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ABSTRACT 

DESIGNING NOVEL ABSTRACTION NETWORKS FOR ONTOLOGY 

SUMMARIZATION AND QUALITY ASSURANCE 

 

by 

Christopher Ochs 

Biomedical ontologies are complex knowledge representation systems. Biomedical 

ontologies support interdisciplinary research, interoperability of medical systems, and 

Electronic Healthcare Record (EHR) encoding. Ontologies represent knowledge using 

concepts (entities) linked by relationships. Ontologies may contain hundreds of thousands 

of concepts and millions of relationships. For users, the size and complexity of ontologies 

make it difficult to comprehend “the big picture” of an ontology’s content. For ontology 

editors, size and complexity make it difficult to uncover errors and inconsistencies. Errors 

in an ontology will ultimately affect applications that utilize the ontology. 

 In prior studies abstraction networks (AbNs) were developed to provide a 

compact summary of an ontology’s content and structure. AbNs have been shown to 

successfully support ontology summarization and quality assurance (QA), e.g., for 

SNOMED CT and NCIt. Despite the success of these previous studies, several major, 

unaddressed issues affect the applicability and usability of AbNs. This thesis is broken 

into five major parts, each addressing one issue. 

 The first part of this dissertation addresses the scalability of AbN-based QA 

techniques to large SNOMED CT hierarchies. Previous studies focused on relatively 

small hierarchies. The QA techniques developed for these small hierarchies do not scale 

to large hierarchies, e.g., Procedure and Clinical finding. A new type of AbN, called a 

subtaxonomy, is introduced to address this problem. Subtaxonomies summarize a subset 



 

of an ontology’s content. Several types of subtaxonomies and subtaxonomy-based QA 

studies are discussed. 

 The second part of this dissertation addresses the need for summarization and QA 

methods for the twelve SNOMED CT hierarchies with no lateral relationships. Previously 

developed SNOMED CT AbN derivation methodologies, which require lateral 

relationships, cannot be applied to these hierarchies. The Tribal Abstraction Network 

(TAN) is a new type of AbN derived using only hierarchical relationships. A TAN-based 

QA methodology is introduced and the results of a QA review of the Observable entity 

hierarchy are reported. 

 The third part focuses on the development of generic AbN derivation methods 

that are applicable to groups of structurally similar ontologies, e.g., those developed in 

the Web Ontology Language (OWL) format. Previously, AbN derivation techniques were 

applicable to only a single ontology at a time. AbNs that are applicable to many OWL 

ontologies are introduced, a preliminary study on OWL AbN granularity is reported on, 

and the results of several QA studies are presented. 

 The fourth part describes Diff Abstraction Networks, which summarize and 

visualize the structural differences between two ontology releases. Diff Area Taxonomy 

and Diff Partial-area Taxonomy derivation methodologies are introduced and Diff 

Partial-area taxonomies are derived for three OWL ontologies. The Diff Abstraction 

Network approach is compared to the traditional ontology diff approach. 

 Lastly, tools for deriving and visualizing AbNs are described. The Biomedical 

Layout Utility Framework is introduced to support the automatic creation, visualization, 

and exploration of abstraction networks for SNOMED CT and OWL ontologies. 
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CHAPTER 1  

INTRODUCTION 

1.1 Motivation 

Biomedical ontologies and terminologies are knowledge structures used to represent the 

entities and relationships between entities within the domain of biomedicine. These 

knowledge structures support information encoding and interoperability in healthcare 

information systems, such as Electronic Healthcare Records (EHRs) [1-3]. Ontologies 

and terminologies also support interdisciplinary research [4, 5], information retrieval [4, 

5], knowledge management [6-9], natural language processing (NLP) [10-12], and many 

other applications [4, 13]. 

 Ontologies and terminologies represent knowledge using concepts and 

relationships. A concept represents a unique entity within a domain. A relationship 

represents a connection between exactly two concepts. Concepts are hierarchically 

organized using subsumption relationships (i.e., x IS-A y; x is a SUBCLASS of y) which 

form the backbone of an ontology. Subsumption relationships define the generalization 

and specialization of a concept [14]. For example, within the SNOMED CT terminology 

[15, 16], the concept Infective pneumonia has an IS-A relationship to the concept 

Pneumonia because infective pneumonia is a specialization of pneumonia (see Figure 

2.1). Concepts can be further defined using labeled lateral relationships, which express 

non-hierarchical connections between two concepts. In SNOMED CT, the concept 

Pneumonia has a Finding site lateral relationship to the concept Lung because 

pneumonia occurs in the lungs. 
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 In general, ontologies are more formally modeled than terminologies. 

Terminologies, such as SNOMED CT, may be structurally similar to ontologies. 

Stenzhorn et al. [17] discuss the differences between terminologies and ontologies in the 

context of clinical ontologies. Schulz et al. briefly discuss the differences between 

terminologies and ontologies [18]. For this dissertation, ontologies and terminologies in 

general will be referred to as just ontologies. When referring to a specific ontology or 

terminology the appropriate term will be used, e.g., SNOMED CT terminology and OWL 

ontology. 

 Ontologies are typically large and complex. They often contain hundreds of 

thousands of concepts and millions of relationships. The size and complexity of most 

ontologies makes it difficult to comprehend their content and structure. Comprehension is 

important for ontology integration, usability, and quality assurance. Errors and 

inconsistencies are unavoidable and difficult to detect in a large ontology. An error in an 

ontology may lead to errors in applications which use the ontology [19]. However, 

resources for ontology quality assurance are typically very limited. Therefore, it is 

necessary to develop methods that assist ontology quality assurance efforts. 

 Traditionally, ontologies are viewed through the lens of a concept browser. These 

browsers typically show information for one concept at a time. Concepts browsers 

provide information about a concept’s neighborhood: its parents, children, relationships, 

and attributes. Concept browsers are good at providing a micro-level view of an 

ontology’s content but they are not helpful for understanding the content and structure of 

an entire ontology, i.e., the macro-level “big picture.” 
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 In previous work, abstraction networks were developed to summarize the content 

and structure of several different ontologies [20-25]. An abstraction network is a 

relatively compact collection of nodes and links derived from the underlying ontology. 

Each abstraction network node represents a subset of concepts which are determined to 

be “similar,” where the definition of similar is based on the type of abstraction network 

being derived. Abstraction network links summarize the ontology’s subsumption 

hierarchy. Abstraction networks provide ontology users and developers with a compact 

visualization of an ontology’s content and structure. Additionally, abstraction networks 

have been shown to support ontology quality assurance by identifying groups of concepts 

that are more likely to contain errors and inconsistencies than other concepts [22, 26-29]. 

 This thesis describes improvements to existing abstraction network derivation 

methodologies, derivation techniques for new types of abstraction networks, and new 

abstraction-network-based quality assurance methods. Additionally, tools for the 

automatic derivation and visualization of abstraction networks are introduced. Five 

important research areas are described: 

1.  The scalability of previously developed abstraction network quality assurance 

methodologies to large SNOMED CT hierarchies 

 

2. A hierarchy-based abstraction network for SNOMED CT hierarchies that have no 

outgoing attribute relationships 

 

3. Generalized abstraction network derivation techniques for groups of structurally 

similar ontologies 

 

4. An abstraction-network-based summary of structural changes between two 

ontology releases called a Diff Abstraction Network 

 

5. Software tools for automatically deriving, visualizing, and exploring abstraction 

networks 
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1.2 Dissertation Overview 

Chapter 2 provides background information on biomedical ontologies, abstraction 

networks, abstraction-network-based quality assurance methodologies, and a literature 

review of related work. Chapter 3 describes the methods and results for the various 

research topics introduced at the end of Section 1.1. Section 3.1 introduces four 

methodologies for creating subsets of SNOMED CT abstraction networks called 

subtaxonomies. Section 3.2 describes a new type of abstraction network, called the Tribal 

Abstraction Network, for SNOMED CT hierarchies which have no lateral relationships. 

In Section 3.3 generalized abstraction network derivation methodologies for structurally 

similar Web Ontology Language ontologies are described. Section 3.4 describes Diff 

Abstraction Networks for summarizing and visualizing the structural changes between 

two ontology versions. Lastly, Section 3.5 describes software systems for creating and 

visualizing abstraction networks for SNOMED CT and OWL ontologies. Chapter 4 

describes future work and Chapter 5 contains concluding remarks. 
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CHAPTER 2  

BACKGROUND 

2.1 Biomedical Ontologies 

Ontologies are formally modeled knowledge structures which cover the concepts, 

individuals, relationships, attributes, axioms, rules, and terms of a particular domain. 

Ontologies are a type of controlled terminology. An ontology’s concepts are usually 

organized into a subsumption hierarchy (e.g., IS-A or subclass relationships; Infective 

pneumonia IS-A Pneumonia). Further connections between pairs of related concepts are 

represented by lateral relationships, e.g., Pneumonia Finding site Lung. Knowledge 

about an individual concept, such as its unique identifier, name, definition, and 

synonyms, are often treated as attributes of the concept. Many ontologies are developed 

using Description Logic (DL) [30], which enables the formal definition of concepts. The 

subsumption hierarchy serves as a skeleton of an ontology and supports the inheritance of 

properties, such as relationships and attributes, by a concept from its parent concepts. 

Several examples of ontologies will be provided throughout this dissertation. 

 “[Biomedical] researchers must aggregate and integrate information, and they 

need tools to enable knowledge discovery in this data-rich paradigm. [Ontologies] 

describe the structure of their complex domains and relate their data to shared 

representations of biomedical knowledge” [4]. Thus, modern biomedical research, which 

often relies on the interoperability of large sets of data, is more difficult without 

ontologies. In the field of biomedicine, ontologies have become important for 

constructing intelligent decision-support systems, simulation systems, and information-

retrieval systems [4, 5, 31, 32]. Ontologies are also becoming increasingly important for 
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natural language processing systems [10-12] and the standardized encoding of Electronic 

Healthcare Record (EHR) data [1, 2]. Several ontologies and ontology frameworks that 

play a significant role in this thesis will now be explained in detail. 

2.1.1 SNOMED CT 

SNOMED CT (formerly the Systematized Nomenclature of Medicine – Clinical Terms, 

or SNOMED Clinical Terms) [15, 16] is a large medical terminology managed by the 

International Health Terminology Standards Development Organization (IHTSDO), a 

multinational organization with over 20 member nations [33]. SNOMED CT was created 

by merging the SNOMED Reference Terminology (SNOMED RT) with the Clinical 

Terms Version 3 (CTV3) terminology [16]. New versions of SNOMED CT are released 

in January and July of each year. Recent versions of SNOMED CT contain nearly 

300,000 active medical concepts connected by almost 1.5 million relationships. 

SNOMED CT’s concepts are organized hierarchically using IS-A relationships. 

 SNOMED CT plays an important role in EHRs by providing standardized 

encodings for healthcare data. By 2015, SNOMED CT is slated to be the standard 

terminology for encoding diagnoses and problem lists in EHRs in the United States [34]. 

SNOMED CT can also be used for natural language processing, data mining, and cross 

mapping between other terminologies, such as ICD-10 [35]. Subsets of concepts can be 

extracted from SNOMED CT to cover a particular domain. Examples of such subsets 

include the Clinical Observations Recording and Encoding (CORE) problem list [36], the 

Veterans Health Administration problem list, and the Kaiser Permanente problem list 

[37]. These problem lists are composed of sets of concepts that are deemed useful for the 

encoding of clinical information.  
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Figure 2.1  An example of SNOMED CT’s structure for the concept Bacterial 

pneumonia. Concepts are shown as labeled boxes, IS-A relationships are shown as thin 

blue arrows directed upwards. Dashed blue arrows represent a sequence of IS-A 

relationships. Attribute relationships are shown with thick labeled arrows.  
Source: [38] 

 

 SNOMED CT is created using a DL language named EL [39]. EL includes a 

subset of the functionality available in complete DL. SNOMED CT is publicly 

distributed in two forms: the inferred view and the stated view. SNOMED CT is 

structured as a directed acyclic graph (DAG); concepts may have more than one parent 

concept. Concepts are organized into 19 mostly disjoint top-level hierarchies that cover 

topics such as medical procedures, clinical findings, and anatomy. SNOMED CT calls 

lateral relationships by the somewhat misleading name “attribute relationships” (just 

relationships for short).  



 

 

 
Figure 2.2  The concepts and relationships needed to define the concept Hematoma of pinna in SNOMED CT.  Concepts are shown as 

labeled grey boxes, thick black edges represent IS-A relationships, while thin labeled edges represent attribute relationships. 

8
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 Lateral relationships are used to further define concepts by creating 

nonhierarchical associations to other concepts in SNOMED CT, e.g., Bacterial 

pneumonia is the source of a finding site relationship with a target concept Lung structure 

(Figure 2.1). 

 Figure 2.1 provides an example of SNOMED CT’s structure using a box and 

arrow diagram where each concept is a labeled box and arrows are used to express 

relationships between concepts. Figure 2.1 shows the relationships used to define the 

concept Bacterial pneumonia. This figure shows that Bacterial pneumonia IS-A Infective 

pneumonia which is caused by a type of Bacteria (expressed using the causative agent 

relationship). Additionally, Bacterial pneumonia has a finding site of Lung structure. The 

finding site attribute relationship is inherited from Pneumonia, the grandparent of 

Bacterial pneumonia. Figure 2.2 shows a more complicated example, with the concepts 

and relationships needed to define the concept Hematoma of pinna (i.e., Bleeding pinna). 

 SNOMED CT concepts are pre-coordinated; a single concept identifier is used to 

represent a single clinical idea. However, SNOMED CT also enables the use of post-

coordination to represent a concept by combining two or more concepts, e.g., by creating 

a single expression consisting of several concepts related to each other by attributes. A 

SNOMED CT concept, and in general every DL concept, is either fully-defined or 

primitive. In primitive concepts, the definition is underspecified, meaning automated 

detection of subconcepts is not possible [30, 38]. 

2.1.2 Web Ontology Language (OWL) 

The Web Ontology Language (OWL) [40], developed by the World Wide Web 

Consortium (W3C), is a standardized framework and family of languages for creating 
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ontologies. Many well-known biomedical ontologies have been developed using OWL, 

including the NCI Thesaurus (NCIt) [41], the Gene Ontology (GO) [42], and the 

Ontology of Biomedical Investigations (OBI) [43]. Ontologies developed in OWL will be 

referred to as OWL ontologies.  

 OWL is based on DL and provides formal methods for defining ontological 

elements, such as concepts (called classes) and their relationships (called properties). 

There are several OWL sublanguages, including OWL Lite, OWL DL, and OWL Full. 

Each sublanguage offers different levels of DL expressiveness, with OWL Full being the 

most expressive. Additionally, there are several different OWL syntaxes, including OWL 

XML syntax and Manchester syntax [44]. 

 OWL ontologies are composed of classes, which represent sets of DL concepts. 

Classes are organized as a subsumption hierarchy using subclass of relationships (also 

known as superclass relationships). The example below, expressed in Manchester syntax, 

is the definition of the class Multiple Sleep Latency Test in the Sleep Domain Ontology 

(SDO) [45]. It states that Multiple Sleep Latency Test is a subclass of Polysomnography. 

Within OWL, annotations, such as labels and comments, can be provided for individual 

classes and properties. For example, the class Multiple Sleep Latency Test is annotated 

with a text definition (rdfs:comment) and a label (rdfs:label). 

Class: SDO:MultipleSleepLatencyTest 

Annotations:  

 rdfs:comment "A validated, objective measure of the ability or tendency  

to fall asleep under standardized conditions.  [Sleep Medicine 

Essentials – Teofilo L. Lee-Chiong]", 

 rdfs:label "Multiple Sleep Latency Test (MSLT)" 

 SubClassOf:  

 SDO:Polysomnography, 

 <http://purl.org/cpr/hasOutput> some SDO:SleepOnsetLatency 
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 Classes can be further defined by using properties. A property is a directed binary 

relation between two or more classes (object properties) or between classes and literal 

values (data properties). Both types of properties can be explicitly assigned domains and 

ranges (e.g., source and target classes of the binary relation), which serve as global 

restrictions on a property’s use. Alternatively, properties can be used as restrictions on 

class definitions, serving as a local restriction on their use. In the above example, the 

object property has output with the uniform resource identifier (URI) 

http://purl.org/cpr/hasOutput is used as a restriction on the class Multiple Sleep Latency 

Test.  

 OWL ontologies can import and extend other ontologies. A common ontology 

design pattern is to use a top level ontology, such as the Basic Formal Ontology (BFO) 

[46], and add classes and properties specific to a domain. Top domain ontologies, such as 

the Ontology for General Medical Sciences (OGMS) [47] and BioTop[48], extend top 

level ontologies and introduce general domain knowledge. Many ontologies, such as the 

Sleep Domain Ontology (SDO) [45] and Vital Sign Ontology (VSO) [49], import top 

domain ontologies and extend them with their own specific knowledge, e.g., sleep 

medicine and vital signs, respectively. This approach of importing ontologies enables 

interoperability and reuse of ontologies. 

2.1.3 NCBO BioPortal 

The National Center for Biomedical Ontology (NCBO) BioPortal is a large repository of 

ontologies that are focused on the domains of medicine and biology [50]. BioPortal is 

currently one of the largest ontology repositories, containing over 300 ontologies.  
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Figure 2.3  The BioPortal user interface. The Ontology of Clinical Research (OCRe) [51] 

was selected from the list of available ontologies. 

 

 The ontologies in BioPortal are made available in various formats such as Web 

Ontology Language (OWL) [40], Open Biological and Biomedical Ontologies (OBO) 

[52], and Resource Description Framework (RDF) [53]. Ontologies available on 

BioPortal will be referred to as BioPortal ontologies. BioPortal provides an interface for 

browsing, searching, and visualizing ontologies hosted in its repository. Figure 2.3 shows 

the BioPortal interface when the Ontology of Clinical Research (OCRe) [51] is selected 

from a list of hosted ontologies. BioPortal provides public APIs for retrieving ontologies 

and information about the concepts and relationships within an ontology. 

 The BioPortal ontologies cover a wide variety of topics in the field of 

biomedicine, including infectious diseases, drugs, and anatomy. BioPortal is also an 

important resource for understanding trends and preferences in ontology development. 

By analyzing the BioPortal ontologies, one can obtain an understanding of common 
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design techniques and knowledge modeling choices used by the BioPortal community to 

create ontologies. For example, one can analyze which ontologies utilize a certain top 

level ontology, or compare how two ontologies model the same concept. Mortensen et al. 

[54] analyzed the use of ontology design patterns in BioPortal ontologies and He et al. 

[55] analyzed the structure of a sample of BioPortal ontologies. 

2.2 Abstraction Networks 

Some biomedical ontologies are very large and complex knowledge structures. Size and 

complexity prevent users of an ontology from seeing the “big picture” of its content. 

Seeing the big picture of an ontology is important for browsing and searching for content, 

integration into applications, extending content, reusing content, and cross mapping to 

make associations with other ontologies. Additionally, seeing the big picture is important 

for quality assurance of ontology content.  

 Visualizing an entire ontology using a box and arrow diagram, such as Figure 2.1, 

allows a user to see the big picture for many concepts at once. Figure 2.2 shows all of the 

concepts, and most of the relationships, needed to define the SNOMED CT concept 

Hematoma of pinna. However, as more concepts and relationships are added to such a 

figure, it becomes overwhelming and its usefulness is lost. Figure 2.2 is considered to be 

on the boundary of being too overwhelming to be useful. Figure 2.4 shows the 

hierarchical relationships between the 4,503 concepts in the Physical object hierarchy of 

SNOMED CT and is overwhelming to the point of being useless. Figure 2.4 would be 

even less comprehensible if incoming relationships to target concepts within the 

hierarchy were also included.  
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Figure 2.4  The hierarchical relationships between the 4,503 concepts in the Physical 

object hierarchy of SNOMED CT. 

 

 Due to the difficulty of visualizing an ontology, content is traditionally viewed 

using a concept browser. Concept browsers show information for a small number of 

concepts at a time (often only one concept, called the focus concept). Examples of 

concept browsers include Protégé [56], CliniClue [57], and the UTS browsers for the 

UMLS and SNOMED CT [58]. Figure 2.5 shows the SNOMED CT concept Hematoma 

of pinna as displayed in the CliniClue browser. Most concept browsers only show one 

concept and its immediate neighborhood: its parents, children, relationships, and 

synonyms. This view of an ontology is very limited. A user cannot obtain the big picture 

of an ontology’s content and structure. 

 One way of obtaining the big picture of an ontology is through summarization. In 

previous research [20-25], various types of abstraction networks have been developed to 

summarize the content and structure of various ontological and terminological systems. 
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Figure 2.5  The concept Hematoma of pinna as viewed using the CliniClue SNOMED 

CT concept browser. 

 

 Abstraction networks consist of nodes which summarize a set of “similar” 

concepts, where the definition of similar is dependent on the type of abstraction network 

being created. Figure 2.6 illustrates the general process of deriving an abstraction 

network from an ontology. On the left, a hierarchy of concepts is represented using small, 

filled colored ovals. IS-A relationships are represented as black lines. Groups of similar 

concepts are illustrated using large, colored ellipses. The abstraction network created 

from the groupings of similar concepts is shown on the right side of Figure 2.6. Each 

group appears as one rectangular box, referred to as a node. 

 Abstraction networks support usability, comprehensibility, visualization, and 

quality assurance by producing a compact view of an ontology.  
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Figure 2.6  The general process of deriving an abstraction network for an ontology or 

terminology. 

 

 Abstraction networks are designed to be significantly reduced in size and 

complexity when compared to the underlying ontology. Using an abstraction network, 

one can view large portions of an ontology to obtain the “big picture” of an ontology’s 

content and structure. 

2.2.1 Previously Developed Abstraction Networks 

Different types of abstraction networks have been developed to summarize several 

different ontologies and terminologies. The abstraction network paradigm has been 

applied as the Refined Semantic Network (RSN) [59] to the Unified Medical Language 

System (UMLS) [60] and as the Schema [61] for the Medical Entities Dictionary (MED) 

[62]. The area and partial-area taxonomy abstraction networks were developed [22] for 

the National Cancer Institute thesaurus (NCIt) [41] and in [24] for SNOMED CT [16] 

hierarchies with attribute relationships (7 out of 19). The disjoint partial-area taxonomy 

abstraction network for SNOMED CT [23] further refines a partial-area taxonomy into 

disjoint groups called disjoint partial-areas. Due to the importance of the SNOMED CT 

area, partial-area, and disjoint partial-area taxonomies for this dissertation, their 

derivation methodologies will now be explained in detail. 
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2.2.1.1 Area and Partial-area Taxonomies for SNOMED CT. The area taxonomy 

and partial-area taxonomy are abstraction networks for SNOMED CT that summarize 

structurally and semantically similar concepts into groups called areas and partial-areas, 

respectively [24]. These taxonomies were developed as part of an ongoing effort to 

summarize SNOMED CT and enable the quality assurance of its content. An area 

summarizes a set of concepts that all share the exact same set of outgoing relationships. 

An area taxonomy is an abstraction network where the areas are nodes. 

Diagrammatically, an area is a box labeled with the common relationship names. In text, 

the relationship names are placed in braces to form the area name. Concept information 

aside from the relationships and number of concepts is abstracted away. 

 To demonstrate this, consider Figure 2.7 (a) with 17 concepts (labeled with their 

fully specified names) from the Specimen hierarchy. The thin arrows, which are directed 

upwards, are IS-A relationships between concepts. Concepts with the same outgoing 

attribute relationships are grouped together in a common dashed colored bubble. For 

example, the concepts Swab and Biopsy sample have a single relationship named 

Procedure. Specimen, Living sample, Genetic sample, Parasite sample, and Polar body 

sample have no relationships and are thus grouped in the  (empty set) bubble. 

 Figure 2.7 (b) shows the area taxonomy for the concepts in Figure 2.7 (a). Swab, 

Biopsy sample, and Swab of inanimate object are now represented solely by the 

Procedure area [55] with three concepts. Similarly, Upper respiratory swab sample, 

Cough swab, Swab from larynx, Swab from abdomen, and Swab from appendix are 

represented by the area {Procedure, Topography}. Areas are organized into color-coded 

levels based on the number of relationships.  
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Figure 2.7  (a) A sample of 17 concepts taken from the Specimen hierarchy. (b) The area 

taxonomy for the concepts in (a). (c) The partial-area taxonomy for the concepts in (a). 

Taxonomic elements have been labeled with red text and arrows. 

 

 Figure 2.8 shows the complete area taxonomy for the Specimen hierarchy. It 

consists of 22 areas organized into five levels. At the top are concepts with no 

relationships. 

 In every area there will be one or more concepts that do not have a parent concept 

within the area. Such concepts are called roots. An IS-A from a root to its parent in 

another area yields a hierarchical connection between the respective areas called child-of. 

In Figure 2.7 (b), child-of’s are represented as bold lines. For example, {Procedure, 

Topography} is child-of {Procedure} and {Topography}. IS-As between concepts within 

an area are abstracted away, just as the concepts they are connecting. In Figure 2.8 child-

Area 
Partial-area 

child-of 

Level 0 

Level 1 

Level 2 
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of relationships between areas are colored according to the child areas’ level to enable 

readability. Every concept is in exactly one area, i.e., all areas are disjoint. 

 The partial-area taxonomy refines the area taxonomy with the inclusion of 

partial-areas, each consisting of a root and all of its descendants in its area. Thus, the 

number of partial-areas in an area is equal to the number of roots. Figure 2.7 (c) shows an 

example of the derivation of partial-areas. Each partial-area appears as a white box inside 

its area. Each partial-area is labeled with its root’s fully specified name and the number of 

concepts grouped into the partial-area, e.g., the partial-area Specimen contains five 

concepts. For a more compact visualization, the number of concepts in a partial-area may 

be shown in parenthesis next to the root’s name (e.g., Specimen (29) in Figure 2.9). All 

other information about the concepts in the partial-area is abstracted away. 

 The concept Swab, a root of {Procedure}, and its child, Swab of inanimate object, 

are grouped into the partial-area Swab, the white box in {Procedure}. Partial-areas are 

also linked by child-of’s derived from the underlying IS-A relationships. Specifically, a 

partial-area A is a child-of another partial-area B if A’s root has a parent concept in B. In 

Figure 2.7(c), the partial-area Swab is child-of the partial-area Specimen. Figure 2.9 

shows the complete partial-area taxonomy for the Specimen hierarchy. It consists of 419 

partial-areas. Level 2 and Level 3 been organized into rows due to space limitations. All 

of the child-of links have been hidden for readability purposes. 



 

 

 
Figure 2.8  The complete area taxonomy for the Specimen hierarchy of SNOMED CT. 
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Figure 2.9  The partial-area taxonomy for the Specimen hierarchy. Child-of links between partial-areas are hidden due to space 

limitations.
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Figure 2.10  The {Identity, Substance} area in SNOMED CT’s Specimen hierarchy 

partitioned into inheritance regions. 

 

 Even though all concepts in an area have the same relationships (by definition), 

not all root concepts in an area obtain their relationship set in the same way. Some 

concepts inherit their relationships from a parent concept while others introduce a new 

type of relationship into the hierarchy. Areas can be partitioned into separate relationship 

obtainment pattern regions (called simply regions) [24]. Each region is distinguished by 

the pattern in which its relationships are introduced and/or inherited. Each region is 

named using the set of relationships for the associated area, but next to each relationship 

a ‘+’ is appended to indicate if it is introduced at this concept or a ‘*’ is appended to 

indicated if it is inherited from a parent of this concept. Graphically, all regions of a 

single area are drawn with a black outline within the same area box.  

 Figure 2.10 shows the three regions of the {Identity, Substance} area in 

SNOMED CT’s Specimen hierarchy. The root concepts Blood specimen from patient and 

Serum specimen from blood inherit both relationships, Identity and Substance, while the 

root concepts Blood specimen from blood donor and Blood specimen from newborn 

inherit the Substance relationship and introduce the Identity relationship. Theoretically 

{Identity, Substance} may have up to four different regions: inherit the first relationships 

and inherit the second, inherit the first and introduce the second, introduce the first and 

inherit the second, and introduce both the first and the second relationships. However, in 

practice, many of the possible regions do not exist. 
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 Partial-areas are not necessarily disjoint (remember that areas are disjoint, i.e., no 

concept can be in two areas). A given concept in a hierarchy may be grouped into more 

than one partial-area. When this occurs, the partial-areas that contain such concepts are 

called overlapping partial-areas. This situation occurs when a concept is a descendant of 

two or more roots in its area. These concepts are called overlapping concepts. 

Overlapping concepts elaborate the semantics of multiple roots within an area. In a 

partial-area taxonomy, overlapping concepts are counted as belonging to all of their 

root’s respective partial-areas. For example, in the {Substance} area at Level 1 (green) of 

Figure 2.9, summing the number of concepts contained in each partial-area results in 157 

concepts, which is a number larger than the number of unique concepts in the area, 

shown in Figure 2.8 (102 concepts). In {Substance} there are a total of 39 overlapping 

concepts, several of which overlap between three partial-areas. 

 The disjoint partial-area taxonomy abstraction network was developed to provide 

a complete and accurate view of the IS-A hierarchy within an area [23]. Based on the IS-

A relationships between concepts within an area, a disjoint partial-area taxonomy 

partitions an area into disjoint, singly-rooted groups called disjoint partial-areas. Disjoint 

partial-areas are defined using concepts which are identified as overlapping roots.  

 Figure 2.11 provides an example of a hierarchy of overlapping concepts from 

{Substance} in SNOMED CT’s Specimen hierarchy. Color is used to indicate which 

partial-areas an overlapping root overlaps between. For example, the overlapping root 

Body fluid sample overlaps between the partial-areas Fluid sample and Body substance 

sample. The single-colored concepts are “normal” partial-area roots. A concept is defined 

as a base overlapping root if all of its parents are non-overlapping concepts.  
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Figure 2.11  A hierarchy of overlapping concepts within the Specimen hierarchy’s 

{Substance} area. Partial-area roots are singly colored. Overlapping roots are 

multicolored according to the partial-areas they overlap between. 
Source: [24] 

 

 In Figure 2.11 Inhaled gas specimen, Exhaled air specimen, Body fluid sample, 

Fecal fluid sample, Soya milk sample, Dialysis fluid specimen, and Intravenous fluid 

sample are base overlapping roots. A concept L is an overlapping root if either it is a base 

overlapping root or there exist two concepts C1 and C2 (C1 ≠ C2) such that L is a 

descendant concept of both C1 and C2 and either C1 is an overlapping root and C2 is a 

partial-area root (or vice-versa) or both C1 and C2 are overlapping roots [23]. The blue-

green-purple concepts in Figure 2.11 (e.g., Arterial blood specimen) are examples of non-

base overlapping roots, as they all share a common ancestor (Body fluid sample) which is 

an overlapping root. 



25 

  

 
Figure 2.12  The disjoint partial-area taxonomy for the example of overlapping concepts 

in Figure 2.11. 
Source: [24] 

 

 A disjoint partial-area consists of an overlapping root and all of its descendants 

that are not descendants of another overlapping root. That is, an overlapping concept c 

will belong to a disjoint partial-area d if there is a path from c to the root of d and no 

other overlapping roots are on the path from c to the root of d. For example, in Figure 

2.11, the concept Mixed venous blood specimen belongs to the disjoint partial-area 

Venous blood specimen (2), and not the disjoint partial-area Body fluid sample (23), 

because the overlapping root concept Venous blood specimen is on the path from the 

concept Mixed venous blood specimen to the overlapping root concept Body fluid sample. 

 By definition, every concept in an area belongs to exactly one disjoint partial-

area. Disjoint partial-areas are named after their overlapping root and are labeled with the 

total number of concepts summarized by the disjoint partial-area. For example, the 22 

uncolored descendants of Body fluid sample in the bottom right of Figure 2.11will all 

belong to a disjoint partial-area named Body fluid sample (23) (see Figure 2.12). Disjoint 

partial-areas that summarize overlapping concepts are called overlapping disjoint partial-

areas, while disjoint partial-areas that summarize non-overlapping concepts are referred 

to as non-overlapping disjoint partial-areas. 
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 Disjoint partial-areas are formed into a disjoint partial-area taxonomy that 

summarizes the overlapping portions of an area. Like partial-areas, disjoint partial-areas 

are linked together by child-of edges based on the underlying IS-A hierarchy. Figure 2.12 

shows the disjoint partial-area taxonomy derived from the overlapping concepts in Figure 

2.11. It consists of 15 overlapping disjoint partial-areas and six non-overlapping disjoint 

partial-areas (shown at the top). Disjoint partial-areas are organized into rows based on 

how many partial-areas the concepts overlap between. For example, the disjoint partial-

area Body fluid sample (23) is at Level 2, because its concepts overlap between two 

partial-areas. Non-overlapping disjoint partial-areas are assigned a single color and 

overlapping disjoint partial-areas are colored according to which partial-areas their 

concepts overlap between. 

2.2.2 Abstraction Networks for Quality Assurance 

Quality assurance is an important part of an ontology’s lifecycle [22]. However, quality 

assurance for large ontologies is time consuming and manpower intensive. Resources for 

ontology quality assurance are typically very limited. Comprehensive reviews of an 

ontology’s content are impractical due to the size of most ontologies. However, as they 

are compact summarizations of ontologies, abstraction networks can be used to support 

quality assurance efforts. While abstraction networks do not automatically identify errors, 

reviewing the nodes of an abstraction network can lead to the identification of errors and 

inconsistencies in the underlying ontology.  

