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ABSTRACT 

MONITORING OF CEREBELLAR INJURY USING MICRO ECoG SIGNALS IN 
KETAMINE/XYLAZINE TREATED RATS 

 
by 

Gokhan Ordek 

Much of the cerebellar research has been conducted in anesthetized animals, particularly 

using ketamine/xylazine combination in rats, and yet the absolute impact of the 

anesthesia on the neural circuit remains unanswered. In the current study, spontaneous 

electrical activity and sensory evoked potentials from the cerebellar surface with 

chronically implanted, flexible-substrate, multielectrode arrays in rats were collected and 

analyzed with the motor cortex signals. The power spectra and the intercontact coherence 

plots of the spontaneous activity in the awake-quiet animals extended up to 800 Hz in the 

cerebellum and only up to 200 Hz in the motor cortex. Ketamine/xylazine anesthesia 

suppressed most of the activity in the cerebellar cortex, which was in clear contrast to the 

motor cortex. In the awake cerebellum, large coherence values were observed between 

contact pairs as far apart as ∼2 mm. Otherwise, there was not a discernable relation 

between the coherence and the intercontact distance. These results have suggested that 

the surface electrodes could provide much more detailed information about the state of 

neural circuits when they were used on the cerebellar cortex compared with the cerebral 

areas.  

Findings in ketamine/xylazine treated rats by using micro ECoG signals extracted 

the baseline information in the cerebellum to investigate the altered electrophysiology in 

the damaged neural circuitry. The temporal course of excitability change in selected 

neural networks was used as a method to study traumatic brain injury (TBI). This 



ii

research demonstrated the use of cerebellar evoked potentials (EPs), which was 

characterized in the first phase of the study, for monitoring the injury progression in a rat 

model of fluid percussion injury (FPI). A mechanical tap on the dorsal hand was used as 

a stimulus, and EPs were recorded from the paramedian lobule (PML) of the posterior 

cerebellum via multi-electrode arrays (MEA). Evoked response amplitudes (EPAs) were 

analyzed immediate after the injury and on a daily basis for one week thereafter.  This 

data indicated a trend of consistently decreasing EPAs in all nine animals, losing as much 

as 75% of baseline amplitudes measured before the injury. Notably, it was highlighted 

that there was two particular time windows; the first 24 hours of injury in the acute period 

and day-3 to day-7 in the delayed period where the largest drops (~40% and 30%) were 

observed in the EPAs. Immunohistochemical analysis supported electrophysiological 

findings that there was severity dependent Purkinje cell (PC) loss under the implant site. 

Current research has presented the evidences that sensory evoked potentials recorded 

from the cerebellar surface can be a useful technique to monitor the course of cerebellar 

injury and identify the phases of injury progression even at mild levels
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CHAPTER 1  

INTRODUCTION 

1.1 Problem Significance  

There are about 2.5 million traumatic brain injury (TBI) cases every year in the 

United States according to the U.S. Center of Disease Control and Prevention. TBI is a 

leading cause of morbidity and mortality under the age of 35 years (Bruns and Hauser, 

2003;Langlois et al., 2006). Recent reports have indicated a significant increase (from 

0.023% to 0.051%) in concussion rate among young individuals involved in the sport-related 

accidents (Rosenthal et al., 2014). Despite the fact that the statistical rise may be explained 

by developing techniques such as helmet-sensors, point-of-care interventions and balance 

tests, there remains significant work to assess the extent of brain injuries.  

TBI results from a direct or indirect force exerted on the head that leads to rapid 

sequela of changes in the brain such as mechanical tissue deformation, hemorrhage, and high 

intracranial pressure. Extensive cell death can be observed in different parts of the brain as 

early as 10 minutes and progresses over a month following injury (Conti et al., 1998;Sato et 

al., 2001a;Ai et al., 2007). While the initial injury is predominantly dependent on the severity 

of impact (trauma), subsequent reactions that can last days to months and involve a complex 

sequence of events (Thompson et al., 2005;Marklund et al., 2006;Bramlett and Dietrich, 

2007). The latter is the main focus of the current research, especially in the under-diagnosed 

cases such as concussions, since it presents a broad window for cascaded injury events to 

take place. 
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1.2 Cerebellar Anatomy and Injury Relevance 

The cerebellar cortex lays isolated from the other cortices and contains more nerve cells than 

rest of the brain (Herculano-Houzel et al., 2006;Herculano-Houzel, 2010) and their 

connections within in the circuitry, which promotes the morphological deformations in the 

injury context. In contrast to defined complexity by the numbers, cerebellar cortex 

encompasses rather a simple circuitry within a highly organized structure. It has only two 

major inputs; climbing (Cf) and mossy fibers (Mf), which project to co-modulate the 

purkinje cells (PCs) through separate pathways to generate the sole output for cerebellar 

cortex. 

 

Though the cerebellum is involved in motor function, it also receives a vast number 

of sensory inputs to modulate sensory-motor control (Bower and Woolston, 1983;Gao et al., 

1996). The cerebellum has been confirmed as a brain site that can be affected even in mild 

injuries that is capable of progressing after the trauma incident. Studies of human TBI 

demonstrate that the cerebellum is affected even when the initial mechanical impact is 

directed to the cerebral cortex (Soto-Ares et al., 2001;Spanos et al., 2007), which suggested 

Figure 1.1 A sketch of simplified morphology in cerebellar cortex from a sagittal 
section. 
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the extensive axonal degenerations mediated through corticocerebellar pathways. Several 

TBI symptoms; such as ataxia, postural instability, tremor, impairments in balance and fine 

motor skills, and even cognitive deficits, can be attributed to cerebellar damage. Direct 

cerebellar injury is much less common than supratentorial trauma (Tsai et al., 1980b).  

Animal models of indirect trauma to the cerebellum, including fluid percussion, 

controlled cortical impact, weight drop impact acceleration, and rotational acceleration 

injuries, as well as models that will induce direct trauma to the cerebellum were considered. 

In general, these models showed characteristics of cerebellar damage including regionally 

specific Purkinje cell injury or loss, activation of glia in a distinct spatial pattern, and 

traumatic axonal injury.   

The cerebellum exhibits pathological changes including selective cell loss, altered 

metabolism, and white matter injury after focal and diffuse TBI. There are several clinical 

reports of cerebellar atrophy following TBI (Sato et al., 2001b;Gale et al., 2005a). Metabolic 

changes have also been documented in the cerebellum to cortical injury (Alavi et al., 

1997;Niimura et al., 1999;Newberg et al., 2000). Loss of cerebellar gray matter after TBI has 

also been reported (Gale et al., 2005a).   

1.3 Animal Models in TBI Studies 

As an injury model, animal studies have become a promising approach to understand the 

temporal course of the human head injury. Increased temporal content of the post-injury such 

as an immediate epileptiform activity (Walker, 1994) , succeeded by suppression of cortical 

activity (Dixon et al., 1987a;Hayes et al., 1988) or observable behavioral (McIntosh et al., 

1989;Rubovitch et al., 2011) and cognitive (Hamm et al., 1996) deficits following injury 
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induction, have manifested the animal models an ideal platform. For many decades, 

spontaneous oscillations and sensory evoked potentials have been investigated to understand 

the cellular originations of the cerebellar circuitry. Armstrong and Drew (Armstrong and 

Drew, 1980), and Eccles et al. (Eccles et al., 1967) have reported that cerebellar signals 

evoked by electrical stimulation of the snout contained characteristic volleys, including those 

from mossy and climbing fibers, that could be recorded with penetrating microelectrodes and 

surface ball electrodes in rats. While, Bosman et al. showed the Purkinje cell responses in 

mice with and without stimuli presence (Bosman et al., 2010). Cerebellum also generates 

highly rhythmic pattern of oscillatory activity, (Lehew and Nicolelis, 2008), which can be 

collected by the surface recordings (Ordek et al., 2013). This study proposes to identify the 

injury-induced changes in the neural circuitry, which may convey unique information about 

the development of cerebellar injury. 

1.4 Research Motivation 

Diagnosis of traumatic brain injuries, particularly in middle cases (mTBI), has challenged 

clinicians for many reasons. Consequences of mild brain injuries may be subtle and delayed 

(in weeks or months) or may not occur in many patients. Compared to other brain imaging 

techniques such as PET, MRI or CAT scan as well as behavioral/cognitive evaluations, EEG 

has been proposed to measure and localize brain injuries in a temporal pattern among 

individuals who have suffered from acute and chronic complications  

Reports have indicated that symptoms of a mild injury can be presented as early as 

minutes to hours after incident (Kelly and Rosenberg, 1997), while it may last weeks to 

months for most patients (Levin and Eisenberg, 1978). The temporal course of a TBI has 
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been described in two major periods; acute and long-term effects. The acute period, also 

known as primary injury, is a direct result of mechanical forces involving tissue deformation, 

shearing and tearing blood vessels at the impact site. Delayed consequences of the injury 

(secondary mechanism) are believed to be initiated by the primary injury and cause 

prolonged deficits including metabolic, cellular and molecular events in the injured brain 

(Thompson et al., 2005;Marklund et al., 2006;Bramlett and Dietrich, 2007).  To this purpose, 

investigation of the temporal course of a developing injury can yield significant outcomes to 

understand the on-going mechanism of a brain injury.  

 

To understand the cascaded injury mechanisms, chronically implanted animals will serve to 

extract the time course information from electrophysiological recordings.  

1.5 Choice of Electrode in ECoG Recordings 

The electric field of a nerve cell (neuron) is defined by the electric potential generated in the 

cell with respect to recording distance. The magnitude of the electric potential on the 

recording electrode can be described by the source of a neuron or group of neurons. Electric 

Figure 1.2 Methods for recording electric activity of brain tissue by depth. 
Source: Leuthardt, E.C., Schalk, G., Roland, J., Rouse, A., and Moran, D.W. (2009). 
Evolution of brain-computer interfaces: going beyond classic motor physiology. Neurosurg 
Focus 27, E4.�
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activity in a brain tissue can be picked up by two fundamental methods: intracellular (single 

cell) and extracellular recordings from a spine, dendrite, soma, axon, or any transmembrane 

current (Buzsáki et al., 2012) – and the cerebellum is not an exception to this. Single unit and 

extracellular – also known as local field potentials (LFPs) - activity of the cerebellum has 

been reported by many researchers over the decades (Dow, 1938;Adrian, 1944;Eccles et al., 

1966;Oscarsson, 1968;Armstrong and Drew, 1980;Pellerin and Lamarre, 1997;Teune et al., 

1998).  

 Electroencephalography (EEG) is one of the common clinical procedures to detect 

the severe alterations in the brain’s electrical activity after a trauma incident. . EEG, also 

known as scalp electrophysiology, is a non-invasive technique that can serve to monitor 

alterations in the electric activity following of a head injury. Despite the advantageous 

features of EEG such as high-temporal resolution, low-cost and usability, it has also 

limitations; low-bandwidth and spatial resolution, which can limit the discerning subtle 

changes, particularly in mild injuries. Electrocorticography (ECoG) can overcome these 

shortcomings significantly by increasing the frequency content of neural activity coupled 

with a greater proximity of target brain area.  

One of the common aims in all these studies is to identify the electrophysiological 

characteristics of cerebellar neurons and the communications within the network. While the 

first one requires analysis of single cells, the latter can be analyzed by recording subunits of 

neuron populations. Recent developments in electrode fabrications have improved LFP 

recordings, while minimizing the risk factors in the in vivo environment. Over the last 

decade, electric activity recordings with subdural implantations (ECoG) have become a 

promising technique in research, applications and clinical settings. ECoG or recording the 
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brain electric activity is conducted by placing recording electrodes underneath the skull on 

the cortical surface, see Figure 1.2 (Leuthardt et al., 2009). Leveraging the technical 

characteristics; increased bandwidth and signal to noise ratio (SNR) combined with multi-

electrode array (MEA) technology, improving the spatial resolution to millimeter scale with  

(Bazhenov et al., 2011;Hill et al., 2012) a number of electrodes fabricated on an implantable 

substrate (electrode grid), ECoG can be highly selective and provide improved signal 

characteristics.  

In the cerebral cortex, MEA implants have demonstrated reliable long-term (chronic) 

signal characteristics (up to months) in animal research (Yeager et al., 2008;Prasad and 

Sanchez, 2012) as well as in human subjects (Axmacher et al., 2008;Lalo et al., 2008). One 

of the first reports described the abnormal activity in cerebellar ECoG recordings from tumor 

and epilepsy patients (Foerster, 1935). More recent reports also showed that intracranial 

cerebellar recordings can be used for clinical diagnostics (Armstrong and Harvey, 1968;Chae 

et al., 2001;Delande et al., 2001;Mesiwala et al., 2002).  

1.6 Electrophysiology of a TBI 

Currently, neuroimaging techniques (CT, MRI, fMRI) are the widely accepted clinical 

methods to assess brain injury. Despite the emergent significance in the life threatening 

situations, neuroimaging techniques do not provide further information on the progression of 

the injury, particularly in the mild cases. Moreover, it is impossible to detect any cellular or 

molecular deficits with the selected assessment method. Diffusion tensor imaging (DTI), is 

different than the conventional neuroimaging techniques by showing advanced details in the 

white matter tracts, was proposed to improve the TBI detection. However, its lack of 
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information about the cellular network has remained as a question mark. Recording the 

electrical activity from the scalp is another diagnostic approach in the TBI cases. Although 

monitoring the electrophysiological changes (EEG, QEEG) in TBI patients has increased the 

significance of usage as a clinical/diagnostic technique in the recent decades, recording the 

electrical activity in the TBI patients is not a novel approach. Earlier studies in sport related 

head injuries showed abnormal EEG activities immediate after the insults (Larsson et al., 

1954;Pampus and Grote, 1956). Similarly in animal models, immediate EEG recordings 

following the experimental head injury indicated seizure like high frequency discharges 

(Meyer et al., 1970;Katayama et al., 1988;Nilsson et al., 1994). EEG can utilize the recorded 

brain electrical activity in different frequency bands which can be associated with functional 

deficits. For instances, few of the common findings of EEG reports after brain injury is the 

attenuated alpha band activity in the posterior region (R., 1950) and increased theta waves in 

the temporal region (Schneider E, 1962;Courjon J, 1972). 

Evoked potentials have also been used to assess the abnormalities after the brain 

injury. Several studies reported the pattern of changes in the visual evoked potentials (VEP) 

of TBI patients in the broader window (up to 24 months) of the post injury period (Gupta et 

al., 1986;Freed and Hellerstein, 1997). Additionally, similar abnormalities in the evoked 

response patterns were observed during task-related activities. Connolly et al. showed the 

VEP alterations during behavioral language tests, particularly the N400 responses, in TBI 

patients lesioned in the left-hemisphere (Connolly and D'Arcy, 2000;Knuepffer et al., 2012). 

Primary findings on the evoked response pattern changes in TBI patients were the 

suppression of one or several evoked components accompanied with prolonged latencies in 

the EP waveform. Similar evidences were also reported in animal studies. Pathological 
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reports indicated the reduction in the presynaptic volleys in the hippocampus (Reeves et al., 

2000) and the cerebellar cortex (Ai and Baker, 2002). Despite the considerable contributions, 

electrophysiological techniques have remained as a secondary option to assess the TBI in 

clinical usage unless it is combined with other methods such as neuroimaging or 

neurological tests. 

1.7 Objectives 

The main objective of this study was to detect the injury induced alterations of the neural 

activity in the cerebellum by comparing the characterized oscillations and evoked potentials 

from the injured and un-injured animals. First, the spontaneous oscillations were recorded 

from the paramedian lobule (PML) of the cerebellum in multiple animals under anesthesia as 

well as in wakefulness. Then, sensory evoked potentials (SEPs) were utilized to build a 

somatotopy of the PML region on the cerebellar cortex in chronically MEA implanted 

animals.  

In the second part of the study, characterized SEPs and spontaneous oscillations were 

analyzed to detect injury induced changes in this rat model of TBI. Monitoring cerebellar 

injury responses through the subdurally implanted MEAs constituted the foundation of the 

second aim. The main objective of this aim will serve the traumatic brain injury research by 

providing detailed information about the neuronal injury mechanisms.  

The final aim was to quantify the cerebellar injuries with conventional methods. 

Immunohistological method was used to verify the severity of injury as it reveals the 

damages in the molecular and cellular structures of the cerebellar cortex.  
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1.7.1 Aim 1: Characterization of Cerebellar Oscillations in Anesthetized Rats 

This aim was designed to investigate the consistency of sensory somatotopy via subdural 

surface recordings with multi-electrode arrays in anesthetized rats. Awake recordings of the 

spontaneous and evoked potentials were also included following the anesthesia trials.  The 

signals were sampled at 16kHz in all 32-channels throughout all trials. Episodes of resting 

state lasted 10 seconds for both anesthesia and awake recordings. Evoked potentials were 

induced by single and repetitive air puffs (30psi, duration > 50ms, where the puff onset 

elicited the response) to the periphery, e.g. the left or right dorsal forearm, whiskers, face, 

and perioral areas. Multiple trials of 20 epochs were averaged to reduce background activity 

against the evoked signals. During recovery from anesthesia and in awake rats, investigator 

made sure that the animal did not move immediately before the air puff thereby avoiding 

large spontaneous activity that would contaminate the evoked potentials. All data analysis 

was performed in MATLAB. 

Somatotopic organization of the PML was evaluated through amplitude and time 

analysis of evoked potentials in anesthetized animals. The amplitude and the arrival times of 

volleys in the evoked signals were measured for 3-4 weeks period following implantation of 

each animal. The sources of these volleys were linked to components of the cerebellar 

circuitry (mossy and climbing fibers, parallel fibers, Golgi cells and their synapses onto 

Purkinje cells, etc.). Characteristic features of the cerebellar evoked potentials demonstrated 

a signature EP waveform in response to each stimulation area. Functional organization of 

sensory feeds of each stimuli will be assessed based on their amplitude changes under 

anesthesia. 
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Next, cerebellar network oscillations were investigated in anesthetized and awake but 

resting animals. Frequency and correlation analysis was utilized to extract highly 

synchronized oscillations in the cerebellum and study the effect of anesthesia in this highly 

organized circuitry. Compared to other parts of the brain, the cerebellar cortex constitutes a 

highly organized homogeneous morphology within the structure. The aim was to leverage 

this special feature to study the cerebellar network activity. Electrode contacts on the 

implanted multi-electrode array were separated by 300µm and able to collect sub population 

activity from underlying neurons; primarily Purkinje cells. Episodes of 10-second 

spontaneous recordings were collected prior to each anesthesia on every data collection day. 

Real-time monitoring was coupled to each data set collection to ensure the animals were still 

at rest. Both data sets were stored for future analysis. 

1.7.2 Aim 2: Electrophysiological Assessment of Cerebellar Injury with Micro ECoG 

This aim involved the implementation of direct cerebellar injury in MEA-implanted animals 

to monitor the injury-related changes in the cerebellar electrophysiology. The current 

approach evaluated the subtle changes in the cerebellar neural signals that may not be visible 

through conventional techniques such as behavioral analysis. Similar to EEG, which is one 

of the clinical diagnostic techniques currently used, ECoG provides high-temporal contents 

about the neural signals, but with additional insights. All surgical and experimental methods 

applied in Aim-1 were repeated in this aim. Additionally, this aim required the fluid 

percussion injury induction in the anesthetized rats. On the next day of electrode 

implantation, baseline recordings of evoked potentials were made under anesthesia by 
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applying a mechanical tap on the forelimbs. Evoked potentials from forelimb area 

stimulation were selected for this aim to demonstrate a clear contrast with the control results.    

Firstly, the amplitude and arrival times of the evoked responses in the injured animals 

were compared with the control measurements during the implant period (1-2 weeks). The 

evoked volleys that represent the structural elements of the cerebellar circuitry were the 

assessment parameters for this aim. The impact of the injury on these volleys was 

documented.  

Secondly, the cumulative effect of repetitive near-threshold (10-15 psi) FPI was 

investigated to better demonstrate the sensitivity of the electrophysiological method. A small 

amplitude pressure wave was applied repeatedly at certain intervals while following the 

acute and long term effects of the injury after each application.  The magnitude of the FPI 

induction was gradually increased; until the pressure level determined the injury threshold 

(i.e. severity enough to cause any changes in the evoked potentials acutely). Parameters of 

the evoked potentials such as the peak-to-peak magnitudes that start declining or increasing 

earliest were observed. The impact of the determined injury severity was independently 

investigated for the two input systems of the cerebellar cortex mossy and climbing fibers (or 

simple and complex spikes). 

1.7.3 Aim 3: Immunohistochemical Validation of Fluid Percussion Injury in the Rat 

Cerebellum 

The next aim was to assess the cerebellar injuries with the cellular loss at the end of survival 

periods. This aim was directly connected to the second aim, which was to verify the 

pathological alterations in the injured cerebellum. Immunohistological data also provided the 
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level of injury in the cerebellar structure after the seven-day injury period. Rats were 

perfused following recording period, which usually lasted one-week, and then the cerebellum 

tissue was dissected for immunostaining procedure. Double immunostaining procedure was 

applied to provide control (CalbindinD28k) and degeneration results. The location of injury 

site was marked from the surface and the underlying slices were sectioned. Sections 

processed for CalbindinD28k staining were mounted on gelatin-coated slides to perform 

FluoroJade C staining for degenerating neurons. Negative controls were routinely included in 

which primary antibody for CalbindinD28k was omitted. Representative images were 

obtained using Nikon A1R laser confocal microscope using 20X objective with identical 

camera settings. This aim was designed to investigate whether there was any damages 

occurred by the implantation of the MEA on the cerebellar surface.   

1.7.4 Aim 4: Evaluation of Cerebellar Injury in Behaving Rats 

The final aim investigated the behavioral deficits after cerebellar injuries in awake animals. 

Small lesions produce negligible or transient symptoms in the behavior that can be 

compensated by the other parts of the brain. It was expected that the electrophysiological 

method would detect injuries much earlier than behavioral manifestation. Nevertheless, 

disruption of the cerebellar network by the FPI model is likely to elicit the functional deficits 

such as lack of motor coordination that are associated with the structural morphology of the 

cerebellum.  

The experimental paradigm tested skilled motor functions: walking, limb placement 

and co-ordinations, during ladder-rung crossing. The test evaluated the spontaneous walking 

patterns, which includes grasping, stepping, limb placement, and ongoing locomotion in the 

learning context. The cerebellum is a well-known brain region that is associated with motor 
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coordination and learning, thus the ladder-crossing paradigm was considered to be a valuable 

tool to assess the injury related changes in the behaviors. Following identification of the 

behavioral deficits, the relationship between the electrophysiological results and functional 

impairments was analyzed. Finding the injury induced behavioral markers in the 

electrophysiology was particularly important to answer a challenging question in the field of 

cerebellar neuroscience. 
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CHAPTER 2  

THE CEREBELLUM 

2.1 The Cerebellum Circuitry and Sensory Somatotopy 

The cerebellum is considered as a primary center of motor learning, although there is 

sufficient evidence now showing that it is also involved in a number of cognitive tasks, such 

as the language processing (Hart, 2011), and it has also been implicated in several cognitive 

disorders including schizophrenia and autism (Fatemi et al., 2012;Villanueva, 2012). 

Accordingly, much research has been conducted to understand how the cerebellum processes 

the sensory-motor information.  However, to date, there is no consensus on how the 

cerebellum integrates information and makes its contribution to the motor control of the 

body, the lack of which generates symptoms that are very familiar to the clinicians. 

The cerebellum constitutes an ideal platform to study neural circuits in many 

respects. Many laboratories have used the cerebellar cortex as a template to understand the 

nervous system because of its well-defined network connectivity and relatively few types of 

cells involved. The cerebellar cortex has two main input pathways:  The climbing fiber input 

which arises from the inferior olive and terminates on the Purkinje cells produces a complex 

spike with firing frequency of around 1-2Hz (Thach, 1968;Armstrong and Rawson, 1979).  

Each Purkinje cell receives a single climbing fiber input and the Purkinje cells innervated by 

the same climbing fiber forms a parasagitally oriented microzone in the cortex (Voogd and 

Glickstein, 1998).  The mossy fibers constitute the other input that terminate on the granule 

cells which then send up axons to the surface forming parallel fibers that terminate on the 

Purkinje cells (Voogd and Glickstein, 1998).  The parallel fiber inputs are responsible for 
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modulation of the simple spike activity of the Purkinje cells, with firing frequencies from 10 

to 100Hz (Armstrong and Rawson, 1979;Cerminara et al., 2009).   

There are two ways in which the cerebellum may potentially encode information.  

The first is rate coding in which the simple spike frequency is varied.  It has been shown that 

the spike frequency is correlated with multiple kinematic and dynamic variables of the arm 

movement (Ebner et al., 2011;Hewitt et al., 2011).  The second is spatiotemporal coding 

where the spike synchrony between multiple Purkinje cells is the mechanism for propagation 

of information. Spike synchrony occurs both with the complex and simple spikes (Wise et 

al., 2010;De Zeeuw et al., 2011).  

Anesthetized animal preparations have commonly been used in electrophysiological 

experiments conducted in rats, although anesthesia undoubtedly affects the neuronal circuitry 

in the cerebellar cortex. One of the most popular anesthesia regimes used in 

electrophysiological experiments is the ketamine/xylazine combination. Ketamine is known 

to affect the N-methyl-D-aspartate (NMDA) receptors (Anis et al., 1983;Yamamura et al., 

1990), nicotinic receptors (Scheller et al., 1996), muscarinic receptors (Hustveit et al., 1995),  

and opioid receptors (Smith et al., 1987).  It has also been shown to affect the voltage gated 

sodium and potassium channels (Schnoebel et al., 2005). 

2.1.1 Extracellular Electrical Activity in the Cerebellar Cortex 

First reports on the recording electrical activity of the cerebellar cortex via microelectrode 

technique came out in early 1900s.  Beck & Bickeles (1912), Foerster and Altenburger 

(1935), Adrian et al. (1935), Spiegel et al. (1937), Dow et al. (1938) were the pioneer 

observers r of spontaneous cerebellar oscillations in animals as well as in humans. Despite 
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the limitations of recordings techniques; for instance lack of modern oscilloscopes or 

computers, reports indicated that, cerebellar cortex was able to generate electric activities 

spontaneously as well as with the perturbations. Characterization of these electric activities 

believed to be correlated with functional outputs such as; sensori-motor coding, muscle 

tones, eye-movements, etc. that cerebellar cortex involved.  

