
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

EFFICIENT DOMAIN DECOMPOSITION ALGORITHMS FOR THE
SOLUTION OF THE HELMHOLTZ EQUATION

by
Dawid Midura

The purpose of this thesis is to formulate and investigate new iterative methods for

the solution of scattering problems based on the domain decomposition approach.

This work is divided into three parts. In the first part, a new domain decomposition

method for the perfectly matched layer system of equations is presented. Analysis of a

simple model problem shows that the convergence of the new algorithm is guaranteed

provided that a non-local, square-root transmission operator is used. For efficiency,

in practical simulations such operators need to be localized. Current, state of the art

domain decomposition algorithms use the localization technique based on rational

approximation of the symbol of the transmission operator. However, the original

formulation of the procedure assumed decompositions that contain no cross-points

and consequently could not be used in the cross-point algorithm. In the context of the

perfectly matched layer problem, we adapt the cross-point technique and combined

with the rational approximation of the square root transmission operator to yield an

effective algorithm. Furthermore, to reduce Krylov subspace iterations, we present a

new, adequate and efficient preconditioner for the perfectly matched layer problem.

The new, zero frequency limit preconditioner shows great reduction in the required

number of iterations while being extremely easy to construct.

In the second part of the thesis, a new domain decomposition algorithm is

considered. From theoretical point of view, its formulation guarantees well-posedness

of local problems. Its practicality on the other hand is evident from its efficiency

and ease of implementations as compared with other, state of the art domain

decomposition approaches. Moreover, the method exhibits robustness with respect



to the problem frequency and is suitable for large scale simulations on a parallel

computer.

Finally, the third part of the thesis presents an extensible, object oriented

architecture that supports development of parallel domain decomposition algorithms

where local problems are solved by the finite element method. The design hides mesh

implementation details and is capable of supporting various families of finite elements

together with quadrature formulas of suitable degree of precision.
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CHAPTER 1

SCATTERING PROBLEM

1.1 Problem Motivation

This thesis develops efficient computational methods for the solution of the acoustic

scattering problem. Our aim is to model the dynamics of propagation of a

time-harmonic wave scattered through a homogeneous medium by an obstacle

of finite volume. The obstacle may be penetrable, in which case it may be

filled with an inhomogenous material. The obstacle is represented as a fixed

compact subset of the Euclidean space Rd where d = 1, 2 or 3. Our goal is an

efficient determination of the amplitude of the scattered wave which corresponds

to the radiating solution of the exterior Helmholtz boundary value problem. We

should point out that while the model addresses simulation of acoustic waves,

electromagnetic and elastic waves are modeled using similar mathematical principles.

In consequence, numerical investigations into the wave propagation phenomena in

respective fields of electromagnetism or elasticity may benefit from our work as well.

Efficient numerical modeling of wave scattering phenomena is at the heart of a

number of scientific and technological fields. A direct scattering problem is concerned

with determination of the wave pattern given the incident field and the shape of the

obstacle. Solution to this problem finds many applications in the civilian and military

sectors. For instance, the design of aircraft or submarines with respect to their stealth

properties relies on an efficient evaluation of the wave field around those objects. An

efficient solution to the forward problem is indispensable in these cases. Medical and

seismic imaging is also an important area of application where the inverse problem is

mainly of interest. Ultrasound technology and fossil fuel explorations are based on a

computer generated solution to the inverse scattering problem. An inverse scattering

1



problem deals with determination of the obstacle’s shape and properties under the

assumption of knowledge of both, the incident and scattered fields. It turns out

that the ability to efficiently solve the direct problem addressed in this thesis is also

required for an efficient solution to the inverse problem which further compounds its

applicability. Waveguide and antennae design are additional areas that could benefit

from the work presented here.

1.2 Derivation of the Helmholtz Equation

Mathematical acoustics is concerned with modeling of sound waves generated as a

result of small perturbations of an inviscid, compressible fluid. The equations of

acoustics are obtained by linearization of the equations of motion describing such a

fluid about a quiescent state. More precisely, let x ∈ Rd where d = 2, 3. We denote

by p, ρ, and v the acoustic pressure, fluid density and fluid velocity respectively. We

consider the conservation of mass and momentum equations in an inviscid fluid as

the starting point. These are:

∂ρ

∂t
+∇ · (ρv) = 0, (1.1)

∂v

∂t
+ v · ∇v = −1

ρ
∇p. (1.2)

We now introduce a small disturbance to a uniform, stationary body of fluid written

as:

p = p0 + p̃, ρ = ρ̃0, v = ṽ. (1.3)

The uniform state is p = p0, ρ(p) = ρ0(p0) and v = 0 and the variables p̃, ρ̃, ṽ are

small amplitude perturbations of that state. The neglect of viscous and gravitational

forces in equation (1.2) can be shown to be a valid approximation for as long as the

velocity fluctuations have magnitude much less than the speed of sound and whose
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wavelength λ satisfies 3 × 10−7m � λ � 11 × 103m [19]. Direct substitution into

equations (1.1) and (1.2) yields:

∂ρ̃

∂t
+∇ · {(ρ0 + ρ̃) ṽ} = 0, (1.4)

∂ṽ

∂t
+ ṽ · ∇ṽ = − 1

ρ0 + ρ̃
∇p̃. (1.5)

Upon neglecting the products of small quantities and expanding 1
ρ0+ρ̃

in the geometric

series of ρ̃
ρ0

we obtain the leading order equations:

∂ρ̃

∂t
+ ρ0∇ · ṽ = 0, (1.6)

∂ṽ

∂t
= − 1

ρ0

∇p̃. (1.7)

Since p̃ is assumed small, we may expand ρ in Taylor series about p0:

ρ0 + ρ̃ = ρ(p0 + p̃) = ρ(p0) +
dρ

dp
(p0)p̃+O(p̃2). (1.8)

Since ρ0 = ρ(p0) we obtain a leading order approximation:

ρ̃ =
dρ

dp
(p0)p̃. (1.9)

Deriving (1.6) with respect to time and substituting (1.9) we arrive at:

∇ · ∂ṽ

∂t
= − 1

ρ0

dρ

dp
(p0)

∂2p̃

∂t2
. (1.10)

Finally, we substitute (1.7) into the above and arrive at the equation satisfied by the

pressure disturbance:

∆p̃ =
1

c2

∂2p̃

∂t2
(1.11)

where c = ∂ρ
∂p

(ρ0)−
1
2 is the speed of sound. This is a wave equation. Thus we see that

small amplitude pressure disturbances propagate as a wave with speed c.

3



To decouple Equations (1.6) and (1.7), we begin by introducing function φ̃ such

that:

∂φ̃

∂t
= − p̃

ρ0

. (1.12)

Equation (1.7) then implies that:

∂

∂t

(
ṽ −∇φ̃

)
= 0. (1.13)

Integrating in time and making use of the fact that ṽ is initially zero we obtain:

ṽ = ∇
(
φ̃− φ̃0

)
(1.14)

where φ̃0 is the initial value of φ̃. Next, we introduce φ = φ̃− φ̃0. Substituting into

the above expression yields:

ṽ = ∇φ. (1.15)

In other words, φ is the velocity, or the acoustic potential. From the definition of φ

and Equation (1.13), we see that:

p̃ = −ρ0
∂φ

∂t
. (1.16)

Combining the above with equations (1.6), (1.9) and (1.15) gives:

∆φ =
1

c2

∂2φ

∂t2
. (1.17)

For time harmonic vibrations with time dependence e−iωt, the velocity potential is

of the form:

φ(x, t) = <
{
u(x)e−iωt

}
(1.18)

4



with frequency ω > 0. Substituting the above into (1.17) we see that the complex-

valued amplitude function u satisfies the Helmholtz equation

∆u+ k2u = 0 (1.19)

where the constant k = ω
c

is the wave number. We consider the problem of scattering

of plane, time-harmonic acoustic waves from a bounded obstacle Ω ⊂ Rd. Therefore,

we assume that the amplitude of incident acoustic potential ui has the form eik·x

where k ∈ Rd with |k| = k. The quantity ei(k·x−ωt) is constant on planes k ·x−ωt =

const and so it represents a plane wave. Moreover, the wave travels in the direction

k with speed c = ω
k
. The scattering problem is to find a scattered field us as the

radiating solution to the Helmholtz equation in the region Rd−Ω such that the total

field u = ui + us satisfies equation (1.19) and an appropriate boundary condition on

the surface of the obstacle.

The types of boundary conditions considered in acoustical applications are

related to the properties of the obstacle. On the surface of the sound soft obstacle,

the total excess pressure vanishes. From Equation (1.16), we see that in the time

harmonic case we have the relation:

p̃ = −iωρ0φ (1.20)

from which it follows that the appropriate boundary condition is of Dirichlet type:

u = 0 on ∂Ω. (1.21)

On the surface of a sound hard obstacle, there is no movement of fluid particles in

the direction normal to the surface that is, n · ṽ = 0 on ∂Ω. Consequently, equation

(1.15) leads to a Neumann boundary condition:

∂u

∂n
= 0 on ∂Ω. (1.22)

5



To characterize radiating solutions to the Helmholtz equation the Sommerfeld

radiation condition is used

lim
r→∞

r
d−1

2

(
∂us

∂r
− ikus

)
= 0 (1.23)

where r = |x| and the limit holds uniformly in all directions x/|x|. It can be shown

that us is the part of the total field that carries the energy away from the obstacle.

In other words, the Sommerfeld condition characterizes purely outgoing waves [53].

Once the solution u is known, the velocity potential is obtained by a simple

multiplication by the complex exponential e−iωt and equation (1.17) immediately

gives the velocity field. The associated pressure disturbance is given by equation

(1.20), whereas the density disturbance can be recovered from equation (1.9).

1.3 Numerical Methods for Direct Scattering Problem

All numerical methods for modeling-time harmonic waves propagating in an

unbounded medium must address the issue of an infinite problem domain. Many

methods to deal with this difficulty have been proposed and studied [43,76]. Among

those methods we find absorbing boundary conditions (ABCs), the perfectly matched

layer (PML) techniques, and boundary integral (BI) methods. In the case where

the medium is homogeneous, the BI methods are particularly interesting since

they reduce the dimensionality of the problem by one and do not require domain

truncation. The other two approaches on the other hand, involve truncation of

the problem domain by either an artificial surface, or an artificial absorbing layer

respectively. The finite computational domain introduced in this manner encloses

the scatterer, any inhomogeinities and any acoustical sources if they are present.

An artificial boundary condition closes the system by specifying the behavior

of the solution at the artificial boundary. The condition needs to incorporate

the far-field behavior of the solution into the numerical model. That is, it
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should be completely transparent to outgoing waves, and completely reflecting

to incoming waves. Design of ABCs usually involves a trade off between the

accuracy of computation and efficiency of the boundary condition. Local ABCs

are easy evaluate and straightforward to implement in a computer code. Bayliss,

Gunzburger and Turkel have show how to generate such boundary conditions by

considering the far-field expansion of the solution and deriving a sequence of local

operators that annihilate its first few terms [12]. Engquist and Majda [36] on the

other hand used pseudo-differential operator theory to approximate the non-local

Dirichlet-to-Neumann (DtN) operator by a linear combination of local operators. In

the asymptotic limit, as the distance from the obstacle to the artificial boundary goes

to infinity, both of these formulations reduce correctly to the Sommerfeld radiation

condition. In practice of course, the distance is finite and for computational efficiency

as close to the obstacle as possible. The downside to this is that these ABCs are no

longer perfectly transparent and produce unwanted reflections not otherwise present

in the true solution.

On the other side of the spectrum there are the non-local ABCs. They are

expressed by Dirichlet to Neumann maps. The DtN operators involved are exact,

and defined in terms of a convolution with the Greens function over the artificial

boundary. Such boundary conditions have been discussed for example by McDonald

and Wexler [60], MacCamy and Marin [59] and Givoli and Keller [51].

While local ABCs give raise to purely sparse matrices when discretized by

finite elements for example, the same method generates matrices with sparse and

dense blocks [32, 49] when applied to non-local ABC formulations. The sparse

blocks corresponds to the application of finite element method (FEM) to the interior

problem, whereas the dense blocks correspond to the application of boundary element

method (BE) to the integral equation on the artificial boundary. This is problematic
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from the computational point of view as most linear algebra software packages are

tailored for systems with either sparse or dense matrices.

To overcome the difficulties associated with the standard ABCs an alternative

approach to deal with the truncation of unbounded domains was introduced by

Bérenger [17] in the context of Maxwell’s equations in electromagnetism. His method

consisted of surrounding the computational domain with a thin layer of an artificial

material designed to absorb the scattered field radiated from the obstacle. This

method is referred to as “perfectly matched” because the interface between the

domain of interest and the absorbing layer is transparent to the propagating waves.

Though initially settled for Maxwell’s equations, the PML idea has also been applied

to wave problems in acoustics [46, 47], elasticity [31] and shallow water waves [63].

In practice, the thickness of the layer is finite and kept small for computational

efficiency. The boundary conditions specified on the truncation boundary of the

PML seem to have little effect on the method’s performance [30, 64]. As compared

with local ABCs, discretization of the PML system leads to larger matrices which

however are still very sparse.