 For example, reviewing the “Schema” abstraction network for the Medical 

Entities Dictionary (MED) [62] helped identify errors in its modeling [61]. Several types 

of errors were uncovered when reviewing the nodes of the Refined Semantic Network 
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(RSN) [59, 63] for the UMLS [60]. Ochs et al. [25] and He et al. [55] showed that 

abstraction networks can support the quality assurance of OWL ontologies, such as the 

Ontology of Clinical Research (OCRe) [51] and the Cancer Chemoprevention Ontology 

(CanCo) [64]. He et al. [55] introduced a family-based quality assurance approach using 

abstraction networks for structurally similar OWL ontologies. 

 For various abstraction networks, certain nodes have been identified as being 

more likely to contain erroneous concepts than other nodes. Analysis of the RSN found 

that concepts that belong to a kind of small node (i.e., a node that summarizes few 

concepts) called an intersection semantic type are more likely to contain errors than 

concepts which belong to large nodes [65]. Similarly, small partial-area nodes in the NCI 

thesaurus partial-area taxonomies were identified as being more likely to contain 

erroneous concepts when compared to concepts in large partial-area nodes [22].  

 Extensive research has been conducted on the use of SNOMED CT [15] partial-

area taxonomy abstraction networks [24] for quality assurance. Wang et al. [24] 

identified several groups of concepts that are more likely to contain errors, including 

areas with a few small partial-areas, small partial-areas with many relationships, and 

small partial-areas in strict inheritance regions. Halper et al. [26] identified three groups 

of concepts in a partial-area taxonomy which have higher error rates: concepts in strict 

inheritance regions, concepts in mixed regions, and concepts in small partial-areas. Ochs 

et al. [28] found that concepts in small partial-are more likely to contain errors in a subset 

of the large Procedure hierarchy (see Section 3.1). Wei and Bodenreider [66] showed 

that partial-area taxonomies can identify errors that cannot be uncovered using 

Description Logic classifiers, such as HermiT [67] and Pellet [68]. 
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 The disjoint partial-area taxonomy [23] for SNOMED CT was also shown to 

support quality assurance. Wang et al. [29] showed that concepts that overlap between 

two or more partial-areas (overlapping concepts) are more likely to be erroneous than 

concepts in only one partial-area. Ochs et al. [27] used the Tribal Abstraction Network 

(described in detail in Section 3.2) to review the Observable entity hierarchy of 

SNOMED CT. It was found that concepts in large nodes were more likely to be 

erroneous than concepts in small nodes. Lastly, Wei et al. [69] applied the Converse 

Abstraction Network (CAN) to SNOMED CT’s Physical object hierarchy, uncovering 

errors in its content.  

2.3 Additional Related Work 

2.3.1 Ontology Summarization 

Abstraction networks produce a structural summary and compact visualization of an 

ontology. Ontology summarization is similar to the processes of ontology modularization 

and partitioning [70]. The goal of ontology summarization is to assist users in 

understanding the content of an ontology. Summaries of ontologies are important for 

supporting content development, ontology reuse, and ontology usability [70]. Several 

ontology summarization methods have been described in the context of the Semantic 

Web. Li et al. [70] provide a survey of ontology summarization methods and discussed 

the need for ontology summarization. Several ontology summarization methods were 

evaluated. 

 Peroni et al. [71] utilized measurements of relationship density and coverage to 

extract key concepts from an ontology. Their approach produces a text-based list of n 

concepts which summarize an ontology’s content. Unlike abstraction networks, their 
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methodology only summarizes ontology content; it does not summarize structure. Dzbor 

et al. created the OntoSumViz plug-in [72] for the NeOn Toolkit [73], enabling 

visualization of the summaries created by the methodology described by Peroni et al. 

[71]. 

 Zhang et al. [74] utilized an RDF sentence graph approach to create text-based 

summaries of ontologies. Their method creates “RDF sentences” from groups of related 

RDF statements. Sentences are organized into a graph and several centrality 

measurements (e.g., PageRank [75]) are applied to determine which sentences are, 

relatively, the most important. The most important RDF sentences are used to summarize 

the ontology. The summaries produced using this method are customizable; users can 

specify how many RDF sentences are included in the summary. Unlike Peroni et al., the 

methodology introduced by Zhang et al. summarizes an ontology’s structure via the RDF 

sentences. 

 Queiroz-Sousa et al. [76] describe a generic approach to ontology summarization 

and a method for creating personalized ontology summaries based on concept relevance. 

Their personalized ontology summary methodology utilizes parameters and centrality 

measures to identify key concepts within an ontology. The key concepts are then 

extracted to form an ontology summary. Additionally, Queiroz-Sousa et al. developed a 

tool called OWLSumBRP which enables derivation and visualization of ontology 

summaries. 

 Like the methods of Peroni et al., Zhang et al., and Queiroz-Sousa et al., many 

abstraction networks (e.g., the various taxonomies [22, 24, 25]) use the underlying graph 

structure of an ontology in the summarization process. However, Peroni et al., Zhang et 
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al., and Queiroz-Sousa et al. each use centrality measures to extract individual key 

concepts. Abstraction networks, on the other hand, typically use structural information 

(e.g., relationship sets) to define nodes that summarize a set of similar concepts. 

2.3.2 Ontology Quality Assurance 

Abstraction networks do not automatically identify and fix erroneous concepts. In 

previous abstraction network studies, domain experts manually reviewed individual 

concepts for errors [22, 26-29]. Manual concept review is a time consuming process, 

even when limited to a small sample. Zhu et al. [77] provide a list of ontology quality 

factors which can be used to assess ontology content. Two examples of such quality 

factors are consistency, e.g., representing terms in a consistent manner, and soundness 

meaning the accuracy of the knowledge in the ontology. Zhu et al. also provide a 

comprehensive survey of manual, semi-automatic, and automatic ontology quality 

assurance methodologies.  

 The quality assurance lifecycle of National Cancer Institute thesaurus (NCIt) is 

discussed by de Coronado et al. [78]. NCIt quality assurance reviews are conducted 

during the development and release phases of the ontology’s release cycle. Additional 

quality assurance reviews are conducted periodically to address errors reported by the 

users of the ontology. The SNOMED CT User Guide [38] gives a high level explanation 

of the quality assurance methods utilized by the IHTSDO for SNOMED CT. 

 Verspoor et al. [79] developed an automatic lexical transformation method to 

cluster together lexically similar Gene Ontology (GO) concepts. Clusters were analyzed 

to find redundant terms. They found that GO’s content is generally high in quality, but 

still found 67 redundant terms in their study. 
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 Due to its size, complexity, and importance, SNOMED CT is a common target for 

ontology quality assurance studies. Agrawal et al. [80-82] utilized a combination of 

lexical and structural techniques to identify inconsistently modeled concepts in 

SNOMED CT. Lexically similar concepts that had different relationship structures were 

found to have a relatively high error rate [82]. Concepts with long fully specified names 

and many parents were also found to contain relatively many errors [81]. 

 Ceusters et al. [83] describe an ontology-based technique that utilized an external 

ontology, LinkBase [84], to uncover errors in SNOMED CT. Semantic, structural, and 

ontological techniques are offered by Rector [19, 85] and by Schulz [18, 86, 87] for 

quality assurance of the SNOMED CT terminology. Rector et al. [19] identified seven 

major types of errors in SNOMED CT that were caused by problems in Description 

Logic modeling or in the concept classification process. Their approach consisted of 

reviewing hierarchies of SNOMED CT concepts. The review would start from a given 

concept and then all of its ancestors and descendants were reviewed. Most of the 

identifier errors were in the parents (or some higher ancestor). When an issue was 

uncovered during this manual review process it was further analyzed to determine the 

cause of the error.  

 Rector et al. [85] used lexical and semantic techniques to analyze the correctness 

of post coordination with qualifier values that involve “acute” and “chronic,” e.g., Acute 

disease and Chronic disease. They utilized the pre-coordinated terms of SNOMED CT 

which start with “chronic” or “acute” as a sample set. A large number of 

misclassifications (44%) were identified among this sample.  
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 Schulz et al. [86] utilized an ontology-based method to analyze the correctness of 

relationship groups in SNOMED CT. Schulz et al. [18] also analyzed SNOMED CT’s 

“health” from an ontological perspective and a logical perspective. They identified eight 

major problems, such as taxonomic dystrophy (problems with the hierarchy, e.g., 

relatively too many concepts with multiple parents) and relationship idiosyncrasies 

(poorly defined relationships). 

 Mortensen et al. [88] described a crowdsourcing [89] methodology to verify the 

correctness of axioms in an ontology. In their method, axioms (e.g., relationships) from 

an ontology were transformed into English sentences. Members of the crowd then 

determined if a given sentence is correct. Many members of the crowd were given the 

same sentence and statistical analysis was used to determine if a given axiom was 

incorrect, according to the number of crowd members who said the sentence was false. 

Using this approach they were able to replicate Rector et al.’s [19] results with 85% 

accuracy. The goal of their research is to enable large scale ontology quality assurance 

using the “knowledge of the crowd.” In [90] Mortensen et al. found that the crowd can 

perform nearly as well as a panel of domain experts. 

 Quality assurance techniques can be combined with abstraction networks to 

enable more efficient ontology quality assurance. For example, applying a given quality 

assurance technique, say a lexical method or crowdsourcing method, to concepts in small 

partial-areas is expected to uncover more errors than applying the same technique to a 

random sample of concepts. 
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2.3.3 Ontology Software 

It would not be possible to create, manage, and browse ontologies without well 

developed software tools. Ontology software can be broken into two major categories: 

development tools and browsers. Ontology development tools allow a user to create and 

modify ontologies. Browsers allow a user to search and explore ontology content (e.g., 

concepts, relationships). 

 One of the most popular and widely used development tools is Protégé [56], 

which was developed by Musen et al. in the late 1980s and is maintained by Stanford 

University. The Protégé community currently has over 240,000 members. Protégé 

enables the development of OWL ontologies. In Protégé a user can create and edit any 

aspect of an ontology, including classes, relationships, and attributes. Protégé is 

extendable via plugins that add functionality to the tool. Some examples of plugins 

include Description Logic reasoners, like HermiT [67], and OWLDiff [91], for 

comparing two ontologies.  

 WebProtégé [92] is an open source, web-based collaborative ontology 

development tool backed by Protégé. Swoop [93] is a similar web-based development 

tool. OBO-Edit [94] was created to support the development of OBO Foundry [52] 

ontologies. The IHTSDO Workbench [95] is a collaborative development tool used to 

create and manage SNOMED CT’s content.  

 Many ontology users are only interested in viewing an ontology’s content. These 

users do not need the editing functionality provided by development tools. Ontology 

browsers provide a simple user interface for navigating and viewing ontology content. 
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Ontology development tools can function as browsers. For example, Protégé is typically 

used to browse OWL ontology content. 

 Bodenreider et al. [96] provide a survey of features available in over a dozen 

SNOMED CT browsers. Two examples of SNOMED CT browsers are CliniClue [57] 

and Snow Owl [97]. The National Library of Medicine’s UMLS Terminological Services 

(UTS) web site offers web-based browsers for SNOMED CT and the UMLS [58].  

 BioPortal [50] includes a web-based browser for the ontologies hosted in their 

repository. The Neighborhood Auditing Tool (NAT) [98] is a hybrid text-diagram 

browser for the UMLS. The Relationship, Audit Set, and Concept NAT (RAC-NAT) [99] 

extended the NAT by adding a relationship-centric browser, among other features. Many 

browsing tools are available for the Gene Ontology (GO) [42], e.g., AmiGO and 

QuickGO [100]. A partial list of publicly available GO browsers has been published 

[101]. 

2.3.4 Ontology Visualization 

One of the important features of an abstraction network is its ability to provide a compact 

visualization of an ontology’s content. The problem of ontology visualization can be 

considered a subproblem of graph visualization in general. Katifori et al. [102] provide a 

comprehensive survey of ontology visualization techniques across several dozen 

ontology tools. Katifori et al. [103] performed a comparative analysis on four different 

ontology visualization schemes available in Protégé. Storey et al. [104] performed a 

similar study on two ontology visualization methods available in Protégé. Lanzenberger 

et al. [105] surveyed various ontology visualization techniques. Fu et al. [106] studied the 

usability of two ontology visualization techniques. 
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 Most ontology visualization schemes fall into one of two major schemes: indented 

hierarchies and Node-link (box and arrow) diagrams. An indented hierarchy shows an 

ontology’s content similar to a file system browser, e.g., Windows Explorer. Child 

concepts are shown under their parent(s) and indented to the right. Other ancestors and 

descendants can be viewed by expanding individual concepts in the hierarchy. Most 

development tools and browsers display an ontology using an indented hierarchy. Node-

link diagrams show the ontology as a graph of labeled nodes, which represent concepts, 

and labeled edges, which represent relationships between concepts. Various tools exist 

for viewing an ontology as a node-link diagram. Some examples includes GraphViz 

[107], Jambalaya [108], and OntoSphere [109]. FlexViz [110] is a web-based ontology 

visualization tool used in BioPortal. BioMixer [111] is a web-based collaborative 

ontology visualization tool. 

2.3.5 Ontology Diff 

A “diff” is a comparison method that identifies the differences between two versions of a 

file. Difference detection is important for tracking content evolution and version control. 

Hunt and McIlroy [112] developed the diff utility for detecting differences between text 

files. However, the textual diff approach generally does not work well for identifying 

structural changes between ontology versions. The OWL [40] and OBO [52] formats do 

not define an ordering of ontological elements, thus, the same ontology can be defined 

using two or more different textual representations. Noy et al. [113] discuss the 

importance of detecting changes during ontology evolution.  
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Figure 2.13  An example of an ontology diff taken from Protégé’s “Compare 

Ontologies” tool, with the modified object property duration selected. 

 

 To overcome this problem, various structural diff approaches have been 

developed. Instead of identifying the textual changes in OWL files, a structural diff 

identifies individual axiom changes between two ontology versions. Noy and Musen 

[114] developed PromptDiff, a fixed point algorithm that uses heuristic matchers to 

compare the axioms of two ontologies. Kremen et al. [91] developed OWLDiff, an open 

source application for comparing OWL ontologies. Jiménez-Ruiz et al. [115] describe a 

structural diff approach in support of collaborative ontology development. Goncalves et 

al. [116] discuss Ecco, a diff tool that uses structural and semantic techniques. Redmond 

and Noy [117] discuss the OWL Difference Engine, an open source tool for comparing 

OWL ontologies.  

 Figure 2.13 provides an example of a structural diff created using Protégé’s 

“Compare Ontologies” tool, which is based on the OWL Difference Engine. Entities 

(e.g., classes or object properties) that have been added, removed or modified are shown 

on the left. Clicking on an entity shows which axioms were changed. In the example of 
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Figure 2.13, on the right, the domain of the object property duration in the Ontology of 

Clinical Research (OCRe) changed from Time interval to Relative time point or Time 

interval. Additionally, an annotation associated with the object property was also 

changed.
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CHAPTER 3  

DESIGNING NOVEL ABSTRACTION NETWORKS 

 

Several studies have been completed to address the five abstraction network research 

problems introduced at the end of Section 1.1. Geller et al. [118] and Ochs et al. [28, 119] 

have introduced several methods for creating subtaxonomies to enable quality assurance 

of large SNOMED CT hierarchies. Ochs et al. [27] introduced the Tribal Abstraction 

Network (TAN) to summarize the content of SNOMED CT hierarchies which have no 

attribute relationships. Several different abstraction network derivation methodologies for 

OWL and OBO ontologies are described by Ochs et al. [25, 120]. Diff Abstraction 

Networks, which summarize and visualize structural differences between two ontology 

releases, were introduced by Ochs et al. [121]. Finally, the Biomedical Layout Utility for 

SNOMED CT (BLUSNO), a software tool for deriving and visualizing SNOMED CT 

abstraction networks, was introduced by Geller et al. [118]. The results of these studies, 

and additional results, will now be presented in detail. 

3.1 Subtaxonomies for Large SNOMED CT Hierarchies 

The amount of knowledge represented in different SNOMED CT hierarchies varies 

greatly. For example, in the January 2013 release of SNOMED CT, the Procedure and 

Clinical finding hierarchies contain 52,284 and 98,544 concepts, respectively. This is in 

contrast to the Specimen and Event hierarchies, which have only 1,329 and 3,661 

concepts, respectively. The number of concepts in a hierarchy affects the applicability of 

the previously developed partial-area-taxonomy-based quality assurance methodologies. 

Additionally, the large number of attribute relationship types defined for certain 
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hierarchies results in a large number of areas, causing a growth in partial-area taxonomy 

size.  

 Specimen has only five different relationship types (e.g., Topography and 

Morphology), whereas Procedure has 28 (e.g., Method and Procedure site). With an 

order of magnitude increase in hierarchy size and number of relationship types, partial-

area taxonomies tend to lose their compactness and, hence, their effectiveness from a 

summarization and quality assurance standpoint; e.g., Procedure’s partial-area taxonomy 

has over 10,000 partial-areas. 

 

Table 3.1  Taxonomy Metrics for Seven of SNOMED CT’s Hierarchies (January 2013 

release) 

Hierarchy # of Concepts # of Relationships # of Areas  # of Partial-

areas 

Body Structure 31,117 1 2 23 

Clinical Finding 99,440 14 357 10,614 

Event 3,662 4 7 31 

Pharmaceutical / 

Biologic Product 

17,135 2 4 8,546 

Procedure 53,147 28 739 10,828 

Situation 3,350 6 9 865 

Specimen 1,422 5 22 419 

Source: [28] 

 

 Table 3.1 shows the number of concepts, relationships, areas, and partial-areas for 

the seven SNOMED CT hierarchies with attribute relationships. The number of areas in a 

taxonomy is dependent on (a) the number of concepts in the hierarchy, (b) the number of 

relationship types defined for the hierarchy, and (c) the combinations of relationships 

appearing at actual concepts. The partial-area taxonomy of the Specimen hierarchy (with 

five relationships and a total of 1,329 concepts) has only 22 areas and 409 partial-areas. 
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In the case of Procedure, with 52,284 concepts and 28 types of relationships, the partial-

area taxonomy has 735 areas and 10,621 partial-areas.  

 To address this, methodologies for creating subtaxonomies, compact subsets of 

taxonomies, to partition taxonomies for large SNOMED CT hierarchies into more 

manageable subsets, are necessary. This subtaxonomy approach offers scalability of the 

previously developed taxonomy-based quality assurance regimen to large hierarchies, to 

which it was previously inapplicable. Several kinds of subtaxonomies will now be 

discussed. 

3.1.1 Relationship-constrained Partial-area Subtaxonomy 

Relationship-constrained area subtaxonomies and relationship-constrained partial-area 

subtaxonomies (relationship subtaxonomies for short, when there is no ambiguity), first 

introduced by Geller et al. [118], are defined as taxonomies generated using a subset of 

the outgoing attribute relationships (relationships for short) in a SNOMED CT hierarchy. 

This subtaxonomy methodology is based on the underlying relationship structure of 

concepts in SNOMED CT. Previously, area taxonomies were generated using the set of 

all relationships that exist within a given hierarchy. The relationship subtaxonomy 

methods allow a terminology auditor to generate areas with a chosen subset of 

relationships. 

3.1.1.1 Derivation. To create relationship subtaxonomies, a subset of a hierarchy’s 

defined relationships, R’, is chosen to derive a relationship subtaxonomy’s areas. For 

example, assume a user is creating a partial-area taxonomy for a hierarchy of 10 

relationships, R1, R2, …, R10.  
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Figure 3.1  An example of deriving a relationship area subtaxonomy for a theoretical 

hierarchy with four relationships R1-R4 with R’ = {R1, R2, R4}. 
Source: [118] 

 

 

 The relationship area subtaxonomy with respect to R’= {R1, R4, R6, R8} may only 

include areas {R1, R4, R6, R8}, {R1, R4, R6}, {R1, R4, R8}, {R1, R6, R8}, {R4, R6, R8}, {R1, 

R4}, etc. That is, only areas involving subsets of {R1, R4, R6, R8} (including the empty set, 

denoted by ) are allowed. As such, there are a maximum of (𝟏𝟎
𝟒
) (= 210) areas in the 

relationship area subtaxonomy. Figure 3.1 provides a visual example and illustrates the 

general process of deriving a relationship area subtaxonomy with four relationships R1-R4 

and R’={R1, R2, R4}. Note that only combinations that exist for concepts in the hierarchy 

are considered; many combinations of relationships may not exist in a hierarchy. For 

example, on the left side of Figure 3.1 there are no areas {R1, R3, R4}, {R1, R2, R3, R4}. 

 Once a subset R’ of relationships has been chosen, the definition of the 

relationship area subtaxonomy follows that of the complete area taxonomy but is 

restricted to the areas whose relationships are all members of R’. Because  is a subset of 

any R’, the area  appears in every relationship subtaxonomy. 

 The definition of the relationship partial-area subtaxonomy with respect to R’ also 

follows the definition of the “normal” partial-area taxonomy for the specific hierarchy, 

but is limited to the areas of the relationship area subtaxonomy for R’. 
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Figure 3.2  The relationship partial-area subtaxonomy for the Specimen hierarchy with 

R’={Morphology, Substance, Identity}. 

 

 Figure 3.2 shows the relationship partial-area subtaxonomy for the Specimen 

hierarchy with respect to the set of relationship types R’={Morphology, Substance, 

Identity}. This is in contrast to the complete Specimen partial-area taxonomy shown in 

Figure 2.9. The comparison of Figures 2.9 and 3.2 shows the significant reduction in size 

and complexity of the diagram that can be achieved by limiting the number of 

relationship types used to define the taxonomy. 

 While there is, by definition, only one possible area taxonomy and partial-area 

taxonomy for a hierarchy when using all of the hierarchy’s relationship types, there are 

many possible subtaxonomies. Each relationship subtaxonomy is dependent on the 

selection R’. Therefore, one can select different subsets of relationship types to focus on 

portions of a hierarchy most relevant to a specific need. Since certain combinations of 

relationship types are not meaningful, and thus do not appear in any concepts, selecting 
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an R’ with such a combination of relationship types will result in a relationship 

subtaxonomy which contains only the root area .  

3.1.1.2 In Support of Quality Assurance. Quality assurance for large and highly 

complex hierarchies, such as Procedure and Clinical finding, is very difficult. The 

previously developed taxonomy-based quality assurance methodology described by 

Halper et al. [26], which entails auditing all concepts which belong to small partial-areas, 

is not possible for these large hierarchies. Using the definition of small described below 

(partial-areas with three or fewer concepts) there are 9,359 (9,236/10,621=88.1%) small 

partial-areas in the complete Procedure partial-area taxonomy, encompassing 11,239 

concepts (11,239/52,284=21.5% of the hierarchy). This is still far too much information 

to process effectively. In other words, previously developed taxonomy-based quality 

assurance strategies do not scale to large hierarchies.  

 Relationship subtaxonomies allow an auditor to focus on a manageable subset of 

concepts. Additionally, subtaxonomies support the partitioning of collections of a large 

hierarchy’s concepts into groups such that some groups comprise concepts expected to 

have a higher likelihood of errors and inconsistencies—thus, further helping to focus the 

efforts and increase the effectiveness of quality assurance personnel. As in Min et al. and 

Halper et al. [22, 26], this process entails separating concepts into two groups: those that 

belong to “small” partial-areas and those that belong to “large” partial-areas. Based the 

findings of Halper et al. [26], the following hypothesis emerges: 

Hypothesis: In a relationship subtaxonomy of a large SNOMED CT hierarchy, small 

partial-areas have higher error concentrations than large partial-areas. 



 

 

 
Figure 3.3  A small portion (69 areas) of the ten levels of the Procedure hierarchy’s area taxonomy. Source: [28] 

4
4
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Figure 3.4  Area sub-taxonomy with respect to the three relationships using access 

device, procedure site – direct, and method. 
Source: [28] 

 

 

 This hypothesis was investigated using a relationship subtaxonomy for the 

Procedure hierarchy. The complete Procedure taxonomy consists of over 10,000 partial-

areas separated into 735 areas. Figure 3.3 shows a small portion (69 areas) of 

Procedure’s complete area taxonomy. At the scale of Figure 3.3 the entire area taxonomy 

would span 23 pages. Worse yet, the complete Procedure partial-area taxonomy at the 

scale of Figure 3.2 would be over 100 pages wide by four pages high. 

 A domain expert chose R’={Method, Procedure site – direct, Using access 

device}, resulting in a relationship subtaxonomy with eight areas (shown in Figure 3.4). 

When comparing Figure 3.3 to Figure 3.4, it is easy to see that the chosen relationship 

subtaxonomy is much more manageable than the complete taxonomy. Figures 3.5 and 3.6 

show the associated relationship partial-area subtaxonomy, with the largest area {Method, 

Procedure site – direct} shown without partial-areas to save space in Figure 3.5. 

Level 0 

Level 1 

Level 2 

Level 3 



46 

  

 In Level 1, the taxonomy has three areas, 104 partial-areas, and 3,870 concepts. 

The total number of concepts in the relationship subtaxonomy, namely, 17,706 (covering 

34% of Procedure) is still overwhelming. Figure 3.4 shows the child-of links, between 

areas, using the same color as the parent area. The largest level is Level 2, containing the 

largest area {Method, Procedure site – direct} with 11,092 concepts. The fact that 

{Method, Procedure site – direct} is so large is not surprising; there are a very large 

number of methods for procedures and a large number of body sites. This large area is 

obtained when these multiplicities are combined. The second largest level is Level 1, 

mainly due to the area {Method}. This is followed by Level 0 with the area .  

 Figures 3.5 and 3.6 show the relationship subtaxonomy for the selected R’. The 

partial-areas of this relationship subtaxonomy were separated into small and large 

according to their numbers of concepts, with the hypothesis being that errors appear in 

higher concentrations in the small partial-areas than they do in the larger ones. To test 

this hypothesis, a domain expert reviewed all of the concepts of two areas, {Procedure 

site – direct} (green) with 192 concepts and {Method, Using access device, Procedure 

site – direct} (red) with 240 concepts. One large partial-area Neck excision (118) from 

{Method, Procedure site - direct} (blue) was also audited. In total, 550 concepts from the 

relationship subtaxonomy were individually reviewed for errors and inconsistencies by 

the domain expert. The sample concepts were provided in alphabetical order and the 

auditor was blind to the methodology and hypothesis. The green and red areas that were 

selected have a few medium-sized partial-areas and many small ones.  



 

 

 

Figure 3.5  Levels 0 and 1 and part of Level 2 of the partial-area sub-taxonomy with respect to the three selected relationships. 
Source: [28] 

Level 0 

Level 1 

Level 2 

4
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Figure 3.6  The only third-level area of the sub-taxonomy with respect to the relationships Method, Procedure site – direct, and Using 

access device. Source: [28]

4
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 The partial-area Neck excision with 118 concepts selected from {Method, 

Procedure site - direct} (Level 2) added concepts from a large partial-area. These 

concepts were chosen for review because they have different numbers of relationships 

and are from different sized partial-areas. 

 The inferred view of SNOMED CT (January 2011 release) was used throughout 

the auditing process. The focus was on errors and inconsistencies involving incorrect or 

missing parents or children—errors that were deemed to be most troublesome in a study 

of SNOMED CT users’ preferences [122]. Due to their definitional role in modeling a 

concept, such basic errors and inconsistencies may cause additional problems with 

relationships due to inheritance. It should be noted that missing or incorrect child errors 

can be equally well interpreted as missing or incorrect parent errors for the child concept. 

However, the errors were reported as missing or incorrect children according to the 

interpretation of the domain expert. 

 Out of the total of 550 concepts reviewed, 67 (12.2%) were found to have at least 

one error by the domain expert. Table 3.2 illustrates four examples of errors found. Table 

3.3 provides the distribution of errors based on partial-area size. Out of the 67 errors, the 

domain expert found 31 concepts with at least one incorrect or redundant parent and 27 

concepts missing at least one parent. Forty-four (66% = 44/67) of the problematic 

concepts were found to be primitives, indicating that certain knowledge about these 

concepts may be missing from the terminology. 

 Three was chosen as a threshold between small and large because it maximized 

the statistical significance of error rates between small and large partial-areas (15.4% vs. 

8.8% erroneous, respectively), with p<0.019 according to the Fisher exact 2-tailed 
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statistical test [123]. Therefore, an auditor reviewing partial-areas of size three or less is 

expected to uncover more inconsistencies than if they reviewed other partial-areas. 

Thresholds of five and seven were also found to be statistically significant with p<0.047 

and p<0.031, respectively. A threshold of seven had a slightly higher ratio of errors (1.76 

= 14.4/8.2) in small partial-areas (14.4%) versus large partial-areas (8.2%) compared to a 

threshold of three (1.75 = 15.4/8.8). In Table 3.4, results are shown with respect to small 

partial-areas (1–3 concepts) and large partial-areas (4–118 concepts). 

 

Table 3.2  Four Examples of Inconsistencies Identified by the Domain Expert in her 

Quality Assurance Review of the Relationship Subtaxonomy 

Concept Partial-area Problem Type Correction 

Endoscopic 

Congo Red Test 

Endoscopic Congo 

Red Test (1) 

Missing parent: Congo 

Red Test 

Add IS-A directed 

to Congo Red Test 

Ureteroscopic 

pyelolysis 

Ureteroscopic 

pyelolysis (1) 

Missing parent: 

ureteroscopic 

operation 

Add IS-A directed 

to ureteroscopic 

operation 

Endoscopic 

drilling of ovary 

Endoscopic drilling of 

ovary (1) 

Incorrect parent: 

cauterization of ovary 

Replace with IS-A 

directed to drilling 

of ovary 

Convulsive 

therapy 

Convulsive therapy 

(11) 

Missing parent: 

Therapeutic procedure 

Add IS-A directed 

to Therapeutic 

procedure 

Source: [28] 

 

 For each of the 67 erroneous concepts identified, a follow-up review using the 

January 2013 release of SNOMED CT was performed. Sixty-five concepts were 

unchanged and still erroneous and two concepts had minor changes and were still 

erroneous. 
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Table 3.3  Summary of Errors Found in the Audit of the Sample Partial-areas of the 

Relationship Subtaxonomy 

Partial-area 

Size 

# of Partial-

areas 

Total # of 

Concepts 

# of Erroneous 

Concepts 

% Erroneous 

Concepts 

118 1 118 12 10 

14 1 14 1 7 

12 2 24 1 4 

11 2 22 1 5 

10 1 10 1 10 

9 1 9 0 0 

7 1 7 2 29 

6 4 24 2 8 

5 4 20 3 15 

4 6 24 1 4 

3 12 36 7 19 

2 26 52 7 13 

1 190 190 29 15 

Total: 251 550 67 12 
Source: [28] 

 

Table 3.4  Summary of Erroneous Concepts Broken Down into Small and Large Partial-

areas 

 # of Partial-

areas  

# of 

Concepts 

# of 

Erroneous 

Concepts 

% Errors 

Small Partial-

areas (1–3) 

228 278 43 15.4 

Large Partial-

areas (4–118) 

 

 

23 272 24 8.8 

Total: 251 550 67 12.2 
Source: [28] 

 

 Of course, there are also errors in large partial-areas (8.8% in the sample). Due to 

the better auditing yield as measured by the ratio of the number of errors to the number of 

concepts in the sample, it is recommended that an auditor start with small partial-areas, 

where the cumulative number of concepts is relatively small. For the large partial-areas, it 

is recommended that an auditor exploit previously developed strategies (e.g., review 
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concepts in the intersections of two or more partial-areas [29]) that have been shown to 

increase the efficiency of terminology quality assurance efforts. 

 In conclusion, this study confirmed that, by utilizing a relationship subtaxonomy, 

previously developed taxonomy-based quality assurance methodologies can successfully 

be applied to large SNOMED CT hierarchies. Within a relationship subtaxonomy, 

concepts in small partial-areas are statistically significantly more likely to contain errors 

than concepts in large partial-areas. The quality assurance methodology implied is to 

audit all small partial-areas in a relationship subtaxonomy first. There are, in total, only 

734 concepts out of 17,706 (4%) in small partial-areas (of 1–3 concepts) in the 

relationship subtaxonomy chosen for this study. This is a limited auditing effort expected 

to uncover erroneous concepts at a rate of 15.1%. 

3.1.2 Root-constrained Partial-area Subtaxonomy 

Relationship subtaxonomies create taxonomy subsets containing structurally similar 

concepts. An alternate paradigm, which results in semantically similar subsets of 

concepts, is called the root-constrained partial-area subtaxonomy, or root subtaxonomy 

for short [118]. A root subtaxonomy is a subset of a partial-area taxonomy based on the 

child-of links between partial-areas. Partial-area taxonomies have traditionally been 

rooted at the partial-area containing the root concept of the whole hierarchy, e.g., 

Specimen or Procedure, and the taxonomy contained all of the descendant partial-areas of 

the root, i.e., the entire taxonomy. Hierarchies of SNOMED CT have unique root 

concepts and there is only one partial-area in each root area.  
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Figure 3.7  The process of deriving a root-constrained partial-area subtaxonomy. Partial-

area P2 was chosen as the root. 
Source: [118] 

 

 

 In a root subtaxonomy one defines which partial-area is the root. The resulting 

root subtaxonomy consists of the selected root partial-area and all of its descendant 

partial-areas. The root subtaxonomy summarizes how a set of semantically-related 

concepts are modeled within a large SNOMED CT hierarchy. 

