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ABSTRACT 

DEVELOPING AN INSULIN PRODUCING TISSUE USING MOUSE 
EMBRYONIC STEM CELLS 

 
by 

Neha Mahendrakumar Jain 

This thesis describes derivation of pancreatic insulin producing cells (IPCs) from mouse 

embryonic stem cells and development of three-dimensional (3D) engineered tissue 

system to provide physiologic culture conditions for IPCs. Upon using a previously 

established protocol, IPCs have been successfully derived from mouse embryonic stem 

cells and characterized in vitro. IPCs not only express classical markers of pancreatic beta 

cells but also exhibit glucose responsive behavior. Interestingly while deriving IPCs from 

mouse embryonic stem cells, islet endothelial cells have also been identified and 

successfully isolated from the culture. Derivation of a pure population of endothelial cells 

expressing specific markers of islet microvasculature, differentiated from mouse 

embryonic stem (mES) cells is entirely novel and is demonstrated for the first time in this 

study. To better mimic the native environment, a 3D engineered tissue system has been 

created using stem cell-derived IPCs. IPC survival, glucose responsiveness and gene 

expressions under both static and flow culture conditions were examined. Furthermore, 

the effects of endothelial cells on IPC function was examined using a 3D co-culture 

system of IPCs and islet endothelial cells under both static and flow culture conditions.  

While no significant improvements are seen in the glucose responsiveness and 

gene expression analysis of the IPC clusters in 3D culture conditions in static or flow 

culture conditions, this study describes includes preliminary design considerations that 



can be further extended in developing functional 3D insulin-producing tissues, and 

ultimately establishing a long-term clinically relevant strategy.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Diabetes is an epidemic disease that affects about 371 million people worldwide [3]. In 

the United States alone, diabetes has been reported as the 7th leading cause of death, with 

the total economical cost of $245 billion in 2012 [7].  Diabetes is also a major cause of 

various other diseases including heart disease, kidney failure, non-traumatic lower limb 

amputations, blindness, dental disease and complications during pregnancy among adults 

[10].  

Pancreas transplantation has been considered the gold standard for treatment of 

diabetes type I. But, due to shortage of healthy donor tissue available, transplantation of 

pancreas or islets is extremely limited. Even if the transplantation is performed, immune 

rejection poses a serious problem to the health of the patient. Most patients need to be on 

life long immune suppression drugs, which compromise their health and wellbeing. 

Xenografts i.e., animal derived tissue are comparatively readily available for 

transplantation, but pose a serious risk of unknown disease transmission if used for 

transplantation. Alternatively, insulin injections are used by a majority of the patients 

suffering from diabetes Type I & II, but these can lead to hypoglycemia or 

hyperglycemia which themselves can cause major health issues, including death [11]. 

Further, insulin injections provide temporary relief of symptoms while not addressing the 

underlying cause. 
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Recently, islet transplantation has emerged as one of the promising treatment 

options. Isolated islets are encapsulated inside semipermeable membranes and then 

transplanted or simply delivered inside the body through a catheter [12]. This is a simpler 

procedure compared to the pancreas transplantation as the volume of islets is much less 

than the pancreas [13]. In addition, the encapsulation prevents the islets from being 

destroyed by the body’s immune system [13, 14].  Recently, the Edmonton protocol for 

islet transplantation has been described [15]. The Edmonton protocol involves isolating 

islets from a cadaveric donor pancreas using a mixture of liberases. Each recipient 

receives islets from one to as many as three donors. The islets are infused into the 

patient's portal vein, and are then kept from being destroyed by the recipient's immune 

system through the use of two immunosuppressants, sirolimus and tacrolimus as well as a 

monoclonal antibody drug used in transplant patients called daclizumab [15]. But, the 

islet transplantation by Edmonton protocol has shown that the islets suffer from low 

retention and viability after transplantation [15]. As multiple donors are needed for 

providing islets for one patient, this further limits the procedure. There are other obstacles 

to successful microencapsulated islet transplantation such as deficient nutrient diffusion, 

local fibrosis and issues with biocompatibility [16, 17]. All these factors indicate the need 

for achieving a large pool of functional beta cells and providing a physiological 

environment for these cells in vitro, which can be used for therapeutic intervention for 

patients with diabetes. 

To better understand the pathophysiology of diabetes, Type 1 and 2 diabetes are 

reviewed in Section 1.1.1. The physiology of pancreatic islet cells is summarized in 

Section 1.1.2. Recent efforts in deriving stem cell-derived pancreatic islet cells are 
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described in Section 1.1.3. Furthermore, section 1.1.4 describes the past and current 

efforts in the field of pancreatic tissue engineering. The several interactions that occur 

between the beta cells and endothelial cells during development have been described in 

Section 1.1.5.  

1.1.1 Diabetes 

The term diabetes mellitus describes a metabolic disorder characterized by chronic 

hyperglycemia with disturbances of carbohydrate, fat and protein metabolism resulting 

from defects in insulin secretion, insulin action, or both. The effects include long term 

damage, dysfunction and failure of various organs [18]. There are several different types 

of diabetes, among which diabetes Type 1 and Type 2 are the most common.  

Type 1 diabetes is classified as Type 1A and Type 1B. Type 1A diabetes is caused 

by autoimmune destruction of the beta cells of the pancreas [19]. The slowly progressive 

form of diabetes type 1A generally occurs in adults and is sometimes referred to as latent 

autoimmune diabetes in adults (LADA). Islet cell autoantibodies, and autoantibodies to 

insulin, and glutamic acid decarboxylase (GAD65) are present in almost 85–90% of 

patients with Type 1 diabetes mellitus [20]. It has been shown that genetic background, 

ethnicity and environmental factors play a role in the disease occurrence [21]. Type 1B, 

also known as the Idiopathic Type 1 diabetes is characterized by the absence of an 

autoimmune disorder and diabetes related antibodies [22, 23]. It is known to have a 

severe and sudden onset and is characterized by high serum pancreatic enzyme 

concentrations [23]. It has been found that individuals of African and Asian origin are 

more prone to getting affected by this disease [24]. 
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The current treatment options for patients with Type 1 diabetes include pancreas 

transplantation and islet transplantation. Current limitation with the transplantation option 

is the shortage of healthy donor organ/tissue. Typically more than one donor organ in 

needed for each patient. This significantly increases the need for healthy donor tissue for 

such islet transplant options. Moreover, these patients require continuous 

immunosuppression. The immunosuppression is not only needed for preventing graft 

rejection, but also to prevent the recurring autoimmune attack on the islets.  

 Another limitation is the low survival of transplanted islets.  While Edmonton 

protocol showed unprecedented success as 17 consecutive patients became insulin 

independent after the treatment [15], only 10% of them maintained the insulin 

dependence after 5 years [25]. Moreover, it has been reported that approximately 60% of 

pancreatic islets are destroyed due to instant blood-mediated inflammatory reaction after 

intraportal transplantation through a catheter [17]. This reaction leads to the disruption of 

islets due to the activation of complement and coagulation systems [26, 27]. Further, the 

devascularization caused during the isolation, as well as the implantation of the islets into 

low oxygen tension within the liver, directly damages the islet cells [16]. The activation 

of innate immune system by the hypoxia environment and the release of inflammatory 

cytokines, such as tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), and interleukin-

1 (IL-1) also leads to damage to the islet graft [28]. 

 Type 2 diabetes, also known as non-insulin-dependent diabetes, or adult-onset 

diabetes is a term used for individuals who have relative, rather than absolute, insulin 

deficiency. Insulin resistance is often observed in patients with diabetes Type 2 [29, 30]. 

As the hyperglycemia is not severe enough to induce symptoms, diabetes Type 2 can go 
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unnoticed for a long time [31, 32]. Nevertheless, this increases the risk for developing 

macrovascular and microvascular complications [31, 32]. With the advent of science and 

identification of specific pathogenetic processes and genetic defects that cause diabetes, it 

is likely that the number of people in this category will decrease in the future [18].  

Weight reduction, increased physical activity, and pharmacological treatment of 

hyperglycemia have been shown to improve insulin resistance [33, 34]. The risk of 

developing Type 2 diabetes increases with age, obesity, and lack of physical activity [35, 

36]. It has been shown that women who suffered from gestational diabetes are more 

likely to develop diabetes Type 2. Individuals suffering with hypertension and 

dyslipidemia are also at increased risk for developing diabetes type 2 [35-38]. Familial 

and genetic disposition play an important role [37-39]. However, the genetics of this form 

of diabetes are complex and not clearly defined. 

Most patients with diabetes type 2 are dependent on insulin injections to maintain 

a normal blood glucose level. Although availability of insulin improves the symptoms of 

the patient, administration of insulin is not a treatment for diabetes. Lifestyle change, 

healthy eating habits, exercise, weight loss and medications such as Metformin are the 

recommended treatment options [40]. Recently, increasing evidence has demonstrated 

that islet and cell transplantation, which has only been applied to patients with Type I 

diabetes, is also effective in patients with Type 2 diabetes [41]. 
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1.1.2 Pancreas and Pancreatic Cells 

 

Figure 1.1 Anatomical Position of the Pancreas. The pancreas is shown in relation to the 
liver, stomach, spleen and the duodenum. Adapted from Moses et al. 
Source: [42]. 
 
 
 

The pancreas is a narrow, 6-inch long gland that lies posterior and inferior to the 

stomach on the left side of the abdominal cavity [43]. Figure 1.1 shows the anatomical 

position of the pancreas in relation to the surrounding organs such as stomach, liver and 

the spleen. For descriptive purposes, it is divided into a head, neck, body and tail [6]. The 

pancreas is a highly vascularized organ. There are numerous arteries that supply the 

pancreas with freshly oxygenated blood as illustrated in Figure 1.2. The pancreas is 

vascularized by the superior and inferior pancreatico-duodenal arteries, which form an 

anastomosis between the coeliac and superior mesenteric arteries, and by numerous short 

branches from the splenic artery.  
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The pancreas is the largest of the digestive glands and performs a range of vital 

exocrine and endocrine functions. The pancreas macroscopically is finely lobulated and is 

contained within a delicate fibrous capsule. These lobules are made up of alveoli of 

serous secretory cells, which drain via their ductules into the principal ducts. The islets of 

Langerhans are located between the alveoli and most of them are located in the pancreatic 

tail. The islets of Langerhans taken together form ~1% of the pancreas [44] and studies 

using microspheres have shown that they receive 10% of the total pancreatic blood flow 

[45]. In most rodents, β cells compose the core of the islets and the non beta cells, 

including α, δ and pancreatic polypeptide (PP) cells, form the mantle region [46-50]. 

However, in the human islets not only are the β cells lower in number compared to 

rodents [51-53], they are dispersed throughout the islets [51, 54].  

It drains to nodes lying along the upper border of the gland and in
the groove between the pancreatic head and the duodenum to

reach nodes at the roots of the coeliac and superior mesenteric
arteries.

Structure
The pancreas macroscopically is finely lobulated and is contained
within a delicate fibrous capsule. These lobules are made up of
alveoli of serous secretory cells, which drain via their ductules into

Figure 3 Variations in the ductal anatomy of the pancreas. (a) Normal
(50%). (b) Absence of communication between normally sited accessory
duct and main ducts (10%). (c) Persistence of complete ventral and dorsal
ducts with separate drainage (5%). (b) and (c) are both forms of ‘pancreas
divisum’. (d) Absence of accessory duct (20%). (e) Conjoined drainage of
persistent ventral and dorsal ducts (<5%).
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Figure 2 Arterial supply of the pancreas.
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Source: [6]. 
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Pancreatic beta cells play an important role in the maintenance of glucose 

homeostasis in the body. This begins with the entry of glucose in the beta cells via the 

GLUT2 receptor [55]. Glucose is then phosphorylated to glucose-6-phosphate by 

glucokinase, which is also the main glucose sensor in the beta cell [56, 57]. Elevation in 

the ATP/ADP ratio induces closure of ATP-sensitive potassium channels on the cell 

surface leading to cell membrane depolarization [58]. This causes the voltage gated Ca2+ 

channels to open and facilitates the influx of Ca2+ inside the beta cell. A rise in free 

Ca2+ levels in the cytoplasm trigger the exocytosis of insulin [59]. The primary action of 

insulin, which is secreted by the beta cells, is to facilitate glucose uptake. This is done 

primarily in three different ways. Initially, insulin signals the cells of insulin-sensitive 

peripheral tissues, primarily skeletal muscle, to increase their uptake of glucose [60]. 

Secondly, insulin acts on the liver to promote glycogenesis. Finally, insulin 

simultaneously inhibits glucagon secretion from pancreatic α-cells, thus signaling the 

liver to stop producing glucose via glycogenolysis and gluconeogenesis [61]. Other 

actions of insulin include the stimulation of fat synthesis, promotion of triglyceride 

storage in fat cells, promotion of protein synthesis in the liver and muscle, and 

proliferation of cell growth [62].  

Amylin is a neuroendocrine hormone also secreted by beta cells in response to 

nutrient stimuli [63-65]. Amylin complements the effects of insulin on circulating 

glucose concentrations via two main mechanisms. Amylin suppresses glucagon secretion 

after a meal [66], thereby decreasing glucagon-stimulated hepatic glucose output 

following nutrient ingestion. This suppression of glucagon secretion is mediated via 

efferent vagal signals. Importantly, amylin does not suppress glucagon secretion during 
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insulin-induced hypoglycemia [67, 68]. Amylin also slows the rate of gastric emptying 

and thus, the rate at which nutrients are delivered from the stomach to the small intestine 

for absorption [69]. 

Glucagon is a key catabolic hormone secreted from the alpha cells in the islets. 

Some studies have described diabetes as a bihormonal disease resulting from inadequate 

insulin as well as excessive glucagon [70]. Glucagon regulates hepatic glucose 

production and maintains basal blood glucose concentrations within a normal range 

during the fasting state. When the level of glucose in plasma falls below the normal 

range, glucagon secretion increases, resulting in hepatic glucose production and return of 

plasma glucose to the normal range [71, 72]. This endogenous source of glucose is not 

needed during and immediately following a meal, and glucagon secretion is suppressed. 

1.1.3 Stem Cell Derived Pancreatic Cells 

It has been shown that embryonic stem cells from both mouse [73-75] and human [73, 

76-82] can be differentiated into pancreatic islet cells. Soria et al. first described the 

derivation of insulin producing cells from mouse embryonic (mES) cells [83], while 

Assady et al. demonstrated  human embryonic stem (hES) cell derived insulin producing 

cells for the first time [76]. Other studies have reported the effects of chemical factors 

affecting the efficiency of differentiation. Some of these protocols used a serum free 

ITSFn (Insulin, Transferrin, Selenium and Fibronectin) medium and basic fibroblast 

growth factor (bFGF) treatments [84], while others involved treatment with PI3 kinase 

inhibitors [85]. However, it was later shown that this protocol might trigger apoptotic 

pathways of the cells and promote neuronal differentiation [77, 86]. Cells derived from 

these protocols did not show a controlled insulin release or insulin positive secretory 
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granules [77, 86, 87], indicating that they are immature and not fully functional under in 

vitro culture conditions [5]. The cells produce insulin but are not able to upregulate their 

insulin response when exposed to high glucose conditions. Upon transplantation of stem 

cell derived IPCs to mice, they were able to transiently correct the glucose levels but the 

effect faded in time [84, 85, 88]. This may be a result of cell death or de-differentiation 

following transplantation. To increase the yield of endodermal cells, selection of nestin 

positive cells has been used for both mES cells [79, 84-87, 89-92] and hES cells [87, 91, 

93]. Teratoma formation is another drawback of this strategy, which makes it impractical 

to be used as a clinical therapy [74, 85, 88]. 

Another approach is to use the knowledge derived from pancreatic development 

to develop strategies for ESC differentiation into insulin producing cells. A five-stage 

protocol that mimics pancreatic organogenesis and comprises the sequential phases of 

inducing a definitive endoderm, primitive gut tube, posterior foregut, pancreatic 

endoderm and cells that express endocrine hormones, was successfully used to 

differentiate hES cells to IPCs [94]. After two weeks of differentiation, endocrine 

hormone expression was noticed. The drawback to this approach was that most of the 

cells co-expressed more than one hormone indicating that the cells produced were not 

fully mature. Further, the yield of insulin producing cells was limited to ~7% and the C-

peptide release in response to a glucose challenge was marginal [94]. A similar multi 

stage protocol was also developed using mES cells [84]. Two signaling pathways, the 

Wnt and transforming growth factor TGF-β are crucial to induce formation of the 

definitive endoderm. Previous studies have shown that differentiation of human ESCs 

into definitive endoderm can be achieved via treatment with activin-A and Wnt3a and 
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can be confirmed by expression of endodermal markers such as Sox17, FoxA2, Gata4, 

Cxcr4, and Cerberus [94, 95]. Nodal, CHIR99021, IDE1 and IDE2 are molecules that 

have been shown to induce development of the definitive endoderm in mouse [96, 97] 

and human cells (19). Also, retinoic acid (RA) is a strong teratogen and can induce ES 

cells into different cell types including neuronal [98], cardiac [99] and smooth muscle 

cell [100] based on time and concentration of exposure.  

Yet another protocol with four stages of differentiation and a timeline of 12 days 

was developed that helped generation of glucose responsive insulin producing cells [95]. 

In brief, during the first stage, human ESCs were treated with activin-A and Wnt3a, 

followed by activin-A treatment. In the second stage, cyclopamine treatment was 

eliminated and keratinocyte growth factor was substituted for FGF10. In the next stage, 

differentiating cells are treated with B27 (a proprietary serum free supplement by Life 

Technologies), KAAD-cyclopamine, all-trans retinoic acid and Noggin instead of 

Fibroblast growth factor (FGF). In the fourth stage (pancreatic endoderm formation), 

cells were cultured in the absence of all factors except B27. Finally, the pancreatic 

endoderm was transplanted into immunodeficient mice for an in vivo maturation step.  

Although previous studies have focused on inducing the expression of PDX1, 

which is a pancreatic progenitor marker by RA, the generation of insulin producing cells 

was not increased [10] using this approach in mES cells. Some studies have also used a 

combination of RA with activin A for mES cells, which has also been shown to lead to 

both pancreatic and neuronal population [101]. Another strategy was to use conditioned 

medium from embryonic pancreatic buds [102], but the variable composition of secreted 

growth factors can have an impact on the differentiation process from mES cells. These 
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challenges suggest that deriving a high yield of functional insulin producing cells from 

mouse embryonic stem cells is a challenging process and requires a robust approach. Low 

cell yield, low insulin secretion and lack of glucose responsiveness are the major 

challenges that need to be overcome. Recently, in a breakthrough study Pagliuca et al., 

demonstrated the derivation of a large amount of functional human pancreatic beta cells 

using ESCs [103]. This protocol is scalable and can be used for large-scale production of 

glucose responsive insulin producing cells. Transplantation of these cells into diabetic 

mice led to ameliorated hyperglycemia. However, more studies will need to replicate the 

results before they can be used as a therapy.  

Mesenchymal stem cells (MSCs) derived from human bone marrow have also 

been shown to differentiate into insulin producing cells (IPCs) by induced expression of 

PDX1 [104]. These cells were glucose responsive and were able to reduce hyperglycemia 

upon transplantation, but only half of the differentiated cells expressed insulin, while 

glucagon, somatostatin and ghrelin was expressed by all the differentiated cells [104]. 

Another study used adipose tissue derived MSCs to produce IPCs [105]. Upon induction 

into a pancreatic endocrine phenotype, the cells expressed transcription factors important 

for pancreatic development such as Isl-1, Ipf-1, and Ngn3.  

1.1.4 Pancreatic Tissue Engineering 

In the past, perifusion setups have been used for in vitro culture of islets prior to 

transplantation. The term ‘perifusion’ is used to distinguish the design that involves the 

flow of culture medium around the islets in a continuous-flow chamber, from the term 

‘perfusion’ which involves flow of medium through an intact tissue [106]. In perifusion 

studies, freshly isolated islets are freely suspended in a column. This column is typically 
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under 95 % O2 and 5% CO2 exposure at 37 °C. Krebs ringer bicarbonate buffer with 

different glucose concentrations is applied to stimulate insulin release from the islets. The 

outflow of the column is collected and used for assays or saved for future use. Such 

assays are typically done over short time intervals ranging from a few minutes to a few 

hours. 

Long term culture of islets in 2D condition have shown that endocrine cells 

transdifferentiate into exocrine cells and undifferentiated cells [107]. Also, 2D tissue 

culture surfaces do not provide the cell-matrix interactions that are present in vivo. 

Perifusion methods were developed to improve survivability and function of islets after 

isolation [108]. In perifusion studies, freshly isolated islets are freely suspended in a 

column that is typically under 95 % O2 and 5% CO2 exposure at 37 °C. These systems 

allow for rapid testing of the glucose sensitivity of the islets prior to transplantation. 

 Past studies have shown that islets or individual beta cells have improved 

survival and function when cultured on ECM-derived substrates, both cell-secreted 

matrices [109-115], and individual purified ECM proteins [113, 116-119]. Various ECM 

components have been tested to improve the islet survival and function in in vitro culture. 

It has been shown that matrix secreted by bovine corneal endothelial cells improved islet 

survival [120], insulin secretion [121] and induced adult β-cell proliferation [109]. 

Studies of rat β-cells cultured on matrix produced using a rat bladder carcinoma line 

(804G) revealed that the integrin α6β1 interacted with laminin in the 804G-secreted 

matrix and influenced β-cell function and insulin secretion [122, 123]. Similar to studies 

with cell-derived matrices, culture experiments with purified individual ECM proteins 

resulted in better islet survival and function. Collagen type IV [118] and laminin [113], 
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both components of the basement membrane, contributed to greater insulin release. Islets 

cultured on collagen type I–coated surfaces and those treated with soluble fibronectin 

exhibited less apoptosis and greater insulin secretion [119]. Vitronectin influenced β-cell 

adhesion and migration via αv integrin interactions [117]. In most of these studies islet–

matrix interactions have been studied with insulin-producing cells cultured on 2D ECM-

coated tissue culture surfaces. However, there is a growing interest in using ECM 

components, such as collagens and Matrigel for forming three-dimensional (3D) gels, 

allowing for the entrapment of islets or individual β-cells and the study of cell–matrix 

interactions in 3D culture conditions. 

Previous studies have demonstrated the encapsulation of xenobiotic islets in 

semipermeable membranes prior to transplantation prevents the immune rejection by the 

host animal while allowing insulin secretion out of the membrane and maintenance of 

normal blood glucose levels [124-128]. The major obstacles to successful 

microencapsulated islet transplantation are deficient nutrient diffusion, local fibrosis, and 

the use of inadequate materials for capsules, thus compromising biocompatibility. 

Further, islets to be implanted should be homogenously dispersed inside the capsules to 

facilitate maximum oxygen and nutrient diffusion. It is important that the membrane is 

permeable to insulin and low molecular weight components such as oxygen, glucose, 

electrolytes and other nutrients and impermeable to cellular components of the immune 

system. 

Recently, three-dimensional islet culture experiments have been demonstrated by 

a number of groups.  Brendel et al., showed that human islets embedded in agarose gel 

compared with islets in suspension culture were able to consistently induce 
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normoglycemia in nude mice even after 14 days in in vitro culture [129]. Daoud et al., 

investigated the effects of human islet culture within various three-dimensional 

environments including collagen I gel and collagen I gel supplemented with ECM 

components fibronectin and collagen IV and found that the incorporation of ECM 

components within the three-dimensional support significantly improved insulin release 

profile and gene expression when compared to suspension culture [130]. 

