

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

DATA MINING IN COMPUTATIONAL
PROTEOMICS AND GENOMICS

by
Yang Song

This dissertation addresses data mining in bioinformatics by investigating two

important problems, namely peak detection and structure matching. Peak detection

is useful for biological pattern discovery while structure matching finds many

applications in clustering and classification.

The first part of this dissertation focuses on elastic peak detection in 2D liquid

chromatographic mass spectrometry (LC-MS) data used in proteomics research.

These data can be modeled as a time series, in which the X-axis represents time

points and the Y-axis represents intensity values. A peak occurs in a set of 2D

LC-MS data when the sum of the intensity values in a sliding time window exceeds a

user-determined threshold. The elastic peak detection problem is to locate all peaks

across multiple window sizes of interest in the dataset. A new method, called PeakID,

is proposed in this dissertation, which solves the elastic peak detection problem in

2D LC-MS data without yielding any false negative. PeakID employs a novel data

structure, called a Shifted Aggregation Tree or AggTree for short, to find the different

peaks in the dataset. This method works by first constructing an AggTree in a

bottom-up manner from the dataset, and then searching the AggTree for the peaks

in a top-down manner. PeakID uses a state-space algorithm to find the topology and

structure of an efficient AggTree. Experimental results demonstrate the superiority

of the proposed method over other methods on both synthetic and real-world data.

The second part of this dissertation focuses on RNA pseudoknot structure

matching and alignment. RNA pseudoknot structures play important roles in many

genomic processes. Previous methods for comparative pseudoknot analysis mainly

focus on simultaneous folding and alignment of RNA sequences. Little work has been

done to align two known RNA secondary structures with pseudoknots taking into

account both sequence and structure information of the two RNAs. A new method,

called RKalign, is proposed in this dissertation for aligning two known RNA secondary

structures with pseudoknots. RKalign adopts the partition function methodology to

calculate the posterior log-odds scores of the alignments between bases or base pairs

of the two RNAs with a dynamic programming algorithm. The posterior log-odds

scores are then used to calculate the expected accuracy of an alignment between the

RNAs. The goal is to find an optimal alignment with the maximum expected accuracy.

RKalign employs a greedy algorithm to achieve this goal. The performance of RKalign

is investigated and compared with existing tools for RNA structure alignment. An

extension of the proposed method to multiple alignment of pseudoknot structures is

also discussed. RKalign is implemented in Java and freely accessible on the Internet.

As more and more pseudoknots are revealed, collected and stored in public databases,

it is anticipated that a tool like RKalign will play a significant role in data comparison,

annotation, analysis, and retrieval in these databases.

DATA MINING IN COMPUTATIONAL
PROTEOMICS AND GENOMICS

by
Yang Song

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

May 2015

Copyright c© 2015 by Yang Song

ALL RIGHTS RESERVED

APPROVAL PAGE

DATA MINING IN COMPUTATIONAL
PROTEOMICS AND GENOMICS

Yang Song

Dr. Jason T.L. Wang, Dissertation Advisor Date
Professor, Department of Computer Science, NJIT

Dr. James McHugh, Committee Member Date
Professor, Department of Computer Science, NJIT

Dr. David Nassimi, Committee Member Date
Associate Professor, Department of Computer Science, NJIT

Dr. Dimitrios Theodoratos, Committee Member Date
Associate Professor, Department of Computer Science, NJIT

Dr. Yi Chen, Committee Member Date
Associate Professor, School of Management, NJIT

BIOGRAPHICAL SKETCH

Author: Yang Song

Degree: Doctor of Philosophy

Date: May 2015

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2015

• Master of Science in Computer Science,
State University of New York at New Paltz, New Paltz, NY, 2003

• Master of Business Administration,
Baker University, Overland Park, KS, 2000

• Bachelor of Engeering in Computer Science,
University of Science and Technology of China, China, 1998

Major: Computer Science

Publications:

L. Hua, Y. Song, D. Wen, J.T.L. Wang and C. Laing, “Pairwise Alignment of RNA
Secondary Structures in the Presence of Coaxial Helical Stacking,” PLoS ONE,
Submitted.

Y. Song, L. Hua, B.A. Shapiro and J.T.L. Wang, “Effective Alignment of RNA
Pseudoknot Structures Using Partition Function Posterior Log-odds Scores,”
BMC Bioinformatics, Vol. 16, No. 39, 2015.

M. Vasavada, K. Byron, Y. Song and J.T.L. Wang, “Genome-Wide Search
for Pseudoknotted Non-Coding RNAs: A Comparative Study,” Pattern
Recognition in Computational Molecular Biology: Techniques and Approaches,
(eds. Mourad Elloumi, Costas S. Iliopoulos, Jason T. L. Wang and Albert Y.
Zomaya), Chapter 12, Hoboken, NJ: John Wiley & Sons, 2015.

X. Zhang, D. Shasha, Y. Song and J.T.L. Wang, “Fast Elastic Peak Detection for
Mass Spectrometry Data Mining,” IEEE Transactions on Knowledge and Data
Engineering, Vol. 24, No. 2, pp 114-121, 2012.

iv

S.J. Griesmer, M. Cervantes-Cervantes, Y. Song and J.T.L. Wang, “In Silico
Prediction of Noncoding RNAs Using Supervised Learning and Feature
Ranking Methods,” International Journal of Bioinformatics Research and
Applications, Vol. 7, No. 4, pp 355-357, 2011.

v

vi

ACKNOWLEDGMENT

I would like to thank my adviser, Dr. Jason T.L. Wang, his guidance and passion

at research has led me through my Ph.D. study. I am also deeply grateful to Dr.

David Nassimi, his consistent support that has helped me overcome many difficult

situations.

Secondly, I offer my regards and blessings to my other committee members, Dr.

James McHugh, Dr. Dimitrios Theodoratos and Dr. Yi Chen. Their supervision and

advice have improved this work into a new level.

I am thankful to Dr. Hong Li, Dr. Tong Liu, Dr. Jun Hu and Dr. Cexiong

Fu from the Center for Advanced Proteomics Research (CAPR) at the New Jersey

Medical School (NJMS) of the Rutgers Biomedical and Health Sciences. Dr. Hong

Li has provided me resources to do the research at proteomics, Dr. Jun Hu and Dr.

Cexiong Fu have given me many useful ideas about the data analysis. I have special

thanks to Dr. Tong Liu, without her warm help and excellent domain knowledge,

this interdisciplinary research would never be accomplished.

Here I want to thank all the previous and current members at the Data and

Knowledge Engineering Laboratory of NJIT. Ms. Lei Hua has been a great partner

in research, without her significant contribution the project in genomics would not

happen. And I am so lucky to have great friends here, in particular, Dr. Mugdha

Khaladkar, Dr. Dongrong Wen and Dr. Tao Wu. The friendship and the time we

worked and studied together always take a sweet spot in my memory.

Last but certainly not the least; I do not know how to express my appreciation

to my family. The patience and trust from my wife, the sacrifice and unconditional

love from my parents, they are my most solid support. I am blessed to have such a

wonderful family.

vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

2 ALGORITHMS FOR PEAK DETECTION 4

2.1 Background for Peak Detection . 4

2.1.1 Motivation . 4

2.1.2 Problem Formulation . 5

2.1.3 Related Work . 7

2.2 The PeakID Method . 9

2.2.1 The Aggregation Pyramid . 9

2.2.2 Embedding a BinaryTree into an Aggregation Pyramid 12

2.2.3 Generalizing a BinaryTree to an AggTree 15

2.2.4 Detecting Peaks Using an AggTree 19

2.2.5 A State-Space Algorithm . 25

3 EXPERIMENTS FOR PEAK DETECTION 30

3.1 Experimental Results on Synthetic Data 30

3.2 Experimental Results on Real-World Data 38

4 ALGORITHMS FOR PSEUDOKNOT ALIGNMENT 42

4.1 Background for Pseudoknot Alignment 42

4.2 The RKalign Method . 45

4.2.1 Definitions and Notation . 45

4.2.2 Partition Function Computation 46

4.2.3 Calculation of Posterior Log-odds Scores 50

4.2.4 Pairwise Alignment . 52

4.2.5 Time and Space Complexity 54

4.2.6 Extension to Multiple Alignment 54

5 EXPERIMENTS FOR PSEUDOKNOT ALIGNMENT 57

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

5.1 Experimental Design . 57

5.1.1 Datasets . 57

5.1.2 Alignment Quality . 66

5.2 Experimental Results . 66

5.3 Comparison with Related Methods 77

6 CONCLUSIONS . 83

6.1 Summary for Peak Detection . 83

6.2 Summary for Pseudoknot Alignment 83

6.3 Future Work . 84

BIBLIOGRAPHY . 85

ix

LIST OF TABLES

Table Page

2.1 Comparison between BinaryTrees and AggTrees 17

3.1 Parameters and Default Values Used in Experiments 31

3.2 Description of Real-World Data . 39

3.3 Experimental Results Obtained from Real-World Data 41

5.1 Experimental Dataset1: Selected RNA Pseudoknot Structures from PDB
and RNA STRAND. Part 1 . 58

5.2 Experimental Dataset1: Selected RNA Pseudoknot Structures from PDB
and RNA STRAND. Part 2 . 59

5.3 Experimental Dataset1: Selected RNA Pseudoknot Structures from PDB
and RNA STRAND. Part 3 . 60

5.4 Experimental Dataset1: Selected RNA Pseudoknot Structures from PDB
and RNA STRAND. Part 4 . 61

5.5 Experimental Dataset1: Selected RNA Pseudoknot Structures from PDB
and RNA STRAND. Part 5 . 62

5.6 Experimental Dataset2: Selected RNA Pseudoknot Structures from
PseudoBase. Part 1 . 63

5.7 Experimental Dataset2: Selected RNA Pseudoknot Structures from
PseudoBase. Part 2 . 64

5.8 Experimental Dataset2: Selected RNA Pseudoknot Structures from
PseudoBase. Part 3 . 65

5.9 Selected RNA Pseudoknot-free Structures from Rfam and RNA STRAND.
Part 1 . 79

5.10 Selected RNA Pseudoknot-free Structures from Rfam and RNA STRAND.
Part 2 . 80

5.11 Selected RNA Pseudoknot-free Structures from Rfam and RNA STRAND.
Part 3 . 81

x

LIST OF FIGURES

Figure Page

2.1 An example of 2D LC-MS data. 5

2.2 An example of Shifted Binary Trees. 7

2.3 An example of an 8-level Aggregation Pyramid. 11

2.4 Illustration of the overlap of two cells in an example Aggregation Pyramid. 12

2.5 Illustration of the correspondence between the Aggregation Pyramid in
(a) and the Shifted Binary Tree in (b).. 14

2.6 Illustration of the detailed search region DSR(v) in the Aggregation
Pyramid in Figure 2.5(a) for a node v at level 4 in the BinaryTree
in Figure 2.5(b). 15

2.7 Illustration of the correspondence between the Aggregation Pyramid in
(a) and the Shifted Aggregation Tree in (b). 18

2.8 Algorithm for constructing the AggTree from the LC-MS data LM[N]. . 20

2.9 Illustration of the detailed search region DSR(v) for a node v at level 3
in an AggTree with 16 time points. 21

2.10 Algorithm for searching AggTree[I][N] for peaks. 23

2.11 Illustration of the state-space growth process. 27

3.1 Comparison of the theoretical cost model and the empirical cost model
used in the state-space algorithm. 33

3.2 The effect of Max num states on the running time of PeakID. 34

3.3 The impact of peak probabilities on the density of a tree. 35

3.4 The bounding ratio with respect to each level in a tree. 36

3.5 The alarm probability with respect to each level in a tree. 37

3.6 Comparison of the three studied methods for varying peak probabilities. 37

3.7 Comparison of the three studied methods for varying window sizes of
interest. 38

3.8 Comparison of the three studied methods on real-world data. 40

5.1 Histogram for the base mismatch ratios yielded by RKalign, CARNA,
RNA Sampler, DAFS, R3D Align and RASS. 68

xi

LIST OF FIGURES
(Continued)

Figure Page

5.2 Boxplot for the base mismatch ratios of RKalign, CARNA, RNA Sampler,
DAFS, R3D Align and RASS. 69

5.3 Example showing base mismatches in an alignment produced by DAFS,
R3D Align, and RKalign, respectively. 70

5.4 Histogram for the base mismatch ratios yielded by RKalign, CARNA,
RNA Sampler and DAFS. 72

5.5 Boxplot for the base mismatch ratios of RKalign, CARNA, RNA Sampler
and DAFS. 73

5.6 Comparison of the stem mismatch ratios yielded by RKalign and CARNA. 75

5.7 Example showing mismatched stems in an alignment produced by CARNA. 76

xii

CHAPTER 1

INTRODUCTION

This dissertation is composed of two parts. The first part is concerned with elastic

peak detection in 2D liquid chromatographic mass spectrometry (LC-MS) data. These

data can be modeled as a time series, in which the X-axis represents time points

and the Y-axis represents intensity values. A peak occurs in a set of 2D LC-MS

data when the sum of the intensity values in a sliding time window exceeds a user-

determined threshold. The elastic peak detection problem is to locate all peaks across

multiple window sizes of interest in the dataset. We present a data structure, called a

Shifted Aggregation Tree or AggTree for short, and use the data structure to find the

different peaks. A new method, called PeakID, is proposed, which solves the elastic

peak detection problem in 2D LC-MS data without yielding any false negative. This

method works by first constructing an AggTree in a bottom-up manner from the given

dataset, and then searching the AggTree for the peaks in a top-down manner. We

describe a state-space algorithm for finding the topology and structure of an efficient

AggTree to be used by PeakID. Our experimental results demonstrate the superiority

of the proposed method over other methods on both synthetic and real-world data.

The rest of the first part is organized as follows. Chapter 2 surveys related work

and contrasts our approach with existing techniques. The chapter then describes the

PeakID method in detail, introducing the concept of an Aggregation Pyramid that

acts as a host data structure into which a Shifted Aggregation Tree can be embedded,

and explaining how to find an efficient Shifted Aggregation Tree given input data.

Chapter 3 evaluates the performance of PeakID and presents experimental results on

both synthetic and real-world data.

1

2

The second part of this dissertation is concerned with RNA pseudoknot

structure alignment. RNA pseudoknot structures play important roles in many

genomic processes. Previous methods for comparative pseudoknot analysis mainly

focus on simultaneous folding and alignment of RNA sequences. Little work has been

done to align two known RNA secondary structures with pseudoknots taking into

account both sequence and structure information of the two RNAs. We present a

novel method for aligning two known RNA secondary structures with pseudoknots.

We adopt the partition function methodology to calculate the posterior log-odds

scores of the alignments between bases or base pairs of the two RNAs with a dynamic

programming algorithm. The posterior log-odds scores are then used to calculate the

expected accuracy of an alignment between the RNAs. The goal is to find an optimal

alignment with the maximum expected accuracy. We present a greedy algorithm

to achieve this goal. The performance of our method is investigated and compared

with existing tools for RNA structure alignment. An extension of the method to

multiple alignment of pseudoknot structures is also discussed. The method described

here has been implemented in a tool named RKalign, which is freely accessible on

the Internet. As more and more pseudoknots are revealed, collected and stored in

public databases, we anticipate a tool like RKalign will play a significant role in data

comparison, annotation, analysis, and retrieval in these databases.

The rest of the second part is organized as follows. Chapter 4 describes related

work and compares our approach with existing techniques. The chapter then presents

the RKalign method in detail, introducing the partition function methodology used

to calculate the posterior log-odds scores, and describing how to find a (sub)optimal

alignment between two RNAs. Then, the analysis of the time and space complexity

of RKalign is presented. Chapter 5 evaluates the performance of RKalign and

presents experimental results on the RNA pseudoknot structures obtained from both

3

the Protein Data Bank (PDB) and PseudoBase. Finally, Chapter 6 concludes the

dissertation and points out some future research directions.

CHAPTER 2

ALGORITHMS FOR PEAK DETECTION

2.1 Background for Peak Detection

2.1.1 Motivation

Recently, mass spectrometry data mining has drawn much attention in the computa-

tional proteomics community [1, 2, 3, 4]. Typical mining processes include peak

detection [5, 6, 7, 8], spectrum alignment [9], data correlation [10], biomarker

discovery [11, 12], among others. In this thesis proposal, we present a new

approach, called PeakID, for identifying peaks in liquid chromatography-mass

spectrometry (LC-MS) data. LC-MS data has three dimensions, namely retention

time, mass-to-charge ratio (m/z) and intensity [13, 2]. One important step in mass

spectrometry data mining is to detect peaks in the three-dimensional (3D) LC-MS

data [13, 1, 5, 2, 8, 14]. Due to the complex nature of the 3D data with different

peak shapes, this is known to be a difficult problem [5, 2, 15, 8]. One approach is to

convert the 3D data to lower dimensional data as explained below.

For each given m/z value, 3D LC-MS data can be expressed as a two-

dimensional (2D) map (see Figure 2.1). In Figure 2.1, the X-axis represents time

points and the Y-axis represents intensities. A peak in the 2D map, Mt, is a collection

of intensity values occurring within a certain time window where the sum of the

intensity values is greater than or equal to a user-specified threshold. Suppose a peak

occurs in a time window [tl, tr] in which the largest intensity value occurs at ttop in

Mt. For the given ttop value, one can check the corresponding 2D map, Mmz, whose

X-axis has m/z values and Y-axis has intensities. Find a small range [mzl, mzr] that

surrounds each mzpos whose intensity is a sufficiently large positive value in Mmz.

Then the intensities in the cube constructed based on [tl, tr] and [mzl, mzr] form a

4

5

3D peak. Thus, by detecting peaks among the 2D data points shown in Figure 2.1,

one is able to derive peaks in the 3D LC-MS data. Finding the 2D peaks, or simply

peaks when the context is clear, in Figure 2.1 in an efficient way is the subject of this

proposal.

100 200 300 400

Time points

2000

3000

4000

1000

In
te

ns
ity

Figure 2.1 An example of 2D LC-MS data.

If the size of a sliding time window in which a 2D peak occurs is known a priori,

then peak detection can easily be done in linear time by summing up the intensity

values within each time window of the known size. However, in practice, the window

size is unknown a priori. The size itself may be an interesting subject to be discovered.

Also, in many cases, it is required to detect peaks across a variety of window sizes

[13, 2].

2.1.2 Problem Formulation

elastic peak detection problem is to detect peaks across multiple window sizes.

Formally, given a set of non-negative intensity values x1, x2, . . . , xN , a setW of window

sizes w1, w2, . . . , wm, where wi < wj, 1 ≤ i < j ≤ m, and a threshold associated with

each window size, f(wj), j = 1, 2, . . . , m, the elastic peak detection is the problem of

6

finding all pairs (t, w) such that t is a time point, w is a window size in W and

t+w−1∑

p=t

xp ≥ f(w)

A brute-force algorithm is to check each window size of interest one at a time. To

detect peaks across m window sizes in a sequence of intensity values over N time

points, the brute-force algorithm requires O(mN) time.

In [16, 17], we showed that a simple data structure called a Shifted Binary Tree,

abbreviated as a BinaryTree, could be the basis of a filter that can be used to detect

all peaks in time independent of the number of window sizes when the probability of

peaks is low. This tree is a hierarchical data structure, inspired by the Haar wavelet

tree [18]. Each leaf node at level 1 of the Shifted Binary Tree corresponds to a time

point in the input data; a node at level 2 aggregates two adjacent nodes at level 1. In

general, a node v at level i aggregates two nodes v1, v2 at level i− 1; v is the parent

of v1, v2 and v1, v2 are the children of v. Thus, v contains or corresponds to 2i−1 time

points. There are log2 N +1 levels in the Shifted Binary Tree where N is the number

of time points in the input 2D LC-MS data. Except level 1 and the top level, each

level i has two sublevels, namely base sublevel i and shifted sublevel i. Each node at

shifted sublevel i is shifted by 2i−2 time points with respect to base sublevel i. Figure

2.2 shows an example of Shifted Binary Trees.

The overlap between the base sublevels and the shifted sublevels guarantees

that every time window of size w, 0 < w ≤ 2i−2 + 1, is contained in either a node at

base sublevel i or a node at shifted sublevel i, or both. In [16, 19, 17], we exploited

this property, developing an algorithm that uses Shifted Binary Trees to search for

peaks in time sequence data. The algorithm works well when there are few peaks,

but performs poorly if there are many near-peaks [16].