 If a partial-area is not a descendant of the chosen root (and thus, is not 

semantically related), it is not included in the root subtaxonomy. Figure 3.7 illustrates the 

general process of creating a root subtaxonomy for an example partial-area taxonomy. In 

this figure, partial-area P2 is chosen as the root of the root subtaxonomy. All of P2’s 

descendant partial-areas are included in the root subtaxonomy. 

 One method of creating a root subtaxonomy is to perform a breadth-first traversal 

[124] of the hierarchy of inverse child-of links within the complete partial-area 

taxonomy, starting at the selected root partial-area. Partial-areas that can be reached 

during the traversal are considered members of the root subtaxonomy. Partial-areas with 

identical sets of lateral relationships are regrouped back into areas. This process is 
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equivalent to applying the partial-area taxonomy derivation process on the chosen root 

partial-area’s root concept and all of its descendants. 

 Figure 3.8 shows an example of a root subtaxonomy. Using the Specimen 

hierarchy’s taxonomy (Figure 2.9), the partial-area Lesion sample in {Morphology} was 

selected as the root partial-area. The resulting root subtaxonomy is shown in Figure 3.8. 

The subtaxonomy consists of 93 concepts in 65 partial-areas, which are separated into 

eight areas. This root subtaxonomy summaries the major types of lesion samples in 

SNOMED CT. 

 
Figure 3.8  An example of a root-constrained partial-area subtaxonomy for the Specimen 

hierarchy, with Lesion sample selected as the root partial-area. Child-of links are hidden 

for readability. 

3.1.3 Subject Subtaxonomy 

When taxonomy derivation and quality assurance methodologies were applied to large 

SNOMED CT hierarchies, e.g., Procedure and Clinical finding with 53,147 and 99,440 

concepts, respectively, significant issues were encountered. First, the Procedure and 
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Clinical finding taxonomies contain 10,828 and 10,614 partial-areas, respectively, too 

many to review individually. Relationship subtaxonomies and root subtaxonomies 

partially addressed this issue by enabling an auditor to select a subset of partial-areas 

based on similar relationship structure or similar semantics, respectively. 

 A second, more significant, issue is thousands of concepts being categorized into 

partial-areas that are rooted at very general groups. For example, the partial-area Finding 

by site in the Clinical finding taxonomy summarizes 9,602 concepts. This represents a 

significant over summarization of the underlying hierarchy. The concepts in these large 

partial-areas are not easily accessible. 

 The subject subtaxonomy (introduced in Ochs et al. [119]) was developed to 

address this problem and to enable further scalability and flexibility of taxonomy-based 

summarization and quality assurance. A subject subtaxonomy is created by selecting a 

concept, for example, Bleeding or Heart disease, and all of its descendants. Since quality 

assurance for a whole hierarchy is not practical, anecdotally auditors usually concentrate 

on subjects of high interest. Subject subtaxonomies allow an auditor to focus on 

manageable portions of a hierarchy, covering specific subjects within a large hierarchy.  

 Given an arbitrary concept c, a subject subtaxonomy is derived using the 

derivation methodology described Section 2.2.1.1, but it is applied only to the concept 

subhierarchy rooted at c. The root area and unique root partial-area consist of c and all of 

its descendants with the same relationships. While the definition of the subject 

subtaxonomy is applicable to any SNOMED CT concept in a hierarchy with attribute 

relationships, it is recommended that c represent some desired subject area. If an editor 
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wants to concentrate on a specific subject area, she can choose a concept that best 

represents the subject area. 

 The previously discussed root subtaxonomy can be considered a special case of 

the subject subtaxonomy. In the root subtaxonomy one picks a partial-area p to be the 

root of a subtaxonomy that includes p and all of its descendant partial-areas. The 

resulting subtaxonomy would be equivalent to a subject subtaxonomy created using p’s 

root concept.  

 However, the subject subtaxonomy approach is more flexible than the root 

subtaxonomy approach. For example, Cancer and many of its descendent concepts are 

hidden in large partial-areas in the complete Clinical finding taxonomy. Thus, they are 

also not accessible in relationship subtaxonomies and root subtaxonomies. However, 

Cancer can be selected as the root of a subject subtaxonomy, as done in Figure 3.10, 

making its subhierarchy of concepts more accessible in terms of summarization and 

quality assurance. 

 Subject subtaxonomies are not necessarily disjoint, because concepts may belong 

to multiple subject subtaxonomies. Additionally, subject subtaxonomy partial-areas are 

not always a subset of those in the complete taxonomy (see the Cancer subtaxonomy in 

Figure 3.10). 

 Figure 3.9 shows the subject subtaxonomy derived using the concept Bleeding 

from the January 2013 release of SNOMED CT. Compared to the complete Clinical 

finding partial-area taxonomy with 10,614 partial-areas, this subject subtaxonomy, with 

only 199 partial-areas, is significantly smaller. Over half (56%=522/932) of the concepts 

summarized by this subject subtaxonomy are in {Associated morphology, Finding site}. 
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The first row of larger partial-areas in this area indicates the major types of bleeding-

related findings in SNOMED CT, such as Hemorrhage of abdominal cavity structure 

(186 concepts), Gastrointestinal hemorrhage (117), and Genitourinary tract hemorrhage 

(88), demonstrating the summary effect provided by the subject subtaxonomy. 

 Figure 3.10 shows the Cancer (Malignant neoplasm disease) subject 

subtaxonomy for the January 2014 SNOMED CT release. The majority of the Cancer 

subject subtaxonomy's concepts (3,124, 88.5%) are in {Associated morphology, Finding 

site} (like Bleeding). The Cancer subject subtaxonomy includes 64 partial-areas 

(highlighted in yellow in Figure 3.10) that are not in the complete Clinical finding 

taxonomy. These concepts are typically inside large partial-areas in the complete 

taxonomy, for example, all of the concepts in the {Associated morphology, Finding site} 

yellow partial-areas in Figure 3.10 are inside the large Mass of body structure (7,010 

concepts) partial-area.  

 These partial-areas appear because the relationships Associated morphology and 

Finding site are introduced in the subtaxonomy at a lower descendant concept than in the 

complete taxonomy. In the complete taxonomy, all of the concepts in the yellow partial-

areas are descendants of Mass of body structure, which is an introduction point for both 

Associated morphology and Finding site in the complete Clinical finding taxonomy. 

Thus, the Cancer subject subtaxonomy summarizes SNOMED CT Cancer disorders in a 

view that is more useful for both summarization and quality assurance. 



 

 

 
Figure 3.9  Top five (out of six) levels of the Bleeding subject subtaxonomy. A total of 932 bleeding-related concepts are summarized 

by 199 partial-areas in 42 areas. Over half (56%=522/932) of the concepts summarized by this subtaxonomy are in {Associated 

morphology, Finding site}. Source: [119] 
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Figure 3.10  The Cancer subject subtaxonomy. The Cancer subject subtaxonomy summarizes 3,531 concepts by 125 partial-areas in 

19 areas. The 64 partial-areas that do not appear in the complete Clinical finding taxonomy are highlighted in yellow. Source: [119] 
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Table 3.5  Subject Subtaxonomy Metrics for the Ten Leading Causes of Death in the US 

# Cause of 

death 

Subject 

Subtaxonomy 

concept 

# of 

Concepts 

# of 

Partial-

areas 

# of 

Areas 

Relative Size 

(Concepts / 

Partial-

areas) 

1 Heart disease Heart disease 2,402 316 61 2.4% / 3.0% 

2 Cancer Malignant 

neoplastic 

disease 

3,531 125 19 3.6% / 1.2% 

3 Chronic 

lower 

respiratory 

diseases 

Disorder of 

lower 

respiratory 

system 

1,414 354 51 1.4% / 3.4% 

4 Stroke Cerebrovascul

ar disease 

262 75 15 0.3% / 0.7% 

5 Accidents Injury due to 

exposure to 

external cause 

267 65 11 0.3% / 0.6% 

6 Alzheimer’s 

disease 

Disorder of 

brain 

2,300 396 67 2.3% / 3.8% 

7 Diabetes Diabetes 

mellitus 

112 30 14 0.1% / 0.2% 

8 Nephritis, 

nephrotic 

syndrome, 

and 

nephrosis 

Kidney disease 909 243 47 0.9% / 2.3% 

9 Influenza and 

Pneumonia 

Pneumonitis 334 73 24 0.3% / 0.7% 

10 Suicide Suicide 16 9 2 0.4% / 29% 

Source: [119] 

 

 

 Table 3.5 lists the metrics for subtaxonomies for the ten most common causes of 

death [125], along with their sizes relative to the complete partial-area taxonomy in terms 

of number of concepts and partial-areas. Nine are from Clinical finding and Suicide is 

from Event. From Table 3.5 one can see that, in general, subtaxonomies are significantly 

smaller, and thus, more manageable. 
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3.1.3.1 Subject Disjoint Partial-area Subtaxonomy. Disjoint partial-area taxon-

omies have been shown to successfully support improved content summarization [23] 

and quality assurance [29]. Subject subtaxonomies may contain overlapping concepts. 

For example, the largest area in the Bleeding subtaxonomy, {Associated morphology, 

Finding site}, has 290 overlapping concepts (55.5%). 

 

 
Figure 3.11  An excerpt of 23 disjoint partial-areas from the disjoint partial-area 

subtaxonomy derived for the concepts in {Associated morphology, Finding by site}.  
Source: [119] 

 

 For subject subtaxonomies, the disjoint partial-area taxonomy derivation 

methodology must be altered to account for overlapping concepts in a subject 

subtaxonomy that are in partial-areas that are outside of the subject subtaxonomy. For 

example, the concept Intra-abdominal hematoma has two parents in its area in the 

complete Clinical finding taxonomy: Hemorrhage of abdominal cavity structure (in 

Bleeding's subject subtaxonomy) and Mass of abdominal cavity structure (in the partial-

area Mass of body structure, outside the Bleeding subject subtaxonomy). Intra-abdominal 

hematoma inherits the semantics of both partial-area roots and belongs in the disjoint 

taxonomy. 

 Disjoint partial-area subtaxonomy derivation accounts for this by (1) ensuring that 

all of the concepts in the disjoint partial-area taxonomy are semantically related to the 
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subject c by considering only concepts that are descendants of c, and (2) considering 

overlapping concepts that overlap with partial-areas outside of the subject subtaxonomy, 

since such concepts are complex. 

 Figure 3.11 shows an excerpt of 23 disjoint partial-areas from the disjoint partial-

area subtaxonomy for {Associated morphology, Finding site}. The disjoint partial-areas 

Mass of body structure and Injury of anatomical site, shown in a gray box, are not part of 

the Bleeding subject subtaxonomy, but many Bleeding concepts overlap with them in the 

complete Clinical finding taxonomy. Partial-areas outside of the subject subtaxonomy, 

such as Mass of body structure, which overlap with partial-areas in the subject 

subtaxonomy, for example, Hemorrhage of abdominal cavity structure, are not part of the 

subject subtaxonomy and can be hidden, but are important for quality assurance to 

capture the complexity of the overlapping concepts. For example, the disjoint partial-area 

Pelvic hematoma (3) would not exist if such overlap was not considered. 

 The disjoint partial-area taxonomy for the Bleeding subtaxonomy’s {Associated 

morphology, Finding site} area contains 236 disjoint partial-areas. Most of the disjoint 

partial-areas are small: 176 (78.8%) are singletons (one concept). The disjoint partial-area 

subtaxonomy more accurately summarizes the concepts in this area than the partial-area 

taxonomy (Figure 3.9) at the cost of there being more summarizing groups. For example, 

there are 186 concepts in the partial-area Hemorrhage of body cavity structure, but only 

ten are descendants of just this root. The other 176 concepts also belong to other partial-

areas. The overlapping disjoint partial-areas are made explicit in Figure 3.11. 

 For the Cancer subject subtaxonomy, the majority of the concepts in the largest 

area, {Associated morphology, Finding site}, are overlapping concepts. In total, 2,398 
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overlapping concepts (76.8%) are in this area. However, the Cancer subject 

subtaxonomy’s overlapping concepts are different from those in the Bleeding subject 

subtaxonomy. Many of the partial-areas in the Cancer subject subtaxonomy are not found 

in the complete taxonomy (yellow partial-areas in Figure 3.10). The overlapping concepts 

in these partial-areas are not necessarily overlapping concepts in the complete Clinical 

finding taxonomy, since they are all contained in the large Mass of body structure partial-

area. A future study, described in Section 4.1, will investigate the characteristics of these 

concepts, which are only overlapping concepts within a subject subtaxonomy. 

3.1.3.2 In Support of Quality Assurance. Previous SNOMED CT quality assurance 

studies have focused on [29] complex concepts, e.g., overlapping concepts [23], which 

were shown to have more errors with high statistical significance for the small Specimen 

hierarchy due to the difficulty in modeling complex concepts. Overlapping concepts are 

more complex than non-overlapping concepts, since they are specializations of all the 

roots of the partial-areas they are contained in.  

 However, the number of overlapping concepts in the complete Clinical finding 

taxonomy (14,450) is overwhelming and reviewing all of them is impractical. The 

number of overlapping concepts in a subject subtaxonomy may be significantly smaller. 

For example, the Bleeding subject subtaxonomy has only a few hundred overlapping 

concepts. However, the error rates for these concepts had to be investigated. The analysis 

of overlapping concepts (Hypothesis H1) was repeated and three new refined hypotheses 

(H2-H4) were tested for a subject subtaxonomy of a large hierarchy.  

Hypothesis H1: Overlapping concepts are more likely to have errors than non-

overlapping concepts. 
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 Another group of concepts, which was also shown to have more errors with high 

statistical significance, are uncommonly classified concepts, e.g., those in small partial-

areas [26]. A possible reason for their uncommon classification may be a modeling error. 

Once the error is corrected (e.g., by adding a parent or relationship) a concept may join 

another common classification according to its revised modeling. However, to account 

for concepts that overlap between a small partial-area and a large partial-area H2 is 

introduced: 

Hypothesis H2: Concepts in small disjoint partial-areas are more likely to have 

errors than concepts in large disjoint partial-areas. 

H1 and H2 can be compounded into H3. 

Hypothesis H3: Concepts in small overlapping disjoint partial-areas are more 

likely to have errors than concepts in large overlapping disjoint partial-areas. 

 H3 expresses that concepts that are both complex and uncommonly classified tend 

to have more errors than concepts that are just complex.  

 The number of partial-areas a concept belongs to is called its “degree of overlap.” 

Hypothesis H4: Concepts with a higher degree of overlap exhibit a higher error 

rate.  

 Concepts that overlap between more partial-areas inherit the semantics of more 

roots, and thus, are more complex than concepts that overlap between fewer partial-areas.  

 Even the number of overlapping concepts in a subject subtaxonomy may be 

overwhelming when only limited resources are available to audit them. The above 
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hypotheses can guide a quality assurance methodology by prioritizing which overlapping 

concepts should be reviewed first to maximize yield.  

 To test the hypotheses, a sample of 300 concepts was reviewed for errors by three 

domain experts who are trained in medicine and have extensive terminology auditing 

experience. The review process consisted of two phases. First, each auditor was given the 

complete sample as a list of concepts in alphabetical order and worked independently. 

The auditors were blind to the methodology and the hypotheses. Auditors were not aware 

of which disjoint partial-area a given concept was summarized by and the review process 

performed by each auditor was the same for all concepts.  Each auditor then reported all 

errors found. As shown in [126], there are substantial differences among quality 

assurance reports from several auditors and a report from one auditor is not reliable. 

However, a consensus among several auditors’ reports was shown to result in a reliable 

quality assurance report.  

 Thus, the second phase was used for consensus building. Each auditor was given 

a complete list of errors from all auditors. Each auditor then marked “agree” or 

“disagree” for each error. A concept was considered erroneous if all auditors agreed on 

the error. A similar consensus quality assurance protocol was used when auditing 

overlapping concepts in the Specimen hierarchy [29]. 

 To test H1-H4, three auditors reviewed a sample of 300 concepts from the 

{Associated morphology, Finding site} area in the Bleeding subtaxonomy for errors: 200 

randomly selected overlapping concepts (70%=200/290) and 100 randomly selected non-

overlapping concepts (43%=100/232). The latter were taken from partial-areas that had 

overlapping concept. 
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 The auditors reviewed the January 2013 inferred version of SNOMED CT. 

Together, the auditors first found 131 erroneous concepts. Next all auditors agreed that 

87 (66%) of these concepts had at least one same error (Table 3.7). Among the erroneous 

concepts, 36 were primitives and 51 were fully defined. The auditors all agreed on 123 

errors in these 87 concepts (1.41 errors per erroneous concept). Table 3.6 provides a 

summary of the types of errors found in this study. 

 

Table 3.6  Errors Found in Bleeding Subject Subtaxonomy by Error Type 

Error Type Number of Errors 

Missing parent 50 

Incorrect parent 11 

Missing relationship 4 

Incorrect relationship 10 

Incorrect synonym (+ missing concept) 1 

Duplicate concepts 2 pairs 
Source: [119] 

 

 For H1, 39% (=78/200) of overlapping concepts were determined to be erroneous, 

versus 9% (=9/100) of non-overlapping concepts. Thus, in the sample, overlapping 

concepts were 4.33 times more likely to be erroneous. For statistical analysis the double 

bootstrap approach was used to account for potential dependency of errors in the sample. 

H1 was found to be statistically significant (p=0.0016). For H2, several boundary points 

between small and large were tested (see Table 3.7, Figure 3.12). Using a boundary point 

of seven [22, 26], 37.3% (=85/228) of concepts in small disjoint partial-areas were 

erroneous versus 2.78% (=2/72) of concepts in large disjoint partial-areas. H2 was also 

significant (p=0.0394).  
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Table 3.7  Auditing Results for Overlapping Concepts and Non-overlapping Concepts in 

Small and Large Disjoint Partial-areas for Several Boundary Points Between “Small” and 

“Large” 

Disjoint 

partial-area 

size 

Overlapping 

(Levels 2-8) 

Non-overlapping 

(Level 1) 

Total 

# 

Sample 

# 

Erroneous 

# 

Sample 

# 

Erroneous 

# 

Sample 

# 

Erroneous 

Boundary of 2 (Singletons) 

Small  

(= 1 concept) 

146 61 (41.8%) 7 0 (0%) 153 61 (39.9%) 

Large  

(> 1 concept) 

54 17 (31.5%) 93 9 (9.68%) 147 16 (10.9%) 

Boundary of 3 

Small  

(< 3 concepts) 

168 68 (40.5%) 15 2 (13.3%) 183 70 (38.3%) 

Large  

(>=3 

concepts) 

32 10 (31.3%) 85 7 (8.23%) 117 17 (14.5%) 

Boundary of 5 

Small 

(< 5 concepts) 

184 75 (40.8%) 28 4 (14.3%) 212 79 (37.3%) 

Large 

(>= 5 

concepts) 

16 3 (18.8%) 72 5 (6.94%) 88 8 (9.09%) 

Boundary of 7 

Small 

(< 7 concepts) 

194 78 (40.2%) 34 7 (20.6%) 228 85 (37.3%) 

Large 

(>= 7 

concepts) 

6 0 (0%) 66 2 (3.0%) 72 2 (2.78%) 

Boundary of 10 

Small 

(< 10 

concepts) 

200 78 (39%) 43 7 (16.3%) 243 85 (35.0%) 

Large 

(>= 10 

concepts) 

0 - 57 2 (3.51%) 57 2 (3.51%) 

 

Total 200 78 (39%) 100 9 (9%) 300 87 (29%) 
Source: [119] 
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Figure 3.12  The error rates for small overlapping disjoint partial-areas for the various 

boundary points between small and large. 
Source: [119] 

 

 In the Bleeding subtaxonomy, the disjoint partial-area taxonomy for {Associated 

morphology, Finding site} had only one large overlapping disjoint partial-area when a 

boundary of seven was used. The six concepts sampled from this disjoint partial-area had 

no errors. Small overlapping disjoint partial-areas, on the other hand, had an error rate of 

40.2% (=78/194). But due to the small sample size for large overlapping disjoint partial-

areas, H3 had no significance (p=0.2601). 

 Table 3.8 provides a breakdown of errors by overlap level of the disjoint partial-

area taxonomy. To test H4, each level is compared to the previous level. From Level 1 to 

Level 7 the error rate is increasing, as expected. This hypothesis was statistically 

significant when comparing Level 1 to Level 2 (p=0.0322) and Level 2 to 3 (p=0.0336). 

Other comparisons were not significant due to the smaller sample sizes of Level 4 and 

above; changes in error rate were too small to detect. When Level 3 was compared to 

Levels 4-8 combined (error rate of 24/39=61.5%), the hypothesis was significant 

(p=0.0116). Table 3.9 shows five examples of errors and their proposed solutions. 
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Table 3.8  Auditing Results Broken Down by Disjoint Partial-area Taxonomy Level 

Level  # Concepts in 

Sample 

# of Erroneous 

Concepts 

% Erroneous Concepts 

1 100 9 9% 

2 90 24 26.7% 

3 71 29 40.8% 

4 18 9 50% 

5 10 7 70% 

6 6 5 83.3% 

7 2 2 100% 

8 3 2 66.7% 

Total 300 87 32.3% 

Total for  

4-8 

39 25 64.1% 

Source: [119] 

 

Table 3.9  Five Examples of Errors Reported by the Auditors 

Concept Error Proposed Solution 

Bleeding varices 

of prostate 

Missing relationships: associated 

morphology and finding site, with 

target concepts varix and venous 

structure, respectively. 

Add the two new 

relationships in a role 

group. 

Hemorrhage of 

cervix 

Incorrect parent: Hemorrhage of 

abdominal cavity structure 

Remove IS-A to 

Hemorrhage of abdominal 

cavity structure (corrected 

independently in Jan 2014 

release) 

Hematoma of 

pinna 

Missing child: Chronic hematoma of 

pinna (which is incorrectly a 

synonym of the concept Cauliflower 

ear). 

Add Chronic hematoma of 

pinna concept and remove 

the synonym from 

Cauliflower ear 

Peptic ulcer with 

hemorrhage AND 

obstruction 

Incorrect relationship target: 
associated morphology relationship 

with a target concept  Hemorrhage  

Make target concept of 

associated morphology 

relationship Bleeding ulcer 

to be consistent with 

Esophageal bleeding 

Bleeding gastric 

varices 

Missing parent: Venous hemorrhage Add IS-A to Venous 

hemorrhage 
Note: James T. Case, the head of the US Extension of SNOMED CT, confirmed all of these errors and 

forwarded the corrections to the IHTSDO. 

Source: [119] 
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3.1.3.2.1 External Review of Error Report. All erroneous concepts and proposed 

corrections were reported to James T. Case, the head of the US Extension of SNOMED 

CT. He confirmed 78 (out of 87, 89.7%) of the erroneous concepts had at least one error, 

a high percentage considering the known variability of auditor reports [126]. In cases 

where an error was corrected independently of the submitted auditing report the concept 

was still counted erroneous, as the modeling was changed in releases after the one 

audited in this study (January 2013 SNOMED CT release). The nine concepts that were 

judged correct by James T. Case were in small overlapping disjoint partial-areas (using a 

boundary of seven).  

 Statistical analysis, using only the 78 concepts identified as erroneous by James T. 

Case, was repeated for H1-H4. H1 and H2 were statistically significant (p=0.0048 and 

p=0.0168, respectively), H3 was again not significant (p=0.2563), and H4 was still 

significant, except for Level 1 vs. Level 2, which was almost statistically significant 

(p=0.0628). 

 James T. Case stated that the review of the Bleeding subhierarchy’s audit report 

concepts identified at least two areas where variations in modeling or constraints of the 

existing concept model were an obstacle to consistent and uniform modeling of concepts. 

 First, the auditors found 45 concepts, all of which had fully specified names 

(FSNs) starting with “acute” or “chronic,” that were missing the ancestor Acute disease 

or Chronic disease, respectively. This finding is similar to the results of Rector et al. [85], 

who analyzed many of the Clinical finding hierarchy’s acute and chronic concepts and 

discovered many such cases. These errors arose out of a lack of distinction between 

“acute” and “chronic” as a morphology and “acute” and “chronic” as a clinical course. 
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There are specific structures associated with pathological lesions that allow them to be 

classified as acute or chronic (e.g., lesion fibrosis, infiltration with inflammatory cells, 

etc.). This is sometimes orthogonal to the temporal aspect of the clinical course. A 

number of concepts in the audit report had “acute” or “chronic” in the FSN and an 

associated morphology relationship assigned, but did not have a clinical course 

relationship assigned, so they did not auto-classify under Acute disease or Chronic 

disease, as would be expected. 

 The second major issue was that many concepts associated with traumatic injuries 

did not auto-classify under Traumatic injury because they did not have an associated 

morphology relationship assigned that was a child of Traumatic abnormality 

(morphologic abnormality). This would best be handled by modeling the current 

Traumatic injury concept with a “Pathological process = Traumatic” relationship, and 

then applying that same relationship to all concepts that were caused by trauma, but the 

current quality assurance rules in the SNOMED CT editing environment do not allow 

that, even though it is in the allowed value hierarchy for the pathological process 

relationship. A question related to this was forwarded to IHTSDO for clarification. 

 One issue that arose from the audit was errors being uncovered (and suggested 

corrections being made) according to the inferred version of SNOMED CT. Often, the 

auditors would identify a particular concept missing a parent and would suggest adding a 

new IS-A relationship to correct the problem. However, when James T. Case investigated 

the error in the stated view of SNOMED CT, he found that the issue was not the missing 

parent, but instead incomplete or incorrect modeling of attribute relationships. Correctly 

modeling the attribute relationships would then lead to the auto-classification of the 
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missing parent. The auditors correctly identified the concept as erroneous, but their 

suggested solution did not necessarily correct the problem. 

 Thus, one of the areas of the subtaxonomy quality assurance methodology that 

needs improvement is the process of auditors suggesting corrections. Since the auditors in 

this study reviewed the inferred version of SNOMED CT, as opposed to the stated 

version, the source of errors was often hidden and the proposed solution was often 

erroneous. Being able to see both the stated and inferred views of SNOMED CT is 

extremely important for correcting errors.  

 Training domain experts to be familiar with the SNOMED CT concept model is 

difficult. James T. Case confirmed that the current process of having the initial review 

performed by a group of auditors, and then submitting the findings via the USCRS [127] 

for final review by an editor familiar with the SNOMED CT concept model leads to a 

proper correction. However, the main value of an external quality assurance report is 

exposing errors, even if the suggested corrections are not accepted by a SNOMED CT 

editor familiar with the SNOMED CT concept model. In future studies the impact of 

providing auditors with both the stated and inferred versions of SNOMED CT will be 

investigated. 

3.1.3.3 Conclusions. The scalability of taxonomy-based terminology maintenance to 

large SNOMED CT hierarchies was demonstrated using subject subtaxonomies. This 

represents a significant improvement over the previous approach of reviewing complete 

taxonomies, which may have thousands of partial-areas (e.g., Clinical finding). Such 

large taxonomies are hard for humans to visualize, which prevents effective taxonomy-

based quality assurance, based on reviewing groups of concepts that have higher error 
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rates (e.g., small partial-areas [22, 26, 28]). There are thousands of such concepts in a 

large hierarchy, e.g., 14,450 (14.3%) concepts in “small” partial-areas and 14,220 

(14.5%) overlapping concepts in the Clinical finding hierarchy. Available quality 

assurance resources do not typically enable a thorough review of so many concepts. 

 These difficulties were addressed by combining several novel techniques. The 

first technique is to concentrate on a subject subtaxonomy, which is intuitive for 

terminology curators because it summarizes all descendants of a chosen broad concept, 

e.g., Bleeding or Cancer. This way, the attention of a curator is focused on a 

comprehensible subtaxonomy that still summarizes a sizable subject-based portion of the 

hierarchy. Second, refined hypotheses were formulated regarding concepts with high 

likelihood of errors. Third, the review of concepts is prioritized according to the ratios for 

the refined hypotheses. 

 

Table 3.10  Recommended Order of Auditing in the Bleeding Subject Subtaxonomy 

Rank Hypothesis Group Error Rate 

1 H4 Overlap levels 4-8 64.1% 

2 H4 Overlap level 3 40.8% 

3 H3 Small overlapping 

disjoint partial-areas 

40.2% 

4 H4 Overlap level 2 26.7% 

5 H2 Small non-

overlapping disjoint 

partial-areas 

20.6% 

Source: [119] 

 

 When applying taxonomy-based quality assurance methodologies to small 

hierarchies, two kinds of groups were discovered with higher likelihood of errors in small 

hierarchies: concepts in small partial-areas [26, 28] and overlapping concepts [29]. The 
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challenges for scalability included whether this still holds true for concepts in subject 

subtaxonomies and prioritizing among the groups’ concepts. 

 New hypotheses (H2-H4) were formulated and tested, while confirming the 

previously established hypothesis (H1), for the Bleeding subtaxonomy. When there are 

many overlapping concepts and a relatively extensive level of overlap, as for the Bleeding 

and Cancer subtaxonomies, resources for reviewing overlapping concepts need to be 

prioritized. 

 According to this study, the quality assurance methodology steps corresponding 

to the hypotheses should be applied in decreasing error percentage order (Table 3.10). 

Thus, an editor will achieve a higher yield for a given effort. Future studies will 

investigate error rates in other subject-based subtaxonomies, e.g., Cancer with 2,398 

overlapping concepts, to verify this order. 

 The study confirmed most of the hypotheses and the feasibility of the subject 

subtaxonomy paradigm to support scalability of taxonomy-based maintenance of large 

SNOMED CT hierarchies. More experiments will be performed, using other 

subtaxonomies, where the sample sizes in the Bleeding subtaxonomy were not sufficient 

to achieve statistical significance (i.e., H3). 

3.1.4 Focus Subtaxonomy 

A variation of the subject subtaxonomy is the focus subtaxonomy. A focus subtaxonomy 

is a subject subtaxonomy that includes all of the ancestors of the chosen subject concept 

c. The focus subtaxonomy allows an editor to view the chosen subject concept in the 

context of its ancestor, summarizing how c obtained its structure.  
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Figure 3.13  The Pneumonia focus subtaxonomy. 

 

 The derivation of the focus subtaxonomy begins by identifying all of c’s ancestor 

and descendant concepts (along with the IS-A relationships between them). The partial-

area taxonomy derivation algorithm described in Section 2.2.1.1 is applied to the 

subhierarchy consisting of all the ancestor and descendant concepts (and c). The result is 

a partial-area taxonomy that compactly summarizes all of c’s ancestors and descendants. 

 Figure 3.13 shows the focus subtaxonomy for the concept Pneumonia. The 

partial-areas where Pneumonia resides are outlined in red in the focus subtaxonomy, 

allowing an editor to quickly see how the subject concept is categorized. Alternatively the 

chosen subject concept can be displayed as a separate child node of its respective partial-

areas. From the focus subtaxonomy in Figure 3.13 one can see that Pneumonia has 53 

ancestors that are summarized by Inflammation of specific body site, 48 ancestors 

Level 0 

Level 1 

Level 2 

Level 3 

Level 4 

Level 5 
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categorized under Lung consolidation, and several ancestors at smaller level partial-areas, 

e.g., 17 ancestors in Finding by site. 

3.2 Tribal Abstraction Network 

The derivation of area and partial-area taxonomies requires a hierarchy to have outgoing 

attribute relationships. Within SNOMED CT, twelve hierarchies have no relationships 

and serve only as targets for incoming relationships (“target hierarchies” for short). Thus, 

an alternative paradigm is required to derive abstraction networks for target hierarchies, 

specifically target hierarchies with concepts that have multiple parents. In SNOMED CT, 

102,826 concepts (34.5%) have multiple parents and the average number of parents is 

1.822.  

 Table 3.11 shows the number of concepts in each hierarchy having multiple 

parents as well as their percentage of each hierarchy. Eight of these 12 hierarchies 

contain more than 10 concepts with multiple parents. However, the numbers of concepts 

with multiple parents varies widely between different hierarchies. Almost half (45.26%) 

of the concepts in Clinical finding have multiple parents, compared to only 5.33% of the 

concepts in Observable entity. 

 Ochs et al. [27] introduced the Tribal Abstraction Network (TAN), a new type of 

abstraction network designed for SNOMED CT target hierarchies. The TAN is derived 

assuming only the existence of multiple parents in a hierarchy. The TAN can be used to 

summarize the content and structure of such SNOMED CT hierarchies, as well as support 

their quality assurance, by identifying groups of concepts with a higher likelihood of 

incorrect or missing IS-A relationships. 
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Table 3.11  A Breakdown by Hierarchy of Active SNOMED CT Concepts with Multiple 

Parents 

Hierarchy # of Active 

Concepts 

# w/ Multiple 

Parents 

% of 

Hierarchy 

Body structure* 31,117 13,339 42.9 

Clinical finding* 99,440 45,139 45.4 

Environment or geographical 

location 

1,712 28 1.6 

Event* 3,662 88 2.4 

Linkage concept 1,131 0 0.0 

Observable entity 8,274 439 5.3 

Organism 32,776 1,195 3.6 

Pharmaceutical/biologic 

product* 

17,146 7,727 45.1 

Physical force 171 11 6.4 

Physical object 4,522 383 8.5 

Procedure* 53,147 27,286 51.3 

Qualifier value 8,984 750 8.4 

Record artifact 223 2 0.9 

Situation with explicit 

context* 

3,350 403 12.0 

Social context 4,806 767 16.0 

Special concept 802 0 0.0 

Specimen* 1,422 828 58.2 

Staging and scales 1,305 1 0.08 

Substance 23,822 4,445 18.7 
Note: An asterisk indicates that the hierarchy has lateral relationships. 

