
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

DEVELOPMENT OF A FINITE ELEMENT METHOD FOR LIGHT
ACTIVATED POLYMERS

by
Craig Hamel

Traditional Shape Memory Polymers (SMPs) belong to a class of smart materials

which have shown promise for a wide range of applications. They are characterized by

their ability to maintain a temporary deformed shape and return to an original parent

permanent shape. The first SMPs developed responded to changes in temperature by

exploiting the difference in modulus and chain mobility through the glass transition

temperature. However, in recent years, new SMPs have been developed that respond

to other stimuli besides temperature; these can include electricity, magnetism, changes

in chemical concentration, and even light.

In this thesis, we consider the photo-mechanical behavior of Light Activated

Shape Memory Polymers (LASMPs), focusing on the numerical aspects. The

mechanics behind LASMPS is rather abstract and cumbersome, even for simple

geometries. In order to move these materials out of the lab and into the more modern

engineering design framework of commercial design and engineering software, robust

numerical methods must be developed in order to implement sound and accurate

simulations.

The photo-mechanical theory is summarized and some constitutive laws that

govern LASMPS are described. Implementation of the multiphysics governing

equations takes the form of a user defined element subroutine within the commercial

software package ABAQUS/STANDARD. Simulations are carried out with varied

geometries and symmetries, for example plane-strain, axisymmetric, and three-

dimensional geometries under complex photo-mechanical loadings.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The motivation for this work is to formulate a robust finite element implementation

that can numerically solve problems which involve the coupling of the physics of

large deformable solids and their interaction with light. With this implementation,

engineers would have access to a tool which would aid in the design of a new form of

smart materials that are responsive to light. One specific example is Light Activated

Shape Memory Polymers (LASMPs). LASMPs are different from traditional Shape

Memory Polymers (SMPs) in that instead of responding to thermal changes these

SMPs respond to particular wavelengths of light.

1.2 The Finite Element Method

The finite element method (FEM) is a way of solving partial differential equations

(PDEs) numerically that is especially well suited for complex geometries and

computational mechanics. The general idea of the FEM is to formulate a weak form

from the governing PDE (or PDEs) along with its boundary conditions (BCs). The

development of the weak form involves multiplying the governing PDE by a special

mathematical entity known as a weighting function. Once multiplied the result is

integrated over the whole body in question. At this point the geometry is then

discretized, and the weighting function and solution variables are interpolated using

shape functions. Nodes and simple shapes such as triangles and quadrilaterals now

make up the previously complex geometry.

The discretization allows the PDE to be converted into a system of nonlinear

algebraic equations. Once the problem has been formulated in this setting, a solution

1
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may be obtained using either an implicit Newton-Raphson method, or an explicit

incremental method.

1.3 Continuum Mechanics

The modern theory of continuum mechanics offers a unified nonlinear framework

between the mechanics and thermodynamics of continua. Emphasis on the fact that

this theory is nonlinear is very important to development of constitutive models to

describe the states of deformation and stress for different classes of materials.

Constitutive models developed for LASMPs by [22] and [16] will enter into the

coupled finite element framework. The general idea behind these models is that the

Cauchy stress is the sum of the stresses in each polymer network. The evolution of

the network fraction will be coupled to a reaction rate which is driven by the light

intensity within the material.

1.4 Shape Memory Polymers (SMPs)

Shape memory polymers have been under development over the past few decades and

are a recent addition to the general class of polymeric materials. These polymers are

distinct from the rest of polymeric materials since they possess the shape memory

property which allows the material to store a temporary shape (which is deformed

from the original permanent shape by a form of environmental stimuli), and return

to it’s permanent shape once the environmental factors have been removed. These

stimuli can include fluctuations in temperature, electricity, magnetism, and light.

Thermal SMPs were among some of the first of this class of material to be studied

such as in [3]. Other than thermal effects [4] have shown polymers can also exhibit the

shape memory effect due to chemical, electrical, magnetic, and light. Light activated

shape memory polymers will be the concentration of this work, however many of the
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ideas presented here can be extended to the study of SMPs which exhibit the shape

memory effect due to different physical stimuli.

One of the first widespread applications of thermally activated SMPs were heat

shrinkable tubes as discussed in [20]. SMPs are now beginning to be used in critical

biomedical applications which require more accurate design techniques to be used

safely, e.g. [15], [18], and [1]. Other interesting applications include self-deployable

space structures, mircosystems (e.g. [17] and [19] ), and re-writable data storage

(e.g. [25] and [26]). Technologies with complex geometries, such as those mentioned

above, require a validated numerical implementation of a mechanical constitutive

theory which is coupled with the environmental stimulus which is the cause of the

shape memory affect.

Significant effort in the thermo-mechanical constitutive modelling of thermal

SMPs has been published in the literature (e.g. [6], [21], and [24]). There is, however,

no widely agreed upon theory for modeling the response of thermal SMPs. Even

though the models are not completely accurate, the numerical implementation of

these models can promote the development of critical applications.

1.4.1 Light Activated Shape Memory Polymers (LASMPs)

LASMPs have an inherently different mechanism which controls the shape memory

effect versus the physical mechanisms of thermally actuated SMPs. Thermal SMPs

exploit a phase change that occurs in these polymers once heated above the glass

transition temperature, ϑg. LASMPs still have an elastomer base but are infused with

photo-responsive functional groups that, when exposed to the proper wavelength of

light, form new covalent bonds between the main polymer chain. The newly formed

bonds are photo-reversible and, upon exposure to a different wavelength, will cleave.



CHAPTER 2

BACKGROUND THEORY

2.1 Continuum Mechanics

The necessary theory from Continuum Mechanics will now be presented in order

to numerically implement the conservation of linear momentum alongside the

Beer-Lambert law. The notation that will be used is standard of modern continuum

mechanics [9]. Specifically: ∇ and Div denote the gradient and divergence with

respect to the material point X in the reference configuration; grad and div denote

these operators with respect to the point x = χ(X, t) in the deformed body; a

superposed dot denotes the material time-derivative. Boldface capital letters, such as

A, will denote tensor quantities, boldface lower case letters will represent vector

quantities, such as a, and lowercase Greek letters will be used to denote scalar

quantities, such as α. Also BR and Bt will denote a material body and spatial body

respectively and S will be used to denote the surface of a spatial body Bt. Throughout,

F−1 = (F)−1, F−> = (F)−>, etc. Some more tensor notation includes trA, sym A,

skw A, A0, and sym0A respectively, for the trace, symmetric, skew, deviatoric, and

symmetric-deviatoric parts of a tensor A. Also, the inner product of tensors A and

B is denoted by A : B, and the magnitude of A by |A| =
√

A : A. For a more detailed

introduction to modern continuum mechanics, see [9] and [10].

