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ABSTRACT 

MUELLER MATRIX SPECTROSCOPIC  

ELLIPSOMETRY OF MULTIFERROICS 

by 

Roman Basistyy 

Multiferroics, materials which possess several ferroic orders, are the focus of research in 

recent years. Among these materials are oxide crystals, such as, for example, RMnO3, 

RMn2O5, R3Fe5O12, where R stands for rare earth ions. The most fascinating physics 

occurs when magnon-lattice coupling reveals itself in the far-IR spectra of multiferroics. 

The expected optical behavior puts multiferroics into a more general category of bi-

anisotropic materials, the properties of which could be only described using anisotropic 

dielectric ˆ( )  , magnetic ˆ ( )  , and magnetoelectric ˆ( )  , ˆ ( )   tensors. In the first 

part of this thesis, general approaches for investigation of optical spectra of bulk and 

multilayer bi-anisotropic structures are shown. Analytical solutions for the optical spectra 

of certain crystal symmetries are derived for multilayer structures with both magnetic and 

magnetoelectric interactions.  

The second part of the thesis contains analysis of the experimental data. Initially, 

Mueller matrix spectroscopic ellipsometry is reviewed. Analysis for optical spectra 

measured for isotropic Dy3Fe5O12 is given, for which contributions from magnetic and 

electric excitations are identified and the absence of strong magneto-electric effects is 

explained. In comparison, anisotropic orthorhombic perovskite ME- material, TbMnO3, 

with a spiral spin structure is investigated and contributions from coupling of different 

ferroic orders are shown in the far-IR Mueller matrix spectra of electromagnon 

excitations. Detail studies of optical properties of hexagonal multiferroic oxides RMnO3, 



(R = Ho, Er, Tm, Yb, and Lu), are  studied in the far-infrared spectral range between 100 

and 2000 cm-1 and temperatures between 1.5 K and 300 K by means of several 

experimental techniques: Muller matrix spectroscopic ellipsometry, rotating analyzer 

ellipsometry, and optical transmission spectroscopy. Spectra of the optical phonons are 

described in terms of the temperature dependencies of their frequency, damping, and 

oscillator strength. For all studies, oxide materials’ clear signatures of the spin-phonon 

interaction are found below the temperature of the antiferromagnetic phase transition TN 

due to magnetic ordering of Mn3+ spins. A decrease of the ionic radius for R3+ ions 

between Ho3+ and Lu3+ in the corresponding RMnO3 compounds result in systematic 

variation of the frequency for several optical phonons.  A magnetic excitation at ~190 

cm-1 is observed at low temperatures below TN and interpreted as resulting from two-

magnon absorption.  
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CHAPTER 1  

MULTIFERROICS AND METAMATERIALS 

 

This chapter is a literature review for the optical properties of multiferroics and other 

groups of bi-anisotropic optical materials, such as metamaterials. The main source of 

information is from recent review articles References [1,2,3,4,5]. 

 

It is always useful to have materials which allow controlling light propagation 

based on their unique intrinsic properties. An additional possibility to control the reflected 

or transmitted light by means of application of external electric and magnetic fields to such 

materials becomes even more important [8,9,10]. The general class of such materials is 

called bi-anisotropic. There are many commonly known optical effects in bi-anisotropic 

 

Figure 1.1  Interactions in multiferroics. The established primary ferroic orderings: 

ferroelectricity P, ferromagnetism M, ferroelasticity   can be switched by their conjugate 

electric E, magnetic H, and stress   fields. Cross coupling allows those ferroic orderings 

to be also tuned by fields other than their conjugates; in magnetoelectric multiferroics, for 

example, E can modify M. Physicists are also exploring the possibility of ferrotoroidics, 

a promising new ferroic ordering of toroidal moments T, which should be switchable by 

crossed electric and magnetic fields. The symbol  “O” represents other possibilities – such 

as spontaneous switchable orbital ordering, vortices, and chirality. Source:[2]. 
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medium such as polarization plane rotation, Kerr effect, Faraday effect, negative index of 

refraction [4,5]. This bi-anisotropic behavior can be found in materials called multiferroics, 

which combine several ferroic orders, such as ferroelectric (appearance of electrical 

polarization), (anti)ferromagnetic (appearance of magnetic polarization), and ferroelastic 

(appearance of strain). Typical interactions in multiferroics are shown in Figure 1.1. Either 

electric field ,E  magnetic field ,H  or stress   can control the electric polarization ,P  

magnetization ,M  and strain  . Another class of bi-anisotropic materials includes man-

made artificial structures, or metamaterials, which allow for independent control of electric 

and magnetic field components of reflected/transmitted light.   

In multiferroic crystals with certain symmetries it’s possible for magnetoelectric 

effect to occur whereby electric polarization can be induced with application of a magnetic 

field; and magnetization can be induced with the application of electric field. Further, in 

the optical spectra of multiferroics (dynamical regime) so-called electromagnon excitations 

can occur. These electromagnons have magnetic origin, but their oscillator strength is 

predominantly electrical-dipole active.  Optical properties of multiferroics and the 

corresponding multilayer structures are the focus of the Thesis. 
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1.1  Metamaterials 

 

As it was pointed out above, metamaterials are artificial materials, which allow to alter 

their electromagnetic properties at the macroscopic scale, well above the atomic scale. The 

idea behind that is the following: electric permittivity   and magnetic permeability   of 

conventional materials originate from the response of constituent atoms to applied fields. 

Correspondingly, ,  represent an average response of the materials system to the 

external fields. On a length scale much greater than the separation between atoms the 

optical properties can be well-described by the ˆ, ̂  tensors [6]. Metamaterials carry this 

idea one step further: the constituent material is structured into subunits, and the overall 

optical properties of such metamaterials can be again described by an effective 

permeability and permittivity. This formalism is valid, of course, only on the length scale 

greater than the size of the constituent units, which still have to be smaller than the 

wavelength of electromagnetic radiation. Figure 1.2 illustrates this concept.  In this way 

the properties of a complex metamaterial structure can be described by effective values of 

 

Figure 1.2   Left: in conventional materials   ,   derive from electrons in the constituent 

atoms. Right: in metamaterials 
eff  ,

eff  derive from the elements such as capacitors and 

current rings, which may contain many atoms. Source:[1]. 
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dielectric permittivity
eff and magnetic permeability

eff which is a simplification that can 

provide an easy way for predicting optical properties of artificially developed 

metamaterials [6]. The flexibility in design of constituent parts enables construction of 

metamaterials with interesting optical properties:  for example to obtain values of 
eff ,

eff  

which are not encountered in nature and in the present context that will mean either of these 

parameters being negative. For both 0eff  and 0eff  this phenomenon is known as a 

negative index of refraction (NIR) [4,5] which is undoubtedly the concept which brought 

metamaterials into prominence. One of the most exciting sides of NIR is the ability to 

construct perfect lens, capable of restoring an image with almost unlimited precision [6].  

For most natural materials, the magnetic coupling in the far-IR spectral region is 

weak and magnetic permeability is close to one. In contrast, metamaterials can be made 

with magnetic resonances with 1   in a broad spectral range including far-IR [7].  

Note that metamaterials are not in the primary focus of this Thesis. Information on 

optical properties of metamaterials has been included in this section to highlight their 

similarity with multiferroics. Also, some of the theoretical formulas developed in this 

Thesis can be applicable to the light propagation in metamaterials as well as multiferroics.  
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1.2  Multiferroics 

A new class of materials known as multiferroics which possess several ferroic orders 

simultaneously is discussed in this section. In most of the known multiferroics, the 

magnetoelectric effects are usually observed at cryogenic temperatures, the spin-lattice 

coupling is weak, and the magnitude of the electric polarization is small compared to that 

in classical ferroelectrics, like BaTiO3. This severely limits practical applications of these 

materials. Nevertheless, several technology applications are intensively discussed in 

literature, such as  alternating current magnetic field sensors, electrically and magnetically 

tunable filters and resonators [8], and magnetic recording technology [9]. Before going into 

detail some relevant properties of multiferroicity are discussed.  One of them and probably 

the most important is symmetry. From symmetry considerations, an essential property of 

ferroelectricity is a broken spatial inverse symmetry, while the magnetic orders usually 

imply the absence of the time-reverse symmetry [10]. On one hand, spontaneous electric 

polarization emerges due to the structural distortion in real space. On the other hand, 

  

Figure 1.3 Time-reversal and spatial-inversion symmetry: a) Ferromagnets,                          

b) Ferroelectrics, c) Multiferroics. Source:[2]. 
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essential property of ferromagnetism is a broken time symmetry while the spatial symmetry 

is invariant. A reasonable argument for coexisting of ferroelectricity and ferromagnetism 

is a simultaneous absence of both symmetries. Due to their intrinsic properties, ferroelectic 

materials are usually good insulators while ferromagnetics are usually metals, like nickel 

and iron. This is hard to imagine how is it possible to combine these two contradicting 

properties in one material. Fortunately, there are other subclasses of magnetic materials: 

antiferromagnetics and ferrimagnetics, both are usually good insulators. Thus, 

antiferromagnetic and ferrimagnetic oxides are good candidates to possess ferroelectric 

properties and become multiferroics with magnetoelectric interactions.   

In the center of magnetoelectric effects is a magnetoelectric coupling. By 

representing free energy F in terms of applied fields ( E  and H ), the following expression 

can be obtained [10]: 

0 0

1 1 1 1
( , ) ...

2 2 2 2
ij i j ij i j ij i j ijk i j k ijk i j kF E H E E H H E H E H H H E E               

(1.1) 

Here   - permittivity tensor,   - permeability tensor,   - magnetoelectric coupling 

tensor,   and further – high order of magnetoelectric coupling tensors. Terms on the RHS 

(from left to right) represent electrical effect from application electric field, magnetic effect 

from application magnetic field, electric effect from application magnetic field, magnetic 

effect from application electric field correspondingly and so on.  To establish polarization 

( )i jP H  and magnetization ( )i jM E , differentiation  of  F  with respect to 
iE  and  

iH  is 

required: 

0

1
...

2

1
...

2

i ij j ijk j k

i ji j ijk j k

P H H H

M E E E

 

  

  

  

 

 

 

(1.2) 
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It can be pointed out that for thermodynamic reasons,  
ij  is bounded by the 

geometric mean of the diagonalized permittivity and permeability tensors [10]: 

2

0 0ij ii jj      (1.3) 

Tensor 
ij  is a second rank tensor, 

ijk and 
ijk are third rank tensors that are  functions of 

temperature T. It changes sign under space inversion or time reversal, and therefore is 

invariant under simultaneous space and time inversion.  Using the definition of 
ij  and 'ij  

based on the free energy Equation (1.1), it is easy to assume that 'T

ij ij  . As shown by 

Dzyaloshinsky, this relationship holds for the static case but may not necessary hold at 

every particular frequency for the dynamic case, where more complicated interactions of 

magnons and phonons are involved. This question is still under discussion in literature [11]. 

To comply with a general possible case, we will keep a different notation for  
ij  and 'ij  

tensors. ME effect exists only in materials that do not have a center of inversion and no 

time-inversion symmetry. In most cases, center of inversion is destroyed by electric 

polarization in ferroelectrics, while the time-reverse invariance is destroyed by the 

magnetic order or by external magnetic field. That means, ME crystals allow a 

simultaneous presence of magnetization (that destroys time reversal) and electric 

polarization (that destroys the center of inversion). The role of symmetry is extremely 

important in determining which crystals can display the magneto-electric effect. Crystal 

symmetry, for example, determines the form of each of the  ,  , ,  ,   tensors. 

Neumann’s principle states that the symmetry elements of any physical property of a 

crystal must include the symmetry elements of the point group of the crystal. This principle 



8 

 

makes clear connection between the physical properties of a crystal and the material tensor 

which describes those properties.  

 

Recently strong coupling between ferroelectricity and antiferromagnetism was 

observed in spin frustrated systems. Basic principle of frustration is depicted in Figure 1.4. 

In the simplified case of a triangular spin lattice, which can be realized in a big class of 

hexagonal materials, such as hexagonal manganites, there is no possibility to satisfy all 

exchange interactions between all spins involved. As a result, there is no possibility for 

minimization of magnetic energy. In the left picture of Figure 1.4 it can be seen that 

antiparallel ordering can be satisfied in a square spin lattice, but in the case of triangular 

lattice (right panel) it is non-obvious task to predict certain spin arrangement. In both cases 

there is no chance to minimize energy thus the only way is to form unusual spatial 

inhomogeneous magnetization (Figure 1.5). In this Thesis the optical properties of 

hexagonal manganites with spin frustration will be discussed in detail.  

Multiferroics can be divided into two big categories: proper and improper. The 

difference in nomenclature relates to the origin of the ferroic effect in these materials. 

Proper multiferroics are generally good ferroelectrics but the coupling between magnetism 

and ferroelectricity is weak [2]. An example of such a system is bismuth ferrite BiFeO3 

with the perovskite crystal structure. In this structure, Fe3+ has five 3d electrons which 

 

Figure 1.4 Geometrical frustration of spins. 
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account for the magnetism. The Bi3+ ion has two electrons on the 6s orbital which form a 

lonely pair that moves away from the centrosymmetric position with respect to the 

surrounding oxygen ions. This broken spatial symmetry accounts for ferroelectricity. The 

fact that these orders arise from two separate and distinct ions accounts for the resultant 

weak coupling between the two effects of ferroelectricity and magnetism on the level of a 

crystal unit cell. Ferroelectricity arising from charge ordering and geometric tilting are also 

included in the category of proper multiferroic materials.  

 

Improper multiferroics are also referred to as magnetic multiferroics because 

ferroelectricity exists only in magnetically ordered state at low temperatures; and it is 

caused by either spiral or collinear magnetic structures, with the spiral spin structure being 

the most common. In some materials such as rear earth (RE) manganites: TbMnO3, 

DyMnO3, TbMn2O5, DyMn2O5 non-centrosymmetric magnetic ordering could produce an 

electric polarization. Figure 1.5 below shows atoms symmetric about point marked ‘x’ but 

the spins are not symmetric, which leads to a net polarization. Non-centrosymmetric 

magnetic ordering also explains the stronger multiferroicity as in TbMn2O5, though in this 

case coupling is mediated by strong superexchange, not weak spin-orbit interactions as in 

previously mentioned BiFeO3 [2]. The intrinsic magnetoelectric coupling leads to 

interesting phenomena as electric field control by spin chirality. In TbMnO3 at low 

temperatures below  TN1= 41 K, the magnetic structure is   sinusoidal [12] which results in 

  
 

Figure 1.5   Non-centrosymmetric magnetic order produces a net polarization. Source: [2]. 
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no net magnetic moment and no ferroelectricity.  However,  below TN2 = 28 K, the Mn 

spins change to cycloidal order due to magnetic frustration in which competing interactions 

between spins preclude simple magnetic order.  A polarization is produced in this phase as 

a result of spin-orbit coupling. 

 

One of the most investigated proper class multifferoics are hexagonal (h) rare earth 

manganites. The crystal structure described by the space group P63cm with an unusual 

fivefold and sevenfold coordination polyhedral about the Mn and R ions, respectively [13]. 

Schematics of the structure is shown in Figure. 1.6. The ferroelectric origin in hexagonal 

manganites is under debate. It is interesting to note that d-shell is not empty, which leads 

as we discussed earlier to spatial distortions in perovskite ferroelectrics due to 

hybridization with the oxygen 2p states. All h-manganites possess atiferromagnetic order 

of manganese ions spins below their Neel temperatures. 

Optical properties of hexagonal manganites, such as RMnO3 (R=Ho,Er,Tm,Yb,Lu) 

will be described in this Thesis. 

 

 

Figure 1.6  Structure of hexagonal rare earth manganites RMnO3. (a) view along (110), 

(b) view along c-axis. Source:[13]. 
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CHAPTER 2  

 

ELECTROMAGNETIC WAVE PROPAGATION  

IN BI-ANISOTROPIC BULK STRUCTURES 

 

 

 

Chapter 2 of this Thesis describes the 4×4 matrix formalism applied to bulk structures, 

which is the most advanced approach for the light propagation problem in bi-anisotropic 

medium. The main references of this chapter are the original Berreman’s paper [14], the  

Azzam’s book [15] and the Thesis of Paul Rogers [16,17]. In addition to the theoretical 

background, in this chapter we will discuss some analytical solution of Fresnel’s 

coefficients, which describe behavior of light when propagating  through an interface 

between two optical media (Figure 2.1), for general bulk structures with anisotropic ˆ( ), 

ˆ ( )    and magneto-electric interaction which characterizes by magneto-electric (ME) 

tensor ˆ( )  . Tensors ˆ( )  , ˆ ( )  , ˆ( )  , ˆ( )   are three by three matrices,   matrix 

which is discussed later is four by four. Also we show which components of the Mueller 

matrix depends on ME interactions for ME tensors with different symmetries. It is a useful 

knowledge for measurements to determine for which sample orientation magneto-electric 

interaction can be observed in optical spectra and exhibit the strongest effect. 

 

 

Figure 2.1  Light propagation from isotropic ambient to semi-infinite bi-anisotropic 

bulk structure. 
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2.1 Constitutive and Dispersion Relations. 

