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ABSTRACT 

DEVELOPMENT OF FLEXIBLE BATTERIES 

USING NANO-CARBONS AND POLYMERS 

by 

Zhiqian Wang 

Flexible electronics such as wearable equipment, displays, cell phones and smart cards 

require flexible power sources like batteries. In this thesis, the development of flexible 

batteries and supercapacitors are presented. Different types of flexible batteries including 

zinc carbon batteries, primary alkaline batteries, secondary alkaline batteries and zinc air 

cells are presented, These were designed, fabricated and improved using polymers and 

nano-carbons like carbon nanotubes (CNTs). CNTs are found to be effective as 

conductive additives compared to the traditional graphite. Purification is important to 

remove impurities that lead to side reactions/ corrosions. However, further treatment like 

carboxylation lead to higher electric resistance caused by the defects on CNT surface, 

which are created during the CNT acid treatment and functionalization. In case of 

secondary alkaline cells, CNTs can also provide channel for electrolyte to facilitate the 

recharge process. 

 Throughout the research in developing flexible batteries, it is found that polymers 

like polyethylene oxide (PEO) are used as binders to maintain flexibility; poly(3,4-

ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) to be an effective 

conductive additive in acidic/neutral conditions; polyvinyl alcohol (PVA)-poly (acrylic 

acid) (PAA) copolymer separator membrane is found to be an effective separator and 

electrolyte storage in alkaline electrolyte. 



 

 

 Efforts are also made to generate highly defective and oxidized CNTs for 

fabrication of supercapacitor electrodes is also presented. CNTs are treated under 

microwave conditions for different durations to generate varying amounts of defects and 

oxidation levels. This is evidenced by the increase in BET surface area, D to G ratio and 

oxygen content with increase in treatment time. Under the given conditions, a treatment 

time of 40 min is found to be optimum, beyond which the increase in any of these 

properties as well as in specific capacitance is minimal. The increase in surface area 

enhances the double layer capacitance while the oxygenation may lead to 

pseudocapacitance. Together these make microwave treatment of CNTs an attractive 

approach to enhance supercapacitor performance. 
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1 

CHAPTER 1  

INTRODUCTION 

1.1 Batteries and Capacitors 

A battery is a device that converts its chemical energy into electric energy by 

electrochemical redox reactions. A battery is composed of one or multiple cells, when a 

cell is a basic electrochemical unit composed of electrodes (cathode/ positive electrode and 

anode/ negative electrode), separator, electrolytes, current collectors and container. During 

the discharge process, the anode gives up electrons to external circuit and is oxidized; the 

cathode gains electrons via external circuit and gets reduced. Batteries, either disposable or 

rechargeable, differ from reserve batteries and fuel cells that they are readily assembled:  in 

a reserve battery one key component is separated from other parts of the battery; and hence, 

the battery is subject to activation prior to any usage; fuels cells require active materials 

from external sources to be fed into the cells. 

For a cell with redox reaction shown in the below equations: 

aA + bB → cC + dD   (overall) 

aA + ne
-
 → cC (cathode) 

bB → ne
-
 + dD (anode) 

the voltage E is given by Nernst equation: 

   0   
  

  
  
      

      
 

where E0 is the standard electromotive force, ia is the activity of species, R is the gas 

constant, T is the temperature, F is Faraday constant, n is the electrons transferred in the 

reaction. Hence, in a certain system, the changes in species activity (concentration, surface 
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area) can slightly increase the output voltage of a battery cell. Besides, the faster the 

reaction can happen, the higher power a cell can deliver. Other factors affecting battery 

performance include temperature, internal resistance, chemical deterioration of 

electrochemical materials and mode of discharge. 

Zinc has been the most popular anode material, especially in primary batteries, for 

its good electrochemical behavior, low cost and availability; Aluminum is also attractive 

for its electrochemical potential and abundance; lithium provides high energy density and 

power density, though requires non-aqueous electrolytes in most cases. Most common 

types of batteries include zinc-carbon batteries available as D, AA and AAA batteries; 

alkaline batteries in the form of AA, AAA, 9V batteries; lead acid batteries as car batteries; 

Ni-MH batteries also as rechargeable AA, AAA batteries; lithium ion batteries in cell 

phones and laptop computers; zinc air and zinc silver batteries as button cells. 

Zinc carbon batteries, using zinc anodes (cylinder) and MnO2 cathodes, are reliable 

low-cost primary batteries often used in flashlights, remote controls, toys and portable 

radios. In 1866 the first prototype of modern dry cell was developed. In the 20
th

 century the 

zinc carbon batteries gradually evolve, with improved MnO2 and electrolytes. Specially, in 

the 1960s, zinc chloride cells were developed, improving heavy duty performance. The 

chemical reactions are as follows: 

Zn + 2MnO2 + 2NH4Cl → 2MnOOH + Zn(NH3)2Cl2   (Leclanché) 

Zn + 2MnO2 + 2ZnCl2 + 2H2O → 2MnOOH + 2Zn(OH)Cl   (zinc chloride) 

Alkaline batteries using zinc anodes and MnO2 cathodes but alkaline electrolytes 

were first commercially introduced in 1959. They have been taking the market share of 

zinc carbon batteries due to better performance and low temperature performance. The 
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costs of these batteries are still relatively low compared to lithium systems. Unlike zinc 

carbon batteries, alkaline batteries use powdered zinc in anode, with alloying elements to 

control gassing. The reactions are as follows: 

Zn + 2MnO2 + 2H2O → 2MnOOH + Zn(OH)2 

Zn(OH)2 → ZnO + H2O 

Some alkaline batteries are designed to be rechargeable, with compositions similar 

to primary alkaline batteries; the electrochemical reactions are reversed during the charge 

process. However, additives are required to acquire the rechargeability: bismuth are 

required to prevent the soluble manganese species migrate from cathode to zinc anode. 

Besides, separators that can prevent internal short circuit due to zinc dendrite are 

necessary. Cycle life of a rechargeable alkaline battery is short, with the capacity fades 

after cycles. They are more suitable for less deep discharges, and should be charged after 

partially discharge to maintain the capacity better. 

A zinc air battery consists of a zinc anode, alkaline electrolyte and a cathode with 

catalysts. Air/ oxygen is allowed into the cathode. Using oxygen in the air as cathode active 

material, the energy density for zinc air battery is high. The electrochemical reaction is as 

follow: 

2Zn + O2 → 2ZnO 

Yet due to the low concentration of oxygen, the power is low. These cells are also 

more sensitive to environmental factors such as moisture, carbon dioxide concentration 

and temperature. They are also not suitable for intermittent uses. 

Batteries provide electricity via electrochemical redox reactions between cathodes 

and anodes. However, due to the limitation of reaction rates, needs for output power can 
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hardly be meet in many cases. Electrochemical capacitors, which store energy by charge 

separation, are developed as alternatives to batteries. Like a battery cell, a electrochemical 

capacitor/ supercapacitor also has two electrodes immersed in electrolyte with a separator 

between them. There are two basic mechanisms how an electrochemical capacitor works: 

double-layer capacitance and pseudocapacitance. In the former mechanism charge is 

stored electrostatically, or non-Faradaically, and there is no transfer of charge between 

electrode and electrolyte. There are no chemical or composition changes associated with 

non-Faradaic processes either. Since the double layer effect takes place at the boundary of 

the electrode-electrolyte phase, the available surface area plays an important role. In 

pseudocapacitance, charge is transferred between electrode materials and electrolyte, with 

electrosorption, reduction-oxidation reactions, and intercalation processes. Many metal 

oxides like RuO2 have shown large specific capacitance. 

1.2 Flexible Power Sources 

The increasing interest to flexible/portable electronics requires the development of flexible 

power sources like flexible batteries, which can be implemented in products such as smart 

cards, flexible displays, memory chips, smart watch belts as well as pharmaceutical and 

cosmetic transdermal delivery patches. The flexible power sources can also be combined 

with energy harvest devices, such as window shades with solar cell on one side and 

batteries on the other. These flexible batteries can be manufactured by commercially 

available cost-effective printing techniques like screen printing. 

Research has been focused on the development of different aspects of the flexible 

battery manufacturing processes, including design of the cells, current collectors, 

electrodes ink as well as electrolyte formulations. Just like traditional batteries, one battery 
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is composed of one or multiple electrochemical cells, when each cell is composed of 

anode, cathode, separator, electrolyte and in most cases current collectors on both 

electrodes. The basic design of a single-cell flexible pouch battery is shown in Figure 1.1. 

Each component of the cell has to be flexible. 

Different types of flexible power sources including batteries and capacitors are 

being developed, like zinc-MnO2 batteries (P. Hiralal, S. Imaizumi et al., 2010) (A. M. 

Gaikwad, G. L. Whiting et al., 2011), lithium-ion batteries (L. Hu, H. Wu et al., 2010) (X. 

Jia, C. Yan et al., 2011). Batteries are even fabricated on textiles to serve as wearable 

electronics (L. Bao and X. Li, 2012). Generally, the aqueous battery systems are safer and 

have lower costs, more friendly to the environment, though their performance tend to be 

lower; while the ones with organic electrolyte like lithium-ion batteries provide higher 

performance. 

 

Figure 1.1 Basic design of a flexible pouch battery. 
Source: Z. Wang, S. Mitra 2014 
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1.3 Nano-carbons and their Treatment 

Due to their high electrical conductivity and large surface area, carbon nanotubes (CNTs) 

have attracted much attention as effective conductive additives in aqueous cells (P. Hiralal, 

S. Imaizumi et al., 2010), or active electrode materials for composite electrodes in 

electrochemical energy storage devices such as lithium ion batteries (L. Hu, H. Wu et al., 

2010) (X. Jia, C. Yan et al., 2011), and supercapacitors (R. K. Sharma and L. Zhai, 2009). 

On the other hand, the extraordinary mechanical properties, including high strength and 

flexibility, make CNTs a very promising component for thin and flexible electrodes. In 

many studies, singlewalled carbon nanotubes (SWCNTs) have been utilized as conductive 

additives in non-Li batteries, primarily as conductive additives or current collectors. 

However, these SWCNTs are more expensive than their multiwalled counter parts: the 

multiwalled carbon nanotubes (MWCNTs). Besides, similar to carbon fibers, the CNTs 

can also serve as the matrix or scaffolds for active materials. 

There have been efforts to improve the performance of CNTs via functionalization 

to add functional groups and generating defects via conventional chemical techniques such 

as acid treatment, refluxing and sonication (C. G. Salzmann et al., 2007), (F. Hauke et al., 

2010; A. Stein et al., 2009) and (W. Huang et al., 2002). Hence, functional groups like 

hydrophilic carboxylic groups can be generated, changing many characteristics including 

the dispersibility in water, conductivity and redox properties. However, those reactions are 

mostly both energy and time-consuming. Microwave treatment of CNTs is known to cause 

in-situ super heating leading to fast reactions with high degree of functionalization (Y. 

Wang et al., 2005) (Y. Chen et al., 2008). Such treatment of CNTs can also be used to 

remove impurities like metal and metal oxides in the CNTs. The purification of CNTs was 
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carried out in the microwave accelerated reaction system by dispersing pre-weighed CNTs 

into dilute HNO3. The reaction vessels were subject to microwave radiation at a preset 

temperature for several minutes. The carboxylated functionalization/ destruction of CNTs 

were generally carried out in the microwave accelerated reaction system by dispersing 

pre-weighed CNTs into a mixture of concentrated H2SO4 and HNO3 and treated at higher 

preset temperatures for longer time. After cooling down to room temperature, the CNT 

products were vacuum filtered and washed using Milli Q water through until neutral. 