In the case where there are no inhomogeneities present in the problem, the

boundary integral method can be used on its own [52,53]. In that case there is no need

to introduce an artificial boundary since the boundary integral equation is defined

directly on the surface of the scatterer. Even though the other approaches may still be

employed, this technique has the advantage of being exact as the far-field behavior of

the solution is completely accounted for. This method also reduces the dimensionality

of the problem by one which makes it very attractive. However, we need to point

out that from the discrete point of view, the associated linear system is complex,

non-hermitian, dense and very large in real world problems. These properties make

it very difficult to solve by direct methods. For that reason, Krylov subspace methods

such as GMRES [72] for instance, are preferred instead. Large problems may further
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require the use of techniques such as fast multipole method (FMM) [45, 68] to

decrease the computational cost of matrix-vector multiplications performed by the

iterative solver. Furthermore, it should be added that integral equations arising

in acoustic scattering problems can be ill-conditioned. Few equivalent integral

equation formulations were thus developed to alleviate this issue on a continuous

level [2,3,54,55]. Another approach is to work on a purely algebraic level, improving

the conditioning of the discrete system by devising a suitable preconditioner [4,27,28].

An increasing number of applications dealing with wave scattering phenomena

necessitates consideration of the problem at high frequencies. Accurate resolution

of a highly oscillatory wave field by FEM or BEM requires the use of very fine

meshes. This is problematic because the condition number of matrices generated

by these methods grows as the mesh size decreases [6, 37]. Ill-conditioning is an

undesirable property of a matrix as it makes the system difficult to solve by either

direct or iterative methods. The other problem has to do with the fact that as the

discretization refines, the number of mesh points increases and so does the number of

the unknowns in the system. High frequency simulations using the methods presented

in a direct manner are difficult to obtain simply because they give raise to systems

of equations with very large number of unknowns.

The methods investigated in this thesis are based on the non-overlapping

domain decomposition approach. In the domain decomposition setting, the computa-

tional domain is partitioned into a collection of non-overlapping subdomains. Small

local problems coupled at the interfaces through transmission conditions are then

defined on each subdomain. Subsequently, the coupling between subproblems is

relaxed by formulating a suitable iterative scheme whose convergence depends on

the transmission condition employed. In the process the solution to the original

problem is recast as an iterative procedure in which multiple small and uncoupled

problems are solved at each iteration. The advantage of this approach is that the
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local problem size can be kept arbitrarily small in which case the problems associated

with ill-conditioning and large number of unknowns do not appear. The method

has been initially conceived for elliptic type problems and much of its development

can be attributed to P. L. Lions [57, 58] who considered both overlapping and

non-overlapping decompositions. The extension of the non-overlapping variant of

DDM to the Helmholtz problem was accomplished by B. Després [33].

Domain decomposition algorithms are very attractive from the computational

point of view as they respect the memory hierarchy of modern parallel architectures.

Realization of such algorithms on parallel clusters is natural due to the loose coupling

between subproblems. Since local problems are small, they can be solved very

efficiently on a single cluster node. Moreover, in the non-overlapping variant of

the method that we are considering, only data related to the interface unknowns

must be exchanged between neighboring subdomains. This means that the the

communications overhead in the cluster is small which ensures robustness of such

algorithms with respect to the number of subproblems.

Last, but no least, domain decomposition technique allows one to construct a

coupling of algorithms between different methods of discretization, such as the FEM

and the BEM, in order to solve problems involving inhomogeneous materials. FEM

deals with a finite part of the domain enclosing any inhomogeinities and sources,

independent of the BEM, which tackles the equations describing the propagation of

the wave in an infinite homogeneous medium [16,21,23].
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CHAPTER 2

DOMAIN DECOMPOSITION METHODS

Domain decomposition methods have a rich and interesting history [41]. The idea

was first conceived by Herman Schwarz in 1869 who proposed what is now called an

alternating Schwarz method in order to prove the validity of the Dirichlet principle

on irregular domains [41]. His results were extended by P. L. Lions [57, 58] about

a century later, around the time when parallel computers were becoming more

available. P. L. Lions was the first to realize the potential of the Schwarz method

on such machines. A slight modification to the original algorithm lead P. L. Lions

to the development of the parallel Schwarz method [57]. His work introduced new

analytical tools needed to study such algorithms and brought the Schwarz method to

the modern computer era. Moreover, and what is very important, his contributions

brought the fundamental ideas of decomposition and iteration, so central to the

Schwarz method, to the attention of other researchers.

The basic idea of domain decomposition methods is that instead of solving one

huge problem once, it may be convenient or even necessary, to solve a sequence of

smaller problems iteratively [67, 74]. The original computational problem domain is

first partitioned into a collection of subdomains. Subsequently, local subproblems are

defined on each subdomain. Their totality composes a system of coupled boundary

value problems. In the context of non-overlapping methods, the coupling between

adjacent subproblems is realized via transmission conditions imposed on the artificial

interfaces separating them. The choice of the transmission conditions is crucial.

It defines an iteration equation whose properties directly relate to the speed of

convergence of the method. The subproblems are then uncoupled in an iterative

scheme. Each iteration consists of two crucial stages. In first, the local subproblems
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are solved independently of one another. Once the local solutions are known, the

iterates are updated and exchanged in the second stage.

The ability to split a large problem into a collection of smaller ones is what

makes domain decomposition algorithms very much applicable to real world problems

with huge computational resource requirements. In this thesis we focus on the

application of domain decomposition approach to the problem of acoustic scattering.

It should be noted however, that domain decomposition techniques have successfully

been applied to many large scale problems of science and engineering such as high

resolution climate simulations or determination of air flow around aircraft prototypes,

to mention just a few.

The Schwarz method is an overlapping domain decomposition method and one

of its drawbacks is the additional amount of computational work performed in the

overlapping region. Moreover, there are cases where non-overlapping decompositions

are more natural to use. Such cases include problems with discontinuities where

the problem domain could be partitioned along the lines of discontinuities, as well as

problems involving coupling of two physical or numerical models. This has prompted

P. L. Lions to study non-overlapping variants of the Schwarz method. He was able

to show that the convergence of the method for Laplace type problems can still be

achieved, and in fact improved, provided that a Robin type transmission condition is

used instead of the Dirichlet type as was the case with the overlapping methods [58].

Unfortunately, the convergence of the non-overlapping Schwarz method devised

by P. L. Lions cannot be guaranteed for all problems. Many researchers, including P.

L. Lions himself were aware of this shortcoming. In [58], he pointed out that perhaps

this issue can be resolved by allowing even more general Robin type boundary

conditions that include non-constant coefficients or even local or non-local operators.

A well known example of a problem for which the Schwarz method of P. L. Lions

does not converge is the Helmholtz boundary value problem [40]. Bruno Després
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was the first to successfully apply domain decomposition method to the Helmholtz

equation [33]. His approach consisted of applying Robin type transmission conditions

with complex coefficients. The convergence of the resulting method however, is not

satisfactory [40]. That has prompted many researchers to consider modifications of

the method utilizing improved transmission operators. Nevertheless, the work of B.

Després is seminal, and constitutes the foundation of the algorithms presented in

this thesis.

Improvements of the domain decomposition methods are concerned with the

optimal choice of transmission conditions. Given the transmission condition of the

form ∂nu+Λu what is the choice of Λ that guarantees convergence and results in a fast

method? The transmission operator Λ could be a constant, local or non-local. For a

large class of second-order problems and decompositions of the rectangular domains

into strips, it has been shown that the optimal choice of Λ corresponds the DtN

operator [62]. Similar results have been confirmed for the Helmholtz equation [69,70].

Unfortunately, DtN operators are in general non-local and therefore too costly to use

in an efficient numerical algorithm. In the context of the Helmholtz problem, a great

variety of techniques based on local transmission conditions have been proposed to

improve the convergence. These include the optimized Schwarz method approach [40]

and the evanescent mode damping algorithm [16,21,23]. The localized transmission

operators however, do not accurately approximate the exact DtN operator on all

of the modes of the solution. This results in a sub-optimal iterative method. In

this thesis, we use and adapt current state of the art non-overlapping domain

decomposition techniques based on localization of the DtN operator by a Padé

series [22]. The rate of convergence of such methods have been shown to be optimal

on the evanescent modes and significantly improved for the remaining modes. As

we will show, our algorithms coupling finite elements with perfectly matched layer
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technique results in an efficient domain decomposition method that exhibits good

convergence properties independent of the wavenemuber.

2.1 Domain Decomposition Method for a 2D Model Problem

For the sake of clarity, let us consider a typical two dimensional problem of acoustic

scattering from a sound hard obstacle. The problem domain (Figure 2.1) consists of

an obstacle which is a bounded subset Ω− of the Euclidean space R2 with boundary

Γ. For simplicity we assume that the obstacle is impenetrable in which case the wave

propagation takes place only in the exterior region Ω+ = R2 \ Ω−.

Given the amplitude of the incoming plane wave ui, the problem for the

scattered field us we want to solve is as follows (see Section 1.2):
∆us + k2us = 0 in Ω+

∂νu
s = −∂νui on Γ

limr→∞ r
1
2

(
∂us

∂r
− ikus

)
= 0 for r = |x|

(2.1)
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where ν is the unit normal vector to the boundary Γ that points into Ω−. For the

numerical purposes, we truncate the original problem domain (see Figure 2.2) with

a circular boundary Σ on which we specify an ABC.

Provided that Σ is sufficiently far away from the scatterer, a good approxi-

mation to the Dirichlet-to-Neumann map on that curve is ∂ru = iku [61]. Using this

relations as our ABC, we arrive at the following problem:
∆us + k2u = 0 in Ω

∂νu
s = −∂νui on Γ

∂ru
s − ikus = 0 on Σ

(2.2)

It should be pointed out that we have slightly abused notation here. The

solution us of the above problem is not the same as the solution to the original,

infinite problem (2.1). Solution us to problem (2.2) contains truncation error due

to an ABC not present in the original problem. Nevertheless, in what follows, this

should not cause any confusion.
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2.2 Formulation of the Domain Decomposition Method.

In order to solve problem (2.2) using domain decomposition approach, we partition

the computational domain Ω into a disjoint collection of Nd subdomains Ωi : i =

0, 1, . . . , Nd − 1 such that:

• Ω =
⋃Nd−1
i=0 Ωi

• Ωi ∩ Ωj = ∅ if i 6= j

• ∂Ωi ∩ ∂Ωj = Σij = Σji is the artificial interface separating Ωi from Ωj.

A typical decomposition of the computational domain is depicted in the Figure

(2.3) below. Let us denote by ui a solution to the problem on the subdomain Ωi and

by νi the unit normal vector to the boundary ∂Ωi of the subdomain Ωi pointing away

from it. Also, let Γi = ∂Ωi∩Γ and Σi = ∂Ωi∩Σ be those portions of ∂Ωi that lie on

the physical boundaries. Note that these sets may be empty for some subdomains.

We will also introduce a set of subdomain indices σi ⊂ {0, 1, . . . , Nd − 1} such that

if j ∈ σi then Ωj is a neighbor of Ωi. Now consider the following system of coupled
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Helmholtz boundary value problems:
∆ui + k2ui = 0 in Ωi

∂νiui = ∂νiu
i on Γi

∂νiui − ikui = 0 on Σi

(2.3)

supplemented with continuity conditions at the artificial interfaces Σij : j ∈ σi:

ui = uj and ∂νiui = −∂νjuj. (2.4)

Following the approach of P. L. Lions [58] and B. Després [33] we begin by

combining the continuity conditions (2.4) in the following equivalent form:

∂νiui + Λui = −∂νjuj + Λuj, (2.5)

∂νiuj + Λuj = −∂νiui + Λui (2.6)

where Λ is the transmission operator which for generality, is currently left unspecified.

The original choice of Λ made by Després in [33] was Λ = −ik. Finally, let n ≥ 0 be

the iteration index. The iteration procedure consists of solving following problems

at each step:

∆u
(n+1)
i + k2u

(n+1)
i = 0 in Ωi

∂νiu
(n+1)
i = ∂νiu

i on Γi

∂νiu
(n+1)
i − iku(n+1)

i = 0 on Σi

(2.7)

∂νiu
(n+1)
i + Λu

(n+1)
i = −∂νju

(n)
j + Λu

(n)
j for Σij : j ∈ σi. (2.8)

Introduction of an iterative scheme allowed us to relax the continuity conditions (2.5)-

(2.6) and close the local problems with the transmission condition (2.8). The fact that

the interface condition depends on the solution to a neighboring problem at a previous

iteration step enables the algorithm to solve the local problems concurrently. This
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single feature forms the basis for a natural parallel implementations of the method.