We are concerned with structures which exhibit coupling between electric and magnetic 

interactions. For such a media different form of constitutive relations should be obtained 

in order to proper characterize wave propagation in this matter. Dzyaloshinskii obtained 

constitutive relations in the following form  [11]:   

i ij j ij j

i ji j ij j

D E H

B E H

 

 

 

 
 

 

(2.1) 

  

Details on these equations were discussed in the Section 1.2 on multiferroics in the 

previous chapter. Another question, which arises after all relevant relationships are written 

down, is how to characterize electric, magnetic and electromagnetic interactions with a few 

measurable quantities in the optical spectra, such as resonant frequencies, broadening, and 

oscillator strength. One of the most suitable approaches is the Lorentz model (or simple 

harmonic oscillator) for dispersion relations: 

2

, ,0

2 2
1 ,0 ,

( )
N

n n

n n n

S

i

 

 


  

   




 
 

  

 

(2.2) 

 
2

, ,0

2 2
1 ,0 ,

( )
N

n n

n n n

S

i

 

 


  

   




 
 

  

 

(2.3) 

 

where 
0n  - oscillator resonance phonon or magnon frequency or electronic transition 

frequency, 
nS  - corresponding oscillator strength, 

n  - broadening of the nth excitation or 

electronic transition. The same is valid for treating ME interactions: 

2

,0

2 2

,0

( ) ;  (0) ;  ( ) 0
me me

me

me me

S
S

i


   

   
   

 
 

 

(2.4) 
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Also we will often assume that the same oscillator that appears in several ˆ,  ˆ ,

ˆ ,  and ̂  tensors has at the same frequency 
0   and the same value of the decay parameter 

 . In the figure below graphs for each type of excitation are shown. Panels (a) and (b) 

show real and imaginary part of electric excitation respectively, panels (c) and (d) show 

real and imaginary part of magnetic excitation, panel (e) and (f) show real and imaginary 

part of magneto-electric excitation. Parameters for each oscillator are presented in Table 

2.1.  

Table 2.1 Parameters for Electric, Magnetic and Magneto-electric Oscillators as 

Described by Equations (2.2), (2.3), and (2.4) 
 ( )   ( )   ( )   

Infinity value 10    1   0   

 Resonant frequency  
0, 300e   

0, 300   
0, 300   

Strength  0.01eS    0.01S   0.01S   

Broadening  1e    1   1   
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2.2  Basics of the 4x4 Matrix Formalism 

The 4×4 matrix formalism developed by Berreman [14] allow to calculate optical 

properties of stratified bi-anisotropic media if ̂ , ˆ ,  ̂  tensors are known. Figure 2.3 

shows the optical matrix M that is composed of the ̂ , ˆ ,  ̂  tensors for a single layer 

with bi-anisotropic properties. For analysis of experimental data, it is always useful to have 

analytical solutions for transmittance and reflectance of the media as a function of 

frequency and angle of incidence to be able to explore phenomena like in the case of the 

adjusted oscillator strength matching (AOSM), total reflection, skin depth, etc. The 

schematics of the investigated experimental configuration is shown in Figure 2.4. In 

Berreman formalism, it is assumed that the time variation of fields are harmonic and given 

by
i te 

, the direction of stratification coincides with the positive direction of the z-axis, 

there is no 
yk  wave vector component of incident light and structures are homogeneous 

        ( )      ( )           ( )    

 

Figure 2.2  Graphs of different types of excitations: (a),(b) – electric; (c),(d) – magnetic; 

(e),(f) – magneto-electric. Real parts are in blue color, imaginary parts are in red color. 

Parameters are presented in Table 2.1. 
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along  x. The theory utilizes the fact that parallel components of the fields are continuous 

through ought the medium (no surface charges, no surface currents). 

 

Figure 2.3  Constitutive relations for bi-anisotropic structures. Sample can be described by 

permittivity ˆ( )  , permeability ˆ ( )   and ME ˆ( )   tensors. D  and B  relate to E  and H  

by means of optical matrix. 

 

The advantage of Berreman’s formalism is that it deals with the first order 

Maxwell’s equations which allow to easily incorporate the ME tensors. Note that in 

addition to the Berreman’s approach, there are some other ways to investigate 

electromagnetic wave propagation but they rely on the same physical principles. In 

comparison, the Yeh’s [18] formalism deals with polarization eigenmodes, giving a clearer 

physical interpretation of boundary conditions, but this approach seems to be more difficult 

to describe magneto-electric activity and optical activity. We chose Berreman’s approach 

as an established one which allows to obtain all required results for our research. 

It is instructive to show derivation of  Berreman’s matrix wave equation and discuss 

application of boundary conditions to have clear understanding of incorporating ME effect 

into structure’s interactions. 
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(2.5) 

Figure 2.4  Axis orientation and schematics of wave propagation. 

 

For simplicity, we assume that our laboratory x-y-z axes coincide with the 

symmetry axes of the sample. Such convention determines the diagonal form of both,  

dielectric permittivity tensor and magnetic permeability  tensors. Schematic of the axes 

notation is shown in Figure 2.4. When this condition does not hold the optical axes should 

be rotated, transforming correspondingly our optical matrix and it will not have diagonal 

form anymore. Constitutive relations can be written in the following form: 

* * *

* * *

* * *

0 0

0 0

0 0

0 0

0 0

0 0

xx xx xy xzx x

yy yx yy yzy y

zz zx zy zzz z

xx yx zx xxx x

xy yy zy yyy y

xz yz zz zzz z

D E

D E

D E

B H

B H

B H

   

   

   

   

   

   

    
    
    
    

     
    
    
        

    

 

 

 

 

 

(2.6) 
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It should be noted that a low-left part of optical matrix ˆ '  is a conjugate transpose 

of ̂ : 
†ˆ ˆ' .   In the following discussion, we focus on the cases when non-zero 

components of ME tensor are xx ,
yy , zz ,

yx xy   ,  
yz zy    , xz zx    which  

corresponds to most common crystal structure.  

Maxwell’s equations can be written (in the general case of ME tensor each field 

component is a function of others): 

B
E

t

D
H

t

 
  
 


  
 

 

 

 

(2.7) 

 

It is useful to represent curl vector as a matrix and note that our conditions assume that 

there is no 
yk  component of wave vector and our material is homogeneous as the result 

y




 will bring zero and  

x




 gives a x-component of a wave vector. The curl matrix can be 

represented as in the following equation: 

0 0 0 0

0 0 0 0

0 0 0 0
1

0 0 0 0

0 0 0 0

0 0 0 0

x x

y y

z z

x x

y y

z z

z y

E Dz x

E D

E Dy x

H Bc t

z y H B

H B

z x

y x

  
  

 
  

      
     

      
       

     
       

      
     

          
  
 
  

   

 

 

 

 

 

 

 

 

 

 

(2.8) 
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Taking into account the discussion above and writing down constitutive relations, our 

matrix equation  transforms to the following equation: 

 

0 0 0 0 0

0 0 0 0

ˆ ˆ0 0 0 0 0 1

ˆ ˆ'
0 0 0 0 0

0 0 0 0

0 0 0 0 0

x x

x
y y

x z z

x x

y y

z z
x

x

z
E E

ik
E Ez

ik E E

H Hc t

z H H

H Hik
z

ik

 

 

 
 

 
    
   

     
 

                  
 

    
             

 
 

 

 

 

 

 

 

 

 

(2.9) 

 

The most general view can be shown as: 

' ' '

' ' '

'

0 0 0 0 0

0 0
0 0 0 0

0 0

0 00 0 0 0 0 1

0 0
0 0 0 0 0

0 0

0 0 0 0

0 0 0 0 0
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x
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H c
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(2.10) 

 

Looking carefully at the curl matrix it should be noted that there is no 
z




 dependencies in 

third and sixth column. That means zE  and zH  components can be expressed in terms of 

xE ,
yE , xH ,

yH . The “reduced” equation looks like:  
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11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44
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y y

x x

y y

E E

E E
i

H Hz c

H H



       
    

        
       
              

 

 

 

 

(2.11) 

 

Calculation of   matrix elements can be found in original Berreman’s paper [14]. Though 

Berreman used 

x

y

y

x

E

H

E

H

 
 
 
 
 
 

 basis (and calculated   elements in this basis), we use 

x

y

x

y

E

E

H

H

 
 
 
 
  
 

basis. 

It is not hard to get expressions for   elements in our basis by slightly modifying 

Berreman’s matrix as shown in Figure 2.5. There is no principle difference which basis to 

choose, but  it is more important to work with E  and H  because their tangential 

components are continuous through interfaces which as was shown earlier lay in the  xy-

plane. 

Finally, one arrives to 4x4 matrix wave equation (we use matrix on the right in 

Figure 2.5 but we rename components of   ): 

                       Berreman’s                                              Our work 

11 12 13 14 11 13 14 12

21 22 23 24 31 33 34 32

31 32 33 34 41 43 44 42

41 42 43 44 21 23 24 22

   
   
   
   
   

     

          
   
          
          
   
          

x x

y y

y x

yx

transformation

E E

H E

E H

HH

 

Figure 2.5 Transformation between different bases 
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11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

x x

y y

x x

y y

E E

E E
i

H Hz c

H H



       
    

        
       
              

, 

 

 

 

(2.12) 

or in a more compact form: 

i
z c

 



 


 

 

(2.13) 

 

For our discussion about wave propagation in the bulk samples, we do not need to solve                     

Equation (2.13). It’s enough to solve eigenvalue, eigenvector problem for substrate’s   

matrix. Further treatment of the Berreman’s wave equation will be continued in the chapter 

on electromagnetic wave propagation in bi-anisotropic multilayer systems.  

Because we assume that our structures are homogeneous along z, LHS of the 

Equation (2.12) yields zik  multiplier in front of   vector. We can rewrite wave equation 

into the form below, where zq  is an effective refraction index in the z-direction and 

corresponds to the z-component of wave vector as z
z

ck
q


 .  

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

(0) (0)

(0) (0)

(0) (0)

(0) (0)

x x

y y

z

x x

y y

E E

E E
q

H H

H H

        
    

         
       
              

, 

 

 

 

(2.14) 

  

where we consider field’s components at the interface between ambient and structure. For 

getting analytical solutions it is nice to construct transfer matrix T which relates incident 

and reflected components to transmitted ones of propagating wave. We desire to have 

relationship in the form:  
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(2.15) 

 

Fresnel’s coefficient could be found easily from this equation: 
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(2.16) 

 

 

 

What one needs is to construct matrices which project transmitted waves on xy-

plane and project xy-components on initial and reflected waves. Projecting 
pE , sE  

 

Figure 2.6  Fields near the ambient-substrate interface. Incident and reflected p- and s- 

polarized waves in the ambient are shown as well as two transmitted waves 

corresponding to eigenvectors of substrate’s   matrix which are related to eigenvalues 

with positive real part. 
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components of incident and reflected waves on the interface and using relationship between  

H  and E  for isotropic medium we get following dependencies for incident light: 

0

0 0

0

cos

cos

x ip

y is

x is

y ipi

E E

E E
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(2.17) 

 

for reflected light: 

0

0 0

0

cos

cos

x rp

y rs

x rs

y rpr

E E

E E

H N E

H N E





   
   
   
   
      
   

. 

 

 

 

(2.18) 

 

Total projection on the xy-plane: 
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(2.19) 

 

or if we reshape RHS of Equation (2.19) we get: 
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(2.20) 

 

In order to get p and s components along, we multiply both parts on the inverse matrix in 

the RHS of Equation (2.20): 
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and, finally, following Shubert [19], we obtain matrix Lin which project x,y-components of 

the incident and reflected waves on p,s-components: 

0
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0

0

1
0 1 0
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1 12
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(2.22) 

 

 

Before calculating another matrix which projects the transmitted waves on the xy-

plane, let’s review Azzam’s method of solving wave propagation in bulk materials 

problem. As we pointed out earlier, in Equation (2.22) a simple relationship can be 

established between incident and reflected waves and their projections on the xy-plane. We 

assume that our media is bi-anisotropic in general case and then it’s sufficient to assume 

that propagating waves inside bulk structure will be nothing but linear combination of 

eigenvectors which corresponds to positive real part eigenvalues (condition for existing 

only two transmitted waves). This kind of relationship has the form: 

0 1 11 2 12

0 1 21 2 22

1 31 2 32
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(2.23) 

 

After defining boundary conditions we can introduce transmission coefficients vector 

1

2

C
C

C

 
  
 

 and rewriting our initial system of equations into more useful form we obtain: 



24 

 

1

2

( )

( )

i r

i r

C S E E

C S E E

 


 
 

 

(2.24) 

 

Where S1 and S2 are defined by the following equations: 
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Finally, we get Fresnel’s coefficients:  
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The disadvantage of such a method is a calculating inverse matrices several times. Shubert 

[19] proposed slightly different approach. We want to construct matrix which project 

transmitted waves on xy-plane. Let’s call it Lout. Then we have 
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From the system Equation (2.23) it’s clear that 
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where sub

ij  are the substrate’s   matrix eigenvectors components. As a small remark: 

when treating semi-infinite bulk structures we simply call it substrates because algorithms 

are similar to that for a multilayer structure on semi-infinite anisotropic substrate. 

Eigenvector components of semi-infinite bulk structures we call substrate eigenvector 

components sub

ij . So our  Lout matrix has the form: 

11 12
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41 42
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Now we can write down transfer matrix T: 
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(2.30) 

 

And, finally, we get explicit formula of Equation (2.30) from which Fresnel’s coefficients 

can be obtained in analytical form. The only thing left is to calculate corresponding 

eigenvectors of transmitted waves. We consider several symmetries of ME tensor which 

more often occurs in real materials to simplify our calculation and then we determine which 

Mueller matrix components depends on ME oscillators. 
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Fresnel’s coefficients for general bulk bi-anisotropic structures with isotropic ambient 

(coefficients shown as a functions of the eigenvectors components): 
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sub

ij  calculated for some certain cases are available for download online in the form of  

MatLab m-files which are located at http://web.njit.edu/~sirenko/EllipsNJIT/index1.htm. 

When transmitted waves are decoupled, there is a more physical way to show 

structure of exit matrix. In this case, structure of optical and   matrices look like in the 

following equations correspondingly.  
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Figure 2.7  Decoupled 
tpE  and tsE  wave propagating inside substrate. 
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Let’s consider separately p-polarized and s-polarized waves. Rewrite Equation 

(2.14) into the form and consider p-polarized light first: 
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We assume that there is no y-component of the electric field thus and substitution all off-

diagonal terms of   matrix with zeroes we get: 
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From first and fourth equations from the we get following dependencies on   matrix 

components of  fields’ projections and eigenvalues: 

0xH  ; 41

14

zp

y x x

zp

q
H E E

q


 


2

14 41zpq     

 

(2.44) 

 

The same system of equations as System (2.43) can be written for s-polarized light  

( 0xE  ): 
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From second and third equations from the system (2.45), we get following dependencies 

on   matrix components of fields’ projections and eigenvalues: 
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We could find projection of fields inside a substrate from eigenvectors. Mode for p-

polarized light and mode for s-polarized light become as in following equations 

correspondently: 
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Total transmitted wave has the form: 
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Hence out matrix for this particular case is turned to be: 
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From practical point of view, substrates are usually made from materials which are 

isotropic or have anisotropic permittivity tensor, so we will be using Equation (2.50) for  

out matrix in the next chapter on electromagnetic wave propagation in multilayer systems. 

Consequently, the dependence of incident, reflected and transmitted wave has the 

following form: 
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(2.51) 

 

To sum up, in this part of our work we present detailed discussion of 

electromagnetic wave propagation in bulk materials with arbitrary symmetry using 

Berreman’s matrix formalism. We calculated Fresnel’s coefficients as a function of 

substrate’s   matrix eigenvector components and also presented explicit view of outL  

matrix when transmitted modes in the substrate are decoupled. In the following Sections 

we’ll continue with the treatment of particular ME tensor symmetries and will determine 

which components of Mueller matrix are sensitive to ME interaction.  
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2.3  Fresnel’s Coefficients for Materials with Certain ME Tensor Symmetry 

In this section, we determine Mueller matrix components dependencies on magneto-

electric interaction. First, we consider a symmetry case with the off-diagonal components 

of the ME tensor ̂ , as shown in the following optical and matrices.  
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Figure 2.8  Normalized Mueller matrix components for 
0 0

0 0

0 0 0

xy

xy





 
 
 
 
 

  ME tensor 

symmetry. Model contains one oscillator with 
, 0.01xyS  ; 0 300   cm-1; 2  ; 

dielectric constant 10xx yy zz      ; magnetic permeability 1xx yy zz     ; 

60AOI  . 
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Figure 2.9  Normalized Mueller matrix components for 
0 0 0

0 0

0 0

yz

yz





 
 
 
  

  ME tensor symmetry. 

Model contains one oscillator with 
, 0.01yzS  ; 0 300  cm-1, 2  ; dielectric constant 

10xx yy zz     ; magnetic permeability 1xx yy zz     ; 60AOI  . 
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Figure 2.10  Normalized Mueller matrix components for 
0 0

0 0 0

0 0

xz

xz





 
 
 
  

  ME tensor 

symmetry. Model contains one oscillator with 
, 0.01xzS  ; 0 300  cm-1, 2  ; dielectric 

constant 10xx yy zz     ; magnetic permeability 1xx yy zz     ; 60AOI  . 
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Figure 2.11  Normalized Mueller matrix components for 
0 0

0 0 0

0 0 0

xx 
 
 
 
 

  ME tensor 

symmetry. Model contains one oscillator with 
, 0.01xxS  ; 0 300  cm-1, 2  ; dielectric 

constant 10xx yy zz     ; magnetic permeability 1xx yy zz     ; 60AOI  . 
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Figure 2.12   Normalized Mueller matrix components for 
0 0 0

0 0

0 0 0

yy

 
 
 
 
 

  ME tensor symmetry. 

Model contains one oscillator with 
, 0.01yyS  ; 0 300  cm-1, 2  ; dielectric constant 

10xx yy zz     ; magnetic permeability 1xx yy zz     ; 60AOI  . 
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Figure 2.13   Normalized Mueller matrix components for 
0 0 0

0 0 0

0 0 zz

 
 
 
 
 

  ME tensor symmetry. 

Model contains one oscillator with 
, 0.01zzS  ; 0 300  cm-1, 2  ; dielectric constant 

10xx yy zz     ; magnetic permeability 1xx yy zz     ; 60AOI  . 
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Table 2.2  Dependence of the MM Components on the Symmetry-allowed ME 

Interaction. The ME tensor Components are in the Left Column, MM Spectra are in the 

Middle Column, and the Comments are in the Right Column 

ME tensor MM plot   appearance in 

MM components 
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It should be noted as well that the strength of magneto-electric features in Mueller 

matrix spectra components depends on the background values of   and  . We pointed 

out earlier that magneto-electric interaction is bounded by the geometric mean of the 

diagonalized permittivity and permeability tensors. The closer   approaches to this 

thermodynamic limit the stronger contribution in MM components. Simultaneous increase 

in values of   ,   and  , when Equation (1.3) still holds, results in more stronger 

appearance in MM components of ME contribution.  