Moreover, it was also shown that the entrapment of freshly harvested islets in a 

3D collagen matrix helped maintain the islet integrity in culture as the contraction of 

collagen fibrils counteracted the dispersion of islets [131]. It was observed that the 

entrapped islets maintained satisfactory morphology, viability, and capability of glucose-

dependent insulin secretion for over two weeks [131]. A study by Wang et al., reported 

the development of a 3D ESC pancreatic differentiation system to derive insulin 

producing glucose sensitive cells. The study showed that about 50-60% of the 

differentiated cells produce insulin. However, teratoma formation upon transplantation 

was not studied.  

Various microfluidic systems were explored in efforts to improve the survival of 

islets in in vitro culture by perfusing islets and doing rapid quality assessment following 

donor isolation [132]. Culturing mouse islets in a microfluidic device resulted in twice 

the endothelial cell density inside the islets and connected length of capillaries compared 

to classically cultured islets [133]. Microfluidic devices have also been used to perfuse 

islets and doing rapid quality assessment following donor isolation [132]. Microfluidic 

devices can serve as unique platforms to optimize islet culture by introducing 

intercellular flow to overcome the restricted diffusion of media components. Microfluidic 
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devices offer ease of operation, high customization abilities and the capability to do 

single islet analysis [134-136]. At the same time, they also suffer from limitations such as 

islet damage due to potential shear and mechanical stresses [134-136], complexity of 

microfluidic devices [134-138], low throughput [137-140] and the difficulty of 

monitoring/imaging the islets real time [132, 137, 138, 141]. 

1.1.5 Interaction of Pancreatic Cells and Vascular Cells 

Islets are highly vascularized structures [142]. Although, islets form only 1-2% of the 

pancreatic mass, they receive approximately 10% of the blood supply [143]. The blood 

perfusion is meticulously regulated, predominantly [144] by a complex interplay of 

locally produced factors, gastrointestinal hormones and the nervous system, to meet the 

needs for hormone secretion imposed on the pancreatic tissue [143]. This not only allows 

for adequate nutrient supply and glucose sensing, but also facilitates adequate and rapid 

dispersal of islet hormones secreted to the blood stream.  

It has been shown that various vascular mediated signals are important during 

pancreatic development. In vitro tissue interaction studies have shown that the dorsal 

aorta, which is near the dorsal pancreatic endoderm, induces the budding of the dorsal 

pancreas and expression of pancreatic transcription factors such as the pancreatic and 

duodenal homeobox 1 (Pdx1) transcription factor and pancreas transcription factor 1a 

(PTF1a), as well as insulin and glucagon [145, 146], as shown in Figure 1.3. The aorta 

also induces the dorsal pancreatic mesenchyme, which signals towards the dorsal 

pancreatic bud via fibroblast growth factor 10 (FGF10) [147]. An important blood-

derived factor is sphingosine-1- phosphate (S1P), which binds to G-protein-coupled S1P 

receptors on mesenchymal cells and induces their proliferation. In turn, these 
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mesenchymal cells stimulate growth and budding of the dorsal pancreatic endoderm 

[148]. In summary, there is convincing evidence of the inductive potential of vascular 

tissue during pancreatic development in mice that might also apply to human pancreatic 

development [1].  

Differentiating endocrine cells start to secrete vascular endothelial growth factor-

A (VEGF-A) to attract endothelial cells and induce them to form an islet vascular bed 

[149]. 



 18 

 

 
 
 
It has been shown that VEGF-A is essential not only for development of the islet 

microvasculature, but also for the formation of endothelial fenestration, which might 

facilitate effective glucose sensing and interstitial flow in the adult islet [149-152]. 

However, VEGF-A deficient mouse islets do not completely lack blood vessels, so other 

factors might also contribute, to some extent, to endothelial cell attraction and vessel 

Figure 2. Interactions between EC and endocrine cells throughout life. Interactions between blood vessels and endocrine cells start early in the embryo. (a) Aortic EC (red)
induce pancreatic cell fate in the foregut endoderm (orange cells) marked by the expression of Pdx1 and Ptf1a. Mutual signaling between EC and developing endocrine cells
occurs thereafter. EC (red) are attracted (wiggly arrow) by endocrine secretion of VEGF-A (and probably Ang-1). In turn, the EC secrete basement membrane proteins such
as collagen-IV and laminins, which are essential for endocrine maturation (a-cells are denoted as blue and b-cells as green). During this process, CTGF is secreted by EC and
might play a role in b-cell lineage allocation. As the islet expands during fetal and postnatal life (and during normal islet maintenance), a fine-tuned balance between islet
mass and vessel density is maintained (red lines). Key players are VEGF-A secreted by b-cells and HGF produced by EC, which is trophic for endocrine cells. Moreover, islet
function is supported by EC-derived extracellular matrix molecules, such as laminins and collagen-IV. According to our hypothesis, capillaries grow under conditions of islet
growth such as pregnancy and obesity. (b) Under pathological conditions, capillaries might fail to expand or deteriorate owing to vascular inflammation, thus leading to b-
cell dysfunction and development of T2DM. Signaling molecules from blood vessels and endocrine cells are marked in red and blue, respectively.

Table 1. Molecular interactions between b-cells and blood vessels
Secreted molecule Function Receptor or target References

b-Cells
VEGF-A VEGF-A165 dimer secretion by b-cells in embryo and adult and

EC attraction and maintenance
VEGFR2 on endothelial cells [18–20]

Ang-1 Angiogenic factor Tie-2 [18]
Tsp-1 Angiostatic factor; induction of apoptosis in EC and regulation

of blood vessel density
CD36 [34]

Vasculature
Collagen IV Potentiation of insulin secretion Integrins [40]
Laminins Induction of b-cell differentiation and normal insulin production,

secretion and b-cell proliferation
Integrins, Lutheran [24,25,39]

CTGF Potential role in endocrine lineage specification; expression
to a lesser extent in b-cells

Interaction with integrins [26)

HGF Support of b-cell proliferation in embryonic and postnatal pancreas c-Met [28]

Review Trends in Endocrinology and Metabolism Vol.21 No.8

460

Figure 1.3 Interactions Between Endothelial Cells and Endocrine Cells Throughout 
Life. Adopted from Eberhard et al.  
Source: [1].  
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formation [150]. Angiopoietin-1 (Ang-1), another angiogenic growth factor expressed in 

beta cells [149], promotes the survival and integrity of blood vessels [153].  

Apart from enabling blood flow in islets, endothelial cells are the source of many 

extracellular matrix (ECM) proteins that support beta cell differentiation and proliferation 

[154, 155]. It has also been shown that a novel EC-derived factor, connective tissue 

growth factor (CTGF), is involved in endocrine cell lineage allocation and beta cell 

proliferation [156]. CTGF is highly expressed in the islet vasculature, albeit at lower 

levels in future β cells in the embryonic pancreas. More α cells were found in islets of 

CTGF-deficient mice, so CTGF might be required for directing endocrine precursor cells 

towards the beta cell lineage. CTGF also interacts with several growth factor signaling 

pathways, such as the TGF beta (Transforming growth factor beta) and Wnt pathways, 

but its specific receptor in the pancreas has not been identified yet [156]. The various 

molecular interactions between the endothelial cells and beta cells are tabulated in Table 

1.1. 

The beta cell and endothelial cell interaction continues even in adulthood.  In the 

healthy individual, the beta cell adapts to higher insulin demands, such as during 

postnatal development, increased body weight (in extreme to obesity) or pregnancy, by 

upregulation of insulin production and growth [157]. The growing islet requires oxygen 

and nutrients, as well as paracrine signals from the blood vessels, so expansion of the 

microvasculature is needed. This expanding microvasculature results from mutual signals 

between blood vessels and beta cells. VEGF-A signaling is also essential for maintaining 

the vascular bed in adult islets, because systemic administration of VEGF receptor 

antagonists quickly and significantly reduced the islet vascular density [158]. 
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Apart from its role during embryonic pancreas development, VEGF-A also seems 

to play a role in islets after birth. More specifically, VEGF-A has been suggested to 

stimulate endothelial cell growth in the neonatal pancreas [159], because low perinatal 

levels of VEGF-A were associated with reduced vascular density, early insulin secretory 

defects and a decrease in beta cell mass in intrauterine growth restricted rats [160]. In 

addition, increased levels of VEGF-A were observed during islet growth in pregnant rats 

and it was shown that EC proliferation precedes beta cell division [159]. Thus, islet cell 

mass expansion either during body growth from a neonate to an adult or during 

pregnancy are accompanied by increased VEGF-A expression to ensure a sufficient 

density of capillaries within islets. 

 

 

 

 

 

 

Source: [1] 
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induce pancreatic cell fate in the foregut endoderm (orange cells) marked by the expression of Pdx1 and Ptf1a. Mutual signaling between EC and developing endocrine cells
occurs thereafter. EC (red) are attracted (wiggly arrow) by endocrine secretion of VEGF-A (and probably Ang-1). In turn, the EC secrete basement membrane proteins such
as collagen-IV and laminins, which are essential for endocrine maturation (a-cells are denoted as blue and b-cells as green). During this process, CTGF is secreted by EC and
might play a role in b-cell lineage allocation. As the islet expands during fetal and postnatal life (and during normal islet maintenance), a fine-tuned balance between islet
mass and vessel density is maintained (red lines). Key players are VEGF-A secreted by b-cells and HGF produced by EC, which is trophic for endocrine cells. Moreover, islet
function is supported by EC-derived extracellular matrix molecules, such as laminins and collagen-IV. According to our hypothesis, capillaries grow under conditions of islet
growth such as pregnancy and obesity. (b) Under pathological conditions, capillaries might fail to expand or deteriorate owing to vascular inflammation, thus leading to b-
cell dysfunction and development of T2DM. Signaling molecules from blood vessels and endocrine cells are marked in red and blue, respectively.
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VEGF-A VEGF-A165 dimer secretion by b-cells in embryo and adult and
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VEGFR2 on endothelial cells [18–20]

Ang-1 Angiogenic factor Tie-2 [18]
Tsp-1 Angiostatic factor; induction of apoptosis in EC and regulation

of blood vessel density
CD36 [34]

Vasculature
Collagen IV Potentiation of insulin secretion Integrins [40]
Laminins Induction of b-cell differentiation and normal insulin production,

secretion and b-cell proliferation
Integrins, Lutheran [24,25,39]

CTGF Potential role in endocrine lineage specification; expression
to a lesser extent in b-cells

Interaction with integrins [26)

HGF Support of b-cell proliferation in embryonic and postnatal pancreas c-Met [28]
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Furthermore, studies have shown evidence that isolated islets in co-culture with 

endothelial cells have shown better survival, integration and functionality [159, 161-164]. 

Although the participation of ECs in β-cell differentiation and function has been well 

studied in vivo [1, 145, 154, 165, 166], the influence of these cells in the specific 

differentiation of ESCs into insulin-producing β cells as well as the factors involved have 

not been fully explored in vitro. A recent paper by Adame et al., showed that co-culturing 

endothelial cells with differentiating embryoid bodies resulted in an increase in the 

expression of the pancreatic markers PDX-1, Ngn3, Nkx6.1, Pro-insulin, GLUT-2 and 

Ptf1a [167]. These studies suggest that endothelial cell mediated factors might play a very 

critical role in the differentiation of stem cells into functional beta cells.  

 

1.2 Significance 

This thesis dissertation describes research in the field of pancreatic tissue engineering 

with the goal of making fundamental advances in the development of functional 

pancreatic tissues for basic research as well as for long-term clinical application to treat 

patients with diabetes.  

One of the main challenges in pancreatic tissue engineering is obtaining a large 

number of functional insulin producing cells. Past studies have used various stem cell 

sources and protocols to derive insulin-producing cells using pluoripotent stem cells. 

Despite the considerable progress in the field of stem cells, the yield of insulin producing 

cells using stem cells remains low at about 0.8-7.3% [94, 168]. Furthermore, cells are still 

immature as they co-express more than one endocrine hormones and are not fully 

responsive to glucose.  
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Therefore, the overall objective of this dissertation was to establish a three-

dimensional (3D) engineered tissue system to provide a proper culture condition for stem 

cell-derived beta cells to become fully functional in vitro. The effects of physical cues 

including application of flow to 3D tissues were examined. In addition, the effects of 

cellular factors on stem cell-derived islet cell function were examined by co-culturing 

with endothelial cells. The overall objective was achieved by the following specific aims: 

Specific Aim 1) To improve the survival and functionality of mES derived insulin 

producing cells (IPCs).  

Working Hypothesis: Encapsulation of IPCs in a 3D ECM environment will improve 

their survival and glucose responsiveness. 

a) Characterization of mES cell derived IPCs in a 2D system. IPCs will be derived 
from mES cells and their phenotype and function will be examined using 
techniques such as RT-PCR, immunohistochemistry, western blotting, and insulin 
ELISA. Specifically, the expression of genes such as PDX1, Insulin, Pax4, 
Nkx6.1, GLUT-2, EphrinA5 and GAPDH will be examined. 
 
 

b) Characterization of mES cell derived IPCs in 3D system. The optimal density of 
IPCs to be encapsulated in an ECM based gel will be determined based on 
previous studies by other groups using islet cells. IPCs will be encapsulated in a 
collagen hydrogel matrix. The IPC performance in the 3D systems will be 
measured and compared to that of the 2D system based on cell survival and 
glucose stimulated insulin release measured by insulin ELISA. The expression of 
genes such as PDX1, Proinsulin, Pax4, Nkx6.1, EphrinA5, GLUT-2 and GAPDH 
will be examined by using RT-PCR. 

 
c) Effects of flow on IPC function and survival in a 3D gel system. The 3D gel 

system will be subjected to perfusion flow using an existing flow bioreactor 
system.  The function of IPC in the 3D system will be assessed and compared in 
static vs. flow conditions through protein and gene analysis. 
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Specific Aim 2) To characterize the endothelial cell population derived from mES 

cell differentiation into IPCs 

Working Hypothesis: mESC-ECs derived from IPC differentiation protocol express islet 

endothelial cell specific markers. 

a) Characterization of mES -EC phenotype and function in a 2D culture. ECs will be 
characterized in detail for expression of classic EC markers such as PECAM-1, 
Thrombomodulin, ICAM-1, EphB2 and eNOS as well as islet endothelial cell 
specific markers such as Nephrin and Anti alpha trypsin-1 (AAT).  

 
b) Characterization of mESC-EC phenotype and function in a 3D engineered tissue. 

3D hydrogel tissues will be formed using mESC-ECs and collagen type I (derived 
from rat tail). They will be analyzed for formation of tubular networks, lumens 
and deposition of ECM proteins such as laminin, collagen type IV and 
fibronectin. 

 
c) Effects of flow on 3D vascularized tissues. mESC-EC hydrogels will be subjected 

to flow using an existing perfusion bioreactor system. A flow rate of 0.5 ml /min 
which corresponds to a shear stress of approximately 0.71 dynes/cm2 will be used. 
This value falls in the shear stress range that is estimated to be present in the 
circulation [169]. These tissues will be analyzed for formation of tubular networks 
and lumens. 

 

Specific Aim 3) To develop a 3D vascularized insulin producing tissue. 

Working Hypothesis: IPCs co-cultured with ECs will maintain higher viability, glucose 

responsiveness and will have a higher expression of islet specific markers compared to 

that of IPCs mono-cultured in collagen. 

a) To develop a co-cultured 3D tissue with mES cell-derived insulin producing cells 
and mESC-ECs. The cell and matrix densities will be optimized based on the 
literature and experimental trials.  

 
 

b) To characterize the effects of flow on a co-cultured 3D tissue on mES cell-
derived insulin-producing cell maturation and function. An existing perfusion 
bioreactor system will be used for the application of flow to the 3D co-culture 
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tissue construct. Flow parameters will be optimized based on the literature and 
experimental trials. A static co-culture will be used as a control.  

 

c) To study the expression profile of EphrinA5 in mES derived insulin producing 
cells. The expression profile of EphrinA5 will be studied and compared under 
flow and static co-culture condition and its co-relation to insulin secretion and 
glucose responsiveness will be studied. 
 

Derivation and characterization of IPCS from mES cells are described in Chapter 

2. Extended from the studies in chapter 2, the techniques were devised to embed the IPCs 

in collagen hydrogels. Characterization of the survivability and functionality of the IPCs 

in 3D collagen tissue under static and flow culture condition is described in Chapter 3. 

The co-culture of mESC-IPCs and mESC-ECs is also described in Chapter 3. The 

derivation, isolation and characterization of islet specific endothelial cells from mES cells 

in 2D and 3D conditions are described in Chapter 4. A summary of the entire work and 

future directions are discussed in Chapter 5. This is the first demonstration of islet 

specific endothelial cells derived from mouse embryonic stem cell, which is in press for 

Cell Transplantation Journal.  An appendix section includes details of all the protocols, 

medium recipes and methods used. 
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CHAPTER 2 

DIFFERENTIATION OF MOUSE EMBRYONIC STEM CELLS INTO 
PANCREATIC BETA CELLS 

 
 

2.1 Introduction 

Diabetes Mellitus is a chronic progressive metabolic disorder. Currently, pancreas or islet 

transplantation is considered the best therapeutic option for Type I diabetes patients, 

while most Type 2 diabetes patients depend on life long medication for maintaining 

glucose homeostasis. However, several limitations to these treatments include side effects 

of immune suppression drugs used during transplantation, immune rejection and the 

dependency on medication. Further, there is a shortage of healthy donor organs, which 

led scientists to investigate alternative methods to obtain suitable cell source for 

transplantation. Recently, a number of studies have shown the possibility of deriving 

insulin-producing cells using embryonic and adult stem cell populations as summarized 

in Table 2.1 [75-77, 81, 170-172].  

 Soria et al., demonstrated the first derivation of insulin producing cells from 

mouse embryonic stem (mES) cells [83]. This study used a cell trapping system and 

genetic approaches to create an insulin secreting cell clone. Although the cells were able 

to reverse hyperglycemia upon implantation in mice, the hyperglycemia was reversed in 

12 weeks suggesting that the cells either stopped making insulin or dedifferentiated. A 

study by Hori et al. showed that the use of growth inhibitors such as LY294002 and 

Wortmannin promoted differentiation of mES cells into IPCs [85]. They used a simple 

protocol in contrast to the complex genetic approaches employed previously, and the 

cells maintained their insulin producing  
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status after engraftment in mice. However, widespread teratoma formation was observed 

in the treated mice within three weeks of implantation.  

 Lumelsky et al. demonstrated derivation of insulin producing cells (IPCs) from a 

highly enriched nestin positive cell population [84]. It has been shown that nestin positive 

cells give rise to both neuronal cells [173] and beta cells [174]. This method used a serum 

free  medium with insulin, transferrin, selenium and fibronectin (ITSFn), which promotes 

cell death of most types of cells excluding the nestin positive cells, thus enriching their 

population [175].  The study resulted in IPCs that were glucose responsive and provided 

the first evidence of the IPCs self-assembling into islet like structures in vivo.  But the 

IPCs transplanted subcutaneously in the shoulder of diabetic mice were not able to 

correct hyperglycemia consistently, as the insulin produced by these cells was about 50 

times lower per cell compared to a native islet cell [84]. Recent evidence suggested that 

these IPCs may not have produced insulin endogenously but had absorbed insulin from 

the culture medium [77, 87]. 

In contrast to a study by Lumeskly et al., Blyszczuk et al. showed that nestin 

selection was not necessary to produce IPCs from mES cells. However, their 

differentiated IPCs showed a partial CK19 expression which is highly expressed in 

pancreatic ductal cells [176, 177] but not in functional islets [178]. The IPCs also 

exhibited relatively low levels of insulin, suggesting that they were immature [172]. In 

addition, upon transplantation of the graft in mice, there was a delay of two weeks before 

the hyperglycemia was reversed; suggesting that further in vivo maturation step was 

necessary for mES derived IPCs [172].  
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Assady et al., demonstrated derivation of IPCs from human embryonic stem 

(hES) cells [76].  The differentiated cells expressed beta cell markers such as glut-1, glut-

2, insulin and glucokinase, but the glucose responsiveness of the cells was not tested. 

D’Amour et al. used a five step protocol that mimicked the in vivo pancreatic 

organogenesis by directing hES cells into sequential developmental stages. These stages 

led the cells to progress from definitive endoderm stage into mature insulin producing 

cells [94]. However, this protocol resulted in cells that co-expressed more than one 

hormone including glucagon, somatostatin and PP. In addition, these cells failed to 

respond to glucose stimulation. To improve the maturation of these cells, Kroon et al., 

transplanted endocrine precursor cells derived from hES cells into mice for further in vivo 

maturation [95]. The mice were able to maintain normal glucose levels after >100 days of 

transplantation. Upon graft extraction, it was found that the hES derived IPCs had insulin 

secretory properties similar to that of engrafted adult human islets [95]. 

Despite all the recent advancements, low differentiation efficiency still remains a 

challenge. The current yield of IPC differentiated from hES cells is 0.8-7.3% [94, 168]. 

To improve the differentiation efficiency, studies have explored the effects of growth 

factors such as retinoic acid (RA) and activins. RA is a strong teratogen and shown to 

induce ES cells into different cell types including neuronal [98], cardiac [99] and smooth 

muscle cell [100] depending on the time and concentration of exposure.  A previous 

study reported that the addition of RA did not affect the differentiation efficiency [10]. 

However, when RA was used in combination with activin A, increase in both pancreatic 

and neuronal population from mES cells was observed [73]. Moreover, the use of 

conditioned medium from embryonic pancreatic buds [179], resulted in significant 
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upregulation of certain genes involved in beta cell development. A summary of various 

factors used in IPC differentiation is presented in Table 2.2.  
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Another challenge is to obtain fully functional insulin producing cells. Most 

studies using pluripotent stem cells have reported that the differentiated cells were either 

not glucose responsive [76, 84, 94] or required additional in vivo maturation steps [95, 

180]. Immature cells also typically co-express multiple hormones and are not glucose 

sensitive [94]. On the other hand, mature beta cells are defined by a switch from MafB+ 

MafA− to MafB− MafA+ status in their gene expression [181]. This switch occurs in cells 

that already express Nkx6.1 and is preceded by an increase in Pdx1 expression [94]. It is 

of paramount importance to produce a glucose sensitive IPC in in vitro conditions so that 

the insulin secretion kinetics of these cells can be studied in detail before they are utilized 

for therapeutic transplantation. 

In this study, a previously published protocol [73] was used to derive insulin-

producing cells from mouse embryonic stem cells. This protocol involves formation of 

embryoid bodies (EBs), spontaneous differentiation of EBs into ectodermal, mesodermal 

and endodermal lineages and differentiation into C-peptide and insulin producing cells. 

The differentiation into multilineage progenitors, including endoderm progenitor cells, is 

supported by a basic culture medium, followed by differentiation induction into the 

pancreatic lineage by insulin, nicotinamide and laminin supplemented medium. 

