2)  (2.13) 

 

 

2.3.2 Accuracy 

Writers used equations above to estimate the size of the secret message which is embedded 

in the stego-image. Under certain assumptions the amount of embedded message could be 

accurately determined if the numbers of regular and singular groups are given. 

The initial non-zero bias could be both positive and negative and it puts a limit on 

the theoretical accuracy of their steganalytic method. Smaller images tend to have higher 

variation in the initial bias because of the smaller number of R and S groups. Generally, 

color images exhibit larger variation in the initial bias than grayscales. 

Writes used a small image with a short message. The test image was a scanned 

color photograph 422 × 296 and the message was a random bit sequence with 375 kb or 

20% of the image full capacity (100% = 3bits per pixel). Since the initial bias is about 2.5% 

in each color channel the expected detected percentage of flipped pixels would be about 

12.25%. 
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Table 2.1  Initial Bias and Estimated Number of Pixels with Flipped LSBs. 

Imgae Red(%) Green(%) Blue(%) 

Cover Image 2.5(0.0) 2.4(0.0) 2.6(0.0) 

Steganos 10.6(9.8) 13.3(9.9) 12.4(9.8) 

S-Tools 13.4(10.2) 11.4(10.2) 10.3(10.2) 

Hide4PGP 12.9(10.0) 13.8(10.1) 13.0(10.0) 

 

Source: Jessica Fridrich, Miroslav Goljan, Rui Du, “Detecting LSB steganography in color and gray-scale 

images,” IEEE Multimedia Magaz., Special Issue on Security 22–28, 2001. 

 

The RS steganalysis is more accurate for messages that are randomly scattered in 

the stegoimage than for messages concentrated in a localized area of the image. To address 

this issue, we can apply the same algorithm to a sliding rectangular region of the image. 

The experimental results obtained by RS steganalysis also provide a new estimate 

on safe size of secret messages embedded using LSB embedding. For high quality images 

from scanners and digital cameras, we estimate that messages requiring less than 0.005 bits 

per pixel are undetectable using RS Steganalysis. Higher bit rates are in the range of 

detectability using RS Steganalysis. 
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2.4 Histogram Attack 

2.4.1 Attacking J-Steg 

Yu et al. [14] propsosed a method of detecting secret message and estimating the secret 

message length of bitstreams embedded using J-Steg [1]. Firstly, the histogram of cover 

image is estimated from stego image, based on the model of statistical distribution of 

quantized DCT coefficients. Then the secret message is detected and the secret message 

length is estimated with the estimated cover histogram.  

Let 𝑥 denote an instance of a class of potential carrier media, such as pixel values 

or quantized DCT coefficients of an image. If 𝑥 is treated as an instance of a random 

variable 𝑋, which can be discribed the probability distribution 𝑃𝑋(𝑥) . 

In order to detect whether there is a hidden message embedded or not. The detection 

is to perform a hypothesis test to find out whether the instance x obey the probability 

distribution 𝑃𝑋(𝑥) . In order to get the length of unknown meassage, Yu and Wnag 

calculated the equation 𝑆(𝑚) = 𝑆𝑠𝑡𝑒𝑔𝑜 for 𝑚, where 𝑆(𝑚) is the macroscopic quantity, 

𝑆𝑠𝑡𝑒𝑔𝑜 is the value of 𝑆 for the stego image under investigation. In general, the function 

𝑆  has several undetermined parameters which can be determined by estimating some 

extreme values of S, such as 𝑆(0). To get 𝑆(0), the principle by four pixels were applied 

to estimate the length of hidden message. 

In the JPEG compression standard, images are divided into 8 × 8 blocks. Each 

block is passed through a Discrete Cosine Transform (DCT) to produce 64 DCT 

coefficients and then the coefficients are quantized according to a quantization table and 
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encoded using an entropy encoder. These coefficients are called AC coefficients. The 

Laplacian distribution 

 

𝑝(𝑥) =
𝜆

2
𝑒−𝜆|𝑥|  (2.14) 

 

A generalized Laplacian can still be used to fit the resulting histogram with integer 

width bins. 

 

𝑝(𝑥) =
𝑝 − 1

2𝑠
(|
𝑥

𝑠
| − 1)

−𝑝

  (2.15) 

 

There is a closed form solution for the cumulative density function which makes it 

easy to integrate the model density for individual histogram bins.When taking into account 

amore accurate estimation of the quantization effects, one would find this distribution 

appears to fit DCT coefficients better than the generalized Laplacian/Gaussian. 

Let 𝐻(𝑑) be the histogram of cover image after embedding m pseudorandom bits 

in the LSBs, the histograms 𝐻(𝑑) and ℎ(𝑑) will have relations as follow equations. 

 

𝐻(0)  =  ℎ(0), 𝐻(1)  =  ℎ(1)  (2.16) 

 

𝐻(2𝑖)  =  ℎ(2𝑖)  − 𝛼 [ℎ(2𝑖)  −  ℎ(2𝑖 + 1)]  (2.17) 
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𝐻(2𝑖 + 1)  =  ℎ(2𝑖 + 1)  + 𝛼 [ℎ(2𝑖)  −  ℎ(2𝑖 + 1)]  (2.18) 

 

where 𝑖 = ±1, ±2,…, α =
𝑚

2∑ 𝐻(𝑖)𝑖≠0,𝑖≠1
, Let 𝐻𝛼  (𝑖)  =  𝐻(2𝑖)  +  𝐻(2𝑖 + 1). 𝐻𝛼(𝑖)  =

 𝐻(2𝑖)  +  𝐻(2𝑖 + 1) .  

Once the model is fit to the histograms for a stego image, it is used to estimate the 

histogram of the cover image. Let ℎ̂(𝑑) be the estimated histogram of cover image. 

 

ℎ̂(0) = 𝐻(0),  ℎ̂(1) = 𝐻(1)  (2.19) 

 

ℎ̂(0) = 𝐻(0),  ℎ̂(1) = 𝐻(1)  (2.20) 

 

ℎ̂(2𝑖 + 1) = 𝐻𝛼(𝑖)
𝑃(2𝑖 + 1)

𝑃𝛼(𝑖)
  (2.21) 

 

where 𝑃𝛼(𝑖) = ∫ 𝑝(𝑥)𝑑𝑥
2𝑖+1.5

2𝑖−0.5
. 

Figure 2.6 shows the original coefficient histogram of an image and the estimated 

histogram after message embedding. The coefficients are all AC coefficients. It can be seen 

from the figure that we can almost exactly estimate the histogram of cover image from a 

stego image. 

 



 

32 

 

Figure 2.6 Comparsion of coefficient histograms between original and stego. 

 

Source: Xiaoyi Yu, Yunhong Wang, Tieniu Tan, “On Estimation of Secret Message Length in JSteg-like 

Steganography,” ICPR 2004. Proceedings of the 17th International Conference on Vol. 4 DOI: 

10.1109/ICPR.2004.1333862 

 

Since Yu, Wang and Tan estimated the histogram of the cover image, the detection 

of hidden message and estimation of hidden message length becomes easy. The detection 

is determined by using the Chi-square test.  

The χ2  statistic is given as χ2 = ∑
(ℎ̂(𝑖)−𝐻(𝑖))

2

ℎ̂(𝑖)

±𝑘
𝑖=±1  with 2𝑘 − 1  degree of 

freedom. Writers can perform Chi-square test at significance level 𝛼 and 2𝑘 − 1 degree 

of freedom to decide whether a suspect images contains secret message or not. 

By calculating 𝛼 the following equation, which is derived from Equtation 2.19-

2.21, is used. 
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𝛼 = arg𝑚𝑖𝑛 ∑(𝐻(2𝑖) − (1 − 𝛼)ℎ̂(2𝑖) − 𝛼ℎ̂(2𝑖 + 1))
2

±𝑘

𝑖=±1

 
 

(2.22) 

 

𝛼 =
∑ (𝐻(2𝑖) − ℎ̂(2𝑖))(ℎ̂(2𝑖) − ℎ̂(2𝑖 + 1))±𝑘
𝑖=±1

∑ (ℎ̂(2𝑖) − ℎ̂(2𝑖 + 1))
2±𝑘

𝑖=±1

 
 

(2.23) 

 

where 𝑘 is the maximum quantized DCT AC coefficient. Thus the length of unknown 

message can be calculated as 

 

𝑀 = 2𝛼 ∑ 𝐻(𝑖)

𝑖≠0,𝑖≠1

  
(2.24) 

 

from the experiment result this estimation is more accurate than Fridrichs cropping method. 

 

2.4.2 Attacking F5 

The F5 steganographic algorithm was introduced by Westfel in 2002 [20]. Fridrich and 

Goljan divided thier attack into two separate parts: 

(1) Finding distinguishing statistical quantities 𝑇 that correlate with the number of 

modified coefficients. 

(2) Determining the baseline values of the statistics 𝑇. 

When anaylzing the changes in the histogram by F5 Algorithm, Let ℎ(𝑑), 𝑑 =
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 0, 1, … be the total number of AC coefficients in the cover-image with absolute value equal 

to d after the image has been compressed inside the F5 algorithm. Set ℎ𝑘𝑙(𝑑) as the total 

number of AC DCT coefficients corresponding the frequency (𝑘, 𝑙),The corresponding 

histogram values for the stego-image will be denoted using the capital letters 𝐻 and 𝐻𝑘,𝑙. 

