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ABSTRACT 

CANCER RISK PREDICTION WITH NEXT GENERATION SEQUENCING 
DATA USING MACHINE LEARNING 

 

by 
Nihir Patel 

The use of computational biology for next generation sequencing (NGS) analysis is 

rapidly increasing in genomics research. However, the effectiveness of NGS data to 

predict disease abundance is yet unclear. This research investigates the problem in the 

whole exome NGS data of the chronic lymphocytic leukemia (CLL) available at dbGaP. 

Initially, raw reads from samples are aligned to the human reference genome using 

burrows wheeler aligner. From the samples, structural variants, namely, Single 

Nucleotide Polymorphism (SNP) and Insertion Deletion (INDEL) are identified and are 

filtered using SAMtools as well as with Genome Analyzer Tool Kit (GATK). 

Subsequently, the variants are encoded and feature selection is performed with the 

Pearson correlation coefficient (PCC) and the chi-square 2-df statistical test. Finally, 

90:10 cross validation is performed by applying the support vector machine algorithm on 

sets of top selected features. It is found that the variants detected with SAMtools and 

GATK achieve similar prediction accuracies. It is also noted that the features that are 

ranked with the PCC yield better accuracy than the chi-square test. In all of the analyses, 

the SNPs are identified to have superior accuracy as compared to the INDELs or the full 

dataset. Later, an exome capture kit is introduced for analysis. The SNPs, ranked with the 

PCC, along with the exome capture kit yield prediction accuracy of 85.1% and area under 

curve of 0.94. Overall, this study shows the effective application of the machine learning 

methods and the strength of the NGS data for the CLL risk prediction. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Objective 

Advances in genomic sequencing techniques have opened a wide range of opportunity to 

observe genetic variations and diseases more closely. Nevertheless, the massive Next 

Generation Sequencing (NGS) data demanding an intense computing makes it a 

challenging task to extract meaningful information that can be correlated with the fatal 

diseases such as the cancer. Many researchers have adapted the supervised machine-

learning methods to analyze such enormous data. Since such methods take the advantage 

of relationally structured biological data and utilize only partial information from the data 

to learn a model. Ultimately, the model can either be applied to the complete dataset or to 

any relevant independent dataset to classify sensible biological information. 

 This thesis seeks to investigate a multiple aspects associated with the cancer 

genomics and the cancer risk predictions with the aid of the supervised machine learning 

method. The primary purpose of the analysis is to develop a strategy that can effectively 

classify chronic lymphocytic leukemia (CLL) subjects into tumor and non-tumor, by 

applying machine-learning algorithm on the key structural variants. The variants were 

extracted from the whole exome sequencing (WES) data of the CLL. The study, first, 

compared the performance of two popular variant calling tools, namely, (1) SAMtools (Li 

et al., 2009) and (2) Genome Analyzer Tool Kit (McKenna et al., 2010). Afterwards, a 

novel, genotypes based variant encoding method was introduced and the effectiveness of 

the method was compared with the previous encoding method used in genome wide 
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association studies (GWAS) (Roshan et al., 2011). In subsequent step, an investigation 

was carried out to evaluate the performance of two statistical variant ranking strategies, 

namely, (1) Pearson correlation coefficient (PCC) and (2) chi-square test. In the final 

phase of the analysis, an exome kit was introduced for variant detection, and the 

improvement in the classification accuracy was assessed and is presented.  

 

1.2 Background 

The Chronic Lymphocytic Leukemia (CLL) is a cancer of white blood cells. According 

to the Cancer Facts and Figures 2014 (distributed by American Cancer Society), in USA 

itself, 4600 deaths associated with CLL were reported, and about 15720 new cases of 

CLL are expected for the year. Existing methods can only identify the CLL after its 

occurrence, but in many cases it is too late before the disease can be diagnosed. 

Previously, for Crohn’s disease and ulcerative colitis diseases, the predictions with an 

Area Under Curve (AUC) of 0.86 and an AUC of 0.82 were reported, respectively (Wei 

et al., 2013). Likewise, an AUC of 0.82 for type-2 diabetes, and an AUC of 0.83 for 

bipolar disease, using bootstrap method has been previously conveyed (Burton et al., 

2010). But yet to date, there is no known effective pre-diagnostic method have been 

implemented, that can predict the CLL or any other cancers. Traditional methods, such 

as, microarray expression analysis and Genome Wide Association Studies (GWAS) were 

unable to produce prediction accuracy significant enough to utilize it for clinical 

purposes. And hence, it is important to initiate a study for a better risk prediction of the 

CLL that incorporates a distinct approach. Since, the CLL disease is associated with the 

genetic mutations, the genetic data obtained from the Next Generation Sequencing (NGS) 
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techniques, may lead to an efficient diagnostics scheme. In recent years, use of the 

computational science to extract important biological information from the NGS data has 

been increased, dramatically. This is due to the fact that, the computational methods 

provide a cost efficient reproducibility of an investigation, which can serve as an 

alternative to the expensive wet lab experiments. The study seeks to take an advantage of 

such computational approach to assessed risk prediction accuracy in the CLL by using 

the WES data, targeted to cover the human exome regions. 
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CHAPTER 2 

METHODS 

 

This study involves a substantial analysis of the WES data, which includes a large 

number of transitional steps, producing a various types of files by utilizing several 

publically available tools. Hence, in the following sections, the details of the intermediate 

files and tools involved in the analysis will thoroughly be discussed, simultaneously, with 

experimental procedure. 