 

2.2 Materials and Methods 

2.2.1 Mouse Embryonic Stem (mES) Cell Culture 

MES cells (a generous gift from Dr. Qyang) were cultured on a layer of mouse 

embryonic fibroblasts (MEF) in high glucose DMEM supplemented with 15% knockout 

serum, 1% L-Glutamine, 1% sodium pyruvate, 1% non essential amino acids and 1% 
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penicillin-streptomycin, β- mercaptoethanol and Leukemia inhibitory factor (LIF). 

Colonies were passaged every 2-3 days onto freshly plated MEF cell layers. Medium was 

exchanged everyday. 

2.2.2. Derivation of Insulin Producing Cells (IPCs) from mES Cells 

MES cells were used to derive IPCs using a previously established protocol [73]. To 

induce differentiation into pancreatic beta cells, mES cells were differentiated by 

formation of embryoid bodies (EB). A cell suspension made with a total of 0.3 million 

cells in 10 ml of differentiation medium #1 (IMDM medium supplemented with 20% 

FBS, 1% L-Glutamine, 1% pencillin-streptomycin and 1-thioglycerol. Refer to Appendix 

A for details) was use for making hanging drops in P100 petri dishes (USA Scientific). A 

total of 8 rows of hanging drops were added in each dish to give 64 EBs/plate. After two 

days of hanging drop culture, the EBs from each dish were collected in a P60 Petri dish 

using differentiation medium #1 and cultured in suspension culture conditions for two 

days. The EBs were then transferred into a 0.1% gelatin coated P60 tissue culture treated 

dish. 4 mls of medium was added and the dishes were moved in the “8” pattern seven 

times for even distribution of EBs in the dish. The dishes were incubated and were not 

disturbed for at least 36 hours to facilitate proper attachment of the EBs to the surface of 

the dish. Medium was exchanged every 2-3 days.  

After 9 days of culture, the cells on the dishes were digested and replated. To 

digest the cells, the medium was first aspirated, and the spread out cells were washed 2X 

with PBS. Then 0.5% trypsin and 0.25% trypsin were added in 1:3 ratio to the cells and 

incubated for 3 min at 37 °C. Trypsin was gently removed and the cells were detached 

using a cell scraper (USA Scientific). 4 mls of differentiation medium #2 (Refer to 
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Appendix A for details) supplemented with 10% FBS was added to each dish containing 

trypsinized cells. The cells were mixed well by pipetting and the resulting cell suspension 

contained single cells and cell aggregates. 428 µl of cell suspension was added to each 

well of a 6 well plate previously coated with 0.01% poly-ornithine & 1 µg/ml laminin. 

Additional 2 ml of medium was added and the plates were incubated for 18 days. The 

dishes were moved vertically and horizontally seven times to distribute the cells evenly 

throughout the wells. The medium was switched to serum free conditions the day after 

digestion. Medium was exchanged every 2-3 days. A schematic of the protocol is shown 

in Fig. 2.1. 

2.2.3 Dithizone Staining 

Dithizone (DTZ) is a zinc chelating agent and has been shown to selectively stain the 

insulin producing cells crimson [182]. DTZ stock solution was prepared by dissolving 50 

mg of dithizone (Sigma) powder in 5mls of DMSO (Sigma). After vortexing, the mixture 

was aliquoted in 200 µl tubes and stored at -20 °C for long term use. For staining the 

cells, 10 µl of DMSO stock solution/ml of medium was used. The solution was filtered 

using a 0.2 µm syringe filter (Nalgene) and placed briefly at -20 °C for 30 seconds.  

The cells were washed with Hanks balanced salt solution (HBSS) 2X prior to the 

addition of DTZ staining solution. Cells were then incubated with DTZ staining solution 

for 15 minutes at 37 °C.  To image the cells, they were washed 3X with HBSS. The DTZ 

positive cell clusters that were stained with crimson color were detected and marked at 

the bottom of the plate.  
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2.2.4 Immunofluorescence Studies 

Cells at Day 33 of differentiation were fixed with 4% p-formaldehyde (PFA) for 2 hours 

at room temperature, washed 3X with PBS and then were either stored at 4 °C till they 

were ready to be used for immunofluorescence or were used directly. Fixed cells were 

first blocked for 1 hour with 10% goat serum (Sigma) in PBS at room temperature. Then 

the primary antibodies were added and incubated overnight at 4 °C. Primary antibodies 

used were polyclonal rabbit anti FoxA2 (Abcam, 1:1000), polyclonal rabbit anti PDX1 

(Abcam, 1:2000), polyclonal mouse anti insulin/Proinsulin (Abcam, 1:1000), polyclonal 

rabbit anti C-peptide (Abcam, 1:1000). After multiple washes with PBS, cells were 

incubated with secondary goat anti-rabbit IgG FITC (Abcam, 1:2000) or secondary goat 

anti-mouse IgG Texas Red (Santa Cruz, 1:200) for 1 hour at room temperature. Cells 

were mounted on a glass slide using a mounting medium with DAPI (Vectastain Lab) for 

imaging. 

2.2.5 Immunohistochemistry Studies 

Cells were fixed with 4% PFA for 2 hours at room temperature, washed 3X with PBS and 

then were either stored at 4 °C till they were ready to be used or were used directly. 

Samples were first boiled for 25 min in antigen retrieval buffer (0.01M citric acid, 

pH=4.4) at 95-100 °C loosely covered in foil. After allowing to cool at 20 min at room 

temperature, cells were blocked for 1 hour with 10% goat serum (Sigma) in PBS at room 

temperature.  Polyclonal mouse anti insulin/Proinsulin (Abcam, 1:1000) was added and 

incubated overnight at 4 °C on a rocker. After multiple washes with PBS, cells were 

incubated with secondary goat anti-mouse IgG HRP (Santa Cruz, 1:200) for 30 min at 

room temperature. Cells were then treated with the Vectastain Elite ABC reagent kit 
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(Vector Labs) and Vector NovaRed substrate solution (Vector Labs) following the 

manufacturers instructions. Cells were washed with DI water for 5 minutes and then 

counterstained with Hematoxylin (Vector labs). The samples were allowed to dry 

overnight and then mounted using a Permount mounting medium (Fisher). Images were 

captured using a color camera mounted on an inverted microscope (Nikon C1Si). 

2.2.6 Glucose Challenge Test 

To perform a glucose challenge test, cells at the end of differentiation i.e., Day 33 were 

treated separately. Cells were washed 2X with sterile warm PBS and were switched to 

insulin free medium so that the insulin uptook from the medium does not contribute to 

the detected insulin levels when performing an ELISA. After 24 hours the medium was 

removed and the cells were washed 2X with warm PBS, and then incubated with Krebs 

Ringer Bicarbonate Hepes buffer  (KRBH, See Appendix for details) supplemented with 

2.5mM glucose for 90 minutes. The supernatant was collected and aliquoted in 200 µl 

tubes and stored at -20 °C.  The cells were then incubated with KRBH buffer 

supplemented with 27.7 mM glucose for another 2 hours.  The supernatant was again 

collected, aliquoted in 200 µl tubes and stored at -20 °C until ready to be analyzed.  

2.2.7 Insulin ELISA 

An ELISA was performed on the samples using the Mouse Insulin ELISA kit (Mercodia) 

as per the manufacturers instructions. The plate was read using an Emax plate reader 

(Molecular devices) at 450 nm. A standard curve was drawn using the absorbance values 

of the calibrators with known insulin concentration and an equation was derived, which 

was used to calculate the concentration of insulin in the samples. A high positive control 
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(Mercodia) was used to verify experimental values. All samples were prepared in 

duplicates.  

2.2.8 IPC Yield Calculation 

In order to calculate the yield of IPC clusters, DTZ staining was performed as described 

in Section 2.3. Once DTZ+ clusters were identified, they were manually isolated using a 

sterile fine bent tip forceps.  Isolated IPC clusters were collected in a 1.5 ml micro 

centrifuge tube filled with FBS. Most IPC clusters were found to be closely associated 

with cell sheets, and these were carefully teased apart using another pair of fine tip 

forceps or scissors. After all the IPCs were collected, FBS was removed and the IPCs 

were washed with PBS 3X to remove traces of serum. IPC clusters were then incubated 

with 0.25% trypsin for 3 min and pipetted multiple times to facilitate the dissociation of 

the clusters into single cells. Cells were suspended in trypan blue solution and the cell 

counting was performed using a hemacytometer. The yield of IPC was calculated as the 

DTZ+ cells/total number of cells. 

2.2.9 RNA Isolation 

Frozen IPC cluster pellet were used for RNA isolation using the RNeasy mini kit 

(Qiagen). Once the pellets were thawed out, RLT buffer supplemented with 10% of 2- 

beta mercaptoethanol was added directly to the cell pellet and vortexed to mix well. The 

lysate was passed 8-10 times through a 20 G needle attached to RNase free syringe 

(Fisher) to homogenize the samples.  The samples were centrifuged at 14,000 rpm for 3 

min in a microcentrifuge (Eppendorf) and the supernatant was transferred to a new 

RNase free tube. One volume of 70% ethanol was added to the lysate and mixed well by 

pipetting. Up to 700 µl of the sample was added to the spin column placed in a 2 ml 
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collection tube and centrifuged at 10,000 rpm for 30 sec. The flow-through was discarded 

and 700 µl of RW1 buffer was added to the spin column and centrifuged at 10,000 rpm 

for 30 sec. The flow through was discarded once again and 500 µl of RPE buffer was 

added to the spin column and centrifuged at 10,000 rpm for 30 sec. The flow-through was 

discarded at the end and the procedure was repeated with centrifugation at 10,000 rpm for 

2 min. The flow through and the collection tube were both discarded and the spin column 

was placed in a fresh collection tube.  The empty spin column was centrifuged at 14,000 

rpm for 1min to remove the final traces of impurities. The collection tube was discarded 

after this step and the spin column was placed in an RNase free 1.5 ml collection tube. 35 

µl of RNase free water was added directly at the center of the spin column in one swift 

stroke. The membrane appeared to become completely wet by this addition of water. The 

cap of the tube was cut off and the spin column was centrifuged at 10,000 rpm for 1 min 

to elute the RNA. The isolated RNA was stored on ice for use within 2 hours or kept at -

80 °C for long term storage. 

2.2.10 RNA Quantification 

RNA quantification was performed using a Nanodrop spectrophotometer (Nanodrop). 

First the instrument was blanked using RNase free water. 1 µl of the RNA sample was 

then placed on the measurement area and the A260/280 ratio was recorded along with the 

concentration in ng/µl. A260/280 is the ratio of absorbance of the RNA sample at 260 nm to 

280 nm. A260/280 value of 1.8-2 is acceptable quality of RNA. A260/280 value of 2 is 

characteristic of pure RNA. 
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2.2.11 Primer Design 

Primers were designed using the OligoperfectTM designer by Life technologies. The 

reference sequence of the species and gene of interest were obtained from RefSeq (NCBI 

reference sequence). All the primers were designed for detection only. The primers with 

Guanine – Cytosine (GC) content of approximately 50% and Tm close to 55 °C were 

selected. Once the primers were selected, the 5’ sequence of the forward and reverse 

primer were added in the Oligoanalyzer software 3.1 (Intergrated DNA technologies). 

Self dimerization and hairpin formation were assessed at the temperature range of interest 

i.e., 50 °C- 60 °C. The primer sequences were then tested using the Primer blast software 

(NCBI) to check homology with other genes/species. Primers were purchased from 

Sigma Aldrich and were diluted to 20 µM concentration using RNase free water and 

stored at -80 °C before use. 

2.2.12 RT PCR Studies 

cDNA synthesis was done using a high capacity cDNA reverse transcription kit (Life 

Technologies). All the kit components were thawed over ice and the cDNA synthesis was 

done as per the manufacturers instructions. The reaction mixture contained purified RNA, 

10X reverse transcription buffer, 25X 100 mM dNTP mix, 10X Reverse transcription 

random primers, multiscribe reverse transcriptase and nuclease free water. The reaction 

conditions were 25 °C for 10 min, 37 °C for 120 min, 85 °C for 5 min and a final hold at 

4 °C. 400 ng of RNA was used per reaction and the cDNA synthesis was performed in a 

T100 thermal cycler (Biorad). The cDNA produced was either stored at 4 °C for short-

term storage or at -20 °C for long-term storage.  PCR was performed using iTaq DNA 

polymerase kit (BioRad). All the kit components were thawed over ice. The reaction 
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mixture included 10X iTaq buffer, 50mM MgCl2, 10mM dNTP mix, iTaq DNA 

polymerase, forward and reverse primers, RNase free water and cDNA. About 10 ng 

cDNA was used per reaction. All samples were run in triplicates and included a no 

template control. The reaction was run in a T100 thermal cycler (Biorad) with the 

following conditions: (i) 95 °C for 3 min (ii) 40 repeats of 95 °C for 30 sec, 55 °C for 30 

sec and 72 °C for 30 sec (iii) 72 °C for 10 min and (iv) 4 °C hold. All reagents were 

purchased from BioRad unless otherwise stated. 

 For RT-PCR, 10 ng of cDNA was added per well of a clear 96-well PCR plate 

(Life Technologies). A mastermix containing Sso Advanced SybrGreen supermix 

(BioRad), 20 µM forward primer, 20 µM reverse primer and RNase free water was added 

to each well. All samples were run in duplicates. Once all the reagents were added, the 

plate was covered with a clear adhesive film. The plate frame was tapped gently to mix 

the contents and then placed inside a plate spinner to remove the bubbles. The reaction 

was run in an Applied biosystems 7300 (Life technologies) with the following conditions: 

(i) 30 sec at 95 °C (ii) 40 repeats of 95 °C for 30 sec and 60 °C for 30 sec. 

2.2.13 DNA Gel Electrophoresis 

One percent agarose solution was made using PCR grade agarose dissolved in Tris 

acetate EDTA (TAE) buffer. The solution was heated in a microwave for 3 min to ensure 

that the agarose was completely dissolved. 10 µl of Ethidium bromide was added per 100 

mls of the 1% agarose solution. At this point, the solution turned from clear white to clear 

pink. The solution was poured into a casting tray covering about 75% of the comb teeth 

height and then placed in the fridge for 10 min. Once the gel appeared firm to touch by 

hand, the casting tray was lifted and connected on to the electrophoresis setup. TAE 
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buffer was added to fill the gel run chamber and the combs were carefully removed. 8 µl 

of 1kB+ DNA ladder (Life Technologies) was added to the first lane of the gel. 2 µl of 

nucleic acid sample loading buffer (5X, BioRad) was added to 10 µl of PCR sample and 

loaded onto the wells. The electrophoresis was performed at 100 V till all the bands 

separated. When the lower dye front was about half way down, the run was paused and 

the gel was lifted manually, placed inside the UV tray of the Chemi doc XRS (BioRad) 

and imaged using the UV transiluminator. Image Lab software (BioRad) was used to 

capture and process the image. All reagents were purchased from BioRad unless 

otherwise stated. 

2.2.14 Statistical Analysis 

Results are presented as mean± standard deviation to account for sample size. A one-way 

paired student T-test was used for comparing statistical significance between two data 

sets and a one-way ANOVA test was used when more than two data sets were involved. 

Statistical significance was accepted for p<0.05. 
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2.3 Results 

2.3.1 Differentiation of Insulin Producing Cells (IPCs) from mES Cells 

 

 

MES cells were used to derive insulin producing cells by following a previously 

established protocol [73]. Figure 2.1 shows a schematic of the differentiation protocol 

used in this study. This differentiation protocol yielded IPC (insulin producing cells) 

clusters that have size range of 300-400 µm in diameter. The size of these clusters was 

much larger compared to native mouse islets which are 50-200 µm in size [2]. Other cell 

types including endothelial cells often accompanied the clusters.    

During the entire differentiation period, cells were examined at various stages to 

check for specific markers. Figure 2.2 shows a western blot analysis confirming the 

expression of definitive endoderm (DE) markers such as FoxA2 and Sox17 as early as 

Figure 2.1 Schematic of the IPC Differentiation Protocol. Undifferentiated mES cells 
were formed into EBs using a hanging drop method. The resulting EBs were collected 
and plated on a gelatin coated dish on day 7. The spread out cells were digested and 
were re-plated on a poly-ornithine and laminin coated dish on day 16. The definitive 
endoderm marker, FoxA2 was detected on Day 21, while C-peptide and Insulin,  
pancreatic progenitor marker PDX1 and beta cell marker, respectively, were detected 
on Day 23 and 33 of differentiation.  
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Day 6, which corresponds to when the EBs were in suspension culture conditions. The 

expression of these markers continued till the end of differentiation i.e., Day 33. This is 

in agreement with previous studies that have shown that FoxA2 expression is found in 

developing pancreas and continues in adulthood, mainly in islets of Langerhans, ductal 

cells and acinar cells [183].  

 

 

 

Figure 2.2 Expression of Definitive Endoderm by Differentiating MES Cells. EBs 
formed by a hanging drop method and subsequent the suspension culture showed 
expression of definitive endoderm markers such as FoxA2 and Sox17 as early as Day 
6 of culture and continued expression till Day 33. 
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Immunofluorescence studies were performed to detect important markers along 

the beta cell development pathway. Figure. 2.3A shows the expression of FoxA2, which 

started as early as Day 6. The pancreatic progenitor marker, PDX1, was detected on Day 

23 of differentiation as shown in Figure. 2.3B.  At the end of the differentiation protocol 

i.e., Day 33, the presence of C-peptide was detected, as demonstrated in Figure. 2.3C. An 

immunohistological analysis showed that the cells were also positive for 

Insulin/Proinsulin expression at Day 33 as shown in Figure. 2.3D.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3 Expression of Pancreatic Specific Markers by IPC Clusters. 
Immunofluorescence images showing cells positive for (A) FoxA2 confirming 
endodermal lineage at D21, (B) Pdx1 confirming pancreatic progenitor cells at D23, 
and (C) C-peptide at D33 of differentiation. (D) A representative 
immunohistochemistry image at Day 33 shows the presence of insulin/pro-insulin. 
Scale bar: 100 µm. 
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2.3.2 Yield of IPC from mES Cell Differentiation 
 
 

 

To determine the differentiation yield, differentiated cells were stained using a Dithizone 

(DTZ) staining method at Day 33 of differentiation [182].  Figure. 2.4(A) shows a DTZ+ 

IPC cluster stained crimson and an unstained cluster for comparison (Figure. 2.4B). 

Figure. 2.5 shows the yield of DTZ+ IPC clusters from individual batches. On average, 

six DTZ positive cell clusters were found in a 9.5 cm2 surface area (area corresponding to 

one well of a 6-well plate) as shown in Figure. 2.6A. This corresponds to approximately 

5.76% of the total number of cells present in the same size dishes (Figure. 2.6B).  

Figure 2.4 Dithizone (DTZ) Staining. A DTZ positive cluster at D33 of differentiation 
is shown on the left with crimson color cluster whereas an unstained negative cluster 
is shown on the right for comparison. Scale bar: 500 µm. 
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Figure 2.5 Yield of DTZ+ Cell Clusters. A graphical representation of the yield of 
individual batches is shown (n=27, Mean±SD). 

Figure 2.6 Differentiation Efficiency of IPC Clusters from mESCs. (A) The graph 
shows the average number of IPC clusters obtained from 9.5 cm2 area, which 
corresponds to either a P35 dish or a well of a 6 well plate (n=27). (B) The graph 
compares the average number of IPCs obtained/9.5 cm2 to the total number of cells 
present in the same size dishes (n=27, p<0.05). 
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2.3.3 Factors Effecting Differentiation Yield 

During differentiation process, digestion of EBs yielded a mix of single cells and cell 

aggregates. The differentiation process requires these single cells and cell aggregates to 

be plated for additional 18 days until the completion of differentiation. To determine 

whether the presence of cell aggregates in the culture affects the overall differentiation 

efficiency, three different conditions were prepared. Differentiation cultures were 

prepared either with no aggregates, with no aggregates but with additional cells to 

maintain similar cell density or aggregates and single cells mix. Culture with a mix of 

single cells and cell aggregates was used as a control. Our results show that the yields 

were lower in the test samples and no significant differences were observed when 

compared to control samples as shown in Figure 2.7. 
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In addition, when the differentiation culture was extended for an additional 7 days 

beyond 33 days of culture, a significant increase in the number of DTZ+ cell clusters was 

observed indicating that the culture duration was a critical factor in determining IPC 

cluster yield (Fig. 2.8) 

 

 

 

 

 

 

Figure 2.7 Factors Affecting Differentiation Efficiency – Presence of Cell Aggregates 
(n=10). 
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2.3.4 Glucose Responsiveness of Differentiated IPCs 

An insulin ELISA was performed to quantify the amount of insulin produced by 

differentiated IPCs as well as to determine whether the IPCs were glucose responsive. 

Our ELISA results demonstrated that the IPC secrete significantly higher insulin when 

exposed to higher glucose concentrations, indicting that they are glucose responsive as 

shown in Fig. 2.9. 

 

 

Figure 2.8 Factors Affecting Differentiation Efficiency – Culture Duration. A 
significant increase in the average number of IPC clusters was observed in longer 
culture (Mean ± SD, p< 0.05). 
 



 49 

 

2.3.5 Pancreatic Gene Expression by Differentiated IPCs 

Freshly isolated DTZ+ IPC clusters were used for RNA extraction and subsequent gene 

expression analysis.  PCR revealed that the insulin-positive cell clusters express beta cell 

specific genetic markers such as Ins2, PDX1, Nkx6.1, Pax4, Glut2 and EphrinA5 as 

shown in Figure. 2.10. GAPDH was used as a housekeeping control. Beta cell specific 

markers are important genetic markers that are expressed by a mature beta cell.  

Figure 2.9 Insulin ELISA Assay. An insulin ELISA followed by a glucose challenge 
test demonstrated that mES derived IPCs are glucose responsive (n=6, p<0.005). 
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2.4 Discussion 

In this study, a previously established protocol was used to derive IPCs from mES cells 

[73]. At the end of a 33 days long protocol, IPC clusters, identified by DTZ staining, 

were successfully obtained. DTZ is known to form a chelate complex with the zinc ions 

stored inside the beta cells. DTA staining is widely used for detecting endogeneous 

insulin secretion by beta cells as the beta cells secrete zinc along with insulin [184, 185], 

The differentiated cells express both FoxA2 and Sox17 throughout the differentiation 

timeline. FoxA2 and Sox17 genes are widely known as definitive endoderm (DE) 

markers [186-190]. The pancreas develops from the DE, and so the expression of these 

markers suggests that the cells differentiate towards DE lineage, which is the first step in 

progressing them towards a beta cell fate. Previous studies have shown that FoxA2 

Figure 2.10 Gene Expression Analysis of IPC Clusters. IPCs expressed beta cell 
specific markers such as Insulin, PDX1, Glut2, Nkx6.1, Pax4 and EphrinA5. GAPDH 
was used as a housekeeping control. 
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expression is found in the developing pancreas and continues in adulthood, mainly in 

islets of Langerhans, ductal cells and acinar cells [183]. This is consistent with our study 

where the expression of FoxA2 at Day 33 of culture is detected by western analysis. 

To further characterize the identity of IPCs derived from mES cells, gene 

expression analysis was performed. Our mES-derived IPCs expressed beta cell specific 

markers such as insulin and C-peptide demonstrating insulin production by these cells. 

