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ABSTRACT 

AN EMBEDDED SYSTEM SUPPORTING DYNAMIC PARTIAL 

RECONFIGURATION OF HARDWARE RESOURCES FOR 

MORPHOLOGICAL IMAGE PROCESSING 

 

by 

 

Gyana Ranjan Sahu 

Processors for high-performance computing applications are generally designed with a 

focus on high clock rates, parallelism of operations and high communication bandwidth, 

often at the expense of large power consumption. However, the emphasis of many 

embedded systems and untethered devices is on minimal hardware requirements and 

reduced power consumption. With the incessant growth of computational needs for 

embedded applications, which contradict chip power and area needs, the burden is put on 

the hardware designers to come up with designs that optimize power and area 

requirements.  

 This thesis investigates the efficient design of an embedded system for 

morphological image processing applications on Xilinx FPGAs (Field Programmable 

Gate Array) by optimizing both area and power usage while delivering high performance. 

The design leverages a unique capability of FPGAs called dynamic partial 

reconfiguration (DPR) which allows changing the hardware configuration of silicon 

pieces at runtime. DPR allows regions of the FPGA to be reprogrammed with new 

functionality while applications are still running in the remainder of the device. 

The main aim of this thesis is to design an embedded system for morphological 

image processing by accounting for real time and area constraints as compared to a 

statically configured FPGA. IP (Intellectual Property) cores are synthesized for both 



 

 

static and dynamic time. DPR enables instantiation of more hardware logic over a period 

of time on an existing device by time-multiplexing the hardware realization of functions. 

A comparison of power consumption is presented for the statically and dynamically 

reconfigured designs. Finally, a performance comparison is included for the 

implementation of the respective algorithms on a hardwired ARM processor as well as on 

another general-purpose processor. The results prove the viability of DPR for 

morphological image processing applications.  
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CHAPTER 1    

INTRODUCTION 

1.1 Motivations and Objectives 

As per [1], FPGAs are known to outperform General-Purpose Processors (GPPs) when 

they are used to implement a specific function in a hardware design. The main aim of this 

thesis is to present an efficient design of an embedded system targeting at morphological 

image processing applications. The said embedded system was implemented on the 

Xilinx AP-SoC FPGA Zedboard. Usually, the FPGA is treated as a slave component in 

such a reconfigurable system, when required; the complete FPGA is configured to 

offload the main processor, in this case an ARM processor. With the development of 

dynamic partial reconfiguration (DPR) features for some FPGAs, only part of the FPGA 

can be partially reconfigured at runtime when needed. By doing this, such a partially 

reconfigurable system can provide hardware adaptation for real time functionality. 

 In designing the embedded system, the image processing cores were built in IP 

and were stored in the configuration memory. Depending upon the algorithm to be 

executed, DPR allows the FPGAs to be reconfigured dynamically at runtime to match up 

changes in application behavior. By leveraging dynamic partial reconfiguration, not only 

do we achieve a significant reduction in the required floor area but can also gain in terms 

of power reduction. As for all chips, the power dissipation of FPGAs embodies static and 

dynamic ingredients. A study released by Xilinx reports that the static power rises 

substantially below the .25 micron feature size [16].  

The major contributors to the dynamic energy consumption of an embedded 

platform FPGA are the processor and IP cores, and the auxiliary and I/O blocks. Any 



2 

 

 

 

FPGA asset consumes both static and dynamic power in the active state, and only static 

power in standby when its clock signal is disabled. Any power consumption could be 

eliminated by shutting down the power supply to an asset to put it into the sleep state. 

However, current FPGAs do not support this feature for specific assets. By configuring 

only parts of the FPGA to actually employ in computations, we can significantly cut 

down the dynamic power consumption. 

1.2 Overview 

The thesis is organized in seven chapters. Chapter 2 discusses the theory of 

reconfigurable computing. The philosophy of GPP designs, which is based on the von-

Neumann computing paradigm, is presented. It also discusses the Application-Specific 

Integrated Circuit (ASIC) method of implementing designs on silicon. ASICs are the 

fastest and most optimized designs when it comes to match up application needs. But the 

fixed structure of ASICs renders them inflexible since they cannot be changed once 

fabricated. However, when there is a need for flexibility and high performance 

computational power, DPR has major advantages. Reconfigurable computing, also 

known as spatial computing, is generally implemented on FPGAs. The same chapter 

discusses at length the architecture of FPGAs and their ability to reconfigure the design 

by changing their SRAM configuration. We also present an entire design flow using 

FPGA-based logic synthesis tools and hardware/software codesign strategies. The chapter 

concludes by presenting various types of runtime DPR reconfiguration for FPGAs.  

 Chapter 3 briefly discusses the design flow for logic synthesis on Xilinx 

FPGAs supporting DPR. It assumes that IP cores used as hardware accelerators are 
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already synthesized and have been converted into partial bitstreams. These bitstreams are 

available as binary files to be stored in the memory of the host processor. 

 Chapter 4 discusses the theory of mathematical morphology and various 

operators which will be implemented on the user programmable host. These different 

operators are programmed in MATLAB. Only basic operators are discussed as the main 

aim of this thesis is to design the embedded system for image processing applications. 

Complex applications can be run for high performance once the core algorithms are 

synthesized in hardware. 

Chapter 5 summarizes the Vivado High-Level synthesis tool that was used to 

synthesize our design. The optimization effort for our application is included as well. 

Chapter 6 presents performance and power analysis results, while Chapter 7 

contains conclusions. 
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CHAPTER 2    

RECONFIGURABLE COMPUTING 

2.1 von-Neumann Computing Paradigm 

The Hungarian mathematician John von-Neumann (VN) showed that a computing 

machine could have a simple, fixed hardware structure for the execution of any kind of 

computation, when given properly programmed control. Since then, the VN machine 

paradigm has been universally accepted as the standard computing architecture for 

conventional processing. The general architecture of a VN machine is shown in Figure 

2.1 and consists of the following major components: 

 A memory for storing data and programs which is sequentially accessed for 

operands and instructions. To improve performance, Harvard architectures 

contain two parallel accessible memories for storing program and data separately. 

 A control unit featuring a program counter that holds the address of the next 

instruction to be executed. 

 An arithmetic and logic unit (ALU) and CPU registers along with a data path for 

instruction execution. 

 

 A VN machine executes programs sequentially, instruction by instruction. 

At each step of program execution, the next instruction is fetched from the memory at the 

specified address stored in the program counter. The fetched instruction is then decoded 

and executed; a result may be written back into the memory or register.  

 The main advantage of the VN computing paradigm is its flexibility, 

because it can be used to program any given algorithm. Each algorithm to be run on a VN 

machine has to be coded sequentially according to VN rules. That is, ‘the algorithm must 
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adapt itself to the hardware’. Because of the VN rules, that imply sequential execution, 

VN computation is also referred to as ‘temporal computation’. 

 Generally, algorithms have some form of inherent instruction-level parallelism 

(ILP). They can be executed faster by taking advantage of ILP and often data-level 

parallelism (DLP). Since all algorithms executed on a pure VN machine are run 

sequentially; many algorithms cannot be executed to their best possible performance. 

Modern GPPs exploit ILP and/or some DLP to speed-up execution. Additionally, modern 

uni-core or multi-core architectures also exploit thread-level parallelism (TLP) to further 

enhance the performance. 

 However, if the class of algorithms to be executed is known in advance, then an 

adaptive processor could be modified to better match the computation paradigm of that 

class of applications.  

 
Figure 2.1 General structure of a von-Neumann Computer. 
Source: [2] 

 

Individual processor performance doubled about every 18 months until 2003, 

following the doubling of transistors as per Moore’s law. However, memory 

improvements did not keep up. As processor speeds increased, the processors spend more 

time in the idle mode, waiting for data to be fetched from memory. No matter how fast a 

given processor can work, in effect it is limited by the rate of memory transfers. 
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 Some of the approaches to overcoming this von-Neumann memory bottleneck 

are: 

  

 Caching: The storage of frequently used data in a special area (usually SRAM), so 

that it is more readily accessible than if it were stored in the main memory. 

 Prefetching: Moving some data into the cache before it is requested to speed up 

access in the event of a request. 

 Multithreading: Managing multiple requests simultaneously in separate threads. 

 New types of RAM: For example, DDR SDRAM, which provides an output on 

both the rising and falling edges of the system clock, rather than on just the rising 

edge. This doubles the transfer rate. 

 Out of order execution: Instructions are dispatched to instruction queues called 

reservation stations and allowed to complete out of program order. But the 

instructions are committed to memory or the register file as per the order they 

appear in the original sequential program order. 

2.2 Application Specific Processors and ASICs 

If an algorithm or computation is fixed for an application, it can be optimized for the best 

possible performance by designing specialized hardware. In this case, we say that the 

hardware design matches the application. The hardware or the processing unit which is 

designed for the specific application is called an Application Specific Processor (ASIP). 

These, ASIPs are further classified into Domain Specific Processors (DSPs) and ASICs. 

In an ASIC, the entire application or computation is executed directly on the hardware 

and offers the best possible performance. In ASICs, the instruction fetch-based cycles are 

eliminated and hence the need for sequential execution is overcome. Moreover, in ASICs 

the computation is executed faster by taking advantage of the inherent parallelism in the 

program. ASICs use a spatial approach to execute an application since all the functional 

blocks needed for the computation are implemented in hardware. Hence, this kind of 
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computation is also called ‘Spatial Computing’. ASICs are generally implemented with 

CMOS technology in a single chip. For example, in cell phones certain communication 

protocol algorithms are implemented on ASICs to provide real-time functionality. 

 The main drawback of ASICs is that, after fabrication the circuit design cannot be 

altered. This is in contrast to GPPs where, by changing the software instructions, the 

functionality of the system is altered on demand without changing the hardware. 

However, the downside of this flexibility is that the performance suffers, and is far below 

that of an ASIC. However, due to higher engineering costs resulting from longer design 

cycles and the increasing costs of design tools, the overall cost of ASICs may be 

prohibitively high. 

2.3 Reconfigurable Computing 

There exist two main attributes to characterize processors: flexibility and performance. 

Since, VN computers can execute any kind of algorithm, they are considered highly 

flexible. However, they do not execute the algorithm in ways that achieve the highest 

performance.  

ASICs, on the other hand, allow the functional units to be fabricated on a chip. 

High performance is possible because ‘the hardware is adapted to the application’. If we 

consider two scales, one for the performance and the other one for the flexibility, then the 

VN computers can be placed at one end and ASICs at the other end. 

