

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

ADAPTIVE GLOBAL OPTIMIZATION ALGORITHMS

by
William Phillips

Global optimization is concerned with finding the minimum value of a function where

many local minima may exist. The development of a global optimization algorithm

may involve using information about the target function (e.g., differentiability) and

functions based on statistical models to better the worst case time complexity and

expected error of similar deterministic algorithms.

Recent algorithms are investigated, new ones proposed and their performance

is analyzed. Minimum, maximum and average case error bounds for the algorithms

presented are derived. Software architecture implemented with MATLAB and Java

is presented and experimental results for the algorithms are displayed.

The graphical capabilities and function-rich MATLAB environment are com-

bined with the object oriented features of Java, hosted on the computer system

described in this paper, to provide a fast, powerful test environment to provide

experimental results. In order to do this, matlabcontrol, a third party set of pro-

cedures that allows a Java program to call MATLAB functions to access a function

such as voronoi() or to provide graphical results, is used. Additionally, the Java

implementation can be called from, and return values to, the MATLAB environment.

The data can then be used as input to MATLAB’s graphing or other functions.

The software test environment provides algorithm performance information such

as whether more iterations or replications of a proposed algorithm would be expected

to provide a better result for an algorithm. It is anticipated that the functionality

provided by the framework would be used for initial development and analysis and

subsequently removed and replaced with optimized (in the computer efficiency sense)

functions for deployment.

ADAPTIVE GLOBAL OPTIMIZATION ALGORITHMS

by
William Phillips

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Sciences, NJIT

January 2015

Copyright c© 2015 by William Phillips

ALL RIGHTS RESERVED

APPROVAL PAGE

ADAPTIVE GLOBAL OPTIMIZATION ALGORITHMS

William Phillips

Dr. James M. Calvin, Dissertation Advisor Date
Professor of Computer Science, NJIT

Dr. Daochuan C. Hung, Committee Member Date
Associate Professor of Computer Science, NJIT

Dr. Marvin K. Nakyama, Committee Member Date
Professor of Computer Science, NJIT

Dr. Zhi Wei, Committee Member Date
Assistant Professor of Computer Science, NJIT

Dr. Antanas Zilinskas, Committee Member Date
Professor of Informatics, Institute of Mathematics and Informatics, Vilnius,
Lithuania

BIOGRAPHICAL SKETCH

Author: William Phillips

Degree: Doctor of Philosophy

Date: January 2015

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,

New Jersey Institute of Technology, Newark, NJ, 2015

• Master of Science in Telecommunications,
Southern Methodist University, Dallas, TX, 2005

• Master of Software Engineering,
Seattle University, Seattle,WA, 1985

• Bachelor of Science in Mathematics,
University of Washington, Seattle, WA, 1979

Major: Computer Science

Presentations and Publications:

William Phillips, “Design Patterns as a Practical Software Engineering Tool,”
Presentation, Manhattan College, New York, NY. June, 2014

William Phillips, “Adaptive Global Optimization Algorithms,” Presentation, Murray
State University, Murray, KY. July, 2014

William Phillips, “Design Patterns,” Presentation, Fairleigh Dickinson University,
Teaneck, NJ. July, 2014

iv

To Jesus Christ and my Mother, Jessie Marie (Brown) Phillips

v

ACKNOWLEDGMENT

I would like to thank my advisor, James M. Calvin Ph.D, for the direction, support,

knowledge and most of all patience. I would like to thank the National Science

Foundation for their support in this work. I also want to thank my committee for

the time spent in working with me to complete this thesis.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Introduction . 1

1.2 Problem Statement . 1

1.3 Background . 1

1.4 Global Optimization Examples . 3

1.4.1 Groundwater Remediation . 3

1.4.2 Linear Registration and Motion Correction of Brain Images . . 4

1.5 Applied Optimization Techniques . 5

1.6 Adaptive, Stochastic Global Optimization Algorithms 5

1.7 Test Objective Functions . 7

1.7.1 Rastrigin Function . 8

1.7.2 Csendes Function . 9

1.8 Organization of This Thesis . 10

2 ON A GLOBAL OPTIMIZATION ALGORITHM FOR MULTIVARIATE
SMOOTH FUNCTIONS . 11

2.1 Problem Statement . 11

2.2 The Algorithm . 12

2.3 Interpolation Error Bounds . 14

2.4 Proof of Theorem 1 . 15

2.5 Nonadaptive Algorithms . 22

3 A TWO VARIATE GLOBAL OPTIMIZATION ALGORITHM 24

3.1 Problem Statement . 24

3.2 The Algorithm . 25

3.3 Convergence Analysis . 27

3.4 Extending the Algorithm to More Than Two Dimensions 31

vii

TABLE OF CONTENTS
(Continued)

Chapter Page

3.5 Future Work . 37

4 P-ALGORITHM . 38

4.1 Error Analysis . 39

4.2 Convergence Analysis . 40

4.2.1 P-Algorithm Pseudocode . 41

4.3 P-Algorithm Output . 42

4.4 Motivation for the P-Algorithm . 43

5 η-ADIC GRIDS AND ALGORITHMS . 44

5.1 The Grid as a Covering . 44

5.2 The G-Algorithm . 44

5.2.1 G-Algorithm Pseudocode . 45

5.2.2 G-Algorithm Output . 46

5.2.3 Motivation for the G-Algorithm 47

5.2.4 Error Analysis of Passive Grids 48

5.2.5 Run Time of the G-algorithm 49

5.3 The Quadtree Decomposition Algorithm 50

5.3.1 Quadtree Decomposition-Algorithm Pseudocode 51

5.3.2 QD-Algorithm Convergence Analysis 52

5.3.3 QD-Algorithm Execution Time 52

5.3.4 Quadtree Decomposition-Algorithm Output 53

6 ALGORITHMS THAT USE THE VORONOI DIAGRAM 54

6.1 The V-Algorithm . 55

6.1.1 V-Algorithm Pseudocode . 56

6.2 The Multithreaded V-Algorithm . 56

6.3 The V-covariance Algorithm . 57

6.3.1 V-covariance Algorithm Pseudocode 57

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

7 ALGORITHMS THAT USE TRIANGULATION 59

7.1 HP-Algorithm Pseudocode . 59

7.2 Hyperpyramid Decomposition-Algorithm Output 60

7.3 Partitioning the Two-Variable Domain 61

7.4 Partitioning the Three-Variable Domain 63

7.4.1 Minimum-Pyramid Stratifying Technique 64

7.4.2 24-Pyramid Stratifying Technique 67

7.4.3 48-Pyramid Stratifying Technique 68

7.4.4 The Csendes Test Function . 70

8 GLOBAL OPTIMIZATION ALGORITHMS IMPLEMENTATION 72

8.1 Introduction . 72

8.2 P-Algorithm Implementation . 72

8.2.1 P-Algorithm Class Diagram . 73

8.2.2 P-Algorithm Sequence Diagram 74

8.3 G-Algorithm Implementation . 77

8.3.1 G-Algorithm Class Diagram 77

8.3.2 G-Algorithm Sequence Diagram 78

8.4 Quadtree Decomposition-Algorithm Implementation 79

8.4.1 Quadtree Decomposition-Algorithm Class Diagram 79

8.4.2 Quadtree Decomposition-Algorithm Sequence Diagram 81

8.5 V-Algorithm Implementation . 82

8.5.1 V-Algorithm UML Class Diagram 83

8.5.2 V-Algorithm UML Sequence Diagram 84

8.6 Multithreaded V-Algorithm Implementation 86

8.6.1 Multithreaded V-Algorithm UML Class Diagram 86

8.6.2 Multithreaded V-Algorithm UML Sequence Diagram 87

ix

TABLE OF CONTENTS
(Continued)

Chapter Page

8.7 V-covariance Algorithm Implementation 89

8.7.1 V-Covariance Algorithm UML Class Diagram 90

8.7.2 V-covariance Algorithm UML Sequence Diagram 91

8.8 HP-Algorithm Implementation . 93

8.8.1 Hyperpyramid Decomposition-Algorithm Class Diagram . . . 93

8.8.2 Hyperpyramid Decomposition-Algorithm UML Sequence Diagram 94

9 GLOBAL OPTIMIZATION FRAMEWORK 96

9.1 Tools for Global Optimization . 96

9.1.1 MATLAB . 96

9.1.2 Java . 96

9.1.3 matlabcontrol . 97

9.1.4 Object Oriented Software Design (OOSD) 97

9.1.5 Design Patterns . 98

9.1.6 Integrated Development Environments (IDEs) 99

9.2 A Framework for Global Optimization Algorithms 99

9.2.1 Using the Framework to Create an Algorithm 101

9.3 Classes of the Framework . 103

9.3.1 InputParameters . 103

9.3.2 Function Creation Classes . 103

9.3.3 Algorithm Creation Classes . 104

9.3.4 Key Function Base Classes . 104

9.3.5 Voronoi Diagram Related Classes 105

9.3.6 Hypercube Algorithm Classes 105

9.3.7 Multithreading Class . 106

9.3.8 MATLAB Return Values and Other Container Classes 106

REFERENCES . 107

x

LIST OF TABLES

Table Page

3.1 Coordinates for Two-Dimensional Partitioning 31

3.2 Coordinates for Three-Dimensional Partitioning – Copy 1 34

3.3 Coordinates for Three-Dimensional Partitioning – Copy 2 34

3.4 Coordinates for Three-Dimensional Partitioning – Copy 3 35

3.5 Coordinates for Three-Dimensional Partitioning – Copy 4 35

3.6 Coordinates for Three-Dimensional Partitioning – Copy 5 36

3.7 Coordinates for Three-Dimensional Partitioning – Copy 6 36

7.1 Comparison of Delauney Triangulation vs. HP-Algorithm 70

xi

LIST OF FIGURES

Figure Page

1.1 A multimodal objective function (from Maskey et al.[18]). 4

1.2 Two-dimensional Rastrigin function. 8

1.3 Two-dimensional Csendes function. 9

3.1 Bounds for the sizes of the smallest triangle as a function of n with
experimental results . 27

3.2 Bounds for the sizes of the smallest triangle as a function of n with
experimental results (log scale) . 28

3.3 Two-dimensional partitioning scheme with first split 32

3.4 Three-dimensional partitioning scheme depicting five splits – fifth split
shown in red . 33

4.1 P-Algorithm observation points for f(x) = (x− .2)(x− .5)(x− .7)(x− .9). 42

5.1 Grid decomposition for the context aware privacy system of [10]. 47

5.2 Search pattern of the QD-Algorithm for the Rastrigin function. 53

6.1 A Voronoi diagram. 55

7.1 Output for the two-dimensional HP-Algorithm. 60

7.2 Transforming the univariate domain into a two-variate domain. 62

7.3 Transforming the two-variate domain into a three-variate domain. 64

7.4 1000000 test points for three-dimensional Rastrigin function – minimum
partition. 65

7.5 1000000 test points for three-dimensional Rastrigin function – minimum
partition (rotated). 66

7.6 1000000 test points for three-dimensional Rastrigin function – 24 pyramid
partition (rotated). 67

7.7 Transforming the two-variate domain into a three-variate domain. 69

7.8 The Contour of the three-dimensional Csendes function – 5000000 itera-
tions near the origin. 71

8.1 UML Class diagram for the P-Algorithm. 73

8.2 UML sequence diagram for the P-Algorithm. 76

xii

LIST OF FIGURES
(Continued)

Figure Page

8.3 UML class diagram for the G-Algorithm. 77

8.4 UML sequence diagram for the G-Algorithm. 78

8.5 UML class diagram for the quadtree decomposition HC-Algorithm. . . . 80

8.6 UML sequence diagram for the HC-Algorithm. 81

8.7 UML class diagram for the V-Algorithm. 83

8.8 UML sequence diagram for the V-Algorithm. 85

8.9 UML class diagram for the multithreaded V-Algorithm. 86

8.10 UML sequence diagram for the multithreaded V-Algorithm. 88

8.11 UML class diagram for the V-Covariance Algorithm. 90

8.12 UML sequence diagram for the V-Covariance Algorithm. 92

8.13 UML class diagram for the HP-Algorithm. 93

8.14 UML sequence diagram for the HP-Algorithm. 95

9.1 Global optimization algorithm framework classes. 100

9.2 Using the framework to create a P-Algorithm. 102

xiii

CHAPTER 1

INTRODUCTION

1.1 Introduction

Optimization has grown out of the field of applied analysis and operations research to

meet the need of finding the extremal values of a function. There are many important

engineering, scientific and financial applications.

1.2 Problem Statement

The problem addressed in this work is to provide the interested engineer, scientist

or financial analyst with a set of performance and error analyzed global optimization

algorithms, along with a framework which will assist in the development of additional

algorithms. The framework uses well-known design patterns implemented in the Java

programming language.

The framework is fully integrated with MATLAB, in that MATLAB mathe-

matical and display functions can be called from the global optimization algorithm

as it executes. Values stored by the application can be returned to the MATLAB

environment for further processing or display by the MATLAB environment.

1.3 Background

The best approach for finding an extreme value, x∗, where F (x∗) achieves an extreme,

on a set D, provided an exact value can not be found by using analytical techniques,

is to exploit information about the objective function F (·) in deriving and applying

an algorithm to search for F (x∗). For example, if it is known that a harmonic function

F (·) only has extremal points on the boundary of D, we know that if m ≤ F (p) ≤M

holds on the boundary of D it also holds in the interior of D as well. A harmonic

1

2

functions is a function F (·) such that if f ∈ C ′′ in n variables
n∑
x=1

Fxixi = 0 everywhere

in D. [2]

Another attribute of F (·) that may be exploited is if F (·) satisfies a Lipschitz

condition, that is |F (x1)− F (x2)| < L|x1 − x2| ∀x1, x2 ∈ D, where L is the Lipschitz

constant. This information can be used to increase the efficiency of a passive grid

algorithm, an algorithm where information of the objective function is not considered

in choosing new points. Zhigljavsky in [21] demonstrates this by increasing the

efficiency of the uniform random search algorithm (where the minimum F (x∗n) =

min{F (xi)}, i = 1, . . . , n where {xi} is a set of n uniformly distributed points over

D) by making use of the Lipschitz condition on the objective function and a method

of Devroye [21]:

Nonuniform Random Covering Algorithm:

Step 1: Set k = 0, f ∗0 =∞, Z1 = χ, a set of n uniformly distributed points over D.

Step 2: Set k = k + 1.

Step 3: Set xk to a sample from PZk , some probability distribution.

Step 4: Set f ∗k = min{f ∗k−1, f(xk)}.

Step 5: Set ηi = (f(xi)− f ∗k + δ) / L for each i = 1, ..., k and δ = some small number.

Step 6: Set Zk+1 = χ\
k⋃
i=1

B(xi, ηi, ρ) where B(xi, ηi, ρ) is the set {z ∈ X : ρ(xi, z) ≤

ηi} and ρ is an acceptable metric.

Step 7: If Zk+1 is not empty or other stopping criteria not met, go to Step 2.

3

This algorithm finds a global minimizer with accuracy δ. In other words, f ∗k −

f ≤ δ where k is the last index for which Zk+i in the preceeding algorithm, is empty.

In addition to satisfying a Lipschitz condition, other function attributes that

can be exploited include the continuity of the function, the smoothness of the function

(how many times it is differentiable), the number of local minima (modality) and the

number of variables of F (·).