2.1.1 General Kinematics

Let BR denote the continuous region of space that a body of material occupies in a

fixed reference configuration, and denote a material point by X. Bt will denote the

region that the material body occupies during a specific time t > 0, a spatial point

in this region will be denoted by x. Now define the function χ which maps material

4
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Figure 2.1 Schematic of configurations involved in the formation and dissolution
of the second polymer network.

points to spatial ones

x = χ(X, t). (2.1)

The deformation gradient is defined as

F =
∂χ

∂X
, (2.2)

and the left and right Cauchy-Green stretch tensors are defined as

B = FF>, (2.3)

C = F>F. (2.4)

2.1.2 Kinematics of LASMPS

For LASMPs, multiple natural configurations are necessary to describe the complex

nature of the problem. Let BR denote the reference configuration and let Bt represent
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the current configuration respectively. Now define an intermediate space Bτ that

corresponds to the body when exposed to light, when the new polymer network is

formed atop the previous. The introduction of the intermediate configuration allows

for the decomposition of the deformation gradient, see Figure 2.1, as follows

Fl = FFm−1 (2.5)

where Fm corresponds to the mechanical component of the motion prior to exposure

to light, and Fl corresponds to the motion of the second network after exposure

to light. Keep in mind that the original network deformation is always measured

from the reference configuration BR. This decomposition will aid in the numerical

implementation of the shape memory constitutive response.

2.1.3 Conservation Laws

The conservation laws of continuum mechanics will be necessary within the theoretical

framework as well as the numerical one. The standard laws of conservation of mass

and linear momentum will be presented for the eventual numerical implantation. The

conservation laws are as follows

ρ̇+ ρdiv(v) = 0 (2.6)

ρv̇ = divT + b0 (2.7)

where Equation (2.6) is the conservation of mass and Equation (2.7) is the

conservation of linear momentum. For simplicity steady-state problems will be

considered, v̇ = 0, and body forces will be neglected; b0 = 0. Thus the balance

of linear momentum will take the following form

divT = 0 (2.8)
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2.1.4 General Constitutive Models

In order to fully close the conservation of linear momentum, a constitutive relation

for the Cauchy stress T must be defined. The LASMP can be modeled as an

elastomeric polymer which can be achieved using several material models such as

the Neo-Hookean, Mooney-Rivlin, or the Arruda-Boyce models. In this work, the

Neo-Hookean model will be used due to its simplicity. For each network i, the

Neo-Hookean stress is given as

Ti = µi (Bdisi)0 +Ki(ln Ji)1 (2.9)

where µi is the shear modulus of network i, Bdisi = J
−2/3
i Bi, (Bdisi)0 = Bdisi− 1

3
trBdisi

and Ki is the bulk modulus of network i. Then for a two network polymer the total

stress is

T = (1− α)T1 + αT2 (2.10)

where α (0 ≤ α ≤ 1) is the fraction of the newly formed network, T1 is the stress

in the original network, and T2 is the stress in the newly formed network. Therefore

for α = 1 there is no presence of the second network and all of the stress is in the

original network. In general a constitutive relation is necessary for the evolution of α,

both during the formation and dissolution of the second network, which is coupled to

the light intensity through photochemical reactions. Relations of this form are given

in [23] for the evolution of α under homogeneous light intensity which implies that

the extent of the reaction is homogeneous throughout the body. The evolution of α

while the second network is forming is given by

α̇ = kf (1− α)n (2.11)
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where kf is the rate constant of the forward reaction and n is the order of the reaction.

The evolution of α during the dissolution of the second network is given by

α̇ = −krαn (2.12)

where again n is the order of the reaction and kr is the rate constant of the reverse

reaction.

These relations are reasonably valid for optically thin members. In this work

however, the evolution of α will be coupled to the photochemical reactions of specific

light activated polymers that are optically thick. This will induce an inhomogeneous

extent of the reaction throughout the material which will cause an inhomogeneous

shape memory recovery.

2.2 Photo-Mechanics

This section will present the necessary theory for describing the mechanism by which

light penetrates and transmits through a continuous solid material. Radiative transfer

will be presented and several simplifying assumptions will be made on the governing

equations. This will lead to the well known Beer-Lambert law which will define the

strong form of the mechanism by which light interacts with deformable matter within

the uncoupled as well as the coupled theory.

2.2.1 Radiative Transfer

Radiative transfer is the method by which light transfers energy through a continuous

medium. As light travels, photons will transport electromagnetic energy through

various mechanisms such as, scattering, emission, and absorption. The governing

equation for radiative transfer is (see [5])

1

c

∂I

∂t
+ d · grad I + (ks + ka)I = j +

1

4πc
ks

∫
Ω

IdΩ (2.13)
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where c is the speed of light, d is the local direction that light is propagating , I is the

specific light intensity, ks is the scattering coefficient, ka is the absorption coefficient,

and j is the emission coefficient. The integral takes into account the scattered light.

If scattering and emission are neglected which for some LASMPs have been

shown to be negligible by [2], then the resulting equation is

d · gradI + σI = 0 (2.14)

In order to make the boundary value problem (BVP) well posed, appropriate

boundary conditions (BCs) must be defined. This particular equation belongs to

a class of PDEs known as first-order hyperbolic PDEs which exhibit boundaries of

the form

S = S− ∪ S+ (2.15)

where

S− = {x ∈ S | d(x) · n(x) < 0} (2.16)

and

S+ = {x ∈ S | d(x) · n(x) > 0}. (2.17)

The boundary condition of Beer’s law is defined only on S− and not the entirety of

the boundary due to the first order nature of the problem. The BC is a prescribed

light intensity on S−, i.e. I = I0. The BVP is then defined as
d · gradI + σI = 0 in Bt

I = I0 on S−
(2.18)

which will act as the governing equation for describing the light intensity in the

numerical implementation.
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2.3 Photochemistry

The photochemistry of two recently developed classes of LASMPs will be discussed

briefly in this section to highlight the process of how to couple the polymer fraction

to specific polymeric constituents. First the class of LASMPs with photo-tunable

molecular crosslinks (PMC), which is the simpler of the two, will be discussed;

followed by LASMPs whose shape-memory affect is governed by photo-tunable

network rearrangement (PNR). These two classes of LASMPs are discussed at length

in [16].

2.3.1 PMC Material

Recently an amorphous polymer with photo-tunable molecular crosslinks (PMC) was

developed, see [13] and [14]. The rate of reaction for a PMC material is governed by

the bonding and cleaving of chromophores. Let CUB represent the concentration of

unbonded chromophore pairs and let CB be the concentration of bonded chromophore

pairs, where in general CUB and CB are functions of position and time.

∂CUB
∂t

= −
(
φUBαUB
NAhν

)
C2
UBI + 2

(
φBαB
NAhν

)
CBI, in Bt.

CUB = C0, for t = 0.

CUB + 2CB = C0, for t ≥ 0.

(2.19)

where NA is Avogadro’s number, h is Planck’s constant, ν is the frequency of the

light driving the reaction, αUB and αB are the absorptivities of unbonded and bonded

chomophores respectively, φUB and φB are the quantum efficiencies of the bonding

and cleaving of chromophores which can be a function of frequency in the range 0 to

1. For simplicity they will be defined as follows for bonding

φUB = 1, and φB = 0, for ν > νc (2.20)

and for the cleaving of chromophore bonds.