 

2.1 Datasets 

For the analysis, raw short reads sequence data were obtained from the database of 

Genotypes and Phenotypes (dbGaP) from the study phs000435.v2.p1 (Wang et al., 2011). 

All the samples were produced to achieve a mean coverage of 140X of human exome 

regions. It contained 76 Base Pair (bp) long, pair ended, exome data generated using 

Illumina Genome Analyzer-II and Illumina hiseq 2000. The dataset contains, 355 

samples, which includes 186 tumor samples, and 169 non-tumor samples produced from 

the matched germ line non-cancerous cells of 169 tumor patients (the 169 sample from 

186 tumor) (Wang et al., 2011). For this analysis, 153 tumor samples and 144 non-tumor 

samples were considered. The rest of the samples were excluded from the analysis due to 

one of three reasons, which includes (1) excessive size (greater than 20 gigabytes) (2) 

missing data (3) erroneous samples. Additional required material beside the sample data, 

such as the human exome region coordinates (the exome kit) and publically available 

standard variant datasets were obtained from GATK bundle (2.8 b37) available through 
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ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle (McKenna et al., 2010). The 

Table 2.1 shows all the files with brief information of content and their roles in Variant 

Score Quality Recalibration (VSQR). VSQR process is a GATK protocol used in the 

analysis to filter variants (See Section 2.3). Beside that, the human reference genome 

(version GRCh37.p13) for mapping reads was obtained from the Genome Reference 

Consortium accessible at http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/.  

 

Table 2.1 Resources Used in GATK for Variant Filtration   

Resource Used Description Role in VSQR process 

Exome intervals Contains putative exome 
region coordinates N/A 

dbSNP variants SNPs found in dbSNP 
databases 

Contains Known sites and not used 
as training resource 

HapMap HapMap genotypes and VCFs 
sites for SNPs 

Contains True sites and used as 
training resource to filter SNPs 

OMNI 2.5 
Genotypes 

OMNI 2.5 genotypes for 1000 
Genomes samples and SNPs 
VCF sites 

Contains True sites and used as 
training resource to filter SNPs 

1000 Genome 
Phase-I SNPs 

1000 Genomes Phase I SNPs 
calls 

Contains Non-True sites and used 
as training resource to filter SNPs 

Mills_and_1000G
_gold_standards 

INDELs calls validated with 
high degree of confidence 

Known and True sites and used as 
training resource to filter INDELs 

Source: (Auwera et al., 2013, DePristo et al., 2011 and McKenna et al., 2010) 

  

2.2 Data Pre-Processing 

Figure 2.1 represents, the experimental steps followed to obtain variants from the raw 

reads. For the major pre-processing, SAMtools (version 0.1.18) was considered. 

SAMtools comprised of multiple utilities, to perform sorting, merging, indexing and 

filtering of the sequencing data (Li et al., 2009). The samples were received as Sequence 

Archive Read (SRA) format files. The SRA files were converted to the fastq format using 
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the fastq-dump utility of SRAtoolkit provided by the National Institute of Health (NIH) 

and is accessible at http://eutils.ncbi.nih.gov/Traces/sra/?view=software. The fastq format 

comprise of the reads containing nucleotides and the quality scores associated with the 

reads. Subsequently, the reads were mapped against the human reference genome using 

BWA-MEM (version 0.7a-r405) by applying all default parameters (Li & Durbin, 2009). 

BWA is a popular mapping tool that implements the Burrows-Wheeler transform 

algorithm. BWA was chosen as it can align the sample reads to the massive human 

reference genome quickly and efficiently (Fonseca et al., 2012 and Hatem et al., 2013). 

As shown in Figure 2.1, the BWA constructs output files in the Sequence Alignment/Map 

(SAM) format. Using SAMtools, the SAM files were converted to Binary SAM (BAM) 

files and then the files were indexed and sorted. Such BAM files are consist of reads 

alignments between sample sequence and reference sequence. Indexing and sorting 

procedures, allows a quick access of the massive alignment data within BAM files. An 

AddOrReplaceReadGroups utility of PICARD tool (Version 1.8), accessible at 

http://broadinstitute.github.io/picard/, was then used to add read group information to the 

BAM files.  Afterwards, using SAMtools, the unmapped reads and the reads with 

mapping quality score (MAPQ) below 15 were eliminated. The resulting filtered BAM 

files were then sorted and indexed. Thereafter, the duplicate reads were removed from the 

filtered BAM files using the MarkDuplicates utility of PICARD tool. Both of the above 

steps are important, as they remove the low quality reads and the duplicate reads that 

largely contributes to the false positive variants.   
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Figure 2.1  Flow chart showing experimental steps. 