It has been reported that cerebellar dysfunctions are associated with number of 

diseases such as, epilepsy (Brice et al., 1983;Mukawa, 1985), muscle rigidity (Bremer et al., 

1922), ataxia (Tolbert et al., 1995), tremor (Geraud et al., 1965;Stuart et al., 1965;Kelly, 

1980). Thus, describing the electric activities in the cerebellar cortex can enlighten the 

functional deficits occurred by the impairments of the cerebellum. Early human studies 

showed that it was possible to detect changes in particular frequencies (delta and beta band) 

of electrical activity in human cerebellum (Niedermeyer et al., 1974). Despite the vast 

number of studies investigated the characterization of cerebellar electric activity in animals 

as well as in humans, the functional interpretation of these oscillations has remained largely 

unclaimed compared to the cerebral cortex. While non-invasive techniques such as EEG, 

PET, fMRI can access to cerebellar cortex, the underlying neural activity is very limited with 

these approaches. In contrast, recording extracellular activities with intracranial 

electrophysiology (ECoG) can reveal more temporal and spatial contents of cerebellar neural 

mechanism, which can reflect cerebellar related diseases.  

2.1.2 Projections of Peripheral Inputs to Cerebellar Cortex 

The structure of the vertebrate cerebellar cortex is highly organized and governed by a 

simple neural circuitry. Cerebellar cortex is divided into three layers containing just a few 
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kinds of cell types. Granule cells, which are the most numerous cell types in the entire 

human brain, are packed in the bottom of the cerebellar cortex. Purkinje cells (PCs) are the 

sole output of the cerebellar cortex that process the received inputs from various origins of 

sources and reside in the middle of the cerebellar cortex. These two neurons are the most 

dominant features of the cerebellar cortex, where they also constitute the majority of 

cerebellar electrophysiology. 

 Purkinje cells receive the information through only two distinctive pathways; Mossy 

fibers activate the PCs with an indirect path via granule cells-parallel fibers, while the 

climbing fiber activations are direct on the PC dendrites. Each of these inputs has a unique 

source to facilitate the PCs of the cerebellar cortex to generate the correct output. In the 

conventional theory, climbing fibers carry out the ascending signals that contain ‘elemental 

movements’ such as representation of limbs, fine movements, vestibular information, etc. to 

the cerebellar cortex. In contrast, mossy fiber system, which is mediated by granule cells and 

parallel fibers, relay the information from broader sources including the cerebral cortex.  

While it is plausible to identify these cerebellar features morphologically, they also exhibit 

the unique electrophysiological features, which are discernible via extracellular recording 

techniques. For instances, PCs firing rate at around 50 per/sec at rest, which is also called 

simple spike activity. Whereas, their firing rate is modulated to 1-3 per/sec during the onset 

of the climbing fiber activation. Cerebellar electric activity, also known as cerebellar 

potentials, can be characterized by the influencing dynamics on the network such as under 

anesthesia, by stimuli or injury.  
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2.2 Evoked Signals in the Cerebellum 

Earlier studies indicated the peripherally evoked electric discharges, which are also called 

evoked potentials (EPs), could be detected in at different depths of the cerebellar cortex via 

microelectrodes. It has been reported that cerebellar evoked potentials, which is directly 

linked to underlying neuronal mechanisms, could be designated by the onset latencies in 

response to given stimulus. For instances, mossy fiber activations can be detected in the 

granular layer, where MFs synapse on granule cells, within the 5ms window after a stimulus. 

Whereas, CF-related responses can be noted with longer latencies (15-25ms) in the Purkinje 

layer to the same type of stimulus. Additionally, each of these evoked responses can also be 

detected on the surface of cerebellar cortex and linked to their neuronal sources.  

Cerebellar evoked potentials in anesthetized animals exhibited reproducible 

characteristics (Eccles et al., 1966;Eccles et al., 1967;Oscarsson, 1968;Armstrong and Drew, 

1980;Atkins and Apps, 1997a;Bengtsson and Jörntell, 2007;Roggeri et al., 2008;Ordek et al., 

2013). However, cerebellar neural network is sensitive to parameters of the anesthesia such 

as injected dose, targeted neuroreceptors (NMDA, GABA, etc.) or the recovery duration, 

which also alters the dynamics of the neural circuitry. Thus, controlling the anesthesia 

regimen is one of the crucial elements in the evoked potential analysis. 

2.2.1 Brief History of Cerebellar Evoked Potentials 

Evoked potentials obtained from the cerebellar surface as a response to a stimulus in 

anesthetized animals have been analyzed to understand the neural signal flow in the 

cerebellar cortex. (Eccles et al., 1967;Oscarsson, 1968;Armstrong and Drew, 1980;Atkins 

and Apps, 1997a;Atkins and Apps, 1997b;Baker et al., 2001;Diwakar et al., 2011). Eccles et 
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al. used the juxtafastigial stimulation to identify subsequent MF mediated evoked volleys 

(i.e. P1, N1, P2, N2 and N3) with < 5 ms onset latencies in anesthetized cats (Eccles et al., 

1967). Armstrong and colleagues observed volleys with similar onset latencies associated 

with MF activation to snout stimulation in surface recordings from the rat cerebellum 

(Armstrong and Drew, 1980). They also compared cerebellar evoked potentials from 

different depths and stated that all MF-mediated signal components were detectable from the 

surface using micro-electrodes. In a more recent study, although MF-activated evoked 

volleys in response to electric stimulations of the snout were substantially depressed in 

ketamine-xylazine treated rats, they were clearly detectable (Bengtsson and Jörntell, 2007). 

Climbing fibers (CFs); one of the two afferents to the cerebellum, contribute 

significantly to sensory processing, and their evoked potentials can also be detected with 

surface recordings. In an earlier report, the CF related evoked potentials to a forelimb nerve 

stimulation was detected at 14-22 ms after the stimulus in the cerebellar surface potentials 

(Larson et al., 1969). Armstrong et al. reported observable CF-activation with the onset 

latencies of 16-22 ms and 20-25 ms in the vermis and ipsilateral hemisphere of the rat 

cerebellum, respectively. Apps et al. conducted a detailed characterization of CF mediated 

evoked potentials and concluded noticeable variations in the onset latencies of CF volleys 

within the same lobule of the rat cerebellum. The local field potentials (LFPs) contained CF 

activations with 10-15 ms onset latencies to forelimb stimulation in the central area of the 

PML, while CF response delays spread over to 16-26 ms in the lateral side of the PML with 

forelimb stimulation (Atkins and Apps, 1997a).  All these reports agree that both MF- and 

CF-related evoked potentials are detectable from surface recordings. Furthermore, it is 
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convenient to be able to identify these two responses by their onset latencies where the MF-

related volleys precede the CF-related potentials. 

2.2.2 Effect of Anesthesia on the Cerebellar Potentials 

Recording synchronous LFPs in the cerebellar cortex was documented in earlier reports in 

awake as well as anesthetized rats (de Solages et al., 2008a;Courtemanche et al., 2013;Ordek 

et al., 2013). Even though the anesthesia regimen depresses the frequency content of the 

cerebellar oscillations (Joynt, 1958;Ordek et al., 2013) signals have sufficient amplitudes to 

characterize oscillatory signals, particularly in low frequencies. Despite the fact all 

anesthesia regimens will affect the spontaneous and evoked potentials in the cerebellum, it 

has been proposed that: “A dramatic reduction in the field potentials does not necessarily 

imply that peripheral responsiveness is completely removed. The amplitudes of field 

potentials rely on a synchronous activation of afferent inputs.” (Bengtsson and Jörntell, 

2007). 

The anesthesia effect on cerebellar oscillations and evoked potentials in ketamine-

treated rats were exclusively reported  (Ordek et al., 2013). It has been found that anesthesia 

regimen depresses the evoked potentials and spontaneous oscillations in the cerebellar 

cortex.  It was also determined that the frequency content was diminished to 1-50Hz from a 

high-band width (up to 800Hz in awake animals) after anesthesia injection. However, the 

anesthesia effect can be controlled by maintaining the same anesthesia dose and the timings 

of the recordings after anesthesia injection.  

The effect of anesthesia on spontaneous recordings as well as evoked potentials is a 

concern raised by a number of investigators in the past. Servais and Cheron (Servais et al., 



 

22 
 

2005) compared differential effects of two different anesthesia regimens (ketamine and 

pentobarbitone) on local field potentials. They found that ketamine, an NMDA antagonist, 

depresses the LFP oscillations with PC desynchronization, while pentobarbitone, which 

targets the GABAa receptors, caused slight changes in PC synchrony. In the cerebellum, 

excitatory networks such as the MF-GC-PFs pathway use the NMDA receptors, whereas 

inhibitory signaling is mediated by GABAa receptors through the PCs and molecular layer 

interneurons. Therefore, using different anesthesia regimens could have different effects on 

the neural activity by selectively targeting different synaptic mechanisms. Another critical 

factor in anesthesia is the time delay allowed before data collection. Jorntell et al. (Bengtsson 

and Jörntell, 2007) reported that ketamine-xylazine (20:1) depressed both MF and CF 

responses significantly for 10 minutes after the injection. Similarly, LFP oscillations in the 

cerebellum exhibited sustained depressions for 5-10 minutes after anesthetic injection 

(Servais and Cheron, 2005). Although the recovery time was dose dependent, there was an 

observable delay that allowed between the injection and recordings can be used to control the 

anesthesia level in a reproducible manner, and thus obtain stable recordings.  
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CHAPTER 3  

TRAUMATIC BRAIN INJURY (TBI) 

Assessment of the development of a brain injury is crucial to understand underlying 

molecular, cellular and pathophysiological mechanisms for therapeutic interventions. 

However, there is not an accurate technique yet to detect brain injuries immediately and 

monitor its progression in time.  Traumatic brain injury (TBI) is a leading cause of morbidity 

under age of 35 years (Bruns and Hauser, 2003;Langlois et al., 2006). In fact, recent reports 

indicate a rapid increase (0.051% from 0.023%) in concussion rate among young individuals 

involved in sport-related activities (Rosenthal et al., 2014). This may be explained by the 

developing technologies such as helmet-sensors, immediate blood samples and balance tests 

that can question the conventional methods’ reliability.   

 TBI is defined by a direct or indirect external force applied to the head, which leads 

to rapid changes in the structure (mechanical tissue deformation, hemorrhage, intracranial 

pressure, etc.). Reports indicate that cell deaths could be observed extensively in different 

parts of the brain as early as 10 min to a month following injury (Conti et al., 1998;Sato et 

al., 2001a;Ai et al., 2007). While the initial injury is predominantly dependent on the severity 

of impact (trauma), subsequent reactions, which may last days to months, involve more 

complicated events (Thompson et al., 2005;Marklund et al., 2006;Bramlett and Dietrich, 

2007). Latter is the main focus of research, since it manifests a broad window for cascaded 

injury progression in under-diagnosed cases such as concussions.  
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3.1.1 Overview of the Cerebellar Injury 

Traumatic brain injury results from a direct or indirect force exerted on the head that quickly 

leads to a sequela of changes in the brain such as mechanical tissue deformation, 

hemorrhage, and an elevated level of intracranial pressure. Earlier reports indicated the 

delayed PC loss after midline and lateral FPI in the rat cerebellum (Mautes et al. 1996; 

Fukuda et al. 1996). Although the actual mechanism of indirect injuries to cerebellum is well 

understood, the primary injury occurs due to deceleration and inertial forces on the stationary 

skull. While the primary injury impacts are immediate throughout the cortices, secondary 

mechanism that involves cascaded metabolic events can last weeks to months. Indirect 

injuries to cerebellum in animal models demonstrated close relationship to human studies. 

Patients with cerebellar damages showed functional, complex nonmotor processing, and 

learning task deficits, which suggest a cerebrocerebellar involvement (Soto-Ares et al. 2001; 

Gale et al. 1995; Gorrie et al. 2002; Fiez JA et al. 1992). Cerebellar related deficits were 

reported in individuals within weeks to years following head injury (Iwadate et al., 

1989;Louis et al., 1996b). Metabolic changes, which could be one of precursors of head 

injuries, have also been reported in the cerebellar injuries (Kushner et al., 1987;Niimura et 

al., 1999;Hattori et al., 2003). Extensive cell death can be observed in different parts of the 

brain as early as 10 minutes and progresses over a month following injury (Conti et al., 

1998;Sato et al., 2001a;Ai et al., 2007). Ai et al. showed progressive PC loss after direct 

injury to the rat cerebellum (Ai et al., 2007), which may also be correlated with 

electrophysiological changes within the cerebellar circuitry (Ai and Baker, 2002;Ai and 

Baker, 2004). While the initial injury is predominantly dependent on the severity of the 

impact, subsequent reactions, which may last days to months, involve a complex sequence of 
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events (Thompson et al., 2005;Marklund et al., 2006;Bramlett and Dietrich, 2007). The latter 

is an emerging field of research, especially regarding under-diagnosed cases such as 

concussions since they present a broad window of cascaded injury events.  

3.1.2 Underlying Mechanisms of the Cerebellar Injury 

It has been suggested that progression of a brain injury involves molecular and cellular 

cascaded mechanisms, which may occur from minutes to months after trauma (Thompson et 

al., 2005; Marklund et al., 2006; Bramlett and Dietrich, 2007). Glutamate, the primary 

excitatory neurotransmitter in the CNS, is highly utilized in the cerebellum between different 

cell types; MFs – GCs, Parallel fibers – PCs and CFs –PCs (Ito, 2001; Nishiyama and 

Linden, 2007). One of the proposed mechanisms of brain injury involves excessive release of 

glutamate that leads to excitotoxicity (Gross, 2006). Elevation in the glutamate transmission 

is likely to disrupt the synaptic communication in the cerebellar cortex and compromise the 

cerebellar function. Ai et al. documented presynaptic hyperexcitation at the parallel fibers 

and the amplitude increase in the MF potentials on the days after the injury in the rat 

cerebellum (Ai and Baker, 2002; Ai and Baker, 2004). In FPI rats 7 days after injury, the 

same investigators also reported an amplitude decrease in the complex spike activity, which 

typically occurs by direct activation of the CFs on the PCs. (Ai et al., 2007).  

3.1.3 Clinical Relevance of the Cerebellar Injury  

Clinical reports have indicated that some of the neurological disorders, including ataxia, 

postural instability, tremor, lack of coordination and even cognitive impairments, are 

associated with the cerebellar damage (Louis et al., 1996a;Basford et al., 2003;Braga et al., 

2007a). Though cerebellar related deficits could be diagnosed by variety of cases in 
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individuals, direct-cerebellar injuries are relatively a less common phenomena that was 

reported only <1% of entire TBI patients (Tsai et al., 1980a).  

Similar to the adult, indirect supra tentorial trauma can lead to cerebellar damage in 

the brain-injured child. Sato-Ares et al. (Soto-Ares et al., 2001) studied cerebellar findings in 

brain-injured children an average of 16 months after moderate to severe TBI and 

demonstrated cerebellar atrophy in patients whose initial injury was to the frontal and 

temporal regions. In these children, injury-induced cerebellar atrophy was correlated with 

poor performance on standard intelligence quotient tests. Braga et al. (Braga et al., 2007b) 

investigated brain magnetic resonance findings and neuropsychological sequelae in a series 

of children who suffered severe TBI and showed an association between cerebellar lesions 

and deficits in visual recognition memory, arithmetic, object assembly, and overall 

intelligence quotient. Matschke et al. (Matschke et al., 2007) reported of a 4-year-old girl 

who had suffered mild TBI with an occipital skull fracture and expired 3 weeks later due to 

unrelated causes. At autopsy, they noted significant cerebellar atrophy with loss of Purkinje 

cells and activation of microglia. These finding correlate the cerebellar atrophy seen in 

radiological studies with vulnerability of Purkinje cells to TBI. Overall, these clinical reports 

show that the cerebellum is often affected in TBI, both directly and indirectly. However, the 

causes of cerebellar damage and the long term consequences are not completely understood 

(Potts et al., 2009). 

3.1.4 Animal Models in the Brain Injury Research 

Animal models propose a perfect platform to understand the development of brain injuries 

with repetitive and severity dependent injury models. Head injuries can produce varying 
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types and degrees of post syndromes lasting minutes to possible weeks or months in humans. 

Recovery duration could be improved by monitoring the post-traumatic symptoms, which 

would ultimately help the earlier interventions.  “Though larger animals are closer to 

humans, rodents are mostly used in TBI research owing to their modest-cost, small size and 

standardized outcome measurements” (Xiong et al., 2013). To this purpose, various 

experimental models were implemented to examine reproducible TBI effects in the animal 

models. Most well-known are fluid percussion injury (Dixon et al., 1987b), controlled 

cortical injury (CCI) (Cernak, 2005), weight drop and rotational acceleration injuries 

(Goodman et al., 1994), and blast TBI models (Benzinger et al., 2009). The common 

hypothesis in all includes the replication of gradient dependent injuries in the animal models, 

and then assesses the correlations between pathophysiological results with 

behavioral/cognitive consequences. In the FPI models, an insult is induced by the fluid 

percussion produces a displacement and a deformation of the applied brain tissue, which can 

be rated by the magnitude of the fluid pressure. Deficits originated after the brain injury and 

association brain regions such as sensorimotor cortex, hippocampus, thalamus, cerebellum, 

etc. can be described by the functional tests such as beam walking, cylinder test, extremity 

force and precision tests. To this purpose, animal research can be used as an experimental 

model to explore possible parameters of the post-trauma syndromes such as neurobehavioral 

or cognitive deficits (Hamm, 2001;Morales et al., 2004), which are commonly observed in 

human TBI with the advantage of replication. 



 

28 
 

3.1.5 Current Diagnostic Techniques of a Brain Injury 

Some of the current diagnostics of brain injury in humans include neuroimaging technics 

(MRI, CT or X-rays), neurological, neurophysiological examinations and (quantitative) 

EEG, which are usually not sufficient to diagnose the physical, behavioral and cognitive 

impairments, particularly in the mild injuries. A typical neurological evaluation includes 

checking the eye pupil reflexes, testing the hearing and visual impairments, muscle tone, 

coordination deficits and lose of upper body strength. While a neurophysiological 

examination requires list of cognitive tests to assess the individual’s attention, memory, 

speed of thinking as well as reaction time. Though these examinations can be repeated in the 

chronic period of the injury, the actual outcomes are usually designed for the immediately 

after the trauma diagnosis.  Neuroimaging assessments exhibit different advantages over 

each other for diagnosing the brain injury. For instance, CT scans are quick and widely 

available which makes them preferable in emergency cases. Whereas, MRI can extract more 

detailed images regarding the brain structure (deformation, white/gray matter changes, etc.), 

which can help to identify the deeper structural damages. Most of the neuroimaging 

techniques target to detect a brain lesion or hematoma occurred after the trauma incident.  

Additionally, pathological techniques (Immunohistochemical analysis) can also be used in 

vitro environments that can provide contents about the injury and underlying mechanism in 

more detail, however, this method cannot be applicable in human studies. Evaluation of the 

severity of a brain injury is necessary to take the proper care of the patient in the recovery 

period.  
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3.1.6 Limitations and problems with current TBI assessments 

Currently, neuroimaging and neurophysiological techniques are commonly used diagnostic 

techniques for TBI evaluation in the clinics. While these methods allow the physicians to 

detect life-threatening conditions occurred following TBI, their detection reliability is very 

limited particularly in the mild cases. For instance, CT and MRI scans can detect signs of 

injury such as intracranial haemorrhage, haematoma or edema (Young and Destian, 2002). 

These conditions usually do not occur except the severe cases. Reports have shown that less 

than 10% of mild head injured patients indicate a positive injury sign (lesion, hemorrhage) in 

their CT scans, and only less than 1% of them require neurosurgical attention (Jeret et al., 

1993). Moreover, the neuroimaging methods are not cost and time efficient (10-30 

min/scan), and cannot provide detailed temporal information about the injury. 

Neurophysiological tests involve the patient’s cooperation, which is not preferred due to 

intentional falsification, particularly in the acute phase of the trauma. Although 

neurophysiological assessment can provide injury related changes within the minutes of 

incident, it is challenging to link this information to the origin of injury source. The EEG 

technique is one of the latest implementations for the TBI diagnosis. It allows monitoring of 

the brain signals with a higher temporal resolution (< second).  Although the EEG method 

has offered some valuable data such as the injury resulted changes in the neural network 

connectivity or the neuronal deformation in the injured areas (White-gray matter frequency 

spectrum alterations), the limitations of the application (low-bandwidth, low spatial 

resolution, etc.) have made it inefficient as a diagnostic technique (Leblanc, 1999). 

Overcoming the current drawbacks in the commonly used techniques can be challenging, 
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particularly in the mild TBI, which motivates the current research to develop novel methods 

for the assessment of the head injuries. 
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CHAPTER 4  

HISTOPATHOLOGY OF THE CEREBELLAR INJURY 

Fluid percussion injury causes a combination of focal and diffuse injuries that are 

characterized by pathological changes including cell degenerations, altered metabolism and 

axonal injury. Cerebellar atrophy is also one of the common phenomena occurred in the 

post-trauma period after the focal or diffuse TBI (Sato et al., 2001c;Gale et al., 2005b). 

Cerebellar atrophy, which can contribute to the origination of cerebellum related syndromes, 

was reported to be associated with Purkinje cell loss and activation of immune responses 

after the mild TBI cases in humans (Matschke et al., 2006). The FPI model implemented in 

this study allowed us to evaluate the electrophysiological changes and cell loss with the 

severity of impact. This model also showed the relationship between Purkinje cell loss and 

behavioral impairment in the forebrain injury (Floyd et al., 2002). Direct injury model, 

which limits the injury pathway in the studied brain area, may yield more consistent results 

to assess the temporal aspects of neuronal degenerations in the post trauma period. Purkinje 

cell losses were observed as early as within 24h of the trauma and in the following one 

month period (Sato et al., 2001a;Ai et al., 2007). In addition, different amounts of Purkinje 

cell losses were shown at different severities of the cerebellar injury (Ai et al., 2007), which 

suggests that the rate of the cell deaths can be exclusively related the severity of the injury..  

4.1.1 Excitotoxicity in Cerebellar Injury 

Underlying mechanisms of the brain injury is still under investigations in terms of primary 

and secondary components involved in the temporal course of the injury progression. While 

the primary phase involves mainly the mechanical damages as a result of the direct impact, 
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the second phase introduces a number of metabolic changes such as excessive release of 

excitatory neurotransmitters (i.e. glutamate, aspartate). Despite the lack of complete 

understanding in the underlying mechanisms of neuronal cell deaths in the cerebellum,  

excitotoxicity induced by the hyperexcitation can be one of the explanations (Sarna and 

Hawkes, 2003;Slemmer et al., 2004). Hyperexcitability in the cerebellum was reported by 

the earlier investigators indicating that the presynaptic level hyperexcitation can lead to cell 

losses in the mossy fiber and granule cell network (Ai and Baker, 2002). Neuronal cell 

deaths in the cerebellum were also shown after the hyperexcitation of climbing fibers in 

different brain injury models (Chen and Aston-Jones, 1994;O'Hearn and Molliver, 1997). 

Similar to other brain structures, injury in the cerebellum causes the release of excessive 

excitatory neurotransmitters that leads to cascaded events in the cellular and molecular levels 

such as calcium disturbance in the mitochondria and increased oxygen and nitrogen 

formations, which eventually results in cell damage and death.  

4.1.2 Contribution of Neuronal Mechanisms  

Cellular structure of the cerebellar cortex is highly sensitive to direct insults and the 

consequences can be assessed by the injury severity. In particular, organizational 

degeneration defined by the Purkinje neurons as “stripes” was indicated after the cerebellar 

injury (Sarna and Hawkes, 2003) and dose-dependent cell deaths following induced injury in 

the cerebellar cortex (Park et al., 2006; 2007). Although the mechanisms are not well 

understood, several studies suggest that this loss is due to cytotoxic injury (Immune cells 

involvement) to the neurons (Sarna and Hawkes, 2003;Slemmer et al., 2005). Each Purkinje 

cell receives inputs only from a single climbing fiber, but has an estimated 1,500 synaptic 
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connections with that climbing fiber. Almost 200,000 parallel fibers synapse with a single 

Purkinje cell. The anatomical connectivity of the cerebellum is defined by the two types of 

afferents, the climbing and mossy fibers, where mossy fibers create a patchy organization 

and the climbing fibers activate in the parasagittal direction. Differential findings between 

these inputs after the injury induction can help to localize the injury related damages in the 

spatial domain.  

In addition, white matter degeneration (Matthews et al., 1998) and microglial 

activation (Fukuda et al., 1996;Mautes et al., 1996) is usually coupled with the Purkinje cell 

deaths in the prolonged window of injury effects (months). Strong microglial activation is a 

common inflammatory response observed following an injury to the cerebellum. 

Interestingly, this activation precedes the evidence of neuronal loss, suggesting that 

microglia may be the sensitive indicators of Purkinje cell injury serving as cellular 

scavengers to remove debris and promote healing (Kim and de Vellis, 2005), which can be 

the potential targets for therapeutic interventions in the recovery period. 

Injury to cerebellar white matter (axonal injury) is another mechanism by which the 

functional consequences of TBI can be mediated. Several animal models of brain trauma 

have reported traumatic axonal injury (TAI) in the cerebellum (Hoshino et al., 2003). Current 

literature suggests that TAI is an evolving process, progressing from focal axonal damage at 

the time of injury to eventual complete disconnection (Buki and Povlishock, 2006). 

Extensive bilateral axonal degeneration is observed in the cerebellum as a result of the 

biomechanical forces during CCI injury (Lighthall et al., 1990;Hoshino et al., 2003). 

Although structural axonal degeneration following trauma is well established, the varying 

susceptibilities of myelinated (PC axons, climbing and mossy fibers) and demyelinated axon 
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(Parallel fibers) population in the cerebellum remain to be further investigated (Potts et al., 

2009). 

4.1.3 Indications of Immunochemistry Findings 

Fluid percussion injury model typically introduces a combination of focal and diffuse injury. 

A direct mechanical injury causes cascaded pathophysiological changes including 

intraparenchymal and subarachnoid hemorrhage, followed by ionic abruptions in the cells, 

excitotoxic cell deaths, dendritic arborizations, axonal degenerations, etc. 