If there are totally 𝑛  non-zero AC coefficients to be modified during the 

embedding process, the number of relative modification od DCT coefficients would be 

𝛽 = 𝑛/𝑃, where 𝑃 = ℎ(1) + ℎ(2) + ⋯ . The expected valuse of the histogram of stego-

image are: 

 

𝐻𝑘𝑙(𝑑) = {
(1 − 𝛽)ℎ𝑘𝑙(𝑑) + 𝛽ℎ𝑘𝑙(𝑑 + 1) 𝑓𝑜𝑟 𝑑 > 0

ℎ𝑘𝑙(0) + 𝛽ℎ𝑘𝑙(1) 𝑓𝑜𝑟 𝑑 = 0
  (2.25) 

 

Because the first two values in the histogram (𝑑 = 0 and 𝑑 = 1) experience the 

largest change during embeddin, 𝛽 is the value that minimizes the square error between 

the stego-image histogram 𝐻𝑘𝑙 , and the expected values 𝐻𝑘𝑙(𝑑) calculated from the 

estimated histogram ℎ̂𝑘𝑙: 

 

𝛽𝑘𝑙 = arg𝑚𝑖𝑛[𝐻𝑘𝑙(0) − ℎ̂𝑘𝑙(0) − 𝛽ℎ̂𝑘𝑙(1)]
2

+ [𝐻𝑘𝑙(1) − (1 − 𝛽)ℎ̂𝑘𝑙(1) − 𝛽ℎ̂𝑘𝑙(2)]
2
 

(2.26) 

 

The least square approximation leads to the following formula: 
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𝛽𝑘𝑙 =
ℎ̂𝑘𝑙(1)[𝐻𝑘𝑙(0) − ℎ̂𝑘𝑙(0)] + [𝐻𝑘𝑙(1) − ℎ̂𝑘𝑙(1)][ℎ̂𝑘𝑙(2) − ℎ̂𝑘𝑙(1)]

ℎ̂𝑘𝑙
2 (1) + [ℎ̂𝑘𝑙(2) − ℎ̂𝑘𝑙(1)]

2  
  

(2.27) 

 

where the final value of the parameter 𝛽 is calculated as an average over selected low 

frequency DCT coefficients (𝑘, 𝑙)  ∈ {(1,2), (2,1), (2,2)}. 

According to their experiments, the estimated histogram is quite close to the 

histogram of the original image. We provide a simple heuristic explanation of why the 

method for obtaining the baseline histogram values is indeed plausible.  

 

 

Figure 2.7 Effect of F5 on the histogram of DCT coefficient(2,1). 

 

Source: Jessica Fridrich, Miroslav Goljan, Dorin Hogea, “Steganalysis of JPEG Images: Breaking the F5 

Algorithm,” 5th Information Hiding Workshop, Noordwijkerhout, The Netherlands, 7-9 October 2002, pp. 

310-323. 
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In fact, unless the quality factor of the JPEG compression is too low (e.g., lower 

than 60), the stegoimage produced by F5 is still very close to the cover-image both visually 

and using measures, such as the PSNR. The spatial shift by 4 pixels effectively breaks the 

structure of quantized DCT coefficients and subsequent low-pass filtering helps to reduce 

any spurious frequencies due to discontinuities at block boundaries. Thus, it is not 

surprising that the statistical properties of DCT coefficients are similar to those of the 

cover-image. 

Figure 2.7 shows a typical example of how good the histogram estimate is when 

compared to the histogram of the original image. The graph illustrates the original 

histogram values ℎ21(𝑑) (crosses), histogram values after applying the F5 algorithm with 

maximal possible message, or 𝛽 =  0.5 (stars), and the estimate of the original histogram 

(circles). It is found that the largest change in histogram values occur in the first two 

values(𝑑 = 0 and 𝑑 = 1). 

Once the raltive number of changes 𝛽 has been determined, the stego image can 

be distinguished from the cover image. 

 

2.5 Markov Model 

2.5.1 1st Order Markov Features 

In this thenique, steganalysis is considered as a task of two-class pattern recognition. [21] 

Firstly, Shi et al. choose to work on difference JPEG 2-D arrays formed from the 

magnitudes of JPEG quantized block DCT coefficients. Those four direction difference 
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JPEG 2-D arrays are used to enhance changes caused by JPEG steganography. Then 

markov process is applied to modeling these arrays. In addition to reduce the computation 

computational, a thresholding technique is developed. 

Denote the JPEG 2-D array generated from a given test image by 𝐹(𝑢, 𝑣), 𝑢 ∈

[1, 𝑆𝑢], 𝑣 ∈ [1, 𝑆𝑣],  where 𝑆𝑢 is the size of the JPEG 2-D array in horizontal direction 

and 𝑆𝑣 in vertical direction. Then, the difference arrays are generated by the following 

formulae: 

 

𝐹ℎ(𝑢, 𝑣) = 𝐹(𝑢, 𝑣) − 𝐹(𝑢 + 1, 𝑣)  (2.28) 

 

𝐹𝑣(𝑢, 𝑣) = 𝐹(𝑢, 𝑣) − 𝐹(𝑢, 𝑣 + 1)  (2.29) 

 

𝐹𝑑(𝑢, 𝑣) = 𝐹(𝑢, 𝑣) − 𝐹(𝑢 + 1, 𝑣 + 1)  (2.30) 

 

𝐹𝑚𝑑(𝑢, 𝑣) = 𝐹(𝑢 + 1, 𝑣) − 𝐹(𝑢, 𝑣 + 1)  (2.31) 
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Figure 2.8 The generation of four difference JPEG 2-D arrays. 

 

Source: Yun Q. Shi, Chunhua Chen, Wen Chen, “A Markov Process Based Approach to Effective Attacking 

JPEG Steganography”, 8th International Workshop, IH 2006, Alexandria, VA, USA, July 10-12, 2006, pp 

249-264. 
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Most of the difference values are close to zero. As their experimental works 

reported, an image set consisting of 7560 JPEG images with quality factors ranging from 

70 to 90 is used. The arithmetic average of the histograms of the horizontal difference JPEG 

2-D arrays generated from this JPEG image set and the histogram of the horizontal 

difference JPEG 2-D array generated from a randomly selected image from the set. 

It is observed that most elements in the horizontal difference JPEG 2-D arrays fall 

into the interval [-T, T] as long as T is large enough. The values of mean and standard 

deviation of percentage number of elements of horizontal difference JPEG 2-D arrays for 

the image set falling into [-T, T] when T = {1, 2, 3, 4, 5, 6, 7} are shown in Table 2.2. 

 

Table 2.2  Mean of Percentage Numbers of Elements of Horizontal Difference JPEG 2-

D Arrays Falling with [-T,T] 

 [-1,1] [-2,2] [-3,3] [-4,4]* [-5,5] [-6,6] [-7,7] 

Mean 84.72 88.58 90.66 91.99 92.92 93.60 94.12 

 

Source: Yun Q. Shi, Chunhua Chen, Wen Chen, “A Markov Process Based Approach to Effective Attacking 

JPEG Steganography,” 8th International Workshop, IH 2006, Alexandria, VA, USA, July 10-12, 2006, pp. 

249-264. 

 

Threshold value T means that only those elements in the difference JPEG 2-D 

arrays whose value falls into {−𝑇,−𝑇 + 1, … , −1, 0, 1, … , 𝑇 − 1, 𝑇} will be considered. 

If an element whose value is either larger than 𝑇 or smaller than –𝑇, it will be represented 

by 𝑇 or – 𝑇 correspondingly. This procedure results in a transition probability matrix of 
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dimensionality (2𝑇 + 1) × (2𝑇 + 1). 

In total, since they set T as 4, depending on their experimental works, 4 ×

(2𝑇 + 1) × (2𝑇 + 1) = 324 elements will be calculated. 

The feature construction procedure is summarized in Figure 2.9. 

 

Figure 2.9 The block diagram of the feature formation procedure. 

 

Source: Yun Q. Shi, Chunhua Chen, Wen Chen, “A Markov Process Based Approach to Effective Attacking 

JPEG Steganography,” 8th International Workshop, IH 2006, Alexandria, VA, USA, July 10-12, 2006, pp. 

249-264. 

 

Table 2.3  Performance Comparison 

 bpc Farid’s [37] Shi et al.‘s [38] Fridrich’s [39] 324D‘s 

F5 0.4 63.9 74.3 92.8 96.8 

MB1 0.5 59.4 77.1 84.8 99.1 

 

Source: Yun Q. Shi, Chunhua Chen, Wen Chen, “A Markov Process Based Approach to Effective Attacking 

JPEG Steganography,” 8th International Workshop, IH 2006, Alexandria, VA, USA, July 10-12, 2006, pp. 

249-264. 
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As a result, this steganalyzer beated out other competitors by more than 20% at bpc 

0.4 by F5 algrithm and got 99.1% in bpc 0.4 by MB1, all along nobody can achieve so high 

successful rate. 

 

2.5.2 Prediciton-Error in Non-JPEG Images 

A steganalysis method based on 2-D Markov chain of thresholded prediction-error 

image is proposed by Zou et al. in 2006 [16] – the same year 324D method was presented. 

The prediction errors are extracted from empirical transition matrices by a threshold 

technique: pixels are predicted by their neighboring pixels and the prediction-error image 

is generated by subtracting the prediction value from the pixel value and then through a 

predefined threshold. 

These features are evaluated with Support Vector Machines (SVM) [32]. SVM with 

both linear and non-linear kernels are used as classifier. The non-linear SVM performs 

much better than linear SVM for proposed higher-dimensional features. It has been 

reported by the author that the results are more effective than Fridrich‘s.  

Zou et al. [15] used neighboring pixels to predict the current pixel. The predictions 

are made in three directions: horizontal, vertical and diagonal since a digital image is 

actually a 2-D array. For each prediction the error can be obtained by subtracting the 

predicted pixel value from the original pixel value as following, 
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𝑒ℎ(𝑖, 𝑗) = 𝑥(𝑖 + 1, 𝑗) − 𝑥(𝑖, 𝑗)  (2.32) 

 

𝑒𝑣(𝑖, 𝑗) = 𝑥(𝑖, 𝑗 + 1) − 𝑥(𝑖, 𝑗)  (2.33) 

 

𝑒𝑑(𝑖, 𝑗) = 𝑥(𝑖 + 1, 𝑗 + 1) − 𝑥(𝑖, 𝑗)  (2.34) 

 

where 𝑒ℎ(𝑖, 𝑗) indicates the prediction error for pixel (𝑖, 𝑗) along horizontal direction 

while 𝑒𝑣(𝑖, 𝑗) and 𝑒𝑑(𝑖, 𝑗) is the prediction error for pixel (𝑖, 𝑗) on vertical and diagonal 

directions. 

A Markov chain is a random process that undergoes transitions from one state to 

another state space. It is required to possess a property called memoryless: the probability 

distribution of the next state only depends on the current state and not on the sequence of 

events that preceded it. 

A Markov chain is a sequence of random variables 𝑋1, 𝑋2, 𝑋3, … with the Markov 

proper, given the present state, the future and past states are independent. Formally, 

 

𝑃(𝑋𝑛+1 = 𝑥|𝑋1 = 𝑥1, 𝑋1 = 𝑥2, , … , 𝑋𝑛 = 𝑥𝑛, )

= 𝑃(𝑋𝑛+1 = 𝑥|𝑋𝑛 = 𝑥𝑛, ) 

 
(2.35) 

 

A stochastic matrix describes a Markov chain 𝑋𝑡 over a finite state space 𝑆. 