 

2.3 Variant Calling and Filtering 

The variants were detected jointly, using consensus calling for 297 samples with 

SAMtools as well as with GATK. Initially, the raw variants were generated using 
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SAMtools together with BCFtools. The process yielded a Variant Calling Format (VCF) 

file containing raw variants. The VCF file includes two types of structural variants, 

namely, Single Nucleotide Polymorphism (SNP) and Insertion Deletion (INDEL). The 

specifications for the VCF format are provided at http://samtools.github.io/hts-

specs/VCFv4.1.pdf. Likewise, a raw VCF file was also generated using GATK, following 

the best practice guidelines provided by the Broad Institute (Auwera et al., 2013). Even 

though SAMtools and GATK serve a common purpose of calling variants, they both 

follow distinct steps when it comes to filtering variants. For the variants obtained with 

SAMtools, filtering was simply done by applying all the default parameters of “vcfutil.pl 

varFilter” utility provided under the SAMtools. On the other hand, to filter the variant 

attained with GATK, the Variant Score Quality Recalibration (VSQR) protocol was 

executed. The VSQR procedure involves two steps, (1) variant recalibration step and (2) 

apply recalibration step. Briefly, the first step generates a Gaussian mixture model using 

true sites from the datasets discussed in the Table 2.1 and outputs a recalibration file 

(DePristo et al., 2010). In the second step, the model created in the previous step is 

applied to the variants in VCF files and the variants are collected into a new VCF file, 

with a VQSLOD scores added to them. For a given variant, the VQSLOD score is the log 

odd ratio for the variant to be true versus it to be false (DePristo et al., 2010). 

Subsequently, a filtering threshold, namely, ‘tranche sensitivity’ is applied to the variants 

(DePristo et al., 2010). If the tranche sensitivity threshold is X%, then GATK considers, 

the VQSLOD score of X% of the variants from training set and calculates the VQSLOD 

threshold. If a given variant has the VQSLOD score above the threshold, it is considered 

a true variant and flagged as PASS in QUAL field (in VCF files). In contrast each variant 
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with VQSLOD score below the threshold is treated as false positive (DePristo et al., 

2010). Using the VQSLQD threshold, the low quality variants were flagged, and then 

they were removed using SelectVariants utility of GATK. The high quality variants were 

collected in to yet another VCF file and the file was used in succeeding analyses. Herein, 

tranche sensitivity threshold was kept 99.9% for SNPs and 99.0% for INDELs. 

 
2.4 Variant Encoding and Depth Filtering 

Since the input matrix of the supervised machine learning methods (see Section 2.5) must 

be in the form of feature vectors, each variant was encoded into an integer using 

corresponding genotypes from the VCF files and a feature vector was generated for each 

individual sample. In the VCF files, the genotypes are assigned as X/Y format. If X (or 

Y) is reference allele, then it is always represented using 0. The other representations of 

X and Y varies and the representing number can go as high as the maximum number of 

the alternative alleles allowed by the variant detector tool. For SAMtools/BCFtools 

default number of maximum alternative alleles is 2 and for GATK the number is 6.  

Variant encoding was done using two different methods. Let the first encoding 

method be P and the second method be Q. For the method P, the zygosity of the genotype 

was considered, where a variant was represented as 0 if it is a homozygous reference 

allele (i.e. 0/0), 1 if it is a heterozygous allele (i.e. 0/1, 0/2, etc.), and 2 if it is a 

homozygous alternate allele (i.e. 1/1, 2/2, 3/3 etc.). For the method Q, the variants were 

simply encoded using 7(X) + Y. The encoding was done such that each genotype is 

mapped to a distinct integer. Using both the methods, the variants were encoded into a 

data matrix. A fraction of the resulting data matrix is shown in Figure 2.4, where the 

sample’s IDs are shown in the first column and the feature (variant) names are indicated 
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in the first row. The feature names are represented with three parameters (1) variant type 

where ‘S’ represents SNPs and ‘I’ represents INDELs (2) chromosome number and  

(3) position of variant in the chromosome. The rows of the matrix correspond to feature 

vectors and the numbers in the data matrix resembles the encoded genotype. 

While encoding the variants, the read depth (DP in INFO field) filtering was 

executed, and the variants holding DP score above 300 and below two were filtered out. 

These variants come from the distribution that has an average coverage of 140X. Thus, it 

is very implausible to have a true variants containing DP above twice the size of the 

coverage (i.e. 300). Alternatively, a variant with the DP score below two is very unlikely 

to be a true variant because it does not have enough supporting reads. Both of these types 

of variants have quite high chances of being false positive and hence it is valid to exclude 

the variants from the analyses. 

 

 

Figure 2.2  Encoded data matrix showing distribution of samples and features. 
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2.5 Supervised Machine Learning and Feature Selection 

Following the variant identification and the encoding procedure, a supervised machine 

learning analysis was performed. Supervised machine learning is a popular approach that 

utilizes labeled (classified) data to learn a model, and predicts the labels of unclassified 

data by applying the model. In the supervised method, the sample rows of a data matrix 

represents feature vectors in a space dimensions given by features from the columns (See 

Figure 2.4). Here, in the analysis, the data were separated into train and validation sets, so 

that the supervised model can be learned using the train data and the predictions can be 

made on the validation data using the model.  

 Cohort analysis, such as the one performed here yields a very large number of 

features (variants), which reduces the classifier’s ability to separate data. Hence, it is 

required to extract few significant features that aid to classify data more efficiently. Thus 

top-K features were selected by arranging them in the decreasing order of the absolute 

values of the Pearson correlation coefficient (PCC) (Guyon et al., 2003). The K was 

incremented by 10, up to 100 features, and from there it was incremented by 100, for 

maximum of 1000 features. For jth variant, PCCj can be represented as equation 2.1, 

where the Xi,j is the encoded value of the genotype for the ith sample and the jth variant, 

and the Yi is the label for the ith sample. The tumor (case) and non-tumor (control) 

samples were labeled as -1 and 1, respectively. 

