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ABSTRACT 

OPTIMIZATION OF VEHICLE ROUTING AND SCHEDULING WITH 

TRAVEL TIME VARIABILITY - APPLICATION IN WINTER ROAD 

MAINTENANCE 

 

by 

Haifeng Yu 

This study developed a mathematical model for optimizing vehicle routing and 

scheduling, which can be used to collect travel time information, and also to perform 

winter road maintenance operations (e.g., salting, plowing). The objective of this research 

was to minimize the total vehicle travel time to complete a given set of service tasks, 

subject to resource constraints (e.g., truck capacity, fleet size) and operational constraints 

(e.g., service time windows, service time limit).  

 The nature of the problem is to design vehicle routes and schedules to perform the 

required service on predetermined road segments, which can be interpreted as an arc 

routing problem (ARP). By using a network transformation technique, an ARP can be 

transformed into a well-studied node routing problem (NRP). A set-partitioning (SP) 

approach was introduced to formulate the problem into an integer programming problem 

(IPP). To solve this problem, firstly, a number of feasible routes were generated, subject 

to resources and operational constraints. A genetic algorithm based heuristic was 

developed to improve the efficiency of generating feasible routes. Secondly, the 

corresponding travel time of each route was computed. Finally, the feasible routes were 

entered into the linear programming solver (CPLEX) to obtain final optimized results. 

           The impact of travel time variability on vehicle routing and scheduling for 

transportation planning was also considered in this study. Usually in the concern of 

vehicle and pedestrian’s safety, federal, state governments and local agencies are more 
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leaning towards using a conservative approach with constant travel time for the planning 

of winter roadway maintenance than an aggressive approach, which means that they 

would rather have a redundancy of plow trucks than a shortage. The proposed model and 

solution algorithm were validated with an empirical case study of 41 snow sections in the 

northwest area of New Jersey. Comprehensive analysis based on a deterministic travel 

time setting and a time-dependent travel time setting were both performed. The results 

show that a model that includes time dependent travel time produces better results than 

travel time being underestimated and being overestimated in transportation planning 

           In addition, a scenario-based analysis suggests that the current NJDOT operation 

based on given snow sector design, service routes and fleet size can be improved by the 

proposed model that considers time dependent travel time and the geometry of the road 

network to optimize vehicle routing and scheduling.  In general, the benefit of better 

routing and scheduling design for snow plowing could be reflected in smaller minimum 

required fleet size and shorter total vehicle travel time. The depot location and number of 

service routes also have an impact on the final optimized results. This suggests that 

managers should consider the depot location, vehicle fleet sizing and the routing design 

problem simultaneously at the planning stage to minimize the total cost for snow plowing 

operations. 
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CHAPTER 1    

INTRODUCTION 

1.1 Background 

Routing and scheduling vehicles to perform the required service within a transportation 

network play an important role in the area of transportation planning and engineering. It 

is challenging for transportation planners to represent real-life conditions closely with 

traditional modeling approaches either with strict assumptions that make them limited or 

not applicable in real-world application, or complex formulations that make them 

difficult and inefficient to be implemented. One practical aspect that needs to be 

addressed is the travel time variability. Most of the models for vehicle routing and 

scheduling reported in the literature assumed constant travel time by ignoring its variation. 

Unfortunately, constant travel time is a weak assumption for congested conditions that 

can result from recurring (e.g., congestion during peak hours, work zone, etc.) or non-

recurring (e.g., accidents, vehicle breakdowns, etc.) events. Therefore, the optimal 

solution subject to constant travel time may be suboptimal or even infeasible for time-

dependent cases (e.g., snow emergency salting and plowing operations). 

            Travel time is a fundamental measure in transportation planning and engineering, 

whose variability and reliability are always of concern to travelers and transportation 

professionals. With the rapid development of Intelligent Transportation Systems (ITS), 

traveler information (e.g., travel time and delay) can be delivered to motorists through 

various communication technologies deployed on the transportation infrastructure and in 
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vehicles. Many roadways have traffic sensors (i.e., inductive loops, acoustic sensors, etc.) 

for counting spatial as well as temporal traffic volume and speed, and apply new 

technologies (e.g., cell phones, GPS, and Bluetooth, etc.) for approximating travel times. 

In order to validate the travel time estimates with data collected by different sources, 

probe vehicles are commonly used for collecting ground truth O-D (Origin-Destination) 

based travel time. Because obtaining accurate O-D travel time for a transportation 

network with sufficient probe vehicles is expensive, it is desirable to develop a cost-

effective data collection plan with optimized routes and schedules for vehicles 

considering practical constraints. 

                Vehicle routing and scheduling with time dependent travel time makes it 

possible to model the problem of winter road maintenance, where the timing of an 

intervention is of prime importance. If the intervention is too early or too late, the cost in 

material and time varies. In addition to the material cost, the state governments contract 

third-party trucks to support their operations during winter storms to make their 

operations more flexible and reduce truck maintenance cost. The payment rule used for 

these third-party trucks can be based on total travel time. In this case, the total travel time 

contributes majorly to total spending, which motivated this study to design efficient 

routes and schedules for winter maintenance operations to reduce the total cost while 

maintaining good level of service. 

1.2 The Nature of the Problem 

The nature of the research problem discussed in this study is a network optimization 

problem, involving efficient routing and scheduling of a number of vehicles engaged in 
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practical transportation applications (e.g., data collection, winter road maintenance) on a 

predetermined directed graph G=(V, A),where V is a set of nodes, and A is a set of arcs 

connecting pairs of nodes in V. It is assumed that A is partitioned into a subset of required 

arcs A1, and a complementary subset of arcs A2. A1 known as “requests” or “demands” 

must be serviced. The pickup and delivery locations are analogous to the start and end 

nodes of each arc. Because time windows are imposed for each arc belonging to A1, 

requiring vehicles to serve required arcs within pre-specified time periods based on the 

project needs. In other words, each “request” may occur in multiple time windows within 

a project duration (see Figure 1.1), which can be formulated as the arc routing problem 

with multiple time windows (Dumas et al., 1991 and Desroisers et al., 1995). 

 

Figure 1.1  "Requests" at multiple time windows. 

            This study was considered in the context of the network optimization problem 

involving vehicle routing and scheduling. A generalized mathematical model was 

developed, which can be used to minimize either the total operating cost or travel time for 

vehicle routing and scheduling problems, subject to a set of practical constraints (e.g., 

limited budget, fleet size, number of demands, and project duration, etc.).  
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            A set-partition approach was proposed to formulate the problem. Firstly, a 

number of promising feasible routes were generated by taking resource constraints or 

operational constraints into account. Secondly, these routes were treated as input to a 

mathematically formulated model that gives a solution of optimized routes and schedules 

that tells where and when to deploy vehicles. The exhaustive enumeration method was 

used to generate candidate routes for problems with a small size of demand. Then a 

genetic algorithm based heuristic was developed for solving problems with large size of 

demand. By using this efficient heuristic with adjustments, the proposed optimization 

model is able to solve the studied problem with consideration of time-dependent travel 

time.   

1.3 Objective and Work Scope 

Travel time and its variability are important indicators of roadway level of service. 

Various technologies (e.g., GPS, Bluetooth, etc.) have been widely applied for collecting 

speed data to approximate travel time. It is challenging to design a cost-effective plan 

including the routing and scheduling of vehicles to fulfill required service while 

considering time-dependent travel time. Because the nature of routing and scheduling 

vehicles for winter road maintenance makes the problem itself can be mathematically 

formulated as an Arc Routing Problem (ARP), thus the objectives of this study are: 

1. To develop a mathematical model considering travel time variability for the 

winter road maintenance problem to minimize total vehicle travel time. Small size 

problems will be solved using an exact algorithm. 

2. To develop an efficient solution algorithm to find good solutions for larger size 

problems, since the research problem is NP-hard. 
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3. To study the impact of travel time variability on vehicle routing and scheduling 

by comparing results obtained with constant travel time and time-dependent travel 

time. 

            To satisfy the above objectives, the nature of the routing and scheduling problem, 

its variants and solution algorithms were reviewed. Then the research problem was 

formulated and solved using the developed modeling approach and the solution algorithm. 

Later, two numerical examples based on applications of travel time data collection and 

winter snow plowing operation were provided to demonstrate the effectiveness of the 

developed model and solution algorithm. To extend this study’s applicability to address 

the impact of travel time variability, constant travel time inputs were replaced by time-

dependent ones. A complete case study based on 41 snow Sections in the northwest area 

of New Jersey was undertaken to evaluate the performance of the proposed model in both 

the constant travel time and time-dependent travel time setting.  

1.4 Dissertation Organization 

This dissertation was organized into seven chapters. Chapter 1 introduces the background 

of travel time data collection and presents the research objective and work scope. Chapter 

2 summarizes the efforts of previous studies related to vehicle routing and scheduling 

problems, solution algorithms and applications. Chapter 3 presents the model 

development with the set partition approach ， which was used to mathematically 

formulate the studied problem considering travel time variability. Chapter 4 introduces 

the exhaustive enumeration and the genetic algorithm based heuristic for solving the 

mathematical model that was developed in Chapter 3. Chapter 5 presents two numerical 

examples on travel time data collection and winter road maintenance to demonstrate the 
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applicability of the present model. Chapter 6 presents a case study based on snow 

Sections in the state of New Jersey. Chapter 7 presents computational analysis by 

comparing results obtained by using the exact algorithm and results obtained by using the 

GA based heuristic. Finally, Chapter 8 concludes the findings of this study and suggests 

the directions of future research. 
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CHAPTER 2  

LITERATURE REVIEW 

 

This chapter discusses the literature review results in the area of vehicle routing and 

scheduling and its related variants and applications in winter road maintenance. In 

Section 2.1, the definition of Variability of Travel Time (VTT), its impact on vehicle 

routing and scheduling and the current technologies for travel time collection are 

reviewed. Later, the original problem of vehicle routing and scheduling is reviewed in the 

context of network optimization problem, which can be categorized and reviewed in 

details as two major related problems: Node Routing Problems (NRP) (Section 2.2) and 

Arc Routing Problems (ARP) (Section 2.3). The relationship between NRP and ARP and 

techniques of how one can be transformed to the other are discussed in Section 2.4. In 

Section2.5, research related to winter roadway maintenance is reviewed. After reviewing 

these problems, a brief discussion of solution algorithms including exact algorithms and 

heuristic algorithms are presented in Section 2.6. Finally, Section 2.7 summarizes the 

findings of the literature review. 

2.1 Variability of Travel Time (VTT) 

The Variability of Travel Time (VTT) in transportation systems has been the focus of 

many transportation agencies, because it affects transportation planning, design and 

operation, and system evaluation. Examples of planning and design applications include: 

1) Develop transportation policies and programs; 2) Perform needs studies or assessments 

(Lyman and Bertini, 2008); 3) Rank and prioritize transportation improvements (Lyman
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and Bertini, 2008); 4) Evaluate transportation improvement strategies (Chen et al., 2003); 

and 5) Calculate road user costs for economic analyses (Chen et al., 2003). VTT can 

result from traveler behaviors (i.e., departure time, route choice, and driving 

characteristics) of traffic mix (i.e., passenger cars, transit vehicles, and trucks) and the 

transportation network topology, geometry and traffic control. VTT has increasingly been 

recognized as a major factor influencing travel decision making and, consequently, serves 

as an important performance measure in transportation management (Recker et al., 2005).  

              The Texas Transportation Institute’s Urban Mobility Report (2012) defined 

reliability and variability of travel time separately. Reliability is commonly used in 

reference to the level of consistency in transportation service; and variability is the 

amount of operating inconsistency. To quantify reliability and variability, travel 

conditions in the peak period were compared to free-flow conditions and two measures 

were defined: Travel Time Index (TTI) and Buffer Time. The TTI can be used in various 

systems with different free-flow speeds. Values of the TTI can used by the general public 

as an indicator of extra time spent in a transportation system during a trip. Buffer Time is 

the amount of extra time that must be allowed by a traveler to reach his or her destination 

on time in 95% of the time. Back in 2000, Florida DOT developed and documented the 

Florida Reliability Method. Similar to the Texas Transportation Institute’s definition of 

travel time reliability, they defined reliability on a highway segment as 95% of travel that 

takes no more than the expected travel time plus a certain acceptable additional time. 

These measures provide transportation planners and modelers a quantifiable basis to 

investigate and explore causes of travel time variability. 

   



9 

 

 

 

2.1.1 Impacts of VTT on Routing and Scheduling 

VTT significantly impacts vehicle routing as well as scheduling when delivery times are 

heavily restricted by customers’ time windows and schedules. For example, Holguin-

Veras et al. (2006) investigated the effects of New York City’s congestion pricing on 

commercial vehicles’ delivery schedules and found little changes because delivery times 

were set by customer time windows and schedules. It was also found that a large 

proportion of carriers do not worry about the toll increase change since customers are 

willing to take the extra cost rather than to compromise the scheduled delivery times. In 

contrast, carriers pay more attention on traffic conditions that could be interpreted as 

travel time variability.  

           Figliozzi (2010) analyzed the impact of congestion on commercial vehicle tours. 

The paper suggested that VTT is significant when the travel time between the depot and 

customers is long in relation to the maximum tour duration and when the routes are 

highly constrained by travel time. Also VTT impacts carriers’ productivity that can be 

measured in terms of tour time and distance required to serve a customer. Percentage of 

time driving and the average distance traveled per customer are usually used to indicate 

the efficiency of an individual tour because they are directly related to carriers’ operating 

cost. Quak and De Koster (2009) utilized a fractional factorial design and regression 

analysis to quantify the impacts of delivery constraints and urban freight policies. Their 

findings confirmed previous results from Holgun-Veras’s study showing that the cost 

impact of time windows is the largest for retailers who combine many deliveries in one 

vehicle round-trip. In summary, when a time window constraint for vehicle pickup and 
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delivery comes into consideration, VTT has a significant impact on vehicle routing and 

scheduling decisions. 

          Evidence on the behavioral response to VTT has also been obtained by analyzing 

route choice decisions. Abdel-Aty et al. (1993) analyzed state preference data from Los 

Angeles, CA, where respondents were provided with five hypothetical choices based on 

the traffic report accuracy. The degree of accuracy was described as: 1) extremely 

accurate, 2) very accurate, 3) somewhat accurate, 4) not very accurate and 5) not accurate 

at all. These choices gave the option of two alternative routes with different means and 

variances of travel time. The results revealed the important relationship between the use 

of travel time information and the propensity of route changes. From the commuters’ 

standing point, traffic conditions, perceptions of information accuracy and traffic 

variation were among the variables influencing the frequency of route changes based on 

en-route traffic information. From the planner’s standing point, problems involving 

vehicle routing and scheduling should take those variables into consideration. 

              Noland (2002) developed a schedule delay framework in a simulation 

experiment for a hypothetical network with two routes. By varying the degree of travel 

time variation due to non-recurring congestion on one route, it was possible to observe 

the changes on commuters’ route and departure time choices. The results showed that 

trips made by models with fixed schedules are subject to scheduling costs regardless of 

congestion with consequent implications. The change in travel activities is a major factor 

in valuing the costs and benefits of travel time variability. This work suggested that the 

modeling of route choice needs to consider scheduling effects if VTT becomes a major 

factor. 
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              Recker et al. (2005) stated that VTT is increasingly being recognized as a major 

factor influencing travel decisions and, consequently, is an important performance 

measure in transportation management. The authors provide an analysis of segment travel 

time variability, which was first measured using a traffic database from GIS. The 

variability was measured from two different aspects, the first is the variability of day-to-

day travel time, and the second one was within-day variability. The standard deviation 

and normalized standard deviation were used as measures of variability. Numerical 

experiments were carried out to examine the effects of route choice models on network 

assignment results. By incorporating travel time variability into the route choice models, 

the predictive capability of the route choice models was enhanced and could potentially 

lead to better means of reducing traffic congestion, wasteful travel, and loss of 

productivity, and at the same time, improve network capacity utilization and travel time 

reliability.  

              Hollander (2006) described two distinguishable modeling approaches based on 

modeling the attitudes of travelers to the unexpected day-to-day variability of travel times. 

In his study, the direct approach sees the extent of VTT as the variable that travelers react 

to, whereas the indirect approach claims that VTT effects are fully explained by trip 

scheduling considerations. In this, factors affecting bus users’ scheduling behavior and 

attitudes to VTT are investigated through a survey among bus users in the city of York, 

England. The results confirm that the influence of VTT on bus users was best explained 

indirectly through scheduling considerations. The considerations of scheduling should be 

addressed by taking VTT into consideration so that planners could better utilize the 

available bus fleet and reduce waiting time for bus users. 
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2.1.2 Technologies for Collecting Travel Time Data 

The rapid progress of information technology (IT) may provide new insights to the 

understanding of traffic phenomena. Many technologies including the ITS probe vehicle 

have been used in travel time data collection.  The Automatic Vehicle Identification 

(AVI) transponder [e.g., TRANSCOM’s System for Managing Incidents and Traffic 

(TRANSMIT)], which is located inside a vehicle and is used in electronic toll collection 

applications, is an example. This system utilizes antenna readers installed at regular 

intervals along the highway to identify the time when each transponder-equipped vehicle 

passes by. The detection of an equipped vehicle at successive readers downstream 

produces estimates of link travel times.  

             Various research studies and operational tests were conducted in regards to 

measure travel times through the use of electronic toll collection (ETC) system. Wright 

and Dahlgren (2001) discussed that ETC on the eight bridges crossing San Francisco Bay 

provided the means for a relatively simple and low cost system for measuring travel times 

on bridges and roads. Readers at various locations could recognize the toll tags used for 

ETC. The time of reading was recorded so that the time difference between when a 

vehicle passes one reader and another could be obtained. It was found that the application 

of ETC data improved facilities efficiency and reduced users delay. Saka and Agboh 

(2002) discussed the aggregated impact of ETC (also called M-Tag) deployment at three 

toll plazas in the Baltimore Metropolitan Area. The toll plazas were treated as multi-

server queuing systems. The delay as well as travel time data were used to estimate mean 

vehicular travel speed at the toll facilities. The analysis involved the development of 
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simulation and deterministic models used to generate traffic flow parameters, including 

speed and driving cycles for the study areas.  

GPS Based Probe Vehicle: 

In this section, the GPS based probe vehicle was mainly discussed in terms of the 

technology itself, its advantages and disadvantages, and its popularity in real practice of 

travel time data collection. One of the key applications of IT to traffic and transport 

analysis is the identification of the location of moving objects using the global 

positioning system (GPS). It is expected that detailed traffic analysis could be carried out 

using these data. Zito et al. (1995) were the first to address the use of GPS data for traffic 

engineering. They discussed the accuracy of the GPS and its potential for traffic analysis, 

and suggested that geographical information systems (GIS) could be used efficiently for 

managing the data obtained by the GPS. A study that estimated VTT on New Jersey (NJ) 

highways was conducted by collecting travel times with probe vehicles carrying GPS 

devices (Chien et al., 2010).  The results include estimated travel time and its variability 

on selected NJ highways by departure time of day and day of the week. The travel time 

data were collected through the use of an in-vehicle navigation device equipped with a 

GPS-receiver. The use of GPS-based link/path travel time data collection could produce 

the corresponding distributions and buffer index to assist real-time traffic operations (e.g., 

signal timing) traveler information (e.g., real-time route planning), and transportation 

short term and long term planning (e.g., infrastructure and traffic management strategies).  