From [19], we have a new data structure called a Shifted Aggregation Tree,

abbreviated as an AggTree, which improves the performance of a Shifted Binary Tree,

7

Level 5

Level 4

Level 3

Level 2

Level 1

Base sublevel 3
Shifted sublevel 3

Figure 2.2 An example of Shifted Binary Trees. Each cell at
level 1 is a leaf node; each leaf node corresponds to a time point
in the input LC-MS data. Each cell at base sublevel i (shifted
sublevel i, respectively) represents a node at base sublevel i
(shifted sublevel i, respectively), and corresponds to or contains
2i−1 time points in the input data. In the figure, the first
highlighted sequence at level 1 is contained in the highlighted
node at base sublevel 4; the second highlighted sequence at level
1 is contained in the highlighted node at shifted sublevel 3.

and sketched the use of AggTrees in a general setting of time series mining. Here, we

extend the work in [19] by presenting:

(1) The algorithmic details and theoretical foundation of AggTrees.

(2) The PeakID method that adapts AggTrees to elastic peak detection in 2D LC-

MS data.

(3) Experimental results showing the superiority of PeakID over other methods.

2.1.3 Related Work

There are two groups of work that are closely related to ours. The first group is

concerned with 3D peak detection in mass spectrometry data. Most 3D peak detection

algorithms are based on either statistical distributions or a variety of smoothing

functions [15, 20]. To reduce the number of false positives (i.e., those that are non-

peaks but are detected as peaks), these algorithms often assume a minimum peak

8

width. The algorithms focus on dealing with 2D data where the X-axis has m/z

values and the Y-axis has intensity values [21, 5, 22]. An alternative approach, as

described in Section 2.1.1, is to examine 2D data where the X-axis has time points and

the Y-axis has intensity values. Stolt et al. [8], for example, developed a second-order

peak detection algorithm capable of finding peaks of different widths in such 2D data.

The authors set the minimum peak width to 3. One disadvantage of Stolt et al.’s

algorithm is that it may produce false negatives (i.e., those that are real peaks but

are predicted as non-peaks). To reduce the number of false negatives, the brute-force

algorithm checking different window sizes could be used. In contrast to Stolt et al.’s

work, we develop a new data structure for identifying all peaks quickly without using

the brute-force approach.

The second group of related work is concerned with burst modeling and

detection in time series. Wang et al. [23] used a one-parameter model, b-model, to

model the bursty behavior in self-similar time series and to synthesize realistic trace

data. This type of time series occurs in a large number of real world applications,

such as Ethernet, file systems, web, video and disk traffic. Kleinberg [24] studied the

bursty and hierarchical structure in temporal text streams, with a focus on finding

how high frequency words change over time. Vlachos et al. [25] mined the bursty

behavior in the query logs of the MSN search engine. They used moving averages

to detect time regions having high numbers of queries. Only two window sizes were

considered, short term and long term. The detected bursts were further compacted

and stored in a database to support burst-based queries. Other methods for finding

surprising and periodic patterns in time series have also been developed [26, 27, 28].

The 2D LC-MS data we deal with here are time series in nature. However, in contrast

to the above time series mining methods, our work mainly focuses on detecting bursts

(peaks) across multiple window sizes.

9

2.2 The PeakID Method

In this section, we describe the PeakID method in detail, introducing the concept of

an Aggregation Pyramid that acts as a host data structure into which a Shifted

Aggregation Tree can be embedded; the concept of Detailed Search Region and

the advantages of Shifted Aggregation Tree over Binary Aggregation Tree. We also

explain the details of algorithms for the Shifted Aggregation Tree construction and

the peak detection. Lastly, we introduce a heuristic state-space algorithm to find an

efficient Shifted Aggregation Tree given input data.

2.2.1 The Aggregation Pyramid

An Aggregation Pyramid is an N -level isosceles triangular-shaped data structure built

over the input 2D LC-MS data with N time points, satisfying the following properties:

• Level 1 has N cells where each cell stores the intensity value associated with

each time point in the input 2D LC-MS data.

• Level 2 has N−1 cells where the first cell stores the sum of the first two intensity

values (i.e., the intensity value at time point 1 and the intensity value at time

point 2) in the 2D LC-MS data; the second cell stores the sum of the second

two intensity values (i.e., the intensity value at time point 2 and the intensity

value at time point 3), and so on.

• Level h has N − h + 1 cells where the ith cell, c, stores the sum of the h

consecutive intensity values starting at time point i and ending at time point

i + h − 1 in the 2D LC-MS data. The time window starting at time point i

and ending at time point i + h− 1 is called the shadow window, or simply the

shadow, of cell c. When the context is clear, we also refer to the set of the h

consecutive cells at level 1 starting with the ith cell as the shadow window, or

the shadow, of cell c.

10

• The top level has one cell only, storing the sum of all intensity values in the

input 2D LC-MS data.

Notice that each time window of size w is the shadow of some cell at level w.

Conversely, each cell at level w has a shadow window of size w; the cell stores the sum

of the intensity values within its shadow window. Figure 2.3 shows an example of an

8-level Aggregation Pyramid. In Figure 2.3(b), for example, the highlighted cell, c,

at level 4 stores a value of 106, which is the sum of the intensity values 27, 11, 18 and

50 at level 1 that are within the shadow window of the cell c.

By construction, an Aggregation Pyramid has the following properties:

• All the shadows of the cells along the 45◦ diagonal have the same starting time

point. All the shadows of the cells along the 135◦ diagonal have the same ending

time point.

• A cell at level h with the shadow ending at time point t is denoted as cell(h, t),

which stores the sum of the intensity values in cell(1, t − h + 1) to cell(1, t).

When the context is clear, we also use cell(h, t) to represent the sum value

stored in this cell.

• The shadow of any cell c in the subpyramid rooted at cell r is a subset of the

shadow of cell r. We say c is shaded by r. By monotonicity, the value in cell c

is guaranteed to be less than or equal to the value in cell r.

• The overlap of two cells c1 and c2 in that order at the same level is the cell c

at the intersection of the 135◦ diagonal touching cell c1 and the 45◦ diagonal

touching cell c2 (see Figure 2.4). The shadow of the cell c is the intersection of

the shadow of c1 and the shadow of c2. For example, in Figure 2.4, the shadow

of cell c1 contains time points 4, 5, . . . , 10, the shadow of cell c2 contains time

points 8, 9, . . . , 14, and the shadow of the overlap c contains time points 8, 9

and 10.

11

In
te

ns
ity

1 2 3 4 7

10

20

30

40

50

18

11

2726

17

85

Time points

1 3 4 5 6 7 8Time points

17 26 27 11 18

43 53 38

70 64

81

29

99

82

50
57

46

50 57 46

107 103

79 125 153

106 136

163 182

149 189 209

206 235

252

56

(a)

6

68

171

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

(b)

C

132

2

Figure 2.3 An example of an 8-level Aggregation Pyramid. (a)
An example of 2D LC-MS data. (b) The Aggregation Pyramid
built over the 2D LC-MS data in (a).

12

�������
�������
�������

�����
�����
�����

�������
�������
�������

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�����
�����
�����

�����
�����
�����

�
�
�

�
�
�

�
�
�

�����
�����
�����

�����
�����
�����

�����
�����
�����

�������
�������
�������

�����
�����
�����

�����
�����
�����

�����
�����
�����

�������
�������
�������

�������
�������
�������

�������
�������
�������

�����
�����
�����

�����
�����
�����

�����
�����
�����

�������
�������
�����
�����

11 12 13 14 15 16Time points

c

1 2 3 4 5 6 7 8 9 10

2c1 c

Figure 2.4 Illustration of the overlap of two cells in an example
Aggregation Pyramid.

The values stored in the cells of the Aggregation Pyramid can be calculated in

a bottom-up manner using Equation (2.1) below: for 1 < h, t ≤ N ,

cell(h, t) = cell(h− 1, t− 1) + cell(1, t) (2.1)

If cell(h, t) exceeds the threshold f(h) for the time window size h, then there exists

a peak starting at time point t− h + 1 and ending at time point t.

2.2.2 Embedding a BinaryTree into an Aggregation Pyramid

Recall that in a Shifted Binary Tree, each node at level 1 corresponds to a time point

in the input LC-MS data, and each node at level i corresponds to or contains 2i−1

time points in the input data. Observe that each node in a Shifted Binary Tree with

N time points corresponds to a cell in an Aggregation Pyramid with the same number

of time points. Figure 2.5 shows the correspondence between the nodes in a Shifted

Binary Tree with 16 time points and the cells in an Aggregation Pyramid with 16

time points. Each cell in the Aggregation Pyramid that corresponds to a node in the

Shifted Binary Tree is highlighted in Figure 2.5(a). Specifically, the cells labeled A,

B, C, D and E, respectively in the Aggregation Pyramid in Figure 2.5(a) correspond

to the nodes labeled A, B, C, D and E, respectively in the Shifted Binary Tree in

13

Figure 2.5(b). Notice that level i in the Shifted Binary Tree corresponds to level 2i−1

in the Aggregation Pyramid. This correspondence shows how to embed the Shifted

Binary Tree in Figure 2.5(b) into the Aggregation Pyramid in Figure 2.5(a).

An important property of the Shifted Binary Tree is that any given time window

of size w, w ≤ 2i−2 + 1, is contained in at least one of the nodes at level i of the

BinaryTree. By induction, any time window of size w, w ≤ 2i−3 + 1, is contained in

at least one of the nodes at level i − 1 of the BinaryTree. After the BinaryTree is

constructed, we search the BinaryTree for peaks in a top-down manner. If the value

stored in a node v = cell(2i−1, t) at level i of the BinaryTree exceeds the threshold

f(2i−3 + 2) associated with the time window size 2i−3 + 2, then an alarm is raised,

indicating the possible occurrence of a peak. A detailed search has to be performed

to check the cells of the Aggregation Pyramid whose shadow sizes are in the range

[2i−3 + 2, 2i−2 + 1].

Note that we need to search and check only the cells in the Aggregation Pyramid

whose shadows end after time point t− 2i−2, because the cells whose shadows end at

or before time point t− 2i−2 are shaded by one of v’s preceding nodes at level i of the

BinaryTree. We refer to the region in which the search is performed as the detailed

search region of v, denoted DSR(v). The detailed search region consists of cells from

level 2i−3 + 2 to level 2i−2 + 1 in the Aggregation Pyramid, where the shadows of

these cells end at time points in [t − 2i−2 + 1, t]. The purpose of checking the cells

in DSR(v) is to find peaks occurring in time windows whose sizes are in the range

[2i−3 + 2, 2i−2 + 1] and that end at time points in [t− 2i−2 + 1, t]. Notice that, if v is

the leftmost node at level i, since no node precedes v, DSR(v) contains cells whose

shadows end at time points in [1, 2i−1]. It was proved [16] that searching the cells

in DSR(v) guarantees that all peaks are detected. Figure 2.6 illustrates the detailed

search region DSR(v) for a node v in the BinaryTree in Figure 2.5(b).

14

�������� ���������������������������������
���

	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��

�
�
�
�
�
�

�
�
�
�
�
�

�������������
�������������

Level 2
Level 4

Level 8

Level 16
C

D

E

A

B

1 2 3 4 5 6 7 9 11 12 13 14 15 16108

(a)

Time points
Level 1

Level 2

Level 3

Level 4

Level 5

A EDCB

Level 1

(b)

Figure 2.5 Illustration of the correspondence between the
Aggregation Pyramid in (a) and the Shifted Binary Tree in (b).
The highlighted cells at level 1, 2, 4, 8, 16, respectively in the
Aggregation Pyramid in (a) correspond to the nodes at level 1,
2, 3, 4, 5, respectively in the BinaryTree in (b).

15

1 2 3 4 5 6 7 8 9 10 11 12 14 15 1613
(Level 1)

(Level 5)

(Level 2)

Level 4 (Level 3)

Level 8

Level 16

(Level 4)

DSR(v)

v

Level 1
Level 2

Time points

Figure 2.6 Illustration of the detailed search region DSR(v)
in the Aggregation Pyramid in Figure 2.5(a) for a node v at level
4 in the BinaryTree in Figure 2.5(b). The level numbers on the
left represent the level numbers of the Aggregation Pyramid in
Figure 2.5(a), and the level numbers in the parentheses on the
right represent the level numbers of the BinaryTree in Figure
2.5(b). The cells of the Aggregation Pyramid that correspond
to the nodes of the BinaryTree are highlighted.

2.2.3 Generalizing a BinaryTree to an AggTree

A detailed search in DSR(v) may turn out to be fruitless (i.e., no peak is found in

DSR(v)). It has been observed that [16, 19, 17]

(1) When peaks are rare but not very rare, the number of fruitless detailed searches

grows, suggesting that we may want more levels than a Shifted Binary Tree

provides.

(2) Conversely, when peaks are exceedingly rare we may need fewer levels than a

Shifted Binary Tree provides.

In other words, we want a data structure that adapts to the input data. For this

reason, we generalize Shifted Binary Trees to Shifted Aggregation Trees. Like a

BinaryTree, an AggTree is a hierarchical data structure defined on a subset of the

cells of an Aggregation Pyramid. It has several levels, each of which contains several

nodes. The nodes at level 1 are in one-to-one correspondence with the time points

16

in the input 2D LC-MS data. The value stored in a node at level i is obtained

by aggregating the values stored in some nodes below level i. The shadows of two

neighboring nodes at the same level overlap.

A Shifted Aggregation Tree differs from a Shifted Binary Tree in two ways:

(1) The parent-child structure

This defines the topological relationship between a node and its children, i.e.,

how many children the node has and their placements.

(2) The shifting pattern

This defines how many time points apart there are between two neighboring

nodes v1 and v2 at the same level i. Formally, letting the shadow of v1 end at

time point t1 and the shadow of v2 end at time point t2, where t1 < t2, we call

(t2 − t1) the shift between v1 and v2, or the shift of level i.

In a BinaryTree, the parent-child structure for each node is always the same: one

node at level i aggregates two nodes at level i− 1. The shifting pattern is also fixed:

the shadows of two neighboring nodes in the same level always half-overlap. In an

AggTree, a node could have 3 children and be 2 time points away from its preceding

neighbor, or could have 64 children and be 128 time points away from its preceding

neighbor. We define the shadow size of level i, denoted ai, to be the size of the shadow

of a node at level i. Define the overlapping shadow size of level i, denoted oi, to be the

size of the intersection of the shadows of two neighboring nodes at level i. Define the

degree of level i, denoted di, to be the degree of a node at level i, i.e., the number of

children the node has. Let si denote the shift of level i. Table 2.1 gives a side-by-side

comparison between AggTrees and BinaryTrees. Clearly, BinaryTrees are a special

case of AggTrees.

Figure 2.7 shows an example of a Shifted Aggregation Tree with 32 time points;

the figure also shows how the AggTree is embedded into an Aggregation Pyramid

17

Table 2.1 Comparison between BinaryTrees and AggTrees

BinaryTree AggTree

di = 2 di ≥ 2

si = 2× si−1 si = k × si−1, k ≥ 1

oi = ai−1 oi ≥ ai−1

with 32 time points. In the AggTree, the shift of level 2 is 1; the shift of level 3 is the

same as the shift of level 4, which equals 2. Each node at level 2, 3 and 4, respectively

has 2 children, whereas the node at level 5 has 4 children. The overlapping shadow

size of level 2 is 1, which equals the shadow size of level 1. The overlapping shadow

size of level 3 is 2, which equals the shadow size of level 2. The overlapping shadow

size of level 4 is 6, which is larger than the shadow size of level 3. This example shows

the difference between an AggTree and a BinaryTree (cf. Table 2.1 and Figure 2.5).

Recall that in the elastic peak detection problem whose goal is to find peaks

across multiple window sizes, we are given the 2D LC-MS data, LM[N], with N time

points, a set of non-negative intensity values x1, x2, . . . , xN , a set W of window sizes

w1, w2, . . . , wm where wi < wj, 1 ≤ i < j ≤ m, and a threshold associated with each

window size, f(wj), j = 1, 2, . . . , m. Our approach to solving this problem, called

PeakID, is to first construct an AggTree on the given 2D LC-MS data and then search

the AggTree for peaks, where each peak is represented by a pair (t, w) such that t

is a time point, w is a window size in W and
∑t+w−1

p=t xp ≥ f(w). The algorithm for

constructing the AggTree, called BuildTree, takes as input the 2D LC-MS data LM[N]

where LM[j], 1 ≤ j ≤ N , contains the intensity value xj associated with the jth time

point. In addition, the input data of the algorithm include the shift si, shadow size

ai and degree di of each level i in the AggTree to be constructed. We will use a

state-space algorithm to find appropriate values for si, ai and di, as explained later in

this section. The algorithm builds the AggTree in a bottom-up manner. In the first

18

���������������������
���������������������
���������������������
���������������������

��������������������������

���
���
���
��� ���	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���

�
�
�

�
�
�

�
�
�

���������������������

Level 3

7 9 11 13 15 17 19 21 23 25 27 29 3151 3

A B C

7 9 11 13 15 17 19 21 23 25 27 29 3151 3

A

B

C

D

E

(Level 1)
(Level 2)

D E

(a)

Level 4

Level 2

Level 1

(b)

Time points

Time points

Level 5

Level 32 (Level 5)

Level 8 (Level 4)

(Level 3)Level 4

Level 2
Level 1

Figure 2.7 Illustration of the correspondence between the
Aggregation Pyramid in (a) and the Shifted Aggregation Tree
in (b). In (a), the level numbers on the left represent the level
numbers of the Aggregation Pyramid, and the level numbers
in the parentheses on the right represent the level numbers of
the AggTree in (b). The cells of the Aggregation Pyramid that
correspond to the nodes of the AggTree are highlighted in (a).

19

level, each node corresponds to a time point in the input LC-MS data, and stores

the intensity value associated with that time point. The top level has one node only,

whose shadow contains all the N time points.

In practice, we do not need to build the entire AggTree. It suffices for the

BuildTree algorithm to construct nodes from level 1 to level I where aI−1 - sI−1 + 1

< wm ≤ aI − sI + 1. Here, wm is the largest window size of interest, aI is the shadow

size of level I and sI is the shift of level I in the AggTree. Let AggTree[i][j], 1 < i ≤ I

and 1 ≤ j ≤ bN−ai

si
c + 1, represent the value stored in the jth node at level i. We

have

AggTree[i][j] =
di∑

p=1

AggTree[i− 1][b(j − 1)× si + (p− 1)× ai−1

si−1
c + 1] (2.2)

Figure 2.8 summarizes the algorithm for building the AggTree. Notice that for

efficiency reasons, we do not actually build the Aggregation Pyramid into which

the AggTree is embedded. As explained below, the partially constructed AggTree is

sufficient for detecting all peaks without yielding false negatives.

2.2.4 Detecting Peaks Using an AggTree

We search the AggTree constructed in the previous subsection to detect all peaks in

a top-down manner. To detect peaks in the time windows of size wm, we examine the

nodes at level I where aI−1− sI−1 +1 < wm ≤ aI− sI +1. In general, to detect peaks

in the time windows of size wj, 1 ≤ j ≤ m, we examine the nodes at level i where

ai−1 − si−1 + 1 < wj ≤ ai − si + 1. We check each node v = cell(ai, t) at level i to

see if the value stored in v exceeds the threshold f(wj) associated with the window

size wj. If so, an alarm is raised, indicating the possible occurrence of a peak, and a

check in the detailed search region DSR(v) is performed. The shadow of the node v

ends at time point t. DSR(v) comprises cells in the Aggregation Pyramid into which

the AggTree is embedded, where the sizes of the shadows of the cells are in the range

20

Procedure: BuildTree(LM[N], si, ai, di)

Input: The LC-MS data LM[N], shift si, shadow size ai and degree di.

Output: The shifted aggregation tree AggTree[I][N].

/* Initialize the first level of the AggTree. */

1. for j = 1 to N do

2. AggTree[1][j] ← LM[j];

/* Construct the AggTree in a bottom-up manner. */

3. for i = 2 to I do

4. for j = 1 to bN−ai

si
c+ 1 do

5. calculate AggTree[i][j] using Equation (2.2);

6. return AggTree[I][N];

Figure 2.8 Algorithm for constructing the AggTree from the LC-MS data
LM[N].

[ai−1−si−1 +2, ai−si +1], and the shadows end at time points in [t−si +1, t]. Notice

that, if v is the leftmost node at level i, since no node precedes v, DSR(v) contains

cells whose shadows end at time points in [1, ai]. Figure 2.9 illustrates the DSR(v)

for a node v at level 3 in an AggTree with 16 time points. In the figure, the sizes of

the shadows of the cells in the DSR(v) are in the range [4, 9], and the shadows end

at time points in [13, 16].