 Ideally, system designers desire the flexibility of GPPs and the 

performance of ASICs for the same device. To this extent, a hardware device is needed 

that can provide spatial computing for the application while simultaneously adapting to 

the algorithm. Such a hardware device is called a reconfigurable processing unit (RPU). 



8 

 

 

 

 
Figure 2.2 Comparison of various types of computers in terms of performance and 

flexibility. 
Source: [2]. 

 

The main idea behind a reconfigurable device is to take advantage of the 

application inherent parallelism to achieve the best possible speedup. The structure of 

reconfigurable devices is changed by modifying all or part of the hardware at compile or 

run time, by downloading a configuration bitstream into the device. The most popular 

devices that support this type of reconfiguration are FPGAs. 

2.4 FPGA Architecture 

FPGAs were first introduced in the 1985s by Xilinx Inc. as programmable logic devices. 

The FPGA architecture consists of three main parts: a set of programmable logic cells 

(CLBs), a programmable interconnect network for routing information between 

input/output blocks, and a set of input and output cells around the device. About 90% of 

the FPGA area is made of programmable interconnects; the rest of the FPGA is made of 

logic blocks [3,6]. Figure 2.3 shows a generic FPGA architecture. Additional, resources 
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such as memory, DSP blocks, embedded processors, etc., may be available on a FPGA 

depending on the vendor. 

2.4.1 CLB (Configurable Logic Block) 

The CLB is the basic logic unit in a FPGA. Exact numbers and features vary from device 

to device, but every CLB commonly consists of a configurable switch matrix with 4 or 6 

inputs, some selection circuitry (MUX, etc.), and flip-flops [2]. The switch matrix is 

highly flexible and can be configured to handle combinatorial logic, shift registers or 

RAM. Altera Corp. refers to these logic blocks as Logic Array Blocks (LABs). In 

addition, each CLB contains several look-up tables (LUTs). 

 
Figure 2.3 Matrix structure of a FPGA consisting of CLBs and interconnects. 
Source: [2]. 

 

The LUT is used by most of the FPGA vendors mainly because an n-input LUT is 

capable of implementing of any n-input logic function. In other words, a LUT is a small 

memory that directly stores the truth table to realize a fundamental digital circuit. The 

number of CLBs and their configuration depend on the size and type of the FPGA. Figure 

2.4 illustrates Xilinx CLB components. 
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Figure 2.4 Structure of a CLB consisting of LUT and multiplexers. 
Source:[2]. 

 

 
Figure 2.5 Structure of SLICE cells and the switch matrix for a Xilinx FPGA. 
Source: [4]. 

2.4.2 Interconnects 

While the CLBs provide logic capability, flexible interconnect routing routes [2] the 

signals between CLBs and to/from I/O ports. Routing comes in several flavors, from 

interconnecting CLBs, to fast horizontal and vertical long lines spanning the device, to 

global low-skew routing for clocking and other global signals. The design software hides 

interconnect routing from the user, unless specified otherwise. 
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2.4.3 Select IO (IOB) 

Input/Output blocks provided on FPGAs are generally programmable for input or output. 

They are used to propagate signals from one logic element to another. Xilinx FPGAs 

provide support for various I/O standards [4]. In Xilinx 7 series FPGAs, each I/O bank 

contains fifty SelectIO pins which can support different I/O standards (single ended and 

differential ended I/O standards) [5]. 

2.4.4 Memory 

Embedded BRAM (Block RAM) memory, which is available in most FPGAs, allows for 

on-chip memory to be instantiated in the design. These on-chip memories allow the 

designer to store coefficient and other buffer data. 

 
Figure 2.6 On-chip memory arranged in memory banks and available as BRAMs on 

Xilinx FPGAs. 
Source:[4]. 
 

Xilinx FPGAs provide up to 10Mbits of on-chip memory in 36kbit blocks that can 

support true dual-port operation. Figure 2.6 shows the on-chip memory arranged as 

memory banks in the FPGA chip. 
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2.4.5 Clock Management 

Digital clock management is provided by most FPGAs in the industry (all Xilinx FPGAs 

have this feature). The most advanced FPGAs from Xilinx offer both digital clock 

management and phase-looped locking that provide precision clock synthesis combined 

with jitter reduction and filtering [4]. This lets the designer operate the hardware module 

at different clock frequencies. Sometimes different IP cores instantiated in the design 

need to operate in a particular fixed clock domain and then synchronize the system with 

other modules running in a different clock domain. For example, in building a HDMI 

video pipeline, the design needs to operate at 148.5MHz while letting the other modules 

operate at 200MHz. 

2.4.6 SRAM-based Configuration 

Static memory is the most widely used method of configuring FPGAs. FPGAs can be 

configured any number of times by changing the bits stored in the static SRAM memory 

cells. The output of a memory cell is directly connected to another circuit and the state of 

the memory cell continuously controls the circuit being configured. Although using 

volatile SRAM cells has some disadvantages, the advantages far out-weight the 

disadvantages. Some disadvantages of SRAM-cell FPGAs are: 

 The SRAM configuration memory consumes a noticeable amount of power, even 

when the program is not changed.   

 The bits in the SRAM configuration may be susceptible to flipping. 

 A large number of bits must be set in order to program an FPGA. Each 

combinational logic element requires many programming bits and each 

programmable interconnection point requires its own bit. 
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An example of using SRAM-controlled switches is illustrated in Figure 2.7. It 

shows two applications of SRAM cells for controlling the gate nodes of pass-transistor 

switches, and for control lines of multiplexers that drive logic block inputs. When both 

SRAM cells store one, the output of one logic block is connected to the other through the 

multiplexer. Whether an FPGA uses pass-transistors or multiplexers, or both, depends on 

the particular product. 

 
Figure 2.7 Dynamic configuration of logic cells by changing the SRAM configuration. 
 Source: [4]. 

2.4.7 Logic Implementation on FPGAs 

The steps required to implement an application or algorithm on an FPGA are commonly 

referred to as design flow. Programming an FPGA is significantly different from 

programming a GPP. Rather than generating sequences of instructions, we generate the 

hardware components that will be mapped at different times to the available resources. 

As per algorithm needs, the hardware resources will be generated for spatial computation. 

The generation of such components is called logic synthesis. It is an optimization process 

whose goal is to minimize some cost function aimed at producing, for instance, the fastest 

hardware with the smallest amount of resources and the smallest power consumption.  
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The algorithm or function is generated using either a schematic editor, a hardware 

description language (HDL), or a finite state machine (FSM) editor. HDLs, such as 

VHDL, Verilog and System C, are the most commonly used tools to generate the RTL of 

the hardware. Other than VHDL and Verilog, there are other hardware synthesis tools 

provided by different vendors which allow the synthesis of hardware from high level 

languages like C/C++. High-level synthesis or C-based design flows are relatively 

simpler and provide a straightforward approach for hardware synthesis from functions 

that are run in software on a GPP. Moreover, these high-level synthesis tools provide a 

faster approach for simulation and debugging of hardware before synthesis. For example, 

the high-level synthesis tool provided by Xilinx is called Vivado HLS; Altera uses 

OpenCL. 

2.4.8 Place and Route 

After functional simulation, the design can be compiled and optimized. It is first 

translated into a set of Boolean equations. Technology mapping is then used to 

implement the functions with the available modules in the function library of the target 

architecture. In case of FPGAs, this step is called LUT-based technology mapping, 

because LUTs are the modules used in the FPGA to implement the Boolean operators. 

The result of logic synthesis is called netlist. A netlist describes the modules used to 

implement the functions as well as their interconnections. For the netlist generated in the 

logic synthesis process, operators (LUTs, Flip-Flops, Multiplexers, etc.) should be placed 

on the FPGA and connected together through routing. These two steps are normally 

achieved by CAD tools provided by the FPGA vendors. After the placement and routing 

of a netlist, the CAD tools generate a file called a bitstream. A bitstream provides the 
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description of all the bits used to configure the LUTs, the interconnect matrices, the state 

of the multiplexer and the I/O of the FPGA. Full and partial bitstreams (for partial FPGA 

reconfiguration) can now be stored in a memory to be downloaded into the FPGA fabric. 

 This thesis uses Vivado HLS to synthesize most of the morphological functions; 

they were implemented on the FPGA fabric by a different tool the Vivado Design Suite. 

The entire process of the FPGA design flow is shown in Figure 2.8. 

 
Figure 2.8 Entire design flow steps, such as logic synthesis, place, route and bitstream 

generation to configure a FPGA. 
Source [2]. 

2.5 Hardware/Software Codesign for Platform FPGA 

Currently, many FPGA vendors provide FPGA platforms in the form of a System-on-a-

Programmable Chip (SoPC). Xilinx refers to its design architecture as “All 

Programmable-System on a Chip (SoC)” whereas Altera refers to its design architecture 

as “System on a Programmable Chip”. These devices, apart from containing an FPGA 
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fabric, also include other system level components such as memory, ADC converters, 

USB ports, HDMI ports, etc. These SoCs enable extensive system level differentiation, 

integration, and flexibility through hardware, software, and I/O programmability. 

 System-on-a-chip FPGAs include embedded processors (hard or soft), bus 

protocols, memory and other IPs which provide an opportunity for system designers to 

develop high performance systems. Hard processors are microprocessors that have been 

diffused in the silicon that contains an FPGA. For example, the Virtex II chip from Xilinx 

includes a PowerPC processor whereas the Zedboard APSoC includes a dual-core ARM 

processor. Soft processors are microprocessors that are created out of the FPGA gate 

array and can be configured to suite a particular application. An example is the 

MicroBlaze 32-bit RISC processor available from Xilinx as an IP.  

 HW/SW codesign meets system level objectives by exploiting the synergism of 

hardware and software through a concurrent design. It attempts to manage the 

simultaneous development of hardware and software, it requires the use of multiple 

discrete design flows at the implementation level (the system is specified and analyzed, 

and then the hardware specification is passed to the hardware designers while the 

software specification is passed to the software designers).  

 In this thesis, the implementation is done on a Xilinx Zynq-7000 series SoC 

contained in the Zedboard. The Zedboard includes a dual-core ARM Cortex-A9 MPCore 

hard Processing System (PS) that interacts with tightly coupled 7 series 85K 

Programmable Logic (PL) cells. Other key peripherals on the board include: 

 512 MB DDR3 

 256 Mb Quad-SPI Flash 

 4 GB SD card 
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 USB-JTAG port 

 10/100/1000 Ethernet 

 USB OTG 2.0 and USB-UART 

 HDMI output supporting 1080p60 with 16-bit, YCbCr, 4:2:2 mode color 

 VGA output (12-bit resolution color) 

 128x32 OLED display 

 8 user LEDs, 7 push buttons and 8 DIP switches. 