Let us now define the interface datum:

g
(n)
ij = −∂νju

(n)
j |Σij + Λu

(n)
j |Σij . (2.9)

At the (n+ 1)th step, the problem (2.7)-(2.8) is solved with interface data g
(n)
ij : j ∈

σi. Once the solution u
(n+1)
i is obtained, the interface data g

(n+1)
ji = −∂νiu

(n)
i |Σij +

Λu
(n)
i |Σij is calculated and communicated to the neighboring subdomains Ωj : j ∈

σi. This updates the iterative scheme and exchanges the data between neighboring

subdomains. The calculation of the update may be problematic from the numerical

point of view as it requires the determination of the normal derivative of the solution

along the interface. A simple algebraic manipulation however removes the need for

such a procedure:

g
(n+1)
ij = ∂νju

(n+1)
j |Σij + Λu

(n+1)
j |Σij

= −∂νju
(n+1)
j |Σij + Λu

(n+1)
j |Σij + Λu

(n+1)
j |Σij − Λu

(n+1)
j |Σij

= −g(n)
ji + 2Λu

(n+1)
i |Σij . (2.10)

2.3 Discussion of the Convergence of DDM

Improving the convergence properties of the iterative process constitutes the key

in designing effective domain decomposition algorithms. It is well known that the

convergence of the domain decomposition methods for scattering problems strongly

depends on the choice of the transmission operator Λ. Indeed, to each choice of

Λ corresponds an iteration operator with particular spectral properties [22]. The

optimal convergence is obtained by defining the transmission conditions on each

artificial interface using the Dirichlet-to-Neumann (DtN) map [40, 69, 70]. This

however leads to a very expensive procedure in practice as the DtN operator is

generally non local. Therefore, improved techniques usually introduce modifications

to the original algorithm developed by B. Després that rely on more accurate local

18



representation of the DtN operator. Indeed, and not incidentally, the original choice

of Λ = −ik made by B. Després, corresponds to a low-order approximation of that

operator. However, in [16] it is shown that the resulting iteration operator acts

on the part of the spectrum corresponding to the propagating modes, while the

eigenvalues related to the evanescent modes have unit modulus. This directly impacts

the convergence properties of the resulting iterative scheme.

Three families of techniques have been proposed to overcome this problem.

First, algorithms based on the optimization of the rate of convergence were introduce

by Gander et al. [39], where improved local approximations of the DtN map of order

zero and order two are built. For a generic interface Σ, those approximations take,

respectively, the following form:

Λu = αu, and Λu = αu+ ∆Σu (2.11)

where ∆Σ is the Laplace-Beltrami operator on Σ and the complex coefficients α

and β are obtained by solving a min-max optimization problem on the rate of

convergence. Second, the Evanescent Modes Damping Algorithm (EMDA) was

introduce by Boubendir et. al [23], with the explicit aim to damp the evanescent

modes. This method achieves the improvement on the evanescent modes by applying

the following transmission operator:

Λu = −iku+ χu (2.12)

where χ is a self-adjoint positive operator. Finally, the third technique, also proposed

by Boubendir et. al [22] utilizes the so called square-root transmission operator:

Λu = −ik
√

1 +∇Σ · (k−2
ε ∇Σ)u (2.13)

where kε = k + iε is a complexified wavenumber. The operator ∇Σ · is the surface

divergence of a tangent vector field on Σ and ∇Σ is the tangential gradient of the
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surface field. The square root
√
A of an operator A is classically defined through the

spectral decomposition of A [73]. In the remainder of this section, we shall give an

outline of the derivation of the non-local operator in Equation (2.13) and present a

localization procedure based on Padé approximates.

To present the derivation of (2.13) we begin with a formal construction of the

DtN operator for a half-plane. To this end consider the following boundary value

problem: 
∆u+ k2u = 0 in R3

+ = {x ∈ R3 : x1 > 0}

u = g on Σ

u is outgoing

(2.14)

where the boundary Σ := {x ∈ R3 : x1 = 0}. Therefore, the standard basis vector

e1 gives the normal direction to Σ while vectors e2 and e3 are tangential to it. We

denote by D the DtN operator defined by [22]:

D : H1/2(Σ)→ H−1/2(Σ),

u|Σ 7→ ∂x1u|Σ = D(u|Σ).

(2.15)

The simplicity of the problem geometry in (2.14) makes it possible to write D

explicitly by Fourier analysis. Indeed, let us introduce ξ = (ξ2, ξ3) ∈ R2 as the

Fourier covariable of the tangential variable x⊥ = (x2, x3). We denote by Fx⊥ the

partial Fourier transform with respect to (x2, x3) and by F−1
ξ the associated inverse

Fourier transform. Applying Fx⊥ to the Helmholtz equation (2.14) leads to an ODE:

∂2
x1
û(x1, ξ) + (k2 − |ξ|2) û(x1, ξ) = 0 (2.16)

for x1 ≥ 0 where û denotes the transform of u. Let us define:

σ1(k, ξ) = ik
√

1− |ξ|2/k2. (2.17)
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The solution to the above equations can now be written as:

û(x1, ξ) = A+eσ1(k,ξ)x1 + A−e−σ1(k,ξ)x1 . (2.18)

Now, since we are looking for an outgoing solution to (2.14) we need to choose

coefficients A+ and A− so that the L2(R3
+)-norm of u is finite. By Parseval’s

relation, this also means that the L2(R3
+)-norm of û is finite. This can only arise if

A− = 0 resulting in the right traveling solution û(x1, ξ) = A+eσ1(k,ξ)x1 . Deriving the

last expression with respect to x1, applying the inverse Fourier transform in ξ and

considering the trace of the resulting relation on the transmitting boundary Σ leads

to:

∂x1u(0,x⊥) = F−1
ξ {σ1(k, ξ)û(x1, ξ)} |Σ. (2.19)

In the pseudo-differential operator terminology the quantity σ1(k, ξ) is referred to as

the symbol of the corresponding operator D. This relationship between D and its

symbol is written as D = Op(σ1). Since σ1(k, ξ) is not a polynomial in ξ, D is not a

differential operator. Instead, D belongs to a more general class of operators called

pseudo-differential operators [73]. It is shown in [22] that:

D = ik

√
1 +

∆Σ

k2
(2.20)

where the Laplace-Beltrami operator over Σ is defined by: ∆Σ := ∂2
x2

+ ∂2
x3

. For a

half-space, the transmission operator Λ is thus simply taken to be equal to:

Λu = −Du = −ik
√

1 +
∆Σ

k2
u. (2.21)

Consider now a curved surface Σ. The surface is locally approximated by its

tangent plane, and one can formally propose an approximate representation of Λ

over Σ based on (2.21) where ∆Σ = ∇Σ ·∇Σ is the Laplace-Beltrami operator for the

curved surface Σ.
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The fact that Λ is no longer an exact DtN operator on Σ has been exemplified

in the case of a circular geometry in [7] and more general considerations are presented

in [5]. In particular, numerical experiments have shown that Λ is not uniform over all

ξ and is not valid for the glancing rays corresponding to |ξ| ≈ k. This behavior can

be attributed to the loss of analyticity by σ1 in exactly that region. As pointed out

in the reference, operator Λ can be regularized by adding a small imaginary number

iε to the wavenumber k. As will be seen shortly, ε depends on both the wavenumber

k as well as the local curvature of the surface. The symbol of Λ is redefined to:

σ1, ε(k, ξ) = −ik
√

1− |ξ|2/k2
ε (2.22)

where kε = k + iε for ε > 0. The newly obtained operator [7, 22]:

Op(σ1, ε) = −ik

√
1 +∇Σ ·

(
1

k2
ε

∇Σ

)
(2.23)

is the operator Λ of Equation (2.13). In the case of circular surface Σ of radius R

the optimal value of ε = εopt is chosen to minimize the magnitude of the reflection

coefficients resulting in εopt ≈ 0.4k1/3R−2/3 [7]. For a general boundary Σ with local

curvature κ the optimal value of ε is formally set to:

εopt ≈ 0.4k1/3κ2/3. (2.24)

2.3.1 Localization of the Square Root Operator by Complex Padé Series

The square root operator given by Equation (2.23) is a non-local operator. Therefore,

it is impractical in a finite element setting since the discretization would lead to full

matrices for the interface unknowns. Fortunately, this operator can be efficiently

approximated via a series of local, partial differential operators resulting in linear

systems with sparse matrices. This localization process has been presented in [7,22]

and is realized by a rotating branch-cut approximation of the square root function,
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and a subsequent application of complex Padé approximation of order Np:√
1 +∇Σ ·

(
1

k2
ε

∇Σ

)
≈ Rα

Np

(
∇Σ ·

(
1

k−2
ε

∇Σ

))
u

= C0u+

Np∑
l=1

Al∇Σ ·
(
k−2
ε ∇Σ

) (
1 +Bl∇Σ ·

(
k−2
ε ∇Σ

))−1
u

(2.25)

which corresponds to the complex Padé approximation:

√
1 + z ≈ Rα

Np(z) = C0 +

Np∑
l=1

Alz

1 +Blz
(2.26)

The complex Padé coefficients Al, Bl, C0 are given by:

C0 = ei
α
2RNp

(
e−iα − 1

)
, Al =

e−i
α
2 al

(1 + bl(e−iα − 1))2
, Bl =

e−i
α
2 bl

1 + bl(e−iα − 1)

where α is the angle of rotation, al, bl are the standard Padé coefficients:

al =
2

2Np + 1
sin2

(
lπ

2Np + 1

)
, bl = cos2

(
lπ

2Np + 1

)

and finally RNp = 1 +
∑Np

l=1
alz

1+blz
is the real Padé approximation of order Np to

√
1 + z.

Auxiliary Functions. Given the relation (2.21) and Equation (2.25) the localized

transmission operator Λ over a transmitting surface Σ takes the form:

Λu ≈ −ik

(
C0u+

Np∑
l=1

Al∇Σ ·
(
k−2
ε ∇Σ

) (
1 +Bl∇Σ ·

(
k−2
ε ∇Σ

))−1

)
u. (2.27)

The variational formulation of local problems (2.7) - (2.8) with the transmission

operator given above is more convenient to obtain with an introduction of auxiliary

functions ϕl. Those surface functions are used to rewrite Equation (2.27) so that it
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does not contain inverse operators:

Λu ≈ −ik

(
C0u+

Np∑
l=1

Al∇Σ ·
(
k−2
ε ∇Σ ϕl

))
. (2.28)

where the functions ϕl : l = 1, . . . , Np are defined on Σ as the solution the following

surface PDEs: (
1 +Bl∇Σ ·

(
k−2
ε ∇Σ

))
ϕl = u. (2.29)

The local, continuous problems (2.7) - (2.8) need to be modified accordingly to

accommodate the new transmission operator Λ given in Equation (2.28):

∆u
(n+1)
i + k2u

(n+1)
i = 0 in Ωi

∂νiu
(n+1)
i = ∂νiu

i on Γi

∂νiu
(n+1)
i − iku(n+1)

i = 0 on Σi

(2.30)

∂νiu
(n+1)
i − ik

(
C0u

(n+1)
i +

Np∑
l=1

Al∇Σij ·
(
k−2
ε ∇Σij ϕ

(n+1)
i(l)

))
= g

(n)
ij (2.31)

(
1 +Bl∇Σij ·

(
k−2
ε ∇Σij

))
ϕ

(n+1)
i(l) = u

(n+1)
i(l) Σij : j ∈ σi, l = 1, . . . , Np (2.32)

where:

g
(n)
ij = −∂νju

(n)
j − ik

(
C0u

(n)
j +

Np∑
l=1

Al∇Σ ·
(
k−2
ε ∇Σij ϕ

(n)
j(l)

))
for Σij : j ∈ σi

(2.33)

The scheme is updated according to:

g
(n+1)
ij = −g(n)

ji − 2ik

(
C0u

(n+1)
j +

Np∑
l=1

Al∇Σ ·
(
k−2
ε ∇Σij ϕ

(n+1)
j(l)

))
for Σij : j ∈ σi

(2.34)

Finite element approximation of the resulting coupled problem for the local

solution u as well as the auxiliary functions ϕ is are presented the next section.

More details can be found in Appendix A.
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2.4 Finite Element Discretization

Solution to the problem (2.7)-(2.8) as well as (2.30) - (2.32) can be conveniently

approximated in the framework of the nodal finite element method [25, 48]. In

particular, we use triangular finite elements. To this end we introduce triangulation

T h of the computational domain Ω where parameter h denotes the mesh size. We

assume that T h induces conforming triangulations of Ωi : i = 0, 1, . . . , Nd − 1 which

we denote by Ωh
i . We let Xh

i to be the finite dimensional subspace of the solution

space Xi = H1(Ωi) consisting of piecewise linear polynomials. By uhi we denote the

approximation to u
(n+1)
i in Xh

i and ghij is the projection of g
(n)
ij onto that space. The

finite element method works with variational formulation of the problem which in

our case can be stated as follows. Find uhi ∈ Xh
i such that:

ahi
(
uhi , v

h
i

)
+
∑
j∈σi

chij
(
Λuhi , v

h
i

)
= lhi

(
vhi
)

+
∑
j∈σi

chij
(
ghij, v

h
i

)
(2.35)

for all vhi ∈ Xh
i . The functionals ahi , l

h
i and chij are defined by:

ahi
(
uhi , v

h
i

)
=

∫
Ωhi

∇uhi · ∇vhi dA− k2

∫
Ωhi

uhi v
h
i dA− ik

∫
Σhi

uhi v
h
i ds

lhi
(
vhi
)

=

∫
Γhi

gvhi ds

chij
(
uhi , v

h
i

)
=

∫
Σhij

uhi v
h
i ds

(2.36)

In the above Σh
i , Γhi and Σh

ij denote respectively the piecewise linear approximation

to curves Σi, Γi and Σij induced by the triangulation T h. In particular, for Λ defined

by Equation (2.28), the discrete variational problem (2.35) obtained with help of
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integration by parts, takes the form:

ahi
(
uhi , v

h
i

)
− ikC0

∑
j∈σi

chij
(
uhi , v

h
i

)
+ ik

∑
j∈σi

Np∑
l=1

Al c
h
ij

(
k−2
ε ∇Σijϕ

h
i(l),∇Σijv

h
i

)
= lhi

(
vhi
)

+
∑
j∈σi

chij
(
ghij, v

h
i

)
(2.37)

chij
(
ϕhi(l), v

h
i

)
−Bl c

h
ij

(
k−2
ε ∇Σijϕ

h
i(l),∇Σijv

h
i

)
= chij

(
uhi , v

h
i

)
j ∈ σi, l = 1, . . . , Np

(2.38)

Evaluating (2.35) at the Lagrange basis for Xh
i yields a system of equations that

needs to be solved at each iteration. The system matrix however can be factorized

during the pre-processing stage using an efficient sparse LU factorization method [56].