In searching DSR(v) where v = cell(ai, t), if cell(wj, t
′) ≥ f(wj), t − si +

1 ≤ t′ ≤ t, then a peak is detected, which is represented and output as a pair

(t′ − wj + 1, wj). That is, the peak occurs in the time window [t′ − wj + 1, t′] where

∑t′

p=t′−wj+1 xp ≥ f(wj). Since we do not actually build the Aggregation Pyramid

containing DSR(v), the values of the cells in DSR(v) are computed “on-the-fly”, as

explained below. Observing that the shadows of two neighboring cells overlap, to

avoid duplicate computation, we start from one seed node in the AggTree, and then

by adding or subtracting the difference between two neighboring cells, we can get the

21

81 2 3 4 5 6 7 9 10 11 12 13 15 1614

Level 3

Level 4

Level 1

Level 2

Time points

v

DSR(v)

seed

Figure 2.9 Illustration of the detailed search region DSR(v)
for a node v at level 3 in an AggTree with 16 time points.

values of the cells in DSR(v). Specifically, assuming the seed node is cell(h, ts), we

have

cell(h, ts + 1) = cell(h, ts)− cell(1, ts − h + 2) + cell(1, ts + 1) (2.3)

In general, for all 1 < ts + k ≤ N ,

cell(h, ts + k) = cell(h, ts + k − 1)− cell(1, ts + k − h + 1) + cell(1, ts + k)(2.4)

Furthermore,

cell(h + 1, ts) = cell(h, ts) + cell(1, ts − h) (2.5)

In general, for all 1 < h + k ≤ I,

cell(h + k, ts) = cell(h + k − 1, ts) + cell(1, ts − h− k + 1) (2.6)

Due to the properties of Shifted Aggregation Trees, it’s guaranteed to find a

seed node in or near a detailed search region. Here is how. Notice si−1 ≤ si (cf.

Table 2.1). The shadows of the cells in DSR(v) end at time points in [t − si + 1, t],

22

i.e., the time span of DSR(v) is si. Thus, there exists a node at level i − 1 whose

shadow ends at some time point in [t − si + 1, t]; call it the seed node (Figure 2.9).

Notice ai−1 ≤ ai − si + 1. If si−1 > 1, then ai−1 − si−1 + 2 ≤ ai−1 ≤ ai − si + 1.

The sizes of the shadows of the cells in DSR(v) are in the range [ai−1 − si−1 + 2,

ai− si + 1]. Therefore, the seed node lies in DSR(v). If si−1 = 1, then the seed node

is immediately below DSR(v).

Figure 2.10 summarizes the algorithm, called SearchTree, for finding peaks in the

AggTree[I][N] constructed by the BuildTree algorithm in Figure 2.8. The SearchTree

algorithm takes as input the AggTree[I][N], a set W of window sizes w1, w2, . . . , wm

where wi < wj, 1 ≤ i < j ≤ m, and a threshold associated with each window size,

f(wj), j = 1, 2, . . . , m. The algorithm outputs all pairs (t, w) such that t is a time

point in AggTree[I][N], w is a window size in W and
∑t+w−1

p=t xp ≥ f(w). Each pair

(t, w) represents a peak occurring in the time window [t, t + w − 1]. Notice that in

step 6 of SearchTree, if v is the leftmost node at level i, the shadows of the cells in

DSR(v) end at time points in [1, t], which equals [1, ai]. Under this circumstance,

we need to check each cell(wj, t
′), where 1 ≤ t′ ≤ t = ai in DSR(v).

23

Procedure: SearchTree(AggTree[I][N], wj, f(wj))

Input: The AggTree[I][N], window size wj and its associated threshold f(wj).

Output: The set P of pairs (t, w) representing peaks.

1. i ← I, j ← m, P ← ∅;

/* Search AggTree[I][N] in a top-down manner for peaks. */

2. while j ≥ 1 do

3. if (ai−1 − si−1 + 1 < wj ≤ ai − si + 1) then

4. for each node v = cell(ai, t) at level i of AggTree[I][N] do

5. if (v’s value ≥ f(wj)) then

/* Search DSR(v). */

6. for each cell(wj, t
′), t− si + 1 ≤ t′ ≤ t, in DSR(v) do

7. if cell(wj, t
′) ≥ f(wj) then

8. P ← P ∪ {(t′ − wj + 1, wj)};

9. j ← j − 1;

10. else i ← i− 1;

11. return P;

Figure 2.10 Algorithm for searching AggTree[I][N] for peaks.

Below we show that the proposed PeakID method, composed of the two

algorithms BuildTree and SearchTree, finds all peaks without yielding false negatives.

Let T be the Shifted Aggregation Tree constructed by the BuildTree algorithm and

let AP be the Aggregation Pyramid into which T is embedded.

Lemma 2.2.4.1. Let W be a time window of size w where ai−1−si−1 +1 < w ≤

ai − si + 1. Let cell(w, t) be the cell at level w of AP whose shadow is W that ends

at time point t. There exists a node v at level i of T such that cell(w, t) is shaded by

v. Furthermore, cell(w, t) lies in DSR(v).

Proof. We use mathematical induction to show that the lemma holds for any

positive integer k, where t ≤ ai + (k − 1)× si ≤ N .

24

Base step. When k = 1, i.e., t ≤ ai, since the shadow of the first node, i.e.,

the leftmost node, v at level i of T ends at time point ai, cell(w, t) is shaded by v.

DSR(v) comprises cells in AP where the sizes of the shadows of the cells are in the

range [ai−1 − si−1 + 2, ai − si + 1]. Since ai−1 − si−1 + 1 < w ≤ ai − si + 1, cell(w, t)

lies in DSR(v).

Hypothesis step. Assume the lemma holds when k = p. That is, when t ≤

ai + (p− 1)× si and ai−1 − si−1 + 1 < w ≤ ai− si + 1, there exists a node v at level i

of T such that cell(w, t) is shaded by v and cell(w, t) lies in DSR(v).

Induction step. We want to show that the lemma holds when k = p + 1. Based

on the properties of T , the shadows of the cells in the detailed search regions of the

first p nodes at level i of T end at time points in [1, ai + (p− 1)× si]. The shadows

of the cells in the detailed search region of the (p + 1)th node at level i of T end at

time points in [ai + (p− 1)× si + 1, ai + p× si]. Now, consider the time window W

of size w where ai−1 − si−1 + 1 < w ≤ ai − si + 1 and the cell(w, t) whose shadow is

W . If 1 ≤ t ≤ ai + (p− 1)× si, by the induction hypothesis, there exists a node v at

level i of T such that cell(w, t) is shaded by v and cell(w, t) lies in DSR(v).

If ai + (p − 1) × si + 1 ≤ t ≤ ai + p × si, which means W ends at some time

point in [ai + (p− 1)× si + 1, ai + p× si], then W must start at some time point in

[ai +(p− 1)× si−w +2, ai + p× si−w +1]. Notice that, the shadow of the (p+1)th

node at level i of T starts at time point p × si + 1. Since w ≤ ai − si + 1, we have

ai− si +1−w ≥ 0. Thus, (ai +(p− 1)× si−w +2) - (p× si +1) = ai− si +1−w ≥

0, which means (ai + (p− 1)× si − w + 2) ≥ (p× si + 1). Therefore, all time points

in W are in [p× si + 1, ai + p× si], which is the shadow of the (p + 1)th node at level

i of T . Hence, cell(w, t) is shaded by the (p + 1)th node at level i of T .

Furthermore, because ai−1 − si−1 + 1 < w ≤ ai− si + 1, and DSR(v) comprises

cells in AP where the sizes of the shadows of the cells are in the range [ai−1−si−1 +2,

ai − si + 1], we know that cell(w, t) lies in DSR(v). This completes the proof.

25

Theorem 1. The SearchTree algorithm finds all peaks without yielding false

negatives.

Proof. Assume, for contradiction, that SearchTree yields a false negative. That

is, there exists a peak P = (t, wj) for some j, 1 ≤ j ≤ m, that can not be detected

by SearchTree.

The peak P occurs in the time window starting at time point t and having a size

of wj. This time window is the shadow of cell(wj, t+wj−1), and cell(wj, t+wj−1) ≥

f(wj). From Lemma 2.2.4.1, there exists a node v at level i of the AggTree T where

ai−1 − si−1 + 1 < wj ≤ ai − si + 1, such that cell(wj, t + wj − 1) is shaded by the

node v. Thus, wj satisfies the condition in step 3 of the SearchTree algorithm. Since

SearchTree checks each node at level i in step 4, the algorithm must be able to find

the node v. Since cell(wj, t + wj − 1) ≥ f(wj) and cell(wj, t + wj − 1) is shaded by

the node v, by monotonicity, the value stored in v must be greater than or equal to

f(wj). Thus, the condition in step 5 is satisfied and DSR(v) is searched.

By Lemma 2.2.4.1, cell(wj, t + wj − 1) lies in DSR(v). Since the algorithm

checks each cell at level wj in DSR(v) in step 6, and cell(wj, t + wj − 1) ≥ f(wj),

the algorithm is able to detect and output (t, wj) in step 8, which contradicts the

assumption.

2.2.5 A State-Space Algorithm

PeakID employs a heuristic state-space algorithm to search for an efficient AggTree

from a training dataset. The algorithm treats each (partially constructed) AggTree as

a state and considers the growth from one partially constructed AggTree to another

as a transformation. The training process is done only once, and the shift si, shadow

size ai and degree di of each level i in a final state will be used subsequently as

the input values of the BuildTree algorithm in Figure 2.8 to construct AggTrees for

different sets of 2D LC-MS data when detecting peaks in those datasets.

26

In a state-space algorithm, the problem to be solved is represented by a set

of states and a set of transformation rules mapping states to states. The solutions

to the problem are represented by final states that satisfy some conditions and have

no outgoing transformations. The search algorithm starts from one initial state,

and then repeatedly applies the transformation rules to the set of states currently

being explored to generate new states. When at least one final state is reached, the

algorithm stops. There are different strategies to choose the order to traverse the state

space. Depth-first search, breadth-first search, best-first search, and A∗ search are

commonly used ones [29]. Below, we describe the main components of our best-first

search algorithm.

• Initial state

Each partially constructed AggTree must contain the input 2D LC-MS data.

Thus, the initial state is the partially constructed AggTree consisting of level

one only, in which each leaf node corresponds to a time point in the LC-MS

data (Figure 2.11).

• Transformation rule

If by adding a level of nodes to the top of a partially constructed AggTree A, we

can get another (partially constructed) AggTree B, we say AggTree A or state

A can be transformed to AggTree B or state B. Recall that there are some

constraints that nodes of the top level of AggTree B must satisfy. Each node at

the top level of AggTree B must aggregate several children below the top level.

Each node in AggTree A is shaded by a node at the top level of AggTree B. The

shift of the newly added top level of AggTree B must be an integral multiple

of the shift of the level below the top level (cf. Table 2.1). The transformation

rule defines how to grow a more complicated AggTree from a simpler AggTree.

27

Figure 2.11 Illustration of the state-space growth process.

• Final states

Final states are those (partially constructed) AggTrees that can be used to

detect peaks across all window sizes of interest. Let h be the shadow size of the

top level of an AggTree T and let s be the shift of the top level of T . For any

time window W of size w, w ≤ h − s + 1, W is shaded by a node at the top

level of T . Thus, T is a final state if h − s + 1 ≥ wm where wm is the largest

window size of interest.

• Traversing strategy

In order to find an efficient AggTree, we use the best-first strategy to explore

the state space. Each state (or AggTree) T is associated with a cost; the state

with the minimum cost is picked as the next state to be explored. One can

calculate this cost empirically by measuring the CPU time needed to build the

28

AggTree T and search T for peaks based on the training dataset or calculate

the cost based on a theoretical model, as we will explain below.

• Desired tree

The final state (or AggTree) T with the minimum cost is picked as the desired

tree, where the shift si, shadow size ai and degree di of each level i in T are

used as input values for the BuildTree algorithm in Figure 2.8.

In summary, the heuristic state-space algorithm starts with a partially constructed

AggTree having level one only, and then continues growing the candidate set of

AggTrees, until a set of final AggTrees is obtained. Figure 2.11 illustrates how the

state space grows.

Given an AggTree T , there are an exponential number of ways to grow T . We

develop some constraints to reduce the complexity of our state-space algorithm. Let

L be the maximum of the shadow sizes of the top levels of all the explored AggTrees

(or states). Let S be the current state to be explored or visited. Instead of generating

all possible next states from S, we generate only partially constructed AggTrees (or

states) from S where the shadow sizes of the top levels of the AggTrees do not exceed

2L. In addition, we introduce a parameter, N = Max num states, to govern the

traversal of the state space. If we have visited N states in which the shadow sizes of

the top levels are the same, we don’t explore any more states whose top levels have

this same shadow size. Likewise, if we have visited N final states, the algorithm stops

and the final state we have visited with the minimum cost is returned as the output

of the algorithm.

The cost associated with each state is used to decide which state is the next one

to be explored. We develop a theoretical model to calculate the cost of an AggTree

(or state) T . With this model, the cost of T equals the number of node construction

operations needed to build T plus the number of cells to be checked in performing

detailed searches in T when alarms are raised. The number of node construction

29

operations equals the number of nodes in T . Let AP be the Aggregation Pyramid

into which T is embedded. Let Pa(wj | ai) be the probability that an alarm is raised,

i.e., the probability that we check the cells at level wj in AP given a node at level i

of T with shadow size ai (cf. step 5 of the SearchTree algorithm in Figure 2.10). Let

si be the shift of level i and ni be the number of nodes at level i of T . The expected

number of cells to be checked is

I∑

i=1

m∑

j=1

Pa(wj | ai)× si × ni

where the alarm probability Pa(wj | ai) can be calculated from the training dataset

as explained in the next section.

CHAPTER 3

EXPERIMENTS FOR PEAK DETECTION

In this section, we conduct a series of experiments to evaluate the performance of the

PeakID method using both synthetic and real-world data. All the experiments were

performed on a 2GHz Pentium 4 PC having a memory of 2G bytes. The operating

system was Windows XP and the method was implemented in C++.

3.1 Experimental Results on Synthetic Data

We generated synthetic data using a random number generator with the Gaussian

or normal distribution. This distribution is often used in the theoretical analysis

of peaks in 2D LC-MS data [15, 8]; the synthetic data have the same statistics as

the real-world LC-MS data. Twenty sets of 2D LC-MS data were generated, with

each set containing one million time points. These datasets were used as test data.

Our algorithms were run on the twenty test datasets, and the mean was plotted.

Error bars, representing one standard error of the mean, were also plotted where the

standard error was calculated by dividing the standard deviation by the square root

of number of runs in the experiments. The error bars represent a description of how

confident one is that the mean represents the true value. The smaller the error bars,

the more reliable the plotted mean values are. In addition, 20,000 time points were

generated and used as training data by the state-space algorithm to find an efficient

AggTree.

Table 3.1 lists parameters and their default values used in the experiments. The

parameter Max num states is used by the state-space algorithm to reduce the time

spent in traversing the state space. The window sizes of interest comprised consecutive

integers in the range [Min window size, Max window size]. The default value of

Min window size was set to 3, as suggested in [15, 8, 20]. The peak probability is

30

31

Table 3.1 Parameters and Default Values Used in Experiments

Parameter Value

Max num states 200

Min window size 3

Max window size 500

Peak probability 10−5

the probability that a peak occurs in a time window of some size w, i.e., it is the

probability that the sum of the intensity values within the time window exceeds the

threshold f(w) associated with w. The peak probability is inversely proportional

to the threshold—the smaller the peak probability, the larger the threshold is. We

assumed that the peak probability was the same for each window size of interest.

Assume that each time point in the generated 2D LC-MS data has an intensity

value characterized by a mean µ and a standard deviation σ. Then the sum of the

intensity values within a time window of size w has a mean wµ and standard deviation

√
wσ. Let p be the peak probability for the window size w. We can characterize this

situation by saying that Pr[So(w) ≥ f(w)] ≤ p, where So(w) is the observed sum

of the intensity values within the time window of size w. Let Φ(x) be the normal

cumulative distribution function for a normal random variable X,

Pr[X ≥ −Φ−1(p)] ≤ p

We have

Pr[
So(w)− wµ√

wσ
≥ −Φ−1(p)] ≤ p

Therefore, f(w) should be set to wµ− √wσΦ−1(p).

In Section 2.2.5, we introduced the alarm probability Pa(wj | ai). This

probability can be rewritten more generally as Pa(w | W), w ≤ W , which is the

32

probability that the sum of the intensity values within a time window of size W

exceeds the threshold f(w) associated with the window size w. Referring to Figure

2.10, W is the shadow size of the node v in step 4 and w is the window size wj in

step 5 in the figure. Thus, the alarm probability is Pr[So(W) ≥ f(w)]. Therefore,

Pa(w | W) = Pr[So(W) ≥ f(w)]

= Pr[
So(W)−Wµ√

Wσ
≥ f(w)−Wµ√

Wσ
]

= Φ(−f(w)−Wµ√
Wσ

)

= Φ(
(W − w)µ√

Wσ
+

√
wσΦ−1(p)√

Wσ
)

= Φ((
√

B − 1√
B

)
√

w
µ

σ
+

Φ−1(p)√
B

) (3.1)

where B = W
w

denotes the bounding ratio with respect to W , w.

So, Pa(w | W) is determined by the distribution parameters µ and σ, the peak

probability p, the bounding ratio B, and the cell level w in the Aggregation Pyramid

into which the AggTree in Figure 2.10 is embedded. It can be seen from Equation

(3.1) that the larger the ratio µ

σ
, the larger the alarm probability Pa(w |W) is. As µ

increases, there are more chances to raise an alarm. On the other hand, as σ increases,

there are fewer chances to raise an alarm.

Figure 3.1 compares the theoretical cost model with the empirical cost model

used in the state-space algorithm described in Section 2.2.5. We first used the

theoretical cost model to find an efficient AggTree T1 from the training dataset.

The shift si, shadow size ai and degree di of each level i in T1 were then used by the

PeakID method to build an AggTree for each test dataset and to search for peaks in

that test dataset. The CPU time used by PeakID on each test dataset was recorded;

the mean and error bars were plotted. We then used the empirical cost model to find

an efficient AggTree T2 from the same training dataset. The shift, shadow size and

degree values of T2 were then used by PeakID for peak detection in each test dataset.

33

The CPU time used by PeakID on each test dataset was recorded; the mean and error

bars were also plotted. Figure 3.1 shows that the theoretical cost model is better than

the empirical cost model; the AggTree T1 produced from the theoretical cost model

leads to a more efficient PeakID than that based on the AggTree T2 produced from the

empirical cost model. The X-axis in Figure 3.1 shows different k values where each

k corresponds to a peak probability 10−k. As k becomes larger, the peak probability

becomes smaller and consequently less time is required by PeakID to detect the fewer

peaks.

9000

6000

5000

12000

11000

10000

8000

7000

13000

R
un

ni
ng

 ti
m

e
(m

s)

Theoretical Model

Empirical Model

2 3 4 5 6 7 8 9 10

Peak probability

Figure 3.1 Comparison of the theoretical cost model and the
empirical cost model used in the state-space algorithm.

In subsequent experiments, we used the theoretical cost model to generate the

efficient AggTree employed by PeakID. Figure 3.2 shows the impact of Max num states

on the running time of PeakID. There is not much difference among the efficient

AggTrees produced by the state space algorithm using different values of Max num states,

provided that this value is sufficiently large (e.g., Max num states ≥ 10). Since

the method using BinaryTrees does not employ a state space algorithm to generate

a desired tree from the training dataset, the running time for the method using

34

BinaryTrees is a constant, independent of the Max num states values on the X-axis.

By spending some time in the training phase to obtain an efficient AggTree, PeakID

can run significantly faster than the method using BinaryTrees, as demonstrated in

Figure 3.2.

20000

8000

4000

32000

28000

24000

12000

36000

R
un

ni
ng

 ti
m

e
(m

s)

600500400200

16000

1005010

Maximum number of states

300

BinaryTree

AggTree

Figure 3.2 The effect of Max num states on the running time
of PeakID.

Figure 3.3 shows the density of an AggTree (BinaryTree, respectively) as a

function of peak probabilities. The X-axis in the figure shows different k values

where each k corresponds to a peak probability 10−k. The Y-axis shows different

densities where the density of a tree is defined as Nn/Nc; Nn is the number of nodes

in the tree and Nc is the number of cells in the Aggregation Pyramid into which the

tree is embedded. The figure shows that an AggTree becomes sparser or less dense

when the peak probability becomes smaller. This happens because when peaks are

rare, we only need few nodes in the AggTree to find those peaks. By contrast, the

density of a BinaryTree is almost a constant, since the parent-child structure and

the shifting pattern of the BinaryTree is fixed (cf. Table 2.1). Figure 3.3 shows that

an AggTree is able to adapt to the input data. Notice that AggTrees have a higher

35

density than BinaryTrees. This implies that AggTrees generally have more levels and

hence have smaller bounding ratios than BinaryTrees.