11

Figure 2.2 PMC reaction showcasing the formation of molecular cross links between
chromophores. Image from [16].

φUB = 0, and φB = 1, for ν > νc (2.21)

For a PMC material the evolution of the polymer fraction is defined as
α = k2CB for t ≥ 0

α = 0 for t = 0

(2.22)



CHAPTER 3

FINITE ELEMENT FORMULATION

In the absence of body forces, the strong forms of the governing PDEs are

Balance of momentum


divT = 0 in Bt,

u = ŭ on Su,

Tn = t̆ on St,

Radiative Transfer


d · grad I + σI = 0, in Bt,

I = I0 on S−


(3.1)

where above ∂S = Su ∪ St, Su ∩ St = ∅ and

S− = {x ∈ ∂S | n(x) · d < 0} (3.2)

where n(x) is the normal vector to the surface S at the point x on S. The

process of numerical formulation will ensue as follows:

� The usual Galerkin form of the weak problem will be derived for the Beer-

Lambert Law, however this approach leads to a non-stable method for this

particular class of problems.

� To stabilize the problem a Streamline-Upwind Petrov Galerkin (SUPG) form

of the problem, with some artificial diffusion added, will be derived in order to

improve the error bounds of the solutions.

� Once the uncoupled photo-chemical theory has been verified, a photo-mechanical

constitutive model is implemented into a coupled multiphysics finite element

implementation.

12
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3.1 Galerkin Formulation of the Beer-Lambert Law

This section presents the standard approach to formulating a Galerkin weak form

from the corresponding strong form. The BVP is
d · grad I + σI = 0 in Bt

I = I0, on S−
(3.3)

where d, a unit vector, represents the direction of light incidence, I is the light

intensity, I0 is the initial light intensity, and σ is the absorptivity of the given material.

In order to formulate the weak form, the strong form will be multiplied by a sufficiently

continuously differentiable scalar test function w1 and integrated over the body Bt,

which gives ∫
Bt
w1d · gradIdv +

∫
Bt
w1σIdv = 0 (3.4)

The body Bt is approximated using finite elements such that Bt = ∪Bet and the

light intensity field is interpolated inside each element by

I =
∑

IANA (3.5)

where the index A = 1, 2, ...,M is used to denote the nodes of the element, IA is

used to represent the nodal values of light intensity, NA are the shape functions;

to be discussed later. For the standard Galerkin approach the weighting field w1 is

interpolated as follows

w1 =
∑

wA1 N
A (3.6)

upon inserting the above interpolants into Equation (3.4) gives

∫
Bet
wA1 N

Ad · gradIdv +

∫
Bet
wA1 N

AσIdv = 0, (3.7)
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which may be simplified to

wA1

(∫
Bet
NAd · gradIdv +

∫
Bet
NAσIdv

)
= 0. (3.8)

Now, since the wA1 ’s factor out, and since they are arbitrary, we define the residual

vector for light intensity at each node “A” as

RA
I =

∫
Bet
NAd · gradIdv +

∫
Bet
NAσIdv = 0. (3.9)

Along with the corresponding tangent required for the iterative Newton solver

KAB
II = −∂R

A
I

∂IB

= − ∂

∂IB

∫
Bet
NAd · gradIdv − ∂

∂IB

∫
Bet
NAσIdv

= −
∫
Bet
NAd · ∂

∂IB
gradIdv −

∫
Bet
σNA ∂I

∂IB
dv −

∫
Bet
INA∂σ

∂I
dv

making use of the chain rule and using the element wise definition of light intensity

I = IBNB shows that

∂

∂IB
gradI = gradNB. (3.10)

Therefore the final form of the tangent matrix is

KAB
II = −

∫
Bet
NAd · gradNBdv −

∫
Bet
NAσNBdv −

∫
Bet
NAI

∂σ

∂I
NBdv (3.11)

or in index notation

KAB
II = −

∫
Bet
NAdi

∂NB

∂xi
dv −

∫
Bet
NAσNBdv −

∫
Bet
NAI

∂σ

∂I
NBdv (3.12)

Note that the term ∂σ
∂I

in the previous equation represents material non-linearity. This

is useful for simulating materials in which the absorptivity of the material is highly

dependent upon the light intensity.
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However this formulation is not a sufficient numerical scheme for the given class

of equations. This method will lead to oscillatory solutions and must be stabilized.

This will be accomplished by the addition of a small amount of artificial diffusion

and using a more sophisticated form of the weighting function which will put more

weight on the direction in which the light travels. This method of formulation is

known as the Streamline Upwind Petrov-Galerkin (SUPG) formulation. It should be

noted that the SUPG does not necessitate the addition of artificial diffusion however,

we have found it helps to obtain converged solutions in ABAQUS.

3.2 Streamline Upwind Petrov-Galerkin Formulation (SUPG)

Due to the well known numerical difficulties of first order hyperbolic PDEs a different

approach other than the standard Galerkin method must be utilized. First artificial

diffusion will be added to the strong form of the problem in order to smooth out the

noisy solutions exhibited by the Galerkin formulation. The other change will be in

the form of the weighting functions used to develop the weak form. The new BVP

reads as

Modified Strong From


div (εgrad I) + d · grad I + σI = 0, in Bt,

I = I0, on S−,

ε grad I · n = 0 on S \ S−,

(3.13)

where ε is taken to be a very small number, and as ε → 0 the modified strong form

will converge to the Beer-Lambert Law. However, we note that since we have raised

the order of the PDE, the additional boundary condition is also artificial and will lead

to errors that will be addressed in future work. The difference in this formulation

compared to the standard Galerkin approach is the choice of the weighting function

which is discussed in length in [11]. For the SUPG form we choose a weighting

function w̄1 such that w̄1 = w1 + τd · gradw1, where w1 is the weighting function
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used in a standard Galerkin scheme and τ is the so called stabilization parameter.

This has the effect of putting more influence on the weighting function in the upwind

direction, where the information flows from in this class of problems. Now, repeating

the procedure, we integrate over the body Bt∫
Bt
w̄1 ( div (εgrad I) + d · gradI + σI) dv = 0 (3.14)

∫
Bt
w̄1div (εgrad I) +

∫
Bt
w̄1d · gradIdv +

∫
Bt
w̄1σIdv = 0 (3.15)

Now we use the divergence theorem on the first term

−
∫
S
w̄1εgrad I · nda+

∫
Bt
εgrad w̄1 · gradIdv

+

∫
Bt
w̄1d · gradIdv +

∫
Bt
w̄1σIdv = 0 (3.16)

where εgradI · n = 0.