If the probability of moving from 𝑖 to 𝑗 in one time step is 𝑃(𝑗|𝑖) = 𝑃𝑖,𝑗 , the 

stochastic matrix P is given by using 𝑃𝑖,𝑗 as the 𝑖th row and 𝑗th column element, like: 
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𝑃 =

(

 
 

𝑝1,1 𝑝1,2 … 𝑝1,𝑗 …
𝑝2,1 𝑝2,2 … 𝑝2,𝑗 …

⋮
𝑝𝑖,1
⋮

⋮
𝑝𝑖,1
⋮

⋱
…
⋱

⋮
𝑝𝑖,𝑗
⋮

⋱
…
⋱)

 
 

 

 

(2.36) 

 

This matrix is a right stochastic matrix, so that ∑ 𝑃𝑖,𝑗 = 1𝑗 . 

The probability of transitioning from 𝑖 to 𝑗 in n steps is given by the (𝑖, 𝑗)th 

element of the square of 𝑃 described as: 

 

𝑃 = (𝑃𝑛)𝑖,𝑗  (2.37) 

 

A 2-D Markov chain model is applied to the thresholded prediction error images. 

Figure 2.10-2.12 display the transition model for horizontal, vertical and diagonal 

prediction error an image of size 8 by 8. The arrows represent the changing of state in 

Markov chain. And the elements of the transition matrices are served as features for 

steganalysis.  

  



 

44 

 

Figure 2.10 Transition model for prediction-error image 𝐸ℎ. 

 

Figure 2.11 Transition model for prediction-error image 𝐸𝑣. 

 

Figure 2.12 Transition model for prediction-error image 𝐸𝑑. 

 

Source: Dekun Zou, Yun Q. Shi, Wei Su, Guorong Xuan, “Steganalysis Based on Markov Model of 

Thresholded Prediction-error Image,” Multimedia and Expo, 2006 IEEE International Conference on DOI: 

10.1109/ICME.2006.262792 

 

Compared with Sullivan et al.’s [33] scheme, the detection rate of Markov Model 

of prediction-error is absolutely higher. When detecting LSB in 0.3 bpp with linear SVM, 

this technique obtains 92.92% accuracy. However, Sullivan et al.’s method gain 65.68%. 

The result displayed in Table 2.4 and Table 2.5 
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Table 2.4  Results of Two Steganalysis Method with Linear SVM 

Embedding Method Zou et al.’s Sullivan et al.’s 

Cox’s SS 80.58% 75.81% 

Piva’s SS 88.57% 76.34% 

LSB(0.1 bpp) 77.27% 53.73% 

LSB(0.2 bpp) 88.27% 60.15% 

LSB(0.3 bpp) 92.91% 65.68% 

 

Table 2.5  Results of Two Steganalysis Method with Non-Linear SVM 

Embedding Method Zou et al.’s Sullivan et al.’s 

Cox’s SS 89.15% 77.60% 

Piva’s SS 94.10% 77.58% 

LSB(0.1 bpp) 86.30% 49.82% 

LSB(0.2 bpp) 94.45% 61.13% 

LSB(0.3 bpp) 97.75% 68.98% 

 

Source: Dekun Zou, Yun Q. Shi, Wei Su, Guorong Xuan, “Steganalysis Based on Markov Model of 

Thresholded Prediction-error Image,” Multimedia and Expo, 2006 IEEE International Conference on DOI: 

10.1109/ICME.2006.262792 

 

2.5.3 Multi-Directional JPEG Attack 

Xuan et al. [31] also presented a scheme based on Markov process in 2007. They 
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modeled the 2-D JPEG coefficient array by using Markov model. There is three different 

scanning orders – zigzag, horizontal and vertical. Unlike single direction scanning, multi-

direction scanning can more effectively catch the change and thus provides better 

performance. 
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Figure 2.13 Zigzag scanning order. 
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Figure 2.14 Horizontal scanning order. 
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Figure 2.15 Vertical scanning order. 

 

Source: Guorong Xuan, Xia Cui ; Shi, Y.Q. ; Wen Chen ; Xuefeng Tong ; Cong Huang, “JPEG Steganalysis 

Based on Classwise Non-principal Components Analysis and Multi-directional Markov Model,” Multimedia 

and Expo, 2007 IEEE International Conference on, 2-5 July 2007, pp. 903-906, DOI:10.1109/ 

ICME.2007.4284797 

 

where the numbers 0, 1, …, 20 represent the sequence of the low-frequency coefficients.  
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In the JPEG 8 × 8  DCT blocks, most of high frequency coefficients after 

quantization are zero, whereas low frequency AC coefficients are often non-zero and 

utilized by JPEG steganography.  

Therefore, low frequency coefficients are scanned to generate three coefficient 

sequences, each consisting of the DC coefficient and the first twenty low-frequency AC 

coefficients.  

In 2-D Markov chain of thresholded prediction-error image, the distortions 

introduced by data hiding are usually small comparing to the presence of different objects. 

Otherwise, the distortion will raise alarm when inspected by human eyes. Therefore, a 

predefined threshold T is adopted and the prediction errors are adjusted according to the 

following rule. 

 

𝑒(𝑖, 𝑗) = {
𝑒(𝑖, 𝑗) |𝑒(𝑖, 𝑗)| < 𝑇

0 |𝑒(𝑖, 𝑗)| > 𝑇
 

 
(2.38) 

 

Large prediction errors are regarded as 0. At this point, the range of the prediction-

error image are limited to [−𝑇, 𝑇], which means only 2 × 𝑇 + 1 values left. 

Since the dynamic range of JPEG coefficient is large, the dimension of transition 

matrix is non-trivial. In order to reduce complexity, they also proposed that make a 

threshold to elements in the coefficient sequence with selecting value 𝑇. 
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Table 2.6  Percentage of AC Coefficients in [−𝑇, 𝑇] 

[−𝑇, 𝑇] [-5,5] [-6,6] [-7,7] [-8,8] [-9,9] 

Percentage 97.3 98.1 98.6 98.9 99.2 

 

Source: Guorong Xuan, Xia Cui ; Shi, Y.Q. ; Wen Chen ; Xuefeng Tong ; Cong Huang, “JPEG Steganalysis 

Based on Classwise Non-principal Components Analysis and Multi-directional Markov Model,” Multimedia 

and Expo, 2007 IEEE International Conference on, 2-5 July 2007, pp. 903-906, DOI:10.1109/ 

ICME.2007.4284797 

 

Table 2.6 shows that most JPEG coefficients are falling into the selected threshold 

arrange, indicating that the information loss is negligible for these threshold values. 

With the same quality factor, the length of embedded message is 0.04bpp. To 

evaluate the performance of the proposed approach, the 1096 BMP images with size of 

768x512 embedded with F5, MB1 and MB2, Xuan et al.  

Detection accuracy of Xuan et al.’s method is displayed in Table 2.7. 

 

Table 2.7  Detection Accuracy 

Payload Fridrich[39] Xuan et al. 

F5 87% 92% 

OG 97% 100% 

MB1 86% 97% 

MB2 84% 99% 

 

Source: Guorong Xuan, Xia Cui ; Shi, Y.Q. ; Wen Chen ; Xuefeng Tong ; Cong Huang, “JPEG Steganalysis 

Based on Classwise Non-principal Components Analysis and Multi-directional Markov Model,” Multimedia 

and Expo, 2007 IEEE International Conference on, 2-5 July 2007, pp. 903-906, DOI:10.1109/ 

ICME.2007.4284797 
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2.6 Co-occurrence Matrix 

2.6.1 Coefficient Difference Features 

In 2013, Li et al. [9] proposed scheme employs 15700 dimensional features calculated from 

the co-occurrence matrices of DCT. This algorithm is comprised of two parts: feature 

extraction and Bayesian ensemble classifier. In the first part, they calculated a high-

dimensional feature vector generated from each JPEG image in a training set which 

contains original and stego samples. In the second part, a group of sub-classifiers trained 

on those feature vectors is integrated to make optimized decisions for suspicious images 

by Bayesian mechanism [25]. 

The features extraction also include two parts: one part is generated from the 

coefficient co-occurrence matrices, which are proposed by Kodovsky et al. [18]. While 

another part is derived from the co-occurrence matrices of coefficient differences, both the 

coefficient features and the difference features will contribute to the steganalysis.  

Kodovsky et al. [18] designed 7850-dimensional features which extracted from the 

co-occurrence matrices of DCT coefficient pairs. Since both the intra-block and inter-block 

dependencies are represented by the features, the steganalysis method can effectively 

detect the hidden data in JPEG images. 

Li et al. defined the differences of adjacent coefficients along the horizontal, 

vertical, diagonal and minor diagonal directions: 
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𝑑𝑚,𝑛
(ℎ) (𝑢, 𝑣) = 𝑐𝑚,𝑛(𝑢, 𝑣) − 𝑐𝑚,𝑛(𝑢 + 1, 𝑣)  (2.39) 

 

𝑑𝑚,𝑛
(𝑣) (𝑢, 𝑣) = 𝑐𝑚,𝑛(𝑢, 𝑣) − 𝑐𝑚,𝑛(𝑢, 𝑣 + 1)  (2.40) 

 

𝑑𝑚,𝑛
(𝑑) (𝑢, 𝑣) = 𝑐𝑚,𝑛(𝑢, 𝑣) − 𝑐𝑚,𝑛(𝑢 + 1, 𝑣 + 1)  (2.41) 

 

𝑑𝑚,𝑛
(𝑚)(𝑢, 𝑣) = 𝑐𝑚,𝑛(𝑢 + 1, 𝑣) − 𝑐𝑚,𝑛(𝑢, 𝑣 + 1)  (2.42) 

 

In order to lower the complexity, they change values of DCT coefficient and values 

of DCT difference into [−𝑇, 𝑇]. 