Number of Probe vehicles: 

Travel times are generally estimated by roadside detectors. Travel time cannot be 

observed on a road without any onsite observation instruments, although some estimation 



14 

 

 

 

techniques have been proposed. The probe vehicle approach is one efficient method of 

collecting LOS information and data about the source of traffic congestion. The 

reliability of probe vehicle data for estimating the travel time should be investigated.  

Karthik et al. (1996) implemented an algorithm to determine the number of probe 

vehicles required for reliable travel time measurement by using a simulation of the 

Sacramento network for the morning peak period. The results indicated that the number 

of probe vehicles required increases nonlinearly as the reliability criterion is made more 

stringent. More probes are required for shorter measurement periods. As the desired 

proportion of link coverage in the network increases, the number of probes required 

increases. With a given number of probes a greater proportion of freeway links than of 

major arterials can reliably be covered. Probe vehicles appear to be an attractive source of 

real time traffic information in heavily traveled, high speed corridors such as freeways 

and major arterials during peak periods, but not recommended for coverage of minor 

arterials or local streets during off-peak hours. 

            Lee et al. (2006) examined the relationship between the number of probe vehicles 

and the travel time collection reliability using both simulated and field data. Their results 

suggested that the operational characteristics of probe vehicles are very important when 

constructing a reliable information system that needs to meet network coverage 

requirements. Cheu et al. (2002) also discussed the population and size of probe vehicles 

using a simulation-based analysis. They concluded that the improvement in the accuracy 

of link speed estimation diminishes when the probe vehicle population in the network 

reaches the threshold of 15% of the total network traffic network volume. They further 

concluded that to achieve an absolute error in the estimated average link speed of less 
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than 5.0 km/h at least 95% of the time, there should at least 4 to 5% active probes in the 

total network traffic volume, or at least 10 probes that have successfully traversed a link. 

As stated in the above studies, viewing the travel time data collection from a statistical 

perspective, having enough probe vehicles is crucial because the sample size determines 

the accuracy of the travel time estimation. But standing from the viewpoint of the cost 

control, it is costly to schedule and route vehicles to collect enough data samples without 

compromising data accuracy. Thus, it is important to develop a mathematical model to 

optimize routes and schedules based on minimum cost. 

 2.2 Node Routing Problem 

Node routing problems try to find the minimum cost routes that service the nodes in the 

network. There are two main problems in this category, one is the travelling salesman 

problem (TSP), which does not have the capacity constraint, and the other is the vehicle 

routing problem (VRP), which considers the capacity constraint. In the classical node 

routing problem if there is only one vehicle and there is no capacity constraint, the 

problem simplifies into a traveling salesman problem. This section focuses on the 

capacitated VRP and its variations.  

2.2.1 Vehicle Routing Problem with Pickup and Delivery (VRPPD) 

The classical VRP can be described as follows: A fleet of m capacitated vehicles 

localized at one or more depots have to serve n customers with demand d. The problem is 

to find the minimum cost route for all vehicles so that all customer demands are satisfied. 

             The VRP with pickup and delivery (VRPPD) is an extension of VRP. In addition 

to the traits of VRP each customer i now has both an origin (pick-up point), as well as a 
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destination (drop-off point) and the demand. Typical applications can be found in the 

fields of parcel and para-transit services. The VRPPD is a generalization of the classical 

VRP, which also belongs to a larger family of pickup and delivery problems (PDPs). One 

can distinguish between three well-known types of pickup and delivery problems that 

have been studied in the literature. 1) One is the single-commodity PDP in which a single 

type of good is either picked up or delivered at each node (Hernandez-Perez and Salazar-

Gonzalez, 2004). This is the case, for example, when an armored vehicle transports 

money between the branch offices of a bank. 2) Another variant is the two-commodity 

PDP where two types of goods are considered and each node may act as both a pickup 

and a delivery node (Angelelli and Mansini, 2002). This problem arises in beer or soft 

drink delivery where vehicles deliver full bottles and collect empty ones. A variant of this 

problem is the VRP with backhauls in which all deliveries must be performed before any 

pickup. 3) Finally, the n-commodity problem occurs when each commodity is associated 

with a single pickup node and a single delivery node. This is the case when passengers or 

goods must be transported from an origin to a destination. 

2.2.2 Vehicle Routing Problem with Time Windows (VRPTW) 

Because most practical applications of the VRPPD include restrictions on visiting time at 

each location that may be visited by a vehicle, it is convenient to present a more general 

variant of the problem, called the VRPPD with time windows (VRPPDTW). The 

VRPPDTW is NP-hard since it generalizes the TSP that is also known to be NP-hard 

(Garey and Johnson, 1979). With the presence of time windows, even finding a feasible 

solution to the problem is NP-hard since the feasibility problem for the TSP with time 

windows is itself NP-complete (Savelsbergh, 1985). Savelsbergh and Sol (1995) 
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considered a more general formulation of the pickup and delivery problem and reviewed 

the relevant literature on this problem. A more recent survey on pickup and delivery 

problems with time windows was also prepared by Desaulniers et al. (2001). In this study, 

empirical applications in winter road maintenance and travel time data collection can 

have multiple time windows on each demand that located on either arcs or nodes. 

            Time windows can be classified into two types: hard time windows (HTW) and 

soft time windows (STW). In the first case, if the vehicle arrives early, it must wait until 

the lower bound of the window, and it is strictly forbidden to arrive late. In the case of 

STW, the violation of the constraint is permitted but leads to an objective function 

penalty. As discussed by Chiang and Russell (2004), VRP with soft time windows 

(VRPSTW) has been practically applied for the following reasons: 1) relaxing HTW 

constraints to reduce total cost without compromising customer satisfaction; 2) relaxing 

unnecessary HTW constraints for particular applications (e.g. the delivery of fuel/gas to 

service stations); 3) dealing with issues related to travel time uncertainty; 4) solving 

VRPHTW with proper penalty setups. The solution of VRPSTW was used as an 

alternative answer when the solution of VRPHTW is infeasible. 

              Replacing HTW constraints with STW ones will increase computation time 

because of the increase in feasible solution spaces. Thus, an efficient solution algorithm 

is desirable to improve the computational efficiency. Qureshi et al. (2009) presented a 

new column-generation-based approach to find exact optimal solutions for vehicle 

scheduling problems with STW constraints. An elementary shortest path problem with 

resource constraints and late arrival penalty was solved as a sub-problem. It was found 

that the VRPSTW solution results in fewer routes and lower cost while a late arrival 
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penalty has a small impact on total cost. Figliozzi (2010) developed an iterative route 

construction and improvement algorithm for solving VRPSTW, which was able to 

accommodate general cost and penalty functions. Experimental results indicated that the 

average run time performance was significantly improved. Even though the increased 

computation time can be handled by some solution algorithms, there is still case that 

HTW is more preferable. In winter gritting operations, where a subset of road segments 

must be serviced at a cost that depends on the time service begins, if the intervention is 

too late, the cost in material and time sharply increases. Therefore, planners would rather 

have vehicles arrive early than fine vehicles for arriving late. 

2.2.3 Vehicle Routing Problem with Time-dependent Travel Time 

Most of the VRP models and their solution approaches assume that all characteristics are 

independent of the time of day. Therefore, these models may have problems to deal with 

real-life applications where travel time can be influenced by congestion or incidents 

occur on the road network. The literature related to vehicle routing with time-dependent 

travel times is relatively scarce.  

           Malandraki and Daskin (1992) examined both the time-dependent vehicle routing 

problem (TDVRP), and the time-dependent traveling salesman problem (TDTSP) which 

is a special case of the TDVRP, where the feet size is equal to one. They provided mixed 

integer linear programming formulations that included capacities and time windows 

constraints. The travel times were computed using step functions. The travel time 

between two customers or between a customer and the depot depends on the travel 

distance and time of day. The Nearest-neighbor (greedy) heuristics for TDTSP and 

TDVRP without time windows were proposed, as well as a branch-and-cut algorithm for 



19 

 

 

 

solving small problems with 10 to 25 nodes. In Malandraki and Dial’s following work 

(1996), a dynamic programming algorithm was developed to solve the TDTSP. Although 

it was argued that this algorithm can handle many different types of travel time functions, 

no results comparison was done between different types of travel time functions. Results 

were only reported for step functions found in their previous work (1992).  

          Hill and Benton (1992) considered a TDVRP (without time windows) and 

proposed a model based on time-dependent travel speeds. In their formulation, the travel 

time on a given link is dependent on the average travel speed during the period that a 

vehicle starts travelling. Computational results were reported on a small example with a 

single vehicle and five locations. The authors implemented a simple greedy heuristic for 

the multi-vehicle traveling salesman problem with capacity constraints and no time 

windows for a city with 210 locations. A validation of the model was conducted in a 

commercial courier vehicle scheduling system and was judged to be very useful by users 

in a number of different metropolitan areas in the United States.                

           Donati et al. (2008) considered variable traffic conditions in VRP to perform 

realistic optimization. TDVRP consists of finding optimal routes by considering the time 

it takes to traverse each given arc depending on the time of day travel starts. This variant 

of the classic VRP is motivated by the fact that in urban contexts variable traffic 

conditions play an essential role and cannot be ignored in order to perform a realistic 

optimization. The paper showed that when dealing with time constraints, like hard 

delivery time windows for customers, the known solutions for the classic case become 

unfeasible and the degree of unfeasibility increases with the variability of traffic 

conditions. 
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                The TDVRP is more difficult to model and to solve than the VRP with constant 

travel time. The major issue is how to model the variation of travel time during a certain 

time period. Available models often discretized a time period into a limited fixed number 

of time intervals (e.g., morning, midday and afternoon) with a distinct associated fixed 

mean speed. Ichoua et al. (2003) used a model based on discrete travel speeds by adding 

correction factors to model congestion. It is a simple way to take time-dependency into 

account by working with time-dependent travel speeds and to adjust the speed when the 

vehicle crosses a boundary between two time periods. In contrast with the formulation 

proposed by Hill and Benton (1992) where travel speeds corresponded to time periods 

and nodes, the travel speeds were associated with different time periods and arcs in 

Ichoua et al.’s study. This reduced the computational effort at the cost of storing speed 

data. Hill and Benton’s model was implemented in a static and a dynamic environment, 

respectively. The results showed that the time-dependent model provided significant 

improvement over the model with fixed travel times, which indicated the usefulness of 

time-dependent travel speed information.   

           Donati et al. (2006) expressed the total distance between any two nodes in terms of 

the time taken to traverse an arc. Travel speed was inversely proportional to the time 

taken to traverse the distance. A step function was used for representing the speed 

distribution, from which the travel time distribution was derived. By applying this travel 

speed modeling approach to a real road network with 1522 nodes and 2579 arcs, the 

authors concluded that the time dependent models can provide a better modeling of travel 

time when variable traffic conditions have a considerable influence on travel time. In 

general, time dependent travel time can be modeled in two ways: deterministically or 
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stochastically (Van Woensel et al., 2008). In the deterministic case, the travel time is 

known in advance. The travel time is then a function of distance and mean speed. For 

instance, Ichoua et al. (2003) considered three distinct time periods (where the first and 

third periods stand for the morning and evening rush hours, respectively, and the second 

period corresponds to the middle part of the day) and three different types of road links. 

This approach has been implemented within a parallel Tabu search developed by Taillard 

et al. (1995) for the fixed travel time version. It provided a simple way to take time-

dependency into account by working with time-dependent travel speed that could be 

obtained from different sources of traffic data collection. 

               In the stochastic time-dependent models, the solution procedure takes into 

account the stochastic nature of travel time. Travel time is the result of taking into 

account not only mean travel time but ideally the travel time distribution itself. As the 

travel time distribution is derived from the speed distribution and the known distances, 

the approach requires realistic speed distributions. He et al. (2005) indicated that although 

mean and variance contain the most important information about path travel time, finding 

the single route with expected shortest travel time is not appropriate for routing when 

planners are not risk neutral. The entire travel time distribution contributes to the routing 

choice. A stochastic model usually involves two stages. In the first stage, a route is 

planned a priori, followed by a realization of the random variables. In the second stage, a 

recourse or corrective action is then applied to the solution of the first stage. The 

cost/saving generated though the recourse action may have to be considered when 

designing the first stage solution.  
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                In this dissertation, to include time-dependency into vehicle routing and 

scheduling, a predefined service time period was discretized into a limited fixed number 

of time intervals (e.g., 15-minute intervals) with a distinct associated fixed mean speed 

that was extracted from historical speed data or proper estimation. Future work will be 

focused on the integration of the real-time information (traffic conditions) and the speed 

profile provided by historical data. The general idea is to modify in real time, the speed 

profiles to accommodate traffic and thus to provide more realistic travel times. 

2.3 Arc Routing Problem 

The arc routing problems belong to another subset of the network optimization problems. 

While in node routing problems one tries to visit the nodes of the network, in arc routing 

problems the objective is to traverse the arcs of the network. The Chinese Postman 

Problem (CPP) and the Rural Postman Problem (RPP) are two popular arc routing 

problems. 

              CPP was simply stated by Kwan (1962) as the problem of finding the shortest 

walking distance for a mailman who has to cover his assigned segment before returning 

to the post office. Two extensions of CPP were described as follows. One is the windy 

postman problem (WPP), in which the underlying network is an undirected graph, but the 

cost of traversing an arc depends on the direction of travel. Another form of CPP is the 

hierarchical CPP where a precedence relation is defined on arcs of the graph, and the 

order in which the arcs are serviced must respect this relation. CPP can be viewed as the 

counter part of the traveling salesman problem in the category of arc routing problems. 

The capacitated CPP is a counterpart of the VRP in the ARP and deals with a more 
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realistic case than CPP. Given the demand for each arc that must be satisfied by vehicles 

with given capacities, find a set of cycles that all pass through a domicile and satisfy 

demands at minimal total cost. Just like that CPP is more likely to arise in urban areas, 

RPP is commonly associated with mail delivery in rural areas. There are a number of 

areas whose set of streets has to be serviced by a postman, and the other set of links 

between those areas that do not have to be served, but may be used for traveling between 

those areas. This problem is to find the minimum cost route to service those arcs that 

must be served. 

              Christofides and Beasley (1984) introduced the periodic arc routing problem 

(PARP), the problem of designing vehicle routes to meet required service levels for 

customers and minimize distribution costs over a given several-day period of time. A 

typical PARP in real life is the waste collection problem. Waste management companies 

gather statistics and know the average daily waste production in each street. This amount 

depends on the region, the population and the habitat. Apartment blocks in town centers 

cannot store waste for a long time in their basements so that it needs to be collected 

everyday generally. Houses in residential areas may keep waste for a few days in a 

container located in a garage or a garden and do not need a daily removal. This is why the 

collection process must be planned over a multi-period horizon. In practice, planners 

translate these waste productions into one service frequency for each street, for instance 

“everyday” or “twice a week”. Like location and districting, these computations depend 

upon the strategic decision level, because frequencies must remain constant for at least 

one year, to avoid upsetting the residents. It is assumed in the sequel that all strategic 

decisions have been already taken.  
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          PARP in waste collection consists of selecting for each street a number of 

treatment days equal to its frequency (tactical decisions), and then of computing the trips 

for the streets assigned to each day (operational decisions). Obviously, the total cost over 

the horizon depends on this combination of assignment and routing decisions. Waste 

collection is just one example. A similar organization can be found in other applications 

like winter gritting, sweeping, inspection of power lines, or spraying herbicides on rails 

or roads to kill weeds. 

2.4 Transformation between NRP and ARP  

It can be shown that a VRP can be transformed into an ARP, and that an ARP can be 

transformed into a VRP, making the two classes of problems equivalent. For 

transformations of ARP into VRP, the resulting VRP instance requires either adjustment 

of variables or the use of arcs with infinite cost. In this Section, the relationship between 

NRP and ARP is reviewed. 

2.4.1 Transformation of NRP to ARP  

Relatively Very few studies addressed the transformation from NRP to ARP, because the 

transformation usually is accompanied by a significant increase in the size of the problem. 

Golden and Wong (1981) showed how NRP can be transformed into a capacitated ARP 

by slitting each nodes into two nodes joined by an arc, and by assigning the original node 

demand to that arc. Ghiani and Improta (2000) developed an efficient transformation of 

VRP into a capacitated ARP with only increasing the number of nodes by not much. The 

number of nodes increased after transformation was dependent on the number of multiple 

membership nodes in the original problem. They proposed a transformation that can be 
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divided into three main stages. In the first stage, the general problem was transformed to 

a general TSP having mutually exclusive node sets. In the second stage, the intraset arcs 

were eliminated. In the third stage, the problem was transformed to a clustered TSP and 

then finally into a standard TSP. The resulting TSP has an arc and arc cost structure, 

which can be optimally solved by an approach based on integer linear programming. 

2.4.2 Transformation of ARP to NRP  

The field of arc routing is gaining momentum. However, since more literature is available 

on Node Routing Problems, some have ventured to turn ARP into VRP. The first and 

most generally used method for converting ARP into VRP was done by Pearn et al. 

(1987). They transformed the capacitated ARP into a capacitated VPR by replacing each 

arc with positive demand with three vertices, each having a demand equal to one third of 

the original demand. In this formulation the distances between vertex pairs were defined 

to enforce the constraint that a customer can only be visited by a single vehicle in the 

VRP and to guarantee that the three arcs appear consecutively on the same route in any 

capacitated VPR solution. Laporte (1997) transformed several types of ARP such as the 

Rural Postman Problem. Instances involving up to 220 vertices, 660 directed arcs and a 

few undirected arcs were solved to optimality on low density graphs. The transformation 

includes three steps: 

1. Replace each edge by two arcs; 

2. Create a transformed network. The nodes in the transformed network are the arcs 

in the original network; the arcs in the transformed network are the length of the 

shortest path between two arcs in the original network; 

3. Transform the Generalized Traveling Salesman Problem into TSP. 
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            However, the transformation is regarded as unpractical, since an original instance 

with r required edges was turned into a CVRP over a complete graph with 3r+1 vertices. 