In solving Global Optimization (GO) problems and developing algorithms it is

important to consider the accuracy of the solution provided, the complexity in terms

of running time and storage required, and the tools (both hardware and software)

used in implementing them.

It should also be noted that the problem of finding the minimum value of F (·)

on D is equivalent to finding the maximum because finding the minimum of F (·) is

equivalent to finding the maximum of −F (·).

Global optimization algorithms fall into the categories described in the following

sections:

1.4 Global Optimization Examples

1.4.1 Groundwater Remediation

One area where global optimization algorithms may be applied is in the case of

groundwater remediation, where an area of groundwater has been contaminated. To

clean up the site, several points are chosen where the water is pumped out and

replaced with clean water. The optimization problem is to select the locations and

pumping rates for each well in order to minimize the time required to clean up the

site.

4

Figure 1.1 A multimodal objective function (from Maskey et al.[18]).

Figure 1.1 shows the performance (cleanup time) as a function of two param-

eters (pumping rates at different wells) for an aquifer cleanup problem described in

[18]. In this case the domain D is the 1000x1000 meter area of the remediation

site. The objective function is the two variable function (cleanup time) of the two

parameters, pumping rates in wells A and B.

1.4.2 Linear Registration and Motion Correction of Brain Images

Jenkinson in [16] describes an application for global optimization in the field of

functional brain image analysis. Here GO algorithms are applied to correct for

movement of the target organ (brain) under diagnostic or testing conditions. The re-

quirement for performing this work requires optimizing one of several intensity-based

5

cost functions. The majority of work has been concentrated on the computational

efficiency of the chosen algorithm and less on the quality of the solution. Local

optimization algorithms are used.

By using global optimization algorithms such as those described in this paper,

the problem of optimization algorithms getting "stuck" at a local extremal value would

be solved. The authors of [16] propose the use of multiple-stage algorithms where

initially the algorithm performs a coarse measurement on the objective function.

Subsequently, more refined algorithms are used to explore promising areas of the

domain. The algorithms in the paper combine both global and local information to

search for extremal values. However, this multiple stage approach shows promise to

further increase the effectiveness of the type of algorithms presented in this thesis.

1.5 Applied Optimization Techniques

Optimization techniques include semidefinite programming, combinatorial optimiza-

tion, quadratic programming, nonlinear programming, deterministic global optimiza-

tion, integer programming, algorithms based on radial basis functions, simulated

annealing and stochastic programming algorithms. This thesis focuses on adaptive

algorithms and presents a number of these algorithms, analyzes their efficiency and

complexity, and presents implementations for them.

1.6 Adaptive, Stochastic Global Optimization Algorithms

A stochastic global optimization algorithm is an algorithm that uses probabilistic

techniques to determine where within the domain D is the best place to test the

objective function for the next extremal value. An adaptive global optimization

algorithm uses past information as input to the algorithm to determine where within

the domain D to evaluate the objective function.

6

An example of an adaptive algorithm is the P-Algorithm for univariate functions

presented in Chapter 4. The algorithm splits the univariate (one dimensional) domain

into segments, and assigns a value to each segment which indicates how likely the

extremal value of the function lies within that segment. The value combines local

considerations (i.e., how likely the extremal value lies in this segment), along with

global considerations (how well has this segment been investigated for the extremal

value). Stopping criteria are used to determine when the algorithm should terminate.

This can be after a fixed number of iterations or it can be after the algorithm has

attained some acceptable error threshold.

As in the case of the well-known deterministic quicksort sorting algorithm, the

worst case performance is O(n2). This occurs if the worst pivot is selected during

each iteration. In the average case, whereby each pivot value is randomly selected,

the expected performance of deterministic quicksort is O(n log(n)). For adaptive

stochastic algorithms, the average case is often of interest and requires analysis using

random variables and their distributions.

Bayesian algorithms are of the type described above. Bayesian algorithms

compare favorably with other Global Optimization algorithms such as those described

above [8]. However, algorithms of this class do have shortcomings. For example,

criteria used to select points for evaluation or the memory required to store past

information can cause the complexity of the algorithm in terms of execution time or

storage to become intractable.

The algorithms presented in this paper rely on the Bayesian approach and

are adaptive in that the results of previous computations are retained and used

in subsequent decisions about where to select the next evaluation point and use

information about the objective function, such as derivatives, to overcome Bayesian

limitations. Bounds on convergence rates are established and algorithms are devel-

oped to approach or achieve those bounds.

7

1.7 Test Objective Functions

In order to evaluate the implemented algorithms it is necessary to use test functions.

There are libraries of functions in use today. Two such functions that one would

expect to encounter are the Rastrigin and Csendes functions. These functions are

described in the following sections.

8

1.7.1 Rastrigin Function

The formula for the d-dimensional Rastrigin function is:

F (~x) = A · d+
d∑
i=1

x2
i − A · cos(ω · xi) (1.1)

A = 10 ; ω = 2 · π ; xi ∈ [−5.12, 5.12]

A graph of the two-dimensional Rastrigin function is shown in figure 1.2. It

has a minimum value of 0 at x = (0, 0). Because of the symmetry and minimum at

(0,0), it is sometimes necessary to offset the function in order to avoid inadvertently

testing at the minimum or to overcome singularities in algorithms that employ matrix

computations (e.g., inversion of matrices).

Figure 1.2 Two-dimensional Rastrigin function.

9

1.7.2 Csendes Function

The formula for the d-dimensional Csendes function is:

F (~x) =
d∑
i=1

x6
i (2 + sin 1

xi
) (1.2)

xi ∈ [−1, 1]\0

A graph of the two-dimensional Csendes function is shown on Figure 1.3. The

Csendes function has a countably infinite number of local minima [21]. An accurate

algorithm should find a minimum as near to (0,0) as possible. No minimum for this

function exists but approaches zero as the xi approach zero. Algorithms described in

this paper are particularly effective minimizing the Csendes function.

Figure 1.3 Two-dimensional Csendes function.

10

1.8 Organization of This Thesis

A Global Optimization Algorithm based on the partitioning the domain into rectan-

gles is described in Chapter 2. A Global Optimization Algorithm based on decom-

posing the domain into triangles is presented in Chapter 3. The P-Algorithm, an

algorithm used to approximate the minimum of a multimodal algorithm, is presented

in Chapter 4. Partitioning the domain D recursively using a rectangular grid is

discussed in Chapter 5, and it concludes with a description and analysis of the

Hypercube algorithm. Algorithms based on partitioning the domain D using the

Voronoi diagram are presented in Chapter 6. Algorithms based on partitioning the

domain D using triangulation are described in Chapter 7.

The Java implementation and Unified Modeling Language (UML) of the algo-

rithms presented in this paper is described in Chapter 8. The framework for the

development of Global Optimization algorithms using MATLAB and matlabcontrol

to access the MATLAB functions is described in Chapter 9.

CHAPTER 2

ON A GLOBAL OPTIMIZATION ALGORITHM FOR

MULTIVARIATE SMOOTH FUNCTIONS

2.1 Problem Statement

The problem of approximating the global minimum f ∗ of a twice-continuously dif-

ferentiable function f defined on the d-dimensional unit cube [0, 1]d is considered.

The algorithm presented here is similar to a one-dimensional algorithm presented in

[4] and a two-dimensional algorithm based on Delaunay triangulations presented in

[7]. Those papers presented algorithms with the property that for large enough n

(depending on f), the error after n function evaluations is at most

c1 exp(−c2
√
n)

for c1, c2 depending on dimension (1 or 2). While the algorithm presented in [7] was

based on a Delaunay triangulation of the domain, the algorithm considered in this

paper is based on a rectangular decomposition. Rectangular decompositions have

been employed in previous studies of global optimization, for example in [15, 17].

The algorithm in [7] works for arbitrary domains, but the error bound, which

required a certain quality triangulation, could only be proved for bivariate functions.

Although from a practical point of view, we expect that the algorithm presented in

this paper would perform worse than the algorithm of [7], an asymptotic error bound

for arbitrary dimension is proven. The main result is that eventually the error is at

most

c1(f, d) exp
(
−c2(f, d)

√
n
)
,

where c2(f, d) decreases exponentially in dimension d.

11

12

In Section 2.5 it is explained why nonadaptive algorithms have error bounds of

order n−2/d after a large number n of function evaluations.

2.2 The Algorithm

The algorithm operates by decomposing [0, 1]d into (hyper)-rectangles as follows.

Given a current decomposition, choose one of the rectangles (according to the maximal

value of a criterion to be defined below) and bisect it along the longest axis by

evaluating the function at up to 2d−1 midpoints of the longest rectangle edges.

Suppose that an algorithm has evaluated f at n points. Let s(n) denote the

number of rectangles in our partition. Each rectangle subdivision (iteration) requires

up to 2d−1 function evaluations. Therefore, s(n) ≥ n/2d−1.

Let vn denote the smallest volume of a rectangle after n iterations. Define

q ≡ 3 · 22/3e−1

2 log(2) ≈ 1.27

and

g(x) = q · d (x log(1/x))2/d

for 0 < x ≤ 1/2 and g(1) = q · d. Note that g is increasing and g(x) ↓ 0 as x ↓ 0. Let

Mn = min1≤i≤n f(xi) and denote the error by ∆n = Mn − f(x∗).

Let Ln denote the multilinear function that has the same values as f at the

vertices of the smallest enclosing rectangle. Note that Mn is equal to the global

minimum of Ln. For 1 ≤ i ≤ n set

ρn
i
≡ |Ri|

(maxt∈Ri Ln(t)−Mn + g(vn))d/2
, (2.1)

ρni ≡
|Ri|

(mint∈Ri Ln(t)−Mn + g(vn))d/2
, (2.2)

13

and

ρni ≡
|Ri|

(Ln(ci)−Mn + g(vn))d/2
, (2.3)

where ci is the center of rectangle i. That is, if Ri = ∏d
k=1[ak, bk], then

ci =
(
a1 + b1

2 ,
a2 + b2

2 , · · · , ad + bd
2

)
.

Note that the max and min in the denominators of (2.1) and (2.2) are equal to the

maximum and minimum of f at the vertices of the rectangle, respectively.

Note that if the smallest rectangle is about to be subdivided, then

ρni ≤ ρni ≤
|Ri|

g(vn)d/2 ≤
vn

(q · d)d/2vn log(1/vn) = 1
(q · d)d/2 log(n) ,

since vn ≤ 1/n.

A more formal description of the algorithm follows. In the description, n is the

total number of function evaluations to make, i is the current number of rectangles,

and j is the iteration number (number of function evaluations that have been made).

More formally, the algorithm making at least n function evaluations is:

1. Start with the rectangle [0, 1]d and with the function values at all 2d vertices.

Let i denote the number of rectangles and j the number of function evaluations.

(Initially i = 1 and j = 2d.)

2. For each rectangle Rk in the current collection, compute ρnk , keeping track of

the rectangle β that has the largest value of ρnk (breaking ties arbitrarily).

3. For the best rectangle Rβ, evaluate f(xk), k = 1, 2, . . . , 2d, where xk is the

midpoint of the kth edge along the longest dimension (breaking ties arbitrarily).

Update the number of rectangles i ← i + 1 and increment j by the number of

new function evaluations.

4. Compute vi, the smallest rectangle volume. If vi < vi−1, then update g(vi).

14

5. If j < n, return to step 2.

Let F̂ ⊂ C2
(
[0, 1]d

)
denote the set of functions that have a unique global

minimizer x∗ ∈]0, 1[d. Denote the matrix of second-order partial derivatives at the

minimizer by D2f(x∗), assumed positive definite.

Our main result on the convergence rate of the error for this algorithm follows.

Theorem 1 Suppose that f ∈ F̂ . There is a number n0(f) such that for n ≥ n0(f),

∆n ≤
1
8
∥∥∥D2f

∥∥∥
∞,[0,1]d

(q · d) exp
(
−
√
nβ(f, d)

)
,

where

β(f, d) =
 2Γ(1 + d/2)

√
det(D2f(x∗))

(2π)d/2(d(d+ 1))2d−1(2(q · d))d/2

1/2

.

Note that β(f, d) approaches 0 rapidly as d increases.

2.3 Interpolation Error Bounds

The results about interpolation from [20] are used. For a compact set K and f ∈

C2(K), define the seminorm

∥∥∥D2f
∥∥∥
∞,K
≡ sup

x∈K
sup

u1,u2∈Rd
‖ui‖=1

|Du1Du2f(x)| ,

where Dyf is the derivative of f in the direction y. This is a measure of the maximum

size of the second derivative of f over K.

Lemma 1 Consider a rectangle R = {ai ≤ x ≤ bi}di=1. The error bound for

multilinear interpolation is

max
x∈R
|f(x)− L(x)| ≤ 1

8

d∑
i=1

(bi − ai)2
∥∥∥D2f

∥∥∥
∞,R

= 1
8

∑d
i=1(bi − ai)2

|R|2/d
∥∥∥D2f

∥∥∥
∞,R
|R|2/d .

15

Proof 1 See [20].

The quantity ∑d
i=1(bi − ai)2

|R|2/d
=

∑d
i=1(bi − ai)2

(∏d
i=1(bi − ai))2/d

is a measure of how “bad" the rectangle is; that is, how far it is from cubic. Since by

construction the widths are within a factor of 2 of each other, there is some number

1 ≤ k ≤ d and a positive number w such that k of the intervals have width w and

d− k have width 2w, and∑d
i=1(bi − ai)2

(∏d
i=1(bi − ai))2/d = kw2 + (d− k)(2w)2

(2d−kwd)2/d = (4d− 3k)
22(d−k)/d =

(
d− 3

4k
)

22k/d.

For k = d the value d is obtained and for k = 1 the value (d − 3/4)22/d is obtained.

Maximizing

d(1− 3x/4)22x

over x ∈]0, 1[gives a maximum value of

3 · 22/3e−1

2 log(2) d ≡ q · d ≈ 1.27d.

So the quality metric ranges from d up to about 1.27d, and the bound in Lemma 1 is

replaced with

max
x∈R
|f(x)− L(x)| ≤ 1

8q · d
∥∥∥D2f

∥∥∥
∞,R
|R|2/d . (2.4)

2.4 Proof of Theorem 1

For ε > 0, define

If (ε) ≡
∫

[0,1]d

dx

(f(x)− f ∗ + ε)d/2
.

The following lemma generalizes Lemma 3.2 of [7] to arbitrary dimension.

16

Lemma 2

lim
ε↓0

If (ε)
log(1/ε) = d(2π)d/2

2Γ(1 + d/2) ·
(
det(D2f(x∗))

)−1/2
≡ α(f, d).

Proof 2 Denote the matrix of second-order partial derivatives by D2f(x∗), assumed

positive definite (and symmetric). Denote the eigenvalues of D2(x∗) by

λ1 ≥ λ2 ≥ · · · ≥ λd > 0.

Then by Taylor’s theorem (x a column vector),

f(x∗ + x)− f(x∗) = 1
2x

TD2f(x∗)x+ o(‖x‖2).