The main result of simulations presented in Table 2.2 is a demonstration of the fact 

that MM spectroscopic ellipsometry that measures all spectral components presented in 

Figures 2.8 – 2.13 can distinguish different symmetries of the   tensor. For example, xx

and 
yy peaks have different sign (positive and negative) in the spectra of  m23  and m24.  

 

2.4 Mueller Matrix Analysis of the Space Group Symmetry in InMnO3 

Another possible application of Mueller Matrix technique using previously developed 

formalism is the experimental determination of the magnetic symmetries of materials. One 

of them is hexagonal InMnO3. 

There was a debate in literature about the symmetry of the ground state of InMnO3: 

The centrosymmetric, non-polar and ferroelectric space groups have been considered. In 

the early studies,  36P cm  symmetry [20,21,22]  and ferroelectricity under ambient 

conditions [12] have been reported and supported by theory [23]. However, in more recent 

studies an absence of ferroelectricity has been found  [24] and experimentally confirmed 

using a combination of x-ray diffraction, piezoresponse force microscopy (PFM), optical 
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second harmonic generation (SHG), and supported by density functional theory (DFT) 

calculations. Thus, a centrosymmetric structure with   space group was found, instead of 

the ferroelectric one. Below we show the four big optical matrices that appear in Equation 

(2.6) for the three  space groups discussed in regard to InMnO3:   36 /P mmc , 3P c   and
 

36P cm .  Examples of some possible magnetic point groups are also shown in brackets. 

The last two big optical matrices of the right correspond to the same structural group, but 

two different magnetic symmetries: 

 

Figure 2.14. Possible magnetic symmetries for hexagonal InMnO3 multiferroic single 

crystal. 

 

One can see that the diagonal elements of the big optical matrix contain the same 

set of components 
, , ,    

 for all three structural point groups for this hexagonal 

system. In contrast, the off-diagonal elements of the big optical matrix can be different 

depending on the structural and magnetic point groups. For example, the centrosymmetric 

phase 3 16 /   (6 / )z z xP mmc m m m   and  3 (3 )z xP c m   are expected to have ˆ 0  , while 

3 16   (6 )z xP cm m m    phase has non-zero elements of the magneto-electric tensor.  For

16z xm m ,  0xy yx    , while for 16 ' 'z xm m   the ME tensor is diagonal with two non-

zero elements  and  
 . Thus, the big optical matrix and, hence, MM-SE ellipsometry 
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are sensitive to the magnetic point groups being able to differentiate, for example, 

1/6z z xm m m , 16z xm m  , and 16 ' 'z xm m   for the same 36P cm   structural symmetry. Figure 

2.14 shows our model calculations for the diagonal and off-diagonal MM components for 

three magnetic symmetry cases: 1/6z z xm m m ,  16z xm m and 16 ' 'z xm m . The oscillators in 

Figure 2.14 (a) correspond to the polar phonon mode polarized along the c-axis in the 

hexagonal structure. The main contribution originates, of course, from the ˆ( )    tensor. 

 

Figure 2.15  Simulated diagonal and off-diagonal MM components for three symmetry 

cases: 1/6z z xm m m , 16z xm m  and 16 ' 'z xm m  : pink, blue, and red curves. The oscillator at 

120 cm-1 in (a) corresponds to the polar phonon mode polarized along the c-axis in the 

hexagonal structure. The peaks in the off-diagonal components of the MM in (b) and (c) 

correspond to the ME tensor components of the same excitation that are allowed by 

symmetry. 

 

The peaks in the off-diagonal components of the MM in Figure 2.14 (b,c) 

correspond to the ME tensor components at the phonon frequency. These components are 

symmetry-sensitive as seen from comparison of the blue and red spectra. Blue spectra are 
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both positive in 14 ( )m    and 41( )m  , while red spectra have opposite sign in  14 ( )m    and  

41( )m  . Cleary, the MM components are qualitatively different for the different magnetic 

symmetries, illustrating the power of this approach. While the case of InMnO3 appears to 

be settled, the symmetries of many other hexagonal compounds discussed here are 

unknown and will be investigated using ellipsometry. In general, using MMSE, we will be 

able to measure the parameters of the polar optical phonons, magnons, and electromagnons 

and compare them for the temperatures above and below the ferroelectric or magnetic 

transition temperatures. The simultaneous measurements of the off-diagonal components 

of the MM will provide information about the magneto-electric excitations and the 

corresponding magnetic group symmetry of the investigated hexagonal samples.  
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CHAPTER 3  

ELECTROMAGNETIC WAVE PROPAGATION IN  

BI-ANISOTROPIC MULTILAYER STRUCTURES 

 

In this chapter, original results are shown for calculation techniques for the wave 

propagation in bi-anisotropic multilayer systems. As shown in the previous chapter,  

methods for wave propagation in bulk materials were based on the matrices Lin  and Lout  in 

the form of  Equation (2.22) and Equation (2.29). For general anisotropic media when 

transmitted modes are coupled, Equation (2.29) should be used to find the Lout matrix. In 

order to take into account the optical response from thin film layers sandwiched between 

ambient and substrate one should construct matrices which project xy-components of the 

fields through all layers, from the top interface to the bottom interface. There are two 

common strategies of obtaining these matrices. In the first case, which is more detailed but 

not so desirable for obtaining analytical solutions, we will refer to as a “layer matrix L” 

method. This approach requires calculations of eigenvectors of each layer’s   matrix and, 

 

Figure 3.1  General schematics for a  bi-anisotropic multilayer system. Incident wave 

is in the xz-plane. Positive z-direction is vertically down. 
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based on a trivial solution of the matrix wave equation, constructing propagating matrix K. 

Second method uses Cayley-Hamilton theorem [25] from linear algebra which provides a 

faster way to obtaining layer matrix without calculating eigenvectors. We will call layer 

matrix partial transfer matrix Tp  in this case. For discussion of advantages and 

disadvantages of each method, we solve in the beginning anisotropic double layer system 

without ME activity problem on isotropic substrate, show consistency with previous 

developed works and then give general analytical expressions of Fresnel’s coefficients for 

arbitrary systems (Figure 3.1) using second method. We also show simulation of optical 

response for a single layer, bilayer and a superlattice structure with N bilayers for some 

cases of certain ME tensor symmetry in terms of MM and reflectance and compare it with 

numerical calculations. In the final section, we briefly discuss simulating/fitting software 

developed as a part of this Thesis. Graphical user interface will be presented and some 

capabilities explained. 

 

 

 

Figure 3.2  Scheme for anisotropic single thin film wave propagation. 
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3.1 Prior Works for Thin Films 

Light propagation in thin films has been studied in a number of theoretical papers. The 

review can be found in P.Rogers et al [16]. Here we present the summary for the most 

important theoretical developments for single layer systems on isotropic substrate from P. 

Rogers’ Theses and his papers [16,17]. Sketch of the system and wave propagation is 

shown in Figure 3.2.  Fresnel’s coefficients solutions are shown below. 
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(3.1) 

3.2 Layer Matrix Technique and Analytical Solutions for Bilayer Anisotropic 

Structure with Zero ME Tensor on Isotropic Substrate 

In this section, our original results for bilayer structures are presented. In short, we have 

increased the number of anisotropic layers compared (Figure 3.3) to that has been done 

previously by P.Rogers [16]. This step is conceptually important since it leads to the future 

 

Figure 3.3  Scheme for anisotropic bilayer thin film wave propagation 
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development of the theory for multilayers and superlattices. The latter could be considered 

as 1D metamaterials, thus bringing together several directions of our research. We use layer 

matrix technique in this case.  

In the chapter on bulk structures, we got explicit expression for matrix wave 

Equation (2.13). When   matrix does not depends on z we can integrate it and obtain 

( ) (0)
i z

cz e


 


  

 

(3.2) 

 

For each particular mode solution becomes: 

,

( ) (0)
z ii q z

c
i iz e



   
 

(3.3) 

 

Let’s consider detail structure of the electromagnetic wave inside the multilayers (Figure 

3.4). Each mode variation inside a layer is shown in Equation (3.3). Thus if we want to 

construct a matrix, which contains all optical modes, such a matrix, which relates modes 

at the interfaces of the n and n-1 layers, must have the form shown below. It is called a 

propagation matrix K. 

 

Figure 3.4   Notations for a bilayer structure calculations using a layer matrix L method. 
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(3.5) 

 

In order to obtain layer matrix which relates all components at one interface to another one 

we write down: 

i i i iL K    (3.6) 

 

It is easy to see that layer matrix can be expressed as  

1

i i i iL K    (3.7) 

 

If we have a multilayer structure, one needs to project components from n  to n m   layer 

by doing simple multiplication between each layer matrices 1...n n n mL L L   . The resultant 

matrix, which project components from ambient interface to substrate interface, looks as 

follows 

1

1 1

n n

i i i i

i i

L L K 

 

      
 

(3.8) 

 

The layer matrix for a bilayer structure can be obtained as shown below. In the previous 

chapter on bulk structures in Equation (2.23) we showed boundary conditions for an 

ambient-substrate interface. 
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After adding layer matrix and modifying Equation (2.23) for bilayer structure with 

isotropic substrate we obtain: 

11 12 13 14 0

21 22 23 24 0

31 32 33 34

41 42 43 44 0 0
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(3.10) 

 

The system ratios , , ,
rp tp rs ts

ip ip is is

E E E E

E E E E
can be easily found, which give reflection and 

transmission coefficients for media, or more explicitly: 
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(3.11) 

 

with , , , , , , ,ip rp is rs ip rp is rsa a a a b b b b  are given by 
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(3.12) 

 

 

Fresnel’s coefficients for transmission can be found the same way, which gives 
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Finally, we can obtain analytical expressions for Fresnel’s coefficients:
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With coefficients 
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(3.16) 

 

 

Next we show some optical response simulations obtained with the help of the 

derived formulas. Parameters for simulation are given in the table below.  
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Table 3.1   Parameters of the Lorentz Model for the Optical Properties of the Bilayer 

Structure. The Layer Thickness h1=10 m   and h2=90 m is in cm 

 

 

 

 

 

 

 

 

Figure 3.5  Simulation of (a) Rpp and (b) Rss for bi-layer structure with anisotropic 

ˆ ˆ( ), ( )     and isotropic substrate. Red line is a reference calculation with zero oscillator 

strengths. Blue line is the calculated response with parameters from Table 3.1. 

 

 

 

Figure 3.6  Simulation of (a) Tpp and (b) Tss for bi-layer structure with anisotropic ˆ ˆ( ), ( )     

and isotropic substrate. Red line is a reference calculation with zero oscillator strengths. 

Blue line is the calculated response with parameters from Table 3.1 
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h1 = 0.001 h2 = 0.009 

15   1   15   1   

 el m el m 
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Sx 0.1 0.02 0 0.01 
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Sz 0.1 0.01 0.1 0.01 
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3.3 Transfer Matrix Technique and Analytical Solutions for General Multilayer Bi-

Anisotropic Structures 

In this section, we use transfer matrix formalism for obtaining the most general form of 

solutions for arbitrary symmetry systems on anisotropic substrate. At the end of this 

Section we will compare the layer matrix and transfer matrix techniques. 

Information about ( )z  knowing (0) is provided in Equation (3.2). In other 

words, we start from projections of incident and reflected light on ambient interface and 

moving through layers till we get to the last substrate interface. There is a more convenient 

way to obtain solutions. Let’s assume that our final matrix equation should be in the form 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

0 0

0 0

is ts ts

rs

ip tp tp

rp

E T T T TE E

E T T T T
T

E T T T TE E

E T T T T

      
      
       
      
       

     

 

 

 

 

(3.17) 

 

where T is the so called transfer matrix, which will be constructed below. It is a better 

choice (no need to construct projection matrix from the xy-components at substrate 

interface to transmitted waves, which contains inverse eigenvectors components of the 

substrate’s   matrix as in Equation (2.25) from the previous chapter) to start from 

transmitted modes  tsE  and 
tpE , and move to the incident and reflected ones in ambient. 

For this purpose, we rewrite Equation (3.2) in the following form: 

(0) (z)
i z

ce


 
 

  

 

(3.18) 
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Now we can start from using  ( )z  and move back to (0) . In Equation (3.18)  

matrix exponent is nothing else but matrix which relates components at different interfaces. 

We call it a partial transfer matrix Tp. Instead of calculating layer matrix, which has a 

relatively complicated structure, we need to get an expression for matrix exponent, which 

is basically infinite series.  

Figure 3.7  Ray propagation shematics in bilayer system. 

 

In this situation, the Cayley-Hamilton theorem is very useful.  In short, the theorem 

states that every square matrix satisfies its own characteristic equation. Wohler et al. [25] 

applied this theorem to partial transfer matrix and showed that matrix exponent can be 

written as a polynomial of the order of r-1, where r is the rank of the matrix, with 

coefficients solely depended on eigenvalues. Analytical expression is the following: 
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with coefficients defined as 
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(3.20) 

 

and  
jq  are eigenvalues of   matrix. For obtaining expressions for eigenvalues the 

following equation should be solved 
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(3.21) 

 

as a result we get fourth order polynomial with complex coefficients. If we reduce high 

order coefficient we obtain the following equation: 

4 3 2

1 2 3 4 0z z z zq C q C q C q C      (3.22) 

 

“The Handbook of Functions” by Abramowits and Stegun [26] provides solutions of 

Equation (3.22). That means there are no difficulties to construct analytical expression for 

partial transfer matrix. If we have multilayer structure, total propagating matrix is given as 

a product of partial transfer matrices of each layer 
,1 , 1 ,...p p i p iT T T

.  In the previous chapter, 

we defined Lin  in Equation (2.22) and Lout in Equation (2.50). In order to get solutions in 

the form of Equation (2.15) we can write: 
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(3.23) 

 

After plugging in Equation (3.23)  the expressions for Lin and Lout , we obtain the final 

form: 
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Transfer matrix is defined as 

0

11 12

0 2 3 21 22

0 1 2 3

1 31 32

0 41 42

0

1
0 1 0

cos

0 01
0 1 0

cos 0 01
( )

1 12 0 0
0 0

cos 0 0

1 1
0 0

cos

i

sub sub

sub subN
i

i i i i i i i sub sub
i

sub sub
i

i

N

N
T I

N

N



 

  
   

 

  





 
 

 
  
  
        
  
    
  

 
 
 

  

(3.25) 

As we discuss earlier, for biaxial substrates Equation (2.50) could be used, then 
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where right RHS matrix  corresponds to substrate. Now it is easy to show solutions for 

Fresnel’s coefficients: 
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(3.27) 

 

To conclude, we compare layer matrix and transfer matrix techniques. When we 

use the layer matrix we start from ambient, project waves on the interface and then move 

through the layers by means of propagation matrix and arrive to the substrate. Then we 

project transmitted modes on the interface and, finally, obtain a solution. It was pointed out 

earlier that projecting transmitted modes on the interface involves matrix inverse operation 

which is not desirable for obtaining analytical solutions. Expression quickly becomes too 

bulky. The layer matrix gives some advantages though. We calculate eigenmodes for each 

layer and thus we know dynamics inside layers (Poynting vectors can be obtained fairly 

quickly). Energy conservation arguments are easier to justify knowing such information.  

In the transfer matrix formalism we start from the substrate and represent 

substrate’s fields projection in terms of transmitted waves (opposite to what we do using 

layer matrix L). Then we move from the last layer to ambient using partial transfer matrix. 

At the ambient interface we use Lin matrix to obtain p and s components of incident and 

reflected waves in terms of fields’ projections.  Then we get the solutions. Partial transfer 

matrix does not contain any eigenmodes information and solely defined by the eigenvalues 
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and by the elements of   matrix. We miss some information about waves propagation 

inside layers but get instead a faster method to obtain solutions and, as a result, more 

compact formulas. Both methods give the same results and both methods have their 

advantages and disadvantages.  

Let’s discuss the limitations for the applicability of our theoretical results, which 

cover only the linear optical effects and homogeneous layers without thickness gradient. 

We do not intend to cover the non-linear effects and inhomogeneous structures, which are 

outside of the scope of our work. For a non-linear media, certain approximations should be 

done to establish the relationship among the field vectors and to allow treating the material 

by means of the matrix formalism.  For inhomogeneous media, the sample should be 

divided into regions where optical matrix does not depend on z, after that procedure 

described above can be applied for further analysis.  

It should be mentioned that developed formalism is also applicable for 

metamaterials investigation. 

In the following sections, we consider some particular systems which are bi-

anisotropic single layer thin film on biaxial substrate, bi-anisotropic bilayer structure on 

biaxial substrate and superlattice on biaxial substrate. Discussion of formulae are in the 

beginning of the section and analytical versus numerical solutions and related simulation 

of MM matrices and Reflectance towards the end. 
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3.4 Single Layer Bi-anisotropic Thin Film on Anisotropic Substrate 

 

Table 3.2 Layer and Substrate Parameters for Bi-anisotropic Thin Film and Substrate 

 

 

 

 

 

 

Layer parameters 

Layer thickness 5 m   

Oscillators ( )   ( )   ( )   

Infinity value 10    1   0   

 Resonant frequency  --- --- 
0, 300   

Strength  --- --- 0.01S   

Broadening  --- --- 2   

Substrate parameters 

Permittivity   16xx    9yy   4zz   

Permeability   1xx   1yy   1zz   

  
Figure 3.8  Bi-anisotropic thin film on a substrate. 
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Figure 3.9  Transmittance components for 
0 0

0 0 0

0 0 0

xx 
 
 
 
 

  ME tensor symmetry. Model 

contains one oscillator with 
, 0.01xxS  ; 0 300   cm-1; 2;   dielectric constant 

16, 9, 4;xx yy zz      ; magnetic permeability 1xx yy zz     ; 0AOI  . 