Source: [27] 

3.2.1 Derivation 

The TAN is derived as follows. The children of a hierarchy’s root are named patriarchs. 

A tribe is defined as a subhierarchy consisting of a patriarch and all its descendants. The 

use of the words “tribe” and “patriarch” follows the family tree paradigm (e.g., parents, 

children, and siblings). A tribe is named after its patriarch, since all its concepts are 

specializations of the patriarch. Every concept in a hierarchy, except for the hierarchy 

root, belongs to at least one tribe. In a TAN, all concepts belonging to a common set of 
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tribes are grouped together. A necessary but not sufficient condition for a hierarchy to 

have concepts in multiple tribes is that there are concepts with multiple parents. 

 These definitions are illustrated using an excerpt from the Observable entity target 

hierarchy, which consists of concepts “representing a question or procedure which can 

produce an answer or a result” [38]. In the January 2013 release of SNOMED CT, this 

hierarchy contained 8,274 concepts linked by 8,726 IS-A relationships.  

 Figure 3.14 shows a graphical representation for an excerpt of 20 concepts. 

Concepts are represented as nodes labeled with their respective names. Each of the three 

example children of Observable entity, i.e., Process, Function, and Clinical 

history/examination observable (shortened to Clinical history/exam), is a patriarch of a 

tribe. The tribal names are abbreviated P for Process, F for Function, and C for Clinical 

history/exam within braces below each name. Hierarchical IS-A links are represented as 

arrows. For example, Digestive system function IS-A Function. Physiological action, 

Activity, Ingestion, Drinking, Feeding, and Breastfeeding (mother) belong to the Process 

tribe since they are all descendants of Process. 

 Each concept is labeled by the set of tribes it belongs to, called its tribal set. To 

assign all concepts in a hierarchy to tribes, the hierarchy is traversed using topological 

sort [124] starting from the hierarchy’s patriarchs. Each patriarch is by definition only 

assigned its own tribe. In a topological sort procedure any non-patriarch concept is 

processed only after all of its parents have been processed.  
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Figure 3.14  An excerpt of 20 concepts from the Observable entity hierarchy with 

abbreviated tribal names in braces. 
Source: [27] 

 

 If a concept c has one parent p1 belonging to the tribe A and another parent p2 

belonging to the tribe B, c belongs to both tribes A and B, because it is a descendant of 

both patriarchs A and B. Once all parents of a concept c have been processed, c is 

assigned the union of its parents’ tribal sets. This procedure is equivalent to, but generally 

more efficient than, performing a separate graph traversal from each patriarch, since each 

concept is only processed once. If a standard graph traversal, such as breadth first search 

[124] were performed from each patriarch, concepts would have been processed 

multiples times, according to the number of tribes they belong to. For example, 
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Defecation would have been processed three times, instead of only once using 

topological sort. 

 Figure 3.14 shows the results of applying the tribe assignment process for an 

excerpt of 20 concepts. Tribal sets are shown in braces below each concept’s name. 

Figure 3.15 groups together the concepts with identical tribal sets. Each group is 

represented by a dashed bubble and contains the name(s) of the tribes, separated by 

commas. 

 

 

Figure 3.15  The concepts from Figure 3.14 grouped by common tribal sets. 
Source: [27] 

 

 Concepts that are descendants of only one patriarch belong to only one tribe. In 

Figure 3.15 Large bowel function belongs only to the Function tribe. On the other hand, 

(Figure 3.15), Ingestion, Breastfeeding (mother), Activity of daily living, and Defecation 

all belong to more than one tribe, because each has multiple parents in different tribes. 
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For example, Ingestion has two parents, Physiological action and Digestive system 

function, which belong to the Process and Function tribes, respectively. Ingestion, 

therefore, belongs to both the Process and Function tribes. Defecation belongs to all three 

tribes of this hierarchy. 

 Even though Drinking, Feeding, Basic activity of daily living and Toileting each 

have only one parent, they belong to multiple tribes because each has an ancestor that 

belongs to multiple tribes. 

 Generally, concepts that belong to more than one tribe are more complex than 

those belonging to only one tribe, since they are specializations of several patriarch 

concepts. A concept that belongs to multiple tribes is called a joint concept. Joint-ness 

can be used to group concepts into sets. These sets can be used to derive two kinds of 

Tribal Abstraction Networks: the Band Tribal Abstraction Network (“Band TAN”) and 

the more refined Cluster Tribal Abstraction Network (“Cluster TAN”). 

3.2.1.1 Band Tribal Abstraction Network.  A tribal band, or band for short, is a 

set of all concepts that are members of the exact same tribes. A band is named after the 

set of tribes each concept within the band belongs to. A root of a band is a concept that 

has no parents within the band, though it may have parents in other bands. A band may 

have multiple roots. Each set of concepts, surrounded by a dashed bubble (Figure 3.15), 

defines a band. 

 A band TAN consists of one node for each band. These nodes are linked by 

hierarchical child-of links derived from the underlying IS-A hierarchy of the terminology. 
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Figure 3.16  The band TAN derived from Figure 3.15. Each box represents a band. 

Child-of links are represented using arrows between bands. 
Source: [27] 

 

 A band A is a child-of another band B if and only a root concept in A has an IS-A 

link to a concept in B. A band may be child-of multiple bands. The band TAN provides a 

compact, abstract view of a target hierarchy. 

 Figure 3.16 shows the band TAN for Figure 3.15 obtained using the tribal sets 

from Figure 3.14. The number of concepts is listed under each band’s name. The four 

concepts Ingestion, Feeding, Drinking, and Breastfeeding (mother) belong to the band 

named {Process, Function}. Ingestion and Breastfeeding (mother) are the roots of the 

{Process, Function} band, because neither has parents in the {Process, Function} band. 

The band {Process, Function} is a child-of two bands, {Process} and {Function}, 

because both roots Ingestion and Breastfeeding (mother) have parents in both of these 

bands. By the definition of the band TAN, roots are not displayed in Figure 3.16. 

Level 1 

Level 2 

Level 3 
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 The band {Process, Function, Clinical history/exam} is a child-of both bands 

{Process, Clinical history/exam} and {Function} because its root Defecation has two 

parents, Toileting in {Process, Clinical history/exam} and Large bowel function in 

{Function}.  

 Each band has a degree of “joint-ness” according to the number of tribes its 

members belong to. Bands containing concepts of only one tribe consist of the tribal 

patriarch and all of its descendants which are not descendants of a second patriarch.  

 In visualizations of band TANs (Figures 3.16 and 3.18), tribal bands are 

organized into levels according to their degrees of joint-ness and are color-coded. Bands 

of degree 1 are located at the top of the figure. Bands of degree 2, with concepts that 

belong to two tribes, are below. 

3.2.1.2 Cluster Tribal Abstraction Network. A tribal band may have multiple 

roots. Each root defines a different subhierarchy of concepts within the band. A tribal 

cluster, or cluster for short, consists of one root of a band and all its descendants within 

the same band. A tribal cluster is named after its root, because all other concepts in the 

cluster are specializations of the root. 

 Clusters are used to further refine the band TAN into the cluster TAN. In a cluster 

TAN, the clusters serve as the nodes, where all the clusters of a band are drawn within 

that band node. Clusters, like bands, are linked by child-of relationships based on the 

underlying IS-A hierarchy. A cluster A is a child-of another cluster B if the root concept 

of A has an IS-A link to any concept in B. A cluster may be a child-of of multiple 

clusters. Clusters are not necessarily disjoint in terms of the concepts they summarize. A 

given concept may be summarized by more than one cluster. 
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Figure 3.17  The cluster TAN derived from Figure 3.15. Child-of links are represented 

by arrows between clusters. 
Source: [27] 

 

 In Figure 3.15, Ingestion and Breastfeeding (mother) are the two roots of the 

{Process, Function} band. In visualizations of a cluster TAN (Figures 3.16 and 3.19), 

clusters are represented as white boxes within a band box, labeled by their roots, with 

their numbers of concepts below the root names. The root Ingestion and its two 

descendants are represented as a cluster named Ingestion with three concepts in the 

{Process, Function} band (Figure 3.17). The Ingestion cluster is a child-of the Process 

and Function clusters because the root concept Ingestion has parents in these two 

clusters. 

3.2.2 In Support of Quality Assurance 

Quality assurance of large terminologies is difficult and time consuming. By focusing 

efforts on a subset of concepts that are likely to be more error prone, quality assurance 

resources can be utilized more effectively. TANs can be used to support SNOMED CT 

Level 1 

Level 2 

Level 3 
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quality assurance efforts by identifying concepts more likely to have more hierarchical 

errors. Such errors were deemed to be the most problematic in a study of SNOMED CT’s 

users [122]. IS-A relationships play an important definitional role for concepts in 

SNOMED CT. For target hierarchies the correctness of the IS-A hierarchy is important 

because the concepts of these hierarchies serve as targets for relationships with source 

concepts in other hierarchies. There are 18,839 attribute relationships with targets in 

Observable entity. Proper placement of target concepts in a hierarchy is crucial since the 

target of a relationship should be as specific as possible.  

Hypothesis 1: In a cluster TAN, concepts in large clusters are more likely to have 

errors than concepts in small clusters. 

 The rationale for Hypothesis 1 is as follows. For a concept in a target hierarchy 

(without relationships) to be erroneous, the errors can occur only in the hierarchy. An IS-

A relationship for a concept may be either wrong or missing and the concept is misplaced 

in the hierarchy. There is a greater chance for such situations to occur in large clusters, 

because as the number of hierarchically closely related concepts increases, the chance of 

a concept being misplaced in the hierarchy also increases. In clusters with fewer 

concepts, there is less chance of a concept being misplaced in the hierarchy.  

 To reiterate, the goal is to minimize the number of concepts that should be the 

focus of a quality assurance review by selecting few concepts with a high likelihood of 

errors. Such a portion can be reviewed with available limited quality assurance resources 

and yield a large number of errors, relative to the effort spent. However, auditing all large 

clusters is generally not practical because of their large number of concepts. Therefore, a 
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second hypothesis is introduced based on the level a concept belongs to. (Reminder: 

Level numbers grow higher when moving downward in a band diagram.) 

Hypothesis 2: Among the large clusters, those concepts belonging to higher-

numbered levels are more likely to be erroneous. 

 The rationale for this hypothesis is that concepts belonging to more tribes tend to 

be more complex due to their specialization of more patriarchs. The modeling of more 

complex concepts is more prone to errors. Assuming there is support for these two 

hypotheses, the following auditing methodology emerges. Start reviewing the large 

clusters of the highest-numbered levels. As long as quality assurance resources remain, 

continue to review large clusters moving up in the TAN.   

 To test both hypotheses, a cluster TAN was derived for the July 2011 version of 

the Observable entity hierarchy. Even though Observable entity has few concepts with 

multiple parents (Table 3.11), a cluster TAN summarizes the content and structure of this 

hierarchy well (Table 3.12). There are 27 children of Observable entity and therefore 27 

tribes with 16 (59.3%) of these tribes having joint concepts while 11 tribes do not. The 

maximum number of tribes a concept belongs to is three, while 6,627 (80.5%) concepts 

of a unique tribe belong to the 27 tribal bands on the first level. The second level 

comprises 1,236 concepts (15%) of the hierarchy and the third level 368 (4.47%). The 

percentage of concepts with multiple parents is much higher in Levels 2 and 3 (14% and 

20%) than in Level 1 (2.5%). Figures 3.18 and 3.19 provide visualizations of the band 

TAN and the cluster TAN, respectively. 

 The TAN summarizes a target hierarchy. The bands of Level 1 indicate the major 

types of concepts in a hierarchy; Level 1 of Figure 3.18 contains many Clinical 
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history/examination and Function concepts. Levels 2 and 3 show how the bands of Level 

1 intersect in the hierarchy, e.g., the Clinical history/examination band intersects with 

most other bands. Figure 3.19 allows identifying common concept groups of multiple 

tribes. For example, looking at the very large clusters, such as Female genital feature 

(152), Cardiac feature (145), Eye observable (143), followed by the large clusters Blood 

pressure (86), and Activity of daily living (79), Joint movement (86), Feature of lower 

limb (84), and Feature of upper limb (84), provides a summarization of the major types 

of concepts in the Observable entity hierarchy. 

 

Table 3.12  Metrics for the Three Levels of the Observable entity Hierarchy’s Band and 

Cluster Tribal Abstraction Networks 

Level # of 

Bands 

# of 

Clusters 

# (%) of 

Concepts w/ 

Multiple Parents 

Avg # of 

Parents 

# of 

Concepts 

1 27 27 169 (2.5%) 1.03 6,643 

2 23 101 170 (14%) 1.14 1,220 

3 13 52 73 (20%) 1.21 368 

TOTA

L 

63 180 412 (5.3%) 1.06 8231 
Source: [27] 

 

 For a finer summary, one should view the “medium” sized clusters of 25-50 

concepts, e.g., Device of eye observable (39), Tumor size (35), Shoulder joint – range of  

movement (28), and Anesthetic agent concentration (26). Hence, by looking at the 15 

clusters with at least 25 concepts, the TAN summarizes 1084 concepts (68.3%) of the 

major subjects in Levels 2 and 3. 



 

 

 

Figure 3.18  The band tribal abstraction network for the Observable entity hierarchy. Levels are organized into rows due to space 

limitations. Some child-of edges are hidden for readability. Source: [27] 

Level 1 

Level 2 

Level 3 
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Figure 3.19  The cluster tribal abstraction network for Observable entity. Child-of edges are hidden for readability. Each level is 

organized into several rows due to space limitations. Level 1 (not shown) is the same as in Figure 3.18. Source: [27] 
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 To test Hypothesis 1, a domain expert reviewed 1,160 concepts (14.1%) from 

Observable entity. The domain expert audited 410 concepts from Level 1; 477 from 

Level 2; and 266 from Level 3. At each level the domain expert audited all concepts from 

clusters of nine concepts or fewer (284 in total) and randomly selected 876 concepts from 

clusters containing 10 or more concepts. In total, the domain expert found 39 errors 

(3.36%) in the sample. Twenty-one concepts had incorrect IS-A relationships and 18 had 

missing IS-A relationships. These errors were submitted to the curator of the SNOMED 

CT US Extension at the National Library of Medicine for review and inclusion in the 

International Release of SNOMED CT. Only three corrections were not accepted by the 

US Extension’s curator and all but one of the corrections was accepted by the IHTSDO. 

 For the 39 erroneous concepts, a total of 42 errors were found. These erroneous 

concepts served as targets for 42 different relationships from source hierarchies. A follow 

up review of these erroneous concepts using the January 2013 release of SNOMED CT 

was performed and all of the errors were still present. 

 To test Hypothesis 1, the relationship between cluster size and error rate was 

studied as follows. To handle correlation of concepts within clusters, the data was  

analyzed at the cluster level by calculating the error rate per cluster (i.e., for each cluster, 

the total number of erroneous concepts divided by the total number of sample concepts in 

the cluster). To better visualize the effect of cluster size, and because the relation between 

cluster size and error rate might not be linear, the clusters were stratified into six bins.  

 Table 3.13 shows the distribution of clusters, concepts, sample concepts, and 

erroneous concepts among the six bins. The mean cluster error rate column shows the 

average error rate of clusters in each bin. 
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Table 3.13  The Distribution of Concepts, Errors, and Error Rates Among the Six Bins 

Bin Cluster 

Size 

Clusters Concepts Concepts/ 

Clusters 

Samples Erroneous 

Concepts 

(%) 

Mean 

cluster 

error 

rate 

1 > 150 5 6,198 1239.6 219 10 (4.56%) 5.1% 

2 86-150 6 665 110.83 221 16 (7.24%) 4.3% 

3 46-85 7 482 68.86 186 3 (1.08%) 1% 

4 11-45 27 572 21.19 231 5 (2.16%) 1% 

5 2-10 46 225 5 214 3 (1.40%) 1.8% 

6 1 89 89 1 89 2 (2.25%) 2.3% 

Tot.  180 8,231 45.98 1160 39 (3.36%) 2.0% 
Source: [27] 

 

 The error rates and 95% confidence intervals versus cluster size were calculated 

between all bins. Bin 1 (clusters with more than 150 concepts) had an error rate 

statistically significantly higher than Bin 3 (46-85 concepts) and Bin 4 (clusters with 11-

45 concepts), with p=0.019 and p=0.009, respectively. Furthermore, Bin 2 (86-150 

concepts) had an error rate statistically significantly higher than Bin 4 (p=0.039). Error 

rates between other pairs of bins were not significantly different. However, in general, 

Bin 1 and 2 clusters have higher mean error rates than clusters in Bins 3-6. 

 To test Hypothesis 2 the mean error rates among the “large” clusters in the three 

levels was analyzed. Various boundaries between small and large were tested. No 

boundary resulted in significance due to the relatively small number of “large” clusters in 

the cluster TAN, e.g., there are no Bin 1 clusters and just one Bin 2 cluster at Level 3. 

However, it is observed that, at higher levels, larger clusters tended to have higher error 

rates. Using the result from Hypothesis 1, Bin 1 or 2 clusters are treated as large clusters. 
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Table 3.14  An Analysis of Bins 1, 2 (“Large Clusters”) Broken Down by Level 

 Large Clusters (Bins 1, 2) 

Level # of 

Clusters 

# of 

Concepts 

# of Sample 

Concepts 

# of Erroneous 

Concepts (%) 

Mean Cluster 

Error Rate 

1 6 6,251 183 6 (3.28%) 3.08% 

2 4 526 171 9 (5.26%) 4.95% 

3 1 86 86 11 (12.8%) 12.79% 

Total 11 6,863 440 26 (5.9%) 4.64% 
Source: [27] 

 

Table 3.15  An Analysis of Bins 3-6 ("small clusters") Broken Down by Level 

 Small Clusters (Bins 3-6) 

Level # of 

Clusters 

# of 

Concepts 

# of Sample 

Concepts 

# of Erroneous 

Concepts (%) 

Mean Cluster 

Error Rate 

1 21 392 237 7 (2.95%) 1.11% 

2 97 694 303 4 (1.32%) 1.88% 

3 51 282 180 2 (1.11%) 2.12% 

Total 169 1,368 720 13 (1.81%) 1.86% 
Source: [27] 

 

Table 3.16  A Sample of Five Errors Taken from the Auditing Results 

Concept(s) Error Suggested solution 

Sitting systolic blood 

pressure and Sitting 

diastolic blood pressure 

Missing parent: Sitting 

blood pressure  

Add IS-A relationships from 

sitting systolic blood 

pressure and sitting 

diastolic blood pressure to 

Sitting blood pressure. 

Ankle joint temperature Incorrect parent: Body 

temperature 

Replace IS-A to Body 

temperature by IS-A to 

Joint temperature 

Date chemotherapy 

completed 

Missing parent: Temporal 

observable 

Add IS-A to Temporal 

observable. 

Dorsalis pedis arterial 

pressure 

Incorrect parent: Blood 

pressure 

Replace IS-A to Blood 

pressure by IS-A to Arterial 

blood pressure 

Autonomic bladder 

function 

Missing parent: Bladder 

function 

Add IS-A to Bladder 

function 
Source: [27] 
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 Tables 3.14 and 3.15 provide a breakdown of auditing results by level and by 

large vs. small clusters. It is observed that higher leveled large clusters have a higher 

error rate. For example, the single Level 3 large cluster has a mean error rate of 12.79, 

Level 2 large clusters have a mean error rate of 4.95%, and Level 1 large clusters have a 

mean error rate of 3.08%. A similar trend is observed in the small clusters (e.g., small 

Level 3 clusters have a slightly higher mean error rate than Level 2 clusters). For large 

clusters, the error rate among concepts (E) also increases with their level (i.e., 3.28%, 

5.26%, and 12.8%). Table 3.16 provides five examples of errors identified.  

3.2.2.1 Comparative Quality Assurance Study. The primary goal of the TAN-based 

quality assurance methodology is to identify groups of concepts within a SNOMED CT 

hierarchy without attribute relationships that are statistically more likely to be erroneous 

than other concepts. Auditors should focus quality assurance efforts on these concepts to 

increase auditing yields, as measured by the number of erroneous concepts corrected 

versus total number of concepts reviewed. It was observed that concepts in larger clusters 

(e.g., in Bins 1 and 2) were statistically significantly more likely to contain errors than 

concepts in smaller clusters in the Observable entity hierarchy. Furthermore, concepts in 

larger clusters at higher indexed levels were more likely to be erroneous than concepts in 

large clusters at lower indexed levels.  

 To compare the effectiveness of the TAN-based quality assurance methodology 

with other quality assurance methodologies, three other methods were applied to the 

January 2013 release of the Observable entity hierarchy. Note that no quality assurance 

techniques that use attribute relationships can be applied to a hierarchy without attribute 

relationships. For each methodology 200 sample concepts and a 100 control concepts 
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were audited by a domain expert. In total, 832 unique concepts were reviewed for errors 

(there was some overlap among the samples due to random sampling). When a randomly 

sampled concept was previously reviewed for the TAN quality assurance study the result 

of the previous audit was used. The auditing was conducted by the same auditor from the 

TAN study. Each of these three techniques, one lexical, one fully-specified-name-based, 

and one hierarchy-based, supposedly identify concepts with a higher expected error ratio 

than other concepts. The last two identify complex concepts, as does the TAN. 

3.2.2.1.1 Lexical Containment. The first approach involved testing lexical 

containment between pairs of concepts. This approach is used to identify missing IS-A 

relationships in the following way. Given two concepts c1 and c2, if c1’s fully specified 

name lexically contains c2’s fully specified name (the words consists of a subsequence 

and stop words are removed), then c1 may be a descendant of c2. For example Intestinal 

absorption, function is lexically contained within Intestinal protein absorption, function 

so the first concept should be a parent (or an ancestor) of the second concept. A total of 

2,942 such pairs of concepts were identified in the Observable entity hierarchy. Only 

concepts with four or more significant words, including semantic tag, were considered. 

 A total of 5,884 concepts (3,058 unique concepts) were considered in the 2,942 

pairs. Of the 2,942 pairs, 1,811 pairs were found to have an ancestor-successor 

relationship, e.g., for Intestinal protein absorption, function. The remaining 1,131 pairs 

did not have an ancestor-successor relationship. A random sample of 200 such pairs was 

audited to check if the base concept of each pair should be an ancestor of the second 

concept in the pair. A concept may be lexically contained in more than one concept. In 
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the sample there were 188 unique base concepts. A random sample of 100 concepts that 

are not in a lexical containment pair was audited as a control sample. 

 

Table 3.17  Lexical Containment Audit Results 

 # of Erroneous 

Concepts (%) 

# of Sample Concepts 

Control 3 (3%) 100 

Lexical containment pairs 40 (20%) 200 
Source: [27] 

 

 Table 3.17 summarizes the results of the lexical containment review. Only three 

erroneous concepts were found in the control sample. The control sample included all 

concepts that are not a base concept in a lexical pair, thus all of the errors found involved 

missing IS-A relationships where the erroneous concept was not lexically contained in 

the parent (e.g., Behavior to maintain weight should have the parent Weight control 

behavior). Among the 200 lexical containment pairs there was a missing or incorrect 

ancestor-successor relationship for 40 of the pairs (each with a unique base concept).  

Table 3.18 provides three examples of missing ancestor-successor pairs uncovered during 

the review. 

Table 3.18  Three Examples of Errors Found in the Lexical Containment Pairs 

Concept Error Type Proposed Solution 

Adolescent/adult sensory profile 

score 

Incorrect parent: 

Functional observable 

Replace with IS-A to 

more specific concept 

Sensory profile score 

Temporomandibular joint 

stability 

Missing parent Add IS-A to Joint 

stability 

Cerebrospinal fluid pressure 

observable 

Missing parent Add IS-A to Fluid 

pressure 
Source: [27] 

3.2.2.1.2 Number of Parents. The second method is based on the hypothesis that 

concepts with a greater number of parents are more likely to be erroneous than concepts 
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with relatively few parents [128], which was confirmed for the Problem List of 

SNOMED CT by Agrawal et al. [128]. A concept with a relatively large number of 

parents implies complexity. Complex concepts should have a higher probability of being 

erroneous than concepts which are less complex.  

 The Observable entity hierarchy has 7,835 concepts with 1 parent, 426 concepts 

with 2 parents and 13 concepts with 3 parents. All 13 concepts with three parents, a 

random sample of 187 concepts with two parents, and a random sample of 100 concepts 

with only one parent (the control) were reviewed. Table 3.19 summarizes the results. 

Within the sample, concepts with more parents were found to have fewer errors than 

concepts with one parent, thus, this approach does not appear practical for the Observable 

entity hierarchy. 

 

Table 3.19  Auditing Results for Number of Parents Study 

 # of Erroneous Concepts (%) # of Sample Concepts 

1 Parent 4 (4%) 100 

> 1 Parents 1 (0.5%) 200 

Source: [27] 

 

3.2.2.1.3 Number of Words in Fully Specified Name. The third and final method is 

based on the hypothesis that concepts with relatively long fully specified names are more 

complex, and thus more likely to have errors, than concepts with shorter fully specified 

names, which was also confirmed for the Problem List of SNOMED CT by Agrawal et 

al. [128]. The Observable entity hierarchy has concepts with fully specified names of net 

word length three to 16 (including semantic tag). A randomly selected sample of 100 

concepts was selected from concepts with a short net word length of three to five. 
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Another sample of 200 concepts was randomly selected from concepts with a long word 

length, 9 to 16 words. Table 3.20 summarizes the results. While concepts with longer 

word lengths are slightly more likely to be erroneous (7.5%) than concepts with shorter 

word lengths (6%) there was no statistically significant difference. 

 

Table 3.20  Auditing Results for Fully Specified Name Length Study 

 # of Erroneous Concepts (%) # of Sample Concepts 

3-5 Words 6 (6%) 100 

9-16 Words 15 (7.5%) 200 

Source: [27] 

 

3.2.2.1.4 Comparative Study Discussion. Lexical containment was found to 

successfully identify groups of concepts that are more likely to have errors than a control 

sample with a higher error ratio than the TAN-based QA technique. Larger numbers of 

parents and longer fully specified names were found to not indicate a higher likelihood of 

error in Observable entity. The comparative study showed that both QA techniques can 

successfully be applied to the Observable entity hierarchy. By combining the TAN and 

lexical containment techniques to identify different sets of concepts, each promising a 

higher percentage of errors, a relatively large number of errors can be found with a 

relatively small QA effort. 

 Both the TAN and lexical containment techniques have advantages and 

disadvantages. The TAN, for example, provides context for the concepts being reviewed. 

Finding one error may lead to uncovering similar errors for other concepts in same 

cluster. With the lexical containment approach, an auditor is only presented with pairs of 

concepts. More complex (or similar) modeling errors may not be uncovered. However, 

the TAN approach of reviewing complex concepts had a lower error rate (7.8%) than the 
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lexical containment approach (20%). By reviewing potentially missing ancestor-

successor relationships, an auditor’s work load is significantly reduced when compared to 

manually reviewing all of the relationships of a given concept. 

 However, one major weakness of lexical containment is that it can only be applied 

when there are lexical containment concept pairs without ancestor-successor 

relationships; it cannot be used to uncover missing IS-A relationships when the parent is 

not lexically contained in the child, e.g., Behavior to maintain weight and Weight control 

behavior. A total of 21 errors uncovered using the TAN review would not have been 

found using lexical containment. 

 In regards to implementation cost, both the TAN and lexical containment 

techniques require an initial effort to implement the algorithms that generate clusters and 

lexical containment pairs, respectively. However, the biggest cost for both methods is the 

manual auditing effort required; in the lexical containment approach the auditor only 

reviews the given pair of concepts, while in the TAN-based methodology the auditor 

reviews the entire neighborhood of a concept, potentially finding more kinds of errors. 

 

Table 3.21  Precision, Sensitivity, and Specificity for the TAN and Lexical Containment 

Methodologies 

 Tribal Abstraction Network Lexical Containment 

Error Ratio 3.71 (=0.078/0.021) 6.67 (=0.2/0.03)  

Precision 0.078 (=20/(20 + 237)) 0.2 (=40/(40 + 160)) 

Sensitivity 0.51 (=20/(20 + 19)) 0.93 (=40/(40 + 3) 

Specificity 0.79 (=884/(884 + 237)) 0.38 (=97/(97 + 160))  
Source: [27] 

 

 In Table 3.21 the precision, sensitivity, and specificity of the TAN and lexical 

containment methodologies are compared Since number of parents and number of words 

were found to be not helpful for QA of the Observable entity hierarchy, their measures 
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are not reported. For the TAN methodology a positive result is a complex concept 

belonging to Bin 1 or Bin 2 in Level 2 or Level 3 of the Observable entity TAN (257 

total), as described in Discussion. A negative result is any other concept (903 total). A 

true positive is an error in the positive group (20 total) and a false positive is a positive 

concept that has no error (237 total). A true negative is a negative concept with no errors 

(884 total) and a false negative is a negative concept with an error (19 total). 

 For lexical containment a true result is a lexical pair without an ancestor-

successor relationship (200 concepts total). A negative result is a concept not in a lexical 

pair (100 total). A true positive is a lexical pair that should have an ancestor-successor 

relationship (40 total) and a false positive is a lexical pair where no ancestor-successor 

relationship should exist (160 total). A true negative is a non-erroneous concept not in a 

lexical containment pair (97 total) and a false negative is an erroneous concept that is not 

in a lexical containment pair (3 total). 

3.2.3 Limitations 

The TAN represents a new paradigm for summarizing SNOMED CT hierarchies. There 

are several open research questions regarding their use for summarization and quality 

assurance. One issue is the relatively low number of errors uncovered in the quality 

assurance review of the Observable entity hierarchy. There are several possible reasons 

for this finding. One possibility is the Observable entity hierarchy is more correctly 

modeled when compared to Specimen and Procedure, which had much higher error rates 

[26, 28, 29]. Alternatively, low error rates may be a common phenomenon in all target 

hierarchies. Another important issue is the emergence of disproportionately large clusters 

(“super-large clusters,” for short) which summarize thousands, or tens of thousands, of 



100 

  

concepts. These clusters represent an over summarization of a set of concepts. Future 

studies, discussed in Section 4.2, will be conducted to investigate these limitations. 

3.2.4 Additional TAN Applications 

The TAN can be used to address several open issues with partial-area taxonomy-based 

quality assurance methodologies. Large SNOMED CT hierarchies with attribute 

relationships, such as Procedure, Clinical finding, and Body structure, have very large 

root partial-areas (the single partial-area in each hierarchy’s  area). This root partial-

area contains only concepts that have no relationships. The root partial-areas of 

Procedure and Clinical finding contain over 2,500 concepts and over 8,000 concepts, 

respectively. In the Body structure partial-area taxonomy, the root partial-area contains 

nearly 28,000 concepts, 90% of the hierarchy. Super-large root partial-areas represent an 

over summarization of the concepts in these hierarchies. 

 Partial-areas are singly rooted and root partial-areas in partial-area taxonomies 

derived for entire hierarchies contain the portion of the hierarchy which has no attribute 

relationships. Super-large root partial-areas may include concepts that have multiple 

parent concepts that are also in the same super-large partial-area. Therefore, if such 

concepts exist, it may be possible to derive a TAN for the concepts in a super-large root 

partial-area. The children of the root partial-area’s root concept can be used as patriarchs. 

The TAN derivation methodology can then be applied using the set of concepts in the 

root partial-area. Thus, a root partial-area’s TAN will summarize the hierarchy of 

concepts in a super-large partial-area. This approach enables TAN-based quality 

assurance of such concepts. 
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 It is actually possible to derive a TAN for any partial-area in a partial-area 

taxonomy, not just super-large root partial-areas. What is common to all concepts in a 

partial-area is that they all share the same root concept and the same set of attribute 

relationships. Hence, for non-root partial-areas, it is not possible to obtain further division 

when using a taxonomy for a complete hierarchy. However, by ignoring the lateral 

relationships of the concepts in such a super-large partial-area, it is possible to derive a 

TAN for a non-root partial-area, enabling summarization of its concepts. 

 This will be particularly useful for super-large partial-areas in the Procedure 

hierarchy, e.g., Procedure by method (3684), Imaging by body site (1673), and 

Measurement of substance (3980). A study will be conducted to investigate the use of 

TANs to complement existing partial-area taxonomy-based quality assurance of the 

Procedure or Clinical finding hierarchy. TANs will be created for several non-root 

partial-areas and a quality assurance review of their concepts will be performed. 