 

!""! = !
!!,! − !!! !!! − !!!

!

!!,! − ! !!!
!!!

! × !!, − !!!
!!!

!

 

 

(2.1) 
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For comparison purposes, in some analyses, a chi-square df-2 test was considered 

for the feature selection procedure. For the chi-square test, top-K feature sets were 

extracted by arranging variants in the decreasing order of chi-square P-values. 

 

2.6 Cross-Validation and Accuracy Assessment 

For cross-validation, the binary classification approach was considered. At first, the data 

matrix (discussed in Section 2.4) was randomly separated by rows (subjects), into 90 % 

training and 10% validation set. Secondly, the feature selection was performed onto 

training set and the top features were extracted as explained in the Section 2.5. For each 

feature set, a supervised learning model was created using the support vector machine 

(SVM) algorithm (Cortes et al., 1995), implemented in the SVM-light program 

(Joachims, 1999). The model created in training phase was applied to the validation set 

and the predictions were made. All the above steps were repeated for the multiple random 

splits and the average classification accuracy was assessed using 1- balanced error rate 

(BER) (Guyon et al., 2004). As shown in equation 2.2 the BER is an average of the error 

rate of the controls and the error rate of the cases. Herein, the error rate is calculated by 

dividing misclassified labels with true labels.  

 

!"# = 1
2×

!"#$%&##"'"()!!"#$!%!"#$%"&
!"#$!!"#$!%!"#$%"&

+ ! !"#$%&##"'"()!!"#$!%!"#$#!"#$!!"#$!%!"#$#
! (2.2) 
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CHAPTER 3 

RESULTS AND DISCUSSION 

 

Throughout the study, multiple methods (or tools) were used to perform identical 

analysis. In the succeeding sections, the experimental outputs and the performance of 

each method (or tool) will be addressed. 

 

3.1 Extracting Analysis Ready Sample 

During the data pre-processing, 23 samples were removed from the analysis as discussed 

in the Section 2.1, which left 332 samples for the remaining analyses. Initially, the 

variants were detected with SAMtools using the 332 samples, without using any exome 

kit. Subsequently, the variants were filtered and encoded into the data matrix. The 

resulting data matrix found to have only 6000 variants. Without the filtering step, the data 

matrix would have had 22 million variants. Thus, considering this suspiciously low 

number of variants, the data matrix was re-analyzed, which revealed that all the 6000 

identified variants are resided only in the first chromosome, and the rest of the variants 

were removed, since, they were absented (or have low coverage) in at least one sample. 

Meaning if a variant is missing (or have low coverage), even in one sample out of 332, 

then the variant will be removed. Presence of all variants in single chromosome, suggests 

that, it is a sequencing artifacts, which likely occurs due to systematic bias in sequencing. 

Therefore to avoid the bias, samples missing an excessive number of variants were 

identified. To do that, at first, the variants present in a large number of samples were 

extracted, followed by the identification of the samples, missing the large number of 
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variants. More precisely, high occurring variants that present in at least 330 samples 

(90% of samples) were extracted. After that, the samples, missing more than 10% of the 

variants were identified. The procedure identified 35 more samples that need to be 

removed from the investigation. In the later steps, the same procedure was repeated with 

GATK while including the exome kit in the analysis.  The method identified the same 35 

samples for both SAMtools and GATK, and hence mutually validating the sample 

removal procedure.  

 

3.2 SAMtools vs. GATK 

After removing the samples, all the steps discussed in the Sections 2.3 to 2.6 were 

repeated using both SAMtools and GATK, without providing an exome kit and by 

applying the method P for encoding (Section 2.5). Figure 3.2 compares an average  

cross-validation accuracy of 10 random splits between SAMtools and GATK. Herein, the 

feature selection (Section 2.5) was performed using the PCC and the SNPs were encoded 

using the method P. As it can be seen from in the Figure 3.1, almost in all cases, GATK 

performed better. Even though GATK clearly yielded a better prediction accuracy, the 

comparison between SAMtools and GATK in not quite rational as both uses distinct 

types of variant filtering strategy. Nonetheless, the comparison can provides a basic idea 

of how well two popular variant detecting tools perform. The further analyses were 

performed using only GATK because (1) SAMtools tends to assign random genotypes 

values to the variants when they have zero DP value. Ideally, such variants indicate 

missing information and should be avoided from the analysis. On the other hand, GATK 

efficiently identifies such variants and assigns (‘./.’) to their genotypes. (2) The VSQR 
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procedure of GATK utilize high confidence known variants calls and provides a single 

VQSLOD score for filtering, whereas with SAMtools user have to define multiple 

filtering parameters, and tuning such parameters is a challenging task for such a massive 

study. (3) SAMtools lacks the variant annotation function provided by GATK. 

 

 

Figure 3.1  Average cross-validation accuracy comparison of SAMtools and GATK over 
10 random 90:10 training validation splits. The SNPs were ranked with the PCC and 
were encoded with the method P. The Error bars represents standard deviations. 