Since D2f(x∗) is symmetric positive definite,

D2f(x∗) = V ΛV T

for an orthogonal matrix V and diagonal matrix Λ = diag(λ1, λ2, . . . , λd). Then

D2f(x∗) = V Λ1/2Λ1/2V T

and

f(x∗ + x)− f ∗ = 1
2x

TV Λ1/2Λ1/2V Tx+ o(‖x‖2) = 1
2 ‖Tx‖

2 + o(‖x‖2),

where Tx ≡ Λ1/2V Tx. Using the fact that x∗ is the unique minimizer, there exists a

number c ∈]0, 1[such that for any η > 0,

∫
[0,1]d

dx

(f(x)− f(x∗) + ε)d/2
≤
∫
Bdc (0)

dx(
(1/2− η) ‖Tx‖2 + ε

)d/2 +O(1) (2.5)

17

as ε ↓ 0, and

∫
[0,1]d

dx

(f(x)− f(x∗) + ε)d/2
≥
∫
Bdc (0)

dx(
(1

2 + η) ‖Tx‖2 + ε
)d/2 +O(1), (2.6)

where Bd
c (0) denotes the ball of radius c, centered at 0, in Rd. Using the orthogonality

of V ,

∫
Bdc (0)

dx(
b ‖Tx‖2 + ε

)d/2 =
∫
V (Bdc (0))

dx(
b ‖Λ1/2x‖2 + ε

)d/2
=
∫
Bdc (0)

dx(
b ‖Λ1/2x‖2 + ε

)d/2 yi ← xi (λib/ε)1/2

=
∫
E(c,b,ε)

dy(
‖y‖2 + 1

)d/2 1

bd/2
(∏d

i=1 λi
)1/2 ,

where E(c, b, ε) is the image of the ball of radius c under the map xi 7→ xi(λib/ε)1/2.

Therefore,

Bd

c
√
bλd/ε

(0) ⊂ E(c, b, ε) ⊂ Bd

c
√
bλ1/ε

(0).

For arbitrary c > 0, ∫
Bdc (0)

dx(
‖x‖2 + 1

)d/2 = dCdEd(c),

where

Cd = πd/2

Γ(1 + d/2)

and

Ed(A) ≡
∫ A

r=0

dr

(r2 + 1)d/2 =


1
2 log(1 + A2)−∑(d−2)/2

k=1
A2k

2k(A2+1)k , d even,

log
(
A+
√

1 + A2
)
−∑(d−1)/2

k=1
A2k−1

(2k−1)(A2+1)(2k−1)/2 , d odd.

For all d ≥ 1,

Ed(A)/ log(A)→ 1 (2.7)

18

as A ↑ ∞.

The following bounds exist,

dCdEd

(
c
√
bλd/ε

)
≤
∫
Bdc (0)

dx(
b ‖Tx‖2 + ε

)d/2 ≤ dCdEd

(
c
√
bλ1/ε

)
,

and

O(1) + (1/2 + η))−d/2
(

d∏
i=1

λi

)−1/2

dCdEd

(
c
√

(1/2 + η)λd/ε
)

≤ If (ε) ≤ O(1) + (1/2− η)−d/2
(

d∏
i=1

λi

)−1/2

dCdEd

(
c
√

(1/2− η)λ1/ε
)
.

Since η > 0 is arbitrary, using (2.7) completes the proof.

For the rest of this section a fixed function f ∈ F̂ is considered. Suppose that

n ≥ n1(f), where

n1(f) = inf
{
n : n ≥ exp

(∥∥∥D2f
∥∥∥d/2
∞,[0,1]d

)}
. (2.8)

(Later n is restricted further.)

The following lemma gives an approximation needed to prove the error bound.

Lemma 3 As n→∞, ∑s(n)
i=1 ρ

n
i

log(1/g(vn)) → 1.

Proof 3 Observe that

(f(ci)− f ∗ + g(vn))d/2 =

(Ln(ci)−Mn + g(vn))d/2
1 + f(ci)− Ln(ci)

|Ri|2/d
· |Ri|2/d

Ln(ci)−Mn + g(vn) + Mn − f ∗

Ln(ci)−Mn + g(vn)

d/2 .
(2.9)

19

Using (2.4) the term following term is bounded

|f(ci)− Ln(ci)|
|Ri|2/d

· |Ri|2/d

Ln(ci)−Mn + g(vn) ≤
1
8qd

∥∥∥D2f
∥∥∥
∞,Ri

(ρni)2/d

≤ 1
8qd

∥∥∥D2f
∥∥∥
∞,Ri

(
1

(q · d)d/2 log(n)

)2/d

= 1
8
∥∥∥D2f

∥∥∥
∞,Ri

(
1

log(n)

)2/d

≤ 1/8,

since, by definition of n1 at (2.8), n ≥ n1(f) implies that

log(n) ≥
∥∥∥D2f

∥∥∥
∞,[0,1]d

≥
∥∥∥D2f

∥∥∥
∞,Ri

.

Let v∗n denote the volume of the rectangle containing x∗. Since n ≥ n1, v∗n ≤ 2vn.

Then

Mn − f ∗ ≤ Ln(x∗)− f(x∗)

≤ 1
8q · d

∥∥∥D2f
∥∥∥
∞,Ri

(v∗n)2/d

≤ 22/d

8 q · d
∥∥∥D2f

∥∥∥
∞,Ri

(vn)2/d

≤ 1
2
∥∥∥D2f

∥∥∥
∞,Ri

(q · d)v2/d
n (2.10)

= 1
2
∥∥∥D2f

∥∥∥
∞,Ri

g(vn)
log(1/vn)2/d

≤ 1
2
∥∥∥D2f

∥∥∥
∞,Ri

g(vn)
log(n)2/d

≤ g(vn)/2.

Substituting these bounds in (2.9) gives

(f(ci)− f ∗ + g(vn))d/2 ≤ (Ln(ci)−Mn + g(vn))d/2
(

1 + 1
2 + 1

8

)d/2
< (Ln(ci)−Mn + g(vn))d/2 (2)d/2 ,

20

and

(f(ci)− f ∗ + g(vn))d/2 ≥ (Ln(ci)−Mn + g(vn))d/2
(

1− 1
2 + 0

)d/2
= (Ln(ci)−Mn + g(vn))d/2 (2)−d/2 .

Therefore, for n ≥ n1(f),

∫
[0,1]d

(f(x)− f ∗ + g(vn))−d/2 dx ≤ 2d/2
s(n)∑
i=1

ρni

and ∫
[0,1]d

(f(x)− f ∗ + g(vn))−d/2 dx ≥ 2−d/2
s(n)∑
i=1

ρni .

This implies that

1
2d/2s(n)If (g(vn)) ≤ 1

s(n)

s(n)∑
i=1

ρni ≤
2d/2
s(n)If (g(vn)). (2.11)

The following bounds exist

1
s(n)

s(n)∑
i=1

ρni ≤ ρn ≤ 1
(q · d)d/2 log(1/vn) (2.12)

and
1

s(n)

s(n)∑
i=1

ρni ≥
1
3ρ

n ≥ 1
3(q · d)d/2 log(1/vn) , (2.13)

because the algorithm divides a rectangle into 2 subrectangles at each step, causing the

ρni ’s to concentrate between ρn/2 and ρn. Therefore,

1
3 · 2d/2s(n)If (g(vn)) ≤ 1

3s(n)

s(n)∑
i=1

ρni ≤
1

3(q · d)d/2 log(1/vn)

≤ 1
s(n)

s(n)∑
i=1

ρni ≤
2d/2
s(n)If (g(vn)),

21

using the first inequality in (2.11), (2.12), (2.13), and the second inequality in (2.11),

respectively. There is a number n2(f) such that, by Lemma 2, n ≥ n2(f) implies that

1
2 log(1/g(vn))α(d) ≤ If (g(vn)) ≤ 2 log(1/g(vn))α(d).

Replace If (g(vn)) by log(1/g(vn)) (times appropriate factor) to get

α(d)
2(d+ 1)2d/2s(n) log(1/g(vn)) ≤ 1

(d+ 1)(q · d)d/2 log(1/vn) ≤ 22d/2α(d)
s(n) log(1/g(vn)).

Now replace log(1/g(vn)) by

log(1/(q · d)) + 2
d

(log(1/vn)− log log(1/vn))

to obtain the bounds

α(d)
2(d+ 1)2d/2s(n)

(
log(1/(q · d)) + 2

d
(log(1/vn)− log log(1/vn))

)

≤ 1
(d+ 1)(q · d)d/2 log(1/vn) ≤ 2α(d) 2d/2

s(n)

(
log(1/(q · d)) + 2

d
(log(1/vn)− log log(1/vn))

)
.

Set xn = log(1/vn). Then

1
2(d+ 1)2d/2s(n)

(
log(1/(q · d)) + 2

d
[xn − log(xn)]

)
≤ 1
α(d)(d+ 1)(q · d)d/2xn

≤ 2 2d/2
s(n)

(
log(1/(q · d)) + 2

d
[xn − log(xn)]

)
.

This implies that eventually, say for n ≥ n3(f),

xn ≥
(

ds(n)
α(d)22+d/2(d+ 1)(q · d)d/2

)1/2

,

which implies that

vn ≤ exp
−(ds(n)

α(d)22+d/2(d+ 1)(q · d)d/2

)1/2
 .

22

Using our previous estimate at 2.10,

Mn − f ∗ ≤
1
8
∥∥∥D2f

∥∥∥
∞,[0,1]d

(q · d)v2/d
n

≤ 1
8
∥∥∥D2f

∥∥∥
∞,Ri

(q · d) exp
−(ds(n)

α(d)22+d/2(d+ 1)(q · d))d/2

)1/2 2
d

 .
Now s(n) ≥ n/2d−1, and so for n ≥ n0(f) = max{n1(f), n2(f), n3(f)},

∆n ≤
1
8
∥∥∥D2f

∥∥∥
∞,[0,1]d

(q · d) exp
−(dn

α(d)22+d/2(d+ 1)2d−1(q · d)d/2

)1/2 2
d


= 1

8
∥∥∥D2f

∥∥∥
∞,Ri

(q · d) exp
(
−
√
nβ(f, d)

)

where

β(f, d) =
 2Γ(1 + d/2)

√
det(D2f(x∗))

(2π)d/2(d(d+ 1))2d−1(2(q · d))d/2

1/2

.

This completes the proof of Theorem 1.

2.5 Nonadaptive Algorithms

In this section we continue to consider the problem of approximating the global

minimum f ∗ of a twice-continuously differentiable function f defined on the unit

cube [0, 1]d using only function values. Let us consider the convergence rate that can

be obtained with a nonadaptive method; that is, a method that chooses points to

evaluate the function independent of the function values.

Denote the eigenvalues of D2(x∗) by

λ1 ≥ λ2 ≥ · · · ≥ λd > 0.

Consider a sequence of points {x1, x2, . . .} that is dense in [0, 1]d. This is a fixed

sequence independent of f . Define the dispersion of the sequence by

dn = sup
x∈[0,1]d

min
1≤i≤n

‖x− xi‖ , n ≥ 1.

23

There exists a sequence with

dn ≤
√
d

2
log 4n

−1/d

for all n ≥ n1; see [19], Theorem 6.9. For f ∈ F̂ , by Taylor’s theorem there is a number

n2(f) such that for n > n2, the error is at most λ1d
2
n. So for n > max{n1, n2},

∆n ≤ λ1d

(
2

log 4

)2

n−2/d.

On the other hand, dn = Ω
(
n−1/d

)
([19], p. 150). In particular, for any

sequence,

dn ≥
(

Γ(1 + d/2)
πd/2

)1/d

n−1/d.

Therefore, for any nonadaptive algorithm, there exists a function f for which the

following lower bound on the error holds:

∆n ≥ λd

(
Γ(1 + d/2)

πd/2

)2/d

n−2/d.

This means that for any nonadaptive method, for small enough ε > 0, about
√

1/εd

function values are needed to obtain an error of at most ε. We therefore see that for

nonadaptive methods, global optimization suffers from a “curse of dimension".

CHAPTER 3

A TWO VARIATE GLOBAL OPTIMIZATION ALGORITHM

3.1 Problem Statement

In this chapter an algorithm for approximating the global minimum of a continuous

two variable function f defined on the unit square, [0, 1]2 is proposed. The algorithm

is a variation on an algorithm described in [7], that decomposes the domain using

Delaunay triangulation. An asymptotic upper bound on its approximation error for

the case when the objective function is twice continuously differentiable with a unique

point of global minimum in the interior of the unit square remains to be established.

Let f be a twice continuously differentiable function defined on [0, 1]2. The problem

is to approximate the global minimum M ≡ min0≤t≤1 f(t) of f using a number of

adaptively chosen function evaluations. While the function is assumed differentiable,

the algorithm uses only function values.

At each step of the algorithm the domain will be partitioned into triangles. Initially

the unit square is partitioned into four congruent triangles. On each iteration a

triangle is selected and is replaced by two triangles created by connecting the midpoint

of the longest side to the opposite vertex. All triangles will be similar right triangles,

two angles equal to 45 degrees. The area of each triangle will, of course, be equal to
1
2 the size of the original triangle.

After n iterations there will be n+4 triangles and therefore 2n+4 function evaluations.

With each iteration the objective function will be evaluated at the center of each

triangle and will therefore be used as input to the algorithm at the next iteration.

24

25

The next section describes the details of the proposed algorithm and discusses

the expected convergence properties.

3.2 The Algorithm

Let T1, T2, ..., T2n+4 be triangles partitioning the unit square. For each Ti define

ρni to be a measure, based on a statistical model (such as the one used by the

P-Algorithm) of the likelihood that the minimum of the objective function will lie

within triangle Ti along with precedence given to larger (unsearched) areas. This is

referred to as exploration vs. exploitation. The algorithm should be written so that

the implementation of the function ρni can be easily changed.

The algorithm works as follows. Suppose f has been evaluated at 2n + 4 points

(the domain will have been partitioned into s(n) = n + 4 triangles). Define ci to

be the barycenter of the triangle being evaluated, and Mn to be the smallest value

observed at any point in the execution of the algorithm. Divide the triangle with the

largest ρni value by connecting the bisection point of the longest side to the opposite

vertex.

Evaluate f(ci) for the two new triangles. If a new Mn value has been discovered

or if a new smallest triangle has been formed, recompute ρni values for all triangles. A

separate thread or task could be started to do this as the algorithm continues. As the

algorithm progresses and n gets large, Mn would not change much. The triggering of

the recomputation of all ρni values could be made dependent on the value f(ci)−Mn

when f(ci) is found to be a new minimum value. A similar consideration may be

made for finding a smallest triangle.

26

Algorithm:

Set M = +∞, n = 1;

Step 1: Compute the vertices for each of 4 congruent triangles for the unit square

Step 2: Compute ρ for each triangle

Step 3: Set M = min(M,f(ci))

Step 4: n← n+ 1

Step 5: Place the triangle on a priority queue keyed by ρ

Step 6: Remove the triangle with maximum ρ from the priority queue

Step 7: Divide triangle into (1
2) sized triangles

Step 8: Compute ρ and place each triangle on the priority queue, recomputing all ρ

values if required

Step 9: Set M = min(M,f(ci))

Step 10: if stopping criteria not met go to step 4

Step 11: return M as minimum

If ρni is defined as:

ρni
∆= |Ti|

(f(ci)−Mn + vn(log(1
vn

)))

where |Ti| is the area of the current triangle and f(ci) denotes the value of the

objective function evaluated at the center point of the triangle being evaluated, a

convergence rate similar to [7] is anticipated.

Note as the algorithm progresses, every time a new smallest triangle with area vn

or a new minimum value, Mn is found this, to some extent, invalidates the previously

27

computed ρ values on the priority queue. As the algorithm converges, even if the ρ

values are not recomputed, a strategy needs to be developed that will either eliminate

the need to recompute these values (by incorporating some additional function of n,

Mn or vn into the ρ computation) or by recomputing all ρ values periodically (i.e.,

not every time they change). Most likely the best approach shall be to implement a

ρ-calculation function as a separate background thread or task that would recalculate

ρ whenever a new Mn or smallest triangle is encountered by the algorithm.