 For hierarchies with lateral relationships, such as Specimen, Procedure, and 

Clinical finding, it is possible to derive either a partial-area taxonomy or a TAN. When 

compared to a partial-area taxonomy for the same hierarchy, a TAN provide an alternate, 

hierarchy-focused summarization of the same content. It is possible to compare the TAN 

summary against a partial-area taxonomy summary for such a hierarchy. A study will be 

performed to investigate how a TAN summary can support quality assurance for source 

hierarchies, complementing the existing quality assurance techniques which utilize 

taxonomies. 
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3.2.5 Discussion 

The TAN addresses the need for summarization methodologies for the eight target 

hierarchies of SNOMED CT with multiple parents. The number of concepts with 

multiple parents in a hierarchy is not as important for deriving a TAN as the locations 

where such concepts appear. Only 412 (5.33%) of the concepts in Observable entity have 

multiple parents, a relatively small number compared to several other hierarchies (Table 

3.11), but a TAN is successfully derived, since 153 such concepts are located “at the 

crossroads” of tribe combinations. 

 The TAN summary of a target hierarchy can be used to support quality assurance. 

The overall desired effect of using a TAN is to limit the resources for and increase the 

yield of QA. It was found that concepts in the Observable entity hierarchy are more likely 

to be erroneous if they belong to larger clusters (e.g., Bins 1, 2) in the TAN rather than to 

smaller clusters (Bins 3-6). Furthermore, the percentage of errors was highest in larger 

clusters at Level 3 and slightly higher in larger clusters in Level 2 than Level 1.  

 Following the previously described TAN quality assurance methodology, the 86 

and 526 concepts in large clusters of Levels 3 and 2, respectively, should be reviewed. 

The 86 concepts in the larger Level 3 cluster were reviewed and 11 erroneous concepts 

were found. The number of erroneous concepts expected in reviewing the 526 concepts in 

larger Level 2 clusters is 28 (=0.0526×526) (based on E in Table 3.14). Hence, a total of 

39 (=11+28) errors are expected from reviewing 612 (=86+526) concepts in the large 

clusters of Levels 2 and 3, according to the methodology. Coincidentally, 39 erroneous 

concepts were also found when reviewing the sample of 1,160 concepts. Hence, the 
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methodology would likely yield the same number of erroneous concepts while saving the 

review of 548 (=1,160 [=total reviewed] – 612 [=86+526]) extra concepts.  

 One issue which will be investigated is the existence of concepts which overlap 

between multiple clusters. While no such concepts currently exist in the Observable 

entity hierarchy, there are over 18,000 concepts that overlap between multiple clusters 

spread throughout SNOMED CT’s other hierarchies. For partial-area taxonomies, 

concepts that overlap between multiple partial-areas have been found to be more likely to 

contain errors [29]. It is hypothesized that a similar hypothesis will be true for concepts 

that overlap between clusters. 

3.3 Abstraction Networks for OWL Ontologies 

Abstraction network derivation methodologies have been created for various ontologies. 

However, idiosyncrasies in the underlying knowledge models limit the overall 

applicability of the methodologies outside of a few specific ontologies. Many abstraction 

networks, such as the area taxonomies and partial-area taxonomies for SNOMED CT 

[24] and NCIt [22], are only applicable to their associated ontology. There is a need to 

formulate a unified abstraction methodology that can be applied to entire families of 

structurally similar ontologies. 

 One of the major goals of this research is to develop an abstraction-network-based 

summarization and quality assurance framework for the ontologies in the NCBO 

BioPortal [50]. BioPortal does not currently provide functionality to support the 

summarization and quality assurance of ontologies. A preliminary step in this research 

was the investigation of a family-based quality assurance framework. In He et al. [55] the 
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structure of 186 BioPortal ontologies was analyzed to determine which structural 

features were available for abstraction network derivation. 

 A structural feature is defined as a type of knowledge element or structural 

configuration used within an ontology. Structural features are used to define an 

ontology’s classes. In SNOMED CT, lateral attribute relationships are a type of structural 

feature used to define many concepts. Object properties and data properties can be 

considered structural features of OWL ontologies. Different hierarchical relationship 

configurations also constitute a type of structural feature. For example, the existence of 

classes with multiple superclasses (multiple parents) can also be considered a structural 

feature of an ontology. Multiple parents can be used to derive different types of 

abstraction networks (e.g., the TAN in Section 3.2 or the disjoint partial-area taxonomy 

in [23]). 

 Many biomedical ontologies are developed in OWL and Open Biological and 

Biomedical Ontologies (OBO) [52] formats. OWL and OBO provide standard 

frameworks for creating ontologies. Note that OBO ontologies can be converted to OWL, 

so the methodologies described in this section are also applicable to OBO ontologies 

[129]. Of the over 300 ontologies in BioPortal, the large majority are released in either 

OWL or OBO format. 

 One example of an ontology developed in OWL, and available in BioPortal, is the 

Ontology of Clinical Research (OCRe), which provides classes and relationships to 

characterize the different types of human studies in a uniform way [51]. OCRe was 

developed using Protégé [56] and focuses on annotating human studies according to their 

design and analysis. OCRe is organized as a set of modular components with the core 
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modules being Study protocol, Study design, and Statistics. OCRe includes significant 

information on human investigations, with its Revision 258 consisting of 342 unique 

classes and 192 different kinds of relationships [130]. 

 Another OWL ontology available in BioPortal is the Sleep Domain Ontology 

(SDO) [45], an ontology focused on the domain of sleep medicine. The SDO consists of 

1390 classes and is available on BioPortal in OWL format. The SDO was developed as 

part of the PhysioMIMI project to support the merging of physiological and clinical data. 

The SDO was built by merging knowledge from several ontologies, such as the Ontology 

for General Medical Science (OGMS) [47] and Foundational Model of Anatomy (FMA) 

[131], with sleep-domain knowledge being added by its curator.  

 OCRe and SDO will be used to illustrate the process deriving two types of 

abstraction networks which are designed for OWL ontologies: the domain-defined 

partial-area taxonomy and the restriction-defined partial-area taxonomy. 

3.3.1 Domain-defined Derivation Methodology 

An important structural feature used in the development of OWL ontologies is the object 

property, which defines a directed binary relationship between two classes, allowing for 

their respective instances to be related. Using an example from OCRe, consider the 

definition of the object property hasMember: The example below, shown in OWL XML 

format, states that hasMember has the domain (class) Organization and the range (class) 

Person. This indicates that, within the OCRe ontology, any instance of an Organization 

can have a member that is an instance of Person. Object properties can have more than 

one class in their domain or range. 
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 <owl:ObjectProperty rdf:ID="hasMember"> 

  <rdfs:domain rdf:resource="Organization"/> 

  <rdfs:range rdf:resource="Person"/> 

 </owl:ObjectProperty>  

 

 The derivation of a domain-defined partial-area taxonomy for OWL-based 

ontologies required the reformulation of the area and partial-area taxonomic elements. 

For OWL ontologies, these notions are based on object properties and their explicitly 

defined domains (such as Organization in the hasMember example above). This 

represents a shift from a reliance on instantiated relationship occurrences (e.g., in 

SNOMED CT) to potential relationship occurrences. 

 Let O be a non-empty set of object properties. The area with respect to O is 

defined as the set of all classes that are explicitly defined (or are inferred) as being in the 

exact domains of O’s object properties. The object properties collectively are used to 

name the area. For example, the OCRe class Entity is explicitly asserted as the domain 

for the object properties has part and part of; therefore, it belongs to the area named {has 

part, part of}. All of the descendants of Entity are also implicitly within the domain of 

has part and part of. However, many descendants “introduce” new object properties of 

their own in the sense of being the asserted domain of the properties and therefore, will 

have different (larger) sets of object properties and reside in different areas. This 

inheritance and introduction of object properties within OWL ontologies (such as OCRe) 

is the basis for defining an area taxonomy. Areas are linked by child-of relationships that 

abstract the underlying subclass hierarchy. 

 A root within an area is defined as a class such that the set of object properties 

having the class as their domains differs from all such sets of its superclasses. An area 

may have more than one root. A partial-area, which is based on a root within an area, is 
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defined as a subhierarchy of classes that share a common set of object properties and a 

common ancestor class, namely, the root, which introduced the partial-area’s new object 

properties (while the rest of the object properties were inherited from ancestors of the 

root). Let R be a root of an area A. The set of classes consisting of R and all its 

descendants in A is called a partial-area and is named after the root. Partial-areas are 

linked by child-of relationships derived from the underlying subclass hierarchy in the 

ontology.  

 To illustrate the process of deriving a domain-defined partial-area taxonomy, 

OCRe’s Entity hierarchy, which is the largest in the ontology and features a rich set of 

object properties, was utilized in Ochs et al. [25]. As of Version 244 of OCRe, there were 

120 distinct classes and 75 unique types of object properties whose explicitly defined 

domains are subclasses of Entity. This hierarchy also contains the important Study class, 

which is considered the primary element of OCRe. 

 A preliminary step in creating a domain-defined partial-area taxonomy is to run a 

reasoner on the ontology to obtain the inferred view. Pellet [68], provided within Protégé 

[56], was applied to the stated view of OCRe. As the first step, object property 

introduction was analyzed within the hierarchy. Figure 3.20 shows an indented 

subhierarchy of 21 classes from Entity, along with classes that are explicitly defined as 

the domains for the given object properties. The object properties introduced at a given 

class are shown in brackets next to the class name. Background color alternates between 

white and light blue to help identify on which level of the subhierarchy a given class 

resides.  
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Figure 3.20  A portion of OCRe’s Entity hierarchy in an indented format with object 

properties introduced. The number after “+” indicates the number of inherited properties. 
Source: [25] 

 

 As an example, the class Physical entity is defined as being within the domain of 

two object properties, is element of and plays. In addition, Physical entity has the two 

object properties has part and part of that are inherited from the Entity class. 

 Altogether, Physical entity is in the domain of four object properties. Object 

properties are color-coded according to the total number of properties for the class at 

which they are introduced. For example, all classes with a green-colored object property 

have three in total. This color coding will be utilized in the following figures. 
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 Once the inferred hierarchy of an ontology is established, and all its object 

properties are identified, the class hierarchy of the ontology is traversed using a 

topological traversal algorithm [124] and the classes that are in the domains of the exact 

same set of object properties are grouped together.  

 Applying this second step to OCRe, starting at the class Entity, established the 

area taxonomy for Entity. Figure 3.21 shows the grouping of classes for the sample of 

OCRe’s hierarchy shown in Figure 3.20. Areas are represented as colored boxes. 

Different colors indicate different numbers of object properties. Sets of object properties 

are shown at the top of each colored box. Each such list of object properties is the 

respective area’s name. Classes with that set of properties are shown in the box, with 

descendants of each root shown indented. For example, the class Collection in Figure 

3.21 has the object property set {has part, part of, has element} and a child class 

Population along with two grandchildren, Enrolled population and Study population. 

Edges are used to represent child-of links between areas. Child-of links indicate the chain 

of inheritance involved with a particular set of object properties. The edge from the area 

containing Organization indicates that this area inherited five properties from the area 

containing Social institution. 

 The third and final step in the domain-defined derivation methodology is to 

identify the roots of each area and group the descendants of these roots into partial-areas. 

In Figure 3.21, Planned activity is the ancestor of five classes that all share the same set 

of object properties: has part, part of, has effective time, has planned component 

relationship, and occurs in. This group of classes is joined into a single partial-area 

rooted at Planned activity.  
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Figure 3.21  The grouping of classes from 

Figure 3.20 into areas based on each class’ 

set of object properties. Edges are child-of 

links between areas. 
Source: [25] 

 

Figure 3.22  Partial-areas derived for each 

area in Figure 3.21. The targets of child-of 

links within partial-areas are indicated 

after “CHILD OF.”  
Source: [25] 

 

 Figure 3.22 shows the partial-area taxonomy for the subset of classes from Figure 

3.21. In Figure 3.22, the root of each partial-area is explicitly identified. The numbers in 

parentheses indicate the total numbers of classes summarized by the respective partial-

areas. The targets of the child-of’s between partial-areas are listed in the boxes after 

“CHILD OF.” Figure 3.23 shows the final diagram representation of the domain-defined 

partial-area taxonomy created for OCRe’s Entity subhierarchy given in Figure 3.20. It is a 

representation that is more compact than the original hierarchy.  
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Figure 3.23  Partial-area taxonomy for the subset of classes from OCRe’s Entity 

hierarchy in Figure 3.20. 
Source: [25] 

 

 Figure 3.23 condenses the 21 classes of Figure 3.20 into a structure of ten partial-

areas residing in nine areas. In the figure, the colored boxes represent areas. The white 

boxes in an area are the partial-areas. The number of classes for each partial-area is 

shown. Areas are organized into levels based on the number of object properties in each 

area. Areas containing classes with the fewest object properties are at the top. 

 Within the partial-area taxonomy, edges are used to represent the child-of’s links 

between partial-areas. As a graphical simplification, edges are drawn between areas only 

when all of the partial-areas of a given area are children of the same parent area. As the 

level structure is now explicit, arrow heads may be omitted. For additional clarity, edges 

may be color coded based on which area the parent partial-area resides in. For example, 
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Biospecimen is child-of Physical entity. Since Physical entity is at Level 2 (blue), a blue 

line is used to connect the two areas that contain these two partial-areas. 

 The advantage of the domain-defined partial-area taxonomy derivation 

methodology is that it is applicable to any ontology expressed in OWL which has object 

properties with explicitly defined domains. This is in contrast to the previously developed 

methodologies which were only applicable to one ontology at a time (e.g., SNOMED 

CT). For example, in [55] a domain-defined partial-area taxonomy was created for the 

Cancer Chemoprevention Ontology (CanCo) [64]. Additionally, Ochs and Perl [132] 

illustrate several other examples of domain-defined partial-area taxonomies created for 

ontologies such as the Sleep Domain Ontology (SDO) [45] and Top-Meneles [133]. 

Based on the analysis in [55], the domain-defined partial-area taxonomies derivation 

methodology is applicable to over 80 different BioPortal ontologies.  

3.3.2 Restriction-defined Derivation Methodology 

Many OWL ontologies, such as the Sleep Domain Ontology (SDO), do not rigorously 

define domains and ranges for every object property. In such cases, the domain-defined 

partial-area taxonomy derivation methodology will not produce a useful summarization 

of the ontology. Thus, alternate structural features must be considered to derive partial-

area taxonomies for these ontologies. OWL allows object properties to be used in 

restrictions on classes. The major difference from explicitly specifying domains and 

ranges is that a restriction is local, i.e., the restriction only applies within the context of 

the class with the restriction (and, implicitly, its descendants). For example, consider the 

following class definition from the SDO, shown in Manchester OWL syntax: 
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Class: BilateralUpperLimbMovementDuringSleep 

   SubClassOf:  

      UpperLimbMovementDuringSleep 

      includes some  

            RightUpperLimbMovementDuringSleep 

      includes some  

            LeftUpperLimbMovementDuringSleep 

 

 This states that the class Bilateral Upper Limb Movement During Sleep is a 

subclass of two restrictions that use the object property includes. One restriction is that 

Bilateral Upper Limb Movement During Sleep includes Right Upper Limb Movement 

During Sleep; the second is that it includes Left Upper Limb Movement During Sleep. 

Both restrictions use the constraint some, which requires that at least one instance of the 

object property used with Bilateral Upper Limb Movement During Sleep conform to the 

restriction. An alternative would be all, which means when the object property includes is 

used with Bilateral Upper Limb Movement During Sleep, all its instances must conform 

to the restriction. Using object properties in restrictions allows for more flexibility in 

ontology design. Includes is a high-level property used in 82 different restrictions in 

SDO. 

 Taxonomies can be derived using the defined restrictions when there are a 

sufficient number of them, yielding what is called a restriction-defined partial-area 

taxonomy. The derivation of the restriction-defined partial-area taxonomy was described 

in Ochs et al. [120]. The SDO has 44 types of object properties used in restrictions on 

classes, which means that there are enough of them for creating a partial-area taxonomy 

for the ontology.  
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Figure 3.24  The restriction-defined partial-area taxonomy for the Sleep Domain 

Ontology’s Entity hierarchy. Levels have been organized into rows and child-of edges are 

hidden for readability. 

 

 In a restriction-defined taxonomy, an area is defined to be the set of classes that 

are explicitly defined or inferred to be bound by restrictions that use the object properties 

in a given set O. A restriction can be either allValuesFrom or someValuesFrom; the 

methodology does not distinguish between the two. Child-of links are derived as with the 

domain-defined partial-area taxonomy. The class that has the restriction is treated as 

belonging to the domain of the object property.  

Level 0 
Level 1 

Level 2 

Level 3 

Level 4 

Level 5 

Level 6 
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 Additionally, any descendants of the class with the restriction are considered to be 

implicitly in the object property’s domain. The definition of the partial-areas remains 

unchanged from the domain-defined derivation methodology.  

 Figure 3.24 shows the first seven levels of the SOD’s restriction-defined partial-

area taxonomy. Levels 7 and 8 are not shown. The complete restriction-defined taxonomy 

contains 262 partial-areas in 61 areas. The full restriction-defined taxonomy can be 

viewed in [132]. 

 Like the domain-defined taxonomy, the restriction-defined taxonomy is 

applicable to many OWL ontologies, particularly those which mostly use object 

properties in restrictions on classes. He et al. [55] found that 150 out of 186 BioPortal 

ontologies fit this criteria. Thus, the restriction-defined partial-area taxonomy can be used 

to summarize many of these ontologies. 

3.3.3 Granularity of OWL Abstraction Networks 

The abstraction ratio of an abstraction network is defined as the average number of 

ontology classes mapped to each abstraction network node (i.e. #classes / #nodes). This 

ratio indicates the granularity of an abstraction network. If there are few nodes in the 

abstraction network (e.g., many classes are mapped to few nodes), then the abstraction 

network has coarse granularity. Even though the abstraction network summarizes the 

ontology, that summary may contain too little information to be considered useful. 

Conversely, an abstraction network’s granularity may be considered too fine if it has too 

many nodes, meaning the summarization benefits are effectively lost.  
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Figure 3.25  Domain-defined partial-area taxonomy for the SDO’s Entity hierarchy. 
Source: [120] 

 

 

 Granularity may be affected by an abstraction network’s derivation methodology. 

Several different types of abstraction networks can potentially be derived for the same 

ontology. What differs among the abstraction networks is the algorithm used to define the 

nodes (i.e., what structural features are utilized to create the abstraction network). 

 The SDO has object properties with explicitly defined domains and object 

properties used in restrictions. Thus, both the domain-defined derivation methodology 

and the restriction-defined derivation methodology are applicable to the SDO. 

Granularity differences are expected for different types of abstraction networks. Finding 

the “best” abstraction network for an ontology is based on the structure of the ontology 

and/or the intended use of the abstraction network. 

 Figure 3.25 shows a domain-defined partial-area taxonomy for the SDO’s Entity 

hierarchy. When compared to the SDO’s restriction-defined taxonomy in Figure 3.24, 

there is significantly less information conveyed in the domain-defined taxonomy. The 

SDO’s domain-defined partial-area taxonomy is considered too coarse in granularity for 

activities such as quality assurance. The domain-defined taxonomy contains only 13 

partial-areas separated into an equal number of areas. The abstraction ratio is 98.08 
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(=1,275/13) classes per partial-area. This is in contrast to the 262 partial-areas in 61 areas 

for the restriction-defined taxonomy (abstraction ratio of 4.867). Three partial-areas, 

Entity, Representational artifact, and Independent continuant, together constitute nearly 

the entire hierarchy (1,217 classes). The ten other partial-areas together contain only 58 

classes, 25 of which are in the partial-area Procedure. Hence, the granularity of the top 

part of the taxonomy is too coarse for quality assurance, since this portion of the 

taxonomy over-summarizes the content. 

 Domain-defined taxonomies will only provide sufficient granularity when enough 

object properties have explicitly defined domains and the set of classes that are in one or 

more object property’s domains is large enough. Within the SDO’s Entity hierarchy only 

16 of the 50 object properties have explicitly defined domains. The remaining object 

properties are used in restrictions or have no domain information. When no domain 

information is given, the domain is implicitly the root of the ontology, and is not used in 

the derivation of a taxonomy. 

 When no single derivation methodology provides an abstraction network of 

sufficient granularity, combinations of derivation methodologies can be used to derive 

new kinds of abstraction networks. For example, if neither the domain-defined partial-

area taxonomy or restriction-defined partial-area taxonomy derivation methodologies 

work well on their own, then they can be combined to create a (domain or restriction)-

defined derivation methodology, which uses object properties with either explicitly 

defined domains or object properties used in class restrictions to create a partial-area 

taxonomy.  
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Figure 3.26  The (domain or restriction)-defined partial-area taxonomy for the Sleep 

Domain Ontology’s Entity hierarchy. The {part of} and {has part} areas are not shown. 
Source: [120] 
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 Figure 3.26 illustrates the (domain or restriction)-defined partial-area taxonomy 

for SDO’s Entity hierarchy. This taxonomy has 267 partial-areas in 67 areas (abstraction 

ratio of 4.77). While the (domain or restriction)-defined partial-area taxonomy has 

approximately the same abstraction ratio as the restriction-defined taxonomy, it provides 

a more complete summary of the SDO’s structure and is still not overwhelming. 

3.3.4 In Support of Quality Assurance 

One way to perform quality assurance using a partial-area taxonomy is to review the 

taxonomy to see whether it conforms to the original conception that the designer of the 

ontology had. For example, do the classes in the various partial-areas indeed have the 

correct sets of object properties? Such a review can be done by an individual who is 

familiar with the content and structure of the ontology. Another way of utilizing the 

taxonomy is by identifying any components that display an anomaly vis-à-vis the rest of 

the ontology. For example, a partial-area that is much larger than all the other partial-

areas might be considered an anomaly in an ontology the size of OCRe. Another example 

is a partial-area in which a very large number of object properties are introduced. 

 A further anomaly may relate to exceptions in the number of child-of relationships 

emanating from a partial-area. If, for example, most partial-areas have just one child-of 

and only a few have multiple child-of’s, the latter constitute an exception to the norm and 

are recommended for review. It is not necessarily the case that each such anomaly 

manifests an error, but the anomalous classes are recommended for in-depth review by a 

curator of the ontology. Some anomalies are the results of modeling errors that can be 

discovered during an in-depth review. 
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3.3.4.1 OCRe Quality Assurance Review. The complete domain-defined partial-area 

taxonomy for the Entity hierarchy, shown in Figure 3.27, was created for Version 244 of 

OCRe. This version of Entity consists of 120 classes and 75 unique types of object 

properties. Levels are numbered, with the root area {has part, part of} at Level 0. Lower 

levels have larger level numbers and also larger numbers of object properties; however, 

these numbers are not necessarily equal. 

 The partial-area Physical entity is in the area {has part, part of, is element of, 

plays} at Level 2. Physical entity has three classes, the root and its two children, Material 

and Organism (see Figure 3.21). 

 
Figure 3.27  Complete partial-area taxonomy for OCRe’s Entity hierarchy prior to the 

auditing efforts. 
Source: [25] 
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 There are two partial-areas that are child-of the partial-area Physical entity: 

Person which is a subclass of Organism, and Biospecimen which is a subclass of 

Material entity in the ontology. The corresponding child-of relationships are shown as 

(blue) lines in Figure 3.27. In total, the taxonomy has 21 areas organized into nine levels. 

There are 23 partial-areas in total, because two areas at Level 1 contain two partial-areas. 

 Twelve of the partial-areas consist of just one class. To observe the main focus of 

the content of the Entity hierarchy, one should concentrate on the larger partial-areas: 

Entity (14 classes), Study design (13 classes), Outcome analysis specification (34 

classes), Planned activity (6 classes), and Study (24 classes). By reviewing the 23 partial-

areas and concentrating on the large ones, one can get an orientation into the structure 

and content of a hierarchy. The two largest partial-areas, Outcome analysis specification 

and Study, could be considered anomalous. At first, the OCRe curators were surprised to 

see so many classes included within the former.  

 Upon closer inspection, it was seen that all 33 descendants of Outcome analysis 

specification describe statistical methods that clearly did not belong under this class. 

Furthermore, they did not even belong in the Entity hierarchy. The reasoner inferred the 

subsumption relationship because of the erroneous domain specifications of the object 

properties has dependent variable and has independent variable. After the error was 

fixed by OCRe’s curator, the 33 classes no longer show up as inferred descendants of 

Outcome analysis specification. 
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Figure 3.28  Partial-area taxonomy for OCRe’s Entity hierarchy, revised after audit. 
Source: [25] 

 

 Figure 3.28 shows the taxonomy of the revised Entity hierarchy, which has only 

88 classes. It was made available on BioPortal as Version 258 of OCRe. In the revised 

taxonomy, the partial-area Outcome analysis specification contains just one class on 

Level 2 (blue) with only four object properties. Outcome analysis specification was 

removed as the domain of two object properties, has dependent variable and has 

independent variable, which were formulated as existential restrictions on Outcome 

analysis specification. Variable specification was added as the domain of these 

properties’ inverses. 
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 Another anomaly was encountered at the partial-area Relative time point (one 

class) at Level 5 of Figure 3.27. It is the only partial-area that has two child-of’s 

emanating from it, one to the partial-area Entity, where it is a subclass of the Time point 

class, and the other to the partial-area Time interval, where it is a subclass of the root 

class Time interval.  

 According to the definition provided within the ontology, Relative time point is 

not a Time interval at all, but a Time point in reference to some other given time point. 

Furthermore, the subclass to Time interval was not in the asserted view of OCRe, but was 

instead inferred by the Pellet reasoner. The error was due to an error in the specified 

domain of the duration object property, leading the reasoner to infer an unintended 

subsumption relationship. During the review of OCRe, the domain of the property was 

changed and as a result the second subclass relationship to Time interval is no longer 

inferred.  

 In Figure 3.28, Relative time point appears on Level 3 (red), with only five object 

properties. This is due to the fact that the two object properties has start time and has stop 

time, originally inherited from Time interval, disappeared since Relative time point is no 

longer a subclass of Time interval. 

 Another change in the ontology resulted from observations made upon review of 

the various partial-areas and their sets of object properties. The partial-area Physical 

quantity (two classes) on Level 2 (blue) had an irrelevant object property has semantic 

constraint, which was removed. This partial-area is now on Level 1 (green) of the 

taxonomy (Figure 3.28). 
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 Comparing Figure 3.27 to Figure 3.28, it can be seen that changes occurred on all 

levels except Level 0. However, as it happens, Level 5 (comprising one class 

Biospecimen) in Figure 3.28 is identical to Level 6 in Figure 3.27. On every other level, 

there are significant changes between the two figures. 

 The remodeling of OCRe following the auditing that was facilitated by the 

taxonomy of Figure 3.27 has not yet been completed. In addition to the changes reflected 

in Figure 3.28 and presented in the previous section, there is some additional remodeling 

work underway for the partial-area Study (bottom of Figure 3.27 on Level 8). This 

partial-area has 24 object properties, a large increase versus the nine object properties at 

Level 7 in the taxonomy. It is surprising that besides part of and has part all 22 other 

object properties have the Study class as their domain. One could envision some of the 

object properties having children or grandchildren of Study as their domains instead.  

 For example, the object properties has recruitment status or has biospecimen 

collected may not be relevant for all 24 classes of this partial-area and should be 

introduced at appropriate descendants. This modification would partition the large 

partial-area Study into several smaller ones, likely improving the presentation of OCRe to 

users. The editorial team of OCRe is currently using this feedback to re-examine the 

modeling of these classes, which are critical to the purpose of OCRe. Some initial 

changes are reflected in Figure 3.28, where Study has grown from 24 to 26 classes, 

compared to Figure 3.27, reflecting a finer distinction between classes. 

3.3.4.2 Sleep Domain Ontology Quality Assurance Review. Ochs et al. [120] 

describe a preliminary quality assurance review of the SDO using the (domain or 
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restriction)-defined taxonomy shown in Figure 3.26. This preliminary review identified 

several errors that were later corrected by SDO’s curator, Sivaram Arabandi.. 

 The first issue, a dissimilar partial area grouping, was noticed at level 2 in the area 

{has part, hasRole}. This area has three partial-areas, one of which (Asian or Pacific 

Islander) does not match the other two partial-areas about Angiotensin. They fall under 

very different hierarchies – first one is a subclass of population, and the other two are 

classes under the medication hierarchy. Upon investigation, the class Asian or Pacific 

Islander was introduced for cases where records did not distinguish between the two 

races and the actual race is not known. The semantics of such a situation fits the OR 

logical operator, as the term describes, and does not fit a part relation [134]. An 

individual with this race is not part Asian and part Pacific Islander, but is one of the two. 

The knowledge is just not available. Thus the has part object property was removed from 

this class and it is now in the Independent continuant partial-area in the {hasRole} area, 

like all of its sibling races. 

 This modeling error was discovered only due to the dissimilar grouping in the 

area {hasRole, has part}. This area consists of object property hasRole with an explicit 

domain and object property has part, which is used in a restriction. Hence, this area did 

not appear in the domain-defined partial-area taxonomy of Figure 3.25. Neither did it 

appear in the restriction-defined partial-area taxonomy of Figure 3.24. The only 

taxonomy where this dissimilarity appeared was in the (domain or restriction)-defined 

partial-area taxonomy of Figure 3.26. This example demonstrates why granularity has to 

be considered when utilizing abstraction networks for quality assurance. The classes in 

partial-area for living organism were found to have duplicate properties – 
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“participatesIn” (from BioTop) and “participates in” (from RO). On examination, 

neither of the two relations have a description associated with them. However, based on 

the usage of the relations, it appears that the two are equivalent. Neither property has 

domain or range specified, but the RO version has a subproperty and an inverse property 

associated with it. The BioTop version of the relation is used only once (in the definition 

of living organism). Therefore, SDO was refactored to replace this relation with the one 

from RO. 

3.3.4.3 Gene Ontology Quality Assurance Review. The Gene Ontology (GO) 

[42] is an important ontology utilized extensively to support annotation of genomics 

findings [135]. GO comprises over 40,000 terms (i.e., classes/concepts) and nearly 

95,000 synonyms. GO terms are connected by about 64,000 hierarchical is_a links that 

collectively form a directed acyclic graph. GO’s terms are further defined using almost 

15,000 relationships, including many part_of and has_part relationships. Additionally, 

GO is extensively cross-mapped to other ontologies and external references. It is 

separated into three subsets: Biological process (BP), which describes biological events; 

Cellular component, which describes different cell parts; and Molecular function, which 

describes activities at the molecular level. 

 Due to the size and complexity of GO, modeling problems and inconsistencies are 

nearly unavoidable. Thus, it is imperative to develop quality assurance techniques for 

GO’s content. GO is the largest member of the Open Biomedical Ontologies (OBO) 

Foundry [52], a collection of biomedical ontologies that adhere to a common design 

philosophy and implementation. Abstraction networks, e.g., partial-area taxonomies, can 

be used to support the quality assurance of GO’s content. 
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 A preliminary review of GO’s Biological process (BP) hierarchy was performed, 

using a partial-area taxonomy, in Ochs et al. [136]. Various kinds of anomalies and their 

impact on GO were analyzed. When a kind of anomaly is repeated multiple times, and it 

is proven to indicate modeling problems with a high degree of likelihood, then it de facto 

forms part of a quality assurance regimen. For example, one of the anomalies frequently 

found within GO’s partial-area taxonomy is the overlapping term (i.e., overlapping 

concept [23]). Such terms were found to be statistically more likely to be in error in 

SNOMED CT [29]. By focusing on these terms, it is expected that more errors will be 

identified and corrected, as compared to reviewing random terms from GO’s general 

population. 

 The partial-area taxonomy for the BP hierarchy, consisting of 25,635 terms 

(February 2014 release), comprises 1,653 partial-areas with 27 areas. That works out to 

an abstraction ratio of approximately 15:1 (terms to partial-areas). The largest area is 

{part of} on Level 1, with 1,005 partial-areas summarizing 10,934 terms (42.7% of the 

hierarchy). Figure 3.29 shows a significant portion of partial-area taxonomy. Due to 

space limitations, Level 5 is not shown, {part of} on Level 1 has been truncated to its 72 

largest partial-areas (capturing 65.5% of its terms), and several small areas have been 

omitted. The complete GO partial-area taxonomy can be viewed at [132]. Long partial-

area names are abbreviated using ellipses, e.g., regulation of blood pressure is written as 

“regulation of blood…”. When referring to such a long-named partial-area, its complete 

name will be written. Within each area, partial-areas are sorted into rows by their size in 

left-to-right order, internally sub-sorted alphabetically according to their names. 



 

   

 
Figure 3.29  Excerpt of GO’s Biological process partial-area taxonomy. Due to space limitations, certain areas are hidden and only a 

subset of partial-areas is shown for {part of}. Child-of’s between partial-areas are hidden to enable readability. The number of terms 

in each partial-area is shown in parenthesis. Source: [136] 
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 As can be seen, the BP partial-area taxonomy summarizes the content and 

complex structure of GO. For example, looking at larger partial-areas allows one to 

identify large groups of structurally and semantically similar terms.  

 The first row of the Level-1 area {part_of}, with partial-areas of size 240 (terms) 

and up, identifies the area’s major types of terms and their frequencies. For example, 

looking at the first row in {part_of}, one sees establishment of localization (865), 

anatomical structure morphogenesis (678), and reproductive process (415). These are 

major types of terms in GO. For a more refined view, one can look at the partial-areas 

that are at lower rows. Table 3.22 summarizes the structure of the BP partial-area 

taxonomy across its six levels. For example, one can see that the majority of partial-areas 

and terms are on Level 1, indicating that most terms have only one relationship. Within 

the taxonomy, 1,474 overlapping terms were identified. The majority of overlapping 

terms (966, 65.5%) are in {part of}. 