Both of these genes have been shown to play an important role in the beta cell 

development. As beta cells are known to secrete insulin in response to a glucose stimulus, 

secretion of insulin is one of the key characteristics of beta cells. However, previous 

reports have shown that in in vitro cultures, dead cells can take up insulin from the 

medium and thus account for a false positive [77, 87]. C-peptide, which is formed when a 

proinsulin molecule cleaves to form an insulin molecule, has thus been used as a more 

reliable marker for insulin producing cells. C-peptide is not present in the medium and 

thus detection of C-peptide indicates endogenous insulin production by cells. Ins 2 or 

Pro-insulin is the uncleaved version of Insulin. The expression of Ins 2 and C-peptide 

confirms the endogenous production of insulin by mES-derived IPCs demonstrating that 

these cells were functional in terms of insulin production.  

Moreover, differentiated cells express PDX1 and Nkx6.1, which are important for 

pancreatic development and beta cell function. PDX1 has been shown to serve as a 

master regulator of β cell fate by simultaneously activating genes essential for β cell 

identity and repressing those associated with α cell identity [191].  Low levels of PDX1 

have been associated with beta cell death during onset of diabetes [192, 193]. Nkx6.1 

gene is necessary and sufficient for expression of beta cell specific markers in 
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differentiating endocrine precursors in the embryo [194]. In vitro studies using beta cell 

lines and isolated islets have also suggested that Nkx6.1 may play a role in the regulation 

of glucose-stimulated insulin secretion as well as beta cell proliferation [195, 196]. 

Deletion of Nkx6.1 causes rapid-onset diabetes due to defects in insulin biosynthesis and 

secretion followed by ectopic activation of delta cell genes in beta cells [197]. Nkx6.1 

gene is therefore important in maintaining the phenotype and genotype of beta cells. 

Pax4 is known to be a key regulator of beta cell mass [198]. Inactivation of Pax4 

results in the absence of mature β and δ cells in the pancreas but increases the number of 

alpha cells, suggesting that the early expression of Pax4 is essential for the differentiation 

of the β and δ cell lineages [199]. The expression of Pax4 by the culture indicates the 

development of endocrine progenitor cells in the differentiation culture. It also suggests 

the possibility of the presence of δ cells in the cell culture.  

Moreover, it was demonstrated that our IPCs also express GLUT2 and EphrinA5. 

Glucose transporter 2 (GLUT2) also known as solute carrier family 2 (facilitated glucose 

transporter), member 2 (SLC2A2) is a transmembrane carrier protein, that enables 

glucose movement across cell membranes unclear [200]. GLUT2 is known to be the 

principal glucose transporter in beta cells in rodent islets, but is not the principal glucose 

transporter in human islets [201].  GLUT2 mediates the bidirectional transport of glucose 

in beta cells and forms part of the glucose sensing mechanism of the beta cell [200] and 

thus plays an important role in making beta cells glucose responsive. The differentiating 

cells also expressed GLUT2. EphrinA5 is a ligand for Eph receptor proteins and is 

localized on the plasma membrane and thus needs direct cell-to-cell contact for activation 

[202-204]. It is important in beta cell-to-cell communication and also in glucose 
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stimulated insulin secretion [205].  The expression of these genes indicates that the 

differentiated IPCs exhibit beta cell specific markers.  

As one of the important characteristics of pancreatic beta cells is their ability to 

regulate insulin secretion depending on the level of glucose they are exposed to, 

functional characterization of differentiated IPCs was performed. Our differentiated IPCs 

secrete insulin and upregulated their insulin secretion in response to higher glucose 

conditions.  The insulin secretion from 10 islets at 2 mM and 20 mM has been reported to 

be 1 ng/ml/hr and 2 ng/ml/hr, respectively [206]. This number can vary depending upon 

the age and sex of the animal and also the methods used for isolating the islets and 

duration of islet culture after isolation before the glucose challenge was performed. As 

the differentiating IPCs were significantly bigger in size than the islets, it is difficult to 

compare the results.  

 

 

 

 

include the SNARE proteins synaptobrevin/VAMP, SNAP-25,
syntaxin, α-SNAP, and the putative Ca2+-sensing proteins
synaptotagmin I and II (for review, see Ref. 15).

In this review, we focus on the characterization of the
functional properties of exocytosis in the β-cells. The exper-
iments we describe were conducted by a combination of the
whole cell configuration of the patch-clamp technique with
capacitance measurements as a single-cell indicator of insulin
secretion (1, 2). This experimental approach enables us to
study the properties of secretion in single voltage-clamped
β-cells. Exocytosis can thereby be determined independently
of any spontaneous changes of the membrane potential,
which would (via modulation of voltage-dependent Ca2+

influx) influence the rate of Ca2+-induced secretion. Addi-
tional advantages of capacitance measurements over more
traditional approaches to detecting insulin secretion include
1) that the measurements can be conducted on individual
cells and 2) the high (1–10 ms) temporal resolution. 

Nutrients induce a biphasic stimulation of insulin
secretion

Glucose-stimulated insulin secretion in vivo typically fol-
lows a biphasic time course (Fig. 1C) (3–5, 10). Shortly after
elevation of the glucose concentration, a transient stimula-
tion of insulin secretion is observed, referred to as “first
phase secretion,” which at later times is followed by a grad-
ually developing secondary stimulation, “second phase

secretion.” Only fuel secretagogues are capable of eliciting
the second phase, and, when insulin secretion is evoked by
nonmetabolizable stimuli, only the first phase is observed.
This suggests that second phase insulin secretion is an
energy-dependent process. Interestingly, type II diabetes
[non-insulin-dependent diabetes mellitus (NIDDM)] is asso-
ciated with disturbances in the release pattern manifested as
the selective loss of first phase secretion, which precedes
other manifestations of the disease (4). 

Biochemical and electrophysiological experiments in
other endocrine cells (11) have suggested that the secretory
granules exist in different pools, which vary with regard to
releasability (Fig. 1D). Most of the granules (>95%) belong
to the reserve pool and need to be chemically modified, or
even physically translocated, to become immediately avail-
able for release. The latter subset of granules is referred to as
the readily releasable pool (RRP) and characteristically con-
tains <5% of the total granule number. The process in which
the granules proceed from the reserve pool into the RRP has
been termed mobilization and involves one or several ATP-
dependent reactions (11).

Exocytosis triggered by train of voltage-clamp
depolarizations

Insulin secretion is elicited by bursts of Ca2+-dependent
action potentials. Experimentally, it is more convenient to trig-
ger exocytosis by application of voltage-clamp depolarization.

News Physiol. Sci. • Volume 15 • April 2000 73

FIGURE 1. A: stimulus-secretion coupling of pancreatic β-cells. SUR, sulphonylurea receptor; KATP, ATP-regulated K+ channel. B: glucose-stimulated electrical
activity recorded from a β-cell in an intact islet when glucose concentration was increased from 5 to 10 mM as indicated by staircase above membrane potential
trace. C: profile of glucose-induced insulin secretion. Glucose was elevated to 11 mM as indicated by horizontal bar. Note presence of a rapid first phase (lasting
~10 min) and a slower second phase. Data redrawn from Ref. 10. D: possible interpretation of release pattern. Whereas first phase insulin secretion can be envis-
aged to reflect exocytosis of a readily releasable pool of granules (RRP), second phase is due to release of granules that may be located further away from release
site(s) (reserve pool). Mobilization of granules from reserve pool into RRP involves one or several ATP-dependent reactions (7, 11).

Fig. 2.11 Biphasic Insulin Secretion Response to Glucose Stimuli. Adopted from 
Rorsman et al. 
Source: [4] 
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A normal mouse has an average blood glucose of around 80 mg/dl [207], which is 

similar to humans. When this level increases for example, due to diet intake, insulin is 

secreted. Glucose stimulated insulin secretion in mice and rat islets is biphasic in nature 

and consists of a transient first phase followed by a sustained second phase [208-211] as 

shown in Figure. 2.11. However, in in vitro conditions only the first phase of the response 

is seen [4].  

While IPCs were obtained in this study, the differentiation efficiency however, 

was rather low, yielding approximately 5.76% of insulin-producing cells from the entire 

cell population. As differentiation of beta cells is a complex process, multiple factors can 

affect the efficiency.  Our results from examining several factors affecting the yield of 

differentiation suggest that presence or absence of cell aggregates after digestion was not 

a critical factor in determining the differentiation yield. However, the cell density for re-

plating was found to be a critical determinant for the IPC yield. Further studies will be 

needed to confirm whether a lower cell density can result in higher differentiation yield 

and vice versa.  In addition, the effects of Exendin-4, a potent agonist of GLP-1 [212] and 

activin A can be explored as they are shown to promote islet differentiation, maturation 

and increased insulin content in various cell lines [213, 214].  

It was observed that an increase in duration of culture period resulted in a 

significant increase in the differentiation yield. This suggests that the cells continue to 

differentiate beyond Day 33, which is the end point of current protocol used. Further 

studies are needed to determine whether a further increase of the culture duration will 

result in an even higher yield of IPCs and whether the glucose responsiveness of the IPCs 

is also affected. 
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The presented study followed a previously described protocol [73] with just one 

minor change. The suspension culture was done for two days instead of three days. It was 

noticed that at the end of three days, the EBs did not stay in suspension. Instead they 

attached to the petri dish and started spreading out. In order to transfer them to the gelatin 

coated dish they had to be lightly scraped off the surface of the Petri dish. As this might 

cause mechanical damage to the cells, the suspension culture was terminated after two 

days when the EBs were still in suspension. The exact effect of this change on the final 

outcome is yet unclear. 

In conclusion, this study presents the differentiation and characterization of IPCs 

obtained from mES cells. Although the protocol has been previously reported [73], the 

study presents approaches to improve the yield of IPC clusters. It was found that an 

increase in culture duration for up to seven days resulted in a higher yield of IPCs, while 

excluding the cell aggregates and doubling the cell density after re-plating resulted in a 

decrease of yield. Further experiments are required to study the specific effects of cell 

density on the IPC differentiation yield. 
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CHAPTER 3 

DEVELOPMENT OF IPC CLUSTER EMBEDDED 3D TISSUES 

 
 

3.1 Introduction 
 

Islets of Langerhans are micro-organs located in the pancreas and composed of at least 

four types of endocrine cells. The α and βcells are the most abundant and also the most 

important ones as they secrete the hormones glucagon and insulin, which are crucial for 

maintaining glucose homeostasis. It is generally accepted that endocrine cells in rodents 

are not randomly distributed into islets, but are arranged in specific patterns. β cells 

compose the core of the islets and the non-β cells, including α, δ and pancreatic 

polypeptide (PP) cells, form the mantle region [46-50]. This unique architecture appears 

to have important functional implications [46]. In several murine models in which insulin 

secretion is decreased, normal organization of islet cells was found to be perturbed [215] 

and β cells were found intermingled with non β cells.  

In addition, in vitro experiments showed that homologous contacts between rat β 

cells improved their function, as compared to heterologous contacts between β and non β 

cells that had no effect [216]. This observation suggests that a core-mantle segregation of 

islet cells is useful in favoring homologous contacts between β cells, which in turn 

improves insulin secretion. The characteristic islet architecture may also serve to 

facilitate interactions among the different islet hormones via interstitial or vascular routes 

[47, 217]. It has also been shown that the proportion of islet β cells is lower in humans 

compared with rodents [51-53] and that the various endocrine cell types are dispersed 
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throughout the human islets [51, 54]. Figure 3.1 shows a schematic representation of rat 

and human islets. 

 
 
 
  

 

 

 

 

 

 

 

 

 

 

 

 

Currently, 2D cultures are the most common method of culturing islets in vitro. 

However, 2D culture systems do not provide the much needed ECM support that is 

available to islets in vivo which is important in mediating cell adhesion, providing 

structural support and activating intracellular chemical signaling pathways [118, 218-

220].  It has been shown that culturing islets as monolayers in a 2D culture system 

Figure 3.1 Islet Architecture in Rodents and Humans. The above schematic shows the 
distribution of various cell types in rodents and human islets.  
Source: [8]. 
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disrupts their characteristic arrangement and hence negatively impacts function and 

survival of the cells [221]. In the absence of this crucial microenvironment, cells either do 

not mimic their physiological phenotype or many times differentiated cells fail to 

maintain their functions over longer periods of time.  A study by London et al. showed 

that only ~56% of the islets survive after a 48 hour culture period in 2D conditions [222]. 

These studies suggest that 3D culture models that closely mimic physiological 

environment may be necessary to promote optimum survival and function of the islets in 

in vitro culture conditions. 

In fact, previous studies have demonstrated that the use of biomaterials may 

enhance islet function by providing a three-dimensional cellular support and delivering 

proteins, growth factors, and immunosuppressive agents [223, 224]. A study by 

Montesano et al. showed that when dissociated islets were embedded inside 3D collagen 

gels, not only did the collagen environment provide the necessary permissive 

environment for the heterozygous cells to reform the islet like spherical morphology, but 

also the different cells re-assembled mimicking their topographical location [225, 226]. 

Another study by Zhang et al., demonstrated that culturing human islets in 3D scaffolds 

reduced the formation of the toxic islet amyloid, which is known to be a pathological 

characteristics of diabetes type II [227].  

Moreover, a previous study showed improvement in viability and insulin 

secretion profile of human islets cultured in 3D agarose gels compared to that of islets 

cultured in 2D condition [129]. Various other studies using collagen and other ECM 

materials to encapsulate islet cells have shown improved functionality, insulin secretion, 

and higher expression of pancreatic specific genes of beta cells [130, 221, 228]. Nagata et 
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al. cultured islets in a hydrogel of collagen type I mixed with collagen type III, type IV 

and laminin. They found that all the mixtures suppressed cell death effectively [116]. 

These studies suggest that a 3D system comprised of ECM proteins may be beneficial in 

improving the maturation and function of insulin producing cells in in vitro.  

There have been a number of studies that have highlighted the role of vascular 

endothelial cells (ECs) in beta cell biology. During development, dorsal aorta has been 

shown to induce budding of dorsal pancreas and expression of pancreatic specific factors 

such as Pdx1, Pax4, Insulin and glucagon [145]. EC secreted factors have also been 

shown to be important for beta cell proliferation, insulin gene transcription and glucose 

mediated insulin release [1, 154, 156, 229, 230].  

Previous studies have shown that EC derived factors are not only critical in the 

regulation of beta cell growth, proliferation but also expression of beta cell specific 

markers and lineage allocation during development [1, 145, 154, 156, 167, 231]. As beta 

cells are unable to form a basement membrane of their own they recruit ECs to form a 

basement membrane that contains laminin, collagen type IV and fibronectin [154]. These 

factors are known to promote insulin gene expression and beta cell proliferation to 

different extents. A host of other EC derived factors have been shown to be beneficial for 

the development of beta cells. Connective tissue growth factor (CTGF), an EC secreted 

factor is important in beta cell proliferation, differentiation and islet morphogenesis [156, 

231]. Another vascular derived factor sphingosine-1-phosphate has been shown to 

stimulate the growth of the pancreas [148]. Hepatocyte growth factor, secreted by ECs 

has been shown to support beta cell proliferation. Thus, signals mediated by the ECs are 

critical regulators of the beta cell development and function [163]. 
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  Previous studies have shown evidence that isolated islets in co-culture with ECs 

show better survival, integration and functionality [159, 161-164]. A study by Adame et 

al. showed that co-culture of mES derived EBs with ECs led to an increased expression 

of PDX1, Ngn3, Nkx6.1, Proinsulin, GLUT-2 and Pax4 [167]. This study provided 

evidence that ECs enhanced the differentiation of EBs into pancreatic progenitor cells. 

However, no studies have been published regarding the effects of IECs on IPC 

development in in vitro conditions. As IECs form a vascular niche for the pancreatic 

development [154, 165], their presence might have a positive impact on the IPC 

differentiation efficiencies and in obtaining mature glucose sensing beta cells. 

Recently, a study by Lau et al. showed that highly perfused islets had superior 

beta cell proliferation, function and gene expression [163]. It has been shown previously 

that blood flow in islets is heterogenous [232], with some islets receiving more blood 

flow than others and this heterogeneity is maintained over time [233]. Interestingly, 

EphrinA5 was significantly up regulated in highly perfused islets compared to islets 

having lesser flow [163]. Ephrin A5, a ligand present on beta cells has been shown to 

mediate glucose stimulated insulin secretion [205]. 

Ephrins are the ligands of Eph receptors, the largest family of tyrosine receptor 

kinases [234] and have been shown to play an important role in cell cell signaling [205, 

235]. Beta cells are known to communicate with each other through EphAs and EphrinAs 

[205], where EphA forward signaling inhibits insulin secretion, whereas Ephrin-A 

reverse signaling stimulates insulin secretion [205]. Although it was believed that 

EphrinA class ligands only react with EphA receptors, a study by Himanen et al., showed 

that Ephrin A5 binds EphB2 with great affinity [236]. EphB2 is a protein that is 
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expressed by endothelial cells and is important during angiogenesis [237]. As ECs play 

an important role in beta cell development, it will be interesting to examine such an 

interaction occur in in vitro conditions, if ECs are co-cultured with IPCs. 

Thus, in the presented study, mES derived IPCs were cultured in 3D collagen gel 

system to characterize their function in 3D compared to a traditional 2D culture. 

Optimization studies were performed to improve survival and function of the IPCs. In 

order to address the diffusion limitations that 3D tissues present, perfusion flow was 

applied to the 3D tissues using a previously developed perfusion flow bioreactor [238]. 

The study also describes the co-culture of IPCs with ECs, which were derived from mES 

cells (mESC-ECs). The details of the derivation and characterization of these cells are 

presented in chapter 4. The co-culture gels were cultured under static and flow conditions 

for five days and were analyzed for survivability. A detailed gene expression analysis 

was performed on the monoculture and co-culture gels and the expression of beta cell 

specific genes were studied. The presented study reports preliminary studies in deriving a 

3D tissue using stem cell derived IPCs, which can be extended further to the development 

of a unique platform for improved function and maturation of IPCs in vitro. 

 
 

3.2 Materials and Methods 

3.2.1 Preparation of IPC Clusters for 3D Tissues 

IPC clusters were differentiated from mES cells and isolated as described in Chapter 2 

section 2.2. Figure 3.2 shows a simple schematic of the gel preparation process. After 

being stained positive with DTZ, IPC clusters were manually handpicked using a fine 

bent tip forceps from the differentiation plate. The IPC clusters were briefly stored in 
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FBS in a microcentrifuge tube and then washed 3x with PBS. The typical size of 

differentiated IPC clusters was 380 um, which is much larger than a mouse islet which is 

approximately 150 um [2]. Thus to obtain IPC clusters with sizes that are comparable to 

physiologic mouse islets, IPC clusters were manually pipetted to dissociate them into 

smaller clusters.  To break the clusters into smaller pieces, a 22G needle attached to a 3 

ml plastic syringe (Fisher) was used.  Repeated pipetting was necessary to achieve 

smaller IPC clusters. Alternatively, the clusters can be broken down by a blunt plastic 

canula (Fisher) mounted on top of a 200ul pipette tip attached to a pipetteman.  

Once pipetted, the IPCs in culture medium were strained using a 40µm cell 

strainer (BD Falcon) to remove cell fragments and debris from the manual disturbance. 

Only the IPC clusters were collected in a petri dish and then transferred into a 

microcentrifuge tube. Clusters were then allowed to settle down in a conical tube for ten 

minutes.  Supernatant was slowly removed without disturbing the IPCs and discarded. 

Collected IPCs were used for incorporation into collagen gels as described in detail in 

Section 3.2.2. 
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3.2.2 Preparation of Static Collagen Tissues Containing IPC Clusters 
 
 

 

 

Rat tail collagen type I (BD Biosciences), 10X DMEM (Sigma Aldrich) and 10X 

reconstitution buffer (0.05 N NaOH with 0.16 M HEPES and 0.25 M NaHCO3) were 

mixed on ice in the ratio of 80:10:10 to form collagen solution. The final concentration of 

collagen was 3 mg/ml. The pH was adjusted to 7.2-7.4 by adding 1N NaOH until the 

mixture appeared salmon pink in color. 24 IPC clusters were suspended in 55 µl of the 

collagen solution prepared above and added to the wells of a 96 well plate. This process 

is demonstrated schematically in Figure 3.2. The collagen gel solution was incubated for 

30 minutes at 37 °C to allow polymerization. Once polymerized, differentiation medium 

was added to collagen gel with IPC clusters and culture medium was changed every other 

day. 

 

Figure 3.2 Schematic of the Gel Preparation Process. IPCs were harvested from 
differentiation culture (Day 33) in a microcentrifuge tube containing FBS using a sterile 
fine bent tip forceps. After 3X PBS wash, the IPC clusters were broken down manually 
by passing 5-10 times through a plastic canula. The IPC suspension was then passed 
through a 40 µm cell strainer to remove dead cells and debris before being suspended 
inside 3D collagen gels. 
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3.2.3 Preparation of Flow Collagen tissues Containing IPC Clusters 

A custom made bioreactor set up was used for the application of flow to the collagen 

tissues containing IPC clusters [238]. A flow bioreactor is capable of applying constant 

perfusion to the tissues/cells housed within. The purpose of using the flow bioreactor was 

to provide flow or shear mediated cues that cells receive physiologically. The effect of 

flow on the tissues was studied by comparing flow collagen tissues to statically cultured 

tissues.   

The collagen IPC mix was pipetted onto a polyethylene terephthalate (PET) 

membrane glued onto a PDMS ring placed on the inside edge of the bottom piece of the 

flow bioreactor. This porous membrane supported the gel during the experiment. To 

reduce the resistance to flow created by the membrane, 15-20 holes were punched into it 

using a 30-gauge needle as has been previously described. After the gel was added to the 

membrane, the bioreactor was placed inside a 50 ml conical tube and allowed to 

polymerize for 2 hours at 37 °C. After 2 hours, the bioreactor was brought back to the 

laminar flow hood where it was fully assembled. The top piece was fastened and 3-way 

stopcock valves (Smith Medicals) were attached on either side of the bioreactor using 

connectors (Cole Parmer). Poly tetra fluoro ethylene (PTFE) tape was wrapped around 

the threads of the connectors to make the assembly leak proof. LS’13 tubing was used to 

connect the bioreactor assembly with a medium reservoir. Syringe ports (Baxter) were 

attached on stopcock valves and used for filling the inlet and the outlet tubing with 

medium. The bioreactor was connected to a peristaltic pump (Cole Parmer) and the flow 

was started at 0.5ml/min and continued for up to 5 days.  
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3.2.4 Creating 3D co-culture tissues 

3D collagen gels were created by a sandwich method, which contains two layers of cells 

prepared in between three layers of collagen. A schematic of the process is shown in 

Figure. 3.3. To form 3D collagen gels, collagen solution was prepared as described in 

Section 3.2.4 and was first poured into tissue culture plates and incubated at 37°C for 30 

minutes to allow polymerization before mESC-ECs suspended in MCDB complete 

medium were added on top. These mESC-ECs were allowed to spread out for 4 hours. In 

the meantime DTZ staining was performed on end stage beta cell differentiation plate i.e., 

Day 33 of differentiation as described in Chapter 2 Section 2.3.  