 

 

 

Figure 3.10  Transmittance components for 0 0 0

0 0

0 0 0

yy

 
 
 
 
 

  ME tensor symmetry. Model 

contains one oscillator with 
, 0.01xxS  ; 0 300   cm-1; 2;   dielectric constant  

16, 9, 4;xx yy zz      magnetic permeability 1xx yy zz     ; 0AOI  . 
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Figure 3.11  Transmittance components for 0 0 0

0 0 0

0 0 zz

 
 
 
 
 

  ME tensor symmetry. Model 

contains one oscillator with 
, 0.01xxS  ; 0 300   cm-1; 2;   dielectric constant  

16, 9, 4;xx yy zz      ; magnetic permeability 1xx yy zz     ; 0AOI  . 

 

 

Figure 3.12  Transmittance components for 

0 0

0 0 0

0 0

xz

xz





 
 
 
  

  ME tensor symmetry. 

Model contains one oscillator with 
, 0.01xxS  ; 0 300   cm-1; 2;   dielectric 

constant  16, 9, 4;xx yy zz      ; magnetic permeability 1xx yy zz     ; 

0AOI  . 
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Figure 3.13  Transmittance components for 

0 0 0

0 0

0 0

yz

yz





 
 
 
  

  ME tensor symmetry. 

Model contains one oscillator with 
, 0.01xxS  ; 0 300   cm-1; 2;   dielectric 

constant  16, 9, 4;xx yy zz      ; magnetic permeability 1xx yy zz     ; 

0AOI  . 
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3.5 Bilayer Bi-anisotropic Structure on Anisotropic Substrate   

Table 3.3 Layer and Substrate Parameters for Bilayer Bi-anisotropic Thin Film and 

Substrate 

Layer 1 parameters 

Layer thickness 5 m   

Oscillators ( )   ( )   ( )   

Infinity value 10    1   0   

 Resonant frequency  --- --- 
0, 280   

Strength  --- --- 
, 0.01xxS   

Broadening  --- --- 2   

 
Layer 2 parameters 

Layer thickness 3 m   

Oscillators ( )   ( )   ( )   

Infinity value 8    1   0   

 Resonant frequency  --- --- 
0, 320   

Strength  --- --- 
, 0.01xxS   

Broadening  --- --- 2   

 
Substrate parameters 

Permittivity   16xx    9yy   4zz   

Permeability   1xx   1yy   1zz   

  



61 

 

Figure 3.14  Transmittance components for 
0 0

0 0 0

0 0 0

xx 
 
 
 
 

  ME tensor symmetry. Model 

contains one oscillator with 
, 0.01xxS  ; 2;    

0,1 280  ,
0,2 320    cm-1; 0AOI  .   
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Figure 3.15  Normalized Mueller matrix components for 
0 0 0

0 0

0 0 0

yy

 
 
 
 
 

  ME tensor symmetry. 

Model contains one oscillator with 
, 0.01yyS  ; 2;    

0 , 1 280  ,
0,2 320    cm-1;

0AOI  . 

 

Figure 3.16 Normalized Mueller matrix components for 
0 0 0

0 0 0

0 0 zz

 
 
 
 
 

  ME tensor symmetry. 

Model contains one oscillator with 
, 0.01zzS  ; 2;    

0 , 1 280  ,
0,2 320    cm-1;

0AOI  . 
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Figure 3.17  Normalized Mueller matrix components for 0 0

0 0

0 0 0

xy

xy





 
 
 
 
 

  ME tensor symmetry. 

Model contains one oscillator with 
, 0.01xyS  ; 2;    

0 , 1 280  ,
0,2 320    cm-1;

0AOI  . 

 

Figure 3.18  Normalized Mueller matrix components for 0 0 0

0 0

0 0

yz

yz





 
 
 
  

  ME tensor symmetry. 

Model contains one oscillator with 
, 0.01yzS  ; 2;    

0 , 1 280  ,
0,2 320    cm-1;

0AOI  . 
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Figure 3.19  Normalized Mueller matrix components for 0 0

0 0 0

0 0

xz

xz





 
 
 
  

  ME tensor symmetry. 

Model contains one oscillator with 
, 0.01xzS  ; 2;    

0 , 1 280  ,
0,2 320    cm-1;

0AOI  . 

 

 

3.6 Bi-anisotropic Superlattice on Anisotropic Substrate 

 

 

Figure 3.20  Superlattice on anisotropic substrate schematics. 
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Table 3.4  Superlattice on an Anisotropic Substrate Parameters  
Layer 1 parameters 

Layer thickness 3 m   

Oscillators ( )   ( )   ( )   

Infinity value 16    1   0   

 Resonant frequency  --- --- 
0, 280   

Strength  --- --- 
, 0.01xxS   

Broadening  --- --- 2   

 
Layer 2 parameters 

Layer thickness 1 m   

Oscillators ( )   ( )   ( )   

Infinity value 12    1   0   

 Resonant frequency  --- --- 
0, 320   

Strength  --- --- 
,xx 0.01S   

Broadening  --- --- 2   

 
Substrate parameters 

Permittivity   16xx    9yy   4zz   

Permeability   1xx   1yy   1zz   
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Figure. 3.22  Transmittance components for 

0 0 0

0 0

0 0 0

yy

 
 
 
 
 

  ME tensor symmetry. Model 

contains one oscillator in the first layer with 
, 0.01yyS  ; 2;    

0 , 1 280  ,and one 

oscillator in the second layer with 
, 0.01yyS  ; 2; 

0,2 320   cm-1; 0AOI  .Number 

of double layers equals to ten. 

 

Figure. 3.21  Transmittance components for 

0 0

0 0 0

0 0 0

xx 
 
 
 
 

  ME tensor symmetry. Model 

contains one oscillator in the first layer with 
, 0.01xxS  ; 2;    

0,1 280  ,and one 

oscillator in the second layer with 
, 0.01xxS  ; 2; 

0,2 320   cm-1; 0AOI  .Number 

of double layers equals to ten. 
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Figure. 3.23  Transmittance components for 
0 0 0

0 0 0

0 0 zz

 
 
 
 
 

  ME tensor symmetry. Model 

contains one oscillator in the first layer with 
, 0.01zzS  ; 2;    

0 , 1 280  ,and one 

oscillator in the second layer with 
, 0.01zzS  ; 2; 

0,2 320   cm-1; 0AOI  .Number 

of double layers equals to ten. 

 

 

 

 

Figure. 3.24  Transmittance components for 
0 0

0 0 0

0

xz

xz





 
 
 
  

  ME tensor symmetry. Model 

contains one oscillator in the first layer with 
, 0.01xzS  ; 2;    

0 , 1 280  ,and one 

oscillator in the second layer with 
, 0.01xzS  ; 2; 

0,2 320   cm-1; 0AOI  .Number 

of double layers equals to ten. 
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Figure. 3.25  Transmittance components for 0 0 0

0 0

0 0

yz

yz





 
 
 
  

  ME tensor symmetry Model 

contains one oscillator in the first layer with 
, 0.01yzS  ; 2;    

0 , 1 280  ,and one 

oscillator in the second layer with 
, 0.01yzS  ; 2; 

0,2 320   cm-1; 0AOI  .Number 

of double layers equals to ten. 

 

 

 
Figure. 3.26  Transmittance components for 0 0

0 0

0 0 0

xy

xy





 
 
 
 
 

  ME tensor symmetry Model 

contains one oscillator in the first layer with 
, 0.01xyS  ; 2;    

0 , 1 280  ,and one 

oscillator in the second layer with 
, 0.01xyS  ; 2; 

0,2 320   cm-1; 0AOI  .Number 

of double layers equals to ten. 
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Simulations of the optical transmission functions are interesting and may be useful 

from the experimental point of view. Contributions from oscillators located in different 

layers give certain spectra features, such as minima or maxima, that can become their 

“fingerprints” in analysis of the optical response. Experimental and model spectra of the 

Mueller matrix components, reflectance, and transmittance may help to identify the 

location of the magneto-electric excitations in the particular layers of the multilayer 

structure.  

As expected for ME oscillators polarized along the z-axis in zz  (Figures 3.11, 3.17, 

3.24), there is no corresponding optical response under normal light incidence. In contrast, 

for ME tensor with non-zero
xy  component there is a non-zero contribution of the 

oscillators under normal incidence. This effect occurs only in samples with anisotropic 

substrates. In the case of isotropic substrate, the ME response is not visible as demonstrated 

in MM components in Figure 2.8. For ME tensor with non-zero xz  (Figures 3.19, 3.24), 

the peaks for p-polarized and s-polarized light for oscillator with higher frequency in each 

layer appear with the opposite amplitudes and, thus, those peaks can be distinguished from 

each other. For non-zero
yz (Figures 3.18, 3.25), the behavior is similar: for both the 

bilayer and superlattice structures response is different and oscillators from different layers 

can be distinguished from each other. For non-zero diagonal xx ,
yy components of ME 

tensor, the contributions from oscillators in different layers are similar in sign, but the 

corresponding contribution in the transmittance coefficients is stronger for oscillators with 

higher frequency.  In this measurement configuration it would be impossible to distinguish 

oscillators from different layers.   
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CHAPTER 4    

MUELLER MATRIX ELLIPSOMETRY 

 

 

The most general representation of the transformation of the state of polarization of  light 

upon reflection or scattering by an object or sample is described by 

  

ˆ
out inS M S    (4.1) 

  

where  
outS   and 

inS  are the Stokes vectors of the scattered and incident light  

correspondingly which is defined in equations below. M̂ is the real 4x4 Mueller matrix 

(MM) that characterize elastic interaction light with  a sample. 

  

0 0

0

1

2 45 45

3

x y

x y

R L

S I I

S I I

S I I

S I I

 

 

 

 

 

 

 

(4.2) 

  

Here, S0 represents the total light intensity and S1 shows the light intensity 

determined by subtracting the light intensity of linear polarization in the y direction (Iy)  

from that in the x direction (Ix). On the other hand, S2 represents the light intensity obtained 

by subtracting the light intensity of linear polarization at −450  from that at +450. With 

respect to the parameter S3, the light intensity of left-circular polarization IL  is subtracted 

from that of right-circular polarization IR. Thus, the parameters S1-3  represent the relative 

difference in light intensity between each state of polarization. When S1 > 0, for example, 
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the light is polarized toward the x direction, while polarization of light is oriented in the y 

direction when S1 < 0. The Stokes parameters shown in Equation (4.2) can also be 

expressed by using electric fields as described below. The Stokes parameters described by 

electric fields are quite important for the interpretation of measured values in ellipsometry.

  

0 0 0 0

2 2 * *

0 0 0

2 2 * *

1 0 0

* * * *

2 45 45 45 45

* * * *

3 ( )

x y x y x x y y

x y x y x x y y

x y x y

R R L L x y x y

S I I E E E E E E

S I I E E E E E E

S E E E E E E E E

S E E E E i E E E E

   

     

     

   

   

 

 

 

(4.3) 

In the most general case, Mueller matrix is given as 

2 2 2 2 2 22 2 * * * *

2 2 2 2 2 22 2 * * * *

* * *

1 1
( ) ( ) Re( ) Im( )

2 2

1 1
( ) ( ) Re( ) Im( )

2 2

Re( ) Re(

pp ss sp ps pp ss sp ps pr sp ss ps pr sp ss ps

pp ss sp ps pp ss sp ps pr sp ss ps pr sp ss ps

pr ps ss sp pr ps

r r r r r r r r r r r r r r r r

r r r r r r r r r r r r r r r rM

r r r r r r

       

       

  * * * * *

* * * * * * * *

) Re( ) Im( )

Im( ) Im( ) Im( ) Re( )
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pr ps ss sp pr ps ss sp pp ss ps sp pp ss ps sp

r r r r r r r r r r

r r r r r r r r r r r r r r r r

 
 
 
 
 
 

 
 
       

 

(4.4) 

where , , ,pp ss sp psr r r r  parameters determined from the experiment. Mueller matrix is the 

connection point between theory and experiment. From MM-SE measurement we define 

Mueller matrix and along with optical model we can give analysis to different phenomena. 

In the following chapters, we would like to demonstrate versatility of MM-SE. 

4.1 Far-IR Optics of Multiferroic Materials 

Optical spectra of multiferroic crystals are in the focus of modern experimental and 

theoretical studies [21,22,23,24,27,28,29,30,31,32,33]. These complex materials can 

reveal a so-called bi-anisotropic optical behavior [34] in a form of the fascinating effects, 
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such as colossal nonreciprocal light propagation [35,36,37], and a negative index of 

refraction [1,4]. These optical phenomena are expected to occur in resonance with electric 

and magnetic dipoles, for example in the far-IR part of the optical spectrum, which is 

dominated by elementary excitations, such as optical phonons, magnons, electromagnons, 

and crystal field transitions. The common feature of all bi-anisotropic materials, and ME 

materials in particular, is that their optical properties cannot be correctly described with a 

dielectric susceptibility tensor ˆ( )   only. The magnetic permeability  ˆ ( )   and ME 

tensors ˆ( )  and ˆ '( )   should be also included in consideration. As a result, a single 

transmission or reflection spectrum cannot properly describe the entangled contribution of 

ˆ( )  , ˆ ( )  , ˆ '( )  , and ˆ( )  to, for example, the colossal nonreciprocal light 

propagation. Instead of the conventional transmission or reflection approaches, a 

combination of a more advanced spectroscopic technique together with an adequate 

theoretical description is required. Analysis of dynamic ME effects in multiferroics can be 

done using Mueller Matrix Spectroscopic Ellipsometry (MM-SE), which is one of the most 

versatile optical techniques. In the following discussion the MMs will be used for 

representation and analysis of experimental optical spectra, which will be calculated and 

fitted using the 4 4  Berreman’s matrix formalism. In the following we will show that the 

off-diagonal components of the MM spectra are proportional to ˆ( )  and ˆ '( )  , while the 

contributions of ˆ( )   and  ˆ ( )   have opposite sign in the diagonal MM components, thus 

providing a direct experimental method of separation ˆ( )  , ˆ ( )  , ˆ( )  , and   ˆ '( )  . 

Even more, the off-diagonal elements of the measured MM are sensitive to the magnetic 

point symmetry of the crystals.  
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4.2 Combination of MM-SE and 4×4 Berreman’s Simulation Approach 

In all publications known to us on the far-IR spectra in multiferroics, the polarization 

analysis of magnons, electromagnons, and phonons has been always restricted by the 

experimental geometry with the near-to-normal angle of incidence (AOI) and by the use of 

linear polarizers only. Using 4×4 Berreman’s matrix propagation approach, one can easily 

show that the normal incidence geometry is not always sensitive to the dynamic ME effects 

described by the ̂  and ˆ '   tensors. A simultaneous presence of the s- and p-polarizations 

is required to have complete information about the optical properties of a ME material. At 

AOI = 0, the s- and p-polarizations are obviously degenerate. Thus, the traditional approach 

to analysis of dynamic polarization in ME media at AOI = 0 is incomplete. For example, 

the limitations of the AOI = 0 geometry recently revealed themselves by failing to explain 

the experimentally-observed suppression of electromagnons in reflectivity measurements 

of GdMnO3. As an alternative, we propose here a more advanced method, which is a 

combination of new experimental and computational techniques using AOI ≠ 0. 
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4.3  Basics of the Muller matrix Spectroscopic Ellipsometry (MMSE) 

Spectroscopic ellipsometry analyses changes of the light polarization upon reflection from 

a sample in a wide frequency range [38,39,40,41,42,43,44,45,46,47,48,49,50,51]. MM-SE 

tools exist for mid-IR–VIS parts of the spectrum in many fields, from telecom and quantum 

cryptography to biology and, finally, condensed matter physics [42]. In spite of the power 

of the MMSE technique, no commercial MMSE are available for the far-IR/THz range. 

The first instrument was built in 2010 at U4IR beamline at NSLS-BNL by A. Sirenko et 

al. The main challenge was the lack of the optical components, such as optical retarders, 

for the far-IR spectral range. This issue has been successfully solved by using plastic, 

KRS5, and Si retarders to produce a broadband circularly polarized light in THz and far-

IR [52].  

In the Stokes representation, the polarization vectors for liner and circularly 

polarized light are 1 (1, 1,0,0)S   , 2 (1,0, 1,0),S    and 3 (1,0,0, 1)S   . The 16 

components of M̂ in (5.4)  are real functions of the complex Fresnel coefficients and the 

 

Figure 4.1  Flowchart for the calculation steps for MM in Berreman’s 4 4 matrix 

formalism. 
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conversion between complex  2 2  Jones and real 4 4  MM’s,
, , ,s p sp ps ijr M   is 

straightforward as described in Reference [53]. To compensate for both, the spectral 

variation of the incoming radiation and for the spectral response of the experimental setup, 

the MM components ( )ijM   are usually replaced by the normalized ones ( )ijm  , where 

11/ij ijm M M   and 11M  is the total reflectivity.  Thus, MM-SE can generate 15 

normalized components of the MM spectra  m̂   which contain significantly more 

information about anisotropic, magnetic, and ME samples compared to that for 

transmission/reflection experiments at AOI = 0. The theory of operations for MM-SE, 

which we implement at U4-IR setup, is published in our paper [54]:  First, polarization 

measurements of the MM components ( , )ijm    at several AOIs in the range between 70º 

and 80º and correction for the systematic errors of experiment, such as non-ideal polarizers, 

retarders, windows, etc.  Second, sample modeling using, a parametric description for the 

dielectric ˆ( )  , magnetic ˆ ( )  , and ME ˆ( )   and ˆ '( )   tensors and application of the 

4×4 Berreman’s matrix propagation approach to calculate the MM spectra  ( , )ijm   , or 

solving a “direct problem”:   [4 4]ˆ ˆ ˆˆ( ), ( ), ( ), '( ), ( , )ijm            .  