3.3 Convergence Analysis

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

Figure 3.1 Bounds for the sizes of the smallest triangle as a function of n with
experimental results

Convergence analysis will proceed along the lines of [7]. vn must converge faster

than the upper bound, vn = 1
n+4 as this bound implies that all triangles of a given

size are split before continuing. This implies a search which is no better than a grid

search. Furthermore, vn must converge slower than the lower bound vn = 1
2n , as this

28

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10-300

10-250

10-200

10-150

10-100

10-50

100

1050

Figure 3.2 Bounds for the sizes of the smallest triangle as a function of n with
experimental results (log scale)

implies the search begins with one of the original triangles and splits that triangle

into smaller triangles on each iteration thereby not covering some of the domain as

n → ∞. These limits are shown graphically in Figure 3.2. Minimum triangle size

for the 10x10 square surrounding the origin as the algorithm searches the Rastrigin

function is also shown in the figure. Better bounds than those shown in Figure 3.2

need to be derived for vn. It is conjectured that vn ∼ exp(−c
√
n).

A similar algorithm using Delaunay triangulation is described in [7]. This algorithm

should converge similarly to [7], but subdividing the triangles involves much less

computation than performing Delauney triangulation.

At any step n, the number of triangles is given by:

s(n) = n+ 4.

29

Since all triangles have angle sizes 90◦, 45◦, and 45◦, using the quality metric Q(T)

defined in [7], newline

Q(T) = (R(T)2)
|T |

where R(T) is the radius of the circumscribing circle for the triangle. Note the

triangle meets the special case of the Delaunay criteria and that all triangles of the

same size meet that same criteria. In other words, if the domain were partitioned

into same size triangles, the Delaunay criteria will have been met and each triangle

will share that circumscribing circle with one other triangle, forming a square that

fits into the circle.

Note that:

Q(T) = (
√

2a)2

1
2a

2 = 2a2

1
2a

2 = 4

for all triangles formed by this algorithm’s partitioning scheme.

Define

g(x) = 4x log(1/x)

for 0 < x ≤ 1
2 and g(x) = 2 for x ≥ 1

2 . Note g is increasing and g(x) ↓ 0 as x ↓ 0.

Let Mn = min1≤i≤n f(xi) and denote the error by ∆n = Mn − f(x∗) for n ≥ 1 and

1 ≤ i ≤ n where x∗ is the point at which the global minimum occurs.

ρ is a function based on the statistical model:

∫
Ti

ds

Ln(s)−Mn + g(vn) 1 ≤ i ≤ s(n)

30

where Ln is the mapping of the triangle Ti onto the tangent plane of the objective

function (i.e., the function being minimized) at the barycenter of the triangle, Ti.

For the algorithm analysis we adapt the above function:

ρni
∆=

√
|Ti|

f(ci)−Mn + g(vn) 1 ≤ i ≤ s(n), g(vn) = vn log(1
vn

)

The center point of the triangle is chosen instead of averaging the function values

evaluated at the vertices of T because, as a general philosophy of global optimization

algorithms, evaluation of the objective function is considered to be expensive and

should be done only as many times as necessary. For this algorithm, the values

evaluated at the vertices are not used to determine the partitioning of the domain.

By exploiting information about the second derivative of the objective function, limits

for the minimum and maximum values should be obtainable for all x in any triangle,

Ti shall be derived.

31

3.4 Extending the Algorithm to More Than Two Dimensions

A very interesting aspect of this algorithm is the relative ease with which it can

be extended into multiple dimensions, along with the potential for not dramatically

affecting the convergence rate. The algorithm remains as stated, except a new ρ

function is used to have volumes transformed into ρ. The algorithm is front loaded

in that the partitioning and initial ρ values are done at initialization time. When

hyperpyramids are split by bisecting the longest side and connecting the bisection

point to the other vertices, the volume is halved and eventually the resulting two

hyperpyramids are similar (and therefore have the same Q(T) value). The most

expensive operation will be to find the longest side. This time could be shortened

by paying heed as to how the vertices are stored in the record representing the

hyperpyramid.

Extending the partitioning scheme proceeds as follows:

Begin with the coordinates of the two-dimensional partitioning:

Table 3.1 Coordinates for Two-Dimensional Partitioning

Triangle Vertices

1 0 0 1 0 .5 .5

2 0 1 1 1 .5 .5

3 1 0 0 0 .5 .5

4 1 1 0 1 .5 .5

32

(0) (1)

(1.0) (0.0)

(0.5.0.5)

(0.1) (1,1)

Area of all triangles = 1/4

Figure 3.3 Two-dimensional partitioning scheme with first split

There are four triangles in the two-Dimensional case. The three-Dimensional

case has six faces of four. In Figure 3.4 the first split yielding similar pyramids is

shown. After this split pyramids are similar. Note in the two-Dimensional case

triangles are always similar. Experimentation has shown that if initial pyramids’ rho

value is set to the area (in this case, 1
24) all of the initial pyramids will be split once.

This ensures that no pyramids are unsearched due to ρ increasing too quickly.

33

2

3

4

3

4

3

2

2

2

2

2

1

2

1

2

1

a

b

Figure 3.4 Three-dimensional partitioning scheme depicting five splits – fifth split
shown in red

34

To construct the coordinates for the three-Dimensional case six copies of Table

3.1 are required, augmented as shown:

Table 3.2 Coordinates for Three-Dimensional Partitioning – Copy 1

Pyramid Vertices

1 0 0 0 1 0 0 .5 .5 0 .5 .5 .5

2 0 1 0 1 1 0 .5 .5 0 .5 .5 .5

3 1 0 0 0 0 0 .5 .5 0 .5 .5 .5

4 1 1 0 0 1 0 .5 .5 0 .5 .5 .5

Table 3.3 Coordinates for Three-Dimensional Partitioning – Copy 2

Pyramid Vertices

5 0 0 1 1 0 1 .5 .5 1 .5 .5 .5

6 0 1 1 1 1 1 .5 .5 1 .5 .5 .5

7 1 0 1 0 0 1 .5 .5 1 .5 .5 .5

8 1 1 1 0 1 1 .5 .5 1 .5 .5 .5

35

Table 3.4 Coordinates for Three-Dimensional Partitioning – Copy 3

Pyramid Vertices

9 0 0 0 1 0 0 .5 0 .5 .5 .5 .5

10 0 0 1 1 0 1 .5 0 .5 .5 .5 .5

11 1 0 0 0 0 0 .5 0 .5 .5 .5 .5

12 1 0 1 0 0 1 .5 0 .5 .5 .5 .5

Table 3.5 Coordinates for Three-Dimensional Partitioning – Copy 4

Pyramid Vertices

13 0 1 0 1 1 0 .5 1 .5 .5 .5 .5

14 0 1 1 1 1 1 .5 1 .5 .5 .5 .5

15 1 1 0 0 1 0 .5 1 .5 .5 .5 .5

16 1 1 1 0 1 1 .5 1 .5 .5 .5 .5

Extension into four dimensions follows as in the example above. Begin with eight

copies of the above 24 element table and augment the table with columns of zeros

and ones as above. The area of the initial pyramid is = 1/(number of pyramids) and

is halved each time.

Modify ρ to be:

ρ̂i
n ∆= |Pi|

f(ci)−Mn + g(vn)

36

Table 3.6 Coordinates for Three-Dimensional Partitioning – Copy 5

Pyramid Vertices

17 0 0 0 0 1 0 0 .5 .5 .5 .5 .5

18 0 0 1 0 1 1 0 .5 .5 .5 .5 .5

19 0 1 0 0 0 0 0 .5 .5 .5 .5 .5

20 0 1 1 0 0 1 0 .5 .5 .5 .5 .5

Table 3.7 Coordinates for Three-Dimensional Partitioning – Copy 6

Pyramid Vertices

21 1 0 0 1 1 0 1 .5 .5 .5 .5 .5

22 1 0 1 1 1 1 1 .5 .5 .5 .5 .5

23 1 1 0 1 0 0 1 .5 .5 .5 .5 .5

24 1 1 1 1 0 1 1 .5 .5 .5 .5 .5

where |Pi| is the volume of the ith pyramid and vn is the value of the smallest pyramid

encountered to this point.

37

3.5 Future Work

Extending the convergence analysis for the two variate case into the three variate

case and beyond shows promise. This algorithm could be used with a deployment

algorithm to examine a portion of a sub-domain where the total domain is a square,

cube etc. Call the class hypercubes. Hypercubes of varying sizes (accompanied by

this algorithm) could be used in conjunction with a deployment algorithm to examine

more closely areas where the minimum has a greater chance of existing.

Note it is not necessary to store the vertices of the triangles or pyramids for

the algorithm presented. When a geometric figure is divided, the next two points

can be determined as a function of how many times a division has occurred, and the

direction the next points will be located.

By computing a minimizer based on the Taylor expansion and finding the point

within the triangle or pyramid (or within the circle or sphere contained within) which

minimizes this function, the convergence rate of the algorithm should be increased.

The problem is how to modify the further decomposition of the modified grid from

that point forward.

This presents a scheme for designing a front-loaded algorithm adaptable to

a global minimization problem of any number of variables, limited by the ability

to represent the initial decomposition of the domain into hyperpyramids. Recall the

growth rate of the domain is a factorially growing function of the number of variables.

CHAPTER 4

P-ALGORITHM

Analysis of adaptive, stochastic algorithms begins with a study of the univarite (one

variable) P-Algorithm as presented in [4], [5], and [6]. The P-Algorithm is an adaptive

algorithm that approximates the minimum of a univariate function with a convergence

rate of h(εn) = εn
n2 where εn is a sequence that converges at an acceptable rate to

zero (i.e., εn does not converge to zero too quickly). The P-Algorithm is based on

a statistical model that is used to determine where to test the objective function

for which the minimum value is sought. The P-Algorithm strikes a balance between

thoroughly exploring regions of the objective function where the algorithm determines

the minimum is likely to exist and exploring regions that have not been adequately

tested.

The P-algorithm adopts a probability model for the objective function and then

at each step determines that subset of the domain that maximizes the probability

that the next function evaluation will fall below the minimum minus some threshold.

The P-Algorithm divides the domain into sub intervals by computing γni for

each subinterval. γni is the measure of the likelihood that the minimum value of the

objective function will be found in the corresponding subinterval and is the value

used to decide which subinterval is to be chosen for the next split. The subinterval

with the largest γni value will be split at (and the minimum value tested for) the

location ti = xni−1 +τn(xni −xni−1), where ti is the point that maximizes the conditional

probability that ξ(x), a stationary Gaussian process with zero mean, unit variance,

and a correlation function r(·), will fall below the minimum, Mn, minus some fixed

threshold [6].

38

39

4.1 Error Analysis

In [6] it is shown that the P-Algorithm converges to f(x∗) for

γni = xni − xni−1√
yni−1 −Mn + εn +

√
yni −Mn + εn

,

where, for some small positive δ,

ε = nδ

n

and for

τn = 1
1 +

√
1 + (yni − yi−1/(yni −Mn + εn))

Theorem 2 Let g(n)→∞ as n→∞, g(n) ∈ o(n). The P-Algorithm with εn = g(n)
n

will converge for any continuous objective function.

Proof 4 Theorem 3.1 in [6] states that as long as nkεnk → ∞ the P-Algorithm will

converge, where {nk} is a subsequence with the property γnk → 0 �

40

4.2 Convergence Analysis

While the P-Algorithm converges to f(x∗) for the class of functions g(n)→∞ as n→

∞, g(n) ∈ o(n), the convergence rate as described in [6] in terms of the error (i.e., an

upper limit on how much the P-Algorithm’s minimum differs from the true minimum)

can not be determined without analyzing the P-Algorithm for a given γ, εn, andτn.

If εn = εδ

n
(where n is the step number of the P-Algorithm and δ is some small

number > 0), and γ as described above, the convergence rate is O(nδ−3) [6].

In [4] the following parameters are used:

γni = 2(xni − xni−1)√
yni−1 −Mn + εn +

√
yni −Mn + εn

,

where

ε = log(n)
n

and for

τn = 1
1 +

√
1 + (yni − yi−1/(yni −Mn + εn))

In this instance of the P-algorithm, the error is bounded as (1
12)

1
4 and the

convergence rate is of order exp(−c
√
n) for some c > 0. Note that in computing γni

it is not necessary to include factor of two in the implementation since the γni values

identify the best line segment to divide by finding the maximum γni at each step. In

other words, multiplying by two will not change which γni is maximum.

41

4.2.1 P-Algorithm Pseudocode

Pseudocode for the P-Algorithm is presented below. The values γni , and τn are

presented as functions gamma(·) and tau(·). Since priority queue operations can

execute in log(n) time where n is the number of iterations determined by the stopping

criteria, for some implementations of a priority queue, the algorithm represented by

the pseudocode executes in Θ(n log n) time [14].

Step 1: Set M = min(f(x1), f(x0))

Step 2: Set n = 1

Step 3: Set e = εn

Step 4: Set g = gamma(e, x0, x1)

Step 5: Store (g, x0, x1) (g primary key → priority queue)

Step 6: Retrieve (Remove from db) (g, x1, x0)

Step 7: Set n = n+ 1

Step 8: Set e = εn

Step 9: Set t = tau(e, x0, x1)

Step 10: Set xt = x0 + t(x1 − x0)

Step 11: Set M = min(M, f(xt))

Step 12: Set g = gamma(e, x0, xt)

Step 13: Store (g, x0, xt) (g primary key)

Step 14 Set g = gamma(e, xt, x1)

Step 15: Store (g, xt, x1) (g primary key)

Step 16: If termination condition not met goto Step 7

Step 17: M is the minimum

42

4.3 P-Algorithm Output

P-Algorithm test points for f(x) = (x − .2)(x − .5)(x − .7)(x − .9), n=10000, εn =
εδ

n
, δ = .001 are shown in Figure 4.1. As expected, the function gets full cover-

age with the region around f(0.30646561842709186) = −0.00481278069434944 re-

ceiving the most dense coverage. For n=2000000 the minimum value observed is

f(0.3064637439488084) = −0.00481278069540427.

In this instance, the caller object is MATLAB and values are returned to the

MATLAB environment for display.

Figure 4.1 P-Algorithm observation points for f(x) = (x−.2)(x−.5)(x−.7)(x−.9).

43

4.4 Motivation for the P-Algorithm

In Section 6.1 a diagram comprised of line segments is used to cover the domain.

By mapping the endpoints of each segment to the endpoints of the P-Algorithm, a

multithreadable algorithm can be deployed to find the minimum over all segments of

the diagram. By rotation it is possible to map the P-Algorithm to an arc or similar

geometric figure, but it is important to ensure the initial points are appropriately

placed on the figure. In [21], dividing the input domain into disjoint segments is

referred to as stratified sampling. In this description, the idea is to run independent,

parallel algorithms on each segment which results in a global minimum estimate,

f(x∗) with smaller error.

However, if the initial points are set and the algorithm includes all these initial

segments into its computation, the P-Algorithm will still converge to the minimum

[3].

CHAPTER 5

η-ADIC GRIDS AND ALGORITHMS

In order to extend the approach taken by the P-Algorithm to multivariate functions,

it is necessary to determine how the domain of the objective function shall be covered.

