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ABSTRACT 

MODELING BIODEGRADATION SETTLEMENT OF MUNICIPAL SOLID 

WASTE (MSW) BASED ON MEASUREMENT OF LANDFILL GAS AND 

DEGRADABLE SOLIDS IN LEACHATE RECIRCULATED BIOREACTORS 

by 

Vatsal A. Shah 

The purpose of this work is two-fold: 1) to understand the phenomenon of the 

biodegradation process of municipal solid waste (MSW) in leachate recirculated 

bioreactors, and 2) to create a realistic predictive model based on this understanding 

which is capable of supporting a laboratory-to-field relationship for bioreactor landfills.  

Biodegradation is best described by loss of mass; however, primary researchers have 

assumed the phenomenon to be purely volume loss and modeled best by mechanical 

processes using a conservation of energy approach. It is suggested that the phenomenon 

requires a fundamental understanding of biodegradation process which results in a loss of 

mass, and therefore an understanding of the conservation of mass must be considered.   

It is difficult to measure and predict volume change of a heterogeneous MSW 

material as well as the change in mass in the field.  In the laboratory, under controlled 

conditions, changes in volume and mass can be determined destructively and a 

relationship between mass and volume changes can be obtained. Changes in volume in 

the laboratory are related to the corresponding volumes of gas produced as the MSW 

degrades. From these measurements, vertical strain (settlement) of MSW landfill and the 

state of biodegradation as a function of time can be estimated. This is the basis of the 

research conducted herein. Characteristics curves depicting percent biodegradation and 

vertical strain as functions of time for a given composition of MSW can be developed.  



 Four homogenized sample sets, each consisting of composite, readily, 

moderately, and slowly degradable MSW are prepared and tested in separate bioreactors. 

These are connected to an electronic gas flow meter, leachate recirculation tubing, and 

subjected to leachate over a period of approximately 260 days to simulate a landfill 

environment. Gas production, settlement, and other physical and engineering parameters 

are measured as these conditions vary.  Approximately 72%, 93%, and 62% of the 

calculated theoretical total gas potentials of 6.23, 9.04, and 8.43 cubic feet per pound 

waste for composite, readily, and moderately degradable bioreactor sets are collected. 

From the laboratory program,  it is determined that characteristic curves for any 

composite MSW sample could be developed from the results of the readily, moderately 

and slowly biodegradable MSW samples using weighted averaging techniques. In a 

landfill, lifts of MSW, placed at different times, will degrade at different rates and are at 

different states of biodegradation. A method to determine the average state of 

biodegradation for such a condition is developed to assist in field validation. 

Field validation of the laboratory models based on newly developed characteristic 

curves is performed on two MSW bioreactor landfills. The first, Cape May County 

Municipal Utilities Authority bioreactor landfill, exhibits MSW composition similar to 

the composite waste sample tested in the laboratory. It is determined that the percent 

biodegradation predicted by the model developed here in is between 3 and 14 percent of 

the actual field results, and the settlement values predicted by the developed model are in 

very close agreement with those observed in the field. Similar agreement is obtained 

using the method for the second, Yolo County landfill located in California, with 

different MSW composition and environmental factors. 
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CHAPTER 1 

INTRODUCTION 

1.1 Objective 

This dissertation presents the general outline of a hypothesis developed by the writer and 

the results of a laboratory program conducted in support of this hypothesis.  All 

laboratory testing was generally conducted in accordance with the document titled 

“Proposal for Dissertation” submitted in October 2012 and revised based on subsequent 

discussions with the doctoral committee.  

1.2  Hypothesis 

The full nature and purpose of this research is to develop an understanding of the 

biodegradation process to better define the mechanism of settlement as it relates to 

volume of gas and loss of biodegradable solids. The work will attempt to identify the 

state of biodegradation of municipal solid waste (MSW). The work also attempts to 

model the magnitude and rate of gas production and biodegradation settlement associated 

with MSW landfills typical of New Jersey so that a relationship can be created to relate 

laboratory conditions of samples to field conditions.  

Although the work proposed is regional in nature, by completion of the work, a 

method will be developed such that it can be repeated to predict the characteristics of any 

region and composition desired. The work will allow the creation of a composite, 

characteristic curve based on knowledge of the proportion of readily, moderately, and 

slowly degradable waste comprising a sample of mixed MSW.  
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It is being theorized in this work that the ratio of the volume of gas produced up 

to time “t” against the total of gas the landfill can produce, along with a measurement of 

the remaining percent organic solids of the waste, can relate to the percent biodegradation 

of the waste material.  By knowing the theoretical gas potential and initial composition of 

the waste, the author hypothesizes that the amount biodegraded and remaining to 

biodegrade can be determined through records of gas collection, by testing for percent 

organic solids, or field-measurement of settlement at the operational landfill taken at two 

or more discrete time intervals. Then, using characteristic curves developed by this work 

for the readily, moderately, and slowly degradable waste and proportioning to create a 

composite curve, the strain and time remaining to practical biodegradation can be 

estimated.  

While a gas production model with a single first-order decay rate may be used as 

recommended by various authors (Lifrieri 2010, Barlaz et. al 2010, Tolaymat et. al 2010, 

and Durmusoglu et al. 2005), it is the proposer’s opinion that the single decay constant 

used in gas production modeling is not applicable in modeling the biodegradation of 

MSW.  This is since the waste is comprised of varying components of constituents with 

different levels of biodegradability. Therefore, it is proposed to separate this single, 

weighted decay constant with three separate constants can be used for the individual 

portions of readily, moderately, and slowly biodegradable wastes, respectively.     

The author hypothesized a technique to estimate the decay rate of any waste 

composition using separate bioreactors of each bioavailable waste type, and created from 

which the individual decay constants for this composite waste to be estimated.  Then, by 
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knowing the proportions of each of these waste types in a composite waste sample, a 

weighted decay constant for any waste can be estimated.  

Biodegradation is best described by loss of mass; however, primary researchers 

have assumed the phenomenon to be purely volume loss and modeled best by mechanical 

processes using a conservation of energy approach. It is the opinion of the author that the 

phenomenon necessitates a fundamental understanding of biodegradation process which 

results in a loss of mass, and therefore an understanding of the conservation of mass must 

be considered.  The author hypothesizes that it is difficult to measure and predict volume 

change of a heterogenous material. This property can be measured by quantity of gas 

produced and recovered, or strain; however both are indirect measures.  Conversely, mass 

is a directly measureable property of the material and can more accurately predict volume 

changes.   It is the author’s opinion that, by understanding both properties, a better 

relationship can be suggested to model the biodegradation process.   

The author originally proposed using (C+H)/L as an indicator to relate the state of 

decomposition; however, it was determined to have shortcomings due to erroneous 

readings of the lignin fraction caused by synthetic materials such as plastic, rubbers, and 

textiles.  While it is proposed that these materials may be removed from future samples 

prior to analyses, these results would not be directly comparable to other previous tests 

conducted on waste material as the proportion is not normalized for each sample and 

would change with respect to time. Additional discussion on this matter is provided in 

Chapter 5.   The author subsequently suggests that decomposition settlement of MSW 

will be governed by the relative amount of this biomass material that is present in the 

waste by measure of percent organic solids.  
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1.3  Statement of Problem 

The purpose of this work was two-fold: 1) to understand the phenomenon of the 

biodegradation process, and 2) to create a realistic predictive model for MSW landfill 

settlement based on this understanding which is capable of supporting a laboratory-to-

field relationship.  

Mass loss, volume, and strain in MSW occur due to degradation of MSW.  

However, the mechanics of these occurrences has never been fully understood.  

Understanding the rate and magnitude of settlement, and likewise the state of 

decomposition, has been a topic of interest for researchers and practitioners. Many related 

fields, including chemical, environmental, civil, and other branches have discussed and 

attempted to create relationships to support planning, construction, and reclamation work 

for MSW landfills.  

By determining the magnitude of this settlement, as well as time effects, engineers 

are able to design closure, grading, and piping as well as potential foundations and 

structures for any possible future redevelopment of such sites to accommodate 

subsequent movements of waste.  Practically, many agencies in the United States and 

internationally establish regulations which require landfill operators and agencies to 

monitor, maintain, and leave funds in escrow for decades after closure of the landfill. 

Such funds are to be utilized for these maintenance activities until the landfill has reached 

end of substantial degradation.  The practical use of the model proposed in this study is to 

estimate the state of biodegradation of the waste material at any time within the landfill, 

and predict the time required for substantial settlement to occur in a landfill.  
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Understanding the relationship between biodegradation on the waste and gas 

production modeling, taking into account the waste composition proportions, will assist 

in correlating laboratory conditions to in-situ conditions and determine the percent of 

biodegradation remaining to occur at any required time.  By obtaining a better time-

settlement relationship, the author suggests that the closure period can be more accurately 

determined and may likely be shortened than what the current practices call for.  This will 

reduce the cost of maintenance of landfill during closure and also make the 

redevelopment of such sites more viable and feasible. 

It should be noted that most of the existing models for landfill settlement are 

empirical and thus attempt to estimate the settlement by a best-fit assumption over a data 

set which includes a wide variation of landfill types, composition, thicknesses, and 

environments. The vast majority of them do not even consider biodegradation-related 

effects and the few that do (Edgars et.al 1992, Wall and Zeiss 1995, Gabr and Valero 

1995, Park and Lee 1997, Coumoulous and Koryalos 1999, Oweis 2006) account for it 

using another empirical coefficient factor for the secondary settlement.   

In a similar regard, these settlement models may be outdated since revised 

operating strategies for landfills as bioreactors introduce new variables such as leachate 

recirculation which increase the rate of settlement and production of gas.  Existing  

models are inefficient since they rarely separate the biodegradation-related component 

from the overall secondary settlement and are focused more on estimating the magnitude 

rather than the rate of settlement. Some of the later models such as those developed by 

Hossain et.al (2003) involve specialized chemical testing and long term geotechnical 

testing.  Others are based on complex theoretical models (Liu et. al 2006, Hettiarachchi 
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et. al 2008, Hettiarachchi et. al 2006). So there is a need to develop a simple realistic 

model that is easy to apply and which requires less testing and theoretical sophistication 

than those in the existing models.  

It is the author’s opinion that, the best way to model degradation of MSW is to 

perform laboratory studies and analyze them with models that account for the mechanism 

of biodegradation such as those by Disbrow (1988), Raghu and Arntz (1993), Raghu and 

Gausconi (2002), and Lifrieri (2010). Additionally, a landfill in United States may have 

much different types and percentages of waste than one in Europe. In existing models for 

landfill settlement and gas production, the variable of landfill composition has not been 

accounted for. The author has attempted to confront this issue by the use of a several 

separated sets of readily, moderately, and slowly-biodegradable wastes and collecting gas 

production and state of decomposition data from them. Based on the proportions of each 

of these materials of the landfill composition in question, a composite gas production 

curve can be created to model the theoretical gas production of a similar representative 

MSW sample. Details of the model are described in Chapter 6. Applications of the model 

to case studies are presented in Chapter 7.  

 

 

 

 

 

 



 

7 

 

CHAPTER 2 

A REVIEW OF THE BIODEGRADATION PROCESS 

2.1  Background Information 

As part of the objective of this work is to form an understanding of the biodegradation 

process, the author has reviewed existing literature and has provided a summary of the 

biodegradation process herein.  

It is generally accepted that a solid waste landfills can be characterized as a 

bioreactor system where solid waste and water are major inputs, and landfill gas and 

leachate are principal outputs (Tchobanglous 1993).   As such, material stored the within 

landfill consists of waste material in variable states of decomposition, along with inert 

and inorganic material. As the decomposable fraction continues to degrade through a 

combination of biological, chemical, and physical processes, principal gases including 

methane (CH4), carbon dioxide (CO2), ammonia (NH3), Nitrogen (N2), oxygen (O2), 

hydrogen sulfide (H2S), and carbon monoxide (CO) are generated.  During biological 

decomposition carbonaceous components are converted into cellular and partially 

decomposed matter and gaseous end products, while chemical decomposition is 

completed through hydrolysis, dissolution-precipitation, sorption-desorption, and ion 

exchange of the wastes’ chemical components. Physical decomposition includes the 

process of flushing, rinsing, and breakdown action of water movement through the waste 

material as a result of pressure gradients (Ham 1979).     
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As waste materials degrade, it is of functional and commercial importance to 

understand the rate and total quantity of gas which will be produced. This rate and 

quantity are considered such that gas collection systems can be designed to prevent 

landfill gas entering the atmosphere, to prevent migration through surrounding soils and 

waste to damage landfill cover and liner systems, as well as economics planning for 

landfill gas recovery systems for capture and energy production as biofuel.  The total 

quantity of gas generated is directly proportional to the fraction of organic waste 

contained within the fill (Day 1994, Manley 1992, Ham and Barlaz 1989). However, it is 

recognized that the rates of decomposition will vary with a portion of waste degrading 

rapidly, some portion moderately, and some over an extended period of time.  The rate at 

which gas is produced is then predominantly a function of the type of waste, for example 

food waste in comparison to textiles or plastic. The overall rate, however, is affected by a 

variety of factors including moisture, particle size, pH, temperature, composition, 

addition and availability of nutrients, temperature, and rates of gas extraction (Barlaz et 

al. 1990, Rice 1989, Pohland 1986, Farquhar and Rovers 1973).   

As moisture content is increased, it has been shown that the percentage of 

methane generated is increased. This indicates that the flow of moisture into and through 

a landfill likely stimulate microbial activity by promoting more efficient contact between 

microorganisms, available nutrients, and substrates (Barlaz et al. 1990).  It is further 

shown by the functional approach of traditional landfills in comparison to bioreactor 

landfills. In traditional landfills, the readily and moderately decomposition fractions of 

the waste typically require 30 to 50 years or more to reach degradable waste half-life as 

inferred by USEPA (2003).  Conversely, bioreactor landfills promote the recirculation of 
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moisture (leachate) to enhance the microbiological process to transform and stabilize 

these fractions within a shorter period of time, typically 8 to 15 years to reach half-life for 

degradable waste as inferred by Barlaz et. al (2008) and USEPA (2003). 

2.2  Processes and Phases of Biodegradation 

The generation of principal landfill gases has been believed to occur in four generally 

sequential phases. During the progression of each phase the composition of landfill gas 

produced changes with time. Also, as additional waste is placed throughout the 

operational life of a landfill, the landfill may be undergoing several phases of 

decomposition in different placed layers which will result in varying phases of 

decomposition of the waste. The four phases consist of an initial adjustment phase, 

transition phase, acid phase, and methane fermentation phase. The general concentrations 

of principal gases with respect to time of decomposition have been depicted in Figure 2.1. 

Gas production and time rate of landfill gas production is described further in Chapter 3. 

During Phase I (initial adjustment phase), biodegradable constituents undergo 

microbial decomposition soon after they are placed into the landfill.  During this phase 

biological decomposition occurs under an aerobic condition as a certain amount of air is 

trapped within the landfill and oxygen-consuming bacteria break down long molecular 

chains of complex carbohydrates, proteins, and lipids that comprise organic waste. The 

main byproduct of this phase is carbon dioxide along with nitrogen; however, nitrogen 

rapidly declines once available oxygen is depleted.  The gas produced is characterized by 

relatively high temperatures (up to 130 ⁰F)(Rice 1989) Generally, this phase can last for 

days or several months and is proportional to the oxygen level when first placed.  
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The phase is also related to density, as the amount of entrained oxygen is also a 

function of reduced air voids with more compact waste and more voids and potential for 

oxygen in loose waste.  

 

 

 

Figure 2.1  Production and Concentrations of Principal Landfill Gases by Phase During 

Decomposition 

Source: ATSDR (2008) 
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During the next phase (Phase II), a transition generally occurs as oxygen is 

rapidly depleted and anaerobic conditions dominate.  Bacteria convert compounds 

created by aerobic bacteria into acetic, lactic, and formic acids and alcohols such as 

methanol and ethanol and subsequently causing the landfill to become highly acidic. The 

mixture of acid and moisture cause certain nutrients to dissolve, allowing nitrogen and 

phosphorus to become bioavailable (MDEP 2007).  The principal landfill gas byproducts 

of this phase are carbon dioxide and hydrogen. The onset of this phase can be further 

characterized by the initial drop of leachate pH due to the presence of organic acids and 

the effect of elevated concentrations of carbon dioxide in the landfill (Tchobanoglous 

1993). It should be noted that, if the portion of landfill that is undergoing this phase is 

disrupted allowing oxygen to be re-introduced into the landfill, the microbial process will 

revert back to an aerobic condition (Phase I).  Up to 20 percent biodegradable solids loss 

has been observed to occur during this phase (Palmisano and Barlaz 1996). 

The third phase (Phase III), typically considered the unsteady phase, acid phase, 

or accelerated methane phase, occurs as the microbial activity initiated by Phase II 

accelerates with the production of significant amounts of organic acids (Tchobanoglous 

1993, ATSDR 2008).  Microbial activity accelerates when certain classes of anaerobic 

bacteria consume these organic and form acetate. Through this process, the landfill 

environment (pH) tends to become more neutral and methane-producing bacteria begin to 

establish themselves.  A three step process occurs throughout this phase including 

hydrolysis, acidogenesis, and dissolution of organic acids (Palmisano and Barlaz 1996).  

During hydrolysis higher molecular mass compounds such as lipics, proteins, and 

polysaccharides are transformed into compounds suitable for microorganisms as a source 
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of energy and cell carbon.  Following hydrolysis, acidogenesis occurs which involves the 

conversion of these transformed compounds into lower mass intermediate compounds 

such as acetic, fulvic, and other organic acids. Dissolution occurs following both 

processes as the pH of the leachate drops in the presence of organic acids, and 

biochemical oxygen demand (BOD), chemical oxygen demand (COD), and conductivity 

increase significantly.   It should be noted that many essential nutrients are removed in 

the leachate during this Phase. If leachate is not recycled, essential nutrients are lost from 

the system (Tchobanoglous 1993).  It is therefore important that leachate is allowed to 

circulate otherwise the conversion products and acids produced during this phase will 

remain in the system and not allow a progression to the next phase (methane 

fermentation). Understanding of the importance of leachate during this phase has helped 

support the basis for evolution of the bioreactor landfill concept.  

During the fourth phase (Phase IV), known as methane fermentation or 

decelerated methane phase, methanogenic and strictly anaerobic microorganisms convert 

previously-produced acetic acid to methane and carbon dioxide.  As acids become 

converted to methane and carbon dioxide, the pH within the landfill environment will rise 

to a more neutral value and the BOD, COD, and conductivity of leachate will be reduced.  

Up to 50 percent biodegradable solids loss has been observed to occur during this phase 

(Palmisano and Barlaz 1996).  In traditional landfills, gas is produced at a measurable 

rate for approximately 30 years; however, gas may continue to be emitted for 100 or 

more years after the waste is placed in the landfill based on the availability of leachate, 

temperature, and other environmental factors (Lifrieri 2010, Crawford and Smith 1985).  
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A fifth phase, the maturation phase, is suggested by several authors to occur at the 

end of the methane fermentation stage and after any readily and moderately available 

biodegradable organic material has been converted to methane and carbon dioxide in 

previous phases (Tchobanglous 1993,  Pohland 1987).  The rate of landfill gas generation 

decreases substantially as most available nutrients have been removed by leachate, and 

the majority of the remaining degradable fraction are slowly biodegradable or products of 

humic and fulvic acid, which are biologically difficult to process by microorganisms.  

The re-introduction of nitrogen and oxygen as components of landfill gas may occur as a 

result of the closure.  

Figure 2.2 illustrates the proportional loss of degradable mass as each phase of the 

biological process progresses. However, some quantity of degradable mass will remain in 

the landfill as the capping of the landfill may prohibit future introduction of moisture to 

create leachate or the waste is inaccessible to leachate and moisture due to blocked flow 

paths.  
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Figure 2.2  Cumulative Loss of Biodegradable Solids as a Function of Phase 
Source: Microbiology of Solid Waste, Palmisano and Barlaz (1996), p. 40 

 

While the lifecycle for the first three phases to occur and time to reach the half-

life of degradable waste is generally 30 years for traditional landfills and between 8 and 

15 years for bioreactor landfills, the time duration is highly sensitive to a variety of 

factors including moisture content of waste, compaction of placed waste, availability of 

nutrients, and heterogeneity of waste composition.  For example, if a waste is poorly 

placed and compacted, more oxygen may be available which will create a lag in the 

transition to anaerobic conditions.  Conversely if the waste is well-compacted, methane 

production may begin earlier; however the denser compaction may make the movement 

of leachate which is essential for nutrient transport more difficult. Moderate compaction, 

among other factors such as temperature, cover soil, leachate recirculation, and others, is 

preferred to promote decomposition (Lifrieri et. al 2006, Tchobanoglous 1993).   
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Due to the fact that refuse is placed in a landfill at different times and consists of 

different types of solid waste, the various phases of degradation may be occurring 

simultaneously within different layers of waste.  

The biodegradation process is a time-dependent phenomenon. It is recognized that 

the onset of gas production does not occur instantaneous after waste placement.  It 

requires some time for the reaction to initiate, and also time is required for the generated 

gas to travel from the generation to the collection to the point of collection. Additionally, 

there takes time for gas to be generated in sufficient quantity where it becomes 

measurable.  Therefore, it is observed through this work and by others that there exists a 

time lag between the fill placement and measurement of gas production.  

2.3  Discussion on Traditional, Leachate Recirculation, and Bioreactor Landfills 

The currently-practiced concept of landfilling consists of placing waste and creating a 

“dry tomb” once closed. This concept is promoted to preclude the introduction of water 

and precipitation which would generate additional leachate, which would require 

collection and cause biodegradation to continue.  It is also driven by the preference of 

industry to reduce the treatment of leachate, contaminants transported by flushing 

through the waste, and exposure to environment.  As early as 1970, it was suggested that 

adding nutrients, inoculum, buffers, and recirculating landfill leachate the process of 

biodegradation could be accelerated (Pohland 1975). 

In more recent years, a movement has gravitated towards attempting to design and 

manage landfills in a controlled manner to deliberately introduce liquids such as leachate, 

stormwater, sludge, and others which promote degradation.  As owners, operators, and 
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designers studied the introduction of liquids it was determined that waste with up to 40 

percent moisture content would support biodegradation and designated these landfills as 

leachate recirculation landfills.  Further, above 40 percent moisture content it was 

determined enhanced biodegradation of the waste was promoted. These landfills were 

designated as bioreactor landfills (USEPA 2003).  Generally moisture content above 60 

percent is observed as an upper limit as the waste becomes “soft”, and geotechnical 

performance of the landfill with respect to slope and liner stability becomes problematic 

(USEPA 2006).   Traditional landfill waste was observed to have an average moisture 

content of 25 percent by weight (Tchobanoglous 1993). 

It should be noted that the introduction of liquids into the landfill causes 

significant increases in waste decay rates; however, the total quantity of landfill gas 

should not change, only the time rate at which is produced (USEPA 2010).  Similarly the 

operation of a bioreactor landfill will not affect the sequence of the degradation phases, 

only the duration of each phase (Pohland and Kim 2003, Reinhart and Townsend 1998, 

Pohland and Al-Yousfi 1994).  Studies conducted on a field-scale leachate recirculation 

landfill corroborated the potential for higher methane yields, and consequently increased 

rate of settlement, when compared to a traditional, control landfill during the same 

reference timeframe (Metha et al. 2002) Additional discussion on rate effects of 

bioreactor landfills is forthcoming in Chapters 3, 6, and 7.   

Along with the benefits of biological stabilization and decomposition in years 

instead of decades, it is anticipated that bioreactor landfill will become more frequent as 

it also provides measureable incentives to landfill owners and operators. As the waste 

decomposes at an accelerated rate, 15 to 30 percent gains of landfill airspace have been 
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observed as a result of increased density and settlement (USEPA 2003).  In addition to 

reduced leachate disposal costs, reduced post-closure care period, and improvement in 

gas collection efficiency and conversion rates, indicate a shift toward this method.  

2.4  Relationship of Biodegradation and Compressibility 

Although landfill settlement can occur in the soil and void spaces in the landfill, the 

majority of settlement occurs in the waste mass as it decomposes. The majority of authors 

postulate that MSW landfill settlement occurs in three distinct phases: immediate 

compression (caused by self-weight or compactive efforts); primary settlement (caused 

by dissipation of pore water pressure or gas); and secondary settlement (caused by 

biodegradation and creep)(Bareither et. al 2012, Zekkos 2012, Lifrieri 2010, El Fadel and 

Al-Rashed 1998, Wall and Zeiss 1995, Bjorngaard and Edgers 1990, Edil et. al 1990). 

However, it is the opinion of the author that the biodegradation (biological) and 

creep (mechanical) processes of the secondary settlement are actually two distinct phases. 

Therefore, five phases (immediate compression, primary compression, inorganic 

secondary compression, biodegradation, and tertiary creep) comprise the overall 

settlement of MSW landfills.  Figure 2.3 outlines these phases. 
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Figure 2.3 Idealized Long-term Settlement Curve  
Source: Lifrieri (2010) 

 

Immediate compression, although difficult to see in the above graph, occurs 

rapidly and is the result of compaction efforts and self-weight when the MSW material is 

initially placed at the landfill site. Because the waste is generally delivered in a loose 

state, the material skeleton is highly permeable which allows mechanical rearrangement 

to occur rapidly. The time for this phase to complete is typically within hours of 

placement in field conditions to as rapid as 4 minutes in laboratory conditions (Lifrieri 

2010). A typical strain versus time (in logarithmic scale) curve is presented in Figure 2.4. 

The primary compression (until time t1, as shown in Figure 2.4) is approximated 

using Terzaghi’s theory of conventional soil mechanics for consolidation (where the 

slope of the line is C
’
c) with the time of the end of this mechanism being determined by 

methods similar to Bareither et.al 2012. The C’c coefficient in this case is dependent on 
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several variables, such as in-place density, level of compaction, and initial state of 

biodegradation (measured by the [C+H]/L ratio) of the placed waste (a waste that has 

been placed after a large portion of degradation has occurred will act more soil-like than 

a freshly placed waste)(Hossain et. al 2003). This phase is presumed to occur rapidly 

(within 12 to 60 days in the field (Bareither et.al 2012) and within approximately 15 

hours in the laboratory (Lifrieri 2010). 

The third phase (or inorganic secondary settlement) can be approximated using a 

concept similar to Terzaghi’s for inorganic creep rate (defined as C’α) and is the interval 

at which gas production and biodegradation have yet to develop.  This variable is based 

on the skeletal structure of the material and is generally independent of the state of 

decomposition of the waste. It is primarily a function of time dependent strain under a 

load.  

The fourth, biodegradation-related phase is time dependent and based on the 

degree of decomposition of the waste. This state of decomposition can be measured by 

the percent biodegradation of the waste or also the ratio of volume of gas produced by 

degradation and total volume. The coefficient of biodegradation (Cβ) is a property of the 

percent biodegradation versus time curve. The time for the completion of this phase 

would be determined based on the onset of gas production until the gas production nears 

an asymptotic value.  

Finally the fifth phase, tertiary compression (or residual creep), may be 

approximated using classic soil mechanics models since the waste has attained a state of 

degradation (beyond which the rate of change of biodegradation becomes nearly 
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constant) where the material behaves in an inorganic soil-like manner. This creep can 

continue much after landfill closure to periods of time exceeding 30 years (Zekkos 2012).  

It should be noted that, although all five phases are shown with each occurring at 

discrete time segments, they are not truly independent and actually all occur 

simultaneously. Biodegradation is a slight exception to this; however after gas production 

has begun to start it continues to act simultaneously with the other phases.  During each 

phase, all other phases are occurring however one type of mechanism may be dominant at 

one time while the others are passive until another interval.  

To predict the long term settlement using a single compression index to describe 

the inorganic and organic compressibility of the waste material, one author (Lifrieri 

2010) proposed the concept of the biodegradation secant modulus compression index, 

Secantβ. When the strain versus time (in log scale) of the waste material is plotted over a 

complete cycle of time covering the time C’αand Cβ occur, this modulus can be 

determined. The modulus can then be used to predict future tertiary settlement for several 

log cycles until the waste has stopped compressing (tf).  

The five phases of biodegradation are independent of the phases observed during 

compression testing. More discussion will provided in Chapter 5 during the presentation 

and review of consolidation testing results.  
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Figure 2.4 Construction of Compression Indices  
Source: Lifrieri (2010) 

 

Many authors have attempted to define the effect of the total secondary 

compression (lumping both inorganic and biodegradation phases together) based on 

rheologic models, power creep models, and other empirical models.  In 1977, Rao et.al 

developed a model to predict the total settlement of the waste as a function of load 

neglecting the time effect on the settlement. While the method has some degree of 

accuracy, it is not very popular as the waste settlement continues for a very long period of 

time due to the biodegradability of the waste.  

A rheological model by Gibson and Lo (1961) was created for the evaluation of 

long-term secondary compression of peat-type soils which was further refined by Edil 

et.al (1990) to represent the one-dimensional compression of refuse fill. While peat 

exhibits a similar biodegradation phase, it cannot account for the heterogeneity of MSW 

material. Edil et.al (1990) also refined a power creep model for time dependent 
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settlement production under constant stress which has been used extensively for transient 

creep behavior of many engineering materials, however it relies on reference 

compressibility coefficients and compression rate coefficient which show no discernible 

pattern with respect to the placement conditions of the refuse.  

Ling et.al (1998) combined the logarithmic function and power function to 

propose a new empirical relationship for the settlement prediction of the waste. A 

hyperbolic model was also created. However, at large values of time (practically at the 

end of landfill closure), the model gives negative settlement which may indicate that the 

landfill expands which is physically impossible. A logarithmic function model by Yen 

and Scanlon (1975) was also attempted to determine the settlement and similar attempts 

were made by Bjorngaard and Edgers (1990) to compile data from traditional landfills in 

an attempt to create an empirical model for landfill settlement based on this data set.  

Bjorngaard and Edgers (1990), Mitchell et.al (1995), and Wall and Zeiss (1995) 

all created models similar to Terzaghi’s classical consolidation model approach for 

prediction of overall waste settlement while Fassett et.al (1994) presented a similar model 

with the two secondary compression indices combined into one. Several authors 

including Wall and Zeiss (1995) and El Fadel and Al-Rashed (1998) tried to curve-fit and 

create empirical models based, however the fitting was not possible without field 

measurements and operating values being known in advance.  

In more recent years, reseachers began appreciating the contribution of 

biodegradation with regard to secondary settlement and developed models based on 

bioreactor landfills. Edgers et.al (2002) developed an empirical settlement model based 

on 25 considered case studies which accounted for micobiological processes within the 
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landfill, however the method was flawed since the critical time at which the strain rate 

increase due to biological activity was difficult to determine. Authors such as El Fadel 

and Al-Rashed (1998) used power creep and one-dimensional consolidation models to 

analyze data from bioreactor test cells, however Park et.al (2002) indicated power creep 

model to be a poor predictor of settlement rate.  

Following the beginning of considering and separating biodegradation from the 

inorganic phase of secondary settlement, authors such as Disbrow (1988), Arntz and 

Raghu (1993) and Gausconi and Raghu (2002), and Lifrieri (2010) contended that this 

long-term compression is a strain-related phenomenon which is proportional to the rate at 

which gas is produced, and consequently biodegradable mass is removed from the waste 

material.   

The author believes this is further substantiated as it has been shown that a loss of 

biodegradable mass occurs as biodegradation progresses, as shown in Figure 2.2.   It is 

therefore hypothesized that the volumetric strain that occurs through decomposition is 

related to the vertical strain since the thickness of the landfill is substantially smaller than 

its length and width (plane strain conditions).   

While several methods are available for predicting landfill settlement, the 

majority of these models are outdated and do not accurately account for the time rate of 

settlement as well as the composition and state of degradation of the waste material. 

Models based on the chemical process more accurately depict the biodegradation 

phenomenon.   

 



24 

 

 

The author notes that the current models which are frequently used today 

inaccurately attempt to estimate the settlement by considering a wide set of data which 

includes a large variations of landfill types, thicknesses, and regional environments which 

include climate as well as waste composition. Likewise, it is the author’s opinion that this 

empirical method may work for one, discrete model; however, the current authors and 

methods do not possess a complete understanding of the biodegradation process.  The 

model proposed here overcomes the shortcomings identified above by other currently 

used models.  
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CHAPTER 3 

A REVIEW OF MSW GAS PRODUCTION 

 

Approximately 250 million tons of MSW were generated in the United States in 2008, 

with 54 percent of that deposited in landfills. For each one million ton of MSW, roughly 

432,000 cubic feet per day of landfill gas is produced over a period of time as long as 20 

to 30 years after being landfilled (USEPA 2009). Federal and/or state regulations require 

most large landfills to collect landfill gas (LFG) and combust it, either by flaring or by 

using it in an LFG energy system. With a specific heating value of about 500 British 

thermal units (Btu) per standard cubic foot (EPA 2010, Tchobanoglous 1993), the 

contribution of landfill gas as a source of energy cannot be overlooked.  Aside from the 

prediction of gas generation for commercial purposes, as indicated in Chapter 2, it is the 

author’s and others opinion that a relationship between the original amount of the waste 

and the gas and biomass remaining each year can be used to predict the long-term 

settlement behavior of the landfilled waste.  

3.1  Review of Industry Accepted Gas Production Models and Gas Production 

The wide range in types of waste, composition, and environments suggest that no basic 

equation or rate constant has been developed to accurately describe the rate of 

decomposition and landfill gas generation within a landfill. However, the majority of 

authors and practitioners use the USEPA LandGEM model which is based on weight (in 

tons) placed in the landfill, a default standard first-order decay constant, and a default 

specified theoretical potential of methane potential per ton of waste (USEPA 2005). 
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The author clarifies that the decay constant suggested by the LandGEM model, 

termed “k”, is obtained from a graph of the rate of gas production with respect to time 

(dy/dt).  In attempts to refine gas production models, several authors (Barlaz et. al 2010, 

Tolaymat et. al 2010, Durmusoglu et al. 2005, Metha et. al 2002, Pacey et. al 1996, 

Findikakis 1979) have suggested half-lives of various waste components.  The author 

notes that the waste half-life is obtainable by plotting cumulative gas remaining versus 

time; therefore, this half-life constant is not directly interchangeable with the decay 

constant (“k”) used by the LandGEM model.   To avoid confusion the author has 

suggested the use of the lambda symbol ( “λ” ), as suggested by Durmusoglu et al. 2005 

and Findikakis 1979 to represent the half-life constant of various wastes.  The 

differentiation is depicted graphically in Figure 3.1.  It is commented that the starting 

point for estimating cumulative gas remaining is based on calculated theoretical 

maximum gas potential from several methods, which include cumulative gas production 

versus time, and are detailed elaborately in Chapter 3 and 5.  

 

 

Figure 3.1  Comparison of Decay Constant, “k”, and Half-life Constant, “λ” 
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While the LandGEM model was originally developed for traditional landfills, 

recent updates to the model allow it to be used for “wet” (bioreactor) landfills which 

consider leachate recirculation.  The first-order decomposition rate equation used by the 

model is: 

 

QCH4 = 
1

0

1 0.1

e
10

ij

n
kti

i j

M
kL



 

 
 
 

  (3.1) 

 

 

Where QCH4 represents actual calculated annual methane generation in the year of 

calculation (m
3
/year), “i” is the time increment, n is the year of calculation, and “j” is the 

integration time increment (generally a time step of 0.1 years is evaluated).  The equation 

uses “k” to represent the methane generation rate, which is not synonymous with half-life 

decay constant used by others (Durmusoglu et al. 2005, Findikakis 1979).  Suggested 

methane generation rates vary between 0.02 year
-1 

 for arid areas to 0.7 year
-1 

for wet 

(bioreactor) landfills. A default theoretical generation rate of 0.05 year
-1 

is used by most 

end-users of the model as recommended by guidance to conform to Clean Air Act 

emission planning requirements. The variable Mi represents mass of solid waste disposed 

in the i
th 

year (in ton or megagram), while Lo is the estimated theoretical potential 

methane generation capacity of the waste in cubic feet per ton or cubic meter per 

megagram.  
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The estimated theoretical potential methane generation capacity is generally taken 

as 170 cubic meter per megagram, or 2.72 cubic feet per pound waste.  It should be noted 

that the model determines total landfill gas generation assuming a distribution of 50 

percent methane and 50 percent carbon dioxide, an industry standard distribution.  

Therefore, the potential total gas generation capacity at this distribution is 5.45 cubic feet 

per pound waste.  A comparison of estimated theoretical total gas generation based on 

various methods is provided in Table 6.3 in Chapter 6.  

Should a different composition of gas be required, the amount of methane and 

carbon dioxide may be evaluated using Equation 3.2. The total gas may then be 

determined using Equation 3.3. The percentage of the methane in the gas, PCH4, is 

evaluated as a fraction in both equations. Derivations are provided in Appendix F.  

 

2 4 4{[1/ ( /100)] 1}CO CH CHQ Q P    (3.2) 

 

 

4
4 2

4

( ) CH
total CH CO

CH

Q
Q Q Q

P
    (3.3) 

 

 

Graphically, the gas production curves of this model for both the traditional and 

bioreactor landfill cases are shown as Figure 3.2. It should be noted that there is a 

distinctively higher peak and shorter decay time for the bioreactor landfill as a result of 

the increased decay rate constant, however the total volume of methane produced remains 

constant.  
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Figure 3.2  USEPA LandGEM gas production model for conventional and enhanced 

decomposition (bioreactor) landfills  
Source: Hossain (2003)  

 

Prior to the EPA LandGEM model, gas production distribution was characterized 

using the SIMCON model proposed by C.S. Hollings and originally for simulation of 

population decay.  The SIMCON model proposed the rate of gas production occurs at an 

inverse proportion with exponential of time.  The model was modified by Disbrow 

(1988), and later used by Arntz and Raghu (1993) and Raghu and Gausconi (2002). The 

model defined the onset of gas generation occurring at a constant rate until it reaches a 

maximum daily production of gas (identified as t1 and taken as 10 years in non-bioreactor 

landfills) then eventually a decreasing rate of daily gas production. The model assumed 

approximately 90 percent of gas production would occur within the first 40 years of 

landfilling. This characteristic shape of this model (depicted as Figure 3.3) is nearly 

identical to the LandGEM model as it exhibits a more pronounced and early-occurring 

peak due to the introduction of leachate as well as conditions to promote the landfill as a 

bioreactor instead of the typical dry entombment.  
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The total theoretical gas production for each phase can be determined by 

Equations 3.4 and 3.5. Derivations for equations have been presented in Appendix F.  

 

 

Figure 3.3  Gas Production Curve for the Raghu and Gausconi Model (2002)  

 

This linear onset of gas production is during the occurrence of inorganic 

secondary compression as anaerobic decomposition begins to start and eventually 

transitions into biodegradation settlement as daily gas production reaches a peak and 

begins to decrease. 

For Phase 1 (tn < 10 years): 

 

Vphase 1 = 
' 2

2

o nV t
 (3.4) 

 

For Phase 2 (tn > 10 years): 

 

Vphase2 = 
( 10)1 k tV

e C
k

 
  (3.5) 

 

 

t1 Phase 

1 
Phase 2 

V1 
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Therefore, total volume may be expressed as:  

 

Vtotal =  Vphase 1 + Vphase 2 = 

2
' ( 10)1 10
( )

2

k t

o

t
V e C

k

    (3.5) 

 

 

Values for each parameter, 0.076753, 1.335, and 13.35 for k, Vo, and V1 were 

obtained by the Raghu and Gausconi based on data from a landfill constructed in 1985 

which had undergone 15 years of degradation.   Based on these values, the authors 

predicted a total gas production of 223.2 cubic feet of gas per cubic feet waste.  Using a 

waste density of 40 pounds per cubic foot representative of moderate to good waste 

compaction (Tchobanglous 1993, Oweis and Khera 1998), the model predicts a total gas 

potential of 5.58 cubic feet per pound waste. This is within 3 percent of the EPA 

LandGEM model.  

In both models, the decrease in gas production after peak occurs similar to a first-

order decay reaction with decay constant “k”. It is the author’s hypothesis that this decay 

constant is a representation of the decay constants of the individual proportions of waste 

types (readily, moderately, and slowly degradable) and that a decay constant for any 

composite waste type can be predicted by proportioning individual decay constants 

formulated by this work to match the waste composition.  

This author notes an important clarification that theoretical gas production is 

based on total wet weight of the waste material as placed which follows industry 

standard, and not normalized per pound of dry waste (Manley 1993).    
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In select models, such as stoichiometric or chemistry-based models, the dry 

weight of the waste must be used to avoid the contribution of hydrogen and oxygen and 

additional molecular mass by water; however, the resultant gas production should be 

normalized per pound of waste reported wet. Landfill operators have adopted this 

industry standard for its ease to provide a directly measurable correlation of as-tipped 

weight to gas production without the additional step of drying waste samples.  

 

3.2  Prediction of Gas Production by Stoichiometry, Mass Balance, and Chemical 

Relationships 

Several authors have attempted to predict landfill gas generation by evaluating the 

individual waste components at an elemental level (Ham et al. 1979, Tchobanoglous 

1993, Barlaz 1990). Generally, the accepted reaction mechanism is a first-order reaction 

with inputs of organic waste and water, and outputs of biodegraded organic matter, 

methane, carbon dioxide, and other trace gases. Ham et al. (1979) proposed a generalized 

equation describing this process, which is provided as Equation 3.6. 

 

2

4 2 3
( )

4
a b c d e

a b c d e
C H O N S H O

   
   

4 2 3 2

4 2 3 4 2 3 2
( ) ( )

8 8

a b c d e a b c d e
CH CO dNH eH S

       
    

(3.6) 
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 Recognizing the de minimis quantity of sulfur in most waste components and 

consequently negligible quantities of hydrogen sulfide gas in comparison to others, 

Tchobanoglous (1993) suggested a modified equation.  This equation is presented as 

Equation 3.7 and is the generally accepted form of the model used in industry.  

 

2

4 2 3
( )

4
a b c d

a b c d
C H O N H O

  
   

4 2 3

4 2 3 4 2 3
( ) ( )

8 8

a b c d a b c d
CH CO dNH

     
   

(3.7) 

 

 

In the given models, parameters a, b, c, d, and e represent the molar quantity of 

carbon (C), hydrogen (H), oxygen (O), nitrogen (N), and sulfur (S) and are calculated 

based on the composition of the waste. The percent by weight (dry basis) for each waste 

constituent and an example calculation to determine parameters is presented in Table 3.1.   

The waste composition evaluated for this research has been used to provide 

example calculations.  Calculations are based on a dry sample weight of 100 pounds.  

Additional background on waste composition is provided in Chapter 4.  

 It is suggested by Tchobanoglous (1993) to split the waste into two 

classifications, readily and slowly degradable, and evaluate the contribution of each to 

determine the total theoretical gas composition of the waste.  Example calculations 

shown herewith show the gas production without separation of the fractions; however, 

calculations provided in Appendix G include analyses for the waste separated into readily 

and moderately degradable fractions.    
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It has been determined by the author and others (Shah et. al 2007, Ishigaki et al. 

2003, Tchobanoglous 1993, Albertson et. al, 1987) that the use of this model to predict 

the gas production for plastics (which comprise the “slowly” composition waste used 

during this research) is inappropriate as the model greatly overestimates the theoretical 

gas production. As the nitrogen content of plastics is diminutive in comparison to other 

elements, normalization with respect to nitrogen will produce an elemental expression of 

the waste with exaggerated proportions of carbon, hydrogen, and oxygen, and thusly an 

overestimated theoretical gas production.  

Once the parameters a, b, c, d, and e and the elemental expression of the waste are 

determined, the constants for each product, H2O, CH4, CO2, and NH3, can be determined. 

The specific mass of each component may be tabulated to determine the volume of gases 

produced.  This process is presented as Table 3.2.  
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Table 3.1  Typical Data for Select Waste Components in Residential MSW and 

Determination of Molecular Mass for Components  
Source: Tchobanoglous (1993), p. 81 
 

S
T

E
P

 1
 

Component Type 

Dry 

Weight 

[lb] 

Percent by Weight (dry basis) 

C H O N S Ash 

Food R 19.05 48 6.4 37.6 2.6 0.4 5 

Yard Waste R 6.19 47.8 6 38 3.4 0.3 4.5 

Wood  M 1.90 49.5 6 42.7 0.2 0.1 1.5 

Paper M 38.10 43.5 6 44 0.3 0.2 6 

Textiles M 2.86 55 6.6 31.2 4.6 0.15 2.5 

Plastic S 12.38 60 7.2 22.8 0 0 10 

Soil I 8.10 26.3 3 2 0.5 0.2 68 

Glass I 10.95 0.5 0.1 0.4 0.1 0 98.9 

Metal I 0.48 4.5 0.6 4.3 0.1 0 90.5 

Total Weight: 100.00 

R= Readily, M = Moderate, S= Slow, I = 

Inert 

S
T

E
P

 2
 

      
Composition [lb]  

(listed in same order of components as Step 1) 

Example calculations and notes: C H O N S Ash 

C in food = 19.05 lb x 48%  = 9.14 lb 9.14 1.22 7.16 0.50 0.08 0.95 

H in food = 19.05 lb x 6.4%  = 1.22 lb 2.96 0.37 2.35 0.21 0.02 0.28 

O in food = 19.05 lb x 37.6%= 7.16 lb 0.94 0.11 0.81 0.00 0.00 0.03 

N in food = 19.05 lb x 2.6% = 0.50 lb 16.57 2.29 16.76 0.11 0.08 2.29 

S in food = 19.05 lb x 0.4%  = 0.08 lb 1.57 0.19 0.89 0.13 0.00 0.07 

Ash in food = 19.05 lb x 5% = 0.95 lb 7.43 0.89 2.82 0.00 0.00 1.24 

Total carbon in sample =  

    ∑ carbon (food + … + textiles) 

2.13 0.24 0.16 0.04 0.02 5.50 

0.05 0.01 0.04 0.01 0.00 10.8 

0.02 0.00 0.02 0.00 0.00 0.43 

Total, decomposable (R,M,S) portion: 38.62 5.07 30.80 0.96 0.18 4.85 

S
T

E
P

 3
 

Specific weight = molecular mass Specific Weight [lb/mole] 

 Molar composition of C  =   

  38.62 lb/12.01 lb/mol = 3.21 mol 

12.01 1.01 16.00 14.01 32.06 

 
Molar Composition [mole] 

S
T

E
P

 4
 

Sulfur neglected; Composition 

normalized with respect to N 

3.215 5.020 1.925 0.068 0.006 

 

Normalized Molar Composition [mole] 

S
T

E
P

 5
 

Parameter a,  (Normalized Carbon) = 

(3.215/.006) = 47.16 

C, a H, b O, c N, d S, e  

47.16 73.63 28.24 1.00 0.00  

Chemical expression of waste: C47.2 H76.6 O28.2 N 



36 

 

 

Table 3.2  Calculation of Theoretical Gas Production by Stoichiometry 

 Example calculations to determine gas production: 

 
 

S
T

E
P

 6
 

Equation Components 

 

  

H2O CH4 CO2 NH3 

 

  

15.4 25.3 21.8 1.0 

 

  

  

    

  

Component of H2O= (4a - b - 2c + 3d)/4= (4*47.16 - 73.63 - 2*28.24 + 3)/4 = 15.4 

  

    

  

S
T

E
P

 7
 

Specific (Molecular) Weight [lb/mole] 

 

  

C H O N 

 

  

12.01 1.01 16.00 14.01 

 

  

  

    

  

Elemental Specific Weight [lb/mole] 

 

  

H2O CH4 CO2 NH3 

 

  

18.02 16.05 44.01 17.04 

 

  

  

    

  

Ex.: Elemental weight of H2O = 1.01 lb/mol (2) + 16 lb/mol (1) = 18.02 lb/mol 

Elemental weight of CaHbOcNd = 12.01(47.16) + 1.01 (73.63) + 16 (28.24) + 14.01 

  

    

  

Reaction Masses   

  CaHbOcNd     +        H2O        --->       CH4        +        CO2     +      NH3   

1106.5 277.2 406.8 959.8 17.0   

  Example:  reaction mass of H2O = (15.4 mol)(18.02 lb/mol) = 277.2 lb  

∑ Right Side = 406.8 + 959.8 + 17  =  1383 ∑ Left Side= 1106.2 + 277.2 =1383 

   Volume methane produced, V CH4 = (MCH4)(Wdegradable) / [(MCaHbOcNd)(WCH4) 

   Volume methane produced, V CO2 = (MCO2)(Wdegradable) / [(MCaHbOcNd)(WCO2) 

 CH4 Gas Specific Weight, WCH4 [lb/ft³] = 0.0448 

 

  

CO2 Gas Specific Weight, WCO2 [lb/ft³] = 0.1235 

 

  

  

    

  

   V CH4 = [(406.8)(80 lb degradable waste)]/[(1106.5)(0.0448 lb/ft3)] = 656.8 ft
3
 

   V CO2 = [(959.8)(80 lb degradable waste)]/[(1106.5)(0.1235 lb/ft3)] = 561.6 ft
3
 

Total volume of gas = VCH4 + VCO2 = 1218.4 ft
3
 

Proportion of CH4 of gas  = 656.8/1218.4 = 54% 

 

  

Proportion of CO2 of gas = 561.6/1218.4 = 46% 

S
T

E
P

 8
 Average moisture content of MSW waste as tipped  = 25%  (Tchobanoglous 1993) 

Wet weight of waste = dry weight x (1 + m.c.) =  100 lb x (1 + 0.25) = 125 lb 

Theoretical gas production by stoichiometry: 

                                        = 1218.4 ft
3
/125.0 lb = 9.75 ft

3
/lb  (wet)     
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From the calculations, it is possible to determine the minimum moisture content 

required to support the reaction.  The required moisture content can be calculated by 

dividing the reaction mass of water by the reaction mass of the elemental waste 

expression. The required moisture content for the example presented is 25 percent, which 

falls between the required range of 15 to 40 percent observed by others (Pohland 1994, 

USEPA 2005, Oweis 1990, Tchobanoglous 1993, Barlaz 1990).   

The author comments that the value of theoretical gas produced represents an 

upper boundary of the maximum amount of gas which could be produced under optimum 

conditions and of complete biodegradation of all organic fractions of the MSW.  The 

model also assumes a complete conversion of the organics to solely methane, carbon 

dioxide, and minimal ammonia. Actual quantities of gas produced will be much lower as 

not all organic material may be bio-accessible, for instance paper contained tightly within 

closed plastic bags or material shadowed from receiving leachate. Organic wastes which 

are also not exposed to sufficient moisture to sustain biologic activity have a decreasing 

tendency to be converted. It has been shown that landfills lacking sufficient moisture for 

biodegradation will leave contents in a “mummified” condition (Tchobanoglous 1993). 

Other trace gases and vapors, including carbon monoxide, volatiles may also be created.  

Several authors have noted that published data on waste composition was used to 

determine theoretical gas production and, when compared to actual full-scale landfill gas 

collection records, actual yields were between 1 and 50 percent of the calculated 

theoretical from stoichiometry (Barlaz et al. 1990,  Barlaz et al. 1989).  Similarly, under it 

has been estimated that 30 to 50 percent of the theoretical gas generated could be 

achieved within two years, and up to 70 percent within 5 years (Tchobanoglous 1993). 
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3.3  Prediction of Gas Production by Lambda Method and Half-Life Decay 

Factors 

Aside from the first-order decomposition and stoichiometric models for gas production, 

others have attempted to estimate gas production empirically through regression analyses 

and modifications to the concept of half-life decay.  Findikakis and Leckie (1979) 

developed the first model to relate the half-life decay concept to landfill gas production. 

The approach required a waste characterization, physical description of the waste 

constituents, and their individual decomposition rates.  

The work by the authors suggested that the organic portion of the waste could be 

characterized by one of three measures of biodegradability of the waste: readily, 

moderately, or slowly biodegradable.   Readily biodegradable wastes consisted of food 

and vegetative constituents, while moderately wastes consisted of leather, paper products 

and newsprint, textiles, and wood.   Slowly biodegradable components consisted of 

plastic, rubber, and organic soil.  Half-lives (t50) of 5, 30, and 40 years for the readily, 

moderately, and slowly biodegradable waste categories, respectively, were recommended 

by the authors.  The gas production rate constant, λi , could then be determined by first-

order kinetics using Equation 3.8. Values for gas production constants for readily, 

moderately, and slowly degradable wastes are subsequently calculated to be             

0.1386 year
-1

,  0.0231 year
-1

, and 0.0173 year
-1

, respectively.  

 

 

50 50

1ln( ) 0.6932
i

i it t



   (3.8) 
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Durmusoglu et al. (2005) theorized a similar variation of the original model, and 

introduced the concept of the total gas production rate to develop both the gas remaining 

and cumulative gas production relationship, which follows exactly the opposite pattern of 

cumulative gas production.  To determine gas generation rate, αi ,  and total gas 

production potential, GT
i
,  at any time following placement of waste, Durmusoglu et al. 

developed Equations 3.9 and 3.10.  The equations would be applied to each waste of the 

three waste types and summed to determine the overall rate and potential at any given 

time for the composite waste mass.  

 

t

i iG e     (3.9) 

 

 

iti i

p T iG G Ae


  (3.10) 

 

 

In the model GT
i 

represented total theoretical gas production potential for each 

waste type, which was suggested by Durmusoglu et. al (2005) as 9.40 lbs/ft
3
, 14.1 lbs/ft

3
, 

and 7.83 lbs/ft
3
 for the readily, moderately, and slowly biodegradable categories. The 

variable Ai corresponded to the fraction of MSW represented by each category. To 

determine the gas production rate for a composite waste sample at any time, t, the author 

hypothesizes that the individual gas production rates could be summed. It is partially the 

aim of this work to validate this assumption. This author has expressed this hypothesis as 

Equation 3.11.  
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Lifrieri (2010) refined the use of the Lambda method model developed by 

Durmusoglu et al. by completing iterative analyses to determine the approximate end of 

biodegradation and theoretical total gas production by integration over this time span. 

Lifrieri suggested identifying the time at which 97 percent of the organic portion has been 

degraded, which represents the practical limit of degradation where additional gas 

production becomes insignificant.   By calculating the total volume of gas production at 

the practical end of degradation one can normalize the gas produced per pound of waste.  

An example calculation to determine the gas production at any time of interest for 

a composite waste sample consisting of readily, moderately, slowly, and non-degradable 

constituents is provided as Table 3.3.  The determination of the maximum theoretical gas 

production of the waste types comprising this composition is shown in Table 3.4.  The 

examples are based on a composition of waste as used for this experiment, consisting of 

25 percent readily biodegradable waste (food and garden waste), 43 percent moderately 

biodegradable waste (paper, wood chippings, and textiles), 13 percent slowly degradable 

waste (plastic), and 19 percent non-biodegradable waste (glass, soil/ashes, metals). 

Additional details regarding the basis for the composition selected are provided in 

Chapter 4.  The author believes the model provides better correlations to actual 

degradation of waste mass as measured at the conclusion of this work compared to other 

models.  
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 Table 3.3  Example Calculation of Gas Production by Lambda Method 

S
T

E
P

 1
 

Step 1: Break out composition into % descriptive modifiers 

Inputted Calculated 

Waste Type 
% 

MSW 

Wet Wt 

[lb] 
Vi 

% of 

Type 

Dry 

weight 

Wi 

[lb] 
Total 

Wt [lb] 

Food R 19% 19 
Vr = 25% 

9.62 
Wr = 12.65 

Yard Waste R 6% 6 3.04 

Wood  M 2% 2 

Vm = 43% 

1.01 

Wm = 21.77 Paper M 38% 38 19.23 

Textiles M 3% 3 1.52 

Plastic S 13% 13 Vs = 13% 6.58 Ws = 6.58 

Soil ND 8% 8 
Vn = 19% 

 
Wn = 0.00 

Glass ND 11% 11 

 Decomposable Moist Wt= 81  lb  Vt =   100% 41.00 Dry Wt 

 
Vi = Volume of Type of Waste Wi = Weight of Type of Waste (based on 100 lb sample) 

Average moisture content of waste, m.c. =  40%  
      NOTE: moisture content defined as Wwater/Wtot, unlike geotech definition of  Ww/Wdry 

For 100lb wet sample, weight of water = Wtot x m.c. = 0.4 * 100lb = 40 lb 

Wt of decomposable fraction - all water contained in waste= 81 - 40 lb = 41 lb 

S
T
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Step 2: Determine Lambda (Half-Life) Factors 

       Characteristic equation:  Vti = Vi e
-(λit)

 

     λr = 0.1386 

      λm = 0.0231 

      λs = 0.0173 

      

S
T

E
P

 3
 

Step 3: Select year of interest to determine modifier, Vi 

  For this example, use 30 year  

Readily: Vr@30yrs = (25) e
-[(0.1386)(30)]

 =  0.00391 

 Moderately: Vm@30yrs = (43) e
-[(0.0231)(30)]

 =  0.21503 

 Slowly: Vs@30yrs = (13) e
-[(0.0173)(30)]

 = 0.07736  

S
T

E
P

 4
 

Step 4: Determine % decomposed 

  % decomposed =  (Vi - Vit)/Vi   

     Readily: %Dr = (0.25-0.00391)/0.25 x 100% = 98%  

  Moderately: %Dm = (0.43-0.215)/0.26 x 100% = 50%  

  Slowly: %Ds = (0.13-0.0774)/0.27 x 100% = 40%  

  

S
T
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P
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Step 5: Determine (dry) weight of decomposed organics 

  Weight of decomposed organics = % decomposed x dry weight fraction 

Readily: 98% x (12.65 lb) = 12.46 lb 

    Moderately: 50% x (21.77 lb) =  10.88 lb 

    Slowly: 40% x (6.58 lb) = 2.66 lb 

    Total decomposed weight, Wdegraded = 26.00 lb 
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Table 3.4  Example Calculation of Gas Production by Lambda Method (continued) 

S
T

E
P

 6
 Step 6: Determine gas produced using stoichiometric reaction masses  

Reaction Masses from stoichiometry (Calculated in Table 3.1) 

   CaHbOcNd = 1106.5 
 

CH4 = 406.8 

 

NH3 = 17 

 H2O = 277.2 
 

CO2 = 959.8 

    

S
T

E
P

 7
 

Step 7: Determine volume of gas produced up to time, t    (30 years for example) 

Volume methane produced, V CH4 = (MCH4)(Wdegraded) / [(MCaHbOcNd)(WCH4) 

  VCH4 = [(406.8)(26.00)] / [(1106.5)(0.0448)] = 213.38 ft
3
  

   VCO2 = [(959.8)(26.00)] / [(1106.5)(0.1234)] =  182.78 ft
3
  

 Total gas, Vtotal = VCH4 + VCO2 =  396.16 ft
3
 

   

 

% CH4 = 54% 

 

%CO2  = 46% 

   Theoretical gas produced per lb waste up to 30 years= Vtotal/sample weight   

Gas production at time t (30 years) = 626.12 ft
3
/100lb = 3.96 ft

3
/lb 

 

Table 3.5  Calculation of Maximum Theoretical Gas Production by Lambda Method  

 

To find max theoretical gas production, solve characteristic equation for when Vts= 95% 

(volume of slowly decomposable material reaches 95% degradation  solving, t = 173 yr 

  Step 3:  Select year of interest to determine modifier, Vi    (t=173 years) 

Readily: Vr@173yrs = (25) e
-[(0.1386)(173)]

 =  9.65E-12 

   Moderately: Vm@173yrs = (43) e
-[(0.0231)(173)]

 =  7.90E-03 

   Slowly: Vs@173yrs = (13) e
-[(0.0173)(173)]

 =  6.52E-03 

     Step 4:  Determine % decomposed 

Readily: (0.25-(9.56E-12))/0.25 x 100% = 100% 

    Moderately: (0.43-(7.90E-03))/0.43 x 100% = 99% 

    Slowly: (0.13-(6.52E-03))/0.13 x 100% = 95% 

      Step 5: Weight of decomposed weight = % decomposed x dry weight fraction 

Readily: 100% x (12.65 lb) 12.65 lb 

    Moderately: 99% x (21.77  lb) 21.77 lb 

    Slowly: 95% x (6.58 lb) 6.46 lb 

    Total decomposed weight= 40.88 lb 

      Step 6: Determine gas produced using stoichiometric reaction masses (use as 

above) 

  Step 7: Determine volume of gas produced up to time, t    (t =173 years) 

  VCH4 = [(406.8)(40.88)] / [(1106.5)(0.0448)] = 335.47 ft
3
   

  VCO2 = [(959.8)(40.88)] / [(1106.5)(0.1234)] =  287.35 ft
3
   

Total gas, Vtotal = VCH4 + VCO2 =  622.82 

   

 

% CH4 = 54% 

 

%CO2 = 46% 

  At end of practical biodegradation, theoretical total gas produced =  622.82 ft
3
 

Gas production at practical end of degradation (t=137 yr)= 622.82 ft
3
/100lb = 6.23 ft

3
/lb 
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3.4  Discussion on Limitations of Existing Models for Estimating Gas Production 

The wide variation of wastes, and even fractions within waste such as food types, types 

of paper, and presence of white good and outliers, inherently suggest that no simple 

equation of rate constant will capture the magnitude and time rate of decomposition of 

landfill gas generation from a landfill.  Several authors have indicated that there is 

insufficient field data available from MSW landfills which allow for verification of 

kinetic and rate-order models to describe the time dependency of gas production (Manley 

1992, Barlaz et al. 1990, 1989, Schumacher 1983).  The author suggests that these 

observations by others and this work indicate that stoichiometry alone is not suitable to 

predict landfill gas production.  

Further, it can be observed that almost all gas production models evaluate the 

production of solely both methane and carbon dioxide as general end-products of the 

decomposition process. However, numerous studies have shown typical landfill gas 

composition to consist of between 45 to 60 percent methane, 40 to 50 percent carbon 

dioxide, 2 to 5 percent nitrogen, and up to 1 percent ammonia (USEPA 2005, 2010; 

Tchobanoglous 1993; Barlaz et. al 1990, 1989, Farquahar 1973, Palmisano 1996).   The 

use of these models to predict the volume of these gases for landfills that have methane 

content outside the range of 40 to 60 percent is not recommended as assumptions for the 

first-order decomposition rate equation may not be valid outside of this range (USEPA 

2005).   

The use of these existing gas production models to calculate the quantity of other 

landfill gases is also impractical or generally discouraged.  While the productions of both 

gases are several orders of magnitude greater than other landfill gases, the simple 
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assumption consequently assumes a complete conversion of all solid matter to gas. The 

author notes that this is an incorrect assumption as components such as lignin, other non-

bioaccessible matter, and inert material will stay within the landfill and will not be 

converted to methane or carbon dioxide.  Additionally, the assumption does not consider 

that any matter leaving the landfill, in gas form or dissolved and carried and flushed out 

of the system by leachate, would contain any organic material. The author believes this to 

be a fatal flaw of most models, and a reason why over predictions are generally observed 

by each model.  However, methane and carbon dioxide are the primary constituents 

measured by owner and operators, with methane generation being the focus of this work.  

In addition to variation of waste, there is general oversimplification of models as 

they do not account for the influences of significant variables such as moisture content, 

degree of compaction, particle size, temperature, nutrient availability, and other driving 

conditions for gas production.  For example, the effect of particle size and impact on 

decomposition has been studied by several investigators, and has been determined to be 

inconclusive (Barlaz et al 1990, Pohland 1986), with an inclination toward smaller 

particle size.  Although it would appear that shredded refuse with particle size less than 3 

inches would permit greater contact between microorganisms, substrates and nutrients, 

and moisture, the smaller size may promote an increase in hydrolysis which may lead to a 

build-up of acidic end products and a lower pH, thus resulting in lower gas production 

potential (Barlaz  et al. 1990, Ham 1982,  Buivid et al. 1981, DeWalle et al. 1978).  

In many closed landfills the available moisture is insufficient to allow for the 

complete conversion of the biodegradable fraction of waste. Tchobanglous (1993) and 

Chian and DeWalle (1979) recommend an optimum moisture content for landfills on the 



45 

 

 

order of 43 to 60 percent as, in many landfills, the moisture that is present is not 

uniformly distributed and a higher moisture content may support the zones of lower 

moisture.  A minimum of 15 to 25 percent moisture content is required based on the 

governing chemistry and stoichiometry for the degradation reaction as shown above, with 

most sources observing moisture contents between 15 to 40 percent are optimal for 

decomposition (Pohland 1994, USEPA 2005, Oweis 1990, Tchobanoglous 1993, Barlaz 

1990).  It has been shown that landfills lacking sufficient moisture for biodegradation will 

leave contents in a “mummified” condition (Tchobanoglous 1993).  

In addition, Manley (1992) indicates there is the likelihood that the composition 

of the gas produced and measured at the landfill will not be as calculated because of the 

much higher solubility of carbon dioxide in water than methane. It is indicated that this 

consideration alone suggests that the greater the moisture content of the refuse, the higher 

the methane concentration will be in the gas although the amount of gas generated per 

volume of refuse will remain unchanged.  The author comments that the work conducted 

herein maintained moisture content within a range of 40 to 45 percent to promote 

biodegradation.  

The availability of nutrients is critical in the decomposition process as carbon, 

hydrogen, nitrogen, and phosphorus must be present in sufficient quantities to drive 

forward reaction chemistries supporting degradation. One author (Ham 1979) indicates 

that general assumptions are made that all refuse components, such as carbohydrates, 

proteins, starches, from the readily, moderately, and slowly degradable waste types are 

available to organisms simultaneously so that a balance of substrates and nutrients are 

ever present.  However, this is not the case as different components, such as readily 
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degradable wastes, will allow conversion earlier than other types depending on the 

cellulose, hemicellulose, lignins and other natural fibers comprising the waste material. 

The models assume that all organics will be decomposed; however, lignin is not 

degradable to any practical extent under anaerobic conditions (Manley 1993, Barlaz 

1990, Pohland 1998, Ham 1979) and would elevate theoretical gas production capacity.  

Temperature and pH effects similarly influence gas production, with pH having 

been found to be a reliable indicator of methane generation rates in MSW (Manley 1992).  

Several authors suggest that the optimum pH range for methogenic bacteria exists near 

neutral pH, between 6.4 and 7.4 (Barlaz 1990, Pohland 1986, Schumacher 1983).  

Schumacher (1983) cites that, during methane generation, the average pH of a landfill 

does not drop below 6.2, which Tchobanoglous (1993) corroborates and attributes to the 

conversion of acids and hydrogen gas by acid formers to methane and carbon dioxide. 

Farquhar and Rovers (1973) suggest that deviations from this range of pH may result in 

reduced gas production.  

Manley (1992) cites that temperature effects on methane production are generally 

classified as thermophilic (greater than 104 °F), mesophilic (between 68 to 104 °F), or 

psychrophilic (less than 68 °F). Generally, it has been observed that increased gas 

production occurs up to an optimal temperature of approximately 110 to 120 °F, and 

drastically decreases below 100 °F or above 140 °F.  Farquhar and Rovers (1973) 

emphasize the sensitivity of methane production, and indicate that changes in temperature 

as small as 2 °F may disturb methane production. In this work, the temperature of the 

water bath was maintained at 110
 
°F. 
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Finally, this author proposes that the chemical expression model, which is 

frequently used in industry to provide a basis for evaluating theoretical gas production, 

may be non-linear.  Under the circumstance of a non-linear reaction, competing reactions 

are taking place and incomplete byproducts including carbon monoxide and other trace 

gases may be produced. Similarly, the primary gases may be removed from the system, 

an example being carbon dioxide which is readily soluble in water and reacting with 

water to form carbonic acid and detracting from carbon dioxide gas collected.  

The author additionally notes that the chemical expression also does not take into 

the time-rate of gas production, as the calculation is based on a “snapshot” in time when 

the waste is first fresh.  As the gas is produced, the chemical expression of the waste 

degrades, and the molecules of the waste volatize as carbon, hydrogen, oxygen, and 

nitrogen are consumed through the reaction process.  The author attempted to perform 

stoichiometric calculations in this manner, assuming the chemical components of the 

waste degraded with a half-life function similar to that of the waste.  The author took 

time steps at evenly-spaced incremental periods to determine gas production. The 

resulting evaluation determined a theoretical gas production of 7.52 cubic feet per pound 

of waste, in comparison to the single-step expression. Therefore it is suggested that the 

lambda method, as modified by Lifrieri (2010), is a better predictor to established total 

theoretical gas production. 

This author summarizes the work of multiple sources which indicate that, on a 

wet-weight basis, the theoretical gas production per pound of waste ranges between 3.0 to 

8.0 cubic feet per pound of waste, as received. A comparison of models with respect to 

measured gas production from this work has been provided in Chapter 6.
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CHAPTER 4 

ASSEMBLY OF TEST SET UP AND DISCUSSION OF TEST PROCEDURE  

4.1  Overview of Test Program 

The author developed multiple bioreactors simulating a landfill environment to 

investigate the gas production and settlement characteristics of a typical MSW landfill.  

Each bioreactor was constructed in components and filled with a homogenized waste 

sample representative of the sample set.  Four homogenized waste sample sets, 

composite, readily, moderately, and slowly degradable, were created and tested.  

Bioreactors were connected to a gas collection system, leachate recirculation tubing, and 

subjected to leachate over a period of approximately 260 days to simulate a landfill 

environment. Gas production, settlement, and other physical and engineering parameters 

were measured as these conditions varied. 

4.2  Preparation of Bioreactors and Test Equipment 

Bioreactors were constructed from two-gallon polypropylene mason jars modified 

to fit leachate recirculation and gas collection ports and tubing. The set-up of bioreactors 

is similar to that proposed and completed by Lifrieri (2010). Thirty-four reactors within 4 

bioreactor sets were created in total.  An assembled bioreactor is depicted in Figure 4.1. 

The schematic arrangements depicted in Figure 4.2 and Figure 4.3 generally describe the 

equipment and data acquisition set up used for this work.  Figure 4.4 and Figure 4.5 

showcase the test set up as assembled for the experiment. 
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The following steps were completed to create the bioreactor assembly: 

 Drill two, ¾” diameter holes in jar caps to accept Tygon inlet for gas 

collection and leachate injection ports 

 Drill one, ¾” diameter hole at bottom of jar to accept Tygon inlet for 

leachate drain port 

 Seal leachate drain port fitting with marine sealant to create water-tight 

seal at connections to prevent leakage of leachate 

 Attach shut-off valves and gas collection and leachate collection tubing 

to appropriate fittings 

 Fill bottom 1/3 of each reactor jar with clean pea gravel to act as drain 

layer. Overlay gravel with geotextile filter fabric 

 Install moisture content probe (PICO 64 manufactured by IMKO) into 

one reactor of each sample set to obtain moisture content for leachate 

recirculation in a non-destructive manner. Details are provided in 

Appendix B.5 – Moisture Content Meter Records.  

 Prepare representative waste constituents 

 

Figure 4.1 Assembled Bioreactor 
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Figure 4.2  Bioreactor Arrangement Schematic 

 

 

 
 

Figure 4.3  Gas Collection Arrangement 
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Figure 4.4  Bioreactor Test Set Up (Composite reactor tank shown) 

 

 
 

Figure 4.5  Compression Test Equipment and Data Collection Hub Set Up 



52 

 

 

The four sets of bioreactors were established as follows: 

 Bioreactor set 1 (16 total reactors): “Composite” - each of the 

constituents consisted of materials representative of mixed MSW.  The 

composition of this mixture is contingent on regional variations.  The 

author selected a composition representative for typical Northern New 

Jersey (United States) MSW for this study. 

 Bioreactor set 2 (6 total reactors): “Readily Biodegradable” – 

constituents included materials which are readily biodegradable MSW, 

such as food waste and yard waste 

 Bioreactor set 3 (6 total reactors): “Moderately  Biodegradable” – 

constituents included materials which are moderately biodegradable 

MSW, including paper (newsprint, magazines, office paper, corrugated 

paper products) and wood chippings 

 Bioreactor set 4 (6 total reactors): “Slowly Biodegradable” – 

constituents included materials which are slowly biodegradable MSW, 

including plastic and organic soil.  

 

Compositions studies previously performed by PS&S were used to create the 

composition of MSW representative of Northern New Jersey.   Table 4.1 indicates the 

relative proportion of each constituent in the composite sample. Figure 4.6 graphically 

depicts the constituent percentages of a combination of MSW, construction and 

demolition debris, and cover material typical of northeastern NJ landfills.  This 

composition was utilized by others (Lifrieri 2010) and was specifically chosen to produce 

data which would allow for comparative analyses.  Generally, components were 

separated into the categories of waste including: paper; wood; food; yard waste; textiles; 

glass; metal; plastic; and soil/miscellaneous and inert debris. Each bioreactor contained 

approximately 2.1 lb of combined constituent material.  
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Table 4.1 Constituents in a Typical Northeastern New Jersey Municipal Solid Waste 

 

Constituent Descriptor 
Percentage 

[%] 

Proportional 

Weight in Sample 

[lb] 

Food Readily 18.80 0.40 

Yard Waste Readily 6.30 0.13 

Paper Moderately 38.30 0.8 

Textiles Moderately 2.70 0.06 

Wood Moderately 2.10 0.04 

Plastic Slowly 12.50 0.26 

Soil Slowly 8.30 0.17 

Glass Inert 10.60 0.23 

Metal Inert 0.40 0.01 

Totals  100.00 2.10 
Source:  PS&S, LLC Report to Bergen and Union County Utilities Authority (1993)   

 

 

Figure 4.6 Composition of Typical Municipal Solid Waste in Northeastern New Jersey. 
Source:  PS&S, LLC Report To Bergen And Union County Utilities Authority (1993) 
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Individual reactors were comprised of components from one specific type of 

waste descriptor. The composition of readily, moderately, and slowly degradable reactors 

are indicated in Tables 4.2, 4.3, 4.4 and Figures 4.7, 4.8, 4.9, respectively.  