Samples were then finally dried in the vacuum oven until a constant weight was achieved. 
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CHAPTER 2  

FLEXIBLE ZINC-CARBON BATTERIES 

 

In Chapter 2, flexible zinc-carbon batteries were designed, fabricated and optimized. 

Multiwalled carbon nanotubes (MWCNTs) and conductive polymer 

poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) were 

implemented for the development of highly conductive composite electrode for flexible 

batteries. 

2.1 Zinc-Carbon Cells 

Zinc-carbon batteries are among the earliest commercially available consumer batteries. 

From the earlier Leclanché cells to the later zinc chloride cells, they used zinc as anode 

active material, MnO2 as cathode material and neutral or weak acidic electrolyte line 

ZnCl2. These zinc-carbon batteries feature lower costs and safety due to water-based 

electrolytes as well as inexpensive and environmentally friendly electrode materials. The 

production costs of zinc-carbon cells are relatively low due to water-based electrolyte as 

well as inexpensive and environmentally friendly electrode materials. 

It is known that MnO2 is a poor electrical conductor, so conductive additives 

(usually, graphite or carbon black) are added to cathode in zinc-carbon batteries. There is 

also the possibility of adding other conducting materials, like polymers, to enhance 

conductivity. For example, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) 

(PEDOT:PSS): PEDOT is known to be a stable conductive polymer which has been 

successfully applied as an electrode material for organic solar cells (Y. H. Kim et al., 2011) 

and capacitors (C. Lei et al., 2011) (A. Laforgue, 2011). Hence, it is believed that under 
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light acidic or neutral conditions, PEDOT:PSS could also serve as an effective conductive 

additive. 

2.2 Flexible Zn-C Cell Fabrication  

The cathode paste was prepared by mixing MnO2 powder (Aldrich,  99.99%, trace metal 

basis), polyvinylpyrrolidone (PVP, Aldrich, average mol wt. 10000), 1.3% wt aqueous 

dispersion of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS, 

Aldrich) and MWCNTs (purity 95%, Cheap Tubes Inc. Brattleboro, VT, USA). After 

mixing the components, the aqueous paste was sonicated for at least 10 minutes using 

OMNI SONIC RUPTOR 250 ultrasonic homogenizer. For comparison, the cathode 

mixture with synthetic graphite (Aldrich, 20 micron) instead of MWCNTs was prepared 

as well. The MWCNTs used were as received or functionalized prior to the electrode 

preparation to improve their dispersibility in the solvent/electrode matrix. Typically, dry 

cathode contained 87.0% w/w MnO2, 3% w/w PVP, and the rest being MWCNTs and 

sometimes PEDOT:PSS. The optimum MnO2:MWCNTs ratio in the cathode mixture was 

to determine. The anode mixture for flexible batteries was made of zinc powder (Sigma 

Aldrich, ≤10 μm, ≥ 98%) mixed with PVP and PEDOT:PSS aqueous solution. The anode 

after drying contained 83.5% w/w Zn dust, 2% w/w PVP, rest being PEDOT:PSS and Zn 

acetate. 

The flexible electrodes were prepared by casting the electrode slurry onto the 

carbon tape (NEM tape, Nisshin EMCO Ltd) current collector. Before casting, the carbon 

tape was stuck to the adhesive side of polyethylene terephthalate (PET) film coated with 



10 

 

 

ethylene vinyl acetate copolymer (EVA) resin. The typical electrode area was 4cm × 5cm.  

Copper foil strips stuck to the silver coated carbon tape served as electrode tabs. 

 The electrode slurries were applied onto the current collectors and dried at 50°C for 

30 minutes. The last 5 minutes of drying was processed under vacuum (pressure 9.893 kPa, 

with atmosphere pressure 101 kPa) to remove all residual water. The typical weights of the 

dry cathode and anode were 0.5 and 1 g, respectively. The electrodes were assembled 

co-facially with the craft paper separator (MUNKSJÖ paper) in between, which had been 

previously soaked in saturated zinc acetate electrolyte. The electrolyte also contained 600 

ppm lead chloride and 1000 ppm hexadecyltrimethylammonium bromide (HDTAB, Sigma 

Aldrich, ≥ 99%) as inhibitors. The batteries were then thermally sealed. 

 The cathode optimization was carried on in metal Swagelok cells with Zn-foil as 

anode. In this case, the cathode slurry was cast directly onto the stainless steel current 

collector (25 mm diameter) and dried. The typical weight of the cathode paste after drying 

was 0.1 g. For all cells, the Zn anode was taken in excess in respect to MnO2 cathode. 

 Scanning electron microscope (SEM) images were collected on a LEO 1530 VP 

Scanning Electron Microscope. Electrode materials were cast onto flat surface and dried to 

form a 0.2 mm thick layer of 1 cm × 1 cm. The surface resistance between two ends of the 

above layer was measured using Keithley digital multimeter to compare the electrode 

conductivity. The batteries were discharged under constant resistance mode (2640 Ω) 

using MTI Battery Analyzer (Richmond, CA). Flexible batteries were also attached to a 

cylindrical substrates of different diameters to test the performance under bending 

conditions. 
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2.3  Optimization of Flexible Cells 

Table 2.1 Electrode Resistance of Zn-C Battery Cathodes with Different Formulations 

Sample Surface resistance 

of 1 cm
2
 area (KΩ) 

Description of the sample 

1 3.26 PVP/MnO2/Graphite 

2 0.86 PVP/PEDOT:PSS/MnO2/Graphite 

3 0.37 PVP/ PEDOT:PSS/MnO2/CNTs (raw) 

4 0.54 PVP/PEDOT:PSS/MnO2/CNTs (functionalized) 

Source: Z. Wang et al., 2013 

 

The surface resistance of the cathode composed of MnO2, graphite and PVP was 

3.26 KΩ (see Table 2.1). In addition, PEDOT:PSS was added to increase the overall 

conductivity of the MnO2 cathode.  The addition of 1% PEDOT:PSS significantly reduced 

the resistance of the cathode down to 0.86 KΩ. The internal resistance of the electrodes 

may have contributed to lowering the operation voltages compared to the theoretical value. 

The addition of PEDOT:PSS to our composite electrode (1% w/w) had a strong impact on 

the electrochemical performance (Figure 2.1). Besides being a conductive polymer (C. 

Ionescu-Zanetti, A. Mechler et al., 2004) (Z. Hu, J. Zhang et al., 2011) (Y. Kim, J. Lee et 

al., 2012), the PEDOT:PSS showed poor solubility in the electrolyte. It was inferred that it 

formed conductive layers and bind/ bridged particles together. 
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Figure 2.1 Discharge curves of Zn-C cells with and without PEDOT: PSS. Graphite (8.6% 

w/w) was added as the conductive additive. The discharge was performed in constant 

resistance mode in a metal cell with Zn-foil anode and Zn(CH3COO)2 electrolyte. 
Source: Z. Wang et al., 2013 

 

As compared to graphite, the MWCNTs decreased the resistance of the cathode 

from 0.86 to 0.37 KΩ. This indicated that MWCNTs were more effective in creating the 

conductive network. The electrode prepared with functionalized MWCNTs demonstrated 

slightly higher resistance (0.54 KΩ) than the ones with raw MWCNTs. The hydrophilic 

carboxylation usually leads to improved wettability and dispersibility (T. W. Chou et al., 

2010). Therefore, carboxylation might significantly enhance the electrical conductivity of 

CNT composites by promoting better interfacial interactions (Y. Liu, L. Gao, 2005), (Z. 

Spytalsky et al., 2005), (Q. Li et al., 2007). On the other hand, the covalent 

functionalization could also create large numbers of defects on the CNT surface and 

decrease electron mobility and conductivity. In this case, it appeared that the improvement 

in dispersibility did not outweigh the increase in resistivity. The SEM images confirmed 

this assumption [Figure 2.2 (a), (b)] where relatively homogeneous distribution of both raw 

and functionalized MWCNTs was observed in the composite cathodes. No significant 
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enhancement of the homogeneity was observed after carboxylation of MWCNTs. 

Therefore, in this case, the functionalization did not improve electrode performance. 

 

 

 

Figure 2.2 SEM images of Zn-C cell composite electrodes: (a) MnO2-cathode (8.6% raw 

MWCNTs as conductive additive); (b) MnO2-cathode (8.6% w/w functionalized 

MWCNTs as conductive additive); (c) anode made of micron size Zn particles.  
Source: Z. Wang et al., 2013 

 

The electrochemical performance of MnO2 cathodes prepared with 1% 

PEDOT:PSS and different carbon conductive additives, namely, graphite, raw MWCNTs 

and COOH-functionalized MWCNTs (Figure 2.3) were measured. Upon discharge down 

to 0.7 V, the cathode with raw MWCNTs exhibited the highest operation voltage and 

longest operation time (see Figure 2.3). The superior performance of raw MWCNTs 

compared to the graphite is in good agreement with the results of the resistance 

a b 

c 
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measurements. The presence of the conductive additive and the more efficient network of 

the MWCNTs resulted in higher conductivity and a higher discharge voltage. Increasing 

the concentration of raw MWCNTs resulted in the higher operation voltage and higher 

discharge capacity. This is seen from Figure 2.4. Performance data of different cells are 

listed in Table 2.2, which shows that increasing the concentration of CNTs enhanced 

battery performance. The specific capacity obtained for the cathode with 8.6% graphite to 

12% MWCNTs increased from 4.5 to 120 mAh g
-1

. The corresponding MnO2 utilization 

for the graphite and the MWNT system increased from 1.5 to 39% of the theoretical value 

of 308 mAh g
-1

 MnO2. This value is in line with what has been reported before with 

SWCNTs. It should be noted that a different discharge mode was used in that study. 

 

 

Figure 2.3 Discharge of curves Zn-C cells with different carbons (8.6% w/w). The 

discharges was performed in constant resistance mode in a metal cell with Zn-foil anode 

and Zn(CH3COO)2 electrolyte. 
Source: Z. Wang et al., 2013 
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Figure 2.4 Voltage-capacity curves for Zn-C cells with raw CNTs in cathode. The 

discharge was performed in constant resistance mode in a metal cell with Zn-foil anode and 

Zn(CH3COO)2 electrolyte. 
Source: Z. Wang et al., 2013 

 

Table 2.2 Specific performance data of different cells (in metal cells) 

Description of the Cell Specific Capacity 

(mAh g
-1

 MnO2) 

Specific Energy 

(mWh g
-1 

MnO2) 

MnO2 

Utilization (%) 

MnO2/Graphite 4.50 4.27 1.5 

MnO2/Graphite/ 

PEDOT:PSS 

21.0 20.4 6.82 

PVP/PEDOT:PSS/ 

MnO2/CNTs (8.6%, 

raw) 

77.3 71.0 25.1 

PVP/PEDOT:PSS/ 

MnO2/CNTs (8.6%,  

functionalized) 

27.1 25.4 8.80 

PVP/PEDOT:PSS/ 

MnO2/CNTs (5%,  raw) 

61.5 58.7 20.0 

PVP/PEDOT:PSS/ 

MnO2/CNTs (12%,  raw) 

120 111 39.0 

Source: Z. Wang et al., 2013 
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Anode made of micron size zinc powder [Figure 2.2 (c)] not only showed higher 

flexibility than zinc foil, but also had greater surface area facilitating a faster reaction. 