For this class of algorithms it is most common to cover the domain by decomposing

the domain into a grid of hypercubes (this includes squares and cubes for dimensions

two and three, respectively).

5.1 The Grid as a Covering

Zhigljavsky [21] describes measures that provide useful information about the grid,

namely ρ-dispersion, discrepancy and compositeness. These values will be defined

after the G-Algorithm is described.

5.2 The G-Algorithm

An η-adic grid is formed by decomposing a line, square, cube or hypercube into

ηd, η x η x η... x η (d of these, where d is the dimension of the domain being

considered) hypercubes. When η = 2, the G-Algorithm recursively decomposes the

domain according to the quadtree scheme. When the termination condition is met, the

minimum value is tested for at the barycenter of the resultant hypercube. Stopping

criteria could also be some attribute of the present hypercube. The global minimum

can be tested for by either testing a point within the hypercube, or another algorithm

could be invoked to search for the minimum within that hypercube. In that case, the

algorithm can be viewed as a deployment algorithm, deploying a search algorithm on

the hypercube.

44

45

5.2.1 G-Algorithm Pseudocode

The Pseudocode for the G-Algorithm is presented below:

Start by setting noi = η, M = ∞

Step 1: Algorithm MAlg(upper, lower, f)

Step 2: Set u = upper

Step 3: Set l = lower

Step 4: Set D = u−l
noi

Step 5: If stopping criteria met set M = min(M, minimum where tested in hypercube)

Step 6: else

Step 7: Set lt = lower

Step 8: do

Step 9: set ut = lt + D

Step 10: Call MAlg(lt,ut)

Step 11: Set lt = Inc(lt,D)

Step 12 while (lt < u)

Step 13: return M (Minimum is in M)

The purpose of the function Inc(·) is to increment through all the ηd sub-hypercubes

of the hypercube being decomposed. For example, if the cube is being decomposed

with η = 2, the 23= 8 cubes would be identified by corner points (0,0,0), (0,0.1
2),

(0,1
2 ,0), (0,

1
2 ,

1
2), (

1
2 ,0,0), (

1
2 ,0,

1
2), (

1
2 ,

1
2 ,0), (

1
2 ,

1
2 ,

1
2). Here lower = (0,0,0), D = (1

2 ,
1
2 ,

1
2),

where each element of D is the increment to be applied to the corresponding element

of lower as each element is incremented η - 1 times.

46

5.2.2 G-Algorithm Output

The program output for the G-Algorithm, applied to the two-dimension Rastrigin

function, 5 iterations, η = 5, is the minimum of all observed values at the barycenter

of each hypercube:

G-ALGORITHM OUTPUT:

DIMENSION: 2

ITERATIONS: 5

NUMBER OF DIVISIONS AT EACH ITERATION: 5

ESTIMATED MINIMUM = 1.625225806094477E-4

MINIMUM VALUE FOUND AT POINT:

6.399999999999739E-4 6.399999999999739E-4

The above output was generated by the G-Algorithm run for 5 iterations. On

each iteration each square is divided into 5 squares. The squares generated when the

termination condition is met is measured at the center for the function’s minimum.

47

5.2.3 Motivation for the G-Algorithm

The G-Algorithm has a potential application in the discipline of wireless network

security. In [10] a context aware privacy (CAP) system decomposes a grid into squares

in the same manner as the G-Algorithm. See Figure 5.1. The map is decomposed until

the stopping criteria of a specific population per square is reached. The G-Algorithm

may be used to extend the two-dimensional map into a three-dimensional model for

use in urban areas where altitude may be of interest in determining locations for the

context privacy algorithms used by the CAP system (here η = 2).

Figure 5.1 Grid decomposition for the context aware privacy system of [10].

48

5.2.4 Error Analysis of Passive Grids

The G-Algorithm is a passive grid algorithm as classified by [21]. A number of

theoretical studies have been done on passive grids. This is because:

a) Passive grids are easily constructed.

b) Passive grids are optimal in some well-defined sense (Zhigljavsky in [21]) .

c) Passive grids are simple to investigate.

d) Passive grids lend themselves to realization on a multithreaded or multiprocessing

computer.

e) Passive grids lend themselves to a recursive definition that results in a recursive

decomposition of the domain.

The G-Algorithm generates a composite grid. That is, a grid that keeps its

features as n (in the case of the G-Algorithm, η and the number of recursion levels)

changes. Each grid element is a smaller sized hypercube, similar to all others. Many

known grids do not possess this quality [21].

Theorem 3 The dispersion of the grid ΞN , the grid formed by the n hypercubes and

barycenters of the G-Algorithm at its termination, defined by

dρ(ΞN) = supx∈X minxi∈ΞN ρ(x, xi)

where ρ(·) is the Euclidean metric, of a G-Algorithm grid with n recursion levels

divided into η sub-cubes on each iteration is
√
d

2η(rL+1) where d is the dimension, η is

the number of intervals each side of the hypercube is divided into and rL is the lowest

recursion level at which a minimum measurement is taken.

49

Proof 5 Since minimum measurements are taken at the barycenter of each hyper-

cube, ρ(x, xi) = the Euclidean distance from the barycenter of the hypercube to any

corner, supx∈X minxi∈ΞN ρ(x, xi) will be the distance from the barycenter of the largest

hypercube to any corner point of the hypercube. Let rL = the recursion level where

the G-Algorithm takes it’s first minimum measurement. Since the G-Algorithm is a

composite grid, each hypercube has the same characteristics as any other; therefore,

the first measurement hypercube will be identical to the unit hypercube except it will

be 1
η(rL+1) times the size of the unit hypercube.

The distance from the barycenter to a corner of a d-dimensional hypercube is√
d

2 . Therefore the dispersion dρ(ΞN) = 1
η(rL+1)

√
d

2 �

While the G-Algorithm is neither adaptive nor stochastic, its study facilitates

understanding grid analysis. Furthermore, it is anticipated that the G-Algorithm

will be used for preliminary deployment of global optimization algorithms. Upon

reaching stopping criteria, other optimization algorithms may be applied to the

individual hypercubes. The analysis measures outlined in this section would then

be incorporated into the overall (global) error and convergence calculations of the

meta-algorithm.

5.2.5 Run Time of the G-algorithm

The run time of the G-Algorithm is O(ηdrH) where rH is the highest recursion level

defined by the stopping criteria.

50

5.3 The Quadtree Decomposition Algorithm

The QD-Algorithm extends the grid search by assigning each hypercube a numer-

ical value from a probability model that a minimum may lie within a region, and

performing the next search at that location. The search of the domain starts as a

square, cube or hypercube (depending on whether the dimension is 2, 3, or >3). At

each step the domain is partitioned into smaller (η-adic) hypercubes. The minimum

is sampled at the barycenter of each hypercube and that function evaluation value

is used to compute the probability value. The hypercube with the highest value is

selected for further partitioning into smaller (η-adic) hypercubes. The decomposed

hypercube is removed at each step from evaluation. It may be helpful to view the

Quadtree Decomposition (QD) algorithm as the union of the P-Algorithm and the

G-Algorithm with η = 2.

The algorithm uses an adaptive quadtree (Gaede and Günther, 1998) [12] de-

composition of the domain [0, 1]d. At each step of the algorithm the domain will be

partitioned into cubes. The components of the partition will be labeled (i1, i2, . . . , id, k)

if the component is a cube of side 2−k and vertex nearest the origin at

(
i12−k, i22−k, . . . , id2−k

)
.

At each step of the algorithm, a cube is chosen to “split" into 2d sub-cubes. Thus

after n iterations of the algorithm, the domain will be partitioned into n2d − n + 1

sub-cubes. With each iteration, the objective function will be evaluated at the center

of each new cube.

51

After n iterations, let τn denote the edge length of the smallest sub-cube, εn be

an appropriate O(n) sequence such that εn → ∞ as n → ∞ (such as log(n) or nδ)

and let Mn denote the smallest observed function value of the first n. For the cube

with index i, 1 ≤ i ≤ n2d − n+ 1, after n iterations define

ρ̂ni = T di

(f(xi)−Mn + (εnτn)5d/2)2/5 , (5.1)

where Ti is the edge length of the ith cube and xi is its center. The algorithm splits

the cube with the largest value of ρ̂ni at each iteration.

5.3.1 Quadtree Decomposition-Algorithm Pseudocode

The Pseudocode for the QD-Algorithm is presented below. Strictly speaking, the

Quadtree Decomposition algorithm has η = 2.

Set M = +∞, η = 2, hc = initial domain

Step 1: divide hypercube hc into η-adic hypercubes

Step 2: compute ρ* as defined in 3.1 above and place on priority queue pq, each

η-adic hypercube

Step 3: Remove the hypercube with the largest ρ value from the PQ and set to hc

Step 4: while stopping criteria not met go to step 1

Step 5: return M as minimum

*Test for min when ρ is computed.

52

5.3.2 QD-Algorithm Convergence Analysis

Let ρ̂n = max1≤i≤n ρ̂
n
i . The algorithm will converge, in the sense thatMn ↓M , where

M is the global minimum, if and only if lim inf ρ̂n = 0, which holds for the described

algorithm if f is continuous (it need not be in C2). Suppose that we are about to

create a new smallest cube; then the cube we are subdividing must be (at least tied

for) the smallest, so Ti = τn and ρ̂ni ≤ 1/ log(n)2. Therefore, along the subsequence

of times nk when new smallest cubes are formed, ρ̂nk → 0. If f is twice-continuously

differentiable and has a unique global minimizer in the interior of the domain, then

it can be shown that

en = exp
(
− n

log(n)Θ(1)
)
.

5.3.3 QD-Algorithm Execution Time

The QD-Algorithm runs in Θ(nηd log nηd) time where n is the number of iterations

determined by the stopping criteria, η is the number of intervals each side of the

hypercube is divided and d is the dimension. For each iteration, ηd values are placed

on the priority queue which takes log nηd. Removing one entry on each iteration also

takes log nηd. For η = 2 the run time is therefore Θ(4ndlog4nd) [14].

53

5.3.4 Quadtree Decomposition-Algorithm Output

The search pattern for the Quadtree Decomposition Algorithm for the Rastrigin

function is shown on Figure 5.2. The mechanism by which the search values are

returned to MATLAB for construction of Figure 5.2 will be covered in Chapter

9 where the Framework for the development of global optimization algorithms is

discussed. Notice that the search pattern shows the contour of the objective function,

in this case the two-dimensional Rastrigin function.

Figure 5.2 Search pattern of the QD-Algorithm for the Rastrigin function.

CHAPTER 6

ALGORITHMS THAT USE THE VORONOI DIAGRAM

Another way to form a grid over a hypercubic domain is to construct a Voronoi

Diagram over the region. A Voronoi diagram is determined by a collection of points

over some domain. A Voronoi diagram consists of convex, adjacent cells and one

interior point such that the cell contains all points in the domain that are closest to

the interior point. Each edge of the Voronoi diagram consists of all points equidistant

from the interior cell point and the next-closest point in the domain.

An example of a Voronoi Diagram produced from MATLAB forming a grid over

the unit square is shown on Figure 6.1. The red starred points are the centers of each

Voronoi Cell. The centers of each cell are uniformly distributed over the 1 by 1 unit

square.

The diagram on Figure 6.1 is constructed from 500 uniformly distributed points

over the unit square. The Voronoi Diagram can be constructed in time O(ndd/2e) [1]

where n is the number of points from which the diagram is generated.

54

55

Figure 6.1 A Voronoi diagram.

6.1 The V-Algorithm

The V-Algorithm generates a Voronoi diagram over the domain by covering the

domain with a field of uniformly distributed points and using those points to construct

the Voronoi Diagram, each point becoming the interior point of the Voronoi diagram.

Note the objective function and the Voronoi diagram may be of any dimension. The

P-Algorithm is used to determine the minimum value for the objective function over

each line segment of the Voronoi Diagram. This algorithm uses an existing algorithm

(the P-Algorithm) combined with another (the V-Algorithm) to approximate the

global minimum value of an objective function. This algorithm is also the first to use

the matlabcontrol package to access a MATLAB function (voronoi()) to provide data

(the line segments of the Voronoi diagram) for an algorithm.

56

6.1.1 V-Algorithm Pseudocode

The Pseudocode for the V-Algorithm is presented below:

Start by setting M = +∞

Step 1: Generate a field of uniformly distributed points over the domain

Step 2: Build a Voronoi Diagram over the domain

Step 3: Set l = next line segment of the Voronoi diagram

Step 4: Set upper and lower bounds of the objective function

Step 5: Build a new P-Algorithm referencing the objective function

Step 6: Set mt = result of P-Algorithm run on line segment l

Step 7: Set M = min(M, mt)

Step 8: If more segments to test go to Step 3

Step 9 : Return M as minimum

6.2 The Multithreaded V-Algorithm

The Multithreaded V-Algorithm takes advantage of the independent nature of the

V-Algorithm in that computing the minimum of the Voronoi diagram line segments

can be done in parallel. An AlgRunner class is introduced that schedules each

P-Algorithm instance as a separate thread. Each thread calls the static, synchro-

nized function processResponse(). ProcessResponse() calls SimpleLog() to output

intermediate results, and it is in the processResponse() function that the minimum

value and the point where the minimum is observed is kept and made available for

retrieval via the getMX() method when the algorithm terminates.

Note that in this algorithm it is necessary to create a new instance of the

objective function for each thread. To facilitate that, the ObjSelectionCriteria object

used to create the V-Algorithm is passed for use in creating each objective function

instance.

57

6.3 The V-covariance Algorithm

The V-covariance algorithm sequentially constructs a Voronoi Diagram by adding a

new point to the Voronoi Diagram at each iteration. In the instance provided here,

the Voronoi diagram is recomputed at each iteration.

6.3.1 V-covariance Algorithm Pseudocode

The Pseudocode for the V-Covariance Algorithm is presented below:

Start by setting p = some point in the domain, M = min(p, corners of the domain)

Step 1: Set Voronoi points to the corners of the domain and p

Step 2: Compute the Inverse of the Sigma matrix

Step 3: Build a Voronoi Diagram using the corners of the domain and p

Step 4: Set bestLoc = first point of the Voronoi diagram

Step 5: Set meg = the negative gain of bestLoc (uses Sigma inverse)

Step 6: Set pt = next point of the Voronoi diagram

Step 7: Set ng = negative Gain of pt

Step 8: if (ng < meg)

Step 9: ng = meg

Step 10: bestLoc = pt

Step 11: If more points go to step 6

Step 11: Set M = min(f(bestLoc), M)

Step 12: Add bestLoc to the collection of points to build the Voronoi diagram

Step 13: If stopping criteria not met go to Step 2

Step 14 : Return M as minimum

58

A mechanism is provided within matlabcontrol to redisplay the Voronoi diagram

at each iteration. If this algorithm is deployed, an incremental Voronoi diagram would

be used. In other words, a voronoi() function would be found and used that would not

rebuild the whole diagram on each iteration but would fix up the existing diagram.

This would greatly decrease execution time.

The V-covariance algorithm, instead of using MATLAB functions for matrix

operations, uses Java packages from Apache and Mathworks to perform the necessary

matrix operations. It should also be noted that these matrix functions, if retained,

would ideally be hidden behind the MathEngineFacade. However, they are directly

invoked by the V-covariance algorithm to demonstrate the flexibility of the proposed

framework. In other words, an algorithm is free to either use the functionality

provided but the MathEngineFacade, or the functions there can be immediately

replaced by other faster implementations.