The IPC clusters thus identified by DTZ staining were used for making an IPC 

embedded gel. This gel was added on top of the first layer of mESC-ECs after medium 

removal. The gel was allowed to polymerize for 30 minutes and then another layer of 

mESC-ECs was added on top and allowed to spread out. After 4 hours, medium was 

carefully removed and a final layer of cold collagen gel solution was poured on top of the 

cell layer. This process yielded a collagen gel with one layer of IPC cluster embedded gel 

sandwiched between two layers of mESC-ECs. The gel was cultured for 3-5 days and 

medium was changed every other day. 
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3.2.5 Live Dead Staining 

Live/Dead viability/cytotoxicity assay (Invitrogen) was used to determine the viability of 

IPC cells in 3D collagen monoculture and co-culture tissues. After five days in culture, 

collagen tissues subjected to flow were transferred from the flow bioreactor into a 96 well 

plate using sterile fine tip forceps. Static collagen tissues were processed directly in the 

96 well plates where they were being cultured. Calcein AM (2 µM) and Ethidium 

homodimer-1 (4 µM) were added to stain live and dead cells, respectively. Stock 

Figure 3.3 Schematic for Co-culture Gel Preparation. First a layer of mESC-ECs was 
added on a layer of collagen, allowed to spread for 4 hours and then DTZ+ IPC 
clusters were suspended inside a 0.5mm thick collagen layer that was cast directly on 
top. After 30 minutes medium, a layer of mESC-ECs was added, allowed to spread out 
for 4 hours before a final layer of collagen gel was added on top. The gel was cultured 
for 3-5 days under static and flow conditions.  
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solutions were diluted as per the manufacturer’s instructions using sterile PBS. Tissues 

were incubated at 37 °C for 30 minutes while being protected from light. Samples were 

imaged on a glass coverslip without washing off the staining solution using an inverted 

fluorescence microscope (IX81 DSU, Olympus).  

3.2.6 Immunofluorescence Studies 

After five days in culture, both static and flow collagen tissues were fixed with 4% PFA 

overnight at room temperature. In case of flow collagen tissues, they were removed from 

the bioreactor and placed in a petri dish prior to fixation. Gels were then washed 3X with 

PBS and blocked for 4 hours with 10% goat serum (Sigma) in PBS at room temperature. 

Primary antibodies mouse anti Insulin/Proinsulin (Abcam, 1:1000) and rabbit anti 

glucagon (Santa Cruz, 1:200) were added to the samples and incubated overnight at 4 °C 

on a rocker. Samples were then washed 3X with PBS on a rocker and goat anti-mouse 

pAb-Rhodamine (1:2000, Abcam) and goat anti-rabbit pAb-Texas Red (Santa Cruz, 

1:200) were added and incubated for 1 hr. at room temperature. Samples were washed 

again with 3X PBS and counterstained with DAPI to visualize the nuclei. Samples were 

imaged using a confocal fluorescent microscope (C1si, Nikon). Images were analyzed 

using the EZC 1 software. 

3.2.7 Glucose Challenge 
 
After five days in culture, both monoculture and co-culture collagen tissues under static 

and flow culture conditions were collected and washed 3x with PBS. Differentiation 

medium prepared separately without insulin was added to the gels 24 hr. prior to the 

glucose challenge. For the gels cultured under flow, they were transferred from the 

bioreactors into petri dishes containing differentiation medium without insulin. After 24 
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hours, samples were washed with PBS, and were incubated with solutions containing two 

different concentrations of glucose consecutively. First, the tissues were incubated with 

2.5mM glucose supplemented Krebs Ringer Bicarbonate Hepes (KRBH, See Appendix 

for details) for 90 minutes. The supernatant was collected prior to the incubation with 

higher concentration of glucose. KRBH buffer supplemented with 27.7 mM glucose was 

added and the samples were incubated for additional 2 hours. Supernatants were again 

collected at the end of the incubations, aliquoted in 200 µl tubes and stored at -20 °C for 

performing an insulin ELISA. 

3.2.8 Real time PCR studies 
 
After five days in culture, both monoculture and co-culture collagen tissues under static 

and flow culture conditions were frozen down for RNA isolation. RNA isolation and 

cDNA synthesis were performed as described previously in Chapter 2, section 2.2.9 and 

RT PCR studies were performed as described in Chapter 2, Section 2.12.  

3.2.9 Real Time PCR Data Analysis 

Real time PCR data was exported from the SDS software (Life technologies) to an Excel 

sheet (Microsoft Office 2011 for Mac). The CT values were averaged for all the samples 

and were normalized to GAPDH. The CT (cycle threshold) is defined as the number of 

cycles required for the fluorescent signal to cross the threshold (i.e., exceed background 

level) so that it can be detected [239]. Relative gene expression analysis was performed 

using the Livak method or the ΔΔCT method [9]. The Livak method includes three steps: 

(i) Normalizing the CT of the target gene to the reference gene (GAPDH) (ii) 

Normalizing the ΔCT of the test sample to the ΔCT of the calibrator sample and (iii) 

calculating the expression ratio or the fold change.  
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3.2.10 Statistical Analysis 

Results are presented as mean± standard deviation. A one-way paired student T-test was 

used to determine the statistical significance between two data sets and a one way 

ANOVA test was performed to analyze the interaction between the culture conditions. 

Statistical significance was accepted for p<0.05. 

 

3.3 Results 
 

 
3.3.1 IPC Survival in 3D Collagen Tissues 
 
 

 

 

IPCs were obtained by manual isolation from differentiation plates at Day 33, using a 

pair of sterile bent tip forceps. It is shown that our differentiated IPC clusters were much 

bigger than the size of isolated native mouse islets (Figure. 3.4).  Immediately following 

the isolation, IPC clusters were plated on 2D surface to first check their viability. Figure. 

Figure 3.4 Size Comparison of IPC Clusters vs. Native Mouse Islets. The average size of 
differentiated IPC clusters was approximately 380 µm in diameter (n=6), whereas the 
native islets are in a size range 50-250 µm [2]. 
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3.5A shows an IPC cluster plated on a poly-ornithine and laminin coated 2D surface 

immediately after isolation without any processing. Live dead staining revealed that these 

clusters consisted of a mixture of living and dead cells.  

As the clusters were irregularly sized and had a complex structure, additional 

steps were performed to break these clusters down into smaller pieces to derive 

physiologically relevant sized clusters and to minimize diffusion limitation, The IPC 

clusters were subjected to manual breaking by using either a 22G needle with sharp end 

or a blunt plastic cannula attached to a syringe. When these processed clusters were 

embedded in 3D collagen tissues, a large number of dead cells were observed (Figure. 

3.5B). While 22G needle method was successful in creating smaller clusters, this method 

simultaneously resulted in massive cell death. As a comparison, the clusters that were 

directly embedded in collagen tissues without physical breaking process had fewer dead 

cells (Figure. 3.5C), although the size was considerably bigger than the ones in Figure. 

3.5B. 

 

Figure 3.5 Live Dead Staining of IPC Clusters. (A) Live dead staining at Day 1 shows 
IPC cluster plated on poly-ornithine and laminin coated 2D surface (B) IPC clusters 
were broken down by passing through a 22G needle and then used for preparing 3D 
collagen tissues. (C) 3D collagen tissue with control IPC cluster that was not broken 
prior to embedding. Calcein stains the living cells green and Ethidium bromide stains 
the dead cells in red. Scale bar: 100 µm. 
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Figure 3.6 Comparison of Various Methods for Removing Dead Cells/debris from 
IPC Clusters. Live dead staining images show the IPC clusters subjected to preplating 
for (A) 15 min, (B) 30 min, (C) 60 min still consisted of dead cells. (D) The IPC 
clusters passed through a cell strainer had the least number of dead cells when 
compared to all the other methods (E) shows the control, non treated IPC cluster on a 
2D surface. Calcein (green) stains the living cells and Ethidium bromide (red) stains 
the dead cells. Scale bar: 100 µm. 
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Alternatively, a small blunt plastic canula attached to a pipette tip was used to 

break the clusters, in order to minimize the damage to the cells. Although this method 

resulted in a reduced number of dead cells, it did not fully eliminate the presence of dead 

cells. Since the presence of dead cells can affect other cells in the 3D tissue, additional 

steps were taken to remove them. 

Pre-plating of the cell/clusters was performed to determine whether it can be used 

to separate dead cells/debris from the IPCs. Once the clusters were manually broken 

down, the cell/cluster suspension was subjected to 15, 30 or 60 min pre-plating on gelatin  

coated surface. Our hypothesis was that the dead cells and other debris will not attach to 

the gelatin coated surface and will remain suspended in medium, while IPCs and single 

living cells will attach to the surface thus separating the living and dead cell populations. 

However, as demonstrated in Figure. 3.6, pre-plating for 15-60 min was ineffective in 

fully separating the living cells from the dead cell populations. As most of the IPCs did 

not attach even after 60 minutes, the separation was unsuccessful. 

The other method was to use a cell strainer. A 40µm cell strainer was used to 

collect IPC clusters with sizes 40um and bigger on the membrane while removing the 

unwanted debris and dead cells. The retentate constituted of IPC clusters and was 

subsequently used for preparing 3D collagen tissues. It was observed that the cell strainer 

treatment resulted in the least number of dead cells carried over in the culture as shown in 

Figure. 3.6D. 
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3.3.2. IPC Cluster Density in a 3D Collagen Tissue 

The optimal density of IPC clusters in 3D collagen tissues was determined based on the 

size of the clusters and cross-sectional area of the tissue. By assuming the diameter of an 

IPC cluster to be approximately 500µm, the surface area of an average IPC cluster was 

calculated to be 0.196 mm2. Thus, for a well within a 96 well plate with the surface area 

of 32 mm2, 163 IPC clusters were needed to cover the entire surface of the gel with IPC 

clusters. Based on the limited yield of the IPC clusters from each batch of differentiation, 

densities of 10% and 15% were used in our experiments.  Thus, for a well of a 96 well 

plate, 16 and 25 clusters for used for a 10% density gel and 15% density gel, respectively. 

Figure 3.7 shows an example of 3D collagen gels with 10% and 15% density of IPCs. 

15% density gels had a higher number of IPCs embedded compared to the 10% density 

gels.  

 

 

 
Figure 3.7 IPC Density in 3D Collagen Gel. (A) A collagen tissue with 10% IPC 
clusters and (B) with 15% IPC clusters. Live cells are shown in green, whereas dead 
cells are in red. Scale bar: 100µm. 
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3.3.3 Survival of IPC Clusters in 3D Tissues Under Static and Flow Culture 

Conditions 

Since it is known that tissues with thickness more than 2 mm have diffusion limitations, 

[240], our 3D collagen tissues were subjected to flow to improve viability of the cells 

through enhanced perfusion and nutrient diffusion. The bioreactor system had a top and 

bottom piece that when screwed together formed the housing for the collagen gel.  

The bioreactor was connected with a medium reservoir via silicone tubings as 

depicted in the schematic in Figure 3.8. A peristaltic pump was used for the constant 

perfusion of medium through the collagen tissues at 0.5 ml/min flowrate. The viability of 

IPC clusters in IPCs gels cultured under static and flow conditions were compared after 5 

days of culture. Live dead staining on these collagen tissues showed that the cell viability 

was reduced in tissues cultured under flow conditions compared to the ones under static 

conditions (Figure 3.9).  

 

Figure 3.8 Schematic of Flow Bioreactor System. The schematic shows a bioreactor 
connected to the medium reservoir through tubings and a peristaltic pump. Flow rate 
of 0.5 ml/min for 5 days was used in our study. 
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3.3.4 Survivability of Whole and Dissociated IPC Cluster Gels 

In order to examine whether dissociation helps to reduce cell death in our 3D flow 

system, IPC clusters were dissociated using trypsin and their survival examined in 3D 

collagen tissue culture.  Live dead staining after 5 days revealed the dissociated IPC gels 

had an improved survivability compared to whole IPC gels both in static and flow 

conditions (Figure 3.10). While comparing within the dissociated IPC gels, it was found 

that the static gels had higher viability of IPCs compared to that of flow gels.  

 

Figure 3.9 Live dead Staining of IPC Embedded Collagen Tissues Under Static and 
Flow Conditions. At day 5 the (A) statically cultured collagen tissue had fewer dead 
cells compared to the (B) tissue cultured under flow conditions. Calcein (green) 
stained the living cells and Ethidium bromide (red) stained the dead cells (n=6). Scale 
bar: 100 µm. 
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Figure 3.10 Whole and dissociated IPC Clusters in Collagen Tissues. Live dead 
staining shows the (A) dissociated IPC clusters and (B) whole IPC clusters in 
statically cultured collagen tissues, respectively, and (C) dissociated IPC clusters and 
(D) whole IPC clusters under flow condition, respectively. Live cells were stained 
with calcein (Green), dead cells were stained with Ethidium bromide (Red). Scale bar: 
100 µm.  
 



 

77 

3.3.5 Survival of 3D Co-Culture Tissues Under Static and Flow Culture Conditions 

 

 

 

A schematic of the co-culture gel setup is shown in Figure 3.11. Live dead staining 

demonstrated high IPC viability in both static and flow conditions as shown in Figure 

3.12.  

 

 

 

 

 

Figure 3.11 Schematic of a Co-culture Gel. A fully assembled co-culture gel had 
dissociated IPCs (green) embedded in a 0.5 mm thick collagen gel. This IPC gel was 
sandwiched between two layers of mESC-ECs, which were further sandwiched using 
a top and a bottom collagen gel layer. Flow was applied directly through the gel using 
a peristaltic pump using microbore tubing. 
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3.3.6 Insulin Expression by IPC clusters in 3D Monoculture Gels  

 

Figure 3.13 Insulin Expression by IPCs in 3D Gels. Immunofluorescence studies 
showing IPC clusters stained positive for Insulin (red) expression in tissues cultured 
(A) statically and (B) under flow for 3 days. Nuclei were stained blue using DAPI. 
Scale bar: 50 µm.  
 

Figure 3.12 Live Dead Staining of 3D Co-culture Tissues. Live dead staining after 5 
days of culture showing high viability of IPCs in both static and flow gels. Scale bar: 
100µm. 
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After three days of culture, both the static and flow gels were found to produce insulin as 

shown in Figure 3.13. The presence of insulin protein was detected using 

immunofluorescence labeling. This provides evidence that the IPC clusters were able to 

maintain their capacity to produce insulin in the 3D culture conditions. Further tests were 

done to check if the IPC clusters were able to upregulate their insulin secretion levels 

based on the glucose conditions they were exposed in 3D collagen tissues. A glucose 

challenge was performed on tissues containing whole IPC clusters as well as dissociated 

IPC clusters.  Our results showed that there was no significant effect of culture conditions 

on the final insulin secreted level, nor the glucose responsiveness of IPCs. Only the 

Figure 3.14 Insulin ELISA Assay. An insulin ELISA was performed followed by a 
glucose challenge on IPCs in 3D collagen gels. (n=4). 2D: IPCs isolated and plated on 
2D surface, SW: Static tissue containing whole IPC clusters, FW: Tissue containing 
whole IPC clusters under flow, SD: Static tissue containing dissociated IPC clusters, 
FD: Tissue containing dissociated IPC clusters under flow (n=4).  
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insulin secretion of static tissue containing whole IPC clusters was significantly different 

from that of 2D culture when exposed to higher glucose concentration (n=4, p<0.05). 

3.3.7 Glucose Responsiveness of IPCs in 3D Co-culture Tissues 

 

A glucose challenge followed by an insulin ELISA demonstrate that there was a 

significant decrease in insulin secretion in high glucose condition compared to lower 

glucose condition within the 2D culture group. However, no significant difference was 

observed in the 3D co-culture conditions in either static or flow conditions as shown in 

Figure 3.15 indicating that IPCs in 3D co-culture conditions are not glucose responsive. 

3.3.8 Gene Expression Analysis of IPC Clusters in Monoculture Gels  

In order to characterize gene expression of IPC clusters in 3D culture conditions, RNA 

was isolated from 3D collagen tissues cultured for 5 days. Freshly isolated IPCs 

identified by DTZ staining were used as 2D control. Table 3.1 lists all the primer 

Figure 3.15 Glucose Responsiveness of 3D Co-culture Tissues. An Insulin ELISA 
assay revealed the insulin secretion from the 3D coculture tissues under static and 
flow conditions at low and high glucose conditions. Isolated IPCs plated on 2D 
culture conditions were used as control. (n=4) 
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sequences used and their respective product length. Relative gene quantification was 

performed using the Livak method. As shown in Figure 3.16, IPCs in 2D as well as 3D 

culture conditions were found to express genes such as Ins 2, PDX1, Pax4, Nkx6.1, Glut2 

and EphrinA5.  

Glut 2 expression was found to reduce 0.69 fold and 0.17 fold, respectively for 

IPC cluster gels cultured under static and flow culture conditions, compared to the 2D 

culture. In case of the dissociated IPC cluster gels, the Glut 2 expressions reduced 0.184 

fold and 0.311 fold for static and flow culture conditions, respectively. A large variability 

was seen in the insulin gene expression between the different IPC cluster gel samples. 

The values obtained were not found to be statistically significant. 

Nkx6.1 expression in statically cultured whole IPC gels reduced 0.29 fold and 

0.47 fold for the ones cultured under flow conditions. The dissociated IPC cluster gels 

under static conditions had a 1.74 fold increase over the control sample, while the 

corresponding gel in flow conditions had a 0.33 fold reduced expression of Nkx6.1. 

Compared to 2D culture, PDX1 expression was found to reduce 0.45 fold and 

0.89 fold, respectively for IPC cluster gels cultured under static and flow culture 

conditions. In case of the dissociated IPC cluster gels, the PDX1 expression reduced 0.41 

fold and 0.36 fold for static and flow culture conditions, respectively.  
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Figure 3.16 Gene Expression Analysis of IPCs Cluster Gels. Whole and dissociated 
IPC cluster gels cultured under static and flow conditions were used for real time PCR 
analysis. Relative gene quantification was performed using the Livak method [9]. 
GAPDH was used as housekeeping control. Freshly isolated IPCs identified by DTZ 
staining were used as control (n=4). DTZ+:DTZ positive IPC clusters, SW: Whole 
IPCs in static condition, FW:IPC clusters in flow condition, SD: Dissociated IPCs in 
Static condition, FD: Dissociated IPCs in flow condition. 
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It was also found that the Pax4 expression reduced 0.2 fold and 0.37 fold, 

respectively for IPC cluster gels cultured under static and flow culture conditions 

compared to 2D culture. The Pax4 expression in case of the dissociated IPC cluster gels 

reduced 0.69 fold and 0.51 fold for static and flow culture conditions, respectively. 

EphrinA5 expression was found to reduce 0.37 fold and 0.38 fold, respectively in IPC 

cluster gels cultured under static and flow culture conditions compared to the 2D culture. 

In case of the dissociated IPC cluster gels, the PDX1 expression reduced 0.66 fold and 

0.83 fold for static and flow culture conditions, respectively.  

3.3.9 Gene Expression Analysis of IPC Clusters in Co-Culture Gels 

Gene expression analysis on 3D co-culture gels cultured for five days demonstrated that 

IPCs in 2D as well as 3D co-culture conditions express genes such as Ins 2, PDX1, Pax4, 

Nkx6.1, Glut2 and EphrinA5.  

Insulin gene expression was significantly down regulated under flow compared to 

static conditions in the 3D culture. Glut2 expression in the 3D co-culture tissues under 

static and flow conditions had decreased to 0.12 fold and 0.07 fold, respectively, 

compared to 2D culture.  For EphrinA5, the 3D co-culture tissues under static and flow 

conditions decreased 0.35 fold and 0.12 fold, respectively, while for Nkx6.1 a 0.65 fold 

and 0.62 fold reduction was observed for 3D co-culture tissues under static and flow 

conditions. It was found that the PDX1 gene expression in the 3D co-culture tissues 

under static and flow conditions had decreased to 0.35 fold and 0.32 fold, respectively for 

Pax4, 0.39 fold and 0.17 fold, respectively. Overall, a down regulation of beta cell 

specific markers was observed in the 3D co-culture gels under both static and flow 

culture conditions compared to 2D conditions. 
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Figure 3.17 Gene Expression Analysis of 3D Co-culture Tissues. Real time PCR 
analysis was done to study the gene expression levels of various genes of interest 
such as Glut2, insulin, Pax4, PDX1, Nkx6.1 and EphrinA5. Co-culture tissues 
under static and flow conditions for five days were used. Relative gene 
quantification was performed using the Livak method [9]. GAPDH was used as 
housekeeping control. Freshly isolated IPCs identified by DTZ staining were used 
as control (n=4, p<0.05). 
 

* 



 

85 

3.4 Discussion 

The present study describes preliminary optimization and characterization of 

differentiated IPC clusters in 3D culture conditions, and their subsequent co-culture in 3D 

with ECs. While previous studies have shown the beneficial effect of collagen on islet 

culture [116, 225], studies using 3D collagen with stem cell derived IPCs have not yet 

been demonstrated. Thus, attempts were done to optimize a few experimental conditions 

to develop 3D collagen tissues with IPCs.  To derive IPC clusters with size 

physiologically relevant to the islets, cannulas were used to manually break the IPC 

clusters. While obtaining smaller size IPC clusters, large number of dead cells and debris 

were also seen in culture. In order to prevent these from carrying forward in culture, 

various strategies were tried for their removal. It was observed that filtering the IPC 

cluster suspension through a cell strainer effectively removed most dead cells and debris, 

when compared to pre-plating method. 

Once smaller IPCs were achieved, they were cultured in 3D environment.  Our 

study showed that the majority of the IPC clusters remained viable after embedding in 3D 

collagen gels. However, an increase in glucose responsiveness was not observed in the 

3D culture conditions used in the current study. The final concentration of the gel used in 

this study was 3 mg/ml., which is shown to have a pore size of ~1.8 µm [241]. However, 

concentration of the collagen should be further optimized as stiffness of the gel can affect 

the behavior of IPCs in 3D culture. 

To determine whether perfusion flow improves viability of IPCs in 3D collagen 

tissue, flow was applied to the 3D tissues. Flow rate of 0.5 ml/min was chosen as it has 

previously been demonstrated that this value corresponds to a shear stress of 
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approximately 0.71 dyn/cm2, which has been shown to be in the physiological range in 

microvessels in in vivo conditions [238]. This flow-rate was chosen to minimize gel 

compaction of the 3D tissues due to high velocity of flow. Our studies with endothelial 

cells (Chapter 4) demonstrated that the cell seeded collagen gels underwent significant 

compactions when exposed to 2 ml/min flowrate. This compaction was reduced upon 

changing the flowrate to 0.5 ml/min. 

Upon live dead staining, it was found that the IPC cluster viability was higher in 

static culture conditions compared to the flow culture conditions. Dead cells were found 

on the outer edges of the IPC clusters. This was not expected as islets in perifusion 

studies that are exposed to higher flow rates ranging from 130 µl/min to 1 ml/min survive 

without a problem [141, 242]. Further studies are required to examine the effect of lower 

flow rate as well as shorter culture period on IPC function in 3D culture. The difference 

is the duration of exposure. Perifusion can last from a few min to a few hours whereas 

our study continued for 5 days. 3D collagen gels were cultured for 5 days to detect any 

changes in gene expression, which may not be reflected in short term studies. Since 

individual rat islets in vivo are normally exposed to a flowrate of 2 x 10-5 ml/min of blood 

[142, 243], it is possible that much lower flow rate needs to be tested. It is not clear from 

the study whether similar cell death will occur at lower flow rates or shorter culture 

period. Thus, more experiments are required to better understand the effects of flow on 

IPC clusters. 