 

3.3 Comparison of Feature Selection Methods 

As discussed in the Section 3.2, the remaining experiments were carried out with GATK. 

At first, the effect of two different types of feature ranking methods (1) PCC and (2) chi-

square was analyzed by comparing the classification accuracy on all features (SNPs + 

INDELs) with 100 random splits. Exome kit was excluded for this procedure, which 
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yielded 296860 features, which were then encoded with the method P (encoding with 0, 1 

and 2). Here, only the method P was considered, because it was not plausible to apply  

chi-square df-2 test to the variants encoded with the method Q. The method Q produces 

the data matrix with integers ranging from 0 to 48, and that too with the columns (of the 

encoded matrix) containing varying sets of integers. Thus, in the situation, if one wants to 

apply the chi-square test, then for each column, an appropriate degree of freedom must be 

calculate separately, which is a quite complicated task especially, for a large data matrix 

such as the one used here.  

For statistical consistency, the labels for each of 100 splits were kept same, 

meaning for an individual experiment, train set and validation set were identical for both 

the PCC and the chi-square ranking. Figure 3.2 shows a comparison of these two ranking 

methods. For the PCC ranking, top-30 variants yielded the highest accuracy of 66.4%, 

and for the chi-square ranking, top-20 variants achieved the highest accuracy of 65.1%. 

As it can be seen from Figure 3.2, there is a negligible difference in the classification 

accuracy between two methods for first 100 variants, but as the number of variants 

increases, the PCC constitutively performs better then the chi-square. Therefore, based on 

the preliminary analysis, only the PCC was used for the feature selection purposes in the 

remainder of the studies. 
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Figure 3.2  Average cross-validation accuracy comparison of top PCC and chi-square 
ranked features on 100 random 90:10 training validation splits with GATK. The variants 
were encoded using the method P and the error bars represents standard deviations. 

 

3.4 Comparison of Encoding Methods 

Here, in this section, the performances of two different encoding methods, discussed in 

Section 2.4, are compared. It was not feasible to encode all the variants using the  

method P and thus, the method Q had a higher number of variants. The variants missed in 

the method P, are the variants that contains genotypes such as 1/2, 2/3, 3/4 etc. In 

practice, zygosity of such genotypes cannot be correctly inferred into three categories 

discussed in Section 2.4, and that is why, such variants were excluded from the analysis. 

On the other hand, the method Q (encoding using 7X + Y) is designed to include all 

variants. In fact the sole purpose of introducing a novel encoding method (the method Q) 

was to avoid the loss of high quality variants that were already passed through the 
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rigorous filtering. As expected, inclusion of all variant did make difference in the 

classification accuracy. As it can be seen in Figure 3.3, when the classification accuracy 

was compared, the method Q performed better than the method P, with SNPs alone and 

also with all variants but with the INDELs, the method P yielded higher accuracy. 

However for the INDELs, the classification accuracy with both the methods was close to 

the random guess and hence the performance of the methods was not evaluated based on 

results obtained with the INDELs. For further studies, the Method Q was considered, 

because overall it performed better then the method P. Table 3.1 shows the number of 

encoded genotypes with each method and the highest accuracies associated with it. 

 

  Method P     Method Q    

Figure 3.3  Average cross-validation accuracy with top PCC ranked features using the 
encoding method P and Q, on 100 90:10 training validation splits. Error bars represents 
standard deviations. 

 

Table 3.1 Numbers of Variants and Obtained Highest Accuracies  

Variant 
Type 

Method P Method Q 
Number of 
Variants Highest Accuracy Number of 

Variants Highest Accuracy  

All Features 296860 66.4 % (Top-30) 297924 68.3 % (Top-20) 
SNPs 284468 67.9 % (Top-30) 284591 69.9 % (Top-20) 
INDELs 12153 53.6 % (Top-10) 13333 47.6 % (Top-10) 
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3.5 Effect of Capture Kit  

Previously, all of analyses were done without any exome kit. The exome kit restricts 

variant identifications to the only genomic regions that can be encoded into genes. The 

primary reason to exclude the exome kit from the analysis was to include all putative 

variants placed near the exonic regions, which otherwise, would not have been taken into 

consideration. But the filtering recommendation provided by GATK were specifically 

designed for exome specific regions and it was not clear how effective they will be, if the 

exome kit is excluded from the analysis. Also, previously, no known study found that can 

provide guidance for proper filtering parameters, and it was beyond the scope of this 

investigation to tune all the parameters and then to choose the best one. Hence, it was 

decided to repeat previous experiments including an exome kit. For the analysis with the 

exome kit, the variants were identified using GATK and the encoding was done using the 

method Q (Section 2.4). For the features selection, the PCC was considered. Figure 3.4 

compares an average classification accuracy of with and without the use of an exome kit. 