However, anodes with zinc nanoparticles showed significant corrosion and the batteries 

failed rather quickly.  It is possible that the nanoparticles enhanced the gassing side 

reaction, generating hydrogen. Consequently, particle size of the zinc powder was an 

important factor. 

The flexible battery prepared with composite cathode and Zn-powder anode is 

shown in Figure 2.5. Upon discharge at a constant resistance of 2640 Ω, the flexible battery 

delivered about 15mAh capacity before significant voltage drop occurred. Typically, 

bending of the flexible battery can induce a compression of the cell stacking enhancing 

inter-particle contact and can also vary the contact adhesion between the electrodes and the 

separator. Bending may also result in cracking in some areas due to the stress on the 

composite especially in the case of MnO2. These factors are known to cause variation in 

performance.  Testing the batteries under bending conditions revealed that for the most part 

the batteries retained their function, though there were some relatively small fluctuations 

and alterations in the performance. This is presented in Figure 2.6. In our opinion, the 

bending performance can be further improved by further optimization of the electrode 

composition, improving its mechanical properties and packaging process, and by the 

utilization of more conductive current collectors. 
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Figure 2.5 Photograph of the flexible battery and LEDs powered by the flexible batteries. 
Source: Z. Wang et al., 2013 

 

 
Figure 2.6 Voltage-capacity curves for flexible Zn-C cells under bending conditions. 
Source: Z. Wang et al., 2013 

 

We have demonstrated a new approach to the fabrication of MnO2 composite 

cathodes based on simultaneous use of conductive polymer PEDOT:PSS and MWCNTs as 

conductive additives. MWCNTs were found to be more effective in creating conductive 

networks compared to graphite. The oxidative functionalization of CNTs prior to the 

cathode fabrication appeared to increase the resistance of the electrode composite and to 
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represent an advantageous alternative to significantly more expensive SWCNTs or less 

effective graphite in composite MnO2 cathode. 
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CHAPTER 3  

FLEXIBLE PRIMARY ALKALINE BATTERIES   

3.1 Alkaline Batteries   

Compared to lithium ion batteries, advantages of primary batteries with aqueous 

electrolytes include their eco-friendliness and ease of fabrication. Like zinc carbon cells, an 

alkaline battery uses MnO2 as the cathode active material along with zinc as anode active 

material. The electrodes are soaked in alkaline electrolyte like KOH with a separator often 

made from a fibrous material such as cellulose or synthetic fibers. The alkaline batteries 

have been replacing zinc-carbon batteries for their higher durability especially under heavy 

load. However, reports on flexible alkaline cells are relatively few. 

A flexible alkaline cell offers several challenges such as electrode flexibility, low 

internal resistance, gassing inhibition, and the retention of the electrolyte in the flexible 

cells. Each battery component need to be flexible and stable in the strong alkaline media. 

Particularly, the separator in a flexible alkaline cell is a key component that needs to be 

strong and stable enough to endure the high pH environment while maintaining its 

flexibility. Although they take up more space, polymer gel electrolyte/ separator using 

nylon mesh as scaffolds has been reported (A. M. Gaikwad et al., 2011). Free-standing 

films are preferred both as electrodes and separator so that more space can be reserved for 

the active material and the electrolyte. Polymer films with high ionic conductivity and 

flexibility are promising for battery fabrications. Both polyvinyl alcohol (PVA) and poly 

(acrylic acid) (PAA) have been reported as part of either polymer electrolyte or separator in 

flexible batteries (J. C. Bailey et al., 2010), (A. M. Gaikwad et al., 2011). PVA is known to 

be stable in alkaline environment, and a PVA-KOH-water system has been reported to 
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remain stable for a period of 2 years (A. A. Mohamad et al., 2003). The addition of PAA 

further increased the ionic conductivity (G. M. Wu et al., 2006). Another advantage of 

these polymers is that they can also hold electrolyte while maintaining flexibility. While 

the synthesis of PVA-PAA copolymers have been reported (G. M. Wu et al., 2006), (K. 

Kumeta et al., 2003) and (H. H. Wang et al., 1999), they are yet to be used as separator for 

flexible batteries. Besides, like zinc-carbon batteries, electrode resistance is another 

problem. 

The objective of this chapter is to develop high performance, flexible alkaline 

battery with MWCNT electrode that shows high active material utilization. Yet another 

objective is to develop copolymer separators to maintain the flexibility.  

3.2 Fabrication Methods 

The cathode paste was prepared by mixing electrolytic manganese dioxide powder (EMD, 

TRONOX,  92%, AB Grade), polyethylene oxide (PEO, Sigma Aldrich, Mv~400,000) 

and conductive additives. Multiwalled carbon nanotubes (MWCNTs, purity 95%, diameter 

20-30 nm, length 10-30 µm, Cheap Tubes Inc. Brattleboro, VT, USA) were used as 

received, purified or functionalized prior to the electrode preparation. Synthetic graphite 

(Sigma Aldrich, 20 micron) was used without further treatment. The purification and 

functionalization of CNTs was performed in a Microwave Accelerated Reaction System 

(Mode: CEM Mars) with acid treatment (Y. Chen, Z. Iqbal and S. Mitra, 2007) (Y. Chen, 

S. Mitra, 2008). 

The powders were mixed and then added into DI water which served as the solvent. 

The slurry was mixed for at least 30 min, followed by 30 min sonication using OMNI 
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SONIC RUPTOR 250 ultrasonic homogenizer. Then the cathode slurry was stirred again 

for 20 hours to form a homogeneous cathode material. The cathode dry formulation in a 

flexible alkaline battery contained conductive additive (3 - 15%, w/w) and PEO binder 

(10%, w/w), with the rest being EMD. Cathode optimization was carried out with an anode 

that contained zinc (96%, w/w), ZnO (2%, w/w) and PEO (2%, w/w). 

The anode paste was prepared by mixing zinc powder (Sigma Aldrich, ≤10 μm, ≥ 

98%), PEO as binder, zinc oxide powder (Sigma Aldrich, ≥ 99%) and Bismuth (III) oxide 

(Sigma Aldrich, 90-210 nm particle size, ≥ 99.8%) inhibitors, and conductive additive. The 

powders were mixed in the presence of DI water, and then stirred to form a homogeneous 

anode paste. The anode dry formulation in a flexible alkaline battery contains ZnO (2%, 

w/w), conductive additive (0 - 2%, w/w), Bi2O3 (0 - 3%, w/w), PEO (2 - 8%, w/w) and the 

rest was zinc powder. In cases of anode optimization, cathode formulation was fixed as 

EMD (84%, w/w), graphite (6%, w/w) and PEO binder (10%, w/w). Scanning electron 

microscope (SEM) images were collected on the LEO 1530 VP Scanning Electron 

Microscope. Electrode materials were cast onto flat surface and dried to form a 0.2 mm 

thick layer with a 1 cm × 1 cm area. The resistance between two ends of the layer was 

measured using Keithley digital multi meter. 

A copolymer film made from polyvinyl alcohol (PVA, Mowiol 18-88, Sigma 

Aldrich, Mv~130,000) and poly (acrylic acid) (PAA, Sigma Aldrich, Mv~450,000) was 

used as the separator in the flexible battery. PAA was first dissolved in 0.26% KOH 

solution, with mass ratio 1: 30, and stirred under 80 °C till all the solids dissolved. After a 

sonication for 30min, extra DI water was added along with PVA. The typical PVA:PAA 

mass ratio here was 2:1 to get a good balance between ionic conductivity and mechanical 
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strength (G. M. Wu et al., 2006). The solution was stirred at 70 °C till all the PVA 

dissolved. After another 30 min of sonication, the solution was again stirred for another 12 

hours and allowed to settle for an additional 12 hours to remove air bubbles. The fluid was 

then cast onto a flat smooth surface and dried. After drying, the copolymer film was peeled 

from the surface and heated at 150 ~ 160 °C for 50 min for crosslinking by ester linkage (K. 

Kumeta et al., 2003). Typical thickness of such a copolymer film was 0.2mm. The Fourier 

transform infrared spectroscopy (FTIR) of the separator film was done on a Perkin-Elmer 

instrument (Waltham, MA). 

After applying the electrode slurry onto the current collectors, the electrodes were 

allowed to dry at ~60°C for 30 minutes with the last 5 minutes under vacuum (9.893 kPa) 

to completely remove any residual water. For flexible cells the typical weights of the 

cathode and anode after drying were 0.315 and 0.64 g, respectively. The electrodes were 

assembled facing each other with the separator between them. Before assembling, the 

separator was soaked in electrolyte solution, which was 9M KOH solution with ZnO (6%). 

The battery was thermally sealed in a laminator. 

The electrochemical performances of different formulations were measured in 

fixed Swagelok-type cells. In this case, the electrode paste was cast directly onto the 

current collectors and dried. The typical weight of the cathode paste after drying was 0.03 

g. For both fixed and flexible cells, the Zn anode was taken in excess in respect to MnO2 

cathode to maintain anode conductivity. Glass microfiber filters (Grade GF/A: 1.6 µm, 

Whatman) were used as separator in fixed Swagelok-type cells. 
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Figure 3.1 Fabrication of flexible primary alkaline battery: (a) structure of a flexible cell; 

(b) assembled cell; (c) anode; (d) cathode; (e) PVA-PAA copolymer separator.  
Source: Z. Wang et al., 2014 

 

The flexible electrodes were prepared by casting the slurries onto the current 

collector made of silver ink (CAIG Laboratories Inc.) pasted directly onto the substrate. 

Batteries were fabricated in fixed metal cells while graphite rods (12.5 mm diameter) were 

used as current collectors. The flexible batteries were fabricated and encapsulated in 

polyethylene terephthalate (PET) film, which is coated with ethylene vinyl acetate 

copolymer (EVA) resin. The typical electrode area of a flexible battery was 3 cm × 4 cm. 

Copper foil strips stuck to the current collector served as electrode tabs. The bendable 

electrodes are shown in Figure 3.1. 

c d 

a b 

e 
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Figure 3.2 SEM images of primary alkaline battery electrodes: (a) cathode with graphite; 

(b) cathode with purified CNTs; (c) cathode with CNT-COOH; (d) anode with micron size 

zinc particles; (e) CNTs among zinc particles in anode; (f) copolymer separator soaked in 

electrolyte.  
Source: Z. Wang et al., 2014 

 

The electrochemical performance of the battery was measured using MTI Battery 

Analyzer (Richmond, CA). They were discharged at constant resistance mode (2640 Ω) 

and also under constant current modes (1.8, 3.6 and 7.2 mA, respectively). For the 

f 

a b 

c d 
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measurement of the electrochemical performance under bending, the batteries were firmly 

attached over a cylindrical solid substrate of predetermined curvature. 

3.3 Choice of Materials and Optimization 

3.3.1 Nano-carbons 

The battery structure, bendable electrodes, separator and photograph of a final cell are 

shown in Figure 3.1. SEM images of electrodes are shown in Figure 3.2. All formed good 

cathode composites with desired flexibility. Nanotubes could be uniformly dispersed in the 

active cathode material, where the functionalized CNTs showed slightly higher 

dispersibility. In anode the CNTs dispersed well in presence of the zinc particles and 

bridged the conductive zinc particles. The EDX data is presented in Table 3.1. It showed 

that other elements such as Fe existed in original CNTs as impurities which were removed 

during purification. Acid functionalization introduced more oxygen into the CNTs in the 

form of COOH groups. The purification in dilute acids was not harsh and did not generate 

noticeable defects or led to oxidation. 