For a symmetrical objective function such as the Rastrigin, it is necessary to

not pick the first point, p as the center of the domain as this may cause the Sigma

matrix to be singular and therefore unable to be inverted.

CHAPTER 7

ALGORITHMS THAT USE TRIANGULATION

Algorithms that divide the domain into triangular regions can be thought of as

extensions of the P-Algorithm and Quadtree algorithms. Consider an instance of

the P-Algorithm. The P-Algorithm minimizes a univariate function by partitioning

the linear domain into smaller line segments based on a probability measure that the

next best estimate is in the line segment corresponding to a computed γ value. τ is

the point where the division is to take place. For the extension into the multivariate

case, the value of τ is selected to simplify the area or volume computation. As in the

case of the Bayesian type algorithms presented, the domain segment corresponding

to the most promising region will be further divided.

7.1 HP-Algorithm Pseudocode

The Pseudocode for the HP-Algorithm (Hyperpyramid Decomposition) is presented

below:

Set M = +∞

Step 1: Compute the hyperpyramids for the unit hypercube (can be scaled)

Step 2: Compute ρ (as in the QC-Algorithm) for each hyperpyramid*

Step 3: Place hyperpyramids on priority queue keyed by ρ

Step 4: Remove the hyperpyramid with maximum ρ from the priority queue

Step 5: Divide hyperpyramid into (1
2) sized hyperpyramids

Step 6: Compute ρ* and place each hyperpyramid on priority queue

Step 7: if stopping criteria not met go to step 4

Step 8: return M as minimum

*test for min

59

60

7.2 Hyperpyramid Decomposition-Algorithm Output

Figure 7.1 shows the contour graph of the Rastrigin function for a two-dimensional

instance of the HP-Algorithm for n=10000 and εn = nδ

n
, δ = 0.00001. Note the

domain has been scaled to an area 25x the area of the unit square. The point used

to decompose the square is (0.2,0.2), (1,1) after scaling. The output is indicative

of the search pattern used for the two-dimensional Rastrigin function. This search

pattern is also a two-dimensional contour graph of the Rastrgin function where the

initial point was chosen at (1,1). This initial selection causes the division into the

four triangles shown on Figure 7.1

Figure 7.1 Output for the two-dimensional HP-Algorithm.

61

It should be noted that for the two-dimensional algorithm, if the initial point is

in the center of the domain, dividing the triangles by bisecting the largest side always

results in similar triangles, 1
2 the size of the triangle divided. This fact can be used

to simplify the area computation, as one only needs to keep track of how many times

the initial triangle of area = 1
4 has been halved. To speed computation, the area of

triangle can be precomputed and placed in a table or a function f(di) where di is

the number of times the initial hyperpyramid of size 1
pi
, where pi is the number of

hyperpyramids in the initial partitioning of the domain.

7.3 Partitioning the Two-Variable Domain

A scheme of partitioning the two-variate domain is shown on Figure 7.2. Here the start

point of (0.5, 0.5) is used to initially partition the domain. The initial area of each

triangle is 0.25, and if the triangle is halved for each split (splitting by "drawing" a new

edge from the midpoint of the longest edge to the free vertex) the area computation

involves a division by two – or preferably by a multiplication of 0.5.

The MATLAB generated result of doing this is depicted on Figure 7.1. This

indicates where the two-dimensional Rastrigin function was tested for minimum by

the implementation of the algorithm. The start point – the point used to initially

partition the domain into triangles, was chosen at (1.0, 1.0). The performance of

the algorithm is O(nlogn) regardless of whether the fast area computation is used.

Here the area was computed using the points of each triangle cell. In fact, the

area computation for a convex polygon was used. An industrial strength algorithm

would use as selectable implementation for both the splitting and area computation

mechanisms and the two should be connected. In other words, an algorithm should

be able to interchange them, and when splitting algorithm A1 is used, area algorithm

A2 should have to be used.

62

(0) (1)

(1.0) (0.0)

(0.5.0.5)

(0.1) (1,1)

Area of all triangles = 1/4

Figure 7.2 Transforming the univariate domain into a two-variate domain.

The processing mimics the P-Algorithm, but in this case a ρ value is computed

for each triangle such that the triangle with the largest ρ value is the sub-domain to be

halved on subsequent iterations. The triangle should be divided by determining the

longest leg of the triangle and bisecting by connecting the midpoint of the longest side

to the opposite vertex. This strategy sufficiently addresses the issue of the triangles

deteriorating and the triangles eventually will satisfy Delauney criteria. If the start

point is chosen as (0.5, 0.5), all triangles meet a special case of the Delauney criteria.

The Delauney criterion ensures that no vertex lies within the interior of any of the

circumcircles of the triangles.

On Figure 7.2, if the triangle with the largest ρ value were (0,0), (0.5,0.5), (1.0),

the triangle would be divided into the two triangles (0,0), (0.5,0.5), (0.5,0) and (0,0.5),

63

(0.5,0.5), (1,0). The area of the new triangle is 0.25. Note that the point (0.5,0.5)

is a vertex of every triangle in the initially partitioned domain. If a point within the

rectangle besides (0.5,0.5) were chosen, the coordinates of that point would be placed

appropriately.

7.4 Partitioning the Three-Variable Domain

There are many ways to partition a cube into pyramids that will be explored in

this section. In [21] Zhigljavski states that stratified sampling dominates the non-

stratified approach in finding the optimal value in a global optimization problem. If

one is interested in mapping the contour of an objective function, stratification of the

domain gives a better image as long as all elements of the partition participate in the

algorithm.

Put another way, consider a function that causes the selected Bayesian algorithm

to converge rapidly to a minimum. If the domain is partitioned into many pyramids,

by the time the algorithm would sample the last of the pyramids, these pyramids may

no longer be considered for observation (and rightfully so) by the algorithm. In fact,

in the case of a symmetric function, this contributes to the accuracy of the reported

minimum but detracts from the display of the contour of the function. This will be

demonstrated in the following sections.

64

7.4.1 Minimum-Pyramid Stratifying Technique

Figure 7.7 depicts stratifying a cube into 4 pyramids. Splitting the pyramids as shown

by the red line segments results in pyramids 1
2 the size of the pyramid being split,

giving rise to the simple means of computing the volume of the new pyramid (i.e.,

multiplying by 0.5). While using a minimum partition tends to ensure all areas of the

partition will be explored, partitioning the domain into smaller pyramids has other

advantages which will be explored later.

Figure 7.3 Transforming the two-variate domain into a three-variate domain.

65

In Figure 7.4, the minimum partitioning technique of Section 7.4.1 is shown.

One million iterations of the algorithm is performed. The minimum is reported as:

MIN = 0.008371001580814053

AT: -0.001736111111111111 0.003472222222222222 0.005208333333333334

Figure 7.4 1000000 test points for three-dimensional Rastrigin function – minimum
partition.

66

When the diagram is rotated one can see through the side of the cube, the

contour (search pattern) of the algorithm:

Figure 7.5 1000000 test points for three-dimensional Rastrigin function – minimum
partition (rotated).

67

7.4.2 24-Pyramid Stratifying Technique

The contour (search pattern) of the algorithm reveals a better image of the Rastrigin

function (with a poorer minimum) when the domain is partitioned into 24 equal

pyramids. The minimum is reported as:

MIN = 0.010761937650649145

AT: -0.006944444444444444 -0.001736111111111111 -0.001736111111111111

The technique of how to partition the cube into 24 pyramids is described in

Section 7.4.3; only the line segment connecting the start vertex to the midpoints of

the edge segments is eliminated.

Figure 7.6 1000000 test points for three-dimensional Rastrigin function – 24
pyramid partition (rotated).

68

7.4.3 48-Pyramid Stratifying Technique

Figure 7.7 depicts transforming the two-dimensional triangulated domain into three

dimensions in the style of selecting a start point within the unit cube. The point

(0.5,0.5,0.5) (or other point within the unit cube) is added. Six of the constructs

shown on Figure 7.7 are created, one for each face of the unit cube, all having in

common the point just mentioned. There are eight triangles in the two-dimensional

case and 48 in the three-dimensional case. For dimension d, using this method of

partitioning the domain, there will be td = 4td−1d hyperpyramids comprising the

domain. Solving this recurrence, it is the case that for d dimensions, there are td =

2nn! hyperpyramids comprising a d dimensional domain.

It should be kept in mind that an algorithm using this partitioning scheme

computes the 2nn! hyperpyramids initially; the vertices are all combinations of ones

and zeros connected to the added point ((0.5,0.5,0.5) in this example. Notice that

when a pyramid is split by bisecting the longest side of the pyramid, the areas of the

resulting two pyramids are equal.

The HP-algorithm initially partitions the domain as described, and a ρ value

for each hyperpyramid is computed and saved (The minimum is tested every time a ρ

value is computed). The algorithm proceeds like the P-Algorithm or HC-Algorithm,

subdividing each hyperpyramid until stopping criteria is met.

69

2

3

4

3

4

3

2

2

2

2

2

1

2

1

2

1

a

b

Figure 7.7 Transforming the two-variate domain into a three-variate domain.

Notice that by selecting the longest edge of a pyramid and by splitting the

pyramid by drawing the lines from the halfway point to the remaining free vertices,

a pyramid is created with the same base and 1
2 the height. This means the volume

of each pyramid is halved at each step. If the start point is chosen in the middle of

the cube, the initial volume for each pyramid is 1
48 the volume of the cube. Also note

that the pyramids are similar, and pyramids of the same size satisfy the Delauney

criterion. It is most advantageous to select the start point (i.e., the point used to

partition the domain as the center point of the hypercube). Moving the limits of the

domain is a preferred technique.

70

Table 7.1 Comparison of Delauney Triangulation vs. HP-Algorithm

Delauney Triangulation HP-Algorithm

Triangulation moves to center minimum Slower convergence if minimum near gridline

Goodness can vary especially near borders All triangles have a goodness of 4

Delauney triangulation computation is expensive Simple to compute triangulation

7.4.4 The Csendes Test Function

Recall the Csendes function given by:

f(x1, x2, x3, ..., xn) =
n∑
i=i

x6
i (2 + sin

1
xi

) xi ∈ [−1, 1]\1,

having a countably infinite number of local minima. However, these local minima

decrease as x → ∞. This feature makes this algorithm converge quickly. The 48

Pyramid decomposition technique is used on this function. One can see by the

Figure 7.8 that the search pattern of the algorithm is more dense towrd the center of

the search area.

71

Figure 7.8 The Contour of the three-dimensional Csendes function – 5000000
iterations near the origin.

The minimum was reported on [−.01,−.01,−.01]...[.01, .01, .01] as:

MIN = 3.513488340400819E-24

AT: -1.0416666666666666E-4 6.944444444444446E-5 3.472222222222223E-5.

CHAPTER 8

GLOBAL OPTIMIZATION ALGORITHMS IMPLEMENTATION

8.1 Introduction

The global optimization algorithms presented in this document are described in this

section. The algorithms are presented prior to the global optimization framework on

which they depend because, as in the case with developing a framework, the entities

that the framework produces are based upon the attributes of the algorithms being

created. For each of the algorithms, a UML diagram is presented with a realization

of how the algorithm objects interact. The reader should be able to map the steps of

the algorithm’s pseudocode to the realizations presented in this chapter.

8.2 P-Algorithm Implementation

Recall the P-Algorithm finds the minimum value of a univariate function by partition-

ing the input values (the x-axis) into disjoint line segments that cover the domain. At

each iteration of the algorithm, the best segment is determined. The best segment is

then split into two segments and replaces the split segment. The algorithm continues

executing until the stopping criteria is reached. Again, the stopping criteria can be a

given number of iterations or when some error threshold is reached.

In computing a value for the best segment, one internal point of the line segment

is used to compute a value to indicate how likely this segment is to contain the global

minimum. The point is tested for being the global minimum at each iteration of the

algorithm.

72

73

8.2.1 P-Algorithm Class Diagram

The Unified Modeling Language (UML)[11] class diagram for the P-Algorithm is

shown on Figure 8.1. The framework emits an algorithm object with an objective

function (and upper and lower domain bounds) associated with it. When function

getMX() is called, the minimum of the function along with the location where the

minimum occurred is returned. The algorithm object may be executed by any

computer or thread that has access to it. It is worth noting that an algorithm object

may create other algorithm objects, typically with a subset of the original domain

with either the same or a different algorithm to be used. The framework classes

belong to the framework for global algorithms presented in Chapter 9.

Figure 8.1 UML Class diagram for the P-Algorithm.

74

8.2.2 P-Algorithm Sequence Diagram

The UML sequence diagram for the P-Algorithm is shown on Figure 8.2. The PAlg

object acquires the upper and lower bounds from the objective function (PolyFunction

in this instance). Steps 7 through steps 15 of the P-Algorithm pseudocode are

executed until the stopping criteria is met. The minimum value and where the value

is observed is returned to the caller.

The steps of 8.2 are realized as:

Step 1: The lower and upper bounds and f(lower) and f(upper) are obtained

Step 2: Set n = 1

Step 3: e = epsilon(n) is computed by the internal getEpsilon(n) function which calls

PAlgEps1()

Step 4: g is computed by calling computeGamma(e, x0, x1)

Step 5: (g,x0,x1) is stored in the priority queue

Step 6: (g, x1,x0) is retrieved from the priority queue

Step 7: n = n + 1

Step 8: e = epsilon(n) is computed by the internal getEpsilon(n) function which calls

PAlgEps1()

Step 9: t = getTau(e, x0 ,x1)

Step 10: xt = x0 + t (x1 - x0)

Step 11: f() is evaluated for xt and M is set to min (M, f(xt))*

Step 12: g is computed by calling computeGamma(e, x0, x1)

Step 13: Store (g,x0,xt) (g primary key)

Step 14 Set g =gamma(e, xt, x1)

Step 15: (g,x0,x1) is stored in the priority queue

Step 16: If termination condition not met goto Step 7

Step 17: M is the minimum

75

*Note: Here and in all other realizations, f(·) is called with an InputParameters

object that encapsulates the correct number of x values for the dimension, the function

evaluation at that point, as well as useful functions such as norm(), add(), subtract()

etc. The InputParameters class is described in detail in Chapter 9.

76

 : PAlg : VcellsPQ : PAlgEps1 : PolyFunctioncaller

f(InputParameters)

putcP()

getMaxCP()

Repeat 7-15 until

stopping criteria is

satisfied

getUpper()

getLower()

getMX()

Returns f(x*)

and x*

getEpsilon()

computeGamma()

getEpsilon()

getTau()

computeGamma()

putcP()

computeGamma()

putcP()

f(InputParameters)

f(InputParameters)

framework

object

step 1

step 3

step 4

step 5

getEps()

step 6

getEps()
step 8

step 9

step 11

step 12

step 13

step 14

step 15

Figure 8.2 UML sequence diagram for the P-Algorithm.

77

8.3 G-Algorithm Implementation

The G-Algorithm recursively partitions the hypercubic domain (e.g., square, cube, or

hypercube) into smaller components. It produces a composite grid over the domain.

Recall an example of the city map being partitioned into smaller squares until a

target population density is encountered. It is envisioned that this algorithm, instead

of testing at the terminal partition, would then deploy another algorithm (e.g the

Quadtree Decomposition Algorithm) to explore the area.

8.3.1 G-Algorithm Class Diagram

The class diagram for the G-Algorithm is shown on Figure 8.3. The Rastrigin

objective function is used, but any suitable objective function can be minimized.