It was observed that the IPC clusters lose their glucose responsiveness once they 

are isolated out of the differentiation plate. Isolated IPCs plated on 2D surface as well as 

the ones incorporated in 3D collagen gels cultured under static and flow culture 
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conditions displayed this lack of glucose responsiveness.  Prior to isolation of IPCs, IPCs 

were glucose responsive. Past studies have reported evidence that exposure to high 

glucose medium de-sensitized rat and human islets and impaired their function in 

response to a glucose challenge [221, 244, 245]. The medium used in this study contained 

about 17.5 mM of glucose and as this is considerably high, it is possible that the cells 

were rendered glucose unresponsive because of exposure to the medium. Assady et al. in 

their ground breaking study that described the first derivation of IPCs by hES cells, 

suggested that the high glucose conditions of the differentiation medium might make the 

IPCs unresponsive to glucose [76]. It was suggested by this group that switching 

differentiating cells to a low glucose medium during the last stage of differentiation 

might be able to restore the glucose responsiveness [76]. Thus, whether this is due to 

desensitization of IPCs in high glucose containing culture medium awaits further studies. 

Prior to the gel preparation, IPC clusters were manually handpicked from their 

environment in the differentiation culture, which caused separation of IPCs from the 

basement membrane proteins as well as from the neighboring cells. Since, laminin and 

collagen type IV are produced by cells in our culture and they are known to be important 

in insulin gene regulation and support glucose stimulated insulin release [246], it is 

plausibe that the loss of these basement membrane proteins may have led to the loss of 

glucose responsiveness for the IPC clusters when they were transferred in collagen gels 

or plated in 2D culture conditions. In fact, previous studies have indicated that a 

combination of collagen and Matrigel can help maintain insulin gene expression of islets 

in culture [221, 225].  Future studies exploring a combination of collagen with other 
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ECM proteins such as laminin or Matrigel are needed to determine their effects on IPC 

function in 3D in vitro conditions. 

It is also possible that the IPCs may have undergone transdifferentiation in culture 

[247]. Although studies have shown that collagen provides a permissive environment for 

islet organization and helps maintain islets in culture for a longer time [221], there have 

also been a few reports that have shown that islets embedded inside collagen gels 

transdifferentiated into duct like cells [248, 249]. Further studies are needed to verify 

whether transdifferentiation has occurred by examining the expression of ductal cell 

markers such as cytokeratin 7,19 and 20 [250]. 

Past studies have highlighted the beneficial effect of endothelial cells on islet 

culture. Endothelial cell secreted factors improve insulin gene expression, beta cell 

proliferation and growth [1, 145, 150, 151, 154, 165, 205, 251, 252]. In the present study, 

we used ECs and IPCs derived from mES cells to develop 3D co-culture gel tissues. 

These co-culture tissues were cultured up to 5 days in static and flow culture conditions. 

Live dead staining at Day 5 showed that most of the cells in the co-culture maintained 

their viability after five days of culture. Although the insulin gene expression levels were 

comparable to that of 2D clusters, the 3D co-culture gels showed diminished glucose 

responsiveness. The basal level of insulin expression was about 8 µg/ml when the cells 

were exposed to low glucose levels. This is about four times higher than the response of 

DTZ+ clusters in 2D conditions as shown in Chapter 2, section 3.4. In 2D conditions, the 

cells had secreted less than 2 µg/ml of insulin when exposed to 2.5 mM of glucose and ~8 

µg/ml upon exposure to 27.7 mM of glucose. But in 3D condition, the cells secreted 8 

µg/ml of insulin when exposed to 2.5 mM of glucose and upon exposure to 27.7 mM 
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glucose no significant increase in insulin secretion was observed. This presents evidence 

that the IPC clusters were not responding to glucose levels.  

The high level of insulin expression at the low glucose stimuli can be explained 

by the fact that the 3D co-culture gels had more IPCs packed together compared to the 

2D culture and which may have resulted in higher insulin release compared to that in 2D 

culture condition. This however, does not explain why the cells did not upregulate their 

insulin levels upon high glucose exposure.  

A study by Boyd et al. showed that the number of islets plays an important role in 

determining the end result of a glucose challenge test. In their study, 600, 300, 100, 66, 

55and 25 islets were cultured separately. Upon performing a glucose challenge at 3.3mM 

and 25 mM glucose, only the first two groups i.e., 600 and 300 islets behaved in a 

glucose responsive manner [88]. When this procedure was repeated using IPC clusters 

derived from mES cells, similar results were obtained [88]. Therefore further studies are 

needed to examine whether increasing the number of IPC clusters will have a positive 

effect on the IPC culture in our study.  

In addition, a previous study by Song et al., showed that when cultured with rat 

endothelial cells, islets were not glucose responsive up to 5 days. However, a difference 

was noticed between day 7-14 of the co-culture [253], when the islets became glucose 

responsive. This suggests that the effect of endothelial cell co-culture on islet glucose 

responsiveness might not be immediate and requires longer time to fully manifest. As our 

study only lasted for 5 days, it will be interesting to see the impact of a longer duration on 

the glucose responsiveness of the co-culture tissues.  
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 Gene expression analysis showed that EphrinA5 expression was not increased in 

flow co-culture conditions as hypothesized. On the contrary, the EphrinA5 expression 

was found to be higher in static co-culture gels compared to flow co-culture gels. The 

reason for this was not understood and hence the interaction between the EphB2 and 

EphrinA5 was not analyzed as initially described in the specific aim III. 

Jaramillo et al. used a co-culture of ECs while differentiating human embryonic 

stem cells into IPCs [254]. In this study, the authors showed that the direct co-culture of 

endothelial cells resulted in higher insulin expression when compared to transwell 

cultures and exposure to conditioned medium from endothelial cells [254]. It is 

noteworthy that the IPCs were differentiating while they were exposed to ECs, which is a 

different condition compared to the presented study where the differentiated IPCs were 

co-cultured with ECs. Whether the ECs have a more beneficial effect during or after the 

differentiation process is not clear.  

Previous studies have also highlighted the role ECs play in the development of 

diabetes type I. ECs can get activated by cytokines and then make large quantities of NO, 

that can cause beta cell death [255]. An interesting study by Steiner et al., showed that in 

co-culture of islet endothelial cells and islet cells, the endothelial cells acted as effector 

cells and were able to mediate strong to complete lysis of islet cells [256]. Such lysis is 

preceded by DNA strand breaks with no morphological evidence of apoptosis [256-258]. 

Although extensive cell death was not observed in the co-culture system in the presented 

study, there was however a downregulation of key beta cell markers in the co-culture 

environment in both static and flow culture conditions. Measuring the NO levels in the 

co-culture experiments and checking the DNA strands for signs of breakage can give an 
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insight into the cell-to-cell interactions between the IPCs and mESC-ECs. NO levels can 

be measured by performing an NOS ELISA assay, but was not performed in the interest 

of time. Checking DNA strands for breakage was beyond the scope of this work and 

hence was not performed. 

The presented chapter describes strategies for 3D encapsulation of IPC clusters 

and their detailed characterization. It also describes useful strategies to prepare 3D co-

culture gels using IPCs and mESC-ECs. Although the survival rate was high in the 

monoculture and co-culture gels, an improvement in the glucose responsiveness was not 

observed. Further, a downregulation of key beta cell markers was seen in the 3D culture 

conditions. Further studies with different culture conditions will need to be performed to 

collect more evidence on the effects of 3D environment and flow on the survival and 

functionality of IPC clusters in in vitro conditions. Longer duration of culture and a 

switch to low glucose conditions during the final stages of differentiation might improve 

the outcomes of the co-culture. Rigorous optimizations will be required to improve the 

glucose responsiveness and genetic profile of the co-culture tissues before they can be 

used for any therapeutic applications. 
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CHAPTER 4 

DIFFERENTIATION OF MOUSE EMBRYONIC STEM CELLS INTO ISLET 
ENDOTHELIAL CELLS 

 
 
 

4.1 Introduction 
 

Several efforts have recently been made to differentiate pluripotent stem cells into 

endothelial progenitor cells or endothelial cells using various strategies (2,10,17,38,66). 

These pluripotent stem cell derived endothelial cells can provide an abundant cell source 

for tissue engineering applications as well as more personalized medical treatments. 

Levenberg et al. reported the derivation of endothelial cells from human embryonic stem 

cells (hESCs) and Blancas et al. demonstrated a chemically defined protocol to 

differentiate mouse embryonic stem cells (mESC) into endothelial cells (9,10). Other 

groups have shown that fluid shear stress can promote an endothelial-like phenotype from 

early embryonic stem cell differentiation (31,65) and the role of matrix stiffness has also 

been explored for endothelial differentiation (16,71). Recently, Nolan et al. established a 

library of molecular signatures of tissue-specific microvascular endothelial cells. They 

demonstrated that when murine embryonic stem cell-derived endothelial cells were 

transplanted into animal models, the generic endothelial cells acquired the specific 

characteristics of the tissues in which they were transplanted (46). Notably, endothelial 

cells are recognized as a heterogeneous cell population in their structure and function 

based on the location in the body (3). However, protocols for in vitro stem cell 

differentiation into organ-specific endothelial lineages are not yet available
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Endothelial cells found in pancreatic islets, known as islet endothelial cells (IEC) 

are being increasingly appreciated as an important contributing factor in pancreatic islet 

development and maturation (28,67), as pancreatic islets have a very dense capillary 

network in vivo. IECs are known to exhibit a unique phenotype and markers that 

distinguish them from neighboring endothelial cell populations. It has previously been 

reported that isolated human IECs have more fenestrations than endothelial cells found 

within the exocrine part of the pancreas (20,47,68,69). In addition to classical endothelial 

cell makers such as von Willbrand factor, platelet endothelial cell adhesion molecule 

(PECAM1), and uptake of acetylated- low density lipoprotein (LDL), IECs are shown to 

express unique markers including nephrin and alpha1-antitrypsin (AAT) (43,69). Other 

studies have shown that rat IECs constitutively express endothelial nitric oxide synthase 

(eNOS) and the expression of eNOS is glucose-dependent unlike other endothelial cells 

(56,68,69). These unique properties of IECs contribute to normal development of beta 

cells in the pancreas. IECs secrete various molecules such as collagen type IV (29), 

laminin (26,45,61), connective tissue growth factor (CTGF) (14) and hepatocyte growth 

factor (HGF) (27) that are important for insulin secretion, beta cell proliferation, 

differentiation and endocrine lineage specification. Recent studies have also highlighted 

the role of IECs in the revascularization and stabilization of transplanted islets in the host 

tissue (11). Mattsson et al. showed that the expression of angiogenic and inhibitory 

factors by IECs varied at different time points post transplantation (44). However, due to 

difficulty in isolating a pure population of IECs and expanding in in vitro culture, the 

information on IECs is still relatively limited. 
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In the current study, we report the first demonstration of endothelial cells 

exhibiting IEC markers differentiated from mESC. This population of IECs appeared as a 

side-product in the differentiation culture of mESC into pancreatic beta cells.  A pure 

population of endothelial cells was successfully isolated from the vicinity of insulin-

producing cells and expanded in in vitro culture for further characterization. These highly 

purified endothelial cells with islet specific characteristics will further enhance our 

understanding of tissue-specific endothelial cell function. Moreover, studies investigating 

the interaction between neighboring insulin-producing beta cells and IECs can lead to a 

significant step in formulating new therapeutic angiogenic approaches for diabetes. 

 
4.2 Materials and Methods 

 

4.2.1 Identification and Isolation of mESC-Derived Endothelial Cells (mESC-ECs)  

MESC were used to derive insulin producing cells (IPCs) of the pancreatic beta lineage 

as described in Chapter 2 Section 2.2. During various stages of mESC differentiation into 

pancreatic beta cells, acetylated Dio-LDL (Biomedical Technologies Inc., Stoughton, 

MA) was used to identify a mature endothelial cell population in the culture. LDL 

working solution was prepared by diluting LDL 1:10 in culture medium in the dark. 

Medium was removed from cells, LDL was added and the dishes were wrapped in 

aluminum foil and incubated for 4 hours at 37 °C. LDL positive cells were detected as 

stained green under an inverted florescence microscope (IX81 DSU, Olympus).  

At the end of the differentiation process, i.e.,, Day 33, LDL positive cells in 

culture were selectively isolated from the rest of the population using sterile cloning discs 

(Capitol Scientific, Austin, TX). Dishes were washed 2X with warm PBS to remove 



   
 

  95 

traces of medium. The sterile cloning discs were treated for ten minutes with UV light to 

further sterilize them. Using a fine tip forceps, 1-2 cloning discs were added to an aliquot 

of 0.25% trypsin and pre-treated for 5-10 minutes. They were then added carefully on 

previously marked areas with a large subpopulation of LDL positive cells and incubated 

for 3 min at 37°C.  At the end of the incubation, the discs were gently lifted from the top 

and placed in a new dish coated with 0.1% gelatin and were initially cultured in the 

pancreatic differentiation medium supplemented with 10% FBS. After a few passages, 

culture medium was replaced with MCDB complete endothelial growth media containing 

10% FBS, 1% penicillin-streptomycin (Sigma Aldrich), and Endogro, an endothelial cell 

growth supplement from VEC Technologies. Cells were passaged at 70-80% confluence 

and the cell culture medium was exchanged every 2-3 days.  

4.2.2 FACS Analysis of mESC-ECs 

Fluorescence-activated flow cytometry (FACS) was used to confirm the phenotype and 

the purity of the isolated cell population. For FACS analysis, cells were fixed with 4% 

PFA for 30 min and then washed 3X with PBS. Cells were then permeabilized with 

0.25% Triton-X for 5 min. at room temperature. Cells were centrifuged to remove Triton-

X and re suspended in ice cold FACS buffer. After incubation at 4 °C for ten minutes, 

cells were incubated with a polyclonal rabbit anti-PECAM1 (1:20, Santa Cruz) in FACS 

buffer  (PBS with 1% BSA and 2 mM EDTA) for 30 minutes at 4 °C. Cells were then 

washed three times with cold PBS and secondary donkey anti-rabbit APC (1:20, Fisher 

Scientific) was added and incubated for 30 minutes at 4 °C. Cells were again washed 

three times with cold PBS. Cells were analyzed using a FC500 Flow cytometer (Beckman 
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Coulter, Pasadena, CA) and FlowJo software at the FACS facility at Rutgers Medical 

School. 

4.2.3 Western Blot Characterization of mESC-ECs 

A detailed characterization of cell phenotype was performed using western blotting 

analysis.  For making cell lysates, cells were washed twice with ice cold PBS, and then 

incubated with cell lysis buffer (See Appendix B for details) for 20 min at 4 °C. The cells 

were then gently scraped off using a cell scraper (USA scientific) and then added to a 

microcentrifuge tube. Tissue lysates were made by first grinding the tissue over dry ice, 

making sure that it remains frozen throughout the process. The powdered tissue was then 

transferred to a microcentrifuge tube with the lysis buffer and incubated at 4 °C for 20 

min. The lysates were centrifuged at 4 °C for 30 min at 14,000 rpm in a microcentrifuge. 

The supernatant was transferred into a fresh tube and used for protein quantification 

using the Bradford or DC assay (See Appendix X for details). The results were read using 

the Smart Spec Spectrophotometer (BioRad). Cell lysates were diluted (1:1) in Laemmli 

buffer (Bio-Rad, Hercules, CA) containing 5% mercaptoethanol and 2% sodium dodecyl 

sulfate (SDS). The lysates were stored in 25-30 µg aliquots and stored at -20 °C till ready 

for use.  

2D gel electrophoresis was performed using Miniprotean TGX precast gels 

(BioRad). Dual color precision plus protein standard (BioRad) was used as a protein 

marker. The gels were transferred on Immunoblot PVDF membranes (BioRad) at 100 V 

for 90 minutes at 4 °C. For immunoblotting, primary antibodies used were a polyclonal 

rabbit anti-PECAM1 (1:200, Santa Cruz), a monoclonal mouse anti-thrombomodulin 

(1:200, Abcam), a monoclonal mouse anti-ICAM1 (1:500 Abcam), a polyclonal rabbit 
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anti-eNOS (1:200, Abcam), a polyclonal rabbit anti-EphB2 (1:200, Santa Cruz), a 

polyclonal goat anti-EphB4 (1:200, Santa Cruz), a polyclonal rabbit anti-Notch-1 (1:100, 

Santa Cruz), a polyclonal rabbit anti-Nephrin (1:250, Abcam) and a monoclonal mouse 

anti-β actin (1:2000, Sigma). After three washes with TBS-Tween buffer, blots were 

incubated with a secondary goat anti-rabbit IgG HRP, a goat anti-mouse IgG HRP 

antibodies or a goat anti-donkey IgG HRP antibody (1:2000, Santa Cruz) for 1 hour at 

room temperature. After three washes with TBS-Tween buffer and one wash with TBS 

buffer, the blots were developed using a Supersignal chemiluminescent substrate 

(Thermoscientific, Rockford, IL). Blots were incubated with 3 mls of 1:1 ratio of the 

Supersignal substrate solution and Supersignal enhancer solution in the dark. Blots were 

then exposed to UV and developed using a Chemidoc XRS (BioRad). Fresh rat aortic 

tissue homogenates and low passage of cultured rat aortic endothelial cells (RAEC) 

lysates were used as controls. mESC-EC lysates from passages 6-16 were used. 

4.2.4 Deposition of ECM Proteins by mESC-ECs 

To determine whether mESC-ECs deposit basement membrane proteins in culture, cells 

were cultured on glass slides for 5-7 days for immunohistological evaluation. Cells were 

fixed for 30 minutes at room temperature using 4% PFA (Boston Bioproducts) and then 

washed three times with PBS. Cells were then blocked with 10% horse serum in PBS 

with 0.1% Tween-20 for 30 minutes followed by an overnight incubation with primary 

antibodies at 4 °C. Primary antibodies used were a polyclonal goat anti-laminin (1:200, 

Santa Cruz), a polyclonal rabbit anti-collagen type IV (1:200, Santa Cruz) and a 

polyclonal rabbit anti-fibronectin (1:200, Santa Cruz). Cells were washed 3X with PBS 

and then incubated with secondary donkey anti-goat (1:200, Santa Cruz) and goat anti-
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rabbit (1:200, Santa Cruz) for 30 minutes. Cells were counterstained with hematoxylin 

(Boston Bioproducts, Ashland, MA), and mounted using Permount (Fisher Scientific, 

Hampton, NH). Cells were imaged using an inverted microscope with a color camera 

(Nikon Eclipse Ti-S, Japan).  

4.2.5 Immunofluorescence Characterization 

To determine the expression of FLK1 by mESC-ECs, immunofluorescence analysis was 

performed. Cells were fixed for 30 minutes at room temperature using 4% PFA (Boston 

Bioproducts) and then washed 3X with PBS. Cells were then blocked with 10% goat 

serum in PBS with 0.1% Tween-20 for 1 hr. followed by an overnight incubation with a 

polyclonal rabbit anti-Flk-1 (1:1000, Abcam) at 4°C. Cells were washed 3X with PBS 

and then incubated with secondary goat anti-mouse (1:2000, Abcam) for 1 hour. Cells 

were stained with DAPI to visualize the nuclei and were imaged using a confocal 

microscope (IX81 DSU, Olympus, Somerset, NJ). 

4.2.6 Endothelial Nitric Oxide Synthase (eNOS) Expression by mESC-ECs 

ENOS Enzyme linked immunosorbent assay (ELISA) kit (R&D systems, Minneapolis, 

MN) was used to quantify eNOS expression by cultured mESC-ECs. Cells cultured in 

MCDB complete endothelial growth media containing 17.5 mM of glucose were first 

examined. Cells were then exposed to culture medium containing higher glucose 

concentrations of either 25 mM or 35 mM of glucose for 24 hours to investigate whether 

eNOS expression by mESC-ECs was dependent on glucose concentrations. The cells 

were lysed and the lysates were collected to be analyzed by ELISA. The ELISA results 

were read using an Emax microplate reader (Molecular Devices, Sunnyvale, CA) at the 
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wavelength of 570 nm. A student T-Test was performed to check whether the data was 

statistically significant. 

4.2.7 Vascular Endothelial Growth Factor (VEGF) Expression by Cells During 

Pancreatic Differentiation Process 

VEGF concentration in the culture medium during the pancreatic differentiation process 

was quantified using a VEGF ELISA kit, following manufacture’s instruction (R&D 

systems, Minneapolis, MN). Culture medium was collected at various time points, 

including day 20, 26 and 32 of pancreatic differentiation. In addition, culture medium 

was collected from mESC-ECs culture, to determine VEGF expression by endothelial 

cells. Fresh differentiation medium was used as a control. The ELISA results were read 

using an Emax microplate reader (Molecular Devices, Sunnyvale, CA) at the wavelength 

of 570 nm. A student T-Test was performed to check whether the data was statistically 

significant. 

4.2.8 Matrigel Assay  

A 0.8 mm thick layer of Matrigel (BD Biosciences, San Jose, CA) was prepared by 

adding Matrigel diluted in ice-cold DMEM (1:1) into a well of a 12 well plate. 1.5x104 

mESC-ECs were seeded onto the layer of Matrigel and cultured for up to 48 hours. Cord 

formation by mESC-ECs was imaged using a microscope with a color camera (Nikon 

Eclipse Ti-S, Japan). 

4.2.9 Preparation of a Sandwiched Collagen Gels Using mESC-ECs  

3D Collagen gels were constructed using a modification of the sandwich method 

previously described [259] as shown in Figure 4.12. The original method describes the 
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preparation of a collagen gel with one layer of cells sandwiched between two gel layers. 

The method was modified to include up to three layers of cells embedded in between the 

collagen gel layers. Further modification was done to reduce the gel preparation time 

from 72 hours to 9 hours. Rat tail collagen type I (BD Biosciences), 10X DMEM (Sigma 

Aldrich) and 10X reconstitution buffer (0.05 N NaOH with 0.16 M HEPES and 0.25 M 

NaHCO3) were mixed to form a collagen solution with final concentration of 3 mg/ml. 

To form 3D collagen gels, collagen solution was first poured into tissue culture plates and 

incubated at 37°C for 30 minutes to allow polymerization before mESC-ECs suspended 

in MCDB complete medium were added on top. After 3 hours, medium was carefully 

removed and another layer of cold collagen gel solution was added on top of the cell 

layer. This process was repeated to obtain in total two layers of cells sandwiched between 

three layers of collagen gel. Medium was changed every other day. After 3-5 days in 

culture, collagen gels were fixed overnight in 4% PFA at room temperature.  

4.2.10 Lumen Formation in mESC-EC Seeded Collagen Gels 

Fixed collagen gel samples were paraffin-embedded and histological sections were 

prepared for immunofluorescent analysis (Core histology Lab, Rutgers Medical School). 

The samples were de-paraffinized by a series of washes (See Appendix X for details). 

The sections were incubated with an antigen retrieval buffer (10 mM citric acid, pH = 6) 

at 95 °C for 25 minutes and then allowed to cool down for 20 min. They were incubated 

with 10% goat serum and 0.1% Triton-X in PBS for 1 hour for blocking followed by 

incubation with a polyclonal rabbit anti-PECAM1 (1:200, Santa Cruz) at 4 °C overnight. 