 

𝑐𝑚̅,𝑛(𝑢, 𝑣) = {

𝑇, 𝑖𝑓 𝑐𝑚,𝑛(𝑢, 𝑣)  ≥ 𝑇

𝑐𝑚,𝑛(𝑢, 𝑣), 𝑖𝑓 − 𝑇 <  𝑐𝑚,𝑛(𝑢, 𝑣)  < 𝑇

−𝑇, 𝑖𝑓 𝑐𝑚,𝑛(𝑢, 𝑣)  ≤ 𝑇

 

 

(2.43) 

 

𝑑̅𝑚,𝑛
(𝑠)
(𝑢, 𝑣) =

{
 

 𝑇, 𝑖𝑓 𝑑𝑚,𝑛
(𝑠) (𝑢, 𝑣)  ≥ 𝑇

𝑑𝑚,𝑛
(𝑠) (𝑢, 𝑣), 𝑖𝑓 − 𝑇 < 𝑑𝑚,𝑛

(𝑠) (𝑢, 𝑣)  < 𝑇

−𝑇, 𝑖𝑓𝑑𝑚,𝑛
(𝑠) (𝑢, 𝑣)  ≤ 𝑇

 

 

(2.44) 

 

 [𝑐𝑚̅,𝑛(𝑢, 𝑣), 𝑐𝑚̅+△𝑚,,𝑛+△𝑛(𝑢 +△ 𝑢, 𝑣 +△ 𝑣)] and [𝑑̅𝑚,𝑛
(𝑠) (𝑢, 𝑣), 𝑑̅𝑚+△𝑚,𝑛+△𝑛

(𝑠) (𝑢 +△ 𝑢, 𝑣 +

△ 𝑣)] are the coefficient pair and difference pair for the index block (𝑚, 𝑛), coefficient 

position (𝑢, 𝑣) and offset (△ 𝑢,△ 𝑣,△ 𝑚,△ 𝑛). 

Li et al. calculated the co-occurrence matrices of both coefficient pairs and difference 
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pairs according to the same 157 patterns. Which implies each pattern corresponds to a co-

occurrence matrix, 

 

𝑪𝑢,𝒗,△𝑢,△𝑣,△𝑚,△𝑛(𝑥, 𝑦) =
1

𝑀 ⋅ 𝑁
∑∑𝛿[𝑐𝑚̅,𝑛(𝑢, 𝑣) = 𝑥, 𝑐𝑚̅+△𝑚,,𝑛+△𝑛(𝑢 +△ 𝑢, 𝑣 +△ 𝑣) = 𝑦]

𝑁

𝑛=1

𝑀

𝑚=1

 (2.45) 

  

𝑫(𝑠)𝑢,𝒗,△𝑢,△𝑣,△𝑚,△𝑛(𝑥, 𝑦) =
1

𝑀 ⋅ 𝑁
∑∑𝛿[𝑑̅𝑚,𝑛

(𝑠)
(𝑢, 𝑣) = 𝑥, 𝑑̅𝑚+△𝑚,𝑛+△𝑛

(𝑠) (𝑢 +△ 𝑢, 𝑣 +△ 𝑣) = 𝑦]

𝑁

𝑛=1

𝑀

𝑚=1

 (2.46) 

 

Since all DCT coefficients and coefficient difference are truncated to [-3, 3], there 

are 49 elements in 𝐂 and 𝐃. Then fold the two kinds of matrices: 

 

𝐌̅(𝑥, 𝑦) = 𝐌(𝑥, 𝑦) + 𝐌(𝑦, 𝑥)  (2.47) 

 

where 𝐌 ∈ {𝐂,𝐃}. 

What’s more, they used Cartesian calibration method [41] to produce other 7850 

features. Hence a total of 15700 high dimensional features firstly are used to train for 

steganalysis. 

Since there are a total of 15700 high dimensional feature set used for steganalysis. 

The extracted features firstly are used to train a number of sub-classifiers, which are 

integrated as an ensemble classifier with a Bayesian mechanism. In construction of each 

sub classifier d features from 15700 are used to train Fisher linear discriminate (FLD) 
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classifier [42] by using the N sub-vectors. 

Threshold in the FLD classifier is determined by the minimal sum of probabilities 

of false alarm and miss detection. By using the searching algorithm, they found 600 and 

201 sub classifiers obtained with different subset of features is the optimal value. 

In the experiment, Li et al. used the proposed steganalytic scheme to detect the 

secret data embedded by two steganographic methods nsF5 and model-based 

steganography (MBS) [42]. 

As a result, the error of merging the two sets of features is only 3.3%, in contrast, 

the error of CF* is 6.5% at payload 0.10 bpac. On the other hand, by replacing the majority-

voting mechanism with the Bayesian mechanism, can be lowered by 0.4%–1% (from 96.7% 

to 95.9%). That means the proposed scheme benefits from both the merged features and 

the Bayesian mechanism. 
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2.6.2 Rich Models 

Fridrich et al. [10] proposed a general method for steganalysis of digital images in 2012, 

which based on the concept of a rich model consisting of a large number of diverse 

submodels. The submodels consider various types of relationships among neighboring 

samples of noise residuals obtained by linear and non-linear filters with compact supports. 

They made the model assembly by a part of the training process driven by samples drawn 

from the corresponding cover and stego sources. In order to increase the detection accuracy, 

they also apply a submodel-selection to adopt different steganographic techniques: HUGO, 

edge adaptive algorithm by Luo et al. [43], and optimally coded ternary ±1 embedding.  

Ensemble classifiers are used to assemble the model as the steganalyzer because of 

their low computational complexity and ability to efficiently work with high-dimensional 

feature spaces and lager training sets. 

Rich model focuses on the spatial domain because the best detection is usually 

achieved by building the model directly in the domain where the embedding changes are 

localized. The rich model steps shows as following. 

 

A. Residual Images 

Fridrich et al. formed the model by merging many smaller submodels instead of a single 

model because the single model will not produce a good results as the enlarged model will 

have too many underpopulated bins. 

1) Computing Residuals: The submodel are formed from noise residuals, R = 

(R𝑖𝑗)  ∈ ℝ
𝑛1×𝑛2, computed using high-pass filters of the following form: 
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𝑅𝑖𝑗 = 𝑋̂𝑖𝑗(𝒩𝑖𝑗) − 𝑐𝑋𝑖𝑗  (2.48) 

 

where 𝑐 ∈ ℕ is the residual order, 𝒩𝑖𝑗 is a local neighborhood of pixel 𝑋𝑖𝑗, 𝑋𝑖𝑗 ∉ 𝒩𝑖𝑗, 

and 𝑋̂𝑖𝑗(∙) is a predictor of 𝑐𝑋𝑖𝑗 defined on 𝒩𝑖𝑗. The set {𝑋𝑖𝑗,𝒩𝑖𝑗} is called the support 

of the residual. 

All residuals used in the rich model are shown in Figure 2.16. They are built as 

locally supported linear filters whose outputs are possibly combined with minimum and 

maximum operators to increase their diversity.  

If there are two or more different symbols other than the black dot, we can call it 

‘minmax’. While in type ’spam’, the residual is computed as a linear high-pass filter of 

neighboring pixels with the corresponding coefficients. For example: 2a stands for the 

second-order 𝑅𝑖𝑗 = 𝑋𝑖,𝑗−1 + 𝑋𝑖,𝑗+1 − 2𝑋𝑖𝑗 and 1a for the first-order 𝑅𝑖𝑗  =  𝑋𝑖,𝑗+1 − 𝑋𝑖𝑗. 

2b is obtained as 𝑅𝑖𝑗 =  𝑚𝑖𝑛{𝑋𝑖,𝑗−1 + 𝑋𝑖,𝑗+1 − 2𝑋𝑖𝑗 , 𝑋𝑖−1,𝑗 + 𝑋𝑖+1,𝑗 − 2𝑋𝑖𝑗}. 

The ‘min’ and ‘max’ operators introduce non-linearity into the residuals and 

increase the model diversity. All operations make the distribution of the residual samples 

non-symmetrical, thickening one tail of the distribution of 𝑅𝑖𝑗. 
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Figure 2.16 Definitions of all residuals. The residuals 3a – 3h are defined similar to the first-order residuals, while E5a – E5d are similar 

to E3a – E3d defined using the corresponding part of the 5 × 5 kernel displayed in S5a.  

 

Source: Jessica Fridrich and Jan Kodovský, “Rich Models for Steganalysis of Digital Images”, IEEE Trans. on Info. Forensics and Security, vol. 7(3),2012, pp. 

868-882.

5
5
 

1a) spam14h,v 1b) minmax22h,v 1c) minmax24 1d) minmax34h,v 

1e) minmax41 1f) minmax34 1g) minmax48h,v 1h) minmax54 

2a) spam12h,v 2b) minmax21 2c) minmax41 2d) minmax24h,v 2e) minmax32 

E3a) spam14h,v E3b) minmax24 E3c) minmax22h,v E3d) minmax41 
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ORDER 

2nd ORDER 

EDGE 3×3 
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2) Truncation and Quantization: Each submodel is formed from a quantized and 

truncated version of the residual: 

 

𝑅𝑖𝑗 ← trun𝑐𝑇 (round (
𝑅𝑖𝑗

𝑞
)) 

 (2.49) 

 

where q > 0 is a quantization step. 

The authors acknowledge that the individual performance of each submodel can 

likely be improved by replacing the simple scalar quantizer with an optimized design. 

To select the quantization step q. 

 

𝑞 ∈ {
{𝑐, 1.5𝑐, 2𝑐} for 𝑐 > 1

{1,2} for 𝑐 = 1
  (2.50) 

 

 

3) Co-Occurrences: Those submodels will be constructed from horizontal and 

vertical co-occurrences of four consecutive residual samples. Formally, each co-

occurrence matrix C is a four-dimensional array indexed with 𝒅 =  (𝑑1, 𝑑2, 𝑑3, 𝑑4, ) ∈

𝒯4 ≜ {−𝑇, . . . , 𝑇}
4, which gives the array (2T + 1)4 = 625 elements.  

The 𝒅th element of the horizontal co-occurrence for residual 𝑹 =  (𝑅𝑖𝑗) means 

the number of groups of four neighboring residual samples with values equal to 

𝑑1, 𝑑2, 𝑑3, 𝑑4: 
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𝑪𝒅
(ℎ)
=
1

𝑍
|(𝑅𝑖𝑗, 𝑅𝑖,𝑗+1, 𝑅𝑖,𝑗+2, 𝑅𝑖,𝑗+3)|𝑅𝑖,𝑗+𝑘−1 = 𝑑𝑘, 𝑘 = 1,… ,4| 

 
(2.51) 

 

where Z is the normalization factor ensuring that ∑ 𝐶𝑑
(ℎ)

𝑑∈𝒯4 = 1. 