Since MnO2 has low conductivity, conductive additives were added into cathode to 

reduce the internal resistance of the cell. Different carbon forms were tested and the 

performances of the batteries were compared. The electrode resistance data for different 

additives are shown in Table 3.2. The application of raw CNTs instead of graphite brought 

the resistance down from 30.5 to 0.54 KΩ. Figure 3.3 shows the discharge performance of 

the cells. This decrease in the cathode resistance was attributed to the fact that the CNTs 

created a more effective conductive network compared to graphite, leading to better 

performance. These results demonstrated the advantages of CNTs for electrode 

applications. Moreover, it has been reported that alkaline metal cations interact with the 
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phenyl group of the CNTs, resulting cation-π interaction (G. Mpourmpakis et al., 2006) 

and (G. W. Gokel et al., 2000). 

 

Table 3.1 EDX Results for CNTs 

Element weight % Raw CNTs Purified CNTs Functionalized CNTs 

C 94.55 94.94 92.02 

O 1.36 2.59 6.85 

Ni 3.74 2.47 1.13 

Fe 0.34 0 0 

Source: Z. Wang et al., 2014 

 

Table 3.2 Electrode Resistance of Primary Alkaline Battery Cathodes 

Conductive 

additive 

Graphite 

[kΩ] 

Functionalized CNTs 

[kΩ] 

Purified CNTs 

[kΩ] 

Raw CNTs 

[kΩ] 

Resistance 30.5  5.4 1.9 0.54 

Source: Z. Wang et al., 2014 

 

 
Figure 3.3 Discharge curves of primary alkaline cells with different carbons (in fixed cells, 

2640Ω discharge).  
Source: Z. Wang et al., 2014 
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Figure 3.4 Batteries with different amount of purified CNTs in cathodes: (a) Batteries with 

different amount of purified CNTs in cathodes (in fixed cells, 2640Ω discharge); (b) 

cathode cracking at high CNT percent.  
Source: Z. Wang et al., 2014 

 

Even though the electrode resistance was higher, the purified CNTs showed 

improvements over the raw CNTs (Figure 3.3). This was due to the removal of the metallic 

and nontubular carbon impurities. The metals influence the electrochemistry while the 

graphitic nanoparticles along with amorphous carbon are not as electrically conductive and 
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do not form uniform composite. The acid treatment generated carboxylic groups on the 

surface (F. Valentini et al., 2003), making it more hydrophilic. Although there have been 

reports that the surface oxidation treatment may enhance the electronic conductivity of 

CNTs composites (Y. Liu, L. Gao, 2005), (Z. Spytalsky et al., 2009) and (Q. Li et al., 

2007), in our experiment the functionalized CNTs were not as effective as its 

non-functionalized analogs.  Although the functionalized CNTs showed better dispersion, 

the oxidative treatment created defects on the CNT surface which disrupted charge 

transport [Figure 3.2 (b), (c)], thus compromising overall performance. Graphite showed 

the poorest dispersibility [Figure 3.2 (a)]. 

 

Table 3.3 Specific Performance Data of Different Primary Alkaline Cells 

Description of the Cell Specific 

Energy  

(mWh g
-1

 

cathode) 

Specific 

Capacity 

(mAh g
-1

 

cathode) 

Specific 

Capacity 

(mAh g
-1

 

MnO2) 

MnO2 

utilization 

(%) 

6% Graphite 71.3 54.3 64.7 21.0 

6% MWCNTs-raw 259 205 244 79.2 

6% MWCNTs-COOH 96.0 83.7 99.6 32.3 

6% MWCNTs-purified 275 218 259 84.1 

3% MWCNTs-purified 213 178 205 66.6 

8% MWCNTs-purified 289 230 281 91.2 

10% MWCNTs-purified 297 236 295 95.6 

15% MWCNTs-purified 261 211 281 91.2 

Source: Z. Wang et al., 2014 

 

Increasing the concentration of CNTs resulted in a higher operation voltage and 

higher discharge capacity. However, for the same electrode weight, as the concentration 

CNT increased, the amount of active material decreased, which reduced the overall 
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capacity of the cell (Figure 3.4). At higher CNTs loading, the electrode materials became 

more fragile which compromised the flexibility. Electrodes with more than 10% CNTs 

disintegrated easily.  The hollow structures of CNTs allowed it to hold the electrolyte and 

enhance the discharge performance, at the same time the electrodes swelled as they soaked 

up water, and shrank as they dried out. This led to electrode cracking when there was 

insufficient binder to hold it together [Figure 3.4 (b)]. That could explain why the 

performance of electrodes with 15% CNTs was not as good as those at lower 

concentrations. To avoid this and maintain electrode flexibility, more binder was required 

and this decreased the conductivity and chemical reactivity. Similar was the situation with 

the anode. 

Zinc was consumed as the battery discharged, and zinc oxide was formed which 

increased the internal resistance. Therefore, excess zinc was applied to the anode to 

maintain the electrode conductivity. Gas evolution in alkaline batteries is known to be a 

problem, excess ZnO has been reported to hinder zinc corrosion, and a decrease in KOH 

concentration is known to decrease hydrogen generation (V. Ravindran, V. S. 

Muralidharan, 1995). Anodic corrosion can be inhibited by the addition of certain organic 

compounds or metals such as Bi, Pb, Al (A. R. Suresh Kannan et al., 1995), (J. Y. Huot, E. 

Boubour, 1997), and (J. Dobryszyckia, S. Biallozor, 2001). The organic and metal oxides 

inhibitors are nonconductive and together with polyethylene oxide (PEO) and the zinc 

oxide generated during the reaction, they increase the anode resistance. In order to lower 

the resistance, small amount of CNTs were added into the anode (Figure 3.5).  In most 

cases, higher binder concentration led to higher flexibility but lower conductivity and 

performance. In other cases when there was insufficient binder, the electrode was 
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susceptible to cracking as shown in Figure 3.4 (b), which invariably led to a decrease in the 

discharge performance. That was the reason why the discharge performance increased 

when the PEO ratio increased. Effects of binder concentration are also shown in Figure 3.5, 

where 6% w/w graphite was used in the cathode. Finally the formulation with 4% PEO and 

2% CNTs showed optimum performance and flexibility. 

 

 
Figure 3.5 Effects of PEO binder and CNTs in anode (in fixed cells, 2640Ω discharge).  
Source: Z. Wang et al., 2014 

 

Optimizing the particle size of zinc was important for controlling gas generation. 

Smaller, micron size particles [Figure 3.2 (d)] with larger surface area facilitated discharge 

and promoted flexibility. However, zinc nanoparticles enhanced gassing significantly and 

batteries ceased to work soon. 
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3.3.2 Polymers 

The Fourier transform infrared (FTIR) spectra of the copolymer separator are shown in 

Figure 3.6. The peaks between 1700 and 1750 cm
-1

 were attributed to be the carbonyl C=O 

bonds, while the peaks between 1300 and 1000 cm
-1

 represent the C-O single bonds. The 

C=O peaks in PVA spectrum can be attributed to residual acetyl in PVA. Shifts in certain 

peaks were observed after the esterification reaction. The acid carbonyl peak at 1717.50 

cm
-1

 shifted to a higher wavenumber of 1731.96 cm
-1

. The reaction shifted the C–O stretch 

and led to the appearance of two bands at 1257.70 and 1096.66 cm
-1

. The esterification also 

weakened the alcohol C-O single bond absorption between 1050 and 1150 cm
-1

. 

 

 
Figure 3.6 FTIR spectrums for PVA, PAA and the copolymer separator.  
Source: Z. Wang et al., 2014 
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Figure 3.7 Cells with polymer separator/ glass fiber separator.  
Source: Z. Wang et al., 2014 

 

The discharge curves in Figure 3.7 show that PVA-PAA copolymer film had 

similar performance to glass fiber separator. However, the mechanical strength of the 

PVA-PAA was higher and it had flexibility compared to glass fiber or filter paper 

separator, and remained stable in the basic environment. Thicker separator held more 

electrolyte but compromised thickness and flexibility. According to our experimental 

results, 1 g of the dry PVP-PAA separator could absorb and hold approximately 2.3 g of 

electrolyte. The SEM image of such a separator is shown in Figure 3.2 (f). The separator 

also remained stable in the electrolyte. In one experiment, the separator which was soaked 

in the electrolyte for 1 month showed no sign of decomposition. 

 

3.3.3 Flexible Cell Performance 

A constant resistance discharge pattern of a flexible battery through a 2640 Ω is shown in 

Figure 3.8. With an optimized formulation and copolymer separator, a 3 × 4 cm
2
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flexible battery lasted as long as 155 hours. The capacity of a flexible battery obtained for 

optimized anode and cathode with 8% purified CNTs (283 mAh g
-1

) corresponded to the 

utilization of 92% of the theoretical capacity of MnO2 (308 mAh g
-1

) under a 3.6mA 

constant current discharge with a cut off voltage 0.9 V (Figure 3.9). This was higher than 

the zinc carbon battery in the former chapter. Discharge performances at different 

discharge rates are shown in Figure 3.9. 

 
Figure 3.8 A flexible battery discharged under 2640Ω constant resistance discharge. 
Source: Z. Wang et al., 2014 

 

 

 
Figure 3.9 Flexible primary alkaline cell discharge curves under different currents. 
Source: Z. Wang et al., 2014 

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

V
o

lt
ag

e
/V

 

Time/hours 

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0 10 20 30 40 50 60 70 80

V
o

lt
ag

e
/V

 

Capacity/mAh 

7.2mA

3.6mA

1.8mA



34 

 

 

 

Discharge tests under bending conditions (3.6 mA) revealed that the batteries 

remained functional (Figure 3.10). Two batteries connected in serial can light up LED 

lights as shown in Figure 3.11. The overall flexibility of the battery depends on the 

mechanical properties of each component: electrodes, electrolyte, separator and 

substrate/packaging. The electrodes, substrate and separator showed acceptable flexibility. 

Bending could induce a compression of the cell stacking enhancing the contact between the 

particles and between the electrodes and the separator. However, it may also cause 

cracking in the electrode materials due to the stress. The bending test showed that batteries 

remained functional, though some voltage fluctuations were observed. PEO, though water 

soluble, did not dissolve in high concentration salt or in basic solutions, making it an 

effective binder in flexible battery. In one of our tests, a free-standing PEO film also 

remained stable in KOH solution. It is the opinion of the authors that the bending 

performance can be further improved by further optimization of the electrolyte/ separator 

and by the utilization of more effective sealing system. 