 

 

Table 4.2  Constituents in “Readily Degradable” Bioreactors 

 

Constituent Descriptor 
Percentage 

[%] 

Proportional 

Weight in Sample 

[lb] 

Food Readily 76.20 1.60 

Yard Waste Readily 23.8 0.50 

Totals  100.00 2.10 
 

 

 

 

Table 4.3  Constituents in “Moderately Degradable” Bioreactors 

 

Constituent Descriptor 
Percentage 

[%] 

Proportional 

Weight in Sample 

[lb] 

Paper Moderately 88.60 1.86 

Textiles Moderately 6.70 0.14 

Wood Moderately 4.80 0.10 

Totals  100.00 2.10 

 

 

 

 

Table 4.4  Constituents in “Slowly Degradable” Bioreactors 

 

Constituent Descriptor 
Percentage 

[%] 

Proportional 

Weight in Sample 

[lb] 

Plastic Slowly 61.90 1.30 

Soil Slowly 38.10 0.80 

Totals  100.00 2.10 
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Figure 4.7  Composition of “Readily Degradable” Bioreactor Used for Testing 

 

 
 

Figure 4.8  Composition of “Moderately Degradable” Bioreactor Used for Testing 
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Figure 4.9  Composition of “Slowly Degradable” Bioreactor Used for Testing 

 

 

The following materials were used during this work to simulate each waste: 

 Yard Waste: grass, leaves, twigs mixture 

 Food Waste: cooked ditalini (pasta) 

 Wood: commercially-available pine wood for pet bedding  

 Paper: mixture of finely-shredded office paper, newspaper, and craft paper 

 Textiles: carpet shavings and finely-cut rags 

 Plastic: commercial-available cylindrical (hollow) plastic beads  

 Rubber: shredded rubber eraser 

 Soil: topsoil from home improvement store 

 Glass: crushed glass soda bottles (washed and cleaned prior to use) 

 Metal: shavings and burrs from local auto shop 

Plastics 
62% 

Soil 
38% 

Slowly Degradable Bioreactor Composition 
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Samples were prepared for each bioreactor in accordance with the above 

distribution.  All material was shredded, ground, and/or cut to fine particle sizes 

(maximum particle size less than ¼ inch) to increase surface area to promote 

decomposition.  

Once sufficient quantities of material were obtained, the required mass of the 

constituent to fill each bioreactor was weighed and placed into zip-lock bags marked with 

bioreactor, sample number, and weight.   Records for weights of each constituent 

comprising each of the 34 bioreactors are provided under Appendix A.1 – Bioreactor 

Assembly Records.  

Constituents were assembled and mixed using a 5 liter zip-lock bag.  Leachate 

was added to each sample to achieve a targeted moisture content of approximately 170 

percent by weight to ensure leachate generation by exceeding the field capacity of the 

waste (Barlaz et.al 1989). Bags were rotated and shaken to mix constituents thoroughly.  

Moisture conditioning records are provided under Appendix A.2 - Moisture Conditioning 

Records.  Moisture conditioned waste was then filled into the bioreactors in three equal 

lifts. Lift thickness was determined to create a waste density of approximately 40 to 50 

pounds per cubic foot, representative of moderate to well-compacted waste 

(Tchobanglous 1993, Oweis and Khera 1998).  Generally, lifts were placed between 1 

inch to 1.5 inches thick and tamped 25 times per lift using a 5/8” diameter steel rod with 

2 inch square plate attached to the tamping end.  

A photo log depicting the above test set up and bioreactor assembly process has 

been provided as Appendix A.3 – Photo Log for Test Set Up.   
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Bioreactors were removed for destructive testing in accordance with the schedule 

provided as Table 4.5.  The schedule was originally proposed using (C+H)/L testing as 

the basis and as discussed in the Proposal for Dissertation.  Subsequently (C+H)/L testing 

was not utilized by this work as discussed in Chapter 5; however, the removal of 

bioreactors allowed for the determination of percent biodegradable mass with respect to 

time.  

 

Table 4.5  Schedule for Removal of Bioreactors 

 

Bioreactor 

Number Date Removed 
Time Since 

Start [days] 

1 1/6/2014 49 

2 1/19/2014 62 

3 2/18/2014 92 

4 3/20/2014 122 

5 5/26/2014 189 

6-16 9/1/2014 287 

 

4.3  Data Collected and Maintenance of Records 

Following assembly, bioreactors were submerged in a water bath maintained at a 

temperature of 110 
o
F to support enhanced biodegradation by mesophilic organisms 

(Tchobanoglous [1977], Barlaz, Ham and Schaefer [1989] and El-Fadil et al [1996], 

Lifrieri [2010]).  Water bath temperatures maintained throughout the experiment are 

provided under Appendix B.1 – Water Bath Temperature Logs.  Bioreactor tanks were 

covered with reflective-foil heat blankets to maintain temperature and restrict bioreactors 

from light to create a condition similar to waste buried in a landfill.  
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Gas collection piping was subsequently installed to connect gas flow from each 

reactor set in series to a dedicated measuring device. Gas produced from the composite 

bioreactor set and each readily, and moderately degradable reactors were collected using 

an automated gas flow meter (Sierra Instruments model MicroTrak 101) capable of 

providing instantaneous methane flow rate in standard cubic centimeters per seconds 

(sccm).  A tedlar gas bag, manufactured by SKC and similar to those used by Lifrieri 

(2010) was connected in series after each gas flow meter to record total gas volume.  A 

tedlar gas bag was connected directly to the slowly reactor set as an automated flow 

meter would not have sufficient sensitivity to register flows. Gas generation records 

maintained from gas flow equipment and gas bags have been provided as Appendix B.2 – 

Gas Volume (Methane) Readings from Gas Totalizer and Appendix B.3 – Gas Bag 

Records. 

In addition to providing total gas produced the gas bags also allowed the ability to 

analyze gas composition over time and serve as a secondary check to the flow meters.  

Each of the gas meters were connected to a data collection hub via USB on a monthly 

basis to download daily gas production rates to a data acquisition computer.  The required 

sensitivity range of the gas flow meter for this experiment was obtained by reviewing 

experimental results from Lifrieri (2010) who tabulated the gas generation rate of the 

bioreactor system on a 10 day basis.  Generally, sensitivity was set between 0 to 30 sccm 

for composite and readily reactor sets, and 0 to 10 sccm for the moderately degradable 

reactor set. Sensitivity was also based on the weight of waste in each reactor set, which 

determined total gas production.    
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As gas was collected, a landfill gas meter (Landtec GEM2000+) was connected to 

the secondary gas collection bags periodically to understand the composition of the gas 

generated.   The percentage of CH4, CO2, and O2 was recorded.  Gas composition records 

are provided under Appendix B.4 – Gas Composition Records.   

To accelerate the on-set of biodegradation and simulate a bioreactor landfill, 

leachate was obtained from the Middlesex County Utilities Authority (MCUA) 

Middlesex County Landfill in East Brunswick, New Jersey.   Leachate from this existing 

landfill was re-circulated as needed to maintain a moisture content of between 40 to 45 

percent in bioreactors based on recommendations by USEPA (2003) and Reinhart and 

Townsend (1997).  Moisture content was checked on a weekly basis using a PICO64 

moisture content probe installed into one bioreactor representative of each of the four 

reactor sets. Non-destructive assessment of moisture content using the installed probe 

was required as taking a sample of waste to determine moisture content during the 

experiment would alter the gas production rate of the specific reactor, disrupt 

microorganism activity, and introduce oxygen into the system which would arrest the 

biodegradation process.    

Leachate was added as needed to increase the moisture content of the waste 

sample to within the recommended limits.  The procedure, schedule, and records for 

leachate injection are provided as Appendix B.5 – Moisture Content Meter Records.  The 

frequent assessment and circulation of leachate to maintain this optimum was utilized to 

minimize spikes in gas production and create a more representative operation similar to 

landfills in practice. Leachate was MCUA Landfill in East Brunswick, New Jersey.  
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Chemical analyses conducted on the leachate have been provided under Appendix 

B.5.5 – Leachate Chemical Analyses Test Results.   Prior to injection of leachate, the 

leachate was warmed by submerging the leachate container in the water bath to ensure 

like-temperatures when introducing into the bioreactors.  

As indicated in the test schedule, one bioreactor was decommissioned from the 

composite reactor to be sampled for (C+H)/L testing and used for compression testing for 

compressive characteristics of the waste at the determined biodegradation ([C+H]/L) 

state. During decommissioning, the waste sample was removed from the bioreactor, 

mixed to ensure homogeneity, and split into five equal parts. Two parts were processed 

by removing plastics and synthetics from the sample to be sent to Dr. Morton Barlaz at 

North Carolina State University for (C+H)/L testing. These constituents were removed as 

it was shown plastic and synthetic constituents do not dissolve in 72 percent w/w sulfuric 

acid and would artificially increase the lignin content of the sample as a result.  The use 

and limitations of (C+H)/L for the purposes of this experiment are further discussed in 

Chapter 5.  Of the remaining three parts of waste, two parts were used for compression 

testing and one part was frozen for redundancy and contingency future testing, as 

required.  

Samples were prepared for consolidation testing by mixing each waste to ensure 

uniform moisture content, then filling the sample within the consolidometer ring in lifts.  

Lifts were placed in approximately 1/4 inch loose lifts (approximately one tablespoon per 

lift) and were tamp-compacted using a hard rubber stopper with a 2.45 inch diameter 

placed on the sample and struck seven times with a 3.5 lb cylindrical weight dropped 

from a height of approximately one inch.  This procedure was repeated until a final 
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compacted height of one inch was obtained. Minor cosmetic trimming and patching was 

completed to create a uniform and flat sample surface for testing (Lifrieri 2010).   

After compaction, samples were subsequently placed in a fixed ring consolidation 

cell manufactured by Humboldt and were tested using table-top mounted dead-weight 

consolidation equipment. Dial gage reading data was recorded electronically at pre-

determined time intervals using Humboldt HTMS logging software. Compression tests 

were performed in general accordance with ASTM D2435 – Standard Test Methods for 

One-Dimensional Consolidation Properties of Soils Using Incremental Loading (ASTM 

2011).  

Samples were allowed to consolidate at pressure increments of 0.137 ton per 

square foot (tsf), 0.275 tsf, 0.550 tsf, 1.10 tsf, and 2.20 tsf for a period of 24 hours. A 

pressure of 4.40 tsf was applied and maintained following the 2.20 tsf pressure increment 

for a minimum period of two months or until it was observed that sample reached the 

stage of biodegradation, characterized by an increase in the strain rate (Cβ). Load 

parameters for the samples to simulate self-weight and applied loads of landfills of 

variable heights were computed from resulting data. Compression parameters (C’c, Cα, 

and Cβ) were determined at the specific states of decomposition observed from testing. 

Rationale for the selected load increments are based on those used by Lifrieri (2010).  

Samples were placed into the consolidometer and removed in accordance with the 

schedule shown in Table 4.6. Additional details regarding the test set-up, procedure, and 

records from initial and final consolidation tests are provided under Appendix C – 

Consolidation Test Results.  Tests were suspended once the biodegradation phase of the 

compression parameter could be ascertained.  
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Table 4.6  Compression Test Schedule  

 

Test 
Bioreactor 

Number Date Started Date Finished 
Duration 

[days] 

C-1-1 1 1/6/2014 7/27/2014 202 

C-1-2 1 1/6/2014 7/27/2014 202 

C-2-1 2 1/19/2014 5/29/2014 130 

C-2-2 2 1/19/2014 5/29/2014 130 

C-3-1 3 2/19/2014 5/30/2014 100 

C-3-2 3 2/19/2014 5/30/2014 100 

C-4-1 4 3/20/2014 7/23/2014 125 

C-4-2 4 3/20/2014 7/23/2014 125 

C-5-1 5 4/12/2014 7/31/2014 125 

C-5-2 5 4/12/2014 7/31/2014 125 

C-Final-1 6 9/1/2014 11/16/2014 76 

C-Final-2 6 9/1/2014 11/16/2014 76 

 

Following completion of the experiment, remaining operational bioreactors were 

decommissioned after performing a series of measurements. The intent of the 

measurements was to understand the change in density and loss of mass which may be 

attributable to biodegradation.  The thickness of the remaining waste mass was measured, 

along with moist weight of the waste to determine final in-situ density. Records from 

bioreactor decommissioning at end of the experiment are provided as Appendix B.7 – 

End of Test Bioreactor Decommissioning Records.  

Equipment used for measurement and testing were calibrated as per manufacturer 

recommendations to ensure accuracy during the testing process. Calibration records for 

equipment used for this work are provided under Appendix D – Calibration Records for 

Measuring Devices.  
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The author created example instructions and forms to provide repeatability of the 

method used for this work and future works. Example instructions and forms used by 

author to guide establishment of bioreactors are included under Appendix E.1 – Work 

Plan and Testing Instructions and E.2 – Standard Forms Used for Commissioning 

Bioreactors and Test Equipment.  Recognizing the sensitivity of the microorganisms 

controlling the biodegradation process, it was imperative that the required temperature 

was maintained, and continuous records for gas production and compression testing also 

be maintained.  The author created an Emergency Workplan which was employed during 

the experiment and included as Appendix E.3 – Emergency Workplan.  A list of parts to 

construct the test set up and bioreactors has also been included as Appendix E.4 – Parts 

List. 
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CHAPTER 5 

RESULTS OF LABORATORY PROGRAM 

 

The following chapter presents data collected over a period of approximately 260 days by 

the laboratory program discussed in Chapter 4.  Gas production by two methods, primary 

flow meter and secondary tedlar gas collection bags, compressibility parameters by 

consolidometer apparatuses, and other physical and engineering parameters which were 

measured and observed are discussed below. 

5.1  Methane Gas Data Collected from Flow Meters 

As indicated in Section 4.3, methane gas produced from the composite, readily, and 

moderately degradable reactors sets were metered using a MicroTrak 101 automated gas 

flow meter manufacturer by Sierra Instruments. Each of the gas meters was connected to 

a data collection hub via USB on a monthly basis to download daily gas production rates 

to a data acquisition computer.  

Tables B.2.1 through B.2.3 in Appendix B present the complete data recorded on 

a daily basis, at minimum, by methane gas flow meter for the respective composite, 

readily, and moderately degradable sets. Table 5.1 below provides an excerpt from the 

Appendix tables indicating the data which was recorded from the meters. The table shows 

date, time, and cumulative days since start the instantaneous flow meter reading was 

recorded.  Using the weight of bioreactors obtained from commissioning record, the 

observed flow reading normalized to by pound of waste is computed.  
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The columns titled “CH4 Remaining” and “ % of Theoretical Total” were based 

on a calculated theoretical total gas production of 6.23, 9.04, and 8.43 cubic feet per 

pound waste for composite, readily, and moderately degradable bioreactor sets, 

respectively. Calculations for theoretical total gas quantity were conducted using the 

Lambda method of gas production as modified by Lifrieri (2010) and detailed in Chapter 

3. Based on the stoichiometric relationship it is predicted that methane comprised 55% of 

the total gas; therefore theoretical total methane gas volumes of 3.43, 4.97, and 4.64 

cubic feet per pound waste were used to assess the methane remaining and percent of 

total theoretical remaining and for evaluating the cumulative production from flow 

meters.  

Figure 5.1 and 5.2 illustrate gas production on a daily basis as recorded by the gas 

flow meter and cumulative gas production, respectively, for the composite bioreactor set.  

Gas production rate and cumulative gas production are normalized and reported per 

pound of waste in the bioreactor set. 

Figure 5.3 and 5.4 illustrate daily gas production and cumulative gas production 

per pound waste, respectively, for the readily bioreactor set.  Similarly Figure 5.5 and 5.6 

illustrate daily gas production and cumulative gas production per pound waste, 

respectively, for the moderately degradable bioreactor set.   No flow meter was connected 

to the slowly degradable bioreactor set as the automated flow meter would not have 

sufficient sensitivity to register flows. A tedlar gas bag connected directly to the slowly 

degradable reactor set was subsequently used. Data from the tedlar gas bags is provided 

and discussed later. Total gas collection by secondary tedlar gas bags is discussed in 

Section 5.2.    
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Table 5.2 summarizes data collected from the gas flow meters for composite, 

readily, and moderately degradable bioreactor sets.  The “Estimated Total Gas Produced 

at End” is provided based an estimated 55% of methane gas with respect to total gas.  

 

Table 5.1  Excerpt of Data Recorded from Composite Methane Gas Flow Meter 

 

Gas Flow Meter Readings - Composite Flow Meter 

Date Time 
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1/22/14 14:00 65 10.44 23.89 0.44 0.022 2.05 40% 

1/23/14 8:00 66 10.31 23.89 0.43 0.022 2.04 40% 

1/24/14 8:00 67 10.41 23.89 0.44 0.022 2.02 41% 

1/25/14 8:00 68 10.83 23.89 0.45 0.023 1.99 41% 

1/26/14 8:00 69 9.31 23.89 0.39 0.020 1.97 42% 

1/27/14 8:00 70 9.51 23.89 0.40 0.020 1.95 43% 

1/28/14 8:00 71 9.27 23.89 0.39 0.020 1.93 43% 

1/29/14 21:00 72 8.71 23.89 0.36 0.019 1.90 44% 

1/30/14 20:00 73 8.60 23.89 0.36 0.018 1.89 44% 

1/31/14 20:00 74 8.87 23.89 0.37 0.019 1.87 45% 

2/1/14 19:00 75 8.61 23.89 0.36 0.018 1.85 46% 

2/2/14 9:00 76 8.75 23.89 0.37 0.019 1.84 46% 

2/3/14 8:00 77 8.76 23.89 0.37 0.019 1.82 46% 

2/4/14 8:00 78 8.51 23.89 0.36 0.018 1.80 47% 

2/5/14 21:00 79 7.27 23.89 0.30 0.015 1.78 48% 

Note:  Tables B.2.1 through B.2.3 in Appendix B present complete data for all meters 
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5.1.1  Methane Gas Data Collected from Composite Flow Meter 

Data collected from the flow meter used for composite waste indicated a peak rate of 

0.035 cubic feet of methane per pound waste occurred 41 days into the experiment. 

Integration of the gas production curve resulted in approximately 2.465 cubic feet of 

methane per pound waste collected over a 221 day period.  Based on a total theoretical 

methane potential of 3.43 cubic feet per pound waste calculated by the lambda method, 

approximately 72 percent of the potential was captured at conclusion of the experiment.  

Using a proportion of 55 percent methane comprising total gas, a total of 4.48 cubic feet 

of total gas is anticipated to have been produced.   

Secondary gas bags measuring total volume, however, indicate 5.33 cubic feet of 

total gas were collected.   The author explains this 16 percent deviation between methods 

as a result of trace landfill gases produced during early phases of decomposition, and the 

generalization that the proportion of gas remained constant at 55 percent methane 

throughout the experiment. However, the proportion of methane may fluctuate depending 

on the phase of biodegradation the waste is undergoing, as discussed in Chapter 2.  Gas 

flow meters also provided a more accurate measurement of gas production in comparison 

to the secondary gas bags, which are based on a visual interpretation of the capacity of 

the bag and therefore subject to variation. 

It can be observed from the Figure 5.1 that an 11 day lag exists prior to the start of 

data readings.  As gas production occurs in several phases, the author notes that initial 

phases of decomposition were occurring during this period and other landfill gases may 

have been developing.  Since gas flow meters are calibrated against methane, the author 

believes that data could be not registered for this period.  However, this volume of gas 



69 

 

was not overlooked during the experiment and was captured by the secondary gas bags 

which determine the total gas, and therefore the volume added by non-methane gases.   

 

 

 
 

Figure 5.1  Daily Volume of Methane Gas Produced from Composite Flow Meter 
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Figure 5.2  Cumulative Volume of Methane Gas Produced from Composite Flow Meter 

 

5.1.2  Methane Gas Data Collected from Readily Degradable Waste Flow Meter 

Data collected from the flow meter used for readily degradable waste indicated a peak 

rate of 0.114 cubic feet of methane per pound waste occurred 23 days into the 

experiment. It is observed that the on-set of methane gas production occurs earlier than 

that for the composite bioreactor.  This can be attributed to the contents of the readily 

degradable bioreactor being constituents which are rapidly degradable. Integration of the 

readily degradable gas production curve resulted in approximately 4.623 cubic feet of 

methane per pound waste collected over a 221 day period.   

Based on a total theoretical methane potential of 4.97 cubic feet per pound waste 

calculated by the Lambda method, approximately 93 percent of the potential was 

captured at conclusion of the experiment.  Using a proportion of 55 percent methane 

comprising total gas, a total of 8.41 cubic feet of total gas is anticipated to have been 
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produced.  Secondary gas bags measuring total volume indicate 8.88 cubic feet of total 

gas were collected, therefore the author notes good agreement between the two methods.  

The additional volume collected by the secondary gas is likely attributable to the 

production and capture of trace landfill gases produced during early phases of 

decomposition. 

Similar to the composite bioreactor, a 5 day lag exists prior to the start of methane 

gas flow readings. The author suggests that, as the waste is readily decomposable, the 

initial phases of decomposition may have occurred as early as during the time the wastes 

were batched and stored prior to filling into bioreactors.  As the initial phases are driven 

by aerobic conditions, these conditions exist during initial batching and storage of 

samples and may allow the waste to complete this stage of decomposition prior to the 

start of the experiment.  An inspection of the curve indicates that 50 percent of the 

theoretical gas was captured by day 50 of the experiment, with 90 percent of theoretical 

gas captured after day 119.  Gas collection was stagnant after approximately this date. 
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Figure 5.3  Daily Volume of Methane Gas Produced from Readily Degradable Flow Meter 
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5.1.3  Methane Gas Data Collected from Moderately Degradable Waste Flow Meter 

Data collected from the flow meter used for moderately degradable waste 

indicated a peak rate of 0.034 cubic feet of methane per pound waste occurred 80 days 

into the experiment. It is observed that the on-set of methane gas production occurs later 

than both the readily degradable and composite bioreactor. This is expected as the readily 

degradable bioreactor contained constituents such as food and yard waste which are more 

easily biodegradable than wood chippings, paper, and textiles of the moderately 

degradable waste. Likewise, as the composite bioreactor contains readily biodegradable 

constituents, it is anticipated that gas production from these components will occur before 

the moderately decomposable wastes such as those comprising the moderately degradable 

bioreactor set.    

Integration of the moderately degradable gas production curve resulted in 

approximately 2.860 cubic feet of methane per pound waste collected over a 261 day 

period.  Gas collection for the moderately bioreactor was maintained for a period longer 

than others since observable gas flow was occurring as witnessed by the filling of 

secondary tedlar bags, although the primary flow meter did not register flow. Based on a 

total theoretical methane potential of 4.64 cubic feet per pound waste calculated by the 

lambda method, approximately 62 percent of the potential was captured at conclusion of 

the experiment.  Using a proportion of 55 percent methane comprising total gas, a total of 

5.20 cubic feet of total gas is anticipated to have been produced.  Secondary gas bags 

measuring total volume indicate 5.80 cubic feet of total gas were collected, therefore the 

author notes good agreement between the two methods.   
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The additional volume collected by the secondary gas is likely attributable to the 

production and capture of trace landfill gases produced during early phases of 

decomposition. 

Similar to the other bioreactors, a 20 day lag exists for the moderately degradable 

bioreactor set prior to the start of methane gas flow readings. An inspection of the curve 

indicates that 50 percent of the theoretical gas was captured by day 134 of the 

experiment, with 62 percent of theoretical gas captured after day 219.  Gas collection was 

nearly stagnant based on information from both the flow meter and secondary tedlar bags 

after approximately this date. The author comments that the observable spikes in data 

occur two to three days after leachate has been recirculated or added in the bioreactors.  

 

 

Figure 5.5  Daily Volume of Methane Gas Produced from Moderately Degradable Flow 
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Figure 5.6  Cumulative Volume of Methane Gas Produced From Moderately Degradable 

Flow Meter 
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Table 5.2  Summary of Data Collected by Gas Flow Meters 

Reactor 

Set 

Max Daily 

Methane 

Flow Rate 

[(ft
3
/lb)/day] 

Day Since 

Start for 

Max 

Reading  

Days Until 

Start of 

Methane 

Flow 

Readings  

Cumulative 

Volume 

Methane at 

End  

 [ft
3
/lb] 

Estimated 

Total Gas 

Produced at 

End 

[ft
3
/lb] 

Composite 0.035 41 11 2.645 4.809 

Readily 0.114 23 5 4.623 8.405 

Moderately 0.034 80 20 2.860 5.200 

 

5.2  Total Gas Data Collected from Tedlar Gas Bags 

Gas bags were utilized during the experiment to serve as a secondary check to the flow 

meters and allow for characterization of gas composition at periodic intervals over time. 

It should be noted that the tedlar gas bags reported and collected the total gas collected, 

irrespective of gas composition, as opposed to gas flow meters which were calibrated for 

use with methane gas and provided daily methane gas flow rate.  

The use of tedlar bags is discussed in Chapter 3.   Various capacity bags were 

used, including 1 liter, 10 liter, and 50 liter bags, depending on the volume of flow 

anticipated.  Lower capacity bags were used at the beginning and end of the experiment 

to capture the gas as it was emitted at lower flow rates and lower resulting sample 

volumes. Tables B.3.1 through B.3.3 in Appendix B present the complete data recorded 

for secondary gas bags used in series after gas flow meters for composite, readily, and 

moderately degradable bioreactor sets.  Table B.3.4 tabulates records for gas bags used as 

the primary means of establishing volume of total gas produced by the slowly degradable 

bioreactor set.  Figure 5.7 illustrates the manufacturer’s recommendation for inflation.   
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Figure  5.7  Manufacturer’s (SKC) recommendation for inflation of gas bags  

 

Table 5.3 provides an excerpt from the Appendix tables indicating the data which 

was recorded from the gas bags. The table shows date, time, and cumulative days since 

start and the date the gas bag was changed. Columns titled “Bag Volume” and “Actual 

Bag Volume” are based on manufacturer recommendations, which indicated that proper 

inflation of the gas bag would result in 80 percent of the rated total capacity.  Therefore, 

proper inflation would result in gas bag volumes of 0.8, 8, and 40 liters, respectively.   

In select circumstances, the rate of gas production did not allow a full bag to be 

swapped out for an empty bag causing this recommendation to be exceeded and be filled 

to total rated capacity.  These occurrences were noted, and the total rated capacity of the 

bag was used.   Using the weight of bioreactors obtained from commissioning record, the 

observed flow reading normalized to by pound of waste is computed. The equivalent 

average daily flow rate was obtained by taking the actual bag volume of the tedlar bag 

used and dividing by the time, in days, since the previous gas bag swap.  
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Table 5.3  Excerpt of Data Recorded for Tedlar Gas Bags – Composite Bioreactors 

 

Gas Flow Meter Readings - Composite Flow Meter 
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11/27/2013 27.32 9 1 0.8 0.8 0.038 0.001 0.004 0.000 

12/2/2013 27.32 14 50 40 40.8 1.914 0.070 0.375 0.014 

12/5/2013 27.32 17 50 40 80.8 3.790 0.139 0.625 0.023 

12/7/2013 27.32 19 50 40 120.8 5.667 0.207 0.938 0.034 

12/8/2013 27.32 20 50 40 160.8 7.543 0.276 1.876 0.069 

12/9/2013 27.32 21 50 45 205.8 9.654 0.353 2.111 0.077 

12/10/2013 27.32 22 50 40 245.8 11.531 0.422 1.876 0.069 

12/11/2013 27.32 23 50 30 275.8 12.938 0.474 1.407 0.052 

12/12/2013 27.32 24 50 30 305.8 14.345 0.525 1.407 0.052 

12/13/2013 27.32 25 50 40 345.8 16.222 0.594 1.876 0.069 

12/14/2013 27.32 26 50 40 385.8 18.098 0.662 1.876 0.069 

12/15/2013 27.32 27 50 40 425.8 19.975 0.731 1.876 0.069 

12/16/2013 27.32 28 50 45 470.8 22.086 0.808 2.111 0.077 

12/17/2013 27.32 29 50 40 510.8 23.962 0.877 1.876 0.069 

12/17/2013 27.32 29.5 50 40 550.8 25.839 0.946 3.753 0.137 

12/18/2013 27.32 30 50 40 590.8 27.715 1.014 3.753 0.137 

12/18/2013 27.32 30.5 50 40 630.8 29.592 1.083 3.753 0.137 

12/19/2013 27.32 31 50 40 670.8 31.468 1.152 3.753 0.137 

12/19/2013 27.32 31.5 50 40 710.8 33.345 1.221 3.753 0.137 

Note:  Tables B.3.1 through B.3.3 in Appendix B list complete gas bag data for all sets 
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5.2.1  Total Gas Data Collected from Composite Tedlar Bags 

For comparison to work completed by Lifrieri (2010), Figure 5.8 graphically depicts gas 

production on a 10-day basis as averaged and obtained by tedlar gas bag record for the 

composite bioreactor set. Figure 5.9 depicts cumulative gas production as noted by actual 

gas bag volume and dates since start of the experiment.  Both gas production rate on a 10-

day basis and cumulative gas production are presented normalized and reported per 

pound of waste in the bioreactor set.   Figures 5.10 and 5.11, Figure 5.12 and 5.13, and 

Figure 5.14 and 5.15 graphically depict similar data for the readily, moderately, and 

slowly degradable bioreactor sets, respectively.  

Data collected from the tedlar gas bags connected to the composite bioreactor set 

indicated a peak 10-day volume of 1.373 cubic feet of total gas per pound waste 

occurring approximately 30 days into the experiment. Summation of the actual gas bag 

volumes for all bags used indicated approximately 5.332 cubic feet of total gas per pound 

of waste were collected over a 221 day period.  Based on a total theoretical methane 

potential of 6.23 cubic feet per pound waste calculated by the lambda method, 

approximately 85 percent of the total potential was captured by gas bags connected to the 

composite bioreactor set at conclusion of the experiment.  

Prior work completed by Lifrieri (2010) used data collected by gas bags to 

characterize the different waste types as regions of the gas collection curve.  Four time-

dependent regions by visual inspection were established: a linear portion from the start of 

the work to time of maximum gas production (t1); the readily biodegradable region (t2); 

the moderately biodegradable region (t3); and, the slowly biodegradable region.  
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The regions occurred between 0 days and 35 days, 35 days to 60 days, 60 days to 

270 days, and 270 days and onward for the respective regions.   Individual, “kn” decay 

constants similar to those suggested by Findikakis et al. (1979) were obtained by Lifrieri 

from an exponential best-fit curve approximation for the readily, moderately, and slowly 

biodegradable regions.  Table 5.4 presents a comparison of the work completed by 

Lifrieri (2010) and the work completed herewith.  

Reviewing the differences between data, it is suggested maintaining an optimum 

moisture content of approximately 45 percent (leachate recirculation), enhanced gas 

collection equipment and method, and operating the reactors similar to a bioreactor 

landfill accelerates the rate of gas production.  As seen by the data, each of the regions of 

decomposition occur earlier in the work completed by this author, with greater decay 

constants which generally correlate to more rapid rates of decomposition. The  maximum 

10-day flow rate of 0.4 cubic feet of total gas per pound waste observed by Lifrieri 

(2010) compared to maximum 10-day flow rate of 1.373 cubic feet of total gas per pound 

waste observed by this author further corroborate this hypothesis.  
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Figure 5.8  Daily Volume of Total Gas Produced From Composite Tedlar Bags 

 

 
Figure 5.9 Cumulative Volume of Total Gas Produced From Composite Tedlar Bags 
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Table 5.4  Comparison of Decay Constant for Composite Bioreactor Set 

Author 

Decay Constant, kn  

[year
-1

] 
Time Range 

[day] 

Linear, 

m (slope) 

Readily, 

kr 

Moderately, 

km 

Slowly, 

ks 

Overall, 

kc 
t1 t2 t3 

Lifrieri 

(2010) 
0.0112 0.0243 0.0099 0.0002 0.011 35 60 270 

Shah 

(2015) 
0.0478 0.0370 0.0140 0.0021 0.017 30 50 200 

 

As indicated in Chapter 3, the author repeats that the decay constants, “kn” are not 

directly comparable to those presented by Findikakis et. al (1979) and based on waste 

half-life, “λn”.   Those developed by Lifrieri are more closely relatable to the EPA 

LandGEM decay constant than the half-life constants suggested by Findikakis and 

Durmusoglu (2005).  Lifrieri notes in his work that default values suggested by 

Findikakis et al. (1979) were used to formulate conclusions in lieu of the decay constants 

developed by his work since Findikakis’ work was conducted on field-scale conditions.  

Likewise the half-life decay constants (λn) suggested by Durmusoglu (2005) are utilized 

by this author since the constants obtained by this work represent ideal conditions under a 

controlled environment and the represent a smaller sample size.  The development of 

laboratory half-life decay constants and comparison to those suggested by Findikakis et. 

al and Durmusoglu are discussed further in Chapter 6.  
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5.2.2  Total Gas Data Collected from Readily Degradable Tedlar Bags 

Data collected from the tedlar gas bags connected to the readily degradable bioreactor set 

indicated a peak 10-day volume of 2.043 cubic feet of total gas per pound waste 

occurring approximately 40 days into the experiment.  Summation of the actual gas bag 

volumes for all bags used indicated approximately 8.877 cubic feet of total gas per pound 

of waste were collected over a 221 day period.  Based on the observation, a best-fit 

exponential expression results in a descriptive constant, kr, for the readily degradable 

bioreactor set of 0.045 year
-1

.  

 

 
 

Figure 5.10  Daily Volume Of Total Gas Produced From Readily Degradable Tedlar Bags 
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Figure 5.11  Cumulative Volume of Total Gas Produced from Readily Degradable Tedlar 

Bags 

 

5.2.3  Methane Gas Data Collected from Moderately Degradable Tedlar Bags 

Tedlar gas bag data collected from the moderately degradable bioreactor set indicated a 

peak 10-day volume of 0.539 cubic feet of total gas per pound waste occurring 

approximately 80 days into the experiment. Summation of the actual gas bag volumes for 

all bags used indicated approximately 5.796 cubic feet of total gas per pound of waste 

were collected over a 261 day period. As indicated earlier, gas collection for the 

moderately degradable bioreactor was maintained for a period longer than others since 

filling of secondary tedlar bags was observed, although the primary flow meter did not 

register flow. Gas collection was continued until no visible change in gas bag volume 

could be observed for a continuous 5 day period.  Based on the observation, a best-fit 

exponential expression results in a descriptive constant, km, for the moderately 

degradable bioreactor set of 0.012 year
-1

.  
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Figure 5.12  Daily Volume of Total Gas Produced from Moderately Biodegradable 

Tedlar Bags 

 

 
Figure 5.13  Cumulative Volume of Total Gas Produced from Moderately Degradable 

Tedlar Bags 
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5.2.3  Total Gas Data Collected from Slowly Degradable Tedlar Bags 

As indicated previous, tedlar gas bags were utilized as the primary means for evaluating 

total gas flow rate and volume as the sensitivity of gas flow meters prohibited its use for 

the slowly degradable bioreactor set. The author observes that the data supports a peak 

rate of gas production occurring approximately 90 days into the experiment. After this 

time, gas production occurs at a nearly steady rate. The cumulative volume of gas 

approach is nearly linear, compared to other bioreactor sets which are characterized by an 

increasing form exponential decay curve.  Therefore, the author suggests a descriptive 

constant, ks, for the slowly degradable bioreactor set of 0.0021 year
-1

as observed from the 

composite bioreactor set.  

 

 
Figure 5.14  Daily Volume of Total Gas Produced from Slowly Degradable Tedlar Bags 
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Figure 5.15 Cumulative Volume of Total Gas Produced from Slowly Degradable 

Tedlar Bags 

 

Table 5.5 summarizes data collected from the tedlar gas bags for the composite, 

readily, moderately, and slowly degradable bioreactor sets. A comparison to the volume 

reported by flow meters is also presented in the table.  

 

Table 5.5  Summary of Data Collected by Tedlar Gas Bags and Flow Meter  

Reactor 

Set 

Max  

10-day 

Flow 

Rate 

[ft3/lb] 

Day 

Since 

Start for 

Max 

Reading  

Cumulative 

Volume 

Total Gas 

[ft
3
/lb] 

Calculated 

Daily CH4 

Flow Rate 

[ft
3
/lb] 

Calculated 

Vol. of 

CH4 Gas 

Collected 

[ft
3
/lb] 

Comparison 

to Volume 

Reported by 

Flow Meters 

[%] 

Composite 1.373 30 5.332 0.076 2.933  + 10.9% 

Readily 2.043 40 8.877 0.112 4.882 + 5.6% 

Moderately 0.539 80 5.796 0.030 3.188 + 11.5% 

Slowly 0.003 90 0.078 0.0002 0.043 (n.a.) 

LINEAR TRENDLINE: 
y = 0.0003x - 0.0097 
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The author suggests the additional volume collected by the gas bags in 

comparison to gas flow meters is likely due to the production and capture of trace landfill 

gases produced during early phases of decomposition. 

5.3  Consolidation Test Results 

Consolidation tests were performed in accordance with the procedure and schedule 

identified in Chapter 4 and Table 4.5, respectively.   Load parameters for the samples to 

simulate self-weight and applied loads of landfills of variable heights were computed 

from resulting data.  Compression parameters, including immediate compression, primary 

compression (C’c), inorganic secondary compression (C’α), and biodegradation 

compression (C’β), were determined at the specific states of decomposition observed 

from testing.  

Results from consolidation testing as strain versus time plots for all samples are 

graphically provided as Figure 5.16.   Generally, the author observed elastic settlement 

occurred rapidly, within one to four minutes after load placement.  This was followed by 

primary compression (C’c) which occurred within 12 to 15 hours after load placement. 

Secondary and creep-driven compression indices C’α and C’β occurred within 30 days to 

2 months following final load placement.   

Table 5.6 is provided to summarize the results of the consolidation testing and 

resulting compression indices obtained from the work. Two samples were tested from 

each bioreactor to provide redundancy and were labeled based on bioreactor number and 

sample number. For example, consolidation tests 1 and 2 for bioreactor C-1 were labeled 

C-1-1 and C-1-2, respectively.  
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The author includes approximate percent biodegraded at the time the sample was 

removed and placed into the consolidation frame.  The percent biodegraded is 

approximated by actual gas collection and theoretical gas potential and is provided to 

observe time variations of the parameters as decomposition progresses.  

 

 

Figure 5.16  Consolidation Testing Results For All Samples at 4.40 tsf 
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Table 5.6  Compression Parameters Obtained from Consolidation Testing  

 

Test 

Approx % 

Biodegraded (from 

gas production) 

C’c C’α Cβ 

C-1-2 29% 0.2341 0.0098 0.144 

C-1-2 29% 0.2143 0.0094 0.035 

C-2-1 37% 0.2313 0.0053 0.056 

C-2-2 37% 0.1864 0.0048 0.067 

C-3-1 53% 0.2103 0.0062 0.054 

C-3-2 53% 0.1986 0.0067 0.053 

C-4-1 62% 0.1948 0.0070 0.041 

C-4-2 62% 0.2031 0.0068 0.062 

C-5-1 67% 0.1996 0.0076 0.058 

C-5-2 67% 0.2003 0.0081 0.051 

C-Final-1 73% 0.2129 0.0053 0.036 

C-Final-2 73% 0.2133 0.0056 0.042 

 

Since the initial waste composition was identical to that used by Lifrieri (2010), 

the author suggests that the use of the long-term test data collected by Lifrieri to calculate 

Cαβ and Secantβ  may be possible if a similarity exists between the two data sets.  The 

index Cαβ, used to predict tertiary, non-biodegradation related settlement, and Secantβ 

used to predict future tertiary settlement until the waste has stopped compressing, occur 

according to creep mechanics and therefore are not the focus of this work.  

 Figure 5.17 graphically depicts a comparison of the two data sets, which 

indicates a C'α of 0.0098 and C’β of 0.1440 as obtained by the author and a C'α of 0.0090 

and C’β of 0.1470 as obtained by Lifrieri (2010). Likewise the time durations for the four 

of five compression phases occurring during the time range considered for comparison 

are observed to be analogous.  Therefore, the author suggests that the two data sets are 

characteristically identical, and that C’α and C’β are comparable.  Additional background 

regarding the phases of compression is presented in Chapter 2 and graphically in Figure 

2.3.  
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Figure 5.17  Comparison of Consolidation Data Between Lifrieri (2010) and Shah 

(2015) for Fresh Waste Sample 

 

The author comments that an approximate 8 percent disparity exists between the 

data sets for strain of the sample at initial load placement; however, it is suggested that 

the method of compaction of the material as placed into the consolidation cell, thickness 
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in the minor difference.  
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At the end of the experiment, the author tested two samples (C-Final-1 and C-

Final-2) from a decommissioned composite bioreactor to analyze the compression 

indices representative of waste at the practical end of decomposition. Figure 5.18 

presents strain versus time plots for both end of biodegradation samples tested. It is 

remarked that the distinctive increase in slope during the fourth, range of 

biodegradation compression (C’β), phase indicative of biodegradation is absent. Instead, 

the compression appears to advance from inorganic secondary compression to tertiary 

compression. However this is anticipated as biodegradation is expected to be complete 

and biodegradation compression is therefore minimal compared to the other controlling 

mechanisms.  

 

Figure 5.18  Strain Versus Time Plot for End of Decomposition Sample 
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of the test prompted the author to propose a strain relationship using measurement of 

biodegradable mass and volume changes instead. However, as tests were completed, 

available data was compared against that collected by Lifrieri (2010).  This was used to 

validate this data for consistency, accuracy, and dependability of the method and data.  

It is noted that the work and model proposed herein solely aim to predict 

biodegradation-related strain. Mechanical strain due to imposed pressure other than 

self-weight are outside the scope of this work.  

5.4  C+H/L Test Results 

As discussed in Chapter 4, bioreactors decommissioned to test for compression 

testing were subsequently sampled and sent for (C+H)/L testing to determine the state of 

biodegradation of the waste. Samples were sent to Dr. Morton A. Barlaz at North 

Carolina State University for (C+H)/L testing.   Complete data, as received by Dr. Barlaz, 

is provided under Appendix B.6 – (C+H)/L Test Record. 

Table 5.7 and 5.8 summarize the results of the samples submitted for (C+H)/L 

during the course of work.  The table indicates cellulose, hemicellulose, lignin and 

biodegradable solids as percent of the waste mass.  Two tests were completed for each 

sample and an average presented of the test results.  A Relative Percent Deviation (RPD), 

defined as the standard deviation divided by the average (reported in percent) is presented 

to quantify precision of the test. A low Relative Percent Deviation would indicate lower 

variability of the test data, while a higher percentage would indicate the data is more 

varied.  Sample results obtained from this work were observed to have low Relative 

Percent Deviation.  
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Table 5.7  Summary of Cellulose + Hemicellulose over Lignin Tests 

 
% Cellulose % Hemicellulose % Lignin 

Sample 
Rep 

1 

Rep 

2 
Avg. 

R
P

D
 

[%
] Rep 

1 

Rep 

2 
Avg 

R
P

D
 

[%
] Rep 

1 

Rep 

2 

Av

g. R
P

D
 

[%
] 

C-

Initial-1 
44.9

6 

51.5

4 

48.2

5 
9.6 9.15 

10.1

4 
9.65 7.3 4.70 4.42 

4.5

6 
4.3 

C-

Initial-2 
43.4

2 

42.7

2 

43.0

7 
1.1 9.88 8.89 9.39 7.5 4.77 5.04 

4.9

1 
3.9 

R-

Initial-1 
47.2

2 

53.0

6 

50.1

4 
8.2 5.23 5.87 5.55 8.2 6.02 5.51 

5.7

7 
6.3 

R-

Initial-2 
55.0

2 

53.6

7 

54.3

5 
1.8 4.45 4.51 4.48 0.9 5.27 5.42 

5.3

5 
2.0 

M-

Initial-1 

40.9

0 

39.7

6 

40.3

3 
2.0 10.2 

10.7

5 

10.4

7 
3.8 3.87 4.13 

4.0

0 
4.6 

M-

Initial-2 

51.5

1 

47.6

7 

49.5

9 
5.5 11.7 

10.5

8 

11.1

7 
7.5 4.37 4.46 

4.4

2 
1.4 

C-1-1 
10.4

1 
8.37 9.39 

15.

4 
4.90 3.72 4.31 19.4 

21.9

4 

21.7

5 

21.

85 
0.6 

C-1-2 
14.4

3 
9.43 

11.9

3 

29.

6 
6.34 4.68 5.51 21.3 

22.3

0 

21.6

3 

21.

97 
2.2 

C-2-1 
19.5

5 

18.7

2 

19.1

4 
3.1 5.99 5.78 5.89 2.5 

25.8

1 

25.1

9 

25.

50 
1.7 

C-2-2 
15.7

6 

14.1

4 

14.9

5 
7.7 6.62 5.68 6.15 10.8 

26.8

0 

27.0

8 

26.

94 
0.7 

C-3-1 
11.4

8 

10.7

9 

11.1

4 
4.4 4.73 4.13 4.43 9.6 

24.6

7 

23.6

7 

24.

17 
2.9 

C-3-2 8.61 9.11 8.86 4.0 3.53 3.95 3.74 7.9 
20.8

5 

22.0

1 

21.

43 
3.8 

C-4-1 7.08 7.30 7.19 2.2 2.43 1.82 2.13 20.3 
20.7

2 

22.1

1 

21.

42 
4.6 

C-4-2 7.36 6.63 7.00 7.4 2.42 1.78 2.10 21.5 
20.9

2 

20.6

9 

20.

81 
0.8 

C-4-3 5.43 5.20 5.32 3.1 2.31 2.78 2.55 13.1 
31.8

4 

30.5

0 

31.

17 
3.0 

C-4-4 6.45 4.60 5.53 
23.

7 
2.78 1.81 2.30 29.9 

33.6

2 

40.1

5 

36.

89 

12.

5 

C-

Initial 

retest-1 

51.2

6 

39.4

5 

45.3

6 

18.

4 
7.98 6.38 7.18 15.8 5.09 5.37 

5.2

3 
3.8 

C-

Initial 

retest-2 

44.1

8 

44.6

6 

44.4

2 
0.8 6.40 7.08 6.74 7.1 

13.8

9 

14.2

7 

14.

08 
1.9 
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Table 5.8  Summary of Cellulose + Hemicellulose over Lignin Tests (continued) 

 
% Lipophillic Extractives % Organic Solids 

C+H

L 

C+H+

LVS 

Sample 
Rep 

1 

Rep 

2 
Avg. 

RPD 

[%] 

Rep 

1 

Rep 

2 
Avg. 

RPD  

+-

25% 

[%] 

From 

avg 

From 

avg 

(%) 

C-

Initial-1 
-2.43 -2.14 -2.29 -9.0 78.5 79.6 79.05 1.0 12.70 0.76 

C-

Initial-2 
-3.28 -3.33 -3.31 -1.1 80.4 80.7 80.55 0.3 10.69 0.67 

R-

Initial-1 
-1.99 -2.08 -2.04 -3.1 97.6 97.5 97.55 0.1 9.66 0.61 

R-

Initial-2 
-2.01 -2.10 -2.06 -3.1 97.3 97.3 97.30 0.0 11.01 0.64 

M-

Initial-1 
-3.65 -3.51 -3.58 -2.8 78.0 78.0 78.00 0.0 12.70 0.66 

M-

Initial-2 
-3.53 -3.53 -3.53 0.0 77.4 77.6 77.50 0.2 13.76 0.80 

C-1-1 -0.47 -0.50 -0.49 -4.4 52.5 53.1 52.80 0.8 0.63 0.66 

C-1-2 -0.35 -0.12 -0.24 -69.2 52.0 52.0 52.00 0.0 0.79 0.75 

C-2-1 -1.30 -1.24 -1.27 -3.3 66.4 65.8 66.10 0.6 0.98 0.75 

C-2-2 -1.49 -1.11 -1.30 -20.7 56.1 58.1 57.10 2.5 0.78 0.82 

C-3-1 1.28 1.18 1.23 5.7 50.8 51.5 51.15 1.0 0.64 0.80 

C-3-2 1.48 1.61 1.55 5.9 48.4 47.7 48.05 1.0 0.59 0.74 

C-4-1 1.35 1.40 1.38 2.6 47.4 48.2 47.80 1.2 0.43 0.67 

C-4-2 0.94 0.94 0.94 0.0 45.1 43.6 44.35 2.4 0.44 0.70 

C-4-3 1.17 0.97 1.07 13.2 39.4 38.8 39.10 1.1 0.25 1.03 

C-4-4 0.86 0.85 0.86 0.8 41.4 43.8 42.60 4.0 0.21 1.07 

C-

Initial 

retest-1 

4.90 4.65 4.78 3.7 72.5 74.1 73.30 1.5% 10.04 0.85 

C-

Initial 

retest-2 

3.95 4.02 3.99 1.2 76.1 77.5 76.80 1.3% 3.63 0.90 
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Evaluation of the above data indicates a drastic decrease in (C+H)/L occurring 

during early stages of decomposition. These stages are designated between initial 

sampling of fresh waste (C-Initial-1 and C-Initial-2) and the first sample for testing (C-1-

1 and C-1-2).  The rate of decrease, which is characterized similar to an exponential 

decay, approaches an asymptotic value as time increases and when decomposition moves 

forward at slow rate. This is comparable to work completed by Lifrieri (2010) who 

suggests that biodegradation is essentially complete once the (C+H)/L ratio becomes 

consistent, and further biodegradation settlements occur at a minimum. While the rate of 

decay is much greater than that observed by Lifrieri, and the stabilization of (C+H)/L 

occurring earlier during this work, the author suggests this is likely due to the samples 

being treated similar to a bioreactor landfill to promote degradation.  Similarly, the 

removal of plastics and other synthetics further appear to amplify the decrease in 

(C+H)/L which appears drastic from 11.14 to 0.71.  

Additional (C+H)/L tests were not completed by this author after 122 days into 

the work as the change between test results appeared insignificant, supporting that further 

testing would not yield meaningful results. It is acknowledged by the author as well as 

others (Barlaz 2014, De la Cruz 2014, De la Cruz 2012, Kim 2004) that (C+H)/L test 

results are not a reliable indicator during decomposition to quantity the relative state of 

decomposition during intermediate stages of degradation.  

It should be noted that the original intended development of the (C+H)/L test was 

for agriculture purposes.  The test was intended for use in the food and wood pulp (paper) 

industries to measure loss of carbohydrates during long-term storage and transport 

processes. The test standard governing the method, ASTM E-1758 – “Standard Test 
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Method for Determination of Carbohydrates in Biomass by High Performance Liquid 

Chromatography”, likewise indicates the primary use for processing and storage of 

agricultural produce and residues.  By nature, inert and synthetic materials such as 

plastics were not expected in the originally used form of the test. The use of (C+H)/L to 

measure waste degradation has been suggested by select authors since the late 1980s 

(Tchobanglous, 1993), and has seen more widespread use in the mid-1990s. However, 

recent understandings are revealing limitations in the reliability and use of the test to 

determine state of biodegradation of mixed MSW.    

The author observes that a (C+H)/L ratio of 3.96 obtained by Lifrieri (2010) for 

the initial sample representing fresh waste is much lower than the average of 11.14 for 

fresh waste representing the composite bioreactor obtained through this work.  While the 

values obtained by Lifrieri are within the typically reported range of 1.6 and 6.35 (Barlaz 

2006) for fresh waste, it is expected that higher values will be obtained from this work as 

a result of the removal of plastics and synthetics prior to testing.  It is shown by the 

author that these synthetics add an artificial source of lignin, as examined below.  

As discussed in Chapter 4, prior to submission for testing, samples were 

processed by removing plastics and synthetics from the sample. These constituents were 

removed as it was shown plastic and synthetic constituents do not dissolve in a 72 percent 

w/w solution of sulfuric acid (De la Cruz 2014, Barlaz 2014).  Consequently, these 

constituents would act as recalcitrant fossil carbon, and act as synthetic lignin which 

would artificially increase the lignin content of tested sample as a result (De la Cruz, 

Chaton, and Barlaz 2012).    Work conducted by Kim (2004), in which samples were also 

analyzed by a laboratory independent of Dr. Barlaz, supports this claim. 
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To confirm this hypothesis, the author batched and tested a fresh sample of waste 

identical to the initial samples tested at inception of the experiment to understand the 

effect of removing plastics and synthetics and the resulting impact on the (C+H)/L ratio. 

In one sample, “C-Initial restest-1”, the waste was processed and plastics and synthetic 

constituents were manually removed from the sample.  A second sample, “C-Initial 

retest-2” was unprocessed and unaltered to be used as a comparison.  

From the reported results, the percent cellulose of the sample with plastics 

removed is 45.36 percent and unprocessed is 44.42 percent.  The percent hemicellulose of 

the sample with plastics removed is 7.18 percent and unprocessed is 6.74 percent.   

Therefore, it is observed that reported cellulose and hemicellulose between the samples 

are near identical. Lignin content of the sample with plastics and synthetics removed was 

5.23 percent, whereas the lignin content of the unprocessed sample was reported as 14.08 

percent.    The resulting (C+H)/L of the samples were 10.04 and 3.63, respectively.    

In this instance, by maintaining the numerator of (C+H) as 51%, it is the author’s 

opinion that inclusion of plastic and other synthetics would act as artificial lignin and 

report reduced ratios of (C+H)/L within the typically reported range of 1.6 and 6.35 

(Barlaz 2006) for fresh waste and as indicated above.     

Based on discussion with Dr. Morton Barlaz (2014), it is understood the (C+H)/L 

of fresh MSW tested by himself in 2006 has been reported to be in this range of 1.6 to 

6.35, with five of eight values above 3.2.  It is noted by Dr. Barlaz that his 2006 work 

indicated that the three lowest values in this dataset (1.64, 1.68, and 2.15) are suspect as 

they contain between 23 to 28 percent lignin, respectively.  Dr. Barlaz  suggest that, as 

newsprint is reported to contain about 23 percent lignin (Barlaz 2006), and various types 



99 

 

of lumber contain 23 to 33 percent lignin (Wang et al. 2011), the presence of 23 to 28 

percent lignin in MSW is unreasonable. Since mixed MSW contains 15 to 20 percent 

vegetative waste, it is unreasonable the entire sample would have the lignin content close 

to fibrous, vegetative waste. One would expect lignin content to be much lower, in the 

range of 3 to 7 percent, for a mixed MSW.  Therefore, this discrepancy for elevated 

lignin is likely attributable to interference by synthetic lignin within mixed MSW.  

In addition to the above, the author comments that there are two types of carbon: 

1) biogenic carbon, which results from photosynthesis and natural processes such as 

simple sugars and vegetation and, 2) fossil carbon, which is derived from fuel-stored 

carbon such as plastics and by-products of oil refinement.  De la Cruz, Chaton, and 

Barlaz (2012) further describe the conflict of lignin in their discussion of the carbon 

potential of waste, expressed as percent biogenic carbon (which is degradable) and 

carbon storage (which remains in a landfill).   

This carbon potential stored in a landfill can further be distinguished by its 

components, which include fossil-carbon that comes from petroleum-derived products 

such as plastics and synthetic textiles, and biogenic carbon that originates from food 

waste, yard waste, paper, and wood.   The carbon associated with fossil-carbon was 

originally stored (within a buried petroleum reservoir) prior to burial in a landfill, so it is 

recommended by De la Cruz, Chaton, and Barlaz that only biogenic carbon should be 

evaluated to determine contribution to carbon storage (as lignin).  It is shown by the 

above authors that not all of the cellulose and hemicellulose in MSW is degradable, and 

these remnant compounds may also contribute to carbon storage.   Therefore biogenic 
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carbon which does not degrade is considered to be stored, in addition to the carbon 

storage which can be attributable to fossil-carbon (artificial lignin). 

An evaluation of 49 samples tested for percent cellulose, hemicellulose, lignin, 

biogenic carbon, and biochemical methane potential (BMP) for waste samples of varying 

age was conducted by De la Cruz (2014). From his work, De la Cruz indicated that, as the 

waste aged, a plot of the ratio of cellulose and hemicellulose versus lignin indicated a 

decreasing trend.  This non-linear trend was similar to the trend observed by this work, as 

well as Lifrieri (2010) and Barlaz (2006).   However, a trend of the biogenic carbon 

versus the ratio of cellulose and hemicellulose versus lignin indicated an opposite trend in 

comparison, such that lower ratios of cellulose and hemicellulose versus lignin indicated 

higher biogenic carbon.  As indicated previously, even the carbon storage (fossil carbon) 

will have some percentage of biodegradable carbon within it.  Therefore, to yield useful 

comparison, the proportion of biogenic carbon within the fossil carbon needs to be 

evaluated. This may be difficult to evaluate, as during acid hydrolysis testing, not all but 

some portion of biogenic carbon within the fossil carbon will react. 

De la Cruz (2014) explained that as the cellulose and hemicellulose versus lignin 

ratio decreases, the contribution of the remaining fraction of biogenic carbon is shielded 

by interference by fossil carbons (such as plastics). In other terms, as the waste sample 

degrades and at lower (C+H)/L, one would expect lower availability of biogenic carbon. 

Hence, this trend does not represent what is occurring and is contrary to what is 

anticipated.  Barlaz (2006) subsequently indicates that (C+H)/L has been used for several 

decades to characterize the state of decomposition, and the quantification of cellulose and 

hemicellulose is based on measurement of sugars after acid hydrolysis is not subject to 
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interference from extraneous materials in waste.  However, lignin concentration, defined 

as Klason lignin and as the organic matter which does not dissolve during acid 

hydrolysis, is volatile at 550 °C and is subject to significant interference (Petterson and 

Schwandt, 1991) by recalcitrant synthetic lignin. 

It was believed by this author and Lifrieri (2013) that this interference may be 

resolved by  manually removing the rubber, plastic and synthetic textiles shown in the 

waste characterization study for the waste region of interest, determining the remaining 

constituents percentages by normalizing the overall waste, and preparing lab test samples 

without the suspect constituents for testing. 

However, De la Cruz, Chaton, and Barlaz (2012) observed two limitations exist to 

the lignin analytical method that contribute to the variability in data:   first, the inclusion 

of synthetics such as plastics, textiles, and rubber and resulting measurement of these as 

Klason (artificial) lignin as discussed previously, and second, that not all lignins are equal 

in their ability to limit the bioavailability of cellulose and hemicellulose.  The authors 

indicate that, although the fossil carbons are generally inaccessible, some portion may act 

as biogenic carbon.  This percentage is based on the source, manufacturing process, and 

other factors and is not identical for all synthetics. Therefore, removing plastics and 

synthetics completely from a sample will still remove a portion of the bioavailable 

carbon.   Finally, it is understood that there are even variations between the lignin found 

in biogenic sources, such as those in wood and grass soft tissue relative to woody tissue 

(Eleazer et al., 1997, Lin and Dence, 1992, Sarakanen and Ludwig, 1971). 
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To confirm this hypothesis, the author tested two sets of samples at the end of the 

experiment to understand the effect of removing plastics and synthetics and the resulting 

effect on the (C+H)/L ratio. One sample set, consisting of samples “C-4-1” and “C-4-2”, 

was processed to remove plastics and synthetics prior to testing, while the second sample 

set, consisting of samples “C-4-3” and “C-4-4” were unprocessed and were sent for 

comparison to the traditional method of sampling and testing used by Lifrieri (2010) and 

others.  

From the reported results, it is observed that cellulose and hemi-cellulose of the 

samples of the first set were approximately an average of 7.1 percent cellulose and 2.2 

percent hemicellulose. Cellulose and hemi-cellulose of the unprocessed sample set were 

approximately 5.4 percent and 2.3, respectively.  Lignin content of the sample with 

plastics and synthetics removed was 21.1 percent, whereas the lignin content of the 

unprocessed sample was reported as 34.0 percent.   The average resulting (C+H)/L of the 

sample sets were 0.44 and 0.23, respectively.  

It is observed that, although the hemicellulose content remains nearly similar for 

both sample sets, the cellulose content is lower in the unprocessed sample which may be 

attributed to the partial interference of lignin to accurately determine cellulose content. 

This interference becomes more aggressive during the initial stages of decomposition, 

during which time the proportion of cellulose and hemicellulose drop drastically (De la 

Cruz, 2014).  Therefore, intermediate values of (C+H)/L are not reliable indicators of 

waste undergoing decomposition.  The values may, however, be valid for fresh and end 

of decomposition determination of waste. 
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The author indicates that the work completed by Lifrieri suggest that (C+H)/L 

values stabilize 188 days into the work, which would indicate biodegradation is 

essentially complete; however, an additional 15 percent of total gas is collected over the 

next 120 day period.  Likewise the data collected through this work indicate stabilization 

of (C+H)/L values approximately 122 days into the work; however gas production 

continues for approximately 100 more days.  Therefore, the author believes that the 

(C+H)/L ratio provides mixed correlation to determine projected end of biodegradation.   

The author notes that, during (C+H)/L testing, each sample was tested for percent 

organic solids measured by loss on ignition at 550 °C. The tests were conducted in 

accordance with the test procedures indicated by ASTM D7348 - “Standard Test Methods 

for Loss on Ignition (LOI) of Solid Combustion Residues”. It is observed by the test data 

supplied in Table 5.8 that the initial percent organic solids for the fresh waste sample 

(titled “C-Initial-1” and “C-Initial-2”) are approximately 80 percent.   This is very close 

to the degradable fraction of the waste composition tested herein, which contained 81 

percent biodegradable material.  The work completed by Lifrieri (2010) with similar 

waste composition likewise indicated a similar average of 78 percent organic solids from 

fresh waste sample testing. Samples taken at the end of the experiment (titled “C-4-1” 

through “C-4-4”) indicate an average remaining percent organic solids of approximately 

43 percent.  Work conducted by Lifrieri (2010) indicated a similar average end percent 

organic solids of 4 percent.    Therefore, a loss of approximately 37 percent of % organic 

solids had occurred throughout the experiment. The author has provided a comparative 

calculation in Table 5.9 to determine strain based on percent organic solids during 

(C+H)/L testing. 
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Table 5.9  Calculation of Percent Strain of Laboratory Bioreactors by Percent Organic 

Solids from (C+H)/L Testing 

 

Step 1: Assume original volume:  Vo = 1 ft
3
 

Step 2: Vorganic = 80% = 0.8 ft
3
 

Step 3: 

Vinert = 20% = 0.2 ft
3
 

Tests indicate percent biodegradable content starts at 

80% when fresh, to 44% at end of work 

Step 4: 
Therefore at end, Vorganic@end = 0.44 V1   

     Where V1 is the total volume at end 

Step 5: 

Assume final volume:  Vf = V1 

    Therefore,  0.44V1 + 0.2 = V1 

   Since Vinert remains same, 0.2 ft
3,    

V1 = 0.35 ft
3
 

Step 6: Percent strain is (V1-Vo)/Vo =  (0.35 ft
3
-1)/1 ft

3
 = 65%  

 

 

At the end of the experiment, bioreactors were decommissioned to measure the 

actual mass remaining, which indicated 29 percent of total mass remaining.   This would 

indicate a strain of 71 percent, which is in close agreement to the calculated percent strain 

of 65 percent due to loss of percent organic solids.    

Therefore, from the work conducted herein and by De la Cruz (2014) and De la 

Cruz, Chaton, and Barlaz (2012), it is suggested that (C+H)/L alone is not a useful 

indicator of decomposition in mixed MSW as the lignin measurement is not reliable. 

Therefore, although (C+H)/L sample testing was conducted by this author, is it not used 

as an indicator of relative biodegradation state of the waste as recommended by others.  

Therefore, in lieu of the (C+H)/L data, the author has proposed a correlation with loss of 

mass to determine state of biodegradation of the waste. This concept will be fully defined 

and discussed in Chapter 6.  The author has provided additional discussion on the use and 

repeatability of using loss on ignition to determine percent organic solids in Section 5.7. 
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5.5  End of Test Bioreactor Measurements 

Following completion of the experiment, remaining operational bioreactors were 

decommissioned after performing a series of measurements. The intent of the 

measurements was to understand the loss of biodegradable mass attributable to 

decomposition, changes in volume, compute percent biodegradation of the sample based 

on weight, observe any change in density of the waste sample, and verify moisture 

content of the bioreactor. Percent biodegradation (“%B”) can be calculated by mass, or 

by volume, as further discussed in Chapter 7.  

Generally, the decommissioning process consisted of saw-cutting the top of the 

bioreactor jar to expose the waste. The height of the sample was measured using a ruler 

with one-tenth inch markings to determine final density. Subsequently, the waste was 

removed from each bioreactor and placed into individual pans for measuring wet weight. 

The samples were oven-dried at low heat at 110°F to avoid burn-off of organic fractions, 

and the dry weight of the waste and moisture content of the sample were determined.  

Using bioreactor commissioning records at the start of the experiment, the original 

weights of biodegradable and non-biodegradable constituents were known and thereby 

allowing for a computation of the remaining weight of biodegradable fraction and percent 

biodegraded at the end of the experiment.  

Table 5.10 summarizes average measurements of all bioreactors within a 

bioreactor set.  Table 5.11 presents the change in waste sample density as result of 

biodegradation and self-weight compression.  Table 5.12 indicates calculated percent 

biodegradation based on mass loss and measurements.  
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Table 5.10 Average of Measurements Collected During Decommissioning of Reactors 
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Composite 102.50 706.92 604.43 513.77 411.28 193.15 47% 1.4 

Readily 99.10 236.04 136.94 192.00 92.90 44.04 47% 0.3 

Moderately 102.07 561.33 459.26 415.32 313.25 146.01 47% 1.0 

Slowly 103.00 1997.03 1894.03 1377.47 1274.46 619.57 49% 4.4 

 

 

Table 5.11  Determination of Change in Density During Decommissioning of Reactors 
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Composite 1.33 0.91 0.24 0.17 4.60 40.73 37.07 91% 

Readily 0.30 0.20 0.00 0.00 5.18 45.87 38.37 83% 

Moderately 1.01 0.69 0.00 0.00 5.23 46.35 42.39 91% 

Slowly 4.18 2.81 0.00 0.82 4.42 39.18 38.17 97% 

 

Table 5.12 Determination of Percent Biodegraded During Reactor Decommissioning 
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Composite 0.11325 0.03599 0.50 1.19 1.69 71% 

Readily 0.11325 0.00797 0.20 1.90 2.10 90% 

Moderately 0.11325 0.02391 0.69 1.41 2.10 67% 

Slowly 0.11325 0.10948 1.99 0.11 2.10 5% 
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Appendix B.7 – End of Test Bioreactor Decommissioning Records tabulates all 

data recorded and evaluated during the decommissioning process. The author notes that 

italicized column headings indicate data which was obtained from commissioning records 

during the start of the experiment.  

It can be observed that final density of the waste decreased slightly for each 

bioreactor set; however this is anticipated as the waste in the bioreactors are solely 

undergoing densification due to self-weight of material and mass reduction as a result of 

decomposition.  This observation follows Durmusoglu et al. (2006), who performed an 

evaluation of total stress and bulk density spatial profiles for a deformable landfill at 

select time intervals and observed 10 to 15 percent densification as a result of self-weight 

of waste.  The abovementioned authors observed that initial bulk density is decreased in 

the first 10 years of placement; however, in later years, bulk density increases due to 

landfill settlement caused by additional total stress from subsequent lifts and added load.   

Therefore, though the organic fraction of the waste undergoes mass reduction due to 

degradation and volume reduction resulting from deformation of the solid matrix, the 

author and those cited assume density to remain constant throughout the process.  

Moreover, the author understands that in traditional soil mechanics, the solids 

comprising the soil are of inert materials. Therefore, any volume change corresponds to 

an increase in density as the weight of solids remains constant.  However, in the case of 

waste, the materials consist of degradable solids; therefore, a reduction in the weight of 

solids occurs along with a reduction in the total volume as degradation proceeds.  If the 

rate of loss of weight is greater than the rate of loss of volume, than the density would be 

seen to decrease.   



108 

 

5.6  Determination of End of Test 

Several indicators were used to substantiate a determination to end the physical work 

conducted herein.   At the time of the end of test, the author observed no further flow 

readings were being collected by the gas flow meter.  Similarly, it was visually observed 

that minimal additional volume was being collected by secondary tedlar gas flow bags 

connected to the flow meters.  These bags, which were used to measure and capture total 

gas flow, supported the diminishing rate of gas production.   

In Chapter 6, the author presents and discusses a gas generation model to 

determine maximum field-observable gas generation using a natural logarithmic 

regression.  Based on this method, the amount of methane gas which may be collected 

feasibly is 2.602 cubic feet per pound waste.  Based on the 2.55 cubic feet of methane gas 

per pound waste collected as measured by the methane flow meter, approximately 98 

percent of gas on a calculated total actual collectable methane gas basis was collected 

based on this model.  For this measured value of methane gas, the total gas collected is 

approximately 4.63 cubic feet for a landfill gas with 55 percent methane proportion.  

The author notes that the value of total gas recovered appears typical, as work 

conducted by Lifrieri (2010) on similar waste composition resulted in a total gas 

collection of 4.237 cubic feet per pound waste after 430 days of collection. Based on 

Lifrieri’s work, the collected gas amounted to approximately 69 percent of the total 

calculated theoretical gas potential of 6.18 cubic feet per pound waste, or 88 percent of 

captureable total gas based on the maximum field-observable gas generation developed 

by the author.     
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The author suggests that, although generation of the remaining proportion of gas 

may occur for an extended period of time, it may be incapable of being measured. This 

limitation is attributable to the sensitivity of equipment and collection methods used.   

Additionally, as indicated in Chapter 4, a landfill gas meter was connected to the 

secondary gas collection bags periodically to understand the composition of the gas 

generated.   The percentage of CH4, CO2, and O2 was recorded, with gas composition 

records provided under Appendix B.4 – Gas Composition Records.  Toward the end of 

the experiment, the gas meter was attached individually to each of the four tedlar bags 

connected to bioreactor sets to ascertain which phase of biodegradation the bioreactor set 

was in by reviewing the proportion of percent methane, carbon dioxide, and trace landfill 

gases.  Further discussion on expected proportions of gas generation was previously 

presented in Chapter 3.  

From the characterization, it is the author’s opinion that the proportions of 

methane and carbon dioxide were decreasing from an approximate 55-45 percent split. 

This decrease indicates the majority of readily available biodegradable organic material 

has been converted to individually during the previous methane fermentation phase and at 

the time the experiment was terminated.  The data additionally supports that the 

biodegradation process was in its final phase during decommissioning of the test.  This 

generally follows the trend suggested by Tchobanglous (1993), USEPA (2003), and 

ATSDR (2008).    

Furthermore, the author discussed the phases of waste decomposition in Chapter 

2, and presented a graphic of the estimated cumulative percent mass biodegraded with 

respect to each phase after Palmisano and Barlaz (1996) as Figure 2.2.   
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The cited literature indicates that approximately 35 to 40 percent of mass has been 

degraded by the start of the final phase of decomposition.  Upon observation of the 

percent biodegraded measured by mass at the end of experiment the author concludes that 

the waste was in the final phase of decomposition as this work was concluded with 

greater than 40 percent mass degraded.  This is further supported by gas composition 

studies performed at the end of the experiment which indicate gas profile to be similar to 

that observable during the final phase of decomposition.  

5.7  Use of Loss on Ignition to Determine Percent Organic Solids 

As indicated in Section 5.4, in lieu of the (C+H)/L, the author has proposed a correlation 

with loss of mass to determine state of biodegradation of the waste.   Aside from the 

limitations of (C+H)/L, the author recognizes that the test is labor and time-intensive and 

currently only several labs are able to complete the test.  This tends to constrain the 

ability of the end-market to obtain timely test results. The author recognizes the need to 

establish a test procedure which is repeatable as well as straightforward. Providing a test 

method which can be conducted by well-equipped geotechnical/environmental labs will 

increase the appeal of the more direct test method and ultimately the end use of this work.  

To confirm the repeatability of this proposed test method, the author batched and 

tested a fresh sample of waste identical to the initial samples tested at inception of the 

experiment for percent organic solids.   A test was run both on a sample with plastic (C-

1a) and with plastics removed (C-1b).  A second set of samples, both with plastics (C-2a) 

and without plastics (C-2b), were tested on the waste which had undergone some 

degradation.   
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The samples used for the second sample set were from the original C-2 bioreactor 

sample. When the bioreactor was decommissioned, a portion of the sample was frozen 

and the other portion was used for (C+H)/L testing.  The frozen sample was thawed and 

used for this testing.   The results of the testing are provided in Table 5.13. 

 

Table 5.13  Determination and Comparison of Percent Organic Solids by Loss on Ignition 
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C-1a 
(With Plastics) 

101.63 274.12 172.49 136.96 35.33 
137.1

6 
79.5% - 

C-1b  
(No Plastic) 

103.59 238.45 134.86 132.82 29.23 
105.6

3 
78.3% 79.8% 

C-2a 
(With Plastics) 

104.23 252.83 148.60 151.45 47.22 
101.3

8 
68.2% - 

C-2b 
(No Plastics) 

101.88 231.68 129.80 149.41 47.53 82.27 63.4% 61.6% 

 

The percent organic solids measured by the author were compared against that 

obtained on comparable samples tested by Dr. Barlaz during (C+H)/L testing for this 

work. The testing results indicate similarity between the two independent analyses; 

therefore, the author believes that a level of repeatability can be readily achieved.   