Longo et al. (2004) proposed a similar transformation that reduces this graph to 2r+1 

vertices, with the additional restriction that r edges were already fixed to 1. Using a 

recent branch-and-cut-and-price algorithm for the CVRP, it was observed that it yields an 

effective way of attacking the CARP and computational experiments obtained improved 

lower bounds for almost all open instances. But, the transformation entails certain 

drawbacks summarized by Letchford and Oukil (2009): 

1. A huge amount of memory is needed to perform the transformation. 

2. The transformation method is not suitable for all types of graphs. 

            To address these two drawbacks, it is worth noticing that as the information 

techniques have been developing in a fast pace, the memory capacity should not be a 

barrier for transforming ARP to VRP. Also, with appropriate adjustments on network 

graphs, the applications of ARP in waste collection, winter plowing and spreading can be 

formulated in the context of VRP.  

 2.5 Vehicle Routing in Winter Road Maintenance 

VRP is one of the most well studied problems in operations research, both in real life 

problems and for scientific research purposes. Many practical transportation problems 

including the winter road maintenance routing problem can be formulated as a VRP. 

Winter road maintenance operations involve challenging vehicle routing that can be 

addressed using operations research (OR) techniques. Key problems such as routing 

trucks and specialized vehicles for spreading chemicals and abrasives on roadways, snow 
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plowing, and snow disposal, all of which are undertaken in a difficult and dynamic 

operating environment with strict level of service constraints. There is an extensive 

literature of academic research on various issues related to the planning, design and 

management of winter road maintenance operations summarized by Perrier et al. 

(2006a,b, 2007a,b). 

2.5.1 Vehicle Routing Problems for Spreading  

Consider a road network consisting of a set of predetermined maintenance segments with 

each representing an itinerary that a service vehicle may follow. A fleet of vehicles is 

available to provide winter maintenance services such as salting during a snowstorm 

event. The problem is to develop an operation plan for the available service vehicles that 

specify a route assignment to take into account the following requirements: 

1) The total operating cost is minimized; 

2) The total service time is minimized;  

3) The level of service for the network is maximized; 

4) Total negative environmental effects (e.g., salt usage) are minimized. 

          Early studies generally formulated the routing problem related to spreading 

operations as ARP. Evans and Weant (1990) formulated salt spreading operations as the 

capacitated ARP and used the path-scanning algorithm to search for the optimal solution 

that satisfied the constraints of maximum service time for spreading completion, 

maximum route duration and vehicle capacities. Campbell and Langevin (2000) provided 

a detailed description of the snow removal and disposal operation in Montreal. They 

listed major arc routing theories, solutions and applications related to snow operations. 

These problems include site location, Section design, Section assignment, fleet mix and 
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routing. An integer programming formulation for snow disposal site location and the 

vehicle assignment problem was given.  

           Compared to early studies, researchers gradually incorporated more practical 

constraints and techniques into their models. Thus, the spreading problem cannot be only 

limited to the context of ARP. To reduce the operation cost that is dominated by total 

travel distance or total travel time of the entire fleet, Haghani and Qiao (2001) developed 

a model that incorporated the constraints of maximum route distance and truck capacities 

to optimize snow emergency routes for Calvert County, MD. Later, the model was 

enhanced (2002) by considering the link continuity constraint into the optimization 

processes. A heuristic approach was applied, which decomposes the problem into two 

components: “allocation of road Sections to salt spreaders” and “vehicle routing”. In the 

first component, the network transformation technique was used to convert an ARP to a 

NRP, and the minimum spanning tree formulation was used to calculate the minimum 

required fleet size to complete the entire spreading operation; and in the second one, the 

total deadhead cost was minimized by optimizing routes with the fleet size obtained from 

the first component.  

         Yu and Chien (2013) applied a similar network transformation technique to 

formulate a routing problem related to anti-icing and de-icing operations as a NRP. The 

objective was to minimize the service time needed for anti-icing/de-icing operations, 

subject to truck capacity, truck operating speed and fleet size constraints. After the 

vehicle routing network was converted from an ARP to a NRP, the study vehicle routing 

problem can be solved via dynamic programming (DP). The solution approach was tested 
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on a general network with practical operational data. The results were promising and 

computationally efficient.  

          In summary, despite of the difficulty of  routing and scheduling vehicles for road 

maintenance, recently proposed models tended to take into account a larger variety of 

problem characteristics (e.g., roadway characteristics, snow sectors, level of service) 

arising in real-world applications. Recent developments in modeling and algorithmic 

tools, the increased performance of computers, and the increased desire from state and 

local agencies to reduce expenditures on winter road maintenance operations, while 

maintaining or enhancing service levels and minimizing environmental impacts, all 

motivate the more widespread use of optimization models. 

2.5.2 Vehicle Routing Problems for Snow Plowing  

Plowing operations involve a number of VRP where streets or roads have to be traversed 

by plows or trucks. The plow routing and scheduling problems consist of determining a 

set of routes, each traveled by a vehicle that starts and ends at its own depot, such that all 

road segments are serviced, all the operational constraints are satisfied, and the global 

cost is minimized. Similar to routing problems related to spreading operations, routing 

problems related to plowing operations were generally formulated as arc routing 

problems. 

            Marks and Stricker (1971) modeled the plow routing problem as a multiple 

vehicle CPP, which is a special case of ARP. The authors attempted to minimize 

deadhead distance while respecting the service requirements and vehicle capacity 

constraints. Haslam and Wright (1991) and Wang and Wright (1994) developed a 

maintenance decision support system for the Indiana Department of Transportation 
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planners to determine snow plowing routes with minimized deadheading, service time 

window violation and the total distance of class upgraded road segments. The system can 

handle plow routing problems with service time windows, class continuity and class 

upgrading constraints.    

           Perrier et al. (2008) proposed a formulation and two solution approaches based on 

mathematical optimization techniques for the routing of snow plowing vehicles in urban 

areas. Given a district and a single depot where a number of plows are based, the problem 

is to determine a set of routes, each performed by a single vehicle that starts and ends at 

the district’s depot, such that all road segments are serviced while satisfying a set of 

operational constraints and minimizing a service completion time. The model contained 

general precedence relation constraints with no assumption on class connectivity, 

different service and deadhead speed possibilities, and vehicle road segment 

dependencies. The author proposed a model based on a multi-commodity network flow 

structure to impose the connectivity of the route performed by each vehicle, as well as 

constraints to model a hierarchical objective. The problem was solved by means of two 

constructive algorithms. The first one constructed several routes in parallel by 

sequentially solving a multiple vehicle rural postman problem with side constraints. The 

second was a cluster-first, route-second algorithm, which first determines a partition of 

the arcs into clusters, each having approximately the same work load. A hierarchical rural 

postman problem with class upgrading possibilities, vehicle road segment dependencies, 

and turn restrictions was then solved on each cluster.  

             Similarly, Dali (2009) proposed a sequential constructive heuristic for designing 

snowplow routes in a multi-depot network. The problem was modeled as a capacitated 
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arc routing problem. The research was helpful in planning the optimum plowing routes; 

however, this problem was not applicable to predefined snow Sections in which the 

service routes were predetermined. 

              Fu et al. (2009) developed a real-time optimization model to evaluate the 

alternative resources allocation plan for winter road maintenance operations. Given a 

fleet of plowing vehicles and a set of predefined maintenance routes, the problem 

consisted of developing an operations plan for the available service vehicles that specify 

for each of them a route assignment including service type and service starting time. The 

scheduling model took into account both operation costs and quality of service 

requirements, as well as road network topology, road classes, and weather forecasts. 

              Salazar et al. (2011) studied the synchronized arc routing problem for snow 

plowing operations. In their research, the routes were designed in such a way that 

different synchronized vehicles plow street segments with two or more lanes in the same 

direction simultaneously. This research solved the problem of an important practical 

consideration absent from the literature on the planning of snow plowing operation. 

Namely, that plowing may need to be synchronized at the same time on the same street 

segment. The synchronized arc routing problem consists of determining a set of routes 

such that all street segments are serviced within the least possible time, subject to a 

synchronization constraint. 

                 In summary, winter road plowing operations involve a host of system design 

and vehicle routing problems that can be addressed with operations research techniques. 

VRP for winter road maintenance are site specific because of the diversity of operating 

conditions and the wide variety of operational constraints. Hence, most algorithms 
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developed for the routing of vehicles for winter road maintenance are heuristics (Perrier 

et al., 2007). Early models were generally solved with simple constructive methods for 

undirected and directed versions of CPP (a special case of ARP), and used simulation 

models to evaluate benefits. Implementation details and operational constraints were 

rarely considered. But lately it is a trend of gradual consideration of more realistic vehicle 

routing problems and a gradual introduction of local search techniques. While some 

recent models were solved with composite heuristic methods, others are solved using 

meta-heuristics, which have proven to be very effective for several classes of discrete 

optimization problems. 

2.6 Solution Algorithms 

A good algorithm for Vehicle Routing Problem should have four attributes, which are 

accuracy, speed, simplicity and flexibility. In general, there are two major categories of 

solution algorithms. One is the exact algorithms that provide global optimal solutions, the 

other one is the heuristics that give approximate solutions. In the following Section, 

algorithms in each category are reviewed based on the four attributes of a good algorithm.   

2.6.1 Exact Algorithms 

Most VRPs are difficult to solve exactly, even for problems of small size. The first 

optimization algorithm for the VRPTW can be attributed to Kolen et al. (1987) who used 

dynamic programming coupled with state space relaxation (Christofides et al., 1981b) to 

compute lower bounds within a branch-and-bound algorithm. Instances with n <= 15 

were solved using this approach. Most subsequent algorithms rely either on the 

generation of valid inequalities to strengthen the linear programming relaxation or on 
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mathematical decomposition techniques. This Section reviews the two main available 

approaches that have been prove efficient and effective in solving VRP: the column 

generation and the branch-and-cut. 

Approaches Based on Column Generation (CG) 

The CG method, similar to the nature of the set partitioning (SP) approach, has been 

widely used to optimally solve various types of vehicle routing and scheduling problems 

with time windows. CG is intimately related to constraint generation and can be seen as 

special way of updating the multipliers associated with the relaxed constraints. Let k
Ω  

denote the set of feasible routes for vehicle k K . For each route k
w Ω , let 

k

w
c  be the 

cost of this route and let 
k

w
x be a binary variable equal to 1 if and only if vehicle k uses 

path w, and 0 other wise. As first suggested by Balinski and Quandt (1964), the objective 

function of VRPWT can be sated as follows: 

Minimize 
k

k k

w w

k K w Ω

c x
 

   

Because the sets k
Ω  are likely to have a large cardinality, this problem can be tackled by 

a branch-and-bound algorithm in which the linear relaxations are solved by CG. At each 

node of the enumeration tree, a restricted column generation master problem is solved 

over the current set of columns. New columns of negative reduced cost are generated by 

solving a resource constrained shortest path problem with modified costs reflecting the 

current values of the dual variables associated with the constraints of the column 

generation master problem. This process stops when no negative reduced cost column 

can be generated. 
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            CG was used by Dumas et al. (1991) to solve a VRPPD problem with time 

windows and multi-vehicle cases, which worked efficiently under restrictive capacity and 

hard time window constraints. Because of the reduced solution spaces, the CG method is 

computationally tractable to find optimal solutions for small to moderate size problems. 

Fagerholt (2000) proposed an optimization approach based on the SP approach to solve a 

ship-scheduling problem with time windows. First, the traditional VRP formulation was 

partitioned into a master problem and a brunch of sub-problems of the shortest path or the 

least cost. Second, all or a number of promising feasible routes were enumerated and the 

various possible schedules of each route were computed for each sub-problem. Finally, 

the schedules were given as input to the master problem to find the optimal schedule for a 

fleet of ships.            

          By adding some valid inequalities, a VRP can be efficiently formulated with the SP 

approach. Some of the most successful implementations by Fukasawa et al. (2006) and 

by Baldacci et al. (2008), were based on this methodology. Baldacci et al. (2008) 

presented a new exact algorithm for the capacitated VRP based on the SP formulation 

with additional cuts that correspond to capacity and clique inequalities. The exact 

algorithm used a bounding procedure that finds a near optimal dual solution of the LP-

relaxation of the resulting mathematical formulation by combining three dual ascent 

heuristics. The first dual heuristic was based on the q-route relaxation of the set 

partitioning formulation of the CVRP. The second one combined Lagrangean relaxation, 

pricing and cut generation. The third attempted to close the duality gap left by the first 

two procedures using a classical pricing and cut generation technique. The final dual 

solution was used to generate a reduced problem containing only the routes whose 
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reduced costs are smaller than the gap between an upper bound and the lower bound 

achieved. The resulting problem was solved by an integer programming solver. 

Computational results over the main problems from the literature showed the 

effectiveness of the proposed algorithm. 

          Wilhelm (2001) did a technical review of CG in integer programming, and he 

stated that the success of work on the VRPTW was pivotal in motivating the use of CG 

methods as modern tools for solving large-scale integer programming problems. Not only 

for VRPTW, but also CG was proved to be an effective and efficient solution approach 

for miscellaneous applications such as job scheduling, machine assembling, and cutting 

stock. 

Approaches Based on Branch and Cut 

Branch-and-cut algorithms currently constitute one of the best available exact approaches 

for the solution of the VRP (Laporte, 2009). The use of branch-and-cut for the 

capacitated VRP (CVRP) was rooted in the exact algorithm of Laporte et al. (1985). This 

algorithm used the Linear Programming (LP) relaxation result of the CVRP without 

capacity constraints as a basis for the solution of the VRP with capacity and maximum 

distance restrictions. This initial relaxation was iteratively strengthened by adding 

violated capacity constraints in the current LP solution.  The algorithm was capable of 

solving randomly generated problems with two or three vehicles and up to 60 customers. 

              The key to Branch-and-Cut algorithm is to separate the capacity constrain to 

generate the initial solution. Thus, researchers have been focusing on developing 

separation procedures of capacity inequalities. Augerat et al. (1995) developed the first 

complete branch-and-cut approach for the CVRP. They described several heuristic 
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separation procedures for the classes of valid inequalities, as well as four new classes of 

valid inequalities. Separation procedures were further investigated by Augerat et al. 

(1998). The resulting approach was able to solve several CVRP problems containing up 

to 134 customers. Ralphs et al. (2003) have presented a branch-and-cut algorithm for the 

CVRP in which an exact separation of valid m-TSP inequalities was used in addition to 

heuristic separation of capacity inequalities. The resulting algorithm was implemented 

within the parallel branch-and-cut-and-price framework and was able to solve several 

instances involving fewer than 100 vertices. Lysgaard et al. (2004) have developed new 

separation procedures for most of the families of valid inequalities proposed so far. Their 

overall branch-and-cut approach, which was further enhanced by the use of Gomory cuts, 

was able to solve previously solved problems within moderate computing time.  

           Baldacci et al. (2004) put forward a branch-and-cut algorithm based on a two-

commodity network flow formulation of the CVRP and requiring a polynomial number 

of integer variables. It provided an interesting alternative to other classical formulations. 

The overall algorithm strengthened the LP relaxation by adding violated capacity 

inequalities and implementing various variable reduction and branching rules. The results 

obtained with this approach are comparable with those of the other branch-and-cut 

algorithms just described. 

              Another key issue to the branch-and-cut approach is to define bounds of 

branches. Fukasawa et al. (2006) proposed a successful branch-and-cut and- price 

algorithm combining branch-and-cut with the column generation approach to derive a 

tighter bound than other branch-and-cut algorithms. The proposed algorithm was capable 
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of solving several previously unsolved problems with up to 135 vertices, which doubled 

the size of the problems that can be consistently solved. 

2.6.2 Heuristic Algorithms 

The development of modern heuristics for the VRP really started in the 1980s. It is fair to 

say that the study of the VRP has stimulated the growth and understanding of several 

heuristic concepts we now know. The early research in this area was quite fragmented, 

with a notable bias towards tabu search-based approaches and some of the algorithms 

were over engineered, but some rationalization has started to take place in recent years. 

The best heuristics are those that simultaneously perform a wide and deep search of the 

solution space and can solve several variants of the VRP. In the following Section, 

several heuristics were reviewed.  

Savings-based Methods and Modifications 

It has been argued (Cordeau et al., 2002b) that four attributes of good VRP heuristics are 

accuracy, speed, simplicity and flexibility. The savings-based method scores highly on 

speed and simplicity, because it contains no parameters and is easy to code.  

           Clarke and Wright (1964) developed a heuristic solution method which became 

known as the savings method and was the first algorithm that became widely used. The 

algorithm was used to solve a TSP, which is a special case of VRP without capacity 

constraint. This simple heuristic works as follows. At the start, it is assumed that each 

customer is serviced by a single route. Then, at each iteration, a pair of routes is selected 

and merged together on the basis of the best cost saving that can be achieved. This is 

repeated until a single route is obtained or no feasible merge exits. This is the most basic 

form of the savings-based method. Many authors proposed developments of this 



38 

 

 

 

algorithm by proposing new parameters into the original CW formula, such as an 

estimate of the maximum savings value (Tillman, 1969), a penalty multiplier for solving 

CVRP with backhauls (Deif and Bodin, 1984), the route shape parameter for solving 

CVRP (Yellow, 1970), and the customer demand (Altinel and Oncan, 2005).      

            Above developments could be categorized as adaptations to the savings formula, 

there are also methods to speed up computation time and improvements to the route 

merging process. Altinkemer and Gavish (1991) sought to optimize the route merging 

process. They proposed to replace the merging procedure of the savings method by a 

matching procedure which merges partial solutions at each step. At each iteration of the 

algorithm, multiple clusters of nodes were merged. The number of clusters was 

determined by solving a matching problem, which can maximize the savings obtained. 

Their algorithm was polynomial, with a time complexity of O(n
3
), where n denotes the 

number of demands.  

            The recent development has been the application of Ant Systems to the VRP, 

using modifications of the savings method (Reimann et al., 2004). In such systems, a 

population of artificial agents repeatedly constructs solutions to the problem using a joint 

population memory and some heuristic information. After each member of the population 

has constructed its next solution, the memory is updated with a bias towards. The better 

solutions were found. Gradually, the memory will build up, thus giving stronger 

influence to the solutions built by the artificial agents, and the solutions will evolve 

towards the global optimum. Reimann et al. (2004) modified the savings method to create 

a savings-based ant system that not only improves the efficiency, but also improves the 

effectiveness of the algorithm leading to a fast and powerful problem solving tool for real 
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world sized Vehicle Routing Problems. Juan et al. (2011) has proposed a new 

probabilistic approach to the CW procedure by composing of Monte Carlo Simulation, 

cache, and splitting techniques. The algorithm was validated through a set of CVRP 

standard benchmarks and competitive results were obtained in all tested cases. 

Simulated Annealing (SA) 

SA is a technique that works by searching through the set of all possible solutions, and 

reducing the chance of getting stuck in a poor local optimum solution. Cerny (1985) 

proposed an analogy of statistical thermodynamics with SA and illustrated its application 

in solving a TSP. The results obtained by SA were very close to the optimal solution and 

even sometimes the optimal solution was obtained. Eglese (1990) stated various 

modifications such as storing the best solution, sampling the neighborhood without 

replacement, and alternative acceptance probabilities for the SA algorithm to improve its 

efficiency. Connolly (1990) used simulated annealing to the Quadratic Assignment 

Problem. In the paper, the author developed an improved annealing scheme that gives 

better results for a given range of problems. 