The body Bt is approximated using finite elements such that Bt = ∪Bet and the

light intensity field is interpolated inside each element by

I =
∑

IANA (3.17)

where the index A = 1, 2, ...,M is used to denote the nodes of the element, IA is used

to represent the nodal values of light intensity, NA are the shape functions; to be

discussed later. For the SUPG formulation the weighting field w̄1 is interpolated as

follows

w̄1 =
∑(

wA1 N
A + wA1 τd · gradNA

)
(3.18)
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Inserting the above interpolants into Equation (3.16) gives

∫
Bet
εgrad

(
wA1 N

A + wA1 τd · gradNA
)
· gradIdv

+

∫
Bet

(
wA1 N

A + wA1 τd · gradNA
)

(d · gradI + σI) dv = 0, (3.19)

which simplifies to

wA1

∫
Bet
ε gradNA · gradIdv + wA1

∫
Bet
τ div

(
gradNA

)
d · gradIdv

+ wA1

∫
Bet
NA (d · gradI + σI) dv + wA1

∫
Bet
τ
(
d · gradNA

)
(d · gradI + σI) dv = 0.

(3.20)

Note that div
(
gradNA

)
= 0 for linear shape functions, also since the the wA1 s factor

out and they are arbitrary, the residual vector for light intensity is

RA
I =

∫
Bet
NA (d · gradI + σI) dv +

∫
Bet
τ
(
d · gradNA

)
(d · gradI + σI) dv

+

∫
Bet
εgradNA · gradIdv. (3.21)

As before, the corresponding tangent matrix is

KAB
II =− ∂RA

I

∂IB

=− ∂

∂IB

∫
Bet
NA (d · gradI + σI) dv

− ∂

∂IB

∫
Bet
τ
(
d · gradNA

)
(d · gradI + σI) dv

− ∂

∂IB

∫
Bet
εgradNA · gradIdv

making use of the chain rule and using the element wise definition of light intensity

I = IANA shows that

∂I

∂IB
=
∂I

∂I

∂I

∂IB
=

∂I

∂IB
= NB. (3.22)
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Therefore the final form of the tangent matrix is

KAB
II =−

∫
Bet
NA

(
d · gradNB + σNB + I

∂σ

∂I
NB

)
dv

−
∫
Bet
τ
(
d · gradNA

)(
d · gradNB + σNB + I

∂σ

∂I
NB

)
−
∫
Bet
εgradNA · gradNBdv,

or in index notation

KAB
II =−

∫
Bet
NA

(
di
∂NB

∂xi
+ σNB + I

∂σ

∂I
NB

)
dv

−
∫
Bet
τ

(
di
∂NA

∂xi

)(
di
∂NB

∂xi
+ σNB + I

∂σ

∂I
NB

)
dv

−
∫
Bet
ε
∂NA

∂xi

∂I

∂xi
dv.

The SUPG stabilization τ still needs to be defined in order to stabilize the solutions

using this particular scheme.

3.3 Large Deformation Weak Form

In this section the weak form will be developed from the strong form for a large

deformation continuum theory. For a more in depth discussion of non-linear finite

element methods with emphasis on solid mechanics consult [27]. Starting from the

strong form

Balance of Linear Momentum


divT = 0 in Bt,

u = ŭ on Su,

Tn = t̆ on St,

(3.23)

we introduce a sufficiently continuously differentiable vector weighting function w2,

such that w2 = 0 on Su, and we multiply the balance of linear momentum by w2 and
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integrate over the body Bt. This yields∫
Bt

w2divTdv = 0 (3.24)

∫
Bt

div (Tw2) dv −
∫
Bt

T : gradw2dv = 0 (3.25)

using the divergence theorem on the first term of (3.25) gives∫
S

(Tw2) · nda−
∫
Bt

T : gradw2dv = 0 (3.26)

where n is the unit normal vector to the surface S. Furthermore∫
St

(Tw2) · nda−
∫
Bt

T : gradw2dv = 0 (3.27)

the last implication is due to the fact that w2 vanishes on Su. Now under the

assumption that the Cauchy stress T is symmetric i.e. T = T> and the definition of

transpose produces ∫
St

w2 · (Tn) da−
∫
Bt

T : gradw2dv = 0 (3.28)

now using the boundary condition defined in (3.23)∫
St

w2 · t̆da−
∫
Bt

T : gradw2dv = 0 (3.29)

The body Bt is approximated using finite elements such that Bt = ∪Bet and the

displacement field is interpolated as

u =
∑

uANA (3.30)

where the index A = 1, 2, ...,M is used to denote the nodes of the element, IA is

used to represent the nodal values of displacement, NA are the shape functions; to
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be discussed later. For the standard Galerkin formulation the weighting field w2 is

interpolated as follows

w2 =
∑

wA
2 N

A (3.31)

Upon insertion of the above interpolants into Equation (3.29) we obtain∫
Set

wANA · t̆da−
∫
Bet

T : grad
(
wANA

)
dv = 0 (3.32)

Now inserting this result into (3.32) gives∫
Set

wANA · t̆da−
∫
Bet

TwAgradNAdv = 0 (3.33)

which in index notation may be expressed as∫
Set

wAi N
At̆ida−

∫
Bet

Tijw
A
i

∂NA

∂xj
dv = 0 (3.34)

and since wAi is constant it can be pulled out of the integrals which gives

wAi

∫
Set

NAt̆ida−
∫
Bet

Tij
∂NA

∂xj
dv

 = 0 (3.35)

and since wAi is non-zero and arbitrary on Set and in Bt the result is∫
Set

NAt̆ida−
∫
Bet

Tij
∂NA

∂xj
dv = 0 (3.36)

The displacement residual RA
ui

will now be defined within the finite element framework

as

RA
ui

=

∫
Set

NAt̆ida−
∫
Bet

Tij
∂NA

∂xj
dv (3.37)

Now the tangent matrix KAB
uu can be defined for the deformation problem in

index notation using the identities dv = JdvR, the definition of the Kirchhoff stress
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τ = JT = TRF>, where TR is the Piola stress, together with the identity F−>∇ϕ =

gradϕ for a scalar field ϕ, we may recast the residual in the referential form neglecting

the first term which is simply the traction boundary condition

RA
ui

= −
∫

Be

∂NA

∂Xa

F−1
aj τijdvR. (3.38)