Third, solving the “inverse problem” to determine the model input parameters, such 

as the oscillator frequencies 
0 , broadening  , and strength of electric, magnetic, and ME 

dipoles , ,e m MES , that provide the best match between experimental and modeled spectra: 

[4 4]

0 , ,( , ) , , ,...ij e m MEm S     . The fitting Program for MM spectra has been 

developed in our Group and is available to all Users of the MM-SE at U4IR beamline 

NSLS-BNL. The primary spectral range of our MM-SE at U4-IR beamline is between ~20 
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and 4,000 cm-1. The low-frequency cut off is determined by diffraction and, 

correspondingly, can be shifted down to ~10 cm-1 for big crystals larger than 25 mm2 or 

shifted up to ~30 cm-1 for small samples with the size of a few mm2. Thus, we can cover 

the spectral range for almost all known magnetic excitations (magnons, electromagnons) 

and IR-active optical phonons in magnetic oxides.  

4.4 Far-IR Ellipsometer at U4-IR, NSLS-BNL (Multiuser Facility) 

This section provides a brief review of the MM ellipsometer  installed at the U4-IR 

beamline of the National Synchrotron Light Source, Brookhaven National Laboratory  The 

parameters of the setup and operational instructions are published in References [54,55]. 

Ellipsometer at U4IR beamline is shown in Figure 4.2. The spectral range for 

measurements is  between 10 cm-1 and 4000 cm-1, which is determined by the U4IR 

beamline parameters that are summarized in Table 4.1 [56]. Synchrotron radiation passes 

through the Bruker 66v FTIR spectrometer, which has a full complement of 

interchangeable beamsplitters for different spectral ranges from far-IR to visible. Then the 

radiation enters the Ellipsometer, which consists of three major sections: 

1. Polarization State Generation (PSG) section.  

2. Sample Stage with a cryostat,    rotation, and X-Y-Z translation capability.  

3. Polarization State Analyzer (PSA) section.    

Optical schematic of ellipsometer is shown in Figure 4.3(a). To obtain ellipsometric 

data, synchrotron radiation passes Interferometer, after that is enters PSG section and the 

desired state of polarization is created with the help of rotating linear polarizers and a 

retarder. Then, polarized radiation reflects from the sample inside Sample Stage. Later on, 

the modified light polarization is analyzed inside PSA section with the help of rotating 
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retarder and linear polarizer. Finally, the radiation is focused on the bolometer with the 

help of a 90 degrees parabolic mirror. A single off-axis parabolic mirror in a combination 

with two other flat mirrors is used for the light focusing on the sample (see Figure 4.3(a)). 

This beam is “slowly” focused on the sample within the angle of less than 4 deg. The latter 

requirement is needed to (i) minimize depolarization on the linear polarizer and retarder 

surfaces and (ii) minimize the uncertainty in the value of the angle of incidence (AOI). 

Measurements of small samples with cross section dimension of ~ 1 mm2 are possible with 

a microscope attachment for polarimetry measurements in transmission configuration. Two 

15× objectives can be placed before and after the sample to bring the size of the focused 

beam to sub-mm scale. The gold-mirror objectives practically do not affect the light 

polarization.  
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To create and analyze the Stokes vectors for the light polarization (SIN  and SOUT ) 

in both, PSA and PSG, we are using a combination of the rotating linear polarizers and 

retarders (see Figure 4.3(b)). Retarders and polarizers are symmetrically positioned with 

respect to the sample. To cover the broad spectral range between 10 and 4000 cm-1 with 

linearly polarized light, we are using the following set of polarizers. For the frequency 

range from zero and up to 200 cm-1, several free-standing wire-grid linear polarizer from 

SPECAC.  There extinction ratio is between 1:2000 and 1:600, which is achieved by using 

“tandems” of linear polarizers in both PSA and PSG stages. The high frequency limit is 

 

Figure 4.2  (a) 3D CAD schematics of the far-IR Ellipsometer in the standard configuration, 

which consists of PSG  and PSA sections, sample stage (ARS or OXFORD optical cryostat and 

HUBER positioning system)  The optical cryostat is mounted on the - table of the goniometer. 

The PSA section and bolometer are mounted on the 2-arm of the goniometer. The PSG optical 

section of the Ellipsometer shares the raw vacuum with the interferometer. (b)  Schematics of 

the light propagation between the synchrotron source, Spectrometer, PSG, and PSA sections of 

the Ellipsometer. PSG section consists of a retarder C1, two linear polarizer, P1 and P2, and three 

mirrors: an off-axis parabola  with effective focus length of 1 m and two flat ones. PSA section 

consists of a compensator C2, linear polarizer (analyzer) A, and a parabolic mirror for light 

focusing on a bolometer or a CuGe detector. 
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due to diffraction. Wire-grid polarizers on polyethylene substrate for frequency range 

between 30 and 700 cm-1. Their extinction ratio is 1:1000 and no tandems are needed. The 

low-frequency limit is due to absorption in polyethylene substrate. Wire-grid linear 

polarizers on KRS5 substrates from SPECAC for the range between 400 and 4,000 cm-1. 

The extinction ratio is better than 1:600. We are also using tandems in both PSG and PSA 

stages.  

Broadband rotating retarders for the THz and far-IR spectral ranges are not commercially 

available. We developed several types of rotating retarders based on triangular prisms or 

double Fresnel rhombs.  Preliminary results of this development effort were published in 

Reference [52]. Multiple conditions have been met in this design, such as (i) a reasonably 

high transmission in the operating frequency range and (ii) minimal displacement of the 

beam caused by the 360º  retarder rotation around its optical axis.  

Two schematics for the Si prism and KRS5 double Fresnel rhomb retarders are 

shown in Figure 4.4. The Si retarder is based on a single 45º prism with 15×15 mm2 

acceptance area and three 15×15 mm2 gold mirrors. The maximum retardation of such 

retarder, which occurs inside Si due to total internal reflection, is about 95, which is 

different from the ideal theoretical value of  4   for a single 42º Si prism. Three gold 

mirrors practically do not change the polarization and intensity of radiation and allow to 

keep the light beam direction the same before and after the retarder. Rotation of the retarder 

around its optical axis by 45º allows to change the retardation between =0 for linearly 

polarized light and 90 for nearly circular polarized light. The intensity attenuation 

factor for Si retarder is about 3 due to reflection and absorption in Si. The brightness of the 

synchrotron radiation is high enough to compensate these losses.  
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To cover the spectral window between 450 and 1400 cm-1, we implemented the 

retarder based on two KRS5 Fresnel’s rhombs (see Figure 4.4(b)). The split design allows 

for the independent alignment of two rhombs that is crucial for keeping the direction of the 

transmitted beam unchanged upon rotation of the retarder around its optical axis. KRS5 

retarders pass more than 50% of light. Among disadvantages of the KRS5 retarder is a 

strong dispersion of () above 900 cm-1. In the nearest future we consider replacing KRS5 

retarders with ZnSe or Ge rhombs that should be  free from internal defects that cause a 

strong dispersion of () in KRS5.  

  

  
Figure 4.3  (a) rotating retarder based on a single Silicon prism and three gold mirrors 

(four bounces). (b) rotating retarder based on two adjacent KRS5 Fresnels rhombs (four 

internal bounces). Direction of the light propagation is shown with arrows. 
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CHAPTER 5    

EXPERIMENTAL RESULTS FOR SPECTROSCOPIC ELLIPSOMETRY 

 

In this chapter, the experimental results and their analysis are presented. Original data are 

published in Reference [61]. 

5.1 Experimental Data for Dy-IG (DyFe5O12) 

Mueller Matrix analysis allows relatively easy to separate contributions from different 

origin such as magnons,  electromagnons, chiral excitations, electric excitation, etc. We are 

going to demonstrate power of MM ellipsometry using experimental data for Dy-iron 

garnet (IG) and TbMnO3 samples. Previously dysprosium iron garnet was studied in the 

spectral range between 12 and 700 cm-1 and in a wide temperature range between 5 K and 

300 K  using transmission spectroscopy and rotating analyzer ellipsometry. 

Dy-IG, as well as the other related rare earth iron garnets (R-IG), is a ferrimagnetic 

material with a huge magnetostriction, which is related to the combination of a strong 

anisotropy of a crystal field of the R3+  ions and to a strong and anisotropic superexchange 

interaction  between R3+ and iron [27,28,29]. At room temperature DyFe5O12 crystals form 

a cubic garnet structure. There are several nonequivalent Dy3+ ions in each unit cell with 

the same surrounding field, but their axes are inclined to each other. This has the overall 

effect of producing an average cubic symmetry.  Below the transition temperature of  TN = 

550 K, the iron spins are ordered  in a ferrimagnetic structure along the [111] direction. 

Among six possible exchange interactions between spins in three different magnetic 

subsystems only two dominate. The main magnetic superexchange interaction is between 

Fe in two different sites (a and c): spins of  Fe in the tetrahedral site are parallel to those of 
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the octahedral site. Another important interaction is between Dy and Fe in the tetrahedral 

site resulting in the Dy spins to be antiparallel to Fe moments in tetrahedral sites and, hence,  

antiparallel to the net magnetic moment of  Fe. Below 100 K, a rhombohedral distortion of 

the cubic cell causes the canting of Dy spins. Below 50 K, the iron sublattice magnetization 

does not change appreciably with temperature. However, the Dy sublattice magnetization 

increases rapidly with temperature decrease. Dy iron garnet has the most complex spectrum 

of the far-IR excitations among all other studied  R-IGs. Based on the analysis of 

transmission in polycrystalline materials, it was shown that below 80 cm-1 the optical 

spectra of R-IGs are dominated by both R3+ single-ion electronic transitions and KK modes. 

Note, that in earlier studies of the far-IR excitations in R-IGs it was assumed that the optical 

transition inside 4f shell are magnetic dipoles, as expected for a free R3+ or for an R3+ at the 

center of inversion. At low temperatures the local electric polarization removes Dy3+ ions 

from the position of the center of inversion. This result is important for interpretation for 

the selection rules for the optical transition between 4f electrons levels of Dy3+. In the non-

centrosymmetric environment, the so-called ‘forced electric dipole’ optical transitions are 

allowed in addition to the conventional magnetic-dipole transitions. In Dy-IG was found 

stronger connection between the static dielectric constant and spectra of the optical 

phonons. Also hybridization between electric- and magnetic-dipole activity for the ligand 

field excitations was observed as well. 
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Figure 5.1  (a) Experimental spectra of the normalized MM components   (magenta dot-

dashed curve) and   (blue dash curve) for Dy-IG measured at 5 K. The strong peaks above 

80 cm-1 correspond to the optical phonons. Solid red curves show the fit results. (b-c) The 

low frequency part of the same spectra measured with a LHe-pumped 1.6 K bolometer. 

The corresponding range is shown in (a) with a black dotted rectangle. (d-g)   and functions 

as extracted from the fit of MM spectra. The pure magnetic dipole excitation is observed 

at 59.5 cm-1 and the pure electric dipole excitation (phonon) is observed at  81cm-1. The 

magnon amplitude in the   spectra in (c) has an opposite sign compared to that for the 

optical phonon. A number of hybrid modes that contribute to both   and   in (d-g) correspond 

to the weak crystal field transitions and are marked in (b) with vertical arrows. 

 

Normalized Mueller Matrix spectra, 34 43m m    and 33 44( ) ( )m m     for the Dy-

IR measured using rotating Si retarders and stationary linear polarizers in the frequency 

range between 50 cm-1 and 460 cm-1 is shown in Figure 5.1 (a). To simulate and fit MM 

spectra, results of the preceding chapters were used. The simultaneous fit to the normalized 

MM spectra are shown in Figure 5.1 (a) with solid red curves.  The magnified view of the 

low frequency part of the normalized MM spectra measured with the same optical 

components and a LHe-pumped (1.6 K) bolometer is shown in Figure 5.1 (b,c). Functions

1,2 ( )    and 
1,2( )    extracted from the fit of MM spectra are depicted in Figure 5.1 (d-

g). The pure magnetic diploe excitation (magnon) appears at 59.5 cm-1, which is exactly 

the same frequency as previously determined.  Pure electric dipole excitation at 81 cm-1 
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corresponds to the optical phonon. Our measurement demonstrates that the sign of the 

magnon contribution in  is negative, that is the opposite to that for the electric 

dipoles, such as a phonon at 81 cm-1. The spectra in Figure 5.1 (b,c) also shows several 

weak ligand-field excitations at 73, 78, 87, 91 and 98 cm-1, which originate from 4f 

electronic levels in Dy3+ ions. From Figure 5.1 (d-g), one can see that these modes 

contribute to both ( )    and ( )    and thus are hybrid. As expected from the material 

symmetry of Dy-IG, the measured off-diagonal components of the MM are equal  to 0: 

13,31 14,41 23,32 24,42 0m m m m     within the accuracy of our experiments. We did not 

detect any changes in the off-diagonal MM components if measured at temperatures below 

and above the antiferroelectric transition at T = 100 K. 

 

5.2 Experimental Data for TbMnO3 

Another interesting case illustrates the experimental situation when the ( )    tensor is not 

equal to zero.  TbMnO3 is an ME material possesses simultaneously electric polarization 

and magnetic order at low temperature. We expect to find non-zero magneto-electric tensor 

elements (at least some of them) in the optical part of the spectrum.  Due to the 

thermodynamical requirement of  ˆ ˆ ˆˆ( ) ( ) ( ) ( )           , we expect the strongest 

contribution in ME tensor at the frequencies where ( )   and ( )   have poles, i.e. close 

to the resonance with phonons, magnons and electromagnons. The requirement that 

( ) 0    infers a simultaneous absence of both center of inversion and the time-reverse 

invariance. In symmetry terms, the total number of magnetic point groups that allow ME 

effect is 58. The simulation analysis for the contributions of the ˆ ˆ ˆˆ, , ,     tensor 

34 43m m 
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components to the MM spectra shows that that ˆ ˆ,   should reveal themselves in the close-

to-diagonal ( )ijm  , such as 12 21 33 44 34 43, , , , ,m m m m m m . In contrast, the appearance of non-

zero ˆ( )   and ˆ ( )   tensors is equivalent to optical bi-anisotropy and should give some 

contribution to the some of the off-diagonal MM components. 

 

Spectra of  TbMnO3 ware extensively studied prevoiously using transmittance and 

reflectance techniques [57,58,59]. It was shown that the electric component of light along 

the a-axis apart from excitation of optical phonons with frequencies above 100 cm-1, can 

excite both electromagnons at 19 and 62 cm-1, and another excitation at 135 cm-1. The latter 

 
Figure 5.2  Experimental optical spectra of TbMnO3 with crystallographic orientation of 

x||a, y||c, and z||b measured in the temperature range between 5K and 40 K. Phonon peak 

at ∼118.5 cm−1, electromagnon (EM) peak at 62    cm−1, and peak of excitation at 135 

cm−1 (EX) are marked with arrows. (a) Real part of the pseudo-dielectric function.  The 

normalized MM components are shown in (b) m34(ω)=−m43(ω) and (c)  m33(ω) = 

m44(ω).  (d) The difference between the off-diagonal MM components m14(ω) and 

m24(ω). Vertical arrows in (c) indicate the contribution of εxx(ω), μyy(ω), and αxy(ω) to 

m34(ω)=−m43(ω) components of the MM spectra. 
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excitation has controversial interpretation in the literature and was assigned to two-magnon 

process, one-phonon + one-magnon process or transition between crystal field levels of 

Tb3+ ground multiplet. The low-frequency part of the RAE and MM spectra measured at 

AOI = 75 degrees is shown in Figure 5.2. All measurements in Figure 5.2 were taken when 

the crystallographic directions of TbMnO3 are oriented with respect to the ellipsometric 

axes x – y – z as follows:  ,x a y c  and z b  . The cross section to the available for us 

sample was only 5x5 mm2, which resulted in low frequency cut off at ~ 25 cm-1 thus 

preventing the measurement of the lowest frequency electromagnon mode at 19 cm-1. The 

pseudo-dielectric function in Figure. 5.2 (a), which was obtained from rotating analyser 

ellipsometry (RAE) spectra measured at different temperatures between 5 K and 38 K, 

shows a clear redistribution of the spectral weight from the optical phonon at 118.5 cm-1 

towards electromagnons at 62 cm-1 and excitation at 135 cm-1 which is labeled as EX. The 

exchange of the spectral weigh occurs below the transition temperature of Tc = 28 K. The 

shape of the electromagnon peak in RAE measurements is different from that of the 

phonons and cannot be easily described with simple harmonic oscillator model indicating 

the limitations of pseudo-dielectric function approach to the optical spectra of magneto-

electric materials. The normalized MM components of the same sample are shown in 

Figure 5.2 (b-c). The same peaks that correspond to the electromagnon, single phonon and 

EX are clearly seen in 
33 44m m   and   

34 43m m  spectra at 62, 118.5 and 135 cm-1. Note 

that the sign of the electromagnon excitation to the  
34 43m m   spectra is the same as that 

for the phonon, thus providing unambiguously a well-known fact that the electromagnon 

is indeed a predominantly electric diploe polarized along the a-axis of  TbMnO3. The 

difference between the normalized off-diagonal components of the MM, which are 
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proportional to the electromagnon’s contribution to the ME tensor is shown in Figure 5.2 

(d). The symmetry consideration for the cycloidal spin structure in TbMnO3 predicts that 

only ( ) 0xz    . It is this component of ME tensor that provides the coupling between 

the dynamic polarization of the lattice along the a-axis and magnetization caused by an 

external magnetic field applied along b-axis [12]. For  ( ) 0xz   , the electromagnon’s 

contribution in  
24m  and  

14m  spectra has opposite sign. To exclude small offsets caused 

by the polarizer/retarder calibration errors, we plot the difference 
24 14( ) / 2m m  , which 

shows a pure contribution from the electromagnon to the off-diagonal components of the 

MM. The low temperature amplitude of the electromagnon peak in  
24 13( ) / 2m m  is about 

0.015, which is smaller than the contribution of the same electromagnon to
34 43m m   at 

T = 5 K: 
0 62 2          cm-1,   

0 20 2   cm-1,  
, 1.7 0.2e xxS      and  

, 0.2 0.05EM xzS   . The 

spectral variation of  ( )xz   was calculated with these parameters using SHO model: 

2

, , 0

2 2
1 , 0 ,

( )
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n EM n EM
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n n EM n EM

S
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(5.1) 

 

The oscillator strength of electromagnon 
,e xxS  and 

,EM xzS determined from the MM 

measurements are important parameters that are related to the electric polarization of the 

lattice due to the spin structure , anisotropy and exchange fields [60].  The calculated 

maximum value of the ME function is  0.5xz  , which  is  ~10 times smaller than the 

theoretical limit of max( ) ( ) ( ) 5        . 
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5.3 Ellipsometry of Infrared-Active Optical Phonons in Hexagonal Manganites 

RMnO3 

This section presents the original experimental results published in Physical Review B 

paper [61]. 