 Table 3.23 summarizes {part of}’s overlapping terms according to their degrees 

of overlap (i.e., the number of partial-areas each term is summarized by). 

 

Table 3.22  Structure of GO’s Biological process Taxonomy by Levels 

Level # of Terms (%) # of Areas # of Partial-areas 

0 7,222 (28%) 1 1 

1 10,934 (43%) 4 1,071 

2 6,420 (25%) 7 223 

3 964 (4%) 7 314 

4 93 (0.3%) 6 42 

5 2 (0.007%) 2 2 

Total: 25,635 27 1,653 
Source: [136] 
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Table 3.23  Overlapping Terms in {part of} by Overlap Degree 

Degree of Overlap # of Overlapping Terms 

2 855 

3 94 

4 13 

5 4 

Total: 966 
Source: [136] 

 

 The taxonomy-based quality assurance regimen for GO is based on two heuristics 

that have been shown to be successful for the quality assurance of other ontologies (e.g., 

[22, 24, 25, 29, 119, 120]). 

1. Taxonomy anomaly: when the taxonomy’s summary of the ontology exhibits some 

kind of anomaly (e.g., an unexpected or irregular structural configuration that stands 

out), there is a higher likelihood of finding errors in that anomalous portion of the 

ontology. 

2. Term anomaly: anomalous terms in the form of overlapping terms in a partial-area 

taxonomy have been shown to be statistically more likely to be erroneous than other 

terms. 

 

 The review of GO’s partial-area taxonomy for anomalies can be conducted at 

three levels: the area level and the partial-area level (Item (1) above), and the term level 

(Item (2)). For the first two, an editor of GO can review the different taxonomic elements 

and determine if an area or partial-area stands out or summarizes terms with uncommon 

modeling. 

 When reviewing the areas of a partial-area taxonomy, the only specific data 

available are the areas’ names (i.e., their relationship sets) and the numbers of terms 

summarized by the respective areas. Even so, areas can reveal potential errors in the 

relationship structure via anomalistic configurations. 
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 One kind of an anomaly found in GO is a questionable combination of 

relationships revealed by the names of the various areas. For example, on Level 2 of the 

GO partial-area taxonomy (Figure 3.29), there are areas {negatively regulates, regulates} 

and {positively regulates, regulates}. Positively regulates and negatively regulates are 

both refined (child) relationships of the relationship regulates. Such combinations of 

refined relationships and more general parent relationships appearing together for the 

same term raise the issue of redundancy. According to ontological principles, the 

definition of two relationships for a given term where one is more refined than the other 

is only allowed to happen when the target of the refined relationship is a more specific 

term than the target of the more general relationship. For example, if a term has both 

negatively regulates and regulates relationships, then they should not have the same 

target. Negatively regulates should have a more refined target term. The existence of such 

relationship combinations raises questions about whether GO’s modeling is following 

this ontological principle. 

 At the partial-area level, one can review an individual partial-area to determine if 

it has the correct set of relationships, it is grouped into the proper area, and its collection 

of summarized, member terms makes sense. One example of such an anomaly would be 

encountering an area with one very large partial-area and one very small partial-area. The 

contrasting sizes raise questions about the correctness of the terms’ modeling in the 

smaller partial-area. 

 Consider the area {regulates} in the BP partial-area taxonomy (a portion of which 

is shown in Figure 3.29), with three partial-areas regulation of biological process (2901), 

regulation of molecular function (192), and regulation of mammary gland cord 
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elongation by mammary fat precursor cell-epithelial cell signaling (1). This area has 

about 3,000 terms that are partitioned into two major groups, both of which are rooted at 

a general term. The existence of the singleton raises the question about why its term is 

special in relation to the other terms. That term has the same relationship structure, but it 

is not part of the other two partial-areas. 

 Overlapping terms can also be considered anomalous. The majority of GO’s terms 

are summarized by only one partial-area, i.e., most terms are a specialization of only one 

root. Overlapping terms elaborate the semantics of multiple roots and are, thus, more 

complex and more difficult to model than non-overlapping terms. In SNOMED, 

overlapping concepts were found to be statistically more likely to harbor errors as 

compared to non-overlapping concepts [29]. 

 This phenomenon was hypothesized to also occur in GO’s content. If this was the 

case, a GO curator could focus on overlapping terms and expect to discover more errors 

then if they reviewed non-overlapping terms. To assess this phenomenon in GO, a 

preliminary study was performed to compare error rates among overlapping and non-

overlapping terms. Jane Lomax, the coordinator of the GO Editorial Office, reviewed a 

sample of 40 overlapping terms and 20 non-overlapping terms to serve as a control. 

Additionally, terms with a higher degree of overlap were investigated to determine if they 

have higher error rates than terms with a degree of overlap of two, as seen previously for 

SNOMED [119]. 

 Consider the anomaly of terms having the relationships regulates and positively 

regulates or negatively regulates, which manifests itself in the areas {positively regulates, 

regulates} on Level 2 and {positively regulates, negatively regulates, regulates} on 
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Level 3. In most cases, a term inherits regulates from a term in regulation of biological 

process, and also introduces, say, negatively regulates. 

 When a sample of the terms in these areas was analyzed, significant redundancy 

in the targets of the relationships was found. Many terms had either a positively regulates 

or negatively regulates with the same target as their regulates relationship. For example, 

negative regulation of bone resorption has negatively regulates and regulates to bone 

resorption. Similarly, the root term positive regulation of molecular function in 

{positively regulates, regulates} has both relationships targeting molecular function. 

Furthermore, in the area {positively regulates, negatively regulates, regulates}, the 

partial-area positive regulation of molecular function in other organism (6) has all three 

relationships to molecular function. In all these cases, regulates is redundant and should 

be removed. 

 This redundancy was in fact confirmed as an issue in the GO development 

pipeline. These redundant relationships will be automatically removed when the GO 

pipeline is enabled to delete no-longer inferable relationships. However, the areas of the 

taxonomy highlighted the potential existence of such redundancy, and many examples of 

redundant relationships were found by reviewing the taxonomy for anomalies. 

 Once GO enables the automatic removal of the redundant relationships, GO’s 

taxonomy will change significantly. All terms that lose their regulates relationship and 

keep only negatively regulates or positively regulates will move one level up. Two new 

areas will then exist on Level 1: {positively regulates} and {negatively regulates}. 

Several other areas will likely come into existence at other levels, e.g., many terms may 

belong in {part of, positively regulates} or {part of, negatively regulates}. Of course, 
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many terms legitimately have both regulates and positively regulates, and, thus, the areas 

{positively regulates, regulates}, etc., will likely still exist. Ultimately, GO’s taxonomy 

will have a finer granularity. 

 Consider the anomaly regarding a singleton partial-area regulation of mammary 

gland cord elongation by mammary fat precursor cell-epithelial cell signaling, which is 

grouped with two larger partial-areas in the area {regulates}. Upon review of this term, it 

appeared to be missing a parent that should be in the partial-area regulation of biological 

process. The addition of this parent term to GO would imply the elimination of this 

singleton partial-area, leaving a large area with two large partial-areas—without 

anomalies. This error was confirmed, and the term should indeed have a regulation-

related term as a parent. Currently, only regulation of developmental growth could serve 

as a parent term. To provide a complete fix, it would be necessary to add new 

intermediate terms, e.g., regulation of mammary gland cord-elongation. The GO editorial 

team will fully correct this error in due course. 

 To investigate the error rates of overlapping terms in GO the following samples of 

terms from {part of} were provided for domain-expert review by Jane Lomax: a random 

sample of 20 non-overlapping terms; a random sample of 20 terms with the minimum 

degree of overlap (two); and the group of all 17 terms with the highest overlap degrees 

(four and five) plus three randomly selected terms with a degree of overlap of three. The 

last group consists of the most complex terms in {part of}, as they elaborate the 

semantics of many roots. 
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Table 3.24  Quality Assurance Review Results According to Degree of Overlap 

Degree of Overlap # of Samples # of Errors (%) 

(none) 20 5 (25%) 

2 20 7 (35%) 

3–5 20 13 (65%) 

Overlapping Total: 40 20 (50%) 
Source: [136] 

 

 The samples were presented in alphabetical order according to term names. The 

degree of overlap was not given. Table 3.24 summarizes the findings. The percentages of 

modeling problems found were 25%, 35%, and 65% for the three groups, respectively. In 

total, 50% of overlapping terms had at least one problem, compared to 25% of the non-

overlapping terms. Table 3.25 provides three examples of errors discovered among the 

overlapping terms. Several types of errors were found, including incorrect logical 

modeling, missing or incorrect parents, and missing relationships. 

 

Table 3.25  Three Examples of Overlapping Term Errors 

Term Name Error 

ascospore formation Redundant parent: cell 

development 

DNA replication termination involved 

in meiotic DNA replication 

Incorrect logical definition 

metabolism by symbiont of host xylan Missing parent: cell wall 

Source: [136] 

 

 The development of effective quality assurance methodologies for GO will enable 

improvements in its content. In the preliminary quality assurance review of GO’s BP 

hierarchy, relatively few terms were reviewed but a significant number of errors and 

inconsistencies were identified with the use of the BP partial-area taxonomy. These 

results are encouraging and help illustrate the feasibility of a comprehensive quality 
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assurance review of GO based on the taxonomy. In future studies, different anomalies, 

such as “small” partial-areas (consisting of about 1–3 terms), already shown to be 

successful for the quality assurance of SNOMED CT and NCIt [22, 24], will be assessed 

for their usefulness in quality assurance of GO. 

 A limitation of focusing on the overlapping terms can be seen in their low 

numbers relative to the number of non-overlapping terms in BP: 1474 / 25635 = 5.7%. 

This limits the approach to a small portion of the hierarchy. However, reviewing the 

1,474 overlapping terms for errors will require a relatively small effort that will likely 

result in uncovering more errors than reviewing a similar sized randomly selected sample 

of non-overlapping terms. 

 In the preliminary quality assurance study of GO all errors were counted, 

regardless of their severity. Some types of errors, e.g., incorrect logical modeling, will 

typically have a greater effect on the ontology as compared to less severe errors such as a 

redundant parent. The error rate for non-overlapping terms (25%) was higher than 

expected, and greater than what was found in the context of SNOMED [119]. The larger 

sample of non-overlapping terms that will be reviewed in future studies will provide 

further insight into their expected error rate. In regards to the error rates for overlapping 

sample terms, the terms with degrees of overlap of four and five (17 total terms) are the 

most complex in {part of} (and the entire BP), and it was expected to find relatively 

many issues with them, as seen in SNOMED [119].  

 The preliminary study focused on the core content of GO. However, GO on its 

own does not have many relationships and, thus, it has many large areas and partial-areas 

(e.g., {part_of}). One way of refining the granularity of GO’s taxonomies (see [120]) is 
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to include equivalence axioms that reference other ontologies [137], such as ChEBI 

[138]. When the relationships to ChEBI, or to other ontologies, are considered in GO’s 

taxonomy, there are many more areas and partial-areas (see [132]). Having a more 

refined summary of GO will likely enable the identification of more internal problems, in 

addition to errors in those external relationships. 

 A large portion of the BP taxonomy is the {part_of} area. GO contains many 

part_of relationships that play an integral role in the ontology. As with is_a’s, part_of’s 

are hierarchical. It would be useful to have a summary of GO’s so-called “partonomy.” In 

a future study the feasibility of deriving a taxonomy that summarizes GO’s partonomy 

will be investigated. 

3.4 Diff Abstraction Networks 

The structure of a biomedical ontology continually evolves as its content goes through 

cycles of editing, e.g., adding new domain-specific knowledge or importing additional 

knowledge from other ontologies. Classes, relationships, etc., are added, deleted, and 

updated. Each of these modifications affects the knowledge represented in the ontology. 

 A typical ontology will go through several stages of evolution. The early stage 

involves the initial design of the ontology, which may include importing one or more 

upper level ontologies, e.g., the Basic Formal Ontology (BFO) [46]. The later stages 

involve its maintenance, including periodic updates, which incorporate newly available 

knowledge into the ontology. During its evolution, an ontology may go through stages of 

quality assurance, where errors and inconsistencies are identified and corrected. During 

each of the various stages, the ontology goes through numerous release cycles, where 

changes are made from one release to the next. The problem is that while such changes 
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are intended to extend the ontology’s knowledge or to correct previously discovered 

problems, they may have unintended, and potentially erroneous, consequences. In 

particular, a quality assurance phase may introduce new errors, while old errors are fixed. 

Such errors are typically not detected, due to the perception that the change is fulfilling 

its desired purpose. Sometimes, undesired changes may have broad effects, yet they still 

might go undetected because the curator “cannot see the forest for the trees.” 

 Not all editing operations affect an ontology in the same way. While adding a new 

leaf class will have no global impact, changing the domain of an object property may 

affect the definition of hundreds of classes. Similarly, modifying superclass axioms may 

lead to unintended object property inheritance. Having a global view of all of the changes 

that result from a series of editing operations is important for ontology maintenance and 

quality assurance. Ontology editing tools, such as Protégé [56], typically show an 

ontology as an indented hierarchy of classes. A curator can see only a few classes, or one 

class with its properties, at a time. It is difficult for a curator to identify the overall impact 

of an editing phase. To find all of the changes, a curator would have to check every 

potentially affected class, which is impractical for large ontologies.  

 Figure 3.30 illustrates an indented hierarchy for an excerpt of 18 classes from the 

Entity hierarchy of the Ontology of Clinical Research (OCRe), Release 244 [51]. Figure 

3.31 shows the same excerpt, from a later release. Clearly, a series of editing operations 

were applied between these two releases. While the hierarchical changes are easy to 

identify in this small example, it is not possible to see other changes, e.g., changes in 

object property inheritance. To identify unwanted changes, a curator would have to 

directly compare each version’s class definitions, which is a time-consuming process. If 
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there are dozens or hundreds of classes in the ontology then this manual comparison 

process is not practical. 

 Whenever working with different versions of a document, whether it’s a diagram, 

plain text, or an ontology, it is important to be able to identify changes between them. 

UNIX-based operating systems have the “diff” tool for this purpose [112]. For 

ontologies, the problem of identifying individual changes between two ontology versions 

has been extensively studied. PromptDiff [114], OWLDiff [91], and ContentCVS [115], 

among others, identify individual ontology changes in support of collaborative 

development and version control [113]. 

 

 

Figure 3.30  A subhierarchy of 18 

classes taken from OCRe Version 244, as 

shown in Protégé. 
Source: [121] 

 

Figure 3.31  The subhierarchy from Figure 

3.30 after several editing operations have 

been applied to the classes. This excerpt is 

from OCRe Version 258. 
Source: [121] 

 

 However, these tools show individual differences as a list or in an indented 

hierarchy. If there are hundreds of changes (both explicit and implicit) between two 
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ontology versions, then the amount of difference information becomes overwhelming and 

unintended changes will remain undiscovered.  

 By summarizing, in a compact way, the changes that occur between any two 

releases, either consecutive or not, of an ontology it may be possible to detect unintended 

consequences of changes, due to the compact representation of the summary diff, and 

take steps to correct erroneous or undesired side effects of those changes. 

 To address this problem, it was necessary to create a new innovative structural 

diff technique called a Diff Abstraction Network (“Diff AbN”) [121], for summarizing 

and visualizing differences between two versions of an ontology. A Diff AbN 

summarizes the difference in structure and content between two ontology releases. Unlike 

traditional ontology diff methods, which typically identify axiom changes for individual 

classes and properties, a Diff AbN shows the overall impact on the whole ontology, 

summarizing many explicit and implicit structural changes in a compact visualization. 

Thus, using a compact Diff AbN, an ontology curator can identify the global changes that 

result from her editing operations. By identifying unintended consequences of changes 

during the ontology development process, fewer errors will be introduced into the 

released ontology.  

3.4.1 Derivation 

Given two releases of an ontology, Ofrom and Oto, a Diff Abstraction Network (“Diff 

AbN”) summarizes and visualizes, in a compact way, the global structural changes that 

occurred when moving from Ofrom to Oto due to editing operations. A Diff AbN supports 

the reflection of which structural changes occurred, and which classes in the ontology 
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were affected by each change, by summarizing the changes that affect groups of 

structurally similar classes.  

 The derivation of two Diff AbNs, the Diff Area Taxonomy (DAT) and the Diff 

Partial-area Taxonomy (DPAT), will now be described in detail. A diff area taxonomy 

summarizes and visualizes the structural changes between Ofrom and Oto. A diff partial-

area taxonomy refines the diff area taxonomy by summarizing and visualizing both 

structural and semantic changes to the subhierarchies of classes in each area. Object 

properties are an important structural feature used in the definition of many ontologies’ 

classes [55], thus, it is important to identify the changes that occurred to the sets of object 

properties used to define the ontology’s classes.  

 Various types of editing operations can alter the structure of an ontology, and 

thus, alter the area taxonomy and partial-area taxonomy derived from it. Any editing 

operation that affects object property introduction or inheritance for a set of classes will 

affect the taxonomies derived for the ontology. Some examples (labeled E1-E4) include: 

(E1) Adding or removing a class from an object property’s domain; (E2) Adding or 

removing an object property from the ontology; (E3) Adding or removing a class from an 

ontology; (E4) Adding or removing a superclass axiom from a class. Multiple editing 

operations may be applied to a given class.  

 Previously ([25], Section 3.3.4.1) a quality assurance review of OCRe’s Entity 

hierarchy was performed using a partial-area taxonomy. The quality assurance review 

identified errors in OCRe’s modeling. To fix the identified errors, OCRe’s curators made 

significant changes and a new version of OCRe was released. To illustrate the derivation 

of the diff taxonomies, an excerpt of classes from the version of OCRe that was reviewed 
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for errors (Version 244, Figures 3.30 and 3.32) and the corresponding excerpt for the 

version released after all of the uncovered errors were corrected (Version 258, Figures 

3.11 and 3.33). 

 Figure 3.32 illustrates the class hierarchy of Figure 3.30 and Figure 3.33 

illustrates the corresponding class hierarchy of Figure 3.31, obtained from Figure 3.32 

after several editing operations. Four classes have been removed from the hierarchy: 

Population, Cox regression, Univariate analysis, and Dependent variable ordinal. Three 

classes have been added: Organism collection, Cohort population, and Arm population. 

Outcome analysis specification was removed from the domain of two object properties 

and Relative time point is no longer a subclass of Time interval, thus it is no longer in the 

domain of has start time and has stop time. Note that these object property changes are 

not reflected in Figure 3.31. 

 

 

Figure 3.32  The excerpt of 18 classes from Figure 3.30 shown as a diagram, using 

bubbles to identify sets of classes with the same object properties.  
Source: [121] 
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Figure 3.33  The excerpt of classes, after corrections (from Release 258) corresponding 

to the excerpt of Figure 3.31, shown as a diagram. 
Source: [121] 

 

 Given two releases of an ontology, Ofrom and Oto, ATfrom is defined as the area 

taxonomy derived for Ofrom and PATfrom as the partial-area taxonomy derived for Ofrom. 

ATto and PATto are similarly defined for Oto. 

3.4.1.1 Diff Area Taxonomy (DAT). A Diff Area Taxonomy (DAT) is an AbN 

that summarizes the structural changes between two different versions of an ontology 

(i.e., additions, deletions, and modifications to sets of classes with the same set of object 

properties). The input of a DAT consists of two ontologies Ofrom and Oto and the output 

consists of a compact, visual summary of the structural changes that occurred between 

Ofrom to Oto. 

 DAT derivation starts with identifying the set of object properties (both 

introduced and inherited) used to define each class in Ofrom and Oto. Classes and object 

properties that are added or removed between Ofrom and Oto are also identified. The sets of 

object properties used to define each class in Ofrom and Oto are then compared. This 
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process is equivalent to comparing the areas in ATfrom to the areas in ATto. Four kinds of 

Diff Areas are created based on the identified differences, as follows. These diff areas are 

used to summarize the structural changes that occurred between Ofrom and Oto. 

(a) An Introduced Area is defined as an area that exists in ATto but does not exist in 

ATfrom. An introduced area indicates a set of object properties for which there 

exists a set of one or more classes in Oto but no such class exists in Ofrom. The 

classes summarized by an introduced area display a new object property structure 

in the ontology. An introduced area may summarize a set of classes that were 

previously summarized by different area(s) in ATfrom, or they are newly added 

classes, or both. 
 

(b) A Removed Area is an area that exists in ATfrom but does not exist in ATto. A 

removed area indicates a particular set of object properties for which a non-empty 

set of classes exists in Ofrom but no such class exists in Oto. The classes that were 

previously summarized by a removed area are now either summarized by a 

different area in ATto or were removed from the ontology. 

 

(c) The third kind is a Modified Area. Such an area A does exist in both ATfrom and 

ATto, meaning in both versions of the ontology there is a set of object properties 

for which a set of classes exists (though the set is not the same and one set is not 

necessarily a subset of the other). If the set of classes summarized by the area A in 

ATfrom is different from the set of classes summarized by A in ATto, then A is said 

to be a modified area. Classes that were originally summarized by A in ATfrom may 

be summarized by different areas in ATto if their object property sets changed, or 

the classes may have been removed from the ontology entirely. Similarly, a class 

may become summarized by A in ATto if its object property set changed to match 

that of A or if a class was added to the ontology with A’s object property set. 

 

(d) If the set of classes summarized by an area A is the same in ATfrom and ATto then A 

is an Unmodified Area. This indicates that no changes occurred to the object 

property set for the classes in A between ATfrom and ATto. 

 

 

 In regards to the child-of links between areas that summarize the class hierarchy, a 

child-of is called an introduced child-of if it exists between two areas in ATto but not in 

ATfrom. Similarly a child-of is called a removed child-of if it exists between two areas in 

ATfrom but not in ATto. A child-of is an unmodified child-of if it exists between the same 

two areas in ATfrom and in ATto. Additionally, the following rules are defined: (1) All of 

the child-of links sourced at an introduced area are introduced child-ofs; (2) All of the 
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child-of links sourced from a removed area are removed child-ofs. It is noted that 

modified areas and unmodified areas may have introduced, removed, or unmodified 

child-ofs. Note that child-of links cannot be modified because a child-of link either existed 

or did not exist in ATfrom. 

 A DAT is represented as a compact network of diff area nodes connected by 

child-of links based on the subclass hierarchies in Ofrom and Oto. In a DAT, all areas are 

shown, including removed areas which summarize no classes in ATto. In a DAT 

visualization diff areas are shown with differed colored borders to indicate the type of 

diff area. Modified areas are drawn with a yellow border, introduced areas with a green 

border, and removed areas with a red border. Unmodified areas are shown with no 

border. Child-of links are colored red if they were removed, green if they were 

introduced, or black if they are unmodified. (Child-of links cannot be modified.) 

 If the number of classes summarized by an area changes between Ofrom and Oto, 

e.g. the area {has part, part of, has element} summarizes four classes in ATfrom but six in 

ATto, then the change is noted using an arrow from the old number to the new number 

(i.e., 4 Classes  6 Classes). A brief textual summary of the modifications to the area is 

shown under the number of classes summarized by the diff area. For example, the diff 

area {has part, part of, has element} indicates that one class was removed from the 

ontology (“-1 Class Removed”) and three classes were added (“+3 New Classes”) (see 

right green box in Figure 3.34).  
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Figure 3.34  The visualization of the diff area taxonomy between the ontology excerpts 

in Figure 3.32 and Figure 3.33. The diff areas are organized into color coded levels 

according to the number of their object properties. The level numbers appear at the left 

edge of the figure. 
Source: [121] 

 

 

 Ontology editing operations have various effects. For example, removing the 

superclass axiom (E4) between Relative time point and Time interval resulted in Relative 

time point being summarized by a different area, {has part, part of, duration, has anchor 

time, has offset} (Level 4) in ATto. The OCRe DAT, shown in Figure 3.34, captures the 

structural changes from the ontology excerpt of Figure 3.32 to the excerpt in Figure 3.33.  

 The diff areas {has part, part of, has analysis method, has analysis type} (Level 

4) and {has part, part of, duration, has anchor time, has offset} (Level 5) are introduced 

areas marked with a green border; they exist in ATto but did not exist in ATfrom. In this 
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example, the introduced areas in Figure 3.34 summarize classes that were summarized by 

different areas in ATfrom. This indicates a change in the object property structure of these 

classes (due to E1and E4, respectively) and they are now defined differently. 

 In Figure 3.34, the single diff area on Level 6 and the single diff area on Level 7 

are removed areas, as indicated by their red borders; these areas existed in ATfrom but no 

longer exist in ATto. It is important to display the removed areas in the DAT figure, even 

though these areas no longer exist in ATto, to capture the important change(s) that resulted 

in their removal. For example, several editing operations led to the yellow Level 6 area 

being removed: three classes (e.g., Cox regression) were removed from the Entity 

hierarchy (E3) and the class Outcome analysis specification is summarized by a different 

area, {has part, part of, has analysis method, has analysis type} (Level 4), in ATto (E1). 

 In Figure 3.34 {has part, part of, has element} is a modified area (with a yellow 

border), because the class Population was removed from the ontology (E3) and three new 

classes, Organism collection, Cohort population, and Arm population, with the modified 

area’s object property set, were added to the ontology (also E3). The new classes 

inherited their object property set, because they are descendants of Collection and they 

introduce no new object properties to the subhierarchy. The unmodified areas are {has 

part, part of}, {has part, part of, is division of}, {has part, part of, has semantic 

constraint, has eligibility criterion}, and {has part, part of, duration, has start time, has 

stop time}. 

3.4.1.2 Diff Partial-area Taxonomy (DPAT). In previous studies the partial-area 

taxonomy has been used to support QA of ontologies [25, 55, 120, 139]. A Diff Partial-

area Taxonomy (DPAT) summarizes the changes to the subhierarchies of classes in each 
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DAT area. Just as a partial-area taxonomy is a refinement of an area taxonomy into 

partial-areas (i.e., semantically similar subgroups within the structurally similar area 

groups), a DPAT refines a DAT by summarizing subhierarchy changes, represented as 

changes to the partial-areas in each area. 

 The derivation of the DPAT starts from the already derived DAT. For each diff 

area A in the DAT, the changes to the subhierarchies of classes in A, as named after the 

roots, are summarized. The set of root classes of A in ATfrom is compared to the set of root 

classes of A in ATto, in cases where A exists in both. If the two sets are not equal, this 

indicates that partial-areas have been added or removed from the area. Based on the 

identified changes, four kinds of Diff Partial-areas are created. 

(a) An Introduced Partial-area is a partial-area that exists in area A in PATto but did 

not exist in A in PATfrom. A partial-area is introduced to an area A whenever a root 

class is added to A. Partial-areas can be introduced to any diff area that is not a 

removed area. All partial-areas in an introduced area are by definition introduced 

partial-areas. 

 

(b) A Removed Partial-area is a partial-area that exists in area A in PATfrom but not in 

A in PATto. A partial-area is removed from an area whenever a root class is 

removed from A. Partial-areas can be removed from any diff area that is not an 

introduced area. All partial-areas in a removed area are by definition removed 

partial-areas. 

 

(c) If area A has one or more of the same root classes in both PATfrom and PATto then 

the subhierarchies of classes from both versions are compared. A Modified 

Partial-area is a partial-area that exists in A in both PATfrom and PATto and 

summarizes a different set of classes in PATto than in PATfrom. 

 

(d) An Unmodified Partial-area is a partial-area that summarizes the same set of 

classes in area A in PATfrom and in area A in PATto. 

 

 

 It is noted that an unmodified area can contain modified, introduced, and removed 

partial-areas. This occurs when the set of classes summarized by the unmodified area 

remains the same between Ofrom and Oto but the subhierarchies of classes change within 
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the diff area. For example, if a descendant of a root class in A is made a sibling of the root 

class then a partial-area is introduced within the unmodified area. Similarly, if a class is 

summarized by two partial-areas in PATfrom (which are, thus, not disjoint) but only one 

partial-area in PATto, the diff area can still be unmodified. The definition of child-ofs 

between diff partial-areas follows that of the child-ofs between diff areas. 

 Like the DAT, the DPAT consists of a visualization and a textual list of 

differences. The visualization of a DPAT is composed of a refined DAT visualization 

where the DPAT partial-areas are shown within their respective DAT areas. Modified 

partial-areas are shown with a light yellow background, introduced partial-areas with a 

light green background, and removed partial-areas with a light red background. A 

summary of changes is shown below the number of classes summarized by each partial-

area. Unmodified partial-areas are shown with a white background. Child-of links 

between partial-areas are drawn red if they were removed, green if introduced, and black 

if unmodified. Figure 3.35 shows the visualization of the DPAT capturing the changes 

from the ontology version shown in Figure 3.32 to the new version in Figure 3.33. 

 The text output of a DPAT is composed of changes grouped by area change type 

(e.g., removed or modified area). Within each type, the list of affected areas is shown. 

Indented under each area is a list of modifications to the partial-areas within the area. 

 The modifications to the set of classes summarized by each partial-area are listed 

indented under the partial-area root (which is its name). Figure 3.36 shows a colored 

example of text-based output for the DPAT between the ontologies in Figures 3.32 and 

3.33. The background color alternates between brighter and darker shades, in order to 

visually separate different areas.  
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Figure 3.35  The visualization of the DPAT 

between Figure 3.32 and Figure 3.33. 
Source: [121] 

 

Figure 3.36  Color-coded text output for 

the DPAT between Figure 3.32 and 

Figure 3.33. 
Source: [121] 

 

 The text-based output of the DPAT is designed to be used in conjunction with the 

DPAT visualization, enabling a curator to see more details about the modification of each 

affected taxonomic element. 

 In Figure 3.35, the introduced partial-area Outcome analysis specification appears 

in the area {has part, part of, has analysis method, has analysis type} (Level 4) and the 

introduced partial-area Relative time point in the area {has part, part of, duration, has 

anchor time, has offset} (Level 5). Both of these diff areas are introduced areas, as 

indicated by their green borders. Note that the green, red, and yellow colors of the areas 

in levels 3, 5, and 6, respectively, do not communicate changes to the areas, but are the 

colors of the different levels. At the same time, Outcome analysis specification and 

Relative time point are removed partial-areas in the removed areas of Levels 6 and 7. 
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Occurrences of identically named introduced and removed partial-areas reflect the 

changes in object properties of the root class in the DPAT. In both of these cases the 

classes were removed from the domains of the object properties as a result of the errors 

discovered by Ochs et al. [25]. 

 Collection in {has part, part of, has element} is a modified partial-area because 

one class was removed from the ontology and three new classes were added to the 

ontology as descendants of Collection. Entity, Arm, Epoch, Criterion, and Time interval 

are unmodified partial-areas. 

3.4.2 DPAT-based Quality Assurance Methodology 

While the diff partial-area taxonomy does not automatically identify erroneous modeling, 

it does highlight groups of classes that should be reviewed after one or more editing 

operations were applied to the ontology. For example, if the domain of an object property 

is changed, then an ontology curator should review the classes in the added and removed 

partial-areas to ensure they have the correct sets of object properties. Similarly, if a 

subclass relationship is established or removed between two classes, then the curator 

should review all of the diff partial-areas that contain the descendants of the modified 

class to ensure that the inheritance of object properties is still correct. 

 It is expected that different kinds of DPATs will appear for different ontology 

development stages. For example, if an ontology is going through a phase of expansion, 

i.e., new knowledge is being added, then the DPAT will likely contain many introduced 

and modified areas and partial-areas. When an ontology is going through a QA phase, 

there may be relatively more removed areas and removed partial-areas than in an 

expansion phase. 
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3.4.3 Application of Diff Partial-area Taxonomies 

To test the Diff AbN approach to QA, diff partial-area taxonomies were derived for three 

ontologies: the Ontology of Clinical Research (OCRe) [51], the Sleep Domain Ontology 

(SDO) [45], and the eagle-I Research Resource Ontology (ERO) [140]. The information 

provided by the DPAT was compared to a standard ontology diff created using the 

“Compare Ontologies” feature in Protégé [56], which is based on the OWL Difference 

Engine [117]. 

 OCRe and SDO were chosen because of the previously performed QA reviews of 

their content [25, 120]. Several errors and inconsistencies were confirmed and corrected 

during these QA reviews. In both cases, taxonomies were derived before and after QA 

reviews [25, 120] and were manually compared. For OCRe and SDO, DPATs were 

derived using the ontology release before the QA review and the ontology release 

immediately after the errors uncovered during the QA review were corrected. Details of 

the errors found are described by Ochs et al. [25, 120]. The goal was to determine if, 

using the diff partial-area taxonomies of OCRe and of SDO, whether these ontologies 

were corrected as expected, or whether some unintended and erroneous changes were 

introduced. 

 ERO was chosen because it was recently merged [141] with the VIVO Ontology 

for Researcher Discovery (VIVO) [142]. A DPAT was derived using the August 2013 

ERO version available on the NCBO BioPortal (before the merge), and the version after 

the merge was completed. 