Now using these identities

Fmn = δmn +
∑

uBm
∂NB

∂Xn

,
∂F−1

ji

∂Fkl
= −F−1

li F
−1

jk , and
∂NA

∂xi
= F−1

ai

∂NA

∂Xa

,

we have

KAB
uiuk

= −
∂RA

ui

∂uBk

=

∫
Be

∂NA

∂Xa

(
∂F−1

aj

∂Fmn
τij + F−1

aj

∂τij
∂Fmn

)
∂Fmn
∂uBk

dvR

=

∫
Be

∂NA

∂Xa

(
∂F−1

aj

∂Fmn
τij + F−1

aj

∂τij
∂Fmn

)
∂NB

∂Xn

δmkdvR

=

∫
Be

∂NA

∂Xa

(
−F−1

njF
−1

amτij + F−1
aj

∂τij
∂Fmn

)
∂NB

∂Xn

δmkdvR

=

∫
Be

∂NA

∂Xa

(
−F−1

ak F
−1
nj τij + F−1

aj

∂τij
∂Fkn

)
∂NB

∂Xn

dvR

=

∫
Be

∂NA

∂xj
Fja

(
−F−1

ak F
−1
nj τij + F−1

aj

∂τij
∂Fkn

)
Fln

∂NB

∂xl
dvR

=

∫
Be

∂NA

∂xj

(
−δjkτil + Fln

∂τij
∂Fkn

)
∂NB

∂xl
dvR

=

∫
Be

∂NA

∂xj

(
−J−1δjkτil + J−1Fln

∂τij
∂Fkn

)
∂NB

∂xl
dv

=

∫
Be

∂NA

∂xj

(
−J−1δjkτil + J−1FlnFjm

∂TR,im

∂Fkn
+ J−1FlnTR,imδjkδmn

)
∂NB

∂xl
dv

=

∫
Be

∂NA

∂xj

(
−J−1δjkτil + J−1FlnFjm

∂TR,im

∂Fkn
+ J−1δjkτil

)
∂NB

∂xl
dv

=

∫
Be

∂NA

∂xj

(
J−1FlnFjm

∂TR,im

∂Fkn

)
∂NB

∂xl
dv
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or with

Aijkl
def
= J−1FjmFln(AR)imkn, with AR

def
=
∂TR

∂F
(3.39)

defining a spatial tangent modulus, we have

KAB
uiuk

=

∫
Be

∂NA

∂xj
Aijkl

∂NB

∂xl
dv. (3.40)

3.4 Basic Element Technology

The basic element technology used in this thesis is based of the framework present

in [7]. In most cases, when applying the finite element method, the volumetric

contribution to the displacement residual is represented in matrix form

Ru =

∫
Be

B>Tdv, (3.41)

where Ru is the element displacement residual vector, B is the symmetric

discrete gradient matrix, and T is the Cauchy stress vector. These three vectors

vary depending on whether the problem is plane-strain, axi-symmetric, or three-

dimensional. For two dimensions the residual vector, which is returned to ABAQUS

as RHS, is

R =
[
R1
u1
R1
u2
R1
IR

2
u1
R2
u2
R2
I . . . R

M
u1
RM
u2
RM
I

]>
, (3.42)

and for three dimensions is

R =
[
R1
u1
R1
u2
R1
u3
R1
I R

2
u1
R2
u2
R2
u3
R2
I . . . R

M
u1
RM
u2
RM
u3
RM
I

]>
, (3.43)

The matrix form of the tangent matrix is

Kuu =

∫
Be

G>AG dv, (3.44)
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and the global tangent matrix, returned to ABAQUS as AMATRX, is

K =



K11
u1u1

K11
u1u2

K11
u1I

K12
u1u1

K12
u1u2

K12
u1I

K1M
u1u1

K1M
u1u2

K1M
u1I

K11
u2u1

K11
u2u2

K11
u2I

K12
u2u1

K12
u2u2

K12
u2I

K1M
u2u1

K1M
u2u2

K1M
u2I

K11
Iu1

K11
Iu2

K11
II K12

Iu1
K12
Iu2

K12
II K1M

Iu1
K1M
Iu2

K1M
II

K21
u1u1

K21
u1u2

K21
u1I

K22
u1u1

K22
u1u2

K22
u1I

· · · K2M
u1u1

K2M
u1u2

K2M
u1I

K21
u2u1

K21
u2u2

K21
u2I

K22
u2u1

K22
u2u2

K22
u2I

K2M
u2u1

K2M
u2u2

K2M
u2I

K21
Iu1

K21
Iu2

K21
II K22

Iu1
K22
Iu2

K22
II K22

Iu1
K2M
µu2

K2M
II

...
. . .

...

KM1
u1u1

KM1
u1u2

KM1
u1I

KM2
u1u1

KM2
u1u2

KM2
u1I

KMM
u1u1

KMM
u1u2

KMM
u1I

KM1
u2u1

KM1
u2u2

KM1
u2I

KM2
u2u1

KM2
u2u2

KM2
u2I

· · · KMM
u2u1

KMM
u2u2

KMM
u2I

KM1
Iu1

KM1
Iu2

KM1
II KM2

Iu1
KM2
Iu2

KM2
II KMM

Iu1
KMM
Iu2

KMM
II


(3.45)

To accommodate for both compressible and nearly incompressible material behavior

and mitigate volumetric locking, we have implemented the so called F-bar method

[8]. This procedure is based on replacing the deformation gradient suitably such that

the incompressibility constraint is enforced as an approximate average throughout

the element, rather than point wise at each integration point. The method is based

on the distortional-volumetric split of the deformation gradient

F = FdisFvol , (3.46)

with

Fdis = J−1/3F, Fvol = J1/31 . (3.47)

To construct the modified deformation gradient at an integration point of interest,

we first determine the deformation gradient at the centroid of the element, denoted

by Fc. Then the modified deformation gradient is constructed as

F̄ =

(
det Fc

det F

)1/3

F. (3.48)
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When stresses are computed at the integration points, the modified deformation

gradient F̄ is used in place of F. This ensures that all of the integration points

withing the element share the same total volumetric deformation gradient, specifically

det Fc. This formulation does not change the computation of the residual (3.37) at

the integration point, simply that F̄ is used to compute the constitutive response,

rather than F. However, the tangent computation (3.40) must be modified to

Kuu =

∫
Be

G>AG dv︸ ︷︷ ︸
standard terms

+

∫
Be

G>Q(G0 − G) dv︸ ︷︷ ︸
additional terms

, (3.49)

with

Q =
1

3
A : (1⊗ 1)− 2

3
T⊗ 1 . (3.50)

3.4.1 Plane Strain Problem

For plane strain elements, as mentioned before, have the condition that F33 = 1, and

F13 = F31 = F23 = F32 = 0; and the stress vector T is given by

T = [T11 T22 T12]> . (3.51)

In order to ensure a nearly incompressible material behavior the F-Bar method [8]

will be employed and for plane strain this reduces to
F̄11 F̄12 0

F̄21 F̄22 0

0 0 1

 =

(
Fc,11Fc,22 − Fc,12Fc,21

F11F22 − F12F21

)1/2


F11 F12 0

F21 F22 0

0 0 1

 , (3.52)

with Fc,ij the deformation gradient at the centroid of the element. Correspondingly,

in plane-strain, the tangent modification (3.49) is now given by

Q =
1

2
A : (1⊗ 1)− 1

2
T⊗ 1 (3.53)
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where

[A : (1⊗ 1)] =



A11 + A14 0 0 0 A11 + A14

A21 + A24 0 0 0 A21 + A24

A31 + A34 0 0 0 A31 + A34

A41 + A44 0 0 0 A41 + A44


(3.54)

with

Amn = Aijkl

denoting the matrix representation of A using the following transformation table

m/n
i/k

j/l

1 1 1

2 2 1

3 1 2

4 2 2

and with

[T⊗ 1] =



T11 0 0 0 T11

T21 0 0 0 T21

T12 0 0 0 T12

T22 0 0 0 T22


(3.55)

for the plane strain formulation.