Unexpectedly, inclusions of the exome kit yielded a quite higher classification accuracy 

of 85.1%, as compare to 69.9% obtained without the exome kit. With exome kit, 122392 

SNPs and 2200 INDELs were identified. As it can be seen in Figure 3.4 that the exome 

kit analysis achieved significantly higher accuracy with all three forms of datasets. In 

successive steps, area under curve (AUC) value was calculated for various numbers of 

top-ranked variants. The AUC values obtained with and without the exome kit were 

compared, and are reported in Figure 3.5. The AUC values were only calculated for the 

SNPs because the SNPs gave the highest classification accuracy, regardless the use of an 

exome kit. The highest AUC observed was 0.94 (Top70 SNPs) with the exome kit and 



 
 

20 
 

0.75 (Top40 SNPs) without the exome kit. To further verify the consistency of the 

results, the classification accuracy for the encoding method P was also assessed, the 

results are shown in Figure 3.6. Even with the encoding method P, the exome kit yielded 

quite higher accuracy of 84.7% (Top90) as compare to 67.9% (Top-30) obtained without 

the exome kit. With the exome kit, just as the previous results (Figure 3.3), the method Q 

achieved a slightly higher accuracy (85.1%) than the method P (84.7%). One more 

experiment was performed, where data were split into 50:50 training validation sets, 

instead of splitting into 90:10. For the data, feature selection was performed using the 

PCC method and the encoding was done using the method Q. The average classification 

accuracy with the SNPs alone, with the INDELs alone and the full dataset, are shown in 

Figure 3.7. The highest accuracy of 82.2% was observed with the SNPs alone as well as 

with the full dataset. As it can be seen in Figure 3.7 (left), the accuracy curves for the 

SNPs and the full dataset almost exactly overlaps, which suggests that INDELs have 

negligible effect on the classification. 

 

With exome kit Without exome kit

Figure 3.4  Average cross-validation accuracy comparison between with and without the 
exome kit on 100 90:10 training validation splits. The variants were ranked using PCC 
and were encoded using the method Q. The error bars represents standard deviations. 
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Figure 3.5  Area under curve values for the Q encoding and top PCC ranked SNPs, 
obtained with and without the exome kit. Error bars represents standard deviations. 
 
 

Figure 3.6  Average cross-validation accuracy for the encoding P and top PCC ranked 
SNPs obtained with and without the exome kit on 100 90:10 training validation splits. 
The error bars represents standard deviations. 
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Figure 3.7  Average cross-validation accuracy with top PCC ranked features with exome 
kit on 100 50:50 training validation splits. Encoding was done using method Q and the 
error bars represents standard deviations. 

 

3.6 Principle Component Analysis 

Two-dimensional plots of top-80 (left) and top-30 (right) SNPs are shown in Figure 3.8. 

The plots were obtained with principle component analysis (PCA) (Alpaydin, 2004), 

where X-axis represents first principle component and Y-axis represents second principle 

component. PCA is used to project the high dimensional data to the lower dimensions so 

that the data separation can visually be observed. As it can be seen in Figure 3.8, in both 

experiments, the data are not clearly separated, which suggests that the data are 

challenging, and hence, supporting the choice to use supervised leaning approach for the 

data classification. Even though, the data are not quite separated, the data obtained with 

the exome kit shows a better separation as compare to the data obtained without the 
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exome kit (Figure 3.8).  

 

 

With Exome Kit (Top-80) Without Exome Kit (Top-30) 

Figure 3.8  PCA plots for top-80 SNPs obtained with exome kit and top-30 SNPs 
obtained without exome kit. 
 

3.7 Predictive SNPs  

With the exome kit, top-80 SNPs, and without the exome kit, top-30 SNPs yielded the 

highest average classification accuracy over 100 random splits. An intersection of top-80 

SNPs (with the exome kit) across the 100 sets yielded 48 common SNPs. Likewise, An 

intersection of top-30 SNPs (without the exome kit) across the 100 sets yielded nine 

common SNPs. The SNPs were tagged as predictive SNPs. The 48 predictive SNPs 

obtained with the exome kit, achieved an average AUC of 0.93 with standard deviation of 

0.04, whereas the nine predictive SNPs obtained without the exome kit, yielded an 

average AUC of 0.72 with standard deviation of 0.09. Additional information regarding 

these predictive SNPs was obtained using a tool called wANNOVAR (Chang & Wang, 

2012). Table 3.1 and Table 3.2 provides the additional details regarding the predictive 

SNPs identified with the exome kit, in only chromosome 14, and Table 3.2, shows the 
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same for the rest of the chromosomes. Similarly, Table 3.3 shows the additional 

information about the nine predictive SNPs identified without the exome kit. As it can be 

seen from the Table 3.1 and 3.2, that many predictive SNPs were found in exonic regions 

with few exceptions. Hypothetically, if the exome intervals are used to call variants, then 

all the variants should only be in the exonic regions but this was not observed here. The 

phenomenon can be explained by the fact, that the exome kit are designed to cover some 

extra areas on the both end of putative exonic regions, this is done purposely to include 

flanking regions in the end of the associated gene. It is likely that the non-exonic 

predictive SNPs belong to the flanking regions. If the exome kit is not provided, then the 

SNPs can be found in any regions, and that explains why there are many SNPs in the 

non-exonic regions in Table 3.3 but not in Table 3.1 or Table 3.2. In all three tables the 

last two columns were added manually along with the information obtained with 

wANNOVAR. From the two columns, the first column contains number of case subjects 

containing the particular mutation and the second column represents the same for the 

control subjects. Theoretically, a cancer leads to the genetic alterations, which suggests 

that the mutations shown in Table 3.1–3.3, should have high occurrence in the case 

subjects as compare to the control subjects. But, surprisingly, the higher mutation rate 

was observed in control subjects. Previously, a study have identified that non-mutated 

IGHV gene is associated with more aggressive form of the CLL (Ferrer et al., 2004). 