At each step, the solution can then be obtained by a simple and inexpensive back-

substitution procedure. More details concerning the application of finite element

method to the Helmholtz problem can be found in Appendix A.
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CHAPTER 3

PRECONDITIONING THE PERFECTLY MATCHED LAYER

SYSTEM

3.1 Motivation

To overcome the difficulties associated with the standard ABCs, an alternative

approach to deal with the truncation of unbounded domains was introduced by

Bérenger [17] in the context of Maxwell’s equations in electromagnetism. His method

consisted of surrounding the computational domain with a thin layer of an artificial

material designed to absorb the scattered field radiated from the obstacle. This

method is referred to as perfectly matched because the interface between the domain

of interest and the absorbing layer is transparent to the propagating waves. Though

initially settled for Maxwell’s equations, the PML idea has also been applied to

wave problems in acoustics [46, 47], elasticity [31] and shallow water waves [63].

In practice, the thickness of the layer is finite and kept small for computational

efficiency. The boundary conditions specified on the truncation boundary of the

PML seem to have little effect on the method’s performance [30, 64]. As compared

with local ABCs, discretization of the PML system leads to larger Hermitian matrices

which are however still very sparse. This makes them a good candidate for iterative

solvers. Unfortunately, the convergence rate of classical iterative methods applied

to Helmholtz problems is slow [37]. One way to improve performance of such

methods is to use a preconditioner. In this chapter we present a new preconditioner

for Krylov methods obtained from zero frequency limit of the complex frequency

shifted (CFS) version of the PML investigated in [14] by P.G. Petropoulos. The new

preconditioner is easy to construct and shows great improvement in the convergence

27



rate of GMRES iterations as compared with the diagonal and approximate inverse

preconditioners [29].

Domain decomposition methods can be though of as preconditioned iterative

methods [74]. It is therefore natural to investigate the PML problem in the context

of DDM. We shall shall investigate this approach in the following chapter.

3.2 PML Problem Formulation

Consider again the problem (1.19) whose geometry is depicted in in Figure (2.1).

The application of the PML technique to the numerical solution of that problem

involves enclosing the scatterer by a thin layer as shown below in Figure (3.1).

y

x

b∗

b

−b∗

−b

a∗a−a∗ −a

Γ

Ω
−

ΩF

ΩA

l

d

ΓI

ΓD

Figure 3.1 Problem domain truncated with PML.

The computational region obtained in the process is denoted by ΩF . The

PML region is denoted by ΩA and it occupies the region of space between the PML

interface ΓI and domain boundary ΓD. Its thickness is denoted by d and the minimum

distance from the obstacle by l. Derivation of PML equations is now well known [48,

section 3.3.4]. Following the notation used in the reference, we denote by usF and
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usA the amplitudes of the scattered pressure waves in the physical and in the PML

regions, respectively. These two coupled quantities satisfy:

∆usF + k2usF = 0 in ΩF

γ−1
x ∂x (γ−1

x ∂xu
s
A) + γ−1

y ∂y
(
γ−1
y ∂yu

s
A

)
+ k2usA = 0 in ΩA

∂νu
s
F = −∂νui on Γ

usF = usA on ΓI

∂νu
s
F = −∂νusA on ΓI

usA = 0 on ΓD

(3.1)

where the coefficient functions are:

γx(x) =

 1 x < a,

1 + i
k
σx(|x|) a ≤ |x| < a∗

γy(x) =

 1 y < b,

1 + i
k
σy(|y|) b ≤ |y| < b∗

(3.2)

with ν is the vector normal to ΓI pointing away from ΩF .

The performance of PML is greatly affected by the choice of the absorbing

functions σx and σy. Firstly, to avoid discontinuity in the equation coefficients, both

are set to zero at the PML interface. Furthermore, simple Fourier mode analysis

of the related half plane problem shows that the reflection from the terminating

boundary is minimized provided that both σx and σy are monotonically increasing

and achieve possibly large maximum values at that boundary [18,30]. Popular choice

is the quadratic form of the absorbing functions:

σx(x) = σ∗(x− a)2 and σy(y) = σ∗(y − b)2 (3.3)

where σ∗ is a constant. Moreover, the PML parameters l, d, σ∗ and γ are not

arbitrary. Numerical studies indicate the existence of optimal parameter values which
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result in minimal error. Such optimal values depend on the problem data as well as

on the mesh size and consequently are difficult to obtain. No theoretical procedure is

yet know to estimate them, although some efforts towards it have been made in [30].

3.3 Frequency Shifted PML

Substituting γx and γy into the PML Equation (B.21) we obtain:(
1 +

i

k
σx

)−1

∂x

((
1 +

i

k
σx

)−1

∂xuA

)
+

+

(
1 +

i

k
σy

)−1

∂y

((
1 +

i

k
σy

)−1

∂yuA

)
+ k2uA = 0

(3.4)

Now it is easy to see that the above equations does not correctly reduce to a Laplace

equation in stretched coordinates as k → 0. Some of the problems associated with

this formulation are discussed in [65] by P.G. Petropoulos. To recover the correct

limiting form of the equation, the author of the reference introduces a new small

parameter γ and redefines the absorbing functions as follows:

γx(x) =

 1 x < a,

1 + i
k+iγ

σx(|x|) a ≤ |x| < a∗

γy(x) =

 1 y < b,

1 + i
k+iγ

σy(|y|) b ≤ |y| < b∗

The pressure field in the artificial layer now satisfies:(
1 +

σx
γ

)−1

∂x

((
1 +

σx
γ

)−1

∂xuA

)
+ (3.5)

+

(
1 +

σy
γ

)−1

∂y

((
1 +

σy
γ

)−1

∂yuA

)
= 0 (3.6)

in the zero frequency limit. This equation will be used in next section to derive the

new preconditioner presented in this chapter.
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3.4 Variational Formulation and Finite Element Approximation

Variational formulation as well as finite element discretization of the PML system of

equations are presented in Appendix (B.2). The corresponding variational problem

can be written as:

a(uF , v) + b(uA, v) = l(v) (3.7)

where:

a(u, v) =

∫
ΩF

∇u · ∇v dx dy − k2

∫
ΩF

uv dx dy

b(u, v) =

∫
ΩA

γy
γx

∂u

∂x

∂v

∂x
dx dy +

∫
ΩA

γx
γy

∂u

∂y

∂v

∂y
dx dy − k2

∫
ΩA

γxγyuv dx dy

l(v) =

∫
Γ

gv ds

(3.8)

The task is to find both, uF and uA in the appropriate function spaces (Appendix

B.2) such that Equation (3.7) is satisfied for all test functions v.

A finite element approximation to uF and uA, denoted respectively by uhF and

uhA, is obtained by an application of the Galerkin method to the problem (3.7).

Discrete solutions uhF and uhA correspond to orthogonal projections of uF and uA

onto a finite dimensional subspace Xh in the so called energy inner product (see

Appendix B.3). The approximate solution to (B.31) consists of finding uhF and uhA

such that:

ah(uhF , v
h) + bh(uhA, v

h) = lh(vh) (3.9)

for all vh and where ah, bh and lh are the discrete versions of the functionals defined

by Equations (3.8). Assuming that the nodal finite element basis for Xh is denoted

by {φi}, the finite element system can be written as:

Kα = f (3.10)

where Kij = ah(φi, φj) + bh(φi, φj), αj = αj and fj = lh(φj).
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3.5 Preconditioner Derivation

As explained in [37], the solution to equation (3.10) is difficult to obtain by classical

iterative solvers. One way to improve the convergence of these methods is to use a

preconditioner P and solve instead the following, equivalent problem:

P−1Kα = P−1f (3.11)

The general idea behind matrix preconditioning is that if we solve the above system

iteratively, the convergence will depend on the properties of the new matrix P−1K

instead of those of K. If matrix P is well chosen, equation (3.11) may be solved more

rapidly than equation (3.10).

The matrix preconditioner that we propose here is obtained from K, in the

limit as k → 0, that is:

Pij = lim
k→0

Kij = lim
k→0

(
ah(φi, φj) + bh(φi, φj)

)
= ah0 (φi, φj) + bh0 (φi, φj) (3.12)

where ah0 (φi, φj) and bh0 (φi, φj) are obtained from (3.13) using (3.5) respectively:

ah0 (u, v) =

∫
ΩhF

∇u · ∇v dx dy

bh0 (u, v) =

∫
ΩhA

1 + 1
γ
σy

1 + 1
γ
σx

∂u

∂x

∂v

∂x
dx dy +

∫
ΩhA

1 + 1
γ
σx

1 + 1
γ
σy

∂u

∂y

∂v

∂y
dx dy

(3.13)

Matrix P is real and symmetric, it possesses the same sparsity structure as K and

is straightforward to obtain once the assembly routine for K is available. From here

on now, we will refer to P as the zero frequency limit preconditioner and denote it

by Pzfl.

3.6 Discussion and Numerical Results

To study the performance of the proposed precenditioner, we consider a problem of

scattering of plane acoustic waves from a sound hard disk centered at the origin with
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radius R which we denote by Ω. Let u be the unknown amplitude of the scattered

pressure wave. The time harmonic problem for u is:
∆u+ k2u = 0 in R2 − Ω

∂ru = ike−ik·r on Γ

limr→+∞
√
r (∂ru− iku) = 0

(3.14)

where r = (x, y), r = |r| and k = (k cos θi, k sin θi)) with θi being the angle of

incidence. For simplicity we set θi = 0. Then the solution to this problem is given

by the Fourier-Hankel expansion:

u(r, θ) =
∞∑

m=−∞

i−m
J ′m(kR)

H
(1)′
m (kR)

H(1)
m (kr)eimθ (3.15)

where Jm and H
(1)
m are the Bessel and Hankel functions of the first kind respectively

and the prime symbol denotes differentiation with respect to kr.

The computational problem domain truncated with PML is depicted in Figure

(3.2) below:

y

x

b∗

b

−b∗

−b

a∗a−a∗ −a

Γ

Ω

ΩF

ΩA

L

d

ΓI

ΓD

Figure 3.2 Problem domain truncated with PML.

In the remainder of this section we report the results of the numerical

convergence study of GMRES iterations conducted by applying the new precon-
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ditioner Pzfl given by Equation (3.5), to the system (3.10). Problem parameters k, l,

d, σ∗ and γ are varied to show their effect on the error and the convergence profile.

The number of points per wavelength is kept constant at 14. The performance of the

preconditioner is compared with the inexpensive diagonal preconditioner as well as

the approximate inverse preconditioner (AIP) described in [29] and also in [20] in the

context of PML. We denote them by Pdiag and Paip respectively. The preconditioner

Pdiag is obtained by extracting the diagonal entries of the system matrix K whereas

Paip is found by minimizing the Frobenious norm of the matrix I − P−1
aipK. The

steepest descent algorithm used to approximate Paip is quite expensive. Moreover, a

numerical dropping strategy needs to be employed in order to ensure sparsity of Paip

which further compounds the computational cost of the algorithm. The numerical

dropping in the search direction that we employ, also preserves the steepest descent

property of the algorithm and is described in detail in [29].

In an attempt to study the effect of the PML parameters on the performance

of the proposed preconditioner we vary the values of γ and σ independently while

keeping other problem parameters fixed. Measured in the units of wavelength, we

set R = 1.5, l = 1, and d = 1 so that with a fixed wavenumber k = π and 14 points

per wavelength, the problem size stays the same through our numerical study.

The column headers of the tables below, indicate how the solution was obtained.

DIRECT refers simply to finding α = K−1f by LU factorization, whereas NO PREC

to applying GMRES to the finite element system Kα = f . Similarly, DIAG PREC,

ZFL PREC and AIP refer to an application of GMRES to P−1
diagKα = P−1

diagf ,

P−1
zfl Kα = P−1

zfl f and P−1
aipKα = P−1

aipf respectively.

The Figure (3.3) shows the number of iterations needed for GMRES to attain

the residual tolerance of 10−6. Figure (3.3 a) shows this number as a function of

the PML parameter γ for GMRES applied to an unpreconditioned system. The

remaining three plots show the corresponding iteration counts as a fraction of those
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(a) No Preconditioner (b) Diagonal Preconditioner

(c) ZFL Preconditioner (d) Approximate Inverse

Preconditioner

Figure 3.3 σ = 50.0: number of iterations to attain residual tolerance of 1×10−6.

required by the unpreconditioned solver. Clearly, we see that the application of the

ZFL preconditioner results in greatest reduction of required iterations. The most

dramatic reduction in the number of iterations occurs at γ = 1.28 where the ZFL

preconditioner lowers the iteration count by a factor of eight.