Individual submodels of the rich image model obtained by 78 co-occurrence 

matrices shown in Figure 2.16 by leveraging symmetries of natural images. Fridrich used 

the sign-symmetry as well as the directional symmetry of images, making those models 

more compact and improving the performance to dimensionality ratio. Different types of 

residuals were applied with different symmetrized methods, like ‘spam’ 𝐶𝑑̅̅ ̅ ← 𝐶𝑑 + 𝐶−𝑑, 

𝐶𝑑̿̿ ̿ ← 𝐶𝑑̅ + 𝐶̅
𝑑⃖

, while the ‘minmax’ residuals will be possessed like 𝐶𝑑̅̅ ̅ ← 𝐶𝑑
(𝑚𝑖𝑛)

+

𝐶−𝑑
(𝑚𝑎𝑥)

,  𝐶𝑑̿̿ ̿ ← 𝐶𝑑̅ + 𝐶̅
𝑑⃖

. When all submodels are put together, their combined 

dimensionality is only 12,753.  

The framework is demonstrated on three stego algorithms operating in the spatial 

domain: ±1 embedding and two content-adaptive methods: HUGO and an edge-adaptive 

method by Luo et al. They used the best rich model when were assembled at dimensions 

approximately 3300 and trained by ensemble classifier [32] and Gaussian SVM [44]. The 

following table shows the result for the 0.4 bpp payload as carrying out these types of 

experiments.  
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Table 2.8  Detection Error for Three Algorithms for Payload 0.4 bpp when Ensemble is 

Used with the Rich 12753-Dimensional Model 

Algorithm 
Ensemble G-SVM 

MED MAD MED MAD 

±1 Embedding 0.0785 0.0035 0.00683 0.0042 

HUGO 0.1355 0.0035 0.1310 0.0065 

EA 0.0695 0.0020 0.0643 0.0030 

 

Table 2.9  The Average Running Time of The Experiments in Table 2.8 

Algorithm Ensemble G-SVM 

±1 Embedding 1 hr 20 min 4 days 22 hr 37 min 

HUGO 4 hr 35 min 8 days 15 hr 31 min 

EA 3 hr 09 min 3 days 23 hr 50 min 

 

Source: Jessica Fridrich and Jan Kodovský,” Rich Models for Steganalysis of Digital Images,” IEEE Trans. 

on Info. Forensics and Security, vol. 7(3), pp. 868-882, 2012 

 

In Table 2.8, writers compared results with the detection error of classifiers 

implemented as ensembles using the 12,753-dimensional rich model in 0.4 bpp payload 

dataset. Interestingly, the smaller model with a G-SVM provided better detection results. 

The improvement is roughly by 0.5–1% over all three steganographic methods. While the 

running time of a G-SVM classifier was 30–90 times higher than the running time of the 

ensemble classifier, as reported in Table 2.9. 
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CHAPTER 3 

NEW APPROACHES 

 

3.1 Introduction 

With the development of steganalysis, more and more techniques are involved in this area. 

The diversity of steganalysis can provide theoretical foundation and promote the 

development of detecting method. In this chapter, game theory and deep learning, which 

have never been used in steganalysis before, will be presented. Game theory is a theory to 

analyze the interaction between Alice and Bob in steganography and steganalysis. The 

value of this work lies primarily in shedding more light on the problem of optimal 

steganography. And the convolution layers in deep learning may be of great assistance to 

feature extraction in researches for steganalysis. 

 

3.2 Game Theory Approach 

3.2.1 Concept 

Game theory is the study of strategic decision making. Specifically, it is "the study of 

mathematical models of conflict and cooperation between intelligent rational decision-

makers."[22] 

“The prisoner’s problem” can illustrate game theory clearly. Alice and Bob were 

caught transferring state secrets. Now, sadly, they separated into two rooms, homeland 

security tries to get them to confess. They are each told independently that if they both 

confess, they will be put in prison for two years. If one confesses and the other does not, 

the confessor will be let free in exchange for testifying against the other, who will receive 
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four years in prison. If they both keep quiet they will be let off with a slap on wrist: one 

year each. The outcomes are represented in the following table: 

 

Table 3.1  All Results of Alice and Bob’s Decision 

 Confess Decline 

Confess 2 , 2 0 , 4 

Decline 4 , 0 1 , 1 

 

When the equilibrium is stable: both players confess. If Alice knows that Bob will 

confess, then she can do nothing but confess: we can see from the equilibrium it result in a 

four year for her, if she keeps silent. Of course it is possible that both players will choose 

not to confess, but this is an unstable equilibrium. If Alice gets wind of the fact that Bob 

plans to stay quiet, she’ll turn him in! And if bob in turn realizes this, he will choose to 

confess as well. Hence, while this situation can occur, in some instances it is an “unstable” 

outcome. 

This steganalysis is attempting to analyze the interaction between Alice and Bob. 

Writers focus on the modern steganographic embedding paradigm based on minimizing an 

additive distortion function. 

Content-adaptive steganography constrains its embedding changes to those parts of 

image where one expects their detection to be harder. In steganography, that minimizes an 

additive embedding distortion, each pixel is changed with probability 

 

𝛽𝑖 =
exp (−𝜆𝜌𝑖)

1 + exp (−𝜆𝜌𝑖)
  (3.1) 
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where 𝜌𝑖 > 0 is the costs of changing pixel 𝑖. The cost 𝜌𝑖 are usually obtained by using 

some deterministic rule, which is applied to the cover image. 

Since the stego image is a slightly modified version of the cover image, Bob could 

estimate the set of change rate. Since the introduction of content-adaptive stego schemes, 

it has been hypothesized that any information about the selection channel given to Bob 

could be used to improve her detection. 

Considering half of a cover image is composed of random noise while the other 

half is a completely flat content, it is far better for Alice to embed in the random part even 

though Bob knows it. In fact, the sender could even hide data with perfect security using 

naive embedding if she knew the cover model. Obviously, the information about the 

selection channel available to Bob may be a weakness only to a degree depending on how 

detectable the changes are at each pixel. So Tomáš considered two options for Alice: (1) 

Assuming an omnipotent Bob, she also knows Alice’s actions. (2) Assuming that Bob has 

no idea about the probabilities with which Alice changes each pixel. 

 

3.2.2 Cover Model and Embedding Method 

A. Cover Model 

When choosing a cover image, we should ignore the noise components by staying 

consistently the same, like taking the same picture multiple times with the same camera 

settings, the remaining noise components are random in nature and well modeled as an 

independent Gaussian noise. The cover model using is a simplified model for one channel 

of a raw imaging sensor output: 
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𝐗 = (𝑋1, … , 𝑋𝑛), 𝑋𝑖~𝑁(0, 𝜎𝑖
2), i = 1,… , 𝑛  (3.2) 

 

B. Embedding Method 

In Tomáš’s paper [11], LSB matching is chosen for simplicity. Denoting the stego image 

𝐘 =  (𝑌1, . . . , 𝑌𝑛),  Alice changes pixel 𝑥𝑖  by ±1 with probability 𝜌𝑖
(𝐴)

 and leaves it 

unchanged with probability 1 − 𝜌𝑖
(𝐴)

. 

 

Pr(𝑌1 = 𝑥𝑖 + 𝑠𝑖) = {

𝜌𝑖
(𝐴)
/2 for 𝑠𝑖 = −1 

1 − 𝜌𝑖
(𝐴)

for 𝑠𝑖 = 0

𝜌𝑖
(𝐴)
/2 for 𝑠𝑖 = 1

 

 

(3.3) 

 

Therefore, each stego pixel follows a Gaussian mixture: 

 

𝑌𝑖 ∼ 𝑓𝜌𝑖
(𝐴)(𝑥, 𝜎𝑖

2)  (3.4) 

 

When Alice embeds α bpp, the embedding probabilities must satisfy constraint 

 

∑ ℎ(𝜌𝑖
(𝐴)
)

𝑛

𝑖=1
= 𝛼𝑛  (3.5) 

 

Thus, Alice’s action is captured with 𝑛 − 1 parameters: 𝜌𝑖
(𝐴)
, 𝑖 = 1,… , 𝑛 − 1 as 

𝜌𝑛
(𝐴)

 is determined from the payload constraint. 
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3.2.3 Detector 

A. Detector Concept 

Bob will run a simple binary hypothesis test. The null hypothesis corresponds to observing 

a cover image, while the alternative hypothesis corresponds to a stego object. 

Given an image 𝑥 =  (𝑥1, . . . , 𝑥𝑛), Bob uses the Likelihood Ratio Test (LRT) as 

her detector: 

 

T(𝑥; 𝜌𝑖
(𝑊)
, 𝜎2) =∏

𝑓
𝜌𝑖
(𝑤)(𝑥𝑖, 𝜎𝑖

2)

𝑓(𝑥𝑖, 0, 𝜎𝑖
2)

𝑛

𝑖=1
 

 (3.6) 

 

B. Payoff Function 

Some scalar characteristic is needed in the detector as a payoff function. While they adopt 

the customary method, which is minimal total error probability for Equation 3.6, as the 

payoff function. 

 

𝑃𝐸 = min
1

2
(𝑃𝐹𝐴 + 𝑃𝑀𝐷(𝑃𝐹𝐴))  (3.7) 

 

𝑃𝐹𝐴 and 𝑃𝑀𝐷  are the probabilities of false detection. To evaluate the payoff function, 

Writers compute the distribution of Bob’s statistic under both hypotheses. C.d.f. obtained 

after a series of transform, 
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𝐹(𝑦) =  ∫ 𝑓𝛽(𝐴)(𝑥, 𝜎𝑖
2)𝑑𝑥

𝑥+

𝑥−

  (3.8) 

The p.d.f. is obtained by differentiating w.r.t.𝑦: 

 

ℎ(𝑦) = 𝑓𝛽(𝐴)(𝑥, 𝜎𝑖
2)𝑥′+(𝑦) − 𝑓𝛽(𝐴)(𝑥, 𝜎𝑖

2)𝑥′−(𝑦)  (3.9) 

 

C. Strategies 

Alice’s and Bob’s strategies are the following sets of 𝑛 − 1 real values,  

 

𝑆𝐴 = {𝛽1
(𝐴)
, … , 𝛽𝑛−1

(𝐴)
}  (3.10) 

 

𝑆𝑊 = {𝛽1
(𝑊)
, … , 𝛽𝑛−1

(𝑊)
}  (3.11) 

 

 

3.2.4 Solution of Game Theory 

A game with continuous strategies and a smooth payoff function admits solution in pure 

strategies, which coincides with the saddle point, the Nash equilibrium. The solution can 

be determined numerically using a gradient search in which the payoff function is 

minimized over Bob’s strategies and maximized over Alice’s strategies [11]. 
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Figure 3.1 Payoff function P𝐸(𝜌1
(𝐴), 𝜌1

(𝑊)) for α = 0.2, 𝜎1
2 = 1, 𝜎2

2 = 1.2. 