 

5.3.1 Structural and Magnetic Properties of Hexagonal RMnO3 

Multiferroic rare-earth (R) manganites RMnO3 (R= Ho, …Lu, and Sc, Y) is one of the most 

investigated systems inside a broader class of hexagonal (h) materials 

[62,63,64,65,66,67,68,69,70]. One of the striking peculiarities of h-RMnO3 is the 

ferroelectric (FE) order with a large remnant polarization and high FE transition 

temperature CT   in the range between 600 K and 1000 K.[71,72] The RMnO3 hexagonal 

structure consists of close-packed layers of MnO5 bipyramids, which share corners in the 

a-b planes. Along the hexagonal c-axis, the layers of MnO5 are well separated by the R3+ 

ions.  A cooperative tilting of the bipyramidal sites below CT  displaces the R3+ ions along 

the c-axis into two non-equivalent sites (Wyckoff positions 2a and 4b within the 36P cm  

space group). Two of the R3+ ions within the unit cell move up (down), and one – down 

(up), producing a ferroelectric state. The oxygen ions are also displaced in the a-b plane. 

Both displacements of R3+ ions and oxygen contribute to the FE polarization [73]. 

Schematics of the h-RMnO3 crystal structure in the ferroelectric phase is shown in Figure 

5.3. More detailed discussion of the ionic displacements in the FE phase can be found in 

References [64,74].  
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Phonon excitations in h-RMnO3 (R=Y, Ho, Er, Yb, Lu) have been studied  earlier 

using Raman scattering [64,75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88], IR 

reflectance [75, 84, 89, 90], IR absorption [64, 90], THz time-domain [72] and femtosecond 

pump-probe [91] spectroscopic techniques. Lattice dynamics of RMnO3 compounds was 

also analyzed theoretically using shell model calculations [64,75,80], Heisenberg and the 

transverse Ising model [92, 93] and first principles calculations [94, 95]. For the unit cell 

with 6 formula units (30 ions), the theory predicts 90 zone-center phonon modes. Three of 

 

Figure 5.3  Crystal structure of hexagonal rare earth manganites RMnO3 in the 

ferroelectric phase. View along (110) showing two layers of MnO5 trigonal bipyramids 

and two layers of R3+ ions. Calculated lattice parameters for HoMnO3 including the 

bipiramide tilts and displacements of R3+ ions along the c-axis have been used.  

 

 



90 

 

them are acoustic ( 1 1A E ), 67 are Raman active ( 1 1 29 14 15A E E  ), 37 are IR active (

1 19 14A E ). The remaining modes are silent ( 2 1 2, ,  and A B B ). Temperature dependence of 

some phonon modes was shown to exhibit anomalies near the temperature of AFM 

magnetic ordering of Mn3+ ions  TN , thus reflecting either atomic displacements [74] or 

spin-lattice interaction [67, 70, 71, 72, 73, 74, 75, 79, 80, 81] below TN. Dependence of 

phonon spectra on rare-earth ion were studied in bulk crystals [69] and thin films [77].  

The optical phonon spectra and their temperature dependencies cannot be 

understood without taking into account the magnetic structure and its changes with 

temperature. The magnetic structure of the h-REMnO3 have been studied in a number of 

publications [65,96,97,98,99]. However, the most intriguing part about the magnetic 

interaction between Mn3+ and R3+ spins at low temperatures and high magnetic fields is 

still under debate [30,100]. The commonly accepted view on the magnetic structure and 

the corresponding magnetic phase transitions is the following. An antiferromagnetic 

(AFM) order of the Mn3+ spins occurs at much lower temperatures compared to the FE 

transition. The AFM transition temperature NT  for Mn3+ spins is in the range between 70 

K and 87 K for R= Y, Ho, Er, Tm, Yb, and Lu. The neighboring Heisenberg spins of the 

close-packed Mn3+ ions are AFM-coupled via the oxygen ions by superexchange 

interaction, which gives rise to frustration effects of an ideal 120° angle structure with the 

space group 36' 'P c m . The Mn3+ spins are ordered perpendicular to the c-axis: MnS c , 

while at low temperatures spins of R3+ ions (R=Ho, Er, Tm, Yb) are oriented along the c 

axis: RS c . R3+ ion spins RS
 
can interact among themselves and with the Mn3+ spins. 

These interactions result in a complex phase diagram in the temperature-magnetic field 
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parameter space T H  [13,91]. Among all hexagonal RMnO3 compounds with 0RES  , 

HoMnO3 is the most studied material. Its magnetic structure is particularly interesting since 

it shows two additional phase transitions below NT : Mn3+ spin reorientation occurs at 

40SRT   K and AFM ordering of Ho3+ spins takes place at 5RET   K, as observed in 

neutron scattering [101,102] and second-harmonic generation optical experiments 

[103,104,105,106]. The spin reorientation is believed to be related to the MnS  rotation in 

the a-b plane by 90°, changing the magnetic symmetry from 36' 'P c m  to 36 ' 'P cm . At 

much lower temperatures RET T , another modification of the Mn spin structure occurs 

restoring the 36P cm  symmetry. Both low-temperature transitions at SRT  and RET  are also 

accompanied by a complete or partial ordering of the Ho3+ spins, which structure is not 

resolved yet. As mentioned in Reference [107], two possibilities are discussed in literature 

for the spins of two non-equivalent Ho3+ sites: (i) Ho spins on the 4b site develop AFM 

order below  SRT   while Ho spins on the 2a site remain PM, and (ii) all Ho spins develop 

AFM order below   SRT . In any case, there is an agreement that the Ho sublattice exhibits 

long-range AFM order along the c-axis below 5RET   K [107]. Magnetization of the R 

spins at low temperatures in other hexagonal manganites with R= Er, Tm, Yb has been also 

studied in References.[108, 109, 110] where Dzyaloshinskii–Moriya (DM) interaction 

[11,111] has been proposed as one of the mechanisms for coupling between R spins with 

the partial AFM order along the c-axis and Mn spins that are ordered in the a-b plane. 
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5.3.2 Motivation for Studies of the Optical Phonons in h-RMnO3 

In spite of a significant amount of the recent experimental and theoretical efforts, the IR 

phonon spectra in h-RMnO3 still remain not fully understood. Some papers have exhausting 

information about one or two particular h-RMnO3 compounds but they do not provide a 

broader view on the whole family of h-RMnO3. Further, in the majority of available 

experimental papers the number of observed phonons is significantly smaller than the 

group theory prediction, (9 modes with A1 symmetry polarized along the c-axis and 14 

doubly-degenerate E1 modes polarized in the a-b plane, as mentioned above). One of the 

possible reasons is that the sensitivity of conventional optical techniques, such as 

reflectivity and transmittivity, is not always sufficient for analysis of materials with closely 

spaced phonon modes which have drastically different oscillator strengths. Most of the 

previous phonon studies were carried out in the temperature range above the R3+ spin 

ordering transition that occurs below 5 K, thus leaving unanswered the question about the 

possible effect of magnetic ordering of R3+ ions on phonon excitations.  

In this work, we present our systematic experimental studies of the IR-active 

phonons in the complete set of h-RMnO3 (R= Ho, …Lu) by means of one of the most 

sensitive optical technique: spectroscopic ellipsometry. We complimented our 

ellipsometry studies with transmission measurements of the same samples in magnetic 

field. These experiments provided us with additional information about weak phonon 

modes and answered the question about possible field-induced modifications in external 

magnetic field. The low-frequency phonon spectra for YbMnO3 have been measured for 

the temperatures above and below the AFM ordering of Yb spins 3.3RET   K. This paper 

is a natural continuation of our recent studies of the AFM resonances and crystal-field 
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transitions in the far-IR spectra of the same family of h-RMnO3 (R= Ho, …Lu) compounds 

[112].  

5.3.3 Sample Growth 

The high-temperature flux growth technique was utilized to produce bulk crystals of 

RMnO3 for R=Er, Tm, Yb, and Lu. Single crystal platelets with pristine, or as-grown, 

surfaces and hexagonal c-axis being perpendicular to the surface were used for both, 

ellipsometry and transmission measurements. The a-b plane surface area of the flux-grown 

samples was about 4×4 mm2 and their thickness was about 0.1 mm. The opposite sides of 

the samples were not wedged, resulting in relatively strong thickness interference fringes 

in the measured optical spectra below the optical phonon frequencies. The natural platelet 

shape of the Er, Tm, Yb, and Lu samples did not allow for optical measurements from the 

a-c or b-c planes. In contrast, the HoMnO3 sample was grown using the floating zone 

technique. The sample dimensions were about 4×4×4 mm3, which allowed for the 

ellipsometry studies of both, c-axis and a-b plane optical properties of HoMnO3. 

 

5.3.4 Ellipsometry Technique 

The rotating analyzer ellipsometry (RAE) and Mueller matrix ellipsometry (MME) 

measurement were carried out at U4IR beamline of the National Synchrotron Light Source, 

Brookhaven National Laboratory (NSLS-BNL). The ellipsometry setup, which is 

described in details in References [52,54], allowed us to measure the optical phonon spectra 

in the temperature range between 7 and 300 K in the spectral range between 100 and 2000 

cm-1 using the spectral resolution of 0.7 cm-1. This setup consists of a Bruker v66i 

spectrometer, several LHe-pumped (∼1.6 K) and LHE 4 K bolometers, and LHe-cooled 
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CuGe detector. In our previous studies of the AFM resonances in the same set of hexagonal 

RMnO3 samples, we had focused on the spectra of the AFM resonances in far-IR spectral 

range below 100 cm-1.[102]. In this work, our main interest is in the optical phonon spectral 

range above 100 cm-1. The main advantage of RAE in comparison with conventional 

reflectivity is the possibility to measure both, real and imaginary parts of the dielectric 

function. MME is even more powerful due to the simultaneous measurement of several 

components of the 4×4 Mueller matrix, that connect the Stokes polarization vectors for 

incoming INS  and outgoing (reflected) light OUTS . For each frequency of the measured 

spectra, a Mueller matrix ˆ ( )M   is defined as ˆ( ) ( ) ( )OUT INS M S    . In the following 

discussion, the experimental data will be presented in terms of the normalized Mueller 

matrix components 
11( ) ( ) / ( )ij ijm M M    that are more robust against systematic 

errors due to self-normalization by the total reflected intensity that is given by the 11( )M   

spectrum. The measured experimental spectra of ( )ijm  , which vary from −1 to +1, contain 

all information about optical phonons that can be polarized along or perpendicular to the 

c-axis of hexagonal manganites. The angle of incidence (AOI) for the light on the sample 

in all ellipsometric measurements was set to 75° that is close to the Brewster angle for the 

low-frequency spectral range of h-RMnO3. In the following we use a standard ellipsometry 

convention for the Cartesian , ,x y z  coordinate system: z is perpendicular to the reflecting 

surface of the sample, x is parallel and y is, correspondingly, perpendicular to the reflection 

plane. 
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5.3.5 Transmission Experiments 

Transmission experiments were carried out at the same U4IR beamline of NSLS-BNL. The 

main goal of these complementary experiments was to obtain additional information about 

the weak spectra of the low-frequency phonons between 100 and 200 cm-1 and high-

frequency phonons above 500 cm-1. In addition, a possible modification of the optical 

phonon spectra in external magnetic field was investigated. The experimental 

configuration for transmission experiments is the same as previously described in Ref. 

[102]. An optical Oxford magnet was used for the sample cooling and for application of 

external magnetic field up to 9 T along the c-axis of the samples, i.e. perpendicular to the 

sample surface. Correspondingly, the electric and magnetic fields of light were always in 

the hexagonal plane perpendicular to the c-axis. The spectral range for transmission 

experiments in magnetic field was between 20 and 210 cm-1 with a spectral resolution of 

0.7 cm-1. The low frequency cutoff was determined by diffraction, while the high 

frequencies were limited by the light absorption in the cryostat windows. The higher 

frequency transmission spectra above 500 cm-1 were measured in the same cold-finger 

cryostat as used for the ellipsometry measurements. For each sample, the raw data of 

transmitted intensity were normalized to transmission through an empty aperture with the 

size equal to that of the sample. Polarization of the transmitted light was not analyzed due 

to the expected optical isotropy in the a−b plane of the measured hexagonal samples.  



96 

 

5.3.6 Shell Model Lattice Dynamics Calculations 

Lattice vibrations of h-RMnO3 were calculated by means of the shell model,[113] which is 

proven to reasonably describe the properties of ionic materials, in particular, manganese 

oxides.[114,115] In the shell model, each ion is considered as a point core with charge Y 

surrounded by a massless shell with charge Q.  The free ion polarizability 2 /Y k  , 

where k is a force constant. The short range potentials V(r) are chosen in the Born-Mayer-

Buckingham from  
6( ) /b rV r a e c r     , where r is the interatomic distance, a, b, and c 

are the potential parameters. The cation-anion short range interactions contain no attractive 

part and c=0 in the expression for V(r). The Coulomb energy calculations are based on a 

real space summation involving a spherical cut-off boundary, which is defined by the cut-

off radius and set to 10 Å, making  the sum of all charges within the spherical cut-off region 

equal to zero. The parameters of the model used for a series of h-RMnO3 compounds, are 

listed in Table 5.1. Note that they are somewhat different from those used earlier in 

Reference [84] due to a different set of R and Mn ionic charges and polarizabilities. 

 

Table 5.1   Shell Model Parameters for h-RMnO3 

Ion Z (|e|) Y (|e|)  α (Å3)          Ionic pair a (eV) b (Å−1 ) c (eVÅ6) 

R 2.85           3.10 2.33 R–O 1738 3.04 0 

Mn 2.85   3.15 2.71 Mn–O 2020 3.26 0 

O − 1.90         1.10 2.00   O–O 22764 6.71 20.37 
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5.3.7 Phonon Spectra  

 

Experimental data for the real 1( )   and imaginary 2 ( )   parts of the pseudo-

dielectric functions for YbMnO3 measured at T=7 K obtained using RAE at AOI=75° are 

shown Figure 5.4 (a,b). The optical spectra of 
1,2 ( ) 

 
are dominated by multiple strong 

IR phonons that are marked in Figure 5.4 (a,b) with vertical arrows and labels that 

correspond to their frequencies in cm-1. Due to hexagonal symmetry, the dielectric function 

tensor is diagonal in the laboratory , ,x y z  coordinate system ( c z ) with only three non-

 

Figure. 5.4   Spectra of the real (a) and imaginary (b) components of the pseudo dielectric 

function 1,2( )   measured at T=7 K for YbMnO3. Strong phonons are marked with 

arrows. Dashed curves correspond to the fit using Equation 5.2 for the parametric 

description model of the dielectric function. 
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zero components ( ) ( ) ( )xx yy        and ( ) ( )zz    . At each frequency, the 

measured 1,2( )   is a function of ( )  , ( )  , and AOI=0 [116]: 

2
2 2

2 2

2 2 2

sin ( ) ( sin ( ))
sin ( ) 1 sin ( ) .
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(5.2) 

 

Note, however, that at AOI=75°, the main contribution to the measured pseudo dielectric 

function originates from ( )  , while only several strong poles and zeroes of ( )   appear 

in the spectra shown in Figure 5.4 (a,b), like for example the peak at 125 cm-1, which 

corresponds to lowest frequency LO phonon polarized along the c-axis. The measured 

spectra were fitted using anisotropic model function consisting of two sets of Lorentz 

oscillators polarized along and perpendicular to the c-axis  
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(5.3) 

  

where 
( ),0n m  is the phonon frequency, 

( )n mS is the oscillator strength,  ( )n m  stands for the 

phonon broadening, and 
, ( ) 

 represents the dielectric constant at frequencies above the 

optical phonons. Due to the hexagonal symmetry, two sets of the phonon parameters 
( ),0n m

( ) ,n mS   and 
( )n m  are, of course, different for ( )   and ( )  . To describe the optical 
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phonon spectra, we used N=6 for phonons polarized along the c-axis and M=13 for phonons 

polarized in the a−b plane. A home-made program based on the 4 4  Berreman’s model 

for anisotropic magneto-electric medium was used for all fits presented in this paper [117] 

The results of the fit are shown in Figure 5.4 (a,b) with red curves. The discrepancy 

between the fit and experimental data for the low-frequency part of 2( )   for  < 100 

cm-1 is due to a systematic error of RAE. This error is caused by a well-known limitation 

of the RAE technique in the transparency region, where the phase of the reflected light 

changes upon reflection by the angle of ~ 180°, thus making RAE insensitive to the optical 

losses. In fact, 2( )   should be close to zero in this spectral range, as it appears in the 

model for the fit and as we also confirmed with our transmission measurements of the same 

Table 5.2.  TO Phonon Frequencies with the E1 Symmetry Polarized in the ab-plane 

for h-RMnO3 in cm-1, T=7 K.  Strong and Weak Modes Are Marked with Small and 

Capital Letters, Respectively. Frequencies of the Magnetic Excitation and Crystal 

Field (CF) Transition are Listed at the Bottom 

Number 

m 

Letter 

symbol 

HoMnO3 

 

ErMnO3 

 

TmMnO3 

 

YbMnO3 

 

LuMnO3 

 

       

1 a --- 147.9 146.0 147.4 147.1 

2 b 151.5 154 --- 155.3 155.5 

3 C 165.5 164.6 163.7 163.5 162.1 

4 d --- 184.5 179.8 181.4 182.4 

5 E 245 254.5 257.5 265.4 270.5 

6 f 266.5 270.5 --- 267.5 273.5 

7 G 292.5 294.6 295 297.2 303.3 

8 h 308 311 301 305.5 313 

9 I 368 371 372 383.5 368 

10 

11 

j 

K 

--- 

420 

408 

421 

--- 

422 

--- 

--- 

415 

428 

12 l --- 522 526 526 528 

13 m 591 594 --- --- 600 
       

Mag    180 190 191 

    193  210 
       

CF   366    
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samples in reference[102]. The experimental values for the optical phonon parameters for 

all measured hexagonal manganites at T= 7 K are summarized in Table 5.2.  Strong 

phonons are labeled with capital letters C, E, …, while weak phonons are differentiated 

from them by using small letters a, b, d,… in the alphabetic order for their frequency 

increase. The polarization of the phonon along or perpendicular to the c-axis is marked 

with the corresponding symbol  or  . 