 

 
Figure 3.10 Flexible primary alkaline cells under bending conditions. 
Source: Z. Wang et al., 2014 
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Figure 3.11 LED demos with flexible primary alkaline batteries. 
Source: Z. Wang et al., 2014 

 

A new flexible alkaline battery with CNTs in electrode formulation and a novel 

separator is reported. The CNTs showed some excellent performance and utilization of 

MnO2 reached as high as 92%. The PVA-PAA copolymer not only was an effective 

separator but also served as a means of electrolyte storage, ensuring the flexibility of the 

battery without performance compromise. The formulation of the alkaline battery is such 

that it could be printed using conventional techniques such as screen, stencil and ink 

dispensing printing.  
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CHAPTER 4  

FLEXIBLE SECONDARY ALKALINE BATTERIES   

4.1 Background   

Secondary alkaline batteries which use MnO2 as active cathode material, Zn anode and 

alkaline electrolyte are an attractive alternative to lithium ion batteries (F. Beck, P. 

Rüetschi, 2000), (Y. Shen, K. Kordesch, 2000), (M. Ghaemi et al., 2003). Unlike the latter 

which have to be charged before the first use, the secondary alkaline batteries can be used 

out of the package. Similar to zinc-carbon cells, they are suitable for low drain and 

intermittent devices, and the costs of secondary alkaline batteries are relatively low. 

Known to work well for less deep discharges and frequent charges, secondary alkaline 

batteries are considered a good option in many applications including interfacing to solar 

cells (X.C. Lau et al., 2013), (G. Dennler et al., 2007). Moreover, the secondary alkaline 

batteries are considered more eco-friendly than their lithium-ion counterparts where 

lithium is relatively toxic and organic electrolytes are used. 

The electrodes of these secondary batteries are similar to their primary 

counterparts, with small modifications in formulations to acquire rechargeability. Hence, 

chemical reactions are same as in primary cells except that during the charging process, 

reactions go in the opposite direction. 

4.2 Fabrication of Secondary Alkaline Cells 

The cathode paste was prepared by mixing EMD, PEO binder, magnesium oxide (Sigma 

Aldrich, 99.99%) and conductive additives. The conductive additives included synthetic 

graphite, multiwalled carbon nanotubes (MWCNTs), and carbon black (Sigma Aldrich, 
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500 nm). All chemicals were used as received, except that some of the MWCNTs were 

purified or functionalized prior to the electrode preparation.  

The purification and functionalization of CNTs were performed in a Microwave 

Accelerated Reaction System (Mode: CEM Mars) using experimental procedures same as 

Chapter 3. After mixing the components in DI water, the paste was sonicated for at least 30 

minutes using an ultrasonic homogenizer (Omni Sonic Ruptor 250) and then stirred for 20 

hours to form homogenous slurry. The dry cathode contained 2.0% by weight of MgO, 

10% PEO, and the rest was EMD and conductive additives. The EMD to conductive 

additive ratios in the cathode mixture were varied and optimized.  

The anode paste was prepared with zinc powder (Sigma Aldrich, ≤10 μm, ≥ 98%), 

PEO binder, zinc oxide powder (Sigma Aldrich, ≥ 99%), methyl cellulose (Sigma Aldrich, 

Mn~40,000), Bismuth (III) oxide (Sigma Aldrich, 90-210 nm particle size, ≥ 99.8%) 

inhibitors, and conductive additives. The powders were mixed in the presence of DI water 

and then stirred to form a homogeneous anode paste. A typical dry anode contained 1% 

methyl cellulose, 5% PEO and 2% Bismuth (III) oxide. The amount of zinc, zinc oxide, 

conductive additives were subject to optimization. 

The PVA- PAA (Sigma Aldrich, Mv~450,000) copolymer separator was fabricated 

using the same method as Chapter 3. The separator was soaked in the electrolyte for 2 

hours and cut into right sizes before use. A typical separator after soaking and cutting was 5 

cm × 4 cm in size. 

Swagelok-type cells using graphite rod current collectors were assembled to 

optimize the electrode formulation. For anode optimization, the cathode was fixed as 80% 

EMD, 2% MgO, 8% MWCNTs, and 10% PEO. Typical anode contained 2% Bi2O3, 5% 
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PEO and 1% methyl cellulose unless otherwise specified. The amounts of carbons, Zn and 

ZnO were varied. For cathode optimization, the anode contained 72% Zn, 18% ZnO, 5% 

PEO, 2% MWCNTs, 1% methyl cellulose, 2% Bi2O3; cathode contained 2% MgO and 

10% PEO while the amount of carbons and EMD were varied. The typical weights of the 

cathode and anode after drying were 0.03 g and 0.05 g, respectively. The electrolyte was 9 

M KOH solution with 6% ZnO.  

Flexible electrodes were prepared by casting the electrode slurry onto the silver ink 

current collectors. The current collectors were prepared by manually applying silver ink to 

the adhesive side of polyethylene terephthalate (PET) film coated with ethylene vinyl 

acetate copolymer (EVA) resin (CRC52005, 3 mil, Fellowes) to form a layer with silver 

loading of 3.6 mg cm
-2

. The typical electrode area was 4 cm × 3 cm. Copper tapes (EMI 

Copper Foil Shielding Tape 1181, 6.35mm, 3M™) were stuck to the current collector to 

serve as electrode tabs. After applying the slurry onto the current collector, the electrodes 

were allowed to dry at ~50°C for 30 minutes. The last 5 minutes of drying was processed 

under vacuum (9.893 kPa). The drying was complete with no residual water. The typical 

weights of the cathode and anode after drying were 0.06 g and 0.125 g, respectively. The 

battery was thermally sealed. In all the cells tested, zinc was in stoichiometric excess and 

there was enough to maintain the required anode conductivity, so in the electrochemical 

process MnO2 was considered to be the limiting reagent. 

Scanning electron microscope (SEM) images were collected on a LEO 1530 VP 

Scanning Electron Microscope. The electrochemical performances of the cells were 

measured by discharging and charging under constant current modes using a MTI Battery 

Analyzer (Richmond, CA). The fixed Swagelok-type cells were discharges at 1.48 mA to 
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0.9 V and overcharged at 2.96 mA to 2 V; while the flexible ones were discharged and 

charged at 4 and 8 mA, respectively. The flexible batteries were also firmly attached over 

solid substrates of different shapes like and tested to examine electrochemical performance 

under bending conditions. 

4.3 Further Optimization 

The flexible separator which was electrically nonconductive but had high ionic 

conductivity was placed between the electrodes and the whole assembly needs to 

demonstrate flexibility. Again the PVA-PAA copolymer film served as a separator as well 

as a medium for electrolyte storage, and it maintained its stability and flexibility. It was 

found that this film could also be a promising candidate for the secondary cells.  

Figure 4.1 (a-c) shows scanning electron microscopy (SEM) images of cathodes 

formulated with different nano-carbons. Table 4.1 shows the energy-dispersive X-ray 

spectroscopy (EDX) data of different carbon nanotubes used to make cathodes. Acid 

functionalization introduced more oxygen into the CNTs in the form of COOH groups. The 

purification in dilute acids was only to remove impurities including metal oxides. These 

conductive additives were added into cathode to reduce the internal resistance.  

The constant current discharge-charge curve of an alkaline cell is shown in Figure 

4.2. This typical cell contained 6% MWCNTs and 2% carbon black as conductive additives 

in the cathode, the anode contained zinc, zinc oxide as well as 2% MWCNTs, and the 

copolymer separator was placed between them. The red curve shows the charge-discharge 

voltage patterns as a function of time, while the blue curve shows the delivered capacity of 

each cycle in mAh. A cell was discharged to 0.9 V and recharged to 2 V to form a single  
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Figure 4.1 SEM images of secondary alkaline battery electrodes: (a) cathode with graphite 

and carbon black; (b) cathode with MWCNTs; (c) cathode with carbon black and 

MWCNTs; (d) MWCNTs in anode. 
Source: Z. Wang, S. Mitra, 2014 

 

 
Figure 4.2 Discharge and charge curves of a secondary alkaline cell. 
Source: Z. Wang, S. Mitra, 2014 

b 

c d 

a 
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Table 4.1 EDX Data of Different MWCNTs 

CNTs C weight % O weight % Fe weight % Ni weight % 

CNT-raw 96.57 1.34 0.19 1.90 

CNT-purified 97.66 0.82 - 1.52 

CNT-COOH 86.81 13.19 - - 

Source: Z. Wang, S. Mitra, 2014 

 

Table 4.2 Capacity of Secondary Alkaline Cells with Different Carbons in Cathode 

Cells Theoretical 

Capacity 

(mAh) 

Delivered 

Capacity 1
st
 

cycle (mAh) 

Delivered 

Capacity 

25
th

 cycle 

(mAh) 

Specific Capacity 

of MnO2 (mAh 

g
-1

) 25
th

 cycle 

2% carbon black + 

6% CNT- purified 

6.8 5.85 2.478 112.2 

8% CNT- purified 6.8 5.111 1.891 85.7 

8% CNT- raw 6.8 4.235 1.36 61.6 

2% carbon black + 

6% graphite 

6.8 4.279 1.708 77.4 

8% carbon black 6.8 4.721 1.937 87.7 

8% CNT- COOH 6.8 2.055 0.128 5.8 

Source: Z. Wang, S. Mitra, 2014 

 

cycle. The discharge pattern of the single cycle was similar to what had been shown in 

Chapter 3. 

Performances of different cells with different carbon forms are shown in Figure 

4.3, with theoretical capacity in Table 4.2. It shows delivered cell capacity during each 

discharge as a function of cycle number. Graphite which has been extensively used 

together with carbon black in rechargeable alkaline batteries showed lower performance 

than the MWCNTs. The replacement of graphite by MWCNTs improved the cell 
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performance. The purification of CNTs removed impurities which might have hindered the 

electrochemical reactions and therefore enhanced cell performance even further. 

 

 
Figure 4.3 Capacity as a function of cycle numbers for cells with different carbons.  
Source: Z. Wang, S. Mitra, 2014 

 

 
Figure 4.4 Cycling of cells with cathodes containing purified CNTs and 2% carbon black. 
Source: Z. Wang, S. Mitra, 2014 
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Table 4.3 Capacity of Secondary Alkaline Cells with Purified CNTs in Cathode 

Cells Theoretical 

Capacity 

(mAh) 

Delivered 

Capacity 1
st
 

cycle (mAh) 

Delivered 

Capacity 25
th

 

cycle (mAh) 

Specific Capacity 

of MnO2 (mAh g
-1

) 

25
th

 cycle 

2% CNTs 7.31 2.915 0.538 22.7 

4% CNTs 7.14 3.787 0.962 41.5 

6% CNTs 6.8 4.982 2.26 102.4 

8% CNTs 6.63 4.994 1.7 79 

Source: Z. Wang, S. Mitra, 2014 

 

Table 4.4 Capacity of Secondary Alkaline Cells with 2% CNTs in Anode 

Cells Theoretical 

Capacity 

(mAh) 

Delivered 

Capacity 1
st
 

cycle (mAh) 

Delivered 

Capacity 

25
th

 cycle 

(mAh) 

Specific Capacity 

of MnO2 (mAh g
-1

) 

25
th

 cycle 

2% CNTs-raw 6.8 4.247 1.735 78.6 

2% CNTs-COOH 6.8 4.715 1.524 69 

2% CNTs-purified 6.8 3.273 1.802 81.5 

Source: Z. Wang, S. Mitra, 2014 

 

The functionalized CNTs showed lower performance due to the defects that lead to 

lower conductivity. Even in the first discharge, cells with functionalized CNTs showed 

lower capacity just like the primary cells described in Chapter 2 and Chapter 3. This was 

different from lithium-ion batteries where higher levels of defects were known to enhance 

capacity (B. J. Landi et al., 2009) and (S. L. Candelaria et al., 2012). Rechargeability was 

also compromised by the surface defects and higher resistance due to functionalization. 