2.6 Types of Reconfiguration and Granularity 

Depending upon the granularity of the device, the reconfiguration can be classified as 

fine-grain or coarse-grain. Fine-grain reconfigurable devices are modified at a very low 

level of granularity. For instance, the device can be modified to add or remove a single 

inverter or a single two-input NAND gate. Fine-grain reconfigurable devices are mostly 

programmable logic devices (PLDs). However, fine-grain architectures may not be 

efficient because of large routing areas and poor routablity. Most of the reconfigurable 

architectures are built as coarse-grain reconfigurable arrays with large path widths. 

Computational data paths generally have widths greater than one bit and, hence, more 

area efficient designs are possible by using custom reconfigurable data paths of width 

greater than one. Several basic computing blocks are grouped into a coarse-grain CLB. 
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CHAPTER 3    

DESIGN FLOW FOR PARTIAL RECONFIGURATION 

3.1 Introduction  

This chapter presents a detailed description of the design flow for generating partial 

configuration bitstreams targeting at Zynq AP-SoC devices. The final implementation of 

the modules is done on a Zedboard which contains a Zynq 7 series device. The process of 

generating a static configuration was explained in the preceding chapter. In partial 

reconfiguration, the design flow consists of generating both the static configuration and 

the partial reconfiguration bitstreams. In our case, the static configuration consists of 

generating a morphological image processing pipeline with functionality that remains 

fixed. Different morphological operations and algorithms are explained in the next 

chapter, and the synthesis of the algorithms is discussed in Chapter 5. For now, we 

assume that we have the synthesized algorithm and generate the RTL model. The next 

section describes the rest of the design flow for partial reconfiguration. 

3.2 System Overview 

This section describes our system for implementing two morphological image processing 

accelerators in Programmable Logic (PL) by using partial reconfiguration to load the 

desired functionality on demand. The Zynq-7000 AP-SoC integrates a dual-core ARM 

Cortex-A9 based processing system (PS) and programmable logic (PL) in a single device. 

The proposed design makes use of both the PS and PL portions and 
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demonstrates how it is best to separate control (mapped onto the PS) and data path 

(mapped onto the PL). The PL implements a powerful, high-performance image 

processing pipeline that consists of input, core processing, and output stages (shown in 

Figure 3.1). 

 
Figure 3.1 Proposed design for the morphological image processing pipeline. 

 

The PS is used to configure the individual IP cores inside the PL and to control 

the data flow. The first morphological IP core is a dilation operation that increases the 

grayscale intensity of the image as per a structural element (SE) used in this process; the 

second morphological IP core is an erosion operator that does the opposite.  

Figure 3.2 shows a comparison of original, dilation-processed, and erosion-

processed images. The RTL for both morphological IP cores is generated from a C-

algorithm description using the High-Level Synthesis tool Vivado HLS. The system 

overview of the PS section is shown in Figure 3.3. The PS is configured with the 

following I/O peripherals enabled: USB0, SD0, UART1, and GPIO. All I/O peripheral 

interfaces are configured for multiplexed I/O. Interrupt signals are connected to the DMA 

channel and the morphological IP cores. 
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Figure 3.2 Comparison of original, dilated and eroded Lena images. 

 

The General Purpose Master Port GP0 is used to configure and control memory-

mapped IP cores via the AXI4-lite interface. The HP0 High Performance Ports are 

connected via the AXI4: the core processing pipeline is connected to the HP0 read/write 

channels; the input pipeline is connected to the HP0 write channel; the output pipeline is 

connected to the HP0 read channel. A PS internal clock generator provides a 100 MHz 

clock to the PL which sets the clock domain for the rest of the modules. 

 
Figure 3.3 Zynq 7000 AP SoC system overview. 
Source:[7]. 
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3.3 Device Configuration Interface 

The device configuration interface (DevC) includes the methods and procedures for 

initializing and configuring the PL under PS software control [7]. The DevC consists of a 

set of control/status registers and three main functional modules. The PS accesses the 

APB registers to control the three independent modules in the DevC which are the AXI-

PCAP bridge, security management module and XADC interface. If an AES encrypted 

bitstream is used for configuration, then the AXI-PCAP bridge with the DMA is used by 

the PS to decrypt the bitstream in order to configure the FPGA. In this thesis, the PCAP 

(Processor Configuration Access Port) mode of reconfiguration is chosen as the interface 

for DPR. Xilinx provides access to all the registers in the DevC using a header file, 

Devcfg.h, and necessary function calls to specify the mode of configuration and DMA 

transfer calls. In this thesis the lower level functions have been further abstracted through 

a function call to the “XDcfg_TransferBitfile” function which takes in a pointer to the 

Devcfg, the starting address of the bitfile, and the word length of the bitfile. The starting 

address can be obtained by downloading the bitstream to a fixed location using the XMD 

tool or by using a FAT file system to download the bitstream from the SD card to a fixed 

location in memory. Figure 3.4 shows the block diagram of the DevC interface. 



22 

 

 

 

 
Figure 3.4 DevC Block diagram.  
Source: [7]. 

 

 
Figure 3.5 ICAP primitive on Xilinx FPGA.  
Source: [8]. 

 

 
Figure 3.6 PL programming paths on Zynq 7000 devices.  
Source: [7]. 
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3.4 Configuration Ports and Interfaces 

The PL can be configured by the PS in the secure or non-secure mode. The PL can also 

be configured by the TAP controller on the JTAG chain in the non-secure mode. The 

interfaces which allow the configuration of the PL are: 

1. PS AXI-PCAP Interface [7]: The PL can be configured by downloading the bitstream 

to the PCAP (Processor Configuration Access Port) through the DevC interface in 

secure and non-secure modes. In PCAP mode of configuration the partial bitstreams 

are stored in a SD card and transferred to the DDR memory by calling a FAT file 

system function. From the memory the PL is configured by the PS section by 

downloading the bitstream to the PCAP through the DevC interface. Using this 

interface, the device can be configured at run-time to support DPR. The AXI-PCAP 

bridge converts 32-bit AXI formatted data to the 32-bit PCAP protocol and vice-

versa. A transmit and receive FIFO buffers the data between the AXI and the PCAP 

interface. The 32-bit PCAP interface is clocked at 100 MHz and supports 400 MB/s 

download throughput for non-secure PL configuration and 100 MB/s for secure PL 

configuration where data is sent only every 4th clock cycle. To transfer data across 

the PCAP interface a DevC driver function needs to be called. The driver takes care 

of setting the correct PCAP mode and initiating the DMA transfer. The function call 

returns only after both the AXI and the PCAP transfers are complete. 

2. JTAG TAP Controller: The PL section can also be configured by the JTAG interface 

through the TAP controller. This can be only done in the non-secure mode. 

3. ICAP interface [8]: In this mode of partial reconfiguration, the bitstream is stored in a 

logic module instantiated in the PL section and dynamically loaded into the 

configuration memory. As shown in Figure 3.5, ICAP (Internal Configuration Access 

Port), which is the Xilinx provided hardware interface for partial reconfiguration, 

interfaces to the configuration memory and furthermore provides parallel access ports 

to programmable resources. During run-time, a master device (normally an embedded 

microprocessor) can transmit the partial reconfiguration bitstream from the storage 

devices to the ICAP to accomplish the reconfiguration process. The complete design, 

in which the ICAP primitive is instantiated, interfaces the system interconnect fabric 

in order to communicate with the processor and memories. 

3.5 Image Processing Pipeline in the Vivado Design Suite 

The morphological image processing pipeline is designed and built using needed IP core 

blocks. First, the primary morphological operators are built into IP core blocks using the 

Vivado HLS tool. Algorithm synthesis and optimizations are explained in subsequent 
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chapters. For now, we assume the primary image processing operators are available as 

the Dilate IP core and the Erode IP cores. The processing pipeline is first designed with 

static configuration using the Erode and Dilate IP cores. The corresponding 

reconfigurable image processing pipeline design is shown in Figure 3.7. In the 

reconfigurable design the Morph IP core is time multiplexed to execute at will the 

functionality of Erode IP core or the Dilate IP core. 

3.5.1 Zynq Configuration 

The design consists of a Zynq processor instantiated with the following configuration: 

 UART 1 is enabled at the baud rate of 1152Hz. 

 All the four DMA channels are enabled. 

 SD0 is enabled. 

 GPIO is enabled. 

 The ARM host processor frequency is set at 666.66MHz. 

 The DDR frequency is set at 533MHz. 

 Two fabric clocks FLCK0 and FCLK1 are enabled at 100MHz and 150MHz 

respectively. Two clock frequencies are selected because if system synthesis 

cannot meet the static timing requirements needed we switch to a slower clock. 

 Fabric interrupts from the PL to PS sections used to select up to 16 peripheral 

interrupts from the PL section. 

 Master AXI GPIO 0 is enabled to interface the low throughput data path from the 

ARM PS to PL. 

 The slave high performance port HP0 is enabled to transfer data between the 

DDR memory and the PL section using a peripheral DMA transaction. The data 

width is set at 64 bits. 
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Figure 3.7 Final block diagram of the reconfigurable image processing pipeline. 
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3.5.2 AXI Interconnect 

The IP AXI Interconnect core connects one or more AXI memory-mapped master 

devices to one or more memory-mapped slave devices. The AXI interfaces conform to 

the AMBA AXI4 specification from ARM, including the AXI4-Lite control register 

interface subset [9]. It is used in this design to connect the Zynq processor with the 

Morph IP core through the DMA. When connecting one master to one slave, the AXI 

Interconnect core can optionally perform address range checking. It can also perform 

data-width conversions, clock-rate conversions, protocol conversions, register pipelining, 

and data path buffering functions. Each master and slave connection of the AXI 

interconnect can independently use data widths of 32, 64, 128, 256, 512, or 1024 bits. 

The AXI interconnect is very robust for our design because it is capable of addressing 

different AXI bus protocols such as the AXI Lite and the AXI MM (Memory mapped). In 

our design, the Morph core implements both the AXI streaming and the AXI4lite 

interface protocols. 