A variation is noted in the percent organic solids between the samples with 

plastics and those with plastic removed.  As percent organic solids is defined as the loss 

of weight of organic matter divided by total sample weight, by removing plastics both the 

numerator and denominator are altered.  Therefore it is expected that samples with plastic 

removed will has a lower reported percent organic solids through this method. 
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CHAPTER 6 

DEVELOPMENT OF MODELS 

6.1  Development of Gas Production Model 

Multiple models were evaluated to determine the theoretical rate and quantity of gas 

production, and for determination of percent of biodegradation of the waste. The 

following models are presented and discussed to propose a model best-suited to predict 

gas production for mixed MSW waste.   

6.1.1  Determination of Field-Observable Maximum Gas Generation using Natural 

Logarithmic Regression 

The author employed the following procedure to determine the measurable end of 

biodegradation, characterized by a diminishing rate of gas production and indicating the 

substantial end of measurable biodegradation-related mechanisms. The procedure was 

also used during this experiment to validate the end of the experiment once gas flow 

meters registered no additional flow of methane gas.   The author comments that the 

procedure could be similarly used in the field to determine the total actual quantity of gas 

that can be collected and to determine the time until substantial end of measurable 

biodegradation-related mechanisms. 

The author used an analytical approach suggested by Raghu (2014) to determine 

the practical amount of gas which could be collected, and to extrapolate the gas 

production to determine the maximum gas which could be collected, ymax-actual, if the 

experiment was held until the end of biodegradation occurred.    
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In general, over 85 percent of the total actual maximum gas as predicted by this 

method which could be produced by the composite bioreactor was collected at the 

conclusion of the experiment.  

To perform the analytical approach, the author plotted the daily rate of gas 

production versus time and cumulative gas collected versus time, as indicated in Figure 

6.1 and 6.2.   The author then determined the time at which the daily rate of gas 

production peaked, identified as time t1.   The cumulative gas, y1, produced at time, t1, 

was then determined from the cumulative graph.   The gas production up to time t1 can be 

characterized as the straight-line portion of the production curve, and can be separated 

from the evaluation of the exponential curve portion to determine the remaining gas 

capable of being produced, y’max.  The total gas, ymax-actual, which can be produced is then 

defined by Equation 6.1.  The expression can be applied to both total landfill gas, or to 

the individual constituents of landfill gas such as methane or carbon dioxide. The author 

has provided calculations herewith based on methane gas to provide consistency with the 

data collected by flow meters.  

 

 

max 1 max'actualy y y    (6.1) 
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Figure 6.1  Daily Rate of Gas Production for Determination of End of Experiment 

 

 

 
 

Figure 6.2  Cumulative Gas Production for Determination of End of Experiment 
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The exponential curve portion of data collected was evaluated by adjusting data 

ordinates to begin immediately after the straight-line portion where peak gas production 

had occurred.  Adjusted dimensions are defined by Equation 6.2 and 6.3.    The author 

subsequently created a plot of y’ versus time after peak, T, as presented as Figure 6.3.  

The equation to the curve is expressed as Equation 6.4.  

 

 

 

1'y y y   (6.2) 

 

 

 

 

 

1T t t   (6.3) 

 

 

 

 

 

/( )'   y' T

ma

K

xy e  (6.4) 
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Figure 6.3  Cumulative Gas Production for Determination of End of Experiment 

 

 

By taking the natural log of the gas production after peak ( loge y’ ) and plotting 

against the inverse of T (1/T), a straight-line representation of data could be modeled as 

presented as Equation 6.5.    

 

 

 

 ' ' – /e e maxlog y log y K T   (6.5) 
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A regression line of the data would determine the slope of the line, -K, which is 

proportional to the exponential half-life decay constant, k.  Likewise the data would 

indicate the natural logarithm of the maximum gas capable of being produced, loge y’max ,  

determined when Equation 6.5  is equal to zero and intersects the x-axis. Figure 6.4 

presents the evaluation of maximum actual gas recoverable for the composite bioreactor 

for this experiment.  

 

 

Figure 6.4  Determination of ymax-actual  
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log e (y'
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  so,  y'max = e0.6127= 1.85 ft3 

 

ymax-actual  = y1 + y'max 

     y1 = 0.74 ft3 (at   t= 41 days) 
     y'max = 1.85  ft3 

 
Therefore,   ymax-actual = 0.74 +  1.85 ft3 =  2.59 ft3   (methane gas) 

 Assuming 55% CH4, actual recoverable potential = (2.59 ft3/lb)/0.55 = 4.71 ft3/lb   
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 Using the natural logarithmic method suggested by Raghu (2014), it was 

determined that the recoverable volume of methane gas which could be collected over a 

measurable timeframe is approximately 2.59 cubic feet per pound waste. Assuming a 

proportion of landfill gas consisting of 55 percent methane, the potential for actual total 

gas which can be collected is nearly 4.71 cubic feet per pound waste.   

Based on the lambda method as modified by Lifrieri (2010), the computed 

theoretical total gas potential for composite bioreactors was 6.23 cubic feet per pound 

waste, or 3.43 cubic feet of methane per pound waste for a landfill gas with 55 percent 

methane proportion.  At end of this experiment 2.55 cubic feet of methane gas, or 4.63 

cubic feet of total gas, per pound waste were collected from the composite bioreactors.  

Therefore, approximately 74 percent of gas was collected at the conclusion of the 

experiment based on theoretical potential of 6.23 pounds per cubic foot.  Based on a 

calculated total actual collectable methane gas of 4.71 pounds per cubic foot, as shown in 

Figure 6.4, 98 percent of actual gas was captured. 

Calculations for the readily and moderately degradable bioreactor set are provided 

in Appendix G – Calculations to Determine Theoretical Gas Production and End of 

Experiment.  Using the method shown above, the recoverable volume of captureable 

methane gas for the readily degradable bioreactor set was approximately 5.04 cubic feet 

per pound waste, or 9.17 cubic feet of total gas per pound waste. Calculation of the 

theoretical total gas potential by lambda method resulted in 4.97 cubic feet per pound 

waste, or 9.04 cubic feet of total gas per pound waste. At end of this experiment 4.62 

cubic feet of methane gas, or 8.41 cubic feet of total gas, per pound waste were collected 

from the readily degradable bioreactors.   
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Therefore, approximately 93 percent of gas was collected at the conclusion of the 

experiment based on theoretical potential, or 92 percent of actual gas was captured based 

on calculated total actual collectable methane gas. 

Similarly, the recoverable volume of captureable methane gas for the moderately 

degradable bioreactor set was approximately 3.32 cubic feet per pound waste, or 6.03 

cubic feet of total gas per pound waste. Calculation of the theoretical total gas potential 

by lambda method resulted in 4.64 cubic feet per pound waste, or 8.44 cubic feet of total 

gas per pound waste. At end of this experiment 2.86 cubic feet of methane gas, or 5.2 

cubic feet of total gas, per pound waste were collected from the readily degradable 

bioreactors.  Therefore, approximately 62 percent of gas was collected at the conclusion 

of the experiment based on theoretical potential, or 86 percent of actual gas was captured 

based on calculated total actual collectable methane gas. 

At the conclusion of the experiment, both the composite and readily degradable 

bioreactors had reached over 90 percent of their potential captureable gas, with the 

moderately degradable bioreactor recovering above 85 percent of its captureable gas. The 

author noted that gas flow meters indicated the methane flow through the flow meters 

were de minimis at this time; therefore the determination to conclude gas collection was 

made at this time.  The recoverable volume of methane gas being near substantially 

captured and the lack of additional flow readings able to be registered on the gas flow 

meters supported the determination to end gas collection of the bioreactors. 

The contribution due to the slowly degradable waste was neglected and not 

analyzed using this method since, compared to the readily and moderately degradable 
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fractions, the gas collected by the slowly biodegradable bioreactors is less than 1.5% that 

by the readily and moderately degradable bioreactors.  

6.1.2  Determination of Maximum Gas Generated Based on Degradable Mass 

It is difficult to measure and predict field volumes change of a heterogeneous MSW 

material, as well as the change in mass.  In the laboratory, under controlled conditions, 

changes in volume can be approximated continuously based on the volume of gas 

produced.  The change in mass can also be obtained but only at discrete intervals and 

during destructive testing.   In the field, it is difficult to obtain changes in mass as it 

requires exhuming waste samples and associated planning.  

Biodegradation can be measured in two ways: 1) mass - directly from loss of 

weight of the degradable fraction, and 2) volume – from gas production and/or 

measurement of strain. Therefore, the author is primarily determining biodegradation 

based on volume, while using the change in mass at discrete intervals as a spot check. 

Unless otherwise stated, the biodegradation referred to in this work is based on volume. 

The author notes it is possible to achieve 100 percent biodegradation ideally based on 

mass; however, it is not possible to achieve 100 percent biodegradation based on volume 

for any waste containing inert matter.  Definitions of percent biodegradation based on 

volume and mass are presented in Chapter 7.  

The percent biodegradation based on mass is computed based on data obtained 

during the decommissioning process discussed in Section 5.5.  The author used this 

information to draw a comparison to the data collected by the gas flow methods.  Table 

6.1 presents a comparison of the estimated percent biodegradation observed using several 



121 

 

 

data sources obtained from this work.  The “% Biodegraded, Weight Basis” is computed 

form decommissioning records summarized in Table 5.11.  Theoretical maximum used 

for comparison corresponds to that computed by the Lambda method as outlined earlier.   

The author notes that the percent biodegradation measured by weight basis may 

be overestimated, as the assumption is made that all loss of mass is due to complete 

conversion of biodegradable waste to landfill gases.  It is the author’s opinion that the 

constant process of leachate recirculation may contribute to dissolving of organic 

particles and physical breakdown.  This physical breakdown would further allow the 

reduced particle size to be flushed and rinsed out of the system and be reported as loss of 

mass.   

Additionally, although bioreactors were assembled with waste representing 

discrete categories corresponding to their rate of biodegradation, the author suggests that 

a portion of the waste may act at an intermediate rate and separate from the rate of the 

overall characteristic waste. For example food and yard waste, which are generally 

characterized as readily degradable, may have a portion of its waste acting as moderately 

or even slowly decomposable waste and thereby altering the assumption in which the 

waste acts homogenously as one type. 

 

Table 6.1  Comparison of Percent Biodegradation Based on Loss of Weight and Volume 

of Gas Collected 

Reactor Set 

% 

Biodegraded, 

Weight Basis 

% Gas Collected Based 

on Theoretical by Gas 

Flow Meters Basis 

% Gas Collected 

Based on Theoretical 

by Tedlar Gas Bags 

Basis 

Composite 71% 72% 85% 

Readily 90% 93% 98% 

Moderately 67% 62% 69% 

Slowly 5% - 1% 
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The author observes close agreement with percent biodegradation measured by 

mass compared against that computed based on gas collected by flow meters. Since 

percent biodegradation is based on theoretical gas production, it is the author’s opinion 

that prediction of gas production is most accurately predicted by the lambda method as 

modified by Lifrieri (2010).  The author notes that the slowly decomposable bioreactor 

set (which consisted of plastics) only lost 5 percent of its average mass during the same 

period when the composite, readily, and moderately degradable were substantially 

decomposed and lost 71, 90, and 67 percent mass, respectively, as measured at the end of 

the experiment. Therefore, the readily and moderately degradable waste fractions 

contribute to substantial amount of settlement.  Thus, for the purposes of analyzing MSW 

landfill waste, the contribution of settlement due to slowly degradable wastes may be 

neglected.  

6.1.3  Development of Waste-Specific Gas Generation Curve Using Decay Rate 

Constants  

It is one of the intents of this work to create a gas production model which accounts for 

the variability of a composite sample, and of waste of any composition. Gas production 

models with a single first-order decay rate, “k”, are currently the state-of-practice and 

used in the EPA LandGEM model accepted by industry.   

It is the author’s opinion, as well as that of several others (Findikakis et. al 1979, 

Durmesoglu et.al 2005, Lifrieri 2010), that the single decay constant used in gas 

production modeling is inefficient to represent the biodegradation of MSW.   This is a 

result of waste inherently consisting of a heterogeneous mixture of materials with 

different levels of biodegradability. Total gas production from mixed MSW can be 
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expressed as the combination of gas produced by each piece of waste, at an elemental 

basis.   Comprehensively, the individual waste items may be grouped and categorized by 

the readily, moderately, and slowly degradable descriptors defined herein this work; 

therefore, the total gas volume produced, Vt, can be expressed proportional to the gas 

produced by each waste type category. This is expressed as Equation 6.6. The inert 

fraction is not included because it does not produce gas.  

 

 

t r m sV V V V    (6.6) 

 

 

From this understanding, the author hypothesizes that an overall decay constant 

modifier for a mixed MSW sample, kc, could be determined by characterizing the mixed 

waste into representative fractions of readily, moderately, and slowly biodegradable 

components, as well as inert fraction and multiplying by respective decay modifiers to 

obtain an overall, waste-specific single decay modifier for the specific waste type.  The 

hypothesis is expressed as Equation 6.7.  

 

c r r m m s sk n k n k n k  
 (6.7) 

 

 

In the expression, nr, nm, and ns represent the percent of waste of readily, 

moderately, and slowly biodegradable waste fraction comprising the composite basis.  

Derivation of Equation 6.7 from Equation 6.6 is provided in Appendix F – Derivation of 

Equations.  
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Using the above basis, the author graphically plotted the data obtained from gas 

flow meters for the composite, readily, and moderately degradable bioreactor sets.   The 

graphic is shown as Figure 6.5.  It is noted that the gas generation from the slowly 

degradable bioreactor set is not visible on the graphic, as the flow of gas is magnitudes of 

scale lower in comparison to the other fractions. Additionally gas generation data from 

the slowly degradable bioreactor set was collected using tedlar gas bags; therefore, daily 

methane gas generation must be approximated based on the limited data available.  

 

 

Figure 6.5 Comparison of Daily Methane Gas Flow Rate Obtained By Composite, 

Readily, and Moderately Degradable Methane Gas Flow Meters 
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Subsequently, for the composite waste tested during this experiment consisting of 

25 percent readily decomposable fraction, 43 percent moderately decomposable fraction, 

and 12 percent slowly decomposable fraction, the author plotted data obtained from the 

composite gas flow against a calculated gas flow curve based on proportion of wastes and 

readily and moderately gas flow meter data. The graphic is shown as Figure 6.6.  The 

author believes that the calculated gas generation curve is in close agreement with the 

actual gas generation curve obtained from flow data for the composite bioreactor set.   An 

independent confirmation of this was performed data provided by Lifrieri (2010). Both 

confirmed that the method of superposition is applicable.  

 

 

Figure 6.6 Comparison Of Calculated And Actual Daily Methane Flow Rate For 

Composite Waste 
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The author completed a sensitivity analysis, varying the proportion of readily 

degradable waste by 5 percent above and below the composition evaluated, and 

conversely decreasing and increasing the proportion of moderately degradable by 5 

percent, respectively, to understand the influence of a minor adjustment caused by 

changes in waste stream and composition.   Figure 6.7 indicates the results of the 

sensitivity analyses conducted for both the upper and lower bound. The author comments 

that the results from the upper bound are in very close agreement with those from the 

actual observed actual gas collected based on the composite gas flow totalizer. Therefore, 

a minor adjustment of even 5 percent may create a better fit or influence the calculated 

peak gas flow rate.  

 

 

Figure 6.7  Lower Bound And Upper Bound Sensitivity Analyses Comparison To Actual 

Daily Methane Flow Rate For Composite Waste 
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The author observes that the limitation of generalizing waste into three discrete 

categories (readily, moderately, slowly biodegradable) forces the assumption that the 

waste will act only at the rate of decomposition assigned to one of the three waste types, 

and that no portion of the waste will act at an intermediate rate. For example, all 

constituents of the readily degradable fraction are assumed to act at the single decay 

constant assigned for the readily degradable waste. As waste is inherently heterogeneous, 

different portions of the waste will decompose at a variable rate; therefore the author 

recommends performing sensitivity analyses on the waste composition to create an upper 

and lower-bound value for the single decay constant modifier, kc, when employing the 

method in practice.   

 The author further tested the hypothesis of superposition by evaluating component 

modifiers obtained from measurements of actual total gas collected as indicated in 

Section 5.2. Using Figures 5.10, 5.12, and 5.14 for readily, moderately, and slowly 

degradable bioreactor sets, respectively, component modifiers based on total gas 

production of 0.045, 0.012, and 0.0021 year
-1 

are obtained for each of the respective 

bioreactor sets.  Using the waste profile for composite waste, a calculated composite 

decay modifier, kc , of 0.0167 year
-1 

can be obtained. This is in close agreement with the 

observed actual composite k of 0.0170 year
-1

 from the composite bioreactor. A similar 

agreement was achieved from the data collected by Lifrieri (2010) as discussed earlier.   

It is therefore the author’s opinion that a waste-specific, single decay constant 

modifier can be created by combining the individual, proportioned decay rates of each 

material class as confirmed by the observations of this work.  
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The above work provides support that the theory of superposition is a viable 

assumption even given the variations in waste types and inherent heterogeneity of 

operating conditions and waste types for landfill. 

6.1.4  Determination of Half-Life Coefficients and Discussion of Half-Life Gas 

Generation Curve  

As discussed in Section 3.3, Findikakis and Leckie (1979) developed the first model to 

relate the half-life decay concept to landfill gas production. Subsequently, Durmusoglu et 

al. (2005) produced a similar variation of the original model and introduced the concept 

of the total gas production rate to develop both the gas remaining and the cumulative gas 

production through the use of the lambda method.  The lambda method was further 

refined by Lifrieri (2010), and was used to determine a more accurate model for 

theoretical gas potential as a function of time.  

This author clarifies that the half-life decay modifiers proposed by Findikakis are 

not directly comparable to the single decay constant discussed in Section 6.1.3, as 

Findikakis’ modifiers are based on waste half-life and are obtainable by plotting the 

inverse of the cumulative gas production curve (gas remaining) versus time.  The single 

decay constants developed in Section 6.1.3 are obtained by plotting daily gas production 

and curve-fitting the exponential decay of the gas production from the time of peak gas 

production and onward. The single decay constant concept is more closely relatable to 

that utilized by industry-standard EPA LandGEM model.  Therefore, the author 

emphasizes a differentiation between the variables, with single decay constants identified 

as kc , kr , km , and ks  and half-life decay modifiers as λc,  λr , λm , and λs  for composite, 

readily, moderately, and slowly degradable waste categories, respectively. 
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In the field, half-life is arrived using recommendations by multiple authors 

(Reinhart and Barlaz 2010, Barlaz et. al 2009, Pacey et. al 1996, USEPA 2003, Waste 

Management 2012, Metha et. al 2002) based on the required closure period for a landfill, 

or the time at which “substantial decomposition” has completed.  The author clarifies that 

“substantial decomposition” is defined as complete degradation of readily degradable 

fraction, and considerable decomposition of moderately degradable fraction.  The time at 

which this occurs does not indicate the point when all waste has reached practical end of 

decomposition.    

The author explains this by using an example of the components within the 

moderately decomposable waste fraction which consist of various newsprint and paper 

products.  A portion of these constituents, such as glossy magazines, coated and treated 

wood, and textiles have covered fibers will take longer to reach decomposition than those 

products which have exposed fibers such as raw wood, newsprint, and office paper. 

Therefore, although complete decomposition of all of these constituents may not occur by 

the end of the closure period, the rate at which these remaining constituents decompose 

and gas is produced is slower than during the closure period.   

 For a traditional landfill, the closure period is well-defined in industry as 30 

years. This 30 year closure period corresponds to a half-life decay constant equal to 0.023 

year
-1

.  Numerous sources within the United States (USEPA 2005, 2010) and 

internationally (EC 2006) recognize the state-of-the practice and understanding of this 30 

year half-life time for traditional landfills and suggest a half-life decay constant between 

0.02 year
-1

and 0.04 year
-1

 (USEPA 2005). The solid waste industry (Waste Management 
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2005) likewise also corroborates these recommendations through field observations 

conducted across over 78 landfills across the United States and internationally.  

During his work, Lifrieri (2010) performed iterative analyses on waste half-life 

using decay factors suggested by Findikakis and Leckie (1979) and Durmesoglu et. al 

(2005) to determine the percent biodegradation of a sample at various years and 

determine the theoretical time to complete end of biodegradation. Based on his work, at 

30 years, the theoretical percent biodegradation is 49.7 percent for a composite waste 

sample with similar waste composition tested herein. This additionally supports the 

understanding that the theoretical half-life of a traditional MSW landfill is approximately 

30 years.   

The author clarifies that, although the closure period theoretically represents half-

life of the waste, observation of gas recovery and settlement readings may suggest a 

greater practical percent decomposition such as 75 to 90 percent biodegradation.  The 

author notes that the explanation for this is similar to the field-observable maximum gas 

generation concept suggested in Section 6.1.1 of this work.  

Additionally, in a laboratory environment, the efficiency of gas collection systems 

can be 90 percent or higher (De la Cruz and Barlaz, 2010); however field-efficiency of 

gas recovery systems may vary between 5 to 50 percent (Barlaz et. al 2008, Reinhart and 

Barlaz 2010, SCS Engineers 1997).   Variability in recovery efficiency can be attributed 

to landfill geometry and environment, such as liner and cover materials, cover 

maintenance, design and installation of gas extraction systems, and other factors.  In a 

comparison of gas extraction system efficiencies undertaken by SCS Engineers (1997) it 

was noted that the principal reason for landfills with low efficiency systems was that 
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methane recovery was not maximized, and that only enough landfill gas was recovered to 

support low-power energy equipment.   

Therefore, although the theoretical half-lives for a traditional landfill and 

bioreactor landfill are 30 years and between 8 and 15 years, respectively, practically this 

may be beyond t50 as expected by gas production as the efficiency of the system will only 

allow a recovery of a portion of the gas produced.  

On the characteristics of a bioreactor landfill, De la Cruz and Barlaz (2010), 

Barlaz et. al (2008), and Hossain (2003) conducted studies to compare between the 

behavior of a traditional landfill and bioreactor landfill.  Although the total quantity of 

gas which can be produced is identical for either method, the rate at which gas production 

and waste stabilization occurs for a bioreactor landfill is more rapid than that of a 

traditional landfill. The author has provided background regarding this in Section 3.1.   

Figure 3.1 depicts the traditional landfill gas production curve and a more peaked, narrow 

bioreactor landfill gas production curve.   

The work conducted by the abovementioned researchers found that the gas decay 

constant (“k”) for a bioreactor landfill is between two and three times that of a traditional 

landfill.  Barlaz et. al (2010) and Tolaymat et. al (2010) recommend a decay rate of 

between 0.04 year
-1

and 0.08 year
-1

for landfills that are wetter than normal or have some 

leachate circulation (most landfills), and between 0.08 to 0.12 year
-1 

for bioreactor 

landfills.  Both groups of researchers recognize expert judgment must be utilized when 

selecting the decay constant for bioreactor landfills, as the rate constant of 0.12 year
-1 

is 

for ideal and accurately controlled conditions. The national average for all landfills based 

on expert judgment is closer to 0.052 year
-1 

(EPA 2010).   Using an average wet decay 
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rate constant of 0.06 year
-1 

and an average bioreactor decay rate constant of 0.1 year
-1

, the 

corresponding half-life for a bioreactor landfill is between 7 and 11 years.   

Several authors including Pacey et. al (1996), USEPA (2003), and Metha et. al 

(2002), have suggested the half-life period for a bioreactor landfill is between 10 to 15 

years.  Industry (Waste Management, 2005) and practicing professionals in the solid 

waste consulting field (SCS Engineers, 2014) likewise suggest a closure period of 10 to 

15 years for bioreactor landfills.  Based on a half-life of 30 years for a traditional landfill 

and the sources captioned above, the author suggests it is not unreasonable that the half-

life of a bioreactor landfill can then be between 8 and 15 years. 

For this work, the half-life decay modifier, λ , is calculated by determining the 

time for waste half-life, and successively by first-order kinetics using Equation 3.8.   By 

plotting the total gas remaining as a function of time, the author computed the time at 

which 50 percent of theoretical gas potential is collected, or the time for waste half-life. 

The author has presented this graphically as Figure 6.8, Figure 6.9, Figure 6.10, and 

Figure 6.11 for the composite, readily, moderately, and slowly degradable bioreactors, 

respectively.    

The half-life decay modifiers can also be directly calculated by plotting the total 

gas remaining as a function of time and curve fitting an exponential decay regression 

across the data. The exponent variable observed from the regression is then the directly 

calculated half-life decay constant. The author has presented this technique graphically as 

Figure 6.12, Figure 6.13, Figure 6.14, and Figure 6.15 for the composite, readily, 

moderately, and slowly degradable bioreactors, respectively.     
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Figure 6.8   Determination of Half-Life Time Based on Percent Total Gas Collected for 

Composite Bioreactors 

 

 
Figure 6.9   Determination of Half-Life Time Based on Percent Total Gas Collected for  

Readily Degradable Bioreactors 
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Figure 6.10  Determination of Half-Life Time Based on Percent Total Gas Collected for 

Moderately Degradable Bioreactors 

 

 
Figure 6.11  Determination of Half-Life Time Based on Percent Total Gas Collected for 

Slowly Degradable Bioreactors 
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Figure 6.12  Determination of Calculated Half-Life Decay Constant Based on Total Gas 

Remaining for Composite Bioreactors 

 

 
Figure 6.13  Determination of Calculated Half-Life Decay Constant Based on Total Gas     

Remaining for Readily Degradable Bioreactors 
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Figure 6.14  Determination of Calculated Half-Life Decay Constant Based on Total Gas 

Remaining for Moderately Degradable Bioreactors 

 

 
 

Figure 6.15  Determination of Calculated Half-Life Decay Constant Based on Total Gas 

Remaining for Moderately Degradable Bioreactors 
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The author has provided Table 6.2 to present the results of the analyses and 

provide a comparison of the half-life decay constants computed. Using half-life decay 

modifiers of 6.609, 1.723, and 0.011 year
-1

 for the readily, moderately, and slowly 

degradable bioreactor sets, respectively, and the waste profile for composite waste, a 

calculated composite half-life decay modifier, λc , of 2.394 year
-1

 is obtained.  This is 

within 5 percent of the observed actual λc of 2.534 year
-1

 from the composite bioreactor.  

The author notes that is only an approximate method since the weighted average concept 

will apply for the exponential portion of the rate of gas generation versus time graph, and 

the straight line portion is not considered. Therefore a variation, such as the 5 percent 

observed above, is observed for the waste tested in this study. 

 

Table 6.2  Summary and Comparison of Calculated Half-Life Decay Constants 
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Composite λc 85 0.233 2.980  - 2.534 - - 

Readily λ1 40 0.110 6.320 0.139 6.609 25% 1.652 

Moderately λ2 137 0.375 1.850 0.023 1.723 43% 0.741 

Slowly λ3 18250 50 0.010 0.017 0.011 12% 0.0013 

  

The author comments that a comparison to the half-life decay modifiers suggested 

by Findikakis and Leckie (1979) and Durmesoglu (2005) is included in the summary 

provided as Table 6.2.   
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6.1.5  Discussion of Laboratory and Field Values of Lambda 

Upon review of the data, a substantial difference is noted between the two.  It is 

understood that the half-life times and half-life modifiers by Findikakis are based on field 

conditions, whereas those which are calculated herewith evaluate the waste in a 

controlled laboratory condition.  Under field conditions, the effects of sample size, 

heterogeneity of waste, movement of landfill gases, environment, and other factors are 

amplified, which influence the quantity and rate of gas production and therefore the 

resulting waste half-life.  This is corroborated by several authors (Barlaz et al. 1990) who 

have noted that actual full-scale landfill gas collection records indicated lower yields and 

rates of gas production in comparison to laboratory estimates.   

Additionally, the author remarks that the half-lives suggested by Findikakis are 

for raditional landfills, while this author’s work is conducted to simulate a bioreactor 

landfill with enhanced capacity to accelerate the rate of biodegradation.  The nature of the 

bioreactor environment inherently suggests that the waste would degrade at an 

accelerated rate, thereby decreasing the waste half-life time and increasing the half-life 

decay modifier as shown by this work.  This is supported by multiple authors, including 

Hossain (2003), Pohland and Kim (2003), USEPA (2003), Reinhart and Townsend 

(1998), and Pohland and Al-Yousfi (1994), with additional background provided in 

Chapter 3.  Therefore, the modifiers presented by Findikakis (1979) and successively 

promoted by Durmesoglu (2005) to determine the rate of gas production would not be 

applicable for use in this study.  However, the total quantity of gas using the modifiers at 

end of decomposition should be similar. The work completed herein supports the above 

contention.   
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Half-life decay constants obtained from gas collection records from such 

bioreactor or leachate recirculation landfills in operation for 15 years or longer would be 

applicable to this work. 

6.1.6  Discussion of Preferred Gas Production Model  

As the author has evaluated several methods to determine theoretical gas potential herein 

this work, Table 6.3 is provided for a comparison of the results compiled through the 

evaluation of various models.   

 

Table 6.3  Comparison of Theoretical Gas Potential for Various Methods 

Method 
(Listed Highest to Lowest Composite Potential) 

Theoretical Gas Potential [ft
3
/lb waste] 

Readily Moderately Slowly* Composite 

Stoichiometry  

    (Ham et. al  1979, Tchobanoglous      

      1993, Barlaz  1990) 

11.89 12.00 13.22 9.75 

Half-Life Decay Modifiers 

    (Findikakis  1979, Durmusoglu  2005) 
9.40 14.10 7.83 9.35 

Mass Degradation 

    (Shah  2015) 
9.31 7.75 5.70 6.35 

Modified Lambda Method  

    (Lifrieri 2010) 
9.04 8.27 11.29 6.23 

Modified SIMCON Model 

    (Raghu and Gausconi  2002) 
- - - 5.58 

LandGEM Model  

    (EPA  2005) 
- - - 5.45 

Natural Logarithmic Regression - ymax      

    (Shah  2015) 
9.17 6.03 12.80 4.47 

AVERAGE - ALL METHODS 9.76 9.63 10.17* 6.74 

Note:   *Please refer to discussion in next paragraph 
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The author and several others (Shah et. al 2007, Ishigaki et al. 2003, 

Tchobanoglous 1993, Albertson et. al, 1987) note the inability to directly use of 

stoichiometric and mathematical models to predict the gas for plastics (noted with 

asterisk above).  Models for plastic, which comprise the “slowly degradable” 

composition waste used during this research, greatly overestimate the theoretical gas 

production.  As the nitrogen content of plastics is diminutive in comparison to other 

elements, normalization with respect to nitrogen will produce an elemental expression of 

the waste with exaggerated proportions of carbon, hydrogen, and oxygen, and thus an 

overestimated theoretical gas production.   

It is observed that theoretical gas production for slowly decomposable wastes is 

most accurately described by comparison of total gas collected and measurement of 

actual mass degradation. Ishigaki et al. (2003) suggest that actual theoretical gas 

production of plastics is between 30 to 50 percent of the calculated stoichiometric 

potential, which this author has evaluated to be 13.22 cubic feet per pound waste.  The 

theoretical potential of 5.70 cubic feet per pound waste predicted by this author based on 

mass degradation falls within the range of 3.97 and 6.61 cubic feet per pound waste 

suggested by Ishigaki et al. 

Similarly, it was previously concluded by this author that the method of 

superposition is a viable assumption to predict the total gas potential and rate of 

decomposition. As such, utilizing the composite waste profile evaluated during this work 

consisting of 25 percent readily, 43 percent moderately, 12 percent slowly decomposable 

waste, and remaining inert matter, an average calculated theoretical gas potential for the 

composite waste can be produced for each method.   
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Table 6.4 evaluates these calculated composite gas potentials based on various 

methods. For a specific waste utilized in this study, the results of this comparison indicate 

an average calculated theoretical gas potential of 6.93 cubic feet per pound waste, which 

is within 3 percent of the average of all methods directly predicting the theoretical 

composite gas potential.  However, the author notes that the method of superposition to 

predict total gas potential gives a general estimate for total gas potential of a composite 

waste.  This is due to the limitations of using weighted modifiers for calculating 

composite lambda (half-life constant) as presented earlier. 

 

Table 6.4  Comparison of Calculated Theoretical Gas Potential for Composite Waste 

Based on Various Methods 

 

Method 
(Listed Highest to Lowest Potential) 

Computed Theoretical Gas 

Potential for Composite Waste 

Based on Proportions 

[ft
3
/lb waste] 

Average of “AVERAGE - ALL METHODS” 7.80 

Modified Lambda Method  

    (Lifrieri 2010) 7.17 

Natural Logarithmic Regression - ymax      

    (Shah  2015) 6.42 

Mass Degradation 

    (Shah  2015) 6.34 

Average from all calculated Composite: 6.93 

 

 

It is the author’s opinion that a joint evaluation of both actual gas produced and 

actual mass degraded is the best way of predicting gas production and time remaining for 

end of decomposition.  However, the author understands this may work only in a 

laboratory environment as the difficulty of collecting all landfill gas produced and 

regulatory constraints associated with exhuming waste from a landfill may prohibit the 

practicality of making such measurements.  
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In Table 6.1, the author compares the percent biodegraded based on actual mass 

degraded to percent of gas collected based on a theoretical gas potential by the lambda 

method as modified by Lifrieri (2010).  It is the author’s opinion from the comparison 

that the two methods produce results within a 15 percent range.  Therefore, as an 

alternative to using actual mass degraded as suggested above, it is the author’s opinion 

that prediction of gas production by the lambda method as modified by Lifrieri (2010) is 

most suitable for estimation of gas production, to determine percent biodegraded, and to 

determine time to end of biodegradation.  

6.2  Development of Settlement Model Using Analyses of Biodegradable Mass 

In order to assess the settlement of a landfill, the percentage change of volume with 

respect to time must be obtained.  This percent volume change can be computed based on 

gas collection measurements. From the percent volume change, the percent strain 

(settlement) as well as percent biodegradation can be estimated. Since the areal extent of 

the landfill is quite large compared to its thickness, the volumetric strain can be 

approximated to be equal to the vertical strain of the landfill (its thickness). Two methods 

are presented herein to predict the settlement characteristics due to biodegradation. The 

first method is based on estimating percent degradation directly from loss of weight of 

degradable substances and/or gas production, whereas the second method is based on 

estimating biodegradation from field measurements of strain (settlement). The 

development of the model for both methods one and two will presented based on data 

from the composite sample only.  
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6.2.1  Method One – Mass Basis 

The first method can be used for a scenario where a destructive sample of landfill waste 

can be obtained at multiple depths of the landfill thickness, or gas flow records are 

available. Although this destructive sampling is generally costly and involved, the author 

is aware of several landfills where destructive sampling is being carried out on regular 

intervals (Yazdani et. al 2006).  

In the first method, plots for percent volume change with respect to time, percent 

biodegradation with respect to time, and percent strain with respect to time will be 

developed. The procedure for such method is presented here.  To determine the 

magnitude of biodegradation of a given layer, the use of the biodegradation ratio, B, is 

introduced. The Biodegradation Ratio “B” at any time may be expressed as the total 

decomposed weight normalized by the weight of initial degradable weight, and as 

presented as Equation 6.10.  

 

( ) (1 )
mass

tot inert tot

W W
B

W W W R

 
 

 
 (6.10) 

 

 

 

The variable ∂W indicates loss of weight of degradable substance and is a 

function of time. Variable Wi is the initial total waste of the sample, while Winert is the 

weight of the inert portion of the sample.  The initial degradable weight of the waste 

sample can be determined by landfill and waste stream records of the placed waste.   The 

loss of weight, ∂W, at any time can be obtained directly if a destructive sample can be 

taken. The author recommends determining the portion of total decomposed weight of the 

exhumed sample through loss on ignition.   
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 In the expression presented as Equation 6.10, the inert waste divided by the 

degradable waste is expressed as inert weight ratio, R, and as defined in Equation 6.11.  

The ratio R can be obtained knowing the initial waste composition and percent inert 

matter of the composite waste.  A value of 0.19 (19 percent) for R is evaluated for the 

work conducted herein based on the composite waste profile.  

 

inert

i

W
R

W


 

(6.11) 

 

6.2.2  Method One – Volume Basis 

The Equations 6.10 and 6.11 are based on defining biodegradation from loss of weight. 

However, biodegradation can also be computed based on volume measurements. To 

obtain a plot of percent biodegradation versus time for volume, the total theoretical gas 

potential must be determined.  This is discussed in Chapter 3.  The percent 

biodegradation at any time can be obtained by taking the cumulative volume of gas 

produced divided by the theoretical maximum at that given time.  This is expressed as 

Equation 6.12.  From this information, a plot of percent biodegradation versus time can 

be developed. The terms Vcumulative and Vtheoretical indicate cumulative volume of gas 

collected up to time of interest and total theoretical gas potential, respectively.  

 

 

% ( ) 100%cumulative
volume

theoretical

V
B

V
   (6.12) 
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A plot of percent biodegradation by mass compared to percent biodegradation by 

volume versus time is presented as Figure 6.16.  This graph will be further discussed in 

Chapter 7.  

 

 

Figure 6.16  Comparison of Percent Biodegradation by Mass and Volume 

 

For the computation using mass, by dividing the numerator and denominator of 

the expression provided as Equation 6.10 by area and unit weight, a relationship can be 

developed to determine the change in height at any time of the layer based on the 

biodegradation ratio at that time and original layer height. This expression is defined as 

Equation 6.13.   For volume, percent biodegradation can be taken directly as expressed in 

Equation 6.12. 
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(1 )

h
B

h R





 (6.13) 

 

 

 

 

The biodegradation ratio alone is not directly related to vertical strain, and should 

not be taken synonymously as vertical strain.  By calculating the change in height of the 

layer as indicated above, the vertical strain can then be determined by Equation 6.14.  

Derivation of the equation is provided in Appendix F – Derivation of Equations.  

 

 

(1 )z B R  
 (6.14) 

 

 

 

 

 

For this work, the percent biodegradation is computed using the volume 

relationship and gas collection data.  This is based on the premise that the percent 

biodegradation due to volume is equal to percent biodegradation due to weight.  More 

discussion regarding the applicability and limitations of this assumption are discussed in 

Chapter 7.  

In order to create a unit-less ratio for field data comparison, time has been 

normalized to t50 which is the half-life of degradable components of the MSW. This is 

similar to the concept used by Durmesoglu et. al (2003), Findikakis and Leckie (1979), 

and the premise of first-order decay.  
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The author suggests generation of the following series of curves for the composite 

bioreactors to relate the gas production, the biodegradation ratio, and strain: 

 

 Cumulative Total Gas Collected [ft
3
/lb waste] versus Time, t 

   (Figure 6.17) 

 Loss of Biodegradable Weight [lb] versus Time, t           

   (Figure 6.18) 

 Biodegradation Ratio, B, versus Time, t        

   (Figure 6.19) 

 Biodegradation Ratio, B, versus Normalized Time, t/t50        

     (Figure 6.20) 

 Strain, εz, versus Normalized Time, t/t50        

     (Figure 6.21) 

 Percent Biodegradation Remaining [%] versus Normalized Time, t/t50       

   (Figure 6.22) 

 

Table 6.5 has been provided to list the input data and sources used to generate the 

curves for the composite waste tested. 
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Table 6.5  Data Utilized to Correlate Gas Production to Biodegradation Ratio and Strain 

for Composite Bioreactors 
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9 0% 0.000 0% 0.138 0.00 100% 1.70 

14 1% 0.019 1% 0.215 0.01 99% 1.68 

17 2% 0.038 2% 0.262 0.02 98% 1.66 

19 3% 0.056 3% 0.292 0.03 97% 1.64 

20 4% 0.075 4% 0.308 0.04 96% 1.62 

21 6% 0.096 6% 0.323 0.05 94% 1.60 

22 7% 0.115 7% 0.338 0.05 93% 1.58 

23 8% 0.129 8% 0.354 0.06 92% 1.57 

24 8% 0.143 8% 0.369 0.07 92% 1.55 

25 10% 0.162 10% 0.385 0.08 90% 1.54 

26 11% 0.180 11% 0.400 0.09 89% 1.52 

27 12% 0.199 12% 0.415 0.09 88% 1.50 

28 13% 0.220 13% 0.431 0.10 87% 1.48 

29 14% 0.239 14% 0.446 0.11 86% 1.46 

30 16% 0.276 16% 0.462 0.13 84% 1.42 

65 50% 0.848 50% 1.000 0.40 50% 0.85 

… … … … … … … … 
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 

1056 95% 1.612 95% 1.00 0.77 5% 0.08 

Note: Select data shown to represent example calculations used for graph data source 

DATA USED FOR CALCULATIONS 

Wi = 2.1 lb          Winert = 0.4 lb R =  (Winert/Wi ) =  0.19 t50 = 65 days 

Formulas used: 

 Column 1 = From total gas collection data collected by experiment 

 Column 2 = From total gas collection data collected by experiment 

 Column 3 = Column 2 x (Wi-Winert)  

 Column 4 = Column 3 / (Wi x [1-R]) 

 Column 5 = Column 1 / t50 

 Column 6 = Column 4  x (1-R) 

 Column 7 =  (1 - Column 4) x 100% 

 Column 8 =  (Wi – Winert) – Column 3 
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Figure 6.17  Cumulative Total Gas Collected [ft
3
/lb waste] versus Time, t 

 

 

Figure 6.18  Loss of Biodegradable Weight [lb] versus Time, t           
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Figure 6.19  Biodegradation Ratio, B, versus Time, t 

 

Figure 6.20   Biodegradation Ratio, B, versus Normalized Time, t/t50        
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Figure 6.21   Strain, εz, versus Normalized Time, t/t50        

 

 

Figure 6.22   Percent Biodegradation Remaining [%] versus Normalized Time, t/t50       
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The above process can be repeated and a settlement for each layer determined.  

The overall settlement as a result of mass degradation at any time may then be predicted 

by the addition of all the individual layer settlements.  If the properties of a waste with a 

composition different from that tested for this study are required, the procedure in Table 

6.6 may be used.  

 

Table 6.6  Procedure to Obtain Characteristic Curve of Any MSW Composition 

 

Step Action 

1 

Determine the rate of gas production (dy/dt) versus time plot for the 

composition of the given MSW from the corresponding plots of readily and 

moderately degradable wastes using weighted averaging.         

2 
Determine the volume of gas produced (y) versus time plot for the composition 

of the given MSW by integrating the plot obtained from step 1 above. 

3 
Determine the theoretical maximum volume of gas collected using the modified 

Lambda method. 

4 
Using the graph created from Step 2, determine t50 , the time when 50% of 

theoretical gas is collected. 

5 

Determine the strain versus time plot for the given composite MSW. Also 

obtain the corresponding plot between percent volume change versus 

normalized time plot for the given composite MSW. The plot of strain versus 

normalized time should be used for analyses.   

6 

Determine the plot between percent biodegradation (based on volume) versus 

time plot for the given composite MSW.   Also obtain the plot between percent 

volume change versus normalized t/t50 for the given composite MSW.   The 

plot of percent biodegradation versus normalized time should be used for 

analyses.   

 

The procedure above has been used to validate settlement of the Yolo County 

landfill evaluated in Chapter 7.  
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6.2.3 Laboratory to Field Scaling of Biodegradation and Settlement for Method One  

The author comments that all of the previous modeling and information presented so far 

on biodegradation has been provided for laboratory conditions for one layer only.  In the 

field, there are several layers of waste placed at different time intervals. Each layer will 

have its own separate state of biodegradation and settlement characteristics. For a landfill 

with n layers, an average biodegradation for the field condition can be computed as 

expressed in Equation 6.15 and 6.16. 

 

1

1 n

avg i i

itot

B B h
h 

   (6.15) 

 

 

 

 

1

n

tot i

i

h h


  (6.16) 

 

 

If the percent biodegradation for one layer is known, the author has provided the 

procedure to obtain biodegradation for several layers as shown as Figure 6.23. If the 

percent strain for one layer is known, a similar approach can be used to determine the 

strain of other layers.  For this procedure the sequence of filling, thickness of each lift, 

and the time between placing each lift must be known.  This is normally available from 

landfill records.   The procedure is outline as Table 6.7. 
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Table 6.7  Procedure to Obtain Average Percent Biodegradation and Strain Based on 

Individual Layers 

 

Step Action 

1 Obtain sample from layer 1 and determine B1 

2 Using Chart 4, locate point A for associated B1  

3 Using the time between lifts, tab, normalize with t50 to calculate Tab  and T2    

4 Using Percent Biodegradation (Chart 4), determine B2 at normalized T2/t50 

5 
Repeat procedure for other lifts to establish percent biodegradation (B) for each 

layer 

6 
Determine average percent biodegradation (Bavg) for the entire landfill using 

Equation 6.15 

7 
Once Bavg is determined, average strain (settlement) can be obtained by 

Equation 6.14  

  Calculating average strain based on one known strain 

8 Using Chart 5, determine associated point A and Strain, ε1 

9 Determine settlement for layer 1 using initial layer thickness, H1, and ε1 

10 Repeat above steps 1-4 for additional layers 

11 Sum all individual settlements for total settlement at landfill at any given time 

12 
Percent strain can be determined by total settlement divided by landfill 

thickness 

Note: This procedure for a landfill with each layer having similar composition 

 

 

The practical application of this model is to predict the settlement and 

biodegradation characteristics of a new landfill with several layers, and integrating this 

information into the design of the proposed landfill for planning.  It can also be used to 

predict vital information such as time to substantial biodegradation and closure period. 

This model can also be used to predict the existing state of biodegradation of any landfill 

in operation. It can also predict subsequent biodegradation and strain (settlement) 

provided landfill records and waste composition are known.    This technique along with 

the first method of the model is used to perform the field validation of settlement of the 

two selected landfills in Chapter 7.  
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6.2.4  Method Two – Field Basis  

The second method for analysis is suggested by the author to be used under a scenario 

when gas generation data and a destructive sample of landfill waste cannot be obtained.  

In this scenario, an average percent biodegradation will be established for the entire 

thickness of the landfill from the settlement data. Using the topographic data and using 

the strain at least four discrete time intervals, the field half-life constant can be calculated. 

This constant can be determined as the slope of a best-fit straight line between the natural 

log of strain versus time for the data set.   The author derived the expression shown as 

Equation 6.17 to determine the field half-life coefficient knowing the strain between two 

time intervals.  Derivation of the equation is provided in Appendix F – Derivation of 

Equations. In the expression, εz1 and εz2 are the average strain (%) for the year of interest 

and t1 and t2, respectively.
  
 

 

1 2

2 1

log (1 ) log (1 )e z e z

field
t t

 


  



 (6.17) 

 

 

By knowing the field half-life constant, a plot of strain with respect to time can be 

established.  Likewise, the half-life constant can be used to find t50.  Therefore, a strain 

versus normalized time ratio plot can be established using this half-life constant.  An 

average percent biodegradation plot can subsequently be established by the known 

relationship between B and strain as discussed earlier.  
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It is the author’s experience that exhuming of waste in a landfill may be regulated 

in certain locations, thereby requiring stringent permits for landfill disruption, specific 

requirements for excavation of waste, and financial implications to advance the process. 

While the author suggests destructive sampling and testing as in method one is the best 

method to determine actual characteristics of individual waste layers, it is recognized that 

landfill owners and operators may prefer a non-destructive sampling approach.    

It is suggested to use historic topographic surveys of the landfill and waste 

placement records to aid in the prediction of settlement through this model.  The 

settlement can then be determined by taking the difference between the topographic 

surveys at the end and start of the evaluation, and subtracting the thickness of additional 

waste placed since the start of the evaluation. The thickness of additional waste placed 

can be determined from landfill records.   At least four years of topographic survey data 

are required for comparison.  

For this study, method one is preferred as substantial data is available to support 

its use. Method two is provided as an approximation for preliminary analysis for landfill 

owners and operators.  

6.3  Discussion of Consolidation Test Results and Settlement Model 

From consolidation test readings, at termination of the experiment, 53 percent strain is 

observed as shown in Figure 5.17.  Predicted strain due to mass decomposition indicates 

68 percent strain as shown in Figure 6.21.   The discrepancy may be due to soil arching, 

localized pockets of inert material, and size effects and overall heterogeneity of the 

waste. 
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Based on the characteristic curve provided as Figure 6.21, for a strain of 53 

percent, the percent biodegradation is estimated to be 80 percent using Figure 6.20.  This 

validates that the deformation is not complete, and that additional strain is expected.    

This is likely to be attributed to the presence of plastics, which require a much longer 

time for degradation.   The author believes that the maximum strain expected to occur 

will be 68 percent based on mass lost. Additional discussion on the consolidation data is 

beyond the modified scope of this work as discussed in Chapter 5.  
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CHAPTER 7 

VALIDATION OF MODEL 

7.1  Validation of Model on Actual Landfill Data 

This section discusses the validation of the model and the mass-degradation relationship 

proposed in Chapter 6.   Two validation cases have been reviewed, one for a bioreactor 

landfill located in Cape May County, New Jersey and one for a bioreactor located in Yolo 

County, California.  The cases were chosen to provide one landfill (Cape May County) 

with waste composition similar to the representative waste composition used for this 

experiment, and with comparable temporal, climatic, and regional variations for the waste 

constituents and landfill environment.  The second (Yolo County) landfill allowed the 

author to draw a comparison for a differing waste composition and a substantially 

different climatic environment.  

7.2  Model Validation on Cape May County Bioreactor Landfill 

7.2.1  Description of Cape May County Bioreactor Landfill 

The Cape May County Bioreactor Landfill, operated by the Cape May County Municipal 

Utilities Authority (CMCMUA) is located in the Borough of Woodbine, Cape May 

County, New Jersey.   The landfill complex, which is situated on an approximately 478-

acre parcel, accepts non-recyclable waste from all sixteen Cape May County 

municipalities.  
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The CMCMUA’s MSW landfill complex consists of a double-lined landfill 

system with multiple cells.  For the purposes of this work, attention is directed toward 

Cell 1E, one of three landfill cells located on 42 adjacent acres of area and which was 

designed and planned as a bioreactor landfill.  The bioreactor design intended to inject 

leachate and optimize methane gas generation and collection to support waste-to-energy 

processes.   The cell was lined and began accepting MSW waste in 2003.  The cell 

stopped receiving waste in late 2007 after reaching capacity and was capped using a 

typical cap system (CMCMUA 2013).  

7.2.2  Available Data from Cape May County Bioreactor Landfill 

To support the use of the proposed model, it was anticipated that information regarding 

the waste composition, incoming tonnage records, and topographic data would be 

required, at minimum, for the cell.  Tonnage reports, presented on an annual basis and 

separated by waste type, are provided in Appendix H – Field Validation Data and 

Calculations. Waste composition through tonnage records can be observed from these 

records. The composition for the CMCMUA Landfill E is generally in close agreement 

with the typical waste composition of Northeastern NJ as described in Chapter 4 and 

graphically in Figure 4.2, and as tested herein.  Tonnage data is provided for all years of 

operation, including the 2003, 2004, 2005, 2006, and 2007 year.  

As indicated in Chapter 6, it is recognized that landfill owners and operators may 

prefer a non-destructive sampling approach.  Therefore, historic topographic surveys of 

the landfill were used to determine the thickness of waste at each location and settlement 

for subsequent years following closure.  
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A base grading plan from 2003 was obtained to determine the pre-fill elevation of 

the cell, along with a topographic survey conducted in 2007 immediately after waste 

placement ceased to represent the thickness of waste within the cell and top of waste 

elevation at closure. Data from aerial topography commissioned by CMCMUA for the 

2012 and 2013 year was utilized to provide two independent data points representative of 

the waste at various stages of degradation following closure.  Topographic surveys for 

each of the four years of interest are provided in Appendix H – Field Validation Data and 

Calculations.    

7.2.3  Evaluation of Field Data 

The author processed the topographic data by creating a grid system which could be 

overlaid above each topographic survey to determine the elevation at each grid point.  

Figure 7.1 depicts an example topographic survey with grid overlaid.   Grid lines were 

spaced at 150 feet in each direction. Based on topography, points along grid line A and E 

represented sideslopes of the landfill.  CMCMUA records indicated that spot filling 

frequently occurred on the sideslope along grid points A, which the author observed 

while comparing ground surface elevations between subsequent years. Grid points along 

"E" are adjacent to the currently-operational "Cell F", where CMCMUA indicated 

placement of waste occurs frequently along this sloped portion as it is adjacent to the 

active working face.  Therefore, the points along grid lines A and E were not considered 

as representative for field validation presented herein. 

For the purposes of validation, the author considered those points along grid lines 

B, C, and D as they are representative of the substantial mass of the landfill.  
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Figure 7.1  Example Topographic Survey (2012 Year) and Grid for CMCMUA Cell E 

 

 

The author tabulated the ground surface elevation for the base elevation year 

(2003), closure year (2007), and two independent years (2012 and 2013) and provided the 

information as Table 7.1.  The fill thickness at each grid point and settlement between 

closure year and each year of interest were subsequently calculated.  

Extents of Cell 

E 
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Table 7.1  Cape May County Topography and Determination of Ground-level Settlement 
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A1 32 55.52 23.52 51.1 4.42 19% 50.5 5.02 21% 3% 

A2 33.7 53.02 19.32 51.2 1.82 9% 50 3.02 16% 6% 

A3 32.2 51.4 19.2 50.1 1.3 7% 49 2.4 13% 6% 

A4 34 50.32 16.32 50 0.32 2% 49.1 1.22 7% 6% 

A5 35 48.44 13.44 46.4 2.04 15% 46.1 2.34 17% 2% 

A6 35 44.12 9.12 44.6 -0.48 -5% 45 -0.88 -10% -4% 

                      

B1 33.3 129.54 96.24 106.8 22.74 24% 105.6 23.94 25% 1% 

B2 34.5 126.3 91.8 105.4 20.9 23% 103.8 22.5 25% 2% 

B3 33.1 125.38 92.28 104.7 20.68 22% 103 22.38 24% 2% 

B4 33.5 123.74 90.24 102.7 21.04 23% 101.4 22.34 25% 1% 

B5 34.3 124.9 90.6 105.5 19.4 21% 103.8 21.1 23% 2% 

B6 32.9 63.98 31.08 58.9 5.08 16% 58.6 5.38 17% 1% 

                      

C1 35 130.76 95.76 118.3 12.46 13% 116.1 14.66 15% 2% 

C2 35.4 126.84 91.44 116.7 10.14 11% 114.6 12.24 13% 2% 

C3 34.95 128.49 93.54 115.2 13.29 14% 112.9 15.59 17% 2% 

C4 35 127.64 92.64 114.6 13.04 14% 112.3 15.34 17% 2% 

C5 35.3 127.7 92.4 113.8 13.9 15% 111.3 16.4 18% 3% 

C6 33.8 78.44 44.64 70 8.44 19% 69.1 9.34 21% 2% 

                      

D1 36.4 121.72 85.32 102.3 19.42 23% 102.3 19.42 23% 0% 

D2 36.2 122.72 86.52 106.8 15.92 18% 104 18.72 22% 3% 

D3 35.2 126.16 90.96 105 21.16 23% 103.3 22.86 25% 2% 

D4 36.6 126.36 89.76 105.3 21.06 23% 103.5 22.86 25% 2% 

D5 36.1 117.7 81.6 100.5 17.2 21% 98.4 19.3 24% 3% 

D6 35.3 89.78 54.48 80.8 8.98 16% 79.6 10.18 19% 2% 

Average of Grid Points along B 23% 

 

Average of Grid Points along C 17% 

Average of Grid Points along D 23% 

Average of B, C, and D 21% 
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Since ground surface elevation and thickness of waste were known, strain 

observed over the time of interest can be calculated.  The percent biodegradation can be 

obtained using Method One from Chapter 6. In Table 7.2, the author has provided 

calculations for average strain and percent biodegradation based on the field data.  

 

Table 7.2  Calculation of Strain and Percent Biodegradation from CMCMUA Field Data 

Calculation of Field-Observed Strain, εzfield :  

Average thickness of waste [ft] = 90.74 ft 

 (= average of waste 

thicknesses for all B, C, D 

grid points) 

Avg  ε @start = 0%      

Avg  ε @9 yrs = 19% 

 

    

Avg ε@10 yrs = 21.3% 

 

    

Avg Annual ε  = 2% 

 

    

 

Average Settlement, 2003  2012 [ft] = 17.54 ft 

(= Avg ε @9yr x waste 

thickness) 

Average Settlement, 2003  2013 [ft] = 19.36 ft 

(= Avg ε @10y x waste 

thickness) 

Average Annual Settlement [ft] = 1.82 ft 

(= Avg Annual ε  x 

thickness) 

Calculation of Field-Observed Percent Biodegradation, %Bfield : 

  From Equation 6.13, (1 )z B R    

  Therefore, Average %B  = Avg ε/(1-R) 

         Where R = % Inerts = 20%   for this composition,   so: 

          Avg %B@start = 0% 

 

    

Avg %B@9 yrs = 24%      

Avg %B@10 yrs = 26.7% 

 

    

Average annual change in %B = 3% 

 

    

7.2.4  Computations Based on Model 

The following analysis evaluates the theoretical strain and percent biodegradation of 

discrete layers using the procedure suggested as Method One in Chapter 6, and described 

as Figure 6.22 and Table 6.6.  The analysis for this validation model is provided in Tables 

7.3 and 7.4. 
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Table 7.3  Modeling of Landfill Layers and Lift Thicknesses 

 

Example Cross Section: 

 

 

Step 1: Determine landfill thickness, htot [ft]=  90.74 

  

  For this example, since we have waste 

composition and tonnage records on a yearly 

basis, split landfill layers up into one layer per 

year   

  

Step 2: Number of years landfill in operation = 5 

 

  so, number of layers, "n" (1 per year) = 5 

  

Step 3:  Height of each layer [ft]  = htot/n = 18.15 

  

 

For this example, initial layer height, hi [ft] =   

h1i = h2i = h3i = h4i = h5i = 18.15 ft 

  

Step 4: Let t0 = start of landfilling = 2003 year 

  

  

Since we will be computing this analysis 

against topo for the 2013 year,    

     tn = 2013 - (year waste placed) 

  

  

 (ex. t for 2003 year =  2013 - 2003 = 10    

     (10 years since waste placed) 

  

         

  

Step 5*: For a bioreactor landfill, half-life constant  "λ"   =  0.07 

 

  

       (based on Barlaz, 2008, Hossain 2003 and originally as variable “k”) 

  Therefore, time for 50% biodegradation, t50  [yr]  =  9.90    = -ln(0.5)/ λ 

   * See half-life discussion in  Section 7.2.6.1 
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Table 7.4  Computation of Theoretical Strain and Percent Biodegradation using Model 

Step 6: Determine εz graphically by using the normalized graph of t/t50 and εz   

       (reference Figure 6.23 for example procedure) 

  

   Figure 7.2 provided for graphical determination of  εz based on t/t50 

  

Step 7: Final layer height, hf [ft] =  hi - εz * hi = hi (1-εz) 

  

         

  

Step 8: %B =  εz / (1-R)       OR   obtained graphically from %B versus t/t50 graph  

  

    R = percent inert fraction of waste ( = 20% for example composition = 

0.2) 

  

   Figure 7.3 provided for graphical determination of %B  based on t/t50 

  

Step 9: A table can be created to calculate t/t50, εz, and %B, as shown below: 

  

         

  

  
Layer Year 

Time, t 

[yr] 
t/t50 hi [ft] 

εz 

[%] 
hf [ft] R  

%B   

[%] 

   1 2003 10 1.1 18.15 40% 10.89 0.2 50% 

   2 2004 9 1.0 18.15 36% 11.61 0.2 45% 

   3 2005 8 0.9 18.15 32% 12.34 0.2 40% 

   4 2006 7 0.8 18.15 28% 13.07 0.2 35% 

   5 2007 6 0.7 18.15 22% 14.16 0.2 28% 

   

         

  

Step 10: 

The average strain across each layer can be calculated as:  

      εzavg = (∑εz x hi)/∑hi                      

    

        So, εzavg =  32%  

    

Step 11: 

The average %B across each layer can be calculated as:  

     %Bavg = (∑%B x hi)/∑hi       

    

       So, %Bavg =  40%  
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Figure 7.2 Graphical Determination of Strain, εz, Based on Normalized t/t50 for 

Theoretical Calculation of CMCMUA Cell E  

 

 

Figure 7.3  Graphical Determination of Percent Biodegradation, %B,  Based on 

Normalized t/t50 for Theoretical Calculation of CMCMUA Cell E  
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From the graph above of percent biodegradation, it can be observed that the 

percent biodegradation versus time plot becomes nearly asymptotic after 85 percent. The 

probably explanation for this observation would be as follows:  the proportion of the sum 

of the readily (31 percent of the degradable total) and moderately degradable fraction (53 

percent of the degradable total) of the total biodegradable fraction is 84 percent.  Hence, 

this indicates that the inclusion of the slowly degradable fraction is insignificant. 

7.2.5  Discussion of Field and Model Data 

From calculation of field data provided as Table 7.2, εzfield is determined to be 

approximately 21 percent, while εzavg from the model is 32 percent.  Therefore, it appears 

that there is a difference of strain between between εzavg and εzfield  of 11 percent on an 

overall average basis.  Likewise, from Table 7.2, %Bfield is approximately 27 percent and 

calculated %Bavg is 40 percent. Therefore, a variation of 13 percent is observed.  

 

 

7.2.6  Factors Affecting Variation Between Field and Model Data 

 

  7.2.6.1  Waste Half-Life 

Half-life will influence the normalized time ratio (t/t50) used during the field validation 

process. To evaluate the effects of this, the author completed sensitivity analyses to 

determine the calculated strain and percent biodegradation based on three half-life 

constants. The analyses are summarized as Table 7.5.  Rate constants used during the 

analyses were selected as discussed in Chapter 6 and as follows: one rate constant within 

the range recommended for wet landfills (0.07 year
-1

);  one rate constant equal to three 

times the average recommended traditional landfill rate constant (0.09 year
-1

), and; one 
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rate constant for the ideal bioreactor (0.12 year
-1

) condition.   The author recalls that the 

rate constant for wet landfills (0.07 year
-1

) was utilized in the field validation model 

presented in Table 7.3 and 7.4 as the half-life of this rate constant is approximately 10 

years and within the range supported by others. 

 

Table 7.5  Sensitivity Analysis of Theoretical Strain and Percent Biodegradation for 

Differing Half-lives 

 

  
Half-life constant, λ [year

-1
] 

0.12 0.09 0.07 

Half-life [yr] 5.8 7.7 9.9 

        

εtheoretical 49% 41% 32% 

εfield 21% 21% 21% 

Difference 28% 19% 10% 

        

%Btheoretical 62% 51% 40% 

%Bfield 27% 27% 27% 

Difference 35% 24% 13% 

 

From the analysis it can be observed that each additional increase of 0.01 year
-1

 to 

the decay constant will result in an additional 3 to 4 percent strain predicted by the 

theoretical model.  Even though the ideal bioreactor rate constant of 0.12 year
-1

 is 

suggested by some researchers, it is the author’s opinion that this value represents an 

ideal and optimistic scenario. Therefore, the use of this specific ideal constant value is not 

recommended. The remaining two rate constants indicate that the theoretical calculations 

for strain over-predict those observed from the field model by between 10 to 19 percent.  

Using the topographic data presented in this study, the author calculated the field 

decay constant based on settlement, λfield, to provide a comparison to theoretical 

constants. The above value was estimated to be 0.024 year
-1

 based on the data containing 
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only two points as shown in Figure 7.4.  It is to be noted that λfield must be estimated  from  

a Log εz versus time plot and with a number of data points collected over a long period of 

time.                

 
Figure 7.4  Projected Curve-Fit to Determine Field Half-Life Decay Constant for 

CMCMUA Cell E  

 

 

It is to be noted that λfield must be estimated from  a Log εz versus time plot and with 

a number of data points collected over a long period of time.  However, it was determined 

in Figure 7.4 using only two points representing data for only a short period of time. 

Hence the observed field half-life decay constant,  λfield (0.024 year
-1

),  is quite different 

from theoretical half-life decay constant, λtheoretical (0.07 year
-1

).  Consequently no 

conclusions can be drawn from λfield and this value is not used for field validation 

purposes. The difference between half-life decay constants λlab (2.534 year
-1

) and 

λtheorectical, (0.07 year 
-1

) used for field validation may be attributed to several factors.  

These include those that may hinder the biodegradation process in field conditions and 

result in a lower field decay constant.  One such factor is the availability of nutrients and 
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mixture of leachate in a field-scale landfill.  In a laboratory environment, leachate, 

moisture, and nutrients are well-mixed into the sample which allows for more mass to 

leachate and nutrient contact.   

Comparatively, in a field environment there is less mass to leachate and nutrient 

contact.  This may be attributed to the inability of leachate piping to reach all pockets of 

waste, shadowing effects from larger construction and demolition debris or large white 

goods, and inadequate conditions to support decomposition such as temperature 

variations, aerobic conditions, and hazardous substances which hinder microbe activity.   

The author suggests another factor that may be attributed to the inherent 

circumstance that waste is placed in layers throughout the course of the filling process.  

This process would result in each layer existing at a different state of biodegradation, 

with the aged waste layers behaving differently than layers of fresh waste. For example, 

the fresh waste may exhibit one decay constant, however all remaining lifts may exhibit 

decay constants lower than the freshly placed layer and therefore produce a lower 

average decay constant.  

The author comments that Barlaz et al. (2008) recognize the discrepancy between 

field and laboratory conditions and attempt to introduce a correction factor, f, to describe 

the variation between the two data sets.   A standard range of values for the correction 

factor is not presented by the authors and it is ambiguous if a basis other than curve-

fitting exists to determine the factor.  
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  7.2.6.2  Waste Composition 

From inspection of the topographic data provided in Table 7.1, it is noted that the average 

percent strain between grid points along B are nearly identical to those along line D. 

However, the average percent strain of grid points along line C are 6 percent lower than 

that of B and D.  This may be attributed to a number of factors, such as variation in 

composition, presence of more inert matter, potentially large bulky items and debris, and 

presence of more slowly biodegradable matter. Additional discussions regarding the 

potential variations between field and model are discussed below.  

Also, it is noted from discussions with CMCMUA that construction and 

demolition debris, including wood and concrete, was placed in the landfill periodically 

during several substantial storm events.   Therefore, it is the opinion of the author that the 

inclusion of these wastes may have increased the slowly degradable and inert components 

of the waste composition. This may have extended the overall average half-life of the 

waste contained in the landfill, and increased the half-life up to the upper-bound for 

bioreactor landfills of 15 years as discussed in Chapter 5.  Based on this, using the 

procedure outlined in Table 7.3 using a t50 of 15 years, the calculated theoretical strain is 

nearly 21 percent.  This is very close to the field-observed average strain of also 

approximately 21 percent.     Therefore, it is hypothesized that the inclusion of this debris 

may further restrict the circulation of leachate and hence the availability of nutrients to 

promote enhanced biodegradation as expected and increase the half-life of the waste.  
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  7.2.6.3  Waste Density 

Another reason to explain the difference of between 13 to 24 percent biodegradation 

between the field and model could be attributed to variations in waste density.  To 

understand the influence of density, a parametric analysis was conducted to determine 

percent biodegradation based on both degradable weight loss (percent organic solids) and 

cumulative volume of gas collected with respect to time.  Evaluation of percent 

biodegradation based on degradable weight loss and volume of gas are discussed in 

Chapter 6.    

As discussed in Chapter 5 and summarized in Table 5.11, at the end of the 

experiment, decommissioning records showed the average final density of the composite 

waste sample was 91 percent of the average initial sample density. Rearranging the 

equations on degradable weight loss and volume of gas expressed in Chapter 6, the 

author derived Equation 7.1 to account for the variation due to density in addition to 

degradable weight loss.  In the expression, the terms γi and γf indicate initial and final 

unit weight of the waste.  Derivation of the equation is provided in Appendix F – 

Derivation of Equations.  

 

% [1 ( )] 100%
i final

converted

f initial

W
B

W




    (7.1) 

 

 

The results of the parametric analyses are provided graphically as Figure 7.5. The 

author comments that the results indicate that up to a 10 percent variation could exist due 

to effects of density.  However, the average of the biodegradation values based on mass 
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and on mass with density effects produce a convergence close to that observed by 

volume.  This density variation has been discussed further in Chapter 5.    

 

Figure 7.5  Parametric Analyses To Determine Variation Of Percent Biodegradation  

Due To Multiple Methods.  

 

 

  7.2.6.4  Bulky and Slowly Degradable Wastes 

In addition to density effects, it is suggested that the presence of plastic may also 

contribute to the difference between calculated theoretical and field-observed results.  It 

is commented that plastics make up 12 percent of the waste composition tested in this 

work.  As the recycling rate increases, the author believes that the proportion of plastics 

in the waste will decrease.  Because of this reduction, the degradable organic fraction will 

increase. This will cause a reduction in the percent biodegradation based on Equation 
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The calculations provided as Table 7.6 were completed to understand the effect of 

removing plastics and effect on the half-life decay constant or half-life.  It is determined 

that removing the plastics had little to no measurable effect on the calculated composite 

half-life constant (λc),  determination of half-life (t50), and end of decomposition (t95).  

 Table 7.6  Effect of Removing Plastics on Composite Half-life Constant (λc),  

Determination of half-life (t50), and End of Decomposition (t95) 

 Known Information: 

 From Table 6.2, half-life constants (λi) for each waste type are as follows: 

    λr = 6.609 year
-1

 

       

  

    λm = 1.723 year
-1

 

       

  

    λs = 0.011 year
-1

                 

Calculated Composite Half-life Constant – With Plastics: 

  

Using the waste proportion considered for this experiment, the adjusted λ values 

(λi*) to create the λc are: 

    λr* = 1.652 year
-1     

 (= 6.609 x 25%)  

    λm* = 0.741 year
-1   

(= 1.723 x 43%) 

    λs* = 0.0013 year
-1     

(= 0.011 x 12%) 

      Therefore, λc = λr* + λm* + λs* = 1.652+0.741+0.0013 = 2.39 year
-1

 

  
 

         

  

  Plastics make up 0.0013/2.39 =  .000544  (or 0.05%) of the composite λ factor.  

Therefore, plastics account for less than 1%  of the composite half-life decay 

factor, λc   

  Calculated Composite Half-life Constant – Without Plastics,  Half-life (t50), and End of 

Decomposition (t95): 

  Let us next consider the effects of including and removing λs (plastics) in the 

composite λ and effect to laboratory-based half-life (t50) and t95.    

         With plastics (λs) included, λc = 2.39 year
-1

  , and: 

              t50 =  -ln (0.5)/2.39 year
-1

 = 0.29 year = 105.85 days  

              t95 = -ln(0.05)/2.39 year
-1

 = 1.25 year = 457.50 days 

         With plastics (λs) removed, λc = 2.39 – 0.0013 = 2.3887 year
-1

  , and: 

              t50 =  -ln (0.5)/2.3887 year
-1

 = 0.29 year = 105.91 days 

              t95 = -ln(0.05)/2.3887 year
-1

 = 1.25 year = 457.76 days 

Conclusion: 

  Removing the plastics has little to no measurable effect on the calculated 

composite λ,  determination of half-life (t50), and end of decomposition (t95)   
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Also, as topographic data is used to measure field conditions, it is likely that the 

topographic data is skewed more towards measuring settlement of the underlying waste 

material as reflected at the surface.  It does partially represent the settlement from lower 

layers; however, the settlement at the lower layers may not be reflected upward to the 

surface due to phenomenon such as soil bridging, burial of large waste/white goods 

(bulky wastes), and other size effects. This can effect can be greater in landfills with 

greater thickness of placed waste.   Lifrieri (2010) observed this similar phenomenon in 

validations of his work on the Kingsland Landfill and Connecticut Site C landfill, where 

settlements between years increased drastically.  As he suggested this may be attributable 

to the collapsing of voids, which are created through bridging and arching around bulky 

items such as the noted buried construction and demolition debris.  

 

For the validation case on CMCMUA Cell E, the author summarizes that the 

percent biodegradation predicted by the theoretical method is 3 and 14 percent less than 

the observed field results once an estimated 10 percent variation due to density variations 

is removed.   

It is noted earlier construction and demolition debris, including wood and 

concrete, was placed in the landfill periodically during several substantial storm events.   

Therefore it is suggested that inclusion of these wastes, which increases the slowly 

degradable and inert components of the waste composition, may have decreased leachate 

and nutrient availability. The effect of this would result in an overall average half-life of 

the waste contained in the landfill. It was shown that, by increasing the half-life up to the 

upper-bound for bioreactor landfills of 15 years, a closer fit is achieved.  
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The author comments that the remaining difference is within limits generally 

accepted by industry and practice for solid waste.  The inherent heterogeneity of the 

material, waste characterization variations, landfilling processes, and climatologic 

differences will affect predictions for the behavior of MSW. Hence, some variation 

between observed and predicted values is expected.  

7.3  Model Validation on Yolo County Bioreactor Landfill 

7.3.1  Description of Yolo County Bioreactor Landfill 

The Yolo County Department of Planning and Public Works constructed and currently 

operate a full-scale bioreactor landfill at the Yolo County Central Landfill near Davis, 

California since 2001.   The work, which was supported by the Environmental Protection 

Agency’s (EPA) Project XL program, was proposed to develop innovative approaches for 

carbon sequestration and greenhouse emission control. The objective of the project was 

to manage landfill solid waste for rapid waste decomposition and maximum landfill gas 

generation and capture for carbon sequestration and greenhouse emission control. The 

first phase of the project entailed the construction of a 12-acre module, containing a 3.5-

acre anaerobic cell where leachate injection and circulation was conducted to simulate a 

bioreactor condition (Yazdani et. al, 2006). Performance data for the bioreactor landfill is 

made available through periodic published technical progress reports to fulfill United 

State Department of Energy grant requirements, and provide useful information to 

practitioners, legislatures, and environmental reviewers to support the adoption of the 

bioreactor landfill concept.  
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The author notes several similarities between the experimental work conducted 

herein, and the full-scale conditions of the field bioreactor landfill.   