After 3x wash with PBS, collagen gel sections were incubated with a secondary donkey 

anti-rabbit (1:200, Santa Cruz) for 1 hour at room temperature over a rocker. DAPI 
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(Vector labs) was used to stain the nuclei. Images were acquired using a confocal 

microscope (IX81 DSU, Olympus, Somerset, NJ) and were merged using Image J 

software (NIH). 

4.2.11 Effect of VEGF Inhibitor on mESC-ECs Yield 

To determine whether the presence of VEGF is one of the critical factors contributing to 

the appearance of mESC-ECs in pancreatic differentiation culture, Thalidomide (Sigma), 

which is known as a potent inhibitor of angiogenesis [260] was added to the 

differentiation culture on day 15 at a final concentration of either 10 µM or 20 µM in the 

culture medium. At the end of the differentiation (Day 33), cells were incubated with 

LDL as previously described and monitored under a florescence microscope.  

4.2.12 Application of Flow to mESC-EC Seeded Collagen Gel 

A custom made bioreactor set up was used for this study [238]. The collagen mESC-EC 

mix was pipetted onto a polyethylene terephthalate (PET) membrane glued on a PDMS 

ring placed on the inside edge of the bottom piece of the flow bioreactor. This porous 

membrane supported the gel during the experiment. To prevent the gel from moving and 

undergoing contraction by cellular action, six 27G needle pins were inserted around the 

periphery of the PDMS ring. To reduce the resistance to flow created by the membrane, 

15-20 holes were punched into it using a 30 gauge needle. During the gel preparation 

when subsequent layers were being added to the gel, it was placed inside a small sterile 

plastic container (Nalgene) in the incubator. Once all the gel layers were added, the 

bioreactor was fully assembled inside the laminar flow hood. First a PDMS ring was 

placed on top of the gel and pushed down upon the needle pins. This was done carefully 

without disturbing the gel beneath. This ring formed a flow orifice in the system and 
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forced the medium to flow through the gel. It prevented the medium from taking the path 

of least resistance and flowing around the gel. Medium was added to the gel so that the 

bottom piece was completely full of medium. The bioreactor was assembled as described 

in Chapter 3. Once the bioreactor was fully assembled, it was connected to a peristaltic 

pump (Cole Parmer) via cartridges. Flow-rate and flow direction were set and the flow 

was started at 0.5 ml/min. Flow was continued for 1-10 days. 

4.2.13 Actin Staining 

Fixed collagen gels were stained with Rhodamine Actin Phalloidin (Life technologies) 

diluted 1:20 with PBS in the dark for 2 hrs on a rocker. Afterwards, the gels were washed 

3x with PBS on a rocker. Samples were stained with DAPI to visualize the nuclei and 

mounted with a coverslip for imaging. A DSU unit attached to an inverted fluorescence 

microscope  (Olympus) was used to take z-sections of the gels. Cell sens software was 

used to combine the z-sections to acquire a 3D image of the gel samples. Deconvolution 

was performed using the Image J software (NIH). 

4.2.14 ECM Protein Staining in Differentiation Culture 

This was done to demonstrate whether the mESC-ECs were capable of depositing 

basement membrane proteins in the differentiation culture, prior to their isolation. DTZ 

positive clusters were marked in a differentiation plate and the plates were fixed for 4 

hours with 4% PFA. After 3X washing with PBS, the cells were blocked with 10% goat 

serum and 0.1% Triton-X 100 in PBS for 1 hour at room temperature. Primary antibodies 

polyclonal goat anti-laminin (1:200, Santa Cruz), a polyclonal rabbit anti-collagen type 

IV (1:200, Santa Cruz) were added for overnight incubation at 4 °C. Cells were washed 

3X with PBS and then incubated with secondary donkey anti-goat (1:200, Santa Cruz) 
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and goat anti-rabbit (1:200, Santa Cruz) for 30 minutes. Cells were counterstained with 

hematoxylin (Boston Bioproducts, Ashland, MA) to visualize the nuclei.   

4.2.15 Addition of VEGF to Promote Angiogenesis 

Lyopholized recombinant VEGF powder (R&D systems) was resuspended in sterile PBS 

containing 0.1% BSA (Bovine serum albumin) to make a 100 µg/ml stock solution. This 

solution was then aliquoted and stored at -20 °C. In order to obtain a more interconnected 

and dense vasculature, recombinant VEGF was added to the medium at 5 ng/ml.  VEGF 

was directly added to the medium and mixed up and down by pipetting. 

4.2.16 Statistical Analysis 

Results are presented as mean± standard deviation. A one-way paired student T-test was 

performed. Statistical significance was accepted for p<0.05. 
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4.3 Results 
 
 
4.3.1 Identification of mESC-ECs 

 

 

 

IPCs were obtained successfully from mESC using a previously established protocol [73], 

as described in detail in Chapter 2. Insulin-producing cell clusters were identified after 33 

days of differentiation by staining with DTZ as shown in Figure 4.1A. Interestingly, in 

the vicinity of DTZ positive cell clusters, we have detected a population of cells that 

uptake LDL (Figure 4.1B). By examining the differentiation culture at various time 

Figure 4.1 Identification of Mouse Embryonic Stem Cell-Derived Endothelial Cells 
(mESC-ECs). (A) A brightfield image of insulin-producing cell cluster stained with 
Dithizone (DTZ) is shown in red. (B) Cells surrounding DTZ positive cell cluster are 
stained green by the uptake of acetylated Dio-LDL. Scale bar, 100 µm. (C) A time line 
with important milestone marks during differentiation of mESC into pancreatic beta 
cells. Embryoid bodies (EBs) formed by a hanging drop method were plated at day 6. 
A definitive endoderm marker, FoxA2, was first detected at day 15. LDL positive cells 
started to appear at day 20. The mESC-ECs were isolated on day 33, which 
corresponds to the end of pancreatic differentiation. Scale bar: 100µm. 



   
 

  105 

points, we found that the LDL positive cells start to appear as early as day 20 of 

differentiation (Figure 4.1C). It was also found that the number of LDL positive cells 

progressively increases, reaching approximately 6.3±0.9% of the total number of cells on 

the final day of differentiation, day 33 as shown in the Figure 4.2.  

 

 

 

4.3.2 Characterization of mESC-ECs 

Isolated mESC-ECs positive for LDL were expanded and cultured for up to 15 passages. 

Cultured mESC-ECs exhibited a cobblestone morphology as shown in Figure 4.3A. To 

determine whether these cells express an endothelial cell adhesion marker, PECAM1, a 

western blot analysis was performed on cells at various stages of differentiation. It was 

found that while undifferentiated mESCs and cells differentiated for up to 15 days do not 

express PECAM1, only isolated and cultured mESC-ECs express PECAM1 (Figure 

4.3B). In order to determine the purity of the cultured cell population, a FACS analysis 

using PECAM1 was performed. Figure 4.3C shows that 99% of mESC-ECs express 

Figure 4.2 Yield of mESC-ECs. The average yield of mESC-ECs was ~6.3% (n=3). This 
was calculated by counting the LDL positive cells and the total number of cells in a well. 
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PECAM1, confirming that the isolated cell population is a pure endothelial cell 

population.  

 

 

 

Moreover, immunohistochemistry results revealed that these cells express 

basement membrane proteins such as collagen type IV, laminin and fibronectin in culture 

(Figure 4.4 A, B and C, respectively), although difference in the protein expression level 

at various culture times was not observed.  

 

 

 

 

Figure 4.3 Characterization of mESC-ECs. (A) A representative phase contrast image 
showing mESC-ECs (Passage 7) exhibiting cobblestone morphology in culture. Scale 
bar: 100 µm. (B) Western blot analysis showing PECAM1 expression only by isolated 
mESC-ECs, and not by undifferentiated mESC or mESC at earlier time points of 
differentiation i.e before day 15. Rat aortic tissue lysate and primary RAECs served as 
positive controls and beta actin served as a loading control. (C) FACS histogram 
demonstrating a complete shift of peak for PECAM1 positive mESC-ECs (green) 
compared to isotype control (purple). 
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Figure 4.4 Basement Membrane Protein Expression by mESC-ECs. Representative 
immunohistochemical micrographs demonstrating the deposition of  (A) collagen type 
IV,  (B) fibronectin and (C) laminin by cultured mESC-ECs. Scale bar : 100 µm.  
 

Figure 4.5 Western Blot Characterization of mESC-ECs. Western blot analysis 
showing PECAM1 expression only by isolated mESC-ECs, and not by 
undifferentiated mESC or mESC at earlier time points of differentiation i.e., Day 15. 
Rat aortic tissue lysate and primary rat aortic endothelial cells served as positive 
controls and Beta actin served as a loading control. 
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Figure 4.5 demonstrates that cultured mESC-ECs express classical endothelial 

markers such as thrombomodulin, eNOS and ICAM-1 in addition to PECAM1 and 

EphB2.  Unlike RAECs that only express an arterial marker, Notch-1, mESC-ECs 

express both venous and arterial markers, EphB4 and Notch-1, respectively. More 

importantly mESC-ECs express nephrin, which is known as one of the islet endothelial 

cell specific markers.  

 

 

  

 

To determine whether eNOS expression by mESC-ECs is glucose-dependent, 

cells were subjected to different glucose concentrations. Negligible amount of eNOS was 

detected in the culture medium, which contains 17.5 mM glucose (Figure 4.6). However, 

Figure 4.6. eNOS Expression in mES Cell Derived ECs. Expression of endothelial 
nitric oxide synthases (eNOS) expression by mESC-ECs exposed to different 
glucose levels (25mM and 35mM) in the medium. Significant increase in eNOS 
expression by mESC-ECs was observed when exposed to higher glucose 
concentration, demonstrating glucose-dependent eNOS expression. The DMEM/F12 
culture medium containing 17.5 mM of glucose served as a control (n=3, p<0.05). 
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when the cells were exposed to higher glucose concentration of either 25 mM or 35 mM, 

eNOS expression was significantly upregulated (n=5, p <0.05). Since the cells were 

cultured in medium containing 17.5 mM glucose, it was considered as a baseline glucose 

level and 25 mM and 35 mM concentrations were chosen. However, it is important to 

culture cells in low glucose containing medium to further examine the effects of glucose 

concentration on eNOS expression.  

As the number of mESC-ECs progressively increased in the differentiation 

culture, VEGF ELISA was performed to examine the presence of VEGF in the culture, 

and to determine whether VEGF plays a role in the appearance of the endothelial cell. 

Culture medium was collected from various time points during the differentiation, and 

fresh medium was used as a control. Culture medium used to culture mESC-EC was also 

tested to identify the origin of VEGF. The VEGF ELISA results showed a significant 

increase in VEGF concentrations at day 20 of differentiation compared to that of fresh 

culture medium (Figure 4.7). This day 20 of differentiation coincides with when LDL 

positive cells were first detected in the culture. It was also observed that the VEGF 

concentration is significantly higher in culture medium at day 33 compared to day 20 of 
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differentiation. The increase of VEGF expression in culture correlates to the increasing 

number of endothelial cells as the differentiation progresses. However, since it was found 

that cultured mESC-EC do not produce significant amounts of VEGF in culture, insulin 

positive cells are likely to be the main source of VEGF in the differentiation culture. 

Moreover, the addition of either 10 µM or 20 µM of Thalidomide, an angiogenesis 

inhibitor in the culture for 18 days resulted in a significantly less number of LDL positive 

endothelial cells at the end of the differentiation as shown in Figure 4.8, indicating that 

VEGF is necessary for mESC-EC formation. 

 

 

Figure 4.7 VEGF Expression in Differentiation Culture. VEGF concentrations in 
culture medium measured at various time points (day 20, 26, and 32) during 
differentiation. VEGF was significantly higher in measured time points compared to 
that of fresh culture medium. Increasing trend of VEGF with more days in culture was 
observed (n=3, p<0.05). 
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             Previous studies have suggested that beta cells are unable to form a basement 

membrane on their own and hence they recruit endothelial cells to deposit basement 

membrane proteins for them [154]. In order to check if the mESC-ECs were capable of 

depositing basement membrane proteins in the pancreatic differentiation culture, the 

dishes with DTZ positive clusters were fixed and stained with basement membrane 

proteins such as laminin and collagen type IV. It was observed that the cells surrounding 

the DTZ+ clusters stained positive suggesting that the endothelial cells were capable of 

depositing the ECM proteins in the differentiating culture (Figure 4.9). This also 

reinforces the interplay of signaling that happens between the developing beta cells and 

the endothelial cells.  

 

Figure 4.8. Effect of Thalidomide on mESC-EC Yield. mESC-ECs exposed to 
Thalidomide had reduced numbers of cells that were positive for LDL uptake (Red) 
compared to the control samples (Scale bar: 100 µm). 
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Figure 4.9 Basement Membrane Protein Staining in Differentiation Culture. 
Immunohistochemical staining demonstrated expression of collagen type IV and 
laminin by the cells surrounding DTZ+ clusters as shown by yellow arrows. The 
cells were counterstained with Hematoxylin. Scale bar: 100um.  

Figure 4.10 Expression of Islet Endothelial Specific Marker by mESC-ECs at Higher 
Passage. A western blot analysis demonstrated the presence of islet endothelial 
specific markers such as Nephrin and AAT on mESC-ECs at Passage 8, passage 16 
and in 3D collagen gels made with mESC-EC (P16) and cultured for 3 days under 
static conditions. Beta actin was used as a loading control. 
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In order to test whether the mES derived endothelial cells were capable of maintaining 

their islet endothelial specific marker even after repeated passaging, a western blot 

analysis was performed on cells from passage 16. It was found that the cells continued to 

express islet endothelial specific markers such as Nephrin and AAT (Figure 4.10).  

4.3.3 Angiogenic Capacity of mESC-ECs. 

When mESC-ECs were cultured on a layer of Matrigel, they were able to spontaneously 

organize into cord-like structures, which were maintained for up to 48 hours as shown in 

Figure 4.11.  This in vitro Matrigel angiogenesis assay demonstrates the angiogenic 

capacity of mESC-ECs, consistent with known characteristics of endothelial cells [261]. 

 

 

 

Furthermore, to examine mESC-EC behavior in a 3D environment, collagen gels 

were created by a sandwich method, which contained two layers of cells prepared in 

between three layers of collagen. The method was modified to include up to three layers 

of cells embedded between the collagen gel layers. Further modifications reduced the gel 

Figure 4.11. Angiogenic Capacity of mESC-ECs. mESC-ECs plated on Matrigel 
formed tube-like structures 12 hours after plating (Scale bar: 500 µm). 
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preparation time from 72 hours to 9 hours. A schematic of the gel preparation method has 

been shown in Figure 4.12 and a schematic with the final dimensions of the multilayered 

sandwich gel has been shown in Figure 4.13. 

 

 

 

Figure 4.12. Schematic of the multi layered sandwich gel making procedure. The top 
figure shows the previous method that was used for making multi-decked gels. mESC-
ECs were plated on a layer of collagen gel and allowed to spread out for 24 hours,  
before another layer of collagen was added on top. This layer was allowed to incubate 
for 30 minutes before adding a second layer of mESC-ECs on top. Again, the cells 
were allowed to spread out for 24 hours and a third layer of collagen was added. A 
total of three cell layers were added following the same procedure. After the final 
layer of collagen was added the gel assembly was allowed to incubate for 30 minutes 
and then medium was added. This method was optimized to decrease total gel 
preparation time. The modified method had only two cell layers sandwiched between 
three layers of collagen gel. Further, the cell layer was allowed to spread out for about 
4 hours before another layer of collagen gel was added on top. This reduced the gel 
preparation time from 72 hours to 9 hours. 
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Cells within each layer were spread out and formed networks with the 

neighboring cells after 5 days in culture, as demonstrated by F-actin staining (Figure 

4.14A). Although connections between cells across two separate layers were not 

observed, cells within the layer formed lumen like structures in the 3D collagen gels. This 

was apparent in cross-sections of gels stained with Hematoxylin & Eosin (H&E) (Figure 

4.14B). A representative immunofluorescence image further confirmed that the lumens 

were lined with PECAM1 positive mESC-ECs (Figure 4.14C).  

 To check if the distance between the mESC layers will impact the formation of 

lumens, gels with 0.2 mm and 0.5 mm distance between the cell layers were made. 

Interestingly, it was observed that the number of lumens seemed to increase when the 

distance between the mESC layers was reduced from 0.5 mm to 0.2 mm, as shown in 

Figure 4.15. 

Figure 4.13. Schematic of the mESC-EC Multilayered Sandwich Collagen Gel. The 
sandwich gel had two cell layers sandwiched in between the three gel layers. The gel 
layers were 0.5mm, 0.2 mm/0.5 mm and 1.6 mm thick from top to bottom. 0.8 million 
cells were added in each layer of the gel. 
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Figure 4.14 mESC-EC Behavior Inside Collagen Gels. (A) Rhodamine-phalloidin 
conjugated F-Actin staining revealed formation of lumen-like structures by mESC-
ECs cultured in a sandwiched 3D collagen gel. Scale bar: 100 µm (B) A cross-
sectional Hematoxylin and eosin (H&E) micrograph demonstrating lumen like 
structures in both cell layers. Scale bar: 100 µm (C) Immunofluorescence image 
confirming the presence of lumens lined by PECAM1 positive endothelial cells 
(shown by yellow arrows). Scale bar: 50 µm 
 

Figure 4.15 Lumen Formation in Static Gels. Lumen formation was observed in the 
histology sections of the statically cultured mESC-EC gels. (A) shows the two mESC-
EC layer in the sandwich gel with the distance between the two cell layers being 0.5 
mm while (B) shows the gel with the separating distance as 0.2 mm. The right panel 
displayed an increased number of lumens compared to the left panel. Scale bar: 100 
µm. 
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Although lumen formation was observed in the collagen gels cultured, no interaction was 

detected to occur between the two cell layers within the collagen gels. In an effort to 

induce interaction between endothelial cell layers flow was applied to the collagen gels 

using a previously described perfusion bioreactor setup [238]. The most noticeable 

difference in the statically cultured gels and flow-cultured gels was the thickness of the 

samples. When flow was initially applied to the collagen gels at the rate of 2 ml/min, a 

significant compaction of the gel was observed. Collagen gels with a range of initial 

thickness from 11 mm to 3.5 mm were tested and it was found that the final thickness 

became less than 1 mm at the end of five days of flow as shown in Figure 4.16. The 

flowrate was reduced to 0.5 ml/min to reduce the compaction and erosion of the gel under 

the higher flowrate. Even with the application of flow no interbridging of the cell layers 

was observed as shown in Figure 4.17. 

 

 

Figure 4.16 Multi Layered Sandwich Collagen Gel Compaction Under Flow. 
Collagen gels seeded with mESC experienced considerable compaction under flow. 
The initial thicknesses tested ranged from 11 mm to 3.5 mm. After 5 days of flow, 
considerable compaction was observed and the final thickness came down to less than 
1 mm. 
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The expression pattern of AAT was analyzed in static and flow culture conditions. 

Interestingly, it was found that while mESC-ECs in a traditional 2D culture do not 

express AAT, they expressed AAT when cultured in a 3D collagen gel environment, both 

under static and flow culture conditions as shown in Figure 4.18.  

 

 

 

Figure 4.18 AAT Expression by mESC-ECs in 3D Culture System. Western blot 
analysis shows the expression of AAT by mESC-ECs in collagen gels after 3 and 7 
days of static as well as flow culture but not by mESC-ECs cultured in a 2D condition. 
Beta actin served as a loading control. SD= mESC-EC collagen gel under static 
conditions for Days 3/7, FD = mESC-EC collagen gel under flow for Days 3/7. 

Figure 4.17 mESC-EC Behavior inside Collagen Gels Under Flow. A cross-sectional 
Hematoxylin and eosin (H&E) micrograph of a collagen gel cultured under flow 
demonstrated lumen like structures in both cell layers. However, no inter bridging was 
observed between the two cell layers Scale bar: 100 µm. 
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Past studies have shown that VEGF promotes sprouting angiogenesis and has 

been used by several groups to create vasculature in various culture systems. VEGF was 

added in the culture medium at 5 ng/ml concentration and was used for culturing collagen 

gels seeded with mESC-ECs in both static and flow culture conditions. Actin staining for 

VEGF supplemented gels at Day 5 in static and flow culture conditions is shown in 

Figure 4.19. A western blot performed on the VEGF supplemented gels and the control 

gels showed the expression of eNOS by mESC-ECs in 3D culture conditions in static or 

flow conditions (Figure 4.20). 

 

 

Figure 4.19 Actin Staining on VEGF Supplemented mESC-EC Collagen Gels. 
Multilayered sandwich collagen gels were cultured under static and flow culture 
condition with or without the addition of VEGF for 5 dyas before being fixed and 
stained with rhodamine-phalloidin conjugated f-actin (red). Scale bar: 100 µm. 
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4.4 Discussion 

In this study, we describe the identification, isolation and characterization of a pure 

endothelial cell population exhibiting islet microvascular endothelial cell phenotype 

derived from mESC. These cells appeared as a side-product in mESC differentiation into 

pancreatic beta cell culture following a previously established protocol [73]. This is a 

unique finding, as differentiation was not achieved through a conventional direct 

differentiation method, which uses successive maturation steps to derive endothelial cells. 

While endothelial cells are recognized as a highly heterogeneous population exhibiting 

different phenotypes and functions depending on the location of the endothelium within 

the body [262], tissue-specific endothelial cell populations, especially derived from 

pluripotent stem cells in vitro have not been demonstrated. Thus, to the best of our 

knowledge, this is the first report on stem cell derived islet specific endothelial cells.   

Figure 4.20 eNOS Expression in VEGF Supplemented Collagen Gels. A western blot 
analysis shows the expression of eNOS in the VEGF supplemented gels cultured in 
static and flow conditions at Day 5. Beta actin was used as a loading control. 
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The isolated mESC-EC population incorporates Dio-ac-LDL, which is a hallmark 

of mature endothelial cells. In addition, they exhibit classical endothelial-specific markers 

such as PECAM1, eNOS and thrombomodulin, which are essential to endothelial 

adhesion and vascular network formation even at high passage numbers (p≥15). mESC-

ECs also express EphB2, which is known to play an important role in sprouting 

angiogenesis [263, 264]. Unlike a previous study that showed expression of PECAM1 by 

mESC [261], our results demonstrated that neither our mESC nor cells during early 

differentiation periods express PECAM1. Only cells selectively isolated from the 

differentiation culture exhibited expression of PECAM1, indicating a pure population of 

isolated endothelial cells. Endothelial cells are generally considered to exhibit 

cobblestone morphology in culture; however these cells can vary in thickness, aspect 

ratio, and orientation in vivo. In the presented study, the mESC-ECs initially had more of 

an elongated morphology when first detected near insulin-producing cells, which is 

consistent with previous reports on primary human and rat IECs [265]. Upon culturing in 

endothelial cell medium, however, they progressed more towards a cobblestone like 

morphology. As information on mouse IECs is currently lacking due to difficulty in 

deriving purified IECs, whether the morphological changes induced any functional 

changes needs further studies. However, detailed characterization of these cells was 

performed on cultured mESC-ECs with cobblestone morphology and as the cells 

possessed properties of islet specific endothelial cells, significant functional difference 

due to morphological changes was not expected. 