3.5.3 DMA Core  

The AXI DMA core is a soft Xilinx IP core for use with the Vivado Design Suite. The 

AXI DMA engine provides high-bandwidth DMA between the memory and the AXI4-

Stream-type Morph peripherals. Its optional scatter and gather capabilities can off-load 

data movement tasks from the host CPU [10]. Initialization, status, and management 

registers are accessed through an AXI4-Lite slave interface which is connected to the 

ARM Master GPIO interface via the AXI interconnect. Primary high-speed DMA data 

movement between the system memory and the stream interface is through the AXI4 

Memory Map Read Master to the AXI MM2S Stream Master, and the AXI S2MM 
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Stream Slave to the AXI4 Memory Map Write Master. The MM2S and S2MM channels 

operate independently and in the full-duplex mode. Furthermore, the AXI DMA provides 

byte-level data realignment allowing memory reads and writes to any byte offset location. 

The MM2S channel supports an AXI Control stream for sending application data 

to the Morph IP. For the S2MM channel, an AXI Status stream is provided for receiving 

user application data from the Morph IP. All these features of the DMA IP core enable 

high performance data transfer rates for image pixel data between the Morph core and the 

Zynq PS. 

3.5.4 AXI Stream Subset Converter 

The AXI4-Stream Subset Converter provides a solution for connecting together slightly 

incompatible AXI4-Stream signal sets. The IP has configurable AXI4-Stream signals for 

each interface that allows converting one signal set to another in a consistent manner. All 

signals can be configured to be removed or added, and additionally the TDATA/TUSER 

signals can be remapped [11]. Vivado HLS generates the Morph IP cores which are 

slightly incompatible with the AXI DMA cores. Hence, to ensure proper transfers of data 

from memory to the Morph cores and back to memory, we need to use the AXI4 Stream 

subset converter. 

3.6 Bottom Up Synthesis and Partial Bitstream Generation 

Bottom-Up Synthesis is a design strategy to synthesize by modules. Bottom-Up Synthesis 

requires that a separate netlist is written for each partition, and no optimizations are done 

across these boundaries, ensuring that each portion of the design is synthesized 

independently. Since, we have built the Morph cores separately, we can implement the IP 
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cores using the bottom up synthesis process. Top-level logic for the Morph core is 

synthesized assuming black boxes for the partitions. Here a partition refers to a logical 

section of the design, defined by the user at a hierarchical boundary to be considered for 

design reuse. A partition is either implemented as new or preserved from a previous 

implementation. A partition that is preserved maintains not only identical functionality 

but also identical implementation. Partition pins are the logical and physical connection 

between static logic and reconfigurable logic. Partition pins are automatically created for 

all reconfigurable partition ports. Here the static logic consists of the portion of the 

design that remains fixed and the reconfigurable portion refers to the synthesized Morph 

cores which keep on changing depending upon the higher level algorithms. The tool flow 

for generating the full and partial reconfiguration can be explained as follows: 

 We synthesize the static and reconfigurable modules separately. The files 

for the static and reconfigurable designs are synthesized and stored as checkpoint 

files. If the reconfigurable logic consists of more than one reconfigurable module, 

we should have all the reconfigurable modules synthesized as checkpoint files for 

that configuration. 

 The static design is opened in the netlist pane and consists of 

reconfigurable modules instantiated as black boxes. Following this, all the 

constraints for the static design are loaded into the memory. 

 In the floor plan of the design, a partition called pblock is created which 

assigns the pins and ports for the reconfigurable partition. For creating a 

reconfigurable partition, a property HD.RECONFIGURABLE has to be set on the 

pblock. It is required that all the reconfigurable modules have the same ports and 

interfaces. 

 The first reconfigurable module is now opened inside the partition 

assigned for the reconfigurable design. The entire design is reconfigurable, which 

is now ready for synthesis. Since partial reconfiguration is a licensed feature, the 

design can only be synthesized if the license is available. 

 The design is now placed and routed, and two bitstreams are generated. 

The first bitstream is the static bitstream which can be used to configure the 

FPGA at power-on time. The second file is called the partial reconfiguration 
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bitstream which is used for DPR. The file has to be in a binary form so as to be 

uploaded to the PL section of the FPGA at runtime. 

 The same procedure is repeated for other reconfigurable modules and 

partial binary bitstreams are generated accordingly. 

 All the binary bitstreams are uploaded into fixed locations in the DDR 

memory and function calls are made to transfer the bitstreams to the PL section 

through the DevC interface.  
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CHAPTER 4  

MORPHOLOGICAL IMAGE PROCESSING ALGORITHMS 

This chapter gives a detailed overview of the theory and application of Morphological 

image processing. All the image processing operators and functions described in this 

chapter have been implemented in MATLAB, on the ARM-processor (without DPR and 

PL acceleration), and on the Zynq device with both static and dynamic PL configuration. 

For simplicity, only MATLAB processed images are presented in this chapter. 

 Mathematical morphology is a set of tools for extracting image 

components that are useful in the representation and description of region and shape, such 

as boundaries, skeletons, etc. Morphological processing is constructed with operations on 

sets of pixels. Furthermore, morphological operations can be used for filtering, thinning 

and pruning. Originally, morphological operations were defined for binary images but 

they can be easily extended for gray-scale images.  

 Binary images contains pixels having only two values (0 and 1, or black 

and white). Instead of referring to the colors black and white, we can refer to them as 

foreground and background. In binary morphological image processing, operations are 

typically performed on the foreground or background only, and not on all the pixels in the 

image. Therefore, at any time either the set of black pixels or the set of white pixels will 

comprise the set of interest because any operation which affects the set of black pixels 

will also affect the set of white pixels.  

. 
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4.1 Erosion and Dilation 

The two basic operations for the construction of morphological operators are dilation and 

erosion. In the basic Minkowski set operations, the Minkowski addition of two sets F and 

B is defined as the piecewise vector sum of the elements of F and B: 

 

 

F  B = { f+b  | f € F  and b € B} (4.1) 

 

 

 

 The Minkowski subtraction of a set B from a set F is defined as: 

 

 

F  B = ∩ F-b 

 

(4.2) 

where –b represents the reflection of set b and the subtraction is obtained by taking the 

intersection (∩) with the set F. 

In mathematical morphology, the Minkowski addition and subtraction are called 

dilation and erosion, respectively. Although both operands F and B are sets of the same 

type, the first operand is commonly interpreted as the image on which the operation is 

applied, and the second operand is usually a much smaller set called the structuring 

element (SE). SEs can be either non-flat (continuous variation of intensity is rarely used) 

or flat [12]. Unless mentioned otherwise, SEs are flat and symmetrical with the origin at 

the center. Two-dimensional, or flat, structuring elements consist of a matrix of 0's and 
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1's, typically much smaller than the image being processed. The center pixel of the SE, 

called the origin, identifies the pixel of interest that is the pixel being processed. The 

pixels in the SE containing 1's define the neighborhood of the structuring element. Some 

of the flat structuring elements available in the MATLAB library are: 

 Arbitrary. 

 Diamond.  

 Pair. 

 Disk. 

 Line. 

 Octagon. 

 Periodic line. 

 Rectangle. 

 Square. 

In most of the algorithms we consider an SE of disk type with a radius of two units and 

use the short hand notation SE(2). For the SE(2) of size 5x5, all the co-ordinates which 

are at a distance of 2 are marked as 1 and the others as 0. For gray-scale images, erosion 

and dilation are defined as follows: 

 

4.1.1 Erosion  

The erosion of an image f by a flat structuring element b at any location (x, y) is defined 

as the minimum value of the image in the region coincident with b when the origin of b is 

at (x, y) [12]. Therefore, the erosion at (x, y) of an image f by a structuring element b is 

given by: 
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[f b](x,y) = min(s,t)€b{(x+s,y+t)} (4.3) 

Here, the ordered pair (x,y) denotes the co-ordinates in the image f and (s,t) 

denotes the co-ordinates of the structuring element b. 

The image co-ordinates x and y are incremented through all values required so that the 

origin of b visits every pixel in f. To find the erosion of image f by b, we place the origin 

of the structuring element at every pixel location in the image. The erosion is the 

minimum value of f from all values of f in the region of f coincident with b. Since, 

erosion replaces the current pixel with the minimum value from the neighborhood, the 

resultant image is darker than the original one.  

4.1.2 Dilation 

The dilation of an image f by a flat structuring element b at any location (x, y) is defined 

as the maximum value of the image in the window outlined by b^ = b(-x,-y) with the 

origin of b^ being at (x,y) [12]. That is 

 

 

[f b](x,y) = max(s,t)€b{(x-s,y-t)} (4.4) 

 

where (s,t) are the co-ordinates of structuring element b. 

 

The algorithm is similar to the one for erosion except for using maximum instead 

of minimum, also, the structuring element is reflected about the origin. Since dilation 

replaces the current pixel with the maximum value from the neighborhood, the effects are 
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opposite to that of the dilation algorithm. That is, the resultant image after dilation with a 

flat SE is brighter than the original one. 

 In developing the algorithms for dilation and erosion, the SE of disk type 

and radius 2, i.e., SE (2), is used on images of size 512x512. The morphological 

operators of erosion and dilation were run on an Intel i5 quad-core processor which is 

configured to run at a maximum frequency of 2.50GHz. 

Figure 4.1 Original Lena image and the eroded image for SE(2). 

 

The morphological operator Erode was first implemented as a MATLAB function 

and its run-time was profiled through the MATLAB profiler. The results are shown in 

Figure 4.2. We can see that for the 512x512 Lena image the erosion function takes about 

5.571 seconds. 

 



35 

 

 

 

 
Figure 4.2 Matlab runtime profile of the Erosion function. 

 
Figure 4.3 Original Lena image and the dilated image for SE(2). 



36 

 

 

 

Figure 4.4 Matlab runtime profile of the Dilation function. 

 

Erosion and dilation by themselves are not very useful in gray-scale image 

processing. These operations become powerful when used in combination to develop 

high-level algorithms. Some of the properties of Erosion and Dilation are [13]: 

 Erosion is in general not commutative: A B ≠ B A. 

 Dilation is associative: A  (B C) = (A B) C, for any sets A, B, 

and C. 

 Translation is invariant: Ax B = (A B)x and Ax B = (A B)x. 

 Dilation and erosion are in a sense dual operators. Dilation can be defined as the 

erosion of the complement of a set. If A
c
 denotes the complement of the set A 

(i.e., a € Ac implies a does not belong to A), then the dilation of a set A by a set B 

is equivalent to the complement of eroding A
c
 by set B. In other words,  
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A B = (A
c
  B)

c 
. 

 Dilation and erosion are not inverses of each other. 

 Dilation distributes over union. 

 Erosion distributes over intersection. 

 The erosion of a set A by the union of two sets B and C is the same as the 

intersection of the erosion of A by B and the erosion of A by C. 