A new G-Algorithm instance is created for each sub-hypercube tested. At the lowest

recursion level, the sub-hypercube is tested for minimum value by testing a point

or points, or by possibly deploying a different algorithm to search and test the

sub-hypercube.

Figure 8.3 UML class diagram for the G-Algorithm.

78

8.3.2 G-Algorithm Sequence Diagram

The sequence diagram for the G-Algorithm is shown on Figure 8.4. Instances are

created recursively until the stopping criteria is met. The objective function is tested

at the lowest level of recursion

caller : Galgorithm : Galgorithm : Galgorithm : Rastrigin : Galgorithm

getMX()

getMX()

getMX()

f(InputParameters)

getMX()
incI()

incI()

incI()

Step 10 (eta^d of these)

Step 5 Test for min when

stopping crteria is met

Step 11

Figure 8.4 UML sequence diagram for the G-Algorithm.

79

The realization of the G-Algorithm is presented below:

Step 1: caller calls G-Algorithm(upper, lower, f)

Step 2: u = upper

Step 3: l = lower

Step 4: Set D to u− l
noi

Step 5: If stopping criteria met call the function to get f(x) Set M = min(M, f(x))

Step 6: else

Step 7: lt is set to lower

Step 8: do

Step 9: ut is set to lt + D

Step 10: Create a new G-Algorithm. Call G-Algorithm(upper, lower, f)

Step 11: lt is set to Inc(lt,D)

Step 12 while (lt < u)

Step 13: return M (Minimum is in M)

8.4 Quadtree Decomposition-Algorithm Implementation

The Quadtree Decomposition Algorithm stratifies (partitions) the initial hypercube

into 4 equal areas. It proceeds in a similar fashion as the P-Algorithm in that goodness

values are computed for each hypercube. At each iteration, the best hypercube is

further decomposed until stopping criteria is reached.

8.4.1 Quadtree Decomposition-Algorithm Class Diagram

The class diagram for the Quadtree (HC) Algorithm is shown on Figure 8.5. The HC

Algorithm maintains a priority queue (encapsulated within the HCPoints singleton

object) of HCPoint objects. The HCPoint objects contain the information required to

split the hypercube, the barycenter of the hypercube and the computed probability

80

value, ρ. The Rastrigin objective function is used but any suitable objective function

can be minimized.

Figure 8.5 UML class diagram for the quadtree decomposition HC-Algorithm.

81

8.4.2 Quadtree Decomposition-Algorithm Sequence Diagram

The sequence diagram for the HC-Algorithm is shown on Figure 8.6.

Step 2

 : HC-Algorithm : HCPoints : HCPoint : RhoEpsilon1 : RhoFunction : Rastrigincaller

HCPoint()

addH()

getMaxRho()

repeat until stopping

criteria met

computeRho()

Priority queue of HCPoint

Objects keyed on rho.

getEps() computeRho()
f(InputParameters)

test for min

getMX()

Step 3

framework

objects

Figure 8.6 UML sequence diagram for the HC-Algorithm.

82

The realization of the HC-Algorithm is presented below:

Step 0: caller calls HC-Algorithm(hc)

Step 1: hc is divided into sub-hypercubes

Step 2: computeRho() is called which calls RhoEpsilon1() to get epsilon used to

call RhoFunction() to compute ρ for each sub-hypercube. addH() is called for each

sub-hypercube to place it on the PQ.

Step 3: The hypercube with the max ρ value is removed by calling getMaxRho() and

is assigned to hc.

Step 4: If the stopping criteria is not met go to Step 1

Step 5: Return f(x∗) and x∗

8.5 V-Algorithm Implementation

The V-Algorithm generates a number of uniformly distributed points over the domain

and uses those points to create a Voronoi diagram covering the domain. The P-

Algorithm is executed over each of the line segments comprising the Voronoi diagram.

MATLAB is used to create the Voronoi diagram and return it to the Algorithm

through the MathFacade component. Note that this mechanism works well for the

development and analysis of these algorithms. However, if this or any other algorithm

is deployed for industrial use, a faster Voronoi diagram creation function may be

found or developed to eliminate execution time problems arising from the application

accessing MATLAB through the matlabcontrol proxy interface.

While a grid created in this manner is a passive grid, the P-Algorithm comprises

the adaptive, stochastic piece of this algorithm. This algorithm demonstrates how

different algorithms may be combined and leads to ensuring that the framework con-

tains the functionality to allow this to occur. Additionally, each P-Algorithm requires

no information from the other P-Algorithms execution and these P-Algorithms may

be executed independently.

83

8.5.1 V-Algorithm UML Class Diagram

The UML class diagram for the V-Algorithm is presented on Figure 8.7. Notice

that the V-Algorithm uses framework components AlgSelectionCriteria, AlgFactory,

AlgInterface and ObjFunctionInterface to create instances of P-Algorithm. In reality,

the V-Algorithm and the algorithms presented up to this point are created in a similar

fashion. The reason ObjFunctionFactory and ObjSelectionCriteria are not used is

because the Objective function that the V-Algorithm was created with is used, only

the limits are changed for each execution of the P-Algorithm.

Figure 8.7 UML class diagram for the V-Algorithm.

84

8.5.2 V-Algorithm UML Sequence Diagram

The realization of the V-Algorithm is presented below:

Step 1: The random function of Java is used to generate a specified number of

uniformly distributed points. These are placed in VornoiNParams, the interface object

for the voronoi function

Step 2: The voronoi() function of the MathEngineFacade is called. In turn the

required matlabcontrol functions are called to retrieve the line segments of the newly

created Vornoi diagram

Step 3: Set l = next line segment of the Voronoi diagram

Step 4: setUpper() and setLower are set to the endpoints of the next line segment.

Step 5: Build a new P-Algorithm referencing the objective function

Step 6: Set mt = result of P-Algorithm run on line segment l

Step 7: Set M = min(M, mt)

Step 8: If more segments to test go to Step 3

Step 9 : Return M as minimum

85

Step 2

 : V-Algorithm : MathEngine

Facade

 : matlabcontrolcaller : Rastrigin : AlgFactory : PAlg : VoronoiNParms

voronoi()

createAlgorithm()

VoronoiNParms() Create a Voronoi

Diagram.

Create a P-Algorithm and get the

minimum for the next Voronoi line

segment. Repeat for for all Voronoi

Diagram line segments.

Create a container for the points and lines

of the Voronoi Diagram. Fill with a set of

uniformly distributed points over the domain

getMX()

Return minimum of all

P-Algorithms of the Voronoi

Diagram.

getProxy()

MatlabTypeConverter()

setNumericArray()

eval()

getRealArray2D()

matlabcontrol

functions.

f(InputParameters)

createAlgSelectionCriteria

Create Algorithm Selection Criteria using

V-Algorithm's Objective Function

Repeat for all line

segments of the Voronoi

Diagram

setUpper()

setLower()

Step 1

Step 4

Step 5

Step 6, 7

getMX()

Figure 8.8 UML sequence diagram for the V-Algorithm.

86

8.6 Multithreaded V-Algorithm Implementation

The Multithreaded V-Algorithm executes each P-Algorithm as a separate thread.

The AlgRunner class is introduced to enable algorithms to execute their independent

pieces in parallel. AlgRunner contains a synchronized processResponse method that

the threads use to report their minimum result.

8.6.1 Multithreaded V-Algorithm UML Class Diagram

The UML class diagram for the Multithreaded V-Algorithm is presented on Figure 8.9.

The ObjFunctionSelectionCriteria is required since each tread must have its own

instance of the objective function. An AlgRunner class is added to schedule the

threads , limited by the java threadpool mechanism. AlgRunner contains the syn-

chronized processResponse() method to capture the minimum reported value of the

P-Algorithms.

Figure 8.9 UML class diagram for the multithreaded V-Algorithm.

87

8.6.2 Multithreaded V-Algorithm UML Sequence Diagram

The realization of the Multithreaded V-Algorithm is presented below:

Step 1: The random function of Java is used to generate a specified number of

uniformly distributed points. These are placed in VornoiNParams, the interface object

for the voronoi function

Step 2: The voronoi() function of the MathEngineFacade is called. In turn the

required matlabcontrol functions are called to retrieve the line segments of the newly

created Voronoi diagram

Step 3: Set l = next line segment of the Voronoi diagram

Step 4: Use the objFunctionSelectionCriteria to create a new instance of the objective

function.

Step 5: Build a new P-Algorithm referencing the objective function

Step 6: Create and run the P-Algorithm thread (log intermediate values). Thread

calls processResponse() upon completion to determine minimum.

Step 7: If more line segments go to Step 3

Step 8 : After all threads have completed call getMinVal() to retrieve the minimum

and where the minimum occurred. Return M as minimum

88

Step 2

 : V-Algorithm : MathEngine

Facade

 : matlabcontrolcaller : ObjFunction

Factory

 : SimpleLog : AlgRunner : Rastrigin : AlgFactory : PAlg : VoronoiNParms

create a Voronoi

Diagram.

Create a container for the

points and lines of the

Voronoi Diagram.

Run each P-Algorithm as a separate thread. Each

thread reports min to processResponse
matlabcontrol

functions.

voronoi()
getProxy()

MatlabTypeConverter()

setNumericArray(

eval()

getRealArray2D()

createAlgorithm()

VoronoiNParms()

getMinVal()

Returns min value after all

threads have completed

run() getMX()

write()

processResponse()

createFunction()

Create a new instance of

the objective function

Create a new

P-Algorithm

Repeat for all line

segments of the

Voronoi diagram

getMX()

Step 1

Step 4

Step 5

Step 6

Step 8

Figure 8.10 UML sequence diagram for the multithreaded V-Algorithm.

89

8.7 V-covariance Algorithm Implementation

The V-Covariance algorithm retrieves a Voronoi Diagram for a minimal partitioning

of the domain. At each iteration, a new point is generated and is used to compute a

new Voronoi diagram covering the domain. A way to speed this algorithm would be to

develop or find a function that would rebuild the Voronoi diagram by reconstructing

the cells modified by adding the new point instead of rebuilding the entire diagram

on each iteration.

90

8.7.1 V-Covariance Algorithm UML Class Diagram

The UML diagram for the V-Covariance algorithm is presented on Figure 8.11.

Instead of using matlabcontrol, the V-Covariance class includes matrix computation

libraries for Apache and Mathworks directly. An alternative (preferable) approach is

to hide the matrix operations behind the MathEngineFacade. This was not done to

demonstrate the flexibility of the framework in that an application is not required to

use the framework implementations of mathematical functions if others are desired.

Figure 8.11 UML class diagram for the V-Covariance Algorithm.

91

8.7.2 V-covariance Algorithm UML Sequence Diagram

The realization of the V-Algorithm is presented below:

Step 1: Set Voronoi points to the corners of the domain and p

Step 2: Call getSI()to compute the inverse of the Sigma Matrix

Step 3: Call voronoi() to build a Voronoi Diagram using the corners of the domain

and p

Step 4: Set bestLoc = first point of the Voronoi diagram

Step 5: Compute meg, the negative gain of bestLoc, using Sigma inverse

Step 6: Set pt = next point of the Voronoi diagram

Step 7: Set ng = negGain() of pt

Step 8: if (ng < meg)

Step 9: ng = meg

Step 10: bestLoc = pt

Step 11: If more points go to step 6

Step 11: M = min(f(bestLoc), M)

Step 12: Call putIP() to add bestLoc to collection of points to build the next Voronoi

diagram

Step 13: If stopping criteria not met go to Step 2

Step 14 : Return M as minimum

92

Step 2

 : V-CAlgorithm

getSI()

 : MathEngine

Facade

 : VoronoiParms : Rastrigincaller

voronoiVerts()

clip()

nOPs()

getOPAt()

negGain()

getOPAt()

negGain()

getOPAt()

f(InputParameters)

putIP()

repeat until stopping

criteria met

repeat for every point in

the Voronoi diagram

test for min at best

Loc

getMX()

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8-11

Step 12

Step 13

Figure 8.12 UML sequence diagram for the V-Covariance Algorithm.

93

8.8 HP-Algorithm Implementation

The HP-Algorithm stratifies the hypercubic domain into a number of pyramids. As in

the case of the Quadtree Decomposition algorithm, each initial partition is assigned

a value which signifies how likely the global minimum resides in that hyperpyramid,

while testing for the global minimum at the center of the pyramid. The algorithm

runs until stopping criteria is met.

In developing this algorithm, it becomes apparent that the functions which

initially partition the domain, perform the split on the hyperpyramid being split

(and determine the area) and the functions used in the goodness computation (ρ or γ)

(reference Abstract Factory or Builder in [13]).

8.8.1 Hyperpyramid Decomposition-Algorithm Class Diagram

The class diagram for the Hyperpyramid Decomposition (HP) Algorithm is shown on

Figure 8.13.

Figure 8.13 UML class diagram for the HP-Algorithm.

94

8.8.2 Hyperpyramid Decomposition-Algorithm UML Sequence Diagram

The UML sequence diagram for the Hyperpyramid Decomposition (HP) Algorithm

is shown on Figure 8.14.

The Realization for the HP-Algorithm (Hyperpyramid Decomposition) is pre-

sented below:

Step 1: Compute the hyperpyramids for the unit cube

Step 2: Compute ρ for each hyperpyramid by calling computeRho()

Step 3: Place hyperpyramids on priority queue keyed by ρ by calling putCP()

Step 4: Remove the hyperpyramid with maximum ρ from the priority queue by calling

getMaxCP()

Step 5: Divide hyperpyramid into smaller (1
2) hyperpyramids by calling splitCell()

Step 6: Place hyperpyramids on priority queue keyed by ρ by calling putCP()

Step 7: if stopping criteria not met go to step 4

Step 8: return M as minimum

95

 : VCRhoClasscaller : HP-Algorithm : MLinesAnd

Points

 : Rastrigin : RhoEpsilon1 : VoronoiNParms

getMX()

getMaxCP()

splitCell()

getMin()

repeat for number of iterations

or until stopping criteria is met

addLine()

addPoint()

Store lines and points for display

using MATLAB (if STO flag is set

to true)

putCP()

putCP()

computeRho()

computeRho()

Repeat for the number

of initial h-pyramids

addLine()

addPoint()

f(InputParameters)

f(InputParameters)

getEps()

getEps()

Step 3

Step 2

Step 4

Step 5

Step 6

Figure 8.14 UML sequence diagram for the HP-Algorithm.

CHAPTER 9

GLOBAL OPTIMIZATION FRAMEWORK

9.1 Tools for Global Optimization

9.1.1 MATLAB

MATLAB is arguably the most well known and function-rich mathematical applica-

tion development and display environment in use. The MATLAB environment pro-

vides a High Order Language for the implementation of algorithms. There are draw-

backs, however. While the MATLAB language does have Object Oriented capabilities,

they are not sufficient to implement the design patterns of [13]. Multithreading is

possible, but is not as convenient or efficient as the mechanisms provided in the more

general purpose High Order Languages.

MATLAB does provide a large assortment of highly reliable mathematical and

graphics functions, some of which are used to generate the diagrams of this thesis.

9.1.2 Java

The Java High Order Language was chosen for both the capability to implement

the design patterns of [13]; in fact, all of those design patterns are implemented in

Java in [9]. Because of this and the threading capabilities built into the Java virtual

machine, Java was chosen as the implementation language for this work. It should also

be noted (as demonstrated by the graphs displayed in this document) that static Java

functions can easily be invoked and results imported into the MATLAB environment.