             Even though SA is a simple procedure to use, there are several decisions that 

need to be made while applying it. Usually, the SA can be implemented with a simple 

neighborhood suggested by some small scale initial experiments. Then further 

improvements can be made by more detailed analysis of the problem characteristics or by 

combining simulated annealing with other techniques. In general, SA is often used when 

the search space is discrete. For certain problems, simulated annealing may be efficient 

when the goal is merely to find an acceptably good solution in a fixed amount of time, 

rather than the best possible solution. 
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Genetic Algorithm (GA)    

The GA is inspired by the population genetics. GA uses a collection of solutions, from 

which using selective breeding and recombination strategies, better solutions can be 

produced. Simple genetic operators such as crossover and mutation are used to construct 

new solutions form pieces of old ones. Crossover and mutation are the basic tools for 

creating new solutions. However, the chromosomes that are selected as a basis for the 

reproductive step are clearly critical in what happens to a population as a whole. Thus, 

Holland (1992) suggested that at least one parent should always be chosen on the basis of 

its fitness in terms of combinational problems.  

           Like SA, GA provides the user with several parameters to adjust. Zhao et al. 

(2008) developed an online genetic algorithm to solve the dynamic VRPTW with 

variable travel times. In the case of the dynamic VRP with time-dependent travel times, 

the speed of a route is no more constant but variable. The travel time of vehicles between 

two customers relates to its departure time. Thus, Zhao et al. (2008) set the fitness of the 

chromosomes not only based on the distance but speed and departure time. The result 

showed that the variable speed model gives better results than the constant speed model.  

           In General, problems which appear to be particularly appropriate for solution by 

GA include timetabling and scheduling problems, and many scheduling software 

packages are based on GA. 

Tabu Search (TS) 

TS was first introduced by Fred Glover in 1993 and has been used to solve many 

practical problems that arise in real-world application like the VRP. TS uses a local or 

neighborhood search procedure to iteratively move from one potential solution x to an 
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improved solution x’ in the neighborhood of x, until some stopping criterion has been 

satisfied. Local search procedures often become stuck in poor-scoring areas or areas 

where scores plateau. To avoid these pitfalls and explore regions of the search space that 

would be left unexplored by other local search procedures, TS carefully explores the 

neighborhood of each solution as the search progresses.                      

            A TS heuristic for a PDP with time windows was developed by Nanry and Barnes 

(2000). Solutions that violate time window and vehicle capacity constraints are allowed 

during the search. These authors have considered three move types. 1) to remove a node 

pair (i, n + i) from its current route and reinsert it in a different route; 2) to swap two 

pairs of nodes between two distinct routes. 3) to move a single node within its current 

route. A hierarchical search mechanism was used to dynamically alternate these 

neighborhoods according to problem difficulty. Computational results were reported on 

random instances involving up to 100 requests. A similar TS heuristic was also developed 

by Lau and Liang (2002). 

            TS is similar to SA in that both traverse the solution space by testing mutations of 

an individual solution. While simulated annealing generates only one mutated solution, 

TS generates many mutated solutions and moves to the solution with the lowest energy of 

those generated. To prevent cycling and encourage greater movement through the 

solution space, a tabu list is maintained of partial or complete solutions. It is forbidden to 

move to a solution that contains elements of the tabu list, which is updated as the solution 

traverses the solution space. 
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2.7 Summary 

The vehicle routing and scheduling problem consists of designing least cost delivery 

routes through a set of geographically scattered customers, subject to a number of side 

constraints. This problem holds a central place in distribution management and is faced 

on a daily basis by tens of thousands of carriers worldwide. The problem arises in several 

forms because of the variety of constraints encountered in practice. For over 50 years, the 

vehicle routing and scheduling problem has been extensively studied by the operations 

research community. Initially, in a more practical aspect, this problem contributes 

directly to a real opportunity to reduce costs in the important area of logistics. Secondly, 

because it is still one of the most difficult problems in combinatorial optimization and 

consequently presents a great challenge. For example, a TSP, which is a special case of 

the VRP, can now be solved for thousands and even tens of thousands of vertices 

(Laporte et al., 2013). In contrast, VRP is much more difficult to solve. For example, in 

the relatively simple case where only capacity constraints are present (called the 

capacitated VRP, or CVRP), it is still difficult to solve problems with one or two hundred 

customers by means of exact algorithms. 

           In this chapter, the problems relevant to the topic of vehicle routing and 

scheduling and its variants and solution procedures were reviewed. It is clear that the 

ideas behind designing algorithms for these problems are closed related to each other. 

One problem can be transformed to another problem. Because of the difficulties of these 

problems (NP-Completeness), the proposed algorithms for these are mostly heuristic 

methods. However, as pointed out by Fisher (1995), heuristics usually lack robustness 

and their performance is very much problem specific. Fisher states “It’s not uncommon 
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that a heuristic developed for a particular geographic region of a company’s operation 

will perform poorly in another region served by the same company.”  

          In general, when heuristic methods were used, the number of vehicles was chosen 

as the first objective and the total travel distance only as the second. In fact, the choice of 

the most appropriate objective depends on specific rules and peculiarities of each 

individual business. For example, if a company limits the number of vehicles in their own 

fleet to a certain percentage of their actual requirement, a large amount of goods will be 

delivered by third-parties, usually small businesses or even self-employed owners of 

individual trucks. The payment rule used to these third-party trucks is normally based on 

the total travelled distance. In this case, minimization of travel distance is the most 

attractive and primary objective for the company. Another example is government 

contracting of third-party trucks to provide service during winter storms. The total 

travelled distance or travel time dominates this spending.  Consequently, many real-life 

situations justify the study of new algorithms and techniques to improve the vehicle 

routing results in terms of total travelled distance.  

          In summary, when it comes to algorithm design, this research should not be 

confined either to exact algorithms or heuristic methods. Ideas from different algorithms 

for vehicle routing problems should be considered. 
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CHAPTER 3    

MODEL DEVELOPMENT 

 

Real world transportation problems such as travel time data collection and winter 

roadway maintenance discussed earlier can be classified as a vehicle routing and 

scheduling problem. To solve these problems, a basic model without considering travel 

time variability was developed first. Then, an enhanced model was developed to deal 

with time dependent travel time issue existing in a transportation network.  

            The study problem was formulated as an integer programming problem. Detailed 

descriptions about model preparation are discussed in Section 3.1. Additionally, a 

network transformation technique described in Section 3.2 was used to convert an arc 

routing problem (ARP) to a node routing problem (NRP), so that the proposed set-

partitioning (SP) approach can be used to formulate the research problem. The 

formulation of the proposed models and associated parameters are discussed in Sections 

3.3 and 3.4. 

        To ensure that the study problem is properly formulated with realistic conditions and 

solved efficiently, the implementation for the model development considered a number of 

operational constraints, including limited fleet size, pre-specified time windows and level 

of service (e.g., service time limit). The framework of this implementation is illustrated in 

Figure 3.1. 
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Figure 3.1  Implementation of model development. 

From the mathematical perspective, variables that used to represent optimal routing and 

scheduling results are restricted to be integers, thus the study problem is formulated as an 
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integer programing problem，which takes inputs of a set of travel times and network 

information, and is subject to constraints of fleet size and service time limit. Then the 

network transformation technique and SP approach is used with adjustments to serve the 

purpose of model development. After the model is developed, a solution algorithm comes 

in to solve the model and produces output a dispatch list describing when and where to 

deploy vehicles. Before getting into the details of the mathematical model, the indexes, 

parameters and decision variables used in this chapter are defined in Table 3.1. 

Table 3.1  Glossary of Mathematical Notations (Alphabetical Order) 

Types of 

Variable 

Notation Meaning Unit 

Parameters δrd 1, if route r starts at depot d; 0, otherwise. / 

 αr
it
 1, if service route r covers service node i at time 

window t; 0, otherwise 

/ 

 A Set of directed arcs in the original network / 

 A
’ Set of directed arcs in the transformed network

 
/ 

 A
1 Set of directed arcs that need to be serviced in the 

original network
 

/ 

 A
2 Set of directed arcs that don’t need to be serviced in 

the original network
 

/ 

 
 
b

i

v
 The beginning service time of vehicle v at node i, i I

 / 

 Cr The cycle time for service route r, the sum of 

deadhead travel time and service time 

 

 D Set of depots, indexed by d  

 eti
 

The earliest departure time from node i at time 

window t,  i I 

/ 

 kd Number of available of vehicles at depot d  
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  Continued  

 lti The latest departure time from node i at time window 

t, ,  i I 

/ 

 m Number of designated time windows / 

 n Number of nodes to be serviced  

 I Set of nodes to be serviced / 

 N Set of all nodes except depots in the original network  / 

 N
’
 Set of all nodes except depots in the transformed 

network, IN
’
  

/ 

 R A set of service routes, indexed by r, a service route is 

a sequence of nodes that a vehicle visit along with
 

/ 

 si The service time of node i, i I Minute 

 ( )
v

i i
s b  A time-dependent service time of the required node i 

while beginning at time v

i
b  

Minute 

 ( )
v

ij i
t b  A time-dependent travel time from node i to node j 

while beginning at time v

i
b  

Minute 

 T Set of designated time windows, indexed by t / 

 tij Travel time for traveling arc (i, j) A
’
 Minute 

 V Set of probe vehicles, indexed by v / 

Decision 

Variables 

Xvr 1, if vehicle v travels on service route r; 0, otherwise / 

 vt

ij
x  1 if (i,j) is traveled by vehicle v within time window t, 

0 otherwise 

/ 

3.1 Problem Description 

Let G = (N, A) be a directed graph where N is the node set and A is the arc set. It is 

assumed that A is partitioned into a subset of required arcs A1, which must be serviced, 
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and a complementary subset A2. Each required arc iA1 is associated with parameters 

that can be constant and time-dependent, including demand, travel time, service time and 

travel cost. A service time window indexed by t is imposed to ensure that each required 

arc i is serviced by a vehicle within a time period from eti to lti. The other arcs in subset 

A2 have values of travel time and travel cost only. Also it is noted that service time is 

typically larger than the travel time because it takes more time to service an arc than to 

simply travel along the arc. A set V={1,2…..k} of identical vehicles (assumed the fleet 

size is k) is available to service the required arcs. These vehicles are required to start and 

end their services at a predetermined depot. The objective is to service all required arcs 

within the associated time windows at least cost or at least travel time. 

3.2 Network Transformation 

Both arc and node routing problems have received continuous research attention. The 

connections between these two classes of problems have been underlined by the 

transformation techniques that can translate an instance of one problem into an instance 

of the other problem. As mentioned in the literature review, compared to the well-known 

NRP, the ARP had been neglected for a period of time (Lacomme et al., 2004). NRPs 

have received relatively more attention because of their computational efficiency when 

compared with the arc routing ones, and there are problems for which research results are 

much more impressive for node routing than for their arc routing counterparts (Baldacci 

and Maniezzo, 2006).  

          Before formulating the studied problem, a network transformation approach (Pearn 

et al., 1987) was introduced to transform the arc routing problem denoted as G = (N, A) 
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into a node routing problem denoted as G
’ 

= (N
’
, A

’
). Each arc iA1 in graph G 

corresponds to a node i in graph G
’
, with service time si and time window [ei,li]. Each pair 

of nodes i and j in G
’
 is connected by an arc (i,j)A

’
 with travel time tij. The travel time is 

based on the shortest path between the two corresponding required arcs in G. These 

shortest paths were calculated from the end node of the first arc to the start node of the 

second arc. Finally, a depot was assumed to be connected to all other nodes in G
’
. A 

general road network is illustrated in Figure 3.2, the numbers next to the arcs were 

denoted as arc IDs. 

 
Figure 3.2  The original network. 

An adjacency matrix was established and showed in Table 3.2, which is symmetric and 

associated with the original network.  

Table 3.2  The Adjacency Matrix 

From/To 1 2 3 4 5 6 7 

1 0 1 1 1 0 0 0 

2 1 0 0 1 1 0 0 

3 1 0 0 0 0 1 0 

4 1 1 0 0 0 1 1 

5 0 1 0 0 0 0 1 

6 0 0 1 1 0 0 1 

7 0 0 0 1 1 1 0 
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Since arc 3 connects with arcs 1 and 6, the entries for (3,1) and (3,6) were designated as 

“1” and all others designated as “0”, since there are no direct connections between them. 

           Thus, the original network can be transformed in such a way that the arcs in the 

original network are the nodes in the transformed network as shown in Figure 3.3. Note 

that the arcs in the transformed network indicate the adjacency relationship among the 

arcs in the original network. The main contribution of this transformation is to turn an 

ARP into a NRP. So the study problem can be effectively formulated by the SP approach 

introduced in a later section. 

 

Figure 3.3  The transformed network from the original network. 

3.3 The Basic Model 

After the network transformation, a NRP model was developed that takes input including 

number of vehicles, constant travel time, time windows and transportation network 

information. The model then output a summary of the optimal vehicle dispatch schedule 

describing when and where to collect traffic data subject to constrains of fleet size and 

time windows. For developing the basic model, the required assumptions to formulate the 

objective function and constraints are presented next. 
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3.3.1 Assumptions 

To formulate the research problem, some assumptions are made and are discussed below:  

• It could be a single depot problem or a multiple-depot problem based on real 

operations. But each vehicle’s trip must start and end at the same depot. 

• Every vehicle must depart from a starting node of a required service arc within 

the designated time windows. In this study, each required service arc can have 

multiple service time windows. 

• The required service arcs are known in advance. 

• The travel times are constant and known in advance. 

3.3.2 Model Formulation 

A vehicle routing problem with multiple time windows is defined on a directed graph G
’
= 

(N
’
, A

’
), which was transformed from G = (N, A) as defined in Section 3.1.  

Objective functions and constraints: 

Min 
'

( , ) { }

( )
vt vt

ij ij i ji

v t ii j j

Z t x s x
    

    
'V T IA N D

         (3.1) 

The objective is to minimize the total vehicle travel time. Eq. (3.1) has two components, 

the first one is the sum of deadheading travel time and the second one is the sum of 

service time. The deadheading travel time captures the travel time that is incurred by 

traveling between nodes without providing service. Service time is only incurred at the 

nodes that require service (set I).     

Subject to: 

'
{ }

1, ,
vt

ij

v i

x t j
  

     
V N D

T I                       (3.2) 
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Equation (3.2) requires that each node j belonging to I must be serviced only once at each 

time window t. 

,
vt

dj d

v j

x k t d
 

    
V I

T, D                          (3.3) 

Equation (3.3) imposes the fleet size limit at each time period t. 

1
1,

v

dj

j

x v d


    
I

V, D                                 (3.4) 

Equation (3.4) ensures all vehicles start their trips from a depot. 

1,
vm

jd

j

x v d


    
I

V, D                                 (3.5) 

Equation (3.5) ensures all vehicles end their trips at a depot; m represents the last time 

window. 

, , ,
v

ti i ti
e b l t i v       T I V                      (3.6) 

Equation (3.6) ensures that the beginning service time at each required node must be 

within the corresponding time windows. If vehicles arrive early, they have to wait till the 

earliest beginning service time to depart. ,
ti ti

e l represent the lower bound and the upper 

bound of the designated time window, which are predetermined by users. 

, , ,
v v

i i ij j
b s t b i j v      I V                          (3.7) 

Equation (3.7) is the time flow constraint that ensures vehicles to service node i before 

servicing node j.  

              The basic model presented above is able to mathematically represent a vehicle 

routing problem with time windows. The objective function of the basic model 

strategically divides the total vehicle travel time into two components, which are the 
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deadhead travel time and the service time. The service time is inevitable because all the 

service demand has to be satisfied, thus the major optimization for the basic model turned 

into finding a feasible route to minimize deadhead travelling between nodes in the study 

network.  The constraints of fleet size and time windows were addressed in the basic 

model. However, the basic model was based on the already known constant travel times, 

which may restrict its applicability to real-world problems where travel times are subject 

to more subtle variations over time. Therefore, an enhanced model considering time-

dependent travel times was developed and is discussed in the next section.  

3.4 The Enhanced Model 

The basic model presented above assumed that the travel times each pair of nodes in the 

study network are constant. Unfortunately, this assumption may not be practical for most 

real-world problems because travel times are not constant but vary from predictable 

events like congestion during peak hours or from unpredictable events like snow storms. 

Therefore, an enhanced model is proposed here considering time-dependent travel time. 

3.4.1 Model Formulation 

In the basic model, the objective function was calculated in terms of travel cost that can 

be interpreted as mean travel time multiplied by the cost coefficient cij (Eq. 3.1). The 

major change in the formulation of the enhanced model is to replace the total travel cost 

by the total travel time which is affected by traffic conditions in different time periods. 

Objective function: 

Min Z=
'

( , ) { }

( ( ) ( ) )
v vt v vt

ij i ij i i ji

v t ii j j 0

t b x s b x
    

   
'V T IA N

                  (3.8) 
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Similar to the objective function of the basic model, Eq. (3.8) has two components.  The 

first one is the sum of deadheading travel times and the second one is the sum of service 

times. However, compared to the basic model, both components in the enhanced model 

cannot be calculated by adding up constant travel time values, but have to take the time 

dependency of travel time into account.  

3.4.2 Time-Dependent Travel Time 

In real world vehicle routing problems, the speed is not constant. Thus, it is necessary to 

model the speed profile to get more realistic solutions. As defined in the objective 

function Eq. 3.8, the time dependent parameters ( )
v

i i
s b  and ( )

v

ij i
t b  can be calculated as a 

time dependent function of travel speed. 

          A model was developed here to consider that travel is not carried out at constant 

speed all day, but only on different and shorter time periods. This model considered 

speed profiles that correspond to various time periods of a day (e.g., peak hours). For 

simplicity, this dissertation considered a planning horizon that can be discretized into a 

number of time intervals. For example, each time interval is 15 minutes in length. For 

more accuracy, the time distribution using shorter time intervals can be considered.  

            Considering a graph G (N, A) representing a transportation network, where N is a 

set of nodes and A is a set of arcs, vehicles on link (i, j) travel at the same speed within 

each time interval. Let t

ij
s be the speed of the vehicle during the t

th
 period of the day for a 

particular link (i, j). The speed distribution s(h) is assumed to be a step function of time h 

as below.  

s(h) = t

ij
s , if t ≤ h ≤ t+1; 
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s(h) = 1t

ij
s

 , if t+1≤ h ≤ t+2 

Figure 3.4 shows an arbitrary speed distribution. For example, the traffic speed on link (i, 

j) varies over time; therefore a vehicle may travel with a speed of 40 mph between 7:00–

8:00 a.m. and 50 mph between 8:00–9:00 a.m. Similarly, travel speeds also vary over 

links in the study network. The travel time distribution on link (i, j) is a step function of 

the time of departure from node i and it can be derived from the speed distribution. 