3.4.3.1 Ontology of Clinical Research DPAT. The quality assurance review of 

OCRe’s inferred Entity hierarchy identified several modeling errors [25]. Two examples 
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include the erroneous inclusion of 33 statistical classes due to incorrect domains for the 

object properties has dependent variable and has independent variable  and an erroneous 

subclass relationship between Relative time point and Time interval. The DPAT in Figure 

3.37 captures the structural changes that occurred due to the corrections implemented by 

OCRe’s curator, Samson Tu. The complete DPAT has two modified partial-areas, three 

deleted partial-areas, and three added partial-areas, summarizing the changes to 32 

classes (see diff areas with yellow, red, and green borders). Eighteen partial-areas are 

unmodified.  

 Following the methodology described in Section 3.4.2, one should review the 

added and removed areas and partial-areas in the DPAT to determine if their classes have 

the correct sets of object properties. In Figure 3.37, one finds the introduced partial-area 

Relative time point in the introduced area {has part, part of, duration, has anchor time, 

has offset}. This diff area and this diff partial-area were introduced due to the removal of 

an incorrect subclass relationship to Time interval [25], which corrected the erroneous 

inheritance of two object properties (has start time, has stop time) by Relative time point.  

 After reviewing this introduced area in the DPAT, it was found that Relative time 

point had another incorrect object property: duration, since a time point has no duration. 

Indeed, this object property was determined to be redundant with has offset. When 

correcting the Relative time point class, the domain of duration was changed from only 

Time interval to Time interval or Relative time point, due to the removal of the subclass 

relationship between Relative time point and Time interval. Hence, the duration object 

property was no longer inherited by the class Relative time point. 
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Figure 3.37  The complete diff partial-area taxonomy for OCRe.  
Source: [121] 
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 Upon investigation, it was found that Duration was previously used to express 

offsets for relative time points but this should have changed when the object property has 

offset was introduced to the ontology. Samson Tu confirmed the error and Relative time 

point was removed from the domain of the duration object property. 

3.4.3.2 Sleep Domain Ontology DPAT. In Ochs et al. [120] a preliminary QA 

review of the Sleep Domain Ontology (SDO)’s Entity hierarchy was performed, together 

with the curator of the SDO, Sivaram Arabandi. The partial-area taxonomy for the 

hierarchy was reviewed and several modeling errors were identified, e.g., duplicate 

classes and incorrectly assigned object property domains. Correcting the errors led to 

significant structural changes in the SDO. While a relatively small number of axioms 

were edited to fix the errors, hundreds of classes were implicitly modified due to these 

changes. Sivaram Arabandi was surprised at the extent of modifications to the partial-

area taxonomy and could not obtain an adequate display, focusing on those changes, by 

using the diff view provided in Protégé [56]. 

 During the audit of the SDO [120], two pairs of duplicate classes were identified, 

two clinical finding classes (both imported, one from OGMS [47] and the other from 

BioTop [48]) and the classes clinical diagnosis and diagnosis. To remove the duplicate 

classes, equivalence was established between the classes of each pair. This resulted in 

many classes’ object property sets changing, as captured by the 25 removed areas, 25 

introduced areas, and four modified areas (along with all of their diff partial-areas) in the 

SDO DPAT in Figure 3.38.  



 

  

 
Figure 3.38  The Sleep Domain Ontology’s diff partial-area taxonomy. An excerpt of the child-of links between added/removed diff 

partial-areas is shown. Source: [121]
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 When there is this much structural change, in terms of the sets of object properties 

used to define an ontology’s classes, between two releases of an ontology, there is a 

greater chance of a class being assigned an incorrect object property set.  

 By reviewing the introduced partial-areas in the SDO’s DPAT, several problems 

with the object properties for the equivalent classes were identified. Even though the 

clinical finding partial-area on Level 3 was (correctly) removed and 42 of its classes are 

now summarized by the clinical finding modified partial-area in the Level 6 modified 

area {a representation of, composed by, has finding site, hasRole, output of, subject of 

clinical record}, an introduced partial-area clinical finding (with one class) on Level 4 in 

the modified area {a representation of, composed by, output of, subject of clinical 

record} was found. Similarly, diagnosis is introduced at Level 4 (and removed from 

Level 1) in {composed by, describes / is a representation of, includes, subject of clinical 

record} (the object properties in bold are extra). 

 However, the equivalent class clinical diagnosis is in {composed by, describes / is 

a representation of, hasRole, hypothesized problem, output of, subject of clinical 

record}. The object properties for equivalent classes should be equivalent. However, as 

shown in bold, they are not. For diagnosis, one is not even a subset of the other. By 

reviewing the added and removed partial-areas that contain the classes that were edited, 

several inconsistencies were identified. Both equivalent classes should have the union of 

the two sets of object properties, as confirmed by Sivaram Arabandi  

3.4.3.3 eagle-I Research Resource Ontology DPAT. The eagle-i Research 

Resource Ontology (ERO) [143] was developed as part of the eagle-i project [144], 

which enables biomedical researchers to discover scientific resources via a searchable 
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network of resource repositories. These repositories are curated by over 20 different 

research institutions [144]. Like the SDO, ERO imports the content of several external 

ontologies, including BFO and OCRe. However, ERO differs from OCRe and SDO in 

that it is used to drive applications for data entry and search. ERO is composed of several 

modules. Notably, the representation of research resource data is in a separate module 

from the representation of application specific data used to control the appearance and 

behavior of the user interface. Many of ERO’s classes and properties in the application 

module were designed to drive eagle-i'’s user interface and the various data collection 

tools used in the eagle-i project. ERO is composed of several modules.  

 Unlike OCRe and SDO, which had a relatively small number of local editing 

operations applied to correct modeling errors uncovered during quality assurance 

reviews, ERO underwent a significantly more complex sequence of editing operations. 

ERO was recently merged [141] with the VIVO ontology [145] which covers the 

orthogonal but overlapping domain of researcher interests, activities and 

accomplishments. A DPAT was derived for the version of ERO before the merge (August 

2013 release on BioPortal) and the version after the merge (available at [146]), with the 

goal of summarizing the major structural changes that occurred due to the merge. 

 The ERO DPAT, which has 26 levels, is shown in Figure 3.39 and 3.40. Child-of 

links from diff partial-areas in Figure 3.40 that have a parent diff partial-area in Figure 

3.39 are not shown. The structural changes resulting from the merge are summarized by 

the 57 introduced areas, 48 removed areas, and one modified area (the root area) of 

ERO’s DPAT. Like OCRe, most of ERO’s areas are singly-rooted, meaning there is only 

one partial-area in most areas. 
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 The most significant structural change highlighted by ERO’s DPAT is the highly 

desirable overall reduction in complexity, in terms of number of object properties used to 

define ERO’s classes. This change is reflected in the large number of removed areas at 

the bottom of the DPAT (Figure 3.40) (since the levels are listed in increasing order 

according to the number of object properties of the areas) and the large number of 

introduced areas at the top (Figure 3.39). For example, before the merge, the class cell 

line (Level 24 in Figure 3.40) and its six descendants were in the domain of 24 object 

properties (16 by inheritance from reagent (1), eight introduced explicitly at cell line). 

After the merge, cell line (the rightmost introduced partial-area in the top level in Figure 

10) and its descendants are in the domain of only 12 object properties (seven inherited, 

five introduced), as reflected by the introduced partial-area cell line (7), the rightmost 

partial-area in Level 12 of Figure 3.40. 

 A combination of changes led to this reduction in complexity. First, the 

ontology’s set of object properties was significantly changed. A total of 36 object 

properties were removed and 91 object properties were added. This affected many 

classes. For example, cell line was implicitly in the domain of the object property agent 

in, whose domain was defined as continuant. The object property agent in was removed 

from the ontology. Some of these removals happened because a newer version of the 

Relations Ontology (RO) [147] was imported.  

 Prior to the merge, eight object properties imported from RO had continuant 

assigned as a domain. All of these object properties are no longer in the ontology after the 

merge. Thus, the many descendants of continuant are no longer implicitly in their 

domains.  



 

 

 
Figure 3.39  The top portion of the ERO diff partial-area taxonomy, summarizing all classes with 0–11 object properties.  
Source: [121]
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Figure 3.40  The bottom portion of the ERO diff partial-area taxonomy. Most of the diff 

areas at lower levels are removed areas due to the reduction in ERO’s complexity. 
Source: [121] 
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 Several of these object properties were replaced with object properties from a 

newer version of RO that had no domains (e.g., has participant). However, their sub 

properties (e.g., has specified input), retained the same domains after the merge. 

 In regards to the 91 newly added object properties, from the DPAT one can see 

that these newly introduced properties have domains that are mostly disjoint, since there 

are few classes that are in the domain of many object properties. There are a total of 13 

introduced areas in the top four levels of Figure 3.40 but 26 removed areas in levels 16-

25. After the merge, the most complex class is core laboratory, with 15 object properties, 

as compared to the most complex class before the merge, induced pluripotent stem cell 

line, with 25 object properties. 

 The DPAT view shows that by adding more object properties than were removed, 

ERO became richer in terms of types of properties used to define classes, but also simpler 

in its model, as the number of object properties per class was reduced.  

 The second kind of change that led to a reduction in complexity was the 

modification of various object property domains. For example, before the merge, the 

domain of the object property has sequence alteration was (cell line or protein reagent 

or nucleic acid reagent or human subject or organism). After the merge, the introduced 

partial-area cell line is no longer in the object property’s domain.  

 By comparing the object properties of the removed partial-area cell line to the 

introduced partial-area cell line, it was found that no new object properties were added to 

cell line, five removed object properties were removed from RO (agent in, derived into, 

derives from, located in, and location of), one RO object property’s domain was modified 

(participates in), three ERO object properties were removed (derives from cell line, has 
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co-developed line, and has contact), and one ERO object property was modified (has 

sequence alteration). Matthew Brush, an ERO curator, reviewed a sample of 

added/removed diff area pairs that contained classes defined by ERO (e.g., Document, 

Organization, Person, and Technique) and confirmed that their classes had the correct 

object properties. 

 Another major structural change for ERO is evident from the very large 

introduced partial-areas in the DPAT, e.g., the information content entity introduced 

partial-area in the introduced area {is about} summarizes 9,266 classes. Over 8,800 of 

these classes are new to ERO. Most were imported from other ontologies, e.g., the 

Mammalian Phenotype Ontology (MP) [148] and the Software Ontology (SWO) [149].  

Similarly, most of the 7,727 added classes in the introduced partial-area material entity 

(7758) are imported from UBERON [150]. From the DPAT, one can see the property 

structure of the classes imported from these ontologies. 

3.4.4 Comparison to Traditional Ontology Diff Output 

The DPATs of OCRe, SDO, and ERO were compared to the output of Protégé’s 

“compare ontologies” tool (“Protégé diff” for short, see Figure 2.13), derived using the 

same before and after ontology versions of the respective ontologies. When applied to 

OCRe, the diff identified 27 modified entities (classes, properties, etc.). However, since 

OCRe underwent additional development outside of the QA review [25], eleven of these 

entities did not have any structural changes (only changes to annotations, e.g., class 

labels). Four modified classes had restrictions removed, which is not captured by the 

DPAT shown in Figure 3.37, but is captured by a DPAT derived using restrictions (like 

SDO’s). The remaining 12 modified entities relate to the addition and removal of classes 
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and changes to object property domains, e.g., duration. Without a DPAT, identifying the 

12 structural changes requires a user to manually review each change in the standard diff. 

Furthermore, the standard diff does not provide a view that shows the definition of the 

classes impacted by the change, e.g., Relative time point, which already had the has offset 

object property. 

 In comparison with the Protégé diff, the DPAT provided a more accurate and 

concise view of the implicit structural changes that occurred. The Protégé diff did not 

explicitly identify the removal of the 33 statistical classes from the hierarchy, which was 

a major change. The only differences identified that were related to this change were the 

modifications to the domains of object properties has dependent variable and has 

independent variable. The removal of the classes from the hierarchy is only apparent 

after applying a reasoner (e.g., Hermit [67]) to the ontology and performing a manual 

comparison of the output and the input. 

 The Protégé diff for the SDO identified one added class, ten removed classes, and 

seven other structural changes (e.g., the equivalences described in the Results section). 

Unlike OCRe, which underwent development unrelated to QA, the SDO only changed 

due to the error corrections described by Ochs et al. [120]. However, the Protégé diff did 

not provide a complete picture of the changes that occurred, particularly in regards to 

inheritance of properties. For example, while the Protégé diff identified the added 

equivalence axioms between the two clinical finding classes, it did not capture how this 

change affected their many descendent classes. Furthermore, the Protégé diff did not 

provide a way of directly comparing the properties for the classes that were declared 
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equivalent. Additionally, it did not uncover that the object property sets for these 

equivalent classes were not equivalent, as found in the DPAT. 

 The Protégé diff of ERO was several orders of magnitude larger than the Protégé 

diffs for OCRe and SDO. A total of 19,256 entities (mostly classes) were identified as 

created, 159 were deleted, 27 were renamed, and 609 were modified. Reviewing each of 

these changes (20,051 in total) is impractical. In comparison with the DPAT, the Protégé 

diff is overwhelming. 

 In addition to comparing Protégé diff outputs with DPATs, Samson Tu, Sivaram 

Arabandi, and Melissa Haendel, the curators of OCRe, SDO, and ERO, respectively, to 

comment on how they used structural diff tools during the previously described 

development phases [25, 120, 141]. After correcting the errors found by Ochs et al. [25], 

Samson Tu did not use any diff tools to compare the before and after versions due to the 

small number of relatively simple changes. In general, he uses OWLDiff [91] when there 

is a specific need to compare the axioms of two ontology versions. When initially 

designing the SDO Sivaram Arabandi also occasionally used OWL Diff. However, due to 

the limited benefits he derived from using it, he did not use it to compare the two releases 

of the SDO reported in previous work [120]. In contrast Sivaram Arabandi found the 

DPAT very helpful due to the visualization that compactly summarizes changes. In 

comparison, OWL Diff presents changes in a text-based indented hierarchy, which can be 

overwhelming in length, making it difficult to find an important change. 

 During the merge of ERO and VIVO, the ERO development team used an in-

house diff tool [141], that integrates spreadsheet-based information, e.g., class 

equivalences, with Protégé. Their diff tool highlights different classes based on various 
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modeling decisions. They did not use any third-party diff tools, e.g., OWLDiff or 

Protégé’s Compare Ontologies tool, due to the various needs and levels of experience on 

the team responsible for the merge. Melissa Haendel confirmed that by combining the 

visualization of the DPAT with an explanation of why the different DPAT elements 

changed (e.g., as done for the cell line diff partial-areas), the Diff AbN approach would 

be helpful when developing and merging ontologies. 

3.4.5 Discussion 

The development of Diff AbNs addresses the need for methods of summarizing, and 

visualizing structural changes between two ontology releases. A curator can inspect the 

change summary provided by the DAT and DPAT to review global changes, as well as 

determine if the changes have any unintended side-effects (e.g., incorrectly assigned or 

inferred object properties). In particular, due to the summary, the curator could quickly 

determine if the classes in the various areas and partial-areas have the intended object 

properties. 

 Such a detection of unintended consequences is less likely if the curator needs to 

review an OWL-based structural diff between ontologies [91, 114, 115] since the amount 

of information would be overwhelming, as detailed for the SDO audit [120]. 

Furthermore, unintended and erroneous changes may be identified by reviewing a Diff 

AbN for nonconsecutive releases, since some unintended changes may not be detected 

for consecutive pairs of releases, but may be detected between releases that are farther 

apart, due to the cumulative impact of the changes made between consecutive releases. 

 In comparison with standard ontology diff approaches, which generally only 

identify individual changes per-entity (e.g., class or property), the Diff AbN approach 
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shows the global impact of an editing operation. With the Diff AbN a user does not have 

to manually scan through potentially hundreds or thousands of entries to identify 

important structural changes. Furthermore, the Diff AbN approach shows the implicit 

changes that occur due to inheritance of properties within an ontology, e.g., for the many 

descendants of Clinical finding in the SDO. 

 Notably, even when comparing diagrams of the complete before and after 

taxonomies of two releases it is difficult for a curator to notice the differences between 

them. She would have to manually compare the classes and object properties of these two 

taxonomies and detect the changes. This task is overwhelming for the curator. Thus, the 

DPAT was introduced to summarize the changes.  

 The Diff AbNs described in Section 3.4.1 are based on object properties. Several 

kinds of Diff AbNs can be derived, based on the structural features that are used for the 

derivation, e.g., data properties can be used instead of object properties. The same general 

approach for Diff AbN derivation described in this paper can be adapted accordingly. 

Future research will investigate Diff AbNs based on data properties, equivalence axioms, 

etc., and their use in uncovering unintended changes. 

 Another potential use of Diff AbNs is to compare the stated and inferred versions 

of an ontology to determine if the inferred axioms are correct or have unintended 

consequences. An error may not be easily detectable in the stated view but may become 

apparent after a reasoner has been applied. The DAT and the DPAT would show the 

structural differences between these two views. By creating a DPAT between the stated 

version of OCRe and the inferred version of OCRe (before the QA review), it would be 
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easier to identify the incorrect object property domains and the erroneous inclusion of 33 

statistical classes into OCRe’s Entity hierarchy. 

 One potential issue with the DAT and the DPAT is that they produce diagrams 

that are larger than the taxonomy diagrams of Obefore and of Oafter. A DPAT shows all of 

the areas and partial-areas of the “before partial-area taxonomy” and the “after partial-

area taxonomy.” For example, in the DPATs of SDO (Figure 3.38) and ERO (Figures 

3.39 and 3.40), there are many pairs of added/removed areas and partial-areas. One way 

of simplifying the DAT and DPAT is to define various views that only show certain types 

of Diff AbN elements. For example, if a curator is only interested in what has changed, 

then she can hide unmodified areas and unmodified partial-areas. Alternatively, the 

curator can view only introduced areas and partial-areas, etc.  

 One potential drawback of the DPAT is that internal changes within diff partial-

areas (e.g., changing the subclass hierarchy within an unmodified partial-area) are not 

identified. For such a case, a structural diff excerpt for the changed classes within the 

partial-area could be reviewed, thus producing a targeted partial ontology diff that does 

not overwhelm a user. 

 In conclusion, the Diff Abstraction Network approach can support a compact 

global view of structural changes. Furthermore, it can support the detection of unintended 

and erroneous changes resulting from a QA effort, as illustrated using examples from 

OCRe and SDO. Additionally, it can identify the structural changes that occurred when 

two ontologies were merged, as demonstrated with ERO. 
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3.5 Abstraction Network Tools 

Authoring, maintaining, and browsing ontologies requires the use of software tools, such 

as Protégé [56, 151] for OWL ontologies, OBO-edit [94] for OBO ontologies, the 

Neighborhood Auditing Tool [98, 99] for the UMLS, the NLM UTS browsers for the 

UMLS and SNOMED CT [58], and the IHTSDO Workbench [95], CliniClue browser 

[57], and Snow Owl [97] for SNOMED CT.  

 

 
Figure 3.41  (a) The subcomponents of the BLUSNO and BLUOWL. (b) The structure 

of the major components of the BLU Framework. 

 

 

 Similarly, software tools are required for creating and exploring abstraction 

networks. Utilities for automatically creating and visualizing abstraction networks can 

support abstraction network research and improve the usability of abstraction networks. 

Such tools need to provide useful information about both the abstraction network and the 

underlying ontology.  
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 The Biomedical Layout Utility Framework (“BLU Framework”) is a collection of 

software tools for deriving, visualizing, and exploring various kinds of abstraction 

networks. The BLU Framework is comprised of two major components: the Biomedical 

Layout Utility for SNOMED CT (BLUSNO) [118] and the Biomedical Layout Utility for 

the Web Ontology Language (BLUOWL).  

 

Table 3.26  Summary of the BLU Framework’s Subcomponents 

Component Description 

BLU Shared Classes High level, generic code for representing common ontology 

elements (e.g., concepts) and abstraction network elements 

(e.g., nodes). 

BLU Core Generic functionality for deriving and visualizing various 

kinds of abstraction networks, including taxonomies and tribal 

abstraction networks. 

BLUSNO Software for deriving SNOMED CT abstraction networks. 

Also includes a concept browser for viewing SNOMED’s 

content in a traditional concept-centric view. BLUSNO works 

using either locally stored SNOMED releases or through a 

web-based middleware. 

SNOMED CT 

Middleware 

Web-based middleware for accessing SNOMED CT releases, 

and associated partial-area taxonomies, which are stored in 

Oracle databases. Used by BLUSNO when no local release is 

available on a user’s computer. 

BLUOWL Software for deriving abstraction networks for OWL 

ontologies, including partial-area taxonomies derived using 

various structural features and diff taxonomies. BLUOWL 

enables a user to open multiple ontologies that are represented 

using either OWL or OBO format. 

BLUOWL Protégé 

Plugin 

An extension of BLUOWL that is accessible within Protégé 

[56]. Includes functionality that integrates the BLUOWL user 

interface into Protégé and vice-versa. 

 

 All of the BLU Framework subcomponents are based on a core library that 

provides generic functionality for creating, representing, and displaying abstraction 

networks. The core library also provides generic user interface functionality for 
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displaying and searching for abstraction network element information. BLUSNO and 

BLUOWL extend on this core library by implementing SNOMED-specific and OWL-

specific functionality, respectively.  

 BLUSNO and BLUOWL both have several major subcomponents. Figure 3.41(a) 

illustrates these subcomponents and Figure 3.41(b) illustrates their dependencies and data 

sources. Each component is briefly described in Table 3.26 and the major components, 

BLUSNO and BLUOWL, will be explained in detail throughout the following sections. 

BLUSNO will be used to illustrate the abstraction network visualization and exploration 

functionality that is available in each component. 

3.5.1 Biomedical Layout Utility for SNOMED CT 

The Biomedical Layout Utility for SNOMED CT (BLUSNO) dynamically generates 

interactive visualizations of SNOMED CT abstraction networks, including area 

taxonomies, partial-area taxonomies, disjoint partial-area taxonomies, and tribal 

abstraction networks. BLUSNO also provides functionality for deriving the various 

subtaxonomies described in Section 3.1. Additionally, BLUSNO includes an innovative 

concept browser that integrates a traditional view of an ontology with abstraction network 

information. 

 When a user starts BLUSNO they are provided with two options for selecting a 

data source (i.e., a version of SNOMED). First, the user can choose to open a locally 

stored SNOMED CT release, e.g., one obtained from the NLM UTS [58]. This option 

enables all of the functionality of BLUSNO. Alternatively, if the user does not have 

access to a local SNOMED CT release he or she may choose to use a version that is 

hosted on a web server. This option enables a subset of the available functionality of the 
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BLUSNO tool (i.e., a user can only derive partial-area taxonomies and the built-in 

concept browser has limited functionality). When working in this alternate mode, 

BLUSNO communicates through a web-based middleware API that accesses and 

processes data stored in Oracle databases. The descriptions throughout this section 

assume the user has selected a local SNOMED release. 

 

 

Figure 3.42  The BLUSNO abstraction network derivation user interface. 

 

 After a SNOMED release has been selected, the user chooses which type of 

abstraction network they want to derive. To derive a partial-area taxonomy or tribal 

abstraction network, a user simply selects which hierarchy they want to summarize. The 

user can further choose between deriving their chosen abstraction network for the 

inferred or stated view of SNOMED. The user interface for this process is shown in 

Figure 3.42. Disjoint partial-area taxonomies are derived in the context of their partial-

area taxonomy (see Section 2.5.1.3). Subtaxonomies are derivable at appropriate 
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locations, e.g., a relationship subtaxonomy can be derived by selecting an area in 

taxonomy and choosing the area’s relationships as R’. 

 Prior to BLUSNO, creating SNOMED CT abstraction networks was 

accomplished using text-based reports generated by a variety of small, disconnected 

software utilities. Analyzing the data required extensive time and effort. There was no 

way to automatically visualize the abstraction networks; figures were created manually 

using a graphics editor. The task of creating these figures often required three or four 

days of work. Due to these limitations, visualization of large SNOMED CT abstraction 

networks, such as the area and partial-area taxonomies for the Procedure or Clinical 

finding hierarchies, was essentially impossible. Likewise, it was impractical to create 

disjoint partial-area taxonomy abstraction networks for areas which have hundreds, or 

even thousands, of overlapping concepts. 

 BLUSNO provides a user with a view where all of the information for a specific 

abstraction network is contained in a single window. The user can view multiple 

abstraction networks at the same time. Each window is a self-contained unit with options 

and functionality tied to the given abstraction network. Within each window the user can 

switch between interfaces for exploring and editing the associated taxonomy.  

 The main functionality of BLUSNO (and the BLU Framework, in general) is 

defined by its graphical (diagram) interface, where each abstraction network element 

(e.g., partial-areas, areas, or clusters) is selectable and provides information about the 

underlying terminology and the structure of the abstraction network.  

3.5.1.1 Abstraction Network Visualization in BLUSNO. The graphical (diagrammatic) 

interface of BLUSNO (shown in Figure 3.43) produces interactive displays that are 
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modeled after the static abstraction network diagrams constructed in Wang et. al [24], 

Ochs et al. [27], etc. 

 In BLUSNO, users have the ability to move, pan, and zoom throughout an 

abstraction network, quickly perceiving how the knowledge is structured. To limit visual 

complexity, child-of connections are only shown on request and typically are limited to 

connections between a small number of abstraction network nodes.  

 

 
Figure 3.43  BLUSNO’s graphical interface with the Specimen hierarchy’s partial-area 

taxonomy shown. The partial-area Respiratory sample (36) has been selected by clicking 

on it (yellow) and its parent (blue) and children (purple) are highlighted. 

 

 

 All of the elements of an abstraction network are interactive in that they provide 

specific information and features when clicked on by a user. For example, when viewing 

a partial-area taxonomy, if a user single clicks on a partial-area then its parent and child 

partial-areas will be highlighted in blue and purple, respectively.  
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Figure 3.44  (Left) The Partial-area Summary Dialog for the Respiratory sample partial-

area. (Right) The singly rooted hierarchy of concepts in the Respiratory sample partial-

area, with concept Lower respiratory sample (in yellow) selected. 

 

 In Figure 3.43 the partial-area Respiratory sample (36) has been selected by 

clicking on it. Its single parent partial-area, Specimen (29), is highlighted in blue. Its child 

partial-areas, such as Upper respiratory swab sample (10), are shown in purple.  

 When a user selects an abstraction network node, e.g., a partial-area, an options 

menu appears at the top of the display. An important option is displaying a dialog that 

provides various metrics and structural information about the selected node. 

 This dialog lists the parent nodes, child nodes, and the concepts summarized by 

the chosen node (in alphabetical order). The left side of Figure 3.44 shows this dialog for 

the partial-area Respiratory sample, from the Specimen partial-area taxonomy. This 

dialog also allows a user to visualize the subhierarchy of concepts summarized by the 

abstraction network node. For example, the right side of Figure 3.44 shows the 

subhierarchy of concepts summarized by the Respiratory sample partial-area. Individual 

concepts in this visualization can be selected to highlight their parents (blue) and children 
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(purple) within the abstraction network node. On the right side of Figure 3.44 the concept 

Lower respiratory sample has been selected. 

 Users can search for concepts and specific nodes within an abstraction network by 

typing a search term into the search box. Clicking on a search result will focus the 

abstraction network window on the associated element. In addition to searching, several 

dialogs are available to provide summaries and metrics of the abstraction network’s 

structure.  

 For example, clicking on the “Level Report” button will display a dialog 

containing level-by-level metrics that summarize the structure of the abstraction network. 

Additional buttons, which provide specific information for different kinds of abstraction 

networks, are available depending on the type of abstraction network derived. For 

example, in partial-area taxonomies the “Area Report” button will display a list of all the 

areas in the taxonomy along with associated metrics. Selecting an area from the list will 

focus the taxonomy window on the selected area, enabling fast navigation. 

3.5.1.2 Deriving Partial-area Subtaxonomies. The four subtaxonomies described in 

Section 3.1, relationship subtaxonomies, root subtaxonomies, subject subtaxonomies, and 

focus subtaxonomies, can be derived in BLUSNO. The option to derive each type of 

subtaxonomy is made available at appropriate locations in the BLUSNO user interface.  

 For example, within a taxonomy window a user can create relationship 

subtaxonomies. Clicking on the “Create Subtaxonomy” button displays a list of attribute 

relationships defined within the hierarchy. From there, a user can choose which 

relationship types should be used to derive the relationship subtaxonomy. Alternatively, a 

user can select an area and then choose to use its set of relationships to define such a 
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subtaxonomy. Root subtaxonomies can be derived by selecting a partial-area in the 

taxonomy and clicking on the “Derive Root Subtaxonomy” button in the options menu 

that appears when a partial-area is selected (Figure 3.43). The chosen partial-area will be 

used as the root partial-area of the root subtaxonomy. Subject subtaxonomies and focus 

subtaxonomies are derived by selecting a subject concept in BLUSNO’s concept browser 

(see Section 3.5.1.5). 

3.5.1.3 Deriving Disjoint Partial-area Taxonomies. When a partial-area taxon-

omy is derived in BLUSNO, double clicking on an area in the taxonomy visualization 

opens the Area Summary Dialog, which lists all of the concepts in the selected area 

according to the area’s partial-areas. This dialog also identifies the total number of unique 

concepts in the area and highlights overlapping concepts in red. When overlapping 

partial-areas exist in an area the user can create a disjoint partial-area taxonomy for the 

area.  

 Figure 3.45 shows the Area Summary Dialog obtained by double clicking on the 

{Substance} area, located on the right side of Figure 3.43. The relationships of the area 

are listed first (e.g., Specimen substance), followed by the number of unique concepts and 

how many of the concepts in the area are primitive concepts (103 and 35, respectively).  

 Partial-areas are listed according to their size (e.g., Body substance sample is the 

largest, thus, it is listed first). This ordering follows the ordering of partial-areas in the 

graphical interface. Finally, the concepts in each partial-area are listed alphabetically 

indented underneath each partial-area. The red text “Concept in 2 Other Partial-area(s)” 

next to the concept Arterial blood specimen shows that Arterial blood specimen is an 

overlapping concept. 
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Figure 3.45  The Area Summary Dialog for the {Substance} area. 

 

 

 
Figure 3.46  The disjoint partial-area taxonomy for the area {Substance} in the Specimen 

hierarchy’s partial-area taxonomy. The disjoint partial-area Body fluid sample (yellow) 

has been selected and its parents (blue) and children (purple) are highlighted. 
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 The disjoint partial-area taxonomy for an area (shown in Figure 3.46 for 

{Substance}) provides an interactive display for disjoint partial-area taxonomies, 

modeled after the hand-drawn diagrams designed by Wang et al. in [23] and Figure 2.12. 

A subset of the functionality available in the overall partial-area taxonomy interface is 

available in this view. Users can single click on a disjoint partial-area to highlight its 

parent and child disjoint partial-areas. Likewise, double clicking on a disjoint partial-area 

displays the Disjoint Partial-area Summary Dialog, which includes information similar 

to that of the Partial-area Summary Dialog.  

3.5.1.4 Deriving Tribal Abstraction Networks. Tribal abstraction networks can be 

derived for complete SNOMED CT hierarchies using the same user interface introduced 

for deriving partial-area taxonomies (see the “Tribal Abstraction Network” tab in Figure 

3.42). However, BLUSNO also enables a user to derive TANs for any singly-rooted 

subhierarchy of concepts in SNOMED CT. This includes recursively deriving a TAN for 

a cluster and deriving a TAN for a partial-area in a partial-area taxonomy.  

 To derive a TAN for a cluster or a partial-area, a user first selects a cluster or 

partial-area. The user then clicks the “TAN” button that appears in the options menu at 

the top of the display. This derives a TAN for the subhierarchy of concepts summarized 

by the cluster or partial-area. Figure 3.47 illustrates a TAN derived for the partial-area 

Mass of body structure in the Clinical finding partial-area taxonomy. 

 Tribal abstraction networks can also be derived for any singly rooted subhierarchy 

of concepts from the concept browser. In the concept browser the user can choose to 

derive a TAN rooted at the current focus concept, providing a subject-focused TAN that 

summarizes the hierarchy of concepts that are specializations of the chosen root. 
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Figure 3.47  Part of a TAN derived for the Mass of body structure partial-area in the 

Clinical finding partial-area taxonomy. 

 

3.5.1.5 Hybrid Text-diagram Concept Browser. BLUSNO includes a hybrid text-

diagram concept browser based on the previously developed Neighborhood Auditing 

Tool (NAT) [98] for the UMLS. This browser allows a user to view many details about 

individual SNOMED CT concepts. BLUSNO’s concept browser is unique in that it is 

directly linked with abstraction network summaries. Additionally, unlike other SNOMED 

browsers, the BLUSNO browser displays concept information from both the inferred 

version and stated version of SNOMED, side-by-side. 

 BLUSNO’s concept browser provides a neighborhood view around a selected 

focus concept. Information about the focus concept is displayed relative to where the 

elements would be in a diagrammatic view, i.e., parents are displayed above the focus 

concept, children below, siblings and targets of lateral relationships to the side, etc.  
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Figure 3.48  The BLUSNO concept browser with Pneumonia as the focus concept. 

 

 The user can navigate to different focus concepts by double clicking on any 

concept in the user interface. Alternatively, the user can search for a new focus concept 

by its term(s) or its unique concept identifier. 