This particular value of γ appears to yet another significance. Looking at the

accuracy of the four different solvers, we see that least relative error is achieved for

γ ≈ 1.28 as the Figure (3.4) shows. The value of σ = 50.00 have been chosen as it

gave the least overall error.

To understand the improved performance of the ZFL preconditioner we look

at the modulus of the eigenvalues of the four PML systems for γ ≈ 1.28 (Figures 3.5

- 3.7).
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(a) No Preconditioner (b) Diagonal Preconditioner

(c) ZFL Preconditioner (d) Approximate Inverse

Preconditioner

Figure 3.4 σ = 50.0: relative error at last iteration

From the point of view of the GMRES, the zero frequency limit preconditioner

performs best because it seems to improve the distribution of eigenvalues of the

system matrix. We recall [72], that in the case of diagonalizable matrix A = XDX−1

the residual norm at the mth step of GMRES satisfies:

||rm+1|| ≤ κ(X) min
p∈Pm,p(0)=1

max
λi∈ρ(A)

|p(λi)| (3.16)

where Pm is the set of polynomials of degree less than or equal to m, ρ(A) is the

spectrum of A and κ(X) = ||X|| ||X−1|| is the condition number of the eigenvector

matrix X. Now observe that the application of a preconditioner to the system matrix

K brings its spectrum closer to the unit circle. That is, there appears to be a single

cluster of eigenvalues that lies in the vicinity of that circle. Therefore, if p ∈ Pm has
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Figure 3.5 Eigenvalue Modulus: σ = 50.0, γ = 0.64

(a) No Preconditioner (b) Diagonal Preconditioner

(c) ZFL Preconditioner

(d) Approximate Inverse

Preconditioner
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(a) No Preconditioner (b) Diagonal Preconditioner

(c) ZFL Preconditioner (d) Approximate Inverse

Preconditioner

Figure 3.6 Eigenvalue Modulus: σ = 50.0, γ = 1.28
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(a) No Preconditioner (b) Diagonal Preconditioner

(c) ZFL Preconditioner (d) Approximate Inverse

Preconditioner

Figure 3.7 Eigenvalue Modulus: σ = 50.0, γ = 2.56
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a zero in that cluster, it must remain small through it. Provided that the condition

number of the eigenvector matrix of the preconditioned matrix does not grow very

large, we would expect the residual to decrease very rapidly.

Good clustering of eigenvalues is therefore a sign of good convergence of

GMRES. However, to quantify the possible improvements is very difficult in practice

for it requires determination of the polynomial p ∈ Pm that is minimized over the

spectrum of the matrices in question. To our knowledge, there are no general results

concerning the behavior of p with respect to a given spectrum. However, to gain some

insight into the performance of the ZFL preconditioner, we have devised a simple

ratio indicator in an attempt to quantify the relationship between the clustering of

eigenvalues around unity and the convergence rate.

To see if there is a quantifiable relationship between this behavior and the

convergence rate of GMRES, we compute the ratio of the number of eigenvalues

located in a small neighborhood of the unit circle to the dimension of the system.

That is, if the system size is N and there are Nε eigenvalues in the small ε

neighborhood of the unit circle, we define the ratio indicator αε to be:

αε =
Nε

N
(3.17)

To differentiate between different preconditioners, we shall superscript the above

notation. Therefore, if we are considering the ratio indicator for the diagonal

preconditioner we write: αdiag
ε . We compare these values with the number of

iterations required to attain the specified residual tolerance in the Figure (3.8) where

we superimpose the ratio indicators with the corresponding iteration plots of Figure

(3.3).

These plots do indeed indicate a strong correspondence between the lowering

of required number of iterations and clustering of eigenvalues around the unit circle.

Especially in the case of the ZFL preconditioner, we observe that as the number
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(a) ratio indicator vs. γ

(b) iteration count vs. γ

Figure 3.8 σ = 50.0: Ratio Indicators and Iteration Counts, ε = 0.1.
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(a) ratio indicator vs. γ

Figure 3.9 σ = 50.0: Ratio Indicators, ε = 0.2.

of eigenvalues in the small neighborhood of the unit circle increases, the number of

iterations decreases and that the gain is quite substantial. This behavior is consistent

for values of γ < 1.28, and it holds true for the diagonal and approximate inverse

preconditioners as well, which seem to be insensitive to the changes in γ in that

parameter regime. The Figure (3.8) has been produced using the value of ε = 0.1.

For ε = 0.2 and ε = 0.005 the picture is quite different.

In all cases of ε considered, we observe that the performance of the diagonal

preconditioner is not greatly affected by the changes in the parameter γ. Moreover,

for values of γ < 1.28, at ε = 0.1, the two ratios are very close. That is,

the relative speedup obtained from diagonal preconditioning is proportional to the

relative number of eigenvalues in the vicinity of the unit circle. Same could be said

about the approximate inverse preconditioner as well, although the discrepancy in the

two ratios is greater. For the ZFL preconditioner, at ε = 0.005 we see a sharp change

in αzfl
ε at γ = 1.28. Although the numerical values do not match, this curve describes

the behavior of the corresponding iterations as a function of γ more closely since it

captures the gain (γ < 1.28) and then the loss (γ > 1.28) in the relative number
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(a) ratio indicator vs. γ

Figure 3.10 σ = 50.0: Ratio Indicators, ε = 0.005.

of iterations required. In any case, the figures do show that the value of γ ≈ 1.28

is special and the reasons for that should be investigated further. Considering the

number of parameters involved in the problem, having singled out a particular value

of γ is a great simplification for future research. Thus far, we conclude that the

application of the ZFL preconditioner results in the lowest GMRES iteration count

since it clusters the eigenvalues of the matrix closer to the unit circle than the other

preconditioners. Moreover, the ZFL preconditioner is very easy to construct. Given

an assembly procedure for generating the FEM matrix K, the preconditioner Pzfl can

be obtained by simply setting k = 0 which results in a sparse matrix. Comparing

with the computational effort required to find Paip, which in practice we have found

to be a full matrix, the ZFL preconditioner is extremely cheap. Future work ought

to aim at a more rigorous investigation of the relationship between a distribution of

the spectrum of a ZFL preconditioned systems and the resulting GMRES iteration

counts both as a function of γ as well as the wavenumber k.
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CHAPTER 4

DOMAIN DECOMPOSITION METHOD FOR THE PERFECTLY

MATCHED LAYER PROBLEM

4.1 Motivation

As noted at the end of Section (3.1), a domain decomposition method is a

preconditioned iterative method in disguise. Indeed, many domain decomposition

techniques can be characterized as preconditioned methods for the Schur complement

system [74]. Since the PML problem is difficult to solve using Krylov subspace

iterations [37], an investigation of an decomposition algorithm is therefore very

natural. Moreover, as we explained in Chapter 2, domain decomposition algorithms

are parallelizable in a straightforward manner, and thus allow considerations of very

large problems. Since the layer itself can be partitioned into regions containing small

number of unknowns, the additional potential benefit is that the PML region need

not necessarily be made as small as possible to achieve computational efficiency. We

begin the presentation of the method by recalling the 2D model problem of acoustic

scattering and its truncation by the perfectly matched layer.

4.2 Model Problem and the PML Equations

Consider again the problem (1.19) whose geometry is depicted in in Figure (2.1). We

recall, that the application of the PML technique to the numerical solution of that

problem involves enclosing the scatterer by a thin layer as shown below in Figure

(4.1).
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Figure 4.1 Problem domain truncated with PML.

The computational region obtained in the process is denoted by ΩF . The

PML region is denoted by ΩA and it occupies the region of space between the PML

interface ΓI and domain boundary ΓD. Its thickness is denoted by d and the minimum

distance from the obstacle by l. Derivation of PML equations is now well known [48,

section 3.3.4]. We follow the notation introduced in the previous chapter and denote

by usF and usA the amplitudes of the scattered pressure waves in the physical and

in the PML regions, respectively. These two coupled quantities satisfy the standard

PML system of equations (see Section 3.2 for details):

∆usF + k2usF = 0 in ΩF

γ−1
x ∂x (γ−1

x ∂xu
s
A) + γ−1

y ∂y
(
γ−1
y ∂yu

s
A

)
+ k2usA = 0 in ΩA

∂νu
s
F = −∂νui on Γ

usF = usA on ΓI

∂νu
s
F = −∂νusA on ΓI

usA = 0 on ΓD

(4.1)
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where:

γx(x) =

 1 x < a,

1 + i
k
σx(|x|) a ≤ |x| < a∗

γy(x) =

 1 y < b,

1 + i
k
σy(|y|) b ≤ |y| < b∗

(4.2)

where ν is the vector normal to ΓI pointing away from ΩF .

4.3 DDM Formulation of the PML Problem

Analogously to the developments of section (4.5.1) we consider a partition of the

computational domain Ω = ΩF ∪ ΩA into Nd subdomains Ωi, i = 0, 1, . . . , Nd − 1,

such that Ωi is fully contained in either ΩF and ΩA and

• Ω =
⋃Nd−1
i=0 Ωi

• Ωi ∩ Ωj = ∅ if i 6= j

• ∂Ωi ∩ ∂Ωj = Σij = Σji is the artificial interface separating Ωi from Ωj.

The requirement that either Ωi ⊂ ΩF or Ωi ⊂ ΩA is necessary to guarantee that the

artificial interfaces align with the PML interface ΓI . An example of an admissible

decomposition is shown in Figure (4.2) below.
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Figure 4.2 Admissible decomposition with cross-points (red dots).

Here, for convenience the subdomains Ωi : i = 0, 1, . . . , 8 cover regions of the

computational domain where the definition of the coefficient functions (3.2) remains

unchanged. We note that while decompositions without cross-points are possible (for

example, ΩF and ΩA constitute two subdomains), the most natural partitioning of

the domain does introduce them. For that reason, when nodal finite element is used,

the cross-point technique developed by Boubendir et al. [23] needs to be utilized.

The next section shows how to adapt it to the PML problem (3.1). Before that

presentation however, we formulate domain decomposition method for problem (3.1)

under the assumption of absence of cross-points.

To that end, denote by ΛF and ΛA the sets of integer indices such that ΛF∪ΛA =

{0, 1, . . . , Nd − 1} with the property:

ΩF =
⋃
i∈ΛF

Ωi, ΩA =
⋃
i∈ΛA

Ωi
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We also define σi to be a set of integer indices j such that if j ∈ σi then subdomain Ωi

shares an interface Σij with subdomain Ωj. Furthermore, we introduce local function

spaces Xi = {v ∈ H1(Ωi) : v|ΓD = 0}. In the domain decomposition formulation of

the problem (3.1), the (n+ 1)th iteration step involves determination of the solution

u
(n+1)
i ∈ Xi to the local problem:

∆u
(n+1)
i + k2u

(n+1)
i = 0 in Ωi

∂νiu
(n+1)
i = −∂νiui on Γi

∂νiu
(n+1)
i + Λu

(n+1)
i = g

(n)
ij on Σij : j ∈ σi

(4.3)

if i ∈ ΛF or:
γ−1
x ∂x

(
γ−1
x ∂xu

(n+1)
i

)
+ γ−1

y ∂y

(
γ−1
y ∂yu

(n+1)
i

)
+ k2u

(n+1)
i = 0 in Ωi

u
(n+1)
i = 0 on ΓD

∂νiu
(n+1)
i + Λu

(n+1)
i = g

(n)
ij on Σij : j ∈ σi

(4.4)

if i ∈ ΛA. The function g
(n)
ij is defined as:

g
(n)
ij = −∂νiu

(n)
j + Λu

(n)
j (4.5)

on Σij.

4.4 Convergence Analysis of DDM for PML Truncated Half-Plane

Problem

To gain some insight into the behavior of the the iterative method defined in the

previous section, we consider an exterior Helmholtz problem in the right-half plane:
∆u+ k2u = 0 for x > 0

u(0, y) = −ui(y)

limr→+∞
√
r
(
∂u
∂r
− iku

)
= 0

(4.6)

where ui is the prescribed incident field and r =
√
x2 + y2.
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Figure 4.3 Half-plane problem geometry truncated with PML.

We introduce a PML of width d in the vertical strip a < x < a∗ to truncate

the unbounded domain in the x-direction (Figure 3.1). Let us denote this region of

space by ΩA. The physical domain ΩF is the strip 0 < x < a in which we wish to

compute the solution. Let uA = u|ΩA and uF =|ΩF . The PML equations are:



∆uF + k2uF = 0 for 0 < x < a

γ−1∂x (γ−1∂xuA) + ∂2
yuA + k2uA = 0 for a < x < a∗

uF (0, y) = f(y)

uF (a, y) = uA(a, y)

∂xuF (a, y) = γ−1(a) ∂xuA(a, y)

uA(a∗, y) = 0

(4.7)

where:

γ(x) =

 1 0 < x < a

1 + iσ∗

k
(x− a)p a ≤ x < a∗

(4.8)

49



This is a standard PML system of equations with the absorbing function σ(x) =

σ∗(x−a)p where σ∗ is a constant and p a positive integer. In this system, uA and uF

are coupled through the continuity condition at x = a. Since γ(a) = 1, this condition

is simply:

uF = uA,

∂xuA = ∂xuF

(4.9)

at x = a. Let us now assume that Λ is a transmission operator. The continuity

equations are equivalent to:

∂xuF + ΛuF = ∂xuA + ΛuA,

−∂xuA + ΛuA = −∂xuF + ΛuF .