0.10

0.04

0.16

0.14

0.12

0.08

0.06

0.18

D
en

si
ty

0.02

6 10

BinaryTree

AggTree

2 4

Peak probability

8

Figure 3.3 The impact of peak probabilities on the density of
a tree.

Figure 3.4 shows the bounding ratio with respect to each level in an AggTree

(BinaryTree, respectively). In an AggTree, the bounding ratio B is large at a low level

where the shadow window size w is small; B is small at a high level where the shadow

window size w is large. These changes of bounding ratios do not occur in BinaryTrees.

The reason is that in a BinaryTree, for a node v = cell(2i−1, t), the shadow sizes of the

cells in the detailed search region of v are in the range [2i−3 + 2, 2i−2 + 1], cf. Section

2.2.2. We check the value stored in v; if the value exceeds the threshold for some

window size in the range [2i−3 + 2, 2i−2 + 1], an alarm is raised. Thus, the bounding

ratio in a BinaryTree is always in the range [2i−1/(2i−3 + 2), 2i−1/(2i−2 + 1)], which

is approximately [2, 4].

Figure 3.5 shows the alarm probability with respect to each level in an AggTree

(BinaryTree, respectively). As explained above, in an AggTree, when the node level

becomes larger, the bounding ratio becomes smaller. Referring to Equation (3.1), as

36

B
ou

nd
in

g
ra

tio

6

5

4

3

2

1

AggTree

BinaryTree

3 9 12 15 186

Level in a tree

Figure 3.4 The bounding ratio with respect to each level in a
tree.

the bounding ratio decreases, so does the alarm probability, and consequently fewer

detailed searches are performed. On the other hand, in a BinaryTree, the alarm

probability is high and hence many detailed searches are needed when the node level

is large.

The above analyses lead to the conclusion that searching for peaks using

AggTrees would require less time and hence be more efficient than using BinaryTrees.

Figure 3.6 confirms this conclusion, showing the relative performance of these two data

structures for varying peak probabilities. For comparison purposes, we also include

the brute-force method in Figure 3.6. Clearly, PeakID using AggTrees outperforms

the other two methods. Notice that as the peak probability decreases, so does the

alarm probability, cf. Equation (3.1). Consequently, the running time of PeakID

decreases.

Figure 3.7 compares the relative performance of the three studied methods

for varying window sizes of interest. The window sizes of interest comprised

consecutive integers in the range [3, Max window size]. The X-axis shows different

37

0.5

0.2

0.1

0.8

0.7

0.6

0.4

0.3

0.9

A
la

rm
 p

ro
ba

bi
lit

y

6 9 12 15 18

Level in a tree

3

BinaryTree

AggTree

Figure 3.5 The alarm probability with respect to each level
in a tree.

30000

12000

6000

48000

42000

36000

24000

18000

54000

R
un

ni
ng

 ti
m

e
(m

s)

Peak probability

8

AggTree

BinaryTree

Brute−Force

1092 43 5 6 7

Figure 3.6 Comparison of the three studied methods for
varying peak probabilities.

38

values of Max window size. Again, PeakID using AggTrees is the best. When

Max window size becomes large, the superiority of PeakID becomes more obvious.

This happens because with a large Max window size, there are more node levels

in an AggTree where the bounding ratios can be adjusted, thereby speeding up the

search for peaks in the AggTree.

30000

12000

48000

42000

36000

24000

18000

54000

400300200

R
un

ni
ng

 ti
m

e
(m

s)

6000

BinaryTree

AggTree

Brute−Force

1003 500

Maximum window size

Figure 3.7 Comparison of the three studied methods for
varying window sizes of interest.

In summary, an AggTree can adapt to the input data, adjusting its topology

and structure through the training process to reduce alarm probabilities. By contrast,

a BinaryTree does not employ the training process, and its parent-child structure and

shifting pattern is always fixed (cf. Table 2.1). As a consequence, AggTrees are far

more efficient than BinaryTrees when used in detecting peaks across different window

sizes of interest.

3.2 Experimental Results on Real-World Data

We obtained 2D LC-MS data from bovine serum albumin (BSA), which is a protein

commonly used to test biochemical characters [30]. There were six datasets in total.

39

Table 3.2 Description of Real-World Data

Data Dataset Size Max Intensity Min Intensity Mean StdDev

Dataset 1 5168 1822.5 457.3 1022.5 516.4

Dataset 2 5263 1992.3 456.2 1025.1 519.6

Dataset 3 5143 1992.1 464.9 1029.5 516.1

Dataset 4 5155 2013.5 463.5 1044.6 518.5

Dataset 5 5261 1785.4 467.9 1043.7 519.8

Dataset 6 5284 1883.2 463.3 1038.3 515.5

Table 3.2 gives details of these datasets, showing the size of each dataset, i.e., the

number of time points in each dataset. In addition, the table lists the maximum

intensity value, the minimum intensity value, as well as the mean and standard

deviation of the intensity values associated with the time points in each dataset.

The experiments were performed in six phases. In phase i, 1 ≤ i ≤ 6, dataset i was

used as the training data and five runs of experiments were performed where in run j,

1 ≤ j ≤ 6, j 6= i, dataset j was used as the test data. This led to thirty runs in total;

the mean and error bars obtained from the thirty runs were plotted. The window

sizes of interest in the experiments comprised consecutive integers in the range [3,

Max window size]. The peak probability was fixed at 1/200.

Figure 3.8 compares the relative performance of the three studied methods on

the protein data for varying window sizes of interest. The trend observed here is

consistent with that from the synthetic data (cf. Figure 3.7). PeakID using AggTrees

outperforms the method using BinaryTrees, which in turn is better than the brute-

force method. We also tested the three methods by varying peak probabilities; the

results were similar to those presented here.

Finally, we compared PeakID with the techniques developed by Stolt et al. [8] on

the protein data. To avoid false negatives, we combined Stolt et al.’s techniques with

40

150

60

240

210

180

120

90

270

30

9

R
un

ni
ng

 ti
m

e
(m

s)

BinaryTree

AggTree

Maximum window size

Brute−Force

54 6318 27 36 45 72 81 903

Figure 3.8 Comparison of the three studied methods on real-
world data.

the brute-force algorithm for checking different window sizes. Table 3.3 summarizes

the threshold, denoted by θ, and the corresponding number of peaks, denoted by n,

with respect to each dataset and window size found by Stolt et al.’s method. With

the window sizes and threshold values in Table 3.3, PeakID obtained the same results

while speeding up Stolt et al.’s method by a factor of 10.

41

Table 3.3 Experimental Results Obtained from Real-World Data

Window Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6

Size θ n θ n θ n θ n θ n θ n

3 5123 6 5201 9 5166 5 5353 7 5230 6 5501 7

4 7019 2 7312 1 7189 2 7033 3 7225 4 7306 2

5 8636 3 7991 5 8822 2 8617 4 8781 2 8430 3

6 11137 1 10355 1 11678 2 12309 2 9978 4 10225 1

7 12998 1 12782 1 13350 2 12001 1 13130 1 12644 2

8 14203 2 14552 1 15687 1 13884 2 14232 1 16008 1

11 18727 3 18556 1 19207 1 17770 2 21644 1 20399 1

12 22810 1 21943 1 23157 1 22632 1 20246 3 24338 1

14 26172 2 27403 2 26189 1 26636 1 25887 2 28001 1

17 31827 1 30228 2 32774 2 31555 1 32077 1 32222 1

20 34134 2 34413 1 33318 1 35256 1 36021 1 34188 1

21 39261 1 41195 1 41552 1 42397 1 40275 1 39565 1

CHAPTER 4

ALGORITHMS FOR PSEUDOKNOT ALIGNMENT

4.1 Background for Pseudoknot Alignment

RNA pseudoknots are formed by pairing bases on single-stranded loops, such as

hairpin and internal loops, with bases outside the loops [31, 32]. They are often

mingled with other RNA tertiary motifs [33], and are also found in non-coding RNAs

[34, 35]. RNA pseudoknots, with diverse functions [36, 37], play important roles

in many biological processes [38, 39]; for example, they are required for telomerase

activity [37], and have been shown to regulate the efficiency of ribosomal frameshifting

in viruses [40].

Analysis and detection of RNA pseudoknots has been an active area of research.

Many published articles in this area were focused on pseudoknot alignment [41, 42, 43,

44]. In this paper, we present a new approach, called RKalign, for RNA pseudoknot

alignment. RKalign accepts as input two pseudoknotted RNAs where each RNA has

both sequence data (i.e., nucleotides or bases) and structure data (i.e., base pairs),

and produces as output an alignment between the two pseudoknotted RNAs. The

structure data of a pseudoknotted RNA can be obtained from the literature or public

databases [45, 46, 47, 48].

RKalign adopts the partition function methodology to calculate the posterior

probabilities or log-odds scores of structural alignments. The idea of using posterior

probabilities to align biomolecules originated from [49, 50] where the partition

function methodology was employed to calculate the posterior probabilities of protein

sequence alignments. Similar techniques were proposed by Do et al. [51] where the

authors used hidden Markov models (HMMs) to calculate the posterior probabilities.

Will et al. [52] extended the idea of [49, 50, 51] to structure-based multiple RNA

42

43

alignment where the authors calculated partition functions inside and outside of

subsequence pairs on two pseudoknot-free RNAs. Here, we further extend this idea

to pseudoknot alignment.

Several tools are available for RNA sequence-structure alignment [53, 54, 55].

These tools do not deal with pseudoknots. Mohl et al. [56] proposed a method

to perform sequence-structure alignment for RNA pseudoknots. The authors set

up a pipeline for combining alignment and prediction of pseudoknots, and showed

experimentally the effectiveness of this pipeline in pseudoknot structure annotation.

Han et al. [57] decomposed embedded pseudoknots into simple pseudoknots and

aligned them recursively. Yoon [58] used a profile-HMM to establish sequence

alignment constraints, and incorporated these constraints into an algorithm for

aligning RNAs with pseudoknots. Wong et al. [59] identified the pseudoknot

type of a given structure and developed dynamic programming algorithms for

structural alignments of different pseudoknot types. Huang et al. [34] applied a

tree decomposition algorithm to search for non-coding RNA pseudoknot structures

in genomes.

The above methods were concerned with aligning a pseudoknot structure with a

sequence or genome. Through the alignment, the sequence is folded and its structure

is predicted. Xu et al. [41] presented a different method, called RNA Sampler,

which can simultaneously fold and align two or multiple RNA sequences considering

pseudoknots without known structures. Similar techniques were implemented in

DAFS [42] and SimulFold [43]. Additional methods can be found in the CompaRNA

web server [60]. In contrast to these methods, which perform alignment and folding at

the same time, RKalign aims to align two known RNA pseudoknot structures where

the structures are obtained from existing databases [45, 46, 47]. As more pseudoknot

structures become available in these databases, a tool like RKalign will be useful in

performing data analysis in the repositories.

44

There are two groups of algorithms which are also capable of aligning two

known RNA structures. The first group is concerned with aligning two RNA

three-dimensional (3D) structures, possibly containing pseudoknots. Ferre et al.

[61] presented a dynamic programming algorithm by taking into account nucleotide,

dihedral angle and base-pairing similarities. Capriotti and Marti-Renom [62]

developed a program to align two RNA 3D structures based on a unit-vector

root-mean-square approach. Chang et al. [63] and Wang et al. [64] employed a

structural alphabet of different nucleotide conformations to align RNA 3D structures.

Hoksza and Svozil [65] developed a pairwise comparison method based on 3D

similarity of generalized secondary structure units. Rahrig et al. [66] presented the

R3D Align tool for performing global pairwise alignment of RNA 3D structures using

local superpositions. He et al. [67] developed the RASS web server for comparing

RNA 3D structures using both sequence and 3D structure information. The above

methods and tools were mainly designed for aligning two RNA tertiary structures

by considering their geometric properties and torsion angles. In contrast, RKalign is

used to align two RNA secondary structures with pseudoknots.

The second group of algorithms is concerned with aligning two RNA secondary

structures without pseudoknots. These algorithms employed general edit-distance

alignment [68] or tree matching techniques [69, 70, 71]. Jiang et al. [72]

developed an approximation algorithm for aligning a pseudoknot-free structure with

a pseudoknotted structure. Our work differs from Jiang et al.’s work in that we focus

on the alignment of two pseudoknotted structures. Furthermore, we use the partition

function methodology whereas Jiang et al. adopted a general edit-distance approach

to the structural alignment.

The method that is most closely related to ours is an option offered by the

CARNA tool [44]. Like RKalign, this option is able to accept two known RNA

secondary structures with pseudoknots, and produce an alignment between the two

45

RNA structures. This option employs constraint programming techniques with a

branch and bound scheme. It gradually refines solutions until the best solution is

found. To understand the relative performance of the two tools, we perform extensive

experiments to compare RKalign with CARNA using different datasets.

4.2 The RKalign Method

In this section, we present algorithmic details of RKalign. To align two RNA

pseudoknot structures A and B, we adopt the partition function methodology to

calculate the posterior probabilities or log-odds scores of the alignments between

bases or base pairs in A and B, respectively. After calculating the posterior log-odds

scores, we then compute the expected accuracy of an alignment between structure A

and structure B. The goal is to find an optimal alignment between A and B where

the alignment has the maximum expected accuracy. We will present a heuristic to

achieve this goal.

4.2.1 Definitions and Notation

Suppose (i, j) is a base pair of pseudoknot structure A and (p, q) is a base pair of

pseudoknot structure B. We use score((i, j), (p, q)) to represent the score of aligning

(i, j) with (p, q) where the score is obtained from the log-odds RIBOSUM matrix [73].

The use of this scoring matrix permits RKalign to determine the similarity between

pseudoknot structures that contain compensatory base changes. With this scoring

matrix, RKalign is able to handle non-canonical base pairs. Aligning a single base

with a base pair is prohibited by RKalign.

Suppose structure A has m nucleotides, i.e., the length of A is m, and structure

B has n nucleotides, i.e., the length of B is n. We use A[c1, c1] where 1 ≤ c1 ≤ c2 ≤ m

to represent the portion of A that begins at position c1 and ends at position c2

inclusively. We use B[d1, d2] where 1 ≤ d1 ≤ d2 ≤ n to represent the portion of B

46

that begins at position d1 and ends at position d2 inclusively. We use A[c] to represent

the nucleotide and secondary structure at position c of A, and B[d] to represent the

nucleotide and secondary structure at position d of B.

4.2.2 Partition Function Computation

Suppose (i, j) ∈ A is aligned with (p, q) ∈ B. Let Zc,d (Z ′

c,d, respectively) represent the

partition function of all alignments between A[1, c] (A[c, m], respectively) and B[1, d]

(B[d, n], respectively). Let Z ′′

c,d represent the partition function of all alignments

between A[i + 1, c] and B[p + 1, d]. We focus on the case in which both i, j and (p, q)

are base pairs. The case for aligning single bases is simpler, and thus omitted.

First, we show how to calculate Zc,d where 1 ≤ c < i and 1 ≤ d < p. There are

three cases to be considered:

(1) A[c] is aligned with B[d].

(2) B[d] is aligned to a gap.

(3) A[c] is aligned to a gap.

Let ZM
c,d represent the partition function of all alignments between A[1, c] and B[1, d]

where A[c] is aligned with B[d]. Let ZE
c,d represent the partition function of all

alignments between A[1, c] and B[1, d] where B[d] is aligned to a gap. Let ZF
c,d

represent the partition function of all alignments between A[1, c] and B[1, d] where

A[c] is aligned to a gap. Then Zc,d can be calculated by Equation (4.1).

Zc,d = ZM
c,d + ZE

c,d + ZF
c,d (4.1)

We ignore and skip the computation of Zc,d when A[c] or B[d] is the left base of

some base pair. If A[c] (B[d], respectively) is a single base and B[d] (A[c], respectively)

is the right base of some base pair, ZM
c,d = 0. Otherwise, let A[c] be the right base of

47

some base pair (x, c) and let B[d] be the right base of some base pair (y, d). Following

[50], ZM
c,d can be calculated by Equation (4.2).

ZM
c,d = Zc−1,d−1e

score((x,c),(y,d))
T (4.2)

Here T is a constant, and score((x, c), (y, d)) is obtained from the RIBOSUM85-60

matrix [73]. Thus, the partition function ZM
c,d can be computed recursively by dynamic

programming as follows:

ZM
c,d = (ZM

c−1,d−1 + ZE
c−1,d−1 + ZF

c−1,d−1)e
score((x,c),(y,d))

T (4.3)

When calculating ZE
c,d, since B[d] is aligned to a gap, we know that A[c] must

be aligned with B[d− 1]. Therefore,

ZE
c,d = Zc,d−1e

score(−,(y,d))
T (4.4)

where score(−, (y, d)) is the gap penalty value obtained by aligning base pair (y, d)

to gaps. Thus,

ZE
c,d = (ZM

c,d−1 + ZE
c,d−1 + ZF

c,d−1)e
score(−,(y,d))

T (4.5)

When calculating ZF
c,d, since A[c] is aligned to a gap, B[d] must be aligned with

A[c− 1]. Therefore,

ZF
c,d = Zc−1,de

score((x,c),−)
T (4.6)

where score((x, c),−) is the gap penalty value obtained by aligning base pair (x, c)

to gaps. Thus,

ZF
c,d = (ZM

c−1,d + ZE
c−1,d + ZF

c−1,d)e
score((x,c),−)

T (4.7)

Next, we show how to calculate Z ′

c,d where j < c ≤ m and q < d ≤ n. There

are three cases to be considered:

48

(1) A[c] is aligned with B[d].

(2) B[d] is aligned to a gap.

(3) A[c] is aligned to a gap.

Let Z
′M
c,d represent the partition function of all alignments between A[c, m] and B[d, n]

where A[c] is aligned with B[d]. Let Z
′E
c,d represent the partition function of all

alignments between A[c, m] and B[d, n] where B[d] is aligned to a gap. Let Z
′F
c,d

represent the partition function of all alignments between A[c, m] and B[d, n] where

A[c] is aligned to a gap. Then Z ′

c,d can be calculated by Equation (4.8).

Z ′

c,d = Z
′M
c,d + Z

′E
c,d + Z

′F
c,d (4.8)

We ignore the computation of Z ′

c,d when A[c] or B[d] is the right base of some

base pair. If A[c] (B[d], respectively) is a single base and B[d] (A[c], respectively) is

the left base of some base pair, Z
′M
c,d = 0. Otherwise, let A[c] be the left base of some

base pair (c, x) and let B[d] be the left base of some base pair (d, y). Following [50],

Z
′M
c,d can be calculated by Equation (4.9).

Z
′M
c,d = Z ′

c+1,d+1e
score((c,x),(d,y))

T

= (Z
′M
c+1,d+1 + Z

′E
c+1,d+1 + Z

′F
c+1,d+1)e

score((c,x),(d,y))
T (4.9)

When calculating Z
′E
c,d, since B[d] is aligned to a gap, A[c] must be aligned with

B[d + 1]. Therefore,

Z
′E
c,d = Z ′

c,d+1e
score(−,(d,y))

T

= (Z
′M
c,d+1 + Z

′E
c,d+1 + Z

′F
c,d+1)e

score(−,(d,y))
T (4.10)

When calculating Z
′F
c,d, since A[c] is aligned to a gap, B[d] must be aligned with

A[c + 1]. Therefore,

Z
′F
c,d = Z ′

c+1,de
score((c,x),−)

T

49

= (Z
′M
c+1,d + Z

′E
c+1,d + Z

′F
c+1,d)e

score((c,x),−)
T (4.11)

Finally, we show how to calculate Z ′′

c,d where i < c < j and p < d < q. There

are three cases to be considered:

(1) A[c] is aligned with B[d].

(2) B[d] is aligned to a gap.

(3) A[c] is aligned to a gap.

Let Z
′′M
c,d represent the partition function of all alignments between A[i + 1, c] and

B[p + 1, d] where A[c] is aligned with B[d]. Let Z
′′E
c,d represent the partition function

of all alignments between A[i + 1, c] and B[p + 1, d] where B[d] is aligned to a gap.

Let Z
′′F
c,d represent the partition function of all alignments between A[i + 1, c] and

B[p + 1, d] where A[c] is aligned to a gap. Then Z ′′

c,d can be calculated by Equation

(4.12).