The poor conductivity made electron transfer from Mn2O3 particles more difficult during 

the charging cycle. The interaction between the alkaline electrolyte and the carboxylic 

groups on the CNTs may have also contributed to the degradation in performance. The 

electrolyte may have been partially neutralized causing a drop in surface concentration of 
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OH
-
, which reacted with Mn2O3 during the charging. The negative charge of COO

-
 groups 

might also repel the OH
-
.  

It has been mentioned in Chapter 3 that the flexible battery electrodes tend to 

become fragile at high concentration of conductive additives thus decreasing the discharge 

performance. As a conductive additive carbon black showed good performance, yet the 

electrodes were found to be more fragile than their MWCNT counterparts. Experiment 

results indicated that cathode with 6% purified MWCNTs and 2% carbon black showed 

optimum performance and flexibility (Figure 4.4 and Table 4.3). CNTs and carbon black 

were more effective as conductive additives than graphite due to their better dispersibility. 

CNTs were dispersed together with carbon black in the cathode. The latter filled the small 

gaps and connected to conductive networks formed by CNTs. The unique shape of CNTs 

maintained the integrity of the electrodes during bending and imparted good mechanical 

properties. In another set of tests, when carbon black alone was used as the conductive 

additive, the electrode was more fragile and less effective under bending conditions. The 

CNTs and the carbon black also appeared to disperse well with MnO2 and the long CNTs 

helped bridge the carbon black particles and formed better conductive networks. Electrode 

with 8% purified MWCNTs and 2% carbon black showed similar performance but 

capacity faded faster while the electrode flexibility was lower. Compared to primary cells 

in Chapter 3, the active material utilization was lower in the rechargeable batteries even in 

the first discharge, which could be partially attributed to the much higher amounts of 

non-conductive agents added to the electrode. For a cell with optimized formulation 

(consider electrode performance and flexibility), the first discharge showed approximately 

79% utilization (243 mAh g
-1

) of limiting active material manganese dioxide. This dropped 
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to 38% (117 mAh g
-1

) after the first 10 cycles, and after 30 cycles the manganese dioxide 

specific capacity dropped to approximately 105 mAh g
-1

, which was 34% of the theoretical 

value of 308 mAh g
-1

 MnO2. These values were similar to those reported for conventional 

(nonflexible) secondary alkaline cell electrodes (200-225 mAh g
-1

 during the first 

discharge; 75-125 mAh g
-1

 after 25 cycles (A. Stani et al., 2006); and even lower elsewhere 

(M. Ghaemi et al., 2003). 

Flexible Anode: The MWCNTs dispersed well with the micron-sized zinc and 

bridged the conductive particles [Figure 4.1 (d)]. Zinc was oxidized to zinc oxide during 

discharge. Other composites such as PEO, methyl cellulose and Bi2O3 were 

non-conductive. In order to maintain the anode conductivity, MWCNTs were added into 

the anode. Three different CNTs were tested (Figure 4.5 and Table 4.4). Unlike the 

cathode, the purification of CNTs appeared to provide little improvement. However, the 

residual metal catalysts in the CNT preparation might have caused secondary reactions or 

self-discharge and therefore the purification of CNTs was still important. CNT-COOH 

showed better performance during the first 10 cycles; however, the capacity faded faster. It 

is concluded that during the beginning cycles with sufficient zinc and electrolyte, the lower 

conductivity of CNT-COOH was compromised by the higher conductivity of zinc. During 

the following cycles when zinc was consumed or coated with zinc oxide, the electrode 

conductivity decreased and CNT-COOH was not as good a conductive additive as the other 

CNTs. 

An increase in the amount of CNTs added to the anode compromised electrode 

flexibility just like it did in the cathode. A concentration of 2% MWCNTs in the anode was 

a balance between optimum performance and flexibility (Figure 4.6 and Table 4.5). 
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Without CNTs, the cell capacity faded rather quickly. The CNTs also led to optimum 

viscosity which allowed easier casting, helped prevent the formation of an impervious 

Zn/ZnO layer, and kept channels open for electrolyte diffusion. 

 
Figure 4.5 Cycling of cells with 2% CNTs in anode. 
Source: Z. Wang, S. Mitra, 2014 

 

 
Figure 4.6 Secondary alkaline cells with purified CNTs in anode. 
Source: Z. Wang, S. Mitra, 2014 

Different Zn to ZnO ratios were also used to optimize the anode formulation. The 

performance of cells with different Zn/ZnO ratio is shown in Figure 4.7 and Table 4.6. ZnO 

was critical to inhibiting gassing. While it could be reduced back to zinc during charging; it 
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could also reduce the available amount of electrolyte. ZnO is known to react with OH
-
 to 

form zincates which is a common occurrence in all alkaline cells (M. Ghaemi et al., 2003), 

(R. Shivkumar et al., 1995). Cells with a Zn to ZnO ratio of 5:1 showed the best 

rechargeability, which was followed closely by a 4:1 ratio. Cells with higher amount of 

ZnO showed lower performance due to the low conductivity of ZnO while those with very 

low ZnO concentration showed poor rechargeability. It is evident that the relatively higher 

concentration of ZnO in the anode was an important feature of the secondary alkaline cell 

and was critical for rechargeability. 

 

 
Figure 4.7 Secondary alkaline cells with different Zn to ZnO ratio in anode (all contained 

2% purified CNTs). 
Source: Z. Wang, S. Mitra, 2014 
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into MnO2 lattice and alter the shape of the anode (Y. Shen, K. Kordesch, 2000) (M. 

Ghaemi et al., 2003). Hence, MgO was added to the cathode to block the incorporation of 

zincate ions into the MnO2 region (M. Minakshi et al., 2011), while methyl cellulose was 

added into anode as gelling agent to prevent the alteration of anode morphology (Y. Shen, 

K. Kordesch, 2000). These were particularly important for reducing capacity fades and 

ensuring better rechargeability. The degradation of anode materials with cycling is an 

important issue for all rechargeable batteries. Figure 4.8 (a) shows anode materials after 30 

cycles.  

Parts of the anode formed hard shell with darker color which is in line with what 

has been reported elsewhere (Y. Shen, K. Kordesch, 2000). The SEM images of the light 

and dark parts of the anode are shown in Figure 4.8. The hardened dark parts appeared to 

be less porous. It is believed that the dark layer is composed of Zn deposits which were 

formed by the reduction of precipitated ZnO, and such layers are less permeable to 

electrolytes and hinder further electrochemical reactions (C. Cachet, R. Wiart, et al., 1987, 

1988 and 1989). The reduction of this shell is possible with the addition of gelling agents 

such as methyl cellulose (Y. Shen, K. Kordesch, 2000). As shown in Figure 4.9 and Table 

4.7, the cell performance improved with the addition of optimum amount of methyl 

cellulose. However, addition of very high concentrations of gelling agent made the anode 

fragile and compromised flexibility. The performance after optimization was in line with 

what has been reported for conventional batteries by Y. Shen and K. Kordesch. 
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Figure 4.8 Images of secondary alkaline cell anodes (a) Anode material after 30 cycles; (b) 

anode material with higher amount of gelling agent; (c) SEM image of lighter part of 

anode; (d) SEM image of darker part of anode. 
Source: Z. Wang, S. Mitra, 2014 

 

The separator was an important component of the flexible battery. Cells with 

traditional glass fiber separator failed but this problem was overcome by using copolymer 

separator that has been described in Chapter 3 and is not discussed for brevity. 

The flexible cells had an open circuit voltage of 1.5 V. Two cells were connected in 

series to power LED lights as shown in Figure 4.10. The performance of the flexible cell 

under bending conditions is shown in Figure 4.11. Cells were bent in different ways: they 

were bent in 90 degrees, folded in half (180 degrees), and rolled into cylinders with a 

relatively narrow radius of 2 cm. The copolymer separator was effective in the secondary 

alkaline cell. The flexible cells remained functional under bending and folding conditions; 

however, the performance were compromised (theoretical capacity was 13.5 mAh). During 

c d 

a b 
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bending, parts of the electrodes and separator stacked together and enhanced contact in 

some sections while other parts separated to lose contact. This caused fluctuation/ drop in 

cell performance. Another reason was that the packaging techniques allowed relatively 

lower amount of electrolyte to be incorporated in the cells. Performance could be further 

improved by improving the internal contacts and electrolyte storage with more advanced 

packaging methods. The cell performance could also be improved by using MnO2 

nanoparticles. 

 

Table 4.5 Capacity of Secondary Alkaline Cells with Purified CNTs in Anode 

Cells Theoretical 

Capacity 

(mAh) 

Delivered 

Capacity 1
st
 

cycle (mAh) 

Delivered 

Capacity 25
th

 

cycle (mAh) 

Specific Capacity 

of MnO2 (mAh 

g
-1

) 25
th

 cycle 

0% CNTs 6.8 4.177 1.243 56.3 

2% CNTs 6.8 4.897 1.901 86.4 

4% CNTs 6.8 4.151 1.662 75.3 

Source: Z. Wang, S. Mitra, 2014 

 

Table 4.6 Capacity of Secondary Alkaline Cells with Different ZnO Contents 

Zn:ZnO 

ratio of cells 

Theoretical 

Capacity 

(mAh) 

Delivered 

Capacity 1
st
 

cycle (mAh) 

Delivered 

Capacity 25
th

 

cycle (mAh) 

Specific Capacity 

of MnO2 (mAh 

g
-1

) 25
th

 cycle 

17:1 6.8 4.01 1.09 49.37 

8:1 6.8 3.912 1.182 53.54 

5:1 6.8 4.31 1.642 74.37 

4:1 6.8 4.195 1.555 70.43 

2.3:1 6.8 4.188 1.514 68.58 

Source: Z. Wang, S. Mitra, 2014 
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Table 4.7 Capacity of Secondary Alkaline Cells with Methyl Cellulose in Anode 

Cells Theoretical 

Capacity 

(mAh) 

Delivered 

Capacity 

1
st
 cycle 

(mAh) 

Delivered 

Capacity 

25
th

 cycle 

(mAh) 

Specific 

Capacity of 

MnO2 (mAh 

g
-1

) 25
th

 cycle 

0% methyl cellulose 6.8 4.296 fail fail 

1% methyl cellulose 6.8 5.848 2.154 97.6 

2% methyl cellulose 6.8 5.155 1.975 89.5 

2% methyl cellulose 

with glass fiber separator 

6.8 5.474 0.723 32.7 

Source: Z. Wang, S. Mitra, 2014 

 

 
Figure 4.9 Secondary alkaline cells with methyl cellulose in anode. 
Source: Z. Wang, S. Mitra, 2014 

4.4 Conclusions 

In summary, flexible secondary alkaline batteries were fabricated successfully. Once 

optimized, they showed enhancement in both electrode performance and flexibility. 

Purified multiwalled carbon nanotubes were found to be effective conductive cathode 
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nanotubes also helped anode performance by reducing electrode resistance when the 

concentration of ZnO was relatively high. The addition of methyl cellulose to the 

electrodes enhanced rechargeability by providing pathways for electrolyte mobility. 