(4.10)

Using these equations we can decouple uF and uA and solve for them iteratively as

follows. Introduce the iteration index n and define following local problems:
∆u

(n+1)
F + k2u

(n+1)
F = 0 for 0 < x < a

u
(n+1)
F (0, y) = −ui(y)

∂xu
(n+1)
F (a, y) + Λu

(n+1)
F (a, y) = g

(n)
F (y)

(4.11)

and: 
γ−1∂x

(
γ−1u

(n+1)
A

)
+ ∂2

yu
(n+1)
A + k2u

(n+1)
A = 0 for a < x < a∗

u
(n+1)
A (a∗, y) = 0

−∂xu(n+1)
A (a, y) + Λu

(n+1)
A (a, y) = g

(n)
A (y)

(4.12)

where:

g
(n)
F = ∂xu

(n)
A + Λu

(n)
A , and g

(n)
A = −∂xu(n)

F + Λu
(n)
F . (4.13)

The iteration is updated accordingly to the formulas derived in the earlier section:

g
(n+1)
F = −g(n)

A + 2Λu
(n+1)
A , and g

(n+1)
A = −g(n)

F + 2Λu
(n+1)
F . (4.14)
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These two sets of equations are analogues of Equation (4.5).

The convergence properties of the iterative scheme can be determined from

the corresponding iteration operator. In the remained of this section we derive

this operator using Fourier analysis arguments. The analysis of this section is a

modification of an arguments utilized by Bermudéz et al. in [18] to study the accuracy

of the PML method.

We begin by observing that the equations we are dealing with are linear.

Therefore, to simplify the analysis we subtract off the true solutions and investigate

instead whether or not the error converges to zero. More precisely, with uF and uA

being the true solutions to (4.7), we define the error at the nth iteration step as:

e
(n+1)
F = u

(n+1)
F − uF and e

(n)
A = u

(n)
A − uA. (4.15)

The right hand side of the transmission conditions must be modified accordingly.

Let us denote by h
(n)
F the quantity:

h
(n)
F = g

(n)
F − (∂xuF + ΛuF )|x=a .

Similarly, for the problem in ΩA we define h
(n)
A to be:

h
(n)
F (y) = g

(n)
F (y) + (∂xuA − ΛuA)|x=a .

The equations we will therefore analyze are:
∆e

(n+1)
F + k2e

(n+1)
F = 0 for 0 < x < a

e
(n+1)
F (0, y) = 0

∂xe
(n+1)
F (a, y) + Λe

(n+1)
F (a, y) = h

(n)
F (y)

(4.16)
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and:
γ−1∂x

(
γ−1∂xe

(n+1)
A

)
+ ∂2

ye
(n+1)
A + k2e

(n+1)
A = 0 for a < x < a∗

e
(n+1)
A (a∗, y) = 0

−∂xe(n+1)
A (a, y) + Λe

(n+1)
A (a, y) = h

(n)
A (y)

(4.17)

Recalling the continuity conditions at the PML interface, we immediately obtain:

h
(n)
F = ∂xe

(n)
A + Λe

(n)
A , (4.18)

h
(n)
A = −∂xe(n)

F + Λe
(n)
F (4.19)

while the update equations become:

h
(n+1)
F = −h(n)

A + 2Λe
(n+1)
A , (4.20)

h
(n+1)
A = −h(n)

F + 2Λe
(n+1)
F . (4.21)

The above equations for h are of course symmetric to those satisfied by functions g.

Now introduce the so called stretched coordinate:

ξ(x) =

∫ x

a

γ(s) ds = x+
iσ∗

k

∫ x

a

(s− a)p ds.

Chain rule gives:

∂

∂x
=
dξ

dx

∂

∂ξ
,

or equivalently:

∂

∂ξ
=

1

γ

∂

∂x
.

In the stretched coordinate, the PML problem (4.17) becomes:
∂2
ξE

(n+1)
A + ∂2

yE
(n+1)
A + k2E

(n+1)
A = 0 for ξ(a) < ξ < ξ(a∗)

E
(n+1)
A (ξ(a∗), y) = 0

−∂ξE(n+1)(ξ(a), y) + ΛE
(n+1)
A (ξ(a), y) = h

(n)
A (y)

(4.22)
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where e
(n+1)
A (x, y) = E

(n+1)
A (ξ(x), y).

We are now ready to apply the Fourier transform argument. The Fourier

transform pair of a function f(y) is:

f̂(ω) = F {f} :=
1√
2π

∫ ∞
−∞

f(y)e−iωydy, f(y) = F−1
{
f̂
}

:=
1√
2π

∫ ∞
−∞

f̂(ω)eiωydω.

Taking the Fourier transform of equations (4.16) and (4.22) in y we get:
∂2
xê

(n+1)
F + (k2 − ω2)ê

(n+1)
F = 0 for 0 < x < a

ê
(n+1)
F (0, ω) = 0

∂xê
(n+1)
F (a, ω) + σ(ω)ê

(n+1)
F (a, ω) = ĥ

(n)
F (ω)

(4.23)

and 
∂2
ξ Ê

(n+1)
A + (k2 − ω2)Ê

(n+1)
A = 0 for ξ(a) < ξ < ξ(a∗)

Ê
(n+1)
A (ξ(a∗), ω) = 0

−∂ξÊ(n+1)
A (ξ(a), ω) + σ(ω)Ê

(n+1)
A (ξ(a), ω) = ĥ

(n)
A (ω)

(4.24)

where σ is the symbol of the iteration operator, that is:

Λe(a, y) = F−1 {σ(ω)ê(a, ω)} . (4.25)

Now define:

λ(ω) = i
√
k2 − ω2. (4.26)

We immediately see that the solution to (4.23) is:

ê
(n+1)
F (x, ω) = R

(n+1)
F (ω) eλ(ω)x + L

(n+1)
F (ω) e−λ(ω)x. (4.27)

The boundary condition at x = 0 gives:

L
(n+1)
F = −R(n+1)

F . (4.28)
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From the transmission condition at x = a we get:

R
(n+1)
F (λ+ σ) eλa + L

(n+1)
F (σ − λ) e−λa = ĥ

(n)
F . (4.29)

Combining the two equations we find that:

R
(n+1)
F =

ĥ
(n)
F

(λ+ σ)eλa + (λ− σ)e−λa
. (4.30)

Similarly, the solution to equation (4.24) is of the form:

Ê
(n+1)
F (ξ, ω) = R

(n+1)
A (ω) eλ(ω)ξ + L

(n+1)
A (ω) e−λ(ω)ξ,

or in the original variable:

ê
(n+1)
A (x, ω) = R

(n+1)
A (ω) eλ(ω)ξ(x) + L

(n+1)
A (ω) e−λ(ω)ξ(x). (4.31)

The homogeneous Dirichlet boundary condition at x = a∗ gives:

L
(n+1)
A = −R(n+1)

F e2λ ξ(a∗) (4.32)

whereas the transmission condition at x = a yields:

R
(n+1)
A (σ − λ)eλa + L

(n+1)
A (σ + λ)e−λa = ĥ

(n)
A . (4.33)

Combining the two equations we find that:

R
(n+1)
A =

ĥ
(n)
A

(σ − λ)eλa − (σ + λ)e2λ ξ(a∗)e−λa
. (4.34)

The Fourier modes of the interface unknowns ĥF and ĥA are updated according to

the same formula as in Equation (4.14). That is:

ĥ
(n+1)
F (ω) = −ĥ(n)

F (ω) + 2σ(ω)ê
(n+1)
F (ω),

ĥ
(n+1)
A (ω) = −ĥ(n)

A (ω) + 2σ(ω)ê
(n+1)
A (ω).

(4.35)

54



The update equations can be conveniently written in the matrix form:

ĥ(n+1)(ω) = Â (ω;σ, k) ĥ(n)(ω) (4.36)

where ĥ(n) (ω) =
(
ĥ

(n)
F (ω), ĥ

(n)
A (ω)

)T
and the matrix Â (ω;σ, k) is the Fourier

component in the modal decomposition of the iteration operator A (ω; Λ, k) whose

action on the vector h(n)(y) =
(
h

(n)
F (y), h

(n)
F (y)

)T
is defined by:

h(n+1)(y) = A (y; Λ, k) h(n)(y). (4.37)

The action of the operator A (y; Λ, k) is expressed in terms of its Fourier decompo-

sition:

A (y; Λ, k) h(n)(y) = h(n+1)(y) (4.38)

= F−1
{

ĥ(n+1)(ω)
}

(y) (4.39)

= F−1
{

Â (ω;σ, k) ĥ(n)(ω)
}

(y). (4.40)

To find the entries of Â (ω;σ, k) we substitute for ê
(n+1)
F (ω) and ê

(n+1)
A (ω) in

Equations (4.35) which gives:

Â (ω;σ, k) =

 0 −1 + 2σ eλa−e2λξ(a∗)e−λa
(σ−λ)eλ a−(σ+λ)e2λ ξ(a

∗)e−λ a

−1 + 2σ eλa−e−λa
(λ+σ)eλ a+(λ−σ)e−λ a

0


(4.41)

For convenience, we rewrite the above matrix as:

Â (ω;σ, k) =

 0 A(ω;σ, k)

B(ω;σ, k) 0

 (4.42)

Proposition 4.4.1. The convergence factor µ of the domain decomposition method

is:

µ = max
ω∈R
|A(ω)B(ω)| = max

ω∈R
|ρ2(Â (ω;σ, k))|
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where ρ denotes the spectral radius.

Proof. For simplicity we will look at the even number of iterations. Using equation

(4.42) we find that equation (4.36) in component form is:

ĥ
(2n)
F (ω) = A(ω;σ, k)ĥ

(2n−1)
A (ω)

ĥ
(2n)
A (ω) = B(ω;σ, k)ĥ

(2n−1)
F (ω)

(4.43)

for n ∈ Z+. Expanding the (2n− 1) terms using the above formula yields following

recurrence relation for ĥ
(2n)
F (ω) and ĥ

(2n)
A (ω):

ĥ
(2n)
F (ω) = A(ω;σ, k)B(ω;σ, k)ĥ

(2n−2)
F (ω)

ĥ
(2n)
A (ω) = A(ω;σ, k)B(ω;σ, k)ĥ

(2n−2)
A (ω)

(4.44)

Upon defining µ = maxω∈R |A(ω)B(ω)| we can write:

‖ĥ2n‖ ≤ µ‖ĥ2n−2‖

The proof now follows by considering the square of the l2-norm of the iterates:

‖h(2n)‖2 = ‖F−1
{

ĥ(2n)
}
‖2

≤ ‖F−1
{
µ ĥ(2n−2)

}
‖2

≤ µ‖F−1
{

ĥ(2n−2)
}
‖2

= µ‖h(2n−2)‖2

The relationship between µ and the spectral radius ρ of the matrix Â(ω;σ, k) is:

√
µ = max

ω∈R
|
√
A(ω)B(ω)| = max

ω∈R
ρ
(
Â(ω;σ, k)

)
(4.45)

which is the rate of convergence factor over a single iteration.
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Remark. The Jacobi type iteration for the system (4.16) - (4.17) converges if and

only if:

µ < 1. (4.46)

Therefore, for convergence, we must choose the transmission operator Λ such

that it satisfies the conclusions of the above remark. As the next theorem will show,

the convergence is guaranteed when the square-root transmission operator is used.

Theorem 4.4.2. The Jacobi type method converges if the symbol of the transmission

operator Λ is:

σ(ω) = −i
√
k2 − ω2 = −λ(ω) (4.47)

Proof. The result is obtained upon substituting σ = −λ into Equation (4.41).

Algebraic simplification yields:

Â (ω;−λ, k) =

 0 e2λ(ξ(a∗)−a)

−e2λa 0

 (4.48)

According to the Proposition (4.4.1) and the following remark, the Jacobi method

converges provided that the modulus of the product of the two non zero entries is

less than one, or equivalently, that the spectral radius of Â (ω;−λ, k) is less than

one. Consequently:

ρ(Â (ω;−λ, k)) =
∣∣eλ(ω)ξ(a∗)

∣∣
=

∣∣∣∣eλ(ω)
(
a∗+ iσ∗dp+1

k(p+1)

)∣∣∣∣
=

 e−
√
k2−ω2 σ∗dp+1

k(p+1) |k| > |ω|

e−
√
ω2−k2 a∗ |k| < |ω|

(4.49)

which is less than one for all ω since the arguments of the exponential function remain

negative. Thus, the convergence is indeed guaranteed over the whole spectrum.
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Figure 4.4 Spectral radius of the iteration operator.

The choice of the symbol σ leads to a non-local transmission operator due to the

presence of a rational function in the inverse Fourier transform integral (see Equation

4.25). As explained in Chapter 2, from a computational perspective, this is generally

expensive and difficult to implement. For that reason, to solve the 2D model PML

problem using DDM we will localize the square-root transmission operator using the

procedure presented in Section (2.3.1).