 Repeated erosion of a set A by sets B0, . . . ,Bn, is the same as the erosion of A by 

the dilation of the sets B0, . . . ,Bn. 

 

The last four properties are called decomposition theorems. These properties of 

dilation and erosion can be utilized in the parallel implementation of morphological 

functions. That is, a large SE can be decomposed into smaller subsets allowing efficient 

and parallel implementations. 

 For example, if we have to dilate a set A by a set B, then we need to visit 

every possible neighborhood of A as defined by the size of set B. This makes the 

algorithm unsuitable for parallel implementation. However, using the above mentioned 

property, if we can decompose the set B into smaller subsets, then the computations can 

be performed in parallel. For FPGAs, we can take advantage of the concurrency of 

hardware to spawn such parallel functions which can complete the computation in a small 

number of clock cycles. In modern multi-core digital computers, such parallel 

computations are performed through thread-based implementations where a function is 

split over several threads toward parallel computation. 
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4.2  Opening 

For binary and gray-scale images, the opening of image f by SE b is defined as the 

erosion of f by b followed by the dilation of the result by b. The opening operation is 

shown in Equation 4.5. 

 

f b = (f b) b (4.5) 

 

 

4.3 Closing 

For binary and gray-scale images, the closing of image f by SE b is defined as the dilation 

of f by b followed by the erosion of the result by b. The closing operation is shown in 

Equation 4.6 . 

 

f b = (f b)  b (4.6) 

 

The opening and closing for gray-scale images are duals with respect to complementation 

and SE reflectioner, as per equation 4.7. 

 

(f b)
c
 = f

c
 b^  

(f b)
c
 = f

c
 b^  

f
c 
 = -f(x,y) (4.7) 

-(f b) = (-f b^)  
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-(f b) = (-f b^)  

 

The opening and closing of images has a simple geometrical interpretation. The 

Image f(x,y) can be viewed as a 3D surface, where the intensity values of pixels are 

interpreted as heights over the xy-plane [12]. Then, the opening of f by b can be 

interpreted as “pushing” SE b up from below against the under surface of f. At each 

location of the origin of b, the opening is the highest value reached by any part of b as it 

pushes against the under surface of f. The complete opening is then the set of all such 

values obtained by having the origin of b visit every (x, y) coordinate of f. See Figure 4.5. 

. 

 

Figure 4.5 Geometrical interpretation of the Opening and Closing operations. 
Source: [12]. 

 

Since the opening operation first erodes the image before dilation, the overall 

effect of the opening operation is that the intensity of all bright features decreases, 

depending on the sizes of the features compared to the SE. In the opening operation, 

erosion has a negligible effect on dark features and, hence, the effect on the background 
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is negligible. The overall effect of the closing operation is that the dark features get 

attenuated, with the background unaffected. In developing the algorithms for opening and 

closing, SE(2) is used for images of size 512x512. The results of the opening operations 

are shown in Figures 4.6 and 4.8 . Performance results are shown in Figure 4.7. 

 
Figure 4.6 Original Lena image and the results of the Opening operation for SE(2). 

 

Figure 4.7 Matlab runtime profile of the Opening function. 

 

 

Figure 4.8 Original Lena image and the result of the Closing operation for SE(2). 
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4.4 Morphological Smoothing 

Noise is often the most intractable problem in the field of image processing. There are 

two ways to work around it: either design particularly robust algorithms that can work in 

noisy environments, or try to eliminate the noise in a first step while losing as little 

relevant information as possible and consequently use a normally robust algorithm. There 

are many algorithms that have been cited in the literature aiming at reducing the amount 

of noise in images. In mathematical morphology, alternating sequential filtering, which is 

the application of an opening operation after a closing operation on the image, is often 

used to remove noise to a certain extent from the images. Since opening suppresses bright 

details smaller than the specified SE and closing suppresses dark details, they are used in 

combination as morphological filters for image smoothing and noise removal. Run-time 

profiling of the Morphological Smoothing operation is shown in Figure 4.10. 

 

Figure 4.9 Salt and Pepper added to the Lena image (top-left), Morphological Smoothing 

with SE (disk type, radius 1) (bottom left); Morphological Smoothing with SE(2) (top-

right); Morphological Smoothing with SE (disk type, radius 1) and SE (disk type, radius 

3) (bottom-right). 
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Figure 4.10 Matlab runtime profile of the Morphological Smoothing function. 

4.5 Morphological Gradient 

Determining the gradient of an image is a fundamental image processing operation that is 

often used as a precursor to other, more advanced operations such as feature extraction 

and segmentation. The morphological gradient operator provides a simple approach to 

find the gradient of an image by combining the dilation and erosion operators. Generally 

these gradients are used in segmentation applications with edge searches, thresholding or 

the water shed transformation. The morphological image gradient operator g is defined in 

Equation 4.8. 

g = (f b) – (f b) (4.8) 

 

The dilation thickens regions in an image and the erosion shrinks them. Therefore, 

their difference emphasizes the boundaries between regions. If the SE is relatively small, 

homogeneous areas will not be affected by dilation and erosion, so the subtraction tends 

to eliminate them. The net result is an image with the gradient-like effect. The effect of 

morphological gradient operation is shown in Figure 4.11 and its run-time profiling is 

shown in Figure 4.12. 
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Figure 4.11 Original Lena image and the morphological gradient operated image. 

 

 

Figure 4.12 Matlab runtime profile of the morphological gradient function. 

4.6 Top-Hat and Bottom-Hat Transformation 

 The hat transforms represent an important class of morphological transforms used for 

detail extraction from signals or images. One principal application of these transforms is 

the removal of objects from an image by using an SE in the opening and closing that does 

not fit the objects to be removed. The difference then yields an image with only the 

removed objects. 

4.6.1 Top-Hat Transformation 

In mathematical morphology, top-hat transformation is an operation that extracts small 

elements and details from given images. The top-hat transform is defined as the 
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difference between the input image and its opening by some SE. Top-hat transforms are 

used for various image processing tasks, such as feature extraction, background 

equalization, image enhancement, and others. An important use of the top-hat 

transformation is in correcting the effects of non-uniform illumination. The top-hat 

transform of f is given by Equation 4.9 and its results is shown in Figure 4.13. Its run-

time profile is shown in Figure 4.14. 

 

Tw(f) = f – (f b) (4.9) 

 
Figure 4.13 Original Lena image and the results of the top-hat transformed image. 

 

Figure 4.14 Matlab runtime profile of the top-hat transformation function. 
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4.6.2 Bottom-Hat Transformation 

The bottom-hat morphological operator subtracts an input image from the result of 

morphological closing on the input image. Applied to a binary image, this transformation 

allows getting all the pixels that were added by the closing filter but were not removed 

afterwards due to formed connections. The bottom-hat transform of f is given by 

Equation 4.10 and is shown in Figure 4.15. Its run-time profile is shown in Figure 4.16. 

 

Tb(f) = (f b) – f (4.10) 

 

Figure 4.15 Original Lena image and the bottom-hat transformed image. 

 

Figure 4.16 Matlab runtime profile of the bottom-hat transformation function. 
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CHAPTER 5  

VIVADO HIGH LEVEL SYNTHESIS (HLS) AND ALGORITHM SYNTHESIS 

5.1 Introduction 

This chapter describes the Xilinx Vivado HLS synthesis tool that was used to synthesize 

the core IP blocks for the morphological operators. The user guide for Vivado HLS is 

relatively vast and, hence, only the specific optimizations and directives that were 

implemented in the thesis will be discussed. Vivado HLS is a Xilinx tool that transforms 

a C specification into a Register Transfer Level (RTL) implementation that can be 

synthesized for a Xilinx FPGA by another Xilinx tool, the Vivado Design Suite. The C 

specifications can be either in C, C++ or SystemC. The C function or algorithm is then 

synthesized into an IP block which can be integrated into a hardware system. It provides 

comprehensive language support, a rich set of libraries and directives for creating the 

most optimal implementation for the specified C algorithm. The functionality inside 

Vivado HLS enables the following design flow: 

 Compile, execute (simulate) and debug the C algorithm. 

 Synthesize the C algorithm into an RTL implementation, with or without user 

optimization directives. 

 Comprehensive reporting and analysis of resource usage and timing analysis. 

 Automated verification of the RTL implementation. 

 Package the RTL implementation into a selection of IP formats. 

 

In HLS, a test bench in the form of a C program is supported and referred to as a 

C simulation. Executing the C test bench validates the algorithm’s functional integrity. 

The primary input to Vivado HLS is a top level C function written in C, C++ or SystemC. 



47 

 

 

 

This function may contain a hierarchy of sub-functions, loops and additional inputs as 

constraints and directives. The constraints are mandatory and include the clock period, 

the clock uncertainty (this defaults to 12.5% of the clock period if not specified) and the 

FPGA target device. The directives are optional and Vivado HLS uses them to direct the 

synthesis process to implement a specific behavior or implementation. 

 The primary output from Vivado is the implementation of the C-

specification in RTL format. The RTL output is made available in various industry 

standard Hardware Description Language (HDL) formats of Verilog and VHDL. These 

HDLs can then be synthesized to gate-level implementation by logic synthesis. The 

Vivado Design Suite includes all the development tools required to create a bitstream file 

from the HDL specifications. Generally, the RTL is packaged into IP blocks for use 

within other tools in Xilinx design flows. The Vivado HLS tool supports different IP 

formats such as IP-Catalog, Pcore and System generator for 

DSP.

 

Figure 5.1 Vivado HLS design flow. 
Source:[14]. 
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5.2 Scheduling and Binding 

Scheduling and binding are the processes at the heart of High-Level Synthesis. The 

scheduling process analyzes the C-specification and, thereafter, HLS determines the 

operations to be completed in any particular clock cycle. The scheduling process takes 

into account the clock frequency, timing information from the device technology library, 

and any user specified optimization directives. Let us take the following example: y= 

x*a+b+c. Figure 5.2 shows the process of scheduling. The multiplication and the first 

addition are scheduled to execute in the first clock cycle. The next clock cycle performs 

the second addition and the output is available at the end of the second clock cycle. 

 

 

Figure 5.2 Scheduling and Binding in HLS. 
Source: [14]. 

 

The scheduling process decides the number of clock cycles that can be allocated 

to an operation depending upon the length of the clock cycle on the target device. The 

target FPGA device defines the length of the clock cycle and the time to complete each 

operation. For faster FPGAs, the scheduling process assigns a larger number of 

operations per clock cycle; conversely, for slower FPGAs with a shorter clock length, a 

smaller number of operations are scheduled. 
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 The Binding process maps the hardware resources to each of the 

scheduled operations. The hardware resource is mapped in two phases: initial binding and 

target binding phases. As Figure 5.2 shows, an initial binding for this example 

implements the multiplier operation using a Mul resource (a combinational multiplier) 

and both add operations using an AddSub resource (a combinational adder or subtractor). 