If the algorithms are designed such that an array of doubles are returned, after a Java

function is called, the array can be manipulated by the MATLAB environment as if

the array was declared and filled in the MATLAB environment. Because of these two

96

97

capabilities, Java is the language/virtual machine of choice for the implementation of

the optimization algorithms.

9.1.3 matlabcontrol

In addition to returning values to the MATLAB environment, a collection of Java

functions packaged into an executable jar file are available for use in calling MATLAB

functions from Java. matlabcontrol, a package developed for the automatic grading

of Java programs, uses the proxy design pattern to provide a mechanism for a Java

program to call and retrieve values from MATLAB functions. While the overhead of

calling and retrieving values through the proxy probably precludes using matlabcon-

trol in production code (equivalent Java functions would be found or developed as in

the case of the V-Covariance Algorithm), the interface provided by matlabcontrol is a

way to get to the rich and reliable functionality of MATLAB functions. Additionally,

one can see the progress of an optimization function in real time as diagrams are

reconstructed throughout the execution of the algorithm.

One significant result of this research effort was to add entries into the mat-

labcontrol compatibility table for the version of the operating system and MATLAB

version used.

9.1.4 Object Oriented Software Design (OOSD)

Object Oriented Software Design was used to develop the framework and algorithms.

Use cases were not provided as the author provided both the requirements and

implementation for the algorithms and framework. Use cases are typically used to

bridge this gap. A high level UML is used in that not every variable and every

method for a class is defined. If this is desired, code is available and there are many

automated tools available that can provide this data by reverse engineering.

Rational Rose 98 was used to create the UML diagrams.

98

9.1.5 Design Patterns

The following design patterns of [13] are used in the Global Optimization framework:

1. Singleton – Ensure a class has only one instance, and provide a global point of

access to it. Singleton is used wherever only one instance (object) is required.

This is the case for MathEngineFacade, the factories that emit the Algorithm

and objective function strategy objects. Singleton is also used for the containers

that house the priority queues that occur in many of the algorithms. For mul-

tithreaded applications singleton typically provides a synchronized rendezvous

point for the multiple threads.

2. Strategy – Define a family of algorithms, encapsulate each one, and make them

interchangeable. Strategy lets the algorithm vary independently from the clients

that use it. Strategy is used to encapsulate and provide a common (by inheriting

from a common base class), the algorithms and objective functions of the

application. The Algorithms and Strategy object are emitted from concrete

factories. Emitting the objects from concrete factories enable these concrete

factories to be incorporated into a Factory Method or Abstract Factory design

pattern later if this is desired.

3. Facade – Provide a unified interface to a set of interfaces in a subsystem. Facade

defines a higher-level interface that makes the subsystem easier to use. The

matlabcontrol interface is implemented behind a singleton facade in order to

hide the implementation of the MATLAB functions from the application. In the

case of the V-covariance algorithm the matrix functions were implemented in the

application itself using Java functions. A preferred approach would be to hide

the Java imports of these packages behind the MathEngineFacade. However, by

implementing them in the application, it is shown that a developer may choose

99

to use the functions provided by the framework or not – until perhaps such time

as they are built into the framework.

4. Proxy – Provide a surrogate or placeholder for another object to control access

to it. Proxy is mentioned because this design pattern provides the interface

to the matlabcontrol functions. Proxy is used because calls to the MATLAB

(in the executable jar file jmi.jar delivered with MATLAB) must be done by a

different thread than the caller’s. MathEngineFacade can be thought of as a

layer on top of the MATLAB control proxy.

9.1.6 Integrated Development Environments (IDEs)

Borland jBuilder 2006 is the IDE used initially to develop the framework. However

as versions of Java, MATLAB and matlabcontrol evolved, jBuilder 2006 no longer

supported Java. The latest version of jBuilder is now an Eclipse IDE plugin. For this

work using the jBuilder Eclipse plugin was not significantly better than using Eclipse

directly. Therefore, the project was converted to Eclipse and the Eclipse IDE is the

IDE used to develop the framework and examples.

9.2 A Framework for Global Optimization Algorithms

TheUML Class diagram for the framework (as it exists at the time of this writing) is

shown on Figure 9.1.

100

VoronoiNParms

getMaxCP()

nIPs()

getIpAt()

putIP()

nOPs()

getOPAt()

putUP()

nCPs()

getMaxCP()

putCP()

printvals()

untitled()

VoronoiNParms()

AlgRunner

start()

run()

waiting()

resetW()

getMinVal()

processResponse()

HCPoint

HCPoint()

getP()

getL()

getRho()

HCPoints

hcp : PriorityQ

addH()

getMaxRho()

Instance()

SimpleLog

write()

Vcell

nIPs()

getIPAt()

putIP()

setCP()

getCP()

getRho()

setRho()

clip()

VcellsPQ

clearQ()

nCPs()

getMaxCP()

putcP()

getVals()

printVals()

matlabcontrol

getProxy()

MatlabTypeConverter()

setNumericArray()

eval()

getRealArray2D()

MathEngineFacade

Instance()

voronoi()

voronoiVerts()

EpsInterface

compEps()

getEps()

newN()

getN()

<<abstract>>

Func

<<enum>>

ObjFunctionSelectionCriteria
ObjFunctionFactory

Instance()

createFunction()

ObjFunctionInterface

f()

fPrime()

getUpper()

getLower()

getDegree()

printVals()

setUpper()

setLower()

setAuxFunction()

<<abstract>>

AlgInterface

getMin()

printVals()

getMX()

getVals()

reset()

<<abstract>>

AlgFactory

Instance()

createAlgorithm()

AlgSelectionCriteria

Alg

<<enum>>

This configuration allows algorithms and functions to be chosen

from all functions and algorithms in the build environment.

VcellRhoFunctionInterface

<<abstract>>

Allows key function values'

implementations to vary

A collection of points with

data concerning them (e.g.

2 points of a line and a

center point and a compare

value)

Multi thread

helper class

early implementation of HC alg

hypercubes

Hides MATLAB and external

library math implementations java to MATLAB

interface

MLinesAndPoints

addLine()

getP()

getIt()

addPoint()

getXVals()

getYvals()

convenient class for collections

of lines and point to be returned

for display.

Creates a time tagged

log file

InputParameters

getDim()

X()

setX()

getX()

gt()

lt()

eq()

setYval()

getYval()

Contains a

point in

n-space and

f(x)

Figure 9.1 Global optimization algorithm framework classes.

101

9.2.1 Using the Framework to Create an Algorithm

Figure 9.2 shows a sequence diagram for the Global Optimization Framework used

to create P-algorithm. The steps are as follows:

Step 1: MINDriver (or MATLAB) invokes a static MIN function to begin

Step 2: MIN builds the ObjFunctionSelectionCriteria for the objective function (in

this case, a polynomial function)

Step 3: MIN calls createFunction in the ObjFunctionFactory to create the function

Strategy object

Step 4: MIN instantiates an epsilon function

Step 5: MIN builds the AlgSelectionCriteria (including a refernce to the ObjFunction)

Step 6: MIN calls createAlgorithm in the AlgFactory (singleton) to create the algo-

rithm connected to the objective function*

Step 7: MIN calls getMX in the algorithm to determine the minimum

Step 8: P-Alg continues to max γ segment and splits it according to the p-Algorithm

to determine the min of the function

Step 9: return M as minimum along with the point where the minimum occurred.

*At this point an object is created that can be executed on this machine or

elsewhere.

102

 : PAlg : MINDriver : MIN : ObjFunction

Factory

 : VcellsPQ : PAlgEps1 : PolyFunction : AlgFactory

MIN.main()

createFunction() PolyFunction()

createAlgorithm()
PAlg()

putcP()

Wrapper around a PQ

createSelectionCriteria()

createSelectionCriteria()

getMX()

getMaxCP()

getEPSFunction()

getEpsilon()

putcP()

Figure 9.2 Using the framework to create a P-Algorithm.

103

9.3 Classes of the Framework

A brief description of the classes comprising the Framework for Global Optimization

Algorithms.

9.3.1 InputParameters

This class represents a point in n-space. It contains n and a d-sized array of doubles

for each coordinate of the point. It also contains utility functions (norm, init, add

subtract, etc.) for the points. It contains the y = f(x) value for the point, typically

evaluated at the objective function.

9.3.2 Function Creation Classes

These classes are those required for creation of objective functions. The objec-

tive function, once created, is emitted from the ObjFunctionFactory as a Strategy

object. When algorithms are deployed, it may be advantageous to eliminate the

ObjFunctionSelectionCriteria and instead create a separate factory for individual

objective functions (e.g., a RastriginFunctionFactory). However, this configuration is

preferable for developing and experimenting with global optimization algorithms.

ObjFunctionInterface

ObjFunctionInterface is an abstract class that provides the interface and base class

for all objective functions.

ObjFunctionFactory

ObjFunctionFactory is a concrete factory that emits an objective function strategy

object of base type ObjFunctionInterface.

104

ObjFunctionSelectionCriteria

ObjFunctionCriteria contains a Func enumerated type, telling which function is to

be created and the input values required to create the function.

Func

An enumerated type that contains one value for each objective function that can be

instantiated.

9.3.3 Algorithm Creation Classes

AlgInterface

AlgInterface is an abstract class that provides the interface and base class for all

algorithms.

AlgFactory

AlgFactory is a concrete factory that emits an algorithm Strategy object of base type

AlgFactoryInterface.

AlgSelectionCriteria

AlgSelectionCriteria contains an Alg enumerated type, telling which algorithm is to

be created, and the input values(to include the objective function) required to create

the algorithm Strategy object.

Alg

An enumerated type that contains one value for each algorithm that can be instanti-

ated.

9.3.4 Key Function Base Classes

These classes provide interfaces for the important functions that recur in the devel-

opment of adaptive, stochastic global optimization algorithms.

105

EpsInterface

This class provides an interface for εn for the P-Algorithm and others that require an

epsilon function that approaches 0 as n→ +∞.

VcellRhoFunctionInterface

This class provides an interface for ρ values used by the HC-Algorithm and others.

9.3.5 Voronoi Diagram Related Classes

These classes are those needed to encapsulate the Voronoi Diagram values and the

Priority Queue to return the cell with the maximum rho value.

Vcell

Vcell contains the data pertaining to a Voronoi cell. This includes the points that are

the vertices of the voronoi cell along with the rho value.

VcellsPQ

This call encapsulates the priority queue of Vcells.

Voronoi(N)Parms

This class is a container for a Voronoi diagram. It consists of a collection of all cells

(returned for the MathEngineFacade).

9.3.6 Hypercube Algorithm Classes

These classes pertain to the HC-Algorithm.

HCPoint

Contains a point that identifies a corner of the hypercube. It also contains the ρ value

and barycenter of the hypercube.

106

HCPoints

Contains the priority queue for the collection of HC points comprising the domain.

9.3.7 Multithreading Class

AlgRunner

AlgRunner contains the functionality to allow algorithms to be multithreaded, pro-

vides a synchronized point where threads can report results, and is where the mini-

mum value is tested for and found.

9.3.8 MATLAB Return Values and Other Container Classes

These classes are provided for use in storing and displaying values to the developer.

MLinesAndPoints

This class provides a convenient place to store points and lines to be returned to the

MATLAB environment at program completion.

simplelog

This class writes intermediate output results to a log file along with a time stamp.

REFERENCES

[1] Handbook of Discrete and Computational Geometry, Second Edition (Discrete
Mathematics and its Applications). Chapman and Hall/CRC, 2 edition, April
2004.

[2] R.C. Buck. Advanced calculus. McGraw-Hill, New York„ 1956.

[3] Adam D. Bull. Convergence rates of efficient global optimization algorithms. Journal
of Machine Learning Research, 12:2879, 2011.

[4] Chen Y. Zilinskas A. Calvin, J.M. An adaptive univariate global optimization
algorithm and its convergence rate for twice continuously differentiable functions.
Journal of Optimization Theory and Applications, 155:628–636, 2010.

[5] J. Calvin and A. Zilinskas. On the convergence of the p-algorithm for one-dimensional
global optimization of smooth functions. Journal of Optimization Theory and
Applications, 102:479–495, 1999. 10.1023/A:1022677121193.

[6] J. Calvin and A. Zilinskas. One-dimensional p-algorithm with convergence rate
o(n−3+δ) for smooth functions. Journal of Optimization Theory and Applications,
106:297–307, 2000. 10.1023/A:1004699313526.

[7] J.M. Calvin and A. Zilinskas. On a global algorithm for bivariate smooth functions.
Journal of Optimization Theory and Applications, 2003. To appear.

[8] H.E. Romejin C.G Boender. Stochastic methods. In Handbook of Global Optimization,
volume 2, pages 829–869. Kluwer Academic Publishers, New York, 1995.

[9] J.W. Cooper. Java Design Patterns: A Tutorial. Addison-Wesley, Reading, MA,
2000.

[10] Serhrouchni A. Fayçal M. Cap: a context-aware peer-to-peer system. In Proceedings
of the 2007 OTM Confederated international conference on On the move to
meaningful internet systems - Volume Part II, OTM’07, pages 950–959, Berlin,
Heidelberg, 2007. Springer-Verlag.

[11] Scott K. Fowler M. UML Distilled: A Brief Guide to the Standard Object Modeling
Language. Addison-Wesley, 2003.

[12] Günther O. Gaede V. Multidimensional access methods. ACM Comput. Surv.,
30(2):170–231, 1998.

[13] Johnson R. Vlissides J. Gamma E., Helm R. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

107

108

[14] Tamassia R. Goodrich M. T. Algorithm Design: Foundations, Analysis and Internet
Examples. John Wiley & Sons, Inc., New York, NY, USA, 2nd edition, 2009.

[15] Neumaier A. Huyer W. Global optimization by multi-level coordinate search. Journal
of Global Optimization, 14:331–355, 1999.

[16] Brady M. Smith S. Jenkinson M., Bannister P. Improved optimization for the
robust and accurate linear registration and motion correction of brain images.
NeuroImage, 17(2):825–841, October 2002.

[17] Perttunen C.D. Stuckman C.D. Jones, D.R. Lipschitizian optimization without the
lipschitz constant. Journal of Optimization Theory and Applications, 79:157–181,
1993.

[18] Solomatine D.P. Maskey S., Jonoski A. Groundwater remediation strategy using
global optimization algorithms. Journal of Water Resources Planning and
Management, 128:431–440, 2002.

[19] H. Neiderreiter. Random number generation and quasi-monte carlo methods. Society
for Industrial and Applied Mathematics, 1992.

[20] S. Waldron. Sharp error estimates for multivariate positive linear operators which
reproduce the linear polynomials. In: C.K. Chui, L.L. Schumaker(eds.)
Approximation Theory IX, 1:339–346, 1993.

[21] A. A. Zhigljavsky. Theory of Global Random Search, volume 65 of Mathematics and
its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht,
1991.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgement
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3
of 4)
	Table of Contents (4
of 4)
	Chapter 1: Introduction
	Chapter 2: On a Global Optimization Algorithm for Multivariate Smooth Functions
	Chapter 3: A Two Variate Global Optimization Algorithm
	Chapter 4: P-Algorithm
	Chapter 5: η-Adic Grids and Algorithms
	Chapter 6: Algorithms that Use the Voronoi Diagram
	Chapter 7: Algorithms that Use Triangulation
	Chapter 8: Global Optimization Algorithms Implementation
	Chapter 9: Global Optimization Framework
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