Immunohistological verification is an exclusive technique to assess the selective changes in 

the injured area such as the cerebellum. For instance, Calbindin is one of the two major 

calcium binding proteins, which is also widely used as a marker for naïve Purkinje cells in 

the cerebellum (Tolosa de Talamoni et al., 1993;Ai and Baker, 2004) to provide control 

results. Whereas, Fluro-Jade staining has been used for the delineation of irreversible cell 

deaths coupled with the progressive dendritic arborizations (Schmued et al., 1997). 

Progressive Purkinje cell deaths after the induced FPI in the cerebellum were reported in the 

rats. Furthermore, neuronal cell deaths were quantified with daily measurements after the 

FPI induction within the one week period. Statistical results compared with the healthy cells 

were observed in the naïve animals and Purkinje cell loss in the FPI animals (Ai et al., 2007).  

Interestingly, there was no measurable evidence of cell deaths anywhere in the structure of 

the cerebellum within hours of injury induction (Sato et al., 2001a;Ai et al., 2007). 

Neuronal losses are not the only degeneration markers in the cerebellum. Noticeable 

axonal damage and related motor deficits were reported in cerebellar injury rats 

(Strahlendorf et al., 1998;Ding et al., 2000). Damages in the white matter were also noted 
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within the 24-48h period after the injury in the rat cerebellum (Hoshino et al., 2003). Another 

study determined the degenerations in the fiber tract of rat cerebellum after the 48h and 7 

days of the FPI (Hallam et al., 2004). Immunohistology provides important insight 

information about the injury mechanism with pathological findings; however, the lack of in 

vivo monitoring in injury progression presents a significant obstacle in the assessment of the 

TBI.   
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CHAPTER 5  

EXPERIMENTAL METHODOLOGY 

5.1 Materials and Methods in Chronic Experiments 

5.1.1 Flexible Multi-Electrode Array (flexMEA) 

A custom-designed 32-channel multi-electrode array was implanted to obtain electrical 

activity of the cerebellum in this study (Figure 5.1). The design of the MEA was made by the 

investigator, and a company fabricated the MEAs (Neuronexus, MI).  

 

The MEA substrate was made of a polymer (polyimide) to provide flexibility. 

Substrate was originally fabricated in 12µm thickness (8µm in the future experiments) and 

contained 32-electrode site contacts in the 4 by 8 configuration. Electrode contacts were 

50µm diameter gold with 300µm inter-site distances (Figure 5.2). The array was connected 

to a micro-connector (Omnetics, MN) via 20mm ribbon cable made of the same material as 

Figure 5.1 A custom made 32-Channel flexMEA (Right) connected to head micro-
connector (Left, Neuronexus MI). Scale bar = 1mm. 
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MEA substrate. Integrated circuit board and 32-electrode pathways were insulated and 

covered by the epoxy after the fabrication. The final design of the MEA with the connector 

side is shown in Figure.5.1 (Left).  

Electrode impedance of the recording electrodes is a crucial parameter for the quality 

of neural signals.(Williams et al., 1999;Nicolelis et al., 2003;Prasad and Sanchez, 2012). 

Signal to noise ratio of the recorded neural activity is inversely proportional to √Z of the 

acquired channel. One of the common techniques to overcome this issue is to increase 

surface area through surface modifications. The material deposited on the electrodes must be 

corrosion resistant, highly conductive, and biocompatible to minimize the tissue host 

responses. Conductive polymers are organic materials with a high ability of electric 

conductivity and found to be improving the long-term recordings in the neural implants 

(Ludwig et al., 2011). In a similar fashion described by another investigator (Venkatraman et 

al. 2011), the electrode sites on the MEA were electrochemically coated with poly (3,4-

ethylenedioxythiophene) or PEDOT prior to implantations. PEDOT surface modification 

was performed by delivering DC current through each electrode contacts in the prepared 

PEDOT solution (Figure 5.3). Following 1h-2h coating process, the surface impedances were 

Figure 5.2 Scheme of the 32-site contacts on the MEA with inter-site distances. 
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observed (typically gold turns to black under microscope) to decrease by one or two order of 

magnitude (<100k) after the polymer coating process. 

 

5.1.2 Surgical Procedure in Chronic Experiments 

Sprague-Dawley or Long-Evans rats (300-350g, N>15) were anesthetized with IP injection 

of 80mg/kg ketamine and 12mg/kg xylazine cocktail. The animal was placed in a stereotaxic 

frame. Sodium pentobarbital (30 mg/kg, IP) was used to anesthetize the animals. Controlled 

anesthesia was maintained throughout the surgical procedure and additional doses of 0.1cc 

(IP) were administered as needed. Bupivacaine (0.1 ml, SC) was injected to the incision site 

for local anesthesia. Dexamethasone (0.1 mg/kg, IM) was used at the beginning of the 

surgery to prevent edema in the central nervous system and atropine (6mg/kg, IM) to 

improve respiratory function. The animal was placed on a heating pad equipped with a rectal 

probe to calibrate the body temperature at 36 ° ± 0.8°C (WPI). Surgical preparation and 

instruments are shown in detail (Figure 5.4). 
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Figure 5.3 Experimental setup of PEDOT surface coating prior to implantation. 
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After the initial anesthesia injection, animal’s head was shaved from top to the neck 

line to provide clean surface during surgery. Animal was positioned to a stereotaxic frame 

with ear bars fixed into the auditor canal (Figure 5.5). The target and adjacent surgical area 

on the scalp was scrubbed with isopropyl alcohol and dried with sterilized wipes. Eye 

ointment was applied on both eyes to protect the dryness in the longer surgeries. A fine 

incision was made by #15 carbon steel sterile blade through the midline in the rostro-caudal 

direction. The opened scalp was pulled to the sideways and fixed by two hemostats. Next, 

the connective tissue and blood was cleaned on the bone surface by using the tip of a sterile 

cotton swab and disinfected with hydrogen peroxide.  

Figure 5.4 Surgical equipment and instruments are prepared in sterilized environment 
prior to chronic experiments. 
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Six holes were drilled into the skull using a fine drill bit and metal screws (Plastics 

One Inc, VA, Figure 5.6A).  A stainless steel or platinum wire as a ground connection was 

anchored to the skull with the aid of one screw on the frontal side. Incision was extended to 

the back down of the animal in order to reach the cerebellum. All connective tissues and 

muscles were separated using small scissor and scalpel’s blunt tip (Figure 5.6B). A second 

craniotomy was drilled to the right lateral side from the midline of backbone. Once the 

craniotomy was large enough for microrongeurs, the cerebellar dura surface was exposed. 

Exposed dura surface was kept hydrated with saline or artificial CSF.  

Following the bone extraction, the paramedian lobule on the cerebellar dura surface 

must be clearly noticeable under microscopic vision (arrowhead, Figure 5.6C). First, the 

PML surface was pierced by a needle tip (e.g., <30G) shaped into hook form. Subarachnoid 

space is vascularized, thus the puncture needed to be very gentle to minimize the potential 

threats caused by the hemorrhages. The MEA was slid under the dura by performing two 

Figure 5.5 Animal’s head fixed with the aid of stereotaxic ear bars for chronic experiments. 
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cuts at the medial and lateral side to yield the implantation (broken lines, Figure 5.6C). Once 

the MEA had been positioned on the desired region of the PML (~0.3mm lateral to the 

paravermal vein), biocompatible cyanoacrylate glue was applied on the four corners of the 

MEA to keep it in place (Figure 5.6D).  A platinum wire was placed on the MEA 

implantation site with an aid of resected muscle pieces. Incisions were closed by suturing 

first muscles together with 5.0 absorbable sutures. The micro-head connector attached to the 

MEA was fixed to the skull with dental cement and made a robust head-cap. Skin on the 

opened scalp was closed by 4.0 non-absorbable sutures at the end. Buprenorphine 

(0.05mg/kg, IM) was used twice daily for 3 days post-operatively as an analgesic. Antibiotic 

ointment was applied when needed until the wounds healed completely. 

Placement of the MEA on the PML surface of cerebellum could drastically effect on 

the recording characteristics and more importantly lead additional variations between the 

experimental animals. However, success of the MEA implantation was verified with surgical 

care and obtaining the signature waveform of evoked responses in the studied lobule, the 

PML. The width of the implanted electrode array had a perfect match (~1.2mm) in size with 

the width of the PML. 

5.1.3 Recording Procedure 

Recordings sessions started with the baseline measurements immediate after the animal 

recovery (~2-3 days). Initial recordings were acquired from the awake or behaving animal to 

ensure the quality of the neural data (Figure 5.7). Electrode impedances were also (Electrode 

Impedance Tester, Model IMP-1, BAK Technologies Inc., MD) noted to check if there was 

any electrode failure in the post-surgery period. After the full recovery (>3 days) evoked 
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potential responses in the anesthetized animals were coupled with recordings in the awake 

animals. Measurements were repeated every other day within one month of post-

implantation.  

 

Anesthesia was induced in chronically implanted animals with a single 

intraperitoneal injection of 55 mg/kg ketamine and 12 mg/kg xylazine mixed and diluted in 

normal saline. 

Figure 5.6 Main steps of the MEA implantation are shown (A-D). Skull on the cerebral 
cortex was used for the stability of the micro-head connector (A), while the cerebellum 
craniotomy was performed for the MEA implantation (D).  
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The recordings were performed in a large Faraday cage through a 34-channel head-

stage amplifier (Gain 800, Band-Pass; 0.8 Hz – 3 kHz, Triangular Biosystems, NC) inserted 

into the micro connector on the rat’s head, which was also interfaced with data acquisition 

card (National Instruments PCI 6259) and the computer. The signals were sampled at 16 kHz 

and collected in 10-s episodes before the anesthesia and also as the animals were recovering 

from anesthesia at regular intervals. Video images (Basler Inc., PA) were captured 

simultaneously with neural recordings to confirm retrospectively that the animals were not 

moving during data collection. 

Table 5.1 Electrode Impedance Values Measured in a Sample MEA over a 45-day Period. 
                                                      Electrode Impedance (kOhms) 
Channels DAY-1 DAY-5 DAY-15 DAY-45 
1 60 270 180 145 
2 155 85 180 155 
3 45 70 180 130 
4 55 40 180 120 
5 60 40 90 70 
6 35 250 150 130 
7 45 70 190 120 
8 65 125 330 140 
9 50 160 440 135 
10 50 90 280 130 
11 40 110 330 130 
12 50 90 360 140 
13 75 80 360 195 
14 55 50 280 165 
15 45 75 500 305 
16 35 125 300 220 
17 140 100 90 70 
18 65 110 80 60 
19 60 95 230 110 
20 40 100 200 170 
21 55 65 170 170 
22 70 150 150 160 
23 115 145 190 145 
24 140 100 160 150 
25 30 100 450 150 
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26 50 110 170 170 
27 20 40 170 95 
28 15 100 150 90 
29 30 100 450 90 
30 30 260 300 330 
31 45 175 100 120 
32 35 50 100 90 

 

 

5.1.4 Stimulation Paradigm 

Evoked potentials were induced by single or repetitive tactile stimulations in the anesthetized 

animals. Anesthesia depth was maintained at mild level (55 mg/kg ketamine and 12 mg/kg 

xylazine) to avoid depression of complete EP responses. As a stimulus, either air-puffs (30 

psi, duration > 50ms) or the mechanical tap stimulations (1atm, 50µs) were applied to the 

periphery, e.g., ipsilateral forearm, whiskers, face, and perioral areas. Multiple trials were 

averaged to reduce background activity against the evoked signals. During recovery from 

anesthesia to wakefulness, rats were ensured not to move before the air puff thereby avoiding 

Figure 5.7 Picture of a chronically implanted rat while face cleaning, connected to a 
pre-amplifier via its skull- mounted percutaneous connector. 
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large spontaneous activity that would contaminate the evoked potentials. All data analysis 

was performed in Matlab. 

5.1.5 Coherence Analysis 

Relationship between recorded signals across 32-channels was studied in the frequency 

domain. Signals from all recorded channels were filtered between 0.5Hz-3kHz. Cross-

coherence values between each paired channels were calculated by using Welch’s averaged 

modified periodogram method with pre-defined Hamming window. Magnitude squared 

coherence estimation (C1,2) was varied between 0-1, which higher values indicating stronger 

relationship. Leveraging the MEA feature, this has 8 by 4 site configurations; cross-

coherence values of paired channels were computed with respect to inter-site distances 

(300µm, 900µm) and averaged across multiple trials and animals (mean±s.d, Figure 6.10). 

Additional to distance selective analysis, coherence estimation was also computed for all 32-

sites against each other, which represented the mean spatial coherences of all MEA channels 

in each trial (Figure 6.29). 

5.2 Injury Methods 

5.2.1 Fluid Percussion Injury (FPI) Setup 

Lateral fluid percussion brain injury is one of the most commonly used and well-

characterized experimental models of TBI, producing both focal and diffuse injury 

characteristics (Thompson et al., 2005;Cohen et al., 2007). It is often used to induce TBI in 

both rat and mouse models (Schwarzbach et al., 2006;Cohen et al., 2007).   From experience 

working with the widely used animal model, Dr. Bryan Jim Pfister (BME, NJIT) has 

C"
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developed a computer controlled fluid percussion injury (FPI) device to precisely control the 

characteristics of the pressure waveform of the fluid percussion (Abdul-Wahab R, 2011). 

 

This device utilizes a voice-coil actuator to generate a precise temporal forcing 

function under closed loop control with a proportional–integral–derivative motion controller 

and a linear encoder with a 1 µm resolution. The voice coil is coupled to a hydraulic cylinder 

that delivers the defined fluid percussion waveform. Model of experimental setup for the FPI 

is shown in detail (Figure 5.8B).  

Adult rats were anesthetized using ketamine/xylazine and placed in a stereotaxic 

frame.   The scalp was reflected with a single incision and a trephine with an outer diameter 

of 3mm creates a craniectomy.  Only animals with dura intact were used.  The needle was cut 

from a Luer-loc needle hub (3 mm diameter) and glued in place with cyanoacrylate adhesive.  

Dental acrylic was then applied to secure the connector.  The animal was sutured and placed 

on a heating pad. Rats were attached to the voice coil activated FPI device, while they were 

still under anesthesia. The Luer-loc hub was filled with sterile saline, connected to the FPI 

device and injured. The approximate location of injury site with reference to electrode 

B"A"

Figure 5.8 A, Position of the MEA (rectangle) and the injury hub placements (circle) on the 
actual sized cerebellum surface. Verification of the induced injury is shown immediate after 
the single fluid pulse (arrow). B, Programmable Fluid Percussion Injury system and the 
experimental setup. 
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placement (~1mm rostro and lateral) and a sample of injured area after FPI delivery are 

shown (Figure 5.8A). The animal was held on a heating pad and returned to the home cage 

when ambulatory.   

5.2.2 Delivery of FPI and Injury Severity 

Craniotomy for the FPI induction had been performed during the same electrode 

implantation surgery. A burr hole had been made into the skull 1 mm above the implanted 

electrode on the right hemisphere. A plastic tube had been firmly attached into the hole using 

dental acrylic mixed with cyno acrylate. Once the port had been placed and secured with 

tissue adhesive and dental acrylic mixture, animal was taken to recovery, which also yielded 

for 1-3 days to obtain baseline recordings prior to injury induction. There was always a gap 

(≤3 days) between the surgical implantations and the time of the injury, which was utilized 

for the initial recordings from the un-injured animal. Typical steps of the surgical 

implantations and the electrophysiological recordings were highlighted in Figure 5.9.  Then, 

the fluid percussion injury (FPI) device developed by Dr. Pfister in our group was connected 

to the plastic port.  Dr. Bryan Pfister, who is a PI on a multi-investigator project from 

NJCBIR with Drs. Kevin Pang and Vijayalakshmi Santhakumar, had developed a custom 

fluid percussion injury device that was accurate in the lower pressure range necessary for 

producing mild brain injuries.  It had the unique ability to independently control the rate, 

magnitude, and duration of the pressure wave (Figure 5.8B). 

Following the baseline collection from the un-injured animal, a single pressure pulse 

with a peak of 5-15psi (0.35-1atm) and 5ms duration was applied through the port. The 

evoked potential recordings were repeated as described above to observe the immediate 
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changes (10 minutes) post-injury. It was important to collect the signals always at the same 

time window (10-20 minutes) from the time of anesthetic injection in order to standardize the 

anesthesia level. The timing of this window was the best way to control the anesthesia level, 

and even more effective than controlling the anesthesia dose itself in our experience.   

In the first few animals, the threshold pressure needed to observe any changes 

(immediately or later) in the evoked potentials was determined. Preliminary experiments 

contained recordings from both anesthetized and awake animals. Anesthesia was 

instrumental to keep the evoked potentials free from any modulatory signals from the other 

brain sites, e.g. sensory motor cortex. The network activity was much higher once the animal 

recovers from anesthesia (de Solages et al., 2008b;Middleton et al., 2008;Ordek et al., 2013). 

The minimum intensity of FPI pressure to induce changes in the evoked potentials 

(amplitude or onset time) or the network connectivity (correlation and coherency) in the 

acute and chronic phase was determined by lowering the initial tested higher magnitudes 

(25-30 psi) to an optimum intensity; 10-15 psi. Quantitative injury results were included in 

this study were acquired from only the animals that were injured with optimum intensity (10-

15 psi) by a single FPI induction. The time course of these measures was studied. The acute 

and chronic time course of the injury progression was monitored with daily recordings. 

5.2.3 Monitoring the Baseline Electrical Activity in the Injured Animal 

Experimental procedure of the FPI animals was initiated by the collection of baseline 

recordings following MEA implantation 1-3 days prior to injury. Once the baseline 

recordings were established, FPI was performed through the injury port, which was placed 

during the MEA implantation. Immediately after the FPI induction, electrophysiology of 
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each animal was monitored for acute and longer time courses (Acute – one week). Typical 

timeline of the experiments is shown in figure.5.9.  

 

 

Prior to FPI induction, each animal was anesthetized again with ketamine/xylazine. 

First, a baseline evoked potential recording was made via bilateral MEAs before the injury. 

The cerebellar evoked potentials were recorded for a number of (N=20) mechanical stimuli 

had been delivered at 1Hz and averaged to remove the uncorrelated noise components from 

the signals. Mechanical stimulations were performed bilaterally on the peripheral areas 

(dorsal arm, whisker or hind limb) that were studied in the preliminary work. Components of 

the cerebellar evoked responses (MF or CF originated, Figure.6.1) were measured in 

amplitude and delay times on the computer retrospectively.  

Three quantitative measures were extracted from the neural signals and followed over 

time: Firstly, the amplitudes and arrival times of the volleys related to the mossy fiber 

activity in the evoked potentials under anesthesia. Secondly, the amplitudes and arrival times 

of the volleys related to the climbing fiber activity in the evoked potentials under anesthesia. 

Finally, the average correlation and coherence values between all the contacts of the MEAs 

were recorded in quietly resting but awake animals.  

Figure 5.9 Experimental procedure is described with respect to time course. Each 
experiment lasted 7-10 days including 1-3 days pre-injury monitoring. 
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5.2.4 Determination of Population Size (Power Analysis) 

Injury consequences were observed through the EPA changes in the FPI animals. The 

quantifications in electrophysiological changes were made by comparing the mean ± s.d. of 

normalized evoked potential amplitudes for pre-injury and 7-day post-injury values in each 

injured animal. In order to determine the required group size for the FPI experiments, the 

preliminary data including the minimum and maximum changes were utilized. Analysis of 

statistical power of sample size from expected changes in normalized EPAs is shown (Figure 

5.10). As a reference, at least seven animals were required to indicate similar EPA changes 

in the FPI experiments in order to meet 80% of statistical significance power with the 

projected minimum values (50%±40%, violet line). In the current study, the group size was 

determined as nine animals (FPI experiments), which highlights >99% of statistical power 

Figure 5.10 Analysis of statistical power was computed with observed EP amplitude changes in the 
preliminary data. Statistical power is computed with respect to normalized mean (µ1) ± s.d. (s) 
EPAs.  
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(red line, 25%±30%; Figure 5.10) with the proposed changed values in the EPAs after the 7 

days of injury. 

5.3 Immunohistochemical Procedure 

Injury to the cerebellar cortex was confirmed with histological evaluations of the explanted 

tissue in collaboration with Dr. Vijayalakshmi Santhakumar, Neuroscience Department, NJ 

Medical School, Rutgers-Newark.  

In this study, double immunostaining technique was performed. FluoroJade C stained 

the irreversible cell damages and axonal degenerations, while CalbindinD28k marker was 

used to provide negative controls staining all types of cells, particularly PCs. Age matched 

naïve controls (n=5) and FPI-injured rats (n=5) were anesthetized and perfused with 4% 

paraformaldehyde to harvest whole brains. All injured animals were survived 7 days after the 

FPI induction. The location of FPI on the cerebellum surface was marked with respect to the 

MEA implantation site, which was easily discernable after perfusion. The cerebellum was 

cut in half and then sliced in the lateral to medial direction in 50 µm parasagittal sections. 

The slices that contained the injury and electrode implantation regions were used for 

staining. Sliced sections were washed with 0.1M phosphate buffered saline (PBS), and 

blocked using 10% normal goat serum in 0.3% triton in 0.1M PBS. Then, sections were 

incubated overnight at room temperature with anti-CalbindinD28k antibody  (MAB300, 

1:1000, mouse monoclonal; Millipore) in 0.3% triton and 3% normal goat serum in PBS. 

Sections were reacted overnight at 4˚C with Alexa 594-conjugated goat anti-mouse 

secondary antibody (1:500, Invitrogen) to reveal staining. Sections processed for 

CalbindinD28k staining were mounted on gelatin-coated slides to perform FluoroJade C 



 

52 
 

staining to mark degenerating neurons [58]. Sections were stained with 0.0001% FluoroJade 

C solution for 1 hour at 4˚C and cover slipped with DPX mounting media. Negative controls 

were routinely included in which primary antibody for CalbindinD28k was omitted. 

Representative images were obtained using Nikon A1R laser confocal microscope using 20X 

objective with identical camera settings. 
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CHAPTER 6  

DATA ANALYSIS AND RESULTS 

All data analysis and illustrations were prepared using MATLAB (Mathworks, MA). 

Statistical results were conducted through SPSS (SPSS Inc., IL) and R (Bell Laboratories, 

NJ) in addition to MATLAB. The signals were acquired as 32-channels or 64-channels (Two 

MEA implants) in a non-referenced single-ended (NRSE) specification with respect to Pt 

wire positioned nearby the recording MEA in the animal’s head.  Data acquisitions were 

performed either at 16kHz or 20kHz sampling resolutions with two NI-daqmx cards (PCI-

6255, National Instruments, TX). An anti-aliasing filter (0.1Hz – 3kHz) with a gain of 800 

(Gain = 100, in earlier recordings) was applied at the input stage of signal recordings. 

Additionally a band-pass filter (5-400Hz) was added to time series analysis. Data typically 

were obtained 1sec, 5sec or 20sec lengths of windows for signal analysis. Spike-(or 

stimulus) triggered averaging (STA) was performed over multiple epochs of stimulations 

(T=20sec, f=1Hz).STA improved the SNR value of the evoked potentials proportional to 

square root of the stimulus repetition (√20).  0.5Hz-3kHz pre-conditioned signals were 

additionally filtered between 5-400Hz (4th order, Butterworth) to eliminate any noise 

components in the evoked signals. In order to investigate the spatial relationship between 32 

electrode channels that recorded different neural activity, correlation analysis (Pearson and 

Spearman) was included. Frequency domain was studied through cross-coherence analysis 

by using Pwelch windowing. Measurable data was analyzed and reported by the (non-) 

parametric statistical methods; student’s t-test, rmANOVA, Mann-Whitney, post-hoc tests.  
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6.1 Characterization of Cerebellar Potentials 

6.1.1 Evoked Potential Analysis 

Cerebellar evoked potentials were characterized in terms of their temporal and waveform 

patterns with a given stimulation (Figure 6.1). A typical evoked potential waveform 

contained relatively lower magnitude deflections within the first 10ms of stimulus arrival, 

which was followed by larger positive wave(s) at 10-30ms after the stimulation. Initial 

volleys were described as the mossy fiber related potentials confirming the earlier reports, 

where the MF responses were faster and typically observed within the 5ms of stimuli-evoked 

response window (Figure 6.1, Left).  

 

Identified evoked potentials in response to peripheral stimulations (air-puff) from 

STAs epochs (20 repetitions, 1Hz) are shown in detail for anesthetized animal (Figure 6.1, 

Right). The peripherally evoked signals obtained from both stimulations resembled signature 

Figure 6.1 Typical evoked potential waveforms within the temporal course of the stimulation 
arrival (s). Mossy fiber and climbing fiber responses were labeled with respect to onset 
latencies of deflections to a mechanical tap (Left) and air-puff stimulations (Right). Evoked 
potentials in cerebellum exhibit characteristic responses to different stimulation areas (Face 
and hand, Right). Onsets of the EP arrivals for MF responses were labeled with respect to 
positive (P) and negative (N) polarities. 
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volleys allocated to mossy fibers (MF) and climbing fibers (CF), subsequently. In both 

stimulations, MF related volleys were denoted within the 10ms after the stimulation arrival, 

while CF responses showed longer latencies >10ms. 

 

 

The mossy fiber signal arrived approximately 1.4ms after stimulation. The evoked 

potentials showed the P1, N1, P2, N2, N3, and N4 components of the field potentials that 

Figure 6.2 ECoG signal characteristics in the anesthetized animals for 32 MEA channels. 
The amplitude and synchrony between recorded channels were drastically improved as 
the anesthesia worn off from the system. 

-10 0 10 20 30 40 50
-1

0
1

( ms )

(m
V)

Aw
ake

0

30

60

(µ
V)

25 m
in

-10
0

10
20

(µ
V)

10 m
in

S



 

56 
 

closely resembled the surface recordings made by Armstrong & Drew (1980). The mossy 

(P1-N3) and climbing fiber potentials to hand and perioral face stimulations showed 

similarities to previous reports with additional delays in the order of millisecond range.  This 

variation was likely dependent on the stimulation paradigm where mechanical stimulations 

may cause additional onset delays compared to electrical stimulations.  