3.4.2 Axisymmetric Problem

As mentioned earlier, for an axisymmetric element we have the condition that F13 =

F31 = F23 = F32 = 0, and F33 = R/R0, also the stress vector T is given by

T = [T11 T22 T12 T33]> . (3.56)
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Once again the F-Bar method [8] will be employed to prevent volumetric locking and

for the axisymmetric case the method takes the form

F̄ =

(
det Fc

det F

)1/3

F , (3.57)

where both F33 and Fc33 are computed before applying the F-bar method. The

tangents need to be corrected according to (3.49) with

[A : (1⊗ 1)] =



A11 + A14 + A15 0 0 A11 + A14 + A15 A11 + A14 + A15

A21 + A24 + A25 0 0 A21 + A24 + A25 A21 + A24 + A25

A31 + A34 + A35 0 0 A31 + A34 + A35 A31 + A34 + A35

A41 + A44 + A45 0 0 A41 + A44 + A45 A41 + A44 + A45

A51 + A54 + A55 0 0 A51 + A54 + A55 A51 + A54 + A55


(3.58)

where

Amn = Aijkl

using the following transformation table

m/n
i/k

j/l

1 1 1

2 2 1

3 1 2

4 2 2

5 3 3
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and with

[T⊗ 1] =



T11 0 0 T11 T11

T21 0 0 T21 T21

T12 0 0 T12 T12

T22 0 0 T22 T22

T33 0 0 T33 T33


(3.59)

for the axisymmetric formulation.

3.4.3 Three Dimensional Problem

Finally the three dimensional form of the F-Bar method [8] will be presented. For

the three-dimensional 8-node linear brick element developed the node ordering in the

natural coordinates is shown in Fig. 4.1. The stress vector T now takes on the form

T = [T11 T22 T33 T12 T23 T13]> . (3.60)

and again

F̄ =

(
det Fc

det F

)1/3

F , (3.61)
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The tangents need to be corrected according to (3.49) with

[A : (1⊗ 1)] =

A11 + A15 + A19 0 0 0 A11 + A15 + A19 0 0 0 A11 + A15 + A19

A21 + A25 + A29 0 0 0 A21 + A25 + A29 0 0 0 A21 + A25 + A29

A31 + A35 + A39 0 0 0 A31 + A35 + A39 0 0 0 A31 + A35 + A39

A41 + A45 + A49 0 0 0 A41 + A45 + A49 0 0 0 A41 + A45 + A49

A51 + A55 + A59 0 0 0 A51 + A55 + A59 0 0 0 A51 + A55 + A59

A61 + A65 + A69 0 0 0 A61 + A65 + A69 0 0 0 A61 + A65 + A69

A71 + A75 + A79 0 0 0 A71 + A75 + A79 0 0 0 A71 + A75 + A79

A81 + A85 + A89 0 0 0 A81 + A85 + A89 0 0 0 A81 + A85 + A89

A91 + A95 + A99 0 0 0 A91 + A95 + A99 0 0 0 A91 + A95 + A99



(3.62)

where

Amn = Aijkl

using the following transformation table

m/n
i/k

j/l

1 1 1

2 2 1

3 3 1

4 1 2

5 2 2

6 3 2

7 1 3

8 2 3

9 3 3
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and with

[T⊗ 1] =



T11 0 0 0 T11 0 0 0 T11

T21 0 0 0 T21 0 0 0 T21

T31 0 0 0 T31 0 0 0 T31

T12 0 0 0 T12 0 0 0 T12

T22 0 0 0 T22 0 0 0 T22

T32 0 0 0 T32 0 0 0 T32

T13 0 0 0 T13 0 0 0 T13

T23 0 0 0 T23 0 0 0 T23

T33 0 0 0 T33 0 0 0 T33



(3.63)

for the three-dimensional formulation.



CHAPTER 4

DISCRETIZATION USING ISO-PARAMETRIC LAGRANGIAN

SHAPE FUNCTIONS

This chapter presents the standard techniques for the discretization of an arbitrary

geometry using isoparametric shape functions. Finite Elements will be employed in

three different cases. These are plain-strain, axi-symmetric, and three dimensional.

Plain-strain assumes no strain in one of the three directions, axi-symmetric assumes

that the geometry has some radial symmetry present, and the three dimensional

shape functions are used for an arbitrary three dimensional shape. The distinction

is made between the first two types and the general three-dimensional type due to

the increased amount of computational time necessary for the full 3D problem. If a

symmetry exists within the problem then the user can simply choose the appropriate

element for the problem in order to save themselves computational expense if the

geometry exhibits some symmetry such as a block or a cylinder. For a more detailed

discussion of finite element shape functions consult [27] and [12].

4.1 Two-Dimensional Elements

For the two-dimensional elements developed, the node ordering in the natural

coordinates is shown in Figure 4.1. Referring to Figure 4.1, the shape functions

for the 4-node linear element with respect to the natural coordinates are given by

N1 =
1

4
(1− ξ)(1− η)

N2 =
1

4
(1 + ξ)(1− η)

N3 =
1

4
(1 + ξ)(1 + η)

N4 =
1

4
(1− ξ)(1 + η).

30



31

Figure 4.1 Two-dimensional linear quadrilateral, and three-dimensional linear brick
isoparametric master elements, with the node numbering as shown.

4.1.1 Planar Elements

For a plane-strain element we have the condition that F33 = 1, and F13 = F31 =

F23 = F32 = 0. Furthermore, the B-matrix, also known as the symmetric discrete

gradient matrix, is given by

B =


∂N1

∂x1

0
∂N2

∂x1

0 · · · ∂NM

∂x1

0

0
∂N1

∂x2

0
∂N2

∂x2

· · · 0
∂NM

∂x2
∂N1

∂x2

∂N1

∂x1

∂N2

∂x2

∂N2

∂x1

· · · ∂NM

∂x2

∂NM

∂x1

 (4.1)

where M is the total number of nodes in the element. The last matrix necessary for

discretization is the so called non-symmetric discrete gradient matrix G given by

G =



∂N1

∂x1

0
∂N2

∂x1

0 · · · ∂NM

∂x1

0

0
∂N1

∂x1

0
∂N2

∂x1

· · · 0
∂NM

∂x1
∂N1

∂x2

0
∂N2

∂x2

0 · · · ∂NM

∂x2

0

0
∂N1

∂x2

0
∂N2

∂x2

· · · 0
∂NM

∂x2


(4.2)
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4.1.2 Axisymmetric Elements

The axisymmetric problem is also modeled as 2D geometry with some differences

however. For an axisymmetric element we have the condition that F13 = F31 =

F23 = F32 = 0, and F33 = R/R0. The integration is modified such that∫
Bet
dxdy →

∫
Bet

2πrdrdz. In the numerical implementation F33 is computed as R/R0,

and numerically this is accomplished by

R =
∑

NAxA1 , (4.3)

R0 =
∑

NAXA
1 , (4.4)

where xA1 are the current 1-coordinates of the nodes, and XA
1 are the reference

1-coordinates of the nodes. Note that this scheme automatically implies that our

axisymmetric element formulation assumes the radial direction is the 1-direction.