 

 
Figure 4.10 Flexible secondary alkaline batteries powering up LED lights. 
Source: Z. Wang, S. Mitra, 2014 
 

 
Figure 4.11 Flexible secondary alkaline cell bending tests. 
Source: Z. Wang, S. Mitra, 2014 
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CHAPTER 5  

CARBON NANOTUBES FOR OTHER POWER SOURCES: 

SUPERCAPACITORS 

5.1 Background   

Supercapacitors based on double-layer or pseudocapacitance can provide high power 

densities and discharge currents, and are often used in conjunction with or to replace 

batteries in many applications (P. Simon, Y. Gogotsi, 2008) and (P. Simon, J. R. Miller, 

2008). In the double-layer structure, the energy storage is based on the migration of ions to 

the electrode surface with no electron transfer between phases. On the other hand, in 

pseudocapacitance the charge transfer is based on Faradaic reactions at the electrode (V. V. 

N. Obreja, 2008), (B. E. Conway et al., 1997) and (Y. Zhang et al., 2009). Metal oxides 

such as MnO2, Fe3O4 and RuO2 have shown high theoretical capacities and asymmetric 

supercapacitors using these materials with carbon as the other electrodes have been 

reported (L. Bao et al., 2011), (J. Zang, X. Li, 2011), (L.Y. Chen et al., 2013) and (J. Jiang 

et al., 2012). The pseudocapacitance in metal oxide electrodes is based on reversible 

absorption of atomic species into the crystal structure during redox reactions (B. E. 

Conway et al., 1997) and (G. Wang et al, 2012). 

Since some metal oxides have poor electrical conductivity, different nano-carbons 

including CNTs and graphene have been used as conductive additives, and the carbon has 

served as the matrix/scaffolds for the metal oxides (S. L. Candelaria et al., 2012), (K. Gao 

et al., 2013), ( L. T. Le et al., 2011), (L. Bao, X. Li, 2012) and (M. Zhi et al., 2013). In these 

cases the metal oxides were coated or incorporated on the surface of nano-carbons to form 

carbon-metal oxide composites. In other cases the carbons and in particular the CNTs have 

been used as electrode materials by themselves where they mainly worked through 
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double-layer capacitance without phase transformation in electrode materials (E. 

Frackowiak et al., 1999, 2001). 

Lithium intercalation into metal oxide electrodes can occur in aqueous as well as 

organic electrolytes (M. Manickam et al., 2004) and (Y. Wang, J. Yi, Y. Xia, 2012). A 

carbon/LiMn2O4 hybrid aqueous electrochemical supercapacitor has been reported. It has 

potential advantages of high energy density, extended cycle life and fast charge capability 

(Y. Wang, Y. Xia, 2005). Unlike lithium-ion batteries, here the carbon negative electrode 

stores charge through a reversible non-faradaic reaction of cations without lithium 

intercalation or reduction. Surface area, defects and particle size of the carbon have strong 

effects on the performance of such hybrid supercapacitors. Efforts have gone into 

improving the performance of CNTs via functionalization to add functional groups and 

generating defects via conventional chemical techniques such as acid treatment, refluxing 

and sonication (C. G. Salzmann et al., 2007), (F. Hauke, A. Hirsch, 2010), (A. Stein et al., 

2009) and (W. Huang et al., 2002). Many of these reactions are energy and 

time-consuming. Microwave treatment of CNTs is known to cause in-situ super heating 

leading to fast reactions with high degree of functionalization (Y. Wang et al., 2005), (Y. 

Chen, S. Mitra, 2008). Such treatment of CNTs not only generates defects but also 

introduce oxidative functional groups which may provide pseudocapacitance (E. 

Frackowiak, 2000). The objective of this research was to study the microwave induced 

defect generation and oxidative functionalization of CNTs for specific application in 

supercapacitors. 
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5.2 Carbon Nanotube Supercapacitor Fabrication and Characterization 

5.2.1 Electrode Preparation and Cell Fabrication 

In asymmetric supercapacitors, the LiMn2O4 cathode paste was prepared by mixing 0.85 g 

LiMn2O4 (Sigma Aldrich, 92%, AB Grade), 0.05 g polyethylene oxide (PEO, Sigma 

Aldrich, Mv~400,000) and 0.1 g conductive additive carbon black (Sigma Aldrich, 500 

nm) in 2.4 g poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) solution 

(PEDOT:PSS, Aldrich, 1.3%). Anode paste was prepared by mixing 0.17 g multiwalled 

CNTs, 0.02 g PEO and 0.01 g carbon black in 0.6 g PEDOT:PSS solution. This anode 

formulation was also used for both electrodes in the symmetric supercapacitors. Typical 

electrode weight after drying (60 °C, 9.893 kPa) was 30 mg for asymmetric 

supercapacitors and 2 mg for symmetric supercapacitors. Glass microfiber filters (Grade 

GF/A: 1.6 μm, Whatman) were used as separator, with stainless steel rods (12.5 mm 

diameter) as current collectors and 5 M LiNO3 as electrolyte. Cells were charged/ 

discharged using a MTI multi-channel Battery Analyzer (Richmond, CA). Electrodes for 

cyclic voltammetry (CV) were composed of 15% polyvinylidene fluoride (PVDF, 

Scientific Polymer Products, Inc.) binder, 10% carbon black and 75% CNTs. The total 

weight for each CV electrode was 3 mg. All electrolyte salts were purchased from Sigma 

Aldrich.  

 

5.2.2 CNT Treatment 

Multiwalled CNTs (purity 95%, diameter 20-30 nm, length 10-30 μm, Cheap Tubes Inc. 

Brattleboro, VT, USA) were used as received, purified or functionalized prior to analysis 

or electrode preparation. The purification of CNTs was carried out in the microwave 
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accelerated reaction system by dispersing pre-weighed CNTs into 1 M HNO3; typically 50 

ml of acid for 0.3g of CNTs. The reaction vessels were subject to microwave radiation at a 

preset temperature of 100 °C for 10 min. The carboxylated functionalization/ destruction 

of CNTs were carried out in the microwave accelerated reaction system by dispersing 

pre-weighed CNTs into a mixture of concentrated H2SO4 and HNO3 (1:1 volume ratio) and 

treated at a preset temperature of 140 °C for 10, 20, 40, 60 and 120 min, respectively. In a 

typical treatment, 1 g CNTs was mixed with 40 ml of acid mixture. The resulting CNTs are 

referred to as CNT10, CNT20, CNT40, CNT60 and CNT120, respectively. After cooling down 

to room temperature, the CNT products were vacuum filtered and washed using Milli Q 

water through pore size 10 μm until a neutral pH. Samples were then finally dried in a 

vacuum oven at 70 °C until a constant weight was achieved. The treated CNTs were also 

washed with 0.01M NaOH until the filtrate was clear. The filtrates contained debris and 

fragments washed off the main nanotube structures. 

 

5.2.3 Materials Characterization 

A scanning electron microscope (SEM, LEO 1530 VP, Carl Zeiss SMT Inc., Peabody, 

MA) equipped with an energy-dispersive X-ray analyzer (EDX, Oxford Instruments, 

Concord, MA) was used for morphology and elemental composition analysis. The CNT 

samples were dispersed in Milli Q water, added to 200-mesh TEM grids and dried. The 

transmission electron microscopy (TEM) was taken on a Hitachi H-7500 system. Raman 

spectroscopy was carried on a DXR Raman microscope (Thermo Fisher Scientific Inc., 

Madison, WI). The Brunauer, Emmett and Teller (BET) specific surface area of the 

samples were measured using Quantachrome NOVA 3000 series (Model N32-11) High 
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Speed Gas Sorption Analyzer at 77.40 K (Boynton Beach, FL). The Fourier transform 

infrared spectroscopy (FTIR) of CNT samples was done on a Perkin-Elmer instrument 

(Waltham, MA), with CNTs mixed with purified KBr and pressed into pellets. Cyclic 

voltammetry (CV) was carried out on a Homiangz 320C electrochemical analyzer versus a 

standard Ag-AgCl electrode in 2M Na2SO4 electrolyte. Galvanostatic charge – discharge 

measurements were carried out using a MTI Battery Analyzer (Richmond, CA) while 

energy, voltage and time were recorded. 

5.3 Carboxylated and Defective Carbon Nanotubes for Supercapacitors 

5.3.1 Characterization of the CNTs 

The SEM images of the CNTs are shown in Figure 5.1. The microwave treatment led to 

significant tube damage and it can be seen that as the duration of microwave treatment was 

increased, the tubes were reduced in length. They also began to lose their individual long 

bundle structure and form gel like agglomerates, though their tubular structure remained 

intact (S. Addo Ntim, S. Mitra, 2012), (D. S. Ahmed et al., 2013). A typical microwave 

induced carboxylation can be achieved in 10 min (Y. Chen, S. Mitra, 2008), however, to 

generate defects the microwave treatments as long as 120 min were used in this study. The 

CNTs treated for 10, 20, 40, 60 and 120 min were referred as CNT10, CNT20, CNT40, 

CNT60 and CNT120, respectively. The longer the treatment, more defective was their 

structure. The microwave treatment in acid introduced hydrophilic carboxylic groups (Y. 

Chen, S. Mitra, 2008) and (Z. Wu et al., 2014). However, once past a 40 min treatment 

time, there were less significant changes in morphology. The concentration of acids was 

also an important factor. While the dilute acids removed impurities, the concentrated acids 

introduced more defects (Y. Chen et al., 2007). The TEM images of the CNTs used in the 
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anode are shown in Figure 5.2. It could be seen that even when the CNTs were treated for 

longer periods, there was no significant change in diameter though some tubes appeared to 

get cut as shorter fragments were observed. Another observation from the TEM images is 

that the highly functionalized CNTs dispersed better and formed fewer agglomerates. 

EDX analysis of the CNTs showed that the oxygen contents increased with 

treatment time due to increase in carboxylation [Figure 5.3 (a)]. However, beyond 40 min, 

the oxygen percentage showed relatively small increase. It is inferred that after 40 min the 

major part of the microwave energy went to the destruction of the CNT structures rather 

than generating more functional groups on the main tubes. The gross morphology also 

changed after the microwave treatment, and this is obvious from Figure 5.1 (g), where the 

electrode materials with original and treated CNTs are shown. The treated CNT had more 

of a gel structure compared to the original CNTs which were powdery. The increase in 

hydrophilicity with carboxylation also helped electrode preparation, where the hydrophilic 

CNTs were less likely to agglomerate and formed uniform dispersions that could be useful 

for preparing the paste for making the electrodes (K. Kordás et al., 2006)(Y. Zhou Y, L. 

Hu, G. Grüner, 2006). 

The CNTs were also washed using 1M NaOH solution to remove oxidation debris 

after functionalization. Since the debris was on the CNTs surface, they were expected to 

alter the electrochemical behavior. The SEM analysis [Figure 5.1 (f)] showed small 

debris/CNT fragments were generated from over functionalization and breakdown of the 

tube structure. 
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Figure 5.1 SEM images of CNTs treated for different time: (a) purified CNTs; (b) CNT20; 

(c) CNT40; (d) CNT60; (e) CNT120; (f) debris created during treatment; and (g) electrode 

paste containing CNT60 (left) and purified CNTs (right). 
Source: Z. Wang et al., 2015 
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Figure 5.2 TEM images of CNTs treated for different time: (a) purified CNTs; (b) CNT10; 

(c) CNT20; (d) CNT40; (e) CNT60; (f) CNT120. 
Source: Z. Wang et al., 2015 
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Figure 5.3 Oxygen contents in CNTs after functionalization: (a) Weight percentage of 

oxygen in CNTs and D to G ratio of Raman spectra; (b) FTIR spectrum of purified CNT, 

CNT20 and CNT120. 
Source: Z. Wang et al., 2015 

 

EDX analysis showed that for the CNTs treated for 40 min or longer, the debris 

contained nearly 50% of oxygen by weight. Raman spectroscopy also confirmed the defect 

generation where the ratio of defect band (D band)/graphite band (G band) was studied 

[Figure 5.3 (a)]. The D to G ratio increased by more than 50% in the first 10 min of 

microwave treatment indicating that many of the defects and functional groups were 
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created at the beginning of the treatment. After that the increase was slower, indicating that 

the inner parts of the CNTs were much harder to destroy and react. However, D/G ratio 

continued to increase till 40 min of treatment.  