 To open a concept browser window, a user can select “Concept Browser” in the 

main BLUSNO user interface (Figure 3.42). Alternatively, within any BLUSNO dialog a 

user can click on a concept’s unique identifier to view information about the associated 

concept in a concept browser window. Figure 3.48 shows the concept browser after the 

concept Pneumonia was chosen from the Clinical finding hierarchy’s taxonomy.  

 Within the concept browser, the Abstraction Network Panel (labeled 1 in Figure 

3.48) identifies which area, partial-area(s), band, and cluster(s) a concept belongs to. 

From the concept browser the user can choose to view the abstraction network elements 

associated with the focus concept in an abstraction network window. This functionality 

allows a user to quickly switch back and forth between viewing a SNOMED CT 

1 
2 
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hierarchy using an abstraction network view, e.g., a taxonomy, and a traditional concept-

centric view. Additionally, the Abstraction Network Panel enables the derivation of 

subject subtaxonomies, focus subtaxonomies, and tribal abstraction networks. The chosen 

focus concept will be used as the root for each of these abstraction networks. 

 The BLUSNO concept browser also includes the Hierarchy Metrics Panel 

(labeled 2 in Figure 3.48), which provides information about the focus concept’s position 

in the overall hierarchy. The “Hierarchy Metrics” tab shows how many ancestors and 

descendants the focus concept has in both the inferred and stated versions of SNOMED. 

This panel also includes a list of all of the ancestors of the focus concept, shown in a 

topological order, for both the inferred and stated version of SNOMED. The introduction 

point of different attribute relationships is shown in red next to each ancestor. Finally, the 

hierarchy metrics panel includes a tab that displays all of the focus concepts descendants, 

listed in topological order. 

3.5.2 Biomedical Layout Utility for OWL (BLUOWL) 

The Biomedical Layout Utility for the Web Ontology Language (BLUOWL) is a 

collection of software tools for deriving and visualizing different kinds of abstraction 

networks for ontologies in Web Ontology Language (OWL) and Open Biological and 

Biomedical Ontologies (OBO) formats. BLUOWL includes much of the same abstraction 

network visualization and exploration functionality available in BLUSNO but tailors it to 

OWL. The major components of BLUOWL will now be described in detail.  

3.5.2.1 OWL Taxonomies. BLUOWL is able to derive area taxonomies, partial-area 

taxonomies, and disjoint partial-area taxonomies using both object properties and data 
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properties. Taxonomies that focus on the different usages of these structural features, e.g., 

defined domains and restrictions, are can be derived individually or in combinations. 

 

 
Figure 3.49  The BLUOWL taxonomy derivation user interface. 

 

 
Figure 3.50  A domain-defined partial-area taxonomy derived for OCRe’s Entity 

hierarchy in BLUOWL. 

 

 Figure 3.49 shows BLUOWL’s taxonomy derivation user interface. A user can 

open one or more ontologies (e.g., OCRe, ERO, and GO in Figure 3.49). Selecting an 

ontology from the “Currently Open Ontologies” list (left side of Figure 3.49), will display 
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various information about the ontology, including metrics for the different structural 

features and their usages. OCRe has been selected in Figure 3.49. Derivation options are 

enabled and disabled based on the structure of the selected ontology, e.g., if the ontology 

has no data properties it will not be possible to derive a taxonomy using data properties. 

To derive a taxonomy, the user selects an ontology and chooses a root class or chooses to 

derive a taxonomy for the entire ontology (implicitly using OWL:Thing as the root). 

Next, the user selects which structural features to use in the derivation. Finally, the user 

clicks the “Generate Taxonomy” button, which will derive the taxonomy and display its 

visualization. 

 Figure 3.50 shows an example of a taxonomy derived for the Ontology of Clinical 

Research (OCRe) Entity hierarchy. The dynamic visualization provided by BLUOWL 

includes much of the functionality available in BLUSNO. This includes the derivation of 

disjoint partial-area taxonomies when there is an area with overlapping partial-areas. The 

various displays and dialogs will indicate which structural features are associated with a 

taxonomy element. For example, areas may be defined by a combination of object 

properties and data properties. Selecting a partial-area within such an area will display the 

type and usage of each property, as well as if the property is introduced or inherited. 

3.5.2.2 Diff Taxonomies. BLUOWL also includes the ability to derive and visualize 

diff partial-area taxonomies. To derive a diff partial-area taxonomy a user selects the 

“Diff Partial-area Taxonomy” tab shown in Figure 3.49. Figure 3.51 shows the diff 

partial-area taxonomy derivation user interface. To derive a diff partial-area taxonomy, a 

user selects the “from” and “to” ontologies. Next, the root of the ontology for the from 

and to ontologies is selected and the structural features used to derive the from and to 
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taxonomies are chosen. If a user chooses the same ontology as both the from ontology 

and to ontology then the diff taxonomy can be used to create a granularity diff, which 

identifies how different ontology elements are summarized by taxonomies derived using 

different structural features (see Section 4.4). Finally, to view the diff taxonomy the user 

clicks on "Perform Taxonomy Diff.” 

 Figure 3.52 provides an example of a domain-defined diff partial-area taxonomy 

for the eagle-I Research Resource Ontology (ERO), derived using the ERO releases 

described in Section 3.4.3.3. The visualization scheme for diff taxonomy elements 

follows the one described in Section 3.4.1.1 and 3.4.1.2: red for removed, green for 

introduced, and yellow for modified. Like the BLUSNO and regular OWL taxonomy 

visualizations, the diff taxonomy produced by BLUOWL is interactive.  

 

 
Figure 3.51  The diff partial-area taxonomy derivation user interface. 

 

 When selected, each diff taxonomy element, e.g., diff areas and diff partial-areas, 

provides information about the underlying structural changes that are summarized by the 

diff taxonomy element. For example, double clicking on a diff partial-area will display a 
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dialog with information about how the selected diff partial-area’s classes changed 

between releases. 

 Figure 3.53 shows the dialog that is displayed when the removed partial-area 

processual entity is selected. This dialog, similar to the Partial-area Summary Dialog 

shown in Figure 3.44, provides information about why the processual entity partial-area 

was removed between the two releases. By looking at this dialog, a user can quickly 

determine what happened to the classes that were summarized by processual entity and 

what structural changes lead to the changes. 

 In the “Diff Details” tab, a summary of the changes that led to this partial-area 

being removed is provided. Additional structural information, such as the parent partial-

areas and child partial-areas, is also displayed.  

 

 
Figure 3.52  The top seven levels of the diff partial-area taxonomy for the eagle-I 

Research Resource Ontology (ERO), as shown in BLUOWL. 
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Figure 3.53  The diff partial-area summary dialog for the removed partial-area 

processual entity. 

 

 The list of classes formerly summarized by the removed partial-area provides 

information about what happened to each class between the two releases. For example, 

the root class of the partial-area, processual entity, was removed from the ontology (as 

indicated by red text next to the class name) and the class Phase is no longer summarized 

by this partial-area in the “to” taxonomy. 

 The “From” and “To” tabs show the details of the partial-area in the context of the 

the from taxonomy and to taxonomy, respectively. The “Change List” tab provides a 

summary of the changes to the set of classes summarized by the partial-area. It lists the 

changes by type (e.g., removed from ontology and no longer summarized by this partial-

area) and gives a full explanation of what happened to the class. For example, for the 

class Phase it indicates that it is no longer summarized by processual entity in the to 

taxonomy, but is now summarized by the partial-area process in the area {realizes}. 
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Figure 3.54  The diff partial-area explanation tab. 

 

 The last tab, “Removed PArea Explanation” (named “Introduced PArea 

Explanation” when an introduced partial-area is selected, rather than a removed partial-

area), provides a list of structural changes (i.e., editing operations) that lead to partial-

area being removed, e.g., modifications to classes and properties. The display indicates if 

each change directly affected the partial-area or if the change implicitly affected the 

partial-area’s classes through inheritance.  

 Figure 3.54 shows the Removed PArea Explanation tab for the processual entity 

partial-area. A total of eight structural changes lead to processual entity being removed. 

Two of these changes, the removal of the class processual entity from the ontology and 

the modification of the realizes object property domain, directly affected the partial-area. 

The six other changes implicitly affected the partial-area. For example, three object 

properties were removed from the ontology and their domain (occurent) was an ancestor 

of processual entity. 

3.5.2.3 Protégé Plugin. Protégé [56], with over 200,000 users, is one of the most 

widely used ontology development tools. Protégé is designed to be extendable via 

community-developed plugins [152]. The BLUOWL Protégé Plugin integrates 

BLUOWL with Protégé, enabling the use of OWL abstraction networks during the 

ontology development process. The BLUOWL plugin allows a Protégé user to seamlessly 

transition between the standard Protégé user interface, which includes class and property 
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definitions, and the BLUOWL abstraction network interface, which captures a structural 

summary of the ontology. 

 The BLUOWL Protégé Plugin, shown in Figure 3.55 with the Gene Ontology’s 

Biological process taxonomy, includes all of the functionality of the standalone 

BLUOWL tool and includes Protégé-specific features. For example, clicking on classes 

or properties within BLUOWL’s dialogs will show the definition of the selected element 

in Protégé. Furthermore, if a user selects an entity in Protégé, it is highlighted within the 

taxonomy. 

 The Protégé plugin can also derive diff taxonomies using the currently opened 

ontology and another ontology that the user chooses. Alternatively, the BLUOWL plugin 

can derive diff taxonomies “on the fly” as a user is editing an ontology. This allows an 

ontology editor to visualize the global impact of an editing operation as it is applied to the 

ontology.  



 

 

Figure 3.55  A segment of the Gene Ontology’s Biological process partial-area taxonomy, as viewed in the BLUOWL Protégé Plugin. 
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CHAPTER 4  

FUTURE WORK 

4.1 Subtaxonomies for Large SNOMED CT Hierarchies 

The development of various kinds of subtaxonomies has further enabled the scalability of 

taxonomy-based quality assurance. In particular, subject subtaxonomies allow auditors to 

obtain a summary of the concepts in a specified subject area. For the Bleeding 

subhierarchy, certain groups of concepts within a subject subtaxonomy (i.e., overlapping 

concepts) were found to be statistically more likely to be erroneous than other groups 

(i.e., non-overlapping concepts). However, there are several important issues that will be 

investigated in future studies. 

 First, additional subject subtaxonomy quality assurance studies will be performed 

to verify the results of the Bleeding study described in Section 3.1.3.2. These studies will 

investigate the error rates of overlapping concepts in subject subtaxonomies for other 

important subject areas, e.g., Infectious diseases and Cancer. A related issue that will be 

investigated is overlapping concepts in a subject subtaxonomy that are not overlapping 

concepts in a complete taxonomy. This phenomenon occurs when partial-areas exists in a 

subject subtaxonomy but do not exist in the taxonomy for a complete hierarchy, e.g., the 

yellow partial-areas of the Cancer subtaxonomy (Figure 3.10).  

 In the Cancer subject subtaxonomy there are 2,398 overlapping concepts in 

{Associated morphology, Finding site}. However, only a small number of these concepts 

are overlapping concepts in the complete Clinical finding taxonomy. Most of these 

concepts are only in the large Mass of body structure partial-area in the complete Clinical 

finding taxonomy. This situation complicates the definition of an overlapping concept, 
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thus, the error rates for these concepts will have to be investigated. The error rates of 

these concepts will be compared to concepts that overlap in the complete taxonomy and 

concepts that do not overlap in either the complete taxonomy or in the subject 

subtaxonomy. 

 Other groups of concepts that have been shown to exhibit higher error rates, e.g., 

concepts in small partial-areas [26, 28], will be investigated within subject 

subtaxonomies. To determine the effectiveness of reviewing these groups, versus 

reviewing overlapping concepts, the error rates of these concepts will be compared to 

those of overlapping concepts. 

 Additionally, partial-areas that only exist in a subject subtaxonomy will contain 

concepts that are summarized by different partial-area(s) in a complete taxonomy (e.g., 

the concepts in the Cancer subtaxonomy’s unique partial-areas are mostly summarized 

by only Mass of body structure in the complete Clinical finding taxonomy). Thus, in a 

subject subtaxonomy a concept may be summarized by a “small” partial-area, while in 

the complete taxonomy it is summarized by a “large” partial-area. A sample of these 

concepts will be reviewed to determine their error rate.  

 A significant issue with the taxonomy-based quality assurance methodology was 

raised by James T. Case, the head of the US Extension of SNOMED CT. All previous 

SNOMED CT quality assurance studies, e.g., [26, 28, 29, 119], have used the inferred 

version of SNOMED CT. The inferred version of SNOMED CT is created by applying a 

reasoner on the stated version of SNOMED CT, which only includes the relationships 

defined by SNOMED’s editors. Often, the domain experts in previous studies would 

correctly identify that concepts were erroneous, but the cause of the error and suggested 
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solutions were incorrect. This occurred because the domain experts were reviewing and 

basing corrections off of the inferred version of SNOMED CT, while SNOMED CT’s 

editors make changes to the stated version. The domain experts were generally unfamiliar 

with the stated version or SNOMED’s concept model. Thus, the erroneous concepts had 

to be investigated further by the US Extension Center. 

 In a future study, domain experts will be familiarized with the SNOMED concept 

model and will be provided with the stated release of SNOMED CT. The results of this 

study will be compared to a study where domain experts are not provided with this 

information. It is hypothesized that the additional information will enable the 

identification of more errors and will allow the domain experts to provide better 

suggested corrections. 

 One important aspect of taxonomy-based quality assurance that will be 

investigated is the identification of concepts with a higher likelihood of errors of 

commission or errors of omission. In general, errors of commission, e.g., an incorrect 

parent or incorrect relationship, are considered more critical than errors of omission, e.g., 

a missing parent or missing relationship. In this future study the type of each concept 

error (omission, commission) will be identified. The goal will be to determine if 

taxonomy elements (i.e., partial-areas and disjoint partial-areas) with certain properties 

(i.e., small, overlapping, or both) are more likely to have errors of commission or errors 

of omission. This error type analysis will need to be based on errors identified in the 

stated version of SNOMED CT, as opposed to the inferred version. For example, a 

missing parent in the inferred version may be due to an incorrect relationship in the stated 

version. If concepts summarized by certain taxonomic elements are more likely to have 
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an error of commission then quality assurance efforts should be focused on those 

elements.  

 Finally, the summarization aspect of subject subtaxonomies will be investigated. 

Several subject subtaxonomies will be reviewed to determine if they provide an accurate 

and useful summary of a subject area. A group of domain experts and SNOMED users 

will review each subject subtaxonomy and provide their feedback on how well (in terms 

of accuracy and utility) the subtaxonomy summarizes the subject area. This information 

will be used to guide the development of additional types of SNOMED abstraction 

networks that can be applied to various use cases. 

4.2 Tribal Abstraction Network 

There are several important open research questions for the Tribal Abstraction Network. 

One important issue, introduced in Section 3.2.3 is the relatively low number of errors 

uncovered in the quality assurance review of the Observable entity hierarchy. To 

determine why the error rate was so low TAN-based studies will be conducted for other 

target hierarchies of SNOMED CT, e.g., Body structure and Substance. Additionally, 

TANs will be derived for the root partial-areas of the Procedure and Clinical finding 

hierarchies. The error rates of the concepts in these TANs will be compared to the error 

rates of the Observable entity hierarchy and the error rates found based on partial-area 

taxonomies (e.g., overlapping concepts, small partial-areas). 

 Another significant issue is the emergence of disproportionately large clusters 

(“super-large clusters,” for short) that summarize thousands, or tens of thousands, of 

concepts. These clusters represent an over summarization of a set of concepts. As 

discussed in Section 3.2, the number of concepts with multiple parents is not as important 
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in deriving a TAN as the locations where the concepts with multiple parents appear in a 

hierarchy.  

 The placement of such concepts may lead to the emergence of super-large 

clusters, such as Clinical history/examination observable (4138) and Function (1384) in 

the Observable entity TAN’s first level (see Figure 3.18), containing a relatively large 

number of concepts, and together containing 67% (=5522/8231) of the Observable entity 

hierarchy. Following Function, the next largest cluster is Social / personal history 

observable (300), an order of magnitude smaller. Such super-large clusters may appear 

anywhere in a TAN, not necessarily just at Level 1  

 Super-large clusters represent an over summarization of the terminology’s 

hierarchy and are of too coarse a granularity [120]. To address this problem, two 

algorithmic methods for summarizing the concepts in super-large clusters will be 

investigated. The first method is the Recursive TAN, which derives a TAN for only the 

concepts in a chosen super-large cluster. Concepts in any cluster many have multiple 

parents in the same cluster. Thus, by recursively applying the TAN derivation 

methodology on a super-large cluster, its content can be summarized. The recursive 

approach will work by using the root of a super-large cluster as a hierarchy root for a 

TAN. The children of the cluster root are then defined as tribal patriarchs. The TAN 

derivation methodology is then recursively applied to the concepts in the super-large 

cluster. The resulting Recursive TAN would summarize the concepts in the super-large 

cluster. 

 For the case of Observable entity, the question is whether it is feasible to derive a 

recursive TAN for the Clinical history/examination observable and Function clusters. A 
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study will be conducted where a Recursive TAN is derived for these super-large clusters. 

A review of concepts in the recursively derived TANs will be performed and a 

methodology for quality assurance that utilizes Recursive TANs will be developed. The 

hypotheses for this quality assurance methodology mirror those of the complete TAN: 

concepts in large clusters of a recursively derived TAN will have more errors than 

concepts in small clusters and concepts at higher numbered levels (towards the bottom) 

of a Recursive TAN will have more errors than concepts at lower numbered levels. 

 Another method for summarizing super-large clusters, called the Expanded TAN, 

is limited to Level 1, e.g., super-large clusters containing concepts which are descendants 

of only one patriarch. One can define a TAN that uses the children of a super-large 

cluster’s root (i.e., a subset of the grandchildren of the hierarchy root) as tribal patriarchs. 

Using this method, a more refined summary of a hierarchy is obtained. Unlike the 

Recursive TAN, which summarizes only the concepts in a single super-large cluster, the 

Expanded TAN summarizes the concepts of a super-large Level 1 cluster in the context 

of the entire hierarchy. One or more super-large Level 1 clusters could be split into 

several smaller clusters according to their children. 

 For example, in Figure 4.1 the Function cluster on Level 1 is split into two Level 

1 clusters based on its two children: Breast function and Digestive system function. One 

potential drawback of the Expanded TAN is it potentially introduces many new patriarchs 

(dozens, or even hundreds), depending on the number of children of the super-large 

cluster root(s). This could lead to many small tribal bands at Level 1. In a future study, 

the benefits and drawbacks of the Recursive TAN and Expanded TAN for super-large 

clusters will be compared. 
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Figure 4.1  The concepts from Figure 3.14 grouped based on their common tribes. The 

two children of Function in the example, Breast function and Digestive system function 

are now defined as patriarchs instead of Function. 

 

 After creating a Recursive TAN or Expanded TAN, it is possible that there will 

still be an over-summarization of a hierarchy’s concepts. For example, a Recursive TAN 

may contain super-large clusters if enough concepts in the original super-large cluster do 

not belong to multiple recursively-defined tribes. In such a case, the Recursive TAN can 

be applied until a TAN of desired summarization granularity is obtained. Different 

approaches for addressing over summarization in Recursive TANs and Expanded TANs 

will be investigated in a future study. 

 Another issue which will be investigated is the applicability of TANs to other 

terminologies and ontologies. The TAN derivation methodology is potentially applicable 

to any ontology that has concepts with multiple parents (i.e., its concepts are organized as 

a directed acyclic graph). TANs will be derived for other ontologies, e.g., those from 
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BioPortal [50], and their properties will be investigated as part of the family-based 

quality assurance approach introduced by He et al. [55]. 

4.3 Abstraction Networks for OWL Ontologies 

The development of OWL partial-area taxonomy derivation methodologies was an 

important part of the family-based ontology quality assurance methodology introduced by 

He et al. [55]. The taxonomy derivation methods, and associated quality assurance 

reviews, described throughout Section 3.4 showed the feasibility of the family-based 

approach. However, several important issues will be investigated. 

 One future study will focus on the development of refined structural 

classifications that will organize OWL ontologies into refined families. In the preliminary 

study described in He et al. [55] ontologies were organized into seven disjoint families 

according to the existence and non-existence of object properties. The decision to 

organize ontologies into families according to object properties was based on the 

importance of object properties in taxonomy derivation. However, this initial 

classification does not accurately represent the structure of many ontologies.  

 For example, many ontologies have both object properties and data properties. 

This information was not captured by the preliminary classification process, inhibiting 

the development of abstraction networks that are applicable to a certain structural family. 

A new classification process, based on a structural meta-ontology, will consider all of the 

structural features of an ontology, and thus, will enable more accurate classifications. 
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Figure 4.2  (a) The first two levels of the structural meta-ontology. (b) The classes of 

Level 1 refined based on their usage. (c) The complete structural meta-ontology for 281 

BioPortal ontologies with F = {object property, data property}. 

 

 

 A structural meta-ontology is an ontology that classifies a given set of ontologies 

according to their structure. The structural meta-ontology derivation methodology will 

utilize combinations of the existence (or non-existence) and usage of a set of structural 

features to define its classes. The classes of a structural meta-ontology will categorize 

ontologies into structurally similar families based on their structural feature conditions.  

 Given a set of ontologies O and a set F = {f1, f2, f3, … , fk} of k structural features, 

a structural meta-ontology is organized into k+1 levels of classes, L0-Lk, based on the 

combination of the existence or nonexistence of i structural features at the level Li. At L0 

a single root class named Ontology is defined to represent every ontology in O. All 

classes in the structural meta-ontology are descendants of Ontology. 

 Figure 4.2 illustrates the derivation of a structural meta-ontology for 281 

BioPortal ontologies using F = {object properties, data properties}. Figure 4.2(a) shows 
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the high level classes that are used to organize ontologies according to the existence of 

non-existence of object properties and data properties. Figure 4.2(b) refines these classes 

according to how each structural feature is used. Finally, Figure 4.2(c) shows the 

complete structural meta-ontology, which captures the existence of usage of object 

properties and data properties within the 281 BioPortal ontologies. 

 It is anticipated that the refined classification provided by the structural meta-

ontology will lead to improved abstraction network derivation methodologies. For 

example, if many ontologies have both object properties and data properties, then 

taxonomies based on both structural features can be derived for all such ontologies. It 

will also likely be necessary to develop additional types of OWL abstraction networks 

that are applicable to certain families of ontologies where taxonomies do not provide 

ideal summarization. For example, the tribal abstraction network may be used for the 

family of ontologies that do not have either object properties or data properties. To 

investigate the applicability of different abstraction networks to different families, 

abstraction networks will be derived for each member of the family and the properties of 

the abstraction network within the family will be investigated. 

 Finally, with the development of the BLUOWL Protégé Plugin, it is now feasible 

to use abstraction networks during the ontology development process. The findings of the 

various planned family studies will be used to identify characteristics that may lead to 

problems in the ontology. The BLUOWL Plugin will use this information to alert an 

ontology curator to these potential problem areas while he or she is editing an ontology.  
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4.4 Diff Abstraction Networks 

The diff taxonomies described in Section 3.4 enable the summarization and visualization 

of structural changes between two ontology releases. Diff Abstraction Networks based on 

other structural features, e.g., data properties, class equivalences, and hierarchical 

relationships, will be developed. Moreover, refined versions of the diff taxonomies that 

capture different kinds of structural changes will be able to provide further insight into 

the different types of changes that occur between two ontology releases. However, 

several significant issues that potentially affect all types of Diff AbNs will be 

investigated. 

 First, ideally, errors should be identified and corrected during the development 

process of an ontology. If an ontology curator can see the global impact of an editing 

operation before she modifies the ontology then certain kinds of errors can be avoided all 

together. The development of the BLUOWL Protégé Plugin, which can derive diff 

taxonomies, will be used to investigate the use of Diff AbNs to enable “what if?” analysis 

in support of ontology development. As an ontology curator is making changes he or she 

will be provided with a diff taxonomy that reflects the state of the ontology after a given 

potential editing operation is applied. If the curator determines this diff taxonomy 

exposes an anomaly then the potential editing operation would not be applied to the 

ontology. 

 Next, a common ontology design pattern, extensively used in biomedical 

ontologies, is to import and reuse the content of other ontologies, e.g., a top-level 

ontology like Basic Formal Ontology (BFO) [46] or a top-domain ontology like the 

Ontology for General Medical Science (OGMS) [47]. Ontology curators are often not 
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interested in changes that happened within imported ontologies. As described in Section 

3.4.3.3 with regards to ERO, the current Diff AbN derivation technique considers all 

structural changes between two versions of an ontology, including those that occurred to 

content from imported ontologies.  

 In some situations, this information could be important for detecting errors and 

inconsistencies in the ontology. Changes in the modeling of the imported ontology could 

lead to unintended changes to the content added by an ontology curator. However, if an 

ontology curator is not interested in seeing these changes, she could instead derive a Diff 

AbN that only captures the changes to her ontology. Methodologies for controlling which 

content is summarized by a Diff AbN will be investigated. 

 A visualization issue, which is illustrated by the SDO and ERO DPATs, is the 

emergence of many removed diff area/introduced diff area pairs and corresponding diff 

partial-area pairs, summarizing the changes in the object properties for the same set of 

classes. To address this issue, several refinements of the diff approach and the diff 

taxonomy visualization will be investigated. For example, when a removed diff 

area/introduced diff area pair exists, this information can be expressed as a modification 

to the area’s properties instead of a removed and an introduced area. 

 Finally, Diff AbNs can be used to compare abstraction networks of different 

granularity, e.g., [120]. A Diff AbN can be used to compare abstraction networks derived 

using different structural features. Such a Diff AbN will enable a user to see how 

different ontology classes are summarized in different abstraction networks. This kind of 

diff abstraction network will highlight the different granularities of summarization and 

can be used to determine which abstraction network is best for quality assurance. 
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4.5 Abstraction Network Tools 

The BLU Framework enabled the majority of the research described in this dissertation. 

Future work will focus on two important areas. First, BLUSNO and BLUOWL will 

continue to be improved upon and expanded in terms of functionality. User studies are 

planned to evaluate both tools to improve the user interface and user experience. With the 

public release of both BLUSNO and the BLUOWL Protégé Plugin, user feedback will 

also be utilized to improve both tools. 

 The second major area of future research will be the development of the BLU 

Framework into a generic system for deriving abstraction networks. In previous phases of 

development, abstraction networks were implemented in a “one at a time” manner into 

each BLU Framework component. For example, the software components needed to 

derive and represent partial-area taxonomies for SNOMED CT and OWL ontologies 

were disconnected, even though the derivation followed the same general process. 

 To address this issue, significant portions of the BLU Framework’s 

subcomponents are in the process of being redeveloped into generic systems that can be 

applied to any ontological system. Thus, when a new abstraction network is developed it 

can be implemented generically in the BLU Framework. The new abstraction network 

could then be applied to any ontology system supported by the BLU Framework (e.g., 

SNOMED CT, OWL ontologies, and OBO ontologies). This generic approach is 

currently used when deriving partial-area taxonomies and disjoint partial-area 

taxonomies. When support for a new ontological system is added to the BLU Framework 

a minimal amount of work will be needed to derive the different kinds of abstraction 

networks discussed throughout this dissertation (e.g., taxonomies, TANs, etc.). 
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 To test this generic approach, the BLU Framework is currently being expanded to 

support the derivation of abstraction networks for the National Drug File - Reference 

Terminology (NDF-RT) [153]. NDF-RT is released in Apelon Distributed Terminology 

System (DTS) format [154]. The BLU Framework can now be used to derive abstraction 

networks for any DTS-based terminology. For example, partial-area taxonomies can be 

derived for NDF-RT. Furthermore, a new kind of abstraction network developed for NDF 

RT has been implemented generically, enabling it to be derived for SNOMED CT or 

OWL ontologies 

 Another potential area of research is determining the summarization needs of a 

BLU Framework user and providing them with a summary that would best support their 

intended use case. Currently, the BLUOWL tool performs a basic analysis of the 

structural of a selected ontology. The number of object properties and data properties, 

along with the total number of unique domains for each, is computed. Based on this 

information BLUOWL can suggest a type of partial-area taxonomy (domain defined, 

restriction defined, etc.) which would provide a reasonable summary. If a given ontology 

only has, say, only one data property with an explicitly defined domain then the tool does 

not suggest using a data property defined partial-area taxonomy. 

 Using a more advanced approach, a user could specify an area of interest, like in a 

subject subtaxonomy, and specify what structural features of the ontology they are most 

interested in for their use case. BLUOWL could then determine, based on the user’s 

chosen criteria, which abstraction networks are most relevant for the user’s needs.  

. 
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CHAPTER 5  

CONCLUSIONS 

 

In conclusion, this dissertation expanded on the applicability of abstraction networks by 

exploring five important research topics:  

1. The scalability of abstraction network quality assurance methodologies to large 

SNOMED CT hierarchies using various kinds of subtaxonomies 

 

2. The development of an abstraction network for SNOMED CT hierarchies without 

attribute relationships called the Tribal Abstraction Network 

 

3. Abstraction network derivation methodologies for Web Ontology Language 

ontologies 

 

4. Diff Abstraction Networks for summarizing and visualizing the structural changes 

between two ontology releases 

 

5. The development of various software tools to support abstraction network 

research and utility 

 

 First, partial-area taxonomy subsets called subtaxonomies were developed to 

enable the scalability of taxonomy-based quality assurance methodologies to large 

SNOMED CT hierarchies. A relationship subtaxonomy was utilized in a quality 

assurance review of the Procedure hierarchy’s large partial-area taxonomy and a subject 

subtaxonomy was used in a quality assurance review of the Bleeding subhierarchy from 

the Clinical finding hierarchy. These initial studies showed that, by creating subsets of 

taxonomies, previously developed taxonomy-based quality assurance methodologies can 

be utilized to improve the quality of SNOMED’s larger hierarchies. Concepts in small 

partial-areas were found to be more likely to contain errors than concepts in large partial-

areas in a relationship subtaxonomy and various characteristics of overlapping concepts 

were identified as having higher error rates in a subject subtaxonomy.  
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 Next, the Tribal Abstraction Network (TAN) was introduced to enable the 

summarization and quality assurance of SNOMED CT hierarchies which have no 

attribute relationships. The TAN was shown to successfully summarize the content and 

structure of these hierarchies. TANs were also shown to support quality assurance by 

identifying groups of concepts that were more likely to contain errors. Utilizing a TAN, a 

quality assurance review of the Observable entity hierarchy was performed. The study 

found that large clusters were more likely to contain erroneous concepts than small 

clusters. TANs can also be used in several additional settings. For example, TANs can be 

used to support quality assurance of concepts in large partial-areas and in hierarchies with 

attribute relationships. Several additional TAN studies were proposed to investigate 

various issues encountered during the Observable entity quality assurance review. For 

example, two methods for summarizing super-large clusters were introduced. 

 In regards to the third research topic, the domain-defined partial-area taxonomy 

and restriction-defined partial-area taxonomy were introduced as abstraction networks 

that can be applied to many structurally similar ontologies. A domain-defined partial-area 

taxonomy was derived for the Ontology of Clinical Research (OCRe) and a restriction-

defined partial-area taxonomy was derived for the Sleep Domain Ontology (SDO). A 

study of the SDO’s taxonomies investigated the differences in abstraction network 

granularity for a domain-defined taxonomy and a restriction-defined taxonomy. 

 A quality assurance review of OCRe showed that erroneous classes could be 

identified using an abstraction network. The errors were fixed and a new version of 

OCRe was released. Similarly, a quality assurance review of the SDO using a (domain or 

restriction)-defined taxonomy identified several errors and inconsistencies. A preliminary 
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review of the Gene Ontology’s taxonomy found that overlapping terms were more likely 

to have errors than non-overlapping terms. Future OWL abstraction network studies will 

focus on developing improved classification techniques for organizing ontologies into 

structural families and the investigation of properties for abstraction networks for each 

family. 

 For the fourth topic, two kinds of Diff Abstraction Networks, the diff area 

taxonomy and the diff partial-area taxonomy, were introduced to summarize and 

visualize the structural changes between two ontology releases. Diff partial-area 

taxonomies were derived for the Ontology of Clinical Research, Sleep Domain Ontology, 

and eagle-I Research Resource Ontology. The diff taxonomies were compared to the 

output provided by a standard ontology diff and each ontology’s curator provided 

feedback and suggestions to improve the utility of the diff taxonomies. In future studies 

diff taxonomies will be integrated into the ontology development process, enabling 

ontology curators to view the global impact of their changes as they are being made. 

 Finally, the various components of the BLU Framework were developed to 

derive, visualize, and explore abstraction networks. BLUSNO enables the derivation of 

abstraction networks for SNOMED CT and includes an innovative concept browser that 

combines a traditional concept neighborhood view with information from abstraction 

networks. At any time a user can seamlessly transition between both views of 

SNOMED’s content. BLUOWL enables the derivation of partial-area taxonomies using 

various structural features of OWL ontologies. BLUOWL can also derive Diff Partial-

area Taxonomies. The BLUOWL Protégé plugin integrates BLUOWL’s abstraction 

network derivation functionality into Protégé, a software tool commonly used to create 
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ontologies. In future work, the functionality of the BLU Framework will be improved and 

expanded on. Additionally, generic functionality will be developed to enable the 

derivation of abstraction networks for different ontology systems (e.g., NDF RT). 
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