The B-matrix is given by

B =



∂N1

∂x1

0
∂N2

∂x1

0 · · · ∂NM

∂x1

0

0
∂N1

∂x2

0
∂N2

∂x2

· · · 0
∂NM

∂x2
∂N1

∂x2

∂N1

∂x1

∂N2

∂x2

∂N2

∂x1

· · · ∂NM

∂x2

∂NM

∂x1
N1

R
0

N2

R
0 · · · NM

R
0


(4.5)

Finally, the standard non-symmetric discrete gradient matrix in (3.49) is given by

G =



∂N1

∂x1

0
∂N2

∂x1

0 · · · ∂NM

∂x1

0

0
∂N1

∂x1

0
∂N2

∂x1

· · · 0
∂NM

∂x1
∂N1

∂x2

0
∂N2

∂x2

0 · · · ∂NM

∂x2

0

0
∂N1

∂x2

0
∂N2

∂x2

· · · 0
∂NM

∂x2
N1

R
0

N2

R
0 · · · NM

R
0


(4.6)
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the above matrices are used to write element subroutines in order to carry out the

numerical procedures.

4.1.3 Three Dimensional Elements

For the three-dimensional 8-node linear brick element developed the node ordering

in the natural coordinates is shown in Figure 4.1. Referring to Figure 4.1, the shape

functions for the 8-node linear brick element with respect to the natural coordinates

are given by

N1 =
1

8
(1− ξ)(1− η)(1− ζ), N2 =

1

8
(1 + ξ)(1− η)(1− ζ),

N3 =
1

8
(1 + ξ)(1 + η)(1− ζ), N4 =

1

8
(1− ξ)(1 + η)(1− ζ),

N5 =
1

8
(1− ξ)(1− η)(1 + ζ), N6 =

1

8
(1 + ξ)(1− η)(1 + ζ),

N7 =
1

8
(1 + ξ)(1 + η)(1 + ζ), N8 =

1

8
(1− ξ)(1 + η)(1 + ζ).

Here the B-matrix is given by

B =



∂N1

∂x1

0 0
∂N2

∂x1

0 0 · · · ∂NM

∂x1

0 0

0
∂N1

∂x2

0 0
∂N2

∂x2

0 · · · 0
∂NM

∂x2

0

0 0
∂N1

∂x3

0 0
∂N2

∂x3

· · · 0 0
∂NM

∂x3
∂N1

∂x2

∂N1

∂x1

0
∂N2

∂x2

∂N2

∂x1

0 · · · ∂NM

∂x2

∂NM

∂x1

0

0
∂N1

∂x3

∂N1

∂x2

0
∂N2

∂x3

∂N2

∂x2

· · · 0
∂NM

∂x3

∂NM

∂x2
∂N1

∂x3

0
∂N1

∂x1

∂N2

∂x3

0
∂N2

∂x1

· · · ∂NM

∂x3

0
∂NM

∂x1



(4.7)
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where again M is the total number of nodes in the element. Finally the non-symmetric

discrete gradient matrix for a three-dimensional brick element is given as

G =



∂N1

∂x1

0 0
∂N2

∂x1

0 0 · · · ∂NM

∂x1

0 0

0
∂N1

∂x1

0 0
∂N2

∂x1

0 · · · 0
∂NM

∂x1

0

0 0
∂N1

∂x1

0 0
∂N2

∂x1

· · · 0 0
∂NM

∂x1
∂N1

∂x2

0 0
∂N2

∂x2

0 0 · · · ∂NM

∂x2

0 0

0
∂N1

∂x2

0 0
∂N2

∂x2

0 · · · 0
∂NM

∂x2

0

0 0
∂N1

∂x2

0 0
∂N2

∂x2

· · · 0 0
∂NM

∂x2
∂N1

∂x3

0 0
∂N2

∂x3

0 0 · · · ∂NM

∂x3

0 0

0
∂N1

∂x3

0 0
∂N2

∂x3

0 · · · 0
∂NM

∂x3

0

0 0
∂N1

∂x3

0 0
∂N2

∂x3

· · · 0 0
∂NM

∂x3
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CHAPTER 5

VERIFICATION OF THE FINITE ELEMENT FORMULATION

The first formal result achieved was the verification of the possibility of a non-linear

finite element implementation of the Beer-Lambert law. This result motivated the

extension of the numerical method to two and eventually three dimensions with weak

coupling to a large deformation theory.

The possibility of a fully functional LASMP FEM is not possible without the

above precursors. Once these results were obtained a simple homogeneous (equal

value of light intensity throughout) SMP effect driven by whether or not the light

intensity was above a critical value, I ≥ Ic. The assumption of homogeneity is

reasonably valid for optically thin materials, however for optically thick material

the light intensity may vary greatly from one region to another which will cause

inhomogeneity in the constitutive response.

5.1 One-Dimensional Verification of the SUPG Formulation

As an initial step toward the fully coupled three-dimensional theory of light and

deformation, the Beer-Lambert law will first be numerically verified using a simple

one-dimensional finite element implementation with the aid of MATLAB. The strong

form for this simplified one-dimensional case takes the form

1-D Beer-Lambert Law


d
dI

dx
+ σI = 0 in Bt

I = Ĭ on S−
(5.1)

and note that d = ±1 due to the one-dimensional nature of the problem. Here it

will be assumed that d = 1 for simplicity. The one-dimensional residual and tangent

matrix are therefore
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RA
I =

∫
Bet

NA

(
dI

dx
+ σI

)
dx+

∫
Bet

τ
dNA

dx

(
dI

dx
+ σI

)
dx, (5.2)

and

KAB
II = −

∫
Bet

NA

(
∂NB

∂x
+
∂σ

∂I
NBI + σNB

)
dx

−
∫
Bet

τ
∂NA

∂x

(
∂NB

∂x
+
∂σ

∂I
NBI + σNB

)
dx. (5.3)

These simplified forms are implemented in MATLAB, and the code is provided

in the Appendix. In order to verify this formulation a simple analytical example

will compared to the simulation results. This scenario will involve constant light

absorptivity so the governing equation can be solved analytically

dI

dx
+ σI = 0,

dI

dx
= −σI,

dI

I
= −σdx,

and integration over the body Bt gives∫
Bt

dI

I
=

∫
Bt
σdx,

ln(I) = −σx+ C,

or in other words,

I = I0e
−σx (5.4)

which is the analytic solution and is compared against the finite element method in

Figure 5.1. The case of light absorptivity which depends on the value of the light

intensity is also compared against the finite element method in Figure 5.2.
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Figure 5.1 One-dimensional verification with σ = 13, 900 cm−1. The analytical
solution is I = I0e

−σx i.e. I = I0e
−13,900x and is compared against the numerical

solution using (a) 5 elements, (b) 10 elements, (c) 20 elements and (d) 40 elements.