Yazdani et. al (2006) indicate that, from the start of full-scale operations, elevated 

temperatures (about 110-140°F) were measured throughout the bulk waste in both cells. 

The cited work indicates that waste temperatures inside the cells remained constant and 

essentially independent of ambient temperature, and that these temperatures contributed 

to the acceleration of the microbial degradation of the waste and methane production.  

The author comments that this corroborates the similar temperature range used during the 

laboratory experiment to enhance mesophilic processes.   

Likewise, typical standard of practice procedures were used to compact the waste 

within the field bioreactor landfill. Waste was placed in loose lifts not exceeding 24 

inches with either a Caterpillar D-7 or D-8 dozer, and then was compacted with between 

3 to 5 passes using a Caterpillar 826C sheeps-foot compactor. Initial density of the in-situ 

waste was measured to be approximately 36 pounds per cubic foot, which is generally 

similar to the target experimental density of 40 pounds per cubic foot used in the 

laboratory work for this study.  Moisture content of the field bioreactor was continually 

monitored at selected points within the landfill using moisture probes and an automated 

SCADA control system.  Additionally, the operational strategy of the landfill consisted of 

conducting leachate addition when moisture content decreased below 40 percent.  In a 

similar regard, the experimental work conducted for this study performed leachate 

injection activities at an identical moisture content threshold. The author attempted to 

obtain details regarding the leachate circulation system, frequency, and procedure; 

however, these records are not currently made available.  
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7.3.2  Evaluation of Field Data 

Data contained within the published technical progress reports provided landfill thickness 

and annual topographic data to support the determination of settlement for use of the 

model proposed herein. Waste composition was determined using regional waste 

characterization study data conducted by the California Integrated Waste Management 

Board (CIWMB, 2000).  In table 7.7, waste composition for the considered region is 

summarized.  Detailed categorization of each waste type and relevant excerpts for the 

cited waste characterization study is provided in Appendix H – Field Validation Data and 

Calculations. 

 

Table 7.7  Characteristics of Yolo County, California Waste  

 

Constituent Descriptive Modifier Percent of Waste 

Food Readily Degradable 15.7% 

Grass and Trimmings Readily Degradable 10.2% 

Other Organics Readily Degradable 7.0% 

Paper Moderately Degradable 30.2% 

Lumber/Wood Moderately Degradable 4.9% 

Textiles Moderately Degradable 2.1% 

Plastic Slowly Degradable 8.9% 

Glass Inert 2.8% 

Metal Inert 6.1% 

Construction/Demolition Waste & Soil Inert 6.7% 

Household Hazardous Wastes/Oils Inert 0.3% 

Ash & White Goods/Bulky Items Inert 3.1% 

Mixed Residue Inert 2.0% 

TOTAL: 100.0% 

  

% Readily Degradable 32.9% 

% Moderately Degradable 37.2% 

% Slowly Degradable 8.9% 

% Inert Waste 21.0% 

Source: California Integrated Waste Management Board (CIWMB, 2000) 
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Placement of waste began in the 3.5 acre bioreactor cell on January 13, 2001 and 

was completed on August 3, 2001. Landfill records indicate waste was placed in four 

separate lifts, each with an approximate thickness of between 7 to 15 feet. A cross section 

of the bioreactor is represented as Figure 7.6.  Following completion of waste placement, 

final grading on the cell occurred in August and September of 2001. Final grading 

consisted of placement of a one foot thick layer of soil over the waste and a synthetic 

geomembrane cap (Yazdani et. al, 2006).  

 

Figure 7.6  Schematic of Waste Placement in Yolo County Bioreactor Landfill Cell 
Source: Yazdani et. al (2006) 

 

 Once closed, an initial topographic survey for the cell was performed on 

November 15, 2001. This baseline survey was used as the reference for calculating the 

total settlement of the cell. The second and third surveying events included in the 

technical progress report were completed on January 16, 2003, and January 28, 2004, 

respectively.  The surveys presented topographic data with half-foot and one foot 

contours, respectively.   
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                   May ‘01 

 

                   Mar ‘01 
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In addition to the topographic surveys, settlement was also calculated utilizing 22 

separate control monuments established on the surface liner. Initial elevations of the 

survey monuments were taken during the initial topographic survey of each of the cells. 

The total depth of waste was subsequently calculated by comparison of the known 

elevation of the base liner and surface liner. Subsequent surveys then established the new 

benchmark elevation, and the percent settlement was calculated relative to the waste 

depth at each benchmark location. It is reported that the settlement from the benchmarks 

was within 5 percent of the topographic survey, and therefore convergence was achieved 

between the two methods.  Settlement data supplied by Yazdani et. al (2003) for the Yolo 

County bioreactor landfill is provided as Figure 7.7.  

 

 

Figure 7.7  Settlement Versus Time Measured for Yolo County Bioreactor Landfill 
Source: Yazdani et. al (2006) 
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As the settlement is provided as a function of the initial waste thickness, the strain 

observed over the time of interest is directly provided. The calculated field half-life decay 

constant (λ) is 0.031 year
-1

.  Actual average percent biodegradation could then be 

ascertained using the procedure similar to Table 7.2.  The author has provided 

calculations for average strain and percent biodegradation based on field data for the 

Yolo County bioreactor landfill as Table 7.8. 

 

Table 7.8  Calculation of Strain and Percent Biodegradation from Yolo County 

Bioreactor Landfill Field Data 

 

Calculation of Field-Observed Strain, εzfield :  

Thickness of waste [ft] = 49.5 ft 
  = 12.5 feet (layer 1) + 15 

feet (layer 2) + 15 feet 

(layer 3) + 7 feet (layer 

4) 

ε @start = 0%  

ε @1 yrs = 3.9% 

 ε@2.5yrs = 8.3% 

 

    

Avg Annual ε  = 3.3% 

 

    

      

 

   

Settlement, Nov 2001  May 2003 [ft] = 1.96 ft 

(= Avg ε @1yr x waste 

thickness) 

Settlement, Nov 2001  Aug 2004[ft] = 4.10 ft 

(= Avg ε @2.5y x waste 

thickness) 

Average Annual Settlement [ft] = 1.41 ft 

(= Avg Annual ε  x 

thickness) 

Calculation of Field-Observed Percent Biodegradation, %Bfield : 

  From Equation 6.13, (1 )z B R    

  Therefore, Average %B  = ε / (1-R) 

         Where R = % Inerts = 21%   for this composition,   so: 

          Avg %B@start = 0% 

 

    

Avg %B@1 yrs = 5.0%      

Avg %B@2.5yrs = 10.5% 

 

    

Average annual change in %B = 4.2% 
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7.3.3  Computations Based on Model 

To support the use of the model for a MSW landfill with waste composition unlike that 

from New Jersey tested herein, a composite characteristic curve must be assembled.  This 

is done using gas production curves of each of the three descriptive waste modifiers 

provided in Chapter 6. The procedure followed is as given in Table 6.6.   

Following Step 1 of the procedure, a composite plot of gas production rate versus 

time has been assembled using proportions from the waste characterization outlined in 

Table 7.8.  The plot is provided as Figure 7.8. 

 

Figure 7.8  Weighted Readily and Moderately Degradable Gas Production Rate and  

       Calculated Waste-Specific Composite Gas Production Rate versus Time 
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Based on Step 2 of the procedure, the plot of gas production rate versus time is 

integrated to create a plot of cumulative total gas production versus time for the specific 

waste characterization considered. The plot is provided as Figure 7.9. 

 

 
 

Figure 7.9  Weighted Cumulative Readily and Moderately Degradable Cumulative Gas  

                  Production and Calculated Waste-Specific Composite Gas Production versus  

                  Time 

 

Following Step 3 of the procedure, a theoretical maximum volume of gas of 5.89 

cubic feet per pound of waste was calculated using the modified Lambda method.     

Calculations to support this determination have been provided in Appendix H - Data and 

Calculations for Field Validation. The laboratory half-life (t50) of the waste was 

determined to be 68 days based on Figure 7.9 and as specified by Step 4 of the procedure.  
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Using the information prepared from Step 1 through 4, a strain versus normalized 

t/t50 plot (Figure 7.10) and percent biodegradation versus normalized t/t50 plot (Figure 

7.11) were prepared for the waste-specific composition of the Yolo County bioreactor 

landfill.  

 

 

Figure 7.10  Waste-specific Strain versus Normalized t/t50 for Theoretical Calculation of 

Yolo County Bioreactor Landfill 
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Figure 7.11 Waste-specific Percent Biodegradation versus Normalized t/t50 for 

Theoretical Calculation of Yolo County Bioreactor Landfill 

 

 The percent biodegradation versus time plot becomes nearly asymptotic at 80 

percent. This trend is similar to that observed for the validation of the CMCMUA 

bioreactor landfill model. 

Once the strain and percent biodegradation versus normalized time plots for the 

specific waste are determined, an analysis was conducted for each of the four layers 

placed within the bioreactor landfill to calculate t/t50, εz, and %B.  The approach is similar 

to that outlined in Table 7.3.  The author has presented this analysis as Table 7.9.  A half-

life constant (λ) of 0.07 year
-1

 was used, resulting in a t50 of 10 years.  This value was 

used as the landfill was constructed under controlled conditions.  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0.0 0.5 1.0 1.5 2.0 2.5 3.0

P
e

rc
e

n
t 

B
io

d
e

gr
ad

at
io

n
 

Normalized  t/t50 

Waste-Specific Percent Biodegradation versus  Normalized ( t/t50) 
Yolo County Bioreactor Landfill, California 



187 

 

Table 7.9  Computation of Theoretical Strain and Percent Biodegradation on Yolo 

County Bioreactor Landfill Using Model 

 

     Note:   Step 1 through 5 (modeling landfill layer and lift thicknesses) omitted  

Step 6: Determine εz graphically by using the normalized graph of t/t50 and εz   

  

   Figure 7.9 provided for graphical determination of  εz based on t/t50 

  

Step 7: Final layer height, hf [ft] =  hi - εz * hi = hi (1-εz) 

  

         

  

Step 8: %B =  εz / (1-R)       OR   obtained graphically from %B versus t/t50 graph  

  

    R = percent inert fraction of waste (= 21% for example composition = 

0.21) 

  

   Figure 7.10 provided for graphical determination of %B  based on t/t50 

  

Step 9: A table can be created to calculate t/t50, εz, and %B, as shown below: 

  

         

  

  
Layer Date 

Time, t [yr] 

(Measured since 

Aug 2004) 
t/t50 

hi  

[ft] 

εz 

[%] 

hf  

[ft] 
R  

%B   

[%] 
 

  1 

Mar 

2001 3.41 0.34 12.5 11% 11.13 0.21 14% 
 

  2 

May 

2001 3.24 0.32 15 10% 13.5 0.21 13% 
 

  3 

Jul 

2001 3.08 0.31 15 9% 13.65 0.21 12% 
 

  4 

Aug 

2001 3.00 0.30 7 8% 6.51 0.21 11% 
 

  

         

  

           

Step 10: 

The average strain across each layer can be calculated as:  

      εzavg = (∑εz x hi)/∑hi                      

    

        So, εzavg =  9.6%  

    

Step 11: 

The average %B across each layer can be calculated as:  

     %Bavg = (∑%B x hi)/∑hi       

    

       So, %Bavg =  12.7%  
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7.3.4  Discussion of Field and Model Data 

From calculation of field data provided as Table 7.8, εzfield is determined to be 

approximately 8.3 percent, while εzavg from the model is 9.6 percent.  Therefore, it 

appears the model slightly overpredicts strain an overall average basis.  Likewise, from 

Table 7.8, %Bfield is approximately 10.5 percent and calculated %Bavg is 12.7 percent.    

It is observed that there is a very close correlation between field and laboratory 

values. Since the waste was placed within a one-year time interval, waste composition 

likely remained consistent; therefore, the assumption of consistent waste characterization 

remains valid. It is likely that the waste has been closely monitored to prevent excessive 

bulky goods and slowly degradable constituents. 

It is also observed that the variation of prediction between field and theoretical 

strain and percent biodegradation using the model for the Yolo County landfill is much 

closer than for the CMCMUA landfill.  The thickness of waste within the Yolo County 

bioreactor landfill is approximately half of the 100 foot waste thickness of the CMCMUA 

bioreactor landfill. As indicated in the discussion of CMCMUA, a variation caused by 

bridging and bulky goods may affect ground-level settlement from topographic surveys.  

Additionally, since the landfill operates as a full-size test landfill, leachate 

recirculation piping and equipment, gas collection components, and remote sensing and 

measurement were optimized to create conditions similar to those in laboratory. Although 

the landfill was intended to be a full-size test, the author notes that this shows evidence 

that a well-controlled bioreactor landfill can successfully be used to enhance 

biodegradation, and that the use of this model to predict settlement and biodegradation 

characteristics of these types of landfills shows very good agreement with field results. 
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7.4  Discussion on Comparison Between Landfills for Validation  

A comparison between the validation model parameters used for both validation cases is 

provided as Table 7.10. 

  

Table 7.10  Comparison Between Validation Model Parameters 

Comparison of Parameters Between Validation Models CMCMUA 
Yolo 

County 

Percent Readily Degradable Waste 25% 33% 

Percent Moderately Degradable Waste 43% 37% 

Percent Slowly Degradable 12% 9% 

Percent Inert Waste 20% 21% 

Laboratory LandGEM Decay Constant, k [year
-1

] 0.017 0.018 

Laboratory Half-life Decay Constant, λlab [year
-1

] 2.534 2.819 

Field Observed Decay Constant from Settlement, λfield [year
-1

] 0.024 0.031 

Industry Prescribed Half-life Decay Constant, λtheoretical (year-1] 0.045 0.07 

Laboratory Half-life [year] based on λlab 0.27 0.25 

Field Half-life based on λfield [year] based on λfield  28.9 22.4 

Half-life from Industry Prescribed Constant, λ theoretical (year
-1

) 15.4 9.9 

Theoretical Gas Potential [ft
3
/lb] 6.23 5.89 

Laboratory-to-Field  Correction Factor,  

      f1 = (λlab/ λfield) 0.0095 0.0110 

Industry Prescribed-to-Field Correction Factor, 

      f2 = (λlab/ λtheoretical) 0.53 0.44 

 

 As seen from the data above, they key issue is the selection of appropriate half-

life (t50) and the half-life decay constant (λ).  The ratio of the field observed half-life 

decay constant to the laboratory field half-life decay constant is represented as the 

laboratory-to-field correction factor, f1. This shows that the field half-life decay factor is 

approximately 0.01, or 1 percent of the laboratory half-life decay constant.    A ratio of 

the half-life constant prescribed by industry to half-life observed from field data is 
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provided as correction factor f2.  From this work, it is observed that the field half-life is 

approximately 0.0485, or 50 percent of the industry prescribed half-life.  

Although settlement data is available to estimate the field conditions, the industry 

prescribed half-life decay constant λtheoretical is used for calculations and analyses since the 

field observed decay constant λfield is only calculated from two sets of data between 

comparative years. Therefore, use of this field half-life constant is therefore not a perfect 

fit. As stated earlier, a more representative field half-life decay constant for use in field 

validation would be based than data containing more than two data points. 

As observed in the CMCMUA and Yolo County validations and in Figure 7.3 and 

7.11, the percent biodegradation versus time plot reaches an asymptotic value equal to the 

proportion of the sum of the weights of the readily and moderately degradable fraction to 

that of the total degradable weight of MSW.  It is observed that the strain and percent 

biodegradation plots become asymptotic at an approximate normalized t/t50 ratio of 3.  

The asymptotic value of strain εz is provided in Equation 7.2 shown below.  

 

(1 )
asymptotic

r m
z

r m s

W W
R

W W W



 

 
 (7.2) 
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CHAPTER 8 

SUMMARY OF WORK AND CONCLUSIONS 

8.1  Summary of Work Completed 

The experimental work completed included the creation and testing of multiple 

bioreactors simulating a landfill environment to investigate the gas production and 

settlement characteristics of a typical MSW bioreactor landfill.  Each bioreactor was 

constructed in components and filled with a homogenized waste sample representative of 

the sample set.  Four homogenized waste sample sets, composite, readily, moderately, 

and slowly degradable, were created and tested. A total of 16 composite bioreactors were 

created, along with 6 bioreactors for each of the readily, moderately, and slowly 

degradable sample sets.  Bioreactors were connected to a gas collection system, leachate 

recirculation tubing, and subjected to leachate over a period of approximately 260 days to 

simulate a landfill environment. Gas production, settlement, and other physical and 

engineering parameters were measured as these conditions varied. 

Bioreactors were submerged in a water bath maintained at a temperature of 110 

o
F, and gas collection piping was used to collect gas flow from each reactor set to a 

dedicated measuring device. Gas produced from the composite bioreactor set and each 

readily, and moderately reactors were collected using an automated gas flow meter 

(Sierra Instruments model MicroTrak 101) recording instantaneous methane flow rate. A 

tedlar gas bag, manufactured by SKC, was connected in series after each gas flow meter 

to record total gas volume. 
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A tedlar gas bag was connected directly to the slowly degradable reactor set. At 

periodic intervals, gas bags were also used to analyze gas composition and serve as a 

secondary check to the data obtained from the flow meters.  Each of the gas meters was 

connected to a data collection to obtain daily gas production rates. 

Leachate from an existing landfill was re-circulated on a weekly basis to maintain 

a moisture content of between 40 to 45 percent to simulate a bioreactor landfill and 

accelerate biodegradation. Moisture content was monitored using a PICO64 moisture 

content probe installed into one bioreactor representative of each of the four reactor sets. 

Leachate was added as needed to increase the moisture content of the waste sample to 

within the recommended limits.  

At select intervals, individual bioreactors were decommissioned from the 

composite reactor to be sampled for (C+H)/L testing and used for compression testing for 

compression characteristics (C’c, Cα, and Cβ) of the waste at the determined 

biodegradation ([C+H]/L) state. The use of (C+H)/L to quantify intermediate state of 

biodegradation has been refuted by this work; however, compression test results were 

compared against those performed by Lifrieri (2010) and were shown to be in close 

agreement. 

Following completion of the experiment, remaining operational bioreactors were 

decommissioned after performing a series of measurements. The intent of the 

measurements was to understand the change in density and loss of mass which may be 

attributable to biodegradation and validate the gas production models evaluated through 

this work.    
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8.2  Summary of Data Collected  

The following summary is given for the laboratory work conducted herein: 

 

1) Over a 221 day period, gas flow meters collected approximately 2.465, 

4.623, and 2.860 cubic feet of methane per pound waste for the composite, readily, and 

moderately bioreactor sets.  Secondary tedlar gas bags collected 5.332, 8.877, 5.796, and 

0.078 cubic feet of total gas per pound of waste for the composite, readily, moderately, 

and slowly degradable bioreactor sets.  Based on a 55% distribution of landfill gas as 

methane, the two methods of collection were within 11 percent of each and in positive 

agreement.  The author suggests the additional volume collected by the gas bags in 

comparison to gas flow meters is likely due to the production and capture of trace landfill 

gases produced during early phases of decomposition. 

2) This author notes an important clarification that theoretical gas production 

is based on total wet weight of the waste material as placed which follows industry 

standard, and not based on pound of dry waste.    

3) Inclusion of plastics and synthetics in waste provides an artificial source 

of lignin for waste tested using the (C+H)/L test method.   Testing on pairs of control and 

test samples confirmed that inclusion of plastic and other synthetics would act as artificial 

lignin and report reduced ratios of (C+H)/L. 

4) Several gas production models were evaluated by this work.  This work 

examined which model closest matched the mass degradation measured.  Review of 

percent gas collected by flow meters and comparison to theoretical gas potential 

calculated by the lambda method as modified by Lifrieri (2010) produces results within a 
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15 percent range.  Therefore, as an alternative to using actual mass degraded as suggested 

above, it is suggested that prediction of gas production by the lambda method as modified 

by Lifrieri (2010) is most suitable for estimation of gas production, to determine percent 

biodegraded, and to determine time to end of biodegradation.  

5) The settlement due to decomposition and loss of mass can be calculated 

using data obtained from gas collection in concert with measurement of actual mass 

degradation. To determine the magnitude of biodegradation of any layer within a landfill, 

the use of the biodegradation ratio, B, is introduced. The ratio can be expressed as the 

total decomposed weight normalized by the weight of initial degradable weight. The 

initial degradable weight can be determined by landfill and waste stream records of the 

placed waste.  Decomposed weight can be obtained by testing such as loss on ignition at 

550 °C as per ASTM D7348 - “Standard Test Methods for Loss on Ignition (LOI) of 

Solid Combustion Residues”.   By knowing B and the inert weight ratio, R, the change in 

layer height can be calculated and likewise vertical strain.  

6) Validation models against both a landfill with waste characterization 

tested herein and a landfill with differing composition indicated a good correlation 

between field-observed conditions and theoretical analyses.  It is commented that one of 

the key factors affecting bioreactor landfills and laboratory-to-field scaling is the 

availability of nutrients and leachate.  The leachate and nutrient have a sizeable influence 

on waste half-life, and therefore have a direct impact on the half-life decay factor for 

evaluation of percent biodegradation and strain.  
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8.3  Conclusions  

The following conclusions are drawn from the laboratory work conducted herein and 

evaluation of the data and model: 

 

1) A single decay constant modifier, kc, for a waste of any composition can 

be estimated by characterizing the mixed waste into representative fractions of readily, 

moderately, and slowly biodegradable components and taking the weighted average of 

each decay constant.   The data presented by Lifrieri (2010) supports this conclusion.  

This validates one of the hypotheses proposed by this author through his “Proposal for 

Dissertation”.     For instance, component modifiers kr= 0.045, km = 0.012, and ks= 

0.0021 year
-1

, for the readily, moderately, and slowly degradable waste types were 

obtained from this work. Using the waste profile for composite waste, a calculated 

composite decay modifier, kc , of 0.0167 year
-1

was obtained.  This is in close agreement 

with the observed actual composite k of 0.0170 year
-1 

from the composite bioreactor and 

validates the theory supporting the calculation of a waste-specific modifier by 

proportioned fractions.  As discussed in this work, the contribution of slowly degradable 

fraction can be neglected and is provides an insignificant (less than 1 percent) 

contribution to the overall decay constant and characteristics of the waste. 

2) The ratio of the cumulative volume of gas produced at time “t” and total 

gas potential, can relate to the percent biodegradation of the waste material at any time 

“t”. The state of decomposition can also be quantified by taking the ratio of the 

degradable weight at any time to the initial degradable weight.  Therefore, the percent 

biodegradation can be determined from records of gas collection, by testing for percent 
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organic solids, or field-measurement of settlement at the operational landfill taken at two 

or more discrete time intervals.   

3) The use of (C+H)/L to quantify the state of biodegradation was originally 

proposed; however, its use to predict state of biodegradation in an intermediate state has 

been contradicted by the results of this work. Substantial discussions on limitations have 

been provided in Chapter 5, which indicate interferences in the test in measurement of 

lignin result in the method providing mixed correlation to determine the projected end of 

substantial biodegradation.  Instead, a correlation with loss of mass to determine state of 

biodegradation of the waste was proposed and advanced by this work. 

4) Relationships for biodegradation in terms of volume and mass were 

defined through this work as summarized above. A predictive model based on the 

understanding of this phenomenon was developed to identify relationships between 

volume, mass, and strain, by which characteristic curves for any waste composition could 

be determined. These characteristics curves allow for the prediction of percent 

biodegradation and vertical strain as functions of time for a given composition of MSW. 

 

It was the intent of this work to attempt to identify the state of biodegradation of 

MSW, and to create a model to relate laboratory to field estimates of the magnitude and 

rate of gas production and biodegradation settlement for a MSW landfill with any waste 

composition. The intent was accomplished through this study.  
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CHAPTER 9 

RECOMMENDATIONS FOR FUTURE WORK AND ORIGINALITY OF WORK 

9.1  Summary 

Through the process of this work, the author has gained insight to provide 

recommendations for additional work to confirm and improve the efficiency of the model 

suggested herein.   The following suggestions have arisen: 

1. As waste is inherently heterogeneous, some portion of the waste may 

decompose at a variable rate; therefore the author recommends performing sensitivity 

analyses on the waste composition to create an upper and lower-bound value for the 

single-decay constant modifier, kc, when employing the method in practice.  

Additionally, the waste could be categorized into intermediate categories, for example 

intermediate readily, intermediate moderately, intermediate slowly, or as many 

degradable time-dependent categories desired to create a more accurate single-decay 

constant modifier.  Also, it has been demonstrated that the weighted average concept of 

determining decay factors is valid.  The author suggests that different sources of waste 

within each category, for example fat and protein-based food or electronics, be tested to 

understand the effect of variations within each category.  

2. When performing laboratory analysis of a specific waste type, additional 

bioreactors should be created and subject to identical conditions, but these sacrificial 

bioreactors should be removed at various intervals to perform destructive testing to 

determine mass loss, change in density, and moisture.  
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If waste appears to have a distinguishable appearance, it may be possible to 

separate the waste back into readily, moderately, and slowly waste categories and weight 

each fraction to approximate percent decomposition of each individual fraction as time 

progresses.    

3. The author comments that the use of half-life decay modifiers suggested 

by Findikakis and Leckie (1979) and Durmesoglu (2005) to predict time rate of 

settlement for bioreactor landfills is not suitable.  While total gas production may be 

estimated using these factors, the author remarks that the half-lives suggested by 

Findikakis are based on a traditional landfill process. The nature of the bioreactor 

environment inherently suggests that the waste would degrade at a more rapid rate, 

thereby decreasing the waste half-life time and increasing the half-life decay modifier as 

shown by this work.  The author suggests that gas collection records, as well as waste 

placement, lift thickness, and composition records, from bioreactor or leachate 

recirculation landfills in operation for 15 years or longer should be utilized to predict new 

half-life times.  Consequently, the data would support the generation of half-life decay 

modifiers which may be comparable to this work. 

4. As composition of landfill gas changes with time, a more accurate 

estimate of gas volume collected may be possible if the percent of each gas as a portion 

of total gas is known at any given time. The author recommends a gas flow meter capable 

of measuring flow rate from multiple gases, including trace landfill gases, be utilized for 

gas collection for future collection and testing. Alternately, the gas flow meter should be 

connected permanently to a gas composition meter such as the Landtec GEM 2000+ used 

in this work, or other meter with ability to determine gas composition at any given time. 
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5. To date, researchers have not reported studies on how to correlate 

laboratory measurements of the half-life decay constant to field conditions.  The author 

suggests that laboratory studies based on field-observed conditions be completed to 

understand the variation and relate the two scenarios.  It is the author’s opinion that work 

conducted towards this effect will lead to substantial contribution to the state-of-the-

practice. It will also help refine gas production models which allow industry to perform 

cost-benefit decisions to support landfill gas-to-energy conversion 

 

9.2  Originality of Work 

To-date in prior works, researchers and practitioners have employed empirical models 

based on mechanical processes to simulate and predict biodegradation settlement.  This 

work is unique in its review and detailed understanding of biodegradation as a chemical 

phenomenon, and the development of a model based on this understanding.      

Original concepts, including the percent biodegradation expressions developed in 

Chapter 6 and degradability modifiers, have been developed through this work. All lab 

studies are based on mechanisms taking place in one layer; however, in the field, waste is 

place in multiple layers at different times. This results in varying states of biodegradation 

for each layer. The model produced here takes this consideration into account by 

suggesting a procedure for determining the average biodegradation across the entire 

landfill.  
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A detailed review of existing gas production models was undertaken, which allow 

for a comparison of theoretical models to actual gas production.  This will allow for more 

accurate and realistic gas production estimate, and provides practitioners guidance on 

selection of a preferred model for design basis.  Likewise, the work has also shown that 

measurement of degradable weight loss does provide an approximate measure of state of 

biodegradation.  This work has created a waste-specific model which overcomes the 

shortcoming of other models which are empirical and consider a wide set of data 

including variable landfill types, thicknesses, climatic environments, and waste 

composition.   

Although the work herein simulated MSW landfills with bioreactor technology, 

the model can also be used for traditional landfills by simply varying the half-life and 

half-life modifier for analyses.   

The author is unaware of any other work which unifies gas production, 

determination of mass loss, and field settlement to create a model to determine the state 

of biodegradation and strain (settlement) at any given time.  The flexibility of this 

developed model makes is easy for engineers and practitioners to conduct waste- and 

location-specific analyses of MSW landfills, however the concepts and simplicity of the 

theory behind the model make it approachable for regulators, clients, and general public.  

The work has also provided an enhanced understanding of the biodegradation 

process.  This will create numerous research opportunities which can further the state-of-

the-art and practice of prediction for MSW landfills.  
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APPENDIX A 

BIOREACTOR AND EXPERIMENT COMISSIONING RECORDS 

 

Appendix A contains records maintained during the creation of bioreactors and pictures 

taken of the experimental set up during commissioning.  

 

A.1  Bioreactor Assembly Records 

Tables A.1.1 through A.1.4 tabulate record the weights of constituents comprising each 

of the 34 bioreactors used in this experiment.   A tabletop digital scale (model CL2000 by 

Ohaus) was used to record the weight of each constituent.  Constituents were weighed 

individually, placed into a marked zip-lock bag indicating bioreactor number and 

measured weight, and then grouped with other constituents of the same bioreactor.  

Constituents were mixed and moisture conditioned prior to placement into each 

respective bioreactor.  The process is depicted further by Figures A.3.10 through A.3.26 

contained herein.  
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Table A.1.1  Assembly Records for Composite Bioreactors  

No. Paper 
Yard 

Waste 
Wood Plastic Textile Glass Food Soil Metal 

Tot

al 

Ideal 

[lb]: 
0.8 0.13 0.04 0.26 0.06 0.23 0.4 0.17 0.01 2.10 

C-1 0.80 0.13 0.04 0.26 0.06 0.23 0.40 0.17 0.01 2.10 

C-2 0.81 0.13 0.04 0.26 0.06 0.24 0.40 0.17 0.01 2.12 

C-3 0.81 0.13 0.04 0.26 0.06 0.23 0.40 0.17 0.01 2.11 

C-4 0.80 0.13 0.04 0.26 0.06 0.23 0.40 0.17 0.01 2.11 

C-5 0.80 0.13 0.04 0.26 0.06 0.23 0.40 0.17 0.01 2.11 

C-6 0.80 0.13 0.04 0.26 0.06 0.23 0.40 0.17 0.01 2.11 

C-7 0.81 0.13 0.04 0.26 0.06 0.24 0.40 0.17 0.01 2.11 

C-8 0.80 0.13 0.04 0.26 0.06 0.23 0.40 0.17 0.01 2.11 

C-9 0.80 0.13 0.04 0.26 0.06 0.23 0.40 0.17 0.01 2.11 

C-

10 
0.80 0.13 0.04 0.26 0.06 0.23 0.40 0.17 0.01 2.11 

C-

11 
0.80 0.13 0.04 0.26 0.06 0.23 0.40 0.17 0.01 2.11 

C-

12 
0.80 0.13 0.04 0.26 0.06 0.23 0.40 0.17 0.01 2.11 

C-

13 
0.81 0.13 0.04 0.26 0.06 0.24 0.40 0.17 0.01 2.11 

C-

14 
0.81 0.13 0.04 0.26 0.06 0.24 0.40 0.17 0.01 2.12 

C-

15 
0.81 0.13 0.04 0.26 0.06 0.23 0.40 0.17 0.01 2.11 

C-

16 
0.80 0.13 0.04 0.26 0.06 0.24 0.40 0.17 0.01 2.11 
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Table A.1.2  Assembly Records for Readily Degradable Biodegradable Bioreactors  

No. Paper 
Yard 

Waste 
Wood Plastic Textile Glass Food Soil Metal Total 

Ideal 

[lb]: - 0.50 - - - - 1.60 -   2.10 

R-1 
- 

0.51 
- - - - 

1.60 
- 

  2.11 

R-2 
- 

0.50 
- - - - 

1.60 
- 

  2.10 

R-3 
- 

0.50 
- - - - 

1.60 
- 

  2.10 

R-4 
- 

0.51 
- - - - 

1.60 
- 

  2.11 

R-5 
- 

0.51 
- - - - 

1.60 
- 

  2.11 

R-6 
- 

0.51 
- - - - 

1.60 
- 

  2.11 

 

 

Table A.1.3  Assembly Records for Moderately Biodegradable Bioreactors  

No. Paper 
Yard 

Waste 
Wood Plastic Textile Glass Food Soil Metal Total 

Ideal 

[lb]: 1.86 - 0.10 - 0.14 - - - 
 

2.10 

M-1 1.88 - 0.10 - 0.13 - - - 
 

2.11 

M-2 1.88 - 0.10 - 0.13 - - - 
 

2.11 

M-3 1.88 - 0.10 - 0.13 - - - 
 

2.12 

M-4 1.87 - 0.10 - 0.13 - - - 
 

2.10 

M-5 1.87 - 0.10 - 0.13 - - - 
 

2.11 

M-6 1.87 - 0.10 - 0.13 - - - 
 

2.11 
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Table A.1.4  Assembly Records for Slowly Biodegradable Bioreactors  

No. Paper 
Yard 

Waste 
Wood Plastic Textile Glass Food Soil Metal 

Tot

al 

Ideal 

[lb]: - - - 1.30 - - - 0.80   2.10 

S-1 
- - - 

1.30 
- - - 

0.82   2.12 

S-2 
- - - 

1.30 
- - - 

0.81   2.11 

S-3 
- - - 

1.30 
- - - 

0.82   2.12 

S-4 
- - - 

1.30 
- - - 

0.81   2.11 

S-5 
- - - 

1.30 
- - - 

0.81   2.11 

S-6 
- - - 

1.30 
- - - 

0.82   2.12 
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A.2  Moisture Conditioning Records 

Leachate was added to each sample to achieve a targeted moisture content of 

approximately 170 percent by weight to ensure leachate generation by exceeding the 

waste’s field capacity.  Tables A.2.1 through A.2.4 tabulate leachate added to each 

sample prior to placement into bioreactors.     

 

Table A.2.1  Moisture Conditioning Records for Composite Bioreactors  

Reactor 

No.  

Wt 

of 

Bag 

[lbs] 

Wt 

of 

Bag 

[lb] 

Initial 

Moisture 

Content 

[%] 

Dry 

Weight 

[lb] 

Amount 

of Water 

to Add 

[lb] 

Weight of 

Sample 

@ 170% 

MC 

Weight of 

Sample + 

Bag @ 

170% M.C. 

C-1 0.08 2.45 43.20 1.71 2.91 4.62 4.63 

C-2 0.08 2.49 44.90 1.72 2.92 4.63 4.64 

C-3 0.08 2.45 43.10 1.71 2.91 4.62 4.65 

C-4 0.08 2.53 47.00 1.72 2.92 4.64 4.65 

C-5 0.08 2.54 47.50 1.72 2.92 4.64 4.65 

C-6 0.08 2.51 46.30 1.72 2.92 4.64 4.65 

C-7 0.08 2.46 43.70 1.71 2.91 4.62 4.63 

C-8 0.08 2.53 47.40 1.72 2.92 4.64 4.65 

C-9 0.08 2.38 39.60 1.70 2.90 4.60 4.61 

C-10 0.08 2.49 45.40 1.72 2.92 4.63 4.64 

C-11 0.08 2.40 40.70 1.71 2.90 4.61 4.62 

C-12 0.08 2.38 39.70 1.71 2.90 4.60 4.61 

C-13 0.08 2.24 32.70 1.69 2.87 4.56 4.57 

C-14 0.08 2.29 35.10 1.69 2.88 4.57 4.58 

C-15 0.08 2.28 34.60 1.69 2.88 4.57 4.58 

C-16 0.08 2.23 32.30 1.69 2.87 4.56 4.57 
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Table A.2.2  Moisture Conditioning Records for Readily Degradable Bioreactors  

Reactor 

No.  

Weight 

of Bag 

[lbs] 

Weight 

of Bag 

[lb] 

Initial 

Moisture 

Content 

[%] 

Dry 

Weight 

[lb] 

Amount 

of Water 

to Add  

[lb] 

Weight 

of 

Sample 

@ 170% 

M.C. 

[lb] 

Weight of 

Sample + 

Bag @ 

170% M.C. 

[lb] 

R-1 0.08 4.02 136.80 1.70 2.89 4.59 4.60 

R-2 0.08 3.46 81.80 1.90 3.24 4.14 5.15 

R-3 0.08 3.24 61.80 2.00 3.40 5.40 5.41 

R-4 0.08 3.66 89.00 1.94 3.29 5.23 5.24 

R-5 0.08 3.18 57.60 2.02 3.43 5.45 5.46 

R-6 0.08 3.48 81.00 1.92 3.27 5.19 5.20 

 

 

Table A.2.3  Moisture Conditioning Records for Moderately Degradable Bioreactors  

Reactor 

No.  

Weight 

of Bag 

[lbs] 

Weight 

of Bag 

[lb] 

Initial 

Moisture 

Content 

[%] 

Dry 

Weight 

[lb] 

Amount 

of Water 

to Add  

[lb] 

Weight 

of 

Sample 

@ 170% 

M.C. 

[lb] 

Weight of 

Sample + 

Bag @ 

170% M.C. 

[lb] 

M-1 0.08 2.01 3.60 1.94 3.30 5.24 5.25 

M-2 0.08 2.02 3.80 1.94 3.30 5.24 5.25 

M-3 0.08 2.02 4.00 1.94 3.30 5.24 5.25 

M-4 0.08 2.00 5.60 1.90 3.23 5.12 5.13 

M-5 0.08 2.03 4.70 1.94 3.30 5.24 5.25 

M-6 0.08 2.01 3.60 1.94 3.30 5.24 5.25 
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Table A.2.4  Moisture Conditioning Records for Slowly Degradable Bioreactors  

Reactor 

No.  

Weight 

of Bag 

[lbs] 

Weight 

of Bag 

[lb] 

Initial 

Moisture 

Content 

[%] 

Dry 

Weight 

[lb] 

Amount 

of Water 

to Add  

[lb] 

Weight 

of 

Sample 

@ 170% 

M.C. 

[lb] 

Weight of 

Sample + 

Bag @ 

170% M.C. 

[lb] 

S-1 0.08 1.97 17.20 1.68 2.85 4.53 4.54 

S-2 0.08 1.98 21.20 1.63 2.78 4.41 4.42 

S-3 0.08 1.96 23.60 1.59 2.70 4.29 4.30 

S-4 0.08 1.98 21.50 1.63 2.78 4.41 4.40 

S-5 0.08 1.98 18.10 1.68 2.85 4.53 4.54 

S-6 0.08 1.99 21.70 1.63 2.78 4.41 4.42 
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A.3  Photo Log for Test Set Up 

 

The following Figures have been provided to illustrate the process completed to 

construct, calibrate, and assemble the test set-up and bioreactors used for this experiment.  

Example instructions and forms used by author to guide establishment of bioreactors are 

included under Appendix E.1 – Work Plan and Testing Instructions and E.2 – Standard 

Forms Used for Commissioning Bioreactors and Test Equipment. A list of parts used to 

construct the set-up has been provided under Appendix E.4 – Parts List 

 

 
 

Figure A.3.1  Assembled Consolidation Machines and Data Acquisition 
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Figure A.3.2  Temperature Sensor for Water Bath 

 

 
 

Figure A.3.3  Tank Heater for Water Bath 
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Figure A.3.4  Assembled Bioreactor 

 

 
 

Figure A.3.5  Connection of Bioreactor Gas Collection Piping in Series 
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Figure A.3.6  Gas Totalizers for Methane Volume Determination 

 

 
 

Figure A.3.7  Gas Totalizers Connected to Bioreactors 
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Figure A.3.8  Recirculation Pump for Water Bath 

 

 
 

Figure A.3.9  Application of Anti-algae, anti-foam powder to water bath 
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Figure A.3.10  Preparation to Weigh Constituents for Bioreactors 

 

 
 

Figure A.3.11  Weighing of Plastic Constituents 
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Figure A.3.12  Batching Constituents (Plastics shown) for Bioreactor Assembly 

 

 
 

Figure A.3.13  Shredded Textiles and Synthetics Used for Bioreactors 
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Figure A.3.14  Shredded Paper, Newsprint, Magazines, and Craft Paper Used for 

Bioreactors 

 

 
 

Figure A.3.15  Food Waste Used for Bioreactors 
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Figure A.3.16  Yard Waste Used for Bioreactors 

 

 
 

Figure A.3.17  Soil Used for Bioreactors 
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Figure A.3.18  Crushed Glass Used for Bioreactor 

 

 
 

Figure A.3.19  Batching All Components for Bioreactor Mixing 
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Figure A.3.20  Preparing Constituents for Mixing 

 

 
 

Figure A.3.21  Organizing Composite Constituents based on Bioreactor Number for 

Mixing 
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Figure A.3.22  Organizing Readily Degradable Constituents based on Bioreactor 

Number for Mixing 

 

 
 

Figure A.3.23  Organizing Moderately Degradable Constituents based on Bioreactor 

Number for Mixing 
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Figure A.3.24  Organizing Slowly Degradable Constituents based on Bioreactor Number 

for Mixing 

 

 
 

Figure A.3.25  Mixing Components to Create Bioreactor-specific Waste Mixture 
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Figure A.3.26  Mixed Wastes for Bioreactors 

 

 
 

Figure A.3.27  Placement of Gravel Drainage Layer 
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Figure A.3.28  Cutting of Geotextile Fabric Filter Layer 

 

 
 

Figure A.3.29  Compaction of Waste into Bioreactor Using Tamping Rod 
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Figure A.3.30  Compacted Waste (note black marks used for lift thickness and measure 

density) 

 

 
 

Figure A.3.31  Reactor Tank Assembled (Composite- Right, Individual – Left) 
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Figure A.3.2 Final Assembled Test Set Up 

 

 

 

 

 

 

 

 

 

 

 

 



 

225 

APPENDIX B 

RECORDS MAINTAINED DURING EXPERIMENT 

 

Appendix B contains data and records collected throughout the course of the experiment.  

 

B.1  Water Bath Temperature Logs 

Table B.1.1 and B.1.2 tabulates water bath temperature readings recorded throughout the 

course of this research.  One submersible electronic USB data logger (model TW-USB-1 

by Thermoworks) was placed in each of the bioreactor tanks.  A manual general purpose 

thermometer was utilized periodically to verify the electronic temperature gage. The 

equipment allowed for an acoustic alarm to be set when temperature exceeded or dropped 

below a preset threshold.  A high alarm was set at 115 
o
F and a low alarm was set at     

105 
o
F 

Temperature was maintained using a water tank heater (model H-2986A, 110V by 

Humboldt) attached to the bioreactor.  The tank heater was thermostatically controlled 

and adjustable to warm up to a maximum temperature of 200 
o
F.     Water was circulated 

in each tank using a submersible medium pond pump (model 7301710 by Beckett) to 

promote uniform temperature throughout the tank.   

Water baths were maintained at an average temperature of 110 
o
F to simulate 

ambient temperatures within a landfill environment and support enhanced mesophilic 

reactions. 
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Table B.1.1 Record of Water Bath Temperatures – Composite Tank  

Water Bath Temperature Record - Composite Reactor Set 

Date Days Since Start AM [⁰F] PM  [⁰F] Manual Reading  [⁰F] 

11/12/13 - 64 67   

11/13/13 - 72 74   

11/14/13 - 77 81   

11/15/13 - 83 88   

11/16/13 - 92 97   

11/17/13 - 106 109   

11/18/13 0 112 110   

11/19/13 1 111 109   

11/20/13 2 111 111   

11/21/13 3 110 112 112 

11/22/13 4 110 110   

11/23/13 5 110 112   

11/24/13 6 111 109   

11/25/13 7 110 111   

11/26/13 8 109 111   

11/27/13 9 111 112   

11/28/13 10 112 112   

11/29/13 11 112 111   

11/30/13 12 111 111   

12/1/13 13 110 112   

12/2/13 14 110 109   

12/3/13 15 110 111   

12/4/13 16 111 110   

12/5/13 17 112 110   

12/6/13 18 111 110   

12/7/13 19 110 109   

12/8/13 20 109 112   

12/9/13 21 111 109   

12/10/13 22 110 111 110 

12/11/13 23 110 111   

12/12/13 24 111 110   

12/13/13 25 110 109   

12/14/13 26 110 110   

12/15/13 27 111 110   

12/16/13 28 110 110   
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Table B.1.1  Record of Water Bath Temperatures – Composite Tank (Continued) 

Water Bath Temperature Record - Composite Reactor Set (Continued) 

Date Days Since Start AM [⁰F] PM  [⁰F] Manual Reading  [⁰F] 

12/17/13 29 110 109   

12/18/13 30 110 111   

12/19/13 31 110 112   

12/20/13 32 109 111   

12/21/13 33 111 110   

12/22/13 34 109 110   

12/23/13 35 109 110   

12/24/13 36 111 111   

12/25/13 37 110 112   

12/26/13 38 110 111   

12/27/13 39 109 110   

12/28/13 40 111 109 109 

12/29/13 41 110 110   

12/30/13 42 112 110   

12/31/13 43 109 110   

1/1/14 44 111 111   

1/2/14 45 111 111   

1/3/14 46 112 109   

1/4/14 47 112 111   

1/5/14 48 111 111   

1/6/14 49 111 109   

1/7/14 50 110 109   

1/8/14 51 110 109   

1/9/14 52 110 111   

1/10/14 53 109 110   

1/11/14 54 111 110   

1/12/14 55 110 109   

1/13/14 56 110 111   

1/14/14 57 111 110   

1/15/14 58 112 112   

1/16/14 59 109 109 109 

1/17/14 60 109 111   

1/18/14 61 112 111   

1/19/14 62 111 112   

1/20/14 63 110 112   
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Table B.1.1 Record of Water Bath Temperatures – Composite Tank (Continued) 

Water Bath Temperature Record - Composite Reactor Set (Continued) 

Date Days Since Start AM [⁰F] PM  [⁰F] Manual Reading  [⁰F] 

1/21/14 64 111 110   

1/22/14 65 109 110   

1/23/14 66 109 109   

1/24/14 67 111 111   

1/25/14 68 110 110   

1/26/14 69 110 110   

1/27/14 70 111 109   

1/28/14 71 109 111   

1/29/14 72 109 110   

1/30/14 73 110 111 111 

1/31/14 74 110 111   

2/1/14 75 110 109   

2/2/14 76 111 109   

2/3/14 77 111 110   

2/4/14 78 109 109   

2/5/14 79 109 110   

2/6/14 80 110 111   

2/7/14 81 109 111   

2/8/14 82 110 111   

2/9/14 83 111 110   

2/10/14 84 111 109   

2/11/14 85 112 109   

2/12/14 86 109 110   

2/13/14 87 111 109   

2/14/14 88 110 110   

2/15/14 89 110 110   

2/16/14 90 110 109   

2/17/14 91 109 111   

2/18/14 92 112 111   

2/19/14 93 109 110   

2/20/14 94 110 109 110 

2/21/14 95 110 111   

2/22/14 96 110 111   

2/23/14 97 111 110   

2/24/14 98 111 111   
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Table B.1.1 Record of Water Bath Temperatures – Composite Tank (Continued) 

Water Bath Temperature Record - Composite Reactor Set (Continued) 

Date Days Since Start AM [⁰F] PM  [⁰F] Manual Reading  [⁰F] 

2/25/14 99 109 111   

2/26/14 100 111 109   

2/27/14 101 110 110   

2/28/14 102 111 109   

3/1/14 103 111 111   

3/2/14 104 109 110   

3/3/14 105 109 110   

3/4/14 106 110 111   

3/5/14 107 109 111   

3/6/14 108 110 109   

3/7/14 109 110 109   

3/8/14 110 109 110   

3/9/14 111 111 109   

3/10/14 112 111 110   

3/11/14 113 110 110   

3/12/14 114 109 109   

3/13/14 115 111 111   

3/14/14 116 111 111   

3/15/14 117 112 110 111 

3/16/14 118 109 109   

3/17/14 119 109 109   

3/18/14 120 111 110   

3/19/14 121 112 110   

3/20/14 122 110 109   

3/21/14 123 109 112   

3/22/14 124 111 110   

3/23/14 125 112 109   

3/24/14 126 111 111   

3/25/14 127 111 112   

3/26/14 128 109 110   

3/27/14 129 112 109   

3/28/14 130 110 110   

3/29/14 131 109 109   

3/30/14 132 111 110   

3/31/14 133 110 109 109 
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Table B.1.1 Record of Water Bath Temperatures – Composite Tank (Continued) 

Water Bath Temperature Record - Composite Reactor Set (Continued) 

Date Days Since Start AM [⁰F] PM  [⁰F] Manual Reading  [⁰F] 

4/1/14 134 110 109   

4/2/14 135 111 110   

4/3/14 136 111 109   

4/4/14 137 109 110   

4/5/14 138 109 110   

4/6/14 139 110 109   

4/7/14 140 109 111   

4/8/14 141 110 111   

4/9/14 142 109 110   

4/10/14 143 110 109   

4/11/14 144 110 111   

4/12/14 145 109 111   

4/13/14 146 112 112   

4/14/14 147 110 109   

4/15/14 148 109 111   

4/16/14 149 111 110   

4/17/14 150 112 110   

4/18/14 151 110 111   

4/19/14 152 111 111   

4/20/14 153 110 109   

4/21/14 154 109 110 110 

4/22/14 155 111 110   

4/23/14 156 111 112   

4/24/14 157 111 111   

4/25/14 158 111 109   

4/26/14 159 112 112   

4/27/14 160 109 111   

4/28/14 161 111 110   

4/29/14 162 110 111   

4/30/14 163 111 111   

5/1/14 164 112 109   

5/2/14 165 109 109 109 

5/3/14 166 111 111   

5/4/14 167 111 111   

5/5/14 168 110 110   
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Table B.1.1 Record of Water Bath Temperatures – Composite Tank (Continued) 

Water Bath Temperature Record - Composite Reactor Set (Continued) 

Date Days Since Start AM [⁰F] PM  [⁰F] Manual Reading  [⁰F] 

5/6/14 169 110 110   

5/7/14 170 109 111   

5/8/14 171 110 111   

5/9/14 172 110 109   

5/10/14 173 110 109   

5/11/14 174 112 111   

5/12/14 175 111 109   

5/13/14 176 109 109   

5/14/14 177 112 110   

5/15/14 178 111 110   

5/16/14 179 110 109   

5/17/14 180 111 110   

5/18/14 181 111 110   

5/19/14 182 109 110   

5/20/14 183 109 109   

5/21/14 184 111 111 111 

5/22/14 185 111 109   

5/23/14 186 111 110   

5/24/14 187 109 110   

5/25/14 188 110 109   

5/26/14 189 109 112   

5/27/14 190 111 110   

5/28/14 191 111 109   

5/29/14 192 111 111   

5/30/14 193 111 112   

5/31/14 194 112 110   

6/1/14 195 109 111   

6/2/14 196 111 110   

6/3/14 197 110 109   

6/4/14 198 109 111   

6/5/14 199 111 111   

6/6/14 200 111 111   

6/7/14 201 111 111   

6/8/14 202 110 111   

6/9/14 203 110 110   
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Table B.1.1 Record of Water Bath Temperatures – Composite Tank (Continued) 

Water Bath Temperature Record - Composite Reactor Set (Continued) 

Date Days Since Start AM [⁰F] PM  [⁰F] Manual Reading  [⁰F] 

6/10/14 204 111 109   

6/11/14 205 110 110   

6/12/14 206 109 110   

6/13/14 207 110 109   

6/14/14 208 110 110 110 

6/15/14 209 109 110   

6/16/14 210 110 109   

6/17/14 211 110 110   

6/18/14 212 109 110   

6/19/14 213 110 109   

6/20/14 214 110 110   

6/21/14 215 110 110   

6/22/14 216 109 110   

6/23/14 217 111 109   

6/24/14 218 110 111   

6/25/14 219 110 112   

6/26/14 220 110 111   

6/27/14 221 109 110   

6/28/14 222 109 109   

6/29/14 223 110 111   

6/30/14 224 110 111   

7/1/14 225 111 111 111 

7/2/14 226 110 109   

7/3/14 227 111 110   

7/4/14 228 111 109   

7/5/14 229 110 111   

7/6/14 230 109 111   

7/7/14 231 109 111   

7/8/14 232 110 111   

7/9/14 233 109 112   

7/10/14 234 111 109   

7/11/14 235 112 111   

7/12/14 236 109 110   

7/13/14 237 109 109   

7/14/14 238 111 110   
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Table B.1.1 Record of Water Bath Temperatures – Composite Tank (Continued) 

Water Bath Temperature Record - Composite Reactor Set (Continued) 

Date Days Since Start AM [⁰F] PM  [⁰F] Manual Reading  [⁰F] 

7/15/14 239 110 110   

7/16/14 240 110 109   

7/17/14 241 110 110   

7/18/14 242 109 111   

7/19/14 243 111 110 111 

7/20/14 244 110 110   

7/21/14 245 110 109   

7/22/14 246 109 111   

7/23/14 247 111 110   

7/24/14 248 110 110   

7/25/14 249 110 110   

7/26/14 250 110 110   

7/27/14 251 110 109   

7/28/14 252 109 112   

7/29/14 253 112 110   

7/30/14 254 111 109   

7/31/14 255 111 111   

8/1/14 256 111 112   

8/2/14 257 109 110   

8/3/14 258 109 111   

8/4/14 259 111 110   

8/5/14 260 110 110 110 

8/6/14 261 111 111   

8/7/14 262 110 110 110 
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Table B.1.2 Record of Water Bath Temperatures – Individual Tank 

Water Bath Temperature Record - Individual Reactor Set 

Date Days Since Start AM [⁰F] PM  [⁰F] Manual Reading  [⁰F] 

11/12/13 - 66 68   

11/13/13 - 72 76   

11/14/13 - 78 82   

11/15/13 - 84 89   

11/16/13 - 93 96   

11/17/13 - 101 106   

11/18/13 0 110 110   

11/19/13 1 110 110   

11/20/13 2 111 110   

11/21/13 3 110 110 110 

11/22/13 4 111 111   

11/23/13 5 111 110   

11/24/13 6 110 109   

11/25/13 7 110 111   

11/26/13 8 112 109   

11/27/13 9 111 109   

11/28/13 10 110 110   

11/29/13 11 110 110   

11/30/13 12 111 109   

12/1/13 13 110 109   

12/2/13 14 111 110   

12/3/13 15 112 111   

12/4/13 16 109 109   

12/5/13 17 110 109   

12/6/13 18 110 111   

12/7/13 19 110 111   

12/8/13 20 111 110   

12/9/13 21 110 111   

12/10/13 22 110 110 110 

12/11/13 23 111 110   

12/12/13 24 111 110   

12/13/13 25 109 109   

12/14/13 26 109 110   

12/15/13 27 110 110   

12/16/13 28 109 110   
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Table B.1.2 Record of Water Bath Temperatures – Individual Tank (Continued) 

Water Bath Temperature Record - Individual Reactor Set (Continued) 

Date Days Since Start AM [⁰F] PM  [⁰F] Manual Reading  [⁰F] 

12/17/13 29 110 109   

12/18/13 30 110 111   

12/19/13 31 109 110   

12/20/13 32 111 110   

12/21/13 33 111 110   

12/22/13 34 110 109   

12/23/13 35 111 111   

12/24/13 36 110 110   

12/25/13 37 109 110   

12/26/13 38 110 111   

12/27/13 39 111 111   

12/28/13 40 111 109 111 

12/29/13 41 111 109   

12/30/13 42 110 110   

12/31/13 43 109 109   

1/1/14 44 111 110   

1/2/14 45 110 110   

1/3/14 46 110 110   

1/4/14 47 110 111   

1/5/14 48 109 111   

1/6/14 49 111 109   

1/7/14 50 110 109   

1/8/14 51 110 110   

1/9/14 52 110 109   

1/10/14 53 109 110   

1/11/14 54 111 110   

1/12/14 55 110 109   

1/13/14 56 110 111   

1/14/14 57 111 111   

1/15/14 58 111 110   

1/16/14 59 109 111 110 

1/17/14 60 109 110   

1/18/14 61 110 109   

1/19/14 62 109 110   

1/20/14 63 110 110   
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Table B.1.2 Record of Water Bath Temperatures – Individual Tank (Continued) 

Water Bath Temperature Record - Individual Reactor Set (Continued) 

Date Days Since Start AM [⁰F] PM  [⁰F] Manual Reading  [⁰F] 

1/21/14 64 110 110   

1/22/14 65 110 110   

1/23/14 66 110 109   

1/24/14 67 109 111   

1/25/14 68 111 110   

1/26/14 69 110 110   

1/27/14 70 110 109   

1/28/14 71 110 111   

1/29/14 72 109 110   

1/30/14 73 111 110 110 

1/31/14 74 110 110   

2/1/14 75 110 111   

2/2/14 76 111 111   

2/3/14 77 111 109   

2/4/14 78 109 109   

2/5/14 79 109 110   

2/6/14 80 111 111   

2/7/14 81 109 111   

2/8/14 82 109 111   

2/9/14 83 110 110   

2/10/14 84 109 109   

2/11/14 85 110 111   

2/12/14 86 110 110   

2/13/14 87 110 110   

2/14/14 88 109 110   

2/15/14 89 111 109   

2/16/14 90 110 111   

2/17/14 91 110 110   

2/18/14 92 109 110   

2/19/14 93 111 110   

2/20/14 94 110 109 110 

2/21/14 95 110 111   

2/22/14 96 110 110   

2/23/14 97 111 110   

2/24/14 98 111 111   
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Table B.1.2 Record of Water Bath Temperatures – Individual Tank (Continued) 

Water Bath Temperature Record - Individual Reactor Set (Continued) 

Date Days Since Start AM [⁰F] PM  [⁰F] Manual Reading  [⁰F] 

2/25/14 99 109 111   

2/26/14 100 109 109   

2/27/14 101 110 110   

2/28/14 102 109 109   

3/1/14 103 111 111   

3/2/14 104 110 110   

3/3/14 105 110 110   

3/4/14 106 111 111   

3/5/14 107 111 111   

3/6/14 108 109 109   

3/7/14 109 109 109   

3/8/14 110 110 110   

3/9/14 111 109 109   

3/10/14 112 110 110   

3/11/14 113 110 110   

3/12/14 114 109 109   

3/13/14 115 111 111   

3/14/14 116 111 111   

3/15/14 117 110 110 110 

3/16/14 118 109 109   

3/17/14 119 111 111   

3/18/14 120 110 110   

3/19/14 121 110 110   

3/20/14 122 110 110   

3/21/14 123 109 111   

3/22/14 124 111 110   

3/23/14 125 110 110   

3/24/14 126 111 111   

3/25/14 127 111 111   

3/26/14 128 109 109   

3/27/14 129 109 109   

3/28/14 130 110 110   

3/29/14 131 109 109   

3/30/14 132 111 110   

3/31/14 133 110 109 110 
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Table B.1.2 Record of Water Bath Temperatures – Individual Tank (Continued) 

Water Bath Temperature Record - Individual Reactor Set (Continued) 

Date Days Since Start AM [⁰F] PM  [⁰F] Manual Reading  [⁰F] 

4/1/14 134 110 109   

4/2/14 135 111 110   

4/3/14 136 111 109   

4/4/14 137 109 110   

4/5/14 138 109 110   

4/6/14 139 110 109   

4/7/14 140 109 111   

4/8/14 141 110 111   

4/9/14 142 109 110   

4/10/14 143 109 109   

4/11/14 144 110 111   

4/12/14 145 109 110   

4/13/14 146 110 110   

4/14/14 147 110 110   

4/15/14 148 109 109   

4/16/14 149 111 111   

4/17/14 150 111 110   

4/18/14 151 110 111   

4/19/14 152 111 111   

4/20/14 153 110 109   

4/21/14 154 109 109 109 

4/22/14 155 110 110   

4/23/14 156 111 109   

4/24/14 157 111 110   

4/25/14 158 111 109   

4/26/14 159 110 110   

4/27/14 160 109 110   

4/28/14 161 111 110   

4/29/14 162 110 109   

4/30/14 163 110 111   

5/1/14 164 110 110   

5/2/14 165 109 110 110 

5/3/14 166 111 109   

5/4/14 167 110 111   

5/5/14 168 110 110   
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Table B.1.2 Record of Water Bath Temperatures – Individual Tank (Continued) 

Water Bath Temperature Record - Individual Reactor Set (Continued) 

Date Days Since Start AM [⁰F] PM  [⁰F] Manual Reading  [⁰F] 

5/6/14 169 110 110   

5/7/14 170 109 111   

5/8/14 171 111 111   

5/9/14 172 110 109   

5/10/14 173 110 109   

5/11/14 174 111 111   

5/12/14 175 111 109   

5/13/14 176 109 109   

5/14/14 177 109 109   

5/15/14 178 111 110   

5/16/14 179 110 110   

5/17/14 180 110 110   

5/18/14 181 110 109   

5/19/14 182 109 111   

5/20/14 183 111 110   

5/21/14 184 110 110 110 

5/22/14 185 111 109   

5/23/14 186 111 111   

5/24/14 187 109 110   

5/25/14 188 109 110   

5/26/14 189 110 111   

5/27/14 190 109 111   

5/28/14 191 110 109   

5/29/14 192 109 109   

5/30/14 193 110 111   

5/31/14 194 110 109   

6/1/14 195 110 110   

6/2/14 196 109 111   

6/3/14 197 111 110   

6/4/14 198 110 109   

6/5/14 199 110 110   

6/6/14 200 109 111   

6/7/14 201 111 111   

6/8/14 202 110 111   

6/9/14 203 110 110   
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Table B.1.2 Record of Water Bath Temperatures – Individual Tank (Continued) 

Water Bath Temperature Record - Individual Reactor Set (Continued) 

Date Days Since Start AM [⁰F] PM  [⁰F] Manual Reading  [⁰F] 

6/10/14 204 111 109   

6/11/14 205 111 111   

6/12/14 206 109 110   

6/13/14 207 109 110   

6/14/14 208 111 110 111 

6/15/14 209 109 109   

6/16/14 210 109 111   

6/17/14 211 110 110   

6/18/14 212 109 110   

6/19/14 213 110 110   

6/20/14 214 110 109   

6/21/14 215 110 111   

6/22/14 216 109 110   

6/23/14 217 111 110   

6/24/14 218 110 111   

6/25/14 219 111 110   

6/26/14 220 111 110   

6/27/14 221 109 110   

6/28/14 222 109 109   

6/29/14 223 110 111   

6/30/14 224 109 111   

7/1/14 225 111 110 111 

7/2/14 226 110 111   

7/3/14 227 110 111   

7/4/14 228 111 109   

7/5/14 229 111 109   

7/6/14 230 109 110   

7/7/14 231 109 109   

7/8/14 232 110 111   

7/9/14 233 109 110   

7/10/14 234 111 110   

7/11/14 235 111 111   

7/12/14 236 109 111   

7/13/14 237 109 109   

7/14/14 238 110 109   
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Table B.1.2 Record of Water Bath Temperatures – Individual Tank (Continued) 

Water Bath Temperature Record - Individual Reactor Set (Continued) 

Date Days Since Start AM [⁰F] PM  [⁰F] Manual Reading  [⁰F] 

7/15/14 239 109 110   

7/16/14 240 110 109   

7/17/14 241 110 110   

7/18/14 242 109 109   

7/19/14 243 111 109 111 

7/20/14 244 111 110   

7/21/14 245 110 109   

7/22/14 246 109 110   

7/23/14 247 111 110   

7/24/14 248 110 110   

7/25/14 249 110 109   

7/26/14 250 111 111   

7/27/14 251 110 110   

7/28/14 252 109 110   

7/29/14 253 110 110   

7/30/14 254 111 109   

7/31/14 255 111 111   

8/1/14 256 111 110   

8/2/14 257 110 110   

8/3/14 258 109 111   

8/4/14 259 111 111   

8/5/14 260 110 109 110 

8/6/14 261 110 110   

8/7/14 262 110 109 110 
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B.2  Gas Volume (Methane) Readings from Gas Totalizer 

Gas produced from the composite bioreactor set and each readily, and moderately 

degradable reactors were collected using an automated gas flow meter (Sierra 

Instruments model MicroTrak 101) capable of providing instantaneous methane flow rate 

in standard cubic centimeters per seconds (sccm).   Figure B.2.1 through B.2.3 illustrate 

daily gas flow reported by the gas flow meter, and normalized per pound of waste for the 

composite, readily, and moderately degradable bioreactor sets, respectively to obtain 

daily gas production.  Tables B.2.1 through B.2.3 tabulate the data recorded on a daily 

basis, at minimum, by gas flow meter for the respective composite, readily, and 

moderately degradable bioreactor sets. 

Each of the gas meters was connected to a data collection hub via USB on a 

monthly basis to download daily gas production rates to a data acquisition computer.  The 

required sensitivity range of the gas flow meter for this experiment was obtained by 

reviewing experimental results from Lifrieri (2010) who tabulated the gas generation rate 

of the bioreactor system on a 10 day basis.  Generally, sensitivity was set between 0 to 30 

sccm for composite and readily reactor sets, and 0 to 10 sccm for the moderately 

degradable set.  

For tabulated records of gas production, the column titled “ % of theoretical total” 

was based on a calculated theoretical total gas production of 6.23, 9.04, and 8.43 cubic 

feet per pound waste for composite, readily, and moderately degradable bioreactor sets, 

respectively.  
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It was assumed that methane comprised 55% of the total gas; therefore theoretical 

methane gas production of 3.43, 4.97, and 4.64 cubic feet per pound waste were used to 

assess percent of total theoretical for the purpose of evaluating the cumulative production 

of methane gas from flow meters. Calculations for theoretical total gas quantity were 

conducted using the lambda method as modified by Lifrieri and detailed in Chapter 3.  

 

 

Figure B.2.1 Daily Methane Gas Flow Rate from Meters – Composite Bioreactors 

 

It is comment that the weight of dry weight of waste remaining in bioreactors changes 

with respect to time as select bioreactors were removed for sampling and testing. The 

weight of waste removed for each bioreactor is based on the commissioning records 

provided in Appendix A.   
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Table B.2.1 Record of Gas Flow Readings – Composite Bioreactors 

Gas Flow Meter Readings - Composite Flow Meter 
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11/18/13 13:00 0 0.00 27.32 0.00 0.000 3.40 0% 

11/18/13 20:00 0 0.00 27.32 0.00 0.000 3.40 0% 

11/19/13 8:00 1 0.00 27.32 0.00 0.000 3.40 0% 

11/19/13 21:00 1 0.00 27.32 0.00 0.000 3.40 0% 

11/20/13 21:00 2 0.00 27.32 0.00 0.000 3.40 0% 

11/21/13 6:00 3 0.00 27.32 0.00 0.000 3.40 0% 

11/21/13 21:00 3 0.00 27.32 0.00 0.000 3.40 0% 

11/22/13 22:00 4 0.00 27.32 0.00 0.000 3.40 0% 

11/23/13 8:00 5 0.00 27.32 0.00 0.000 3.40 0% 

11/24/13 8:00 6 0.00 27.32 0.00 0.000 3.40 0% 

11/24/13 19:00 6 0.00 27.32 0.00 0.000 3.40 0% 

11/25/13 18:00 7 0.00 27.32 0.00 0.000 3.40 0% 

11/26/13 20:00 8 0.00 27.32 0.00 0.000 3.40 0% 

11/27/13 19:00 9 0.00 27.32 0.00 0.000 3.40 0% 

11/28/13 8:00 10 0.00 27.32 0.00 0.000 3.40 0% 

11/29/13 18:00 11 0.00 27.32 0.00 0.000 3.40 0% 

11/30/13 12:00 12 0.02 27.32 0.00 0.000 3.40 0% 

12/1/13 16:00 13 0.04 27.32 0.00 0.000 3.40 0% 

12/2/13 12:00 14 0.08 27.32 0.00 0.000 3.40 0% 

12/3/13 8:00 15 1.65 27.32 0.06 0.003 3.40 0% 
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Table B.2.1 Record of Gas Flow Readings – Composite Bioreactors (continued) 

Gas Flow Meter Readings - Composite Flow Meter 
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Cum. 
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12/3/13 21:00 15 2.03 27.32 0.07 0.004 3.39 0% 

12/4/13 8:00 16 2.18 27.32 0.08 0.004 3.39 0% 

12/4/13 21:00 16 2.53 27.32 0.09 0.005 3.39 0% 

12/5/13 8:00 17 3.48 27.32 0.13 0.006 3.39 0% 

12/5/13 21:00 17 3.89 27.32 0.14 0.007 3.38 0% 

12/5/13 21:15 17 5.98 27.32 0.22 0.011 3.38 0% 

12/6/13 8:00 18 3.75 27.32 0.14 0.007 3.38 1% 

12/7/13 19:00 19 7.27 27.32 0.27 0.014 3.36 1% 

12/8/13 11:00 20 9.49 27.32 0.35 0.018 3.35 1% 

12/8/13 17:00 20 12.12 27.32 0.44 0.023 3.34 2% 

12/9/13 8:00 21 12.32 27.32 0.45 0.023 3.33 2% 

12/9/13 21:00 21 12.92 27.32 0.47 0.024 3.32 2% 

12/10/13 8:00 22 14.59 27.32 0.53 0.027 3.30 3% 

12/11/13 19:00 23 16.05 27.32 0.59 0.030 3.26 4% 

12/12/13 16:00 24 16.34 27.32 0.60 0.030 3.23 5% 

12/13/13 18:00 25 17.12 27.32 0.63 0.032 3.20 6% 

12/14/13 18:00 26 17.55 27.32 0.64 0.033 3.17 7% 

12/15/13 19:00 27 17.98 27.32 0.66 0.033 3.13 8% 

12/16/13 19:00 28 18.12 27.32 0.66 0.034 3.10 9% 

12/17/13 8:00 29 17.47 27.32 0.64 0.033 3.08 9% 
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Table B.2.1 Record of Gas Flow Readings – Composite Bioreactors (continued) 

Gas Flow Meter Readings - Composite Flow Meter 
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12/17/13 19:00 29 17.64 27.32 0.65 0.033 3.06 10% 

12/18/13 8:00 30 17.54 27.32 0.64 0.033 3.05 10% 

12/18/13 8:00 30 17.40 27.32 0.64 0.032 3.05 10% 

12/19/13 7:00 31 17.92 27.32 0.66 0.033 3.01 11% 

12/19/13 9:00 31 17.32 27.32 0.63 0.032 3.01 11% 

12/20/13 9:00 32 18.29 27.32 0.67 0.034 2.98 12% 

12/21/13 8:00 33 18.28 27.32 0.67 0.034 2.95 13% 

12/22/13 21:00 34 18.21 27.32 0.67 0.034 2.89 15% 

12/23/13 8:00 35 18.01 27.32 0.66 0.034 2.88 15% 

12/24/13 12:00 36 18.37 27.32 0.67 0.034 2.84 17% 

12/25/13 8:00 37 18.38 27.32 0.67 0.034 2.81 17% 

12/26/13 7:00 38 18.31 27.32 0.67 0.034 2.78 18% 

12/27/13 8:00 39 18.52 27.32 0.68 0.034 2.74 19% 

12/28/13 8:00 40 18.70 27.32 0.68 0.035 2.71 20% 

12/29/13 14:00 41 18.90 27.32 0.69 0.035 2.66 22% 

12/30/13 9:00 42 17.75 27.32 0.65 0.033 2.64 22% 

12/31/13 9:00 43 18.30 27.32 0.67 0.034 2.60 23% 

1/1/14 11:00 44 16.25 27.32 0.59 0.030 2.57 24% 

1/2/14 20:00 45 17.28 27.32 0.63 0.032 2.52 26% 

1/3/14 19:00 46 17.08 27.32 0.63 0.032 2.49 27% 
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Table B.2.1 Record of Gas Flow Readings – Composite Bioreactors (continued) 

Gas Flow Meter Readings - Composite Flow Meter 
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1/4/14 18:00 47 16.46 27.32 0.60 0.031 2.46 27% 

1/5/14 8:00 48 14.44 27.32 0.53 0.027 2.45 28% 

1/5/14 20:00 48 14.31 27.32 0.52 0.027 2.44 28% 

1/6/14 20:00 49 14.17 27.32 0.52 0.026 2.41 29% 

1/6/14 18:00 49 13.72 27.32 0.50 0.026 2.41 29% 

1/6/14 20:00 49 12.76 27.32 0.47 0.024 2.41 29% 

1/7/14 22:00 50 12.73 25.61 0.50 0.025 2.38 30% 

1/8/14 21:00 51 12.17 25.61 0.48 0.024 2.36 31% 

1/9/14 20:00 52 11.71 25.61 0.46 0.023 2.34 31% 

1/10/14 8:00 53 12.06 25.61 0.47 0.024 2.32 32% 

1/10/14 20:00 53 11.66 25.61 0.46 0.023 2.31 32% 

1/11/14 8:00 54 11.75 25.61 0.46 0.023 2.30 32% 

1/12/14 8:00 55 10.61 25.61 0.41 0.021 2.28 33% 

1/13/14 20:00 56 12.08 25.61 0.47 0.024 2.24 34% 

1/14/14 8:00 57 11.42 25.61 0.45 0.023 2.23 34% 

1/15/14 11:00 58 11.17 25.61 0.44 0.022 2.21 35% 

1/16/14 8:00 59 10.85 25.61 0.42 0.022 2.19 36% 

1/17/14 8:00 60 10.92 25.61 0.43 0.022 2.17 36% 

1/18/14 7:00 61 10.71 25.61 0.42 0.021 2.15 37% 

1/19/14 8:00 62 10.46 25.61 0.41 0.021 2.13 37% 
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Table B.2.1 Record of Gas Flow Readings – Composite Bioreactors (continued) 

Gas Flow Meter Readings - Composite Flow Meter 
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1/19/14 20:00 62 10.23 23.89 0.43 0.022 2.11 38% 

1/20/14 18:00 63 9.90 23.89 0.41 0.021 2.10 38% 

1/21/14 21:00 64 10.37 23.89 0.43 0.022 2.07 39% 

1/21/14 8:00 64 10.47 23.89 0.44 0.022 2.08 39% 

1/22/14 14:00 65 10.44 23.89 0.44 0.022 2.05 40% 

1/23/14 8:00 66 10.31 23.89 0.43 0.022 2.04 40% 

1/24/14 8:00 67 10.41 23.89 0.44 0.022 2.02 41% 

1/25/14 8:00 68 10.83 23.89 0.45 0.023 1.99 41% 

1/26/14 8:00 69 9.31 23.89 0.39 0.020 1.97 42% 

1/27/14 8:00 70 9.51 23.89 0.40 0.020 1.95 43% 

1/28/14 8:00 71 9.27 23.89 0.39 0.020 1.93 43% 

1/29/14 21:00 72 8.71 23.89 0.36 0.019 1.90 44% 

1/30/14 20:00 73 8.60 23.89 0.36 0.018 1.89 44% 

1/31/14 20:00 74 8.87 23.89 0.37 0.019 1.87 45% 

2/1/14 19:00 75 8.61 23.89 0.36 0.018 1.85 46% 

2/2/14 9:00 76 8.75 23.89 0.37 0.019 1.84 46% 

2/3/14 8:00 77 8.76 23.89 0.37 0.019 1.82 46% 

2/4/14 8:00 78 8.51 23.89 0.36 0.018 1.80 47% 

2/5/14 21:00 79 7.27 23.89 0.30 0.015 1.78 48% 

2/6/14 8:00 80 6.80 23.89 0.28 0.014 1.77 48% 
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Table B.2.1 Record of Gas Flow Readings – Composite Bioreactors (continued) 

Gas Flow Meter Readings - Composite Flow Meter 
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2/7/14 8:00 81 6.70 23.89 0.28 0.014 1.76 48% 

2/8/14 7:30 82 6.81 23.89 0.28 0.014 1.74 49% 

2/9/14 21:00 83 6.38 23.89 0.27 0.014 1.72 49% 

2/10/14 8:00 84 6.62 23.89 0.28 0.014 1.72 49% 

2/11/14 8:00 85 6.70 23.89 0.28 0.014 1.70 50% 

2/12/14 21:00 86 6.48 23.89 0.27 0.014 1.68 51% 

2/13/14 21:30 87 6.56 23.89 0.27 0.014 1.67 51% 

2/14/14 18:30 88 5.67 23.89 0.24 0.012 1.66 51% 

2/15/14 6:00 89 5.63 23.89 0.24 0.012 1.65 51% 

2/16/14 8:00 90 6.02 23.89 0.25 0.013 1.64 52% 

2/17/14 8:00 91 5.84 23.89 0.24 0.012 1.62 52% 

2/18/14 8:00 92 5.88 21.38 0.27 0.014 1.61 53% 

2/19/14 8:00 93 5.96 21.38 0.28 0.014 1.60 53% 

2/20/14 8:00 94 5.94 21.38 0.28 0.014 1.58 53% 

2/21/14 8:00 95 5.72 21.38 0.27 0.014 1.57 54% 

2/22/14 8:00 96 5.74 21.38 0.27 0.014 1.56 54% 

2/23/14 8:00 97 5.30 21.38 0.25 0.013 1.54 55% 

2/24/14 8:00 98 4.96 21.38 0.23 0.012 1.53 55% 

2/25/14 8:00 99 4.91 21.38 0.23 0.012 1.52 55% 

2/26/14 8:00 100 4.81 21.38 0.23 0.011 1.51 56% 



250 
 

 

Table B.2.1 Record of Gas Flow Readings – Composite Bioreactors (continued) 

Gas Flow Meter Readings - Composite Flow Meter 
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2/27/14 21:00 101 4.75 21.38 0.22 0.011 1.49 56% 

2/28/14 18:00 102 4.81 21.38 0.22 0.011 1.48 56% 

3/1/14 20:00 103 4.93 21.38 0.23 0.012 1.47 57% 

3/2/14 19:00 104 4.92 21.38 0.23 0.012 1.46 57% 

3/3/14 18:00 105 5.18 21.38 0.24 0.012 1.44 57% 

3/4/14 21:00 106 4.10 21.38 0.19 0.010 1.43 58% 

3/5/14 8:00 107 3.94 21.38 0.18 0.009 1.43 58% 

3/6/14 14:00 108 4.01 21.38 0.19 0.010 1.42 58% 

3/7/14 8:00 109 3.58 21.38 0.17 0.009 1.41 58% 

3/8/14 8:00 110 3.33 21.38 0.16 0.008 1.40 59% 

3/9/14 8:00 111 4.69 21.38 0.22 0.011 1.39 59% 

3/10/14 8:00 112 3.79 21.38 0.18 0.009 1.38 59% 

3/11/14 10:00 113 3.83 21.38 0.18 0.009 1.37 60% 

3/12/14 20:00 114 4.50 21.38 0.21 0.011 1.36 60% 

3/13/14 16:00 115 4.27 21.38 0.20 0.010 1.35 60% 

3/14/14 18:00 116 4.20 21.38 0.20 0.010 1.34 61% 

3/15/14 21:00 117 4.41 21.38 0.21 0.010 1.33 61% 

3/16/14 8:00 118 4.38 21.38 0.20 0.010 1.32 61% 

3/17/14 14:00 119 4.50 21.38 0.21 0.011 1.31 61% 

3/18/14 21:00 120 3.83 21.38 0.18 0.009 1.30 62% 
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Table B.2.1 Record of Gas Flow Readings – Composite Bioreactors (continued) 

Gas Flow Meter Readings - Composite Flow Meter 

Date Time 
Cum. 