 
Source: Tomáš Denemark and Jessica Fridrich,” Detection of Content Adaptive LSB Matching (a Game 

Theory Approach),” Media Watermarking, Security, and Forensics 2014, vol. 9028, San Francisco, CA, 

February 26, 2014. 

 

For a two-pixel cover, the one-dimensional strategies must lie in a range determined 

by the payload，𝜌1
(𝐴), 𝜌1

(𝑊) ∈ [𝛽𝑚𝑖𝑛, 𝛽𝑚𝑎𝑥], where  

 

𝛽𝑚𝑎𝑥 = min (0.5, ℎ−1(2𝛼))  (3.12) 

   

𝛽𝑚𝑖𝑛 = ℎ−1(2𝛼 − ℎ(𝛽𝑚𝑎𝑥))  (3.13) 

 

where ℎ−1(𝑥) is the inverse binary entropy on [0,1/2].  

The value of this work lies primarily in shedding more light on the problem of 

optimal steganography under an ignorant Bob. 
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3.3 Deep Learning 

Qian et al. [17] proposed a customized Convolutional Neural Network (CNN) called 

Gaussian-Neuron CNN (GNCNN) for steganalysis. This model can automatically learn to 

extract feature by several convolutional layers. 

 

3.3.1 CNN 

In deep learning, a Convolutional Neural Network [23] is comprised of one or more 

convolutional layers and then followed by one or more fully connected layers. The 

architecture of a CNN is designed to take advantage of the 2D structure of an input image. 

Additionally, CNNs is easy to train with fewer parameters compared with other fully 

connected networks with the same number of hidden units. 

Either before or after the subsampling layer an additive bias and sigmoidal 

nonlinearity is applied to each feature map. The figure below illustrates a full layer in a 

CNN consisting of convolutional and subsampling sublayers.  

Here are the reasons of choosing CNN as the basic framework: 

1. CNNs can take raw data as inputs without the need for a feature extraction step, 

which means that only learning feature representations from images instead of 

treating a CNN. 

2. The data processed by CNN is easy to use in steganalysis, regarding covers and 

stegos as positive and negative samples. 
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3. CNN can be trained the models on large scale. 

Qian customized the CNN as a GNCNN shows in Figure 3.2. 

 

3.3.2 Image Processing 

Generally, the high frequency stego noise added to the cover is a kind of very weak signal, 

which is greatly impacted by image content. Hence, reduce the impact of image content 

and strengthen the weak stego signal, Qian apply a high pass filter. 

 

 

Figure 3.2 The GNCNN model (right) and traditional steganalysis architecture based on 

hand-crafted features (left). The up and down arrows in the right flowchart show forward 

and back propagation directions. 

 

Source: Yinlong Qian, Jing Dong, Wei Wang, Tieniu Tan, “Deep learning for steganalysis via convolutional 

neural networks,” SPIE 9409, Media Watermarking, Security, and Forensics 2015, 94090J (4 March 2015); 

DOI: 10.1117/12.2083479 
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𝑅 is the image after high-pass filtering, 𝐼 denotes an image and 𝐾 is a shift-

invariant finite-impulse response linear filter to compute the residual. 

 

𝑅 = 𝐾 ∗ 𝐼  (3.14) 

 

where ∗ denots convolution. Equation 2.30 shows the k filter (kernel).  

 

𝐾𝑘𝑣 =
1

12
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 (3.15) 

 

3.3.3 Convolutional Layer 

The input and output of each convolutional layer are sets of arrays called feature maps. At 

the output, each feature map is a particular feature representation extracted at all locations 

on the input. At a convolutional layer, three kinds of operations, which are convolution, 

non-linearity, and pooling, are usually applied sequentially as expressed below. 

 

𝑋𝑗
𝑙 = pool (𝑓 (∑𝑋𝑖

𝑙−1 ∗ 𝐾𝑖𝑗
𝑙 + 𝑏𝑗

𝑙

𝑖

)) 

 (3.16) 

 

where 𝑓(∙) as the non-linearity operation, pool(∙) denotes pooling, 𝑋𝑖
𝑙−1  is the 𝑗-th 

feature map in layer 𝑙, 𝐾𝑖𝑗 is the trainable convolution kernel connecting the 𝑗-th output 
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map and the 𝑖-th input map, 𝑏𝑗
𝑙 is an trainable bias parameter for the 𝑗-th output map. 

For natural images, it is common that, subsequent in-camera processing during 

image acquisition, such as color interpolation, color correction and filtering, introduces 

complex dependencies into noise component of neighboring pixels. Most steganalysis 

methods try to utilize these dependencies to detect stego noise. Because of the complex 

dependencies, a good estimate of the central pixel can be obtained from the neighboring 

pixels, excluding the pixel being estimated. Then by subtracting the true value of the central 

pixel from the estimated one, the prediction error value can be obtained, which directly 

reflects whether the pixel is changed or not. 

 

Figure 3.3 A Simple example illustrating why Gaussian activation works for steganalysis 

in the proposed model. Gaussian activation can distinguish between stego signals and cover 

signal from the prediction error values. 

 

Source: Yinlong Qian, Jing Dong, Wei Wang, Tieniu Tan, “Deep learning for steganalysis via convolutional 

neural networks,” SPIE 9409, Media Watermarking, Security, and Forensics 2015, 94090J (4 March 2015); 

doi: 10.1117/12.2083479 

 

Prediction error 

Gaussian Activation 

Cover 

Signal 

Stego 

Signal 
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As mentioned, the aim of convolution operation is to compute prediction error 

values by exploiting the dependencies among neighboring elements. The motivation 

behind Gaussian non-linearity is to transform prediction error values to distinguish between 

stego signals and cover signals.  

Figure 3.3 gives a simple example of why Gaussian activation works. Ideally, it is 

supposed that there should be three kinds of prediction error values: 1, -1 and 0. The values 

1 and -1 means that the pixel is modified by embedding operation, a stego signal. The value 

0 means that the pixel is unchanged, which means this is a cover signal. 

The resulting activations are then passed to the pooling part of the layer. Pooling 

operation aims to transform the low level feature representation into a more usable one 

which preserves important information and discards irrelevant details. Pooling has the 

effect of merging the information within a set of small local regions while reducing 

computation time. In a pooling operation, the outputs of neighboring groups of neurons in 

the same feature map are summarized. 

Generally, there are two conventional choices for pooling: average pooling and max 

pooling. The former takes the average value within the pooling region: 

 

pool(𝑅𝑗) =
1

|𝑅𝑗|
∑ 𝑎𝑖
𝑖∈𝑅𝑗

 
 (3.17) 
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while the max pooling operation selects the maximum value: 

 

pool(𝑅𝑗) = max
𝑖∈𝑅𝑗

𝑎𝑖 
 (3.18) 

 

where 𝑅𝑗 is pooling region 𝑗 in a feature map, 𝑎𝑖 is the 𝑖-th element within it. 

In their proposed model, rather than max pooling, they use average pooling. 

Because in average pooling, all the activations in the pooling region are taken into account, 

which is supposed to discard the disturbances caused by individual elements. By merging 

all the signal within the pooling region, the stego signal on the whole region is strengthen. 

 

3.3.4 Classification Layer 

The classification module consists of several fully connected layers. The learned features 

are passed to these layers. On the top layer, an activation function is used to produce a 

distribution over all the class labels. 

 

𝑦𝑖 =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗2
𝑗=1

 

 (3.19) 

 

for 𝑖 =  1, 2, where 𝑥𝑖 is the total input to the neuron 𝑖 in the top layer, and 𝑦𝑖 is the 

output. 
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3.3.5 Accuracy 

Qian et al. carried out on the standardized database called BOSSbase 1.01.22. This database 

contains 10,000 images acquired by seven digital cameras. 

 

Table 3.2  Detection Error of GNCNN Model VS. The SRM Set Implemented with 

Ensemble Classifiers and the SPAM Set Implemented with a Gaussian SVM for Three 

State-of-the-Art Spatial Domain Steganographic Algorithms 

bpp 

HUGO WOW S-UNIWARD 

GNCNN 

(256D) 

SRM 

(34,671D) 

SPAM 

(686D) 

GNCNN 

(256D) 

SRM 

(34,671D) 

SPAM 

(686D) 

GNCNN 

(256D) 

SRM 

(34,671D) 

SPAM 

(686D) 

0.3 33.8% 29.6% 42.9% 34.3% 31.2% 42.2% 35.9% 31.5% 40.0% 

0.4 28.9% 25.2% 39.1% 29.3% 25.7% 38.2% 30.9% 26.3% 35.1% 

0.5 25.7% 21.4% 35.7% 24.8% 22.1% 34.9% 26.3% 21.4% 30.6% 

 

Source: Yinlong Qian, Jing Dong, Wei Wang, Tieniu Tan, “Deep learning for steganalysis via convolutional 

neural networks,” SPIE 9409, Media Watermarking, Security, and Forensics 2015, 94090J (4 March 2015); 

DOI: 10.1117/12.2083479. 

 

For BOSSbase, across all three embedding algorithms and payloads, the method 

with deep learning achieves a much lower detection error than the SPAM set implemented 

with a Gaussian SVM. When compared to the SRM set implemented with ensemble 

classifiers, the detection error is just about 2% − 5% higher depending on the payload. 

Experiments on ImageNet show that this method achieves a close detection error to the 

SRM set. 
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CHAPTER 4 

TEXTUREAL FEATURE 

4.1 Textural Features 

4.1.1 Introduction 

Shi et al. [3] learned and utilized the textural features from the rich literature in the field of 

texture classification for further development of the modern steganalysis. They have 

applied textural features to steganalyzing the HUGO stego dataset designed for the BOSS 

contest. In this scheme, they construct a steganalyzer with 22,153 features derived from 

the textural features. 

They applied LBP in 59 dimensional features and used these for some filtered 2-D 

array. Meanwhile, 256 dimension and variance features derived from the multi-resolution 

way were used for others.  