Assume the length of arc (i, j) is two miles, the time to reach node j depends on the time 

of departure from node i. Figure 3.5 shows the corresponding travel time based on the 

speed variation over time periods. 

 
Figure 3.4  Temporal traffic speed distribution.              



56 

 

 

 

 

Figure 3.5  Corresponding travel time for a link of length 2 miles. 

3.5 Set Partitioning Formulation 

The SP approach has been widely used to solve various vehicle routing and scheduling 

problems with time windows. Models formulated by SP approach often consist of two 

problems: a master problem and a sub-problem. Since large numbers of variables are 

involved, a restricted master problem is used instead of working with the complete master 

problem. This restricted master problem is much smaller, containing only a subset of 

columns, thus is easier to solve. In each iteration, the restricted master problem is solved 

by calling the commercial optimization package software CPLEX. Additional columns 

are generated in the sub-problem where the objective is to find columns with a negative 

reduced cost (for a minimization problem). These columns represent service routes in this 
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study. If the reduced cost is negative, the generated column is added to the restricted 

master problem. 

           In this Section, the SP approach is used to reformulate the proposed basic and 

enhanced model developed in previous Sections. The master problem corresponds to the 

objective function and Equations (3.2) and (3.3) in the original VRP formulation is 

reformulated as follows: 

Objective function and constraints: 

 min
r vr

r v

Z C X
 


R V

              (3.9) 

Compared to Equation (3.1) that has two cost components to represent the total travel 

time for each time period, Equation (3.9) uses one parameter (the cycle time of service 

route r, Cr) to represent the total travel time associated to each service route that is 

generated by sub problems. Cr also includes the deadhead travel time and the service time 

incurred by traveling through the entire service route.   

         Subject to: 

1, ,
it

r vr

r v

X t i
 

    
R V

T I                             (3.10) 

Equation (3.10) corresponds to the service constraint (3.2) that every required node i 

must be serviced once at each time window t. 

,
rd vr d

r

X k d


  
R

D                                             (3.11) 

Equation (3.11) limits the number of available vehicles for each depot. It corresponds to 

the fleet size constraint, which is Equation (3.3) in the original VRP formulation.  
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1,
vr

r

X v


  
R

V                           (3.12) 

Equation (3.12) ensures that each vehicle must travel on one service route. 

{0,1}, ,
vr

X v r    V R                                    (3.13) 

Equation (3.13) imposes binary requirements on the Xvr variables.  

               The sub-problem, for each vehicle, is an elementary shortest path problem with 

time-window constraint that corresponds to the original VRP formulation. It can be 

expressed as follows and subject to Equations (3.4) through (3.7): 

'
( , )

min
vt vt

ij ij i ji

ii j j

Z t x s x
  

   
' IA N D

                        (3.14) 

All feasible service routes generated from sup-problems were then utilized as inputs for 

the restricted master problem, which can be solved efficiently with linear programming 

solvers (e.g., CPLEX, Excel Solver) to obtain the decision variables defined in the SP 

formulation. The program was implemented in CPLEX. 

3.6 Summary 

In this chapter, a basic model was developed first to formulate a vehicle routing and 

scheduling problem with constant travel time, and then an enhanced model was proposed 

to include travel time variability to the basic model. To solve these two models in an 

effective and efficient way, the network transformation technique and the SP approach 

were introduced to serve this purpose. The network transformation technique was used to 

transform an ARP to a VRP so that the network can be easily described and more 

solution algorithms for the VRP can be utilized. After network transformation, the 
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research problem was divided into a master problem and a sub-problem and formulated 

with the SP approach. The optimal solution of the master problem depends on the number 

of service routes generated by solving the sub problem. Because of the fact that the more 

feasible service routes to be incorporated into the master problem, the better the solution 

quality of the master problem will be. Thus how to efficiently generate those paths 

became the major challenge for this study. In the next chapter, different solution 

algorithms that can be used to address this challenge are discussed. 



 

 

60 

 

CHAPTER 4  

SOLUTION ALGORITHM 

 

Using the set-partitioning (SP) formulation approach, the study problem was formulated 

into a master problem and a number of sub-problems of shortest travel time with 

operation constraints as discussed in Chapter 3. This basic formulation was selected 

because the specific problem in this study requires complex constraints. The SP 

formulation allows the constraints to be simply modeled as part of the cost and binary 

constraint matrix. Compared with the shortest path sub-problem, the master problem was 

relatively easy to solve. The optimal solution of the master problem was derived based on 

searching for the feasible service routes which were the outcome of the sub-problems. By 

incorporating sufficient service routes into the master problem, the solution quality will 

be improved. Therefore, the major challenge of solving the mathematical model that 

formulated in Chapter 3 is to develop a solution algorithm to efficiently generate the 

required service routes.  

           In this chapter, the exhaustive search method is developed and illustrated first in 

Section 4.1. An example is given to demonstrate its performance for a small network. In 

Section 4.2, a genetic algorithm (GA) based heuristic is introduced to manage larger scale 

problems.  

4.1 Exhaustive Numeration   

Exhaustive numeration, also known as brute-force search, is a very general problem-

solving technique that consists of systematically enumerating all possible candidates for
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the solution and checking whether each candidate satisfies the problem's constraints. 

While a brute-force search is simple to implement and will always find a solution if it 

exists, its computation cost is proportional to the number of candidate solutions, which in 

many practical problems tends to grow very quickly as the size of the problem increases. 

Therefore, an exhaustive search is typically used when the problem size is limited or it is 

integrated with heuristics so that it can be used to reduce the space of candidate solutions 

to a manageable size. An exhaustive search is also used when simplicity of 

implementation is more important than computation speed. 

         An exhaustive search can be used to search for the optimal integer solution in this 

study by using the proposed set partitioning model discussed in Chapter 3 where a small 

number of service routes in a set R can be exhaustively enumerated and are well 

restricted by the time windows and resources constraints. An array [i, j,…] (i, jI) 

represents a feasible service route for visiting the nodes belonging to set I, which is 

bounded by Equations (3.4) to (3.7). An example follows that illustrates how candidate 

schedules can be enumerated.   

           There is a transformed graph (G
’
, A

’
) with m designated time windows imposed on 

four required nodes for required services (i.e., travel time data collection, roadway 

maintenance). Suppose that vehicles departing from a depot (node 0) can serve all four 

required nodes belonging to I within the first time window denoted as T1. The availability 

of vehicles to continue servicing any required nodes within the next (m-1) time windows 

(i.e., T2, T3, … Tm) could be obtained via the two constraints formulated as Equations. 

(3.6) and (3.7).  
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           Figure 4.1 illustrates feasible service routes for a vehicle departing from a depot to 

serve the required nodes within specified time windows, in which “⊗” indicates that the 

vehicle was unable to arrive at the node within its time window. This vehicle would be 

assigned to the next node that satisfies the time window constraint. cij indicates the least 

cost for travelling though the arc (i, j A
’
).  

 
 

Figure 4.1  Example of generating service routes. 

4.2 The Genetic Algorithm Based Heuristic 

Compared to the exhaustive search method, a heuristic algorithm is designed for solving 

a problem more quickly or for finding an approximate solution when classic methods fail 

to find an exact solution. This is achieved by trading optimality, completeness, or 

accuracy for computational speed. The objective of a heuristic is to quickly search for a 

solution that is good enough for solving the problem at hand. This solution may not be 

the best one for this problem, or it may simply is an approximation to the exact solution. 

However, it is still valuable because finding it does not require a prohibitively long time.   



63 

 

 

 

            For vehicle routing and scheduling problems with a large network size  or relaxed 

time window constraints, the number of feasible routes for the fleet may significantly 

increase. For such problems, it is more computationally efficient to generate promising 

routes with heuristics than with exhaustive numeration. In Chapter 2, several heuristic 

algorithms were discussed. As indicated by Laporte and Gendreau (2001), metaheuristics 

(i.e., Tabu Search, Simulated Annealing and Genetic Algorithm) perform better than 

classical heuristics (i.e., Saving Heuristic) for solving the VRP. The GA was utilized in 

this dissertation due to its ease of implementation and good fit for problems that include 

timetabling and scheduling. 

           A GA is a problem solving algorithm which imitates natural selection or natural 

genetics. It is a search technique to find optimal or nearly optimal solutions of search 

problems. In 1975, Holland invented GA as a heuristic search based on “Survival of the 

fittest”, a biological idea. He introduced not only mutation, but also reproduction into the 

artificial system. Hence the terms gene, chromosome, individual, population, crossover 

and mutation are used in this search technique. Also, the critical issue in developing a GA 

is that the representations of chromosome, initialization, the fitness function, the selection 

process, and the termination condition need to be determined in advanced. The below 

sections explain the common genetic algorithm terms and associated procedures. 

Steps of GA: 

         The algorithm uses a bottom up approach. This means that it starts with a set of 

solutions and ends with the optimal one. The general steps used by genetic algorithm are 

described below: 

Step 1: Create the initial population by producing a set of individuals or chromosomes; 
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Step 2: Evaluate the fitness value of each individual in the population; 

Step 3: Repeat (creating a new generation of population) 

a. Select a  parent from individuals in population 

b.Perform recombination or mutation to generate new individual 

c. Add new individuals into the population 

d.Remove individual considering low fitness or randomness; 

Step 4: Go to step 3 until termination criteria are satisfied.  

Chromosome representation and the fitness function: 

           In this study, a service route was stored as an array with a binary chromosome 

(Table 4.1). If the problem has n total nodes required to be serviced, the chromosome will 

contain n genes. For example, the sample service route for a crew based at depot 9 was 

required to service nodes 1, 2, and 5 out of a total five required nodes, before returning 

the depot. Then, a “1” in a gene represents a selected node, and a “0” represents a non-

selected node. 

Table 4.1  Sample of Chromosome Representation 

Sample Service Route 

Depot   Node 1  Node 2  Node 5  Depot 

Sample Chromosome 

Node 1 Node 2 Node 3 Node 4 Node 5 

1 1 0 0 1 

This chromosome representation of a service route corresponds to a column in the binary 

matrix of the set-partitioning formulation that mentioned in the model formulation 

section. In addition to storing the chromosome, two separate arrays are used to keep 
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record of the depot of each service route and keep track of the beginning service time of 

each required node. 

              The fitness value is the measure of goodness of a solution with respect to the 

original objective function. In this study, candidate solutions with lower total travel time 

imply better solutions. Thus, the fitness function for each chromosome was defined as the 

inverse of its total travel time with the form in Equation (3.14).  

( ) 1/F n Z                          (4.1) 

In Equation (4.1), n is the chromosome index, and Z is the value calculated from 

Equation (3.14). In conclusion, the higher the fitness value, the more chances the 

individuals have to be selected.  

Initialization 

         As previously stated, the genetic algorithm initializes with the current subset of 

routes in the restricted problem using a solution construction approach based on the 

savings heuristic of Clarke and Wright (1964). This simple heuristic works as follows. At 

the start, it is assumed that each node is serviced by a single route. Then at each iteration, 

a pair of routes is selected and merged together on the basis of the best cost saving that 

can be achieved. This is repeated until a single route is obtained or no feasible merge 

exits. It is worth noting that the evaluation of the savings is based on the true time-

dependent costs. 

Selection Process: 

            To produce “offspring”, parents for recombination need to be selected from the 

population via a well-designed selection process. The purpose of having an appropriate 

selection process is to have better offspring and to lead the genetic algorithm to a global 
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optimal solution. Though selection process pick individuals randomly, the higher its 

fitness value the more likely it is for the individual to be selected. Diversified gene 

randomness and good chromosome fitness values are important to reach in global 

convergence. There are several techniques of choosing parents like the Roulette wheel 

method, the random selection method, and the ranking selection method. Random 

selection is simple to implement but may produce a population of weak fitness. Also, the 

randomness of ranking selection prevents early convergence but yields slow convergence. 

Thus, in this study, the Roulette wheel method was used with the selection probability 

being equal to the fitness value of each chromosome.   

 

Figure 4.2  An example of roulette wheel.  

          To create a roulette wheel (as Figure 4.2 shows), the selection probability (
n

p ) and 

the cumulative probability (
n

q ) associated with the fitness value (
n

f ) for each individual 

chromosome (n) are calculated by the following equations: 

n

n

i

i n

f
p

f





              (4.2) 

n i

i n

q p


                (4.3) 
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After calculations for 
n

p and 
n

q are done, by spinning the “roulette wheel”, a random 

number r between 0 and 1 is generated. A parent is selected by comparing r and
n

q . 

If
1

r q , then select the parent having the first fitness value
1

s ; otherwise, the nth fitness 

value would be selected ( 2 n ), so that 
1n n

q r q

  . Like the analogy of gambling 

wheel, any of chromosomes can be selected. But, the higher the fitness, the higher the 

chance of selection is. 

Crossover 

         Once parents are selected, they reproduce to create “children”. Even though there 

has been some recent interest in multiple-point crossover, it is relatively difficult to code 

and the improvement is not immediately apparent (Epstein, R., 1992). In this solution 

approach, reproduction occurs through a simple one-point crossover. The crossover point 

is selected randomly for this approach. In Figure 4.3, two routes, Route A and Route B, 

were the parents. The crossover point is in between the fifth and sixth gene in the 

chromosome for this example. The two new routes that are created then share genes from 

each parent. 

 

Figure 4.3  Example of one-point crossover. 
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          The crossover created a possible route, and a subsequent feasibility operator would 

test it to ensure that the route is feasible. A route is considered feasible if it meets 

resources and operational constraints, and it is not already in the subset of routes in the 

restricted problem. In the application of this study, a large number of routes are infeasible 

due to the constraints. An additional mutation operator facilitated the genetic diversity of 

subsequent populations. This reproduction process iterates to create many new 

populations of routes for the restricted problem. 

Termination condition: 

           The GA terminates when a fixed number of feasible routes are created. The 

population size, n, is limited to a defined number to prevent the problem from becoming 

excessively large. These candidate routes are added to the restricted problem. The 

algorithm also terminates if no new feasible routes can be found within a given amount of 

time. The latter stopping criterion makes the solution approach more efficient and 

prevents the program from searching for feasible pairings for an excessive amount of 

time. 

4.3 Summary 

In this chapter, an exact exhaustive algorithm and a GA based heuristic were discussed. 

Between these two algorithms, the exhaustive method is easy to implement and has no 

parameters to adjust, which is particularly appropriate to be used when the problem size 

is limited or strictly constrained by time windows or service constraints. On the other 

hand, the GA has lots of options in its implementation in terms of the design of the fitness 

function, selection process and other operators. Past researchers showed that the GA has 
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been particularly successful in solving large size vehicle routing problems that includes 

timetabling and scheduling. In next chapter, the exhaustive method and the GA are tested 

and evaluated based on two numerical examples. 
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CHAPTER 5  

MODEL TESTING AND EVALUATION 

 

In this chapter, two numerical examples are presented to demonstrate how the proposed 

model and algorithms can be used to resolve real transportation planning problems, 

including a traffic data collection problem and a winter roadway maintenance problem. 

5.1 Example I-Travel Time Data Collection 

Travel time information is essential for road users to make travel decisions and for 

transportation agencies to manage traffic effectively. There are various methods and 

equations for collecting and estimating travel time information. Inductive loop detectors 

were the most commonly used technology to collect traffic count and speed data for 

freeways, arterials, and streets, but are expensive to install and maintain. Floating car 

technologies, using toll tags, license plate matching, cellular phones, and automated 

vehicle identification units became popular in recent years. 

           A study for estimating travel time variability on New Jersey highways was 

conducted by Chien et al. (2010). Travel time data were collected by probe vehicles 

carrying GPS-based in-vehicle navigation devices in the morning peak period on 

weekdays. As shown in Figure 5.1, the study network included four road segments of 

US-46, NJ-3, NJ-4, I-280, NJ-17 and NJ-208 for travel time data collection, denoted as 

tasks 1 through 4. The characteristics of each segment including length as well as starting 

and ending locations are summarized in Table 5.1. A number of probe vehicles carrying 

navigation devices which record locations of vehicles over time, and the dispatching
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schedule and routing plan must be determined before collecting data, such that the total 

cost may be minimized. The depot is located at coordinates (40.740039,-74.179001), the 

campus of New Jersey Institute of Technology.  

Table 5.1  Characteristics of the Study Road Segments 

Every probe vehicle departed from and ended its trip at the depot. Travel time data has to 

be collected in each segment during the following four time windows:  T1: 6:55 a.m. ~ 

7:05 a.m., T2: 7:25 a.m. ~ 7:35 a.m., T3: 7:55 a.m. ~ 8:05 a.m., T4: 8:25 a.m. ~ 8:35 a.m.  

 

Figure 5.1  The study network for traffic data collection. 

 

No. Segment Length(mi) Start Node End Node 

1 US46-NJ3 13.0 40.894883,-74.240614 40.787892,-74.049948 

2 I-280 8.5 40.797041,-74.251397 40.750210,-74.128366 

3 NJ4-NJ208 17.4 41.017236,-74.216496 40.864962,-73.974483 

4 NJ-17 12.8 41.000399,-74.100959 40.864962,-73.974483 
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5.1.1 Numerical Results 

By using the network transformation technique introduced in Section 3.2, a transformed 

network (G
’
=A’, N’) is presented in Figure 5.2. Note that nodes 1, 2, 3 and 4 represent 

the road segments of Table 5.1 that require data collection service. The depot (node 0) is 

assumed to be able to connect to all nodes. 

 

Figure 5.2  The transformed route network for traffic data collection. 

With all the information of physical locations for each node in the network, the shortest 

path distance/travel time between each pair of nodes was calculated using the fast routing 

planning tool in Google Map (2009) and summarized in Table 5.2. The service times for 

each required node are highlighted in red.  

Table 5.2  Travel Time and Distance Between Nodes 

From\To 1
 

2
 

3
 

4
 

0
 10(07)* 15(13) 25(21) 23(20) 

1
 18(15) 12(14) 39(29) 30(23) 

2
 20(17) 09(09) 38(30) 21(17) 

3
 33(26) 36(27) 28(22) 22(16) 

4
 26(20) 36(25) 16(14) 14(13) 

*: X(Y) represents that the travel time (distance) are X minutes (Y miles) 

        The cost of the travel time data collection defined in this example included the labor 

cost and fuel expenses. The labor cost was equal to the hours of travel per vehicle 
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multiplied by the hourly salary rate (e.g., 20 $/hour), while the fuel cost was equal to the 

total miles of travel multiplied by the unit cost per travel mile (e.g., 0.35 $/mi). The cost 

matrix is generated and summarized in Table 5.3. The service costs for each required 

nodes are highlighted in red as well. 