In the target binding phase, HLS uses device specific information to implement the 

operations in the most optimal way. As shown in Figure 5.2, the target binding phase 

implements the multiplication operation using a DSP48 resource and one of the additions 

is implemented using an AddSub resource. A DSP48 resource is a computational block 

available in the FPGA architecture that provides the ideal balance between high-

performance and small area. 

5.3 Interface Synthesis and IO Protocols 

In general, all the inputs and outputs for C functions are passed through function 

arguments. However, in RTL designs the input and outputs for function are provided 

through a port in the design interface which operates by following specific input-output 

(I/O) protocols. When the top-level function is synthesized, the parameters to the function 

are synthesized into RTL ports. This process is called interface synthesis. Vivado HLS 

creates three types of ports in the RTL design: 

 Clock and Reset ports: ap_clk and ap_rst. 

 Block-Level interface protocols: ap_start, ap_done, ap_ready and ap_idle. By 

default, a block-level interface protocol is added to the design. The control port 

ap_start is held high when the block starts processing the data. Similarly ap_done 

indicates if the block has completed its execution. Other signals, such as ap_ready 

indicate if the block is ready to accept new data. ap_idle indicates if the block is 

in the idle state. These signals are shown in the simulation waveform of Figure 

5.16. 
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 Port Level interface protocols: These signal ports are created for each argument in 

the top-level function and the return value of the block, if implemented. After the 

block-level protocol has been used to start the operation in the block, the port 

level protocols are used to transfer data in and out of the block. The I/O protocol 

created depends upon the type of argument used in the function parameter. Figure 

5.3 shows the mapping of function argument type to the available I/O protocols. 

By default, input pass-by-value arguments and pointers are implemented as wire 

ports with no handshaking signal and output pointers are implemented using 

output valid signal. It is also possible to implement a function argument without 

any I/O protocol using the ap_none interface directive. In this case, the data must 

be held stable until read. It is generally advantageous to use handshaking 

protocols on function parameters so that the values can be probed later. 

 Separate input and output ports are created for function arguments which are both 

read from and written into. 

 If the function has a return value, an output port ap_return is implemented to 

provide the return value. Completing one transaction in RTL is equivalent to 

completing execution of one C function call. The block-level protocols indicate 

the function is complete with the ap_done signal. This also indicates the data on 

port ap_return is valid and can be read. 

 

 

Figure 5.3 Interface Synthesis in Vivado HLS. 
Source: [14]. 

5.3.1 Block-Level Interface Protocols 

There are three kinds of block level interface protocols available: ap_ctrl_none,ap_ctrl_hs 

and ap_ctrl_chain. These interface protocols are specified in the function or on the 

function return. Even if the function does not use a return value, the block-level protocol 
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is specified on function return. The ap_ctrl_hs mode is the default protocol. In this mode, 

ap_start is used to indicate the beginning of data processing in the IP block. The ap_start 

signal remains high until the ap_ready signal goes high, which indicates that the block is 

ready to accept new data. The ap_ctrl_chain protocol is similar to ap_ctrl_hs, and is used 

to cascade or chain the IP blocks. It has an additional input port ap_continue which 

provides back-pressure from blocks consuming its data. The ap_ctrl_none mode 

implements the design without any block-level I/O protocol. 

5.3.2 Port-Level Memory Interface Protocols 

For processing or storing large sets of data, arrays are used as function parameters. By 

default, HLS implements such arrays using the ap_memory interface. The memory is 

generally implemented as a standard BRAM with data, address, chip enable and write 

enable ports. BRAMs are instantiated either as single-port or dual-port BRAMs. A single 

port BRAM can read and write one unit of data per clock cycle whereas a dual-port 

BRAM can access either two read or two writes per clock cycle. However, during the 

scheduling process, if HLS determines that using a dual-port BRAM cannot optimize the 

design, it is converted to a single-port BRAM. The RESOURE directive can be used to 

specify the memory resource. We can further explicitly specify whether to use a single-

port BRAM or a dual-port BRAM. 

 The next alternative for the memory interface is the BRAM interface mode which 

is functionally identical to the ap_memory interface. The only difference between the two 

is that ap_memory is implemented with multiple, separate ports whereas the BRAM 

interface is implemented with a single/grouped port which can be connected to a Xilinx 

BRAM. Finally, if the array is accessed in a sequential manner, an ap_fifo interface can 
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be used. For the ap_fifo interface, the data access to the block has to be in sequential 

order. If HLS determines that the data are not accessed in a sequential order, the program 

execution is halted and an error message is reported. Another point to note for the ap_fifo 

interface is that it can only be used for reading or writing, not both. 

5.4 AXI Interfaces 

In addition to the standard block-level and port-level interfaces explained in the interface 

synthesis section, Vivado HLS can also add bus interfaces to the RTL design. These bus 

interfaces are generally added to make them compatible with the AXI bus interfaces of 

the ARM peripherals and ports. The AXI bus interfaces are added to the design during 

the IP export process and, hence, are not reflected in the synthesis reports. The following 

bus interfaces are available: 

 AXI4-Lite Slave 

  AXI4 Master 

  AXI4-Stream 

 

The above mentioned AXI bus interfaces can be added only to certain block-level 

and port level RTL I/O protocols. Figure 5.4 shows a list of the RTL interface ports that 

Vivado HLS creates and bus interfaces that can be connected to them. For example, an 

AXI4-Stream bus interface can only be added to ports of type ap_fifo. 
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Figure 5.4 Bus Interface compatibility with different port and block level interfaces. 
Source: [14]. 

5.4.1 AXI Lite Slave Interface 

An AXI4 slave interface is typically used to access the function interface ports in the 

design and to control the IP block by some form of host processor or micro-controller. 

When multiple AXI Lite ports are used on an IP block, they can be grouped or bundled 

into a common AXI bus. These slave ports are available to the software world using 

device drivers. The header file of the IP block contains a simple function to access the 

port values. 

 

Figure 5.5 AXI4 Lite Slave Interfaces with grouped RTL ports. 
Source:[14]. 

 

In addition to providing support for accessing the port register values, these 

header files also contain functions to access the block level ports, such as ap_start, 
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ap_idle, ap_return, etc, which can be used to control the designed IP block. Setting the 

control register for the ap_start signal to logic 1 causes the block to execute one 

transaction, it must be set to logic 1 again to start the next transaction. After the block 

starts, its operation, the ap_done port can be polled to check the completion of data 

processing.  

5.4.2 AXI4 Master Interface 

To create an AXI4 Master interface, the RTL port must have an ap_bus interface, as 

shown in Figure 5.6. This interface is used with any array or pointer/reference arguments 

in any of two modes: 

 Individual data transfers. 

 Burst mode data transfers using the C memcpy function. 

 

In individual data transfers, data is transferred over the AXI4 Master interface in a 

simple read or write operation with one address and one data values at a time. In the burst 

transfer mode, data is transferred using a single base address followed by multiple 

sequential data values. A burst mode data transfer is used for high throughput. 

 

Figure 5.6 AXI4 Master Interface. 
Source:[14]. 
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5.4.3 AXI Stream Interface 

An AXI4 interface can be applied to any ap_fifo RTL port. This interface can be either in 

the master or slave configuration. The AXI Stream interface is generally used for data 

stream input and output. Output interfaces are implemented as AXI4 Stream master 

interfaces and input interfaces as AXI4 Stream slave interfaces. Multiple RTL ports can 

be grouped into a single AXI4 stream interface in the same manner as for an AXI4 slave 

interface. The RTL ports grouped into an AXI4 stream interface, however, must be either 

all input ports or all output ports. 

 

Figure 5.7 AXI4 Stream Interface. 
Source: [14]. 

5.5 Optimizations 

Vivado HLS can apply various optimization strategies on the C specification to produce a 

micro-architecture that meets the desired area and timing goals. These optimizations can 

be applied to the top level functions, sub-functions and memory resources as directives, 

and, when properly used, can reduce the overall latency and increase the throughput of 

the IP block. Moreover, different optimization strategies can be applied to the same 

function as tcl directives. 



56 

 

 

 

5.5.1 Function Inlining 

Inlining a function can be used to remove the overhead of the clock cycles needed to 

enter and exit the function call. If a function is called over several times, for example 100 

times, the overhead of entering and exiting the function can accrue to 200 clock cycles. 

And, hence, inlining the function can remove the extra clock cycles. However, inlining 

the function removes the hierarchy and increase the area of the design. 

5.5.2 Function Dataflow Pipelining 

Function Dataflow Pipelining allows the execution of different functions to overlap, 

which results in increasing the overall throughput and reducing the latency of the design. 

Vivado HLS takes a sequential functional description, consisting of various sub 

functions, and creates a parallel processing architecture from it. 

 

Figure 5.8 Function dataflow pipelining for the top function. 
Source:[14]. 

 

For example, if a top function consists of sub functions func_A, func_B and 

func_C, the sequential execution of the top function will take eight clock cycles. 

However, if we use the dataflow pipelining directive on the top function, it will try to 
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execute the sub functions concurrently. From Figure 5.8 we can see that the overall 

latency of the top function has been reduced to five clock cycles from eight clock cycles. 

5.5.3 Function Pipelining 

Function pipelining is similar to function dataflow pipelining and, if specified as a 

directive, Vivado HLS tries to optimize the operations inside the function. This has the 

benefit of decreasing the latency and increasing the throughput of the individual function. 

The throughput improvements in function pipelining are shown in Figure 5.9. 

 

Figure 5.9 Function dataflow pipelining for the top function. 
Source:[14]. 

 

As shown in Figure 5.9, the function consists of three operations read, compute 

and write. It takes three clock cycles to execute the function and, hence, the next read can 

take place after every three clock cycles. However, when the function pipelining directive 

is issued on the function, a new input is read in each clock cycle, with no change to the 

output latency or resources used. It is only possible as long as there is no resource 

contention or data dependency that prevents pipelining. 
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5.5.4 Loop Unrolling 

Loops are the most common construct of any programming language and, hence, loop 

optimization is very critical for high performance. Vivado HLS provides the option of 

loop unrolling with three flavours: rolled loops, unrolled loops and partially unrolled 

loops. By default, loops are kept rolled and treated as a single entity. All the operations in 

a rolled loop are executed using the same hardware resources. Loops can be unrolled 

completely or partially by placing directives on the loops. Figure 5.10 shows the partial 

and complete unrolling for the loop contained in a top function. 