Days 

C
H

4
 F

lo
w

 

R
ea

d
in

g
 [

sc
cm

] 

D
ry

 W
t 

in
 

R
ea

ct
o

rs
 [

lb
] 

C
H

4
 F

lo
w

 

R
a
te

/W
a
st

e 

[s
cc

m
/l

b
] 

C
H

4
 F

lo
w

 

R
a
te

/W
a
st

e 

[f
t3

/l
b

] 
p

er
 d

a
y

 

C
H

4
 r

em
a
in

in
g
 

[f
t³

/l
b

] 

%
 o

f 
T

h
eo

re
ti

ca
l 

T
o
ta

l 

3/19/14 8:00 121 3.53 21.38 0.17 0.008 1.29 62% 

3/20/14 8:00 122 3.49 21.38 0.16 0.008 1.28 62% 

3/20/14 7:30 122 3.26 19.66 0.17 0.008 1.28 62% 

3/21/14 21:00 123 2.97 19.66 0.15 0.008 1.27 63% 

3/22/14 8:00 124 3.23 19.66 0.16 0.008 1.27 63% 

3/23/14 8:00 125 3.20 19.66 0.16 0.008 1.26 63% 

3/24/14 21:00 126 3.29 19.66 0.17 0.009 1.25 63% 

3/25/14 21:30 127 3.17 19.66 0.16 0.008 1.24 64% 

3/26/14 18:30 128 3.09 19.66 0.16 0.008 1.23 64% 

3/27/14 6:00 129 3.07 19.66 0.16 0.008 1.23 64% 

3/28/14 8:00 130 3.05 19.66 0.16 0.008 1.22 64% 

3/29/14 8:00 131 2.97 19.66 0.15 0.008 1.21 64% 

3/30/14 8:00 132 2.90 19.66 0.15 0.008 1.20 65% 

3/31/14 8:00 133 3.03 19.66 0.15 0.008 1.20 65% 

4/1/14 8:00 134 2.93 19.66 0.15 0.008 1.19 65% 

4/2/14 8:00 135 2.65 19.66 0.13 0.007 1.18 65% 

4/3/14 8:00 136 2.75 19.66 0.14 0.007 1.18 65% 

4/4/14 8:00 137 2.80 19.66 0.14 0.007 1.17 66% 

4/5/14 8:00 138 2.43 19.66 0.12 0.006 1.16 66% 

4/6/14 8:00 139 2.62 19.66 0.13 0.007 1.16 66% 
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Table B.2.1 Record of Gas Flow Readings – Composite Bioreactors (continued) 

Gas Flow Meter Readings - Composite Flow Meter 
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4/7/14 8:00 140 2.60 19.66 0.13 0.007 1.15 66% 

4/8/14 21:00 141 2.23 19.66 0.11 0.006 1.14 66% 

4/9/14 18:00 142 2.26 19.66 0.12 0.006 1.13 67% 

4/10/14 20:00 143 2.34 19.66 0.12 0.006 1.13 67% 

4/11/14 19:00 144 2.16 19.66 0.11 0.006 1.12 67% 

4/12/14 18:00 145 1.85 19.66 0.09 0.005 1.12 67% 

4/13/14 8:00 146 2.13 19.66 0.11 0.006 1.11 67% 

4/14/14 19:00 147 1.98 19.66 0.10 0.005 1.11 67% 

4/15/14 8:00 148 2.01 19.66 0.10 0.005 1.10 68% 

4/16/14 8:00 149 2.01 19.66 0.10 0.005 1.10 68% 

4/17/14 7:00 150 1.55 19.66 0.08 0.004 1.10 68% 

4/18/14 9:00 151 1.69 19.66 0.09 0.004 1.09 68% 

4/19/14 9:00 152 1.83 19.66 0.09 0.005 1.09 68% 

4/20/14 8:00 153 1.78 19.66 0.09 0.005 1.08 68% 

4/21/14 8:00 154 1.70 19.66 0.09 0.004 1.08 68% 

4/22/14 8:00 155 1.84 19.66 0.09 0.005 1.07 68% 

4/23/14 8:00 156 1.85 19.66 0.09 0.005 1.07 69% 

4/24/14 8:00 157 1.82 19.66 0.09 0.005 1.06 69% 

4/25/14 8:00 158 1.78 19.66 0.09 0.005 1.06 69% 

4/26/14 8:00 159 1.76 19.66 0.09 0.005 1.05 69% 
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Table B.2.1 Record of Gas Flow Readings – Composite Bioreactors (continued) 

Gas Flow Meter Readings - Composite Flow Meter 
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4/27/14 8:00 160 1.80 19.66 0.09 0.005 1.05 69% 

4/28/14 8:00 161 1.73 19.66 0.09 0.004 1.04 69% 

4/29/14 8:00 162 1.83 19.66 0.09 0.005 1.04 69% 

4/30/14 8:00 163 1.57 19.66 0.08 0.004 1.04 70% 

5/1/14 8:00 164 1.56 19.66 0.08 0.004 1.03 70% 

5/2/14 8:00 165 1.53 19.66 0.08 0.004 1.03 70% 

5/3/14 8:00 166 1.52 19.66 0.08 0.004 1.02 70% 

5/4/14 8:00 167 1.59 19.66 0.08 0.004 1.02 70% 

5/5/14 8:00 168 1.53 19.66 0.08 0.004 1.02 70% 

5/6/14 8:00 169 1.40 19.66 0.07 0.004 1.01 70% 

5/7/14 8:00 170 1.31 19.66 0.07 0.003 1.01 70% 

5/8/14 8:00 171 1.35 19.66 0.07 0.003 1.01 70% 

5/9/14 8:00 172 1.36 19.66 0.07 0.004 1.00 71% 

5/10/14 8:00 173 1.26 19.66 0.06 0.003 1.00 71% 

5/11/14 21:00 174 1.23 19.66 0.06 0.003 0.99 71% 

5/12/14 18:00 175 1.23 19.66 0.06 0.003 0.99 71% 

5/13/14 20:00 176 1.20 19.66 0.06 0.003 0.99 71% 

5/14/14 19:00 177 1.20 19.66 0.06 0.003 0.98 71% 

5/15/14 18:00 178 1.12 19.66 0.06 0.003 0.98 71% 

5/16/14 21:00 179 1.02 19.66 0.05 0.003 0.98 71% 
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Table B.2.1 Record of Gas Flow Readings – Composite Bioreactors (continued) 

Gas Flow Meter Readings - Composite Flow Meter 
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5/17/14 8:00 180 1.02 19.66 0.05 0.003 0.98 71% 

5/18/14 14:00 181 0.98 19.66 0.05 0.003 0.97 71% 

5/19/14 8:00 182 0.89 19.66 0.05 0.002 0.97 71% 

5/20/14 8:00 183 0.93 19.66 0.05 0.002 0.97 71% 

5/21/14 8:00 184 0.87 19.66 0.04 0.002 0.97 72% 

5/22/14 8:00 185 0.84 19.66 0.04 0.002 0.97 72% 

5/23/14 10:00 186 0.82 19.66 0.04 0.002 0.96 72% 

5/24/14 20:00 187 0.81 19.66 0.04 0.002 0.96 72% 

5/25/14 16:00 188 0.76 19.66 0.04 0.002 0.96 72% 

5/26/14 18:00 189 0.74 19.66 0.04 0.002 0.96 72% 

5/27/14 21:00 190 0.69 17.94 0.04 0.002 0.95 72% 

5/28/14 8:00 191 0.65 17.94 0.04 0.002 0.95 72% 

5/29/14 14:00 192 0.61 17.94 0.03 0.002 0.95 72% 

5/30/14 21:00 193 0.58 17.94 0.03 0.002 0.95 72% 

5/31/14 8:00 194 0.58 17.94 0.03 0.002 0.95 72% 

6/1/14 8:00 195 0.50 17.94 0.03 0.001 0.95 72% 

6/2/14 7:30 196 0.45 17.94 0.03 0.001 0.95 72% 

6/3/14 21:00 197 0.48 17.94 0.03 0.001 0.94 72% 

6/4/14 8:00 198 0.42 17.94 0.02 0.001 0.94 72% 

6/5/14 8:00 199 0.40 17.94 0.02 0.001 0.94 72% 
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Table B.2.1 Record of Gas Flow Readings – Composite Bioreactors (continued) 

Gas Flow Meter Readings - Composite Flow Meter 
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6/6/14 21:00 200 0.38 17.94 0.02 0.001 0.94 72% 

6/7/14 21:30 201 0.36 17.94 0.02 0.001 0.94 72% 

6/8/14 18:30 202 0.33 17.94 0.02 0.001 0.94 72% 

6/9/14 6:00 203 0.30 17.94 0.02 0.001 0.94 72% 

6/10/14 8:00 204 0.25 17.94 0.01 0.001 0.94 72% 

6/11/14 8:00 205 0.22 17.94 0.01 0.001 0.94 72% 

6/12/14 8:00 206 0.17 17.94 0.01 0.000 0.94 72% 

6/13/14 8:00 207 0.15 17.94 0.01 0.000 0.94 72% 

6/14/14 8:00 208 0.16 17.94 0.01 0.000 0.94 72% 

6/15/14 8:00 209 0.14 17.94 0.01 0.000 0.94 72% 

6/16/14 8:00 210 0.13 17.94 0.01 0.000 0.93 72% 

6/17/14 8:00 211 0.10 17.94 0.01 0.000 0.93 73% 

6/18/14 7:30 212 0.07 17.94 0.00 0.000 0.93 73% 

6/19/14 21:00 213 0.07 17.94 0.00 0.000 0.93 73% 

6/20/14 14:00 214 0.06 17.94 0.00 0.000 0.93 73% 

6/21/14 14:00 215 0.04 17.94 0.00 0.000 0.93 73% 

6/22/14 8:00 216 0.03 17.94 0.00 0.000 0.93 73% 

6/23/14 8:00 217 0.03 17.94 0.00 0.000 0.93 73% 

6/24/14 8:00 218 0.02 17.94 0.00 0.000 0.93 73% 

6/25/14 8:00 219 0.00 17.94 0.00 0.000 0.93 73% 
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Table B.2.1 Record of Gas Flow Readings – Composite Bioreactors (continued) 

Gas Flow Meter Readings - Composite Flow Meter 
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6/26/14 10:00 220 0.00 17.94 0.00 0.000 0.93 73% 

6/27/14 20:00 221 0.00 17.94 0.00 0.000 0.93 73% 

 

 

  

 

 

 
 

Figure B.2.2 Daily Methane Gas Flow Rate from Meters – Readily Deg. Bioreactors 
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Table B.2.2 Record of Gas Flow Readings – Readily Degradable Bioreactors 

Gas Flow Meter Readings – Readily Deg. Flow Meter 
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11/18/13 13:00 0 0.00 11.48 0.00 0.000 4.97 0% 

11/18/13 20:00 0 0.00 11.48 0.00 0.000 4.97 0% 

11/19/13 8:00 1 0.00 11.48 0.00 0.000 4.97 0% 

11/19/13 21:00 1 0.00 11.48 0.00 0.000 4.97 0% 

11/20/13 21:00 2 0.00 11.48 0.00 0.000 4.97 0% 

11/21/13 8:00 3 0.00 11.48 0.00 0.000 4.97 0% 

11/21/13 21:00 3 0.00 11.48 0.00 0.000 4.97 0% 

11/22/13 22:00 4 0.00 11.48 0.00 0.000 4.97 0% 

11/23/13 8:00 5 0.08 11.48 0.01 0.000 4.97 0% 

11/24/13 8:00 6 0.16 11.48 0.01 0.001 4.97 0% 

11/24/13 19:00 6 0.37 11.48 0.03 0.002 4.97 0% 

11/25/13 20:00 7 0.80 11.48 0.07 0.004 4.97 0% 

11/26/13 20:00 8 0.86 11.48 0.07 0.004 4.96 0% 

11/27/13 19:00 9 0.91 11.48 0.08 0.004 4.96 0% 

11/28/13 8:00 10 1.12 11.48 0.10 0.005 4.96 0% 

11/29/13 18:00 11 2.31 11.48 0.20 0.010 4.94 1% 

11/30/13 12:00 12 2.83 11.48 0.25 0.013 4.93 1% 

12/1/13 16:00 13 2.91 11.48 0.25 0.013 4.92 1% 

12/2/13 12:00 14 3.54 11.48 0.31 0.016 4.90 1% 

12/2/13 19:00 14 4.97 11.48 0.43 0.022 4.90 1% 
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Table B.2.2 Record of Gas Flow Readings – Readily Deg. Bioreactors (continued) 

Gas Flow Meter Readings – Readily Deg. Flow Meter 
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12/3/13 8:00 15 5.15 11.48 0.45 0.023 4.89 2% 

12/3/13 21:00 15 6.37 11.48 0.55 0.028 4.87 2% 

12/4/13 8:00 16 5.17 11.48 0.45 0.023 4.86 2% 

12/4/13 21:00 16 8.75 11.48 0.76 0.039 4.84 3% 

12/5/13 8:00 17 11.89 11.48 1.04 0.053 4.81 3% 

12/5/13 21:00 17 13.58 11.48 1.18 0.060 4.78 4% 

12/6/13 8:00 18 15.86 11.48 1.38 0.070 4.75 4% 

12/7/13 19:00 19 16.46 11.48 1.43 0.073 4.64 7% 

12/8/13 11:00 20 18.98 11.48 1.65 0.084 4.59 8% 

12/8/13 18:00 20 21.23 11.48 1.85 0.094 4.56 8% 

12/9/13 8:00 21 24.60 11.48 2.14 0.109 4.50 10% 

12/9/13 9:00 21 22.32 11.48 1.94 0.099 4.49 10% 

12/10/13 8:00 22 22.83 11.48 1.99 0.101 4.40 12% 

12/11/13 19:00 23 24.27 11.48 2.11 0.108 4.24 15% 

12/11/13 20:00 23 25.74 11.48 2.24 0.114 4.23 15% 

12/12/13 16:00 24 25.02 11.48 2.18 0.111 4.14 17% 

12/13/13 18:00 25 24.74 11.48 2.16 0.110 4.02 19% 

12/14/13 18:00 26 24.39 11.48 2.12 0.108 3.91 21% 

12/15/13 19:00 27 24.31 11.48 2.12 0.108 3.80 24% 

12/16/13 19:00 28 25.36 11.48 2.21 0.112 3.69 26% 
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Table B.2.2 Record of Gas Flow Readings – Readily Deg. Bioreactors (continued) 

Gas Flow Meter Readings – Readily Deg. Flow Meter 
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12/17/13 8:00 29 24.95 11.48 2.17 0.111 3.63 27% 

12/17/13 20:00 29 25.35 11.48 2.21 0.112 3.57 28% 

12/18/13 8:00 30 25.17 11.48 2.19 0.111 3.52 29% 

12/19/13 8:00 31 25.35 11.48 2.21 0.112 3.41 31% 

12/20/13 8:00 32 24.03 11.48 2.09 0.106 3.30 34% 

12/21/13 7:00 33 25.35 11.48 2.21 0.112 3.19 36% 

12/22/13 21:00 34 24.77 11.48 2.16 0.110 3.02 39% 

12/23/13 8:00 35 24.95 11.48 2.17 0.111 2.97 40% 

12/24/13 12:00 36 24.31 11.48 2.12 0.108 2.84 43% 

12/25/13 8:00 37 24.88 11.48 2.17 0.110 2.75 45% 

12/26/13 8:00 38 23.61 11.48 2.06 0.105 2.65 47% 

12/27/13 8:00 39 22.87 11.48 1.99 0.101 2.54 49% 

12/28/13 8:00 40 22.33 11.48 1.95 0.099 2.45 51% 

12/29/13 21:00 41 20.62 11.48 1.80 0.091 2.30 54% 

12/30/13 9:00 42 19.06 11.48 1.66 0.084 2.26 54% 

12/31/13 9:00 43 17.91 11.48 1.56 0.079 2.18 56% 

1/1/14 11:00 44 17.40 11.48 1.52 0.077 2.10 58% 

1/2/14 20:00 45 16.63 11.48 1.45 0.074 2.00 60% 

1/3/14 19:00 46 15.92 11.48 1.39 0.071 1.93 61% 

1/4/14 18:00 47 15.00 11.48 1.31 0.066 1.87 62% 
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Table B.2.2 Record of Gas Flow Readings – Readily Deg. Bioreactors (continued) 

Gas Flow Meter Readings – Readily Deg. Flow Meter 
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1/5/14 8:00 48 13.93 11.48 1.21 0.062 1.83 63% 

1/5/14 20:00 48 13.15 11.48 1.15 0.058 1.80 64% 

1/6/14 8:00 49 12.26 11.48 1.07 0.054 1.77 64% 

1/6/14 20:00 49 12.52 11.48 1.09 0.055 1.75 65% 

1/7/14 21:00 50 11.45 11.48 1.00 0.051 1.69 66% 

1/8/14 20:00 51 10.96 11.48 0.95 0.049 1.65 67% 

1/9/14 8:00 52 10.74 11.48 0.94 0.048 1.62 67% 

1/10/14 8:00 53 10.06 11.48 0.88 0.045 1.58 68% 

1/10/14 20:00 53 9.68 11.48 0.84 0.043 1.56 69% 

1/11/14 20:00 54 9.32 11.48 0.81 0.041 1.52 69% 

1/12/14 20:00 55 8.84 11.48 0.77 0.039 1.48 70% 

1/13/14 20:00 56 8.58 11.48 0.75 0.038 1.44 71% 

1/14/14 8:00 57 7.97 11.48 0.69 0.035 1.42 71% 

1/15/14 8:00 58 8.35 11.48 0.73 0.037 1.38 72% 

1/16/14 8:00 59 7.76 11.48 0.68 0.034 1.35 73% 

1/17/14 8:00 60 7.47 11.48 0.65 0.033 1.32 74% 

1/18/14 11:00 61 7.11 11.48 0.62 0.031 1.28 74% 

1/19/14 10:00 62 7.19 11.48 0.63 0.032 1.25 75% 

1/20/14 20:00 63 6.73 11.48 0.59 0.030 1.21 76% 

1/21/14 16:00 64 5.97 11.48 0.52 0.026 1.19 76% 



261 
 

 

Table B.2.2 Record of Gas Flow Readings – Readily Deg. Bioreactors (continued) 

Gas Flow Meter Readings – Readily Deg. Flow Meter 
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1/22/14 18:00 65 6.33 11.48 0.55 0.028 1.16 77% 

1/23/14 21:00 66 6.27 11.48 0.55 0.028 1.13 77% 

1/24/14 8:00 67 5.91 11.48 0.51 0.026 1.11 78% 

1/25/14 14:00 68 6.12 11.48 0.53 0.027 1.08 78% 

1/26/14 8:00 69 5.83 11.48 0.51 0.026 1.06 79% 

1/27/14 8:00 70 5.41 11.48 0.47 0.024 1.04 79% 

1/28/14 8:00 71 5.13 11.48 0.45 0.023 1.01 80% 

1/29/14 8:00 72 4.84 11.48 0.42 0.021 0.99 80% 

1/30/14 8:00 73 4.77 11.48 0.42 0.021 0.97 80% 

1/31/14 8:00 74 4.35 11.48 0.38 0.019 0.95 81% 

2/1/14 21:00 75 4.21 11.48 0.37 0.019 0.92 81% 

2/2/14 18:00 76 3.64 11.48 0.32 0.016 0.91 82% 

2/3/14 20:00 77 3.56 11.48 0.31 0.016 0.89 82% 

2/4/14 19:00 78 3.43 11.48 0.30 0.015 0.88 82% 

2/5/14 9:00 79 3.20 11.48 0.28 0.014 0.87 83% 

2/6/14 16:00 80 3.14 11.48 0.27 0.014 0.85 83% 

2/7/14 18:00 81 3.28 11.48 0.29 0.015 0.84 83% 

2/8/14 21:00 82 2.92 11.48 0.25 0.013 0.82 83% 

2/9/14 8:00 83 2.71 11.48 0.24 0.012 0.82 84% 

2/10/14 14:00 84 2.42 11.48 0.21 0.011 0.80 84% 
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Table B.2.2 Record of Gas Flow Readings – Readily Deg. Bioreactors (continued) 

Gas Flow Meter Readings – Readily Deg. Flow Meter 
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2/11/14 8:00 85 2.36 11.48 0.21 0.010 0.79 84% 

2/12/14 8:00 86 2.57 11.48 0.22 0.011 0.78 84% 

2/13/14 8:00 87 2.42 11.48 0.21 0.011 0.77 84% 

2/14/14 8:00 88 2.14 11.48 0.19 0.009 0.76 85% 

2/15/14 8:00 89 2.21 11.48 0.19 0.010 0.75 85% 

2/16/14 8:00 90 2.42 11.48 0.21 0.011 0.74 85% 

2/17/14 21:00 91 2.07 11.48 0.18 0.009 0.73 85% 

2/18/14 18:00 92 1.85 11.48 0.16 0.008 0.72 86% 

2/19/14 8:00 93 1.58 11.48 0.14 0.007 0.72 86% 

2/20/14 20:00 94 1.54 11.48 0.13 0.007 0.71 86% 

2/21/14 20:00 95 2.24 11.48 0.20 0.010 0.70 86% 

2/22/14 20:00 96 2.38 11.48 0.21 0.011 0.69 86% 

2/23/14 20:00 97 1.54 11.48 0.13 0.007 0.68 86% 

2/24/14 8:00 98 1.57 11.48 0.14 0.007 0.68 86% 

2/25/14 8:00 99 2.24 11.48 0.20 0.010 0.67 87% 

2/26/14 8:00 100 2.16 11.48 0.19 0.010 0.66 87% 

2/27/14 8:00 101 1.75 11.48 0.15 0.008 0.65 87% 

2/28/14 8:00 102 2.23 11.48 0.19 0.010 0.64 87% 

3/1/14 8:00 103 2.12 11.48 0.18 0.009 0.63 87% 

3/2/14 21:00 104 1.81 11.48 0.16 0.008 0.62 88% 
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Table B.2.2 Record of Gas Flow Readings – Readily Deg. Bioreactors (continued) 

Gas Flow Meter Readings – Readily Deg. Flow Meter 
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3/3/14 18:00 105 1.92 11.48 0.17 0.009 0.61 88% 

3/4/14 20:00 106 1.95 11.48 0.17 0.009 0.60 88% 

3/5/14 19:00 107 1.81 11.48 0.16 0.008 0.59 88% 

3/6/14 18:00 108 1.67 11.48 0.15 0.007 0.59 88% 

3/7/14 21:00 109 1.56 11.48 0.14 0.007 0.58 88% 

3/8/14 8:00 110 1.40 11.48 0.12 0.006 0.57 88% 

3/9/14 14:00 111 1.79 11.48 0.16 0.008 0.56 89% 

3/10/14 8:00 112 1.53 11.48 0.13 0.007 0.56 89% 

3/11/14 8:00 113 1.40 11.48 0.12 0.006 0.55 89% 

3/12/14 8:00 114 1.52 11.48 0.13 0.007 0.55 89% 

3/13/14 8:00 115 1.31 11.48 0.11 0.006 0.54 89% 

3/14/14 10:00 116 1.38 11.48 0.12 0.006 0.53 89% 

3/15/14 20:00 117 0.89 11.48 0.08 0.004 0.53 89% 

3/16/14 16:00 118 0.85 11.48 0.07 0.004 0.53 89% 

3/17/14 18:00 119 0.89 11.48 0.08 0.004 0.52 90% 

3/18/14 21:00 120 0.98 11.48 0.09 0.004 0.52 90% 

3/19/14 8:00 121 0.85 11.48 0.07 0.004 0.51 90% 

3/20/14 14:00 122 1.04 11.48 0.09 0.005 0.51 90% 

3/21/14 21:00 123 1.17 11.48 0.10 0.005 0.50 90% 

3/22/14 8:00 124 1.31 11.48 0.11 0.006 0.50 90% 
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Table B.2.2 Record of Gas Flow Readings – Readily Deg. Bioreactors (continued) 

Gas Flow Meter Readings – Readily Deg. Flow Meter 
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3/23/14 8:00 125 1.19 11.48 0.10 0.005 0.49 90% 

3/24/14 21:00 126 1.17 11.48 0.10 0.005 0.49 90% 

3/25/14 21:30 127 1.13 11.48 0.10 0.005 0.48 90% 

3/26/14 18:30 128 1.11 11.48 0.10 0.005 0.48 90% 

3/27/14 6:00 129 1.04 11.48 0.09 0.005 0.47 90% 

3/28/14 8:00 130 1.08 11.48 0.09 0.005 0.47 91% 

3/29/14 8:00 131 1.07 11.48 0.09 0.005 0.46 91% 

3/30/14 8:00 132 1.06 11.48 0.09 0.005 0.46 91% 

3/31/14 8:00 133 1.07 11.48 0.09 0.005 0.46 91% 

4/1/14 8:00 134 1.08 11.48 0.09 0.005 0.45 91% 

4/2/14 8:00 135 1.05 11.48 0.09 0.005 0.45 91% 

4/3/14 8:00 136 0.98 11.48 0.09 0.004 0.44 91% 

4/4/14 8:00 137 0.94 11.48 0.08 0.004 0.44 91% 

4/5/14 8:00 138 0.91 11.48 0.08 0.004 0.43 91% 

4/6/14 8:00 139 0.94 11.48 0.08 0.004 0.43 91% 

4/7/14 8:00 140 0.84 11.48 0.07 0.004 0.43 91% 

4/8/14 21:00 141 0.75 11.48 0.07 0.003 0.42 92% 

4/9/14 18:00 142 0.70 11.48 0.06 0.003 0.42 92% 

4/10/14 20:00 143 0.71 11.48 0.06 0.003 0.41 92% 

4/11/14 19:00 144 0.66 11.48 0.06 0.003 0.41 92% 
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Table B.2.2 Record of Gas Flow Readings – Readily Deg. Bioreactors (continued) 

Gas Flow Meter Readings – Readily Deg. Flow Meter 
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4/12/14 18:00 145 0.65 11.48 0.06 0.003 0.41 92% 

4/13/14 8:00 146 0.64 11.48 0.06 0.003 0.41 92% 

4/14/14 19:00 147 0.62 11.48 0.05 0.003 0.40 92% 

4/15/14 8:00 148 0.60 11.48 0.05 0.003 0.40 92% 

4/16/14 8:00 149 0.60 11.48 0.05 0.003 0.40 92% 

4/17/14 7:00 150 0.61 11.48 0.05 0.003 0.40 92% 

4/18/14 9:00 151 0.56 11.48 0.05 0.002 0.39 92% 

4/19/14 9:00 152 0.55 11.48 0.05 0.002 0.39 92% 

4/20/14 8:00 153 0.49 11.48 0.04 0.002 0.39 92% 

4/21/14 8:00 154 0.56 11.48 0.05 0.002 0.39 92% 

4/22/14 8:00 155 0.48 11.48 0.04 0.002 0.38 92% 

4/23/14 8:00 156 0.47 11.48 0.04 0.002 0.38 92% 

4/24/14 8:00 157 0.46 11.48 0.04 0.002 0.38 92% 

4/25/14 8:00 158 0.45 11.48 0.04 0.002 0.38 92% 

4/26/14 8:00 159 0.43 11.48 0.04 0.002 0.38 92% 

4/27/14 8:00 160 0.39 11.48 0.03 0.002 0.37 92% 

4/28/14 8:00 161 0.37 11.48 0.03 0.002 0.37 93% 

4/29/14 8:00 162 0.37 11.48 0.03 0.002 0.37 93% 

4/30/14 8:00 163 0.35 11.48 0.03 0.002 0.37 93% 

5/1/14 8:00 164 0.36 11.48 0.03 0.002 0.37 93% 



266 
 

 

Table B.2.2 Record of Gas Flow Readings – Readily Deg. Bioreactors (continued) 

Gas Flow Meter Readings – Readily Deg. Flow Meter 
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5/2/14 8:00 165 0.33 11.48 0.03 0.001 0.37 93% 

5/3/14 8:00 166 0.30 11.48 0.03 0.001 0.37 93% 

5/4/14 8:00 167 0.27 11.48 0.02 0.001 0.36 93% 

5/5/14 8:00 168 0.30 11.48 0.03 0.001 0.36 93% 

5/6/14 8:00 169 0.29 11.48 0.03 0.001 0.36 93% 

5/7/14 8:00 170 0.25 11.48 0.02 0.001 0.36 93% 

5/8/14 8:00 171 0.23 11.48 0.02 0.001 0.36 93% 

5/9/14 8:00 172 0.22 11.48 0.02 0.001 0.36 93% 

5/10/14 8:00 173 0.21 11.48 0.02 0.001 0.36 93% 

5/11/14 21:00 174 0.18 11.48 0.02 0.001 0.36 93% 

5/12/14 18:00 175 0.16 11.48 0.01 0.001 0.36 93% 

5/13/14 20:00 176 0.17 11.48 0.01 0.001 0.35 93% 

5/14/14 19:00 177 0.15 11.48 0.01 0.001 0.35 93% 

5/15/14 18:00 178 0.14 11.48 0.01 0.001 0.35 93% 

5/16/14 21:00 179 0.12 11.48 0.01 0.001 0.35 93% 

5/17/14 8:00 180 0.10 11.48 0.01 0.000 0.35 93% 

5/18/14 14:00 181 0.10 11.48 0.01 0.000 0.35 93% 

5/19/14 8:00 182 0.09 11.48 0.01 0.000 0.35 93% 

5/20/14 8:00 183 0.08 11.48 0.01 0.000 0.35 93% 

5/21/14 8:00 184 0.08 11.48 0.01 0.000 0.35 93% 
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Table B.2.2 Record of Gas Flow Readings – Readily Deg. Bioreactors (continued) 

Gas Flow Meter Readings – Readily Deg. Flow Meter 
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5/22/14 8:00 185 0.06 11.48 0.01 0.000 0.35 93% 

5/23/14 10:00 186 0.06 11.48 0.01 0.000 0.35 93% 

5/24/14 20:00 187 0.04 11.48 0.00 0.000 0.35 93% 

5/25/14 16:00 188 0.00 11.48 0.00 0.000 0.35 93% 

5/26/14 18:00 189 0.00 11.48 0.00 0.000 0.35 93% 

5/27/14 21:00 190 0.00 11.48 0.00 0.000 0.35 93% 

5/28/14 8:00 191 0.00 11.48 0.00 0.000 0.35 93% 

5/29/14 14:00 192 0.00 11.48 0.00 0.000 0.35 93% 

5/30/14 21:00 193 0.00 11.48 0.00 0.000 0.35 93% 

5/31/14 8:00 194 0.00 11.48 0.00 0.000 0.35 93% 

6/1/14 8:00 195 0.00 11.48 0.00 0.000 0.35 93% 

6/2/14 7:30 196 0.00 11.48 0.00 0.000 0.35 93% 

6/3/14 21:00 197 0.00 11.48 0.00 0.000 0.35 93% 

6/4/14 8:00 198 0.00 11.48 0.00 0.000 0.35 93% 

6/5/14 8:00 199 0.00 11.48 0.00 0.000 0.35 93% 

6/6/14 21:00 200 0.00 11.48 0.00 0.000 0.35 93% 

6/7/14 21:30 201 0.00 11.48 0.00 0.000 0.35 93% 

6/8/14 18:30 202 0.00 11.48 0.00 0.000 0.35 93% 

6/9/14 6:00 203 0.00 11.48 0.00 0.000 0.35 93% 

6/10/14 8:00 204 0.00 11.48 0.00 0.000 0.35 93% 
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Table B.2.2 Record of Gas Flow Readings – Readily Deg. Bioreactors (continued) 

Gas Flow Meter Readings – Readily Deg. Flow Meter 
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6/11/14 8:00 205 0.00 11.48 0.00 0.000 0.35 93% 

6/12/14 8:00 206 0.00 11.48 0.00 0.000 0.35 93% 

6/13/14 8:00 207 0.00 11.48 0.00 0.000 0.35 93% 

6/14/14 8:00 208 0.00 11.48 0.00 0.000 0.35 93% 

6/15/14 8:00 209 0.00 11.48 0.00 0.000 0.35 93% 

6/16/14 8:00 210 0.00 11.48 0.00 0.000 0.35 93% 

6/17/14 8:00 211 0.00 11.48 0.00 0.000 0.35 93% 

6/18/14 7:30 212 0.00 11.48 0.00 0.000 0.35 93% 

6/19/14 21:00 213 0.00 11.48 0.00 0.000 0.35 93% 

6/20/14 14:00 214 0.00 11.48 0.00 0.000 0.35 93% 

6/21/14 14:00 215 0.00 11.48 0.00 0.000 0.35 93% 

6/22/14 8:00 216 0.00 11.48 0.00 0.000 0.35 93% 

6/23/14 8:00 217 0.00 11.48 0.00 0.000 0.35 93% 

6/24/14 8:00 218 0.00 11.48 0.00 0.000 0.35 93% 

6/25/14 8:00 219 0.00 11.48 0.00 0.000 0.35 93% 

6/26/14 10:00 220 0.00 11.48 0.00 0.000 0.35 93% 

6/27/14 20:00 221 0.00 11.48 0.00 0.000 0.35 93% 
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Figure B.2.3 Daily Methane Gas Flow Rate from Meters – Moderately Degradable  

       Bioreactors 
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Table B.2.3 Record of Gas Flow Readings – Moderately Degradable Bioreactors  

Gas Flow Meter Readings – Moderately Deg. Flow Meter 
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11/18/13 13:00 0 0.00 11.60   0.000 4.64 0% 

11/18/13 20:00 0 0.00 11.60 0.00 0.000 4.64 0% 

11/19/13 8:00 1 0.00 11.60 0.00 0.000 4.64 0% 

11/19/13 21:00 1 0.00 11.60 0.00 0.000 4.64 0% 

11/20/13 21:00 2 0.00 11.60 0.00 0.000 4.64 0% 

11/21/13 8:00 3 0.00 11.60 0.00 0.000 4.64 0% 

11/21/13 21:00 3 0.00 11.60 0.00 0.000 4.64 0% 

11/22/13 22:00 4 0.00 11.60 0.00 0.000 4.64 0% 

11/23/13 8:00 5 0.00 11.60 0.00 0.000 4.64 0% 

11/24/13 8:00 6 0.00 11.60 0.00 0.000 4.64 0% 

11/24/13 19:00 6 0.00 11.60 0.00 0.000 4.64 0% 

11/25/13 20:00 7 0.00 11.60 0.00 0.000 4.64 0% 

11/26/13 20:00 8 0.00 11.60 0.00 0.000 4.64 0% 

11/27/13 19:00 9 0.00 11.60 0.00 0.000 4.64 0% 

11/27/13 8:00 9 0.00 11.60 0.00 0.000 4.64 0% 

11/27/13 18:00 9 0.00 11.60 0.00 0.000 4.64 0% 

11/28/13 12:00 10 0.00 11.60 0.00 0.000 4.64 0% 

11/29/13 18:00 11 0.00 11.60 0.00 0.000 4.64 0% 

11/30/13 12:00 12 0.00 11.60 0.00 0.000 4.64 0% 

12/1/13 16:00 13 0.00 11.60 0.00 0.000 4.64 0% 
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Table B.2.3 Record of Gas Flow Readings – Moderately Deg. Bioreactors (continued) 

Gas Flow Meter Readings – Moderately Deg. Flow Meter 
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12/2/13 12:00 14 0.00 11.60 0.00 0.000 4.64 0% 

12/3/13 8:00 15 0.00 11.60 0.00 0.000 4.64 0% 

12/3/13 21:00 15 0.00 11.60 0.00 0.000 4.64 0% 

12/4/13 8:00 16 0.00 11.60 0.00 0.000 4.64 0% 

12/4/13 21:00 16 0.00 11.60 0.00 0.000 4.64 0% 

12/5/13 8:00 17 0.00 11.60 0.00 0.000 4.64 0% 

12/6/13 8:00 18 0.00 11.60 0.00 0.000 4.64 0% 

12/7/13 19:00 19 0.00 11.60 0.00 0.000 4.64 0% 

12/8/13 12:00 20 0.00 11.60 0.00 0.000 4.64 0% 

12/8/13 18:00 20 0.09 11.60 0.01 0.000 4.64 0% 

12/9/13 8:00 21 0.19 11.60 0.02 0.001 4.64 0% 

12/9/13 21:00 21 0.41 11.60 0.04 0.002 4.63 0% 

12/10/13 19:00 22 0.24 11.60 0.02 0.001 4.63 0% 

12/11/13 19:00 23 0.22 11.60 0.02 0.001 4.63 0% 

12/11/13 23:00 23 0.37 11.60 0.03 0.002 4.63 0% 

12/12/13 13:00 24 0.19 11.60 0.02 0.001 4.63 0% 

12/13/13 18:00 25 0.26 11.60 0.02 0.001 4.63 0% 

12/14/13 18:00 26 0.35 11.60 0.03 0.002 4.63 0% 

12/15/13 19:00 27 0.11 11.60 0.01 0.000 4.63 0% 

12/16/13 19:00 28 0.61 11.60 0.05 0.003 4.63 0% 
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Table B.2.3 Record of Gas Flow Readings – Moderately Deg. Bioreactors (continued) 

Gas Flow Meter Readings – Moderately Deg. Flow Meter 
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12/17/13 8:00 29 0.41 11.60 0.04 0.002 4.63 0% 

12/17/13 20:00 29 0.11 11.60 0.01 0.000 4.62 0% 

12/18/13 8:00 30 0.61 11.60 0.05 0.003 4.62 0% 

12/19/13 8:00 31 0.36 11.60 0.03 0.002 4.62 0% 

12/20/13 8:00 32 0.11 11.60 0.01 0.000 4.62 0% 

12/21/13 9:00 33 1.12 11.60 0.10 0.005 4.62 0% 

12/22/13 19:00 34 0.65 11.60 0.06 0.003 4.61 1% 

12/23/13 8:00 35 0.82 11.60 0.07 0.004 4.61 1% 

12/24/13 12:00 36 0.41 11.60 0.04 0.002 4.61 1% 

12/25/13 8:00 37 1.12 11.60 0.10 0.005 4.60 1% 

12/26/13 19:00 38 1.43 11.60 0.12 0.006 4.60 1% 

12/27/13 8:00 39 1.12 11.60 0.10 0.005 4.59 1% 

12/28/13 8:00 40 2.24 11.60 0.19 0.010 4.58 1% 

12/29/13 14:00 41 2.95 11.60 0.25 0.013 4.57 2% 

12/30/13 9:00 42 3.05 11.60 0.26 0.013 4.56 2% 

12/31/13 9:00 43 3.46 11.60 0.30 0.015 4.54 2% 

1/1/14 11:00 44 4.07 11.60 0.35 0.018 4.52 2% 

1/2/14 20:00 45 5.69 11.60 0.49 0.025 4.49 3% 

1/3/14 19:00 46 5.83 11.60 0.50 0.026 4.46 4% 

1/4/14 18:00 47 4.97 11.60 0.43 0.022 4.44 4% 
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Table B.2.3 Record of Gas Flow Readings – Moderately Deg. Bioreactors (continued) 

Gas Flow Meter Readings – Moderately Deg. Flow Meter 
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1/5/14 8:00 48 4.67 11.60 0.40 0.020 4.43 4% 

1/5/14 20:00 48 5.16 11.60 0.44 0.023 4.42 5% 

1/6/14 8:00 49 5.49 11.60 0.47 0.024 4.41 5% 

1/6/14 20:00 49 5.18 11.60 0.45 0.023 4.40 5% 

1/7/14 20:00 50 4.98 11.60 0.43 0.022 4.37 6% 

1/8/14 8:00 51 5.66 11.60 0.49 0.025 4.36 6% 

1/9/14 8:00 52 5.49 11.60 0.47 0.024 4.34 6% 

1/10/14 20:00 53 5.34 11.60 0.46 0.023 4.30 7% 

1/11/14 8:00 54 5.87 11.60 0.51 0.026 4.29 7% 

1/12/14 20:00 55 5.89 11.60 0.51 0.026 4.25 8% 

1/13/14 20:00 56 6.22 11.60 0.54 0.027 4.22 9% 

1/14/14 20:00 57 6.40 11.60 0.55 0.028 4.19 10% 

1/15/14 8:00 58 6.91 11.60 0.60 0.030 4.18 10% 

1/16/14 8:00 59 6.39 11.60 0.55 0.028 4.15 10% 

1/17/14 8:00 60 6.20 11.60 0.53 0.027 4.12 11% 

1/18/14 8:00 61 6.36 11.60 0.55 0.028 4.10 12% 

1/19/14 7:00 62 6.30 11.60 0.54 0.028 4.07 12% 

1/20/14 8:00 63 7.01 11.60 0.60 0.031 4.04 13% 

1/21/14 20:00 64 6.81 11.60 0.59 0.030 3.99 14% 

1/22/14 18:00 65 7.34 11.60 0.63 0.032 3.96 15% 
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Table B.2.3 Record of Gas Flow Readings – Moderately Deg. Bioreactors (continued) 

Gas Flow Meter Readings – Moderately Deg. Flow Meter 
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1/23/14 21:00 66 7.21 11.60 0.62 0.032 3.93 15% 

1/24/14 8:00 67 6.60 11.60 0.57 0.029 3.91 16% 

1/25/14 14:00 68 7.21 11.60 0.62 0.032 3.88 16% 

1/26/14 8:00 69 7.31 11.60 0.63 0.032 3.85 17% 

1/27/14 8:00 70 7.62 11.60 0.66 0.033 3.82 18% 

1/28/14 8:00 71 6.73 11.60 0.58 0.030 3.79 18% 

1/29/14 8:00 72 7.01 11.60 0.60 0.031 3.76 19% 

1/30/14 8:00 73 6.50 11.60 0.56 0.028 3.73 20% 

1/31/14 8:00 74 6.91 11.60 0.60 0.030 3.70 20% 

2/1/14 21:00 75 6.52 11.60 0.56 0.029 3.65 21% 

2/2/14 20:00 76 6.81 11.60 0.59 0.030 3.63 22% 

2/3/14 20:00 77 6.30 11.60 0.54 0.028 3.60 22% 

2/4/14 19:00 78 7.56 11.60 0.65 0.033 3.57 23% 

2/5/14 9:00 79 7.52 11.60 0.65 0.033 3.55 23% 

2/6/14 8:00 80 7.92 11.60 0.68 0.035 3.51 24% 

2/7/14 8:00 81 7.62 11.60 0.66 0.033 3.48 25% 

2/8/14 21:00 82 7.72 11.60 0.67 0.034 3.43 26% 

2/9/14 8:00 83 7.21 11.60 0.62 0.032 3.41 26% 

2/10/14 8:00 84 7.52 11.60 0.65 0.033 3.38 27% 

2/11/14 7:30 85 7.21 11.60 0.62 0.032 3.35 28% 
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Table B.2.3 Record of Gas Flow Readings – Moderately Deg. Bioreactors (continued) 

Gas Flow Meter Readings – Moderately Deg. Flow Meter 
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2/12/14 21:00 86 7.37 11.60 0.64 0.032 3.30 29% 

2/13/14 8:00 87 7.28 11.60 0.63 0.032 3.29 29% 

2/14/14 8:00 88 7.42 11.60 0.64 0.033 3.25 30% 

2/15/14 21:00 89 7.11 11.60 0.61 0.031 3.20 31% 

2/16/14 21:30 90 7.23 11.60 0.62 0.032 3.17 32% 

2/17/14 18:30 91 6.71 11.60 0.58 0.029 3.15 32% 

2/18/14 6:00 92 6.60 11.60 0.57 0.029 3.13 32% 

2/19/14 8:00 93 7.31 11.60 0.63 0.032 3.10 33% 

2/20/14 8:00 94 6.62 11.60 0.57 0.029 3.07 34% 

2/21/14 8:00 95 6.30 11.60 0.54 0.028 3.04 34% 

2/22/14 8:00 96 6.91 11.60 0.60 0.030 3.01 35% 

2/23/14 8:00 97 5.89 11.60 0.51 0.026 2.99 36% 

2/24/14 8:00 98 4.37 11.60 0.38 0.019 2.97 36% 

2/25/14 8:00 99 5.44 11.60 0.47 0.024 2.94 37% 

2/26/14 8:00 100 5.18 11.60 0.45 0.023 2.92 37% 

2/27/14 8:00 101 5.39 11.60 0.46 0.024 2.90 38% 

2/28/14 8:00 102 4.88 11.60 0.42 0.021 2.87 38% 

3/1/14 8:00 103 5.12 11.60 0.44 0.022 2.85 38% 

3/2/14 21:00 104 5.28 11.60 0.46 0.023 2.82 39% 

3/3/14 18:00 105 5.39 11.60 0.46 0.024 2.80 40% 
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Table B.2.3 Record of Gas Flow Readings – Moderately Deg. Bioreactors (continued) 

Gas Flow Meter Readings – Moderately Deg. Flow Meter 
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3/4/14 20:00 106 4.98 11.60 0.43 0.022 2.77 40% 

3/5/14 19:00 107 4.82 11.60 0.42 0.021 2.75 41% 

3/6/14 18:00 108 4.27 11.60 0.37 0.019 2.73 41% 

3/7/14 21:00 109 4.47 11.60 0.39 0.020 2.71 42% 

3/8/14 8:00 110 4.27 11.60 0.37 0.019 2.70 42% 

3/9/14 14:00 111 3.96 11.60 0.34 0.017 2.68 42% 

3/10/14 8:00 112 3.81 11.60 0.33 0.017 2.67 42% 

3/11/14 8:00 113 3.46 11.60 0.30 0.015 2.65 43% 

3/12/14 8:00 114 3.66 11.60 0.32 0.016 2.64 43% 

3/13/14 8:00 115 3.63 11.60 0.31 0.016 2.62 43% 

3/14/14 10:00 116 3.76 11.60 0.32 0.016 2.60 44% 

3/15/14 20:00 117 3.86 11.60 0.33 0.017 2.58 44% 

3/16/14 16:00 118 3.46 11.60 0.30 0.015 2.57 45% 

3/17/14 18:00 119 3.96 11.60 0.34 0.017 2.55 45% 

3/18/14 21:00 120 3.96 11.60 0.34 0.017 2.53 45% 

3/19/14 8:00 121 3.32 11.60 0.29 0.015 2.52 46% 

3/20/14 14:00 122 3.56 11.60 0.31 0.016 2.50 46% 

3/21/14 21:00 123 3.25 11.60 0.28 0.014 2.48 46% 

3/22/14 8:00 124 3.36 11.60 0.29 0.015 2.48 47% 

3/23/14 8:00 125 3.25 11.60 0.28 0.014 2.46 47% 
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Table B.2.3 Record of Gas Flow Readings – Moderately Deg. Bioreactors (continued) 

Gas Flow Meter Readings – Moderately Deg. Flow Meter 
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3/24/14 21:00 126 3.12 11.60 0.27 0.014 2.44 47% 

3/25/14 21:30 127 3.17 11.60 0.27 0.014 2.43 48% 

3/26/14 18:30 128 3.15 11.60 0.27 0.014 2.42 48% 

3/27/14 6:00 129 3.15 11.60 0.27 0.014 2.41 48% 

3/28/14 8:00 130 3.03 11.60 0.26 0.013 2.40 48% 

3/29/14 8:00 131 3.15 11.60 0.27 0.014 2.38 49% 

3/30/14 8:00 132 3.25 11.60 0.28 0.014 2.37 49% 

3/31/14 8:00 133 3.01 11.60 0.26 0.013 2.35 49% 

4/1/14 8:00 134 2.89 11.60 0.25 0.013 2.34 50% 

4/2/14 8:00 135 2.64 11.60 0.23 0.012 2.33 50% 

4/3/14 8:00 136 2.95 11.60 0.25 0.013 2.32 50% 

4/4/14 8:00 137 3.05 11.60 0.26 0.013 2.30 50% 

4/5/14 8:00 138 2.89 11.60 0.25 0.013 2.29 51% 

4/6/14 8:00 139 2.75 11.60 0.24 0.012 2.28 51% 

4/7/14 8:00 140 2.77 11.60 0.24 0.012 2.27 51% 

4/8/14 21:00 141 2.60 11.60 0.22 0.011 2.25 51% 

4/9/14 18:00 142 2.57 11.60 0.22 0.011 2.24 52% 

4/10/14 20:00 143 2.57 11.60 0.22 0.011 2.23 52% 

4/11/14 19:00 144 2.55 11.60 0.22 0.011 2.22 52% 

4/12/14 18:00 145 2.52 11.60 0.22 0.011 2.21 52% 
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Table B.2.3 Record of Gas Flow Readings – Moderately Deg. Bioreactors (continued) 

Gas Flow Meter Readings – Moderately Deg. Flow Meter 
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4/13/14 8:00 146 2.61 11.60 0.23 0.011 2.20 53% 

4/14/14 19:00 147 2.14 11.60 0.18 0.009 2.19 53% 

4/15/14 8:00 148 2.14 11.60 0.18 0.009 2.18 53% 

4/16/14 8:00 149 2.03 11.60 0.18 0.009 2.17 53% 

4/17/14 7:00 150 2.09 11.60 0.18 0.009 2.16 53% 

4/18/14 9:00 151 2.04 11.60 0.18 0.009 2.15 54% 

4/19/14 9:00 152 2.00 11.60 0.17 0.009 2.14 54% 

4/20/14 8:00 153 2.00 11.60 0.17 0.009 2.14 54% 

4/21/14 8:00 154 1.97 11.60 0.17 0.009 2.13 54% 

4/22/14 8:00 155 1.83 11.60 0.16 0.008 2.12 54% 

4/23/14 8:00 156 1.69 11.60 0.15 0.007 2.11 54% 

4/24/14 8:00 157 1.73 11.60 0.15 0.008 2.10 55% 

4/25/14 8:00 158 1.83 11.60 0.16 0.008 2.10 55% 

4/26/14 8:00 159 1.73 11.60 0.15 0.008 2.09 55% 

4/27/14 8:00 160 1.83 11.60 0.16 0.008 2.08 55% 

4/28/14 8:00 161 1.78 11.60 0.15 0.008 2.07 55% 

4/29/14 8:00 162 1.63 11.60 0.14 0.007 2.07 55% 

4/30/14 8:00 163 1.53 11.60 0.13 0.007 2.06 56% 

5/1/14 8:00 164 1.43 11.60 0.12 0.006 2.05 56% 

5/2/14 8:00 165 1.53 11.60 0.13 0.007 2.05 56% 
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Table B.2.3 Record of Gas Flow Readings – Moderately Deg. Bioreactors (continued) 

Gas Flow Meter Readings – Moderately Deg. Flow Meter 

Date Time 
Cum. 

Days 

C
H

4
 F

lo
w

 

R
ea

d
in

g
 [

sc
cm

] 

D
ry

 W
t 

in
 

R
ea

ct
o

rs
 [

lb
] 

C
H

4
 F

lo
w

 

R
a
te

/W
a
st

e 

[s
cc

m
/l

b
] 

C
H

4
 F

lo
w

 

R
a
te

/W
a
st

e 

[f
t3

/l
b

] 
p

er
 d

a
y

 

C
H

4
 r

em
a
in

in
g
 

[f
t³

/l
b

] 

%
 o

f 
T

h
eo

re
ti

ca
l 

T
o
ta

l 

5/3/14 8:00 166 1.52 11.60 0.13 0.007 2.04 56% 

5/4/14 8:00 167 1.32 11.60 0.11 0.006 2.03 56% 

5/5/14 8:00 168 1.43 11.60 0.12 0.006 2.03 56% 

5/6/14 8:00 169 1.24 11.60 0.11 0.005 2.02 56% 

5/7/14 8:00 170 1.32 11.60 0.11 0.006 2.02 57% 

5/8/14 8:00 171 1.43 11.60 0.12 0.006 2.01 57% 

5/9/14 8:00 172 1.36 11.60 0.12 0.006 2.00 57% 

5/10/14 8:00 173 1.43 11.60 0.12 0.006 2.00 57% 

5/11/14 21:00 174 1.43 11.60 0.12 0.006 1.99 57% 

5/12/14 18:00 175 1.63 11.60 0.14 0.007 1.98 57% 

5/13/14 20:00 176 1.43 11.60 0.12 0.006 1.97 57% 

5/14/14 19:00 177 1.54 11.60 0.13 0.007 1.97 58% 

5/15/14 18:00 178 1.43 11.60 0.12 0.006 1.96 58% 

5/16/14 21:00 179 1.32 11.60 0.11 0.006 1.96 58% 

5/17/14 8:00 180 1.43 11.60 0.12 0.006 1.95 58% 

5/18/14 14:00 181 1.22 11.60 0.11 0.005 1.95 58% 

5/19/14 8:00 182 1.43 11.60 0.12 0.006 1.94 58% 

5/20/14 8:00 183 1.32 11.60 0.11 0.006 1.94 58% 

5/21/14 8:00 184 1.17 11.60 0.10 0.005 1.93 58% 

5/22/14 8:00 185 1.21 11.60 0.10 0.005 1.93 58% 
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Table B.2.3 Record of Gas Flow Readings – Moderately Deg. Bioreactors (continued) 

Gas Flow Meter Readings – Moderately Deg. Flow Meter 
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5/23/14 10:00 186 1.12 11.60 0.10 0.005 1.92 59% 

5/24/14 20:00 187 1.02 11.60 0.09 0.004 1.91 59% 

5/25/14 16:00 188 1.12 11.60 0.10 0.005 1.91 59% 

5/26/14 18:00 189 1.28 11.60 0.11 0.006 1.90 59% 

5/27/14 21:00 190 1.32 11.60 0.11 0.006 1.90 59% 

5/28/14 8:00 191 1.43 11.60 0.12 0.006 1.89 59% 

5/29/14 14:00 192 1.12 11.60 0.10 0.005 1.89 59% 

5/30/14 21:00 193 0.82 11.60 0.07 0.004 1.88 59% 

5/31/14 8:00 194 0.91 11.60 0.08 0.004 1.88 59% 

6/1/14 8:00 195 1.02 11.60 0.09 0.004 1.88 60% 

6/2/14 7:30 196 1.12 11.60 0.10 0.005 1.87 60% 

6/3/14 21:00 197 1.23 11.60 0.11 0.005 1.86 60% 

6/4/14 8:00 198 1.12 11.60 0.10 0.005 1.86 60% 

6/5/14 8:00 199 0.92 11.60 0.08 0.004 1.86 60% 

6/6/14 21:00 200 1.02 11.60 0.09 0.004 1.85 60% 

6/7/14 21:30 201 1.12 11.60 0.10 0.005 1.85 60% 

6/8/14 18:30 202 1.32 11.60 0.11 0.006 1.84 60% 

6/9/14 6:00 203 1.26 11.60 0.11 0.006 1.84 60% 

6/10/14 8:00 204 1.12 11.60 0.10 0.005 1.83 60% 

6/11/14 8:00 205 1.12 11.60 0.10 0.005 1.83 61% 
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Table B.2.3 Record of Gas Flow Readings – Moderately Deg. Bioreactors (continued) 

Gas Flow Meter Readings – Moderately Deg. Flow Meter 
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6/12/14 8:00 206 1.07 11.60 0.09 0.005 1.82 61% 

6/13/14 8:00 207 1.02 11.60 0.09 0.004 1.82 61% 

6/14/14 8:00 208 1.12 11.60 0.10 0.005 1.81 61% 

6/15/14 8:00 209 1.22 11.60 0.11 0.005 1.81 61% 

6/16/14 8:00 210 0.98 11.60 0.08 0.004 1.80 61% 

6/17/14 8:00 211 0.82 11.60 0.07 0.004 1.80 61% 

6/18/14 7:30 212 0.61 11.60 0.05 0.003 1.80 61% 

6/19/14 21:00 213 0.72 11.60 0.06 0.003 1.79 61% 

6/20/14 14:00 214 0.82 11.60 0.07 0.004 1.79 61% 

6/21/14 14:00 215 0.51 11.60 0.04 0.002 1.79 61% 

6/22/14 8:00 216 0.61 11.60 0.05 0.003 1.79 61% 

6/23/14 8:00 217 0.51 11.60 0.04 0.002 1.78 62% 

6/24/14 8:00 218 0.41 11.60 0.04 0.002 1.78 62% 

6/25/14 8:00 219 0.36 11.60 0.03 0.002 1.78 62% 

6/26/14 10:00 220 0.24 11.60 0.02 0.001 1.78 62% 

6/27/14 20:00 221 0.13 11.60 0.01 0.001 1.78 62% 

6/28/14 8:00 222 0.13 11.60 0.01 0.001 1.78 62% 

6/29/14 8:00 223 0.1 11.60 0.01 0.000 1.78 62% 

6/30/14 8:00 224 0.08 11.60 0.01 0.000 1.78 62% 

7/1/14 8:00 225 0.06 11.60 0.01 0.000 1.78 62% 
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Table B.2.3 Record of Gas Flow Readings – Moderately Deg. Bioreactors (continued) 

Gas Flow Meter Readings – Moderately Deg. Flow Meter 
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7/2/14 10:00 226 0.03 11.60 0.00 0.000 1.78 62% 

7/3/14 20:00 227 0 11.60 0.00 0.000 1.78 62% 

7/4/14 16:00 228 0.01 11.60 0.00 0.000 1.78 62% 

7/5/14 18:00 229 0 11.60 0.00 0.000 1.78 62% 

7/6/14 21:00 230 0.01 11.60 0.00 0.000 1.78 62% 

7/7/14 8:00 231 0 11.60 0.00 0.000 1.78 62% 

7/8/14 14:00 232 0 11.60 0.00 0.000 1.78 62% 

7/9/14 21:00 233 0 11.60 0.00 0.000 1.78 62% 

7/10/14 8:00 234 0.01 11.60 0.00 0.000 1.78 62% 

7/11/14 8:00 235 0 11.60 0.00 0.000 1.78 62% 

7/12/14 21:00 236 0 11.60 0.00 0.000 1.78 62% 

7/13/14 21:30 237 0 11.60 0.00 0.000 1.78 62% 

7/14/14 18:30 238 0.01 11.60 0.00 0.000 1.78 62% 

7/15/14 6:00 239 0 11.60 0.00 0.000 1.78 62% 

7/16/14 8:00 240 0 11.60 0.00 0.000 1.78 62% 

7/17/14 8:00 241 0 11.60 0.00 0.000 1.78 62% 

7/18/14 8:00 242 0 11.60 0.00 0.000 1.78 62% 

7/19/14 8:00 243 0.01 11.60 0.00 0.000 1.78 62% 

7/20/14 8:00 244 0 11.60 0.00 0.000 1.78 62% 

7/21/14 21:00 245 0 11.60 0.00 0.000 1.78 62% 
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Table B.2.3 Record of Gas Flow Readings – Moderately Deg. Bioreactors (continued) 

Gas Flow Meter Readings – Moderately Deg. Flow Meter 
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7/22/14 18:00 246 0 11.60 0.00 0.000 1.78 62% 

7/23/14 20:00 247 0 11.60 0.00 0.000 1.78 62% 

7/24/14 19:00 248 0 11.60 0.00 0.000 1.78 62% 

7/25/14 18:00 249 0 11.60 0.00 0.000 1.78 62% 

7/26/14 21:00 250 0.01 11.60 0.00 0.000 1.78 62% 

7/27/14 8:00 251 0 11.60 0.00 0.000 1.78 62% 

7/28/14 14:00 252 0 11.60 0.00 0.000 1.78 62% 

7/29/14 8:00 253 0 11.60 0.00 0.000 1.78 62% 

7/30/14 8:00 254 0 11.60 0.00 0.000 1.78 62% 

7/31/14 8:00 255 0 11.60 0.00 0.000 1.78 62% 

8/1/14 8:00 256 0.01 11.60 0.00 0.000 1.78 62% 

8/2/14 10:00 257 0 11.60 0.00 0.000 1.78 62% 

8/3/14 20:00 258 0 11.60 0.00 0.000 1.78 62% 

8/4/14 16:00 259 0 11.60 0.00 0.000 1.78 62% 

8/5/14 18:00 260 0 11.60 0.00 0.000 1.78 62% 

8/6/14 21:00 261 0 11.60 0.00 0.000 1.78 62% 
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B.3  Gas Bag Records 

Tables B.3.1 through B.3.3 tabulate records for secondary gas bags used in series after 

gas flow meters for composite, readily, and moderately degradable bioreactor sets.  Table 

B.3.4 tabulates records for gas bags used as the primary means of establishing volume of 

total gas produced by the slowly degradable bioreactor set. Gas bags utilized for the 

experiment consisted of tedlar bags with single polypropylene fittings, as manufactured 

by SKC Incorporated.  Various capacity bags were used, including 1 liter, 10 liter, and 50 

liter bags, depending on the volume of flow anticipated.  Lower capacity bags were used 

at the beginning and end of the experiment to capture the gas as it was emitted at lower 

flow rates.  

Based on manufacturer recommendations, proper inflation of the gas bag would 

result in 80 percent of the rated total capacity.  Therefore, proper inflation would result in 

gas bag volumes of 0.8, 8, and 40 liters, respectively.  In select circumstances, the rate of 

gas production did not allow a full bag to be swapped out for an empty bag causing this 

recommendation to be exceeded and be filled to total rated capacity.  These occurrences 

were noted, and the total rated capacity of the bag was used.  Figure B.3.1 illustrates the 

manufacturer’s recommendation for inflation.   