Since the transmission operator used in the EMDA [23] type DDM with a

constant parameter χ is usually easier to implement, we compare the spectra of the

corresponding iteration operators with that given by Equation (4.49) corresponding

to the square-root operator. The Figure (4.4) below shows the spectral radii curves

for various values of the parameter χ. The blue curve corresponds to the square-root

transmission operator of Theorem (4.4.2). Figure (4.4) has been generated with

k = 2π, a = 1, d = 1, σ = 5 and p = 2. For the EMDA transmission operator with

σ = −ik(1 + iχ), we observe the dampening of the error in the propagating part

of the spectrum and a slight amplification of the evanescent error components. The

value χ = 1 seems to be optimal in the sense that it brings the spectral radius of
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Figure 4.5 Sample of the continuous spectrum of the iteration operators.

the iteration operator under one over all modes considered in this test. In principle,

an optimization problem could be posed for an optimal value of χ, but such a task

is very difficult due to a complicated dependence of the spectral radius on the PML

parameters in the general case. Fortunately, such a procedure is not necessary in

practice, when a discrete problem on a bounded domain is solved using GMRES.

The reason for this is that the spectrum of the iteration operator is now discrete and

bounded. Moreover, the eigenvalues of the corresponding iteration equation cluster

around one as the Figure (4.5) below shows.
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We do observe clustering of eigenvalues around one which is desirable if we

wish to solve the DDM iteration equation by a Krylov subspace method such as

GMRES [72]. While the convergence of GMRES is guaranteed, the clustering of

eigenvalues around the unit circle will make it very rapid [71,75].

4.5 Finite Element Discretization

We are going to approximate the solution to the local problems using nodal finite

element method. To that end let uhi ∈ Xh
i be the finite element approximation to the

solution u
(n+1)
i of the problems (4.50) and (4.51). In the case of Λ being a constant,

the finite element discretization of the local problems is straightforward. In fact, it

is a simple modification of the problem (2.35) involving redefinition of functionals ahi

and lhi to account for non-constant coefficients in the PML problem and homogeneous

Dirichlet boundary condition on ΓD. The situation is different when we localize the

square-root operator using Padé series. In that case, the transmission conditions

are given by Equations (2.32) and the local problems are coupled to the auxiliary

surface functions by Equations (2.33). Consequently, the local PML problems (4.50)

and (4.51) respectively, must be modified to:

∆u
(n+1)
i + k2u

(n+1)
i = 0 in Ωi

∂νiu
(n+1)
i = −∂νiui on Γi

∂νiu
(n+1)
i − ik

(
C0u

(n+1)
i +

∑Np
l=1 Al∇Σij ·

(
k−2
ε ∇Σij ϕ

(n+1)
i(l)

))
= g

(n)
ij on Σij : j ∈ σi(

1 +Bl∇Σij ·
(
k−2
ε ∇Σij

))
ϕ

(n+1)
i(l) = u

(n+1)
i(l) Σij : j ∈ σi, l = 1, . . . , Np

(4.50)
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if i ∈ ΛF or:

γ−1
x ∂x

(
γ−1
x ∂xu

(n+1)
i

)
+ γ−1

y ∂y

(
γ−1
y ∂yu

(n+1)
i

)
+ k2u

(n+1)
i = 0 in Ωi

u
(n+1)
i = 0 on ΓD

∂νiu
(n+1)
i − ik

(
C0u

(n+1)
i +

∑Np
l=1Al∇Σij ·

(
k−2
ε ∇Σij ϕ

(n+1)
i(l)

))
= g

(n)
ij on Σij : j ∈ σi(

1 +Bl∇Σij ·
(
k−2
ε ∇Σij

))
ϕ

(n+1)
i(l) = u

(n+1)
i(l) Σij : j ∈ σi, l = 1, . . . , Np

(4.51)

where g
(n)
ij and g

(n+1)
ij are defined by Equations (2.33) and (2.34)

The variational formulation of the above system is analogous to that presented

in Equations (2.37) and (2.38). We rewrite it here for convenience since we will refer

to it in the next section:

ahi
(
uhi , v

h
i

)
− ikC0

∑
j∈σi

chij
(
uhi , v

h
i

)
+ ik

∑
j∈σi

Np∑
l=1

Al c
h
ij

(
k−2
ε ∇Σijϕ

h
i(l),∇Σijv

h
i

)
= lhi

(
vhi
)

+
∑
j∈σi

chij
(
ghij, v

h
i

)
(4.52)

chij
(
ϕhi(l), v

h
i

)
−Bl c

h
ij

(
k−2
ε ∇Σijϕ

h
i(l),∇Σijv

h
i

)
= chij

(
uhi , v

h
i

)
j ∈ σi, l = 1, . . . , Np

(4.53)

Definitions of the functionals ahi and lhi depend on whether i belongs to ΛF or ΛA

(see Section 4.3). More precisely:

ahi (u, v) =

∫
Ωhi

∇u · ∇v dA− k2

∫
Ωhi

uv dA

cij(u, v) =

∫
Σhij

u v ds

lhi (v) =

∫
Γhi

gv ds

(4.54)
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if i ∈ ΛF and:

ahi (u, v) =

∫
Ωhi

γyγ
−1
x ∂xu ∂xv dA+

∫
Ωhi

γxγ
−1
y ∂yu ∂yv dA− k2

∫
Ωhi

γxγyuv dA

cij(u, v) =

∫
Σhij

u v ds

lhi (v) = 0

(4.55)

if i ∈ ΛA.

The Figure (4.2) shows a natural decomposition of the PML problem domain.

Red dots correspond to the vertices in the nodal finite element method which support

three or more degrees of freedom. As the next section explains, these mesh points

are problematic in the domain decomposition formulation of the problem when nodal

finite element method is used. The discretization method as presented in this section

is no longer applicable in that case. The algorithm that we discuss next, developed

by Y. Boubendir et al. [23], enables formulation of non-overlapping methods over

domain partitions that contain cross-points. We also show how that method can be

adapted to handle the coupled variational problem (4.52) - (4.53) arising from the

use of the Padé type transmission operator (2.27).

4.5.1 Decomposition with Cross-Points

We have seen that formulation of non-overlapping domain decomposition methods

initiated relies on specification of appropriate matching conditions at subdomain

interfaces. Derivation of the algorithms of Sections (2.2) and (4.3) made an

extensive use of continuity conditions (2.4). However, this approach suffers from

a characteristic difficulty which lies in the treatment of the points shared by more

than two subdomains. These points are referred to as cross-points. In Figure (4.2)

these special interface points are marked with red dots. Indeed, for discretizations

based on a typical nodal finite element method, such points may support one or more

degrees of freedom, each of them shared by more than two subdomains. The usual
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equivalent writing of the matching conditions at the subdomain interfaces, on which

the Lions and the Després methods are based, does not remain valid at these points.

In [15, 23], Boubendir and Bendali presented a stable and convergent reformulation

of the original method which efficiently overcomes these difficulties. In essence, their

approach consists of preservation of continuity of the finite element spaces at the

cross-points.

To begin a brief presentation of the resulting algorithm we recall that Xh
i

denotes the finite dimensional subspace of the solution space Xi = {v ∈ H1(Ωi) :

v|ΓD = 0} consisting of piecewise linear polynomials. By uhi we denote the

approximation to ui in Xh
i . We first observe that any function vhi ∈ Xh

i can be

decomposed in the following manner:

vhi = vhiI +
∑
j∈σi

vhij + vhc (4.56)

Definitions of functions vhiI , v
h
ij and vhc are motivated by the partitioning of the degrees

of freedom of the finite element space Xh
i :

• all nodal values of vhiI are zero on the closure of any artificial interface Σij

separating Ωi from a neighboring domain Ωj for all j ∈ σi.

• all nodal values of vhij are zero, except those located at the interior of the

artificial interface Σij. In particular, function vhij vanish at cross-points.

• all nodal values of vhc are zero, except those corresponding to cross-points,

defined here as points on the closure of Σij but not lying in its interior. In this

manner, points that are at the junctions of Σij and the physical boundaries Σ

and Γ, are also counted as cross-points.

The solution to the problem (3.1) belongs to the space X = {v ∈ H1(Ω) : v|Γ = 0}.

We shall denote by Xh a subspace of X consisting of piecewise linear polynomials.
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We note that Xh
i are subspaces of Xh. Also, we observe that while vhiI and vhc are

functions in Xh, functions vhij are not. Let us now denote by Xh
c the subspace of Xh

spanned by vhc , and by Xh
B the broken space spanned by functions of the form:

vh =

Nd−1∑
i=1

(
vhiI +

∑
j∈σi

vij

)
+ vhc (4.57)

Note that Xh is a subspace of Xh
B containing exactly those members of Xh

B whose

vhij components are continuous functions in Xh. This continuity is expressed by a

matching condition on the interfaces which modifies (4.52) - (4.53) into a system:

ahi

(
uhiI +

∑
j∈σi

uhij + vhc , v
h
iI

)
= lhi

(
vhiI
)
∀vhiI ∈ Xh

i (4.58)

ahi

(
uhiI +

∑
j∈σi

uhij + vhc , v
h
ij

)
− ikC0

∑
j∈σi

chij
(
uhij, v

h
ij

)
+

+ ik
∑
j∈σi

Np∑
l=1

Al c
h
ij

(
k−2
ε ∇Σijϕ

h
i(l),∇Σijv

h
ij

)
=

= lhi
(
vhij
)

+
∑
j∈σi

chij
(
ghij, v

h
ij

)
∀vij ∈ Xh

i , j ∈ σi

(4.59)

chij
(
ϕhi(l), v

h
ij

)
−Bl c

h
ij

(
k−2
ε ∇Σijϕ

h
i(l),∇Σijv

h
ij

)
= chij

(
uhij, v

h
ij

)
j ∈ σi, l = 1, . . . , Np

(4.60)

subject to a coupling condition:

Nd−1∑
i=1

ahi

(
uiI +

∑
j∈σi

uhij + uhc , v
h
c

)
=

Nd−1∑
i=1

lhi
(
vhc
)
∀vhc ∈ Xh

c (4.61)

Functionals ahi and lhi are defined in exactly the same way as in (4.54) and (4.55).

However, the discrete functional chij used to express continuity of the solution on the

interface in a variational form needs to be adjusted. To this end let us define Σ̃h
ij to

be the part of Σh
ij obtained by excluding from it edges having a cross-point as one of

its endpoints (see Figure 4.6 below).
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h
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Figure 4.6 Interface decomposition, red dots - cross-points, green dots - mesh

nodes.

Now we redefine chij to be:

chij
(
uhij, v

h
ij

)
=

∫
Σ̃hij

uhijv
h
ij ds (4.62)

The variational system (4.58) - (4.60) can be written in the following matrix form:

A11 A1c

A22 A2c

. . .
...

ANN ANc

Ac1 Ac2 . . . AcN Acc





w1

w2

...

wN

wc


=



f1

f2

...

fN

fc


(4.63)

where Aii, Aic, Aci for i = 1, ..., N are matrices related to the discretization of the

variational problem on Ωi. Each wi therefore, satisfies

Aiiwi = fi −Aicwc (4.64)

The above linear system can be solved once we obtain uc which is a solution to(
Acc −

N∑
i=1

Aci(Aii)
−1Aic

)
wc = fc −

N∑
i=i

Aci(Aii)
−1fi (4.65)
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It should be noted that system (4.65) is small since it relates to the degrees of

freedom supported by the cross points only. Furthermore, for effective computation,

the iterative procedure should proceed as follows:

• Initialization:

– perform an LU factorization of each matrix Aii for i = 1, ..., N ,

– do a forward backward sweep to compute (Aii)
−1Aic for i = 1, ..., N ,

– form and carry out an LU factorization of
(
Acc −

∑N
i=1 Aci(Aii)

−1Aic

)
,

• For each iteration:

– do a forward backward sweep to compute (Aii)
−1fi for i = 1, ..., N ,

– form fc−
∑N

i=i Aci(Aii)
−1fi and do a forward backward sweep to compute uc,

– obtain wi for i = 1, ..., N from (4.64) by means of basic linear algebra

computations.

We observe that the main computational cost of each iteration can be attributed to

the solution of two sparse linear systems (Aii)
−1fi and wi = (Aii)

−1(fi − Aicwc).

However, performing the factorization of Aii and consequently forming the matrix

A−1
ii Aic in the initialization phase of the algorithm essentially reduces the work per

iteration to two back substitutions. Inversion of a dense system related to cross-

points (4.65) needs to be performed at each iteration as well. Again, the bulk of

the computational work necessary to complete this task can be performed in the

initialization phase where the cross-point matrix is being formed and factorized.