 

Figure 5.10 Loop unrolling in Vivado HLS. 
Source:[14]. 

 

When loops are completely unrolled, Vivado HLS tries to execute the entire 

operation in one clock cycle, which provides the best possible latency. However, it 

depends upon the array variables if they can read and write the data in one clock cycle. 

Generally, arrays are mapped to BRAMs which can provide maximum read/write 
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capability if they have two ports. In such cases, the final loop delay will depend on the 

delay of the BRAM. 

5.5.5 Loop Merging 

By placing the loop merging directive on two or mode loops, Vivado HLS can produce a 

control structure which optimizes both of the loops concurrently. However, there are a 

few restrictions which do not allow different loops to be merged. For example, if the loop 

bounds are variables, they must have the same value. If the loop bounds are constants, the 

maximum constant value is used as the bound of the merged loop. 

5.5.6 Flattening Nested Loops 

When the C specification contains nested loops, additional clock cycles are spent to move 

between the rolled loops. It takes one clock cycle to move from an outer loop to an inner 

loop, and from an inner loop to an outer loop. Additionally, nested loops prevent the 

outer loop from being pipelined. When the loop flattening directive is issued on the outer 

loop, Vivado HLS builds the entire loop into a single hierarchy and, hence, eliminates the 

overhead of extra clock cycles. 

5.5.7 Loop Dataflow Pipelining 

Loop dataflow pipelining is similar to function dataflow pipelining. When the loop 

pipelining directive is issued on loops, it converts the sequential operation to a concurrent 

operation in RTL. Dataflow pipelining should be applied to a function, loop or region that 

contains all functions or all loops Figure 5.11 shows the performance benefit we achieve 

from loop dataflow pipelining. As shown, without dataflow pipelining, loop N must 

execute and complete all iterations before loop M can begin. With dataflow pipelining, 
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these loops are allowed to operate in parallel, accepting new inputs every three cycles and 

outputting a result every five cycles. 

 

 

Figure 5.11 Loop dataflow pipelining in Vivado HLS. 
Source:[14]. 

5.5.8 Array Partitioning and Optimizations 

Memory mapping in hardware designs plays a significant role in improving the 

performance and area. Arrays in the algorithm description can be implemented in 

different ways in the hardware design. They can be mapped to BRAMs or registers/LUTs 

or can be built as FIFOs using a stream interface. When arrays are used to store constant 

coefficient values, ROMs are instantiated to store these coefficients, at the RTL level. 
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Vivado HLS supports the initialization of coefficient arrays by including the values in the 

bitstream.  

However, when there are many small arrays in the algorithm specification, 

mapping them to separate memory locations can lead to significant wastage of on-chip 

memory resources. In this case, it is desirable to bundle the different small arrays into a 

single large array. Vivado HLS provides options of horizontal and vertical mapping to 

combine arrays into single RAM blocks. Horizontal mapping is shown in Figure 5.12 and 

vertical mapping is shown is Figure 5.13. 

 

Figure 5.12 Horizontal mapping of arrays in Vivado HLS. 
Source:[14]. 

 

 

Figure 5.13 Vertical mapping of arrays in Vivado HLS. 
Source:[14]. 

 

Finally, the last optimization we can apply on arrays is partitioning them into 

smaller arrays. Memories only have a limited amount of read ports and write ports that 

can limit the throughput of a load/store intensive algorithm. We can improve the 

bandwidth by splitting up the original array (a single memory resource) into multiple 
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smaller arrays (multiple memories), effectively increasing the number of ports. Vivado 

HLS provides three kinds of array partitioning. These are as follows. 

 Block: The original array is split into equally sized blocks of consecutive 

elements in the original array. 

 Cyclic: The original array is spilt into equally sized blocks interleaving the 

elements in the original array. 

 Complete: The original array is split into its individual elements. This corresponds 

to resolving a memory into registers.  

 

Out of these, the complete partitioning of arrays provides the greatest throughput 

but consumes the highest number of memory resources. Partitioning of arrays is shown in 

Figure 5.14. 

 

Figure 5.14 Partitioning of arrays in Vivado HLS. 
Source:[14]. 

 

5.5.9 Arbitrary Precision Datatypes 

Vivado HLS provides the ability to specify arbitrary precision data types for the C-

specification. The advantage of arbitrary precision data types is that they allow the C 

code to be updated to use variables with smaller bit widths, thus consuming fewer 

hardware resources at the RTL level. 
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5.6 Morphological Algorithm Synthesis and Optimizations 

This section describes the actual implementation of the morphological image processing 

algorithm using Vivado HLS for synthesis. All possible approaches were considered to 

reduce the latency and provide the maximum throughput for a single operation on the 

image pixel values. 

5.6.1 Input and Output Interfaces 

The inputs to the image processing blocks are the image pixel values, the width and 

length of the image, and the values of the SE matrix. Since the width and the length of the 

image do not change over a single transaction, the width and length parameters are 

implemented with the AXI-Lite resource and the ap_vld interface. The ap_vld interface is 

chosen as we can probe the port for the values of length and width. Alternatively, if we 

do not want to use these parameters, we can embed these values in the loop of the 

algorithm.  

An SE consists of a set of binary values and can be implemented in a couple of 

ways. Here, we consider an SE to be a matrix of size 5x5. This matrix can be 

implemented as a twenty five bit integer and is input to the IP block using the AXI Lite 

Resource port. Once the value is read into the port, the individual matrix values can be 

extracted using the bit extraction algorithm. One other way of implementing an SE is by 

using twenty five separate AXI Lite Ports on the input interface. However, every time we 

have to change the SE, we have to write into all the twenty five different ports. 

Alternatively, we can use the AXI-Stream resource and the ap_fifo interface to read the 

SE value into the matrix. Finally, if the SE remains constant throughout the algorithm, we 

can internally map the matrix into a ROM. In the implemented algorithm, the SE is read 
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into an internal matrix which allows the array to be partitioned completely and, hence, 

improve the throughput.  

The final ports to consider are the input and output pixel ports. Since the 

algorithm was synthesized for a large number of dynamic data (512x512 pixels), the ports 

were mapped to an AXI-Streaming Resource with the ap_fifo interface. The input pixel 

port was mapped to an AXIS slave interface and the output pixel port was mapped to a 

master interface. These AXI Stream ports allow high bandwidth transfers of data to the 

DDR memory through a DMA peripheral. The DMA peripheral is, in turn, connected to 

the ARM processor on the FPGA board via the high performance slave ports AXI HP0 

and HP1. While transferring the pixel data, the AXI Stream, restricts the transfer to a 

sequential access and no throughput optimization is possible. Also, data can be only read 

or written once to/from the ports. So, when working with the AXI Stream, we have to 

store the data into the memory if any subsequent access is necessary. 

5.6.2 Memory Architecture and Image Buffers 

Memory buffers are fundamental features of any image processing or video processing 

algorithm. The memory buffers provide temporal and spatial access to the pixel data for 

the algorithm to work. Generally, these memory structures are implemented in hardware 

as shift registers, line buffers and memory windows. All of these memory buffers have 

effect the latency, order of computation, and functional correctness of the hardware 

generated by the HLS tool. In this thesis, the memory buffers have been implemented as 

line buffers and memory windows. 

 



65 

 

 

 

5.6.2.1 Line Buffers 

A line buffer can be considered as a two-dimensional shift register storing some lines of 

pixel data. These buffers are implemented as BRAMs to avoid the communication 

overhead with off-chip memories. The pixel values are accessed from the AXI-Stream 

port and are stored as rows of image data. After each computation in the memory 

window, the line buffer is refreshed with a new row of data. The line buffer in this thesis 

is implemented as a 5x512 2-dimensional matrix. So, at any time we will have access to 

five rows of pixel data. In working with such high dimensional data, the performance can 

easily be affected, especially with the shift and refresh operations. Shift operations allow 

the data pixels to shift from one row to the other. Refresh operations allow a row of 

pixels to be updated from the AXI Stream port. In sequential computing, shifting one row 

of data to the other row will take up to a number of clock cycles equal to the width of the 

image. That is, we have to spend 512 clock cycles in shifting one row of data to the other, 

which becomes the bottleneck of the operation. However, we have applied Vivado HLS 

array optimizations and loop optimizations. The line buffer is completely partitioned and 

the loop is completely unrolled. The above mentioned optimizations produce efficient 

shift processing where we can shift one row into the other in exactly one clock cycle. 

Similarly, we refresh the row data with the streaming interface but now we are restricted 

to the bandwidth of the interface as streaming interfaces are sequential. 

 

5.6.2.2 Memory Window 

The memory window is a subset of the line buffer and is used in the core computation of 

the algorithm. It contains the values of pixels which are in the neighbourhood of the 
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current pixel. They are typically implemented in hardware as flip-flops. For the complete 

computation of the algorithm, the memory window is shifted pixel by pixel until we have 

covered every single pixel in the image. The memory window is refreshed with new data 

from the line buffer. The same loop optimization and array partitioning that were applied 

to the line buffer are applied to the memory window. The advantage of the memory 

window over the line buffer is that, refreshing the data takes the least time as both 

memory structures are completely partitioned and, hence, can be accessed independently 

in time. The entire computation algorithm, in terms of memory structures, is shown in 

Figure 5.15. 

 

Figure 5.15 Processing of data with memory buffers. 
Source:[15]. 

 

5.6.3 Arbitrary Precision Data types 

To reduce hardware resource usage, various precision data types were used. Since the 

image pixels have 8-bit unsigned integer values, the ap_unit8 data type was used on the 

AXI Stream ports. The counters used to loop through the pixel values are assigned 9-bit 

data types since the width of the image is 512. The SE consists of logical values and, 

hence, for the dilation algorithm the SE data type was chosen as a 1-bit unsigned integer. 

Similarly, the counters used in the memory buffer and line buffers were optimized 

according to their range of usage. 
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5.6.4 Optimizations 

As discussed in the preceding sections, Vivado HLS allows a number of optimization 

directives to be placed on the functions and loops to improve the throughput. In the 

implemented algorithm, all the function hierarchies were removed and most of the 

computation is in the form of loops. It takes one clock cycle to enter a function and one 

clock cycle to exit a function call. So, for a counter with a maximum value of 512, we 

incur an overhead of 1024 clock cycles. The intention of not using the functions is to 

remove this overhead. This is equivalent to making the function calls, and using the 

Vivado HLS optimization of function inlining and function dataflow pipelining. The top-

level function is, however, pipelined to achieve the maximum possible concurrency. All 

the implemented loops are unrolled; arrays are partitioned completely and pipelined. This 

guarantees the maximum possible parallelism. 