 

Figure  B.3.1  Manufacturer’s (SKC) Recommendation For Inflation of Gas Bags  



285 
 

 

Table B.3.1 Record of Total Gas Flow Volume Captured – Composite Bioreactors 
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11/27/13 27.32 9 1 0.8 0.8 0.038 0.001 0.004 0.000 

12/2/13 27.32 14 50 40 40.8 1.914 0.070 0.375 0.014 

12/5/13 27.32 17 50 40 80.8 3.790 0.139 0.625 0.023 

12/7/13 27.32 19 50 40 120.8 5.667 0.207 0.938 0.034 

12/8/13 27.32 20 50 40 160.8 7.543 0.276 1.876 0.069 

12/9/13 27.32 21 50 45 205.8 9.654 0.353 2.111 0.077 

12/10/13 27.32 22 50 40 245.8 11.531 0.422 1.876 0.069 

12/11/13 27.32 23 50 30 275.8 12.938 0.474 1.407 0.052 

12/12/13 27.32 24 50 30 305.8 14.345 0.525 1.407 0.052 

12/13/13 27.32 25 50 40 345.8 16.222 0.594 1.876 0.069 

12/14/13 27.32 26 50 40 385.8 18.098 0.662 1.876 0.069 

12/15/13 27.32 27 50 40 425.8 19.975 0.731 1.876 0.069 

12/16/13 27.32 28 50 45 470.8 22.086 0.808 2.111 0.077 

12/17/13 27.32 29 50 40 510.8 23.962 0.877 1.876 0.069 

12/17/13 27.32 29.5 50 40 550.8 25.839 0.946 3.753 0.137 

12/18/13 27.32 30 50 40 590.8 27.715 1.014 3.753 0.137 

12/18/13 27.32 30.5 50 40 630.8 29.592 1.083 3.753 0.137 

12/19/13 27.32 31 50 40 670.8 31.468 1.152 3.753 0.137 

12/19/13 27.32 31.5 50 40 710.8 33.345 1.221 3.753 0.137 

12/20/13 27.32 32 50 40 750.8 35.221 1.289 3.753 0.137 
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Table B.3.1 Record of Total Gas Flow Volume Captured – Composite Bioreactors     

(continued) 

 

Date 
D

ry
 W

ei
g
h

t 

W
a
st

e
 

C
u

m
u

la
ti

v
e 

N
o
. 

o
f 

D
a
y
s 

B
a
g
 V

o
lu

m
e 

A
ct

u
a
l 

B
a
g
 V

o
l 

C
u

m
u

la
ti

v
e 

V
o
lu

m
e 

o
f 

G
a
s 

[L
] 

C
u

m
u

la
ti

v
e 

V
o
lu

m
e 

o
f 

G
a
s 

[f
t3

] 

C
u

m
u

la
ti

v
e 

V
o
lu

m
e 

o
f 

G
a
s 

p
er

 L
B

 W
a
st

e 

[f
t3

/l
b

] 

A
v
er

a
g
e 

D
a
il

y
 

V
o
lu

m
e 

(f
t3

/d
a
y
) 

A
v
er

a
g
e 

D
a
il

y
 

F
lo

w
 R

a
te

 

[f
t3

/l
b

] 

12/21/13 27.32 33 50 40 790.8 37.098 1.358 1.876 0.069 

12/22/13 27.32 34 50 40 830.8 38.974 1.427 1.876 0.069 

12/24/13 27.32 36 50 40 870.8 40.850 1.495 0.938 0.034 

12/25/13 27.32 37 50 40 910.8 42.727 1.564 1.876 0.069 

12/26/13 27.32 38 50 40 950.8 44.603 1.633 1.876 0.069 

12/27/13 27.32 39 50 40 990.8 46.480 1.701 1.876 0.069 

12/28/13 27.32 40 50 45 1035.8 48.591 1.779 2.111 0.077 

12/30/13 27.32 42 50 40 1075.8 50.467 1.847 0.938 0.034 

12/31/13 27.32 43 50 40 1115.8 52.344 1.916 1.876 0.069 

1/1/14 27.32 44 50 40 1155.8 54.220 1.985 1.876 0.069 

1/2/14 27.32 45 50 40 1195.8 56.097 2.053 1.876 0.069 

1/3/14 27.32 46 50 40 1235.8 57.973 2.122 1.876 0.069 

1/4/14 27.32 47 50 40 1275.8 59.850 2.191 1.876 0.069 

1/5/14 27.32 48 50 45 1320.8 61.961 2.268 2.111 0.077 

1/6/14 27.32 49 50 45 1365.8 64.072 2.345 2.111 0.077 

1/7/14 25.61 50 50 45 1410.8 66.183 2.428 2.111 0.082 

1/9/14 25.61 52 50 45 1455.8 68.294 2.510 1.056 0.041 

1/10/14 25.61 53 50 40 1495.8 70.170 2.583 1.876 0.073 

1/12/14 25.61 55 50 40 1535.8 72.046 2.657 0.938 0.037 

1/14/14 25.61 57 50 40 1575.8 73.923 2.730 0.938 0.037 
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Table B.3.1 Record of Total Gas Flow Volume Captured – Composite Bioreactors     

(continued) 
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1/16/14 25.61 59 50 40 1615.8 75.799 2.803 0.938 0.037 

1/18/14 25.61 61 50 40 1655.8 77.676 2.876 0.938 0.037 

1/19/14 23.89 62 50 40 1695.8 79.552 2.955 1.876 0.079 

1/21/14 23.89 64 50 40 1735.8 81.429 3.034 0.938 0.039 

1/22/14 23.89 65 50 40 1775.8 83.305 3.112 1.876 0.079 

1/24/14 23.89 67 50 40 1815.8 85.182 3.191 0.938 0.039 

1/26/14 23.89 69 50 40 1855.8 87.058 3.269 0.938 0.039 

1/28/14 23.89 71 50 40 1895.8 88.935 3.348 0.938 0.039 

1/30/14 23.89 73 50 40 1935.8 90.811 3.426 0.938 0.039 

2/2/14 23.89 76 50 40 1975.8 92.687 3.505 0.625 0.026 

2/5/14 23.89 79 50 45 2020.8 94.798 3.593 0.704 0.029 

2/8/14 23.89 82 50 40 2060.8 96.675 3.672 0.625 0.026 

2/11/14 23.89 85 50 40 2100.8 98.551 3.750 0.625 0.026 

2/13/14 23.89 87 50 40 2140.8 100.428 3.829 0.938 0.039 

2/17/14 23.89 91 50 40 2180.8 102.304 3.907 0.469 0.020 

2/21/14 21.38 95 50 40 2220.8 104.181 3.995 0.469 0.022 

2/24/14 21.38 98 50 40 2260.8 106.057 4.083 0.625 0.029 

2/27/14 21.38 101 50 40 2300.8 107.934 4.171 0.625 0.029 

3/3/14 21.38 105 50 40 2340.8 109.810 4.258 0.469 0.022 

3/7/14 21.38 109 50 40 2380.8 111.687 4.346 0.469 0.022 
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Table B.3.1 Record of Total Gas Flow Volume Captured – Composite Bioreactors     

(continued) 
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3/12/14 21.38 114 50 40 2420.8 113.563 4.434 0.375 0.018 

3/17/14 21.38 119 50 45 2465.8 115.674 4.533 0.422 0.020 

3/21/14 19.66 123 50 45 2510.8 117.785 4.640 0.528 0.027 

3/27/14 19.66 129 50 40 2550.8 119.661 4.736 0.313 0.016 

4/3/14 19.66 136 50 45 2595.8 121.772 4.843 0.302 0.015 

4/10/14 19.66 143 50 45 2640.8 123.884 4.950 0.302 0.015 

4/19/14 19.66 152 50 40 2680.8 125.760 5.046 0.208 0.011 

5/1/14 19.66 164 50 40 2720.8 127.636 5.141 0.156 0.008 

5/18/14 19.66 181 50 40 2760.8 129.513 5.237 0.110 0.006 

6/27/14 17.94 221 50 40 2800.8 131.389 5.332 0.047 0.003 
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Table B.3.2 Record of Total Gas Flow Volume Captured – Readily Deg. Bioreactors  

Date 

D
ry

 W
ei

g
h

t 

W
a
st

e
 

C
u

m
u

la
ti

v
e 

N
o
. 

o
f 

D
a
y
s 

B
a
g
 V

o
lu

m
e 

A
ct

u
a
l 

B
a
g
 V

o
l 

C
u

m
u

la
ti

v
e 

V
o
lu

m
e 

o
f 

G
a
s 

[L
] 

C
u

m
u

la
ti

v
e 

V
o
lu

m
e 

o
f 

G
a
s 

[f
t3

] 

C
u

m
u

la
ti

v
e 

V
o
lu

m
e 

o
f 

G
a
s 

p
er

 L
B

 W
a
st

e 

[f
t3

/l
b

] 

A
v
er

a
g
e 

D
a
il

y
 

V
o
lu

m
e 

(f
t3

/d
a
y
) 

A
v
er

a
g
e 

D
a
il

y
 

F
lo

w
 R

a
te

 [
ft

3
/l

b
] 

11/20/13 11.48 2 1 0.8 0.8 0.038 0.00 0.019 0.002 

11/22/13 11.48 4 1 0.8 1.6 0.075 0.01 0.019 0.002 

11/23/13 11.48 5 1 0.8 2.4 0.113 0.01 0.038 0.003 

11/30/13 11.48 12 50 40 42.4 1.989 0.17 0.268 0.023 

12/4/13 11.48 16 50 40 82.4 3.865 0.34 0.469 0.041 

12/5/13 11.48 17 50 40 122.4 5.742 0.50 1.876 0.163 

12/7/13 11.48 19 50 50 172.4 8.088 0.70 1.173 0.102 

12/8/13 11.48 20 50 40 212.4 9.964 0.87 1.876 0.163 

12/9/13 11.48 21 50 40 252.4 11.840 1.03 1.876 0.163 

12/10/13 11.48 22 50 40 292.4 13.717 1.19 1.876 0.163 

12/11/13 11.48 23 50 50 342.4 16.062 1.40 2.346 0.204 

12/12/13 11.48 24 50 40 382.4 17.939 1.56 1.876 0.163 

12/13/13 11.48 25 50 50 432.4 20.284 1.77 2.346 0.204 

12/14/13 11.48 26 50 50 482.4 22.630 1.97 2.346 0.204 

12/15/13 11.48 27 50 50 532.4 24.976 2.18 2.346 0.204 

12/16/13 11.48 28 50 50 582.4 27.321 2.38 2.346 0.204 

12/17/13 11.48 29 50 40 622.4 29.198 2.54 1.876 0.163 

12/18/13 11.48 30 50 50 672.4 31.543 2.75 2.346 0.204 

12/19/13 11.48 31 50 50 722.4 33.889 2.95 2.346 0.204 

12/20/13 11.48 32 50 50 772.4 36.234 3.16 2.346 0.204 
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Table B.3.2  Record of Total Gas Flow Volume Captured – Readily Deg. Bioreactors 

(continued) 
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12/21/13 11.48 33 50 50 822.4 38.580 3.36 2.346 0.204 

12/22/13 11.48 34 50 50 872.4 40.925 3.56 2.346 0.204 

12/23/13 11.48 35 50 50 922.4 43.271 3.77 2.346 0.204 

12/24/13 11.48 36 50 50 972.4 45.617 3.97 2.346 0.204 

12/25/13 11.48 37 50 50 1022.4 47.962 4.18 2.346 0.204 

12/26/13 11.48 38 50 50 1072.4 50.308 4.38 2.346 0.204 

12/27/13 11.48 39 50 50 1122.4 52.653 4.59 2.346 0.204 

12/28/13 11.48 40 50 50 1172.4 54.999 4.79 2.346 0.204 

12/29/13 11.48 41 50 40 1212.4 56.875 4.95 1.876 0.163 

12/30/13 11.48 42 50 40 1252.4 58.752 5.12 1.876 0.163 

12/31/13 11.48 43 50 40 1292.4 60.628 5.28 1.876 0.163 

1/1/14 11.48 44 50 40 1332.4 62.505 5.44 1.876 0.163 

1/2/14 11.48 45 50 50 1382.4 64.850 5.65 2.346 0.204 

1/3/14 11.48 46 50 40 1422.4 66.727 5.81 1.876 0.163 

1/4/14 11.48 47 50 40 1462.4 68.603 5.98 1.876 0.163 

1/5/14 11.48 48 50 40 1502.4 70.480 6.14 1.876 0.163 

1/6/14 11.48 49 50 30 1532.4 71.887 6.26 1.407 0.123 

1/8/14 11.48 51 50 40 1572.4 73.763 6.43 0.938 0.082 

1/10/14 11.48 53 50 40 1612.4 75.640 6.59 0.938 0.082 

1/12/14 11.48 55 50 40 1652.4 77.516 6.75 0.938 0.082 
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Table B.3.2  Record of Total Gas Flow Volume Captured – Readily Deg. Bioreactors 

(continued) 

 

Date 
D

ry
 W

ei
g
h

t 

W
a
st

e
 

C
u

m
u

la
ti

v
e 

N
o
. 
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f 

D
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B
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 V
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m
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a
l 
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o
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e 
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m
e 

o
f 
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a
s 

[L
] 

C
u

m
u
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v
e 
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m
e 

o
f 

G
a
s 

[f
t3

] 

C
u

m
u
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ti

v
e 

V
o
lu

m
e 

o
f 

G
a
s 

p
er

 L
B

 W
a
st

e 

[f
t3

/l
b

] 

A
v
er

a
g
e 

D
a
il

y
 

V
o
lu

m
e 

(f
t3

/d
a
y
) 

A
v
er

a
g
e 

D
a
il

y
 

F
lo

w
 R

a
te

 [
ft

3
/l

b
] 

1/14/14 11.48 57 50 30 1682.4 78.924 6.87 0.704 0.061 

1/16/14 11.48 59 50 30 1712.4 80.331 7.00 0.704 0.061 

1/19/14 11.48 62 50 50 1762.4 82.677 7.20 0.782 0.068 

1/22/14 11.48 65 50 40 1802.4 84.553 7.37 0.625 0.054 

1/26/14 11.48 69 50 40 1842.4 86.429 7.53 0.469 0.041 

1/30/14 11.48 73 50 40 1882.4 88.306 7.69 0.469 0.041 

2/4/14 11.48 78 50 40 1922.4 90.182 7.86 0.375 0.033 

2/11/14 11.48 85 50 40 1962.4 92.059 8.02 0.268 0.023 

2/16/14 11.48 90 50 40 2002.4 93.935 8.18 0.375 0.033 

2/25/14 11.48 99 50 40 2042.4 95.812 8.35 0.208 0.018 

3/7/14 11.48 109 50 40 2082.4 97.688 8.51 0.188 0.016 

3/23/14 11.48 125 50 40 2122.4 99.565 8.67 0.117 0.010 

4/13/14 11.48 146 50 40 2162.4 101.441 8.84 0.089 0.008 

6/27/14 11.48 221 50 10 2172.4 101.910 8.88 0.006 0.001 
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Table B.3.3 Record of Total Gas Flow Volume Captured –Moderately Deg. Bioreactors 

Date 

D
ry

 W
ei

g
h

t 

W
a
st

e
 

C
u

m
u
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v
e 
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o
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e 
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f 
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s 
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] 

C
u

m
u

la
ti

v
e 

V
o
lu

m
e 

o
f 
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p
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] 

A
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g
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D
a
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V
o
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m
e 

(f
t3

/d
a
y
) 

A
v
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a
g
e 

D
a
il

y
 

F
lo

w
 R

a
te

 [
ft

3
/l

b
] 

11/27/13 11.6 9 1 0.8 0.8 0.038 0.00 0.004 0.000 

12/4/13 11.6 16 1 0.8 1.6 0.075 0.01 0.005 0.000 

12/9/13 11.6 21 1 0.8 2.4 0.113 0.01 0.008 0.001 

12/10/13 11.6 22 1 0.8 3.2 0.150 0.01 0.038 0.003 

12/26/13 11.6 38 50 40 43.2 2.027 0.17 0.117 0.010 

1/1/14 11.6 44 50 40 83.2 3.903 0.34 0.313 0.027 

1/4/14 11.6 47 50 40 123.2 5.779 0.50 0.625 0.054 

1/9/14 11.6 52 50 50 173.2 8.125 0.70 0.469 0.040 

1/12/14 11.6 55 50 40 213.2 10.002 0.86 0.625 0.054 

1/16/14 11.6 59 50 50 263.2 12.347 1.06 0.586 0.051 

1/19/14 11.6 62 50 40 303.2 14.224 1.23 0.625 0.054 

1/22/14 11.6 65 50 50 353.2 16.569 1.43 0.782 0.067 

1/25/14 11.6 68 50 40 393.2 18.446 1.59 0.625 0.054 

1/28/14 11.6 71 50 40 433.2 20.322 1.75 0.625 0.054 

1/31/14 11.6 74 50 40 473.2 22.198 1.91 0.625 0.054 

2/3/14 11.6 77 50 40 513.2 24.075 2.08 0.625 0.054 

2/6/14 11.6 80 50 40 553.2 25.951 2.24 0.625 0.054 

2/9/14 11.6 83 50 50 603.2 28.297 2.44 0.782 0.067 

2/12/14 11.6 86 50 50 653.2 30.642 2.64 0.782 0.067 

2/15/14 11.6 89 50 40 693.2 32.519 2.80 0.625 0.054 
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Table B.3.3 Record of Total Gas Flow Volume Captured –Moderately Deg. Bioreactors 

(continued) 

Date 

D
ry

 W
ei

g
h

t 

W
a
st

e
 

C
u

m
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e 

N
o
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] 

C
u

m
u

la
ti

v
e 

V
o
lu

m
e 

o
f 

G
a
s 

[f
t3

] 

C
u

m
u

la
ti

v
e 

V
o
lu

m
e 

o
f 

G
a
s 

p
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[f
t3

/l
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A
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a
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a
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o
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m
e 
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t3

/d
a
y
) 

A
v
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a
g
e 

D
a
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F
lo

w
 R

a
te

 [
ft

3
/l

b
] 

2/18/14 11.6 92 50 40 733.2 34.395 2.97 0.625 0.054 

2/21/14 11.6 95 50 50 783.2 36.741 3.17 0.782 0.067 

2/24/14 11.6 98 50 40 823.2 38.617 3.33 0.625 0.054 

2/28/14 11.6 102 50 40 863.2 40.494 3.49 0.469 0.040 

3/3/14 11.6 105 50 40 903.2 42.370 3.65 0.625 0.054 

3/8/14 11.6 110 50 40 943.2 44.247 3.81 0.375 0.032 

3/14/14 11.6 116 50 50 993.2 46.592 4.02 0.391 0.034 

3/19/14 11.6 121 50 40 1033.2 48.469 4.18 0.375 0.032 

3/25/14 11.6 127 50 40 1073.2 50.345 4.34 0.313 0.027 

4/2/14 11.6 135 50 40 1113.2 52.222 4.50 0.235 0.020 

4/9/14 11.6 142 50 40 1153.2 54.098 4.66 0.268 0.023 

4/16/14 11.6 149 50 40 1193.2 55.975 4.83 0.268 0.023 

4/27/14 11.6 160 50 40 1233.2 57.851 4.99 0.171 0.015 

5/8/14 11.6 171 50 40 1273.2 59.728 5.15 0.171 0.015 

5/21/14 11.6 184 50 40 1313.2 61.604 5.31 0.144 0.012 

6/7/14 11.6 201 50 40 1353.2 63.480 5.47 0.110 0.010 

7/4/14 11.6 228 50 40 1393.2 65.357 5.63 0.069 0.006 

8/1/14 11.6 256 50 40 1433.2 67.233 5.80 0.067 0.006 
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Table B.3.4 Record of Total Gas Flow Volume Captured – Slowly Deg. Bioreactors  

Date 

D
ry

 W
ei

g
h
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a
st
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p
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(f
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a
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F
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w
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a
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ft

3
/l

b
] 

12/20/13 7.68 32 1 0.8 0.8 0.038 0.00489 0.00117 0.00015 

1/17/14 7.68 60 1 0.8 1.6 0.075 0.00977 0.00134 0.00017 

2/9/14 7.68 83 1 0.8 2.4 0.113 0.01466 0.00163 0.00021 

2/23/14 7.68 97 1 0.8 3.2 0.150 0.01955 0.00268 0.00035 

3/9/14 7.68 111 1 0.8 4 0.188 0.02443 0.00268 0.00035 

3/14/14 7.68 116 1 0.8 4.8 0.225 0.02932 0.00751 0.00098 

3/28/14 7.68 130 1 0.8 5.6 0.263 0.03421 0.00268 0.00035 

4/10/14 7.68 143 1 0.8 6.4 0.300 0.03909 0.00289 0.00038 

4/24/14 7.68 157 1 0.8 7.2 0.338 0.04398 0.00268 0.00035 

5/8/14 7.68 171 1 0.8 8 0.375 0.04887 0.00268 0.00035 

5/23/14 7.68 186 1 0.8 8.8 0.413 0.05375 0.00250 0.00033 

6/7/14 7.68 201 1 0.8 9.6 0.450 0.05864 0.00250 0.00033 

6/23/14 7.68 217 1 0.8 10.4 0.488 0.06353 0.00235 0.00031 

7/8/14 7.68 232 1 0.8 11.2 0.525 0.06841 0.00250 0.00033 

7/27/14 7.68 251 1 0.8 12 0.563 0.07330 0.00198 0.00026 

8/14/14 7.68 269 1 0.8 12.8 0.600 0.07819 0.00208 0.00027 
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B.4  Gas Composition Records 

Tables B.4.1 and B.4.2 tabulate the results of periodic gas composition testing of the 

secondary gas collection bags to understand the composition of gas generated and 

ascertain which phase of decomposition the bioreactor set was undergoing. The phases of 

decomposition and characteristic gas composition are discussed in Chapter 2. Generally, 

the gas characterization readings obtained correlated closely with the phase which the 

bioreactors were assumed to be in during the time of reading.  

A landfill gas meter, Landtec model GEM2000+ was used to perform 

composition analyses.  The equipment is typically used by industry and field-proven to 

monitor landfill gas extraction systems accurately and efficiently. The GEM2000+ 

samples and analyzes the methane, carbon dioxide, oxygen, carbon monoxide, and 

hydrogen sulfide content of landfill gas. A unit-mounted LCD screen shows the results as 

percentages of CH4, CO2, O2 and "balance" gas, and parts per million (ppm) of CO and 

H2S.  Calibration data for the equipment is provided in Appendix D – Calibration 

Records for Measuring Devices.  
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Table B.4.1 Gas Composition Record 

Gas Composition Record 

Date of 

Reading 

B
io

re
a
ct

o
r
 

G
a
s 

F
lo

w
 

R
ea

d
in

g
 [

sc
cm

] 

A
p

p
ro

x
 T

ed
la

r 

B
a
g
 V

o
lu

m
e 

[L
] 

% 

CH4 

% 

CO2 

CO 

[ppm] 

% 

O2 

H2S 

[ppm] 

12/12/13 Composite 10.023 50 37.6 54.2 221 0.01 209 

12/12/13 Composite 10.023 50 37.9 54.8 253 0.01 301 

12/19/13 Composite 8.113 50 54.6 41.4 12 1 91 

12/19/13 Composite 8.113 50 54.2 42 17 0.1 104 

12/24/13 Composite 7.106 50 59.7 40.1 0 0.1 80 

12/24/13 Composite 7.106 50 58.6 39.7 14 0.04 78 

12/22/13 Readily 24.77 50 56.2 49.4 162 0.01 71 

12/22/13 Readily 24.77 50 54.7 48.8 152 0.01 68 

12/25/13 Composite 4.25 50 54.7 41.2 17 0.7 169 

1/25/14 Composite 4.25 50 55.1 41.2 16 0.5 176 

2/21/14 Composite 2.785 50 52.3 43.3 27 0.06 184 

2/21/14 Composite 2.765 50 54.1 43.2 29 0.06 182 

3/25/14 Composite 1.544 50 53.8 42.3 21 0.05 173 

3/25/14 Composite 1.544 50 54.1 43 16 0.04 124 

4/23/14 Composite 1.85 50 52.3 43.3 17 0.01 29 

4/23/14 Composite  1.85 50 52.5 43.1 22 0.02 64 

6/16/14 Composite  0.13 50 47.6 38.2 23 .01 13 

6/17/14 Composite  0.13 50 47.3 37.9 34 0.01 6 

4/27/14 Readily 0.39 1 48.9 37.4 28 0.01 18 

4/27/14 Readily  0.39 1 48.8 37.2 36 0.01 9 
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Table B.4.2 Record of Gas Composition (continued) 

Gas Composition Record 

Date of 

Reading 

B
io

re
a
ct

o
r
 

G
a
s 

F
lo

w
 

R
ea

d
in

g
 [

sc
cm

] 

A
p

p
ro

x
 T

ed
la

r 

B
a
g
 V

o
lu

m
e 

[L
] 

% 

CH4 

% 

CO2 

CO 

[ppm] 

% 

O2 

H2S 

[ppm] 

6/28/14 Readily 0.00 10 45.6 35.7 21 1.3 16 

6/28/14 Readily  0.00 10 45.5 35.4 17 1.3 13 

3/22/14 Moderately 3.36 50 53.7 42.3 24 0.01 116 

3/22/14 Moderately 3.36 50 52.3 44.1 27 0.01 112 

6/12/14 Moderately 1.07 50 51.2 40.7 13 0.9 27 

6/12/14 Moderately  1.07 50 51 40.3 12 1 17 
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B.5  Moisture Content Meter Records 

Leachate was recirculated continuously throughout the experiment to accelerate the on-

set of biodegradation and simulate a bioreactor landfill.  Moisture content was maintained 

between 40 to 45 percent based on recommendations by USEPA (2003) and Reinhart and 

Townsend (1997), and further discussed in Chapter 3.  Moisture content was 

checked on a weekly basis using a TRIME-PICO64 moisture content probe as 

manufactured by IMKO GmbH.  

Each moisture content probe was installed into one bioreactor representative of 

each of the four reactor sets. Non-destructive assessment of moisture content using time 

domain reflectometry equipment for moisture measurement was required as taking a 

sample of waste to determine moisture content during the experiment would alter the gas 

production rate of the specific reactor, disrupt microorganism activity, and introduce 

oxygen into the system which would arrest the biodegradation process.   Leachate was 

recirculated on a weekly basis, or more frequently as indicated by moisture probe 

readings and required to increase the moisture content of the waste sample to within the 

recommended limits.   

Records maintained during the course of work for each reactor set are provided as 

Table B.5.1 through B.5.4 for the composite, readily, moderately, and slowly degradable 

moisture content sets, respectively.  Each reading was taken using a handheld electronic 

reader connected to the embedded moisture content probe.  The existing moisture content 

water was recorded prior to recirculation of leachate and injection of supplementation 

with new leachate, as needed.  
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To add leachate, a leachate reservoir was connected to the bioreactor using an 

attachment consisting of a normally-closed butterfly valve, ¼” tygon tubing, and a 

second normally-closed butterfly valve.  The apparatus was fashioned to create an air-

tight seal such that oxygen from atmosphere was not introduced into the bioreactor as it 

would be fatal to methanogenic organisms and adversely affect the biodegradation 

process.  The attachment was connected to the normally-closed butterfly valve and 

leachate portion installed into the bioreactor cap.   Leachate was then added by clearing 

the apparatus of oxygen and opening up both butterfly valves.  The handheld reader 

remained connected to the probe while additional leachate was added to ensure moisture 

content of above 45 percent was re-established.  Once moisture was replenished, each 

valve was closed, and the leachate reservoir disconnected. As the environment and 

proportion of waste constituents within each bioreactor of a bioreactor set are identical, it 

is anticipated that each required similar volumes of additional leachate to achieve the 

recommended limits and the process was repeated for the bioreactor set.  A schematic of 

the leachate injection is provided as Figure B.5.1. 

Leachate was obtained from the Middlesex County Utilities Authority (MCUA) 

Middlesex County Landfill in East Brunswick, New Jersey. Chemical analyses conducted 

on the leachate have been provided under Figure B.5.2 – Leachate Chemical Analyses 

Test Results.    
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Figure B.5.1  Leachate Injection Procedure   
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Table B.5.1  Moisture Content Record for Composite Bioreactor Set 

Date 
Cum. 

Days 

Samples 

Charged 

Initial Moisture 

Content [%] 

End Moisture 

Content [%] 

Days 

Since Last 

Charge 

11/18/13 0 C (16) 41.2 46.1 0 

11/23/13 5 C (16) 39.3 46.3 5 

11/24/13 6 C (16) 43.2 46.2 1 

11/26/13 8 C (16) 41.9 46.0 2 

11/29/13 11 C (16) 39.8 46.5 3 

12/1/13 13 C (16) 42.1 46.5 2 

12/3/13 15 C (16) 41.1 46.6 2 

12/5/13 17 C (16) 40.6 46.7 2 

12/6/13 18 C (16) 43.1 45.9 1 

12/8/13 20 C (16) 41.5 46.3 2 

12/12/13 24 C (16) 38.5 46.2 4 

12/15/13 27 C (16) 40.1 45.9 3 

12/18/13 30 C (16) 39.8 46.5 3 

12/22/13 34 C (16) 38.7 47.1 4 

12/25/13 37 C (16) 41.1 46.8 3 

12/29/13 41 C (16) 39.6 46.9 4 

12/31/13 43 C (16) 42.4 46.7 2 

1/4/14 47 C (16) 38.6 46.5 4 

1/11/14 54 C (15) 33.9 46.8 7 

1/13/14 56 C (15) 42.1 46.5 2 

1/18/14 61 C (15) 37.3 46.3 5 

1/21/14 64 C (14) 40.9 46.2 3 

1/24/14 67 C (14) 41.2 46.5 3 

1/28/14 71 C (14) 39.3 46.4 4 

1/31/14 74 C (14) 40.1 46.6 3 
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Table B.5.1  Moisture Content Record for Composite Bioreactor Set (continued) 

Date 
Cum. 

Days 

Samples 

Charged 

Initial Moisture 

Content [%] 

End Moisture 

Content [%] 

Days 

Since Last 

Charge 

2/1/14 75 C (14) 46.2 46.8 1 

2/4/14 78 C (14) 42.3 47.2 3 

2/8/14 82 C (14) 39.3 46.3 4 

2/11/14 85 C (14) 40.6 46.7 3 

2/16/14 90 C (14) 37.4 46.2 5 

2/19/14 93 C (13) 42.1 46.7 3 

2/22/14 96 C (13) 43.2 45.9 3 

2/26/14 100 C (13) 42.8 46.1 4 

3/2/14 104 C (13) 39.6 46.8 4 

3/5/14 107 C (13) 42.3 47.2 3 

3/8/14 110 C (13) 42.9 47.1 3 

3/16/14 118 C (13) 38.6 46.7 8 

3/18/14 120 C (12) 43.6 46.9 2 

3/21/14 123 C (12) 43.2 46.2 3 

3/30/14 132 C (12) 38.4 46.1 9 

4/5/14 138 C (12) 36.7 46.2 6 

4/12/14 145 C (12) 36.6 46.3 7 

4/19/14 152 C (12) 33.8 46.5 7 

4/27/14 160 C (12) 42.2 46.7 8 

5/10/14 173 C (12) 42.7 46.6 13 

5/28/14 191 C (11) 42.4 46.2 18 

6/13/14 207 C (11) - - 16 
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Table B.5.2  Moisture Content Record for Readily Degradable Bioreactor Set 

Date 

Days 

Since 

Start 

Samples 

Charged 

Initial Moisture 

Content [%] 

End Moisture 

Content [%] 

Interval 

Since Last 

Charge  

11/18/13 0 R (6) 44.2 45.3 0 

11/23/13 5 R (6) 36.6 46.2 5 

11/24/13 6 R (6) 44.4 46.7 1 

11/26/13 8 R (6) 38.4 47.1 2 

11/29/13 11 R (6) 36.9 45.7 3 

12/1/13 13 R (6) 39.5 45.9 2 

12/3/13 15 R (6) 39.2 46.4 2 

12/5/13 17 R (6) 37.6 45.9 2 

12/6/13 18 R (6) 42.2 45.2 1 

12/8/13 20 R (6) 40.4 47.1 2 

12/12/13 24 R (6) 39.8 46.6 4 

12/15/13 27 R (6) 38.7 45.9 3 

12/18/13 30 R (6) 39.2 45.8 3 

12/22/13 34 R (6) 40.2 45.6 4 

12/25/13 37 R (6) 41.1 46.7 3 

12/29/13 41 R (6) 41.6 45.6 4 

12/31/13 43 R (6) 42.7 45.8 2 

1/4/14 47 R (6) 42.7 46.7 4 

1/11/14 54 R (6) 38.2 47.1 7 

1/13/14 56 R (6) 43.2 46.8 2 

1/18/14 61 R (6) 40.8 45.8 5 

1/21/14 64 R (6) 40.7 46.1 3 

1/24/14 67 R (6) 41.2 45.8 3 

1/28/14 71 R (6) 41.1 46.1 4 

1/31/14 74 R (6) 40.8 46.3 3 
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Table B.5.2  Moisture Content Record for Readily Deg. Bioreactor Set (continued) 

Date 

Days 

Since 

Start 

Samples 

Charged 

Initial Moisture 

Content [%] 

End Moisture 

Content [%] 

Interval 

Since Last 

Charge  

2/1/14 75 R (6) 44.7 45.8 1 

2/4/14 78 R (6) 43.1 47.1 3 

2/8/14 82 R (6) 42.8 46.3 4 

2/11/14 85 R (6) 42.2 45.8 3 

2/16/14 90 R (6) 39.6 46.3 5 

2/19/14 93 R (6) 41.4 45.2 3 

2/22/14 96 R (6) 41.8 46.1 3 

2/26/14 100 R (6) 40.7 45.6 4 

3/2/14 104 R (6) 41.3 45.4 4 

3/5/14 107 R (6) 44.4 46.6 3 

3/8/14 110 R (6) 42.3 45.5 3 

3/16/14 118 R (6) 39.9 45.8 8 
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Table B.5.3  Moisture Content Record for Moderately Deg. Bioreactor Set 

Date 

Days 

Since 

Start 

Samples 

Charged 

Initial Moisture 

Content [%] 

End Moisture 

Content [%] 

Interval 

Since Last 

Charge  

11/18/13 0 M (6) 42.1 47.6 0 

11/23/13 5 M (6) 41.1 48.2 5 

11/24/13 6 M (6) 44.5 46.6 1 

11/26/13 8 M (6) 42.2 46.5 2 

11/29/13 11 M (6) 41.0 46.2 3 

12/1/13 13 M (6) 43.4 47.1 2 

12/3/13 15 M (6) 42.3 46.2 2 

12/5/13 17 M (6) 41.2 46.3 2 

12/6/13 18 M (6) 45.0 47.1 1 

12/8/13 20 M (6) 42.3 46.8 2 

12/12/13 24 M (6) 36.2 46.7 4 

12/15/13 27 M (6) 38.1 46.3 3 

12/18/13 30 M (6) 38.6 47.1 3 

12/22/13 34 M (6) 36.2 46.8 4 

12/25/13 37 M (6) 39.7 48.1 3 

12/29/13 41 M (6) 34.6 45.9 4 

12/31/13 43 M (6) 41.2 47.0 2 

1/4/14 47 M (6) 34.5 46.3 4 

1/11/14 54 M (6) 28.6 45.9 7 

1/13/14 56 M (6) 39.2 46.3 2 

1/18/14 61 M (6) 32.2 47.1 5 

1/21/14 64 M (6) 36.5 47.2 3 

1/24/14 67 M (6) 34.7 46.2 3 

1/28/14 71 M (6) 34.1 45.9 4 

1/31/14 74 M (6) 36.5 46.4 3 

2/1/14 75 M (6) 44.3 46.8 1 

2/4/14 78 M (6) 38.6 46.2 3 
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Table B.5.3  Moisture Content Record for Moderately Deg. Bioreactor Set (continued) 

Date 

Days 

Since 

Start 

Samples 

Charged 

Initial Moisture 

Content [%] 

End Moisture 

Content [%] 

Interval 

Since Last 

Charge  

2/8/14 82 M (6) 35.6 46.5 4 

2/11/14 85 M (6) 40.1 47.1 3 

2/16/14 90 M (6) 36.5 45.9 5 

2/19/14 93 M (6) 40.1 46.2 3 

2/22/14 96 M (6) 39.6 45.8 3 

2/26/14 100 M (6) 39.4 46.2 4 

3/2/14 104 M (6) 38.6 45.9 4 

3/5/14 107 M (6) 42.2 47.1 3 

3/8/14 110 M (6) 41.8 46.6 3 

3/16/14 118 M (6) 36.7 46.3 8 

3/18/14 120 M (6) 43.8 46.3 2 

3/21/14 123 M (6) 42.3 46.2 3 

3/30/14 132 M (6) 36.7 45.9 9 

4/5/14 138 M (6) 37.5 46.4 6 

4/12/14 145 M (6) 36.5 46.2 7 

4/19/14 152 M (6) 36.2 46.7 7 

4/27/14 160 M (6) 37.9 46.3 8 

5/10/14 173 M (6) 34.8 45.9 13 

5/17/14 180 M (6) 38.4 46.3 7 

5/28/14 191 M (6) 36.7 46.1 11 

6/7/14 201 M (6) 35.9 46.4 10 

6/13/14 207 M (6) 40.0 46.5 6 

6/21/14 215 M (6) 40.7 46.2 8 

6/28/14 222 M (6) 39.6 46.6 7 

7/5/14 229 M (6) 40.6 45.9 7 

7/13/14 237 M (6) 40.1 46.2 8 

7/26/14 250 M (6) 41.3 46.4 13 
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Table B.5.4  Moisture Content Record for Slowly Deg. Bioreactor Set 

Date 

Days 

Since 

Start 

Samples 

Charged 

Initial Moisture 

Content [%] 

End Moisture 

Content [%] 

Interval 

Since Last 

Charge 

11/18/13 0 S (6) 44.2 46.6 0 

11/23/13 5 S (6) 44.3 46.8 5 

11/24/13 6 S (6) 46.7 47.1 1 

11/26/13 8 S (6) 44.6 46.3 2 

11/29/13 11 S (6) 44.8 45.9 3 

12/1/13 13 S (6) 44.2 46.2 2 

12/3/13 15 S (6) 44.1 46.2 2 

12/5/13 17 S (6) 43.8 46.6 2 

12/6/13 18 S (6) 46.6 48.1 1 

12/8/13 20 S (6) 44.3 47.6 2 

12/12/13 24 S (6) 44.1 46.6 4 

12/15/13 27 S (6) 44.6 45.9 3 

12/18/13 30 S (6) 44.2 46.2 3 

12/22/13 34 S (6) 44.3 46.3 4 

12/25/13 37 S (6) 44.1 46.7 3 

12/29/13 41 S (6) 44.3 46.2 4 

12/31/13 43 S (6) 43.9 45.9 2 

1/4/14 47 S (6) 43.7 45.8 4 

1/11/14 54 S (6) 44.1 46.2 7 

1/13/14 56 S (6) 44.2 46.4 2 

1/18/14 61 S (6) 43.8 46.2 5 

1/21/14 64 S (6) 44.1 45.9 3 

1/24/14 67 S (6) 44.0 47.1 3 

1/28/14 71 S (6) 41.2 46.4 4 

1/31/14 74 S (6) 43.8 46.2 3 

2/1/14 75 S (6) 46.0 47.6 1 

 



308 
 

 

Table B.5.4  Moisture Content Record for Slowly Deg. Bioreactor Set (continued) 

Date 

Days 

Since 

Start 

Samples 

Charged 

Initial Moisture 

Content [%] 

End Moisture 

Content [%] 

Interval 

Since Last 

Charge 

2/4/14 78 S (6) 45.1 46.8 3 

2/8/14 82 S (6) 44.8 47.1 4 

2/11/14 85 S (6) 46.1 46.8 3 

2/16/14 90 S (6) 43.1 45.9 5 

2/19/14 93 S (6) 44.3 46.7 3 

2/22/14 96 S (6) 44.1 46.3 3 

2/26/14 100 S (6) 44.2 46.5 4 

3/2/14 104 S (6) 44.1 47.1 4 

3/5/14 107 S (6) 43.3 46.8 3 

3/8/14 110 S (6) 44.1 46.7 3 

3/16/14 118 S (6) 42.1 45.9 8 

3/18/14 120 S (6) 44.6 46.3 2 

3/21/14 123 S (6) 44.5 47.2 3 

3/30/14 132 S (6) 41.1 47.1 9 

4/5/14 138 S (6) 40.2 46.8 6 

4/12/14 145 S (6) 41.1 46.7 7 

4/19/14 152 S (6) 41.6 47.1 7 

4/27/14 160 S (6) 42.8 47.6 8 

5/10/14 173 S (6) 40.1 46.5 13 

5/17/14 180 S (6) 43.4 46.8 7 

5/28/14 191 S (6) 38.4 45.7 11 

6/7/14 201 S (6) 42.1 46.2 10 

6/13/14 207 S (6) 42.3 46.8 6 

6/21/14 215 S (6) 45.0 47.2 8 

6/28/14 222 S (6) 42.0 46.8 7 

7/5/14 229 S (6) 43.1 47.2 7 

7/13/14 237 S (6) 40.1 46.4 8 

7/26/14 250 S (6) 41.3 46.7 13 
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Figure B.5.2  Leachate Chemical Analyses Test Results   

 

 
 

Figure B.5.3  Leachate Chemical Analyses Test Results  (continued) 

 

 

 
 

Figure B.5.4  Leachate Chemical Analyses Test Results (continued) 
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B.6  (C+H)/L Test Record 

Bioreactors decommissioned to test for compression testing were subsequently 

sampled and sent for (C+H)/L testing to determine the state of biodegradation of the 

waste. Samples were sent to Dr. Morton A. Barlaz at North Carolina State University for 

(C+H)/L testing.  As discussed in Chapter 4, prior to submission for testing, samples 

were processed by removing plastics and synthetics from the sample. These constituents 

were removed as it was shown plastic and synthetic constituents do not dissolve in a 72 

percent weight by weight (w/w) solution of sulfuric acid. 

 Table B.6.1 includes the data maintained by the author during the experiment 

phase. Table B.6.2 through B.6.4 represent the as-received test results from Dr. Barlaz 

indicating cellulose, hemicellulose, lignin and biodegradable solids as percent of the 

waste mass.  Two tests were completed for each sample and an average presented of the 

test results.  A Relative Percent Deviation, defined as the standard deviation divided by 

the average (reported in percent) is presented to quantify precision of the test. A low 

Relative Percent Deviation would indicate lower variability of the test data, while a 

higher percentage would indicate the data is more varied.  Sample results obtained from 

this work were observed to have low Relative Percent Deviation.  
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Table B.6.1  Records Maintained for Cellulose + Hemicellulose over Lignin Tests 

S
am

p
le

 N
u
m

b
er

 

D
at

e 
R

em
o
v
ed

 

R
em

o
v
ed

 F
ro

m
 

B
io

re
ac

to
r 

N
u
m

b
er

 

T
o
ta

l 
A

m
o
u
n
t 

o
f 

S
am

p
le

 R
em

o
v
ed

 [
g

] 

S
am

p
le

 S
en

t 
to

 B
ar

la
z 

[l
b
] 

W
as

te
 R

em
o
v
ed

 f
ro

m
 

B
io

re
ac

to
r,

 D
ry

 [
lb

] 

D
at

e 
S

en
t 

to
 B

ar
la

z 

D
at

e 
T

es
te

d
 

C-INITIAL-1 INITIAL INITIAL 264 264 - 12/26/13 2/6/14 

C-INITIAL-2 INITIAL INITIAL 198 264 - 12/26/13 2/6/14 

R-INITIAL-1 INITIAL INITIAL 248 106 - 12/26/13 2/6/14 

R-INITIAL-2 INITIAL INITIAL 276 146 - 12/26/13 2/6/14 

M-INITIAL-1 INITIAL INITIAL 194 487 - 12/26/13 2/6/14 

M-INITIAL-2 INITIAL INITIAL 198 189 - 12/26/13 2/6/14 

C-1-1 1/6/14 C-1 775.6 49.6 775.6 1/16/14 3/18/14 

C-1-2 1/6/14 C-1 775.6 51.8 775.6 1/16/14 3/18/14 

C-2-1 1/19/14 C-2 780.2 48.8 780.2 1/25/14 3/26/14 

C-2-2 1/19/14 C-2 780.2 51.4 780.2 1/25/14 3/26/14 

C-3-1 2/19/14 C-3 775.0 55.4 775.0 2/24/14 4/6/14 

C-3-2 2/19/14 C-3 775.0 56.8 775.0 2/24/14 4/6/14 

C-4-1 3/20/14 C-4 784.0 61.3 784.0 3/23/14 5/2/14 

C-4-2 3/20/14 C-4 784.0 52.1 784.0 3/23/14 5/2/14 

C-4-3 3/20/14 C-4 784.0 48.1 784.0 3/23/14 5/2/14 

C-4-4 3/20/14 C-4 784.0 51.1 784.0 3/23/14 5/2/14 

C-INITIAL-

RETEST-1 
9/2/14 NEW 324 324 - 9/6/14 10/5/14 

C-INITIAL-

RETEST-2 
9/2/14 NEW 317 317 - 9/6/14 10/5/14 
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Table B.6.2  Results for Cellulose + Hemicellulose over Lignin Tests 

 

    % Cellulose (C) % Hemicellulose (H) 

NCSU 

Lab # 
Sample ID 

Rep 

1 

Rep 

2 
Avg. RPD 

Rep 

1 

Rep 

2 
Avg. RPD 

14-1 C-Initial-1 44.96 51.54 48.25 9.6% 9.15 10.14 9.65 7.3% 

14-2 C-Initial-2 43.42 42.72 43.07 1.1% 9.88 8.89 9.39 7.5% 

14-3 R-Initial-1 47.22 53.06 50.14 8.2% 5.23 5.87 5.55 8.2% 

14-4 R-Initial-2 55.02 53.67 54.35 1.8% 4.45 4.51 4.48 0.9% 

14-5 M-Initial-1 40.90 39.76 40.33 2.0% 10.19 10.75 10.47 3.8% 

14-6 M-Initial-2 51.51 47.67 49.59 5.5% 11.76 10.58 11.17 7.5% 

14-7 C-1-1 10.41 8.37 9.39 15.4% 4.90 3.72 4.31 19.4% 

14-8 C-1-2 14.43 9.43 11.93 29.6% 6.34 4.68 5.51 21.3% 

14-9 C-2-1 19.55 18.72 19.14 3.1% 5.99 5.78 5.89 2.5% 

14-10 C-2-2 15.76 14.14 14.95 7.7% 6.62 5.68 6.15 10.8% 

14-24 C-3-1 11.48 10.79 11.14 4.4% 4.73 4.13 4.43 9.6% 

14-25 C-3-2 8.61 9.11 8.86 4.0% 3.53 3.95 3.74 7.9% 

14-37 

C-4-1  

(Plastics, 

synthetics 

removed) 

7.08 7.30 7.19 2.2% 2.43 1.82 2.13 20.3% 

14-38 

C-4-2  

(Plastics, 

synthetics 

removed) 

7.36 6.63 7.00 7.4% 2.42 1.78 2.10 21.5% 

14-39 
C-4-3  

(Unprocessed) 
5.43 5.20 5.32 3.1% 2.31 2.78 2.55 13.1% 

14-40 
C-4-4  

(Unprocessed) 
6.45 4.60 5.53 23.7% 2.78 1.81 2.30 29.9% 

14-

356 

C-Initial retest-

1 (Plastics, 

synthetics 

removed) 

51.26 39.45 45.36 18.4% 7.98 6.38 7.18 15.8% 

14-

357 

C-Initial retest-

2 (Plastics, 

synthetics 

removed) 

44.18 44.66 44.42 0.8% 6.40 7.08 6.74 7.1% 
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Table B.6.3  Results for Cellulose + Hemicellulose over Lignin Tests (Continued) 

 

  
% Lignin (L) % Lipophillic Extractives 

NCSU 

Lab # 
Sample ID 

Rep 

1 

Rep 

2 
Avg. RPD 

Rep 

1 

Rep 

2 
Avg. RPD 

14-1 C-Initial-1 4.70 4.42 4.56 4.3% -2.43 -2.14 -2.29 -9.0% 

14-2 C-Initial-2 4.77 5.04 4.91 3.9% -3.28 -3.33 -3.31 -1.1% 

14-3 R-Initial-1 6.02 5.51 5.77 6.3% -1.99 -2.08 -2.04 -3.1% 

14-4 R-Initial-2 5.27 5.42 5.35 2.0% -2.01 -2.10 -2.06 -3.1% 

14-5 M-Initial-1 3.87 4.13 4.00 4.6% -3.65 -3.51 -3.58 -2.8% 

14-6 M-Initial-2 4.37 4.46 4.42 1.4% -3.53 -3.53 -3.53 0.0% 

14-7 C-1-1 21.94 21.75 21.85 0.6% -0.47 -0.50 -0.49 -4.4% 

14-8 C-1-2 22.30 21.63 21.97 2.2% -0.35 -0.12 -0.24 -69.2% 

14-9 C-2-1 25.81 25.19 25.50 1.7% -1.30 -1.24 -1.27 -3.3% 

14-10 C-2-2 26.80 27.08 26.94 0.7% -1.49 -1.11 -1.30 -20.7% 

14-24 C-3-1 24.67 23.67 24.17 2.9% 1.28 1.18 1.23 5.7% 

14-25 C-3-2 20.85 22.01 21.43 3.8% 1.48 1.61 1.55 5.9% 

14-37 

C-4-1 

(Plastics, 

synthetics 

removed) 

20.72 22.11 21.42 4.6% 1.35 1.40 1.38 2.6% 

14-38 

C-4-2 

(Plastics, 

synthetics 

removed) 

20.92 20.69 20.81 0.8% 0.94 0.94 0.94 0.0% 

14-39 
C-4-3 

(Unprocessed) 
31.84 30.50 31.17 3.0% 1.17 0.97 1.07 13.2% 

14-40 
C-4-4 

(Unprocessed) 
33.62 40.15 36.89 12.5% 0.86 0.85 0.86 0.8% 

14-

356 

C-Initial retest-1 

(Plastics, 

synthetics 

removed) 

5.09 5.37 5.23 3.8% 4.90 4.65 4.78 3.7% 

14-

357 

C-Initial retest-2 

(Plastics, 

synthetics 

removed) 

13.89 14.27 14.08 1.9% 3.95 4.02 3.99 1.2% 



314 
 

 

Table B.6.4  Results for Cellulose + Hemicellulose over Lignin Tests (Continued) 

  
% Organic Solids 

(C+H) 

L 

C+H+L+Extr  

VS 

NCSU 

Lab # 
Sample ID 

Rep 

1 

Rep 

2 
Avg. 

RPD 

±25% 

From 

averages 

From 

averages (%) 

14-1 C-Initial-1 78.5 79.6 79.05 1.0% 12.70 0.76 

14-2 C-Initial-2 80.4 80.7 80.55 0.3% 10.69 0.67 

14-3 R-Initial-1 97.6 97.5 97.55 0.1% 9.66 0.61 

14-4 R-Initial-2 97.3 97.3 97.30 0.0% 11.01 0.64 

14-5 M-Initial-1 78.0 78.0 78.00 0.0% 12.70 0.66 

14-6 M-Initial-2 77.4 77.6 77.50 0.2% 13.76 0.80 

14-7 C-1-1 52.5 53.1 52.80 0.8% 0.63 0.66 

14-8 C-1-2 52.0 52.0 52.00 0.0% 0.79 0.75 

14-9 C-2-1 66.4 65.8 66.10 0.6% 0.98 0.75 

14-10 C-2-2 56.1 58.1 57.10 2.5% 0.78 0.82 

14-24 C-3-1 50.8 51.5 51.15 1.0% 0.64 0.80 

14-25 C-3-2 48.4 47.7 48.05 1.0% 0.59 0.74 

14-37 

C-4-1 

(Plastics, 

synthetics 

removed) 

47.4 48.2 47.80 1.2% 0.43 0.67 

14-38 

C-4-2 

(Plastics, 

synthetics 

removed) 

45.1 43.6 44.35 2.4% 0.44 0.70 

14-39 
C-4-3 

(Unprocessed) 
39.4 38.8 39.10 1.1% 0.25 1.03 

14-40 
C-4-4 

(Unprocessed) 
41.4 43.8 42.60 4.0% 0.21 1.07 

14-

356 

C-Initial retest-

1 (Plastics, 

synthetics 

removed) 

72.5 74.1 73.30 1.5% 10.04 0.85 

14-

357 

C-Initial retest-

2 (Plastics, 

synthetics 

removed) 

76.1 77.5 76.80 1.3% 3.63 0.90 
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B.7  End of Test Bioreactor Decommissioning Records 

Following completion of the experiment, remaining operational bioreactors were 

decommissioned after undergoing a series of measurements. The intent of the 

measurements was to understand the loss of biodegradable mass attributable to 

decomposition, compute percent biodegradation of the sample based on weight, observe 

any change in density of the waste sample, and verify moisture content of the bioreactor.  

Generally, the decommissioning process consisted of saw-cutting the top of the 

bioreactor jar to expose the waste. The height of the sample was measured using a ruler 

with one-tenth inch markings to determine final density. Subsequently, the waste was 

removed from each bioreactor and placed into individual pans for measuring wet weight. 

The samples were oven-dried at low heat at 110°F to avoid burn-off of organic fractions, 

and the dry weight of the waste was computed to determine moisture content of the 

sample.  Using bioreactor commissioning records at the start of the experiment, the 

original weight of biodegradable and non-biodegradable constituents was known thereby 

allowing for a computation of the remaining weight of biodegradable fraction and percent 

biodegraded at the end of the experiment.  

It is noted that each bioreactor jar was 7.44 inches in diameter, equating to a cross 

sectional area of 43.47 square inches, or 0.30 square feet, which was used to computer 

density of the waste sample. A conversion factor of 453.59 grams to 1 pound was used 

for calculations.   Initial weights which are listed are provided in commissioning records 

in Appendix A. 
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Table B.7.1 End of Bioreactor Decommissioning Records - Composite 

Sample 

Jar No. 

Pan 

Weight 

[g] 

Pan + 

Wet 

Sample 

Weight 

[g] 

Wet 

Sample 

Weight 

[g] 

Pan + 

Dry 

Sample 

Weight 

[g] 

Dry 

Sample 

Weight 

[g] 

Wwater 

[g] 

End 

Moisture 

Content 

[%] 

Final 

Height 

of 

Sample 

[in] 

C-7 104.77 702.17 597.4 515.64 410.87 186.53 45.40% 1.40 

C-8 101.35 711.78 610.43 518.39 417.04 193.39 46.37% 1.50 

C-9 102.47 714.8 612.33 517.64 415.17 197.16 47.49% 1.50 

C-10 102.54 718.48 615.94 521.86 419.32 196.62 46.89% 1.40 

C-11 101.42 691.93 590.51 507.07 405.65 184.86 45.57% 1.40 

C-12 101.63 701.57 599.94 510.64 409.01 190.93 46.68% 1.40 

C-13 100.74 714.86 614.12 518.82 418.08 196.04 46.89% 1.50 

C-14 103.41 713.17 609.76 512.37 408.96 200.8 49.10% 1.40 

C-15 102.88 707.19 604.31 512.17 409.29 195.02 47.65% 1.40 

C-16 103.74 693.27 589.53 503.1 399.36 190.17 47.62% 1.40 
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Table B.7.2 End of Bioreactor Decommissioning Records – Composite (continued) 

Sample Jar 
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C-7 1.32 0.91 37.39 91.33% 0.50 1.19 1.69 71% 

C-8 1.35 0.92 35.66 86.73% 0.51 1.18 1.69 70% 

C-9 1.35 0.92 35.77 87.75% 0.52 1.18 1.70 70% 

C-10 1.36 0.92 38.55 93.96% 0.51 1.18 1.69 70% 

C-11 1.30 0.89 36.96 90.48% 0.49 1.21 1.70 71% 

C-12 1.32 0.90 37.55 92.12% 0.49 1.20 1.69 71% 

C-13 1.35 0.92 35.88 88.78% 0.51 1.18 1.69 70% 

C-14 1.34 0.90 38.17 94.24% 0.49 1.20 1.69 71% 

C-15 1.33 0.90 37.82 93.40% 0.49 1.20 1.69 71% 

C-16 1.30 0.88 36.90 91.32% 0.47 1.22 1.69 72% 
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Table B.7.3 End of Bioreactor Decommissioning Records – Readily Degradable 

Sample Jar 

No. 

P
an

 W
ei

g
h
t 

[g
] 

P
an

 +
 W

et
 

S
am

p
le

 W
ei

g
h
t 

[g
] 

W
et

 S
am

p
le

 

W
ei

g
h
t 

[g
] 

P
an

 +
 D

ry
 S

am
p
le

 

W
ei

g
h
t 

[g
] 

D
ry

 S
am

p
le

 

W
ei

g
h
t 

[g
] 

W
at

er
 [

g
] 

E
n
d
 M

o
is

tu
re

 

C
o
n
te

n
t 

[%
] 

F
in

al
 H

ei
g
h
t 

o
f 

S
am

p
le

 [
in

] 

R-1 94.51 228.56 134.05 186.83 92.32 41.73 45.20% 0.40 

R-2 95.52 236.61 141.09 190.45 94.93 46.16 48.63% 0.30 

R-3 94.29 226.44 132.15 184 89.71 42.44 47.31% 0.30 

R-4 104.86 245.35 140.49 200.66 95.8 44.69 46.65% 0.30 

R-5 101.42 240.28 138.86 194.61 93.19 45.67 49.01% 0.30 

R-6 103.99 239.01 135.02 195.44 91.45 43.57 47.64% 0.30 

 

 

Table B.7.4 End of Bioreactor Decommissioning Records – Readily Deg. (continued) 

Sample Jar 

No. 

T
o
ta

l 
E

n
d
 W

et
 

S
am

p
le

 W
ei

g
h
t 

[l
b
] 

T
o
ta
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E
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d
 D
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S
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 W
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t 
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b
] 

F
in

al
 D

en
si

ty
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b
/f

t3
] 

C
h
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g
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 D

en
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ty
 

[%
] 

T
o
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l 
E

n
d
 

B
io

d
eg

ra
d
ab

le
 

W
ei

g
h
t 

R
em

ai
n
in

g
 [

lb
] 

W
ei

g
h
t 

L
o
st

 [
lb

] 

O
ri

g
in

al
 W

ei
g
h
t 

o
f 

D
eg

ra
d
ab

le
 

C
o
n
st

it
u
en

ts
 [

lb
] 

%
 B

io
d
eg

ra
d
ed

 

R-1 0.30 0.20 29.37 72.04% 0.20 1.90 2.10 90% 

R-2 0.31 0.21 41.21 90.30% 0.21 1.89 2.10 90% 

R-3 0.29 0.20 38.60 80.52% 0.20 1.90 2.10 91% 

R-4 0.31 0.21 41.04 88.37% 0.21 1.89 2.10 90% 

R-5 0.31 0.21 40.56 83.83% 0.21 1.89 2.10 90% 

R-6 0.30 0.20 39.44 85.59% 0.20 1.90 2.10 90% 
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Table B.7.5 End of Bioreactor Decommissioning Records – Moderately Degradable 

Sample Jar 

No. 

P
an

 W
ei

g
h
t 

[g
] 

P
an

 +
 W

et
 

S
am

p
le

 

W
ei

g
h
t 

[g
] 

W
et

 S
am

p
le

 

W
ei

g
h
t 

[g
] 

P
an

 +
 D

ry
 

S
am

p
le

 

W
ei

g
h
t 

[g
] 

D
ry

 S
am

p
le

 

W
ei

g
h
t 

[g
] 

W
at

er
 [

g
] 

E
n
d
 M

o
is

tu
re

 

C
o
n
te

n
t 

[%
] 

F
in

al
 H

ei
g
h
t 

o
f 

S
am

p
le

 [
in

] 

M-1 102.52 555.47 452.95 411.97 309.45 143.5 

46.37

% 1.00 

M-2 102.55 535.52 432.97 401.69 299.14 

133.8

3 

44.74

% 0.90 

M-3 104.9 601.69 496.79 444.52 339.62 

157.1

7 

46.28

% 1.00 

M-4 99.86 543.93 444.07 401.31 301.45 

142.6

2 

47.31

% 0.90 

M-5 99.84 542.09 442.25 397.23 297.39 

144.8

6 

48.71

% 0.90 

M-6 102.75 589.29 486.54 435.22 332.47 

154.0

7 

46.34

% 1.00 

 

 

Table B.7.6 End of Bioreactor Decommissioning Records – Moderately Deg. (continued) 

Sample Jar 

No. 

T
o
ta

l 
E

n
d
 W

et
 

S
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 W
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g
h
t 
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ty
 

[%
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E

n
d
 

B
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d
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d
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W
ei

g
h
t 

R
em
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n
in

g
 [
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] 

W
ei

g
h
t 

L
o
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] 

O
ri

g
in

al
 W

ei
g
h
t 

o
f 

D
eg

ra
d
ab

le
 

C
o
n
st

it
u
en
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 [

lb
] 

%
 B

io
d
eg

ra
d
ed

 

M-1 1.00 0.68 39.69 

85.31

% 0.68 1.42 2.10 68% 

M-2 0.95 0.66 42.16 

90.61

% 0.66 1.44 2.10 69% 

M-3 1.10 0.75 43.53 

93.57

% 0.75 1.35 2.10 64% 

M-4 0.98 0.66 43.24 

95.11

% 0.66 1.44 2.10 68% 

M-5 0.97 0.66 43.06 

92.55

% 0.66 1.44 2.10 69% 

M-6 1.07 0.73 42.63 

91.64

% 0.73 1.37 2.10 65% 
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Table B.7.7 End of Bioreactor Decommissioning Records – Slowly Degradable 

Sample Jar 

No. 

P
an

 W
ei

g
h
t 

[g
] 

P
an

 +
 W

et
 

S
am

p
le

 

W
ei

g
h
t 

[g
] 

W
et

 S
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p
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W
ei

g
h
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] 
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 D
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W
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g
h
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[g
] 

D
ry
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p
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W
ei

g
h
t 

[g
] 

W
at
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 [

g
] 

E
n
d
 M

o
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tu
re

 

C
o
n
te

n
t 

[%
] 

F
in

al
 H

ei
g
h
t 

o
f 

S
am

p
le

 [
in

] 

S-1 100.75 

1997.4

8 1896.73 1374.41 1273.66 

623.0

7 

48.92

% 4.30 

S-2 103.45 

1994.6

9 1891.24 1363.94 1260.49 

630.7

5 

50.04

% 4.40 

S-3 104.82 14.34 1909.52 1401.7 1296.88 

612.6

4 

47.24

% 4.50 

S-4 104.32 

1964.7

1 1860.39 1371.27 1266.95 

593.4

4 

46.84

% 4.30 

S-5 101.25 

1998.4

8 1897.23 1368.02 1266.77 

630.4

6 

49.77

% 4.20 

S-6 103.42 

2012.4

9 1909.07 1385.45 1282.03 

627.0

4 

48.91

% 4.40 

 

 

 

Table B.7.8 End of Bioreactor Decommissioning Records – Slowly Deg. (continued) 

Sample Jar 

No. 

T
o
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g
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h
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o
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] 
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ei
g
h
t 

o
f 

D
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ra
d
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C
o
n
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it
u
en

ts
 [

lb
] 

%
 B

io
d
eg

ra
d
ed

 

S-1 4.18 2.81 38.65 98.02% 1.99 0.11 2.10 5% 

S-2 4.17 2.78 37.66 96.16% 1.97 0.13 2.10 6% 

S-3 4.21 2.86 37.18 97.58% 2.04 0.06 2.10 3% 

S-4 4.10 2.79 37.91 97.23% 1.98 0.12 2.10 6% 

S-5 4.18 2.79 39.58 98.39% 1.99 0.11 2.10 5% 

S-6 4.21 2.83 38.02 97.07% 2.01 0.09 2.10 4% 

 

 



 

 

APPENDIX C 

CONSOLIDATION TEST RESULTS 

 

Appendix C contains data and records collected throughout the course of the experiment. 

Samples were prepared for compression testing by mixing each waste to ensure uniform 

moisture content, then filling the sample within the consolidometer ring in lifts.  Lifts 

were placed in approximately 1/4 inch loose lifts (approximately one tablespoon per lift) 

and were tamp-compacted using a hard rubber stopper with a 2.45 inch diameter placed 

on the sample and struck seven times with a 3.5 lb cylindrical weight dropped from a 

height of approximately one inch.  This procedure was repeated until a final compacted 

height of one inch was obtained. Minor cosmetic trimming and patching was completed 

to create a uniform and flat sample surface for testing (Lifrieri 2010).   

After compaction, samples were subsequently placed in a fixed ring consolidation 

cell manufactured by Humboldt and were tested using table-top mounted dead-weight 

consolidation equipment. Samples were allowed to consolidate at various pressures for a 

minimum period of two months or until it was observed that sample reached the stage of 

biodegradation, characterized by an increase in the strain rate (Cβ). Dial gage reading data 

was recorded electronically at pre-determined time intervals using Humboldt HTMS 

logging software. Compression tests were performed in general accordance with ASTM 

D2435 – Standard Test Methods for One-Dimensional Consolidation Properties of Soils 

Using Incremental Loading (ASTM 2011). Samples were placed into the consolidometer 

and removed in accordance with the schedule shown in Table 4.5. 
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Load parameters for the samples to simulate self-weight and applied loads of 

landfills of variable heights were computed from resulting data. Compression parameters 

(C’c, Cα, and Cβ) were determined at the specific states of decomposition observed from 

testing. Records from initial and final compression tests are provided under Appendix C – 

Consolidation Test Results.  

 Twelve consolidation tests were completed during the course of the experiment.   

The author has provided start of biodegradation (C-1-1) test results as Table C.1 and end 

of experiment (C-FINAL-1) test results as Table C.2. 

 

Figure C.1.1  Start of Biodegradation Strain versus Pressure Plot 
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Table C.1.1 Start of Biodegradation Waste Sample – 0.137 tsf 

Index Time 
Displacement 

[in.] 

Settlement 

[in.] Axial Strain [%] 

0 00:00:00 0.0002 0.0000 0.0000 

1 00:00:01 0.0018 0.0016 0.1600 

2 00:00:02 0.0022 0.0020 0.2000 

3 00:00:03 0.0024 0.0022 0.2200 

4 00:00:04 0.0026 0.0024 0.2400 

5 00:00:05 0.0028 0.0026 0.2600 

6 00:00:06 0.0030 0.0028 0.2800 

7 00:00:12 0.0039 0.0037 0.3700 

8 00:00:15 0.0043 0.0041 0.4100 

9 00:00:30 0.0060 0.0058 0.5800 

10 00:01:00 0.0084 0.0082 0.8200 

11 00:02:00 0.0114 0.0112 1.1200 

12 00:05:01 0.0153 0.0151 1.5100 

13 00:10:01 0.0176 0.0174 1.7400 

14 00:20:02 0.0193 0.0191 1.9100 

15 00:40:04 0.0212 0.0210 2.1000 

16 01:00:05 0.0219 0.0217 2.1700 

17 02:00:11 0.0233 0.0231 2.3100 

18 04:00:21 0.0255 0.0253 2.5300 

19 08:00:43 0.0279 0.0277 2.7700 

20 12:01:05 0.0290 0.0288 2.8800 

21 16:01:26 0.0299 0.0297 2.9700 

22 20:01:48 0.0306 0.0304 3.0400 

23 20:25:14 0.0306 0.0304 3.0400 
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Table C.1.2 Start of Biodegradation Waste Sample – 0.275 tsf 

Index Time 
Displacement [in.] 

Settlement 

[in.] Axial Strain [%] 

0 00:00:00 0.0306 0.0304 3.0400 

1 00:00:01 0.0333 0.0331 3.3100 

2 00:00:02 0.0337 0.0335 3.3500 

3 00:00:03 0.0341 0.0339 3.3900 

4 00:00:04 0.0344 0.0342 3.4200 

5 00:00:05 0.0347 0.0345 3.4500 

6 00:00:06 0.0350 0.0348 3.4800 

7 00:00:12 0.0364 0.0362 3.6200 

8 00:00:15 0.0371 0.0369 3.6900 

9 00:00:30 0.0399 0.0397 3.9700 

10 00:01:00 0.0445 0.0443 4.4300 

11 00:02:00 0.0506 0.0504 5.0400 

12 00:05:00 0.0595 0.0593 5.9300 

13 00:10:00 0.0642 0.0640 6.4000 

14 00:20:01 0.0672 0.0670 6.7000 

15 00:40:03 0.0691 0.0689 6.8900 

16 01:00:05 0.0710 0.0708 7.0800 

17 02:00:10 0.0727 0.0725 7.2500 

18 04:00:21 0.0737 0.0735 7.3500 

19 08:00:42 0.0750 0.0748 7.4800 

20 12:01:05 0.0763 0.0761 7.6100 

21 16:01:27 0.0776 0.0774 7.7400 

22 20:01:48 0.0783 0.0781 7.8100 

23 24:00:56 0.0787 0.0785 7.8500 
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Table C.1.3 Start of Biodegradation Waste Sample – 0.550 tsf 

Index Time 
Displacement [in.] 

Settlement 

[in.] Axial Strain [%] 

0 00:00:00 0.0787 0.0785 7.8500 

1 00:00:01 0.0820 0.0818 8.1800 

2 00:00:02 0.0826 0.0824 8.2400 

3 00:00:03 0.0830 0.0828 8.2800 

4 00:00:04 0.0832 0.0830 8.3000 

5 00:00:05 0.0835 0.0833 8.3300 

6 00:00:06 0.0837 0.0835 8.3500 

7 00:00:12 0.0851 0.0849 8.4900 

8 00:00:15 0.0856 0.0854 8.5400 

9 00:00:30 0.0885 0.0883 8.8300 

10 00:01:00 0.0915 0.0913 9.1300 

11 00:02:00 0.0965 0.0963 9.6300 

12 00:05:00 0.1070 0.1068 10.6800 

13 00:10:01 0.1152 0.1150 11.5000 

14 00:20:02 0.1216 0.1214 12.1400 

15 00:40:04 0.1264 0.1262 12.6200 

16 01:00:05 0.1282 0.1280 12.8000 

17 02:00:11 0.1309 0.1307 13.0700 

18 04:00:22 0.1335 0.1333 13.3300 

19 08:00:43 0.1359 0.1357 13.5700 

20 12:01:05 0.1374 0.1372 13.7200 

21 16:01:27 0.1394 0.1392 13.9200 

22 20:01:49 0.1411 0.1409 14.0900 

23 24:02:11 0.1426 0.1424 14.2400 

24 24:40:56 0.1428 0.1426 14.2600 
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Table C.1.4 Start of Biodegradation Waste Sample – 1.100 tsf 

Index Time 
Displacement 

[in.] 

Settlement 

[in.] Axial Strain [%] 

0 00:00:00 0.1428 0.1426 14.2600 

1 00:00:01 0.1481 0.1479 14.7900 

2 00:00:02 0.1487 0.1485 14.8500 

3 00:00:03 0.1492 0.1490 14.9000 

4 00:00:04 0.1495 0.1493 14.9300 

5 00:00:05 0.1500 0.1498 14.9800 

6 00:00:06 0.1504 0.1502 15.0200 

7 00:00:12 0.1518 0.1516 15.1600 

8 00:00:15 0.1523 0.1521 15.2100 

9 00:00:30 0.1552 0.1550 15.5000 

10 00:01:00 0.1589 0.1587 15.8700 

11 00:02:00 0.1638 0.1636 16.3600 

12 00:05:00 0.1704 0.1702 17.0200 

13 00:10:01 0.1751 0.1749 17.4900 

14 00:20:01 0.1792 0.1790 17.9000 

15 00:40:03 0.1822 0.1820 18.2000 

16 01:00:05 0.1840 0.1838 18.3800 

17 02:00:11 0.1869 0.1867 18.6700 

18 04:00:22 0.1890 0.1888 18.8800 

19 08:00:44 0.1913 0.1911 19.1100 

20 12:01:05 0.1921 0.1919 19.1900 

21 16:01:26 0.1932 0.1930 19.3000 

22 20:01:48 0.1945 0.1943 19.4300 

23 24:02:10 0.1956 0.1954 19.5400 

24 28:02:32 0.1961 0.1959 19.5900 

25 32:02:54 0.1967 0.1965 19.6500 

26 36:03:16 0.1971 0.1969 19.6900 

27 39:48:01 0.1975 0.1973 19.7300 
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Table C.1.5 Start of Biodegradation Waste Sample – 2.200 tsf 

Index Time 
Displacement 

[in.] 

Settlement 

[in.] Axial Strain [%] 

0 00:00:00 0.1975 0.1973 19.7300 

1 00:00:01 0.2047 0.2045 20.4500 

2 00:00:02 0.2055 0.2053 20.5300 

3 00:00:03 0.2061 0.2059 20.5900 

4 00:00:04 0.2064 0.2062 20.6200 

5 00:00:05 0.2068 0.2066 20.6600 

6 00:00:06 0.2071 0.2069 20.6900 

7 00:00:12 0.2086 0.2084 20.8400 

8 00:00:15 0.2094 0.2092 20.9200 

9 00:00:30 0.2119 0.2117 21.1700 

10 00:01:00 0.2159 0.2157 21.5700 

11 00:02:00 0.2207 0.2205 22.0500 

12 00:05:00 0.2282 0.2280 22.8000 

13 00:10:01 0.2341 0.2339 23.3900 

14 00:20:02 0.2388 0.2386 23.8600 

15 00:40:04 0.2431 0.2429 24.2900 

16 01:00:05 0.2453 0.2451 24.5100 

17 02:00:11 0.2492 0.2490 24.9000 

18 04:00:22 0.2534 0.2532 25.3200 

19 08:00:44 0.2575 0.2573 25.7300 

20 12:01:06 0.2589 0.2587 25.8700 

21 16:01:28 0.2596 0.2594 25.9400 

22 20:01:49 0.2602 0.2600 26.0000 

23 24:02:11 0.2609 0.2607 26.0700 

24 28:02:33 0.2619 0.2617 26.1700 

25 32:02:55 0.2630 0.2628 26.2800 

26 36:03:17 0.2638 0.2636 26.3600 

27 40:03:39 0.2641 0.2639 26.3900 

28 43:17:35 0.2643 0.2641 26.4100 
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Table C.1.6 Start of Biodegradation Waste Sample – 4.400 tsf 

Index Time 
Displacement 

[in.] 