Table 5.3  Cost of Travel between Nodes (Unit: $) 

From\To 1 2 3 4 

0 5.8 9.6 15.7 14.7 

1 11.3 8.9 23.2 18.1 

2 9.3 6.2 23.2 13.0 

3 20.1 21.5 17.0 12.9 

4 15.7 20.8 10.2 9.2 

          To better index this numerical example, a binary variable Vk(i, t, t’) was used to 

represent a probe vehicle k that collects data at node i within time window t, and could be 

available for another task of data collection at the following time window t’. If vehicle k 

was available at t’, Vk(i, t, t’ ) will be assigned 1; otherwise, it will be 0. In this example, 

there were 4 required nodes in the study network. Thus, 4 vehicles, denoted as V1 (0, 0, 1), 

V2 (0, 0, 1), V3 (0, 0, 1), and V4 (0, 0, 1) at the initial time point (t = 0), are available at 

the 1
st
 time window (t’ = 1), where 0 represents leaving from node 0, which is the depot. 

The derivation of results for this problem is illustrated and discussed below: 

Time Window T1: Vehicle must arrive at the required node between 6:55 a.m.-7:05 a.m. 

           As discussed above, the fleet size of available probe vehicles and their schedules 

at time window 1 noted as T1 were initialized as: V1 (0, 0, 1), V2 (0, 0, 1), V3 (0, 0, 1), and 

V4 (0, 0, 1), and the associated travel times and costs  were calculated and presented in 

Table 5.4. For example, the time/cost for assigning vehicle V1 to collect data for node 1 
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was the sum of travelling time/cost from node 0 to node 1 and the required service 

time/cost for node 1. According to Table 5.2 and Table 5.3 the total travel time was 28 

(i.e.10+18=28) minutes and the total cost was 13.9 (i.e. 5.8+11.3=17.1) dollars. 

Table 5.4  Node Assignment Travel Time/Cost Matrix for Time Window T1  

Vehicle\Node 1 2 3 4 

V1 (0,0,1) 28/17.1 - - - 

V2 (0,0,1) - 24/15.8 - - 

V3 (0,0,1) - - 53/32.7 - 

V4 (0,0,1) - - - 37/23.9 

 (-):There is no vehicle assigned to service node#. 

Time Window T2: Vehicle must arrive at the required node between 7:25 a.m.-7:35 a.m. 

Based on the travel time information calculated in Table 5.4, the time window constraints 

were formulated as Equations (3.4) to (3.7) and used to generate the vehicle availability 

matrix (Table 5.5). If a vehicle was available to service any required nodes in the next 

time window, 1 will be assigned to those nodes, and otherwise, 0.  

Table 5.5  Vehicle Availability Matrix for T2 

Vehicle\Node 1 2 3 4 

V1 (1,1,2) 0 1 0 0 

V2 (2,1,2) 1 1 0 1 

V3 (3,1,2) 0 0 0 0 

V4 (4,1,2) 0 0 1 1 

V5 (0,2,2) 1 1 1 1 

1 – available; 0 – not available 

As showed in Table 5.5, the binary variables V3(i, t, t’) for Vehicle 3 were zeroes for all 

nodes, which means that Vehicle 3 is not able to undertake any data collection task within 
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time window T2 (7:25 a.m.-7:35 a.m.) after servicing node 3 in time window T1; and 

therefore an additional vehicle labeled as V5 (0, 2, 2) has to be assigned. Because Vehicle 

5 is departing from the depot (node 0), it will be able to arrive at any one of the required 

nodes within time window T2. Therefore, by looking up all the entries with a value of “1” 

in each row of the matrix, there will be 24 (=1*3*2*4) candidate schedules for T2 in total.  

          The same procedure of finding vehicle availability is performed for the remaining 

time windows. It was found that there were a total of 45 feasible schedules for 5 probe 

vehicles to choose from to complete their travel time data collection (Table 5.6). 

Table 5.6  Feasible Routes and Schedules for Vehicles (Fleet Size = 5)  

Routes\Time window T1 T2 T3 T4 

R1 1 2 1 2 

R2 2 4 3 - 

R3 3 - 4 3 

R4 4 3 - 4 

R5 2 1 2 1 

R6 - 1 2 1 

. 

. 

. 

    

R44     

R45 - 2 3 - 

“-” vehicle was not assigned to serve required nodes. 

The SP formulation took Table 5.6 as input and solved by CPLEX (6.0), which yielded a 

least cost of $402.2 to collect travel time data. The optimized vehicle schedule and 

minimized cost for the minimum required fleet size of five are summarized in Table 5.7. 
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Table 5.7  Optimal Vehicle Schedule/Route Arrangement and the Minimized Cost  

Vehicle\Time window T1 T2 T3 T4 Cost ($) 

V1 1 2 1 2 77.2 

V2 2 4 3 - 80.8 

V3 3 - 4 3 97.8 

V4 4 3 - 4 88.0 

V5 - 1 2 1 58.4 

Total Cost ($) 89.3 81.5 100.7 130.7 402.2 

(-): Vehicle was not assigned for data collection. 

           In this example, a minimum five probe vehicles was required to collect travel time 

data on four road segments within four different time windows of departure. Because of 

the network characteristics, the optimized schedule only allowed one out of five vehicles 

to perform data collection service on every time window. This numerical example has 

demonstrated the proposed mathematical formulation and the exhaustive method are able 

to find the optimal route and schedule for probe vehicles. The total cost for collecting 

traffic data on New Jersey roadways was minimized. However, it was found that the 

exhaustive enumeration can be only efficient for solving small to medium size cases. 

When it comes to a large scale network with more number of road segments need to be 

serviced, the exhaustive method would be less attractive, because the number of iterations 

for optimal solution searching would be exponentially increased as the demand increases. 

Thus, heuristics would be preferable. In Chapter 6, a case study of a large scale network 

was solved by the genetic algorithm based heuristic. 



77 

 

 

 

5.1.2 Scenario Analysis 

In Section 5.1.1, the optimal solution that minimized the total cost was obtained by using 

the proposed methodology. However, due to budget and resources constraints, the 

number of operable probe vehicles might be limited. To collect sufficient traffic data with 

a limited number of vehicles, the duration of the data collection project has to increase. 

Two scenarios were conducted and compared based on different project durations and 

fleet sizes (Table 5.8).  

Table 5.8  Characteristics of Scenario A and B  

 Scenario A Scenario B 

Objective To minimize total cost To minimize total cost 

Study Network 4 required tasks 4 required tasks 

Project Duration 1 day 2 days 

Time Windows per day 4 time windows 4 time windows 

Flee Size The minimum required 3 Vehicles 

        For collecting travel time data in the study network, a constraint was introduced to 

ensure that probe vehicles service each required node four times per day, once per time 

window. Given a fleet size constraint (i.e. F = 3 vehicles), which is smaller than the 

minimum required fleet size (i.e. 5 vehicles) found in Scenario A, the data collection 

cannot be completed within one day. Table 5.9 showed the optimal vehicle schedule for 

Scenario B. With a limited fleet size, the project duration has to be increased from one 

day to two days, so that the required data can be collected. It was found that the total 

operating cost in terms of travel time and travel distance for Scenario B is higher than 

that of Scenario A, because a smaller fleet size means few vehicles dispatched on the 



78 

 

 

 

network for data collection service, resulting in an increase in travel time and travel 

distance. 

Table 5.9  Optimal Vehicle Schedule and Minimized Cost (Fleet Size: 3) 

Day Vehicle\Time window T1 T2 T3 T4 Cost ($) 

1 V1 1 2 1 2 77.2 

V2 2 1 2 1 75.6 

2 V1 3 - 4 3 97.8 

V2 4 3 - 4 88.0 

V3 - 4 3 - 69.3 

Total Cost ($)     407.9 

(-): Vehicle was not assigned for data collection 

5.1.3 Sensitivity Analysis 

In this Section, a sensitivity analysis is conducted to explore the relationship between 

optimal results and model parameters. It is very common for decision makers to debate 

how long the duration of the data collection project should be, how many data samples 

should be collected and what the fleet size should be. The results useful to decision 

makers would be the optimal scheduling and routing plan subject to fleet size, project 

duration and required sample size of travel data.   

1) Minimum required fleet size vs. sample size: 

Viewing the travel time data collection from a statistical perspective, collecting sufficient 

samples is crucial because the sample size determines the accuracy of the travel time 

estimation. But from the viewpoint of cost control, it is necessary to collect the required 

data samples with a cost as little as possible. In addition, when historical travel time data 

are available for computing the shortest path travel time between each pair of nodes in 

the network, the percentile of travel time that is chosen to be used has a big impact on 
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cost control as well. A conservative decision maker tends to choose a high percentile of 

travel time to give more buffer room for transportation planning, but this would lead to an 

increase in total vehicle travel time in comparison with choosing mean travel time. In 

opposite, if an aggressive decision maker prefers choosing a low percentile travel time, 

then less total travel time would be needed to complete the required service. Thus, a 

sensitivity analysis to reveal the relationship among fleet size, percentile travel time and 

the sample size could be helpful for decision makers to understand the trade-off between 

these parameters.  

          In an example of collecting travel time data in four different time windows in one 

day at a network with 15 required service road segments, Figure 5.3 indicates that the 

minimum required fleet size increases as a higher percentile of travel time is used, and is 

reduced as a lower travel time percentile is used. Also there is an obvious trend showing 

that the minimum required fleet size increases with an increasing number of samples. It is 

easy to understand that the more samples are needed, the more vehicles have to be 

dispatched on the network.  
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Figure 5.3  Minimum required fleet sizes vs. various numbers of sample size. 

2) Minimum required fleet size vs. durations of time window: 

As discussed in the literature review, the time windows can be divided into two types: 

hard time windows (HTW) and soft time windows (STW). In the first case, if the vehicle 

arrives early, it must wait until the earliest arrival time of the time window, and it is 

strictly forbidden to arrive late. In the case of soft time windows, the violation of the 

constraint is permitted but it leads to a penalty of the objective function. In this example 

of travel time data collection, only HTW was considered because for research purposes, 

the sample data has to be collected in a certain time window.  

         When a subset of road segments must be serviced at a cost that is dependent on the 

time service begins, the duration of time window could affect the results of vehicle 

routing and scheduling. For example, if the intervention of winter roadway maintenance 

for a snow storm emergency was too late, the cost in material and time could sharply 
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increase. Therefore, planners would rather have vehicles arrive early than have a penalty 

for vehicles arriving late. It is useful to reveal the relationship between the duration of the 

time window and the optimal fleet size needed. Figure 5.4 indicates that the needed fleet 

size decreases as the duration of the time window increases. Because longer time 

windows give more room to allow vehicles to arrive “late” when compared to cases with 

tighter time windows. In other words, fewer vehicles are needed to meet a time window 

that has longer duration.  

 
Figure 5.4  Minimum required fleet sizes vs. various time window durations. 

3) Fleet sizes vs. total vehicle travel time: 

Figure 5.5 shows the total vehicle travel time needed for all the data collection tasks 

under different percentiles of travel time and fleet size. Initially, there is an obvious trend 

showing that the total travel time decreases significantly with the increase of fleet size. It 

is easy to understand that more probe vehicles dispatched on the road for travel time data 
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collection could result in a decrease in the required service time. Although the traffic data 

can be collected in a shorter time frame by using more vehicles, this strategy could also 

result in a significant incremental cost of equipment and labor costs. Therefore, a 

combined model for the fleet sizing and routing assignment is needed to determine 

simultaneously the optimal fleet size and routing. 

 
Figure 5.5  Fleet size vs total vehicle travel time. 

5.2 Example II- Winter Road Maintenance 

Winter road maintenance involves costly operations, including spreading of chemicals 

and abrasives, snow plowing, loading snow into trucks, and hauling snow to disposal 

sites. In the United States, winter road maintenance operations consume over $2.3 billion 

each year to ensure a safe road network (FHWA-USDOT, 2011). Winter storms act 

through precipitation, visibility impairments, high winds, and temperature extremes to 
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affect driver capabilities, vehicle performance, pavement friction, roadway infrastructure, 

crash risk, traffic flow and agency productivity.  

          Given the present economic climate of shrinking monetary and manpower 

resources, it is important for all public and/or private sectors to make the most efficient 

use of their resources, such as allocating and routing snow plows and salt spreaders to 

serve a transportation network for a given snow event. In recent years, new technologies 

in the applications of road weather information systems, weather forecasting services, 

maintenance decision systems, and intelligent transportation systems have been 

implemented in many agencies in Europe (e.g., Switzerland, England), Asia (e.g., Japan, 

China) and United States to reduce the operating cost as well as to improve effectiveness 

and efficiency (Perrier et al., 2007). However, the progress in the development of 

optimization models for the routing and scheduling of vehicles has grown slowly 

compared to improvements of new technologies. Many agencies still rely on field 

experiences in making vehicle routing and scheduling decisions for winter road 

maintenance (Campbell and Langevin, 2000). Currently, most agencies do not have 

predetermined routes to guide the winter road maintenance operations. Once a driver has 

completed the assignment, he or she returns to the depot to refill the vehicle and receive 

another assignment. An experienced supervisor makes the operator assignments based his 

or her knowledge of the operating environment, the storm conditions, and the desire to 

service higher priority roadways prior to lower priority ones. The operator assignments 

vary from one storm event to another. 

            The primary goal of winter road maintenance is to provide a safe and dependable 

transportation infrastructure for moving people and goods. Snow emergency procedures 
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strive to reduce the time necessary to clear a designated network of roadways. During 

winter road maintenance operations, trucks are assigned to de-ice the road surface by 

spreading chemical materials. Depending on the location, traffic condition and forecasted 

temperature and snowfall rate, roads shall be treated within given time intervals.  

             In US, state governments contract third-party trucks whose payment is normally 

based on the total travelled time to maintain roadway service during winter storms. The 

total cost in this study is defined in terms of the amounts of travel time spent in servicing 

required road segments. Consequently, the objective in this numerical example is to 

develop a routing and scheduling plan to minimize the time it takes for a given number of 

maintenance trucks to service a designated road network, subject to fleet size and service 

time limit constraints. 

5.2.1 Numerical Results 

Consider a maintenance region as illustrated in Figure 5.6, with two maintenance yards 

(at node 4 & 5) and six required arcs (bold black line, one lane each direction).The term 

“required arc” in this study is used for an arc that needs to be serviced by a vehicle. An 

“unrequired arc” is an arc used for traveling but does not need to be serviced.  

 

Figure 5.6  Example network of winter road maintenance. 



85 

 

 

 

In this example, a plowing task is defined as a single one direction pass on a segment, 

and therefore a one-way road segment may generate one task and a two-way road 

segment may generate two. This definition was illustrated in Figure 5.7. It is also 

assumed that each lane can be serviced in a single pass, and that there are two plows 

available for dispatch.  

 

Figure 5.7  Example of plow tasks. 

The concept of network transformation described in Section 3.2 is to use a single node to 

denote an arc. Transforming the required arcs in the example network can produce the 

tasks shown in Table 5.10.  

Table 5.10  List of Required Arcs and Unrequired Arcs 

Required Arcs  

(from node i to node j) 

Denoted  

As Task 

Length  

(mile) 

Unrequired Arcs 

(from node i to node j) 

Length  

(mile) 

1-2 I1 6 2-5 6 

2-1 I2 6 5-2 6 

1-5 I3 9 3-5 5 

4-1 I4 10 5-3 5 

1-4 I5 10 4-3 7 

5-1 I6 9 3-4 7 

With the network information provided in the Table 5.10, a travel distance matrix can be 
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created as shown in Table 5.11, where each cell represents the distance from the row 

element to the column element for that cell. Each cell in the first two rows denotes the 

distance from depot nodes (node 4 and 5) to the beginning of every plowing task and 

each cell in the first two columns denotes the distance from the end of every plowing task 

to the depot nodes. All other cells consist of distance values from the end of a plowing 

task to the beginning of every other plowing task. 

Table 5.11  Travel Distances Matrix 

From\To 4
 

5
 

I1
 

I2
 

I3 I4 I5 I6 

4
 - 12 10 16 10 0 10 12 

5
 12 - 9 6 9 12 9 0 

I1
 18 6 - 0 6 16 6 6 

I2
 10 9 0 - 0 10 0 9 

I3 12 0 9 6 - 12 9 0 

I4 10 9 0 6 0 - 0 9 

I5 0 12 10 16 10 0 - 12 

I6
 10 9 0 6 0 10 0 - 

After creating the distance matrix, the next step is to include time-dependent travel time 

into the model. Assuming that a planning horizon of two hours is divided into four time 

periods, each period is half hour in length. A time dependent travel time is incurred at 

each time period for each road segment due to snow accumulation. A “natural” and 

simple way to take time-dependency into account is to work with time-dependent travel 

speeds and to adjust the speed when the vehicle crosses a boundary between two time 

periods. In this example, the plowing speed was assumed to decrease from the beginning 

to the end of the planning horizon due to the fact that a driver’s visibility would be 
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affected by snow accumulation.   

            With all the data ready to be used as input for the integer programming problem 

that is formulated below, a final solution of deployment route and schedule is expected to 

be generated. If there was no feasible solution to this initial problem, it means that there 

are not sufficient resources to operational requirements. In this case, the only course of 

action is to add more service plows, or relax operational constraints until a feasible 

solution can be found. 

Table 5.12  Parameters and Notations  (Alphabetical Order) 

Notation Meaning Unit 

Bir 1 if task iI is assigned to route r, and 0 otherwise / 

Cr Total cycle time of route r Minute 

Cm Maximum cycle time limit Minute 

D Set of nodes of depots (maintenance yards), indexed by d / 

I Set of plowing tasks / 

kd The fleet size for depot d / 

lij
 

Length of arc (i,j) Mile 

R Set of candidate routes, indexed by r / 

T Time periods, indexed by t Hour 

v

ij
x  1 if (i,j) is traveled by vehicle v, 0 otherwise  

t
z  Travel speed at time period t, tT MPH 

As stated in the model development section, this example can be numerically described 

as a master problem and a sub-problem by using the set-partitioning approach. Table 3.1 

and 5.12 can be used as quick references for the notation used in below formulation. 



88 

 

 

 

Master Problem: 
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The objective is to minimize the sum of two component costs, one is the deadhead travel 

time and the other one is the service time. The constraint of Equation (5.1) ensures that 

every plowing task should be performed exactly once. The constraint formulated as 

Equation (5.2) imposes a limit on the fleet size. The constraints formulated in Equation 

(5.3) and Equation (5.4) ensure that each vehicle travels at least on only one route. 

Sub problem: 

For a given plow v: 

Minimize 
( , )

( ) ( )
v v v v
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The objective of the sub-problem is to find feasible service routes that minimize the total 

travel time for a given plow. The constraints guarantee that 1) there is a limit on the 

service time for each plow, 2) each plow starts and ends its route at the depot it belongs. 