Z ′′

c,d = Z
′′M
c,d + Z

′′E
c,d + Z

′′F
c,d (4.12)

We ignore the computation of Z ′′

c,d when A[c] or B[d] is the left base of some

base pair. If A[c] (B[d], respectively) is a single base and B[d] (A[c], respectively)

is the right base of some base pair, Z
′′M
c,d = 0. Otherwise, let A[c] be the right base

of some base pair (x, c) and let B[d] be the right base of some base pair (y, d). If

x < i + 1 or y < p + 1 we ignore and skip the computation of Z ′′

c,d. We consider only

the case where x ≥ i + 1 and y ≥ p + 1. Following [50], Z
′′M
c,d can be calculated by

Equation (4.13).

Z
′′M
c,d = Z ′′

c−1,d−1e
score((x,c),(y,d))

T

= (Z
′′M
c−1,d−1 + Z

′′E
c−1,d−1 + Z

′′F
c−1,d−1)e

score((x,c),(y,d))
T (4.13)

50

When calculating Z
′′E
c,d , since B[d] is aligned to a gap, A[c] must be aligned with

B[d− 1]. Therefore,

Z
′′E
c,d = Z ′′

c,d−1e
score(−,(y,d))

T

= (Z
′′M
c,d−1 + Z

′′E
c,d−1 + Z

′′F
c,d−1)e

score(−,(y,d))
T (4.14)

When calculating Z
′′F
c,d , since A[c] is aligned to a gap, B[d] must be aligned with

A[c− 1]. Therefore,

Z
′′F
c,d = Z ′′

c−1,de
score((x,c),−)

T

= (Z
′′M
c−1,d + Z

′′E
c−1,d + Z

′′F
c−1,d)e

score((x,c),−)
T (4.15)

4.2.3 Calculation of Posterior Log-odds Scores

There are four cases to be considered when calculating the posterior probability or log-

odds score of aligning base pair (i, j) of structure A with base pair (p, q) of structure

B, denoted by Prob((i, j), (p, q)).

Case 1. Base pair (i, j) doesn’t cross another base pair and (p, q) doesn’t cross

another base pair. That is, for any base pair (u, v), i < v < j iff i < u < j.

Furthermore, for any base pair (x, y), p < y < q iff p < x < q. Consequently, the

alignment between structure A and structure B can be divided into the following

three parts:

(1) The alignment between A[1, i− 1] and B[1, p− 1].

(2) The alignment between A[i + 1, j − 1] and B[p + 1, q − 1].

(3) The alignment between A[j + 1, m] and B[q + 1, n].

Following [50] we get

Prob((i, j) ∼ (p, q)) =
Zi−1,p−1Z

′′

j−1,q−1Z
′

j+1,q+1

Zm,n

e
score((i,j),(p,q))

T (4.16)

51

Case 2. Base pair (i, j) crosses another base pair whereas (p, q) doesn’t cross

another base pair. That is, there exists a base pair (u, v) in A falls into one of the

following conditions:

(1) i < v < j and u < i.

(2) i < u < j and v > j.

Furthermore, for any base pair (x, y), p < y < q iff p < x < q. In this case, (i, j)

crosses (u, v), which forms a pseudoknot in structure A, while (p, q) doesn’t form a

pseudoknot in structure B.

When (1) is true, since u < i, we have 1 ≤ u ≤ i − 1. Furthermore, since

v > i > i − 1, (u, v) is ignored when calculating Zi−1,p−1 in Equation (4.16). In

addition, since u < i < i + 1, (u, v) is ignored when calculating Z ′′

j−1,q−1 in Equation

(4.16). Base pair (u, v) will be considered when calculating Prob((u, v) ∼ (p, q)).

Thus, our algorithm doesnt miss the calculation of the posterior log-odds score of

aligning any two base pairs from structure A and structure B, respectively.

When (2) is true, since v > j, we have j + 1 ≤ v ≤ m. Furthermore, since

u < j < j + 1, (u, v) is ignored when calculating Z ′

j+1,q+1 in Equation (4.16). Base

pair (u, v) will be considered when calculating Prob((u, v) ∼ (p, q)).

Case 3. Base pair (p, q) crosses another base pair whereas (i, j) doesn’t cross

another base pair. This case is similar to Case 2 above.

Case 4. Base pair (i, j) crosses another base pair and (p, q) also crosses another

base pair. That is, there exists a base pair (u, v) in A falls into one of the following

conditions:

(1) i < v < j and u < i.

(2) i < u < j and v > j.

Furthermore, there exists a base pair (x, y) in B falls into one of the following

conditions:

52

(3) p < y < q and x < p.

(4) p < x < q and y > q.

In this case, (i, j) crosses (u, v), which forms a pseudoknot in structure A.

Furthermore (p, q) crosses (x, y), which also forms a pseudoknot in structure B.

When (1) and (3) are true, (u, v) is ignored when calculating Zi−1,p−1 and

Z ′′

j−1,q−1 as discussed in Case 2 (1). Moreover, (x, y) is also ignored when calculating

Zi−1,p−1 and Z ′′

j−1,q−1 (Case 3). When (1) and (4) are true, (u, v) is ignored when

calculating Zi−1,p−1 and Z ′′

j−1,q−1 (Case 2 (1)); (x, y) is also ignored when calculating

Z ′

j+1,q+1 (Case 3). When (2) and (3) are true, (u, v) is ignored when calculating

Z ′

j+1,q+1 (Case 2 (2)); (x, y) is also ignored when calculating Zi−1,p−1 and Z ′′

j−1,q−1

(Case 3). When (2) and (4) are true, (u, v) is ignored when calculating Z ′

j+1,q+1

(Case 2 (2)); (x, y) is also ignored when calculating Z ′

j+1,q+1 (Case 3).

When both (i, j) and (p, q) are single bases, i.e., i = j and p = q, the value of

Z ′′

j−1,q−1 in Equation (4.16) is defined as 1, and we use the same formula in Equation

(4.16) to calculate Prob((i, j) ∼ (p, q)).

From the above discussions, Equation (4.16) can be used to calculate the

posterior log-odds score of aligning two bases or base pairs with a dynamic

programming algorithm. Furthermore, the algorithm doesn’t miss the calculation

of the posterior log-odds score of aligning any two bases or base pairs from structure

A and structure B, respectively.

4.2.4 Pairwise Alignment

Let aA,B be an alignment between structure A and structure B. The expected

accuracy of aA,B, denoted Accu(aA,B), is defined as follows [51]:

Accu(aA,B) =

∑
((i,j)∼(p,q)∈aA,B) Prob((i, j) ∼ (p, q))

max{h, k} (4.17)

53

where ((i, j) ∼ (p, q) ∈ aA,B) means (i, j) ∈ A is aligned with (p, q) ∈ B in aA,B,

Prob((i, j) ∼ (p, q)) is the posterior log-odds score of aligning (i, j) ∈ A with (p, q) ∈

B as defined in Equation (4.16), and h (k, respectively) is the number of single bases

plus the number of base pairs in A (B, respectively).

An optimal alignment between structure A and structure B is an alignment with

the maximum expected accuracy. We present here a heuristic to find a (sub)optimal

alignment. From the previous subsection, we are able to construct the posterior

log-odds score matrix for aligning structure A with structure B where the matrix

contains Prob((i, j) ∼ (p, q)) for all (i, j) ∈ A and (p, q) ∈ B. Our heuristic is an

iterative procedure. In the first step, we select two bases or base pairs with the largest

score from this matrix to build the first alignment line between A and B where the

alignment line connects the selected bases or base pairs. Then, we select the second

largest score from the matrix to construct the next alignment line provided that the

newly constructed alignment line satisfies the following two constraints:

(1) A base (base pair, respectively) can be aligned with at most one base (base

pair, respectively).

(2) The newly constructed alignment lines do not cross the alignment lines built in

the previous steps. Specifically, suppose (i, j) is aligned with (p, q) and (i′, j ′)

is aligned with (p′, q′). The alignment lines between (i, j) and (p, q) do not

cross the alignment lines between (i′, j ′) and (p′, q′) if and only if the following

conditions hold:

(i) i′ < i iff p′ < p.

(ii) i < i′ < j iff p < p′ < q.

(iii) i′ > j iff p′ > q.

(iv) j ′ < i iff q′ < p.

(v) i < j ′ < j iff p < q′ < q.

54

(vi) j ′ > j iff q′ > q.

If the newly constructed alignment line violates the above constraints, it is

discarded. We repeat the above steps until the smallest posterior log-odds score in

the matrix is considered. If there are still bases or base pairs that are not aligned yet,

these remaining bases or base pairs are aligned to gaps.

4.2.5 Time and Space Complexity

In calculating Prob((i, j) ∼ (p, q)), we need to compute Zi−1,p−1, Z ′′

j−1,q−1 and

Z ′

j+1,q+1; cf. Equation (4.16). Computing Zi−1,p−1, Z ′′

j−1,q−1 and Z ′

j+1,q+1 requires

O(mn) time. Since we need to calculate Prob((i, j) ∼ (p, q)) for all (i, j) ∈ A and

(p, q) ∈ B, the time complexity of the pairwise alignment algorithm is O(m2n2). At

any moment, we maintain a two-dimensional matrix for storing Zi−1,p−1, Z ′′

j−1,q−1

and Z ′

j+1,q+1, which requires O(mn) space. Since the total number of bases and

base pairs in structure A (B, respectively) is at most m (n, respectively), we use

a two-dimensional matrix to store Prob((i, j) ∼ (p, q)) which also requires O(mn)

space. Thus, the space complexity of the algorithm is O(mn). Notice that the

time complexity derived here is a very pessimistic upper bound since in calculating

the partition functions, some base pairs are ignored as described in the previous

subsections. During our experiments, we tested over 200 alignments and the running

times of our algorithm ranged from 16 ms to roughly 7 minutes, where the lengths of

the aligned structures ranged from 22 nt to 1,553 nt.

4.2.6 Extension to Multiple Alignment

Our pairwise alignment method can be extended to align multiple RNA pseudoknot

structures by utilizing a guide tree. Specifically, we treat each structure as a cluster

and use the expected accuracy defined in Equation (4.17) as the measure to determine

the similarity of two structures or clusters. Initially, we merge two RNA structures

55

that are most similar into one cluster. Subsequently, we merge two clusters that

are most similar into a larger cluster using the agglomerative hierarchical clustering

algorithm [83], where the similarity of two clusters is calculated by the average linkage

algorithm [83].

An alignment of two clusters is actually an alignment of two profiles, where each

cluster is treated as a profile. Initially, each profile contains a single RNA pseudoknot

structure. As the guide tree grows, a profile may contain multiple RNA pseudoknot

structures; more precisely, the profile is a multiple alignment of these RNA structures.

A single base of a profile is a column of the profile where the column contains single

bases or gaps; a base pair of a profile includes two columns of the profile where the

left column contains left bases or gaps and the right column contains corresponding

right bases or gaps, and left bases and corresponding right bases form base pairs.

Suppose we want to align profile A′ and profile B′, which amounts to aligning

two multiple alignments. Let R (S, respectively) be an RNA pseudoknot structure in

profile A′ (B′, respectively) and let (i, j) ((p, q), respectively) be a base pair of R (S,

respectively). Let (i′, j ′) represent a base pair of profile A′ and let (p′, q′) represent

a base pair of profile B ′. We use (i, j) ∈ (i′, j ′) ((p, q) ∈ (p′, q′), respectively) to

represent that (i, j) ((p, q), respectively) occurs in the column(s) of base pair (i′, j ′)

((p′, q′), respectively) of profile A′ (B′, respectively). Equation (4.18) shows how

to calculate Prob′((i′, j ′) ∼ (p′, q′)), which represents the transformed probability of

aligning base pair (i′, j ′) of profile A′ with base pair (p′, q′) of profile B′.

Prob′((i′, j ′) ∼ (p′, q′)) =

∑
(i,j)∈(i′,j′),(p,q)∈(p′,q′) Prob((i, j) ∼ (p, q))

|A′||B′| (4.18)

Here, Prob((i, j) lim(p, q)) is defined in Equation (4.16), |A′|represents the number of

RNA pseudoknot structures in profile or cluster A′, and |B′| represents the number

of RNA pseudoknot structures in profile or cluster B ′.

56

The multiple alignment algorithm can now be summarized as follows. The input

of the algorithm is a set SS of RNA pseudoknot structures. For every two structures

A and B in SS, we calculate their posterior log-odds score matrix as described in

the Calculation of posterior log-odds scores subsection. After all the posterior log-

odds score matrices are calculated, we compute the expected accuracy Accu(aA,B)

as defined in Equation (4.17) where aA,B is a (sub)optimal alignment, found by the

heuristic described in the Pairwise alignment subsection, between structure A and

structure B. We use the expected accuracy or similarity values to construct the

guide tree for the set SS, to determine the order in which two structures or profiles

are aligned. To align two profiles A′ and B′, we use the same heuristic as described in

the Pairwise alignment subsection, with the transformed probabilities Prob′((i′, j ′) ∼

(p′, q′)) defined in Equation (4.18) replacing the posterior probabilities Prob((i, j) ∼

(p, q)) of structures A and B defined in Equation (4.16). The time complexity of

this multiple alignment algorithm is O(k2n4) where k is the number of structures

in the alignment and n is the maximum of the lengths of the structures; the space

complexity of the algorithm is O(k2n2).

CHAPTER 5

EXPERIMENTS FOR PSEUDOKNOT ALIGNMENT

5.1 Experimental Design

5.1.1 Datasets

RKalign is implemented in Java. The program accepts as input two pseudoknotted

RNAs where each RNA has both sequence data (i.e., nucleotides or bases) and

structure data (i.e., base pairs), and produces as output an alignment between the

two pseudoknotted RNAs. Popular benchmark datasets such as BRAliBase [74],

RNase P [75] and Rfam [76] are not suitable for testing RKalign. The reason

is that BRAliBase contains only sequence information, while RNase P and Rfam

contain consensus structures of multiple sequence alignments rather than alignments

of individual structures of RNAs. As a consequence, we manually created two datasets

for testing RKalign and comparing it with related alignment methods.

The first dataset, denoted Dataset1, contains 38 RNA pseudoknot structures

chosen from the PDB [46] and RNA STRAND [45] (see Table 5.1 - 5.5). These RNAs

were selected in such a way that they have a wide range of sequence lengths. Each

three-dimensional (3D) molecule in this dataset was taken from the PDB.

The secondary structure of the 3D molecule was obtained with RNAview [77],

retrieved from RNA STRAND. The second dataset, denoted Dataset2, contains 36

RNA pseudoknot structures chosen from PseudoBase [47, 48] (see Table 5.6 - 5.8).

As in the first dataset, the RNA molecules in the second dataset have a

wide range of sequence lengths. The pseudoknots in these datasets can be broadly

classified into two types: H-type and recursive pseudoknots [38, 59]. There are 12

H-type pseudoknots and 26 recursive pseudoknots in Dataset1. There are 22 H-type

pseudoknots and 14 recursive pseudoknots in Dataset2.

57

58

Table 5.1 Selected RNA Pseudoknot Structures from PDB and RNA
STRAND to Perform Alignment Quality Experiments.

The RNA pseudoknot structures that are selected from the PDB
and RNA STRAND are listed here. We use this dataset to evaluate
the performance of RKalign, CARNA, RNA Sampler, DAFS, R3D
Align and RASS. Each three-dimensional (3D) molecule (e.g. 2AW7)
is retrieved from the PDB and used by R3D Align and RASS. The
secondary structure of the 3D molecule is obtained with RNAview and
stored in RNA STRAND (e.g. PDB 00935), which is used by RKalign
and CARNA.

PDB
ID

RNA
STRAND

ID

Molecule Name RNA Type Length

2AW7 PDB 00935 Crystal structure of the
bacterial ribosome from
Escherichia coli at 3.5 A
resolution

16S rRNA 1530

2I2P PDB 01120 Crystal structure of ribosome
with messenger RNA and the
anticodon stem-loop of P-site
tRNA

16S rRNA 1553

2B57 PDB 00994 Guanine Riboswitch C74U
mutant bound to
2,6-diaminopurine

Synthetic
RNA

65

1FJG PDB 00408 Structure of the Thermus
Thermophilus 30S ribosomal
subunit in complex with the
Antibiotics Streptomycin,
Spectinomycin, and
Paromomycin

16S rRNA 1513

2FD0 PDB 01049 HIV-1 DIS kissing-loop in
complex with lividomycin

Synthetic
RNA

46

2D19 PDB 00988 Solution RNA structure of
loop region of the HIV-1
dimerization initiation site in
the kissing-loop dimer

Synthetic
RNA

34

59

Table 5.2 Selected RNA Pseudoknot Structures from PDB and RNA
STRAND to Perform Alignment Quality Experiments. Part 2

PDB
ID

RNA
STRAND

ID

Molecule Name RNA Type Length

1XP7 PDB 00816 HIV-1 subtype F genomic
RNA Dimerization Initiation
Site

Synthetic
RNA

46

437D PDB 00269 Crystal structure of an RNA
pseudoknot from beet
western yellow virus involved
in ribosomal frameshifting

Other
rRNA

28

2G1W PDB 01059 NMR structure of the
Aquifex aeolicus tmRNA
pseudoknot PK1

Synthetic
RNA

22

1L2X PDB 00138 Atomic resolution crystal
structure of a viral RNA
pseudoknot

Viral &
Phage

28

3B4A PDB 01300 T. tengcongensis glmS
ribozyme with G40A
mutation, bound to
glucosamine-6-phosphate

Other
Ribozyme

142

1FFZ PDB 00403 Large ribosomal subunit
complexed with
R(CC)-Da-Puromycin

Other
rRNA

500

1KAJ PDB 00124 Conformation of an RNA
pseudoknot from mouse
mammary tumor virus,
NMR, 1 structure

Synthetic
RNA

32

1VC5 PDB 00764 Crystal structure of the Wild
Type Hepatitis Delta Virus
Genomic Ribozyme
Precursor, in EDTA solution

Other
Ribozyme

70

60

Table 5.3 Selected RNA Pseudoknot Structures from PDB and RNA
STRAND to Perform Alignment Quality Experiments. Part 3

PDB
ID

RNA
STRAND

ID

Molecule Name RNA Type Length

2FCY PDB 01047 HIV-1 DIS kissing-loop in
complex with Neomycin

Synthetic
RNA

46

1BAU PDB 00018 NMR structure of the dimer
initiation complex of HIV-1
Genomic RNA, minimized
average structure

Synthetic
RNA

46

1KPZ PDB 00135 PEMV-1 P1-P2 frameshifting
pseudoknot regularized
average structure

Synthetic
RNA

28

1E95 PDB 00041 Solution structure of the
pseudoknot of SRV-1 RNA,
involved in ribosomal
frameshifting

Other RNA 36

1DRZ PDB 00346 U1A Spliceosomal
Protein/Hepatitis Delta
Virus Genomic Ribozyme
complex

Other
Ribozyme

72

1SJ3 PDB 00714 Hepatitis Delta Virus
Genomic Ribozyme
Precursor, with Mg2+ bound

Other
Ribozyme

73

1JGO PDB 00484 The path of messenger RNA
through the ribosome

Other RNA 232

2B8S PDB 00951 Structure of HIV-1(MAL)
genomic RNA DIS

Synthetic
RNA

46

1RNK PDB 00209 The structure of an RNA
pseudoknot that causes
efficient frameshifting in
mouse mammary tumor virus

Synthetic
RNA

34

61

Table 5.4 Selected RNA Pseudoknot Structures from PDB and RNA
STRAND to Perform Alignment Quality Experiments. Part 4

PDB
ID

RNA
STRAND

ID

Molecule Name RNA Type Length

1SJF PDB 00716 Crystal structure of the
Hepatitis Delta Virus
Genomic Ribozyme
Precursor, with C75U
mutation, in Cobalt
Hexammine solution

Other
Ribozyme

74

2AP5 PDB 00931 Solution structure of the
C27A ScYLV P1-P2
frameshifting pseudoknot,
average structure

Synthetic
RNA

28

1YG4 PDB 00843 Solution structure of the
ScYLV P1-P2 frameshifting
pseudoknot, regularized
average structure

Synthetic
RNA

28

1F27 PDB 00053 Crystal structure of a
Biotin-Binding RNA
pseudoknot

Synthetic
RNA

30

1KPD PDB 00133 A mutant RNA pseudoknot
that promotes ribosomal
frameshifting in mouse
mammary tumor virus,
NMR, minimized average
structure

Other
rRNA

32

1IBK PDB 00463 Structure of the Thermus
Thermophilus 30S ribosomal
subunit in complex with the
antibiotic paromomycin

16S rRNA 1512

1E8O PDB 00352 Core of the ALU domain of
the Mammalian SRP

Synthetic
RNA

50

2NUG PDB 01165 Crystal structure of RNase
III from Aquifex aeolicus
complexed with ds-RNA at
1.7-Angstrom resolution

Synthetic
RNA

44

62

Table 5.5 Selected RNA Pseudoknot Structures from PDB and RNA
STRAND to Perform Alignment Quality Experiments. Part 5

PDB
ID

RNA
STRAND

ID

Molecule Name RNA Type Length

1Y3O PDB 00831 HIV-1 DIS RNA subtype F-
Mn soaked

Synthetic
RNA

46

1JGQ PDB 00486 The path of messenger RNA
through the ribosome

Other RNA 229

3B4C PDB 01302 T. tengcongensis glmS
ribozyme bound to
glucosamine-6-phosphate and
a substrate RNA with a
2’5’-phosphodiester linkage

Other
Ribozyme

139

2TPK PDB 00243 An investigation of the
structure of the pseudoknot
within gene 32 messenger
RNA of Bacteriophage T2
using heteronuclear NMR
methods

Viral &
Phage

36

2OOM PDB 01194 NMR structure of a kissing
complex formed between the
TAR RNA element of HIV-1
and a LNA/RNA aptamer

Synthetic
RNA

32

1FG0 PDB 00404 Large ribosomal subunit
complexed with A 13 BP
Minihelix-Puromycin
compound

Other
rRNA

499

2F4X PDB 01040 NMR solution of HIV-1 Lai
kissing complex

Synthetic
RNA

48

63

Table 5.6 Selected RNA Pseudoknot Structures from PseudoBase to
Perform Alignment Quality Experiments.