6.1.2 Quality of ECoG signals during Anesthesia Wakefulness Recovery 

Cerebellar oscillations contained evoked responses were collected via subdural MEA 

recordings from multiple animals. 

 

ECoG signals recorded through the subdural implantation contained the local field potential 

signals (LFPs) which are defined by the summation of extracellular fields such as synaptic 
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Figure 6.3 A sample of amplitude measurement from two evoked potentials in response to 
hand stimulation. Evoked amplitudes were calculated from absolute magnitude differences 
between the beginning (black starts) and the peak point (red stars) of each deflections for 32-
channels.  
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activity, transmembrane currents, and dendritic activity from multiple sources. Despite the 

fact that LFPs ideally represent larger neuronal populations, synchronous action potentials 

from many neurons can contribute the high frequency components of the ECoG signals.  

Anesthesia regimen depresses the evoked signals and desynchronizes the oscillations 

substantially at the initial phase after the injection. Depending on the dosage of anesthesia, 

full recovery of the cerebellar network signals may vary. 

 

 

The current study focused on the recordings obtained in anesthetized animals, thus 

the stability of the anesthesia was determined at the beginning of the recording 

Figure 6.4 Somatotopic mapping of the PML area studied with peripherally evoked 
potentials under anesthesia. Climbing fiber response (arrow, Figure 6.3) was referenced for 
the somatotopical analysis. Placement of the electrode array (4 × 8) corresponding to the bar 
results are shown at the top panel. Towers indicate the amplitude mean ± s.d. (dark and light 
blue parts) of signal deflection that arrived at 6-10ms after the stimulus arrival. Multiple air 
puffs were applied (n = 20) in each acquisition, either to the dorsal arm (A) or to the wisher 
free face area (B). 
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characteristics a relative high dosage of ketamine xylazine mixture (80mg/kg and 15mg/kg, 

respectively) was administered and taken to the recordings chamber for continuous 

monitoring. The cerebellum recordings in response to mechanical hand stimulations were 

shown in the temporal course of the anesthesia recovery within the 1h period (Figure 6.2).  

The evoked potentials were obtained within the first 10 min after the anesthesia 

induction exhibited sustain low-amplitude (Vp-p = 5-20µV, top panel, Figure 6.2) and de-

synchronized pattern across recorded 32-channels. After 10 min, there was a dramatic 

change in the evoked potentials as well as oscillations that was most likely due to the 

anesthesia wearing off. The evoked response amplitudes were increased by 3-4 fold (Vp-p = 

20-60µV, center panel, Figure 6.2) in the following 25 min of anesthesia injection. 

Amplitudes of evoked potentials were in the millivolt range (Vp-p > 1mV, bottom panel, 

Figure 6.2) as the animal started to wake up from anesthesia. Wakefulness also re-

synchronized the oscillations drastically that the recordings from all 32-channels resembled 

nearly a single channel.  
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Additionally, subdural ECoG recordings demonstrated a high signal to noise ratio in 

the chronically implanted animals. The amplitudes of evoked responses were as great as 

>1mV in the awake recordings, while the background noise activity fluctuated ~2-3µV (scale 

bar, top panel, Figure 6.2).  

6.1.3 Somotatopy Investigation in the Cerebellum with Surface MEA Recordings 

Evoked potentials collected in response to different peripheral area stimulations were 

investigated whether there was a selectivity across 32-channel aligned on the two 

dimensional plane of the PML surface (Figure 5.6C). Multiple repetitions of the evoked 

response amplitudes were calculated for each stimulation epoch and then averaged for 20 

times. The amplitude calculations of EPs are shown in an anesthetized animal recording 

(Figure 6.3). Averaged evoked responses consistently produced larger amplitudes on the 
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Figure 6.5 Impedance changes in mean ± s.d. values of 32-channels are shown for the 45-
day implant period. Impedances showed an increase and regression period after two weeks of 
the implantation. 
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caudal aspect of the array when the dorsal arm was stimulated, whereas the face stimulation 

generated larger potentials on the rostral side of the array (Bottom panels, Figure 6.4). The 

bar plots represent the approximate locations of the implanted zones on the PML surface 

(Top panel, Figure 6.4) leveraging the MEA design.  

 

These plots clearly demonstrated that evoked potential amplitudes expressed a 

somatotopic mapping in the PML area of the cerebellum in anesthetized animals, which is a 

well-known phenomenon from earlier reports. However, it wasn’t possible to reproduce this 

DAY-1 

DAY-14 

DAY-21 

Figure 6.6 Evoked potentials demonstrated a long-term stability in amplitude and 
waveform characteristics over the 3 weeks period. Signal to noise ratio remained at the 
lowest level as the evoked potentials resembled the same waveforms in response to 3-week 
whisker stimulations. There was also polarity reversal in the evoked waveform.  
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map in the unrestricted and awake animals because of the high neural background activity 

and movement related signals that overlapped the evoked waveform.  

 

6.1.4 Longevity of the Chronic ECoG recordings by using Evoked Potentials  

One of the biggest drawbacks in the neural recordings is the reliability of the signal quality. 

In the current study, flexible MEA fabricated on polymer substrate was utilized which 

minimizes the electrode breakages due to the mechanical stress in the chronic recordings, 

however, the immune response and the encapsulation was still a problem.  

In order to monitor these issues, two principals; periodic impedance measurements 

with monitoring the signal to noise ratio, was taken into account. Impedance changes for 32-

channels were shown over the 45-day recordings periods (Figure 6.5).  Mean impedances 

were increased to 500-600kΩ from 50-100kΩ range within the two weeks period. Electrode 

Figure 6.7 Onset latencies of mossy and climbing fiber network responses to given face and arm 
stimulations. Arrival latencies indicated strong reproducibility across multiple animal and day 
recordings (N = 6 rats, n > 20 trials). Evoked volleys in response to hand stimulation demonstrated 
longer latencies (1-3ms) with respect to face stimulations.  
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impedances across 32-channels indicated an initial incline trend within the first week of 

implantation, and then stabilized after the second week.  

 

Furthermore, evoked potentials were analyzed in the temporal course of three weeks 

period (Figure 6.6). It has been verified that the ECoG electrodes on the cerebellar surface 

could collect reliable signals in the 50-100µV amplitude range in the weeks following the 

implantation. Polarity reversal in the evoked waveform was also noted in these ECoG 

recordings. This could be dependent on the placement of the reference electrode and/or the 

main contributor dipole sources along the somatodendritic axis. 

6.1.5 Identification of Neuronal Mechanisms of Cerebellar Evoked Responses 

The evoked deflections in the cerebellar circuitry were generated by the internal neural 

mechanisms in response to given stimulations. Most distinctive feature of the mossy and 

Figure 6.8 Relationship of mossy and climbing fiber originated evoked responses. EPAs 
were obtained from multiple animals and trials (N = 8 rats, n = 33 trials). Variations in 
individual EPAs show no correlation between two evoked responses, indicating two 
different sources are responsible generating these sequential waves; R =- 0.047. The 
linear fit is Cf = -0.07Mf + 32. 
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climbing fiber responses was the onset latencies of the volleys with respect to stimulus 

arrival. Typically, early responses within the 5-10ms window after the stimulus were linked 

to mossy fiber related networks. Whereas, the latter responses were activated by the climbing 

fiber inputs on the Purkinje cell synapses. The arrival latencies of these identified evoked 

potentials were very reproducible in multiple animals under anesthesia recordings (n>20 

trials, N = 6 rats, Figure 6.7). In addition, the onset latencies of these potentials were similar 

in time regardless of the face and hand stimulations.  

  

Figure 6.9 Power spectra of micro-ECoG recordings from the cerebellar and the 
motor cortices in anesthetized and awake-quiet animals. First, all 32 channels of 
recording were combined into one power spectrum as a representative spectrum of all 
the channels and then the spectra from multiple epochs (N=20) were averaged 
(Welch’s method) for a robust measure of frequency content. The lines and shaded 
areas indicate mean±s.d. The power spectrum of the cerebellar cortex in the awake 
animal extends almost up to 1kHz. The effect of anesthesia is much more prominent 
on the cerebellum than it is on the motor cortex. 
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While the face stimulations elicited the MF and CF related responses at 6.23±1.45ms and 

12.23±2.3ms, respectively (blue bars, Figure 6.7), the same latencies were delayed to 

8.15±1.56 ms and 13.56±2.36ms in the hand stimulations (red bars, Figure 6.7).  

Similarity in the onset latencies of MF and CF related evoked potentials had intrigued 

us to investigate whether there was a direct relationship between the two sub-networks. This 

time, the one to one amplitudes of evoked potentials to given any random stimulation were 

measured. Multiple trials of face and hand stimulations demonstrated almost zero 

correlation; r = -0.0469, between the two input amplitudes (Figure 6.8).  The regression line 

had a declining slope, where the CF amplitudes were always the greatest in magnitude (CF 

=-0.07MF +32).  

6.1.6 Spectral Analysis of Cerebellar Activity in the Anesthetized and Awake Animals 

Cerebellar activity recorded in quietly resting, awake animals had frequency components up 

to 1kHz, which was in clear contrast with the signals from the cerebral cortex, in particular 

motor cortex (Figure 6.9). Interestingly, the spectrum of awake cerebellar activity had a dip 

around 20-60Hz (Red solid line, green shading; Figure 6.9), roughly covering the high beta 

and the gamma band. Ketamine/xylazine anesthesia strongly reduced all the high frequency 

components in the cerebellum except below ~30Hz. In fact, these lower frequency 

components were larger under anesthesia (F = 1.83, p = 0.09 for <30Hz, n=20 trials, N=9 

animals). The motor cortex signal amplitudes declined by frequency and they were 

observable only up to ~200Hz above the noise level (Blue solid line, brown shading, Figure 

6.9). The motor cortex spectrum was virtually not affected by the anesthesia at the high 

frequencies, however the signal power was significantly less at the lower end of the spectrum 
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in the beta band and below (p<0.01). These spectra demonstrate a clear difference between 

the frequency components in the spontaneous activities recorded from the motor and PML 

cortices with micro-ECoG electrodes and a drastic contrast in the way that the two cortices 

are affected by ketamine/xylazine anesthesia.  

  

Figure 6.10 Coherence between electrode channels from the cerebellar and the motor 
cortices in anesthetized and awake-quiet animals. A. Average coherence between all 
adjacent channel pairs (300µm in medio-lateral or rostro-caudal direction) in 
anesthetized and awake-quiet animals. B. Average motor cortex coherences between 
all electrode contact pairs that are 300µm and 900µm apart (in either orientation), 
showing the decline of coherence by distance and anesthesia. C and D. Average 
cerebellar coherence between all electrode contact pairs that are 300µm and 900µm 
apart in rostro-caudal (C) and medio-lateral (D) directions with and without 
anesthesia. 
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6.1.7  Coherence Analysis over the Cerebellar Surface  

Spatial relationships between recorded MEA channels placed on the 2-D surface of the 

cerebellum were investigated in the frequency domain. The difference between the two 

cortices was evident also in the coherence spectra (Figure 6.10A). In the cerebellum, the 

average coherence calculated between all adjacent contacts pairs (300µm center-to-center 

distance) were above 0.6 (to pick an arbitrary value for comparison) for all frequencies 

below 1kHz. A drop in the coherence plot was consistently observed in the beta and gamma 

bands similar to the one in the power spectrum. 

  

Anesthesia induced a drastic decrease in the coherence at all frequencies across the 

spectrum that only the values below 30Hz were above 0.6. In contrast, the cerebral coherence 

between adjacent contacts was above 0.6 for frequencies only below 100Hz in the awake 

animal, and it was only slightly affected by anesthesia across the spectrum. Coherence in 

Figure 6.11 Average coherence between all adjacent channel pairs (300µm inter-site 
distance) in both cortices with and without the mean taken out. Changes in coherence 
values, particularly in cerebellum awake data indicated a substantial common mode 
signal in the cerebellar cortex. 
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cerebrum was higher during anesthesia and this was substantial in the adjacent electrodes 

(300µm).  

 Overall, the awake state coherence values were lower in the motor cortex than the 

PML at all frequencies. Figures 6.10B –D show the effect of electrode separation on the 

coherence plots from the motor cortex and the PML respectively.  
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Figure 6.12 Average coherences with subtracted mean value between all 
adjacent electrode contact pairs in awake-quiet and anesthetized rats in the 
cerebellum in the medio-lateral and rostro-caudal directions clustered (Top 
panel), and in the motor cortex in both directions (Bottom panel).  
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The average coherence for 900µm electrode separation is much lower compared to that of 

the adjacent electrodes at all frequencies in the motor cortex.  

This effect of electrode separation is more evident in awake recordings (Figure  

6.10B). The effect of anesthesia is appreciable only above 150Hz at 300µm separation.  

6.1.8 Common Mode Signal in the Cerebellar Cortex 

The difference between the two cortices was evident also by the coherence analysis (Figure  

6.11). In the cerebellum, the average coherence calculated between all adjacent contact pairs 

(300m center-to-center) was ~0.6 (to pick an arbitrary value for comparison) for all 

frequencies <1 kHz before the common mode signal was taken out. A drop in the coherence 

plot was observed at 30 Hz similar to the power spectrum. The coherence values decreased 

<0.3 when the common-mode signal was cancelled by subtracting the spatial average of the 

contacts in the cerebellum. The motor cortex coherence was higher in general but extending 

only up to 200 Hz. The cerebellum coherence plot was reaching up to 800 Hz, hence, clearly 

contrasting with the motor cortex. Both cortices had large coherence at the lower end of the 

spectrum even after the mean was taken out (0.7 at 10 Hz). At this point, the results argued 

that the common-mode signal in the cerebellar recordings could be originated from the 

distance source or sources that were not interested in the cerebellum. Thus, only the signals 

without mean were used in the rest of the analysis. 

The cerebellar coherence (without mean) was higher between adjacent contact pairs oriented 

in the medio-lateral direction than the ones in the rostro-caudal direction (Figure 6.12; Top 

panel). Anesthesia induced a significant decrease in the cerebellar coherence at all 

frequencies in both directions (red vs. yellow lines in Figure 6.12B; Bottom panel). 
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A small bump was frequently observed in the anesthetized plots between 200 and 300 

Hz as the rat was arousing from anesthesia (not shown in this plot). The motor cortex 

coherence (without mean) slightly decreased by anesthesia across the spectrum, although the 

effect was not as strong as that of the cerebellum, and it was limited to the frequencies <200 

Hz (Figure  6.12; Bottom panel). In general, the impact of anesthesia was better 

demonstrated by the coherence analysis than the power spectra in both cortices. 

6.1.9 Spatio-Spectral Analysis in Behaving Animals 

Cerebellar circuitry is capable of synchronizing in larger populations to generate functional 

output signals. MEA was utilized to investigate these characteristics by looking at the cross-

Figure 6.13 Cross-coherence across selected electrode pairs were analyzed in 
anesthetized and behaving animals. During anesthesia, coherence was limited in the low 
frequency band (1-100Hz) any of the selected electrode pairs (Left). Coherence was 
dramatically increased up to 1kHz in the awake states (Right). 
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coherences across different inter-site distant electrodes at the 0.5Hz-1kHz frequency band 

(Figure 6.13). Coherence between electrode channels was increased in the awake states. Face 

cleaning behavior maximizes the all LFP strength even across larger distances (>1mm, right 

panel).  

 

During attentive resting (center), cerebellar LFPs were strongly coherent with 

measurable differences between close distant and far distant paired electrodes. Results 

indicated the network strength in the cerebellum during wakefulness. In addition to 

anesthesia-wakefulness comparison, cross-spectral analysis also showed the distance 

dependent coherences between paired electrode contacts (Figure 6.13, center).  

Figure 6.14 Spectral density variation in time was studied in a behavioral context. Raw 
signals (0.5-3kHz) averaged over 32-channels in anesthetized and awake animal are 
plotted (Top panel). Corresponding spectrogram plots are shown for each trial (Bottom 
panel).  
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6.1.10 Frequency Analysis in Freely Behaving Rats 

Cerebellar LFPs demonstrate very dynamic changes in the frequency context during sensory 

as well as motor behaviors. The spectral analysis (Figure 6.14, bottom panels) was 

conducted, as the animal was able to freely walking in the recording chamber for 10 seconds 

(Figure 6.14, right panel). 

   

Figure 6.15 Correlation matrixes between all 32 channels of recordings for the 
cerebellum (A) and the motor cortex (B). Top triangles in A and B represent the 
awake data, and bottom triangles indicate the anesthetized data collected in 
different days and animals. Positive and negative Pearson correlation values are 
indicated by different shades of red and blue, respectively 
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MEA channels recorded only the low-frequency contents (< 100Hz) during no-

movement episodes. In contrast, the power in LFPs was increased up to ~800Hz as the 

animal attempts for head movement or face cleaning behaviors.  In anesthesia recordings, 

cerebellar LFPs were only strong in the very low frequencies <10Hz, except the evoked 

response period (Figure 6.14, left panel).  

6.1.11 Correlation Strength in LFPs of Cerebellar vs. Motor Cortex 

The difference between the two recording sites and the effect of anesthesia was further 

investigated with correlation analysis (Figure 6.15). The signals were filtered with a wide 

band-pass, Pearson’s correlation coefficient was calculated between all electrode pairs in the 

arrays using 5-s long time signals, and correlation values were averaged from multiple 

acquisitions (N > 10 animals, n > 25 trials). The checker-board pattern in the matrixes 

indicates that the contacts that are nearby have higher correlations than the distant ones (dark 

red) between adjacent electrodes both in the horizontal and vertical directions in the motor 

cortex, and it shifts to negative numbers steadily as the separation increases. The correlations 

are clearly stronger, and the relation between the correlation values and the contact 

separation is more evident in the awake motor cortex than the awake cerebellum (compare 

top triangles from each matrix in Figure  6.15).  

With anesthesia, the motor cortex signals become more correlated to each other and 

the effect of contact separation becomes clearer (compare top and bottom triangles in Figure 

6.15B). In the cerebellum, however, the correlation values shift to negatives after anesthesia 

and the effect of contact separation is almost lost completely (Figure 6.15A). These results 

seem to contradict with the coherence analysis where neither cortices showed a clear effect 
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of contact separation. Dependency of correlation on contact separation, especially in the 

motor cortex, may be due to the inclusion of low frequencies in this analysis. 

 

 

6.2 Electrophysiological Alterations in the Cerebellar Injured Rats 

6.2.1 Pre-Injury Evoked Potentials 

The evoked activities under ketamine/xylazine anesthesia demonstrated reproducible and 

consistent characteristics collected in the 3 weeks period after the electrode implantation 

(Figure 6.16). A set of animals (n=6) served to provide control results in uninjured animals 

comparing periodic recordings after the electrode implantation. Evoked volley waveform and 

Figure 6.16 Analysis of evoked potentials in the control animals (n=6). Left; Evoked 
potential (EP) waveforms show sustained amplitudes over a 3-week period. Waveforms 
from ten different recording days were superimposed from all animals. Evoked 
potential amplitudes (EPAs) of MF-mediated volleys were calculated by averaging the 
triphasic volley amplitudes using the equation  ⌊!!!|!⌊!!!|!  . None of the days were 
statistically different than the others (F(6,59) = 1.41, rmANOVA, repeated measures of 6 
rats,1-2 trials from each animal, 8-11 trials per day from all animals). NS: not 
significant. 
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EP amplitudes for the selected (a-c volley) collected from six animals were analyzed with 

different day recordings.  

In both control vs. injured (N = 6 and 9 rats, respectively) analyses, evoked response 

(a-c, Figure 6.16) was selected and investigated across all animals. This evoked volley 

demonstrated the most consistency across multiple trials and animals in the control 

recordings (s.dVp-p. = ±5%) under the controlled anesthesia recordings. EP amplitude for the 

selected volley was analyzed during the 3-week survival period (right panel, Figure 6.16, 

n=6 rats, 8-11 trials per day). None of the days was statistically different in EP amplitudes in 

the recording period (Repeated measures of ANOVA, F(6,59) = 1.41), though the  largest 

variations were observed during the first few days, e.g. ~21% on day-3 (Mann-Whitney; n = 

9 trials, p = 0.06). The recordings in uninjured animals show that the signal amplitudes and 

arrival times are stable over a period of at least 21 days and thus the implantation of the 

MEA itself does not cause a significant trauma to the cerebellar cortex. 

6.2.2 Post-Injury Evoked Potentials (Minutes – One week) 

Multi-channel evoked responses recorded in a mild FPI animal is shown in Figure 6.17. The 

FPI pressure amplitude was 5psi (0.35 atm) and the wave duration was 5ms. The injury was 

applied one to three days after the electrode implanted through a fluid port placed about 

1mm lateral to the electrode site (see Figure 5.8A). Possible electrode failure after the FPI 

delivery was eliminated with the control experiments (Injury preceded the MEA 

implantation) and ensuring the MEA extraction from the implanted PML surface after the 

survival period. The signals decreased in amplitude immediately after injury (5 min) and 

continued to decrease over a period of seven days. Both mossy fiber (0-10ms) and climbing 
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fiber (10-30ms) activities were affected by the injury. At day seven, most channels showed 

only minimal activity and the hyperpolarization phase was completely suppressed. 

Interestingly, there was a high frequency oscillations emerging after 80ms, which was 

consistently observed in other FPI animals as well. 

  

Figure 6.17 EP waveform progression in a sample animal from the time of injury 
(A-F). Each trace represents the average of multiple trials (gray traces), and each 
trial is the stimulus (S, t=0) trigger-average of 20 EPs. The pre-injury recordings 
were obtained 5-10 minutes before the application of FPI (A). Time of recording 
after anesthesia was ~ 5 min (A,C-F) and 5-10 min after FPI induction (B). All 
injury-day recordings showed great depression in the EP waveform and amplitudes. 
Day-3 EPs demonstrated larger amplitude variations; 5±5 µV (D) 
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The amplitude of the MF-mediated responses declined drastically to 5 ± 2 µV 

(arrowhead, Figure 6.17b) within 10 min of injury induction from the baseline of 40±5 µV 

(a-c, Figure 6.16). There was no additional anesthesia injection at this period. Amplitude of 

MF-mediated volleys were diminished by ~ 8 fold to a value barely above the background 

neural activity (2 µVrms), while the arrival latency was preserved (10-11ms) in these early 

acute responses. On the following day after injury (~20 hours), similar waveform 

characteristics were observed in the EP signals (Figure 6.17c). 
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Figure 6.18 Magnitude of evoked potential decreases with respect to injury induction. 
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Multiple trials indicated detectable EPAs but reduced by 8-10 times from the baseline 

level. Three days post-injury, EPs were regressed to about ±10 µV range (gridlines, Figure 

6.17d). Day-3 was noted as a recession point in the EPA trend, which was consistent across 

all injured animals. At the end of the survival period, the EPA reductions were as large as 

90% of the baseline, fluctuating around ± 3-5 µV (Figure 6.17e-f).  

 The evoked potential changes were coupled with the elevated rhythmic activity  in 

the spontaneous oscillations after the injury induction. The changes in the electric acitivty of 

the cerebellum was shown in larger window (~1 sec) and for the duration of evoked response 

window (Figure 6.18). Pre-/post stimulus (S) period included background neural activity was 

shown for 1-second window (Figure 6.18, left panel) and zoomed in yellow (Figure 6.18, 

right panel). Evoked volleys dropped to background oscillation magnitude range (± 5µV) in 

the immediate recordings; 5 min. On the next days of injury (Day 1-3), sensory stimulation 

evoked greater deflections; Vp-p~ 10µV but failed to recover back to original magnitudes at 

the end of survival period (Day-7). 

6.2.3 Amplitude Changes in the Grouped Data 

The Mf-mediated EPAs from all injured animals (n = 9) are grouped in Figure  6.19. Each 

dot in the scatter plot is the mean volley amplitude calculated from the stimulus-trigger-

averaged signals between 2-3 trials from each rat on the given day (top panel). There was a 

clear decline in the EPAs as indicated by the negative slope; VEPA = -4.2d + 37 (d; days, 

Figure 6.19). Amplitude drops were found to be significant for each day (Day 1, 3 and 7, 

bottom plot) of the post-injury period against the pre-injury values. (20 trials per day, n = 9 
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rats, rmANOVA, F(3,76) = 43.25, p<0.001 ). Post-hoc analysis indicated the sharpest drop 

(40%) on day-1 of injury (Bonferroni correction, p = 0.006). 

  Relatively subtle amplitude changes were seen from day-1 to day-3. The EPA losses 

reached to 45%of the baseline level on average on day-3, however, not statistically different 

from day-1 measurements (Bonferroni correction, p = 0.33).  

 

Figure 6.19 Monitoring injury progression by Mf-mediated volley amplitudes 
(arrowheads in Figure 6.17) on group data. Top; All animals as a group demonstrated 
nearly a linear decreasing trend by the number of days (d) after injury (R2=0.48). Each 
dot in the scatter plot shows the mean of EPAs in a trial from a rat (n=9 rats, 2-3 trials 
per animal on a given day). Bottom; Data shown are the mean ± std of normalized 
EPAs for the pre-injury and three selected days of the post-injury period. Other 
significances shown were calculated using repeated measures of ANOVA followed by 
Bonferroni correction. *P <0.05, ** P <0.005, *** P <0.001. 
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Prolonged recordings revealed that the loss in EPAs reached the maximum at the end of the 

survival period; Day-7 post-injury EPA was equal to ~26% of the pre-injury EPA (n = 9 

animals; Bonferroni correction, p < 0.0001).  

6.2.4 Differentiation of the Affected Neuronal Mechanism in the Cerebellar Cortex 

Cerebellar circuitry generates the evoked responses to a given sensory stimulation by using 

two main pathways. Mossy fibers and climbing fibers are the main components of these two 

segregated pathways, which can be identified by their onset latencies (see Figure. 6.1, 7). 

  

In two sample injured animals (All nine animals were not included to avoid 

redundancy), the amplitude and the onset latencies of EPs for MF (blue) and CF (red) related 

responses were compared in the injury context (Figure 6.20). 
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Figure 6.20 Normalized amplitudes and the onset latencies of the MF and CF 
related potentials were analyzed in the temporal trend of the injury period. 
Amplitudes dropped ~80-90% in both response types immediate after the injury 
induction (orange shading). There was a recovery phase; 30-40%, in the post 
injury period for the EPAs in both responses (blue shading). 
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 Despite the drastic drops in the amplitudes of both responses, the arrival latencies were 

remained similar in the pre- and post-injury period, particularly in CF potentials.  