Settlement 

[in.] Axial Strain [%] 

0 00:00:00 0.2643 0.2641 26.4100 

1 00:00:01 0.2735 0.2733 27.3300 

2 00:00:02 0.2746 0.2744 27.4400 

3 00:00:03 0.2752 0.2750 27.5000 

4 00:00:04 0.2757 0.2755 27.5500 

5 00:00:05 0.2761 0.2759 27.5900 

6 00:00:06 0.2765 0.2763 27.6300 

7 00:00:12 0.2778 0.2776 27.7600 

8 00:00:15 0.2783 0.2781 27.8100 

9 00:00:30 0.2803 0.2801 28.0100 

10 00:01:00 0.2831 0.2829 28.2900 

11 00:02:01 0.2865 0.2863 28.6300 

12 00:05:01 0.2917 0.2915 29.1500 

13 00:10:01 0.2960 0.2958 29.5800 

14 00:20:02 0.2998 0.2996 29.9600 

15 00:40:04 0.3033 0.3031 30.3100 

16 01:00:06 0.3055 0.3053 30.5300 

17 02:00:11 0.3090 0.3088 30.8800 

18 04:00:23 0.3128 0.3126 31.2600 

19 08:00:45 0.3183 0.3181 31.8100 

20 12:01:06 0.3211 0.3209 32.0900 

21 16:01:27 0.3225 0.3223 32.2300 

22 20:01:49 0.3231 0.3229 32.2900 

23 24:02:11 0.3236 0.3234 32.3400 

24 28:02:33 0.3241 0.3239 32.3900 

25 32:02:55 0.3251 0.3249 32.4900 

26 36:03:17 0.3260 0.3258 32.5800 

27 40:03:39 0.3265 0.3263 32.6300 

28 44:04:01 0.3268 0.3266 32.6600 

29 48:04:21 0.3270 0.3268 32.6800 

30 52:04:43 0.3271 0.3269 32.6900 

31 56:05:05 0.3274 0.3272 32.7200 

32 60:05:27 0.3278 0.3276 32.7600 

33 64:05:49 0.3279 0.3277 32.7700 

34 68:06:11 0.3281 0.3279 32.7900 

35 72:06:33 0.3283 0.3281 32.8100 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

36 76:06:55 0.3285 0.3283 32.8300 

37 80:07:17 0.3287 0.3285 32.8500 

38 84:07:38 0.3290 0.3288 32.8800 

39 88:08:00 0.3291 0.3289 32.8900 

40 92:08:23 0.3292 0.3290 32.9000 

41 96:08:44 0.3294 0.3292 32.9200 

42 100:09:0 0.3295 0.3293 32.9300 

43 104:09:2 0.3298 0.3296 32.9600 

44 108:09:2 0.3301 0.3299 32.9900 

45 112:09:2 0.3303 0.3301 33.0100 

46 116:09:2 0.3304 0.3302 33.0200 

47 120:09:2 0.3305 0.3303 33.0300 

48 124:09:2 0.3307 0.3305 33.0500 

49 128:09:2 0.3310 0.3308 33.0800 

50 132:09:2 0.3312 0.3310 33.1000 

51 136:09:2 0.3313 0.3311 33.1100 

52 140:09:2 0.3314 0.3312 33.1200 

53 144:09:2 0.3315 0.3313 33.1300 

54 148:09:2 0.3316 0.3314 33.1400 

55 152:09:2 0.3317 0.3315 33.1500 

56 156:09:2 0.3318 0.3316 33.1600 

57 160:09:2 0.3319 0.3317 33.1700 

58 164:09:2 0.3319 0.3317 33.1700 

59 168:09:2 0.3320 0.3318 33.1800 

60 172:09:2 0.3322 0.3320 33.2000 

61 176:09:2 0.3323 0.3321 33.2100 

62 180:09:2 0.3325 0.3323 33.2300 

63 184:09:2 0.3326 0.3324 33.2400 

64 188:09:2 0.3327 0.3325 33.2500 

65 192:09:2 0.3327 0.3325 33.2500 

66 196:09:2 0.3328 0.3326 33.2600 

67 200:09:2 0.3328 0.3326 33.2600 

68 204:09:2 0.3329 0.3327 33.2700 

69 208:09:2 0.3330 0.3328 33.2800 

70 212:09:2 0.3330 0.3328 33.2800 

71 216:09:2 0.3331 0.3329 33.2900 

72 220:09:2 0.3331 0.3329 33.2900 

73 224:09:2 0.3332 0.3330 33.3000 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

74 228:09:2 0.3333 0.3331 33.3100 

75 232:09:2 0.3334 0.3332 33.3200 

76 236:09:2 0.3334 0.3332 33.3200 

77 240:09:2 0.3334 0.3332 33.3200 

78 244:09:2 0.3335 0.3333 33.3300 

79 248:09:2 0.3336 0.3334 33.3400 

80 252:09:2 0.3336 0.3334 33.3400 

81 256:09:2 0.3337 0.3335 33.3500 

82 260:09:2 0.3337 0.3335 33.3500 

83 264:09:2 0.3338 0.3336 33.3600 

84 268:09:2 0.3339 0.3337 33.3700 

85 272:09:2 0.3339 0.3337 33.3700 

86 276:09:2 0.3339 0.3337 33.3700 

87 280:09:2 0.3339 0.3337 33.3700 

88 284:09:2 0.3340 0.3338 33.3800 

89 288:09:2 0.3341 0.3339 33.3900 

90 292:09:2 0.3342 0.3340 33.4000 

91 296:09:2 0.3343 0.3341 33.4100 

92 300:09:2 0.3344 0.3342 33.4200 

93 304:09:2 0.3345 0.3343 33.4300 

94 308:09:2 0.3345 0.3343 33.4300 

95 312:09:2 0.3345 0.3343 33.4300 

96 316:09:2 0.3347 0.3345 33.4500 

97 320:09:2 0.3348 0.3346 33.4600 

98 324:09:2 0.3350 0.3348 33.4800 

99 328:09:2 0.3351 0.3349 33.4900 

100 332:09:2 0.3351 0.3349 33.4900 

101 336:09:2 0.3352 0.3350 33.5000 

102 340:09:2 0.3353 0.3351 33.5100 

103 344:09:2 0.3355 0.3353 33.5300 

104 348:09:2 0.3358 0.3356 33.5600 

105 352:09:2 0.3359 0.3357 33.5700 

106 356:09:0 0.3360 0.3358 33.5800 

107 360:09:1 0.3361 0.3359 33.5900 

108 364:09:2 0.3363 0.3361 33.6100 

109 368:09:2 0.3365 0.3363 33.6300 

110 372:09:2 0.3367 0.3365 33.6500 

111 376:09:2 0.3368 0.3366 33.6600 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

112 380:09:2 0.3368 0.3366 33.6600 

113 384:09:2 0.3369 0.3367 33.6700 

114 388:09:2 0.3370 0.3368 33.6800 

115 392:09:2 0.3371 0.3369 33.6900 

116 396:09:2 0.3372 0.3370 33.7000 

117 400:09:2 0.3373 0.3371 33.7100 

118 404:09:2 0.3373 0.3371 33.7100 

119 408:09:2 0.3374 0.3372 33.7200 

120 412:09:2 0.3375 0.3373 33.7300 

121 416:09:2 0.3375 0.3373 33.7300 

122 420:09:2 0.3377 0.3375 33.7500 

123 424:09:2 0.3377 0.3375 33.7500 

124 428:09:2 0.3378 0.3376 33.7600 

125 432:09:2 0.3378 0.3376 33.7600 

126 436:09:2 0.3379 0.3377 33.7700 

127 440:09:2 0.3381 0.3379 33.7900 

128 444:09:2 0.3382 0.3380 33.8000 

129 448:09:2 0.3383 0.3381 33.8100 

130 452:09:2 0.3383 0.3381 33.8100 

131 456:09:2 0.3383 0.3381 33.8100 

132 460:09:2 0.3384 0.3382 33.8200 

133 464:09:2 0.3385 0.3383 33.8300 

134 468:09:2 0.3386 0.3384 33.8400 

135 472:09:2 0.3387 0.3385 33.8500 

136 476:09:2 0.3387 0.3385 33.8500 

137 480:09:2 0.3388 0.3386 33.8600 

138 484:09:2 0.3389 0.3387 33.8700 

139 488:09:2 0.3391 0.3389 33.8900 

140 492:09:2 0.3392 0.3390 33.9000 

141 496:09:2 0.3392 0.3390 33.9000 

142 500:09:2 0.3393 0.3391 33.9100 

143 504:09:2 0.3393 0.3391 33.9100 

144 508:09:2 0.3394 0.3392 33.9200 

145 512:09:2 0.3395 0.3393 33.9300 

146 516:09:2 0.3397 0.3395 33.9500 

147 520:09:2 0.3398 0.3396 33.9600 

148 524:09:2 0.3399 0.3397 33.9700 

149 528:09:2 0.3399 0.3397 33.9700 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

150 532:09:2 0.3400 0.3398 33.9800 

151 536:09:2 0.3402 0.3400 34.0000 

152 540:09:2 0.3403 0.3401 34.0100 

153 544:09:2 0.3404 0.3402 34.0200 

154 548:09:2 0.3405 0.3403 34.0300 

155 552:09:2 0.3406 0.3404 34.0400 

156 556:09:2 0.3407 0.3405 34.0500 

157 560:09:2 0.3408 0.3406 34.0600 

158 564:09:2 0.3410 0.3408 34.0800 

159 568:09:2 0.3410 0.3408 34.0800 

160 572:09:2 0.3411 0.3409 34.0900 

161 576:09:2 0.3411 0.3409 34.0900 

162 580:09:2 0.3412 0.3410 34.1000 

163 584:09:2 0.3414 0.3412 34.1200 

164 588:09:2 0.3415 0.3413 34.1300 

165 592:09:2 0.3416 0.3414 34.1400 

166 596:09:2 0.3416 0.3414 34.1400 

167 600:09:02 0.3417 0.3415 34.1500 

168 604:09:02 0.3418 0.3416 34.1600 

169 608:09:02 0.3421 0.3419 34.1900 

170 612:09:02 0.3423 0.3421 34.2100 

171 616:09:02 0.3424 0.3422 34.2200 

172 620:09:02 0.3424 0.3422 34.2200 

173 624:09:02 0.3425 0.3423 34.2300 

174 628:09:02 0.3427 0.3425 34.2500 

175 632:09:02 0.3429 0.3427 34.2700 

176 636:09:02 0.3430 0.3428 34.2800 

177 640:09:02 0.3431 0.3429 34.2900 

178 644:09:02 0.3431 0.3429 34.2900 

179 648:09:02 0.3431 0.3429 34.2900 

180 652:09:02 0.3432 0.3430 34.3000 

181 656:09:02 0.3434 0.3432 34.3200 

182 660:09:02 0.3435 0.3433 34.3300 

183 664:09:02 0.3436 0.3434 34.3400 

184 668:09:02 0.3437 0.3435 34.3500 

185 672:09:02 0.3437 0.3435 34.3500 

186 676:09:02 0.3438 0.3436 34.3600 

187 680:09:02 0.3439 0.3437 34.3700 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

188 684:09:02 0.3441 0.3439 34.3900 

189 688:09:02 0.3442 0.3440 34.4000 

190 692:09:02 0.3443 0.3441 34.4100 

191 696:09:02 0.3443 0.3441 34.4100 

192 700:09:02 0.3445 0.3443 34.4300 

193 704:09:02 0.3446 0.3444 34.4400 

194 708:09:02 0.3448 0.3446 34.4600 

195 712:09:02 0.3448 0.3446 34.4600 

196 716:09:02 0.3448 0.3446 34.4600 

197 720:09:02 0.3449 0.3447 34.4700 

198 724:09:02 0.3450 0.3448 34.4800 

199 728:09:02 0.3452 0.3450 34.5000 

200 732:09:02 0.3453 0.3451 34.5100 

201 736:09:02 0.3454 0.3452 34.5200 

202 740:09:02 0.3454 0.3452 34.5200 

203 744:09:02 0.3455 0.3453 34.5300 

204 748:09:02 0.3455 0.3453 34.5300 

205 752:09:02 0.3456 0.3454 34.5400 

206 756:09:02 0.3456 0.3454 34.5400 

207 760:09:02 0.3457 0.3455 34.5500 

208 764:09:02 0.3457 0.3455 34.5500 

209 768:09:02 0.3458 0.3456 34.5600 

210 772:09:02 0.3458 0.3456 34.5600 

211 776:09:02 0.3460 0.3458 34.5800 

212 780:09:02 0.3461 0.3459 34.5900 

213 784:09:02 0.3461 0.3459 34.5900 

214 788:09:02 0.3461 0.3459 34.5900 

215 792:09:02 0.3462 0.3460 34.6000 

216 796:09:02 0.3462 0.3460 34.6000 

217 800:09:02 0.3463 0.3461 34.6100 

218 804:09:02 0.3464 0.3462 34.6200 

219 808:09:02 0.3464 0.3462 34.6200 

220 812:09:02 0.3465 0.3463 34.6300 

221 816:09:02 0.3465 0.3463 34.6300 

222 820:09:02 0.3466 0.3464 34.6400 

223 824:09:02 0.3467 0.3465 34.6500 

224 828:09:02 0.3468 0.3466 34.6600 

225 832:09:02 0.3469 0.3467 34.6700 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

226 836:09:02 0.3469 0.3467 34.6700 

227 840:09:02 0.3470 0.3468 34.6800 

228 844:09:02 0.3470 0.3468 34.6800 

229 848:09:02 0.3471 0.3469 34.6900 

230 852:09:02 0.3473 0.3471 34.7100 

231 856:09:02 0.3473 0.3471 34.7100 

232 860:09:02 0.3474 0.3472 34.7200 

233 864:09:02 0.3474 0.3472 34.7200 

234 868:09:02 0.3475 0.3473 34.7300 

235 872:09:02 0.3476 0.3474 34.7400 

236 876:09:02 0.3478 0.3476 34.7600 

237 880:09:02 0.3478 0.3476 34.7600 

238 884:09:02 0.3479 0.3477 34.7700 

239 888:09:02 0.3479 0.3477 34.7700 

240 892:09:02 0.3480 0.3478 34.7800 

241 896:09:02 0.3480 0.3478 34.7800 

242 900:09:02 0.3482 0.3480 34.8000 

243 904:09:02 0.3482 0.3480 34.8000 

244 908:09:02 0.3483 0.3481 34.8100 

245 912:09:02 0.3483 0.3481 34.8100 

246 916:09:02 0.3484 0.3482 34.8200 

247 920:09:02 0.3485 0.3483 34.8300 

248 924:09:02 0.3486 0.3484 34.8400 

249 928:09:02 0.3487 0.3485 34.8500 

250 932:09:02 0.3487 0.3485 34.8500 

251 936:09:02 0.3487 0.3485 34.8500 

252 940:09:02 0.3488 0.3486 34.8600 

253 944:09:02 0.3490 0.3488 34.8800 

254 948:09:02 0.3491 0.3489 34.8900 

255 952:09:02 0.3492 0.3490 34.9000 

256 956:09:02 0.3492 0.3490 34.9000 

257 960:09:02 0.3493 0.3491 34.9100 

258 964:09:02 0.3494 0.3492 34.9200 

259 968:09:02 0.3495 0.3493 34.9300 

260 972:09:02 0.3496 0.3494 34.9400 

261 976:09:02 0.3496 0.3494 34.9400 

262 980:09:02 0.3497 0.3495 34.9500 

263 984:09:02 0.3497 0.3495 34.9500 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

264 988:09:02 0.3498 0.3496 34.9600 

265 992:09:02 0.3499 0.3497 34.9700 

266 996:09:02 0.3499 0.3497 34.9700 

267 1000:09:02 0.3499 0.3497 34.9700 

268 1004:09:02 0.3500 0.3498 34.9800 

269 1008:09:02 0.3500 0.3498 34.9800 

270 1012:09:02 0.3501 0.3499 34.9900 

271 1016:09:02 0.3502 0.3500 35.0000 

272 1020:09:02 0.3502 0.3500 35.0000 

273 1024:09:02 0.3502 0.3500 35.0000 

274 1028:09:02 0.3503 0.3501 35.0100 

275 1032:09:02 0.3503 0.3501 35.0100 

276 1036:09:02 0.3503 0.3501 35.0100 

277 1040:09:02 0.3504 0.3502 35.0200 

278 1044:09:02 0.3505 0.3503 35.0300 

279 1048:09:02 0.3505 0.3503 35.0300 

280 1052:09:02 0.3506 0.3504 35.0400 

281 1056:09:02 0.3506 0.3504 35.0400 

282 1060:09:02 0.3506 0.3504 35.0400 

283 1064:09:02 0.3507 0.3505 35.0500 

284 1068:09:02 0.3508 0.3506 35.0600 

285 1072:09:02 0.3509 0.3507 35.0700 

286 1076:09:02 0.3509 0.3507 35.0700 

287 1080:09:02 0.3509 0.3507 35.0700 

288 1084:09:02 0.3510 0.3508 35.0800 

289 1088:09:02 0.3510 0.3508 35.0800 

290 1092:09:02 0.3511 0.3509 35.0900 

291 1096:09:02 0.3511 0.3509 35.0900 

292 1100:09:02 0.3511 0.3509 35.0900 

293 1104:09:02 0.3511 0.3509 35.0900 

294 1108:09:02 0.3512 0.3510 35.1000 

295 1112:09:02 0.3512 0.3510 35.1000 

296 1116:09:02 0.3513 0.3511 35.1100 

297 1120:09:02 0.3513 0.3511 35.1100 

298 1124:09:02 0.3513 0.3511 35.1100 

299 1128:09:02 0.3514 0.3512 35.1200 

300 1132:09:02 0.3514 0.3512 35.1200 

301 1136:09:02 0.3515 0.3513 35.1300 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

302 1140:09:02 0.3516 0.3514 35.1400 

303 1144:09:02 0.3516 0.3514 35.1400 

304 1148:09:02 0.3516 0.3514 35.1400 

305 1152:09:02 0.3516 0.3514 35.1400 

306 1156:09:02 0.3517 0.3515 35.1500 

307 1160:09:02 0.3519 0.3517 35.1700 

308 1164:09:02 0.3520 0.3518 35.1800 

309 1168:09:02 0.3520 0.3518 35.1800 

310 1172:09:02 0.3520 0.3518 35.1800 

311 1176:09:02 0.3520 0.3518 35.1800 

312 1180:09:02 0.3521 0.3519 35.1900 

313 1184:09:02 0.3522 0.3520 35.2000 

314 1188:09:02 0.3523 0.3521 35.2100 

315 1192:09:02 0.3524 0.3522 35.2200 

316 1196:09:02 0.3525 0.3523 35.2300 

317 1200:09:02 0.3526 0.3524 35.2400 

318 1204:09:02 0.3527 0.3525 35.2500 

319 1208:09:02 0.3528 0.3526 35.2600 

320 1212:09:02 0.3530 0.3528 35.2800 

321 1216:09:02 0.3531 0.3529 35.2900 

322 1220:09:02 0.3532 0.3530 35.3000 

323 1224:09:02 0.3533 0.3531 35.3100 

324 1228:09:02 0.3534 0.3532 35.3200 

325 1232:09:02 0.3535 0.3533 35.3300 

326 1236:09:02 0.3536 0.3534 35.3400 

327 1240:09:02 0.3537 0.3535 35.3500 

328 1244:09:02 0.3538 0.3536 35.3600 

329 1248:09:02 0.3509 0.3537 35.3700 

330 1252:09:02 0.3509 0.3538 35.3800 

331 1256:09:02 0.3510 0.3539 35.3900 

332 1260:09:02 0.3511 0.3540 35.4000 

333 1264:09:02 0.3512 0.3541 35.4100 

334 1268:09:02 0.3513 0.3541 35.4100 

335 1272:09:02 0.3514 0.3542 35.4200 

336 1276:09:02 0.3515 0.3543 35.4300 

337 1280:09:02 0.3516 0.3544 35.4400 

338 1284:09:02 0.3516 0.3545 35.4500 

339 1288:09:02 0.3517 0.3546 35.4600 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

340 1292:09:02 0.3518 0.3547 35.4700 

341 1296:09:02 0.3519 0.3548 35.4800 

342 1300:09:02 0.3520 0.3549 35.4900 

343 1304:09:02 0.3521 0.3549 35.4900 

344 1308:09:02 0.3522 0.3550 35.5000 

345 1312:09:02 0.3523 0.3551 35.5100 

346 1316:09:02 0.3524 0.3552 35.5200 

347 1320:09:02 0.3524 0.3553 35.5300 

348 1324:09:02 0.3525 0.3554 35.5400 

349 1328:09:02 0.3526 0.3555 35.5500 

350 1332:09:02 0.3527 0.3556 35.5600 

351 1336:09:02 0.3528 0.3556 35.5600 

352 1340:09:02 0.3529 0.3557 35.5700 

353 1344:09:02 0.3530 0.3558 35.5800 

354 1348:09:02 0.3531 0.3559 35.5900 

355 1352:09:02 0.3532 0.3560 35.6000 

356 1356:09:02 0.3532 0.3561 35.6100 

357 1360:09:02 0.3533 0.3562 35.6200 

358 1364:09:02 0.3534 0.3563 35.6300 

359 1368:09:02 0.3535 0.3564 35.6400 

360 1372:09:02 0.3536 0.3564 35.6400 

361 1376:09:02 0.3537 0.3565 35.6500 

362 1380:09:02 0.3538 0.3566 35.6600 

363 1384:09:02 0.3539 0.3567 35.6700 

364 1388:09:02 0.3540 0.3568 35.6800 

365 1392:09:02 0.3540 0.3569 35.6900 

366 1396:09:02 0.3541 0.3570 35.7000 

367 1400:09:02 0.3542 0.3571 35.7100 

368 1404:09:02 0.3543 0.3572 35.7200 

369 1408:09:02 0.3544 0.3573 35.7300 

370 1412:09:02 0.3545 0.3575 35.7500 

371 1416:09:02 0.3546 0.3576 35.7600 

372 1420:09:02 0.3547 0.3577 35.7700 

373 1424:09:02 0.3549 0.3578 35.7800 

374 1428:09:02 0.3550 0.3579 35.7900 

375 1432:09:02 0.3551 0.3580 35.8000 

376 1436:09:02 0.3552 0.3581 35.8100 

377 1440:09:02 0.3553 0.3583 35.8300 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

378 1444:09:02 0.3554 0.3584 35.8400 

379 1448:09:02 0.3555 0.3585 35.8500 

380 1452:09:02 0.3557 0.3586 35.8600 

381 1456:09:02 0.3558 0.3587 35.8700 

382 1460:09:02 0.3559 0.3588 35.8800 

383 1464:09:02 0.3560 0.3589 35.8900 

384 1468:09:02 0.3561 0.3591 35.9100 

385 1472:09:02 0.3562 0.3592 35.9200 

386 1476:09:02 0.3563 0.3593 35.9300 

387 1480:09:02 0.3565 0.3594 35.9400 

388 1484:09:02 0.3566 0.3595 35.9500 

389 1488:09:02 0.3567 0.3596 35.9600 

390 1492:09:02 0.3568 0.3597 35.9700 

391 1496:09:02 0.3569 0.3598 35.9800 

392 1500:09:02 0.3570 0.3600 36.0000 

393 1504:09:02 0.3571 0.3601 36.0100 

394 1508:09:02 0.3573 0.3602 36.0200 

395 1512:09:02 0.3574 0.3603 36.0300 

396 1516:09:02 0.3575 0.3604 36.0400 

397 1520:09:02 0.3576 0.3605 36.0500 

398 1524:09:02 0.3577 0.3606 36.0600 

399 1528:09:02 0.3578 0.3608 36.0800 

400 1532:09:02 0.3579 0.3609 36.0900 

401 1536:09:02 0.3581 0.3610 36.1000 

402 1540:09:02 0.3582 0.3611 36.1100 

403 1544:09:02 0.3584 0.3613 36.1300 

404 1548:09:02 0.3585 0.3614 36.1400 

405 1552:09:02 0.3587 0.3616 36.1600 

406 1556:09:02 0.3588 0.3618 36.1800 

407 1560:09:02 0.3590 0.3619 36.1900 

408 1564:09:02 0.3591 0.3621 36.2100 

409 1568:09:02 0.3593 0.3622 36.2200 

410 1572:09:02 0.3594 0.3624 36.2400 

411 1576:09:02 0.3596 0.3625 36.2500 

412 1580:09:02 0.3597 0.3627 36.2700 

413 1584:09:02 0.3599 0.3628 36.2800 

414 1588:09:02 0.3600 0.3630 36.3000 

415 1592:09:02 0.3602 0.3631 36.3100 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

416 1596:09:02 0.3603 0.3633 36.3300 

417 1600:09:02 0.3605 0.3634 36.3400 

418 1604:09:02 0.3606 0.3636 36.3600 

419 1608:09:02 0.3608 0.3637 36.3700 

420 1612:09:02 0.3609 0.3639 36.3900 

421 1616:09:02 0.3611 0.3640 36.4000 

422 1620:09:02 0.3613 0.3642 36.4200 

423 1624:09:02 0.3614 0.3643 36.4300 

424 1628:09:02 0.3616 0.3645 36.4500 

425 1632:09:02 0.3617 0.3646 36.4600 

426 1636:09:02 0.3619 0.3648 36.4800 

427 1640:09:02 0.3620 0.3650 36.5000 

428 1644:09:02 0.3622 0.3651 36.5100 

429 1648:09:02 0.3623 0.3653 36.5300 

430 1652:09:02 0.3625 0.3654 36.5400 

431 1656:09:02 0.3626 0.3656 36.5600 

432 1660:09:02 0.3628 0.3657 36.5700 

433 1664:09:02 0.3629 0.3659 36.5900 

434 1668:09:02 0.3631 0.3660 36.6000 

435 1672:09:02 0.3632 0.3662 36.6200 

436 1676:09:02 0.3634 0.3663 36.6300 

437 1680:09:02 0.3635 0.3665 36.6500 

438 1684:09:02 0.3637 0.3666 36.6600 

439 1688:09:02 0.3638 0.3668 36.6800 

440 1692:09:02 0.3640 0.3669 36.6900 

441 1696:09:02 0.3641 0.3671 36.7100 

442 1700:09:02 0.3643 0.3672 36.7200 

443 1704:09:02 0.3645 0.3674 36.7400 

444 1708:09:02 0.3646 0.3676 36.7600 

445 1712:09:02 0.3648 0.3678 36.7800 

446 1716:09:02 0.3650 0.3679 36.7900 

447 1720:09:02 0.3652 0.3681 36.8100 

448 1724:09:02 0.3654 0.3683 36.8300 

449 1728:09:02 0.3655 0.3685 36.8500 

450 1732:09:02 0.3657 0.3687 36.8700 

451 1736:09:02 0.3659 0.3688 36.8800 

452 1740:09:02 0.3661 0.3690 36.9000 

453 1744:09:02 0.3663 0.3692 36.9200 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

454 1748:09:02 0.3664 0.3694 36.9400 

455 1752:09:02 0.3666 0.3696 36.9600 

456 1756:09:02 0.3668 0.3697 36.9700 

457 1760:09:02 0.3670 0.3699 36.9900 

458 1764:09:02 0.3672 0.3701 37.0100 

459 1768:09:02 0.3674 0.3703 37.0300 

460 1772:09:02 0.3675 0.3705 37.0500 

461 1776:09:02 0.3677 0.3707 37.0700 

462 1780:09:02 0.3679 0.3708 37.0800 

463 1784:09:02 0.3681 0.3710 37.1000 

464 1788:09:02 0.3683 0.3712 37.1200 

465 1792:09:02 0.3684 0.3714 37.1400 

466 1796:09:02 0.3686 0.3716 37.1600 

467 1800:09:02 0.3688 0.3717 37.1700 

468 1804:09:02 0.3690 0.3719 37.1900 

469 1808:09:02 0.3692 0.3721 37.2100 

470 1812:09:02 0.3693 0.3723 37.2300 

471 1816:09:02 0.3695 0.3725 37.2500 

472 1820:09:02 0.3697 0.3726 37.2600 

473 1824:09:02 0.3699 0.3728 37.2800 

474 1828:09:02 0.3701 0.3730 37.3000 

475 1832:09:02 0.3703 0.3732 37.3200 

476 1836:09:02 0.3704 0.3734 37.3400 

477 1840:09:02 0.3706 0.3736 37.3600 

478 1844:09:02 0.3708 0.3737 37.3700 

479 1848:09:02 0.3710 0.3739 37.3900 

480 1852:09:02 0.3712 0.3741 37.4100 

481 1856:09:02 0.3713 0.3743 37.4300 

482 1860:09:02 0.3715 0.3745 37.4500 

483 1864:09:02 0.3717 0.3746 37.4600 

484 1868:09:02 0.3719 0.3748 37.4800 

485 1872:09:02 0.3721 0.3750 37.5000 

486 1876:09:02 0.3723 0.3752 37.5200 

487 1880:09:02 0.3724 0.3754 37.5400 

488 1884:09:02 0.3726 0.3755 37.5500 

489 1888:09:02 0.3728 0.3757 37.5700 

490 1892:09:02 0.3730 0.3759 37.5900 

491 1896:09:02 0.3731 0.3761 37.6100 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

492 1900:09:02 0.3733 0.3763 37.6300 

493 1904:09:02 0.3735 0.3764 37.6400 

494 1908:09:02 0.3737 0.3766 37.6600 

495 1912:09:02 0.3739 0.3768 37.6800 

496 1916:09:02 0.3740 0.3770 37.7000 

497 1920:09:02 0.3742 0.3771 37.7100 

498 1924:09:02 0.3744 0.3773 37.7300 

499 1928:09:02 0.3746 0.3775 37.7500 

500 1932:09:02 0.3747 0.3777 37.7700 

501 1936:09:02 0.3749 0.3779 37.7900 

502 1940:09:02 0.3751 0.3780 37.8000 

503 1944:09:02 0.3753 0.3782 37.8200 

504 1948:09:02 0.3755 0.3784 37.8400 

505 1952:09:02 0.3756 0.3786 37.8600 

506 1956:09:02 0.3758 0.3787 37.8700 

507 1960:09:02 0.3760 0.3789 37.8900 

508 1964:09:02 0.3762 0.3791 37.9100 

509 1968:09:02 0.3763 0.3793 37.9300 

510 1972:09:02 0.3765 0.3795 37.9500 

511 1976:09:02 0.3767 0.3796 37.9600 

512 1980:09:02 0.3769 0.3798 37.9800 

513 1984:09:02 0.3771 0.3800 38.0000 

514 1988:09:02 0.3772 0.3802 38.0200 

515 1992:09:02 0.3774 0.3804 38.0400 

516 1996:09:02 0.3776 0.3805 38.0500 

517 2000:09:02 0.3778 0.3807 38.0700 

518 2004:09:02 0.3779 0.3809 38.0900 

519 2008:09:02 0.3781 0.3811 38.1100 

520 2012:09:02 0.3783 0.3812 38.1200 

521 2016:09:02 0.3785 0.3814 38.1400 

522 2020:09:02 0.3787 0.3816 38.1600 

523 2024:09:02 0.3788 0.3818 38.1800 

524 2028:09:02 0.3790 0.3820 38.2000 

525 2032:09:02 0.3792 0.3821 38.2100 

526 2036:09:02 0.3794 0.3823 38.2300 

527 2040:09:02 0.3796 0.3825 38.2500 

528 2044:09:02 0.3797 0.3826 38.2600 

529 2048:09:02 0.3798 0.3828 38.2800 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

530 2052:09:02 0.3800 0.3829 38.2900 

531 2056:09:02 0.3801 0.3831 38.3100 

532 2060:09:03 0.3803 0.3832 38.3200 

533 2064:09:02 0.3804 0.3833 38.3300 

534 2068:09:02 0.3806 0.3835 38.3500 

535 2072:09:02 0.3807 0.3836 38.3600 

536 2076:09:02 0.3808 0.3838 38.3800 

537 2080:09:02 0.3810 0.3839 38.3900 

538 2084:09:02 0.3811 0.3841 38.4100 

539 2088:09:02 0.3813 0.3842 38.4200 

540 2092:09:02 0.3814 0.3843 38.4300 

541 2096:09:02 0.3816 0.3845 38.4500 

542 2100:09:02 0.3817 0.3846 38.4600 

543 2104:09:02 0.3818 0.3848 38.4800 

544 2108:09:02 0.3820 0.3849 38.4900 

545 2112:09:02 0.3821 0.3851 38.5100 

546 2116:09:02 0.3823 0.3852 38.5200 

547 2120:09:02 0.3824 0.3853 38.5300 

548 2124:09:02 0.3826 0.3855 38.5500 

549 2128:09:02 0.3827 0.3856 38.5600 

550 2132:09:02 0.3828 0.3858 38.5800 

551 2136:09:02 0.3830 0.3859 38.5900 

552 2140:09:02 0.3831 0.3861 38.6100 

553 2144:09:03 0.3833 0.3862 38.6200 

554 2148:09:03 0.3834 0.3863 38.6300 

555 2152:09:02 0.3836 0.3865 38.6500 

556 2156:09:03 0.3837 0.3866 38.6600 

557 2160:09:03 0.3838 0.3868 38.6800 

558 2164:09:02 0.3840 0.3869 38.6900 

559 2168:09:03 0.3841 0.3871 38.7100 

560 2172:09:03 0.3843 0.3872 38.7200 

561 2176:09:02 0.3844 0.3873 38.7300 

562 2180:09:03 0.3846 0.3875 38.7500 

563 2184:09:03 0.3847 0.3876 38.7600 

564 2188:09:02 0.3848 0.3878 38.7800 

565 2192:09:03 0.3850 0.3879 38.7900 

566 2196:09:03 0.3851 0.3881 38.8100 

567 2200:09:02 0.3853 0.3882 38.8200 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

568 2204:09:03 0.3854 0.3883 38.8300 

569 2208:09:03 0.3856 0.3885 38.8500 

570 2212:09:02 0.3856 0.3886 38.8600 

571 2216:09:03 0.3857 0.3887 38.8700 

572 2220:09:03 0.3858 0.3888 38.8800 

573 2224:09:02 0.3859 0.3888 38.8800 

574 2228:09:03 0.3860 0.3889 38.8900 

575 2232:09:03 0.3861 0.3890 38.9000 

576 2236:09:02 0.3862 0.3891 38.9100 

577 2240:09:03 0.3863 0.3892 38.9200 

578 2244:09:03 0.3863 0.3893 38.9300 

579 2248:09:02 0.3864 0.3894 38.9400 

580 2252:09:03 0.3865 0.3895 38.9500 

581 2256:09:03 0.3866 0.3895 38.9500 

582 2260:09:02 0.3867 0.3896 38.9600 

583 2264:09:03 0.3868 0.3897 38.9700 

584 2268:09:03 0.3869 0.3898 38.9800 

585 2272:09:02 0.3870 0.3899 38.9900 

586 2276:09:03 0.3870 0.3900 39.0000 

587 2280:09:03 0.3871 0.3901 39.0100 

588 2284:09:02 0.3872 0.3902 39.0200 

589 2288:09:03 0.3873 0.3903 39.0300 

590 2292:09:03 0.3874 0.3903 39.0300 

591 2296:09:02 0.3875 0.3904 39.0400 

592 2300:09:03 0.3876 0.3905 39.0500 

593 2304:09:03 0.3877 0.3906 39.0600 

594 2308:09:02 0.3878 0.3907 39.0700 

595 2312:09:03 0.3878 0.3908 39.0800 

596 2316:09:03 0.3879 0.3909 39.0900 

597 2320:09:02 0.3880 0.3910 39.1000 

598 2324:09:03 0.3881 0.3910 39.1000 

599 2328:09:03 0.3882 0.3911 39.1100 

600 2332:09:02 0.3883 0.3912 39.1200 

601 2336:09:03 0.3884 0.3913 39.1300 

602 2340:09:03 0.3885 0.3914 39.1400 

603 2344:09:02 0.3885 0.3915 39.1500 

604 2348:09:03 0.3886 0.3916 39.1600 

605 2352:09:03 0.3887 0.3917 39.1700 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

606 2356:09:02 0.3888 0.3917 39.1700 

607 2360:09:03 0.3889 0.3918 39.1800 

608 2364:09:03 0.3890 0.3919 39.1900 

609 2368:09:02 0.3891 0.3920 39.2000 

610 2372:09:03 0.3892 0.3921 39.2100 

611 2376:09:02 0.3893 0.3922 39.2200 

612 2380:09:02 0.3893 0.3923 39.2300 

613 2384:09:03 0.3894 0.3924 39.2400 

614 2388:09:02 0.3895 0.3925 39.2500 

615 2392:09:02 0.3896 0.3925 39.2500 

616 2396:09:03 0.3897 0.3926 39.2600 

617 2400:09:02 0.3898 0.3927 39.2700 

618 2404:09:02 0.3899 0.3928 39.2800 

619 2408:09:03 0.3900 0.3929 39.2900 

620 2412:09:02 0.3900 0.3930 39.3000 

621 2416:09:02 0.3901 0.3931 39.3100 

622 2420:09:03 0.3902 0.3932 39.3200 

623 2424:09:02 0.3903 0.3932 39.3200 

624 2428:09:02 0.3904 0.3933 39.3300 

625 2432:09:03 0.3905 0.3934 39.3400 

626 2436:09:02 0.3906 0.3935 39.3500 

627 2440:09:02 0.3907 0.3936 39.3600 

628 2444:09:03 0.3907 0.3937 39.3700 

629 2448:09:02 0.3908 0.3938 39.3800 

630 2452:09:02 0.3909 0.3939 39.3900 

631 2456:09:03 0.3910 0.3940 39.4000 

632 2460:09:02 0.3911 0.3940 39.4000 

633 2464:09:02 0.3912 0.3941 39.4100 

634 2468:09:03 0.3913 0.3942 39.4200 

635 2472:09:02 0.3914 0.3943 39.4300 

636 2476:09:02 0.3915 0.3944 39.4400 

637 2480:09:03 0.3915 0.3945 39.4500 

638 2484:09:02 0.3916 0.3946 39.4600 

639 2488:09:02 0.3917 0.3947 39.4700 

640 2492:09:03 0.3918 0.3947 39.4700 

641 2496:09:02 0.3919 0.3948 39.4800 

642 2500:09:02 0.3920 0.3949 39.4900 

643 2504:09:03 0.3921 0.3950 39.5000 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

644 2508:09:02 0.3922 0.3951 39.5100 

645 2512:09:02 0.3922 0.3952 39.5200 

646 2516:09:03 0.3923 0.3953 39.5300 

647 2520:09:02 0.3924 0.3954 39.5400 

648 2524:09:02 0.3925 0.3954 39.5400 

649 2528:09:03 0.3926 0.3955 39.5500 

650 2532:09:02 0.3927 0.3956 39.5600 

651 2536:09:02 0.3928 0.3957 39.5700 

652 2540:09:03 0.3929 0.3958 39.5800 

653 2544:09:02 0.3930 0.3959 39.5900 

654 2548:09:02 0.3930 0.3960 39.6000 

655 2552:09:03 0.3931 0.3961 39.6100 

656 2556:09:02 0.3932 0.3962 39.6200 

657 2560:09:02 0.3933 0.3963 39.6300 

658 2564:09:03 0.3934 0.3964 39.6400 

659 2568:09:02 0.3935 0.3965 39.6500 

660 2572:09:02 0.3936 0.3966 39.6600 

661 2576:09:03 0.3937 0.3966 39.6600 

662 2580:09:02 0.3938 0.3967 39.6700 

663 2584:09:02 0.3939 0.3968 39.6800 

664 2588:09:03 0.3940 0.3969 39.6900 

665 2592:09:02 0.3942 0.3971 39.7100 

666 2596:09:02 0.3943 0.3972 39.7200 

667 2600:09:03 0.3944 0.3973 39.7300 

668 2604:09:02 0.3945 0.3974 39.7400 

669 2608:09:02 0.3946 0.3975 39.7500 

670 2612:09:03 0.3947 0.3976 39.7600 

671 2616:09:02 0.3948 0.3977 39.7700 

672 2620:09:02 0.3949 0.3978 39.7800 

673 2624:09:03 0.3950 0.3979 39.7900 

674 2628:09:02 0.3952 0.3981 39.8100 

675 2632:09:02 0.3953 0.3982 39.8200 

676 2636:09:03 0.3954 0.3983 39.8300 

677 2640:09:02 0.3955 0.3984 39.8400 

678 2644:09:02 0.3956 0.3985 39.8500 

679 2648:09:03 0.3957 0.3986 39.8600 

680 2652:09:02 0.3958 0.3987 39.8700 

681 2656:09:02 0.3959 0.3988 39.8800 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

682 2660:09:03 0.3960 0.3990 39.9000 

683 2664:09:02 0.3961 0.3991 39.9100 

684 2668:09:02 0.3962 0.3992 39.9200 

685 2672:09:03 0.3963 0.3993 39.9300 

686 2676:09:02 0.3964 0.3994 39.9400 

687 2680:09:02 0.3965 0.3995 39.9500 

688 2684:09:03 0.3966 0.3996 39.9600 

689 2688:09:02 0.3967 0.3997 39.9700 

690 2692:09:02 0.3968 0.3998 39.9800 

691 2696:09:03 0.3969 0.3999 39.9900 

692 2700:09:02 0.3971 0.4000 40.0000 

693 2704:09:02 0.3973 0.4002 40.0200 

694 2708:09:03 0.3974 0.4003 40.0300 

695 2712:09:02 0.3975 0.4004 40.0400 

696 2716:09:02 0.3977 0.4006 40.0600 

697 2720:09:03 0.3978 0.4007 40.0700 

698 2724:09:02 0.3979 0.4008 40.0800 

699 2728:09:02 0.3980 0.4009 40.0900 

700 2732:09:03 0.3981 0.4011 40.1100 

701 2736:09:02 0.3982 0.4012 40.1200 

702 2740:09:02 0.3984 0.4013 40.1300 

703 2744:09:02 0.3985 0.4014 40.1400 

704 2748:09:02 0.3986 0.4015 40.1500 

705 2752:09:02 0.3987 0.4016 40.1600 

706 2756:09:02 0.3988 0.4017 40.1700 

707 2760:09:02 0.3989 0.4018 40.1800 

708 2764:09:02 0.3991 0.4020 40.2000 

709 2768:09:02 0.3992 0.4022 40.2200 

710 2772:09:02 0.3993 0.4023 40.2300 

711 2776:09:02 0.3995 0.4024 40.2400 

712 2780:09:02 0.3997 0.4026 40.2600 

713 2784:09:02 0.3998 0.4027 40.2700 

714 2788:09:02 0.3999 0.4028 40.2800 

715 2792:09:02 0.4000 0.4029 40.2900 

716 2796:09:02 0.4001 0.4031 40.3100 

717 2800:09:02 0.4003 0.4033 40.3300 

718 2804:09:02 0.4005 0.4035 40.3500 

719 2808:09:02 0.4007 0.4037 40.3700 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

720 2812:09:02 0.4009 0.4038 40.3800 

721 2816:09:02 0.4010 0.4039 40.3900 

722 2820:09:02 0.4011 0.4040 40.4000 

723 2824:09:02 0.4013 0.4042 40.4200 

724 2828:09:02 0.4014 0.4043 40.4300 

725 2832:09:02 0.4016 0.4045 40.4500 

726 2836:09:02 0.4017 0.4046 40.4600 

727 2840:09:02 0.4018 0.4048 40.4800 

728 2844:09:02 0.4020 0.4049 40.4900 

729 2848:09:02 0.4022 0.4051 40.5100 

730 2852:09:02 0.4023 0.4052 40.5200 

731 2856:09:02 0.4024 0.4053 40.5300 

732 2860:09:02 0.4025 0.4054 40.5400 

733 2864:09:02 0.4026 0.4056 40.5600 

734 2868:09:02 0.4027 0.4057 40.5700 

735 2872:09:02 0.4028 0.4058 40.5800 

736 2876:09:02 0.4029 0.4059 40.5900 

737 2880:09:02 0.4030 0.4060 40.6000 

738 2884:09:02 0.4031 0.4061 40.6100 

739 2888:09:02 0.4031 0.4061 40.6100 

740 2892:09:02 0.4032 0.4062 40.6200 

741 2896:09:02 0.4033 0.4063 40.6300 

742 2900:09:02 0.4034 0.4063 40.6300 

743 2904:09:02 0.4035 0.4064 40.6400 

744 2908:09:02 0.4036 0.4065 40.6500 

745 2912:09:02 0.4037 0.4066 40.6600 

746 2916:09:02 0.4038 0.4067 40.6700 

747 2920:09:02 0.4038 0.4068 40.6800 

748 2924:09:02 0.4039 0.4068 40.6800 

749 2928:09:02 0.4040 0.4069 40.6900 

750 2932:09:02 0.4040 0.4070 40.7000 

751 2936:09:02 0.4041 0.4070 40.7000 

752 2940:09:02 0.4042 0.4071 40.7100 

753 2944:09:02 0.4042 0.4072 40.7200 

754 2948:09:02 0.4043 0.4072 40.7200 

755 2952:09:02 0.4044 0.4073 40.7300 

756 2956:09:02 0.4044 0.4074 40.7400 

757 2960:09:02 0.4045 0.4074 40.7400 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

758 2964:09:01 0.4046 0.4075 40.7500 

759 2968:09:01 0.4046 0.4076 40.7600 

760 2972:09:00 0.4047 0.4076 40.7600 

761 2976:08:59 0.4047 0.4077 40.7700 

762 2980:08:59 0.4048 0.4077 40.7700 

763 2984:08:58 0.4049 0.4078 40.7800 

764 2988:08:58 0.4049 0.4079 40.7900 

765 2992:08:57 0.4050 0.4079 40.7900 

766 2996:08:57 0.4051 0.4080 40.8000 

767 3000:08:56 0.4051 0.4081 40.8100 

768 3004:08:55 0.4052 0.4082 40.8200 

769 3008:08:55 0.4053 0.4082 40.8200 

770 3012:08:54 0.4054 0.4083 40.8300 

771 3016:08:54 0.4054 0.4084 40.8400 

772 3020:08:53 0.4055 0.4084 40.8400 

773 3024:08:52 0.4056 0.4085 40.8500 

774 3028:08:52 0.4056 0.4085 40.8500 

775 3032:08:51 0.4056 0.4086 40.8600 

776 3036:08:51 0.4057 0.4087 40.8700 

777 3040:08:50 0.4058 0.4087 40.8700 

778 3044:08:50 0.4059 0.4088 40.8800 

779 3048:08:49 0.4059 0.4089 40.8900 

780 3052:08:48 0.4060 0.4089 40.8900 

781 3056:08:48 0.4061 0.4090 40.9000 

782 3060:08:47 0.4061 0.4091 40.9100 

783 3064:08:47 0.4062 0.4091 40.9100 

784 3068:08:46 0.4063 0.4092 40.9200 

785 3072:08:46 0.4063 0.4093 40.9300 

786 3076:08:45 0.4064 0.4094 40.9400 

787 3080:08:44 0.4065 0.4094 40.9400 

788 3084:08:44 0.4066 0.4095 40.9500 

789 3088:08:43 0.4066 0.4096 40.9600 

790 3092:08:43 0.4067 0.4096 40.9600 

791 3096:08:42 0.4068 0.4097 40.9700 

792 3100:08:42 0.4068 0.4098 40.9800 

793 3104:08:41 0.4069 0.4098 40.9800 

794 3108:08:40 0.4070 0.4099 40.9900 

795 3112:08:40 0.4070 0.4100 41.0000 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

796 3116:08:39 0.4071 0.4101 41.0100 

797 3120:08:39 0.4072 0.4101 41.0100 

798 3124:08:38 0.4073 0.4102 41.0200 

799 3128:08:38 0.4073 0.4103 41.0300 

800 3132:08:37 0.4074 0.4103 41.0300 

801 3136:08:36 0.4075 0.4104 41.0400 

802 3140:08:36 0.4075 0.4105 41.0500 

803 3144:08:35 0.4076 0.4105 41.0500 

804 3148:08:35 0.4077 0.4106 41.0600 

805 3152:08:34 0.4077 0.4107 41.0700 

806 3156:08:33 0.4078 0.4108 41.0800 

807 3160:08:33 0.4079 0.4108 41.0800 

808 3164:08:32 0.4080 0.4109 41.0900 

809 3168:08:32 0.4080 0.4110 41.1000 

810 3172:08:31 0.4081 0.4110 41.1000 

811 3176:08:31 0.4082 0.4111 41.1100 

812 3180:08:30 0.4082 0.4112 41.1200 

813 3184:08:29 0.4083 0.4112 41.1200 

814 3188:08:29 0.4084 0.4113 41.1300 

815 3192:08:28 0.4084 0.4114 41.1400 

816 3196:08:28 0.4085 0.4115 41.1500 

817 3200:08:27 0.4086 0.4115 41.1500 

818 3204:08:27 0.4087 0.4116 41.1600 

819 3208:08:26 0.4087 0.4117 41.1700 

820 3212:08:25 0.4088 0.4117 41.1700 

821 3216:08:25 0.4089 0.4118 41.1800 

822 3220:08:24 0.4089 0.4119 41.1900 

823 3224:08:24 0.4090 0.4119 41.1900 

824 3228:08:23 0.4091 0.4120 41.2000 

825 3232:08:23 0.4091 0.4121 41.2100 

826 3236:08:22 0.4092 0.4122 41.2200 

827 3240:08:21 0.4093 0.4122 41.2200 

828 3244:08:21 0.4094 0.4123 41.2300 

829 3248:08:20 0.4094 0.4124 41.2400 

830 3252:08:20 0.4095 0.4124 41.2400 

831 3256:08:19 0.4096 0.4125 41.2500 

832 3260:08:19 0.4096 0.4126 41.2600 

833 3264:08:18 0.4097 0.4126 41.2600 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

834 3268:08:17 0.4098 0.4127 41.2700 

835 3272:08:17 0.4099 0.4128 41.2800 

836 3276:08:16 0.4100 0.4129 41.2900 

837 3280:08:16 0.4100 0.4130 41.3000 

838 3284:08:15 0.4101 0.4130 41.3000 

839 3288:08:14 0.4101 0.4131 41.3100 

840 3292:08:14 0.4102 0.4131 41.3100 

841 3296:08:13 0.4102 0.4132 41.3200 

842 3300:08:13 0.4103 0.4132 41.3200 

843 3304:08:12 0.4104 0.4133 41.3300 

844 3308:08:12 0.4104 0.4134 41.3400 

845 3312:08:11 0.4105 0.4135 41.3500 

846 3316:08:10 0.4106 0.4135 41.3500 

847 3320:08:10 0.4107 0.4136 41.3600 

848 3324:08:09 0.4108 0.4137 41.3700 

849 3328:08:09 0.4108 0.4138 41.3800 

850 3332:08:08 0.4109 0.4139 41.3900 

851 3336:08:08 0.4110 0.4140 41.4000 

852 3340:08:07 0.4111 0.4141 41.4100 

853 3344:08:06 0.4112 0.4142 41.4200 

854 3348:08:06 0.4113 0.4143 41.4300 

855 3352:08:05 0.4114 0.4144 41.4400 

856 3356:08:05 0.4115 0.4144 41.4400 

857 3360:08:04 0.4116 0.4145 41.4500 

858 3364:08:04 0.4116 0.4146 41.4600 

859 3368:08:03 0.4117 0.4146 41.4600 

860 3372:08:02 0.4117 0.4147 41.4700 

861 3376:08:02 0.4118 0.4147 41.4700 

862 3380:08:01 0.4119 0.4148 41.4800 

863 3384:08:01 0.4119 0.4149 41.4900 

864 3388:08:00 0.4120 0.4149 41.4900 

865 3392:08:00 0.4120 0.4150 41.5000 

866 3396:07:59 0.4121 0.4150 41.5000 

867 3400:07:58 0.4122 0.4151 41.5100 

868 3404:07:58 0.4122 0.4152 41.5200 

869 3408:07:57 0.4123 0.4152 41.5200 

870 3412:07:57 0.4123 0.4153 41.5300 

871 3416:07:56 0.4124 0.4153 41.5300 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

872 3420:07:55 0.4124 0.4154 41.5400 

873 3424:07:55 0.4125 0.4154 41.5400 

874 3428:07:54 0.4125 0.4155 41.5500 

875 3432:07:54 0.4126 0.4155 41.5500 

876 3436:07:53 0.4126 0.4155 41.5500 

877 3440:07:53 0.4127 0.4156 41.5600 

878 3444:07:52 0.4127 0.4156 41.5600 

879 3448:07:51 0.4127 0.4157 41.5700 

880 3452:07:51 0.4128 0.4157 41.5700 

881 3456:07:50 0.4128 0.4158 41.5800 

882 3460:07:50 0.4129 0.4158 41.5800 

883 3464:07:49 0.4129 0.4159 41.5900 

884 3468:07:49 0.4130 0.4159 41.5900 

885 3472:07:48 0.4130 0.4159 41.5900 

886 3476:07:47 0.4131 0.4160 41.6000 

887 3480:07:47 0.4131 0.4160 41.6000 

888 3484:07:46 0.4131 0.4161 41.6100 

889 3488:07:46 0.4132 0.4161 41.6100 

890 3492:07:45 0.4132 0.4162 41.6200 

891 3496:07:45 0.4133 0.4162 41.6200 

892 3500:07:44 0.4133 0.4163 41.6300 

893 3504:07:43 0.4134 0.4163 41.6300 

894 3508:07:43 0.4134 0.4164 41.6400 

895 3512:07:42 0.4135 0.4164 41.6400 

896 3516:07:42 0.4135 0.4164 41.6400 

897 3520:07:41 0.4136 0.4165 41.6500 

898 3524:07:40 0.4136 0.4165 41.6500 

899 3528:07:40 0.4136 0.4166 41.6600 

900 3532:07:39 0.4137 0.4166 41.6600 

901 3536:07:39 0.4138 0.4167 41.6700 

902 3540:07:38 0.4138 0.4168 41.6800 

903 3544:07:38 0.4139 0.4169 41.6900 

904 3548:07:37 0.4140 0.4169 41.6900 

905 3552:07:36 0.4141 0.4170 41.7000 

906 3556:07:36 0.4142 0.4171 41.7100 

907 3560:07:35 0.4142 0.4172 41.7200 

908 3564:07:35 0.4143 0.4173 41.7300 

909 3568:07:34 0.4144 0.4173 41.7300 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

910 3572:07:34 0.4145 0.4174 41.7400 

911 3576:07:33 0.4146 0.4175 41.7500 

912 3580:07:32 0.4146 0.4176 41.7600 

913 3584:07:32 0.4147 0.4177 41.7700 

914 3588:07:31 0.4148 0.4177 41.7700 

915 3592:07:31 0.4149 0.4178 41.7800 

916 3596:07:30 0.4150 0.4179 41.7900 

917 3600:07:30 0.4150 0.4180 41.8000 

918 3604:07:29 0.4151 0.4181 41.8100 

919 3608:07:28 0.4152 0.4181 41.8100 

920 3612:07:28 0.4153 0.4182 41.8200 

921 3616:07:27 0.4154 0.4183 41.8300 

922 3620:07:27 0.4154 0.4184 41.8400 

923 3624:07:26 0.4155 0.4185 41.8500 

924 3628:07:26 0.4156 0.4185 41.8500 

925 3632:07:25 0.4157 0.4186 41.8600 

926 3636:07:24 0.4158 0.4187 41.8700 

927 3640:07:24 0.4158 0.4188 41.8800 

928 3644:07:23 0.4159 0.4189 41.8900 

929 3648:07:23 0.4160 0.4189 41.8900 

930 3652:07:22 0.4161 0.4190 41.9000 

931 3656:07:21 0.4162 0.4191 41.9100 

932 3660:07:21 0.4162 0.4192 41.9200 

933 3664:07:20 0.4163 0.4193 41.9300 

934 3668:07:20 0.4164 0.4193 41.9300 

935 3672:07:19 0.4165 0.4194 41.9400 

936 3676:07:19 0.4166 0.4195 41.9500 

937 3680:07:18 0.4166 0.4196 41.9600 

938 3684:07:17 0.4167 0.4197 41.9700 

939 3688:07:17 0.4168 0.4197 41.9700 

940 3692:07:16 0.4169 0.4198 41.9800 

941 3696:07:16 0.4170 0.4199 41.9900 

942 3700:07:15 0.4170 0.4200 42.0000 

943 3704:07:15 0.4171 0.4201 42.0100 

944 3708:07:14 0.4172 0.4201 42.0100 

945 3712:07:13 0.4173 0.4202 42.0200 

946 3716:07:13 0.4174 0.4203 42.0300 

947 3720:07:12 0.4174 0.4204 42.0400 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

948 3724:07:12 0.4175 0.4205 42.0500 

949 3728:07:11 0.4176 0.4205 42.0500 

950 3732:07:11 0.4177 0.4206 42.0600 

951 3736:07:10 0.4178 0.4207 42.0700 

952 3740:07:09 0.4178 0.4208 42.0800 

953 3744:07:09 0.4179 0.4209 42.0900 

954 3748:07:08 0.4180 0.4209 42.0900 

955 3752:07:08 0.4181 0.4210 42.1000 

956 3756:07:07 0.4182 0.4211 42.1100 

957 3760:07:07 0.4182 0.4211 42.1100 

958 3764:07:06 0.4182 0.4212 42.1200 

959 3768:07:05 0.4183 0.4212 42.1200 

960 3772:07:05 0.4183 0.4213 42.1300 

961 3776:07:04 0.4184 0.4213 42.1300 

962 3780:07:04 0.4184 0.4213 42.1300 

963 3784:07:03 0.4184 0.4214 42.1400 

964 3788:07:02 0.4185 0.4214 42.1400 

965 3792:07:02 0.4185 0.4215 42.1500 

966 3796:07:01 0.4186 0.4215 42.1500 

967 3800:07:01 0.4186 0.4215 42.1500 

968 3804:07:00 0.4186 0.4216 42.1600 

969 3808:07:00 0.4187 0.4216 42.1600 

970 3812:06:59 0.4187 0.4217 42.1700 

971 3816:06:58 0.4188 0.4217 42.1700 

972 3820:06:58 0.4188 0.4217 42.1700 

973 3824:06:57 0.4188 0.4218 42.1800 

974 3828:06:57 0.4189 0.4218 42.1800 

975 3832:06:56 0.4189 0.4219 42.1900 

976 3836:06:56 0.4190 0.4219 42.1900 

977 3840:06:55 0.4190 0.4219 42.1900 

978 3844:06:54 0.4190 0.4220 42.2000 

979 3848:06:54 0.4191 0.4220 42.2000 

980 3852:06:53 0.4191 0.4221 42.2100 

981 3856:06:53 0.4192 0.4221 42.2100 

982 3860:06:52 0.4192 0.4221 42.2100 

983 3864:06:52 0.4192 0.4222 42.2200 

984 3868:06:51 0.4193 0.4222 42.2200 

985 3872:06:50 0.4193 0.4223 42.2300 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

986 3876:06:50 0.4194 0.4223 42.2300 

987 3880:06:49 0.4194 0.4223 42.2300 

988 3884:06:49 0.4194 0.4224 42.2400 

989 3888:06:48 0.4195 0.4224 42.2400 

990 3892:06:48 0.4195 0.4225 42.2500 

991 3896:06:47 0.4196 0.4225 42.2500 

992 3900:06:46 0.4196 0.4225 42.2500 

993 3904:06:46 0.4196 0.4226 42.2600 

994 3908:06:45 0.4197 0.4226 42.2600 

995 3912:06:45 0.4197 0.4227 42.2700 

996 3916:06:44 0.4198 0.4227 42.2700 

997 3920:06:43 0.4198 0.4227 42.2700 

998 3924:06:43 0.4198 0.4228 42.2800 

999 3928:06:42 0.4199 0.4228 42.2800 

1000 3932:06:42 0.4199 0.4229 42.2900 

1001 3936:06:41 0.4200 0.4229 42.2900 

1002 3940:06:41 0.4200 0.4229 42.2900 

1003 3944:06:40 0.4201 0.4230 42.3000 

1004 3948:06:39 0.4201 0.4231 42.3100 

1005 3952:06:39 0.4202 0.4231 42.3100 

1006 3956:06:38 0.4203 0.4232 42.3200 

1007 3960:06:38 0.4203 0.4233 42.3300 

1008 3964:06:37 0.4204 0.4234 42.3400 

1009 3968:06:37 0.4205 0.4234 42.3400 

1010 3972:06:36 0.4205 0.4235 42.3500 

1011 3976:06:35 0.4206 0.4236 42.3600 

1012 3980:06:35 0.4207 0.4236 42.3600 

1013 3984:06:34 0.4208 0.4237 42.3700 

1014 3988:06:34 0.4208 0.4238 42.3800 

1015 3992:06:33 0.4209 0.4238 42.3800 

1016 3996:06:33 0.4210 0.4239 42.3900 

1017 4000:06:32 0.4210 0.4240 42.4000 

1018 4004:06:31 0.4211 0.4240 42.4000 

1019 4008:06:31 0.4212 0.4241 42.4100 

1020 4012:06:30 0.4212 0.4242 42.4200 

1021 4016:06:30 0.4213 0.4242 42.4200 

1022 4020:06:29 0.4214 0.4243 42.4300 

1023 4024:06:28 0.4214 0.4244 42.4400 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

1024 4028:06:28 0.4215 0.4244 42.4400 

1025 4032:06:27 0.4215 0.4245 42.4500 

1026 4036:06:27 0.4216 0.4245 42.4500 

1027 4040:06:26 0.4216 0.4245 42.4500 

1028 4044:06:26 0.4216 0.4246 42.4600 

1029 4048:06:25 0.4217 0.4246 42.4600 

1030 4052:06:24 0.4217 0.4247 42.4700 

1031 4056:06:24 0.4218 0.4247 42.4700 

1032 4060:06:23 0.4218 0.4247 42.4700 

1033 4064:06:23 0.4218 0.4248 42.4800 

1034 4068:06:22 0.4219 0.4248 42.4800 

1035 4072:06:22 0.4219 0.4249 42.4900 

1036 4076:06:21 0.4220 0.4249 42.4900 

1037 4080:06:20 0.4220 0.4249 42.4900 

1038 4084:06:20 0.4220 0.4250 42.5000 

1039 4088:06:19 0.4221 0.4250 42.5000 

1040 4092:06:19 0.4221 0.4251 42.5100 

1041 4096:06:18 0.4222 0.4251 42.5100 

1042 4100:06:18 0.4223 0.4252 42.5200 

1043 4104:06:17 0.4224 0.4253 42.5300 

1044 4108:06:16 0.4225 0.4254 42.5400 

1045 4112:06:16 0.4225 0.4254 42.5400 

1046 4116:06:15 0.4225 0.4255 42.5500 

1047 4120:06:15 0.4226 0.4255 42.5500 

1048 4124:06:14 0.4226 0.4256 42.5600 

1049 4128:06:14 0.4227 0.4256 42.5600 

1050 4132:06:13 0.4227 0.4256 42.5600 

1051 4136:06:12 0.4227 0.4257 42.5700 

1052 4140:06:12 0.4228 0.4257 42.5700 

1053 4144:06:11 0.4228 0.4258 42.5800 

1054 4148:06:11 0.4229 0.4258 42.5800 

1055 4152:06:10 0.4229 0.4258 42.5800 

1056 4156:06:09 0.4229 0.4259 42.5900 

1057 4160:06:09 0.4230 0.4259 42.5900 

1058 4164:06:08 0.4230 0.4260 42.6000 

1059 4168:06:08 0.4231 0.4260 42.6000 

1060 4172:06:07 0.4231 0.4260 42.6000 

1061 4176:06:07 0.4231 0.4261 42.6100 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

1062 4180:06:06 0.4232 0.4261 42.6100 

1063 4184:06:05 0.4232 0.4262 42.6200 

1064 4188:06:05 0.4233 0.4262 42.6200 

1065 4192:06:04 0.4233 0.4262 42.6200 

1066 4196:06:04 0.4233 0.4263 42.6300 

1067 4200:06:03 0.4234 0.4263 42.6300 

1068 4204:06:03 0.4234 0.4264 42.6400 

1069 4208:06:02 0.4235 0.4264 42.6400 

1070 4212:06:01 0.4235 0.4264 42.6400 

1071 4216:06:01 0.4235 0.4265 42.6500 

1072 4220:06:00 0.4236 0.4265 42.6500 

1073 4224:06:00 0.4236 0.4266 42.6600 

1074 4228:05:59 0.4237 0.4266 42.6600 

1075 4232:05:59 0.4237 0.4266 42.6600 

1076 4236:05:58 0.4237 0.4267 42.6700 

1077 4240:05:57 0.4238 0.4267 42.6700 

1078 4244:05:57 0.4238 0.4268 42.6800 

1079 4248:05:56 0.4239 0.4268 42.6800 

1080 4252:05:56 0.4239 0.4268 42.6800 

1081 4256:05:55 0.4239 0.4269 42.6900 

1082 4260:05:55 0.4240 0.4269 42.6900 

1083 4264:05:54 0.4240 0.4270 42.7000 

1084 4268:05:53 0.4241 0.4270 42.7000 

1085 4272:05:53 0.4241 0.4270 42.7000 

1086 4276:05:52 0.4241 0.4271 42.7100 

1087 4280:05:52 0.4242 0.4271 42.7100 

1088 4284:05:51 0.4242 0.4272 42.7200 

1089 4288:05:50 0.4243 0.4272 42.7200 

1090 4292:05:50 0.4243 0.4272 42.7200 

1091 4296:05:49 0.4243 0.4273 42.7300 

1092 4300:05:49 0.4244 0.4273 42.7300 

1093 4304:05:48 0.4244 0.4274 42.7400 

1094 4308:05:48 0.4245 0.4274 42.7400 

1095 4312:05:47 0.4245 0.4274 42.7400 

1096 4316:05:46 0.4245 0.4275 42.7500 

1097 4320:05:46 0.4246 0.4275 42.7500 

1098 4324:05:45 0.4246 0.4276 42.7600 

1099 4328:05:45 0.4247 0.4276 42.7600 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

1100 4332:05:44 0.4247 0.4276 42.7600 

1101 4336:05:44 0.4247 0.4277 42.7700 

1102 4340:05:43 0.4248 0.4277 42.7700 

1103 4344:05:42 0.4248 0.4278 42.7800 

1104 4348:05:42 0.4249 0.4278 42.7800 

1105 4352:05:41 0.4249 0.4278 42.7800 

1106 4356:05:41 0.4249 0.4279 42.7900 

1107 4360:05:40 0.4250 0.4279 42.7900 

1108 4364:05:40 0.4250 0.4280 42.8000 

1109 4368:05:39 0.4251 0.4280 42.8000 

1110 4372:05:38 0.4251 0.4280 42.8000 

1111 4376:05:38 0.4251 0.4281 42.8100 

1112 4380:05:37 0.4252 0.4281 42.8100 

1113 4384:05:37 0.4252 0.4282 42.8200 

1114 4388:05:36 0.4253 0.4282 42.8200 

1115 4392:05:36 0.4253 0.4282 42.8200 

1116 4396:05:35 0.4253 0.4283 42.8300 

1117 4400:05:34 0.4254 0.4283 42.8300 

1118 4404:05:34 0.4254 0.4284 42.8400 

1119 4408:05:33 0.4255 0.4284 42.8400 

1120 4412:05:33 0.4255 0.4284 42.8400 

1121 4416:05:32 0.4255 0.4285 42.8500 

1122 4420:05:31 0.4256 0.4285 42.8500 

1123 4424:05:31 0.4256 0.4286 42.8600 

1124 4428:05:30 0.4257 0.4286 42.8600 

1125 4432:05:30 0.4257 0.4286 42.8600 

1126 4436:05:29 0.4257 0.4287 42.8700 

1127 4440:05:29 0.4258 0.4287 42.8700 

1128 4444:05:28 0.4258 0.4288 42.8800 

1129 4448:05:27 0.4259 0.4288 42.8800 

1130 4452:05:27 0.4259 0.4288 42.8800 

1131 4456:05:26 0.4259 0.4289 42.8900 

1132 4460:05:26 0.4260 0.4289 42.8900 

1133 4464:05:25 0.4260 0.4290 42.9000 

1134 4468:05:25 0.4261 0.4290 42.9000 

1135 4472:05:24 0.4261 0.4290 42.9000 

1136 4476:05:23 0.4261 0.4291 42.9100 

1137 4480:05:23 0.4262 0.4291 42.9100 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

1138 4484:05:22 0.4262 0.4292 42.9200 

1139 4488:05:22 0.4263 0.4292 42.9200 

1140 4492:05:21 0.4263 0.4292 42.9200 

1141 4496:05:21 0.4263 0.4293 42.9300 

1142 4500:05:20 0.4264 0.4293 42.9300 

1143 4504:05:19 0.4264 0.4294 42.9400 

1144 4508:05:19 0.4265 0.4294 42.9400 

1145 4512:05:18 0.4265 0.4294 42.9400 

1146 4516:05:18 0.4265 0.4295 42.9500 

1147 4520:05:17 0.4266 0.4295 42.9500 

1148 4524:05:16 0.4266 0.4296 42.9600 

1149 4528:05:16 0.4267 0.4296 42.9600 

1150 4532:05:15 0.4267 0.4296 42.9600 

1151 4536:05:15 0.4267 0.4297 42.9700 

1152 4540:05:14 0.4268 0.4297 42.9700 

1153 4544:05:14 0.4268 0.4298 42.9800 

1154 4548:05:13 0.4269 0.4298 42.9800 

1155 4552:05:12 0.4269 0.4298 42.9800 

1156 4556:05:12 0.4269 0.4299 42.9900 

1157 4560:05:11 0.4270 0.4299 42.9900 

1158 4564:05:11 0.4270 0.4299 42.9900 

1159 4568:05:10 0.4270 0.4300 43.0000 

1160 4572:05:10 0.4271 0.4300 43.0000 

1161 4576:05:09 0.4271 0.4301 43.0100 

1162 4580:05:08 0.4271 0.4301 43.0100 

1163 4584:05:08 0.4272 0.4301 43.0100 

1164 4588:05:07 0.4272 0.4302 43.0200 

1165 4592:05:07 0.4273 0.4302 43.0200 

1166 4596:05:06 0.4273 0.4302 43.0200 

1167 4600:05:06 0.4273 0.4303 43.0300 

1168 4604:05:05 0.4274 0.4303 43.0300 

1169 4608:05:04 0.4274 0.4303 43.0300 

1170 4612:05:04 0.4274 0.4304 43.0400 

1171 4616:05:03 0.4275 0.4304 43.0400 

1172 4620:05:03 0.4275 0.4304 43.0400 

1173 4624:05:02 0.4275 0.4305 43.0500 

1174 4628:05:02 0.4276 0.4305 43.0500 

1175 4632:05:01 0.4276 0.4306 43.0600 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

1176 4636:05:00 0.4277 0.4306 43.0600 

1177 4640:05:00 0.4277 0.4306 43.0600 

1178 4644:04:59 0.4277 0.4307 43.0700 

1179 4648:04:59 0.4278 0.4307 43.0700 

1180 4652:04:58 0.4278 0.4307 43.0700 

1181 4656:04:57 0.4278 0.4308 43.0800 

1182 4660:04:57 0.4279 0.4308 43.0800 

1183 4664:04:56 0.4279 0.4308 43.0800 

1184 4668:04:56 0.4279 0.4309 43.0900 

1185 4672:04:55 0.4280 0.4309 43.0900 

1186 4676:04:55 0.4280 0.4310 43.1000 

1187 4680:04:54 0.4280 0.4310 43.1000 

1188 4684:04:53 0.4281 0.4310 43.1000 

1189 4688:04:53 0.4281 0.4311 43.1100 

1190 4692:04:52 0.4282 0.4311 43.1100 

1191 4696:04:52 0.4282 0.4311 43.1100 

1192 4700:04:51 0.4282 0.4312 43.1200 

1193 4704:04:51 0.4283 0.4312 43.1200 

1194 4708:04:50 0.4283 0.4312 43.1200 

1195 4712:04:49 0.4283 0.4313 43.1300 

1196 4716:04:49 0.4284 0.4313 43.1300 

1197 4720:04:48 0.4284 0.4313 43.1300 

1198 4724:04:48 0.4284 0.4314 43.1400 

1199 4728:04:47 0.4285 0.4314 43.1400 

1200 4732:04:47 0.4285 0.4315 43.1500 

1201 4736:04:46 0.4286 0.4315 43.1500 

1202 4740:04:45 0.4286 0.4316 43.1600 

1203 4744:04:45 0.4287 0.4316 43.1600 

1204 4748:04:44 0.4287 0.4317 43.1700 

1205 4752:04:44 0.4288 0.4317 43.1700 

1206 4756:04:43 0.4288 0.4318 43.1800 

1207 4760:04:43 0.4289 0.4318 43.1800 

1208 4764:04:42 0.4289 0.4319 43.1900 

1209 4768:04:41 0.4290 0.4319 43.1900 

1210 4772:04:41 0.4290 0.4320 43.2000 

1211 4776:04:40 0.4291 0.4320 43.2000 

1212 4780:04:40 0.4291 0.4320 43.2000 

1213 4784:04:39 0.4292 0.4321 43.2100 
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Table C.1.7 Start of Biodegradation Waste Sample – 4.400 tsf (continued) 

1214 4788:04:38 0.4292 0.4321 43.2100 

1215 4792:04:38 0.4292 0.4322 43.2200 

1216 4796:04:37 0.4293 0.4322 43.2200 

1217 4800:04:37 0.4293 0.4323 43.2300 

1218 4804:04:36 0.4294 0.4323 43.2300 

1219 4808:04:36 0.4294 0.4324 43.2400 

1220 4812:04:35 0.4295 0.4324 43.2400 

1221 4816:04:34 0.4295 0.4325 43.2500 

1222 4820:04:34 0.4296 0.4325 43.2500 

1223 4824:04:33 0.4296 0.4325 43.2500 

1224 4828:04:33 0.4297 0.4326 43.2600 

1225 4832:04:32 0.4297 0.4326 43.2600 

1226 4836:04:32 0.4297 0.4327 43.2700 

1227 4840:04:31 0.4298 0.4327 43.2700 

1228 4844:04:30 0.4298 0.4328 43.2800 

1229 4848:04:30 0.4299 0.4328 43.2800 

1230 4852:04:29 0.4299 0.4329 43.2900 
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Table C.2.1 End of Biodegradation Waste Sample – 0.137 tsf 

0 00:00:00 0.0007 0.0000 0.0000 

1 00:00:01 0.0025 0.0018 0.1800 

2 00:00:02 0.0029 0.0022 0.2200 

3 00:00:03 0.0032 0.0025 0.2500 

4 00:00:04 0.0034 0.0027 0.2700 

5 00:00:05 0.0036 0.0029 0.2900 

6 00:00:06 0.0039 0.0032 0.3200 

7 00:00:12 0.0046 0.0039 0.3900 

8 00:00:15 0.0048 0.0041 0.4100 

9 00:00:30 0.0056 0.0049 0.4900 

10 00:01:00 0.0065 0.0058 0.5800 

11 00:02:00 0.0073 0.0066 0.6600 

12 00:05:00 0.0087 0.0080 0.8000 

13 00:10:00 0.0097 0.0090 0.9000 

14 00:20:02 0.0110 0.0103 1.0300 

15 00:40:04 0.0123 0.0116 1.1600 

16 01:00:06 0.0132 0.0125 1.2500 

17 02:00:14 0.0148 0.0141 1.4100 

18 04:00:27 0.0163 0.0156 1.5600 

19 08:00:55 0.0177 0.0170 1.7000 

20 12:01:24 0.0184 0.0177 1.7700 

21 16:01:52 0.0190 0.0183 1.8300 

22 20:02:20 0.0197 0.0190 1.9000 

23 24:02:48 0.0203 0.0196 1.9600 

24 24:59:25 0.0207 0.0200 2.0000 
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Table C.2.2 End of Biodegradation Waste Sample – 0.275 tsf 

Index Time 
Displacement 

[in.] 

Settlement 

[in.] Axial Strain [%] 

0 00:00:00 0.0207 0.0200 2.0000 

1 00:00:01 0.0255 0.0248 2.4800 

2 00:00:02 0.0267 0.0260 2.6000 

3 00:00:03 0.0276 0.0269 2.6900 

4 00:00:04 0.0282 0.0275 2.7500 

5 00:00:05 0.0288 0.0281 2.8100 

6 00:00:06 0.0292 0.0285 2.8500 

7 00:00:12 0.0310 0.0303 3.0300 

8 00:00:15 0.0316 0.0309 3.0900 

9 00:00:30 0.0336 0.0329 3.2900 

10 00:01:00 0.0354 0.0347 3.4700 

11 00:02:01 0.0375 0.0368 3.6800 

12 00:05:01 0.0401 0.0394 3.9400 

13 00:10:01 0.0420 0.0413 4.1300 

14 00:20:03 0.0441 0.0434 4.3400 

15 00:40:05 0.0465 0.0458 4.5800 

16 01:00:07 0.0479 0.0472 4.7200 

17 02:00:14 0.0503 0.0496 4.9600 

18 04:00:28 0.0527 0.0520 5.2000 

19 08:00:57 0.0549 0.0542 5.4200 

20 12:01:25 0.0561 0.0554 5.5400 

21 16:01:52 0.0575 0.0568 5.6800 

22 20:02:21 0.0591 0.0584 5.8400 

23 23:19:55 0.0601 0.0594 5.9400 
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Table C.2.3 End of Biodegradation Waste Sample – 0.550 tsf 

Index Time 
Displacement 

[in.] 