The RNA pseudoknot structures that are selected from PseudoBase
are listed below. We use this dataset to evaluate the performance of
RKalign, CARNA, RNA Sampler and DAFS.

PKB
Number

Abbreviation Organism RNA Type Length

PKB309 IFNG PK B Taurus Bos taurus (cow) mRNA 145

PKB106 IBV infectious
bronchitis virus

Viral
frameshift

57

PKB121 STNV1 PK1 satellite tobacco
necrosis virus 1

Viral 3 UTR 26

PKB122 STNV1 PK2 satellite tobacco
necrosis virus 1

Viral 3 UTR 31

PKB123 STNV1 PK3 satellite tobacco
necrosis virus 1

Viral 3 UTR 26

PKB124 STNV2 PK1 satellite tobacco
necrosis virus 1

Viral 3 UTR 29

PKB125 STNV2 PK2 satellite tobacco
necrosis virus 1

Viral 3 UTR 25

PKB126 STNV2 PK3 satellite tobacco
necrosis virus 1

Viral 3 UTR 27

PKB127 EAV equine arteritis
virus

Viral
frameshift

56

PKB128 BEV Berne virus Viral
frameshift

59

64

Table 5.7 Selected RNA Pseudoknot Structures from PseudoBase to
Perform Alignment Quality Experiments. Part 2

PKB
Number

Abbreviation Organism RNA Type Length

PKB131 NGF-H1 - Aptamers 48

PKB132 NGF-L2 - Aptamers 49

PKB133 NGF-L6 - Aptamers 48

PKB144 ORSV-S1 PKbulge1 odontoglossum
ringspot virus

Viral
tRNA-like

71

PKB145 ORSV-S1 PKbulge2 odontoglossum
ringspot virus

Viral
tRNA-like

58

PKB146 ORSV-S1 PKbulge3 odontoglossum
ringspot virus

Viral
tRNA-like

50

PKB158 TRV-PSG2 PK1 tobacco rattle
virus, strain PSG

Viral others 28

PKB159 TRV-PSG2 PK2 tobacco rattle
virus, strain PSG

Viral others 25

PKB160 TRV-PSG2 PK3 tobacco rattle
virus, strain PSG

Viral others 32

PKB161 TRV-PSG2 PK4 tobacco rattle
virus, strain PSG

Viral others 24

PKB162 TRV-PSG2 PK5 tobacco rattle
virus, strain PSG

Viral others 35

PKB2 BWYV Beet
western-yellows
virus

Viral
ribosomal
frameshifting

50

PKB240 BChV beet chlorosis
virus

Viral
frameshift

41

65

Table 5.8 Selected RNA Pseudoknot Structures from PseudoBase to
Perform Alignment Quality Experiments. Part 3

PKB
Number

Abbreviation Organism RNA Type Length

PKB254 SARS-CoV SARS
coronavirus

Viral
frameshift

82

PKB258 Hs Ma3 Homo sapiens Viral
frameshift

60

PKB3 EIAV Equine infectious
anemic virus

Viral
ribosomal
frameshifting

54

PKB310 IFNG PK C familiaris Canis familiaris
(dog)

mRNA 130

PKB311 IFNG PK C jacchus Callitrix jacchus
(marmoset)

mRNA 120

PKB313 IFNG PK S scrofa Sus scrofa (pig) mRNA 130

PKB346 KUNV West Nile virus,
Kunijn subtype

Viral
frameshift

75

PKB347 WNV West Nile virus Viral
frameshift

75

PKB348 JEV Japanese
encephalitis virus

Viral
frameshift

77

PKB4 FIV Feline
immunodeficiency
virus

Viral
ribosomal
frameshifting

50

PKB44 CABYV cucurbit
aphid-borne
yellows virus

Viral
frameshift

39

PKB46 BYDV-NY-RPV barley yellow
dwarf virus

Viral
frameshift

39

66

5.1.2 Alignment Quality

A good structural alignment tends to align a base pair with another base pair rather

than with two single bases [65, 66]. We therefore use the base mismatch ratio to assess

the quality of an alignment. A base mismatch occurs when a single base is aligned

with the left or right base of a base pair or when a nucleotide is aligned to a gap.

The base mismatch ratio of an alignment aA,B between structure A and structure B

is defined as the number of base mismatches in aA,B divided by the total number

of alignment lines in aA,B, multiplied by 100%. Statistically significant performance

differences between alignment methods are calculated using Wilcoxon signed rank

tests [78], which are commonly used for comparing alignment programs [79, 80, 81].

As in [79, 80, 81] we consider p-values below 0.05 to be statistically significant.

5.2 Experimental Results

We conducted a series of experiments to evaluate the performance of RKalign

and compare it with related methods, where the performance measure used was

the base mismatch ratio. In the first experiment, we selected 106 pairs of RNA

pseudoknot structures from Dataset1 and applied our method to aligning the two

molecules in each pair. The two molecules in a pair belonged to the same pseudoknot

type, as it is biologically meaningless to align RNA molecules that lack consensus

[65, 82]. The average base mismatch ratio calculated by RKalign for the selected 106

pairs was 34.84%, compared to the average base mismatch ratio, 78.53%, for all pairs

of molecules in Dataset1.

In addition, we also ran CARNA [44], RNA Sampler [41], DAFS [42], R3D

Align [84] and RASS [67] on the 106 pairs of molecules. The CARNA tool was chosen

because an option of the tool is closely related to RKalign, both of which can align

known pseudoknot structures. RNA Sampler and DAFS were chosen because they

are widely used tools capable of simultaneously folding and aligning RNA sequences

67

considering pseudoknots without known structures. When running these two tools,

the structure information in Dataset1 was ignored and only the sequence data was

used as the input of the tools. R3D Align and RASS were chosen because they are

state-of-the-art RNA 3D alignment programs; furthermore, like RKalign, R3D Align

and RASS output the entire alignment of two RNA structures. Since R3D Align and

RASS accept 3D structures as input whereas RKalign and CARNA accept bases and

base pairs as input, we used the PDB files in Dataset1 as the input for R3D Align

and RASS while using the corresponding RNA STRAND entries in Dataset1 as the

input for RKalign and CARNA.

Figure 5.1 presents histograms for the base mismatch ratios of the six tools.

Figure 5.2 presents boxplots for the base mismatch ratios of the six tools. These

figures show the distribution of the base mismatch ratios for the six tools. RKalign

and CARNA were not statistically different according to a Wilcoxon signed rank

test (p > 0.05). On the other hand, they both were significantly better than the

other four tools according to the Wilcoxon signed rank test (p < 0.05). It was

observed that the structures predicted by RNA Sampler and DAFS might not be

correct. Consequently, there were many base mismatches with respect to the known

structures in the alignments.

For example, consider Figure 5.3, which shows the alignment result of DAFS,

R3D Align and RKalign, respectively on two pseudoknot structures with PDB

IDs 1L2X and 1RNK. The base mismatch ratio of DAFS (R3D Align, RKalign,

respectively) is 57.14% (67.39%, 27.78%, respectively). Figure 5.3(a) shows the

predicted common secondary structure and the alignment produced by DAFS. Figure

5.3(b) shows the known secondary structures of 1L2X and 1RNK and the alignment

produced by DAFS where the known secondary structures are used to calculate the

base mismatch ratios. Figure 5.3(c) shows the alignment obtained from R3D Align

and Figure 5.3(d) shows the alignment obtained from RKalign. It can be seen that

68

������
������
���
������
������
���

������
������
������
������
������
������
������
������
������
������
������
������
������
���

������
������
������
������
������
������
������
������
������
������
������
������
������
���

������
������
������
������
������
������
������
������
���

������
������
������
������
������
������
������
������
���

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

		
		
		
		
		
		
		
		
		
		
		
		
		
		

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
���

������
������
������
������
������
������
������
������
������
������
������
���

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
���

������
������
������
������
������
���

���������
���
���
���
���
���

���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������
������
������
������
������
������
������
������
���

��
��
��
��
��
��
��
��
�

!!
!!
!!
!!
!!
!!
!!
!

"�"�""�"�"
"�"�""�"�"
"�"�""�"�"
"�"�""�"�"
"�"�""�"�"
"�"�""�"�"
"�"�""�"�"
"�"�""�"�"
"�"�""�"�"
"�"�""�"�"
"�"�"

#�#�##�#�#
#�#�##�#�#
#�#�##�#�#
#�#�##�#�#
#�#�##�#�#
#�#�##�#�#
#�#�##�#�#
#�#�##�#�#
#�#�##�#�#
#�#�##�#�#
#�#�#

$% &
&
&
&
&
&
&
&
&
&
&
&

'
'
'
'
'
'
'
'
'
'
'
'

(�(�(�((�(�(�()�)�))�)�)

��**�*�*+�++�+
,�,�,,�,�,-�--�-
.�.�..�.�./�//�/
0�0�01�1

234�44�4
4�44�4
4�44�4
4�44�4
4�44�4
4�44�4
4�44�4
4�44�4
4�44�4
4�44�4
4�44�4
4�44�4
4�44�4
4�44�4
4�44�4

5�55�5
5�55�5
5�55�5
5�55�5
5�55�5
5�55�5
5�55�5
5�55�5
5�55�5
5�55�5
5�55�5
5�55�5
5�55�5
5�55�5
5�55�5

667
7

88
88
88
88
8

99
99
99
99
9

::
::
::
::
::
::
::
::
::
::
::
::
::
::
::
::
:

;;
;;
;;
;;
;;
;;
;;
;;
;;
;;
;;
;;
;;
;;
;;
;;
;

<<
<<
<<
<<
<<
<<
<<
<<
<<
<

==
==
==
==
==
==
==
==
==
=

RNA Sampler

DAFS

RASS

RKalign

CARNA

R3D Align

20

30

40

Base_mismatch ratio (%)

10

40−59 80−9960−7920−390−19

C
ou

nt
 o

f
al

ig
nm

en
ts

Figure 5.1 Histograms for the base mismatch ratios of the
alignments produced by RKalign, CARNA, RNA Sampler,
DAFS, R3D Align and RASS, respectively on the 106 structure
pairs selected from Dataset1. Buckets on the x-axis are defined
by equal-width ranges 0 to19, 20 to 39, 40 to 59, 60 to 79, and
80 to 99 (rounded down to the nearest whole number). These
histograms show the distribution of the base mismatch ratios of
the alignments produced by the six tools.

69

30

20

10

40

50

60

70

80

90

RKalign CARNA RNA Sampler RASS

B
as

e_
m

is
m

at
ch

 r
at

io
 (

%
)

DAFS R3D Align

Figure 5.2 Boxplots for the base mismatch ratios of the
alignments produced by RKalign, CARNA, RNA Sampler,
DAFS, R3D Align and RASS, respectively on the 106 structure
pairs selected from Dataset1. The median of the base mismatch
ratios yielded by RKalign (CARNA, RNA Sampler, DAFS, R3D
Align, RASS, respectively) is 35.29% (34.38%, 45.86%, 41.99%,
67.57%, 63.29%, respectively).

the predicted common secondary structure in Figure 5.3(a) is quite different from the

known secondary structure of 1L2X. Refer to Figure 5.3(b). The base G (G, C, C, A,

A and A, respectively) at position 1 (2, 8, 22, 23, 24 and 25, respectively) in 1L2X is

a single base, which is aligned with the left or right base of some base pair in 1RNK,

leading to base mismatches in the alignment. Similarly, the base G (A, C, A and U,

respectively) at position 7 (20, 21, 24 and 34, respectively) in 1RNK is a single base,

which is aligned with the left or right base of some base pair in 1L2X. R3D Align

doesnt align the pseudoknot structures well either, due to the fact that many gaps

are involved in the alignment (Figure 5.3(c)). In this example, RKalign produces the

best alignment (Figure 5.3(d)). It should be pointed out, however, that 3D alignment

programs such as R3D Align are general-purpose structure alignment tools capable

of comparing two RNA 3D molecules with diverse tertiary motifs, whereas RKalign

focuses on secondary structures with pseudoknots only.

70

C G − C C G UC − − − G C G − − G GC C C AA

C G UA G U G G C A G C −G C C A C A A A AU C G

85 7 103 4 62

G
2718 19 20 22 24 25 26 2821 23

A

2

1

1

5’
1L2X

G5’1RNK

GG G

G C

− 3’

3’

C A

G C C
31

A G

C A
33
U
3432

GC
9

A
25 26 27 2811 12 15 16 1713 14 18 19 22 23 2420 21

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 29 30

C G − C C G UC − − − G C G − − G GC C C AA

C G UA G U G G C A G C −G C C A C A A A AU C G

85 7 103 4 62

G
2718 19 20 22 24 25 26 2821 23

A

2

1

1

5’
1L2X

G5’1RNK

GG G

G C

− 3’

3’

C A

G C C
31

A G

C A
33
U
3432

GC
9

A
25 26 27 2811 12 15 16 1713 14 18 19 22 23 2420 21

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 29 30

a

C G − C C G UC − − − G C G − − G GC C C AA

C G UA G U G G C A G C −G C C A C A A A AU C G

85 7 103 4 62

G
2718 19 20 22 24 25 26 2821 23

A

2

1

1

5’
1L2X

G5’1RNK

GG G

G C

− 3’

3’

C A

G C C
31

A G

C A
33
U
3432

GC
9

A
25 26 27 2811 12 15 16 1713 14 18 19 22 23 2420 21

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 29 30

C G − C C G UC − − − G C G − − G GC C C AA

C G UA G U G G C A G C −G C C A C A A A AU C G

85 7 103 4 62

G
2718 19 20 22 24 25 26 2821 23

A

2

1

1

5’
1L2X

G5’1RNK

GG G

G C

− 3’

3’

C A

G C C
31

A G

C A
33
U
3432

GC
9

A
25 26 27 2811 12 15 16 1713 14 18 19 22 23 2420 21

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 29 30

b

3’

3’

3’

3’

C G UC C GC C C
53 421

5’
1L2X

5’1RNK

GG G
15 16 1713 14

C UC GC C C
53 4 621

5’
1L2X

5’1RNK

GG G
15 16 1713 14

C
31
C A

33
U
3432

C
31
C A

33
U
3432

G
7

C
8 9

A
1010 11 1211 12

C C G− −− − G
18

G
18

−− − −− − − −− −−−− −−−− A A G GC
25 26 27 2824

A G GC
25 26 27 2824

AG AA C A
19 22 2320 21

AA C A
19 22 2320 21

−−−− −G− −−− − −

−−− −−−−−C C A C U C
18 19 20 2221 23
C C A C U C
18 19 20 2221 23

A A A A G
2724 25 26 28

G C
29 30

A A A A G
2724 25 26 28

G C
29 30

G C G
15 16 17
G C G
15 16 17

−G UU G G C A
8 9 10 11 12 13 14
G UU G G C A

8 9 10 11 12 13 14
−C A GG

21
GG C

3 4 5 6 7
C A GG

21
GG C

3 4 5 6 7
−−

c

C GC
53 421

5’
1L2X

5’1RNK

GG G C GC
53 421

5’
1L2X

5’1RNK

GG G
6 7

G C
10

C
10

C
8

A
9

A
9

C G
11 12

C G
11 12

U GC C C
15 16 1713 14

U GC C C
15 16 1713 14

G G AA C
18 19 2220 21

G G AA C
18 19 2220 21

− A A GCA
25 26 2723 24

A A GCA
25 26 2723 24

G
28

G
28

3’

3’

3’

3’

−−− −−−− −− − −

A A G
2726 28

G C C
31
C A

333229 30
A A G

2726 28
G C C

31
C A

333229 30
U
34
U
34

C C A C A AU C
18 19 20 22 24 2521 23
C C A C A AU C
18 19 20 22 24 2521 23

G UG G C A G C G
9 10 11 12 13 14 15 16 17
G UG G C A G C G
9 10 11 12 13 14 15 16 17

C A G UG
21

GG C
3 4 5 6 7 8

C A G UG
21

GG C
3 4 5 6 7 8

−−

d

Figure 5.3 (a) The predicted common secondary structure and the
alignment produced by DAFS between two pseudoknot structures with PDB
IDs 1L2X and 1RNK, respectively. (b) The known secondary structures of
1L2X and 1RNK and the alignment produced by DAFS. (c) The known
secondary structures of 1L2X and 1RNK and the alignment produced by
R3D Align. (d) The known secondary structures of 1L2X and 1RNK and
the alignment produced by RKalign. The base mismatch ratio of DAFS (R3D
Align, RKalign, respectively) is 57.14% (67.39%, 27.78%, respectively), where
the base mismatch ratios are calculated using the known secondary structures.
RKalign produces the best alignment with respect to the known secondary
structures of 1L2X and 1RNK.

71

In the second experiment, we compared RKalign, CARNA, RNA Sampler and

DAFS using the RNA structures in Dataset2. As in the first experiment, we selected

124 pairs of molecules from Dataset2 where the two molecules in a pair belonged to

the same pseudoknot type. The average base mismatch ratio calculated by RKalign

for the selected 124 pairs was 35.89%, compared to the average base mismatch ratio,

81.56%, for all pairs of molecules in Dataset2. We applied each of the four tools to

the molecules to produce 124 pairwise alignments.

Figure 5.4 presents histograms for the base mismatch ratios of the four tools.

Figure 5.5 presents boxplots for the base mismatch ratios of the four tools. These

figures show the distribution of the base mismatch ratios for the four tools. RKalign

and CARNA were not statistically different (Wilcoxon signed rank test, p >

0.05);both tools were significantly better than RNA Sampler and DAFS (Wilcoxon

signed rank test, p < 0.05).

We also tested our algorithm for multiple alignment by selecting 30 groups each

having 3, 4, or 5 pseudoknot structures of the same type from the datasets used in

this study, and by performing multiple alignment in each group. We then compared

our algorithm with three related methods: CARNA [44], RNA Sampler [41] and

DAFS [42]. The base mismatch ratio of a multiple alignment MA is defined as the

sum of base mismatch ratios of all pairs of structures in MA divided by the total

number of structure pairs in MA, multiplied by 100%. The average base mismatch

ratio of RKalign (CARNA, RNA Sampler, DAFS, respectively) was 26.01% (25.79%,

32.15%, 29.23%, respectively). RKalign and CARNA were not statistically different

(Wilcoxon signed rank test, p > 0.05); the two methods were significantly better than

RNA Sampler and DAFS (Wilcoxon signed rank test, p < 0.05).

Based on the above experimental results, there is no statistically significant

difference between RKalign and CARNA in terms of base mismatch ratios. As

described in [34, 85], a good pseudoknot alignment has many matched stems and

72

��
�
��
�

��
��
�

��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

����������
����������
����������
����������
����������
�����

����������
����������
����������
����������
����������
�����

	
		
	
	
		
	
	
		
	
	
	

��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
���

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
���

�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
�

�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
�

��
��
��
�

��
��
��
�

����������
����������
����������
����������
����������

������
������
������
������
������

!
!!
!
!
!!
!
!
!!
!
!
!!
!
!
!!
!
!
!!
!
!
!!
!
!
!!
!