5.7 Simulation and Waveforms 

Vivado HLS allows generating test benches to validate the functionality of the RTL 

design before synthesis by the C-Simulation. We can also use the RTL Co-Simulation 

tool to simulate the RTL and generate the waveforms. Test benches were generated for 

both the erosion and dilation IP cores, and random pixel values were fed to the RTL 

ports. All the waveforms were simulated in the SystemC RTL Co-Simulation mode and 

Value Change Dump (VCD) files were created. We have used the Synopsys custom wave 

viewer to generate the output waveform from the VCD files.  
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Figure 5.16 Waveform generated for the erosion IP core showing the beginning of the 

transaction. 

 

In the waveform of figure 5.16, we can see that in the first few clock cycles the ap_start 

block is zero and, hence, the input and output ports show uninitialized values. After the 

ap_start goes high, data transactions on the ports begin. As soon as ap_start goes high the 

ap_reset_n port goes low indicating the beginning of data processing in the IP core. The 

first pixel data is read into the streaming data port D with the corresponding TVALID 

port going high. As the first output occurs after three rows of input pixels are processed, 

the output streaming data port shows invalid data on port Out_Img. This validates that the 

RTL design is working as expected. Figure 5.17 shows the waveform for a streaming 

input. 
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Figure 5.17 Waveform generated for the erosion IP core showing streaming input pixel 

values. 
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CHAPTER 6  

PERFORMANCE AND POWER ANALYSIS OF PARTIAL 

RECONFIGURATION 

6.1 Introduction 

Chapter 3 discussed the complete design of our embedded system and the interfacing of 

the PL with the ARM processor. Also, the hardware accelerators which were 

implemented in the PL section were discussed in Chapter 3; the algorithms were 

implemented in MATLAB. The morphological operators of dilation and erosion were 

taken as the basic building blocks for the design and the synthesis of the hardware cores 

using Vivado HLS were discussed in Chapter 5. Furthermore, the performance 

morphological of the algorithms was profiled with MATLAB. In this chapter, we discuss 

the various benefits and trade-offs when using DPR as compared to using static 

configuration, of an FPGA. Also, a performance comparison is drawn with respect to 

executing the algorithms on the embedded system vs the MATLAB implementation. 

6.2 Comparison of Hardware Resource Utilization 

 As you recall from Chapter 2, an algorithm run on a GPP is executed sequentially and, as 

such, many algorithms or applications which possess inherent parallelism cannot be 

executed to their best potential speed. And, hence, if an algorithm’s parallelism can be 

exploited for faster execution, we could shift to the reconfigurable computing paradigm 

using FPGAs. In an effort to implement an algorithm at the highest possible speed, we 

often tend to consume an inordinate amount of hardware resources on the FPGA. Most of 

the FPGA vendors offer their products under various families which vary upon their 
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hardware resources. For example, Xilinx offers different FPGAs in the Vertex, Zynq, 

Spartan and other families. Out of these, Virtex-Ultra Scale offers the highest number of 

hardware resources (4,432,680 logic cells, 2880 DSP Slices, etc.) whereas the Artix-7 

series has the lowest number (215,360 logic cells, 740 DSP Slices, etc.). The designers 

can choose from this wide range of products depending upon their target application and 

resource consumption.  

 However, as an alternative the designers can choose to benefit from the DPR of 

FPGAs, assuming that if the design can be segregated into static and reconfigurable 

modules. Then, by dynamically time-multiplexing the hardware functions more logic can 

be accommodated. In our design, we have chosen to dynamically reconfigure the basic 

morphological operations of dilation and erosion. We can now compare the hardware 

resource utilization of the static configuration design and the reconfigurable design. 

Figures 6.1 and 6.3 show the static and reconfigurable designs whereas Tables 6.1 and 

6.2 show their resource utilization as obtained from the Vivado design suite. 
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Figure 6.1 Static configuration design. 
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Figure 6.2 Floor design of the static configuration showing placed and routed cells. 
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Table 6.1  Hardware Resource Utilization for the Static Configuration.  

Resources Utilization Available Utilization% 

Slice LUT’s 21024 53200 39.52 

Slice Registers 40661 106400 38.22 

Memory 17 140 12.14 

Clocking 1 32 3.12 

 

Figure 6.3 Reconfigurable design. 
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Figure 6.4 Floor design of the reconfigurable design, showing placed and routed cells. 
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Table 6.2 Hardware Resource Utilization for the Reconfigurable Design. 

Resources Utilization Available Utilization% 

Slice LUT’s 3843 53200 6.55 

Slice Registers 4000 106400 3.76 

Memory 4 140 2.86 

Clocking 1 32 3.12 

 

We can clearly see from Figure 6.2, that in the static design a very high number of 

slice cells have been placed and routed. When compared to the reconfigurable design in 

Figure 6.4, we can see a much smaller number of placed and routed cells. Table 6.1 and 

Table 6.2 shows the exact number of slice cells and memories consumed by the 

respective designs. We can reduce the number of slice cells from 39.52 to 6.55 percent by 

using the reconfigurable design. Similarly, we see a reduction from 38.22 percent in the 

static design to 3.76 percent in the reconfigurable design for the configuration of slice 

registers. 

6.3 Comparison of Power Usage 

As discussed in Chapter 1, there are various methods to reduce the static power; partial 

reconfiguration is one of them. The idea behind power savings is that, when there are 

many hardware modules running on a system, not all of them are active simultaneously. 

But all those inactive modules do consume static power and, hence, lead to power 

inefficiency. Using partial reconfiguration, we can replace these circuits during their idle 



77 

 

 

 

time with others that are actually needed in the execution. In our design, we are swapping 

in and out morphological IP cores on demand and, hence, save static power.  

However, the process of partial reconfiguration consumes some power and 

ultimately its judicious use is needed to determine the overall power savings. In this 

thesis, the power consumption of the static and reconfigurable designs are presented as 

reported by the Vivado Design Suite “Report Power” utility. We can see from Figures 6.5 

and 6.6 that the power consumption of the static design is higher than that of the 

reconfigurable design. The amount of power savings achieved by using dynamic partial 

configuration is 0.361 Watts or 19.5 percent over the static design. The power estimated 

for the static design is reported higher because more number of logic cells are active in 

the design and hence consume static power even if not being used at any given time. The 

dynamic power reported in static configuration design is estimated higher because it is 

assumed that all logic cells in the design with take part in active switching.      

 

Figure 6.5 Power analysis of the static design as reported by the Vivado Design 

Suite. 
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Figure 6.6 Power analysis of the reconfigurable design as reported by the Vivado 

Design Suite. 

 

6.4 Comparison of Performance on the GPP (MATLAB), Zynq (Static) and  Zynq 

(Reconfigurable) 

Various morphological algorithms were discussed in Chapter 3 and their time of 

execution was presented on the GPP. The same algorithms were realized on the Zynq 

AP-SoC with PL hardware acceleration and both static and dynamic configurations. The 

execution times were obtained from the hardware timer “XSCUTIMER”. The hardware 

timer is clocked at half the CPU clock frequency. Since the CPU clock frequency is set at 

666.66MHz, the hardware timer runs at 333.33MHz. Since the timer can count down 

from a maximum preset value, which in this case is set to 0xFFFFFFFF, it needs to be 

connected to the SCUGIC interrupt and the ISR (Interrupt Service Routine) takes on the 

responsibility to reset the counter. 
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Table 6.3 Performance of the morphological algorithms on MATLAB, Zynq (Static 

configuration) and Zynq (Partial Reconfiguration). 

Operator MATLAB 

(Seconds) 

Static Design 

(Seconds/Clock Cycles) 

DPR Design 

(Seconds/Clock 

Cycles) 

Dilation 5.5 0.770/256673340 0.772/257340000 

Erosion 4.2 0.725/241784792 0.727/242451452 

Opening 8.86 1.498/499437760 1.502/500771080 

Closing 7.78 1.506/502100779 1.510/503434099 

Top-Hat 

Transform 

8.50 1.489/496467951 1.493/497801271 

Bottom-Hat 

Transform 

8.04 1.507/502345978 1.511/503679298 

Morphological 

Gradient 

8.46 1.543/514528466 1.547/515861786 

Morphological 

Smoothing 

15.79 3.796/1265428564 3.800/1266761884 

 

The GPP executing the morphological functions in MATLAB is an Intel i5 quad-

core processor which runs at a maximum frequency of 2.5GHz. From Table 6.3, we can 

find out that the overall speedup achieved by switching to the FPGA domain is more than 

6 times. When comparing the execution time between DPR execution and static 

execution of the algorithms, we find out that the DPR executions are marginally slower 

than their static counterparts. This is because of the timing overhead accrued because of 
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swapping in and out the different modules. However, when compared in terms of 

hardware resource utilization, the savings are substantial. Moreover, when multiple 

images need to be processed, we can further reduce the partial reconfiguration timing 

overhead. It is finally left to the designer to decide whether partial reconfiguration is 

required or not for high performance while requiring less area. 

 

Figure 6.7 Scaled execution time on the GPP, and on the FPGA for static and dynamic 

configurations. 
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CHAPTER 7    

CONCLUSIONS 

In this thesis, an approach was studied to design an embedded system targeting at 

morphological image processing applications. The embedded system consists of an ARM 

host processor interfaced with a programmable logic section. To design the embedded 

system efficiently, a special feature of FPGAs, called dynamic partial reconfiguration 

(DPR), was used. DPR allows to time-multiplex the functionality of an FPGA area by 

dynamically swapping in/out hardware modules at run time.  

The hardware modules needed by morphological image processing functions were 

designed in advance. Although these low level morphological functions are seldom used 

on their own, they are very useful in building other high-level image processing 

applications. The corresponding morphological functions were also deployed in 

MATLAB to study their run-time on GPPs. A static image processing pipeline was 

designed and then was reconfigured at run time for the FPGA. The execution time, power 

consumption, and hardware resource consumption of the static and reconfigurable 

designs were studied. It was determined that both the static and reconfigurable designs 

provide a speed up larger than six compared to a GPP for the implementation of the 

corresponding image processing applications. A comparison of static and reconfigurable 

designs shows that the DPR-based design uses less hardware resources and drains less 

power while providing high performance computational power. Such high performance 

computing power is typically expected from a real-time embedded system where time is 

of critical essence for the application. Therefore, DPR provides high performance while 

reducing the required area and power consumption.
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