Settlement 

[in.] Axial Strain [%] 

0 00:00:00 0.0601 0.0594 5.9400 

1 00:00:01 0.0664 0.0657 6.5700 

2 00:00:02 0.0680 0.0673 6.7300 

3 00:00:03 0.0690 0.0683 6.8300 

4 00:00:04 0.0699 0.0692 6.9200 

5 00:00:05 0.0705 0.0698 6.9800 

6 00:00:06 0.0712 0.0705 7.0500 

7 00:00:12 0.0735 0.0728 7.2800 

8 00:00:15 0.0743 0.0736 7.3600 

9 00:00:30 0.0768 0.0761 7.6100 

10 00:01:00 0.0793 0.0786 7.8600 

11 00:02:00 0.0818 0.0811 8.1100 

12 00:05:00 0.0853 0.0846 8.4600 

13 00:10:01 0.0879 0.0872 8.7200 

14 00:20:02 0.0906 0.0899 8.9900 

15 00:40:04 0.0935 0.0928 9.2800 

16 01:00:07 0.0952 0.0945 9.4500 

17 02:00:14 0.0983 0.0976 9.7600 

18 04:00:28 0.1012 0.1005 10.0500 

19 08:00:57 0.1040 0.1033 10.3300 

20 12:01:25 0.1056 0.1049 10.4900 

21 16:01:53 0.1070 0.1063 10.6300 

22 20:02:21 0.1082 0.1075 10.7500 

23 24:02:50 0.1095 0.1088 10.8800 

24 28:03:18 0.1104 0.1097 10.9700 

25 32:03:46 0.1110 0.1103 11.0300 

26 36:04:14 0.1115 0.1108 11.0800 

27 40:04:43 0.1121 0.1114 11.1400 

28 44:05:10 0.1128 0.1121 11.2100 

29 48:05:34 0.1134 0.1127 11.2700 

30 52:06:00 0.1139 0.1132 11.3200 

31 56:06:28 0.1144 0.1137 11.3700 

32 60:06:56 0.1146 0.1139 11.3900 

33 64:07:24 0.1150 0.1143 11.4300 

34 68:07:53 0.1154 0.1147 11.4700 

35 71:01:34 0.1160 0.1153 11.5300 
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Table C.2.4 End of Biodegradation Waste Sample – 1.100 tsf 

Index Time 
Displacement 

[in.] 

Settlement 

[in.] Axial Strain [%] 

0 00:00:00 0.1160 0.1153 11.5300 

1 00:00:01 0.1219 0.1212 12.1200 

2 00:00:02 0.1232 0.1225 12.2500 

3 00:00:03 0.1241 0.1234 12.3400 

4 00:00:04 0.1248 0.1241 12.4100 

5 00:00:05 0.1253 0.1246 12.4600 

6 00:00:06 0.1257 0.1250 12.5000 

7 00:00:12 0.1278 0.1271 12.7100 

8 00:00:15 0.1284 0.1277 12.7700 

9 00:00:30 0.1306 0.1299 12.9900 

10 00:01:00 0.1330 0.1323 13.2300 

11 00:02:01 0.1354 0.1347 13.4700 

12 00:05:01 0.1387 0.1380 13.8000 

13 00:10:01 0.1413 0.1406 14.0600 

14 00:20:03 0.1440 0.1433 14.3300 

15 00:40:05 0.1469 0.1462 14.6200 

16 01:00:07 0.1486 0.1479 14.7900 

17 02:00:14 0.1516 0.1509 15.0900 

18 04:00:28 0.1545 0.1538 15.3800 

19 08:00:56 0.1572 0.1565 15.6500 

20 12:01:25 0.1586 0.1579 15.7900 

21 16:01:53 0.1598 0.1591 15.9100 

22 20:02:19 0.1609 0.1602 16.0200 

23 24:02:46 0.1619 0.1612 16.1200 

24 28:03:15 0.1627 0.1620 16.2000 

25 32:03:42 0.1633 0.1626 16.2600 

26 36:04:11 0.1637 0.1630 16.3000 

27 40:04:39 0.1641 0.1634 16.3400 

28 44:05:07 0.1647 0.1640 16.4000 

29 48:05:36 0.1651 0.1644 16.4400 

30 52:06:04 0.1656 0.1649 16.4900 

31 56:06:32 0.1659 0.1652 16.5200 

32 60:07:01 0.1663 0.1656 16.5600 

33 60:35:59 0.1663 0.1656 16.5600 
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Table C.2.5 End of Biodegradation Waste Sample – 2.200 tsf 

Index Time 
Displacement 

[in.] 

Settlement 

[in.] Axial Strain [%] 

0 00:00:00 0.1663 0.1656 16.5600 

1 00:00:01 0.1727 0.1720 17.2000 

2 00:00:02 0.1738 0.1731 17.3100 

3 00:00:03 0.1745 0.1738 17.3800 

4 00:00:04 0.1751 0.1744 17.4400 

5 00:00:05 0.1754 0.1747 17.4700 

6 00:00:06 0.1758 0.1751 17.5100 

7 00:00:12 0.1773 0.1766 17.6600 

8 00:00:15 0.1778 0.1771 17.7100 

9 00:00:30 0.1797 0.1790 17.9000 

10 00:01:00 0.1817 0.1810 18.1000 

11 00:02:00 0.1840 0.1833 18.3300 

12 00:05:01 0.1873 0.1866 18.6600 

13 00:10:00 0.1900 0.1893 18.9300 

14 00:20:03 0.1929 0.1922 19.2200 

15 00:40:05 0.1959 0.1952 19.5200 

16 01:00:06 0.1976 0.1969 19.6900 

17 02:00:14 0.2008 0.2001 20.0100 

18 04:00:28 0.2045 0.2038 20.3800 

19 08:00:56 0.2089 0.2082 20.8200 

20 12:01:24 0.2116 0.2109 21.0900 

21 16:01:52 0.2129 0.2122 21.2200 

22 20:02:21 0.2138 0.2131 21.3100 

23 24:02:49 0.2145 0.2138 21.3800 

24 28:03:17 0.2152 0.2145 21.4500 

25 32:03:45 0.2158 0.2151 21.5100 

26 33:26:09 0.2160 0.2153 21.5300 
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Table C.2.6 End of Biodegradation Waste Sample – 4.400 tsf 

Index Time 
Displacement 

[in.] 

Settlement 

[in.] Axial Strain [%] 

0 00:00:00 0.2160 0.2153 21.5300 

1 00:00:01 0.2161 0.2154 21.5400 

2 00:00:02 0.2161 0.2154 21.5400 

3 00:00:03 0.2161 0.2154 21.5400 

4 00:00:04 0.2161 0.2154 21.5400 

5 00:00:05 0.2161 0.2154 21.5400 

6 00:00:06 0.2161 0.2154 21.5400 

7 00:00:12 0.2281 0.2274 22.7400 

8 00:00:15 0.2295 0.2288 22.8800 

9 00:00:30 0.2329 0.2322 23.2200 

10 00:01:00 0.2361 0.2354 23.5400 

11 00:02:00 0.2393 0.2386 23.8600 

12 00:05:00 0.2437 0.2430 24.3000 

13 00:10:01 0.2471 0.2464 24.6400 

14 00:20:02 0.2505 0.2498 24.9800 

15 00:40:04 0.2538 0.2531 25.3100 

16 01:00:06 0.2559 0.2552 25.5200 

17 02:00:14 0.2593 0.2586 25.8600 

18 04:00:28 0.2626 0.2619 26.1900 

19 08:00:57 0.2657 0.2650 26.5000 

20 12:01:24 0.2672 0.2665 26.6500 

21 16:01:52 0.2682 0.2675 26.7500 

22 20:02:21 0.2693 0.2686 26.8600 

23 24:02:49 0.2707 0.2700 27.0000 

24 28:03:17 0.2719 0.2712 27.1200 

26 36:04:13 0.2729 0.2722 27.2200 

27 40:04:36 0.2733 0.2726 27.2600 

28 44:05:04 0.2736 0.2729 27.2900 

29 48:05:33 0.2738 0.2731 27.3100 

30 52:06:01 0.2742 0.2735 27.3500 

31 56:06:29 0.2744 0.2737 27.3700 

32 60:06:58 0.2745 0.2738 27.3800 

33 64:07:25 0.2746 0.2739 27.3900 

34 68:07:54 0.2748 0.2741 27.4100 

35 72:08:22 0.2752 0.2745 27.4500 

36 76:08:50 0.2754 0.2747 27.4700 
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Table C.2.7 End of Biodegradation Waste Sample – 4.400 tsf (continued) 

37 80:09:19 0.2757 0.2750 27.5000 

38 84:09:47 0.2759 0.2752 27.5200 

39 88:10:15 0.2760 0.2753 27.5300 

40 92:10:44 0.2761 0.2754 27.5400 

41 96:11:12 0.2763 0.2756 27.5600 

42 100:11:4 0.2767 0.2760 27.6000 

43 104:11:3 0.2768 0.2761 27.6100 

44 108:11:3 0.2769 0.2762 27.6200 

45 112:11:3 0.2771 0.2764 27.6400 

46 116:11:3 0.2771 0.2764 27.6400 

47 120:11:3 0.2772 0.2765 27.6500 

48 124:11:3 0.2774 0.2767 27.6700 

49 128:11:3 0.2776 0.2769 27.6900 

50 132:11:3 0.2777 0.2770 27.7000 

51 136:11:3 0.2777 0.2770 27.7000 

52 140:11:3 0.2777 0.2770 27.7000 

53 144:11:3 0.2778 0.2771 27.7100 

54 148:11:3 0.2780 0.2773 27.7300 

55 152:11:3 0.2783 0.2776 27.7600 

56 156:11:3 0.2784 0.2777 27.7700 

57 160:11:3 0.2784 0.2777 27.7700 

58 164:11:3 0.2784 0.2777 27.7700 

59 168:11:3 0.2785 0.2778 27.7800 

60 172:11:3 0.2787 0.2780 27.8000 

61 176:11:3 0.2788 0.2781 27.8100 

62 180:11:3 0.2790 0.2783 27.8300 

63 184:11:3 0.2790 0.2783 27.8300 

64 188:11:3 0.2791 0.2784 27.8400 

65 192:11:3 0.2792 0.2785 27.8500 

66 196:11:3 0.2793 0.2786 27.8600 

67 200:11:3 0.2794 0.2787 27.8700 

68 204:11:3 0.2795 0.2788 27.8800 

69 208:11:3 0.2795 0.2788 27.8800 

70 212:11:3 0.2795 0.2788 27.8800 

71 216:11:3 0.2797 0.2790 27.9000 

72 220:11:3 0.2798 0.2791 27.9100 

73 224:11:3 0.2799 0.2792 27.9200 

74 228:11:3 0.2800 0.2793 27.9300 
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Table C.2.7 End of Biodegradation Waste Sample – 4.400 tsf (continued) 

75 232:11:3 0.2800 0.2793 27.9300 

76 236:11:3 0.2801 0.2794 27.9400 

77 240:11:3 0.2802 0.2795 27.9500 

78 244:11:3 0.2803 0.2796 27.9600 

79 248:11:3 0.2804 0.2797 27.9700 

80 252:11:3 0.2805 0.2798 27.9800 

81 256:11:3 0.2806 0.2799 27.9900 

82 260:11:3 0.2806 0.2799 27.9900 

83 264:11:3 0.2807 0.2800 28.0000 

84 268:11:3 0.2809 0.2802 28.0200 

85 272:11:3 0.2809 0.2802 28.0200 

86 276:11:3 0.2810 0.2803 28.0300 

87 280:11:3 0.2811 0.2804 28.0400 

88 284:11:3 0.2811 0.2804 28.0400 

89 288:11:3 0.2811 0.2804 28.0400 

90 292:11:3 0.2812 0.2805 28.0500 

91 296:11:3 0.2813 0.2806 28.0600 

92 300:11:3 0.2814 0.2807 28.0700 

93 304:11:3 0.2815 0.2808 28.0800 

94 308:11:3 0.2815 0.2808 28.0800 

95 312:11:3 0.2815 0.2808 28.0800 

96 316:11:3 0.2816 0.2809 28.0900 

97 320:11:3 0.2816 0.2809 28.0900 

98 324:11:3 0.2816 0.2809 28.0900 

99 328:11:3 0.2817 0.2810 28.1000 

100 332:11:3 0.2817 0.2810 28.1000 

101 336:11:3 0.2817 0.2810 28.1000 

102 340:11:3 0.2818 0.2811 28.1100 

103 344:11:3 0.2818 0.2811 28.1100 

104 348:11:3 0.2819 0.2812 28.1200 

105 352:11:3 0.2819 0.2812 28.1200 

106 356:11:3 0.2819 0.2812 28.1200 

107 360:11:3 0.2819 0.2812 28.1200 

108 364:11:3 0.2820 0.2813 28.1300 

109 368:11:3 0.2821 0.2814 28.1400 

110 372:11:3 0.2822 0.2815 28.1500 

111 376:11:3 0.2822 0.2815 28.1500 

112 380:11:3 0.2823 0.2816 28.1600 
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Table C.2.7 End of Biodegradation Waste Sample – 4.400 tsf (continued) 

113 384:11:3 0.2824 0.2817 28.1700 

114 388:11:3 0.2825 0.2818 28.1800 

115 392:11:3 0.2825 0.2818 28.1800 

116 396:11:3 0.2826 0.2819 28.1900 

117 400:11:3 0.2827 0.2820 28.2000 

118 404:11:3 0.2827 0.2820 28.2000 

119 408:11:3 0.2828 0.2821 28.2100 

120 412:11:3 0.2830 0.2823 28.2300 

121 416:11:3 0.2831 0.2824 28.2400 

122 420:11:3 0.2832 0.2825 28.2500 

123 424:11:3 0.2832 0.2825 28.2500 

124 428:11:3 0.2833 0.2826 28.2600 

125 432:11:3 0.2833 0.2826 28.2600 

126 436:11:3 0.2834 0.2827 28.2700 

127 440:11:3 0.2835 0.2828 28.2800 

128 444:11:3 0.2836 0.2829 28.2900 

129 448:11:3 0.2836 0.2829 28.2900 

130 452:11:3 0.2836 0.2829 28.2900 

131 456:11:3 0.2837 0.2830 28.3000 

132 460:11:3 0.2838 0.2831 28.3100 

133 464:11:3 0.2838 0.2831 28.3100 

134 468:11:3 0.2839 0.2832 28.3200 

135 472:11:3 0.2839 0.2832 28.3200 

136 476:11:3 0.2839 0.2832 28.3200 

137 480:11:3 0.2840 0.2833 28.3300 

138 484:11:3 0.2840 0.2833 28.3300 

139 488:11:3 0.2840 0.2833 28.3300 

140 492:11:3 0.2840 0.2833 28.3300 

141 496:11:3 0.2840 0.2833 28.3300 

142 500:11:3 0.2841 0.2834 28.3400 

143 504:11:3 0.2841 0.2834 28.3400 

144 508:11:3 0.2841 0.2834 28.3400 

145 512:11:3 0.2841 0.2834 28.3400 

146 516:11:3 0.2842 0.2835 28.3500 

147 520:11:3 0.2842 0.2835 28.3500 

148 524:11:3 0.2842 0.2835 28.3500 

149 528:11:3 0.2842 0.2835 28.3500 

150 532:11:3 0.2843 0.2836 28.3600 
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Table C.2.7 End of Biodegradation Waste Sample – 4.400 tsf (continued) 

151 536:11:3 0.2843 0.2836 28.3600 

152 540:11:3 0.2844 0.2837 28.3700 

153 544:11:3 0.2844 0.2837 28.3700 

154 548:11:3 0.2844 0.2837 28.3700 

155 552:11:3 0.2845 0.2838 28.3800 

156 556:11:3 0.2846 0.2839 28.3900 

157 560:11:3 0.2847 0.2840 28.4000 

158 564:11:3 0.2847 0.2840 28.4000 

159 568:11:3 0.2847 0.2840 28.4000 

160 572:11:3 0.2847 0.2840 28.4000 

161 576:11:3 0.2848 0.2841 28.4100 

162 580:11:3 0.2848 0.2841 28.4100 

163 584:11:3 0.2848 0.2841 28.4100 

164 588:11:3 0.2849 0.2842 28.4200 

165 592:11:3 0.2849 0.2842 28.4200 

166 596:11:3 0.2849 0.2842 28.4200 

167 596:11:3 0.2849 0.2842 28.4200 

168 600:11:03 0.2849 0.2842 28.4200 

169 604:11:03 0.2849 0.2842 28.4200 

170 608:11:03 0.2849 0.2842 28.4200 

171 612:11:03 0.2850 0.2843 28.4300 

172 616:11:03 0.2850 0.2843 28.4300 

173 620:11:03 0.2850 0.2843 28.4300 

174 624:11:03 0.2850 0.2843 28.4300 

175 628:11:03 0.2850 0.2843 28.4300 

176 632:11:03 0.2851 0.2844 28.4400 

177 636:11:03 0.2851 0.2844 28.4400 

178 640:11:03 0.2851 0.2844 28.4400 

179 644:11:03 0.2851 0.2844 28.4400 

180 648:11:03 0.2852 0.2845 28.4500 

181 652:11:03 0.2853 0.2846 28.4600 

182 656:11:03 0.2854 0.2847 28.4700 

183 660:11:03 0.2854 0.2847 28.4700 

184 664:11:03 0.2854 0.2847 28.4700 

185 668:11:03 0.2854 0.2847 28.4700 

186 672:11:03 0.2855 0.2848 28.4800 

187 676:11:03 0.2856 0.2849 28.4900 

188 680:11:03 0.2856 0.2849 28.4900 
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Table C.2.7 End of Biodegradation Waste Sample – 4.400 tsf (continued) 

189 688:11:03 0.2856 0.2849 28.4900 

190 692:11:03 0.2856 0.2849 28.4900 

191 696:11:03 0.2856 0.2849 28.4900 

192 700:11:03 0.2856 0.2849 28.4900 

193 704:11:03 0.2857 0.2850 28.5000 

194 708:11:03 0.2857 0.2850 28.5000 

195 712:11:03 0.2857 0.2850 28.5000 

196 716:11:03 0.2857 0.2850 28.5000 

197 720:11:03 0.2857 0.2850 28.5000 

198 724:11:03 0.2857 0.2850 28.5000 

199 728:11:03 0.2857 0.2850 28.5000 

200 732:11:03 0.2857 0.2850 28.5000 

201 736:11:03 0.2857 0.2850 28.5000 

202 740:11:03 0.2857 0.2850 28.5000 

203 744:11:03 0.2858 0.2851 28.5100 

204 748:11:03 0.2858 0.2851 28.5100 

205 752:11:03 0.2859 0.2852 28.5200 

206 756:11:03 0.2859 0.2852 28.5200 

207 760:11:03 0.2859 0.2852 28.5200 

208 764:11:03 0.2859 0.2852 28.5200 

209 768:11:03 0.2859 0.2852 28.5200 

210 772:11:03 0.2859 0.2852 28.5200 

211 776:11:03 0.2859 0.2852 28.5200 

212 780:11:03 0.2859 0.2852 28.5200 

213 784:11:03 0.2859 0.2852 28.5200 

214 788:11:03 0.2859 0.2852 28.5200 

215 792:11:03 0.2859 0.2852 28.5200 

216 796:11:03 0.2859 0.2852 28.5200 

217 800:11:03 0.2859 0.2852 28.5200 

218 804:11:03 0.2859 0.2852 28.5200 

219 808:11:03 0.2859 0.2852 28.5200 

220 812:11:03 0.2859 0.2852 28.5200 

221 816:11:03 0.2859 0.2852 28.5200 

222 820:11:03 0.2859 0.2852 28.5200 

223 824:11:03 0.2859 0.2852 28.5200 

224 828:11:03 0.2860 0.2853 28.5300 

225 832:11:03 0.2860 0.2853 28.5300 

226 836:11:03 0.2860 0.2853 28.5300 
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Table C.2.7 End of Biodegradation Waste Sample – 4.400 tsf (continued) 

227 840:11:03 0.2860 0.2853 28.5300 

228 844:11:03 0.2861 0.2854 28.5400 

229 848:11:03 0.2861 0.2854 28.5400 

230 852:11:03 0.2862 0.2855 28.5500 

231 856:11:03 0.2862 0.2855 28.5500 

232 860:11:03 0.2862 0.2855 28.5500 

233 864:11:03 0.2862 0.2855 28.5500 

234 868:11:03 0.2863 0.2856 28.5600 

235 872:11:03 0.2863 0.2856 28.5600 

236 876:11:03 0.2863 0.2856 28.5600 

237 880:11:03 0.2863 0.2856 28.5600 

238 884:11:03 0.2863 0.2856 28.5600 

239 888:11:03 0.2864 0.2857 28.5700 

240 892:11:03 0.2864 0.2857 28.5700 

241 896:11:03 0.2864 0.2857 28.5700 

242 900:11:03 0.2864 0.2857 28.5700 

243 904:11:03 0.2864 0.2857 28.5700 

244 908:11:03 0.2864 0.2857 28.5700 

245 912:11:03 0.2865 0.2858 28.5800 

246 916:11:03 0.2865 0.2858 28.5800 

247 920:11:03 0.2865 0.2858 28.5800 

248 924:11:03 0.2865 0.2858 28.5800 

249 928:11:03 0.2865 0.2858 28.5800 

250 932:11:03 0.2865 0.2858 28.5800 

251 936:11:03 0.2866 0.2859 28.5900 

252 940:11:03 0.2866 0.2859 28.5900 

253 944:11:03 0.2866 0.2859 28.5900 

254 948:11:03 0.2866 0.2859 28.5900 

255 952:11:03 0.2866 0.2859 28.5900 

256 956:11:03 0.2866 0.2859 28.5900 

257 960:11:03 0.2866 0.2859 28.5900 

258 964:11:03 0.2866 0.2859 28.5900 

259 968:11:03 0.2866 0.2859 28.5900 

260 972:11:03 0.2866 0.2859 28.5900 

261 976:11:03 0.2866 0.2859 28.5900 

262 980:11:03 0.2866 0.2859 28.5900 

263 984:11:03 0.2866 0.2859 28.5900 

264 988:11:03 0.2866 0.2859 28.5900 
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Table C.2.7 End of Biodegradation Waste Sample – 4.400 tsf (continued) 

265 992:11:03 0.2866 0.2859 28.5900 

266 996:11:03 0.2866 0.2859 28.5900 

267 1000:11:03 0.2867 0.2860 28.6000 

268 1004:11:03 0.2867 0.2860 28.6000 

269 1008:11:03 0.2867 0.2860 28.6000 

270 1012:11:03 0.2867 0.2860 28.6000 

271 1016:11:03 0.2867 0.2860 28.6000 

272 1020:11:03 0.2867 0.2860 28.6000 

273 1024:11:03 0.2867 0.2860 28.6000 

274 1028:11:03 0.2867 0.2860 28.6000 

275 1032:11:03 0.2868 0.2861 28.6100 

276 1036:11:03 0.2868 0.2861 28.6100 

277 1040:11:03 0.2868 0.2861 28.6100 

278 1044:11:03 0.2869 0.2862 28.6200 

279 1048:11:03 0.2869 0.2862 28.6200 

280 1052:11:03 0.2869 0.2862 28.6200 

281 1056:11:03 0.2869 0.2862 28.6200 

282 1060:11:03 0.2869 0.2862 28.6200 

283 1064:11:03 0.2869 0.2862 28.6200 

284 1068:11:03 0.2869 0.2862 28.6200 

285 1072:11:03 0.2869 0.2862 28.6200 

286 1076:11:03 0.2869 0.2862 28.6200 

287 1080:11:03 0.2870 0.2863 28.6300 

288 1084:11:03 0.2870 0.2863 28.6300 

289 1088:11:03 0.2870 0.2863 28.6300 

290 1092:11:03 0.2870 0.2863 28.6300 

291 1096:11:03 0.2870 0.2863 28.6300 

292 1100:11:03 0.2870 0.2863 28.6300 

293 1104:11:03 0.2871 0.2864 28.6400 

294 1108:11:03 0.2871 0.2864 28.6400 

295 1112:11:03 0.2871 0.2864 28.6400 

296 1116:11:03 0.2871 0.2864 28.6400 

297 1120:11:03 0.2871 0.2864 28.6400 

298 1124:11:03 0.2871 0.2864 28.6400 

299 1128:11:03 0.2871 0.2864 28.6400 

300 1132:11:03 0.2871 0.2864 28.6400 

301 1136:11:03 0.2871 0.2864 28.6400 

302 1140:11:03 0.2871 0.2864 28.6400 
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Table C.2.7 End of Biodegradation Waste Sample – 4.400 tsf (continued) 

303 1144:11:03 0.2871 0.2864 28.6400 

304 1148:11:03 0.2871 0.2864 28.6400 

305 1152:11:03 0.2872 0.2865 28.6500 

306 1156:11:03 0.2872 0.2865 28.6500 

307 1160:11:03 0.2872 0.2865 28.6500 

308 1164:11:03 0.2872 0.2865 28.6500 

309 1168:11:03 0.2872 0.2865 28.6500 

310 1172:11:03 0.2872 0.2865 28.6500 

311 1176:11:03 0.2872 0.2865 28.6500 

312 1180:11:03 0.2872 0.2865 28.6500 

313 1184:11:03 0.2873 0.2866 28.6600 

314 1188:11:03 0.2873 0.2866 28.6600 

315 1192:11:03 0.2873 0.2866 28.6600 

316 1196:11:03 0.2873 0.2866 28.6600 

317 1200:11:03 0.2873 0.2866 28.6600 

318 1204:11:03 0.2873 0.2866 28.6600 

319 1208:11:03 0.2873 0.2866 28.6600 

320 1212:11:03 0.2873 0.2866 28.6600 

321 1216:11:03 0.2873 0.2866 28.6600 

322 1220:11:03 0.2873 0.2866 28.6600 

323 1224:11:03 0.2873 0.2866 28.6600 

324 1228:11:03 0.2873 0.2866 28.6600 

325 1232:11:03 0.2873 0.2866 28.6600 

326 1236:11:03 0.2873 0.2866 28.6600 

327 1240:11:03 0.2873 0.2866 28.6600 

328 1244:11:03 0.2873 0.2866 28.6600 

329 1248:11:03 0.2874 0.2867 28.6700 

330 1252:11:03 0.2874 0.2867 28.6700 

331 1256:11:03 0.2874 0.2867 28.6700 

332 1260:11:03 0.2874 0.2867 28.6700 

333 1264:11:03 0.2874 0.2867 28.6700 

334 1268:11:03 0.2874 0.2867 28.6700 

335 1272:11:03 0.2874 0.2867 28.6700 

336 1276:11:03 0.2874 0.2867 28.6700 

337 1280:11:03 0.2874 0.2867 28.6700 

338 1284:11:03 0.2874 0.2867 28.6700 

339 1288:11:03 0.2874 0.2867 28.6700 

340 1292:11:03 0.2874 0.2867 28.6700 
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Table C.2.7 End of Biodegradation Waste Sample – 4.400 tsf (continued) 

341 1296:11:03 0.2875 0.2868 28.6800 

342 1300:11:03 0.2875 0.2868 28.6800 

343 1304:11:03 0.2875 0.2868 28.6800 

344 1308:11:03 0.2875 0.2868 28.6800 

345 1312:11:03 0.2875 0.2868 28.6800 

346 1316:11:03 0.2875 0.2868 28.6800 

347 1320:11:03 0.2876 0.2869 28.6900 

348 1324:11:03 0.2876 0.2869 28.6900 

349 1328:11:03 0.2876 0.2869 28.6900 

350 1332:11:03 0.2876 0.2869 28.6900 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

376 

 

APPENDIX D 

CALIBRATION RECORDS FOR MEASURING DEVICES 

 

Appendix D contains calibration records for measuring devices used during the 

experiment.    Equipment calibration was performed by the manufacturer, or an 

accredited laboratory to ensure conformance with equipment specifications for 

performance.    

Figures D.1 through D.3 represent calibration certificates for the composite, 

readily, and moderately degradable gas flow meters, respectively, used for the 

experiment.  Gas flow meters, Sierra Instruments model MicroTrak 101, were calibration 

by the manufacturer prior to use. Figures D.4 through D.8 represent calibration for gas 

characterization equipment, Landtec GEM2000+, which was performed at periodic 

intervals and performed by Pine Environmental of Windsor, New Jersey. Figures D.9 

through D.16 represent calibration certificates provided by Humboldt for digital dial 

gauge indicators (model HM4470.10) used for consolidation testing.  
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Figure D.1  Calibration Record for Gas Flow Meter – Composite  
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Figure D.2  Calibration Record for Gas Flow Meter – Readily Degradable 
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Figure D.3  Calibration Record for Gas Flow Meter – Moderately Degradable 
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Figure D.4  Calibration Record for GEM 2000+ Gas Characterization Meter –   

12DEC2013 
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Figure D.5  Calibration Record for GEM 2000+ Gas Characterization Meter – 

12DEC2013 (continued) 
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Figure D.6  Calibration Record for GEM 2000+ Gas Characterization Meter – 

23JAN2014 
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Figure D.7  Calibration Record for GEM 2000+ Gas Characterization Meter – 

23JAN2014 (continued) 
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Figure D.8  Calibration Record for GEM 2000+ Gas Characterization Meter – 

31JUL2014 
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Figure D.9  Calibration Record for Digital Dial Gauge Indicator 1  
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Figure D.10  Calibration Record for Digital Dial Gauge Indicator 2 
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Figure D.11  Calibration Record for Digital Dial Gauge Indicator 3 



388 

 

 

 
Figure D.12  Calibration Record for Digital Dial Gauge Indicator 4 
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Figure D.13  Calibration Record for Digital Dial Gauge Indicator 5 
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Figure D.14  Calibration Record for Digital Dial Gauge Indicator 6 
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Figure D.15  Calibration Record for Digital Dial Gauge Indicator 7 
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Figure D.16  Calibration Record for Digital Dial Gauge Indicator 8
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APPENDIX E 

STANDARD FORMS AND PARTS LIST TO REPRODUCE TEST 

 

The author created example instructions and forms to provide repeatability of the 

method used for this work and future works. Example instructions and forms used by 

author to guide establishment of bioreactors are included under E.1 – Work Plan and E.2 

– Standard Forms Used for Commissioning Bioreactors and Test Equipment.  

Recognizing the sensitivity of the microorganisms controlling the biodegradation process, 

it was imperative that the required temperature was maintained, and continuous records 

for gas production and compression testing also be maintained.  The author created an 

Emergency Workplan which was employed during the experiment and included as E.3 – 

Emergency Workplan.  A list of parts to construct the test set up and bioreactors has also 

been included as E.4 – Parts List. 
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E.1  Work Plan and Testing Instructions 

 
Figure E.1.1  Standard Work Plan for Research (Page 1 of 3) 
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Figure E.1.2  Standard Work Plan for Research (Page 2 of 3) 
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Figure E.1.3  Standard Work Plan for Research (Page 3 of 3) 
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E.2  Standard Forms Used for Commissioning Bioreactors and Test Equipment 

 
 

Figure E.2.1  Standard Form A – Sample Preparation 
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Figure E.2.2  Standard Form B – Moisture Conditioning Record 
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Figure E.2.3  Standard Form C – Manual Water Bath Temperature Log 
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Figure E.2.4  Standard Form D – Leachate Recirculation Record 
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Figure E.2.5  Standard Form E – Consolidation Record 
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Figure E.2.6  Standard Form E – (C+H)/L Testing Record 
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Figure E.2.7  Standard Form G – Gas Flow Record 
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Figure E.2.8  Standard Form H – Gas Composition Record 
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Figure E.2.9  Standard Form I – Bioreactor Mass Balance Record 
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Figure E.2.10  Sample Daily Inspection Checklist 
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E.3  Emergency Workplan 

 

Figure E.3.1  Emergency Workplan 
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Figure E.2.2  Attachment 1 to Emergency Workplan 
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E.4  Parts List 

Table E.4.1  Parts List  

Item Vendor Part No # Used Use 

Reactor ports Cole-Parmer EW-06259-10 34 
Fitting to connect to gas 

and leachate ports 

Gas bag, 1 L SKC 231-01 3 Gas collection 

Gas bag, 5 L SKC 231-05 3 Gas collection 

Gas bag, 50 L SKC 231-50 5 Gas collection 

Reactor jar 
United States 

Plastic Corp. 
71169 34 Sample jars 

Gas Bag Valve 
Upchurch 

Scientific 
P-721A 4 

Gas valve to close off 

gas bag 

Marine Sealant 3M 
Auto/Marine 

Sealant 
12 

Waterproof seal of 

leachate ports 

Tubing Cole-Parmer EW-06408-50 2 
Tubing to connect 

leachate and gas 

Leachate bag 
VWR 

Scientific 

68000-580 

(Baxter 

2B8122) 

4 Collect leachate 

Tubing clamps 
Speedy 

Products 
AA 34 

Clamp connection for 

leachate port 

Tubing clamps 
Speedy 

Products 
B 34 

Clamp connection for 

gas port 

Tubing clamps 
Speedy 

Products 
BB 34 

Clamp connection for 

recirculation port 

Fitting from 

tubing to gas bag 

McMaster-

Carr 
51465K117 5 

Convert gas pipeing 1/4" 

diam to 5/16" to fit gas 

bag 

Gas bag valve 
Upchurch 

Scientific 
P-624 34 Open/Close Gas Valve 

Tubing (gas) Cole-Parmer EW-06408-50 4 
Connect gas bags to 

totalizer and gas bag 

Tubing (leachate) Cole-Parmer EW-06408-03 4 
Connect leachate to 

circulation line 

Tubing connector 
McMaster-

Carr 
5463K606 34 

Connect gas bags to 

totalizer and gas bag 

leachate sampling 

port 

McMaster-

Carr 
5463K532 34 

Connect leachate to 

circulation line 

Gas totalizer 
Sierra 

Instruments 
Microtrak 101 3 

Methane flow rate 

measurement 

Water heater Humbolt H-2986A 2 Heat water bath 
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Table E.4.2  Parts List (Continued) 

Item Vendor Part No # Used Use 

RS232 connection 

for gas totalizer 

Sierra 

Instruments 
RS232 3 

Connection to data 

acquisition hub 

Temperature 

control data 

logger via USB 

Thermoworks TW-USB-1 2 
Water temperature 

logging 

Stock tank Agway 

2x2x2 Round 

End Stock 

Tank 

2 Water bath 

Water 

recirculation 

pump 

Beckett 
80217 - 325 

gph pump 
2 

Continuous circulation 

of water bath water 

Computer Lenovo 

ThinkCentre 

Edge 72 

3484FDU 

1 Data logging 

Monitor Samsung S22B150N 1 Office 

UPS Power 

Supply 
CyberPower 

LCD Series 

UPS 1500VA 

900W 

1 Backup power 

USB Extension 

cords 
Mediabridge 

Hi-Speed 

USB 2.0 A-

Male to A-

Female 

10 Extension Cord 

Plastic Dip Plastic Dip Black 4 
Plastic lining of tub for 

corrosion resistance 

Digital Scale Ohaus CL2000 1 
Scale to measure 

weights 

Consolidation 

Frame 
Humboldt HM-1000 8 

Frame for 

consolidometer 

Floor Mounted 

Stand for 3 

Consolidometers 

Humboldt HM-1100.3 3 
Bench for 

consolidometers 

2.5" dia. Fixed 

Ring 

Consolidation 

Cell 

Humboldt HM-1220.25 8 Consolidation ring 

16 TSF weight set Humboldt HM-1120 8 
Calibrated weights for 

consolidation test 

Digital dial gauge 

indicator, 1" x 

.0001" 

Humboldt HM-4469.10 8 
Dial gauge to measure 

strain 

Cable for Digital 

Indicator 
Humboldt HM-4469C 8 

Cable to connect to data 

logger 
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Table E.4.3  Parts List (Continued) 

Item Vendor Part No # Used Use 

4-Channel Digital 

Data Logger 
Humboldt 

HM-

2330D.3F 
2 

Data logger to capture 

dial gauge readings 

HTMS 

Consolidation 

Reporting 

Software 

Humboldt HM-1100SW 1 
Computer software to 

plot results 

USB to RS485 

Serial Cable 
Humboldt HM-000379 1 

Connect data logger to 

computer 

Ethernet Cable Humboldt HM-000376 1 Connect to printer 

Filter Paper Humboldt HM-4189 1 
Filter paper for 

consolidation test 

Gas Composition 

meter 
Landtec GEM2000+ 1 Gas composition 

Moisture Sensors IMKO PICO64 4 

Non-destructive 

moisture content of 

sample 
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APPENDIX F 

DERIVATION OF EQUATIONS 

 

Derivations for equations proposed throughout this work are provided herein.  

 

Derivation of Equation 3.2 – Percent CO2 

4 2( )total CH COQ Q Q 
 

4

4
( )

100
CH

CH total

P
Q Q 

 

4

2 4 4

4

( )

100

CH

CO total CH CH
CH

Q
Q Q Q Q

P
     

2 4

4

1
( 1)

100

CO CH
CH

Q Q
P

             (3.2)

 

 

Derivation of Equation 3.4 - Raghu and Disbrow Gas Production Model – Phase 1 

For straight line portion (Phase 1 - 0 to t1 years), Let Vo = peak of gas production curve 

Slope of line = Vo  

For any time, tn, the value of y-ordinate = tn Vo 

Therefore area under curve, Vphase1 = ½ tn x (tnVo) = Votn
2
/2    (3.4) 
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Derivation of Equation 3.5 - Raghu and Disbrow Gas Production Model – Phase 2 

For decay portion of curve (Phase 2 - 10 to t2 years):    

Vphase2 = 1

1

( )

1

nt

k t t

t

V e dt               

Where V1 = V0 x t1 

Assuming t1 = 10 years,  V1 = 10Vo 

As V1 is a constant, it can be moved in front of integral, so Vphase2 = 1

1

( )

1

nt

k t t

t

V e dt 

  

Let u = -k(t-t1) 

Therefore, Vphase2 = 

1

1

nt

u

t

V e dt  

Since t1 = 10, u = -k(t-10) = -kt + 10k 

du= -k dt 

dt = -du/k 

Substituting, Vphase2 = 

1

1

nt

u

t

du
V e

k


  

Integrating, Vphase2 = 1 uV
e C

k


  

Vphase2 = ( 10)1 k tV
e C

k

 
         (3.5) 
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Derivation of Equation 3.6 - Raghu and Disbrow Gas Production Model – Total Gas 

Production 

 

Vtotal =  Vphase 1 + Vphase 2 = 

2

2

o nV t
+ ( 10)1 k tV

e C
k

 


 

Substituting V1 = 10Vo,  
    

Vtotal =  
2

( 10)1 10
( )

2

k t

o

t
V e C

k

       (3.6)
 

 

Derivation of Equation 6.7 - Composite Waste Decay Modifier by Weighted Average 

total r m sV V V V      

Where r

r

k t

r oV V e

 

and m

m

k t

m oV V e




 

and s

s

k t

s oV V e




 

Then, 
ro r oV n V  

Likewise 
mo m oV n V

 

and 
so s oV n V

 

Therefore, c m srk t k t k tk t

total o r o m o s oV V e n V e n V e n V e
       

Dropping out Vo, c m srk t k t k tk t

r mo se n e n e n e
      

Taking loge of entire expression, 
c r r m m s sk n k n k n k         (6.7)
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Derivation of Equation 6.14 – Relationship of Biodegradation Ratio (B), Inert Ratio 

(R), and Strain (εz)

 The biodegradation ratio is expressed as 
(1 )

H
B

H R





 

Rearranging, (1 )H BH R    

Strain is defined as  
z

H

H



  

Therefore, substituting εz, (1 )zH H BH R      

Rearranging, (1 )z B R                     (6.14) 

 

Derivation of Equation 6.17 - Relationship of Field-Calculated Decay Constant, k, 

from Settlement Curves 

For a unit of waste, initial volume = Vo and volume of waste following degradation = Vf 

Strain defined as 
o f

z

o

V V

V





 

Where  
kt

f oV V e
 

Therefore, 

(1 )
1

kt
kto

z

o

V e
e

V





    

Subtracting 1 from both sides, 1 kt

z e     

Multiplying by -1 and taking natural log of both sides, log (1 ) log ( )kt

e z e e    

Simplifying,  log (1 )e z kt    

Then, k may be determined as the slope of the line between two values, or: 

     
1 2

2 1

log (1 ) log (1 )e z e z
k

t t

   



                         (6.17)
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Derivation of Equation 7.2 - Percent Biodegradation (%B) Considering Density 

By definition, weight = Volume x Unit weight 

Subscripts “i” for initial and “f” for final are used in the derivation of the expression.  

Therefore, Wf= γf Vf          

and Wi= γi Vi        

Dividing Wf/Wi,   (Wf/Wi) = (γf/γi) (Vf/Vi)       

Rearranging, (Vf/Vi) = (Wf/Wi)/ (γf/γi)       

Let (γf/γi) = η        

Substituting, (vf/vi) = (Wf/Wi)/ η       

Assuming that (vf/vi) =  (Wf/Wi)      

Percent Biodegradation by volume = 100% *  [(vf -vi) /vi]  = (100% * [(vf/vi)-1]   

And Percent Biodegradation converted, %Bconverted = 100% * ((1/ η)(Wf/Wi)]-1)  

Substituting η,  % [1 ( )] 100%
i f

converted

f i

W
B

W




                            (7.2) 
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APPENDIX G 

CALCULATIONS TO DETERMINE THEORETICAL GAS PRODUCTION AND 

END OF EXPERIMENT 

G.1  Calculations to Determine Theoretical Gas Production   

Calculations for theoretical total gas quantity were conducted using the lambda method of 

gas production as modified by Lifrieri and detailed in Chapter 3. Calculations are 

presented as Tables G.1, G.2, and G.3 for composite, readily, and moderately degradable 

bioreactors, respectively. A theoretical total gas production of 6.23, 9.04, and 8.27 cubic 

feet per pound waste was determined for composite, readily, and moderately degradable 

bioreactor sets, respectively. Theoretical total methane gas volumes of 3.43, 4.97, and 

4.55 cubic feet per pound waste were predicted based on stoichiometry which predicts 

methane comprises 55% of the total gas.  The values were used to assess the methane 

remaining, percent total theoretical remaining, and evaluate cumulative production from 

flow meters as presented in Appendix B.2. 

Computations for total theoretical gas production of slowly bioreactors are provided as 

Table G.4 and indicate a potential of 11.29 cubic feet per pound waste. However, it has 

been determined by the author and others (Shah et. al 2007, Ishigaki et al. 2003, 

Tchobanoglous 1993, Albertson et. al, 1987) that the use of models to predict the gas 

production for plastics (which comprise “slowly” bioreactors used during this work) is 

inappropriate as models greatly overestimates the theoretical gas production. Detailed 

discussion is presented in Chapter 3.  Durmusoglu et al. (2005) recommend a total 

theoretical gas potential of 7.83 ft
3
/lb

 
for slowly decomposable wastes.  
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Table G.1  Calculation for Theoretical Maximum Gas Production for Composite 

Bioreactors by Lambda Method 

S
T

E
P

 1
 

Step 1: Break out composition into % descriptive modifiers 

Inputted Calculated 

Waste Type % MSW 
Wet 

Wt [lb] 
Vi 

% of 

Type 

Dry 

weight 

Wi 

[lb] 

Total 

Wt 

[lb] 

Food R 19% 19 
Vr = 25% 

9.62 
Wr = 12.65 

Yard Waste R 6% 6 3.04 

Wood  M 2% 2 

Vm = 43% 

1.01 

Wm = 21.77 Paper M 38% 38 19.23 

Textiles M 3% 3 1.52 

Plastic S 13% 13 Vs = 13% 6.58 Ws = 6.58 

Soil ND 8% 

 
Vn = 19% 

 
Wn = 0.00 

Glass ND 11% 

  Decomposable Moist Wt= 81  Vt =   100% 41.00 Dry Wt 

 
Vi = Volume of Type of 

Waste Wi = Weight of Type of Waste (based on 100 lb sample) 

Average moisture content of waste, m.c. =  40% 
 

      NOTE: moisture content defined as Wwater/Wtot, unlike geotech definition of  Ww/Wdry 

For 100lb wet sample, weight of water = Wtot x m.c. = 0.4 * 100lb = 40 lb 

Wt of decomposable fraction - all water contained in waste= 81 - 40 lb = 41 lb 

S
T

E
P

 2
 Step 2: Determine Lambda Factors Characteristic equation:  Vti = Vi e

-(λit)
 

λr = 0.1386 

      λm = 0.0231 

      λs = 0.0173 

      

S
T

E
P

 3
 

Step 3: Select year of interest to determine modifier, Vi  (t=173 years) 

  For this example, use 173 year for ultimate gas production at end of decomposition 

Readily: Vr@173yrs = (25) e
-[(0.1386)(173)]

 =  9.65E-12 

 Moderately: Vm@173yrs = (43) e
-[(0.0231)(173)]

 =  7.90E-03 

 Slowly: Vs@173yrs = (13) e
-[(0.0173)(173)]

 =  6.52E-03  

S
T

E
P

 4
 

Step 4: Determine % decomposed 

       % decomposed =  (Vi - Vit)/Vi   

     Readily: %Dr = (0.25-(9.56E-12))/0.25 x 100% = 100%  

  Moderately: %Dm = (0.43-(7.90E-03))/0.43 x 100% = 99%  

  Slowly: %Ds = (0.13-(6.52E-03))/0.13 x 100% = 95%  

  

S
T

E
P

 5
 

Step 5: Determine (dry) weight of decomposed wastes 

     Weight of decomposed weight = % decomposed x dry weight fraction 

Readily: 100% x (12.65 lb) 12.65 lb 

    Moderately: 99% x (21.77  lb) 21.77 lb 

    Slowly: 95% x (6.58 lb) 6.46 lb 

    Total decomposed weight= 40.88 lb  
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Table G.1  Calculation for Theoretical Maximum Gas Production for Composite 

Bioreactors by Lambda Method (continued) 

 
S

T
E

P
 6

 Step 6: Determine gas produced using stoichiometric reaction masses  

Reaction Masses from stoichiometry (Calculated in Table 3.1) 

   CaHbOcNd = 1106.5 
 

CH4 = 406.8 

 

NH3 = 17 

 H2O = 277.2 
 

CO2 = 959.8 

    

S
T

E
P

 7
 

Step 7: Determine volume of gas produced up to time, t    (30 years for example) 

Volume methane produced, V CH4 = (MCH4)(Wdegraded) / [(MCaHbOcNd)(WCH4) 

  VCH4 = [(406.8)(40.88)] / [(1106.5)(0.0448)] = 335.47 ft
3
  

   VCO2 = [(959.8)(40.88)] / [(1106.5)(0.1234)] =  287.35 ft
3
  

 Total gas, Vtotal = VCH4 + VCO2 =  622.82 ft
3
 

   

 

% CH4 = 54% 

 

%CO2  = 46% 

   Theoretical gas produced per lb waste up to 173 years= Vtotal/sample weight   

At end of practical biodegradation, theoretical total gas produced = 622.82 

Gas production at time t (173 years) = 622.82 ft
3
/100lb = 6.23 ft

3
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Table G.2  Calculation for Theoretical Maximum Gas Production for Readily 

Degradable Bioreactors by Lambda Method  

T
E

P
 1

 
Step 1: Break out composition into % descriptive modifiers 

Inputted Calculated 

Waste Type 
% 

MSW 

Wet Wt 

[lb] 
Vi 

% of 

Type 

Dry 

weight 

Wi 

[lb] 

Wt of 

Type 

Food R 76% 76 
Vr = 100% 

45.60 
Wr = 60.00 

Yard Waste R 24% 24 14.40 

Wood  M 0% 0 

Vm = 0% 

0 

Wm = 0 Paper M 0% 0 0 

Textiles M 0% 0 0 

Plastic S 0% 10 Vs = 0% 0 Ws = 0 

Soil ND 0% 

 
Vn = 0% 

 
Wn = 0 

Glass ND 0% 

  Decomposable Moist Wt= 100  Vt =   100% 60 Dry Wt 

 
Vi = Volume of Type of Waste Wi = Weight of Constituent (based on 100 lb sample) 

For 100lb wet sample, wet weight = % of MSW 

Average moisture content of waste, m.c. =  40% 
 

  For 100lb wet sample, weight of water = Wtot x m.c. = 0.4 * 100lb = 40 lb 

Wt of decomposable fraction - all water contained in waste= 100 - 40 lb = 60 lb 

S
T

E
P

 2
 Step 2: Determine Lambda Factors Characteristic equation:  Vti = Vi e

-(λit)
 

λr = 0.1386 

      λm = 0.0231* (*not used since only readily waste considered) 

λs = 0.0173* (*not used since only readily waste considered) 

S
T

E
P

 3
 

Step 3: Select year of interest to determine modifier, Vi  (t=173 years) 

  For this example, use 30 year  

Readily: Vr@173yrs = (100%) e
-[(0.1386)(173)]

 =  3.859E-09 

 Moderately: Vm@173yrs = (0%) e
-[(0.0231)(173)]

 =  - (see * note above) 

 Slowly: Vs@173yrs = (0%) e
-[(0.0173)(173)]

 =  - (see * note above)  

S
T

E
P

 4
 

Step 4: Determine % decomposed 

       % decomposed =  (Vi - Vit)/Vi   

     Readily: %Dr = (1.0-(3.859E-09))/1.0 x 100% = 100%  

  Moderately: %Dm = 0* -  

  Slowly: %Ds = 0* -  

  

S
T

E
P

 5
 

Step 5: Determine (dry) weight of decomposed wastes 

     Weight of decomposed weight = % decomposed x dry weight fraction 

Readily: 100% x (60.00 lb) 60 lb 

    Moderately: 0* 0 lb 

    Slowly: 0* 0 lb 

    Total decomposed weight= 60.00 lb  
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Table G.2  Calculation for Theoretical Maximum Gas Production for Readily 

Degradable Bioreactors by Lambda Method (continued) 

S
T

E
P

 6
 Step 6: Determine gas produced using stoichiometric reaction masses  

Reaction Masses from stoichiometry  

   CaHbOcNd = 475.7 
 

CH4 = 170.27 

 

NH3 = 17 

 H2O = 127.0 
 

CO2 = 415.34 

    

S
T

E
P

 7
 

Step 7: Determine volume of gas produced up to time, t    (173 years for 

example) 

Volume methane produced, V CH4 = (MCH4)(Wdegraded) / [(MCaHbOcNd)(WCH4) 

  VCH4 = [(170.27)(60)] / [(475.7)(0.0448)] = 479.37 ft
3
  

   VCO2 = [(415.34)(60)] / [(475.7)(0.1234)] =  424.53 ft
3
  

 Total gas, Vtotal = VCH4 + VCO2 =  903.9 ft
3
 

   

 

% CH4 = 53% 

 

%CO2  = 47% 

   Theoretical gas produced per lb waste up to 173 years= Vtotal/sample weight   

At end of practical biodegradation, theoretical total gas produced = 

Gas production at time t (173 years) = 903.9 ft
3
/100lb = 9.04 ft

3
/lb 
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Table G.3  Calculation for Theoretical Maximum Gas Production for Moderately 

Bioreactors by Lambda Method  

T
E

P
 1

 
Step 1: Break out composition into % descriptive modifiers 

Inputted Calculated 

Waste Type % MSW 
Wet 

Wt [lb] 
Vi 

% of 

Type 

Dry 

weight 

Wi 

[lb] 

Wt of 

Type 

Food R 0% 0 

Vr = 0% 
0 

Wr = 0 Yard 

Waste 
R 

0% 0 0 

Wood  M 5% 0 

Vm = 100% 

3.00 

Wm = 60 Paper M 88% 0 53.40 

Textiles M 7% 0 3.60 

Plastic S 0% 0 Vs = 0% 0 Ws = 0 

Soil ND 0% 

 
Vn = 0% 

0 
Wn = 0.00 

Glass ND 0% 

 

0 

Decomposable Moist Wt= 100  Vt =   100% 60 Dry Wt 

 
Vi = Volume of Type of Waste 

Wi = Weight of Constituent (based on 100 lb 

sample) 

Average moisture content of waste, m.c. =  40% 
 

  For 100lb wet sample, weight of water = Wtot x m.c. = 0.4 * 100lb = 40 lb 

Wt of decomposable fraction - all water contained in waste= 100 - 40 lb = 60 lb 

S
T

E
P

 2
 Step 2: Determine Lambda Factors Characteristic equation:  Vti = Vi e

-(λit)
 

λr = 0.1386* (*not used since only moderately waste considered) 

λm = 0.0231 

      λs = 0.0173* (*not used since only moderately waste considered) 

S
T

E
P

 3
 

Step 3: Select year of interest to determine modifier, Vi  (t=173 years) 

  For this example, use 173 year  

Readily: Vr@173yrs = (0%) e
-[(0.1386)(173)]

 =  0 

 Moderately: Vm@173yrs = (100%) e
-[(0.0231)(173)]

 =  1.84E-02 

 Slowly: Vs@173yrs = (0%) e
-[(0.0173)(173)]

 =  0  

S
T

E
P

 4
 

Step 4: Determine % decomposed 

       % decomposed =  (Vi - Vit)/Vi   

     Readily: %Dr = 0* 0  

  Moderately: %Dm = (1-(1.84E-02))/1 x 100% = 98%  

  Slowly: %Ds = 0* 0  

  

S
T

E
P

 5
 

Step 5: Determine (dry) weight of decomposed wastes 

     Weight of decomposed weight = % decomposed x dry weight fraction 

Readily: 0*  lb 

    Moderately: 98% x 60.00  lb 58.8 lb 

    Slowly: 0*  lb 

    Total decomposed weight= 58.8 lb  

   



423 

 

Table G.3  Calculation for Theoretical Maximum Gas Production for Moderately 

Degradable Bioreactors by Lambda Method (continued) 

S
T

E
P

 6
 Step 6: Determine gas produced using stoichiometric reaction masses  

Reaction Masses from stoichiometry  

   CaHbOcNd = 2269.4 
 

CH4 = 739.4 

 

NH3 = 17 

 H2O = 21.65 
 

CO2 = 1903.1 

    

S
T

E
P

 7
 

Step 7: Determine volume of gas produced up to time, t    (173 years for 

example) 

Volume methane produced, V CH4 = (MCH4)(Wdegraded) / [(MCaHbOcNd)(WCH4) 

  VCH4 = [(739.4)(58.8)] / [(2269.4)(0.0448)] = 427.63 ft
3
  

   VCO2 = [(1903.1)(58.8)] / [(2269.4)(0.1234)] =  399.59 ft
3
  

 Total gas, Vtotal = VCH4 + VCO2 =  827.22 ft
3
 

   

 

% CH4 = 52% 

 

%CO2  = 48% 

   Theoretical gas produced per lb waste up to 173 years= Vtotal/sample weight   

At end of practical biodegradation, theoretical total gas produced = 

Gas production at time t (173 years) = 827.22 ft
3
/100lb = 8.27 ft

3
/lb 
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Table G.4  Calculation for Theoretical Maximum Gas Production for Slowly Degradable 

Bioreactors by Lambda Method 

T
E

P
 1

 
Step 1: Break out composition into % descriptive modifiers 

Inputted Calculated 

Waste Type 
% 

MSW 

Wet Wt 

[lb] 
Vi 

% of 

Type 

Dry 

weight 

Wi 

[lb] 

Wt of 

Type 

Food R 0% 0 
Vr = 0% 

0 
Wr = 0 

Yard Waste R 0% 0 0 

Wood  M 0% 0 

Vm = 0% 

0 

Wm = 0 Paper M 0% 0 0 

Textiles M 0% 0 0 

Plastic S 100% 100 Vs = 100% 60 Ws = 60 

Soil ND 0% 

 
Vn = 19% 

 
Wn = 0.00 

Glass ND 0% 

  Decomposable Moist Wt= 100  Vt =   100% 60.00 Dry Wt 

 
Vi = Volume of Type of Waste 

Wi = Weight of Constituent (based on 100 lb 

sample) 

For 100lb wet sample, wet weight = % of MSW 

Average moisture content of waste, m.c. =  40% 
 

  For 100lb wet sample, weight of water = Wtot x m.c. = 0.4 * 100lb = 40 lb 

Wt of decomposable fraction - all water contained in waste= 100 - 40 lb = 60 lb 

S
T

E
P

 2
 Step 2: Determine Lambda Factors Characteristic equation:  Vti = Vi e

-(λit)
 

λr = 0.1386 (*not used since only slowly waste considered) 

λm = 0.0231 (*not used since only slowly waste considered) 

λs = 0.0173 

 

S
T

E
P

 3
 

Step 3: Select year of interest to determine modifier, Vi  (t=173 years) 

  For this example, use 173 year  

Readily: Vr@173yrs = (0%) e
-[(0.1386)(173)]

 =  0* 

 Moderately: Vm@173yrs = (0%) e
-[(0.0231)(173)]

 =  0* 

 Slowly: Vs@173yrs = (100%) e
-[(0.0173)(173)]

 =  .05014  

S
T

E
P

 4
 

Step 4: Determine % decomposed 

       % decomposed =  (Vi - Vit)/Vi   

     Readily: %Dr = 0* -  

  Moderately: %Dm = 0* -  

  Slowly: %Ds = (1-(.0504))/1 x 100% = 95%  

  

S
T

E
P

 5
 

Step 5: Determine (dry) weight of decomposed wastes 

     Weight of decomposed weight = % decomposed x dry weight fraction 

Readily: 0* 0 lb 

    Moderately: 0* 0 lb 

    Slowly: 95% x (60 lb) 57.0 lb 

    Total decomposed weight= 57.0 lb  
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Table G.4  Calculation for Theoretical Maximum Gas Production for Slowly Degradable 

Bioreactors by Lambda Method (continued) 

S
T

E
P

 6
 Step 6: Determine gas produced using stoichiometric reaction masses  

Reaction Masses from stoichiometry 

   CaHbOcNd = 1.89 
 

CH4 = 1.02 

 

NH3 = 17 

 H2O = 0.95 
 

CO2 = 1.81 

    

S
T

E
P

 7
 

Step 7: Determine volume of gas produced up to time, t    (30 years for example) 

Volume methane produced, V CH4 = (MCH4)(Wdegraded) / [(MCaHbOcNd)(WCH4) 

  VCH4 = [(1.02)(57)] / [(1.89)(0.0448)] = 686.65 ft
3
  

   VCO2 = [(1.81)(57)] / [(1.89)(0.1234)] =  442.36 ft
3
  

 Total gas, Vtotal = VCH4 + VCO2 =  1129.01 ft
3
 

   

 

% CH4 = 61% 

 

%CO2  = 39% 

   Theoretical gas produced per lb waste up to 173 years= Vtotal/sample weight   

At end of practical biodegradation, theoretical total gas produced = 

Gas production at time t (173 years) = 1,129 ft
3
/100lb = 11.29* ft

3
/lb 

 
 

*As discussed in Section 6.1.5, the author and several others (Shah et. al 2007, Ishigaki et 

al. 2003, Tchobanoglous 1993, Albertson et. al, 1987) note that the inability to use of 

stoichiometric and mathematical models to predict the gas for plastics (noted with asterisk 

above).  It is observed that theoretical gas production for slowly decomposable wastes is most 

accurately described by comparison of total gas collected and measurement of actual mass 

degradation.  
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G.2  Calculations to Determine End of Experiment 

The author indicates that the date for conclusion of this experiment was based on an 

evaluation of the total gas production and rate of gas production.  The author used an 

analytical approach suggested by Raghu (2014) as described in Chapter 5.1.1 to 

determine the practical amount of gas which could be collected, and to extrapolate the 

rate of gas production to determine the maximum gas which could be collected, ymax-actual, 

if the experiment was held until the end of biodegradation occurred.   A calculation for 

the composite flow meter is provided in Chapter 5.1.1.   Calculations based on data from 

the readily degradable flow meter are presented as Figure G.1 through G.4.  Calculations 

based on data from the moderately flow meter are presented as Figure G.5 through G.8.  

 

 
 

Figure G.1  Daily Rate of Gas Production for Determination of End Of Experiment – 

Readily Degradable Bioreactors 
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Figure G.2  Cumulative Gas Production for Determination of End of Experiment – 

Readily Degradable Bioreactors 

 
Figure G.3  Cumulative Gas Production for Determination of End of Experiment – 

Readily Degradable Bioreactors 
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Figure G.4  Determination of ymax-actual – Readily Degradable Bioreactors 
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Based on  trendline,  
 log e (y'max) =  1.4615    (max 
at x = 0) 
 
y'max = e^(1.4615)= 4.31 ft3 

ymax = y1 + y'max 
y1 = 0.733 (at   t= 41 days) 
y'max = 4.31  ft3/lb 
 
Therefore,   ymax = 0.737 +  1.845 ft3 =  5.043 ft3/lb 
 
ymax (actual) = 5.043  ft3/lb METHANE 
    assuming 55% methane, total gas = 5.043/0.55 = 9.17 
ft3/lb 
 
As of June 27, 2014,  4.623 ft3 gas collected 
 
 
 
 
Based on ymax (theoretical):  
     (4.623/4.97)  x 100%  =  93.02% gas collected 
Based on ymax (actual): 
     (4.623/5.043)  x 100%  = 91.67% gas collected 
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Figure G.5  Daily Rate of Gas Production for Determination of End of Experiment –  

Moderately Degradable Bioreactors 

 

 
 

Figure G.2  Cumulative Gas Production for Determination of End of Experiment – 

Moderately Degradable Bioreactors 
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Figure G.3  Cumulative Gas Production for Determination of End of Experiment – 

Moderately Degradable Bioreactors 

 

 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

75 95 115 135 155 175 195 215 235

C
u

m
u

la
ti

ve
 G

as
 C

o
lle

ct
e

d
 [

ft
3

] 

Time, T [days] 

Moderately Degradable Bioreactors 
Cumulative Volume of Methane Gas Produced  

(from t1 onward) 



431 

 

 
 

Figure G.4  Determination of ymax-actual – Moderately Degradable Bioreactors 
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ymax = y1 + y'max 
y1 = 1.155 ft3/lb (at   t= 80 days) 
y'max = 2.163  ft3/lb 
 
Therefore,   ymax = 1.155  +  2.163  ft3 =  2.999 ft3/lb 
 
ymax (actual) = 3.318  ft3  of METHANE  
    assuming 55% methane, total gas = 3.318/0.55 = 6.03 
ft3/lb 
 
As of June 27, 2014,  2.86 ft3  methane collected 
 
Based on ymax (theoretical):  
     (2.86/4.64)  x 100%  =  61.67% gas collected 
Based on ymax (actual): 
     (2.86/3.318)  x 100%  = 86.20% gas collected 
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APPENDIX H 

DATA AND CALCULATIONS FOR FIELD VALIDATION 

 

The following data was provided and used for the field validation model of the 

CMCMUA Cell “E” bioreactor landfill and Yolo County, California bioreactor landfill.  

Calculations to support the use of the model are also presented herein.  

H.1  Topographic and Tonnage Data for CMCMUA Bioreactor Landfill 

To support the use of the proposed model, it was anticipated that information regarding 

the waste composition, incoming tonnage records, and topographic data would be 

required, at minimum, for the cell.  The data is presented throughout the following 

figures.  
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Figure H.1  Base Liner Topographic Survey (2003 Year) and Grid for CMCMUA Cell E 
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Figure H.2  Closure Topographic Survey (2007 Year) and Grid for CMCMUA Cell E 
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Figure H.3  Annual Topographic Survey (2012 Year) and Grid for CMCMUA Cell E 

 

 

 

 

 

Extents of Cell 

E 



436 

 

 

 
 

Figure H.4  Annual Topographic Survey (2013 Year) and Grid for CMCMUA Cell E 

 

Extents of Cell E 
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Figure H.5  Tonnage records and waste characterization for 2000 through 2004 years 

for CMCMUA Landfill  
Source: Cape May County Municipal Utilities Authority (used with permission)  
 

 



438 

 

 

 
 

Figure H.6  Tonnage records and waste characterization for 2005 through 2009 years 

for CMCMUA Landfill 
Source: Cape May County Municipal Utilities Authority (used with permission)  
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H.2  Waste Characterization for Yolo County, California   

Data regarding waste characterization for the waste which was deposited into within the 

Yolo County bioreactor used for the field validation model is provided as Figure H.7.  

 

Figure H.7  Waste Characterization for Yolo County, California 
Source: California Integrated Waste Management Board (CIWMB), Statewide Waste Characterization 

Study: Results and Final Report, p. 5, 2000 
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H.3  Calculations to Determine Theoretical Gas Production for Yolo County 

Bioreactor Landfill 

Calculations for the theoretical gas production for the Yolo County Bioreactor landfill are 

presented herein.  The calculations are used to provide the necessary stoichiometric-

maximum gas potential for use in the modified Lambda method.  Calculations for the 

modified Lambda method to determine total gas potential are provided following the 

stoichiometry calculations.   
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Table H.1  Stoichiometry to Determine Chemical Expression of Yolo County Waste 

S
T

E
P

 1
 

Component Type 

Dry 

Weight 

[lb] 

Percent by Weight (dry basis) 

C H O N S Ash 

Food R 22.70 48 6.4 37.6 2.6 0.4 5 

Yard Waste R 10.20 47.8 6 38 3.4 0.3 4.5 

Wood  M 4.90 49.5 6 42.7 0.2 0.1 1.5 

Paper M 30.20 43.5 6 44 0.3 0.2 6 

Textiles M 2.10 55 6.6 31.2 4.6 0.15 2.5 

Plastic S 8.90 60 7.2 22.8 0 0 10 

Soil I 12.10 26.3 3 2 0.5 0.2 68 

Glass I 2.80 0.5 0.1 0.4 0.1 0 98.9 

Metal I 6.10 4.5 0.6 4.3 0.1 0 90.5 

Total Weight: 100.00 

R= Readily, M = Moderate, S= Slow, I = 

Inert 

S
T

E
P

 2
 

      

Composition [lb]  

(listed in same order of components as Step 

1) 

Example calculations and notes: C H O N S Ash 

  Carbon in food = 22.07 lb x 48%  10.90 1.45 8.54 0.59 0.09 1.14 

  Hydrogen in food = 22.07 lb x 6.4%  4.88 0.61 3.88 0.35 0.03 0.46 

  Oxygen in food = 22.07 lb x 37.6%  2.43 0.29 2.09 0.01 0.00 0.07 

  Nitrogen in food = 22.07 lb x 2.6%  13.14 1.81 13.29 0.09 0.06 1.81 

  Sulfur in food = 22.07 lb x 0.4%  1.16 0.14 0.66 0.10 0.00 0.05 

  Ash in food = 22.07 lb x 5%  5.34 0.64 2.03 0.00 0.00 0.89 

Total carbon in sample =  

    ∑ carbon (food + … + textiles) 

3.18 0.36 0.24 0.06 0.02 8.23 

0.01 0.00 0.01 0.00 0.00 2.77 

0.27 0.04 0.26 0.01 0.00 5.52 

Total, decomposable (R,M,S) 

portion: 37.83 4.95 30.48 1.13 0.19 4.42 

S
T

E
P

 3
 

Specific weight = molecular mass Specific Weight [lb/mole] 

 Molar composition of C  =   

  38.62 lb/12.01 lb/mol = 3.21 mol 

12.01 1.01 16.00 14.01 32.06 

 
Molar Composition [mole] 

S
T

E
P

  

4
 Sulfur neglected; Composition 

normalized with respect to N 

3.150 4.901 1.905 0.081 0.006 

 

Normalized Molar Composition [mole] 

S
T

E
P

 5
 Parameter a,  (Normalized Carbon) = 

(3.215/.006) = 47.16 

C, a H, b O, c N, d S, e  

38.91 60.55 23.53 1.00 0.07  

Chemical expression of waste: C38.9 H60.55 O23.53 N 
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Table H.2  Determination of Maximum Theoretical Gas Production by Stoichiometry 

Calculations for Theoretical Gas Production by Stoichiometry for Yolo County 

Bioreactor 
S

T
E

P
 6

 

Equation Components 

 

  

H20 CH4 CO2 NH3 

 

  

12.8 20.8 18.1 1.0 

 

  

  

    

  

Component of H2O= (4a - b - 2c + 3d)/4 = (4*38.91 – 60.55 - 2*23.53 + 3)/4 = 12.8 

  

    

  

S
T

E
P

 7
 

Specific (Molecular) Weight [lb/mole] 

 

  

C H O N 

 

  

12.01 1.01 16.00 14.01 

 

  

  

    

  

Elemental Specific Weight [lb/mole] 

 

  

H20 CH4 CO2 NH3 

 

  

18.02 16.05 44.01 17.04 

 

  

  

    

  

Ex.: Elemental weight of H2O = 1.01 lb/mol (2) + 16 lb/mol (1) = 18.02 lb/mol 

Elemental weight of CaHbOcNd = 12.01(38.9) + 1.01 (60.55) + 16 (23.53) + 14.01 

  

    

  

Reaction Masses, M   

  CaHbOcNd     +        H20        --->       CH4        +        CO2     +      NH3   

919.0 229.9 333.3 798.6 17.0   

  Example:  reaction mass of H2O = (12.8 mol)(18.02 lb/mol) = 229.9 lb  

∑ Right Side = 333.3+798.6 + 17  =  1149 ∑ Left Side= 919.0+229.9 =1149 

   Volume methane produced, V CH4 = (MCH4)(Wdegradable) / [(MCaHbOcNd)(WCH4) 

   Volume methane produced, V CO2 = (MCO2)(Wdegradable) / [(MCaHbOcNd)(WCO2) 

  

    

  

CH4 Gas Specific Weight, WCH4 [lb/ft³] = 0.0448 

 

  

CO2 Gas Specific Weight, WCO2 [lb/ft³] = 0.1235 

 

  

  

    

  

   V CH4 = [(333.3)(79 lb degradable waste)]/[(919.0)(0.0448 lb/ft3)] = 639.54 ft
3
 

   V CO2 = [(798.6)(79 lb degradable waste)]/[(919.0)(0.1235 lb/ft3)] = 555.87 ft
3
 

Total volume of gas = VCH4 + VCO2 = 1195.41 ft
3
 

Proportion of CH4 of gas  = 639.54/1195.41 = 53.4% 

 

  

Proportion of CO2 of gas = 555.87/1195.41 = 46.5% 

S
T

E
P

 8
 Average moisture content of MSW waste as tipped  = 25%  (Tchobanoglous 1993) 

Wet weight of waste = dry weight x (1 + mc) =  100 lb x (1 + 0.25) = 125 lb 

Theoretical gas production by stoichiometry: 

                                        = 1195.41 ft
3
/125.0 lb = 9.56 ft

3
/lb  (wet)     
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Table H.3  Determination of Theoretical Gas Production by Modified Lambda Method 

Step 1: Break out composition into % descriptive modifiers 

Inputted Calculated 

Waste Type 
% 

MSW 

Wet Wt 

[lb] 
Vi 

% of 

Type 

Dry 

weight 

Wi 

[lb] 

Total Wt 

[lb] 

Food R 23% 22.7 
Vr = 25% 

11.21 
Wr = 16.24 

Yard Waste R 10% 10.2 5.04 

Wood  M 5% 4.9 

Vm = 43% 

2.42 

Wm = 18.36 Paper M 30% 30.2 14.91 

Textiles M 2% 2.1 1.04 

Plastic S 9% 8.9 Vs = 13% 4.39 Ws = 4.39 

Soil ND 18%   
Vn = 19% 

 
Wn = 0.00 

Glass ND 3%   

 Decomposable Moist Wt= 79  lb  Vt =   100% 39.00 Dry Wt 

 
Vi = Volume of Type of Waste Wi = Weight of Type of Waste (based on 100 lb sample) 

Average moisture content of waste, m.c. =  40% 
 

      NOTE: moisture content defined as Wwater/Wtot, unlike geotech definition of  Ww/Wdry 

For 100lb wet sample, weight of water = Wtot x m.c. = 0.4 * 100lb = 40 lb 

Wt of decomposable fraction - all water contained in waste= 81 - 40 lb = 39 lb 

Step 2: Determine Lambda (Half-Life) Factors 

       Characteristic equation:  Vti = Vi e
-(λit)

 

     λr = 0.1386 

      λm = 0.0231 

      λs = 0.0173 

      To find max theoretical gas production, solve characteristic equation for when Vts = 

95% (volume of slowly decomposable material reaches 95% degradation  solving,  t = 

173 yr 

  Step 3:  Select year of interest to determine modifier, Vi    (t=173 years) 

Readily: Vr@173yrs = (33) e
-[(0.1386)(173)]

 =  1.27E-11 

   Moderately: Vm@173yrs = (37) e
-[(0.0231)(173)]

 =  6.84E-03 

   Slowly: Vs@173yrs = (9) e
-[(0.0173)(173)]

 =  4.46E-03 

     Step 4:  Determine % decomposed 

Readily: (0.25-(9.56E-12))/0.33 x 100% = 100% 

    Moderately: (0.43-(7.90E-03))/0.37 x 100% = 98% 

    Slowly: (0.13-(6.52E-03))/0.09 x 100% = 95% 

      Step 5: Weight of decomposed weight = % decomposed x dry weight fraction 

Readily: 100% x (16.24 lb) 16.24 lb 

    Moderately: 99% x (18.36  lb) 18.36 lb 

    Slowly: 95% x (4.39 lb) 4.31 lb 

    Total decomposed weight= 38.92 lb 
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Table H.4  Determination of Theoretical Gas Production by Modified Lambda Method 

(continued) 

 

  Step 6: Determine gas produced using stoichiometric reaction masses (use as 

above) 

  Step 7: Determine volume of gas produced up to time, t    (t =173 years) 

  VCH4 = [(333.3)(38.92)] / [(919.0)(0.0448)] = 315.07 ft
3
   

  VCO2 = [(798.6)(38.92)] / [(919.0)(0.1234)] =  274.07 ft
3
   

Total gas, Vtotal = VCH4 + VCO2 =  589.14 

   

 

% CH4 = 53% 

 

%CO2 = 47% 

  At end of practical biodegradation, theoretical total gas produced 

=  589.14 ft
3
 

Gas production at practical end of degradation (t= 137 yr) = 589.14 ft
3
/100lb = 5.89 

ft
3
/lb 
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