To obtain a better sensitivity to the optical phonons polarized along the c-axis of 

hexagonal compounds, we measured a bulk HoMnO3 sample with the c-axis in the 

reflection plane ( c x ). We also utilized the MME technique, which is free from the 

aforementioned systematic errors of RAE for transparent samples. Another advantage of 

MME is the capability to measure several independent Mueller matrix components ( )ijm   

 

Figure. 5.5  Spectra of the normalized Mueller matrix components 12 ( )m  , 33 ( )m  , and 

34 ( )m   (blue curves) for the same HoMnO3 sample at T=7 K in three experimental 

configurations (a,b,c) c z , (d,e,f) c y , and (g,h) c x . The results of the fit are shown 

with dashed red curves.  
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that are more reliable in the case of strong sample anisotropy. Spectra of 12 ( )m  , 33 ( )m 

34 ( )m  , and c z  for the HoMnO3 sample in all three possible configurations:  c x ,  c x  

and c z  are shown in Figure 5.5. Experimental data for all three configurations were fitted 

using the same self-consistent anisotropic model for the phonon parameters ( ),0n m

( ) ,n mS  and ( )n m . The results of the fit for both components of the anisotropic 

dielectric function,  ( )  and ( )  , are shown in Figure 5.6 (a,b).  

Several low-frequency modes polarized in the a-b plane at about 145, 155, and 185 

cm-1 were not clearly resolved, especially at high temperatures above 200 K. The 

corresponding peaks shown in Figure 5.7 (a) for YbMnO3 have an electric dipole shape, as 

expected for phonons, but their strength decreased significantly  in the paramagnetic phase 

for T>TN, thus opening a room for other interpretations, such as modes of magnetic origin 

or crystal field transitions. To clarify the situation, we used a complementary transmission 

technique that for the given sample thickness turns out to be more sensitive to the weak 

 
Figure. 5.6  Anisotropic dielectric function model for HoMnO3 sample at T=7 K. (a) 

( )  and (b) ( )  . Real part is shown with red and imaginary parts are shown with 

blue curves. The strongest optical phonons are marked with arrows. 
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excitations. The corresponding spectra are shown in Figure 5.7(b) for YbMnO3. The 

absorption peaks appeared in the transmission spectra at the same frequencies as in the 

ellipsometry spectra. And these peaks were observed in the temperature range much higher 

than the AFM-paramagnetic phase transition TN=84 K for YbMnO3. Figure 5.7(c) and 

Figure 5.8 (a,b) show a number of transmission maps for YbMnO3 , LuMnO3 , and 

TmMnO3  in the frequency-temperature space, where the most of the weak phonon peaks 

at 145, 155, and 185 cm-1 are clearly visible up to ~200 K,  that unambiguously confirms 

their phonon origin. An additional confirmation that those peaks are not R3+ crystal field 

transitions came from the measurements of LuMnO3, where the 4f-shell of R3+ is complete 

and no crystal field transitions are expected (see Figure 5.8 (a)). Thus, observation of the 

low-frequency modes, such as the ones at 144, 155, 165, and 180 cm-1 can be significantly 

improved in transmission configuration when the thickness of the sample can compensate 

for the weak absorption by the modes. Note that this approach works well only if the sample 

is nearly transparent in the frequency range of interest. In other words, the background 

values of the dielectric function should be 1( ) 1    and 2 ( ) 0   .  These conditions 

have been naturally realized in the low-frequency range of h-RMnO3 below the strong 

phonon absorption.  
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Figure. 5.7  (a) Experimental RAE data (blue curve) for the real part of the pseudo 

dielectric function 1( )   measured at T=7 K for YbMnO3. The phonon peaks are marked 

with arrows. The fit results are shown with red curve. (b) Transmittivity spectra for the 

same YbMnO3 sample for at T=7 K.  (c) Transmittivity T   map for the same YbMnO3 

sample. The results of the fit for the phonon frequency are shown with circles. The 

magnetic mode at 190 cm-1 that is visible only at T < 50 K is marked with triangles. 
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Figure. 5.8   Transmittivity T   maps for the LuMnO3 (a) and TmMnO3 (b). The results 

of the fit for the phonon frequency are shown with circles. Note that the weak optical 

phonons  at ~148, 154, and 185 cm-1 are visible in the temperature range well above TN = 

84 K shown with dashed vertical line. 
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Figure 5.9   Temperature dependence of the frequency for the optical phonons polarized 

in the a-b plane for RMnO3, R=Ho (black circles), Er (red squares, Tm (pink down 

triangles), Yb (blue diamonds, and Lu (green up triangles). Weak phonon modes are shown 

with open symbols; strong modes are shown with solid symbols. Letters correspond to the 

phonon notation in Table I.  
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5.3.8  Temperature Dependence of the Phonon Frequencies 

Temperature dependencies of all optical phonon frequencies is shown in Figure 5.9 (a-k) 

for the phonons polarized in the a−b plane. Data for all five measured hexagonal 

compounds with R=Ho, Er, Tm, Yb, and Lu are presented together for comparison. Each 

panel of Figure 5.9 corresponds to the same mode of the hexagonal structure. As one can 

see in both Figure 5.9 (c,d) and Table 5.2, several strong low-frequency phonons reveal 

systematic trend of their frequencies. Thus, the strong C  mode at ~163 cm-1, which is 

predominantly determined by displacements of the heavy R3+ ions reveals a systematic 

decrease of the frequency for R3+ ions between Ho3+ and Lu3+. (see Figure 5.9 (c)). This 

“classical” trend is illustrated in Figure 5.10 using a linear fit between the square root of 

the inverted mass 3R
M   of the R3+ ions and the phonon frequency. Another two strong E   

and G   phonons at 260 and 300 cm-1 also show a systematic variation of their frequency, 

but with an opposite trend (see Figure 5.11 (a,b)). A well-known decrease of the ionic 

 

Figure 5.10  A quasi-linear increase of the optical phonon frequency for RMnO3 

compounds. Experimental data points were measured at T= 7 K. The solid line is a linear 

fit using 30 /
R

c M  .  

 

 



107 

 

radius for R3+ ions between Ho3+ and Lu3+ in the RMnO3 compounds seems to be a 

dominant factor for the qualitative explanation of the systematic changes of these two mid-

frequency phonons. The high-frequency (>350 cm-1) phonons, which are associated with 

vibrations of the lighter ions (oxygen and manganese), are less sensitive to the properties 

of the  R3+ ions and their frequencies vary rather randomly between different RMnO3 

compounds.   

Most of the phonons have weak frequency dependence at T < 95 K and a typical 

decrease of their frequency with the quasi-linear slope for T >120 K. This natural softening 

of the optical modes with the temperature increase is known to be caused by the thermal 

expansion of the lattice and anharmonic phonon–phonon interactions, which become more 

important as the temperature increases due to the statistical increase of the number 

phonons.  We calculated the temperature dependence of several phonons using the 

following equation [118]  

0 0| 0

0

( ) exp 3 ( ') ' ,

T

T GT T dT   

 
   

 
  

 

(5.4) 

where G  is a Grüneisen parameter, ( )T is the linear expansion coefficient obtained from 

reference [92], and 0| 0T   is the phonon frequency at zero temperature. The results of the 

calculation using   0.7 0.2G   are shown in Figure 5.11 (a,b) with solid curves. While 

most of the phonons can be well described by Equation (5.4) for their 0 ( )T
 
in the whole 

temperature range between 7 and 300 K, several phonons show strong anomalies at TN for 

AFM ordering of Mn3+ spins.  The corresponding dependencies are shown in Figure 5.11 
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(a,b) for the  E   and G   modes at ~260 and ~300 cm-1. Below TN their frequencies 

increase by ( )T , which is equal to several wavenumbers (3 cm-1 for the phonon at 300 

 

Figure 5.11  Temperature dependence of the frequency for two ab-plane E1-symmetry 

optical phonons with the strongest spin-phonon interaction for RMnO3, R=Ho (black 

circles), Er (red squares, Tm (pink down triangles), Yb (blue diamonds, and Lu (green 

up triangles). (a) E   and (b) G   phonons. The AFM ordering temperature for Mn3+ spins 

is shown in (b) with small vertical arrows. The long arrows in both (a) and (b) show 

schematically an increase of the R3+ ionic radius  3Rr   from Lu to Ho. Solid curves are 

fits using Equation (5.4) for the high-temperature part of the 0 ( )T  dependence. Dashed 

curves correspond to extrapolation of Equation (5.4) to low temperatures. The 

discrepancy between experimental data points and dashed curves is due to spin-phonon 

interaction.  

 

 



109 

 

cm-1 and 5 cm-1 for the phonon at 260 cm-1)  above the level predicted by the Grüneisen 

formula. This difference is highlighted by the dashed regions in Figure 5.11 (a,b). This 

non-Grüneisen behavior can be attributed to the strong spin-phonon interaction that 

emerged in the low temperature AFM phase. It is natural that this effect is expected to be 

the most pronounced for those phonon modes, where atomic displacements effectively 

modulate Mn-Mn exchange interaction (see, e.g. Reference [119] and references therein). 

 
 

Figure  5.12  Temperature dependence of the frequency for the c-axil polarized optical 

phonons in HoMnO3. The error bars in (e) and (f) show the fit accuracy for relatively 

broad high-frequency modes. The low-frequency phonons are much sharper and, 

hence, the accuracy of the fit is comparable with the symbol size that is about   0.3 

cm-1. The anomaly in the temperature dependence for F  mode in (f) is close to the 

AFM ordering temperature for Mn3+ spins TN=75 K. 
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The weakest effect in terms of the ( )T  values at low temperature has been 

observed in HoMnO3 (7 ) 1.5K   cm-1, while in other compounds with R=Er, Tm, Yb, 

and Lu (7 )K  turns out to be close to 5 cm-1 for the mode at 300 cm-1. Similar trends for 

the temperature dependence of the phonon frequencies at ~260 and ~300    cm-1 have been 

previously observed in the Raman spectra and reflectivity experiments in References 

[72,75].  

Temperature dependence of the optical phonons in HoMnO3 polarized along c-axis 

is shown in Figure 5.12.  The total number of the measured modes is 6 that is less than that 

for the a-b plane phonons. Our measurement did not reveal any significant spin-phonon 

interaction anomalies for this phonon polarization except a small decrease of the F   mode 

frequency for temperatures below TN = 75 K for Mn3+ spins. This decrease of ~ 1    cm-1 

exceeds slightly the error bars for the measured phonon frequencies.  

 

5.3.9 Transmission Spectra in Magnetic Field 

Transmittivity H   maps measured in YbMnO3 at T= 1.5 and 5 K are shown in Figure 13 

(a,b). The position of the phonon peaks at 144, 155, 165, and 180 cm-1 does not show any 

measurable changes with the strong magnetic field directed along the c-axis. In addition to 

the phonons, one can see a broader peak at 190 cm-1. This peak is only observed for 

temperatures below TN=84 K (see Figure 5.13 (c)). Note that the broadening of the 

magnetic peaks exceeds significantly that of the phonons in the same frequency range. The 

magnetic-field induced softening measured at T=5 K indicates a magnetic origin of these 

excitations. In addition to YbMnO3, a similar broad peak at 190 cm-1 were also observed 

in TmMnO3 and LuMnO3 indicating Mn3+ spin system to be the origin of this particular 
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excitation and excluding crystal field transition-related interpretation. The peak 

frequencies are summarized in Table 5.1.  The commonly accepted model for a 120° spin 

structure for Mn3+ ions in  h-RMnO3 does not include any single-particle excitations at the 

center of the Brillouin zone  0k  and polarized in the a-b plane other than the doubly-

degenerate AFM resonance peak, which frequency is between 40 and 50 cm-1 depending 

on the R3+ ion [120]. This prediction has been confirmed by both IR transmission [102] and 

 

Figure 5.13  Magnetic field dependence of the transmittivity H   map measured in 

YbMnO3. (a) T= 5 K and (b) T=1.5 K. The optical phonon peaks are marked with 

diamonds. The magnetic peaks at ~ 190 cm-1 are marked with open squares. 
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recent neutron scattering experiments [121]. Thus, the most plausible interpretation of the 

observed magnetic peak at 190 cm-1 is related to two-magnon absorption. According to 

Reference [122] the maximum of the two-magnon density of states in h-RMnO3 is close to 

200 cm-1, which is consistent with the observed position of our peak at 190 cm-1.  

For the temperature below the rare-earth spin ordering TYb3+ = 3.3 K, [102] the 

magnetic field dependence of the peak at 190 cm-1 changes. One can see a step-like 

behavior at the field of about 3.5 T in Figure 5.13 (c). The position of this peak decreases 

by about 2 cm-1 when the magnetic field exceeds ~3.5 T. A qualitatively similar, i.e. step-

like, behavior we observed recently for the AFM resonance peak at 53 cm-1 in the same 

YbMnO3 crystal measured for T< TYb3+ [102]. Several papers report critical endpoint 

behavior of magnetic spin system in h-RMnO3 at magnetic fields close to 3 T and 

temperatures below the spin orientation for R3+ ions T< TR3+ [122]. In a simplified 

quantitative picture such steps in magnetic-field dependencies are usually attributed to the 

internal fields associated with orientation of Yb3+  spins to the direction of  magnetic field 

(the c-axis) and simultaneous in-plane reorientation of Mn3+  spins.   

In TmMnO3 the magnetic peak has been observed at 193 cm-1. The frequency of 

this peak softens under increase of both, the magnetic field and temperature. This peak 

disappears above TN =82 K for Mn3+ ions. The softening of the magnetic peak under 

application of external magnetic field results in its down-shift to ~190 cm-1 and 

disappearance in the fields above 4 T. No step-like behavior was observed at low 

temperatures down to 1.5 K, probably due to even lower TTm3+  temperature.  
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5.3.10 Transmission Spectra and Multi-phonon Absorption 

For the high-frequency range, the transmission configuration is not that useful as it appears 

for the spectra below 200 cm-1.  For example, all phonons, which are above 400 cm-1 and 

are polarized in the a-b plane, fall into the bremsstrahlung band 370 – 580 cm-1 with

1( ) 0  . As a result, reflectivity of the sample is close to 1 in that frequency range and 

the remaining transmitted intensity is close to zero regardless of the sample thickness. 

Nevertheless, the phonons that are close to 420, 530, and 590 cm-1 have been confirmed in 

 

Figure 5.14  Transmittivity spectra dominated by absorption peaks due to the two- and 

three-phonon density of states. The minimum of transmitted intensity below 650 cm-1 

is due to the bremsstrahlung band. The phonon-related absorption features are marked 

with vertical arrows. Note the broadening and the softening of the phonon absorption 

features with the temperature increase. 
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the transmission experiments, but the accuracy of our ellipsometry data for these weak 

modes is superior compared to the transmission approach.  