The sub-problem is an elementary shortest path problem with operation constraints, 

which is solved with the exhaustive numeration method. All feasible routes are then 

added to the master program and the latter was solved with a standard ILP solver 

(CPLEX 6.0) to obtain an integer solution for decision variable
vr

X . The final decision 

matrix of Xvr represents the selected dispatch schedule that should be followed, where the 

rows correspond to the numbered snow plow, and the columns correspond to the number 

routes. The data and the solution of the example are as follows: 

Parameters: 

(20,18,15,12)
t

z  , represents the plowing speed profile at time period t; 

Cm=2, the maximum service time for each plow is two hour.    

Results: 

1) In the case of only one available plow for six required segments, there is no 

feasible solution found with given maximum service time limit for each plow; 

2) In the case of two or more available plows for six required tasks, feasible 

solution are found; 
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5.2.2 Scenario Analysis 

A set of scenarios were analyzed to test the impact of various fleet size and maintenance 

yard (depot) locations on final results. Each scenario produced results including the total 

deadheading travel distance (denoted by DH), the longest cycle time of optimized service 

route (denoted by CT) and the total vehicle travel time (denoted by TT).   

          First, it was assumed that all vehicles depart from the same depot, which is node 4 

in Scenario I and node 5 in Scenario II, respectively. The results as shown in Table 5.13 

indicate that DH and the TT are sensitive to the depot locations. For example, when it is 

assumed that there are three available vehicles, the TT and DH with node 5 as the depot 

are both higher than they are with node 4 as the depot. However, when there are only two 

available vehicles, the result with node 5 as depot is slightly lower than it is with node 4 

as the depot. This reveals that the optimal depot location and fleet size are correlated with 

each other, as both factors are related to the geometry of the road network. In general, the 

fleet size and depot location both are important factors that have impacts on the final 

solution of routing and scheduling. 

Table 5.13  Results of Scenario I and Scenario II 

Scenario Fleet Size DH (mile) CT (min) TT (min) Depart from depot 

 1 n/a n/a n/a 4 

I 2 22 117 202 4 

 3 40 104 245 4 

 1 n/a n/a n/a 5 

II 2 18 112 194 5 

 3 42 93 259 5 
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         A later Scenario III, where it was assumed that vehicles depart from different 

depots, provides better results (Table 5.14) in terms of TT and DH than Scenario I and II. 

This is because the multi-depot setup allows vehicles to perform plowing tasks that are 

close by their corresponding depot.   

Table 5.14  Results of Scenario III 

Scenario Fleet Size DH (mile) CT (min) TT (min) Depart from depot 

III 2 0 87 137 one from 4, one from 5 

 3 10 92 156 one from 4, two from 5 

          Lastly, by viewing the results of all three scenarios together, it is showed that no 

feasible solution is founded when there is only one vehicle available. A fleet of two 

vehicles outperformed a fleet of three vehicles in terms of total deadheading travel 

distance and total vehicle travel time. The reason is that with a given depot location and 

the geometry of the road network, a vehicle is able to continuously perform plowing 

service for multiple tasks and end its trip at its depot without having too much 

deadheading travel. On the other hand, adding an extra vehicle to take over plowing tasks 

from other existing vehicles can lead to more deadheading travel because all vehicles 

have to start and end their trips at the same depot.   

          Decision makers need to make decisions about the fleet size and depot location at 

the planning stage simultaneously based on different objectives and available resources. 

In the next chapter, a real-world case study based on a large scale road network is 

analyzed to help transportation planners optimize snow service routes and evaluate 

resource allocation options. 
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5.3 Summary 

In this chapter, a numerical example of travel time data collection was provided to test 

the basic model developed in Section 3.3, which was solved via an exhaustive 

enumeration method. It was found that the exhaustive enumeration can be simple to 

implement but it is only efficient for solving small size problems. Also, sensitivity 

analysis shows that the optimal results of the basic model vary significantly as different 

percentiles of travel time was used as model input, due to the lack of consideration of 

travel time variability. Another numerical example of winter road maintenance was used 

to test the enhanced model that uses time dependent travel time as model input. The 

results prove that the model with consideration of travel time variability can better 

describe real world applications when demand must be satisfied at a cost that depends on 

the timing of intervention. Also, scenario analysis shows that, not only the beginning time 

of service has an impact on the final results, but also the depot location and fleet size. 
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CHAPTER 6  

CASE STUDY 

 

In this Chapter, a case study is presented based on actual winter road maintenance 

operating in the state of New Jersey. The objective and related background of the current 

NJDOT winter road maintenance operations are introduced in Section 6.1 and 6.2, 

respectively. The data preparation, optimized results, and scenario analysis for different 

operations and the computational complexity analysis are discussed in Sections 6.3 to 6.5. 

6.1 Objective 

To achieve effective Winter road maintenance operations (i.e., salt spreading, snow 

plowing) requires many complex planning decisions to be made including complying 

with a service level policy (e.g., roadway level of service, snow accumulation level), 

locating depots, routing/scheduling service vehicles, and configuring the vehicle fleet 

with various capacity for various workload shall be made. Since the definition of a 

service level policy is a prerequisite for later planning decisions, it can be handled 

separately. However, the remaining decisions are all interrelated and affect the agency’s 

ability to ensure a desired level of service. 

          This case study considered problems of routing and scheduling vehicles (i.e., 

maintenance trucks), locating depots and configuring fleet size to provide higher quality 

service on winter roadway maintenance. Additionally, the impact of travel time
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variability was taken into account to address the requirement of service time limit. State 

and local governments contract third-party trucks to maintain roadway conditions during 

the winter season. The payment rule used to these third-party trucks is normally based on 

the total travelled time of all vehicles (NJDOT Contract Agreement for Snow Plowing & 

Hauling Service, 2011-2013). To this end, the total travel time of maintenance vehicles 

dominates total spending. 

             The case study discussed in this dissertation considers a real transportation 

network operated under the New Jersey Department of Transportation’s policy on winter 

road maintenance operations and planning. The detailed description of the case study 

follows. 

6.2 Current Winter Roadway Maintenance in New Jersey 

In a winter, the New Jersey Department of Transportation (NJDOT) is prepared to clear 

snow and ice from roadways statewide, by filling salt and liquid calcium inventories, 

fitting trucks with plows and deploying personnel to ensure motorist safety. NJDOT 

maintains 37 remote roadway weather sensing stations to help keep crews informed on 

road conditions on the state highway system. These stations provide detailed information 

on weather and road conditions in specific regions of the state, including air temperature, 

humidity, wind speed and direction and road and bridge surface temperatures. Material is 

housed in 70 salt storage facilities, 49 salt domes and 21 sheds at 68 maintenance yards 

(including winter-only yards). Figure 6.1 shows the current snow sections and the 

locations of maintenance yards in the state of New Jersey.  
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Figure 6.1  New Jersey snow Sections and maintenance yards. 

Table 6.1 summarizes the expenditures of past two winter seasons that were necessary to 

successfully combat winter weather on the 13,295 lane-miles of over 300 snow Sections 

in New Jersey.  
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Table 6.1  Expenditures in New Jersey for Winter Roadway Maintenance   

Material Usage 2012-2013 2013-2014 (though Dec. 11, 2013) 

Salt 28,201 tons 48,875 tons 

Liquid Calcium Chloride 895,532 gallons 154,231 gallons 

Brine 828,805 gallons 46,310 gallons 

Total Expenditures $62,543,773 $14,231,881 

*source: http://www.state.nj.us/transportation/about/winter/expenditures.shtm, accessed on Jan. 

22, 2014 

6.3 Data Preparation 

To use the developed model and the solution algorithm to optimize a winter road 

maintenance problem based on the roadway network of New Jersey, the geometric data 

of the study transportation network, information of current plow operations and fleet 

configuration should be collected. 

           Because roadways in urban areas have more complicated lane configurations, 

pavement characteristics and winter operation guidelines than roadways in suburban 

areas, in this case study, a network consist of 41 snow sections associated with 10 

maintenance yards located in northwest New Jersey was selected. As show in Figure 6.2, 

the selected roadway network (snow Sections highlighted in Blue) has much less road 

density than that in the northeast area of New Jersey (snow Sections highlighted in green), 

where population density is higher due to its adjacency to the New York metropolitan 

area. Table 6.2 summarizes the snow section data of the 10 maintenance yards. 

http://www.state.nj.us/transportation/about/winter/expenditures.shtm
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Figure 6.2  Selected snow Sections in the northern New Jersey roadway network. 

The key data needed for the selected snow Sections are geometric data, weather 

information, and snowplow speeds. Sections 6.3.1 through 6.3.3 present three types of 

information for each major data category: 1) the data type; 2) the source of the data and; 

3) how relevant information can be extracted from the data. 
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Table 6.2  Selected Snow Sections and Maintenance Yards 

Maintenance Yard No. of Snow Sections Total Lane Miles 

Branchville 3 80.6 

Columbia 3 237.45 

Hackettstown 2 88.4 

Hanover 8 351.5 

Netcong 6 157.6 

Port Colden 3 71.6 

Riverdale 5 225.6 

Rockaway 4 212.9 

Sussex 4 116.7 

Yellow Frame 3 78.5 

Total 41 1620.85 

 *source: NJDOT strategic deployment plan winter 2012-2013              

6.3.1 Geometric Data 

The roadway geometric data can be obtained from the NJDOT 2010 Straight Line 

Diagrams (SLDs) (http://www.state.nj.us/transportation/refdata/sldiag/). The SLD 

network presents approximately 12,000 miles of State (Interstate, US and NJ numbered 

roads), National Highway System (NHS), Surface Transportation Program (STP) and all 

County routes. After mapping each snow Section to the SLD database, the information, 

highway pavement width, shoulder width, ramp width, centerline mile of mainline, ramp 

length, and etc. can be obtained. According to a report by Chien et al. (2013) the NJ 

roadways can be classified into four categories: I - Urban Interstate; II - Urban Arterial; 

III - Rural Interstate; and IV - Rural Arterial.  

        To identify the roadway types of selected 41 snow Sections and calculate the 

shortest distances between pairs of snow Sections, the roadway network of the study area 

http://www.state.nj.us/transportation/refdata/sldiag/
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was created using ArcGIS software based on the shape file of the New Jersey roadway 

network, as shown in Figure 6.3, where each node represents a road intersection, and 

connections between nodes (i.e., links) represent road segments. The road segments that 

require plowing service, also known as snow Sections are highlighted in blue. 

 

Figure 6.3  Sample of the studied transportation network in ArcGIS. 
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6.3.2 Weather Data 

Travel speed is not only affected by roadway type, but also by snow intensity. Agrawal et 

al. (8) quantified the impact of different levels of snow intensities and pavement surface 

conditions on freeway traffic flow for the metro freeway region around the Twin Cities in 

Iowa.  Four different levels of snowfall intensity were defined in the research: Trace 

(<0.05inch/hour), light (0.06-0.1inch/hour), moderate (0.11-0.5 inch/hour) and heavy 

(>0.5 inch/hour). In this case study, snow intensity was chosen as the index of weather 

information and three levels of snow intensity were as shown in Table 6.3. 

Table 6.3  Snow Intensity Level  

Snow Intensity Level Snow Fall Rate (inch/hour) Description 

1 0-0.5 Light 

2 0.5-1.0 Medium 

3 ≥1.0 Heavy 

Weather data is available from Clarus (http://www.its.dot.gov/clarus/). Clarus records 

weather data including relative humidity, snow intensity, wind speed, and pavement 

surface temperature etc. All data used in this dissertation were stored on a 20-minute 

interval basis in Clarus.  

6.3.3 Speed Data 

The key factors that affect plow speed include traffic density, snow depth, visibility, and 

moisture content of falling snow. Other variables affecting snow and ice removal from 

the surface are snow accumulation rate, humidity, air temperature, pavement temperature, 

wind speed and direction, time of day, and the sun is present. Zhang et.al (2006) 

indicated that in the state of Missouri, for combined spreading and plowing the average 

http://www.its.dot.gov/clarus/
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speed while servicing is 40 mph on the interstates and highways and 30 mph on all other 

state roadways. While deadheading vehicles travel approximately 10 mph faster than they 

do while servicing, combined spreading and plowing. An average plowing speed chart 

based on storm conditions is displayed in Figure 6.4 below. These rates come from a 

study done by Wilson, Dadie-Amoah, and Zhang (2003). They stated that plow speed is a 

result of the combined effect of moisture content and snow accumulation rates. The plow 

speed decreases as the snow accumulation rate increases, the higher the moisture content 

the lower the plow speed would be.  

 

Figure 6.4  Plowing speed vs snow accumulation rate and moisture content. 

As the selected snow Sections are composed majorly by type III roadways (rural 

interstate highway), the speed profile of the PM peak (4 p.m.-6 p.m.) was discretized into 

four time periods (Tt)1≤t≤4 as summarized in Table 6.4. It was assumed that the plowing 

speed decreases as the snow continues to accumulate and affects roadway surface 
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condition and driver’s visibility. So there is a decreasing trend in plowing speed as shown 

in Table 6.4.A maximum plowing speed of 25 mph was recommended by Chien et.al 

(2012). And the average speed of plow trucks were assumed to be 30 mph while not 

performing plowing operation. 

Table 6.4  Speed Profile of Road Type III at Different Time Period of PM peak 

Speed Type\Period T1 T2 T3 T4 

Deadheading Speed (mph) 30 30 30 30 

Plowing Speed (mph) 25 17 15 10 

6.4 Results Discussion 

This Section includes an illustration of the solution methodology developed in this 

research, which solved the problems of service route design, vehicle scheduling, and fleet 

configuration for the selected snow Sections in New Jersey. The problem presented in 

this chapter is to minimize the total vehicle travel time including total deadhead travel, 

subject to resource and operational constraints.                                                                                                   

          A plowing operation was assumed to take place during a predicted snow storm that 

started from 4 to 6 pm at the maximum intensity level of 3 (>1.0 inch/hour). First, the 

input data for the optimization model including the geometric data of the snow Sections 

and time-dependent traffic speed information are presented. Then, the developed model 

was used to route and schedule a fleet of plows for clearing all 41 snow Sections within 

the two hour service time limit. In this case study, the following assumptions were made: 

1) Only Class A vehicles- Gross Vehicle Weight (GVW) of 45,000 pounds or over) 

were considered. 

(http://www.state.nj.us/transportation/about/winter/contractor.shtm) 

http://www.state.nj.us/transportation/about/winter/contractor.shtm
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2) The plowing speed was considered to vary by roadway type, snow intensity, 

starting service time. 

3) Each direction of a snow Section would be plowed once. 

4) All drivers are assumed to be familiar with the study road network and alternative 

routes. 

Finally, different scenarios with respect to different operational situations were evaluated. 

6.4.1 Scenario Analysis  

The main strategic and operational problems for winter roadway maintenance include 

decisions of locating depots, designing sectors, routing and scheduling service vehicles, 

and configuring the vehicle fleet. All these decisions are interrelated. The common terms 

used in winter road maintenance are presented in Table 6.5. 

Table 6.5  Definitions of Common Terms 

Term Definition 

Maintenance Yard Known as a depot, where maintenance trucks start and end their 

trips 

Snow Section A road segment that needs to be serviced 

Snow Sector A service area that consists of a maintenance yard and a number of 

snow sections 

Service Route A sequence of consecutive nodes that a vehicle travels though  

Table 6.7 indicates that, two scenarios are constructed with unconstrained fleet size and 

optimized service route (as Table 6.6 showed) and then their results are compared with 

the base scenario, which consists of the current NJDOT winter operation. 
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Table 6.6  Definitions of Scenarios  

 Depot Location Fleet Size Service Route 

Base Scenario (Current 

NJDOT Operation) 

Fixed Fixed Fixed 

Scenario-I Fixed Minimized Optimized within 

predefined snow sectors 

Scenario-II Fixed Minimized Optimized without 

predefined snow sectors 

Base Scenario: 

Currently, NJDOT does not have an optimization model to guide the winter road 

maintenance operations. Usually a supervisor assigns each driver a set of snow Sections 

to service, and the order in which they should be serviced is not optimized. Once a driver 

has completed the assignment, he or she returns to the depot to refill the vehicle or 

receive another assignment. An experienced supervisor arranges the operator assignments 

based on his or her knowledge of the operating environment, the storm conditions, and 

the desire to service higher priority roadways before lower priority ones. Thus, the snow 

Section assignments may vary from one storm event to another, and from one supervisor 

to another. 

           The current number of plows required for each snow Section was estimated by a 

formula that was developed in 1978. The formulate took into account the applicable 

speed of the plow, the two-hour service completion time limit, and the total lane miles of 

snow Sections. However, it did not consider the impact of roadway type, traffic peak 
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period and weather condition on snow plow speed. Moreover, it did not consider that the 

plowing speed could be time dependent instead of being constant throughout the 

operating period. 

Scenario-I: 

In this scenario, there are 10 maintenance yards that are also considered as depots of 

snow plows according to the actual winter operations in New Jersey. In New Jersey, a 

“snow sector” with a pre-assigned maintenance yard and various snow sections is defined 

based on available personnel, plow trucks, service equipment and materials. The service 

route for snow plows is constructed to start at a maintenance yard and then to service 

snow sections that belong to its corresponding snow sector before returning to the 

maintenance yard. Compared to the current NJDOT operation, Scenario-I optimized the 

service routes for each snow sector based on existing divided snow Sections, with an 

attempt to minimize total travel time with a minimum number of required vehicles.  

           The Sussex snow sector is used as an example to illustrate this scenario. Figure 

6.5(a) shows the maintenance yard location and the exiting 4 snow Sections in Sussex 

County. Figure 6.5(b) shows that there were three service routes constructed by the 

proposed methodology, which means at least three groups of plows would be needed to 

service all four snow Sections within the two hour service time limit. Figure 6.6 

illustrates the service sequences of snow Sections for each service route. Deadhead 

travelling is indicated by underscored arrows. 
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                               (a)                                                                     (b) 

Figure 6.5 (a) Existing snow Sections and maintenance yard in Sussex  

(b) Optimized service routes for Sussex. 

          

 

Figure 6.6  Service route details. 
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          After generating service routes, the next step is to develop a plow truck assignment 

rule. Chien and Gao (2013) developed a model to estimate the needed fleet size for snow 

plowing operations based on the geometric details of snow Sections in New Jersey. The 

results of their model were used in this study as a reference to assign the minimum 

required number of plow trucks to each generated service route. However, their model is 

based on the assumption that all plow vehicles are available when needed.  In reality 

vehicles can be unavailable to due to breakdowns, maintenance or other reasons.  Thus, 

in the base scenario, NJDOT has further modified the formula to reflect the age of the 

existing fleet. The data supplied indicated an average 80% up time for their truck fleet. 

Thus, extra vehicles were needed. The minimum required fleet sizes obtained in Scenario 

I and Scenario II were adjusted by increasing 20%. Table 6.7 summarizes the needed 

fleet size, total deadhead distance and total travel time, cycle time for each route.   