""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
"

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#

$$%
%
&
&'
' (�()�)

��*�**�*�*�*+�+�++�+�+

,
,
,,
,
,-
--
-

.
.
..
.
./
//
/

0
0
00
0
00
0
0
1
11
1
1
1

20

30

Base_mismatch ratio (%)

10

40−59 80−9960−790−19 20−39

40

50

C
ou

nt
 o

f
al

ig
nm

en
ts

RNA Sampler

DAFS

RKalign

CARNA

Figure 5.4 Histograms for the base mismatch ratios of the
alignments produced by RKalign, CARNA, RNA Sampler and
DAFS, respectively on the 124 structure pairs selected from
Dataset2. Buckets on the x-axis are defined by equal-width
ranges 0 to19, 20 to 39, 40 to 59, 60 to 79, and 80 to 99 (rounded
down to the nearest whole number). These histograms show
the distribution of the base mismatch ratios of the alignments
produced by the four tools.

73

30

20

10

40

50

60

70

80

90

DAFSRNA SamplerCARNARKalign

B
as

e_
m

is
m

at
ch

 r
at

io
 (

%
)

Figure 5.5 Boxplots for the base mismatch ratios of the
alignments produced by RKalign, CARNA, RNA Sampler and
DAFS, respectively on the 124 structure pairs selected from
Dataset2. The median of the base mismatch ratios yielded
by RKalign (CARNA, RNA Sampler, DAFS, respectively) is
36.31% (35.81%, 45.83%, 39.29%, respectively).

74

few mismatched stems. In the last experiment, we further compared RKalign with

CARNA by examining how they match stems in two pseudoknot structures A and

B. A stem SA ∈ A is said to match a stem SB ∈ B if both of the following conditions

are satisfied:

(1) SA, SB are aligned together and they cannot be aligned with other stems.

(2) For every base x ∈ SA and base pair y ∈ SB, a base of x is aligned with a base

of y if and only if the other base of x is aligned with the other base of y.

If any of the conditions is violated, there is a stem mismatch between SA and SB.

The stem mismatch ratio of an alignment aA,B between structure A and structure B

is defined as (1 −M) where M is the number of matched stems in aA,B divided by

the total number of stems in A and B, multiplied by 100%.

Figure 5.6 shows the average stem mismatch ratios of RKalign and CARNA

obtained by running the tools on Dataset1 and Dataset2, respectively. RKalign was

significantly better than CARNA (Wilcoxon signed rank test, p < 0.05). A close look

at the alignment results of CARNA reveals why this happens. For instance, consider

Figure 5.7(a), which shows how CARNA aligns the two PDB structures, 1L2X and

1RNK, given in Figure 5.3. In Figure 5.7(a) we use the arches with solid lines to

demonstrate the 1st stem of 1L2X and 1RNK, and we use the arches with dash lines

to demonstrate the 2nd stem of 1L2X and 1RNK. Figure 5.7(b) illustrates mismatched

stems in the alignment in Figure 5.7(a). Figure 5.7(c) shows the alignment of the same

molecules, 1L2X and 1RNK, produced by RKalign where there is no stem mismatch.

Refer to Figure 5.7(b). In 1L2X, the base G at position 7 and the base C at position

14 form a base pair in its 1st stem. In 1RNK, the base U at position 13 and the base

G at position 28 form a base pair in its 2nd stem.

Now, observe that the base C at position 14 in 1L2X is aligned with the base

U at position 13 in 1RNK, but the base G at position 7 in 1L2X is not aligned with

75

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

	�	
	�	

�

�

���
���
���
���

Dataset2Dataset1

RKalign

CARNA

B
as

e_
m

is
m

at
ch

 r
at

io
 (

%
)

5

10

30

15

25

20

Figure 5.6 Average stem mismatch ratios of the alignments
produced by RKalign and CARNA on the 106 structure pairs
selected from Dataset1 and the 124 structure pairs selected from
Dataset2, respectively. Error bars are included in the figure.
For Dataset1, the average stem mismatch ratio of RKalign is
10.8% and the average stem mismatch ratio of CARNA is 23.5%.
For Dataset2, the average stem mismatch ratio of RKalign is
13.1% and the average stem mismatch ratio of CARNA is 28.9%.
RKalign performs significantly better than CARNA in terms of
stem mismatch ratios (Wilcoxon signed rank test, p < 0.05).

76

C G U G C G CC U G G G C C C A A AC A U G CA C C G

− G CC G C G C A C G − CU C G C G A C A AG A A C G

12 245 6 9 10 11 13 14 15 16 17 20 21 22 23 25 26 27 28 29 30 3118 193 4 7 82

G
243 4 5 6 7 8 9 10 11 13 14 15 16 17 19 21 22 23 25 2718

G
2820

A A

2

1

1 12 26

32
5’ 3’

3’

1L2X

−5’1RNK

GG G

G −

a

G
C
A A

G
C
G

A
C
U
C

U
A

A
A

C

U

G

C
G

G

3’

5’

5 15

25

A

1L2X

1

C
C

G
C

G
G

C

G
3’

5’

1RNK

G
G C

15

G
C

A

A

A
AG

U

A

A

C

G

C
C

G
C

G10

C
G
C

G

C

1
20

25

5

G
C

C

G

G

20

30

10

b

C C G C G A CG AG
14 15 16 17 19 21 2218 20215’1RNK

1L2X

c

U G C G CG G C C C A A AC A U GA C C G
12 249 10 11 13 14 15 16 17 20 21 22 23 25 26 27 28 29 30 3118 19

A
32
3’GC GC

5 63 4 7 82

A
1

GG UG −−−

G 3’27 28
G

C

C
26

−A
2423 25
AA −−GG C G

3 4 5 6 7
CG − − C

8 9
GC
1211

C
10

A − U
13
−

5’

Figure 5.7 (a) The alignment of two pseudoknot structures with PDB
IDs 1L2X and 1RNK, respectively produced by CARNA. (b) Illustration of
mismatched stems in the alignment produced by CARNA. There is a stem
mismatch between the 1st stem of 1L2X and the 2nd stem of 1RNK, a
situation that is not favoured when performing pseudoknot alignment. (c)
The alignment of 1L2X and 1RNK produced by RKalign where there is no
stem mismatch.

77

the base G at position 28 in 1RNK; instead the base G at position 7 in 1L2X is

aligned with the single base G at position 7 in 1RNK. Thus, there is a stem mismatch

between the 1st stem of 1L2X and the 2nd stem of 1RNK, a situation that is not

favoured when performing pseudoknot alignment [34, 85]. This situation occurs more

frequently in CARNA alignment results than in RKalign alignment results. As a

consequence, CARNA has much higher stem mismatch ratios than RKalign.

Comparing Figure 5.7(a) and Figure 5.7(c), we also note that the overall

alignments produced by CARNA and RKalign are quite different. In Figure 5.7(a) in

which the alignment from CARNA is shown, the base G at position 6 and the base C

at position 15 form a base pair in 1L2X. The base A at position 6 in 1RNK is a single

base. It can be seen that the base G at position 6 in 1L2X is aligned with the base A

at position 6 in 1RNK, i.e., a base pair is aligned with a single base. In addition, in

1L2X the base C at position 14, which is the right base of a base pair, is aligned with

the base U at position 13, which is the left base of a base pair in 1RNK. Aligning a

base pair with a single base, and aligning the right base of a base pair with the left

base of another base pair, occur in CARNA’s output shown in Figure 5.7(a), but do

not occur in RKalign’s output shown in Figure 5.7(c). On the other hand, there are

more gaps in RKalign’s output than in CARNA’s output; specifically there are 10

gaps in RKalign’s output shown in Figure 5.7(c) compared to 8 gaps in CARNA’s

output shown in Figure 5.7(a).

5.3 Comparison with Related Methods

RKalign is designed to align known RNA pseudoknot structures. A different approach

is to simultaneously fold and align RNA sequences without known structures, as

adopted by several existing tools [41, 42, 43]. When the structure information is not

available, this simultaneous folding and alignment approach is the best. However,

when pseudoknot structures already exist, RKalign performs significantly better than

78

the existing tools, as observed in our experiments. The reason is that the structures

predicted by these tools may not be correct. As a consequence, there are many base

mismatches with respect to the known structures in the resulting alignments.

Pseudoknots are part of RNA tertiary motifs [32]. There are 3D alignment

programs that can compare RNA tertiary structures including pseudoknots [66, 67].

These programs consider the entire RNA 3D structure as a whole, and accept PDB

files with 3D coordinates as input. As shown in our experiments, when considering

and aligning secondary structures with pseudoknots, RKalign outperforms the 3D

alignment programs. It should be noted, however, that the 3D alignment programs

are general-purpose structure alignment tools capable of comparing two RNA 3D

molecules with diverse tertiary motifs, whereas RKalign deals with secondary

structures with pseudoknots only.

While the work reported here focuses on pseudoknot alignment, it can also be

applied to RNA secondary structures without pseudoknots. We applied RKalign

to 102 pairs of pseudoknot-free structures taken from RNA STARND where the

pseudoknot-free structures belonged to Rfam [76] (see Table 5.9, Table 5.10 and Table

5.11).

We compared RKalign with three other tools: CARNA [44], RNAforester

[71] and RSmatch [70]. RNAforester, included in the widely used Vienna RNA

package [86], is a versatile RNA structure alignment tool. Like RKalign and

CARNA, an option of RNAforester is able to accept as input two RNA molecules

with both sequence data (nucleotides or bases) and secondary structure data

(base pairs), and produce as output the global alignment of the two molecules.

However, a limitation of RNAforester is that the aligned secondary structures

cannot contain pseudoknots. RSmatch is similar to RNAforester, sharing the

same limitation. Our experimental results showed that the average base mismatch

ratio for RKalign (CARNA, RNAforester, RSmatch, respectively) was 43.52%

79

Table 5.9 Selected RNA Pseudoknot-free Structures from Rfam and
RNA STRAND to Perform Alignment Quality Experiments.

The RNA pseudoknot-free structures that are selected from Rfam
and RNA STRAND are listed below. We use this dataset to evaluate the
performance of RKalign, CARNA, RNAforester and RSmatch.

Rfam ID RNA
STRAND

ID

Molecule Name RNA
Type

Length

RF00008
AJ005299.1/335-
282

RFA 00396 Hammerhead ribozyme
(type III), RF00008,
AJ005299.1/282-335

Ham.
Ribozyme

54

RF00008
AJ247113.1/53-
134

RFA 00420 Hammerhead ribozyme
(type III), RF00008,
AJ247113.1/134-53

Ham.
Ribozyme

82

RF00008
AJ247122.1/52-
132

RFA 00423 Hammerhead ribozyme
(type III), RF00008,
AJ247122.1/132-52

Ham.
Ribozyme

81

RF00008
AJ295018.1/1-58

RFA 00426 Hammerhead ribozyme
(type III), RF00008,
AJ295018.1/58-1

Ham.
Ribozyme

58

RF00008
AJ536619.1/152-
206

RFA 00430 Hammerhead ribozyme
(type III), RF00008,
AJ536619.1/206-152

Ham.
Ribozyme

55

RF00008
Y14700.1/53-133

RFA 00450 Hammerhead ribozyme
(type III), RF00008,
Y14700.1/133-53

Ham.
Ribozyme

81

RF00019
K01562.1/110-1

RFA 00582 Y RNA, RF00019,
K01562.1/1-110

Y RNA 110

RF00019
K01564.1/77-1

RFA 00584 Y RNA, RF00019,
K01564.1/1-77

Y RNA 77

RF00019
L15431.1/134-36

RFA 00585 Y RNA, RF00019,
L15431.1/36-134

Y RNA 99

80

Table 5.10 Selected RNA Pseudoknot-free Structures from Rfam and
RNA STRAND to Perform Alignment Quality Experiments. Part 2

Rfam ID RNA
STRAND

ID

Molecule Name RNA
Type

Length

RF00025
M33461.1/346-
140

RFA 00606 Ciliate telomerase
RNA, RF00025,
M33461.1/140-346

Cili.
Telo.
RNA

207

RF00025
U10565.1/238-50

RFA 00608 Ciliate telomerase
RNA, RF00025,
U10566.1/72-260

Cili.
Telo.
RNA

189

RF00025
U22353.1/206-53

RFA 00614 Ciliate telomerase
RNA, RF00025,
U22353.1/53-206

Cili.
Telo.
RNA

154

RF00025
U45435.1/283-69

RFA 00618 Ciliate telomerase
RNA, RF00025,
U45435.1/69-283

Cili.
Telo.
RNA

215

RF00109
AB169770.1/1705-
1641

RFA 00640 Vimentin 3 prime UTR
protein-binding region,
RF00109,
AB169770.1/1641-1705

Cis-reg.
element

65

RF00109
AF447708.1/1826-
1750

RFA 00642 Vimentin 3 prime UTR
protein-binding region,
RF00109,
AF447708.1/1750-1826

Cis-reg.
element

77

RF00109
BC053115.1/1568-
1499

RFA 00645 Vimentin 3 prime UTR
protein-binding region,
RF00109,
BC053115.1/1499-1568

Cis-reg.
element

70

RF00109
M26251.1/2000-
1935

RFA 00652 Vimentin 3 prime UTR
protein-binding region,
RF00109,
M26251.1/1935-2000

Cis-reg.
element

66

RF00163
X15620.1/62-19

RFA 00715 Hammerhead ribozyme
(type I), RF00163,
X15620.1/19-62

Ham.
Ribozyme

44

81

Table 5.11 Selected RNA Pseudoknot-free Structures from Rfam and
RNA STRAND to Perform Alignment Quality Experiments. Part 3

Rfam ID RNA
STRAND

ID

Molecule Name RNA
Type

Length

RF00019
L15432.1/124-36

RFA 00586 Y RNA, RF00019,
L15432.1/36-124

Y RNA 89

RF00019
L27537.1/96-1

RFA 00588 Y RNA, RF00019,
L27537.1/1-96

Y RNA 96

RF00019
X57566.1/93-1

RFA 00595 Y RNA, RF00019,
X57566.1/1-93

Y RNA 93

RF00025
AF399707.1/2345-
2181

RFA 00603 Ciliate telomerase
RNA, RF00025,
AF399707.1/2181-2345

Cili.
Telo.
RNA

165

RF00025
AJ132318.1/175-
1

RFA 00605 Ciliate telomerase
RNA, RF00025,
AJ132318.1/1-175

Cili.
Telo.
RNA

175

RF00163
Z69686.1/390-
342

RFA 00720 Hammerhead ribozyme
(type I), RF00163,
Z69686.1/342-390

Ham.
Ribozyme

49

RF00524
U13031.1/1644-
1423

RFA 00810 R2 RNA element,
RF00524,
U13031.1/1423-1644

Other
RNA

222

RF00524
U13033.1/1658-
1423

RFA 00812 R2 RNA element,
RF00524,
U13033.1/1423-1658

Other
RNA

236

RF00524
U81985.1/709-
508

RFA 00818 R2 RNA element,
RF00524,
U81985.1/508-709

Other
RNA

202

RF00524
X51967.1/3585-
3349

RFA 00819 R2 RNA element,
RF00524,
X51967.1/3349-3585

Other
RNA

237

82

(42.27%, 35.11%, 39.66%, respectively), indicating RNAforester performed the best.

These results are understandable, considering that RKalign is mainly designed for

comparing complex pseudoknot structures whereas RNAforester focuses on simpler

pseudoknot-free structures.

The work that is most closely related to RKalign is CARNA [44]. Both methods

are able to accept as input known pseudoknot structures and produce as output an

alignment of the known structures. Our experimental results indicated that the two

methods perform well in terms of base mismatch ratios, though RKalign yields much

lower stem mismatch ratios. It should be pointed out, however, that the comparison

with CARNA is not completely fair. The input data of RKalign are restricted to

fixed structures, which are structures used in this study. Using CARNA with fixed

structures is more or less a mis-use of the tool. The main purpose of CARNA is to

align dot-plots, and its scoring is optimized for that data format. Thus, when dot-

plots are considered, one should use CARNA. When fixed structures are considered,

RKalign is recommended.

CHAPTER 6

CONCLUSIONS

6.1 Summary for Peak Detection

In the first part of this dissertation, we present a new approach, called PeakID, for

elastic peak detection in 2D LC-MS data. PeakID works by first constructing a

Shifted Aggregation Tree or AggTree from input data in a bottom-up manner, and

then searching the AggTree for different peaks in a top-down manner. This method

is able to detect multiple peaks across a variety of window sizes without yielding

any false negative. Our experimental results showed that by spending some time in

a training phase to find the topology and structure of an efficient AggTree, PeakID

can run much faster than other methods on both synthetic and real-world data. The

proposed approach lays out a framework for solving the elastic peak detection problem

on time series data. While we have focused on 2D LC-MS data in this dissertation,

and have shown that PeakID can speed up the analysis of such data by a factor of

10, our techniques can be easily generalized to process other time series data in an

efficient way.

6.2 Summary for Pseudoknot Alignment

In the second part of this dissertation, we present a novel method, named RKalign, for

comparing two known RNA pseudoknot structures. The method adopts the partition

function methodology to calculate the posterior log-odds scores of the alignments

between bases or base pairs of the RNAs with a dynamic programming algorithm.

The posterior log-odds scores are then used to calculate the expected accuracy of

an alignment between the RNAs. The goal is to find an optimal alignment with

the maximum expected accuracy. We present a greedy algorithm to achieve this

83

84

goal. Our experimental results demonstrated the good performance of the proposed

RKalign method.

New pseudoknotted structures are found periodically, as exemplified by the

recently determined ribosomal CCR5 frameshift pseudoknot [87] and the translational

enhancer structures found in the 3’UTRs of plant viruses [88, 89, 90, 91]. It is

therefore important to be able to compare these new structures to a database of

known pseudoknots to determine the possibility of similar functionality. For example,

some of the recently functionally similar pseudoknots found in the 3’UTRs of plant

viruses have been shown to act as translational enhancers and have 3D structures

that are similar to tRNAs. Importantly, they contain pseudoknots that produce

tRNA-like 3D folds, but are not derived from the standard tRNA secondary structure

cloverleaf. In addition, these elements have been shown to be important for ribosome

binding. RKalign will be useful in performing this kind of database search for

structure-function analysis of pseudoknots.

6.3 Future Work

Pseudoknots are important tertiary motifs in RNA. In our future work, we plan

to develop new algorithms and techniques for pattern mining in biological data,

particularly software for aligning RNA secondary structures including other tertiary

motifs such as coaxial helical stacking [92] and A-minors [93]. These software tools

will be useful in many bioinformatics applications, including RNA structure analysis,

motif finding and database searching, among others.

BIBLIOGRAPHY

[1] S. Bandyopadhyay, U. Maulik, and J.T.L. Wang (eds.), Analysis of Biological Data:
A Soft Computing Approach, Singapore: World Scientific, 2007.

[2] I. Eidhammer, K. Flikka, L. Martens, and S.-O. Mikalsen, Computational Methods
for Mass Spectrometry Proteomics, first ed., Hoboken, NJ: Wiley-Interscience,
2008.

[3] J.T.L. Wang, M.J. Zaki, H.T.T. Toivonen, and D. Shasha (eds.), Data Mining in
Bioinformatics, London, UK: Springer, 2005.

[4] C. Yang, Z. He, and W. Yu, “Comparison of Public Peak Detection Algorithms for
MALDI Mass Spectrometry Data Analysis,” BMC Bioinformatics, vol. 10, no.
4, 2009.

[5] M.C. Codrea, C.R. Jimenez, S. Piersma, J. Heringa, and E. Marchiori, “Robust Peak
Detection and Alignment of nanoLC-FT Mass Spectrometry Data,” Proc. Fifth
European Conference on Evolutionary Computation, Machine Learning and
Data Mining in Bioinformatics, pp. 35-46, 2007.

[6] M. Katajamaa and M. Oresic, “Processing Methods for Differential Analysis of
LC/MS Profile Data,” BMC Bioinformatics, vol. 6, no. 179, 2005.

[7] B.Y. Renard, M. Kirchner, H. Steen, J.A.J. Steen, and F.A. Hamprecht, “NITPICK:
Peak Identification for Mass Spectrometry Data,” BMC Bioinformatics, vol.
9, no. 355, 2008.

[8] R. Stolt, R.J.O. Torgrip, J. Lindberg, L. Csenki, J. Kolmert, I. Schuppe-Koistinen,
and S.P. Jacobsson, “Second-Order Peak Detection for Multicomponent High-
Resolution LC/MS Data,” Analytical Chemistry, vol. 78, pp. 975-983, 2006.

[9] J. Wong, G. Cagney, and H.M. Cartwright, “SpecAlign-Processing and Alignment of
Mass Spectra Datasets,” Bioinformatics, vol. 21, pp. 2088-2090, 2005.

[10] T. Hankemeier, J. Rozenbrand, M. Abhadur, J.J. Vreuls, and U.A.T.
Brinkman, “Data Correlation in On-Line Solid-Phase Extraction-Gas
Chromatography-Atomic Emission/Mass Spectrometric Detection of
Unknown Microcontaminants,” Chromatographia, vol. 48, pp. 273-283,
1998.