In addition, they used Laws mask and the mask and cliques associated with Markov 

Random fields. And the classifier utilized is the FLD-based ensemble classifier.  

 

4.1.2 Framework 

HUGO tended to embed data into cover image locally into some regions so as to make the 

image statistical modeling difficult, especially into highly texture regions. While the LBP 

operators have been popularly used in texture classification arena. 
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A. Image Statistical Measures 

Ojala et al. [34] proposed LBP to model the statistics of a texture unit defined within a 

neighborhood of 3×3 pixels. Each of eight neighboring pixels of a 3×3 neighborhood is 

thresholded by the gray value of its central pixel to form an 8-bit binary pattern shown in 

Figure 4.1(a). We can see that the Figure 4.1(b) is a version of LBPs. The LBP is circular 

with different radius, the pixel values of the neighbors falling outside the center of the pixel 

grids are estimated by interpolation. While Figure 4.1(c) is a derivation of Figure 4.1(b). 

There are two kinds of LBP: uniform and non-uniform patterns. The uniform patterns have 

the number of binary transitions over the whole neighborhood circle less than two, while 

the number of transitions that are greater than two are considered as non-uniform. Uniform 

patterns often occupy the majority of the histogram which makes merging non-uniform 

patterns into the same bin. In this situation, we can reduce the number of bins in a histogram 

from 256 to 59. 

 
(a)                (b)                  (c) 

Figure 4.1 (a) 3×3 neighborhood. (b) Example of circular symmetric neighborhood. (c) 

Examples of “uniform” and “non-uniform” local binary patterns. 
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Generalized to different 𝑃  values and correspondingly defined neighborhoods, 

Equation 4.1 expresses the formulation of LBP shown in Figure 4.1(a) mathematically. 

 

𝐿𝐵𝑃 = ∑𝑠(𝑔𝑝 − 𝑔𝑐)2
𝑝

𝑃−1

𝑃=0

 
 (4.1) 

 

where s(x) equals one if the x is less than or equal to zero, or zero otherwise. 

From experiments, they found that features generated from LBP8 are much more 

powerful than those from co-occurrence matrix but with a higher dimensionality. Features 

generated from LBP perform slightly better than those from co-occurrence matrix although 

they are of lower dimensionality.  

 

4.1.3 Content-Adaptive Prediction Error Image 

Small perturbation to cover image caused by steganographic schemes may be 

considered as a high frequency additive noise; as a result, eliminating low-frequency 

representation of images before feature extraction process would make the resulting image 

features better represent the underlying statistical artifacts associated with steganography.  

With the modern steganographic schemes such as HUGO, it is intuitive that the 

prediction error images, like residual images, generated in a content adaptive manner 

would effectively reveal such artifacts caused by data embedding. Denoting 𝐼 as image, 

𝑅 as residual image, and 𝑃𝑟𝑒𝑑(𝐼) as corresponding predicted image:  
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𝑅 = 𝐼 − 𝑃𝑟𝑒𝑑(𝐼)  (4.2) 

 

 

Figure 4.2 2×2 Neighboorhood used to predict the center pixel of a 3×3 neighborhood. 

 

 
(a)                  (b)                            (c) 

Figure 4.3 Symbolic representations of pixel locations used in the creation of median-

filter-based prediction error images. (a) 3×3, (b) 5×5, and (c) 7×7 neighborhood. 

 

Table 4.1  Configuration of Median Filters Employed in Generating Median-Filter-Based 

Prediction Error Images 

 
 
Source: Yun Q. Shi, Patchara Sutthiwan, Licong Chen,Shi, “Textural Features for Steganalysis,” IH'12 

Proceedings of the 14th international conference on Information Hiding, 2012, pp 63-77 
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Table 4.2  High-Pass Filters Employed in the Creation of Residual Images 

 
 

Source: Yun Q. Shi, Patchara Sutthiwan, Licong Chen,Shi, “Textural Features for Steganalysis,” IH'12 

Proceedings of the 14th international conference on Information Hiding, 2012, pp 63-77 

 

 

Table 4.1 shows some spatial filters which have been widely used as low-pass 

filters. It can generate residual images by using median filters to compute predicted images.  

Writers also generate some residual images in this part in a content adaptive manner 

by incorporating two non-linear operators, minimum and maximum in order to catch the 

desired artifacts. 

Image statistical features is formulated by two major set of 1-D spatial high-pass 

filters. The first set of high-pass filters is Laws’ mask which are odd sizes, while the other 

set which contains even-tap high-pass filters. Those filters are shown in Figure4.4 and 4.5. 
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Figure 4.4 High-pass filters based on Markov neighborhoods. 

 
Source: Yun Q. Shi, Patchara Sutthiwan, Licong Chen, “Textural Features for Steganalysis,” IH'12 

Proceedings of the 14th international conference on Information Hiding, 2012, pp. 63-77 

 

The Figure 4.4 and Figure 4.5 show the mask based on Markov. Markov Random 

Field (MRF) has been widely used in texture classification, segmentation and texture defect 

detection. 
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Figure 4.5 High-pass filters based on Cliques. 

 
Source: Yun Q. Shi, Patchara Sutthiwan, Licong Chen, “Textural Features for Steganalysis,” IH'12 

Proceedings of the 14th international conference on Information Hiding, 2012, pp. 63-77 

 

In MRF, a neighborhood can be constructed, which the Markov parameters can be 

assigned as weights. These neighborhoods are characterized by a group of pixels with a 

variety of orientations often symmetrically inscribed within a square window of odd size. 

For steganalysis, Markov neighborhood should be for high-pass filtering instead of texture 

classification. Figure 4.5 represents the masks they generated. 
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4.1.4 Accuracy 

With a variety of features made in the above section, there are multiple ways to construct 

a feature set for steganalysis. An effective combination of features with a dimensionality 

of 22,153 is constructed based on the HUGO at 0.4 bpp on BOSSbase 0.92 which contains 

of 10,000 images. All the LBP operators used to construct features are based on uniformity 

mapping with 𝑃 = 8 and different combination of R’s. Whole feature sets with each 

individual type of features dropped out are evaluated and shown in Table 4.3 

 

Table 4.3  Ensemble Performance on Feature Elimination at d = 2,600 

Feature Set D AC L 

Whole 22,593 83.92% 50 

Whole-Pes 21,268 83.57% 46 

Whole-VARpe 21,268 83.57% 57 

Whole-MEDpe 20,560 83.67% 63 

Whole-LMased 9,763 82.72% 65 

Whole-MN13 18,825 83.52% 45 

Whole-CL12 19,081 83.67% 52 

 
Source: Yun Q. Shi, Patchara Sutthiwan, Licong Chen, “Textural Features for Steganalysis,” IH'12 

Proceedings of the 14th international conference on Information Hiding, 2012, pp. 63-77 

 

The statistics in Table 4.3 reveals that each type of the proposed features is essential 

to the final accuracy, that is, the final accuracy decreases upon the absence of each type of 

features. 
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4.2 Ensemble Classifier 

4.3.1 Introduction 

To reconstruct the method, we will use the ensemble classifier as described in Shi’s paper. 

The ensemble classifier [18] is essentially a random forest consisting of L binary classifiers 

called base learners, 𝐵𝑙,  𝑙 =  1, . . . , 𝐿, each trained on a different dsub-dimensional 

subspace of the feature space selected uniformly at random. Each random subspace will be 

described using an index set {1, . . . , 𝑑}, |𝐷𝑙|  =  𝑑𝑠𝑢𝑏. The ensemble reaches its decision 

by fusing all L decisions of individual base learners using majority voting. 

 

Figure 4.6 Diagram illustrating the ensemble classifier. 

 

4.2.2 Algorithm 

To formally describe the ensemble classifier, we introduce the following notation. The 

symbol d stands for the feature space dimensionality, d𝑠𝑢𝑏 for the dimensionality of the 

Feature 

space 

dim = d 

Random subspace 

Random subspace 

Random subspace 

Base learner 𝐵1 

Base learner 𝐵1 

Base learner 𝐵1 

Classifier 

Fusion 
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feature subspace on which each base learner operates, N𝑡𝑟𝑛 and N𝑡𝑠𝑡 are the number of 

training and testing examples from each class, and L is the number of base learners.  

Steps of algorithm are as follows. 

1. For 𝑙 = 1 to 𝐿 form a random subspace 

 

𝒟𝑙 ⊂ {1, … , 𝑑}, |𝒟𝑙| = 𝑑𝑠𝑢𝑏 < 𝑑  (4.3) 

 

2. Forming a bootstrap sample 𝒩𝑙
𝑏 , |𝒩𝑙

𝑏| = 𝑁𝑡𝑟𝑛  by uniform sampling with 

replacement form the set {1, … ,𝑁𝑡𝑟𝑛}. 

3. Training a base learner 𝐵𝑙 on features 

 

𝒳𝑙 = {𝑥𝑚
(𝒟𝑙), 𝑥̅𝑚

(𝒟𝑙)}
𝑚∈𝒩𝑙

𝑏
  (4.4) 

 

to obtain eigenvector 𝑣𝑙 and threshold 𝑇𝑙. 

4. For all test examples 𝑦 ∈ 𝒴𝑡𝑠𝑡 make 𝑙th decisions: 

 

𝐵𝑙(𝑢
(𝒟𝑙)) ≜ {1 𝑤ℎ𝑒𝑛 𝐯𝑙

𝑇𝒚(𝒟𝑙) > 𝑇𝑙
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (4.5) 

 

5. If 𝑙 = 𝐿, end the loop, otherwise, return to step 1. 

6. Forming the final decision 𝐵(𝒚) by majority voting 
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𝐵(𝒚) =

{
  
 

  
 1 𝑤ℎ𝑒𝑛 ∑𝐵𝑙(𝑦

(𝒟𝑙))

𝐿

𝑙=1

> 𝐿/2

0 𝑤ℎ𝑒𝑛 ∑𝐵𝑙(𝑦
(𝒟𝑙)) <

𝐿

𝑙=1

𝐿/2

𝑟𝑎𝑛𝑑𝑜𝑚 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(4.6) 

 

The individual base learners 𝐵𝑙, 𝑙 =  1, . . . , 𝐿, are mappings ℝ𝑑  →  {0, 1}, where 

0 stands for cover and 1 for stego. Even though the performance of individual base learners 

can be weak, the accuracy quickly improves after fusion and eventually levels out for a 

sufficiently large L. 