Table 6.7  Summary of Service Routes in Sussex 

Snow 

Section 

No. of 

Trucks 

assigned 

by NJDOT 

(1978) 

Serviced 

by 

Service 

Route 

Cycle 

Time 

per 

Route 

No. of 

Trucks 

assigned 

per service 

route 

Total Vehicle 

Deadhead 

Distance 

(vehicle*mile) 

Total Vehicle 

Travel Time 

(vehicle*minute) 

5231261 3 3 116.34 3 65.09 388.56 

5231262 3 2 102.13 3 57.3 340.53 

5231263 3 2&3 - - 0 - 

5231264 3 1 77.18 3 22.2 214.34 

Total 12 - 295.65 9 144.59 943.43 

By using the same optimization procedure, the service routes for each snow sector were 

developed. Table 6.8 summarizes the results of the rest of the considered snow sectors. It 

indicates that the optimized routes and corresponding vehicle schedules for each of the 
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existing snow sector did decrease the total number of required plows from the current 

NJDOT level of 197 to 123 plows. The decrease in the number of required plows in 

Scenario-I suggests a reasonable quality solution to the routing and scheduling problem. 

The total deadhead travel distance for all routes is 581 miles.    

Table 6.8  Summary of Results for Scenario-I 

Snow Sector No. of Plows 

Assigned by 

NJDOT (1978 

model) 

No. of 

Optimized 

Service 

Routes  

Minimum 

Required 

Fleet Size 

Total Vehicle 

Deadheading 

Distance 

(vehicle*mile) 

Total Vehicle 

Travel Time 

(vehicle*minute) 

Branchville 10 3 5 34 290 

Columbia 21 2 9 8 658 

Hackettstown 6 2 4 9 188 

Hangover 35 6 30 111 1119 

Netcong 33 4 16 101 1293 

Port Colden 9 2 6 20 500 

Riverdale 39 3 15 39 688 

Rockaway 22 2 6 86 511 

Sussex 12 3 9 145 889 

Yellow Frame 10 2 2 27 206 

Total 197 29 102/123*
 

581 6341 

*the adjusted fleet size in case of 20% unavailability 

Figure 6.7 shows that the snow Sections that covered by all the new designed service 

routes highlighted in blue, and the deadhead segments are highlighted in red.      
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Figure 6.7  Service routes developed for Scenario I. 

Scenario-II:  

In this scenario, the locations of the maintenance yards were still predefined. Relocating 

of maintenance yards or adding new ones is not considered in this scenario because of 

budget limit options or geographic constraints. However, the service routes would not be 

constrained any more within their corresponding snow sectors and inter-sector routes 

would be considered. In other words, a service route can contain snow Sections that 

belong to different snow sectors. Instead of finding the best service routes for each snow 
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sector, the proposed optimization model finds the best service routes that crossing 

different snow sectors.       

Table 6.9  Summary of results for Scenario-II 

Snow Sector No. of Plows 

Assigned by 

NJDOT (1978 

model) 

No. of 

Optimized 

Service 

Routes  

Minimum 

Required 

Fleet Size 

Total Vehicle 

Deadheading 

Distance 

(vehicle*mile) 

Total Vehicle 

Travel Time 

(vehicle*minute) 

Branchville 10 2 5 31 490 

Columbia 21 1 4 6 408 

Hackettstown 6 1 2 9 220 

Hangover 35 7 35 205 2592 

Netcong 33 5 15 176 1545 

Port Colden 9 2 6 22 666 

Riverdale 39 1 4 12 380 

Rockaway 22 3 9 134 927 

Sussex 12 2 6 60 672 

Yellow Frame 10 1 2 27 178 

Total 197 25 88/106*
 

683 8078 

*the adjusted fleet size in case of 20% unavailability 

Compared to the result of scenario-I, the result of scenario-II (Table 6.9) shows that the 

number of service routes and the minimum required fleet size are decreased from the 

Scenario I level of 29 service routes with 123 plows to 25 service routes with 106 plows, 

but at the cost of increasing the total deadheading distances of all vehicles required to 

cover all snow sections.  
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Figure 6.8  Service routes developed for Scenario-II. 

          As show in Figure 6.8, there are more red-highlighted deadhead traveling segments 

than show in Figure 6.7. This is not surprising, as scenario-II still maintained the existing 

maintenance yard locations and snow section design, so there is effectively a larger area 

to cover with a smaller number of plow trucks and total vehicle travel time for each 

service route increases. 
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          In addition, a closer look at the plows at each of the 10 maintenance yards indicates 

that there were more routes starting from yards of Netcong, Hanover and Rockaway than 

in Scenario-I, because the locations of those yards allow plows to maximize their 

utilization by covering more snow sections within a two hour service time limit.  

Comparisons:  

The quality of routes developed in Scenario-I and II can be measured by cycle time and 

deadhead traveling miles per route. As seen in Figure 6.9, where the distribution of cycle 

time for the two scenarios is presented, most cycle times for scenario-I are less than 100 

minutes.  

 
Figure 6.9  Cycle time distribution. 

The average travel time is 89 minutes for all service routes. In contrast, most ravel times 

for scenario-II are over 100 minutes. The average travel time is 104 minutes for all 

service routes, which indicates a high utilization of snow plows. This high utilization is 
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the direct result of the optimized service routes that are using fewer plows to cover more 

snow Sections.  

        However, more deadhead travelling was incurred in Scenario-II. Figure 6.10 shows 

the distribution of deadhead travelling miles. The deadhead travelling miles in most 

routes are less than 15 miles for Scenario-I. In contrast, more service routes with more 

than 15 miles in deadhead travelling were generated under Scenario-II. The distribution 

of deadhead travel distance is consistent with the distribution of cycle time. 

 
Figure 6.10  Deadhead travel distance distribution. 

6.4.2 Sensitivity Analysis on Plowing Speed 

To evaluate the contribution of the enhanced model that takes travel time variability into 

account, the results based on time-dependent plow speed and constant plow speed were 

compared and analyzed. The proposed model and the genetic algorithm were performed 

in the following three settings: 
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Set-I: The process considered impact of roadway type, weather condition and starting 

time of plowing service on plow speed. The plow speed profile was as summarized in 

Table 6.4. 

Set-II: A constant plow speed of 25 mph was assumed, a more aggressive planner who 

uses a higher plow speed. 

Set-III: A constant plow speed of 15 mph was assumed, a more risk-averse planner who 

uses a lower plow speed.  

Table 6.10  Results and Analyses for Various Plow Speed 

  Total Service Routes Needed Total Plows Needed 

Snow Sector NJDOT Set-I Set-II Set-III NJDOT  Set-I Set-II Set-III 

Branchville 3 3 3 2 10 5 3 5 

Columbia 3 2 3 2 21 9 9 12 

Hackettstown 2 2 2 1 6 4 2 4 

Hangover 8 6 7 4 35 30 16 35 

Netcong 6 4 6 4 33 16 16 24 

Port Colden 3 2 3 2 9 6 6 9 

Riverdale 5 3 4 3 39 15 12 16 

Rockaway 4 2 4 2 22 6 6 12 

Sussex 4 3 3 3 12 9 9 9 

Yellow Frame 3 2 3 2 10 2 2 3 

Total 41 29 38 25 197 102 81 129 

         Table 6.10 suggests that all three sets require fewer service routes and plow trucks 

than current used by NJDOT. It also appears that S-I, having a variable speed profile, 

produce a result sitting in the middle between results for S-II and S-III. It needs fewer 
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routes and plow trucks than S-III that uses a constant speed with a conservative value, but 

more than S-II that uses a more aggressive speed. 

            In the intent of safety, governments and local agencies are leaning more towards 

using a conservative approach for the planning of winter roadway maintenance than an 

aggressive approach, which means that they would rather have a redundancy of plow 

trucks than a shortage. However, a model with the proper formulation to reflect time-

dependent travel time is proved to be able to provide better results than travel time being 

underestimated and being overestimated in transportation planning.  In the future, more 

work should be focused on using the real-time information (traffic conditions) instead of 

historical speed data. The general idea is to route and schedule vehicles in a dynamic 

travel time environment. 

6.5 Summary 

In this chapter, a case study used the set-partitioning mathematical model and one genetic 

algorithm based heuristic to solve the vehicle routing and scheduling problem for snow 

plowing operations. A transportation network selected from the northwest part of the 

state of New Jersey was used to test the model and algorithm. Comprehensive analysis 

based on a deterministic travel time setting and a time-dependent travel time setting was 

conducted. The results show that a model with proper formulation to reflect time-

dependent travel time generates better results than being too aggressive or being too 

conservative in travel time estimation. A smaller fleet size and less total vehicle travel 

time were needed to complete the plowing operation within service time limit with the 

optimized routes and schedules. 
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           In addition, scenario analysis suggest that the current NJDOT operation with fixed 

snow sector design and service routes uses more plow trucks than operations with 

optimized routes and schedules. In general, there is a trade-off between fleet size and 

deadhead travelling distance, which is important for planners who optimize service routes 

and evaluate resources allocation options.  
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CHAPTER 7  

COMPUTATIONAL ANALYSIS 

 

Using the set partitioning formulation described in Section 3.5 to search for the optimal 

integer solution for a vehicle routing and scheduling problem, it could be doable to 

enumerate all possible routes for problems with a small number of snow sections to 

service. According to Alvarenga et al. (2007), for a problem with five demands where 

time and capacity constraints are strict or sufficient enough to restrain possible routings 

up to two, the number of possible routes would be: 

2

1

5!
25

(5 )!n n

 
 

 
                                              (7.1) 

However, when the number of demands increases, the number of possible routes 

increases significantly as well. Alvarenga et al. (2007) stated that around 3.8*10
16

 

possible routes can be generated for a problem with 50 demand nodes. Consequently, 

heuristic approaches come in to help reduce the number of possible routes. In this 

Chapter, the computational efficiency of the developed GA algorithm was studied.  

7.1 Optimal Result and Calculation Time 

In order to determine how much the developed heuristic can improve the computational 

efficiency, a few small size problems were solved using the exhaustive method described 

in Section 4.1 and the GA based heuristic developed in Section 4.2, respectively. To 

make sure the solution searching space is reasonable, the test was performed on a simple 

network as presented in Section 5.2 and operated on an Intel Core i5 CPU clocked at 2.40 
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GHZ with 2 GB of RAM under Windows 7 platform. Parameters for the GA algorithm 

were summarized in Table 6.12.  

Table 7.1  Parameters of the GA Based Heuristic 

Parameters Values 

Crossover rate 0.98 

Mutation rate 0.10 

Population size 100 

Table 7.2 summarized the total vehicle travel time and the computation times of various 

small size problems obtained by the using the exact algorithm and the heuristic, 

respectively. The solutions produced by the proposed GA based heuristic were the final 

results have converged and the calculation time was calculated by the summing the 

running times of each iteration. As shown in Table 7.1, for problems with 6 to 9 required 

arcs, the heuristic solved the problem to global optimality in two seconds, which is far 

less than the time required for the exact algorithm.   

Table 7.2  Result comparison of Small Size Problems  

No. of  Required Arcs Total Vehicle Travel Time 

(min) 

Calculation Time (sec) 

Heuristic Exact Heuristic Exact 

6 137 137 1 3 

7 156 156 1 15 

8 176 176 2 70 

9 223 223 2 247 

10 246 237 5 654 

11 288 275 11 1389 

12 321 317 27 2790 

13 378 372 34 4569 
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            As the number of required arcs increases beyond 10, it is expected that the 

proposed heuristic solution would be increasingly less optimal. However, the savings in 

calculation time appears to increase exponentially as the number of required arcs 

increases. As shown in Figure 7.1, the total calculation time using the heuristic appears to 

increase linearly as number of duties increases. The calculation time for using the exalt 

algorithm to achieve optimality increases exponentially as the number of required arcs 

increases.  

 
Figure 7.1  Computation time vs. number of required arcs. 

           Based on this the calculation times of the small problems, the problem with 13 

required arcs approximately required 76 minutes (4569 seconds) to solve with the exact 

algorithm. The excessive calculation time required to find optimal solutions for the real 

world-sized problems demonstrates the need for more an efficient solution method. For 

the problems with over 100 required arcs, generating all feasible duties and then solving 
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the problem to optimality becomes nearly impossible due to computer memory and 

calculation time constraints. 

7.2 Analysis on Population Size 

As previously discussed in Section 4.2, the improvement in objective function, 

calculation time and memory usage all vary with the population size. As the population 

size increases, the formulated sub-problem of travel salesman problem becomes more 

difficult to solve due to several reasons. First, increasing the population size makes it 

more difficult to find feasible routes. Since many potential “good” routes are likely to 

have been found and have entered the restricted subset in later iterations, it becomes 

increasingly harder to find new routes to enter to subset. Second, a larger population size 

means that the restricted subset is also larger.  

Table 7.3   Results of scenario II with different population sizes 

Population 

size 

generations Total Vehicle Travel 

Time (vehicle*minute) 

Improvement Calculation 

Time (sec) 

Memory 

Space (MB) 

80 14 8955 - 870 31 

100 16 8328 7% 1305 58 

120 20 8078 3% 2030 97 

A numerical experiment was tested on the scenario II of the case study presented in 

Section 6.1 to show how population size affect the computational efficiency. All the 

parameters were taken from Table 6.12. The results were summarized in Table 7.3 and 

suggest that the final integer program that needs to be solved by CPLEX has a larger 

search space and results in more calculation time when the population size increases. 
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Also, since increasing the population size can lead more feasible routes that must be 

stored in record; the overall computer program requires more intensive memory usage. 

          To illustrate that how solutions from the GA based heuristic converge to optimum 

given different population sizes, by comparing the results that summarized in Table 7.2, 

three conclusions can be drawn. First, the greater the population size the greater the 

chance that the initial state of the population will contain a chromosome representing the 

optimal solution. Second, the increase in population size causes the number of 

generations to converge to increase as well. This is because if mutation occurs for large 

population sizes, more generations are needed to eliminate the mutated chromosomes. 

Third, although increasing the population size makes the sub-problem of the travel 

salesman problem more difficult to solve, the solutions also get improved. The results 

suggest that the population size should be set at approximately 100. There does not 

appear to be a strong relationship between the number of snow Sections and a good 

population size limit. It is possible that the population size depends on the existing routes 

and schedules, and how much potential there is for improvement. 
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CHAPTER 8  

CONCLUSIONS AND FUTURE WORK 

  

In this dissertation, a comprehensive summary of exiting research, both theoretical and 

practical, regarding vehicle routing and scheduling was undertaken and presented in the 

literature review chapter. This summary explored existing research in three major areas: 

variability of travel time, network optimization and winter road maintenance. These three 

areas form the foundation for a vehicle routing and scheduling model considering 

variability of travel time. A genetic algorithm based heuristic was developed to generate 

good feasible solutions to the problem, and they were further solved by a set-partitioning 

approach. 

          The developed model accepts inputs describing constant or time-dependent travel 

time, road network information, service demand and service time limits, fleet size 

restrictions, and time windows restrictions. The output of the model describes when and 

on which routes service vehicles should depart to fulfill the service of traffic data 

collection or winter road maintenance. This information is useful as a visualization tool 

for project managers and maintenance supervisors.         

           To illustrate the proposed model and the solution algorithm in a real life 

transportation network, two realistic examples were used to solve a traffic data collection 

problem and a winter road maintenance problem, respectably. To assess the quality of the 

solutions derived by the heuristic, exhaustive enumeration was used to find the optimal 

solution for small size problems. The enumeration method takes much more time than the 
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heuristic method to solve problems with large size of demands. The comparison showed 

that the heuristic approach provides near optimal solutions in a reasonable amount of 

time. The computational efficiency and accuracy of the heuristic depends on the quality 

of the initial solution and population size used to solve the problem. 

8.1 Contributions 

This dissertation produced a model to solve vehicle routing and scheduling problems 

considering the variability of travel time in a formal mathematical context. This model is 

flexible in terms of the operations it models, and also the metrics that it uses to establish 

optimal routes and schedules. Such a model is believed to be a useful contribution to the 

field of network optimization. 

           The developed model proves useful both for developing a plan of action during a 

snow event, and for estimating the effects of altering various system parameters such as 

fleet size, depot locations and service routes. In addition to providing recommended 

schedules for vehicle dispatch, total vehicle travel time estimates are also provided, 

which can prove useful for emergency response purposes. 

           From an application standpoint, the developed model has the potential to be 

adapted for applications with similar vehicle/arc routing and schedule features, such as 

waste collection or ship scheduling problems. This research has provided a general model 

towards this eventual goal. However, a great deal of modifications in terms of model 

objective function and constraints remains to be done before such applications could 

become a reality. Accordingly, the Future Work Section is concerned primarily with 

extensions of the model in the direction of real-world applicability. 
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           The principal contribution of this model to current research is the mathematical 

system that takes time dependent travel time into account. This work contributes in the 

literature that explicitly models the problem of traffic data collection as a direct 

consequence of vehicle routing and scheduling decisions. In addition, the network based 

structure of winter maintenance operations is presented in this dissertation to prove this 

mathematical system’s applicability in the transportation planning area, an aspect that is 

lacking in most existing research in the field to date. 

8.2 Future Work 

This research attempted to produce a model that is extendable for future applications and 

whose accuracy is also quantifiable. Such quantification is a necessary step for making 

this model deployable in a production setting. A formal validation of the model’s fidelity 

to real-world operations should be undertaken. This way, the model can be brought into 

closer alignment with the reality it seeks to represent. The following recommendations 

were made for future work: 

• The model can be enhanced by taking into account the stochastic nature of the 

travel time. Travel time is the result of taking into account not only mean travel 

time but ideally the travel time distribution itself. As the travel time distribution is 

derived from the speed distribution and the known distances, the approach 

requires realistic speed distributions. The deviations or variations of plowing 

speed at different traffic time period for heterogeneous road geometry should be 

determined. If the deviations were known, then the plow speeds could be 

stochastically modeled to reflect what will happen in the real snowplow system. 
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• The developed model can be extended by addressing the fleet contracting issue in 

the application of winter road maintenance. In reality, most departments of 

transportation do not maintain sufficient vehicles and hence they may resort to 

contract additional equipment to make up for the shortfall. It is critical to 

determine the number of maintenance vehicles that should be contracted prior to 

a snow season to minimize the total cost, considering the frequency and 

distribution of various intensities of snow events, geometry of the roadways and 

traffic speeds.  

• The developed model can be improved by adding extensions to the study problem 

such as different vehicle types, road priorities, intermediate facilities for refilling 

the vehicles, etc. And modify the formulation and the developed heuristic for 

those cases. 

• The developed GA based heuristic can be enhanced by incorporating other meta-

heuristics such as Tabu Search, Ants Colony, and combination of meta-heuristics 

(hybrid meta-heuristics) that may be used to improve the searching process on the 

optimized results. 
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