Above the spectral region dominated by the first-order phonon excitations (< 600 

cm-1), transmission spectra demonstrated a number of peaks that can be attributed to two-

phonon and three-phonon absorption. Figure 5.14 shown transmission spectra obtained at 

different temperatures in LuMnO3.  While other compounds show similar spectra, LuMnO3 

has been chosen for illustration due to the absence of the 4f 3+ transitions in R3+ ions. A 

number of absorption peaks between 650 and 850 correspond to the phonon density of 

states for two-phonon excitations, while the weaker absorption peaks in the range between 

900 and 1150 are due to three-phonon absorption. The two-phonon frequencies at T = 7 K 

are the following:  660, 702, 721, 751, 771, 791, 809, 818, 841, and 851 cm-1. The three-

phonon peaks are 941, 967, 1004, 1030, 1073, 1138 cm-1. Note that the peaks are much 

sharper at low temperatures and their frequency decrease for the temperature increase. This 

trend is expected for the phonon-related absorption and is also illustrated in Figure 5.14 for 

the peak at 751 cm-1.  
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Table 5.3   Calculated  and Experimental Parameters of  TO Phonons with the E1  

Symmetry for h-HoMnO3 Polarized in the ab-plane for T=7 K 

Number 

m 

Calculation 

0,m  

 

mS  
Letter 

symbol 

Experiment  

0,m   

HoMnO3 

m   
 

mS  

1 125 0.1 a − − − 

2 166 0.001 b 151.5 1.6 0.07 

3 196 0.001 C 165.5 1.0 0.12 

   d −   

4 276 0.01 E 245 12.0 8.0 

   f 266.5 4.1 0.4 

5 286 0.14 G 292.5 4.1 1.5 

   h 308 7.1 0.08 

6 370 2.89 I 368 10.1 2.2 

7 398 0.02 j − − − 

8 415 0.04     

9 429 0.18 K 420 13.7 0.3 

10 561 0.35 l − − − 

11 570 1.55     

12 571 0.001 m 591 14.8 0.03 

13 609 0.001     

14 667 0.02     

      , 4.75  
 

       

 

Table 5.4   Calculated  and Experimental Parameters of TO Phonons with the  A1 

Symmetry for  h-HoMnO3 Polarized along the c-axis for T=7 K 

 

 

 

 

 

 

Number Calculation 

0,n  

 

nS  
Letter 

symbol 

Experiment  

0,n   

HoMnO3 

n   
 

Sn 

1 102 0.08 A 123.5 1.4 0.26 

2 199 1.33 B  223.0      4.0 2.8 

3 235 0.34 C 256.0 4.9 0.4 

4 361 0.045 D 298.1 5.8 0.3 

5 393 0.018     

6 427 0.066     

7 486 0.133 E 486.1 10.7 2.1 

8 620 0.001     

9 

 

654 3.25 F 580.5 13.5 2.2 

, 4.88   

 



116 

 

Table 5.5  Calculated Frequencies and Oscillator Strengths for TO Phonons with the E1  

Symmetry 

 

Table 5.6  Calculated Frequencies and Oscillator Strengths for TO Phonons with the A1 

Symmetry  Transition 

 

 

 

 

Number HoMnO3 

0,m  

 

mS  
ErMnO3 

0,m  

 

mS  
YbMnO3 

0,m  

 

mS  

       

1 125 0.1 121 0.102 117 0.112 

2 166 0.001 167 0.001 166 0.0001 

3 196 0.001 198 0.001 197 0.001 

4 276 0.01 277 0.001 277 0.001 

5 286 0.14 288 0.14 288 0.134 

6 370 2.89 377 2.78 382 2.7 

7 398 0.02 400 0.001 407 0.046 

8 415 0.04 423 0.033 429 0.031 

9 429 0.18 435 0.223 441 0.26 

10 561 0.35 579 0.61 590 0.81 

11 570 1.55 589 1.3 600 1.14 

12 571 0.001 581 0.013 601 0.001 

13 609 0.001 617 0.001 623 0.0014 

14 667 0.02 673 0.001 683 0.001 

       

 

Number HoMnO3 

0,n  

 

nS  
ErMnO3 

0,n  

 

nS  
YbMnO3 

0,n  

 

nS  

       

1 102 0.081 107 0.08 109 0.08 

2 199 1.33 205 1.25 208 1.2 

3 235 0.34 245 0.45 250 0.48 

4 361 0.045 363 0.046 364 0.046 

5 393 0.018 397 0.008 400 0.004 

6 427 0.066 434 0.063 438 0.063 

7 486 0.133 490 0.148 493 0.146 

8 620 0.001 625 0.001 629 0.0002 

9 654 3.25 661 3.24 671 3.24 
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5.3.11 Discussion and Conclusion 

First, we have to mention that only 6 out of expected 9 c-axis polarized phonons and 13 

out of 14 phonons polarized in the a-b plane, are observed experimentally. This fact could 

be understood from the analysis of vibration–induced dipole momenta: for both A1 and E1 

symmetries there are several modes whose oscillator strength 
( )n mS  is expected to be rather 

small (less than 0.05, see Tables 5.5 and 5.6). Such weak oscillator strength, especially if 

combined with a significant broadening 
( )n m of more than 5 cm-1, can indeed result in an 

experimental situation in which the mode falls below the observation limit, especially if it 

occurs in proximity with other strong phonons of the same polarization. Further, there is a 

reasonable agreement between the experimental and calculated mode frequencies, as 

shown in Tables 5.3 and 5.4 for HoMnO3. For example, the model reproduces qualitatively 

the general trend of phonon frequency change upon variation of R3+-ion (Tables 5.5 and 

5.6). As far as calculated oscillator strengths are concerned, the agreement with experiment 

deteriorates, which could point towards deficiency of a simplified shell model. These facts 

confirm the importance of a proper accounting for a balance between electronic, magnetic, 

and lattice degrees of freedom and highlight the importance of systematic experimental 

information on optical properties and vibrational spectra of this class of materials.  

In conclusion of this chapter, we have measured the optical phonons in five h-

RMnO3 compounds. The majority of the optical phonons have been identified for the a-b 

plane. Six strongest phonons that are polarized along the c-axis have been observed in 

HoMnO3. The lowest frequency phonons with the E1 symmetry show a systematic variation 

with the mass of the corresponding R3+ ions. Two of the mid-frequency phonons with the 

E1 symmetry also show a systematic variation, which is determined by the systematic 
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change of the R3+ ionic radius. The spin-phonon interaction has been observed in all h-

RMnO3 compounds in a form of the frequency increase for the phonons associated with 

displacement of the Mn3+ ions. The weakest effect was observed in HoMnO3, while other 

four h-RMnO3 compounds have more pronounced spin-phonon interaction effects. The 

Grüneisen parameter 0.7 0.2G    has been determined for the strong phonons with the 

E1 symmetry in all measured h-RMnO3 compounds. Magnetic excitations at ~ 190 cm-1 

have been found in three of the h-RMnO3 compounds at the temperature range below the 

AFM phase. These excitations have been explained as due to the two-magnon density of 

states. A possible relationship of this magnetic excitation to the crystal field transitions has 

been ruled out by both the close proximity of the frequencies in three h-RMnO3 compounds 

and by observation of such excitation in LuMnO3 where the 4f shell of the R3+ ion is fully 

occupied. The experimental and theoretical data presented here will be useful for future 

studies of the phonon spectra in a broad class of hexagonal magnetic compounds, and in 

new materials, such as h-InMnO3 in particular. 
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CHAPTER 6    

MMFIT FITTING PROGRAM MANUAL 

 

In this chapter, description of the developed MMFit program is given. There are three 

version of this software. One is for arbitrary bulk materials, second is for thin film layer on 

an anisotropic substrate, third is for a double layer superlattice on an anisotropic substrate. 

Both thin film layers and bulk layer can contain any combinations of electric, magnetic, 

magneto-electric and chiral oscillations. SHO model and Berreman formalism were 

utilized to get representation of pseudo-dielectric <  > function, ellipsometric , , 

reflectance, transmittance and Mueller matrices. Maximum number of oscillators in this 

version is 36 which can be increased if needed. Levenberg-Marquardt algorithm was used 

for fitting, where number of iterations changing is available for user. 

 

Figure 6.1  Start window of MMFit program. By default data panel (left) is for pseudo-

dielectric function and model panel (right) is for model creation (“Model Calc”). 
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Program consists of three main panels. Left one, consisting of eight subpanels,  is 

for data and models representation, right one, consisting from four to five subpanels in 

different versions, is for loading, saving data and models, adjusting fitting parameters, 

creation of models, choosing tensor symmetry. Low panel allows to adjust data (reduce to 

desirable range), choose number of iterations for fitting, calculate current model and 

exchange columns in current model (analog to Euler rotation by 90 degrees in any 

direction). 

6.1 Working with Data 

In order to load or save data and models, one should click on “Load/Save” button in right 

panel. 

 

Figure 6.2  Load/Save panel in MMFit program after loading mmd format file and clicking 

on “MM Panel” button, containing three Mueller matrix components (m21,m33,m34). Blue 

line – data. Red line – model. 
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There are 17 buttons on “Load/Save” panel. “Load *.mmd Data” allows user to 

load Mueller matrices data in mmd format. There are 16 non-normalized columns in mmd 

data file. MMFit normalize all MM components to the first MM component (first column). 

 

Figure 6.3  MMD data file structure. 

 

“Load *.epd Data” button allows user to load data in epd format, containing real 

part of pseudo-dielectric function (column six), imaginary part of pseudo-dielectric 

function (column seven),  function (column two) , function (column three) . Mmd and 

epd data formats are shown in Figures 6.3,6.4 correspondingly. 
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Figure 6.4  EPD data file structure. 

 

Following twelve buttons allow user to load separately pseudo-dielectric function 

data,  function data,  function data, reflection data, transmission data. Data files must 

contain two columns only without any headers. First column should be frequency in inverse 

centimeters, second column is intensity data. If one loads pseudo-dielectric function data 

using  “Load *.epd Data” and then load another pseudo-dielectric function data using 

“Load <Eps1> Data” and/or “Load <Eps2> Data”, corresponding data will be rewritten to 

the newest one. This works for  and functions data as well. 

“Reduce Data” button on the lower panel allows to cut data in the defined by user 

range”. To restore original data, original data file should be loaded and reduced data will 

be rewritten to the new one. 
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“Load Project” button allows to load project previously saved by “Save Project” 

button. “Save Project” button gives overall saving option: all available data, models and 

parameters will be recorded. 

“Save FitData” button saves all models and all data to separate files, consisting of 

two columns: first one is frequency, second one is intensity. If there were no loaded data 

previously, MMFit programs provides file with zero data. The same is valid for models. 

Total number of files saved after “Save FitData” button clicked is 25. 

6.2 Working with Models 

For creation and modifying model function user should click on “Model Calc” button in 

the right panel. 

 

Figure 6.5   “Model Calc” panel with “MM” data panel after creating rough starting model 

for fitting. Blue line – data. Red line – model. 
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There are three sliders available for adjusting different values. First slider (from the 

left to the right) always changes oscillation frequency value. Second slider always changes 

Gamma (broadening coefficient) value. Third slider changes value chosen by radiobuttons. 

When one changes values with sliders current models are redrawn dynamically. Main 

purpose of this visualization is to find starting fitting point maximally close to the original 

data. 

“Show Tab” button draws additional panel which gives overall picture of the 

 

Figure 6.6   “Show Tab” panel view with model parameters. 

current model. User has option to change available values from this panel as well. After 

adjusting all values additional click on free space should be made and current window 

should be closed. “L” stands for low fitting boundary. “U” stands for high fitting boundary. 

“F” stands for fit. If some value is supposed to be fitted, one should mark corresponding 

checkbox. When checkbox is chosen, “L” and ”U” values are updated automatically by  

 value from “L/U Range” edit field percent from the initial value of current parameter. 
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“Fitting Range” allows to choose appropriate range in inverse centimeters for 

fitting. 

In order to choose ME tensor symmetry or add off diagonal components of electric 

permittivity tensor user should click on “Symmetry” button in the right panel.  

 

Figure 6.7   “Symmetry” panel view and pseudo-dielectric function data panel with model 

containing ME oscillator at 545 cm-1. 

 

There are six available options to construct ME tensor which are shown in Figure 

6.7. Checkboxes in the low part of the panel allows to choose different options for ME 

tensor. “Rho” checkbox makes component of ME tensor complex , “Alp” checkbox makes 

them real, “Ksi” checkbox makes them purely imaginary, “Eps” makes ME tensor 0 and 

add corresponding real components to electric permittivity tensor. It should be noted that 

for this choice only off diagonal components available.”iEps” does the same as  “Eps” but 

makes components purely imaginary.”Rho’ = 0” make transpose ME tensor 0 and “-
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Rho/Eps” makes negative ME tensor or if “Eps”, “iEps” options are chosen makes negative 

off diagonal terms of permittivity tensor. 

After model is constructed, clicking on “Calculate ” button plots model in the left 

panel for all functions. There is “Calculate ” button on the lower panel and on the “Model 

Calc” panel as well. 

6.3 Working with Fitting 

In this section fitting options are explained. 

 

Figure 6.8   “Fitting” panel view with “MM” data panel after fitting three Mueller matrix 

components. Blue line – data. Red line – model. 

 

“Fit” panel allows to choose different set of data for simultaneous fitting. Desired 

data for fit should be marked by means of radio buttons. After choosing appropriate sets of 

data fitting frequency, boundaries could be adjusted in “Fitting range Field”.”Fit” button 

starts fitting procedure. After fit is finished, fitted values are renewed. Left edit box in the 

low panel allows to adjust number of fitting iterations. 
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CHAPTER 7    

SUMMARY 

 

In this Thesis, we accomplished the following research objectives: 

 Analysis of numerical and analytical methods for electromagnetic wave 

propagation in bi-anisotropic media has been done. 

 

 Analytical expressions for Fresnel’s coefficients has been derived for bi-anisotropic 

bulk and multilayer materials. 

 

 Based on obtained theoretical results the original data fitting and simulation 

software has been developed. 

 

 IR spectra of Dy-IG and TbMnO3 multiferroics have been analyzed and their 

parameters such as frequencies and oscillator strengths have been determined. 

 

 Infrared active optical phonons in hexagonal rare earth manganites have been 

studied. A systematic variation of the photon frequencies vs. the rare earth ion mass 

and rare earth ion radius has been observed in RMnO3 compounds. 

 

A logical continuation of the current research should be focused on the 

experimental observation of the optical properties for new materials with predicted 

magneto-electric interaction. Interesting behavior of such samples is expected under 

application of external magnetic and electric field. Correspondingly, the developed 

theoretical formalism should be extended for cases with applied external fields. For thin 

films structures, which are suitable for different applications in industry and technology 

interlayer interaction of ME oscillations is under considerable interest and should be 

studied in more details using Mueller matrix ellipsometry.  
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APPENDIX A 

  MATRIX EIGENVALUES EXPLICIT FORMULAS 

In this appendix general formulas are given for eigenvalues of arbitrary structure   matrix 

which is in the form 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

    
 
     
    
 
    

 

 

 

 

(5.5) 

 

For the most general case when the symmetry of ME tensor is the lowest, optical 

matrix and   matrix have the following forms: 
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Components of   matrix can be extracted from Equation (5.7). Earlier we pointed out 

that in order to resolve eigenvalue problem we need to extract solutions of fourth order 
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polynomial in the form Equation (3.22), where 
1 2 3 4, , ,C C C C  can be found from the 

condition 

11 , 12 13 14

21 22 , 23 24

31 32 33 , 34

41 42 43 44 ,

det 0

z i

z i

z i

z i

q

q

q

q

     
 

      
     
       

, 

with solutions: 

 

11 22 33 44

12 21 11 22 13 31 23 32 11 33 22 33 14 41 24 42 34 43

11 44 22 44 33 44

13 22 31 12 23 31 13 21 32 11 23 32 12 21 33 11 22 33 14 22 41

12 24

1

2

3

41 14 33 41

C

C

C
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14 31 43 24 32 43 11 34 43 22 34 43 12 21 44 11 22 44 13 31 44

23 32 44 11 33 44 22 33 44

14 23 32 41 13 24 32 41 14 22 33 41 12 24 334C

               

                         

        

               



 

 

41 13 22 34 41

12 23 34 41 14 23 31 42 13 24 31 42 14 21 33 42 11 24 33 42

13 21 34 42 11 23 34 42 14 22 31 43 14 21 32 43 11 24 32 43

11 22 34 43 12 24 31 21 34 43

     

                      

                       

         

 

 

and z,iq  is one of the four eigenvalues of   matrix. Eigenvalues formulas are given below 

(discussion of universal method for solving quartic equation and analytical solutions are 

given in [123]): 
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z,1q   

 

z,2q 
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z,3q 

 

z,4q 

 
Thus we found solutions for eigenvalues in terms of   matrix components.  
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APPENDIX B 

  MATRIX EIGENVECTORS EXPLICIT FORMULAS 

In this appendix we find eigenvectors representation of   matrix. In order to get solutions 

we need to consider the following equation: 

 

11 , 12 13 14

21 22 , 23 24

31 32 33 , 34

41 42 43 44 ,

0

xz i

yz i

xz i

yz i

Eq

Eq

Hq

Hq

       
  

        
      
          

 

 

 

(5.8) 

 

where z,iq  is one of the four eigenvalues of   matrix and their analytical solutions are 

given in Appendix A. Let’s rewrite Equation (5.8) in the following form: 

 

11 , 12 13 14

21 22 , 23 24

31 32 33 , 34

41 42 43 44 ,

( ) 0

( ) 0

( ) 0

( ) 0.

z i x y x y

x z i y x y

x y z i x y

x y x z i y

q E E H H

E q E H H

E E q H H

E E H q H

        

        

        
        

 

 

 

 

(5.9) 

 

 

Equation (5.9) is a linear system with respect to the tangential field components. It’s not 

hard to show that general solution for each out of four possible eigenvectors has the 

structure shown below: 

         
       

,

12 23 34 24 33 , 13 24 32 34 22 , 14 23 32 22 , 33 ,

23 32 22 , 33 ,

1,

2,

3,

4, ,

11 , 13 21 32 31 22 , 12 23

z i

z i z i z i z i

z i z i z i z i

xi

yi

xi

yi eigen q

E

E

H

H

q q q q

q q q q









             

  
  
    


          

             

 
  

   

  




 






   

         
          

 

31 21 33 ,

13 24 31 21 34 14 23 31 21 33 , 11 , 23 34 24 33 ,

23 32 22 , 33 , 11 , 13 21 32 31 22 , 12 23 31 21 33 ,

12 24 31 21 34 14 21 32 31 22 ,

z i

z i z i z i

z i z i z i z i z i

z

q

q q q

q q q q q

q

   

                      

                        

                    
          

11 , 24 32 34 22 ,

23 32 22 , 33 , 11 , 13 21 32 31 22 , 12 23 31 21 33 ,

1

i z i z i

z i z i z i z i z i

q q

q q q q q

        

            

 
 
 
 
 
 
 
 
 
 
 
 


           


 

 

(5.10) 
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In Equation (5.10) eigenvector components are normalized by yH . In previous appendix A 

we showed explicit solutions for eigenvalues. That means eigenvectors problem is solved 

completely. Due to a very bulky structure of formulas in terms of optical parameters such 

as , , , AOI   , etc., we don’t show final results here, though they are available in MatLab 

m-functions.  
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APPENDIX C 

DOUBLE LAYER STRUCTURE PARTIAL  

TRANSFER MATRIX REPRESENTATION 

 

In Chapter 3 on electromagnetic waves propagation in multilayer structures we showed that 

partial transfer matrix can be written in the form of Equation (3.19) with   coefficients in 

the form of Equation (3.20). We present transfer matrix formulas for bilayer structure below: 

 

 

 

 

 

 

 

 



 

 

11T   

 
 

12T   
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3
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13T   

  
 

14T   

 
 

1
3
6
 



 

 

21T   

 
 

22T   

 
 

1
3
7
 



 

 

23T   

 
 

24T   

 
 

1
3
8
 



 

 

31T   

 
 

32T   

 
 

1
3
9
 



 

 

33T   

 
 

34T   

 

1
4
0
 



 

 

41T   

 
 

42T   

 
 

1
4
1
 



 

 

43T   
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1
4
2
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