Also, the gene was used to measure the CLL progression, based on the gene’s  

non-mutated status (Rassenti et al., 2004). These studies suggest that non-mutated IGHV 

(chromosome 14) may contribute to the CLL, and thus explaining the higher mutation 

rate in control samples of the predictive SNPs. 
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Table 3.2 Additional Information of Predictive SNPs in Chromosome 14 (With the 
Exome kit) 

Chr:Pos Ref Alt dbSNP ID Region Gene Case Control 

14:106494153 T C . exonic IGHV2-5 42 1 
14:106494221 T A . exonic IGHV2-5 30 1 
14:106733287 A C . exonic IGHV1-24 26 5 
14:106733289 C A . exonic IGHV1-24 25 4 
14:106733290 C G . exonic IGHV1-24 24 4 
14:107034846 T G rs199610746 exonic IGHV5-51 68 97 
14:107034863 C T rs199809351 exonic IGHV5-51 68 97 
14:107034873 G C rs199524561 exonic IGHV5-51 59 87 
14:107034967 T C rs72686844 exonic IGHV5-51 70 98 
14:107113763 A G rs377318229 exonic IGHV3-64 45 81 
14:107113780 G A rs200164853 exonic IGHV3-64 61 93 
14:107113785 C T rs201264785 exonic IGHV3-64 61 96 
14:107113855 A G rs111637096 exonic IGHV3-64 68 97 
14:107113858 A G rs111853090 exonic IGHV3-64 68 97 
14:107113968 C A rs113324720 exonic IGHV3-64 65 97 
14:107179022 C A/G/T rs2157615 exonic IGHV2-70 21 0 
14:107282791 A C . downstream IGHV7-81 6 39 
14:107282809 T C rs201928713 exonic IGHV7-81 10 59 
14:107282813 C A rs199801132 exonic IGHV7-81 11 56 
14:107282814 A G rs200749603 exonic IGHV7-81 11 55 
14:107282836 T A rs201902530 exonic IGHV7-81 30 70 
14:107282846 G A rs200859769 exonic IGHV7-81 51 100 
14:107282852 T C rs201336503 exonic IGHV7-81 54 104 
14:107282859 G A rs201095197 exonic IGHV7-81 60 108 
14:107282872 T A rs61741319 exonic IGHV7-81 62 109 
14:107282909 T C rs202202987 exonic IGHV7-81 65 112 
14:107282926 A T rs149038822 exonic IGHV7-81 57 111 
14:107282935 A T rs201762529 exonic IGHV7-81 55 107 
14:107282973 G C rs200848671 exonic IGHV7-81 49 95 
14:107282988 C G . exonic IGHV7-81 16 54 
Source: (Chang & Wang, 2012) 
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Table 3.3 Additional Information of Predictive SNPs in All Chromosomes except 
Chromosome 14 (With the Exome kit)  

Source: (Chang & Wang, 2012) 

Chr:Pos Ref Alt dbSNP ID Region Gene Case Control 
2:90139116 G A rs201820003 exonic IGKV1D-16 86 136 
2:169780261 G A . exonic ABCB11 0 29 
2:169780287 T A . exonic ABCB11 0 13 
6:30553070 G C . exonic ABCF1 0 15 
6:30553073 T C . exonic ABCF1 0 16 
6:31749930 C G . exonic VARS 0 26 
10:82034884 C A . exonic MAT1A 0 11 
12:11286309 G C . intergenic TAS2R19PRB1 8 29 

15:22489958 C T rs111826301 intergenic RP11-2F9.1 
TUBGCP5 66 111 

15:22489966 A C rs72687799 intergenic RP11-2F9.1 
TUBGCP5 68 111 

15:22489988 G A rs72687801 intergenic RP11-2F9.1 
TUBGCP5 70 112 

15:22490019 T C rs112521162 intergenic RP11-2F9.1 
TUBGCP5 69 113 

16:70305806 G A . intergenic EXOSC6 
DDX19B 0 81 

16:70305812 C A/T . intergenic EXOSC6 
DDX19B 0 82 

18:43669558 T C . exonic ATP5A1 0 12 

19:1390897 C T . intergenic AC005330.1 
PCSK4 0 12 

19:34884932 T C . intergenic CTD-2518G19.1 
CTD-2588C8.1 0 18 
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Table 3.4 Additional Information of Predictive SNPs in All Chromosomes (Without the 
Exome kit)  

Variant Ref Alt dbSNP ID Region Gene Case Control 

14:107034967 T C rs72686844 exonic IGHV5-51 70 98 
14:107179022 C A/G/T rs2157615 exonic IGHV2-70 21 0 

15:22473106 G A rs72687776 intergenic RP11-2F9.1 
TUBGCP5 78 117 

15:22489900 T C rs113115466 intergenic RP11-2F9.1 
TUBGCP5 66 97 

15:22489958 C T rs111826301 intergenic RP11-2F9.1 
TUBGCP5 66 111 

15:22489966 A C rs72687799 intergenic RP11-2F9.1 
TUBGCP5 68 111 

15:22489988 G A rs72687801 intergenic RP11-2F9.1 
TUBGCP5 70 112 

15:22490019 T C rs112521162 intergenic RP11-2F9.1 
TUBGCP5 69 113 

Source: (Chang & Wang, 2012) 