Note that the normalized depth is the coordinate position divided by the length

of the member, i.e. x
l

and the normalized light intensity is I
I0

5.2 Two- and Three-dimensional Verification of the Beer-Lambert

Problem

This section will showcase the verification of the strong form with no deformation, so

only light will be present in the simulations to follow. The simplest possible problem,
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Figure 5.2 One-dimensional verification with σ = 13, 900 ln I cm−1. The analytical
solution is I = eln I0e−σx i.e. I = eI0e

−13,900x
and is compared against the numerical

solution using (a) 5 elements, (b) 10 elements, (c) 20 elements and (d) 40 elements.



39

NT11

+3.990e+01
+4.491e+01
+4.992e+01
+5.492e+01
+5.993e+01
+6.494e+01
+6.995e+01
+7.496e+01
+7.997e+01
+8.497e+01
+8.998e+01
+9.499e+01
+1.000e+02

a) b)

Figure 5.3 (a) Mesh and boundary conditions of a plane-strain simulation. (b)
Contour plot of light intensity.

light traveling strictly in one direction incident perpendicular to a rectangular face,

will be verified for the UPE4, UAX4, and U3D8 element types.

Consider now the strong form (3.13) with d =

(
1 0 0

)>
, i.e. light is traveling

in the positive x-direction. Due to the definition of the boundaries for Equation (3.13)

light will only be incident upon the left face of the rectangle and this reduces the strong

form to 
dI

dx1

I + σI = 0 in Bt

I = I0, on S−
(5.5)

which is the same form presented in the section on one-dimensional verification.

Therefore the analytic solution for constant absorptivity will take the form of a

decreasing exponential. The results of the ABAQUS simulation shown in Figure 5.3

is compared against the analytic solution in Figure 5.5. These results show that our

element technology has a significant amount of error due to the numerical diffusion

and zero flux boundary condition. Future work will be aimed at improving these error

bounds.
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a) b)

Figure 5.4 (a) Mesh and boundary conditions of a three-dimensional simulation.
(b) Contour plot of light intensity.

5.3 Verification of the Large Deformation Problem

In the absence of light the theory reduces to a typical hyperelastic neo-Hookean

material. The Cauchy stress then takes the form

T = µ (Bdis)0 +K(ln J)1 (5.6)

To approximate a nearly incompressible neo-Hookean material we take K = 103µ.

This form of the constitutive equation will be used to verify the UEL against simple

analytical solutions. The analytical solutions will make a further assumption that

the material is completely incompressible, i.e. J = 1. The Cauchy stress under this

assumption now takes the form

T = −p1 + µB (5.7)

where p is a constitutively indeterminate pressure. For simple plane-strain compression

in the x1 direction the analytical solution for the stretch-stress behavior is

T11 = µ
(
λ2 − λ−2

)
(5.8)
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Figure 5.5 (a) Comparison of plane-strain simulation to the analytic solution. (b)
A parametric study showing the result of varying the numerical diffusivity in a plane-
strain simulation. (c) Comparison of 3D simulation to analytic solution.
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Figure 5.6 Comparison of numerical solutions against analytical solution for the
deformation problem only: (a) normalized stress T11/G versus stretch λ behavior in
simple compression. (b) Normalized stress T12/G versus amount of shear γ in shear.

which will be compared against the result computed by using a single UPE4

element, see Figure 5.6. These results will also be compared against simple uniaxial

compression results obtained by a single U3D8 element, see Figure 5.6. The

stretch-stress behavior for uniaxial compression is given by

T11 = µ
(
λ2 − λ−1

)
. (5.9)

The numerical response of a single U3D8 element to simple shear will be

compared next to the analytical result, see Figure 5.6. The analytic response to

simple shear is

T12 = µγ (5.10)

and the normal stress difference is

T11 − T33 = µγ2 (5.11)
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where again µ is the shear modulus and γ is the amount of shear. These results

verify our element technology when dealing with large mechanical deformations in

the absence of light.



CHAPTER 6

NUMERICAL EXAMPLE

This chapter showcases a simple LASMP loading and unloading cycle, see Figure 6.1(a).

The geometry in question is made of two sections, the top section is modeled as an

incompressible rubber like material which has no response to light, and the bottom

section is a light active PMC material. The geometry is meshed with 520 elements

and the simulation is carried out under the assumption of plane strain. For simplicity

the bulk and shear modulus of the rubber and the first and second network of the

PMC will be identical. Listed below are the material parameters which were used.

Table 6.1 Material parameters used for the LASMP cycle simulation.

Parameter Value

µ 1.0× 106 MPa

K 1.0× 109 MPa

σ 5.0× 103 cm−1

αUB 118 Lmol−1cm−1

αB 118 Lmol−1cm−1

C0 0.75 molL−1

I0 100.0, mWcm−2

ν 1.0× 1014 Hz

The cycle has four phases to it. The first is simple compression by a rigid surface,

see Figure 6.1(c). After deformation the body is held and irradiated with light which

initiates the formation of the second network. During irradiation the PMC is now in

a newly formed stress free configuration, the rubber is not however. This causes the
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PMC to absorb some of the stress within the rubber, see Figure 6.1(d). After some

time the rigid surface is released. At this point the PMC is in its remembered shape

and the rubber has unloaded. The PMC will hold this shape until irradiated with a

new frequency of light below the critical frequency νcr. The last and final phase is

the irradiation of the body with a frequency below νcr which will initiate the reverse

reaction within the PMC, see Figure 6.1(e). After enough time the reverse reaction

will complete and the body will return to its initial configuration, Figure 6.1(f).

This simulation showcases the potential for the design of products which

incorporate LASMPs with other materials which are already utilized in industry.

Materials which do not respond to photo-loading can be used as a backbone for light

activated polymers to design more complex shape recovery processes.
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Figure 6.1 Cycle of LASMP loading and unloading (all contour plots display
the logarithmic strain): (a) Mesh and BCs. (b) Initial configuration. (c) Simple
compression. (d) Body held and irradiated. (e) Body released. (f) Return to initial
configuration.



CHAPTER 7

CONCLUSION AND FUTURE WORK

In conclusion a coupled finite element method for light activated polymers has

been developed. The FEM has been implemented and verified as an implicit

Newton-Raphson scheme in the commercial software package ABAQUS standard

as a user defined subroutine for plane strain, axisymmetric, and three dimensional

geometries. Neo-hookean constitutive relations were utilized to carry out simulations

for both homogeneous and inhomogeneous formation of the second polymer network.

Simulations were also carried out for a specific light activated polymer, PMC, which

utilized a photochemical reaction rate which drove the formation of the new network.

In future work, the errors present in the light intensity solutions will need to be

improved through further research and development of more robust and sophisticated

numerical methods. This work can be used as a foundation for the development of

other user defined subroutines for different classes of light activated polymers by

changing the reaction rate. Similarly an extension of the method to polymers which

exhibit more than two networks can be carried out.

Other than improvement of the numerical method itself experimental verifi-

cation will need to be performed in order to validate the method. This will require

the design of experimental setups which utilize photo, chemical, and mechanical

apparatuses. Research into more complex constitutive responses of the materials

should also be explored such as thermoelastic, viscoelastic, and other inelastic effects.
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