 

 

The amplitudes of MF and CF evoked responses were analyzed individually for pre- 

and post-injury period (Figure 6.21, N = 8 rats, n = 17-20 trials). Two different time points of 

injury progression, acute (minutes to day-1) and day-7, were included from injury-applied 

eight animals. Cf-originated evoked potentials (blue bars) were significantly reduced in all 

injured animals starting day-1. Decreasing trend of EPAs were continued in the next days 

and reached ~ 3 times the mean baseline amplitude at the end of the survival period.  Mf 

related evoked potentials (red bars, Figure 6.21) did not demonstrate any significant changes 

with respect to injury induction for all animals (N=8). In fact, there was a subtle increase in 

the mean amplitudes of evoked responses.  

Figure 6.21 EPAs were analyzed in terms of two main input sources of cerebellar 
cortex; mossy and climbing fibers. Numbers on bars indicate the recordings and 
animals, respectively. (Two-tailed paired t-test *; P≤0.05, **; P≤0.005) 
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Onset latencies of the cerebellar inputs for the pre-/post-injury period were compared 

on the scatter plot across multiple injured animals (Figure 6.22). Mean onset arrivals were 

reduced to 14 and 13 ms corresponding acute and 7-day periods from ~16.5 ms pre-injury 

values (paired t-test; p<0.05 and p<0.01 (N=8, n=28), respectively). There was a large 

variation in the climbing fiber response during pre-post injury responses. Variation is also 

significantly diminished for injury day recordings (~2 folds). In contrast, no drastic changes 

were noted for Mf arrival latencies. Variation and mean alterations were in the order of 

milliseconds (~1-2 ms). Arrival latencies of evoked volleys were directly related to 

conduction velocity of the mediated pathways for the mossy and climbing fiber responses. 

Damage to either pathways would introduce a disruption in the associated evoked responses. 

Figure 6.22 Arrivals of cerebellar EP volleys are characterized with respect to injury 
induced amplitude changes (N=8,7,8 and n=28,26,29). Mossy (Left to broken line) and 
climbing fiber related responses (Right to broken line) were identified by the onsets of pre-
injury recordings. 
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6.2.5 Disruptions in the Cerebellar Network after FPI induction 

In order to evaluate the effect of injury on synchrony across the cerebellar cortex, cross-

correlations between all contact pairs were investigated during evoked and spontaneous 

activity (not-evoked) before and after injury (Figure 6.23A-C). Neural signals collected for 

pre-and post-injury period including the evoked potential window (center panel, Figure 6.23) 

and the cross-correlation values across recorded channel (right panels, Figure 6.23) are 

shown for a single animal. The EPs were large in amplitude and highly similar in waveform 

and timing across all 31-channels in the pre-injury trials (Figure 6.23A, left panel). Pearson 

correlation was as high as r ≥ 0.8 between some channel pairs of EP waveforms, while it 

varied between 0.2≤ r ≤0.6 during spontaneous oscillations (Figure 6.23A, right panel). After 

the injury, overall correlation for all channel pairs decreased by ~2-fold (Figure 6.23C, right 

panel), i.e., to ~0.2-0.3 and 0.3-0.4, respectively for spontaneous and evoked windows.  

Those channels that showed stronger correlations in the pre-injury trials (red squares in top 

panel) were also diminished to mean values of r = 0.3-0.4. Disruption of synchrony in 

evoked LFPs was clearly noticeable in the spike-trigger averaged plots of single channels 

(Figure 6.23C, left panel).  
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Figure 6.23 Injury disrupted the synchrony across cerebellar cortex in the studied 
region (PML) during the evoked and not evoked (no stimulus) as demonstrated in this 
sample recording. Left; traces (Blue and red; before and after injury, respectively) 
illustrate EP volleys for all 31-channels. High synchronization (Top) was lost after the 
injury (7-day FPI; bottom). Right; cross-correlations between all contact pairs for pre- 
and post-injury signals during EPs and nEPs periods. Prior to injury, inter-channel 
correlations varied within R=0.5-0.8 and 0.3-0.6 during EPs and nEPs recordings, 
respectively (Top). Cross-correlation values diminished drastically in both EPs (R=0.2-
0.5) and nEPs periods (R=0.2-0.4) by day-7 of injury (Bottom). EPs, evoked potentials; 
nEPs, not-evoked potentials 
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6.2.6 Spatially Disorganized Cerebellar Oscillations  

Cerebellar network contains multiple level functional subunits that can be synchronized 

exclusively during sensori-motor process as well as at rest. The MEA on the surface of the 

cerebellar cortex searched the disrupted organizations in the injured cerebellar signals 

(Figure 6.24). 

 

 

Cerebellar surface potentials can be collected differentially by equally spaced 

(~300µm) 32-channel MEA (Top left, Figure 6.24). Sample recordings (Blue traces, #ch = 6) 

of EPs, particularly CFs, showed different amplitudes (±10-20µV) and onset delays (± 
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Figure 6.24 Spatial investigation of pre-/post (Blue and red traces or bars, respectively) 
injury evoked potential changes. On the left; Averaged EPs from selected 6-single 
channels are plotted with respect to electrode position on the surface of cerebellum. 
Multi-electrode array orientation on the PML surface and inter-channel distances are 
shown in the center.  Three paired recordings from pre- and at day-7 of injury recordings 
were calculated. While some of the channels did not indicate any significant changes 
with the injury, in some channels the changes were drastic (Paired t-test *; P≤0.05, **; 
P≤0.005). 
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500µs) in response to same peripheral stimulation. This feature was lost following injury 

induction by diminishing the EPs differentially in the recorded channels amplitudes (Red 

traces). In some channels the amplitude decline reached to ~30-40µV, while this was limited 

to ~5-10µV in others. Changes were significant in both sagittal and transverse planar 

electrodes calculated among 31-channels in averaged EPs (Right, # trials and size with P 

values).   

The correlation change in seven animals in terms of high-frequency coherency with 

respect to injury induction was calculated in the 2-D space (Figure 6.25). Two animals were 

discarded from this analysis due to high common mode signal across all channels. 

  

Figure 6.25 Cross-correlation decreases during injury progression. Correlation values 
were calculated and averaged between electrode groups aligned in 2-D dimension 
shown in Figure 6.23. Left-bottom; Spontaneous neural activity  (blue) and 
stimulation period (red) correlation changes were shown for each animal medio-
lateral (M-D) and rostro-caudal (R-C) plane. Data shown as mean ±!s.d. (upper limits 
only, red and blue). P values from measures of Wilcoxon signed-rank test.  *P≤0.05, 
**P≤0.005, ***P≤0.001. 
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Loss of synchrony was consistent in all seven animals for both spontaneous activity 

and stimulation period values (r = 0.1-0.2 and 0.3-0.4, respectively). Direction selective 

activity (red lines, M-L vs. R-C) was also diminished in individuals (I-II and VII) with the 

induction of injury. Right top; Pre-injury (baseline) vs. post-injury values was compared in 

subsequent three time points. Quiet recordings absent of stimulation period were also 

included in the same analysis (Gray bars). In each case, greatest drops were noted at the end 

of survival period; day-7. 

6.2.7 Injury Induced De-Synchronizations in the Cerebellar Circuitry 

Functional outputs of cerebellar signals can be associated with well-defined frequency bands 

such as 80-200Hz.  This specific frequency content was searched by looking at the temporal 

correlational changes by using a moving window (20ms) in the pre-/post injury recordings 

(Figure 6.26). Pre-Injury correlation values drastically increased (r ≥ 0.8) with given stimulus 

(S) for all channel groups (Figure 6.26A). Additionally, long lasting (~300 ms) rhythmicity 

was observed in the post-stimulation period, particularly in one electrode group aligned in 

sagittal direction (Blue dot; middle panel). Cross-correlation values were also greater (r = ~ 

0.1-0.2) for post-stimulation period compare to pre stimulus. Same analysis were collected in 

the next day of injury induction (Figure 6.26B). Both baseline (pre-/post stimulus) and 

stimulation periods were absent of any increased correlated activity (r ≤ 0.4). Evoked 

potential pattern was also substantially abolished in the recorded frequency band (Blue 

traces). At day-3 of injury, neural activity still lack of synchrony in the baseline periods 

(Figure 6.26C). However, there was noticeable recovery in the stimulation-induced 
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oscillations (r ≥ 0.7), which ceased rapidly. Loss of synchrony in the recorded LFP 

oscillations reached the maximum values at the end of survival period, day-7 (Figure 6.26D).  

 

Figure 6.26 A-D Example of synchrony changes with respect to progression of injury. 
Mean cross-correlation values of high frequency oscillations (80-200Hz) are calculated 
across selected planar electrode configuration; transversely (middle) and sagittally 
(bottom panels) for Temporal resolution was selected as 20 ms for pre/post (~900 ms) 
and onset of stimulation period (~10-100 ms) and averaged over 20 repetitions.  ). 
Rectified-averaged filtered signals (80 - 200Hz) are coupled to indicate the time and 
magnitude of the recorded field potentials (Blue traces; Top). Investigated electrode 
couples on the MEA marked with the same color dots on the time-correlation plots. 
Estimation of electrode placement on the PML surface of cerebellum and MEA 
orientation is shown in center panel. 

A B 

C D 
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Overall reductions were noted across all grouped channels including pre-/post and 

stimulation periods. Only electrode groups aligned in sagittal directions, which were highly 

active to induced-stimulations for pre-injury trials, were able to sustain a brief activity (r ≥ 

0.5, dt = ~10 ms) in the stimulation period (blue traces). 

6.2.8 Synchrony Changes in the Different Frequency Bands 

This study also questioned if there was a differential effect of injury in different frequency 

bands. The signals were band-pass filtered and divided into four main frequency bands (5-

30Hz, 30-50Hz, 50-100Hz and 100-300Hz) for each day of recordings (Figure 6.27). 

  

Figure 6.27 Correlation changes across 31-electrode contacts are shown as mean ±SEM in 
selected frequency bands. Pre-Injury values are taken as control and post-injury results are 
evaluated at four time points from a few hours to seven days. Same number of recordings 
(n=10) were taken from five animals and averaged. Injury significantly reduced the mean 
correlation between the electrode sites in all studied frequencies (p< .001, N=5 rats).  
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Correlation coefficients were calculated from control and post-injury recordings in 5 

rats with multiple recording episodes (n=20). Linear decrease of correlation values with 

respect to frequency bands was observed for all recordings.  

In the lower frequencies (5-50Hz), the drops were greater considering anesthesia 

recordings that typically demonstrate stronger correlations (r = 0.5±0.23) at lower 

frequencies in the control animals. Synchronous changes were most noticeable in the acute 

period (1-3 hours) indicating r = 0.37±0.05 (r = 0.56±0.045; pre-injury) in 5-30Hz band and r 

= 0.16±0.03 (r = 0.29±0.02; pre-injury) in 100-300Hz. While the reduction in correlation was 

significantly large from control to the first day of injury (p < .001), further changes were less 

significant in later days (p < .05). 

6.2.9 Coherent Activity in the Cerebellar Injured Animal   

Cerebellar network generates high frequency coherent activities up to 1kHz range in the 

awake animal. Coherence between paired electrodes (four selected pair groups) was 

calculated and compared for pre-/post-injury day trials (Figure 6.28). Cerebellar network was 

highly coherent; C = 0.8-0.9, particularly between 100-800Hz in the pre-injured animal, 

however the strength of coherency in the recorded electrode pairs decreased to C = 0.5-0.6 

with the inter-electrode distances (300-2100µm), (Left panel, Figure 6.28). 

The same electrode pairs on the MEA were searched for the same coherent activity at 

rest after the cerebellar injury (Right panel, Figure 6.28). It was indicated that the coherence 

between all electrode groups but one diminished drastically. The greatest drop (C = 0.8-0.9, 

pre-injury to C = 0.1-0.2, post-injury) was noted in the adjacent pair in the medio-lateral 

direction (black dots).In contrast, the coherence decline was subtle across the electrode 
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groups aligned in the rostro-caudal direction (blue dots, inter-site; 900µm). Moreover, the 

drops also degraded the coherence dependency of the electrode pairs with respect to inter-site 

distances.  

 

The coherency was also compared in actively moving animals for pre-/post-injury 

period (Figure 6.29). In the averaged coherences across all recorded channels showed a 

persistent highly coherent activity in the high frequencies (30-1000Hz). However, the injury 

affected the low-frequencies (0.1-30Hz) indicating a drastic drop in the coherences (Cdrop ~ 

0.8) between recorded channels (red trace, Figure 6.29).  

Resting state 

Figure 6.28 Cross coherence values were computed in the awake animal at resting and 
compared for pre-injury vs. post-injury trials. The analyzed channels marked (bottom) and 
plotted for the 0.1Hz - 1.5 kHz frequencies in the matching color order (Top). Coherence 
was as high as ~0.9 up to 800Hz band in the pre-injury recordings (Left). Cerebellar injury 
lowered the coherences across paired channels substantially without directional selectivity 
(Right).  

Pre)Injury" Post)Injury"
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6.3 Immunohistochemical Analysis of the Cerebellar Injury 

The current study addressed the development of the brain injury within the cerebellum 

structure by monitoring the electrophysiological changes in the multi-electrode implanted 

animals. To verify the presence of injury in the cerebellar neural circuitry, the 

immunohistological analysis was also included for control (un-injured) vs. injured for the 

matching day survival periods (7 days).  

 

Purkinje cells are the most noticeable neuron type of the cerebellum and its unique 

organizational morphology, domino-like alignment, was indicated by the CalbindinD28k 

staining in multiple lobules of the naïve animals’ cerebellum (Figure 6.30 top image). 

Calbindin labeling showed the induced disorganization in the Purkinje layer by indicating the 

increased gaps between cells and organizational abruptions in the cell lines (Figure 6.30 top 

image). 

Figure 6.29 Mean coherence changes across 31-electrodes for pre- vs. post-injury days in 
freely moving animal. While the coherence drops were affected the low frequency (0.1-
30Hz) contents in the LFPs, the higher frequencies seemed to sustain their highly 
coherency oscillations (30Hz-1kHz). 
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To determine the extent of cellular loss underlying the observed electrophysiological 

effects of injury, double immunostaining of the cerebellar tissue was performed to extract at 

Figure 6.30 Purkinje cells are the principal cell types in the cerebellar cortex. 
CalbindinD28k staining showed the perfect alignment of the PCs in the un-injured 
cerebellum (Arrowhead, top) in multiple lobules, while this crystalline morphology 
was abolished after the fluid percussion injury (Arrowhead, bottom); Day 7. Scale bar 
= 200µm. 

PML"
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the end of the physiological studies for expression of CalbindinD28k, a marker for PCs and 

FluoroJadeC.  

Different grades of FPI (15 and 25 psi) cerebellums were compared with a naïve 

control.  As expected, naïve animals showed a layer of CalbindinD28k-positive PCs (Figure 

6.32A-C, n=15 sections from 3 rats) with no FluoroJadeC labeling demonstrating the lack 

of neurodegeneration. There was a modest PC degeneration, as indicated by co-labeling of 

CalbindinD28k with FluoroJadeC labeled neuronal profiles in mildly injured rats (15 psi; 

Figure 6.32D-F, n=6 sections from 2 rats). There was more CalbindinD28k expressing 

 

PCs co-labeled with FluoroJadeC in cerebellar sections from the rats injured at larger 

peak pressures, indicating more extensive PC degeneration (Figure 6.32G-I, n = 6 sections 

from one rat) than those with smaller peak pressure (Figure 6.32D-F). 

Figure 6.31 FluoroJade C staining indicated extensive cell degenerations coupled with 
glial response (arrow) in the longer survival period of injury (1 month). Purkinje cell 
dendrites (arrowhead) were also labeled in multiple layer of the cerebellar cortex. Scale 
bar: 100µm. 
"
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The 

Figure 6.32 Purkinje cell degeneration at mild and moderate levels of severity of 
cerebellar injury (15 psi and 25psi). A-C. Representative confocal images show 
CalbindinD28k labeled PCs (A) and the absence of  FluoroJade C staining (B) in the 
same section from a naïve rat. D-F. Images of a section from a rat 1 week after mild 
injury (15psi) shows CalbindinD28k positive PCs(D) and the presence of a few 
FluoroJade C labeled cellular profiles (arrowheads in E). Merged image (F) shows that 
CalbindinD28k positive PCs are co-labeled with FluoroJade C (arrowheads). G-I. 
Representative section from a rat 1 week after injury (25psi) shows CalbindinD28k 
positive Purkinje cells (G) and cellular (arrowheads) and axonal (asterisk) FluoroJade 
C labeling (H). Merged image (I) shows numerous CalbindinD28k positive PCs 
labeled with FluoroJade C (arrowheads). Scale bar: 100µm. 
"
"
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presence of FluorojadeC positive neurons in all FPI animals indicates ongoing neuronal 

degeneration at one week.  

Remarkably, the domino-like alignment of PCs observed in naïve animals was 

degraded following injury at higher pressures (~ 25 psi). PCs showed the severity dependent 

loss in injured cerebellums indicating more degenerations at higher grade of the FPI 

compare to experimental severity (10-15 psi) that was quantified in the electrophysiological 

analyses. 

  

In addition to cell loss, sections from the rats subjected to injuries at higher peak 

pressures showed FluoroJadeC staining in the white matter tracks (asterisk in Figure 6.32H) 

suggesting the possibility of PC axonal degeneration. FluoroJade staining shows the 

Figure 6.33 FluoroJade labeled the PCs in the contralateral side of the injury site in the 
FPI animals. Cell deaths were not exclusive to ipsilateral side of the cerebellum. 
"
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irreversible damages including cell deaths, dendritic degeneration and glial responses. 

FluoroJadeC staining also indicated the PC dendrites were damaged in the molecular layer 

after the injury (arrowhead, Figure 6.31). 

PC degeneration was extensively observed throughout the cerebellar cortex in the 7-

day perfused animals. It was also noted that the FluoroJade stained in the contralateral cortex 

of the cerebellum (Figure 6.33). Although the quantitative measurements were not performed 

in this study, the neuronal degeneration was observable in throughout the cerebellar cortex 

and extended in both side of the cerebellum.  
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CHAPTER 7  

DISCUSSION 

This study proposed a novel approach for the identification of a brain injury in the 

cerebellum by using the electrophysiological measurements with implanted micro-electrode 

array in the rats. The first part of the project involved the extraction of cerebellar signals with 

MEAs in the anesthetized animals and characterizing the somatotopy of the cerebellar 

surface on the PML. Current study established the reliable and consistent electrical activity 

recorded from the cerebellar surface with chronic recordings (weeks - months) in the 

multiple animals. These results also demonstrated the second objective of the study where it 

was identified the consequences of the brain trauma in the cerebellar structure after the fluid 

percussion injury. Alterations in the electrophysiological properties of the cerebellar network 

were determined by the evoked potential analyses, which was associated with the underlying 

neural mechanism of the cerebellar cortex. In the third aim, the immunohistological analysis 

indicated the severity dependent cell degenerations in the injured cerebellum after 7-day 

survival period. 

The local field potential is the net potential of all the voltage sources in a volume 

conductor. In the neural tissue, field potentials arise from multiple sources. The large low 

frequency oscillations are mostly due to the postsynaptic potentials (Avitan et al. 2009; 

Mitzdorf 1985). The higher frequency components, however, have been shown to correlate 

better with the population spiking of the neurons (de Solages et al. 2008; Ray and Maunsell 

2011). In the cerebellum, the source of the high-frequency oscillations was suggested as the 

synchrony of the Purkinje cells, which is produced by the inhibitory network of PC axonal 

collaterals (de Solages et al. 2008). 
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In the chronic recordings, the electrode array was implanted on the cerebellar surface 

subdurally. Thus the recordings must predominantly contain field potentials from the 

molecular layer, which primarily includes signals from ascending axons of the granular cells 

and parallel fibers as well as the postsynaptic potentials of parallel fibers on Purkinje cell 

dendrites and other inhibitory cells to Purkinje cells. Secondary to the molecular layer, 

Purkinje cell simple and complex spike activities and the granular cells might make weaker 

contributions to the recorded signals due to their distance from the pial surface. Armstrong 

and Drew (1980) electrically stimulated the cutaneous afferents to the snout in decerebrated 

rats and showed that the characteristic components of the extracellular field potentials 

generated within the cerebellar cortex by the mossy fiber inputs were detectable with surface 

ball electrodes. The field potential volleys shown in Figure 6.1 were in good agreement with 

their surface recordings, except that the arrival times are delayed by a few milliseconds in 

our signals. This may be attributed to the usage of air puff as a stimulus on the skin, as 

opposed to direct electrical stimulation of the snout sensory nerves, which may increase the 

delay and the variation in evoked potential arrival times and thus spread the signals out in 

time. 

Bengtsson and Jörntell (2007) reported that mossy fiber activity (P1-N1) recorded in 

the granular cell layer was reduced only marginally by intravenous injection of ketamine/ 

xylazine combination or either one of them separately. In our evoked potential recordings 

from the pial surface, the P1-N1 volley is much smaller than the one in the awake animal. 

This may be due to the difference in the strength and route of anesthesia (33/1.7 mg/kg of 

ketamine/xylazine IV in their case and 55/12 mg/kg IP in our case). Bengtsson and Jörntell 

also reported that the N3 field potential, which was interpreted as the excitatory postsynaptic 
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potentials of parallel fibers on the Purkinje cell dendrites, was greatly reduced as well as the 

climbing fiber activity at the given dose above. The N3 potential in Figure  6.2 was not 

observable. The time duration and the shape of the long volley at the end rather fits the 

definition of a long-lasting negative field potential due to a reduction in simple spike activity 

triggered by a complex spike. This component became relatively insignificant compared with 

a much larger and shorter negative volley that emerges in the awake animal. This new 

component was most likely the N3 potential from the parallel fiber synapses as suggested by 

its arrival time and duration. This confirmed the report by Bengtsson and Jörntell that 

synaptic activity from parallel fiber-to-Purkinje cells was greatly reduced by ketamine/ 

xylazine anesthesia. Our recordings did not show the mechanism by which this anesthesia 

regime affects the cerebellar cortical networks. These evoked potential results, however, 

confirmed previous results and further show that the effects of ketamine/xylazine anesthesia 

on the granular and molecular layer activities (P1-N1, N2 and N3; Figure 6.1) of the cortex 

could be detected with MEAs from the cortical surface. This supported our motivation for 

using spontaneously generated surface potentials as a method of assessing the effects of 

anesthesia at the larger network level in the cerebellum. With the spontaneous signals, the 

fact that the intercontact correlation is so high in the awake animal suggests that the source 

of the common-mode components are away from the cortical surface, most likely generated 

by the distant cells that are deep in the sulci on both sides of the paramedian lobule. The 

common-mode and the differential signal power spectra look similar and both extend into 

very high frequencies up to 1 kHz, including the harmonics. These high frequency 

components were most likely to be generated in the molecular layer either by the parallel 

fiber’s and/or the inhibitory neuron’s post-synaptic activations on the Purkinje cell dendrites 
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or the PC axon collaterals in the recurrent network. One of the defining features observed in 

our results was that both the spectral power and spectral coherence analysis showed a large 

reduction in the amplitude of the high-frequency components under ketamine/xylazine. 

Bosman et al. (2010) reported that the ketamine caused a 20–25% decrease in the firing rate 

of Purkinje cell simple spikes. These numbers did not explain the marked decrease that was 

observed in the power spectra of the signals before the common-mode signal is taken out . If 

it cannot be explained by the simple spike power itself, a potential explanation for the drastic 

change in the power and coherence plots could be that the simple spike synchrony among the 

Purkinje cells may have been disrupted by the anesthesia regime. Because the local field 

potentials were recorded from the surface, desynchronized activity of Purkinje cell networks 

from regions of the cortex inside the sulci can appear as no activity in the signals averaged 

across the medium. 

The power spectrum of the signals recorded with tetrodes in the Purkinje cell layer in 

unanesthetized rats had a sharp peak 254 Hz (de Solages et al. 2008). This study 

convincingly argued that network oscillations of simple spike activity is due to inhibitory 

recurrent collaterals of the Purkinje cells and that these oscillations of the Purkinje cell 

networks are independent of the firing frequency of the individual Purkinje neurons. The 

broad spectral elevation in higher frequencies in our case can be the average of signals from 

multiple networks of Purkinje cells oscillating at different frequencies in the awake animal. 

The narrower spectral peaks between 150 and 300 Hz observed sometimes in our rats 

recovering from anesthesia (not shown) may be the signature of a few oscillating networks 

that were awakening as the anesthesia wears off. 
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Current study in general agreed with the previous report’s findings that 

ketamine/xylazine anesthesia substantially reduces the spontaneous and evoked signals in the 

cerebellar cortex (Bengtsson and Jörntell 2007). Despite the reports suggesting marginal 

effect of ketamine on the Purkinje cell activity, the studies investigating the network activity 

in large areas of the cerebellar cortex may better be conducted in unanesthetized animal 

models. There was a clear contrast between the spatial patterns of the spontaneous activity of 

the motor and PML cortices and the way they were influenced by the ketamine/ xylazine 

anesthesia. On the methodology side, this clearly demonstrated the need for electrode 

technology that could record the cerebellar activity in behaving animals to better understand 

the cerebellar function at the network level. Despite the decades of investigation on 

cerebellar function, multielectrode recordings in unanesthetized animals are very rare in the 

literature. Due to the proximity of the Purkinje cells and their dendrites to the cortical 

surface, nonpenetrating electrodes can record field potentials with large amplitudes and high-

frequency components with subdural implantation. Through the use of MEAs, this study was 

able to analyze multichannel signals from a large area of the cerebellar cortex 

simultaneously, which was not possible with single microelectrode implants. This can 

provide a powerful tool to study cerebellar function in behaving animals trained for various 

tasks. 

In the injury experiments at first, evoked potentials have been investigated for 

assessment of severity in traumatic brain injuries. Visual (Lachapelle et al., 2004), brainstem 

auditory (Soustiel et al., 1995), and sensory (Fossi et al., 2006;Amantini et al., 2009) evoked 

potentials in EEG signals were proposed previously for detection of head injuries. The 

current study demonstrated prolonged reductions in the cerebellar evoked potentials to hand 
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stimulations during the 7-day period following the injury in a rat model of FPI. 