Fourier transform infrared spectroscopy (FTIR) results of purified CNTs, CNT20 

and CNT120 were shown in Figure 5.3 (b). Peaks indicating oxidative functional groups 

were observed for the functionalized CNTs. The newly generated peaks at around 1740 

cm
-1

 indicated the C=O stretching; while the peaks at 3300 cm
-1

 indicated OH groups. 

Other peaks observed included C-O stretching at 1100 cm
-1

, O-H bending at 1390 cm
-1

 and 

C=C bending at 1580 cm
-1

. 

BET specific surface areas of the CNTs are shown in Table 5.1. Although 

nonporous, the CNTs have relatively large surface area and the surface area increased with 

the treatment time. This further showed that during the strong acid microwave treatment 

the specific area of CNTs increased but the most of it occurred in the early stage of the 

treatment. The surfaces of CNTs were damaged by acids/microwave energy, where 

carbon-carbon bonds were broke and carbon atoms were removed, leaving defects and 

openings that led to an increase in the surface area. After 40 min, the increase was slow and 

this was in line with the EDX and Raman measurements. 

 

Table 5.1 Characteristics of CNTs Treated for Different Time 

Functionalization Time (min) 0 (purification) 10 20 40 60 120 

BET Specific surface area (m
2
 g

-1
) 220.4 246.8 245.7 266.0 263.2 278.7 

Specific Capacitance (F g
-1

) 17.7 46.7 54.0 65.1 65.8 64.0 

Specific Energy for whole cell 

(Wh kg
-1

) 2.3 4.85 5.63 7.13 7.3 6.68 

Source: Z. Wang et al., 2015 
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5.3.2 Electrochemical Tests: Cyclic Voltammetry 

Cyclic voltammetry (CV) curves obtained versus a standard Ag-AgCl electrode is shown 

in Figure 5.4. At all scan rates the functionalized CNTs showed better performance than 

purified CNTs. Electrode currents increased from purified CNT till CNT40 and CNT60, 

after which the performance decreased. It is inferred that the performance drop was due to 

the defects which might block the electron migration and transfer, leading to an increase in 

CNT resistance. Under lower scan rates the difference among CNTs were more dramatic, 

indicating that highly functionalized CNTs with higher resistance would perform better 

when more time was allowed for electrons/charge to migrate to the nanotube surface so 

that the electric double layers could form. A comparison of CNT120 and CNT20 shows that 

under low scan rates (0.005 V/s) the former provided better performance, however, under 

high scan rates (0.1 V/s) the latter was better. 

 

5.3.3 Charge/Discharge Characteristics: Asymmetric Supercapacitors 

The capacitors were charged and discharged under constant current conditions. Figure 5.5 

shows Galvanostatic charge/discharge curves measured at a current density of 0.1 A g
-1

 

electrode between 0 and 1.6 V with IR drops of approximately 0.06 V at the beginning of 

each discharge. No gas evolution was observed. Specific capacitance was calculated from 

the slopes of Galvanostatic charge–discharge curves (like the one shown in Figure 5.5, 

11th cycle in our case) using the following equation (5.1):  

     
 

        ⁄
  (5.1) 

where I is the discharge current, m is the mass of CNTs and dV/dt is the slope of the linear 

part of the discharge curve, typically from 1.3 V to 0.6 V. This was calculated using linear 

least square fit. The results are also shown in Table 5.1. It showed that the specific 
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capacitance firstly increased as treatment time increased, with little improvement past 40 

min of treatment time. The cell specific energy for functionalized CNTs after 100th cycles 

showed values between 10 and 17 Wh kg
-1

 as shown in Table 5.1. Similar trend was 

observed for the measured cell capacities through the battery analyzer (Figure 5.6). The 

defects on the CNTs led to higher capacity. The purified CNT showed the lowest 

capacitance, while higher capacitances were obtained for CNT10, CNT20 and higher. The 

increase past CNT40 were not significant which was similar for CNT60 and CNT120. 

 

 
Figure 5.4 Cyclic voltammetry (CV) curves under different scan rates. 
Source: Z. Wang et al., 2015 
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Figure 5.4 Cyclic voltammetry (CV) curves under different scan rates (continued). 
Source: Z. Wang et al., 2015 
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Figure 5.5 Galvanostatic charge/discharge curves of an asymmetric supercapacitor (made 

from CNT20). 
Source: Z. Wang et al., 2015 

 

 
Figure 5.6 Measured capacity of asymmetric cells at 0.1 A/g electrode. 
Source: Z. Wang et al., 2015 
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Figure 5.7 Measured capacity of symmetric cells under different charge/discharge rates 

(P-CNT: dark blue; CNT10: red; CNT20: green; CNT 40: purple; CNT 60: light blue; CNT120: 

orange). 
Source: Z. Wang et al., 2015 
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Figure 5.7 Measured capacity of symmetric cells under different charge/discharge rates 

(P-CNT: dark blue; CNT10: red; CNT20: green; CNT 40: purple; CNT 60: light blue; CNT120: 

orange), (continued). 
Source: Z. Wang et al., 2015 
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5.3.4 Charge/Discharge Characteristics: Symmetric Supercapacitors 

Figure 5.7 shows cycling characteristics of symmetric supercapacitors in which both 

electrodes were composed of CNTs. In all cases the functionalized CNTs provided higher 

performance than purified CNTs. In particular the moderately treated CNT40 provided 

better performance. Beyond this the degree of functionalization did not enhance 

performance. One thing to note is that as the charge/discharge rate decreased, the 

difference between the CNT forms became more significant. Longer treated CNTs 

performed better under lower charge/discharge rates. For example, at 1 A/g CNT120 

showed similar capacity as CNT10, however, at 0.5 A/g CNT120 performed better. The 

difference was even more obvious at 0.1 A/g. The capacity of the cells was well retained 

and it was especially true for the moderately treated CNTs (95% after 1000 cycles). Under 

different charge/discharge rates, most of the functionalized CNTs also showed similar 

performance, though some highly treated CNTs (like CNT120) tended to perform better at 

lower rates. 

The mechanism underlying the CNT electrode is the double-layer capacitance in 

which the available specific area is a critical parameter. The microwave treatment created 

defects and increased the sites for ions and surface area for charge. At the same time the 

tips of CNTs were cut off, thus allowing the ions to penetrate inside [Figure 5.8 (a)]. With 

the tube tips cut off and surface defected, the open structure enabled easy access of ions to 

the electrode/electrolyte interface, which is critical for charging the electrical double layer. 

Another consideration is that although the CNTs themselves showed high specific area, 

during the fabrication of the electrodes the CNTs might agglomerate to reducing the 

effective surface area. In aqueous environment, the added functional groups in the 
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Figure 5.8 CNTs before (left) and after (right) microwave treatment: (a) creation of defects 

and removal of CNT tips; (b) functionalized CNTs separate from each other in electrolyte, 

generating more surface area; (c) pseudocapacitance from oxygenated functional groups. 
Source: Z. Wang et al., 2015 
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carboxylated CNTs reduced aggregation of the individual tubes, thus increasing the 

effective surface area. This explains the fact that in spite of BET surface area, CNTs tend to 

aggregate, decreasing the effective surface area; while CNTs with more carboxylic groups 

would remain separate from each other [Figure 5.8 (b)]. While the major mechanism is 

double-layer capacitance in our case, it has also been reported that pseudocapacitance 

could be brought about by the function groups [Figure 5.8 (c)] via reversible oxidation of 

OH groups into C=O groups and reduction of C=O groups into C-O
-
 according to: (E. 

Frackowiak et al., 2000) 

C-OH ↔ C=O + H
+
 + e

-
 

C=O + e
-
 ↔ C-O

-
 

Past the 40 min of treatment, the increase in oxygen contents was not that 

significant; consequently there was no significant increase in specific capacitance. This 

also demonstrated pseudocapacitance associated with the oxidative functional groups like 

carboxylic groups in some cases. This was consistent with previous reports E. Frackowiak 

et al., 2000). 

5.4 Conclusions 

In summary, the microwave treatment for generating defective CNTs for supercapacitor 

applications that has several advantages has been studied. The increase in treatment time 

created more defects and oxygen containing carboxylic groups. Also, there were changes 

to the CNT structures where the longer tubes were shortened and bundles were separated 

during the treatment. Carboxylic groups also prevented CNT aggregation. Together, these 

led to higher effective specific surface area which increased the specific capacitance. 

Hence, the microwave treatment of CNTs for supercapacitors electrodes has the potential 
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of further increasing the capacitance via the double layer capacitance and 

pseudocapacitance, making the defective CNTs promising candidates for supercapacitors. 

There have also been reports where metal oxides were coated on the CNTs to form 

supercapacitor electrodes (R. K. Sharma, L. Zhai, 2009). The functionalized approach is 

also promising in preparing CNTs as the scaffolds or matrix for the metal oxides to further 

enhancing the capacitance. The functional groups and hydrophilicity also facilitate the 

formation of inks/ pastes for electrode preparation, hence, facilitating the development of 

flexible electrodes via printing techniques (P. Chen et al., 2010), (M. Kaempgen et al., 

2009). 
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CHAPTER 6  

CONCLUSIONS 

In summary, a technological platform for flexible battery fabrication was built. Flexible 

zinc carbon battery, primary and secondary alkaline batteries were developed and 

optimized. Carbon nanotubes are treated with acids and microwave energy heavily to 

generate large amount of defects and then used as supercapacitor electrodes. Preliminary 

studies on flexible zinc air battery were also taken. The development and application of 

nanomaterials, polymers and printing techniques has make the fabrication of flexible 

power sources possible, providing decent performance for nowadays and future flexible 

electronics. Nano-carbons act as conductive additives, current collectors, scaffolds for 

active materials or major electrode materials themselves, behaving much more efficiently 

than the traditional materials like graphite; while further certain treatment like purification 

further enhanced the electrochemical performance by removing impurities which might 

facilitate self-discharge or other unwanted electrode (especially zinc) corrosions and side 

reactions. Treatments that added functional groups or change surface morphologies had 

also been proved helpful regarding changes in hydrophobicity, dispersibility, surface areas 

and electrochemical properties, which might enhance the electrochemical performance of 

power sources. Polymers served as separators, binders, gel electrolytes or even conductive 

additives, acquiring the desired flexibility and kept the electrochemical devices functional 

under bending conditions. This platform can be used to fabricate different types of flexible 

power sources include but not limited to the types of flexible batteries mentioned in the 

former chapters. Flexible supercapacitors can also be fabricated in similar ways. 
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