From the experiments in Kodovsky’s paper, they show the ensemble is especially 

useful for fast feature development when attacking a new scheme. Ensemble classifiers 

offer accuracy comparable and often even better than the much more complex SVMs at a 

fraction of the computational cost. 

 

4.3 High-order Local Pattern 

A good object representation or object descriptor is one of the key issues for a well. The 

writers propose a novel object descriptor, the high order Local Derivative Pattern (LDP), 

for robust face recognition. The nth LDP is proposed to encode the (n-1)th-order local 

derivative direction variations. 
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4.3.1 Local Binary Pattern 

Derived from a general definition of texture in a local neighborhood, LBP is defined as a 

grayscale invariant texture measure and is a useful tool to model texture images. 

The thresholding function for the basic LBP can be formally represented as 

 

 

 (4.7) 

 

Figure. 4.7 shows an example of obtaining an LBP micro-pattern when the threshold 

is set to zero. 

 

Figure 4.7 Example of obtaining the LBP micro-pattern for the region. 

4.3.2 Local Ternary Patterns 

Local binary pattern is a 2-valued (binary) code that is successfully used in many 

applications .The LBP operator idea is based on just two bit values either 1 or 0. This basis 

does not allow the LBP operator to discriminate between multiple patterns. The LBP 

operator has two main points of weakness [13]: 
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1) The LBP operator cannot distinguish between two pixel values if the first one 

is near the central pixel but a little bit below that pixel and the second 

undistinguishable one is far below the center pixel value. 

2) In flat image areas, such as in face images, where all pixels nearly have the 

same gray value, if a slight amount of noise were added to these areas the LBP 

operator will give some bits the value 0 and others the value 1. So the LBP 

feature will be unstable and thus the LBP operator will not be suitable for 

analyzing these areas. 

To solve these problems a new 3-valued texture operator, Local Ternary Patterns 

(LTP), that can be considered as an extension to LBP, was introduced recently. 

Instead of a thresholding that is based only on the central pixel value of the 

neighborhood, the user will define a threshold say t and any pixel value within the interval 

of – 𝑡 and +𝑡, thus assigns the value 0 to that pixel, while the user assigns the value 1 to 

that pixel if it is above this threshold and a value -1 if it is below it when compared to the 

central pixel value. 

 

𝐿𝑇𝑃(𝑖) = {

1 𝑖𝑓 𝑝𝑖 − 𝑝𝑐 ≥ 𝑡

0 𝑖𝑓 | 𝑝𝑖 − 𝑝𝑐| < 𝑡
−1 𝑖𝑓  𝑝𝑖 − 𝑝𝑐 ≤ 𝑡

 
 (4.8) 

 

where 𝑡 is a user specified threshold, 𝑝𝑖 is a pixel value in the neighborhood and 𝑝𝑐 is 

the central pixel value. 

Figure 4.8 shows an example of how the LTP operator works by using a threshold 

value 𝑡 =  5: 
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38 44 60  -1 0 1 

42 46 63  0  1 

32 56 40  -1 1 -1 

Figure 4.8 LTP Computation. 

 

To get rid of the negative values in Figure 4.8, the LTP values are divided into two 

LBP channels, the upper LTP (LTPU) and the lower LTP (LTPL) as in Figure 4.9. The 

LTPU is obtained by replacing the negative values in the original LTP by zeros. The LTPL 

is obtained in two steps: first, we replaced all the value of 1’s in the original LTP to be 

zeros then we changed the negative values to be 1’s. 

 

Figure 4.9 Splitting LTP into two LBP channels. 

 



 

87 

4.3.3 Local Derivative Pattern 

In LDP the (n − 1)𝑡ℎ -order derivative direction variations based on a binary coding 

function. 

𝐿𝐷𝑃𝛼
2(𝑍0) = {𝑓(𝐼𝛼

′ (𝑍0), 𝐼𝛼
′ (𝑍1)), 𝑓(𝐼𝛼

′ (𝑍0), 𝐼𝛼
′ (𝑍2)), … , 𝑓(𝐼𝛼

′ (𝑍0), 𝐼𝛼
′ (𝑍8))} (4.9) 

 

It encodes the co-occurrence of two derivative directions at different neighboring 

pixels as  

 

𝑓(𝐼𝛼
′ (𝑍0), 𝐼𝛼

′ (𝑍𝑖)) = {
0 𝑖𝑓 𝐼𝛼

′ (𝑍𝑖) ∙ 𝐼𝛼
′ (𝑍0) > 0

1 𝑖𝑓 𝐼𝛼
′ (𝑍𝑖) ∙ 𝐼𝛼

′ (𝑍0) ≤ 0
 (4.10) 

 

𝑖 = 1,2, … , 8. The second-order Local Derivative Pattern is defined as the concatenation 

of the four 8-bit directional LDPs. 

 

𝐿𝐷𝑃2(𝑍) = {𝐿𝐷𝑃𝛼
2(𝑍)|𝛼 = 0°, 45°, 90°, 135°} (4.11) 

 

The derivative direction comparisons defined in Figure 4.10 are performed on 16 

templates reflecting various distinctive spatial relationships in a local region. An example 

of the second-order LDP computation is illustrated in Figure 4.11. 
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Figure 4.10 Example to obtain the second-order LDP micro-patterns. 

 

Source: Baochang Zhang, Yongsheng Gao, Sanqiang Zhao, Jianzhuang Liu, “Local Derivative Pattern 

Versus Local Binary Pattern: Face Recognition With High-Order,” IEEE Transactions on Image Processing, 

VOL. 19, NO. 2, Feburary 2010. 
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Figure 4.11 Illustration of LDP templates. 

 

Source: Baochang Zhang, Yongsheng Gao, Sanqiang Zhao, Jianzhuang Liu, “Local Derivative Pattern 

Versus Local Binary Pattern: Face Recognition With High-Order,” IEEE Transactions on Image Processing, 

VOL. 19, NO. 2, February 2010. 

 

4.3.4 Experiments 

A thorough system performance investigation, which covers various conditions of 

face recognition including lighting, accessory, pose, expression and aging variations, has 

been conducted. The comparative experiments between LDP and LBP were first conducted 

on the FERET face database, which is widely used to evaluate face recognition algorithms. 

Experimental results in Figure 4.12 demonstrate that the recognition accuracy in 

average is significantly improved when the order of local pattern is increased from the first-

order LBP to the second-order and the third-order LDPs. While illustrating this the third-

order LDP performs much better than LBP. 
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Figure 4.12 Results on the gray-level images 

 

The average recognition rates on the four probe sets against different Gaussian 

noise are illustrated in Figure 4.12, showing that LDP maintains a 13.7% to 15.0% higher 

accuracy over LBP 

This work investigates the feasibility and effectiveness of using high-order local 

pattern for face description and recognition. A Local Derivative Pattern (LDP) is proposed 

to capture the high-order local derivative variations. To model the distribution of LDP 

micro-patterns, an ensemble of spatial histograms is extracted as the representation of the 

input face image. LDP can be performed by using histogram intersection as the similarity 

measurement. 
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4.4 Experiments 

We construct Shi et al.’s experiment [3] in MATLAB to steganalyze HUGO at 0.4 bpp on 

BOSSbase 0.92 which is different from the database in Shi’s paper. Hence the result may 

be different from the accuracy in Shi’s paper. Table 4.4 shows accuracies of each feature 

type by ensemble classifier [18]. 

 

Table 4.4  The result by reconstructed LBP, LTP and LDP 

Feature Set LBP LTP LDP 

Whole 83.00% 83.21% 82.63% 

Pes 74.41% 75.32% 73.63% 

VARpe 68.61% 69.33% 68.56% 

MEDpe 67.49% 66.45% 67.91% 

LMbased 81.61% 82.31% 82.00% 

MN13 82.01% 83.68% 80.19% 

CL12 78.58% 80.00% 80.43% 

 

where Feature Sets represent residual images. Pes means successive prediction error 

images and VARpe corresponds variance of Pes; MEDpe is median-filter-based prediction 

error; LMbased corresponds residual images based on Law’s Masks; MN13 is high-pass 

filters based on Markov neighborhoods and CL12 is cliques filters. 

Because of the updated database and different parameters, we can see the result in 

LBP is a little different from the Shi et al.’s paper. Even though the error is acceptable 

(lower than 1%).  
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LDP, which is very useful in texture detection and face detection, is imported to 

steganalysis in this thesis. Ironically, LDP does not work better than LBP as we thought 

but the result is very similar to LBP’s. Meanwhile, feature sets point out that the LDP and 

LTP in complex filters bring higher accuracy compared with some simple mask like 

variance filter and medium filter. This is we didn't modify those filters for residuals images, 

which are suitable for LBP. Therefore, all results displayed above are very similar to LBP’s. 

We cannot create some new useful filters for LTP and LDP because of lack of time. 

Theoretically, LDP is a directional pattern, and we choose only two direction in this thesis. 

In that case, some images will perform better, while some perform terribly. The output is 

not always stable, which makes a great influence to the results. 

Therefore we deem the accuracy of LDP in steganalysis will increase in the future. 
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CHATPER 5 

CONCLUSION 

In this thesis, we have studied and given an overview of quite some number of steganalytic 

techniques for digital images. The techniques are broadly classified as specific and 

universal steganalysis. Universal statistical steganalysis are more robust as they are 

designed to detect messages embedded using any steganographic technique and without 

the knowledge of embedding technique. Specific detection method may be able to detect 

some specific steganographic scheme with a high detection accuracy, but with the 

development of Steganalysis, we can see that the accuracy of universal steganalysis is 

increasing and sometimes even higher than specific algorithm.  

Furthermore, we reconstruct the texture feature for steganalysis and replace the 

LBP by using LDP and LTP. Even though the improvement in steganalytic capability is 

not as large as expected, but the result is still comparable, which means texture feature 

works in steganalysis. In 2015, it is reported that some researchers used deep learning in 

steganalysis which has never been used in this area before. Although the performance in 

steganalysis achieved by the initial trial in using deep learning technology has not met the 

expectation, it is expected it may be novel approach for steganalysis. It will be an active 

future research for steganalysis. Unfortunately, the performance has not met our 

expectation compared with rich models. The accuracy is about 4% lower than SRM’s. 

It is clear that the development for steganalysis and steganography will continue to 

move ahead. Our knowledge in this area will never end. 
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