Pancreatic beta cells are unable to form a basement membrane in the absence of 

IECs [154].  Instead, endothelial cells secrete proteins that are known to promote insulin 
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producing cell proliferation and insulin regulation [118, 154, 205]. IEC secreted collagen 

type IV is shown to potentiate insulin secretion via interaction with integrin α1β1 on beta 

cells [266]. Likewise, laminin has been shown to up-regulate insulin gene expression and 

secretion and induce beta cell differentiation and proliferation [154, 155, 267]. Through 

immunohistochemical analysis, it was found that mESC-ECs in close proximity to insulin 

positive cells deposit collagen type IV and laminin during differentiation culture. Isolated 

mESC-ECs in culture also secret ECM proteins such as fibronectin, laminin, and collagen 

type IV. This further confirms their endothelial cell phenotype and provides additional 

evidence for possible interactions of mESC-ECs with the pancreatic beta cell populations. 

Although the cells formed lumens in 3D collagen gels, cell branching between the 

two layers was not observed. Application of flow and addition of VEGF was 

hypothesized to induce the cell branching. Actin staining in the flow gels and the VEGF 

supplemented gels revealed a more tortuous structure of cell networks but histological 

sections did not reveal connections between the two cell layers (data not shown).  

It has previously been shown that VEGF plays an important role in recruitment of 

endothelial cells and formation of IEC fenestrations [149, 268-270]. Our results 

demonstrate the presence of VEGF in the culture medium during differentiation, which 

progressively increases with more days in culture. This increased concentration of VEGF 

coincided with the increased number of mESC-ECs. As our populations of endothelial 

cells were detected in the vicinity of insulin-producing cells, it is plausible that the 

signals originating from endodermal pancreatic cells induced formation and growth of 

endothelial cell population in the differentiation culture. Since it was found that mESC-

ECs do not produce significant amounts of VEGF in culture and pancreatic beta cells are 
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known to constitutively secrete VEGF to recruit endothelial cells [154], it is likely that 

VEGF is mostly originated from insulin producing beta cells in our culture. Moreover, as 

IECs are known to constitutively express VEGF-R1 (Flk-1) [271-273] enabling them to 

bind to VEGF, the expression of FLK1 by our isolated mESC-ECs further supports the 

hypothesis that pancreatic beta cells plays an important role in endothelial cell growth 

although the exact mechanisms involved needs to be further elucidated. Addition of 

Thalidomide, an angiogenesis inhibitor [260] substantially suppressed the formation of 

mESC-ECs in our culture. Future studies with addition of VEGF receptor antagonists in 

the culture medium will be necessary to ascertain the role of VEGF in mediating the 

formation of mESC-ECs in the differentiation culture.  

In addition to classical endothelial cell phenotype, mESC-ECs exhibit distinct 

functional characteristics of IECs that are manifested by unique markers that can aid in 

their identification. mESC-ECs express nephrin, which is considered one of the specific 

IEC marker as shown by Zanone et al. [265]. While nephrin is expressed by other cell 

types including podocytes in kidneys [274], some parts of the central nervous system in 

mice [275, 276] and by the Sertoli cells where it forms the blood-testis barrier [277], 

other tissue-specific endothelial cells have not been shown to express nephrin. The 

precise function of nephrin on IECs however, remains unknown. Studies have also shown 

that AAT is another IEC specific marker that is not expressed by endothelial cells in 

surrounding tissues [278].  A study by Zhang et al. showed that AAT significantly reduces 

cytokine and streptozotocin induced pancreatic beta cell apoptosis [279]. Additionally, the 

administration of clinical grade AAT after islet transplantation has been shown to improve 

the graft survival in mice [280, 281]. While our mESC-ECs cultured in traditional 2D 
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condition do not express AAT, it is important to note that mESC-ECs cultured in a 3D 

collagen gel environment express AAT. As endothelial cells may lose some of their 

phenotypical characteristics when maintained in a 2D culture condition, it is possible that 

mESC-ECs cultured in a 3D condition regained their AAT expression, which was originally 

down-regulated from long-term 2D culture. This indicates the need for a physiological 

microenvironment to maintain phenotype and function of cells in vitro. 

Moreover, IECs are known to produce a host of vasodilators including nitric 

oxide (NO) [143]. NO is generated by NO synthase (NOS) and eNOS is the major NOS 

isoform predominantly expressed in endothelium. Both constitutive and cytokine induced 

eNOS are present in pancreatic islets, although the role of constitutive eNOS in beta cell 

physiology has been controversial [282]. Studies using islet cells and beta cell lines have 

reported that the constitutive eNOS either stimulates [283-288] or inhibits [289-295] the 

insulin release. Unlike other endothelium, constitutive and cytokine inducible eNOS in 

islets is specifically upregulated depending on glucose levels [282]. Thus, the fact that 

our mESC-ECs express eNOS, which is regulated by glucose levels of 25-35 mM in the 

culture medium, further demonstrates their behavior as IECs. However, eNOS expression 

was not significantly upregulated in culture medium containing 17.5 mM of glucose, 

which is much higher than physiological glucose levels for endothelial cells at 4mM-

6mM [167, 296, 297]. Since mESC-ECs were cultured using medium containing 17.5 

mM of glucose, it is plausible that cells have become insensitivity to that glucose level 

from being exposed for prolonged time. Thus, additional stimuli such as cytokines may 

be required to induce cells to produce eNOS at that level. 
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 Given the increasing interest in tissue-specific endothelial cell populations, the 

availability of an unlimited source of IECs derived from pluripotent stem cells provide a 

promising source of cells for both research and clinical use. Although primary endothelial 

cells are widely used in in vitro studies, stem cell-derived endothelial cells, especially 

organ-specific endothelial cells, provide the opportunity to further study their specific 

functions in in vitro conditions. Better understanding of mESC-EC function and their 

interaction with their neighboring pancreatic beta cells can lead to significant 

advancements in the development of therapeutic strategies for diabetes treatment.  
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CHAPTER 5  

SUMMARY AND FUTURE DIRECTIONS 

 

In summary, this thesis describes methods to develop 3D engineered tissue system as an 

in vitro model to enhance survival and function of IPCs derived from mES cells. First of 

all, IPCs were successfully derived from mouse embryonic stem cells. Not only did the 

differentiated IPCs expressed beta cell specific markers such as FoxA2, Sox17, Pdx1, 

Insulin, C-peptide, Pax4, Nkx6.1, Glut2 and EphrinA5, but they also displayed glucose 

responsiveness when exposed to low and high concentrations of glucose. The 

differentiation yield of the IPCs was however only 5.76%, suggesting that further 

optimization to the protocol is needed to improve the efficiencies. It was further observed 

that the yield increased significantly upon increasing the duration of culture by additional 

7 days suggesting that culture duration was an important factor governing the 

differentiation yield. It is also critical to identify other cell types that are present in the 

culture as they may play a supporting role in the development of IPCs. Tumor formation 

was not observed in the cultures in in vitro condition but the possibility of tumor 

formation in in vivo condition needs to be examined. 

 Secondly, simple 3D engineered tissues were developed to mimic the native 

environment that the islet cells reside in. The 3D collagen tissue environment allowed 

better maintenance of IPC viability for up to 5 days compared to IPCs on a poly-ornithine 

and laminin coated surface. However, IPCs lost their glucose responsiveness in 3D 

condition.  Their basal insulin level was 10 µg/ml, but this level did not increase when 

exposed to a high glucose condition. There are several possible factors that may attribute 
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to this functional change.  When IPCs are selectively picked from the culture to form 3D 

tissues, they are being removed from the other cell types in the differentiated culture as 

well as from basement membrane proteins deposited by other cells.  The presence of 

other cell types and ECM proteins not only play a supporting role in the development of 

the IPCs but also, may be instrumental in the maintenance of beta cell specific 

characteristics. In addition, as islet ECM is richly populated with laminins, collagen type 

IV and several proteoglycans, collagen gel supplemented or immobilized with ECM 

proteins may improve the glucose responsiveness of isolated IPCs in 3D tissue 

environment. Another factor that may have contributed to the loss of glucose 

responsiveness is the glucose concentration of the culture medium used. Past studies have 

reported evidence that exposure to high glucose medium de-sensitized rat and human 

islets and impaired their function in response to a glucose challenge [221, 244, 245]. The 

medium used in this study contained about 17.5 mM of glucose and as this is 

considerably higher than the physiological level of 4-6 mM, it is possible that the cells 

were rendered glucose unresponsive because of exposure to the medium used. Transition 

to low glucose conditions during final stages of differentiation can also be employed to 

improve glucose responsiveness as has been previously [76].  

 It has also been suggested that during development mesenchymal cells surround 

the budding pancreas and their loss impairs the development and proliferation of insulin 

producing beta cells [298] because the pancreatic mesenchyme and the innervating neural 

cells govern important aspects of the pancreas organogenesis [298-300]. Beta-cell 

phenotype is easily lost upon removal from their native environment [301, 302]. 

Identification of this supporting cell population in the differentiation culture will be an 
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important step in making the IPCs glucose responsive. If this cell population is identified 

it can be used for potential co-culture with IPCs to improve their outcome in 3D culture 

systems. 

 To facilitate nutrient diffusion and gas exchange on IPCs in 3D collagen tissues, 

perfusion flow was applied for 5 days in culture. A flowrate of 0.5 ml/min was chosen for 

our study. Although this flowrate translates in the microvasculature to a shear stress of 

~0.71 dyne/cm2 [238], it is considerably higher than the flowrate  in rat islets i.e., 2 x 10-5 

ml/min [142, 243]. Higher cell death was observed in tissues exposed to flow compared 

to statically cultured tissues. The outcome with a lower flow-rate or shorter culture 

duration might be very different. It is also possible that IPCs inherently do not have a 

favorable response to flow application. Studies have provided evidence of the detrimental 

behavior of epithelial cells to flow exposure [303]. As beta cells are of epithelial origin, it 

is possible that they behave poorly under flow culture condition. Thus, various 

parameters including different flowrates, stiffness of the tissue, cell concentrations, etc. 

need to be carefully examined and optimized to decide the most suitable culture 

condition.  

 Since islet beta cells are in close relation to vascular endothelial cells, mES 

derived IPCs were co-cultured with ECs in 3D collagen tissues to provide a more 

physiological environment to the IPCs. It was found that the co-culture with mESC-ECs 

improved survival of the IPCs in both static and flow culture condition. However, the co-

culture tissue was not glucose responsive from 5 days in culture. A similar behavior was 

observed for co-culture gels under flow condition. Extending the co-culture duration to 

14 days might improve the glucose responsiveness, as longer culture duration increased 
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the glucose, responsiveness in a previously reported study [304]. Although the ECs 

appeared spread out in the co-culture tissues as visualized through live dead staining, 

advanced characterization of the co-culture tissue to assess the degree of vascularization 

is required. Histological sectioning of the co-culture tissue and further staining for cell 

specific markers will be important to study the interactions between IPCs and ECs.  

 It was found that the mESC derived IPCs and ECs expressed EphrinA5 and 

EphB2, respectively. EphB2 is expressed by ECs and EphrinA5 is present on beta cells 

and it has been shown that these proteins interact with each other with high affinity [236]. 

EphB2 was found highly upregulated in mESC-ECs when they were plated on Matrigel 

suggesting that it might play a role in vasculogenesis. EphrinA5 expression was observed 

in IPCs in all different culture conditions and did not show significant changes upon 

application of flow. The interaction between these two proteins was not analyzed. As 

EphrinA5 is important in beta cell-to-cell communication and in glucose sensing it will 

be interesting to see how its expression changes at different culture conditions and 

whether the presence of ECs can enhance the expression of EphrinA5.  

          Thirdly, mESC-ECs were identified in close vicinity of IPCs and isolated from the 

IPC differentiation culture. The isolated and cultured mESC-EC population was found to 

be highly pure. These cells exhibited characteristics unique to the islet endothelium with 

the expression of nephrin, Flk-1 and AAT in addition to the expression of classical 

endothelial cell markers. Moreover, these cells regulate their eNOS levels based on 

glucose levels. The mESC-ECs also showed cord formation on Matrigel and upon 

embedding inside collagen gels, which is a classic behavior of endothelial cells. An 

increasing VEGF gradient with days in culture corresponded with increased number of 
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mESC-ECs, suggesting that VEGF might play a role in the derivation of ECs. Upon 

addition of thalidomide, a potent angiogenesis inhibitor, the number of ECs was greatly 

reduced in culture. This is the first demonstration of a tissue specific endothelial cell type 

derivation from mES cells and is completely novel. The derivation of such specialized 

endothelial cells creates exciting opportunities to study their function in in vitro 

conditions as well as their interactions with the tissue specific cells – beta cells in this 

case.   

 It is important to note that there are some inherent limitations of the culture 

system. The total cell population in the co-culture tissues is formed by IPCs and mESC-

ECs, while the 2D culture was formed entirely of IPCs. Hence, gene expression of beta 

cell specific markers appears lower than its actual value in the co-culture samples. To 

accurately compare the gene expression levels in both the conditions a 2D co-culture of 

mES derived IPCs and ECs is required. This can be effective in teasing apart the specific 

effects of co-culture and 2D vs. 3D environment. Gene expression analysis studies 

revealed that insulin gene expression was significantly higher in the co-culture in static 

condition compared to flow condition. Further studies are needed to determine the effects 

of culture conditions and application of flow on beta cell specific gene expression. 

Moreover, additional studies are needed to determine whether IPCs can gain glucose 

responsiveness upon transplantation in concurrence with previous studies [95, 172].  

 In conclusion, the presented study demonstrates useful strategies to develop a 3D 

insulin producing tissue using mES cells. While no significant improvements were seen 

in the glucose responsiveness in 3D culture conditions in static or flow culture conditions, 

this study describes includes preliminary design considerations that can be further 
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extended in developing functional 3D insulin-producing tissues, and ultimately 

establishing a long-term clinically relevant strategy. The presented approach will need to 

be optimized to develop a clinically relevant cell therapy for diabetes in the future.  
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APPENDIX A 
 
 
 

CELL CULTURE MEDIUM RECIPES 
 
The following appendix has the culture medium recipes used for all the presented studies. 
All mediums were prepared in volumes of 500 ml-1000 ml and were stored at 4 °C. 
Mediums were prepared in sterile glass bottles and were used within 2-3 months of 
preparation. 
 
Mouse embryonic fibroblast (MEF) culture medium: 
 
DMEM (High Glucose)          500 ml,  Life Technologies, 11965-084 
FBS              58 ml,   Life Technologies, 16000044  
100 X L-Glutamine               5.8 ml,  Life Technologies, 25030 
100 X Pen./Strep.                   5.8 ml, Life Technologies, 15140 
100 X NEAA                         5.8 ml,  Life Technologies, 11140 
100X Na-pyruvate                5.8 ml, Life Technologies, 11360 
 
Mouse embryonic stem cell culture medium 
 
DMEM (High Glucose)                       500 ml,  Life Technologies 11965-084  
Knock Out Serum Replacement          90 ml, Life Technologies 10828  
100 X L-Glutamine                              6 ml, Life Technologies ,25030  
100 X Pen./Strep.                                 6 ml, Life Technologies, 15140 
100 X NEAA                                       6 ml, Life Technologies,11140 
100X Na-pyruvate                               6 ml, Life Technologies, 11360   
2-Mercaptoethanol                              4.4ul, Sigma, M6250  
  
It is recommended that LIF is freshly thawed out and added to the media just before use 
(100 ul/ 50 ml of medium).  
 
Differentiation medium #1  
 
IMDM                                    400 ml, Life Technologies, 12440-061 
FBS                100 ml,  Life Technologies, 10828 
100 X L-Glutamine                5 ml,  Life Technologies, 25030 
100 X Pen/Strep.                   5 ml,  Life Technologies, 15140 
1-Thioglycerol                        3.9 ul, Sigma, M6145                                       
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Differentiation Medium #2 
 
DMEM/F 12 medium     1000 mls, 12500-062 
Progesterone       10 ul [Stock 2mM; Final conc. 20 nM, Sigma] 
Putresciene    100 ul [Stock 1M; Final conc. 100 uM, Sigma] 
Laminin     1 ml, Sigma L2020 
Nicotinamide       1 ml [Stock : 1M; final conc. 10mM, Sigma] 
Insulin     6.25 ml, Life Technologies, 12585-014 
Sodium Selenite   100 ul [Stock: 300 uM; Final conc 30 nM, Sigma] 
Apo transferrin                                    50 mg, Sigma T1147 
B 27     20 mls, Life Technologies, 17504-044 
Penn Strep    10 mls, Life Technologies, 15140 
 
Endothelial cell culture medium 
 
MCDB 131 Medium    1000 ml, Sigma, M8537 
FBS      100 ml,  Life Technologies, 10828 
Penn Strep    10 ml, Life Technologies, 15140 
Endogro    4 ml, VEC Technologies 
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APPENDIX B 
 
 
 

REAGENT RECIPES 
 
This appendix describes the recipes for the various reagents used for all the presented 
studies. All reagents were were stored at 4 °C. Mediums were prepared in sterile glass 
bottles and were used within 2-3 months of preparation. 
 
Krebs Ringer Bicarbonate Hepes (KRBH) Buffer: 
 
Solution A: 
Sodium Chloride    6.92 gm. 
Potassium Chloride    0.36 gm. 
Monopotassium Phosphate   0.16 gm.  
Calcium Chloride    0.38 gm. 
Magnesium Sulfate Heptahydrate  0.3 gm. 
De-Ionized (DI) Water   200 mls. 
 
Solution B: 
Sodium Bicarbonate    2.08 gm. 
DI Water     160 mls. 
 
Solution A      200 mls. 
Solution B     160 mls. 
HEPES     2.4 gm. 
BSA      2 gm.  
   
All the contents were mixed and the volume was increased to 1 liter by adding DI water. 
The pH was adjusted to 7.4 and the solution was filtered through a 0.22 µm filter. The 
KRBH buffer was then stored at 4°C. 
 
All the reagents were purchased from Sigma unless otherwise stated.  
 
Blocking Buffer for Western Blot Applications 
 
A 5% BSA solution was prepared using TBS-Tween buffer (Boston Bioproducts). The 
solution was placed on a magnetic stir plate till the BSA was completely in solution. The 
solution was stored at 4 °C. 
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Blocking Buffer for Immunofluorescence and Immunohistochemistry 
 
A 10% goat serum solution was made in PBS. This solution was made and used fresh. 
 
Lysis Buffer Cell Lysate Preparation 
 
RIPA Buffer     500 µl 
Protease Inhibitor   5 µl 
Triton-X 100    5 µl 
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APPENDIX C 
 
 
 

PROTEIN ASSAY PROTOCOLS 
 
This appendix describes the protocol used to the protein quantification using Bradford 
assay and DC assay. 
 
Bradford Protein Assay: 
 
Bradford reagent will be needed to perform this assay. 
 
1. Prepare and label the correct number of cuvettes: # of your sample + 1 blank + 7 

BSA standards (0.125mg/mL, 0.25 mg/mL, 0.5 mg/mL, 0.75 mg/mL, 1 mg/mL, 1.5 
mg/mL, 2 mg/mL). 

2. Add 20ul of each sample, standards or RIPA buffer to the cuvettes. 
3. Add 1 ml of Quick Start Bradford Dye Reagent, warmed to room temperature, into 

each cuvette. Pipette well to mix. At this point a color change will be observed. 
4. Incubate 5 minutes a room temperature before further processing.       
5. Start up the BioRad smart Spec plus Spectrophotometer. 
6. Measure the absorption values and the concentration of the sample. 
 
 
DC Protein Assay: 
 
A DC Assay kit will be needed to perform this assay. 
 
1. Add 20 µl of reagent S to each ml of reagent A that will be needed for the run. This 

is called working reagent A’. 
2. Prepare and label the correct number of cuvettes: # of your sample + 1 blank + 7 

BSA standards (0.125mg/mL, 0.25 mg/mL, 0.5 mg/mL, 0.75 mg/mL, 1 mg/mL, 1.5 
mg/mL, 2 mg/mL). 

3. Pipet 20 µl of standards and samples into cuvettes. 
4. Add 100 µl of reagent A or A’ into each tube. 
5. Add 800 µl of reagent B into each test tube and vortex immediately. 
6. After 15 min incubation, absorbance can be read at 750 nm.  
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APPENDIX D 
 
 
 

MISCELLANEOUS PROTOCOLS 
 
The following protocol to remove the paraffin coating from histology slides before they 
were used for immuostaining purposes. It also describes the FACS staining protocol. 
 
De-paraffinization protocol: 
 

1. Wash slides 2X in Xylene for 5 min each. 
2. Wash slides 1X in 100% ethanol for 5 min. 
3. Wash slides 1X in 95% ethanol for 5 min. 
4. Wash slides 1X in 80% ethanol for 5 min. 
5. Wash slides 1X in 70% ethanol for 5 min. 
6. Wash slides 1X in 50% ethanol for 5 min. 
7. Wash slides 2X in DI water for 5 min each. 
8. Proceed to permeabilization and staining. 

 

FACS Protocol : 
 

1. Trypsinize and count cells. Use 5x105 to 1x106 cells per 5 ml polystyrene round-
bottom tube. 

2. Centrifuge the cells to remove the medium. 
3. Add ice cold 4% PFA to the cells and allow them to sit for 30 min. 
4. Centrifuge and remove the PFA, add 1 ml PBS and spin at 1500 rpm. Discard the 

PBS and repeat the process 3 times. 
5. Add 0.25% Triton X and allow to incubate at RT for 5 min. Do not exceed 5 

minutes. 
6. Add cold PBS and centrifuge at 1500 rpm for 5 min. Drain the supernatant and re-

suspend the cells in 100 µl of cold FACS buffer (PBS + 1% BSA+ 2mM EDTA). 
Avoid any cell clumps. 
NOTE: Include blank and isotype controls. Blank is just the FACS buffer, and 
isotype control is cells having just the secondary antibody on them. Blank and 
isotype control are also fixed and permeabilized. This protocol involved fixing 
and permeabilization, as the antibody was specific to an intracellular epitope. 

7. Allow cells to sit at 4 °C for 10 minutes in the FACS solution, which is also the 
blocking solution.  

8. Add primary antibody directly in the cells + FACS buffer. For CD-31; use 5 µl for 
100 µl of FACS buffer. 

9. Incubate at 4 °C for 30 minutes over ice. 
10. Add 1 ml cold PBS to the tube. Centrifuge at 1200 rpm for 7 minutes at 4 °C. 

Discard supernatant.  
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11. Resuspend in 1 ml cold PBS. Centrifuge and discard the supernatant. 
12. Resuspend in 100 µl FACS buffer. 
13. Add secondary antibody directly to the cells + FACS buffer mix. Use 5 µl for 100 

µl of FACS buffer 
14. Incubate at 4 °C for 30 minutes over ice. 
15. Add 1 ml of cold PBS to each tube. Centrifuge and discard the supernatant. 
16. Resuspend in 1 ml cold PBS. Centrifuge and discard the supernatant. 
17. Resuspend in 0.3 ml PBS (same amount per tube). Keep at 4 °C until ready for 

FACS analysis. (Use less than 0.3 ml if low cell count). 
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