Characteristics (onset latencies and amplitudes) of MF- and CF-mediated cerebellar evoked 

potentials were well documented by other investigators with highly reproducible results 

(Eccles et al., 1966a;Eccles et al., 1967;Armstrong and Harvey, 1968;Armstrong and Drew, 

1980;Atkins and Apps, 1997a;Jorntell et al., 2000;Ordek et al., 2012). In the control animals 

identification of MF and CF related responses were shown by the evoked LFPs (Figure 

6.14), which was also confirmed the reports indicating characteristic EPs containing mossy 

fiber (Brihaye et al., 1964;Eccles et al., 1967;Armstrong and Drew, 1980)) and climbing-

fiber mediated responses (Eccles et al., 1967;Armstrong and Drew, 1980;Atkins and Apps, 

1997b) differentiated by their onset latencies.  

Various components of surface recorded evoked potentials were identified by the 

source localization in earlier reports. (Eccles et al., 1967;Oscarsson, 1968;Armstrong and 

Drew, 1980;Atkins and Apps, 1997a;Atkins and Apps, 1997b;Baker et al., 2001;Diwakar et 

al., 2011). Eccles et al. reported MF-mediated responses (MF – Granule cells – Parallel 

fibers - PCs) to have less than 5 ms onset latencies and denoted various deflections as P1, N1 

– N3, N4 (Eccles et al., 1967).  Armstrong and colleagues also identified similar MF-

mediated volleys within the same arrival latencies in response to peripheral electric 

stimulation in rats (Armstrong and Drew, 1980). In agreement to both, our control recordings 

indicated that the earliest noticeable evoked deflection was at ~3-5ms following the stimulus 

(Figure 6.14-15), which was relatively a weak response with a negative polarity and 

probably a direct recording from the MFs (P1-N1). The rising edge of the subsequent volley 

was detected at 8-11 ms in our recordings. This volley was triphasic with a positive polarity, 

succeeded by excitation of parallel fibers (b-c, Figure 6.14), and it was attributed to MF 
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activation in the granular layer (a-b, Figure 6.14). These subsequent volleys had in fact the 

most consistent and reproducible amplitudes among all evoked potential components 

collected in the control animals, and thus these responses were leveraged to monitor the 

injury progression (Figure 6.14-16). The onset latency of this volley is slightly larger 

compared to the earlier reports. This may be explained by the stimulation paradigm, i.e. the 

location of the peripheral stimulation and the type of the stimulus. For instance, PC response 

latencies can increase from 6-8 ms to 7-10 ms by using tactile stimulation on the periphery 

instead of electrical stimulation of afferents (Bower and Woolston, 1983a).  

Conversely, CF-mediated potentials resembled late onset latencies (≥ 15 ms) in our 

results, which agreed with the previous reports. Pioneering studies on this subject showed 

that the CF activity arrives with ≥ 13 ms onset latencies in surface recordings (Eccles et al., 

1966b;Armstrong and Drew, 1980). The delay varied between 13-19 ms in the contralateral 

hemisphere and between 16-22 ms in the contralateral vermis (Armstrong and Drew, 1980). 

Armstrong et al. also found evidence for increased PC activity with CF activation with 12-18 

ms latencies compared to 4-10 ms latencies mediated by the MFs. More recently, Apps et al. 

demonstrated that CF response latencies to ipsilateral arm stimulation in anesthetized rats 

can vary between 16-26 ms when recorded from area 3 of the PML surface (Atkins and 

Apps, 1997a). In addition to onset latencies, the CF-mediated responses can be identified by 

their amplitude and polarity. They are the largest positive deflections in the signals recorded 

from the cerebellar surface (Oscarsson, 1968;Armstrong et al., 1973) and distinguished by a 

refractory period up to 40 ms proceeding from the positive deflections (Armstrong and 

Harvey, 1968). Based on these features, it was concluded that the latest volley in our 

recordings, which was detected at 15-20 ms in response to hand stimulation, was mediated 
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through CF activation. The onset latency of the deflection was not the only evidence to 

support CF identification. The wave also resembled a strong and slow nature that succeeded 

a long-lasting (> 50ms) refractory period. Although the magnitude of this potential was the 

greatest in most of the trials, this deflection wasn’t included in the amplitude analysis due to 

high variability across animals and trials. All evoked recordings presented in this particular 

work were obtained in anesthetized animals to avoid variations in the evoked responses due 

to changes in the cerebellar excitability across different awake states.  

Stability of evoked potential amplitudes in the control animals clearly demonstrated 

that the tissue responses did not compromise the electrode array’s ability to measure 

reproducibility of signals during 3-week implant period (Figure 6.15). Pre-injury recordings 

in the FPI animals also served as an additional confirmation on the feasibility of this 

recording method of evoked potentials (Figure 6.15A). The depth of ketamine-xylazine 

anesthesia may alter the evoked potential amplitudes (Bengtsson and Jörntell, 2007;Ordek et 

al., 2012). Jorntell et al. showed the anesthesia effects on both MF- and CF-mediated 

responses at varying doses of ketamine/xylazine injections (Bengtsson and Jörntell, 2007). In 

order to minimize the effect of anesthesia depth, the timing and duration of the recording 

sessions from the injection of anesthesia were carefully controlled (see methods). After 

testing various peripheral sites (whisker, forelimb, hindlimb) of stimulation, it was concluded 

that the late MF-related response to (ipsilateral) dorsal hand mechanical stimulation was the 

most reproducible as a pattern in the recordings of the investigated PML region.  

The fluid percussion injury (FPI) model implemented in the current study produces a 

combination of focal and diffuse damages, and it is widely used as an animal model of TBI 

(Thompson et al., 2005). It was documented that FPI can induce structural and functional 
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changes in the cerebellar cortex even at remote locations (Ai et al., 2007). This allowed us to 

apply the injury at a different location from the site of electrode implant without disturbing 

the electrode-tissue interface. Immunohistochemical analysis further verified that the injury 

was spread to remote locations within the ipsilateral cerebellum. 

To investigate the relation between electrophysiological signals and the cerebellar 

insults, it was demonstrated that the EPA changes as early as 5 min post-injury to one week 

in anesthetized rats, following fluid percussion injury. Immediate recordings after trauma 

indicated substantial depression of the EP pattern as a whole; an effect that must be directly 

linked to initial impact of injury, e.g. tissue and/or blood vessel damage, and intracranial 

pressure elevation (Gaetz, 2004;Cernak, 2005). Interestingly, early arriving volley (<5 ms), 

presumably the direct MF activation, starts to increase in magnitude during the post-injury 

phase, which may be explained by hyper excitability of MFs as reported earlier (Ai and 

Baker, 2004). Monitoring the progression of injury-related changes at such detail can provide 

further insights about the course of the injury progression, which has been reported to 

present two main phases; primary and delayed-mechanisms (Doppenberg et al., 

2004;Andriessen et al., 2010).  

Progressive PC losses were documented in short (hours) as well as longitudinal (days 

- weeks) studies of immunohistology (Fukuda et al., 1996;Mautes et al., 1996). In support of 

this finding, mossy and climbing fiber mediated EPAs of this study monotonously decreased 

in the post-injury period (Figure 6.17). At a closer evaluation, the EPA alteration was 

quantified in the late MF-mediated responses by analyzing in two separate volleys; a-b and 

b-c. Alterations in both volley amplitudes were found to be very similar but not identical.  



 

106 
 

Current study determined that the largest drops were observed in the acute period for 

both amplitude measures between immediately after injuries to day-1, wherein the EPA drop 

was most significant (-40%, a-c volley). The second most drastic drop was noted from day-3 

to day-7(-36%, a-c volley), which was termed as the delayed injury period by the earlier 

reports (Sato et al., 2001). The two phases with distinct characteristics suggest two different 

injury mechanisms involved. Baker and colleagues concluded that day-3 is a critical time 

point in the course of injury (Ai and Baker, 2004;Ai et al., 2007). They found majority of 

cell deaths within the next 24 hours after FPI, and the second wave of injury effect was 

delayed until day-3 (Ai et al., 2007). 

Anesthesia regimen, ketamine/xylazine cocktail in the current study, was one of the 

co-variables in the injury context. Ketamine is a well-known NMDA antagonist that induced 

substantial depressions in the glutamate oriented excitations (MFs-GCs and PFs -PCs) of the 

cerebellar circuitry. Considering the delayed injury mechanism of the cerebellar insult, which 

triggers a glutamate associated hyperexcitation in the injured area, inhibition of this 

mechanism by the anesthesia may have altered the injury impacts in the observed results. 

Choice of another anesthesia regimen such as barbiturates may increase the injury 

progression in the disinhibited glutamate network. 

Fluid percussion injury induces a combination of focal and diffuse type of injuries 

(Potts et al., 2009). It was found that the spatially varying degrees of EPA reduction across 

the PML surface covered by the electrode array (Figure 6.24). Somatotopy of the PML in the 

rat cerebellum was investigated in several reports including ours (Bower and Woolston, 

1983b;Atkins and Apps, 1997b;Ordek et al., 2012), though there is no consensus regarding a 

single somatotopy in the cerebellum. In the animal shown in Figure 6.24 (blue traces) the EP 
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responses collected from the lateral side of the PML were relatively larger. Following FPI 

induction, EPAs were affected differentially across the PML surface without a certain 

directional preference. Interestingly, the smallest amplitude changes were observed on the 

most rostral contacts of the MEA closest to the injury site. This spatial differentiation 

supports our premise that the evoked amplitude changes are not due to some mechanical 

perturbation of the MEA by the fluid pressure wave at the time of impact, but because of 

damage to the underlying neural structures. 

Local field potentials reflect the summation of synchronized activity from the local 

synapses and the cells underneath the electrode contacts (Buzsaki and Draguhn, 2004), 

(Roberts, 1968). There are two most salient factors, the spatial alignment and temporal 

synchrony that contribute to the extracellular field strength in a homogeneous structure, such 

as the cerebellum. Although this particular relation may not be entirely inter-dependent, 

indicating alterations in synchronous activity was plausible, where the structural deficits 

were occurred. The cerebellum was proposed to contain more than one type of organizational 

zone (see review (Apps and Hawkes, 2009)), most commonly known as microzones 

(Andersson and Oscarsson, 1978). Each microzone in the cerebellar cortex is organized into 

sagittally oriented smaller zones that are defined by a climbing fiber - PC innervation. There 

are nearly 1000 Purkinje cells lined up 200-300 µm below the cerebellar surface in the rat 

(Hillman and Chen, 1981). Our MEA covered about 2mm2 area on the PML surface with an 

inter-contact distance of 300 µm. Thus, it was anticipated to see differential effects in the 

synchronous activities collected by individual and/or clusters of electrode contacts.  

Local field potentials emerge from the synchrony of a large population of neural 

components underneath the electrode contacts. Synchrony is observed at multiple levels of 
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cerebellar cortex at various frequency bands. Low-frequency band (1-4Hz) oscillations in the 

molecular layer were proposed to originate from the inferior olive and modulate the PC 

activity via the CF afferents (Lang et al., 2006). Whereas, theta and beta band oscillations are 

generated in the granular layer by MF activations (Hartmann and Bower, 1998;D'Angelo et 

al., 2001). In contrast to the deeper layers, the neurons in the molecular layer of the 

cerebellar cortex are capable of oscillating at higher frequencies, for instance at 30-80Hz due 

to the interneuronal feedback mechanism in the molecular layer (Middleton et al., 2008a) and 

160-260Hz in the Purkinje layer via axon collaterals (de Solages et al., 2008a). Presumably, 

these oscillations originate from different neural structures, which have specific spatial 

alignments in the cerebellar cortex. For instance, it is possible to record sagittal synchrony in 

lower frequencies (1-4Hz) that is mediated by the CFs (Lang et al., 2006), while the 

interneurons in the ML exhibit higher frequency oscillations (30-80Hz) in the transverse 

plane (Middleton et al., 2008b).Considering that the surface recordings with ball electrodes 

are able to detect even the deep MF related potentials, the subdural MEAs should be able to 

detect synchronous activities from various layers of the cerebellar cortex. 

Although the synchrony in cerebellar cortex has been investigated for decades, there 

are just a few reports on the spatial aspect of these events.  De. Zeeuw et al. reviewed the 

spatiotemporal aspects of cerebellar oscillations in a recent report. They commented that the 

synchrony in the cerebellar cortex can demonstrate the diverse spatial patterns over large 

distances in the different lobules. They stated that complex spike synchrony, which can be 

detected in the low-frequency bands (2-4Hz or 6-9Hz), can be observed between PCs that are 

separated up to ~500 µm in the parasagittal zones. In contrast, simple spike synchrony did 

not indicate any particular directionality.  
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De Solages et al. (2008) reported that the high-frequency oscillations (~200Hz) could 

be observed in all the layers of the cerebellar cortex. They also showed that this synchrony 

horizontally extends as far as 375 µm. Furthermore, their report suggested that there was a 

correlation between the oscillations obtained from different layers of cerebellar cortex, where 

molecular and Purkinje layer recordings displayed peak coherences.  Similarly, Cheron et al. 

(2005) reported a large-scale (up to ~1mm) PC synchrony in the anesthetized cerebellar 

ataxia mice model. These reports support the spatial synchrony that was observed in our 

recordings, although the area covered by our MEA was unprecedented in size (300 µm- 2100 

µm). 

Despite the fact all anesthesia regimens will affect the spontaneous and evoked 

potentials in the cerebellum, a dramatic reduction in the field potentials does not necessarily 

imply that peripheral responsiveness is completely removed, as stated by (Bengtsson and 

Jörntell, 2007). Recording synchronous LFPs in the cerebellar cortex was documented in 

earlier reports in awake as well as anesthetized rats (de Solages et al., 2008b;Courtemanche 

et al., 2013;Ordek et al., 2013). Even though the anesthesia regimen depresses the cerebellar 

synchrony (Joynt, 1958;Ordek et al., 2013), local field potentials have sufficient amplitudes 

to characterize the signals, particularly in low frequencies. 

The effect of anesthesia on spontaneous recordings as well as evoked potentials is a 

concern raised by a number of investigators in the past. Cheron et al. (Servais and Cheron, 

2005) compared the differential effects of two different anesthesia regimens (ketamine and 

pentobarbitone) on local field potentials. They found that ketamine, an NMDA antagonist, 

depresses the LFP oscillations with PC desynchronization, while pentobarbitone, which 

targets the GABAa receptors, caused slight changes in PC synchrony. In the cerebellum, 
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excitatory networks such as the MF-GC-PFs pathway use the NMDA receptors, whereas 

inhibitory signaling is mediated by GABAa receptors through the PCs and molecular layer 

interneurons. Therefore, using different anesthesia regimens could have different effects on 

the neural activity by selectively targeting different synaptic mechanisms. Another critical 

factor in anesthesia is the time delay allowed before data collection. Jorntell et al. (Bengtsson 

and Jörntell, 2007) reported that ketamine-xylazine (20:1) depressed both MF and CF 

responses significantly for 10 minutes after the injection. Similarly, LFP oscillations in the 

cerebellum exhibited sustained depressions for 5-10 minutes after anesthetic injection 

(Servais and Cheron, 2005). Although the recovery time was dose dependent, the delay 

allowed between the injection and recordings can be used to control the anesthesia level in a 

reproducible manner, and thus obtain stable recordings. 

Current findings suggested that there was a significant correlation loss in all electrode 

groups starting day-1 of injury. The correlation test applied to the EEG signals after head 

injuries is a diagnostic technique that has been used over decades. Thatcher et al. reported 

coherence changes across short-distance in different frequency bands after mild injuries 

(Thatcher et al., 1989). Our findings indicated progressive reductions in correlation values 

during spontaneous as well stimulated periods (Figure 6.23, 23-24). Interestingly, correlation 

loss paralleled the decline in the EPAs. Both measures exhibited similar trends, i.e., greater 

losses at day-1 and then from day-5 to day- 7, but only subtle changes from day-1 to day-3. 

This suggests that the injury did not only affect the number of PCs that are firing in synch 

through MF or CF activations, hence the EPA loss, but also the connectivity between 

spatially distant zones (within 2mm2) was disrupted. 
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 Immunohistological analysis also was included into this study primarily for two 

reasons; first, to verify that an injury-related neuronal degeneration was produced by direct-

FPI to the cerebellum. Double immunostaining; CalbindinD28k and Fluoro-Jade C were 

used to determine the neuronal subtype that was injured. Fluoro-Jade markings showed 

irreversible cell deaths as delayed as one month of injury induction (molecular layer neurons 

and PCs) in the cerebellum by earlier reports (Sato et al., 2001). Hallam et al. also showed 

Fluoro-Jade C positive degenerating neurons at different time points (24h, 48h and 7-days) 

of the FPI in the rat cerebellum, which was correlated with motor behavioral deficits (Hallam 

et al., 2004). The second aim was to evaluate the sensitivity of the electrophysiological 

parameters to detect neural damage due to FPI compared to immunostaining. The results 

indicated that the subdural MEA recordings were able to glean valuable information about 

the injury at peak pressures as mild as 15 psi, an injury pressure that resulted in milder 

neuronal degeneration by immunohistology (Figure 6.30D-F) and no observable behavioral 

deficits.  

Temporal pattern of PC loss was reported by the earlier researchers. Significant PC 

loss was indicated as early as within the first 24h of FPI induction (Baker et al., 2007), while 

the degeneration was also observed in the following 7 days of FPI (Ai et al., 2002; Baker et 

al., 2007; Fukuda et al.,1996; Mautes et al., 1996 ). Current study proposed the 7 day 

experimental survival period in order to monitor the injury progression with 

electrophysiological assessment. To this purpose, immunohistological analysis demonstrated 

only the 7 day injury consequences. However, findings in the electrophysiological results 

suggested that there was likely to observe PC loss in the earlier period of survival period. 
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This study presented data showing the feasibility of monitoring injury related 

changes in the cerebellar cortex using evoked potentials recorded with subdurally implanted 

multi-electrode arrays. Changes in peripherally evoked signal amplitudes were detected by 5-

min post-injury recordings, and monitored periodically in the following seven days. The 

results also presented evidences showing that the decline of inter-contact correlations 

followed a similar trend to the evoked amplitudes in the one week post-injury period. 

Immunohistological results confirmed the cellular degenerations in the targeted cerebellar 

area as a result of injury. Overall, electrophysiological monitoring using MEAs is a 

promising technique to study the progression of neuronal degeneration in animal models of 

injury without the need of terminating experimental subjects at various time points in the 

study. 
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CHAPTER 8  

CORRELATION OF FUNCTIONAL DEFICITS AND 

ELECTROPHYSIOLOGICAL ALTERATIONS 

8.1 Motor Function Impairment after Cerebellar Injury 

Cerebellar injury will not be detectable at the behavioral level before the injury reaches to a 

certain level of severity and scale. It should be determined when and to what degree the 

cerebellar injury becomes observable in the animal’s behavior as assessed by the 

implemented electrophysiological method. The cerebellum is well-known associated with the 

motor outputs such as locomotion, motor learning and coordination [66-69]. Damage to 

cerebellum leads to impairment in the motor functions [70-74]. This will provide us with a 

simple and reproducible test paradigm to quantify the level of injury in a behavioral context. 

The experiments of this aim will reveal the electrophysiological correlates of the deficits 

observed in the animal’s behavior, e.g., mossy and climbing fiber activity and network 

synchronization. This information cannot be obtained with histological techniques. 

8.1.1 Experimental Design 

The severity and scale of cerebellar injury has to reach a significant level before it can impair 

a skilled motor function such as a ladder crossing. Disruption in the network synchrony of 

cerebellar circuitry will be linked to the functional deficits manifested in the trained animals 

at a higher degree of injury. In contrast, electrophysiological method can be much more 

sensitive than the behavioral markers of the cerebellar injury in the milder cases.  
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The horizontal ladder rung test apparatus was built in the investigator’s laboratory 

with similar references as described earlier [62]. The ladder was constructed by using two 

Plexiglas side walls (each 3 feet long) connecting metal rungs in Figure 8.1. The ladder setup 

was heightened to 20-25cm from the ground during the training sessions. The regular pattern 

of the rungs was only used, where the metal rods are placed at equal distances (1cm) from 

each other.  The task evaluated the animal’s motor performances as they learn the pattern of 

the rungs on the horizontal plane and perform the ladder crossing over repeated trials. 

Animals were subjected to one-week training sessions in the pre-injury period. A 

high-speed camera (Basler AG) was positioned to ladder setup recording close captions (one 

foot) as well as from a distance (3-4 feet) in order to record continuous steps and each step 

success on the rungs during training and injury recordings. The video recordings were 

analyzed using frame-by-frame analysis at 50 f/sec. 

Figure 8.1 Horizontal ladder rung test. Animals were pre-trained 3-7 days before the injury 
induction with simultaneous camera capturing. 
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8.1.2 Preliminary Results during the Foot Placement 

Behavioral analyses of motor functions after FPI induction was first evaluated via capturing 

the foot placement errors on the horizontal ladder paradigm in pre-trained four rats (Figure 

8.2). Mean scores of forepaw placement on the rungs were ranked 4 to 6 (7-category scale) 

for trained animals in the pre-injury day trials. 7-category scale rated the paw placement 

success/failure rate by evaluating the position of grasping (fore and hind limbs).  

 

Except in one case (Rat 2, Left forelimb; P>0.001), there was no measurable 

differences detected in the post-injury foot placement performances by using foot fault score 

system across all experimented rats (N = 4 rats; paired t-test, P>0.05). It was determined that 
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Pre-Injuryp<0.001

Figure 8.2 Forelimb placements on the ladder rungs were evaluated using a foot fault 
scoring system for bi-lateral performances across four injured rats. Example of three ranks 
for total miss (1), finger placement (3), and accurate grasping (7) are shown (Top). In only 
one rat, performance was degraded for the contralateral forehand placement after the injury 
induction (paired t-test, p<0.001). 
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the foot fault scoring may not be suitable to assess the functional impairments in the walking 

test.  

8.1.3 Impairments of the Walking Pattern in the Trained Animals 

Next, the duration (blue) and length (red) of the steps in the forelimb protrusion was 

analyzed and compared for the pre- and post-injury values (Figure 8.3).  

 

Figure 8.3 Behavioral analysis was further investigated for two additional tests, step 
size and step duration. Pre-injury vs. post-injury performances compared in mean ± s.d. 
for the experimented four rats including training improvements. Both step 
performances showed improvement during training period and diminishment after the 
FPI induction (P<0.001). Mean step size and duration values calculated and ‘p’ values 
indicate the pair data comparison for subsequent day performances. ***, P<0.001; 
**,P<0.005; *,P<0.05; (N=4 rats, 10 trials, paired t-test). 
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There were four noticeable trend windows in both analyses.  Initial period was the training 

period where the animals preferred to perform the walking paradigm on the ladder in slower 

(0.16±0.08s) and smaller steps (5.23±0.45cm). 

  During one week training period, there were significant improvements in their step 

performances (N=4 rats, 10 trials; P<0.001). While step size was extended to 7.89±0.54cm 

(5.67±0.66cm, pre-training; P<0.001), injury shortened the step size to 6.15±0.26cm (Day 1). 

Similarly, animal’s step duration increased to 0.17±0.13s from 0.11±0.05s at day-1 of FPI 

(Pre-Injury vs. Day-1 of Injury; P<0.001). In the next days (Day 3 - Day 7), injured animals 

demonstrated measurable improvements in their step performances. At the end of survival 

periods, the mean step size was 7.86cm and mean step duration was 0.13s, which resembled 

the trained performances in the pre-injury period. Trained animals tended to increase their 

stride length, while this declines after the injury. Lack of coordination and posture in the 

walking pattern was also noted in the injured animals.  

8.1.4 Discussion 

The cerebellum is involved in fine and skilled movements to generate motor outputs. 

According to the existing theory, damage to the cerebellum does not lead to absolute 

functional losses, but rather impair the motor activity such as inability in coordination.   

Therefore, identifying the cerebellar associated functional deficits in rats can be challenging 

in mild injuries. The behavioral results in the preliminary study were obtained from animals 

at a higher degree of injury (> 20psi). As the FPI severity was lowered, it was expected to 

observe that the behavioral threshold would be much higher than the electrophysiological 

threshold of detecting the injury. 
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This study hypothesized the sensitivity of the electrophysiological measurements 

would be more detailed to identify the brain injuries, particularly in the mild cases. In order 

to induce the detectable motor impairments in the trained animals, higher severity models of 

FPI was implemented.  To correlate the behavioral deficits to electrophysiological changes in 

the cerebellar network, higher graded injuries that induces clear functional deficits, would be 

performed and correlated with the altered electrophysiology in the MEA implanted and 

trained animals.  

Once the relationship had been identified, the severity of the injury was lowered to 

the electrophysiology threshold; 5psi. It was expected to observe similar changes in the 

electrophysiological recordings, while there would be no measurable impairments in the 

motor functions. In order to quantify these with repeated measures, one may need a larger 

number of experimental groups while extending the post-injury period from one week to one 

month. 
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CHAPTER 9  

LIMITATIONS OF THE STUDY 

One of the biggest issues in this study was encountered regarding the direct injury on the 

cerebellum, which may compromise the electrophysiological recordings obtained via the 

MEAs. The cerebellar structure is located beneath the occipital lobe lying on the brain stem, 

which makes a challenging site for the surgical implantations. This study introduced the 

subdural electrophysiology in the chronically implanted animals on the pia surface of the 

cerebellum. Two different incisions within the millimeter required an extreme delicacy of the 

surgical method. In order to provide the baseline recordings in the un-injured animals, first 

the MEA had to be implanted and made available for electrophysiological recordings. 

Though the evoked potentials of the cerebellar LFPs demonstrated very reliable results, 

which also reported in our initial assessments, the baseline recordings of the matching animal 

was essential for this study. This problem was addressed by several supporting 

methodologies in the experimental procedures. Firstly, both craniotomies were performed at 

the same surgery session, to avoid another mechanical disturbance that may have been 

introduced by the second injury. Secondly, cerebellar recordings were compared 

immediately before and after the injury application that could be the first indicator of 

possible electrode damage. Finally, the FPI control group was implemented, where the 

animals were exposed to the injury first and then followed by the electrode implantation. 