[11] T. Fushiki, H. Fujisawa, and S. Eguchi, “Identification of Biomarkers from Mass
Spectrometry Data Using A Common Peak Approach,” BMC Bioinformatics,
vol. 7, no. 358, 2006.

85

86

[12] J. Listgarten, R.M. Neal, S.T. Roweis, P. Wong, and A. Emili, “Difference Detection
in LC-MS Data for Protein Biomarker Discovery,” Bioinformatics, vol. 23, no.
2, pp. 198-204, 2007.

[13] R.E. Ardrey, Liquid Chromatography - Mass Spectrometry: An Introduction,
Hoboken, NJ: John Wiley & Sons, 2003.

[14] J.T.L. Wang, B.A. Shapiro, and D. Shasha (eds.), Pattern Discovery in Biomolecular
Data: Tools, Techniques and Applications, New York, NY: Oxford University
Press, 1999.

[15] A. Felinger, Data Analysis and Signal Processing in Chromatography, Amsterdam,
The Netherlands: Elsevier Science, 1998.

[16] D. Shasha and Y. Zhu, High Performance Discovery in Time Series: Techniques and
Case Studies, London, UK: Springer, 2004.

[17] Y. Zhu and D. Shasha, “Efficient Elastic Burst Detection in Data Streams,” Proc.
Ninth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 336-345, 2003.

[18] F.K.-P. Chan, A.W.-C. Fu, and C. Yu, “Haar Wavelets for Efficient Similarity Search
of Time-Series: With and Without Time Warping,” IEEE Transactions on
Knowledge and Data Engineering, vol. 15, no. 3, pp. 686-705, 2003.

[19] X. Zhang and D. Shasha, “Better Burst Detection,” Proc. Twenty-Second
International Conference on Data Engineering, pp. 146, 2006.

[20] W. Yu, B. Wu, N. Lin, K. Stone, K. Williams, and H. Zhao, “Detecting and
Aligning Peaks in Mass Spectrometry Data with Applications to MALDI,”
Computational Biology and Chemistry, vol. 30, pp. 27-38, 2006.

[21] S. Chen, D. Hong, and Y. Shyr, “Wavelet-Based Procedures for Proteomic Mass
Spectrometry Data Processing,” Computational Statistics & Data Analysis,
vol. 52, pp. 211-220, 2007.

[22] K.R. Coombes, S. Tsavachidis, J.S. Morris, K.A. Baggerly, M.C. Hung, and H.M.
Kuerer, “Improved Peak Detection and Quantification of Mass Spectrometry
Data Acquired from Surface-Enhanced Laser Desorption and Ionization
by Denoising Spectra with the Undecimated Discrete Wavelet Transform,”
Proteomics, vol. 5, no. 16, pp. 4107-4117, 2005.

[23] M. Wang, T. Madhyastha, N.H. Chan, S. Papadimitriou, and C. Faloutsos, “Data
Mining Meets Performance Evaluation: Fast Algorithms for Modeling Bursty
Traffic,” Proc. Eighteenth International Conference on Data Engineering, pp.
507-516, 2002.

87

[24] J. Kleinberg, “Bursty and Hierarchical Structure in Streams,” Proc. Eighth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 91-101, 2002.

[25] M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos, “Identifying Similarities,
Periodicities and Bursts for Online Search Queries,” Proc. 2004 ACM
SIGMOD International Conference on Management of Data, pp. 131-142,
2004.

[26] M.G. Elfeky, W.G. Aref, and A.K. Elmagarmid, “Periodicity Detection in Time Series
Databases,” IEEE Transactions on Knowledge and Data Engineering, vol. 17,
no. 7, pp. 875-887, 2005.

[27] E. Keogh, S. Lonardi, and W. Chiu, “Finding Surprising Patterns in a Time
Series Database in Linear Time and Space,” Proc. Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2002.

[28] J. Yang, W. Wang, and P.S. Yu, “Mining Asynchronous Periodic Patterns in Time
Series Data,” IEEE Transactions on Knowledge and Data Engineering, vol.
15, no. 3, pp. 613-628, 2003.

[29] Z. Michalewicz and D.B. Fogel, How to Solve It: Modern Heuristics, London, UK:
Springer, 2002.

[30] M.H.M. van de Meent, and G.J. de Jong, “Improvement of the Liquid-
Chromatographic Analysis of Protein Tryptic Digests by the Use of Long-
Capillary Monolithic Columns with UV and MS Detection,” Analytical and
Bioanalytical Chemistry, vol. 388, pp. 195-200, 2007.

[31] C.W.A. Pleij, K. Rietveld, and L. Bosch, “A New Principle of RNA Folding Based on
Pseudoknotting,” Nucleic Acids Research, vol. 13, no. 5, pp. 1717-1731, 1985.

[32] Y. Xin, C. Laing, N.B. Leontis, and T. Schlick, “Annotation of Tertiary Interactions
in RNA Structures Reveals Variations and Correlations,” RNA, vol. 14, no.
12, pp. 2465-2477, 2008.

[33] C. Laing, D. Wen, J.T.L. Wang, and T. Schlick, “Predicting Coaxial Helical Stacking
in RNA Junctions,” Nucleic Acids Research, vol. 40, no. 2, pp. 487-498, 2012.

[34] Z. Huang, Y. Wu, J. Robertson, L. Feng, R. Malmberg, and L. Cai, “Fast and
Accurate Search for Non-Coding RNA Pseudoknot Structures in Genomes,”
Bioinformatics, vol. 24, no. 20, pp. 2281-2287, 2008.

[35] S. Griffiths-Jones, A. Bateman, M. Marshall, A. Khanna, and S.R. Eddy, “Rfam: an
RNA Family Database,” Nucleic Acids Research, vol. 31, no. 1, pp. 439-441,
2003.

88

[36] P.L. Adams, M.R. Stahley, A.B. Kosek, J. Wang, and S.A. Strobel, “Crystal Structure
of a Self-Splicing Group I Intron with Both Exons,” Nature, vol. 430, no. 6995,
pp. 45-50, 2004.

[37] C.A. Theimer, C.A. Blois, and J. Feigon, “Structure of the Human Telomerase RNA
Pseudoknot Reveals Conserved Teriary Interactions Essential for Function,”
Molecular Cell, vol. 17, no. 5, pp. 671-682, 2005.

[38] D.W. Staple and S.E. Butcher, “Pseudoknots: RNA Structures with Diverse
Functions,” PLoS Biology, vol. 3, no. 6, pp. e213, 2005.

[39] C.M. Reidys, F.W.D. Huang, J.E. Andersen, R.C. Penner, P.F. Stadler, and M.E.
Nebel, “Topology and Prediction of RNA Psedudoknots,” Bioinformatics, vol.
27, no. 8, pp. 1076-1085, 2011.

[40] P.L. Nixon, A. Rangan, Y.G. Kim, A. Rich, D.W. Hoffman, M. Henning, and D.P.
Giedroc, “Solution Structure of a Luteoviral P1-P2 Frameshifting mRNA
Pseudoknot,” Journal of Molecular Biology, vol. 322, no. 3, pp. 621-633, 2002.

[41] X. Xu, Y. Ji, and G.D. Stormo, “RNA Sampler: a New Sampling Based Algorithm
for Common RNA Secondary Structure Prediction and Structural Alignment,”
Bioinformatics, vol. 23, no. 15, pp. 1883-1891, 2007.

[42] K. Sato, Y. Kato, T. Akutsu, K. Asai, and Y. Sakakibara, “DAFS: Simultaneous
Aligning and Folding of RNA Sequences via Dual Decomposition,”
Bioinformatics, vol. 28, no. 24, pp. 3218-3224, 2012.

[43] I.M. Meyer and I. Miklos, “SimulFold: Simultaneously Inferring RNA Structures
Including Pseudoknots, Alignments, and Trees Using a Bayesian MCMC
Framework,” PLoS Computational Biology, vol. 3, no. 8, pp. e149, 2007.

[44] D.A. Sorescu, M. Mohl, M. Mann, R. Backofen, and S. Will, “CARNA-Alignment of
RNA Structure Ensembles,” Nucleic Acids Research, vol. 40, no. Webserver,
pp. W49-53, 2012.

[45] M. Andronescu, V. Bereg, H.H. Hoos, and A. Condon, “RNA STRAND: the RNA
Secondary Structure and Statistical Analysis Database,” BMC Bioinformatics,
vol. 9, no. 340, 2008.

[46] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N.
Shindyalov, and P.E. Bourne, “The Protein Data Bank,” Nucleic Acids
Research, vol. 28, no. 1, pp. 235-242, 2000.

[47] F.H.D. van Batenburg, A.P. Gultyaev, C.W.A. Pleij, J. Ng, and J. Oliehoek,
“PseudoBase: a Database with RNA Pseudoknots.,” Nucleic Acids Research,
vol. 28, no. 1, pp. 201-204, 2000.

89

[48] M. Taufer, A. Licon, R. Araiza, D. Mireles, F.H.D. van Batenburg, A.P. Gultyaev,
and M.Y. Leung, “PseudoBase++: an Extension of PseudoBase for Easy
Searching, Formatting and Visualization of Pseudoknots,” Nucleic Acids
Research, vol. 37, no. Database, pp. D127-135, 2009.

[49] S. Miyazawa, “A Reliable Sequence Alignment Method Based on Probabilities of
Residue Correspondences,” Protein Engineering, vol. 8, no. 10, pp. 999-1009,
1995.

[50] U. Roshan and D.R. Livesay, “Probalign: Multiple Sequence Alignment Using
Partition Function Posterior Probabilities,” Bioinformatics, vol. 22, no. 22,
pp. 2715-2721, 2006.

[51] C.B. do, M.S. Mahabhashyam, M. Brudno, and S. Batzoglou, “ProbCons:
Probabilistic Consistency-Based Multiple Sequence Alignment,” Genome
Research, vol. 15, no. 2, pp. 330-340, 2005.

[52] S. Will, T. Joshi, I.L. Hofacker, P.F. Stadler, and R. Backofen, “LocARNA-P:
Accurate Boundary Prediction and Improved Detection of Structural RNAs,”
RNA, vol. 18, no. 5, pp. 900-914, 2012.

[53] D.H. Mathews and D.H. Turner, “Dynalign: an Algorithm for Finding the Secondary
Structure Common to Two RNA Sequences,” Journal of Molecular Biology,
vol. 317, no. 2, pp. 191-203, 2002.

[54] E. Torarinsson, J.H. Havgaard, and J. Gorodkin, “Multiple Structural Alignment and
Clustering of RNA Sequences,” Bioinformatics, vol. 23, no. 8, pp. 926-932,
2007.

[55] S. Will, K. Reiche, I.L. Hofacker, P.F. Stadler, and R. Backofen, “Inferring Noncoding
RNA Families and Classes by Means of Genome-Scale Structure-Based
Clustering,” PLoS Computational Biology, vol. 3, no. 4, pp. e65, 2007.

[56] M. Mohl, S. will, and R. Backofen, “Lifting Prediction to Alignment of RNA
Pseudoknots,” Journal of Computational Biology, vol. 17, no. 3, pp. 429-442,
2010.

[57] B. Han, B. Dost, V. Bafna, and S. Zhang, “Structural Alignment of Pseudoknotted
RNA,” Journal of Computational Biology, vol. 15, no. 5, pp. 489-504, 2008.

[58] B.J. Yoon, “Efficient Alignment of RNAs with Pseudoknots Using Sequence
Alignment Constrains,” EURASIP Journal on Bioinformatics and Systems
Biology, vol. 2009, no. 491074, 2009.

[59] T.K.F. Wong, K.L. Wan, B.Y. Hsu, B.W. Cheung, W.K. Hon, T.W. Lam, and S.M.
Yiu, “RNASAlign: RNA Structural Alignment System,” Bioinformatics, vol.
27, no. 15, pp. 2151-2152, 2011.

90

[60] T. Puton, L.P. Kozlowski, K.M. Rother, and J.M. Bujnicki, “CompaRNA: a Server
for Continuous Benchmarking of Automated Methods for RNA Secondary
Structure Prediction,” Nucleic Acids Research, vol. 41, no. 7, pp. 4307-4323,
2013.

[61] F. Ferre, Y. Ponty, W.A. Lorenz, and P. Clote, “DIAL: a Web Server for the Pairwise
Alignment of Two RNA Three-Dimensional Structures Using Nucleotide,
Dihedral Angle and Base-Pairing Similarities,” Nucleic Acids Research, vol.
35, no. Webserver, pp. W659-668, 2007.

[62] E. Capriotti and M.A. Marti-Renom, “SARA: a Server for Function Annotation of
RNA Structures,” Nucleic Acids Research, vol. 37, no. Webserver, pp. W260-
265, 2009.

[63] Y.F. Chang, Y.L. Huang, and C.L. Lu, “SARSA: a Web Tool for Structural Alignment
of RNA Using a Structural Alphabet,” Nucleic Acids Research, vol. 36, no.
Webserver, pp. W19-24, 2008.

[64] C.W. Wang, K.T. Chen, and C.L. Lu, “iPARTS: an Improved Tool of Pairwise
Alignment of RNA Tertiary Structures,” Nucleic Acids Research, vol. 38, no.
Webserver, pp. W340-347, 2010.

[65] D. Hoksza and D. Svozil, “Efficient RNA Pairwise Structure Comparison by SETTER
Method,” Bioinformatics, vol. 28, no. 14, pp. 1858-1864, 2012.

[66] R.R. Rahrig, N.B. Leontis, and C.L. Zirbel, “R3D Align: Global Pairwise Alignment
of RNA 3D Structures Using Local Superpositions,” Bioinformatics, vol. 26,
no. 21, pp. 2689-2697, 2010.

[67] G. He, A. Steppi, J. Laborde, A. Srivastava, P. Zhao, and J. Zhang, “RASS: a Web
Server for RNA Alignment in the Joint Sequence-Structure Space,” Nucleic
Acids Research, vol. 42, no. Webserver, pp. W377-381, 2014.

[68] C. Zhong and S. Zhang, “Efficient Alignment of RNA Secondary Structures Using
Sparse Dynamic Programming,” BMC Bioinformatics, vol. 14, no. 269, 2013.

[69] B.A. Shapiro and K. Zhang, “Comparing Multiple RNA Secondary Structures Using
Tree Comparisons,” Computer Applications in the Biosciences, vol. 6, no. 4,
pp. 309-318, 1990.

[70] J. Liu, J.T.L. Wang, J. Hu, and B. Tian, “A Method for Aligning RNA
Secondary Structures and Its Application to RNA Motif Detection,” BMC
Bioinformatics, vol. 6, no. 89, 2005.

[71] M. Hochsmann, B. Voss, and R. Giegerich, “Pure Multiple RNA Secondary Structure
Alignments: a Progressive Profile Approach,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, vol. 1, no. 1, pp. 53-62, 2004.

91

[72] T. Jiang, G. Lin, B. Ma, and K. Zhang, “A General Edit Distance between RNA
Structures,” Journal of Computational Biology, vol. 9, no. 2, pp. 371-388,
2002.

[73] R.J. Klein and S.R. Eddy, “RSEARCH: Finding Homologs of Single Structured RNA
Sequences,” BMC Bioinformatics, vol. 4, no. 44, 2003.

[74] P.P. Gardner, A. Wilm, and S. Washietl, “A Benchmark of Multiple Sequence
Alignment Programs upon Structural RNAs,” Nucleic Acids Research, vol.
33, no. 8, pp. 2433-2439, 2005.

[75] J.W. Brown, “The Ribonuclease P Database,” Nucleic Acids Research, vol. 27, no. 1,
pp. 314, 1999.

[76] S.W. Burge, J. Daub, R. Eberhardt, J. Tate, L. Barquist, E.P. Nawrocki, S.R. Eddy,
P.P. Gardner, and A. Bateman, “Rfam 11.0: 10 Years of RNA Families,”
Nucleic Acids Research, vol. 41, no. Database, pp. D226-232, 1995.

[77] H. Yang, F. Jossinet, N. Leontis, L. Chen, J. Westbrook, H. Berman, and E. Westhof,
“Tools for the Automatic Identification and Classification of RNA Base Pairs,”
Nucleic Acids Research, vol. 31, no. 13, pp. 3450-3460, 2003.

[78] F. Wilcoxin, “Probability Table for Individual Comparisons by Ranking Methods,”
Biometrics, vol. 3, no. 3, pp. 119-122, 1947.

[79] A. Wilm, I. Mainz, and G. Steger, “An Enhanced RNA Alignment Benchmark for
Sequence Alignment Programs,” Algorithms for Molecular Biology, vol. 1, no.
19, 2006.

[80] P.A. Nuin, Z. Wang, and E.R. Tillier, “The Accuracy of Several Multiple Sequence
Alignment Programs for Proteins,” BMC Bioinformatics, vol. 7, no. 471, 2006.

[81] J.D. Thompson, F. Plewniak, and O. Poch, “A Comprehensive Comparison of
Multiple Sequence Alignment Programs,” Nucleic Acids Research, vol. 27, no.
13, pp. 2682-2690, 1999.

[82] A. Bremges, s. Schirmer, and R. Giegerich, “Fine-Tuning Structural RNA Alignments
in the Twilight Zone,” BMC Bioinformatics, vol. 11, no. 222, 2010.

[83] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, third ed.,
Burlington, MA: Morgan Kaufmann, 2011.

[84] R.R. Rahrig, A.I. Petrov, N.B. Leontis, and C.L. Zirbel, “R3D Align Web Server for
Global Nucleotide to Nucleotide Alignments of RNA 3D Structures,” Nucleic
Acids Research, vol. 41, no. Webserver, pp. W15-21, 2013.

[85] Y. Song, C. Liu, R. Malmberg, F. Pan, and L. Cai, “Tree Decomposition Based Fast
Search of RNA Structures Including Pseudoknots in Genomes,” Proc. IEEE
Computational Systems Bioinformatics Conference, pp. 223-234, 2005.

92

[86] I.L. Hofacker, “Vienna RNA Secondary Structure Server,” Nucleic Acids Research,
vol. 31, no. 13, pp. 3429-3431, 2003.

[87] A.T. Belew, A. Meskauskas, S. Musalgaonkar, V.M. Advani, S.O. Sulima, W.K.
Kasprzak, B.A. Shapiro, and J.D. Dinman, “Ribosomal Frameshifting in the
CCR5 mRNA is Regulated by miRNAs and the NMD Pathway,” Nature, vol.
512, no. 7514, pp. 265-269, 2014.

[88] F. Gao, W.K. Kasprzak, C. Szarko, B.A. Shapiro, and A.E. Simon, “The 3’
Untranslated Region of Pea Enation Mosaic Virus Contains two T-Shaped,
Ribosome-Binding, Cap-Independent Translation Enhancers,” Journal of
Virology, vol. 88, no. 20, pp. 11696-11712, 2014.

[89] F. Gao, W.K. Kasprzak, V.A. Stupina, B.A. Shapiro, and A.E. Simon, “A Ribosome-
Binding, 3’ Translational Enhancer Has a T-Shaped Structure and Engages in
a Long-Distance RNA-RNA Interaction,” Journal of Virology, vol. 86, no. 18,
pp. 9828-9842, 2012.

[90] V.A. Stupina, A. Meskauskas, J.C. McCormack, Y.G. Yingling, B.A. Shapiro, J.D.
Dinman, and A.E. Simon, “The 3’ Proximal Translational Enhancer of Turnip
Crinkle Virus Binds to 60S Ribosomal Subunits,” RNA, vol. 14, no. 11, pp.
2379-2393, 2008.

[91] J.C. McCormack, X. Yuan, Y.G. Yingling, W. Kasprzak, R.E. Zamora, B.A. Shapiro,
and A.E. Simon, “Structural Domains within the 3’ Untranslated Region of
Turnip Crinkle Virus,” Journal of Virology, vol. 82, no. 17, pp. 8706-8720,
2008.

[92] C. Laing, D. Wen, J.T.L Wang, and T. Schlick, “Predicting Coaxial Helical Stacking
in RNA Junctions,” Nucleic Acids Research, vol. 40, no. 2, pp. 487-498, 2012.

[93] P. Sheth, M. Cervantes-Cervantes, A. Nagula, C. Laing, and J.T.L. Wang, “Novel
Features for Identifying A-Minors in Three-Dimensional RNA Molecules,”
Computational Biology and Chemistry, vol. 47, pp. 240-245, 2013.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Acknowledgement
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Algorithms for Peak Detection
	Chapter 3: Experiments for Peak Detection
	Chapter 4: Algorithms for Pseudoknot Alignment
	Chapter 5: Experiments for Pseudoknot Alignment
	Chapter 6: Conclusions
	Bibliography

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