 

3.8 Genes Associated with CLL 

From various chromosomes, multiple genes associated with the predictive SNPs were 

identified. Remarkably, 30 out of 48 predictive SNPs were found alone in the 

chromosome 14 and almost all of them were associated with IGHV gene. Previously, 

IGHV gene was identified to be associated with the CLL, which justify the high 

occurrence of predictive SNPs in the gene (Damle et al., 1999, Ghia et al., 2003, Ghia et 

al., 2007 and Kr¨ober et al., 2002). However, the original paper that published these CLL 

data has also reported few significant genes (Wang et al., 2011), but none of them were 

appeared as predictive SNPs in this study. Recently, two large-scale GWAS studies were 

done, which identified significant SNPs associated with the CLL (Berndt et al., 2013 and 

Speedy et al., 2013), and even those genes were insignificant in this analysis. This study 

has incorporated a supervised machine learning approach, which was not used in 
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previous studies. Also, above mentioned studies were not aimed to predict CLL, hence 

the significant SNPs identified here may possibly remained hidden in their investigation. 

 

3.9 AUC with Set of Predictive SNPs 

In the end, the AUC values for the 48 predictive SNPs (with the exome kit) were 

calculated individually, for few chromosomes. Chromosome 2, 6, 14, 15, 16 had more 

than two predictive SNPs (Table 3.2) and so the AUC values were calculated for only 

those chromosome. The AUC values are reported in Table 3.4. As it can be seen from 

Table 3.4, individually, most of the predictive SNPs have significantly low AUC values 

as compare to their combined AUC value. But interestingly, when predictive SNPs from 

chromosome 14 were excluded from the analysis, the AUC value for the rest of the SNPs 

was almost same as the AUC of top70 SNPs (The highest AUC value). Which suggests 

that the SNPs from the chromosome 14 have very minor contribution in the data 

classification. 

 

Table 3.5 Average AUC Values of Predictive SNP for Different Chromosome (With the 
Exome kit)  

Chromosome AUC Standard Deviation 

2 0.77 0.10 
6 0.64 0.12 
14 0.79 0.09 
15 0.67 0.10 
16 0.80 0.08 
All except 14 0.93 0.04 
AUC top70 SNPs 0.94 0.04 
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CHAPTER 4 

CONCLUSION 

 

This investigation shows that jointly, the WES data and the supervised learning method 

can effectively be utilized to implement a decent CLL risk prediction strategy. 

Initially, a novel method to investigate samples containing missing information 

was introduced. The effective application of the method identified 22 million structural 

variants across all chromosomes. It was significantly higher compare to the 6000 

variants, when the sample removal procedure is not performed. Discovering those 

samples is an essential step, as single bad samples may contribute to significant amount 

of data loss in downstream analysis, possibly leaving the data worthless. 

Thereafter, the performance of SAMtools and of GATK was compared and it was 

shown that the variants obtained with both the tools achieve almost similar prediction 

accuracies. Only GATK was used in the remaining study, considering a minor better 

performance and its ability to efficiently represent the missing information.  

Subsequently, the effectiveness of feature selection through the PCC and the chi-

square test was compared, and it was identified that the variants ranked with the PCC 

obtained a classification accuracy of 66.4 % as compared to 65.1% obtained with  

the chi-square. Similarly, the classification accuracy for two distinct encoding methods 

was compared. Where the method Q (encoding with 7X+Y) outperforms the method P 

(encoding with 0,1 and 2), it was found that with full dataset, the method Q yielded about 

4% higher accuracy than the method P. With the SNPs alone, the method Q achieved 

about 2% higher accuracy than the method P. It was also shown that the  
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method P tends to exclude few variants while encoding genotypes whereas the method Q 

efficiently encodes all the variants. 

Eventually, an exome kit was taken into consideration and it led to about a 15% 

rise in the classification accuracy. For the exome kit analysis, the parameters that 

performed well in the prior steps were applied, which gave an average classification 

accuracy of 85.7% and an AUC of 0.94. That was a significant increase from an average 

classification accuracy of 70% and an AUC of 0.75 obtained without the exome kit. A 

PCA analysis of top-30 SNPs (without the exome kit) and top-80 SNPs (with the exome 

kit) did not show a clear separation when plotted in two dimensions, this suggests that the 

CLL data are hard to classify. 

During the final phase of the investigation, the predictive SNPs were identified 

from an intersection of 100 training splits. The 48 predictive SNPs, obtained with the 

exome kit achieved an AUC of 0.93, and the nine predictive SNPs, retrieved without the 

exome kit attained an AUC of 0.75. Although the predictive SNPs achieved higher AUC 

values in this study, the SNPs or the associated genes were not found to be reported in 

any of the previous CLL related studies.  

Overall, this study demonstrated the effective implementation of the supervised 

machine-learning scheme for the CLL risk prediction. The outcome of the experiments 

created the foundation for the NGS-based CLL prognostics. Since the method is fully 

reproducible, it can also be applied to other diseases. However, a lack of previous 

occurrences of predictive SNPs (and associated genes) in the CLL suggest that there is a 

strong need of a replication study with an independent dataset to fully validate these 

findings. 
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