These results also supported the main hypothesis.  

Another challenge was finding the relationship between the cerebellar neural 

mechanisms damaged by the injury and the altered electrophysiology. Cerebellar evoked 

potentials were well characterized by the earlier researchers; however most of them used 
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penetrating electrodes where the electrical activity could be explained by the activity of a 

single or several neurons. Designation of the evoked deflections in response to the same 

peripheral stimulations may introduce additional variables in the surface recordings. Thus, 

the current study tackled with this issue by setting a large group size and ensuring the 

reproducibility of the evoked responses in multiple animals. 

Also, a typical problem in FPI experiments is the reproducibility of the pressure 

transfer from the device to the brain tissue. This induces much variability in the results. The 

thickness of the dura and the amount of the connective tissue around the injury port is 

probably the primary cause of this variability. In order to minimize these issues, young 

animals (less connective tissue) all at the same age (4-6 weeks old, similar dura thickness) 

were used in the current study. Dura was intact under the cranial hole for the FPI induction in 

order to keep our results comparable to other labs (most research labs apply the FPI 

epidurally). The FPI device measures the pressure waveform as it is applied to the animal at 

the point near the skull opening. By cleaning the skull port with sterile saline before each 

application and making sure that the animal is positioned the same way each time, the 

pressure variation were minimized.  

Another challenge was the fact that the cerebellum is highly active during 

wakefulness even in resting state. The amplitude of high frequency oscillations also depend 

on the mental state of the animal in our observations (attentive vs. quietly resting). It was 

expected that the injury would induce a stronger effect on the cerebellar synchrony than the 

state of the animal so that the results were clearly distinguishable as they were in the 

preliminary data. 
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CHAPTER 10 

CONCLUSIONS AND FUTURE WORK 

To this day, brain injuries have not been investigated with electrophysiological techniques in 

this detail utilizing continuous or repetitive measurements in the living animals. Direct FPI 

on the cerebellum surface was used to demonstrate the alterations in the electrical activity of 

the cerebellum after the injury. Current study aimed to make a contribution to clinical 

electrophysiology by providing characterizing the evoked potentials and their high-frequency 

contents. Electrophysiological findings were compared with the immunohistological results 

where the structural degenerations supported the changes in the cerebellar circuitry. Finally, 

the role of the cerebellum in motor functions was shown to correlate with the 

electrophysiological alterations. Combination of three different techniques in one study to 

assess the brain injury in the cerebellum was a first to our knowledge. 

Repetitive measurements via intact electrodes in the traumatized animals can be very 

powerful tool to identify the underlying mechanisms of the injury progression. For instance, 

one of the well-reported theories regarding the molecular mechanisms of brain injury is the 

hyperexcitation of the neurons, which ultimately would alter the electrophysiological 

properties of the damaged neural network. Similarly, the results in the current study 

proposed differential changes in the evoked potentials, which are associated with the 

different neural structures such as mossy fibers and climbing fibers. This particular finding 

was significant within the cerebellum where there are only two input pathways within the 

internal circuitry, despite the abundant number of the nerve cells and their connections. 

Mild brain injuries are the most commonly experienced injury type, and yet it is 

hardest to diagnose.  Current study aimed the lowest severity with ~5 psi fluid percussion 
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pressure on the dura surface of the cerebellum. At this severity, we were able to detect 

changes in the electrophysiological recordings with repetitive measurements in the seven-day 

survival animals. In contrast, the injury was not clear to make a conclusion neither in 

histological results nor by the behavioral paradigms at matching injury levels.  

Future studies may involve pinpointing the neural mechanisms from the 

electrophysiological findings then linking them to functional impairments in the motor 

learning, where the cerebellum plays an important role.  Another novel feature of the study 

was the temporal measurements in the post-injury period where the secondary injury 

mechanism was involved. Immediate measurements in the acute period combined with the 

seven-day monitoring highlighted the injury progression in the living animals. However, the 

concussion type injury produces symptoms in the longer periods such as weeks to months. 

Monitoring the electrophysiology of the injured animals in the broader time window may 

extract the additional features of the trauma. Nevertheless, the challenges of the neural 

recordings with chronically implanted electrodes will be needed to improve in this context. 

Only few studies focused on the cerebellum in the context of TBI or mTBI, perhaps 

because the cerebellum related deficits are not very common clinical symptoms observed in 

TBI patients. However, recent research has shown that cerebellum has been involved not 

only in motor coordination and learning but also in cognitive functions, balance, and others 

as well. Thus, subtle effects of mild TBI may not be obvious in many cases and hence 

underdiagnosed. The cerebellum is a unique brain site because more than half of the cells in 

the brain are to be found in the cerebellum and if the results of TBI on one aspect of the 

cerebellar function is understood, this could be generalized to other brain functions that the 
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cerebellum plays a role because of the stereotypical structure of the neural connections 

across the cerebellar cortex. 

Current study addressed the TBI phenomena in the animal model by characterizing 

the electrophysiological changes combined with the immunohistological verification and the 

behavioral evaluation following a direct insult on the cerebellum. To our knowledge, no 

other researchers to this date have investigated the combination of these three principal 

methods for assessment of a brain injury. Findings were not only valuable to provide a 

comparison across fundamental methods of TBI detection, but also demonstrate the 

sensitivity of each of these techniques in a reproducible model. 

Finally, assessment of the brain injury mechanism with implanted MEA in the living 

animals will allow development of animal models where the temporal progression of neural 

damage and the associated behavioral changes can be investigated without the need to 

terminate the animals at various time points, and therefore enable development of much 

more accurate behavioral markers for specific local injuries in the cerebellum as well as in 

the other areas of the brain.  
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APPENDIX  

MATLAB CODE 

All the analyses and illustrations were performed using the combined code is shown 

at below. 

 

for x = 1:length(functions_to_run) 
    if functions_to_run(x) == 0.001 
         
        frame_Size = 1; 
         
        implay(['videos/trial' num2str(trial) '.avi'],frame_Size) 
  
    end 
 end 
  
 for x = 1:length(functions_to_run) 
    if functions_to_run(x) == 0.03 
  
unfiltered_data_mean = mean(unfiltered_data(:,1:31)'); 
%  
[coef, score, latent]=princomp(unfiltered_data(:,1:31)); 
score1=score(:,1); 
coef(:,1)=zeros(number_channels,1); 
unfiltered_data=score*coef'; 
% unfiltered_data = unfiltered_data'; 
  
  
%  
 for i=1:31 
%      unfiltered_data(:,i) = unfiltered_data(:,i) - unfiltered_data_mean'; 
          unfiltered_data(:,i) = unfiltered_data(:,i) - score(:,2); 
  
 end 
  
 figure;plot(unfiltered_data_mean) 
  
    end 
 end 
  
 
for x = 1:length(functions_to_run) 
    if functions_to_run(x) == 0.02 
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%             number_channels=31; 
         
            bad_channel = find(var(unfiltered_data(:,1:number_channels)) >= 
max(var(unfiltered_data(:,1:number_channels)))); 
             
            meanbar = mean(var(unfiltered_data(:,1:number_channels))); 
            stdbar= std(var(unfiltered_data(:,1:number_channels))); 
             
            outliers = find(abs(var(unfiltered_data(:,1:number_channels))-meanbar) > 
2*stdbar) 
             
            figure;stem(var(unfiltered_data(:,1:number_channels))) 
            unfiltered_data = unfiltered_data(:,1:number_channels); 
            unfiltered_data(:,outliers)=[]; 
             signal_length = min(size(unfiltered_data)); 
            number_channels = signal_length; 
              
    end 
     
end 
  
for x = 1:length(functions_to_run) 
    if functions_to_run(x) == 0.01 
%         unfiltered_data=unfiltered_data(:,1:signal_length); 
  
duration = 20; 
LOOP = 20; 
Fs = sampling_rate; 
DURATION=duration/LOOP; 
N=2048; 
  
%% Taking the Power spectrum first for each period then average it. 
  
% for ii=1:LOOP 
%      
% [Pww(:,ii), F] = pwelch(detrend(unfiltered_data((ii-
1)*DURATION*Fs+1:ii*DURATION*Fs,:)),hanning(N),N/2,N,sampling_rate); 
% Pww(:,ii)  = 5*log10(Pww(:,ii).^2); 
% end 
%  
% averaged_Pww = sum(Pww(:,1:20)',1)/20; 
% averaged_Pww = averaged_Pww'; 
  
% figure;plot(F,averaged_Pww)        
% Apparently it does not make any difference taking the power spect from 
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% the averaged DATA 
 %% Averaging the data 
  
tt=1/Fs:1/Fs:duration; 
  
DATA = zeros(min(size(unfiltered_data)), Fs*DURATION); 
% DATA2 = zeros(min(size(unfiltered_data_mean)), Fs*DURATION); 
  
unfiltered_data = unfiltered_data'; 
% unfiltered_data_mean_averaged = unfiltered_data_mean'; 
  
for Y=1:LOOP, 
  
    DATA = DATA+unfiltered_data(:,(Y-1)*DURATION*Fs+1:Y*DURATION*Fs); 
%     DATA2 = DATA2+unfiltered_data_mean(:,(Y-
1)*DURATION*Fs+1:Y*DURATION*Fs); 
  
  
end 
  
DATA=DATA'/LOOP; 
% DATA2=DATA2'/LOOP; 
  
% unfiltered_data = unfiltered_data'; 
  
unfiltered_data = DATA; 
  
%% Break each Evoked Signals into segments   
  
  
% for i=1:32 
% for p=1:LOOP 
% DATA_Segments(:,p,i) = unfiltered_data((p-1)*Fs+1:p*Fs,i); 
% end 
% end 
  
  
    end 
end 
  
  
for x = 1:length(functions_to_run) 
    if functions_to_run(x) == 0.04 
N=2048*4; 
% hold on; 
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[Pww_cer, F] = 
pwelch(LFP_data_sorted(:,1:number_channels),hanning(N/2),N/4,N/2,sampling_r
ate); % Cerebellum Power Spectrum 
% [Pww_cor, F] = 
pwelch(unfiltered_data(:,32:62),hanning(N),N/2,N,sampling_rate); % Cerebellum 
Power Spectrum 
  
cc = hsv(50); 
  
  
Pww_cer = 10*log10(Pww_cer); 
% Pww_cor = 10*log10(Pww_cor); 
  
hold on;  
figure(1); 
plot(F,Pww_cer,'color',cc(trial,:));axis([0 1000 -180 -90]) 
% whitebg('k') 
  
  
% hold on;plot(F,Pww_cor,'y');grid;legend('Cerebellum Quiet','Cerebrum Quiet') 
  
% figure;plot(F,Pww_cer);hold on 
% [Pww_mean, F] = pwelch(detrend(D ATA2),hanning(N),N/2,N,sampling_rate); 
% Pww_mean = 5*log10(Pww_mean.^2); 
% plot(F,Pww_mean,'c');legend('Cerebellum Mean Out','Cerebellum  Mean 
DATA') 
  
    end 
end 
  
  
clear raw_data 
for x = 1:length(functions_to_run) 
    if functions_to_run(x) == 0.1 
  
row1=[zeros(size(unfiltered_data(:,14)))'; unfiltered_data(:,14)'; 
unfiltered_data(:,11)'; unfiltered_data(:,22)'; unfiltered_data(:,19)'; 
zeros(size(unfiltered_data(:,14)))']; 
row2=[unfiltered_data(:,31)'; unfiltered_data(:,30)'; unfiltered_data(:,27)'; 
unfiltered_data(:,6)'; unfiltered_data(:,3)'; unfiltered_data(:,2)']; 
row3=[unfiltered_data(:,15)'; unfiltered_data(:,28)'; unfiltered_data(:,10)'; 
unfiltered_data(:,23)'; unfiltered_data(:,5)'; unfiltered_data(:,18)']; 
row4=[unfiltered_data(:,32)'; unfiltered_data(:,12)'; unfiltered_data(:,25)'; 
unfiltered_data(:,8)'; unfiltered_data(:,21)'; unfiltered_data(:,1)']; 
row5=[unfiltered_data(:,16)'; unfiltered_data(:,29)'; unfiltered_data(:,9)'; 
unfiltered_data(:,24)'; unfiltered_data(:,4)'; unfiltered_data(:,17)']; 
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row6=[zeros(size(unfiltered_data(:,14)))'; unfiltered_data(:,13)'; 
unfiltered_data(:,26)'; unfiltered_data(:,7)'; unfiltered_data(:,20)'; 
zeros(size(unfiltered_data(:,14)))']; 
%rows=[row1; row2; row3; row4; row5; row6]; 
  
s=zeros(150150,3); 
  
   signaldif1(:,1)=row1(3,:)'-row1(2,:)'; 
   signaldif1(:,2)=row1(5,:)'-row1(4,:)'; 
  
   s=zeros(150150,3); 
  
signaldif=s; 
  
    for j=1:3 
        i=j*2; 
        signaldif2(:,j)=row2(i,:)'-row2(i-1,:)'; 
    end 
     
    s=zeros(150150,3); 
  
signaldif=s; 
  
    for j=1:3 
        i=j*2; 
        signaldif3(:,j)=row3(i,:)'-row3(i-1,:)'; 
    end 
     
    s=zeros(150150,3); 
  
signaldif=s; 
  
    for j=1:3 
        i=j*2; 
        signaldif4(:,j)=row4(i,:)'-row4(i-1,:)'; 
    end 
     
    s=zeros(150150,3); 
  
signaldif=s; 
  
    for j=1:3 
        i=j*2; 
        signaldif5(:,j)=row5(i,:)'-row5(i-1,:)'; 
    end 
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    s=zeros(150150,3); 
  
signaldif=s; 
  
  signaldif6(:,1)=row6(3,:)'-row6(2,:)'; 
   signaldif6(:,2)=row6(5,:)'-row6(4,:)'; 
    
    signaldif=[signaldif1 signaldif2 signaldif3 signaldif4 signaldif5 signaldif6]; 
    unfiltered_data=signaldif; 
    number_channels = 16; 
    end 
end 
%csvwrite(unfiltered_data_name, unfiltered_data); 
% unfiltered_data = csvread(unfiltered_data_name); 
% filtered_data = csvread(filtered_data_name); 
% envelope_data = csvread(envelope_name); 
  
scale = 'uV'; 
  
if strcmp(scale, 'uV') 
    scale_value = 1000000; 
elseif strcmp(scale, 'mV') 
    scale_value = 1000; 
elseif strcmp(scale, 'V') 
    scale_value = 1; 
end 
  
for x = 1:length(functions_to_run) 
    if functions_to_run(x) == 0.5 
  
for i=1:16 
%i=500; 
Signal=unfiltered_data(:,i); 
Signal=Signal-mean(Signal); 
Signal=detrend(Signal); 
%Signal=Design; 
%Signal=scores(:,5); 
%Signal=hrf(1:72); 
  
fs = 30000; 
Ts = 1/fs; 
 x = [0:1/fs:length(Signal)*Ts]; 
 N = length(Signal); 
 index = 0:N-1; 
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%h0 = [1/sqrt(2) 1/sqrt(2)]; 
% Daubechies - 4 
h0 = [0.4830 0.8365 0.2241 -0.1294]; 
% Daubechies - 10 
%h0 = [0.32580343 1.01094572 0.8922014 -0.03957503 -0.26450717 
0.0436163 0.0465036 -0.01498699]; 
%Daubechies - 2 
%h0 = [0.3415    0.5915    0.1585   -0.0915]; 
%h0 = [0.5000    0.5000]; 
NSteps = log2(N); 
coefs = (2^(-NSteps/2)).*Signal; 
  
j = 1; 
[LP1 HP1] = waveanalysis(coefs, h0); 
% The output is the low and high pass bands of the signal. 
% 
% Plot the signal bands. 
index = 0:2^(NSteps-j)-1; 
time = index.*Ts*2^j; 
% figure(1) 
% subplot(121) 
% plot(time,LP1) 
% subplot(122) 
% plot(time,HP1) 
  
% This is the second pass. Here the LP range is investigated. 
j = 2; 
[LP2 HP2] = waveanalysis(LP1, h0); 
index2 = 0:2^(NSteps-j)-1; 
time = index2.*Ts*2^j; 
 %Plot the signal bands. 
 %figure(2) 
 %subplot(121) 
 %plot(time,LP2) 
 %subplot(122) 
 %plot(time,HP2) 
  
% This is the second pass. Here the LP range is investigated. 
j = 3; 
[LP3 HP3] = waveanalysis(LP2, h0); 
index3 = 0:2^(NSteps-j)-1; 
time = index3.*Ts*2^j; 
 %Plot the signal bands. 
 %figure(3) 
 %subplot(121) 
 %plot(time,LP3) 
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 %subplot(122) 
 %plot(time,HP3) 
  
  
  
 % This is the second pass. Here the LP range is investigated. 
j = 4; 
[LP4 HP4] = waveanalysis(LP3, h0); 
index4 = 0:2^(NSteps-j); 
time = index4.*Ts*2^j; 
 %Plot the signal bands. 
 %figure(4) 
 %subplot(121) 
 %plot(time,LP4) 
 %subplot(122) 
 %plot(time,HP4) 
 j = 5; 
[LP5 HP5] = waveanalysis(LP4, h0); 
index4 = 0:2^(NSteps-j); 
time = index4.*Ts*2^j; 
  
  
 j = 6; 
[LP6 HP6] = waveanalysis(LP5, h0); 
index4 = 0:2^(NSteps-j); 
time = index4.*Ts*2^j; 
  
 j = 7; 
[LP7 HP7] = waveanalysis(LP6, h0); 
index4 = 0:2^(NSteps-j); 
time = index4.*Ts*2^j; 
  
  j = 8; 
[LP8 HP8] = waveanalysis(LP7, h0); 
index4 = 0:2^(NSteps-j); 
time = index4.*Ts*2^j; 
  
  j = 9; 
[LP9 HP9] = waveanalysis(LP8, h0); 
index4 = 0:2^(NSteps-j); 
time = index4.*Ts*2^j; 
  
  
  j = 10; 
[LP10 HP10] = waveanalysis(LP9, h0); 
index4 = 0:2^(NSteps-j); 
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time = index4.*Ts*2^j; 
  
  
 sigma1=mad(HP1)/0.6745; 
 sigma2=mad(HP2)/0.6745; 
 sigma3=mad(HP3)/0.6745; 
 sigma4=mad(HP4)/0.6745; 
 sigma5=mad(HP5)/0.6745; 
 sigma6=mad(HP6)/0.6745; 
 sigma7=mad(HP7)/0.6745; 
 sigma8=mad(HP8)/0.6745; 
 sigma9=mad(HP9)/0.6745; 
 lHP1=length(HP1); 
 lHP2=length(HP2); 
 lHP3=length(HP3); 
 lHP4=length(HP4); 
 lHP5=length(HP5); 
 lHP6=length(HP6); 
 lHP7=length(HP7); 
 lHP8=length(HP8); 
 lHP9=length(HP9); 
tHP1=sigma1.*sqrt(2.*log(lHP1)); 
tHP2=sigma2.*sqrt(2.*log(lHP2)); 
tHP3=sigma3.*sqrt(2.*log(lHP3)); 
tHP4=sigma4.*sqrt(2.*log(lHP4)); 
tHP5=sigma5.*sqrt(2.*log(lHP5)); 
tHP6=sigma6.*sqrt(2.*log(lHP6)); 
tHP7=sigma7.*sqrt(2.*log(lHP7)); 
tHP8=sigma8.*sqrt(2.*log(lHP8)); 
tHP9=sigma9.*sqrt(2.*log(lHP9)); 
for k=1:lHP1 
    sig=HP1(k); 
    sng=sign(sig); 
    thresh=abs(sig)-tHP1; 
    if thresh < 0 
        rep=0; 
    else 
        rep=thresh; 
    end 
    dHP1(k)=sng*rep; 
end 
  
for k=1:lHP2 
    sig=HP2(k); 
    sng=sign(sig); 
    thresh=abs(sig)-tHP2; 
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    if thresh < 0 
        rep=0; 
    else 
        rep=thresh; 
    end 
    dHP2(k)=sng*rep; 
end 
  
for k=1:lHP3 
    sig=HP3(k); 
    sng=sign(sig); 
    thresh=abs(sig)-tHP3; 
    if thresh < 0 
        rep=0; 
    else 
        rep=thresh; 
    end 
    dHP3(k)=sng*rep; 
end 
  
for k=1:lHP4 
    sig=HP4(k); 
    sng=sign(sig); 
    thresh=abs(sig)-tHP4; 
    if thresh < 0 
        rep=0; 
    else 
        rep=thresh; 
    end 
    dHP4(k)=sng*rep; 
end 
  
for k=1:lHP5 
    sig=HP5(k); 
    sng=sign(sig); 
    thresh=abs(sig)-tHP5; 
    if thresh < 0 
        rep=0; 
    else 
        rep=thresh; 
    end 
    dHP5(k)=sng*rep; 
end 
  
for k=1:lHP6 
    sig=HP6(k); 
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    sng=sign(sig); 
    thresh=abs(sig)-tHP6; 
    if thresh < 0 
        rep=0; 
    else 
        rep=thresh; 
    end 
    dHP6(k)=sng*rep; 
end 
  
for k=1:lHP7 
    sig=HP7(k); 
    sng=sign(sig); 
    thresh=abs(sig)-tHP7; 
    if thresh < 0 
        rep=0; 
    else 
        rep=thresh; 
    end 
    dHP7(k)=sng*rep; 
end 
  
for k=1:lHP8 
    sig=HP8(k); 
    sng=sign(sig); 
    thresh=abs(sig)-tHP8; 
    if thresh < 0 
        rep=0; 
    else 
        rep=thresh; 
    end 
    dHP8(k)=sng*rep; 
end 
  
for k=1:lHP9 
    sig=HP9(k); 
    sng=sign(sig); 
    thresh=abs(sig)-tHP9; 
    if thresh < 0 
        rep=0; 
    else 
        rep=thresh; 
    end 
    dHP9(k)=sng*rep; 
end 
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rLP8 = dewaveanalysis(dHP9',LP9, h0); 
rLP7 = dewaveanalysis(dHP8',rLP8(4:end), h0); 
rLP6 = dewaveanalysis(dHP7',rLP7(5:end), h0); 
rLP5 = dewaveanalysis(dHP6',rLP6(4:end), h0); 
rLP4 = dewaveanalysis(dHP5',rLP5(5:end), h0); 
rLP3 = dewaveanalysis(dHP4',rLP4(5:end), h0); 
%L=length(rLP3)-lHP3; 
  
%rLP2 = dewaveanalysis(dHP3',rLP3(L:length(rLP3)-1)*20, h0); 
rLP2 = dewaveanalysis(dHP3',rLP3(4:end), h0); 
L=length(rLP2)-lHP2; 
%rLP1 = dewaveanalysis(dHP2',rLP2(L+1:length(rLP2))*1, h0); 
rLP1 = dewaveanalysis(dHP2',rLP2(4:end), h0); 
rrcomp = dewaveanalysis(dHP1',rLP1(1:25000), h0); %%(L+1:length(rLP1)) 
%size(rrcomp) 
 processedsignal(:,i)=rrcomp; 
end 
size(processedsignal) 
unfiltered_data=processedsignal; 
    end 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
% Create arrays to be used for x-data in future plots. These include time, 
% frequency, and video frame number. 
  
number_data_points = length(unfiltered_data); 
time = (1:number_data_points)/sampling_rate; 
freq = (1:number_data_points)*sampling_rate/number_data_points; 
video = (1:number_data_points)*video_frame_rate/sampling_rate; 
  
% 1) Plot unfiltered data 
% 
% This function plots the unfiltered gain-compensated, scaled data versus 
% either a time scale, sample scale, or video frame scale. Specify x_data 
% according to which scale is appropriate (time, sample, or video). Also, 
% set the appropriate minimum and maximum x and y values to plot. 
  
  
for x = 1:length(functions_to_run) 
    if functions_to_run(x) == 1 
  
        x_data = time; 
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        x_min = 0; 
        x_max = max(x_data); 
         
        y_min = min(unfiltered_data*scale_value); 
        y_max = max(unfiltered_data*scale_value); 
  
        x_label = 'Time (s)'; 
%         x_label = 'Video Frame'; 
%         x_label = 'Sample Number'; 
%         y_label = {'Unfiltered Signal'; ['(' scale ')']}; 
        y_label = ['Unfiltered Signal (' scale ')']; 
  
        run sp_mfiles/plot_unfiltered_data 
%    run sp_mfiles\plot_unfiltered_data_quadrant 
    end 
end 
  
  
% 2) Plot frequency response (FFT) 
% 
% This function computes and plots the fast fourier transform (FFT) of the 
% unfiltered gain-compensated data versus the frequency. 
  
  
for x = 1:length(functions_to_run) 
    if functions_to_run(x) == 2 
number_of_data_points=25000 
        unfiltered_fft = abs(fft(detrend(unfiltered_data))); 
         
        x_data = freq; 
         
        x_min = 0; 
        x_max = sampling_rate/2; 
         
        y_min = 0; 
%         y_max = max(unfiltered_fft); 
        for y = 1:number_channels 
            y_max(y) = 0.05; 
%mean(unfiltered_fft(round(number_data_points/3):round(number_data_points/2
),y))+25*std(unfiltered_fft(round(number_data_points/3):round(number_data_poin
ts/2),y)); 
        end 
         
        x_label = 'Frequency (Hz)'; 
        y_label = 'FFT Magnitude'; 
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        run sp_mfiles\plot_fft 
         
    end 
end 
  
  
% 3) Filter data (Bandpass FIR) for population activity 
% 
% This function constructs a bandpass FIR filter and filters the 
% gain-compensated data accordingly. Filtered data is saved into a 
% pre-specified dat file. Filter parameters (number of coefficients, low 
% cutoff, and high cutoff) are specified prior to calling the function. 
  
for x = 1:length(functions_to_run) 
    if functions_to_run(x) == 3 
         
        filter_order = 1000; 
        low_cut =200;           % freq in Hz 
        high_cut = 600;        % freq in Hz 
  
        high_pass_norm = high_cut/(sampling_rate/2); 
         low_pass_norm = low_cut/(sampling_rate/2); 
                 
        b_filt_band = fir1(filter_order, [ low_pass_norm high_pass_norm  ]); 
        a_filt_band=1; 
        filtered_data = filtfilt(b_filt_band, a_filt_band, unfiltered_data); 
               
%        csvwrite(filtered_data_name, filtered_data); 
         
    end 
end 
  
  
% 4) Plot filter 
% 
% This function plots the frequency response of the filter being used. Set 
% the appropriate minimum and maximum x and y values to plot. 
  
  
for x = 1:length(functions_to_run) 
    if functions_to_run(x) == 4 
  
        x_data = freq; 
         
        x_min = 0; 
        x_max = sampling_rate/2; 



 

138 
 

         
        y_min = 0; 
        y_max = 1.1; 
  
        run sp_mfiles\plot_filter 
         
    end 
end 
  
  
% 5) Plot filtered data 
% 
% This function plots the filtered gain-compensated, scaled data versus 
% either a time scale, sample scale, or video frame scale. Specify x_data 
% according to which scale is appropriate (time, sample, or video). Also, 
% set the appropriate minimum and maximum x and y values to plot. 
  
  
for x = 1:length(functions_to_run) 
    if functions_to_run(x) == 5 
  
        x_data = time; 
         
        x_min = 0; 
        x_max =max(x_data); 
         
        y_min = -70*ones(1,68); %min(filtered_data*scale_value); 
        y_max = 70*ones(1,68); % max(filtered_data*scale_value); 
         
        x_label = 'Time (s)'; 
%         x_label = 'Video Frame'; 
%         x_label = 'Sample Number'; 
%         y_label = {'Filtered Signal'; ['(' scale ')']}; 
        y_label = ['Filtered Signal for population activity (' scale ')']; 
  
        run sp_mfiles\plot_filtered_data 
         
    end 
end 
  
  
% 6) Calculates and plots signal envelope (rectified moving avg of filtered data) 
% 
% This function calculates the signal envelope by rectifying and then 
% performing a moving average calculation on the filtered data. Set the  
% appropriate bin length for calculating the moving average in seconds. 
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for x = 1:length(functions_to_run) 
    if functions_to_run(x) == 6 
  
        bin_length = 0.05;     % in sec 
         
      run sp_mfiles\calculate_envelope 
         
%         csvwrite(envelope_name, envelope_data); 
  
        x_data = time; 
         
        x_min = 0; 
        x_max = max(time); % max(x_data); 
         
        y_min = 5e-6; % ones(1,32)* min(min(envelope_data*scale_value)); 
       y_max = ones(1,32)*40; 
        %y_max = ones(1,32)*max(max(envelope_data*scale_value)); 
  
        x_label = 'Time (s)'; 
%         x_label = 'Video Frame'; 
%         x_label = 'Sample Number'; 
%         y_label = {'Signal Envelope'; ['(' scale ')']}; 
        y_label = ['Signal Envelope (' scale ')']; 
  
        run sp_mfiles\plot_envelope 
    end 
end 
  
  
% 7) Filter data (Bandpass FIR) for LFP  
% 
% This function constructs a bandpass FIR filter and filters the 
% gain-compensated data accordingly. Filtered data is saved into a 
% pre-specified dat file. Filter parameters (number of coefficients, low 
% cutoff, and high cutoff) are specified prior to calling the function. 
  
for x = 1:length(functions_to_run) 
    if functions_to_run(x) == 7 
         
             
            L=length(unfiltered_data); 
            T=1000/sampling_rate; 
            % design a low - pass 
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            fch=20; 
            fcl=800; 
             
             
            fn2=2*fcl/(sampling_rate); 
            fn1=2*fch/(sampling_rate); 
           
             
            [b,a]=butter(5,fn1,'high'); 
            
            LFP_data=filtfilt(b,a,unfiltered_data); 
            
%             LFP_data=filtfilt(b,a,DATA); 
            [b,a]=butter(5,fn2,'low'); 
           
            LFP_data=filtfilt(b,a,LFP_data); 
             
%             LFP_data2=filtfilt(b,a,LFP_data2); 
  
  
            fc1=5; 
            fc2=30; 
            fc3=30; 
            fc4=80; 
            fc5=80; 
            fc6=160; 
            fc7=160; 
            fc8=250; 
             
             
              fn1=2*fc1/(sampling_rate); 
            fn2=2*fc2/(sampling_rate); 
             
             [b,a]=butter(5,fn2,'low'); 
            LFP_data1=filtfilt(b,a,raw_dataA); 
            [b,a]=butter(5,fn1,'high'); 
            LFP_data1=filtfilt(b,a,LFP_data1); 
             
             
            fn4=2*fc4/(sampling_rate); 
            fn3=2*fc3/(sampling_rate); 
%             fn2=[fn3 fn4];               
            [b,a]=butter(5,fn4,'low'); 
            LFP_data2=filtfilt(b,a,raw_dataA); 
            [b,a]=butter(5,fn3,'high'); 
            LFP_data2=filtfilt(b,a,LFP_data2); 
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%              
              fn6=2*fc6/(sampling_rate); 
            fn5=2*fc5/(sampling_rate); 
            [b,a]=butter(5,fn6,'low'); 
            LFP_data3=filtfilt(b,a,raw_dataA); 
            [b,a]=butter(5,fn5,'high'); 
            LFP_data3=filtfilt(b,a,LFP_data3); 
%         
             
  
  
             fn7=2*fc7/(sampling_rate); 
            fn8=2*fc8/(sampling_rate); 
            [b,a]=butter(5,fn8,'low'); 
            LFP_data4=filtfilt(b,a,raw_dataA); 
            [b,a]=butter(5,fn7,'high'); 
            LFP_data4=filtfilt(b,a,LFP_data4); 
            
            % plot the filter amplitude and phase 
%             [h,w] = freqz(b,a,10000); % this calculates the transfer function at N 
different points of digital frequency; h is the transfer function at w frequencies 
%             f=w/(2*pi*T);               % convert the digital frequency array to analog 
frequency in KHz 
%             figure;                        
%             subplot(211); 
%             plot(f,abs(h));           % amplitide 
%             grid 
%             subplot(212) 
%            % plot(f,angle(h));    % phase 
%             grid 
%             xlabel('frequency (kHz)'); 
  
LFP_data_cer =LFP_data(:,1:number_channels); 
% LFP_data_cor = LFP_data(:,number_channels+1:2*number_channels); 
  
unfiltered_data_cer = unfiltered_data(:,1:number_channels); 
% unfiltered_data_cor = 
unfiltered_data(:,number_channels:2*number_channels); 
  
for p = 1:number_channels 
LFP_data_sorted(:,p) = LFP_data_cer(:,positions_sorted(p)); 
unfiltered_DATA(:,p) = unfiltered_data(:,positions_sorted(p)); 
  
end 
% for p = 1:number_channels 
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% LFP_data_sorted(:,p+number_channels) = 
LFP_data_cor(:,positions_sorted(p)); 
% unfiltered_DATA(:,p+number_channels) = 
unfiltered_data_cor(:,positions_sorted(p)); 
% end 
% end 
%  end 
  
  
  
for x = 1:length(functions_to_run) 
    if functions_to_run(x) == 200 
         
        per = sampling_rate/1000*100;    % Define your temporal window in ms 
        figure; 
        i=per*3; 
 for kkk=1:31 
%  subplot(4,8,kkk); 
% figure(kkk); 
% for i=per*2:per:length(LFP_data)-6*per 
for ii=1:31 
  
% clf; 
% subplot(1,2,1) 
% surface(corrcoef(unfiltered_data(i:i+per,1:number_channels)));caxis([-1 1]) 
% y_start = num2str(i,'%d'); 
% title(y_start) 
% subplot(1,2,2) 
% plot(LFP_data(i:i+per,1:number_channels)) 
% y_start = num2str(i,'%d'); 
% title(y_start) 
  
  
[r,lags]=xcorr(LFP_data_sorted(4800:6500,ii),LFP_data_sorted(4800:6500,kkk),'c
oeff'); 
  
% [r,lags]=xcorr(LFP_data_sorted(i:i+per,ii),LFP_data_sorted(i:i+per,kkk),'coeff'); 
win_gauss = gausswin(length(r)); 
az = find(r==max(r)); 
kk = i/per; 
zz(kkk,ii) = lags(az) 
win_gauss = gausswin(length(r)); 
yy = r.*win_gauss;      % Gauss windowing 
%  
figure(132);clf;subplot(2,1,1);plot(1e6*LFP_data_sorted(5900:6500,[ii kkk])); 
y_start = num2str(kkk,'%d');title(y_start) 
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subplot(2,1,2); plot(lags,r,'color',cc(4*kk,:)); 
% pause(.5); 
  
% figure(103);hold on 
  
end 
%  end 
%  pause; 
 %         mean(zz)        % average of lagging or leading across time. 
%   figure;plot(zz(kkk,:),'color',cc(4*kk,:)) 
  
 end 
 figure;stem(zz) 
  
%  for kkk=1:31 
%  subplot(4,8,kkk);plot(zz(kkk,:));end 
    end 
end 
  
         
for x = 1:length(functions_to_run) 
    if functions_to_run(x) == 201 
%        LFP_data = LFP_data2; 
for i=EPs1 - marg:1:EPs1 + marg 
    for k=1:32 
         
   if (LFP_data(i,k)>0) 
  
       LFP_rectify_exc(i,k)=LFP_data(i,k); 
   else 
        
       LFP_rectify_inh(i,k) = -LFP_data(i,k); 
       
        end 
    end 
end 
  
for i=EPs2 - marg:1:EPs2 + marg 
    for k=1:32 
         
   if (LFP_data(i,k)>0) 
  
       LFP_rectify_exc2(i,k)=LFP_data(i,k); 
   else 
        
       LFP_rectify_inh2(i,k) = -LFP_data(i,k); 
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        end 
    end 
end 
  
figure;plot(LFP_rectify_exc) 
figure;plot(LFP_rectify_exc2) 
% figure;plot(LFP_rectify_inh) 
% LFP_rectify_exc = LFP_rectify_exc(:,[2:16,19:30]); % Discard the 
unresponsive channels 
LFP_rectify_exc =LFP_rectify_inh; 
LFP_rectify_exc2 =LFP_rectify_inh2; 
  
figure;for p = 1:number_channels 
subplot(4,8,positions(p)); 
  
r= randi(32,32,1); 
r=r(1); 
  
maxresp = find(LFP_rectify_exc(:,r) == max(max(LFP_rectify_exc(:,r)))); 
  
% maxresp2 = find(LFP_rectify_inh(:,r) == max(max(LFP_rectify_inh(:,r)))); 
  
imagesc(LFP_rectify_exc(maxresp,p)'); 
colormap(gray);caxis([min(min(LFP_rectify_exc(maxresp,1:32))) 
max(max(LFP_rectify_exc(maxresp,1:32)))]) 
  
% imagesc(LFP_rectify_inh(maxresp2,p)'); 
colormap(jet);caxis([min(min(LFP_rectify_inh(maxresp2,[1:32]))) 
max(max(LFP_rectify_inh(maxresp2,1:32)))]) 
  
  
yhead_start = num2str(i,'%d'); 
yhead_end = num2str(i+1,'% d'); 
title([yhead_start]) 
head=num2str(p,'%d'); 
ylabel(head) 
  
end 
  
% figure 
% for k=5000:16:7000; 
%  
% clf 
% for p = 1:32 
% subplot(4,8,positions(p)); 
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% imagesc(LFP_rectify_exc(k:k+10,p)'); colormap(jet);caxis([0 
max(max(LFP_rectify_exc))]) 
% yhead_start = num2str(i,'%d'); 
% yhead_end = num2str(i+1,'% d'); 
% title([yhead_start]) 
% head=num2str(p,'%d'); 
% ylabel(head) 
%  
% end 
% pause(.1) 
% for p = 1:number_channels 
% unfiltered_data_cere_electrode(:,p) = unfiltered_data(:,positions_sorted(p)); 
% end 
%  
% unfiltered_data_cortex = unfiltered_data(:,33:64); 
% for p = 1:32 
% unfiltered_data_cor_electrode(:,p) = 
unfiltered_data_cortex(:,positions_sorted(p)); 
% end 
  
  
figure;subplot(2,1,1); 
imagesc(corrcoef(unfiltered_DATA(:,1:number_channels)));axis tight 
  
[Corr_Cerebellum,p] = corrcoef(unfiltered_DATA(:,1:number_channels)) ; 
  
% Corr_Cerebellum = Corr_Cerebellum(1,:); 
subplot(2,1,2) 
imagesc(corrcoef(unfiltered_DATA(:,number_channels:number_channels*2)));axi
s tight 
[Corr_Cortex,p] = 
corrcoef(unfiltered_DATA(:,number_channels:number_channels*2)) ; 
  
  
  
Correlation_Unfiltered_data_cere = zeros(31,31); 
Correlation_Unfiltered_data_cor = zeros(31,31); 
  
for i=1:number_channels 
     
Correlation_Unfiltered_data_cere(i,i:31) = Corr_Cerebellum(i,i:31); 
Correlation_Unfiltered_data_cor(i,i:31) = Corr_Cortex(i,i:31); 
  
end 
figure;surface(Correlation_Unfiltered_data_cere) ; caxis([0 1]);axis tight 
figure;surface(Correlation_Unfiltered_data_cor) ; caxis([0 1]);axis tight 
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    end 
end 
  
  
  
for x = 1:length(functions_to_run) 
    if functions_to_run(x) == 206 
  
        LFP_data_sorted = LFP_data_sorted(4900:5500,1:32); 
         
% X = input('desired channel')      % to process distinct channel manually 
  
figure;surface(corrcoef(LFP_data_sorted)); % Open the Surface plot to double 
check  
  
  
for X = 1:min(size(LFP_data_sorted))  
     
row1 = [1:8]; row2 = [9:16]; row3 = [17:24]; row4=[25:32]; % Divide into row 
vectors 
  
X 
  
if (find(row1 ==X)) 
     
medial = find(row1<X) 
lateral = find(row1>X)          %% Look for medial-lateral direction 
  
rost_caud = [X+8 X+16 X+24]     % Assign the rost-caudal position 
row = row1; 
y_row = 300; 
y_row2 = y_row-20; 
  
x_row = mod(X-1,8)*55; 
end 
  
if (find(row2 ==X)) 
     
medial = find(row2<X) 
lateral = find(row2>X)          % 2.row 
  
rost_caud = [X-8 X+8 X+16]      % Intersected Rost-caudal contacts 
row = row2; 
medial = medial+max(row1);      %% NEEDED for plotting 
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lateral = lateral+max(row1); 
y_row = 225; 
y_row2 = y_row-20; 
  
x_row = mod(X-1,8)*55; 
  
end 
  
if (find(row3 ==X)) 
     
medial = find(row3<X) 
lateral = find(row3>X) 
  
rost_caud = [X-16 X-8 X+8] 
row = row3;                     %3.row 
medial = medial+max(row2); 
lateral = lateral+max(row2); 
y_row = 125; 
y_row2 = y_row-20; 
  
x_row = mod(X-1,8)*55; 
  
end 
  
if (find(row4 ==X)) 
     
medial = find(row4<X); 
lateral = find(row4>X); 
                                    %4.row 
rost_caud = [X-8 X-16 X-24] 
row = row4; 
medial = medial+max(row3); 
lateral = lateral+max(row3); 
y_row=50; 
y_row2 = y_row-20; 
  
x_row = mod(X-1,8)*55; 
  
end 
  
R=ones(8,1)                         % Autocorrelation Coeff is defined as '1'. 
  
for i=1:length(medial) 
    r = corrcoef(LFP_data_sorted(:,X),LFP_data_sorted(:,medial(i))); 
    R(i) = r(2,1) ;    
end 
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for ii=1:length(lateral) 
    r = corrcoef(LFP_data_sorted(:,X),LFP_data_sorted(:,lateral(ii))); 
    R(length(medial)+1+ii) = r(2,1);  
   
end 
  
  
for k=1:length(rost_caud) 
    
    r = corrcoef(LFP_data_sorted(:,X),LFP_data_sorted(:,rost_caud(k))) 
    Rc(k) = r(2,1) ;    
end 
  
electrode=zeros(8,4); 
electrode(row) = R; 
electrode(rost_caud) = Rc; 
figure(100);clf;imagesc(electrode') 
  
Rmean = mean(R); 
Rcmean =mean(Rc); 
A = num2str(Rmean); 
B = num2str(Rcmean); 
text('units','pixels','position',[x_row y_row],'fontsize',12,'string',A)  
text('units','pixels','position',[x_row y_row2],'fontsize',12,'string',B)  
  
pause(1); 
  
end 
  
    end 
end 
  
for x = 1:length(functions_to_run) 
    if functions_to_run(x) == 207 
  unfiltered_data=unfiltered_data(:,1:signal_length); 
  
duration = 20; 
LOOP = 20; 
Fs = sampling_rate; 
DURATION=duration/LOOP; 
% use it for quite data 
         
%  
% Ns * Ts = Ncycles * Trej 
%  
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% Ts = 1/sampling_rate; 
% Ncycles = # of cycles will be each averaged data 
% Tnoise = 1/60 (60Hz elimination) 
  
Trej = 1/60; 
Ncycles = 100; % for 16kHz sampling rate 
Ts = 1/sampling_rate; 
Ns = Ncycles*Trej/Ts; 
  
  
duration = 1; 
LOOP = 20; 
Fs = sampling_rate; 
DURATION=duration/LOOP; 
N=2048; 
  
%% Taking the Power spectrum first for each period then average it. 
  
% for ii=1:LOOP 
%      
% [Pww(:,ii), F] = pwelch(detrend(unfiltered_data((ii-
1)*DURATION*Fs+1:ii*DURATION*Fs,:)),hanning(N),N/2,N,sampling_rate); 
% Pww(:,ii)  = 5*log10(Pww(:,ii).^2); 
% end 
%  
% averaged_Pww = sum(Pww(:,1:20)',1)/20; 
% averaged_Pww = averaged_Pww'; 
  
% figure;plot(F,averaged_Pww)        
% Apparently it does not make any difference taking the power spect from 
% the averaged DATA 
  
%% Averaging the data 
  
tt=1/Fs:1/Fs:duration; 
  
DATA = zeros(min(size(unfiltered_data)), Fs*DURATION); 
unfiltered_data = unfiltered_data'; 
  
for Y=1:LOOP, 
  
    DATA = DATA+unfiltered_data(:,(Y-1)*DURATION*Fs+1:Y*DURATION*Fs); 
end 
  
DATA=DATA'/LOOP; 
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unfiltered_data = unfiltered_data'; 
  
    end 
end 
  
  
 for x = 1:length(functions_to_run) 
    if functions_to_run(x) == 210 
         
%         unfiltered_DATA = LFP_data4(:,1:31); 
       
        unfiltered_DATA(:,32) = mean(unfiltered_DATA(:,1:31)'); 
        unfiltered_data(:,32) = mean(unfiltered_data(:,1:31)');        
        N=2048; 
  
%         unfiltered_DATA = LFP_data_sorted; 
%       I = input('Like to return desired channels (1) or Electrode Organization (0) 
or Random (any)');  
          I=0; 
  
      if (I == 1) 
          ch1 = input('1.pair channel 1 '); 
          ch2 = input('1.pair channel 2 '); 
          ch3 = input('2.pair channel 1 '); 
          ch4 = input('2.pair channel 2 '); 
          ch5 = input('3.pair channel 1 '); 
          ch6 = input('3.pair channel 2 '); 
          ch7 = input('4.pair channel 1 '); 
          ch8 = input('4.pair channel 2 '); 
           
      elseif (I == 0 ) 
           
          RC1 = randi(8); 
          RC2 = randi(16);             % Define your preference whether in Rostro-
Caudal (RC) or Medio-Lateral (ML) direction 
          RC3 = 24; 
          ML1  = 3; 
          ML2 = 7 ;  
           
           
          ch1 = randi(8); 
          ch2 = ch1+RC1; 
           
          ch3 = randi([8 16]); 
          ch4 = ch3+RC2; 
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          ch5 = randi([16 24]); 
          ch6 = ch5+RC1 ; 
           
          ch7 = randi([24 31]); 
           
         ch8 = ch7 - ceil(mod(ch7,24)/2); 
  
      else     
  
ch1 = randi(number_channels); 
ch2 = randi(number_channels); 
  
ch3 = randi(number_channels); 
ch4 = randi(number_channels); 
  
ch5 = randi(number_channels); 
ch6 = randi(number_channels); 
  
ch7 = randi(number_channels); 
ch8 = randi(number_channels); 
      end 
       
%% 
  
  
  
%        Windowing and Video segments start here 
%        Playing video file simultaneously with temporal coherence analysis 
%        Video_data max is taken as 5 sec 
        
%       video_data = VideoReader(['videos/trial' num2str(trial) '.avi']); 
%       all_frames = read(video_data); 
%        
%       clear i 
%       Dur = length(unfiltered_DATA)/sampling_rate;              % recalculating the 
duration of data for temp coherence 
%            
%       II = input('Would you like the movie file to be played? (1/0)');  % Run the 
video file/NOt 
%       
%  for i=1:1:Dur;                                               % 1 sec window spacing  
%       i; 
%         
%      if (II ==1) 
%       if (i<=5)                                             % limit the video file with 5 sec  
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%       l =  i*video_frame_rate;                                %% Synch frame video file  to 
data file    
%       for ll = (l-video_frame_rate) +1 : l 
%            
%         figure(112);clf;imagesc(all_frames(:,:,:,ll));colormap(gray); 
%         t1 = num2str((i-1),'% d'); t2 = num2str(i,'% d'); 
%         title([t1,'s - ',t2,'s']) 
%         pause(0.1) 
%             
%       end 
%       end    
%  end 
%  
% N=1024;                 
% unfiltered_DATA = unfiltered_data(((i-1)*sampling_rate+1):i*sampling_rate,:);       
  
%% 
  
[COHERE,f] =mscohere(unfiltered_DATA(:,ch1), 
unfiltered_DATA(:,ch2),hanning(N/4) ,N/8 ,N/2 ,sampling_rate); 
[COHERE2,f] =mscohere(unfiltered_DATA(:,ch3), 
unfiltered_DATA(:,ch4),hanning(N/4) ,N/8 ,N/2 ,sampling_rate); 
[COHERE3,f] =mscohere(unfiltered_DATA(:,ch5), 
unfiltered_DATA(:,ch6),hanning(N/4) ,N/8 ,N/2 ,sampling_rate); 
[COHERE4,f] =mscohere(unfiltered_DATA(:,ch7), 
unfiltered_DATA(:,ch8),hanning(N/4) ,N/8 ,N/2 ,sampling_rate); 
  
figure; 
hold on; subplot(2,1,1); 
plot(f,COHERE);hold on 
plot(f,COHERE2,'r');plot(f,COHERE3,'g');plot(f,COHERE4,'k'); 
axis([ 0 2000 0 1]) 
COH1 = num2str([ ch1 ch2 ],'% d'); 
COH2= num2str([ ch3 ch4 ],'% d'); 
COH3 = num2str([ ch5 ch6 ],'% d'); 
COH4 = num2str([ ch7 ch8 ],'% d'); 
legend(COH1,COH2,COH3,COH4) 
t1 = num2str((i-1),'% d'); t2 = num2str(i,'% d'); 
title([t1,'s - ',t2,'s']) 
  
  
  
%% LOAD electode image into matlab 
  
a=imread('electrode_contacts_numbered.png','png'); 
subplot(2,1,2) 
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image(a); 
hold on 
  
% Specifiy the contact coordinates on the image 
  
refx1 = mod(ch1,8); 
if(refx1 == 0); 
    refx1 = 8; 
end 
X_ch1 = 140+((refx1-1) * 50); 
Y_ch1 = (ceil(ch1/8) * 50); 
plot(X_ch1,Y_ch1,'--bs','LineWidth',10) ;       % 1. pairs 
  
refx2 = mod(ch2,8); 
if(refx2 == 0); 
    refx2 = 8; 
end 
  
  
X_ch2 = 140+((refx2-1) * 50); 
Y_ch2 = (ceil(ch2/8) * 50); 
plot(X_ch2,Y_ch2,'--bs','LineWidth',10)   ;   
  
refx3 = mod(ch3,8); 
if(refx3 == 0); 
    refx3 = 8; 
end 
X_ch3 = 140+((refx3-1) * 50); 
Y_ch3 = (ceil(ch3/8) * 50); 
plot(X_ch3,Y_ch3,'--rs','LineWidth',10)     %2.pairs 
refx6 = mod(ch6,8); 
if(refx6 == 0); 
    refx6 = 8; 
end 
X_ch6 = 140+((refx6-1) * 50); 
Y_ch6 = (ceil(ch6/8) * 50); 
plot(X_ch6,Y_ch6,'--gs','LineWidth',10) 
  
refx7 = mod(ch7,8);                         % 4.pairs 
if(refx7 == 0); 
    refx7 = 8; 
end 
X_ch7 = 140+((refx7-1) * 50); 
Y_ch7 = (ceil(ch7/8) * 50); 
plot(X_ch7,Y_ch7,'--ks','LineWidth',10) 
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refx8 = mod(ch8,8); 
if(refx8 == 0); 
    refx8 = 8;   
end 
X_ch8 = 140+((refx8-1) * 50); 
Y_ch8 = (ceil(ch8/8) * 50); 
plot(X_ch8,Y_ch8,'--ks','LineWidth',10) 
  
  
  
% N=2048; 
% [Pww_cer, F] = 
pwelch(unfiltered_DATA(:,1:number_channels),hanning(N),N/2,N,sampling_rate); 
% Cerebellum Power Spectrum 
% % [Pww_cor, F] = 
pwelch(unfiltered_data(:,32:62),hanning(N),N/2,N,sampling_rate); % Cerebellum 
Power Spectrum 
%  
% cc = hsv(50); 
%   
%  
% Pww_cer = 10*log10(Pww_cer); 
% % Pww_cor = 10*log10(Pww_cor); 
%  
% figure(11);clf;plot(F,Pww_cer,'color',cc(trial,:));axis([0 1000 -140 -90]) 
% pause(3) 
  
%         end 
    end 
 end 
  
 % check the rostro-caudal cross-corr spectrum estimation 
 % Enter the desired channels 
  
  
  
  for x = 1:length(functions_to_run) 
    if functions_to_run(x) == 211 
  
 for i=1:6 
  
base_ch1(i) = input('enter first one:'); % enter the desired line starting from first 
contact 
    base_ch2(i) = input('enter second one:'); 
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