Furthermore, since the number of cross-points is small relative to the total number

of degrees of freedom, the back substitution step that gives uc can be performed very

quickly, with essentially no penalty to the per iteration run time of the method.
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Determination of Auxiliary Functions in Cross-Point DDM. The cross-

point DDM needs to be modified in order to accommodate the localization of the

transmission operator using Padé series as in Equation (2.27). Since the artificial

interfaces Σij are no longer closed, integration by parts produces non trivial boundary

terms which are not present in the variational problem (4.58) - (4.60), thereby

invalidating it. To see this, consider:

chij(Λu
h
i , v

h
i ) =

∫
Σhij

Λuhi v
h
i ds

= −ikC0

∫
Σhij

uhi v
h
i ds− ik

Np∑
l=1

Al

∫
Σhij

∇Σhij
·
(
k−2
ε ∇Σhij

ϕhi(l)

)
vhi ds

(4.66)

Consequently, application of the integration by parts to the last integral yields:∫
Σhij

∇Σhij
·
(
k−2
ε ∇Σhij

ϕhi(l)

)
vhi ds = vhi k

−2
ε ∇Σhij

ϕhi(l) · τ
∣∣∣
∂Σhij

−
∫

Σhij

k−2
ε ∇Σhij

ϕhi(l) · ∇Σhij
vhi ds

(4.67)

where τ is the unit normal vector to ∂Σh
ij. Not only is the boundary term problematic

from the computational point of view, but also, it makes the bilinear functional

chij non-symmetric. Since the symmetry of chij is necessary to formulate the cross-

point algorithm [15], we need to make sure that the boundary term is nullified in a

systematic manner. This is easily accomplished if we recall that in the cross-point

formulation of DDM, the functional chij acts on functions vhij which are non-zero

only in the interior of the interface Σh
ij. Therefore, choosing the test function space

for the auxiliary problem (4.60) to be composed of functions which are zero at the

cross-points, effectively cancels the boundary contributions. Inadvertently, this also

imposes a requirement on the auxiliary functions ϕl to be zero at the boundary ∂Σh
ij,

since effectively, we apply the cross-point technique to problem (4.52) subject to the

problem (4.53) where ϕ(i)l|Σhij = 0 for l = 1, . . . , Np. Whether this has any effect on
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convergence of the resulting method is a challenging problem and requires further

investigation.

Structure of the Local Matrices. Before we explain how the cross-point system

(4.63) is assembled, we need to establish some notation. To this end, let us introduce

the density of descretization h in terms of points per wavelength: nλ = λ/h. Let us

denote by SΩhi and MΩhi the stiffness and mass matrices for linear elements associated

with the domains Ωi. These matrices have size N
Ωhi
v × N

Ωhi
v . The constant N

Ωhi
v

represents the number of degrees of freedom of the finite element space over Ωh
i .

Furthermore, we introduce S∂Ωhi and M∂Ωhi as the respective matrices stiffness and

mass matrices related to the totality of the transmitting surfaces of Ωi. If these

correspond to a generalized stiffness matrix for a surface functions δ, then it is

denoted with a subscript S
∂Ωhi
δ . All these matrices have size N

∂Ωhi
v × N

∂Ωhi
v where

N
∂Ωhi
v is the number of degrees of freedom associated with the transmitting interface.

How the mass and stiffness matrices are generated by the finite element method

is outlined in Appendix (A.3). Let us denote by u
(n+1)
i ∈ CN

Ωhi
v to be the local

unknown vector and ϕ
(n+1)
i(l) ∈ CN

Ωhi
v the surface unknown auxiliary vectors obtained

with linear finite element. The discrete test-vectors and right hand side are also bold

typed. Then, the discretization of the variational problem for (4.54) - (4.55) yields

a coupled linear system:

(
SΩhi − k2MΩhi − ikC0M

∂Ωhi

)
u

(n+1)
i + ik

Np∑
l=1

AlS
∂Ωhiϕ

(n+1)
i(l) = −M∂Ωhi g (4.68)

−M∂Ωhi u
(n+1)
i −

(
BlS

∂Ωhi
k−2
ε
−M∂Ωhi

)
ϕ

(n+1)
i(l) = 0, l = 1, . . . , Np (4.69)

The constants C0, Al and Bl are the coefficients of the Páde approximation of order

Np to the complex square root function [22]. The square system (4.68) - (4.69) has

dimension N
Ωhi
v +NpN

∂Ωhi
v . Now, the assembly of the system (4.63) involves nothing

more than a distribution of the entries of (4.68) and (4.69) into the appropriate
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matrices Aii, Aic, Aci and Acc. The process begins by defining vectors wi appearing

in the matrix Equation (4.63) to have the following structure:

wT
i =

(
u

(n+1)
iI ,ϕ

(n+1)
i(1) , . . . ,ϕ

(n+1)
i(Np)

)T
(4.70)

where the subvector u
(n+1)
iI contains the unknown nodal values of the solution related

to interior and interface degrees of freedom only. Additionally, the vector wc of

Equation (4.63) contains the global, unknown nodal values of the solution related to

the cross-point degrees of freedom. The above Equation (4.70) dictates the structure

of the matrices A. For example, matrix Aii is the restriction of (4.68) - (4.69) to the

interior and interface degrees of freedom. It has the following form:

Aii =



SΩhi − k2MΩhi − ikC0M
∂Ωhi ikA1S

∂Ωhi . . . ikANpS
∂Ωhi
k−2
ε

−M∂Ωhi M∂Ωhi −B1S
∂Ωhi
k−2
ε

. . . 0

... . . .
. . .

...

−M∂Ωhi 0 . . . M∂Ωhi −BNpS
∂Ωhi
k−2
ε


(4.71)

Another words, the contributions to the above matrix come from discretization of

Equations (4.58) - (4.60) only, while Equation (4.61) contributes nothing. Similarly,

the matrix Aic contains those elements of (4.68) - (4.69) which were obtained by

testing interior and interface basis functions against those related to the cross-points.

The transpose of that matrix is Aci.

Aic =



SΩhi − k2MΩhi − ikC0M
∂Ωhi

0

...

0


(4.72)

The above matrix contains Np zero vectors corresponding to Np auxiliary local

problems. The only equation contributing to this matrix is Equation (4.61) where
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again, interior and interface basis functions are tested against those related to

the cross-points. The global matrix Acc is a result of discretization of the same

equation. The difference here being that cross-point basis functions are tested against

themselves. This matrix is a sum of the entries of local contributions of the system

(4.68) restricted to the unknowns related to cross-point nodal values:

Acc =

Nd−1∑
i=0

(
SΩhi − k2MΩhi

)
(4.73)

4.6 Numerical Results

In this section we apply the domain decomposition algorithm to a 2D model

scattering problem truncated with PML. In particular, we will consider the Problem

(3.14) of scattering from a sound hard disk centers at the origin. Relative simplicity of

the problem domain allows us to write down the solution in the form of a generalized

Fourier series given by Equation (3.15). The domain decomposition algorithm

described in Section (4.3) will be applied to the corresponding PML problem with

the geometry depicted in Figure (4.7) below:

y

x

b∗

b

−b∗

−b

a∗a−a∗ −a

Γ

Ω

ΩF

ΩA

L

d

ΓI

ΓD

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

Figure 4.7 Problem domain truncated with PML.
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We will study the performance of two transmission operators. First, is the

transmission operator used in the Evanescent Mode Damping Algorithm [16,23]:

Λu = −ik(1 + iχ)u (4.74)

The tables corresponding to the results obtained using the above transmission

operator will be denoted by EMDA. Second, is the approximation of the Dirichlet-to-

Neumann operator for a half-plane (see Section 2.3) obtained by the Padé localization

process discussed in Section (2.28). We recall its form below:

Λu = −ik

(
C0u+

Np∑
l=1

Al∇Σ ·
(
k−2
ε ∇Σ ϕl

))
(4.75)

The corresponding tables will be denoted by PADE. The auxiliary functions ϕl are

coupled to the trace of the solution u through the surface PDEs given by Equations

(2.29).

We carry out the simulations using the popular, quadratic absorbing functions

with σ∗ = 40 and p = 2. The minimal distance from the scatterer to the PML

interface ΓI , denoted by L, is measured in units of wavelength (λ) and since we kept

it geometrical units fixed, it changes as we change the wavenumber k. For k = π,

2π, 3π and 4π it is respectively, L = 0.5λ, λ, 3
2
π, and 2π. On the other hand, we

fixed the value of d, which is the width of the PML layer to be always equal to λ,

one wavelength. The tables below collect the number of iterations required to attain

given residual tolerance as well as the relative error of the approximation.
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Table 4.1 EMDA. Number of GMRES Iterations to Attain Residual Tolerance

10−6 vs. k for Various Mesh Densities (Number of Points per Wavelength Nλ).

k Nλ = 12 Nλ = 16 Nλ = 20

π 32 33 40

2π 34 34 39

3π 33 35 37

4π 33 36 37

Table 4.2 EMDA. Relative l2-error vs. k (%) for Various Mesh Densities

(Number of Points per Wavelength Nλ).

k Nλ = 12 Nλ = 16 Nλ = 20

π 10 9 7.5

2π 9 7.5 6

3π 9 6.5 5

4π 9 6 4.5

Table 4.3 PADE. Number of GMRES Iterations to Attain Residual Tolerance

10−6 vs. k for Various Mesh Densities (Number of Points per Wavelength Nλ).

k Nλ = 12 Nλ = 16 Nλ = 20

π 26 27 30

2π 23 23 24

3π 20 23 23

4π 19 22 24
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Table 4.4 PADE. Relative l2-error vs. k (%) for Various Mesh Densities (Number

of Points per Wavelength Nλ).

k Nλ = 12 Nλ = 16 Nλ = 20

π 4 2 1

2π 4.5 2.5 1.5

3π 5 3 2

4π 6 4.5 2

We see that the required number of GMRES iteration so solve the system

(4.50) - (4.51) is less when the Padé type transmission condition (4.75) is used.

Just as in the case of the original quasi-optimal algorithm [22] where the observed

dependence of the number of iterations is weak with respect to the mesh density and

the wave number, a similar behavior can be seen here a well. Moreover, the accuracy

of the PADE method is very good which should not come as a surprise since (4.75)

is a more accurate representation of the DtN operator than (4.74).

We also compare the above results with those obtained from truncating the

computational domain with a first order radiation condition along ΓD. No PML

is present here. All local problems are Helmholtz boundary value problem of the

form (4.50). Especially in the PADE case, the error inside of the computational

domain ΩF is much less when the domain is truncated with PML. Also, the number

of iterations is slightly lower and varies less with the mesh density.
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Table 4.5 EMDA. Number of GMRES Iterations to Attain Residual Tolerance

10−6 vs. k for Various Mesh Densities (Number of Points per Wavelength Nλ).

k Nλ = 12 Nλ = 16 Nλ = 20

π 29 31 36

2π 31 34 36

3π 32 35 38

4π 34 36 39

Table 4.6 EMDA. Relative l2-error vs. k at 12 Points per Wavelength (%) for

Various Mesh Densities (Number of Points per Wavelength Nλ).

k Nλ = 12 Nλ = 16 Nλ = 20

π 11 10 9

2π 11 9 8

3π 11 8 7

4π 11 7 7

Table 4.7 PADE. Number of GMRES Iterations to Attain Residual Tolerance

10−6 vs. k for Various Mesh Densities (Number of Points per Wavelength Nλ).

k Nλ = 12 Nλ = 16 Nλ = 20

π 26 32 34

2π 27 33 34

3π 25 30 31

4π 24 26 29
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Table 4.8 PADE. Relative l2-error vs. k at 12 Points per Wavelength (%) for

Various Mesh Densities (Number of Points per Wavelength Nλ).

k Nλ = 12 Nλ = 16 Nλ = 20

π 5 4.5 4

2π 6.5 5 4.5

3π 8.5 6 5

4π 9 6 5.5

4.7 Conclusions

In this chapter we have presented a new domain decomposition method for the

perfectly matched layer system. An analysis of a simple half-plane problem indicates

that the convergence rate of the resulting iterative method not only depends on the

choice of the transmission operator, but also on the particular PML parameters used.

Future investigation of this algorithm should reveal a procedure for determining the

optimal parameters. We should mention however, that this problem is difficult in

general since one wants to minimize the iteration count while maintaining good

accuracy.

Helmholtz boundary value problem is not coercive. This poses challenges

when attempting to give general proofs of convergence and accuracy of domain

decomposition methods for scattering problems. The presence of non-constant

coefficients in the bilinear form corresponding to the local PML problems can be

potentially used to force the form to be coercive.

We have presented the method in two dimensional setting. However, an

extension to more practical, three dimensional case is straight forward. Indeed,

neither the method, nor the algorithm make any assumptions about the dimen-

sionality of the problem. The computational advantage of this approach, as compared
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with low order radiation conditions should be even more apparent in the higher

dimensional case. With the width of the layer kept at one wavelength, the volume of

the absorbing layer compared with the volume of the computational domain is very

small. The computational work in the layer is therefore negligible. Moreover, as we

have seen in the 2D problem, the method achieves very good accuracy with small

number of iterations. We would expect the same behavior to persist in the 3D case,

although more extensive numerical tests are needed to validate this claim.
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CHAPTER 5

IMPROVED TRANSMISSION CONDITIONS FOR DDM IN

SCATTERING PROBLEMS

5.1 Motivation

In Chapter 2 we presented a quasi-optimal domain decomposition method based on

Padé localization of the square-root transmission operator developed by Boubendir

et al. in [22]. This represents the state of the art non-overlapping DDM for the

Helmholtz equation. However, to our best knowledge, there is no proof of well-

posedness of the local problems. Also, as we shall explain in the later section, we

observe that the size of the local problems grows with the order of the Padé series.

In this chapter, we introduce a new family of transmission conditions which doesn’t

suffer from these drawbacks. We show that when used in the context of Padé type

localization of the square-root operator, the local problems are well-posed and their

size remains independent of the order of the approximating series. The numerical

study of the new algorithm shows that the method achieves the same accuracy at

the fraction of the computational time.

5.2 Improved Transmission Conditions

To derive the new algorithm we rewrite the continuity conditions (2.5) - (2.6) in the

following equivalent form:

∂νiui + αui + Ti ui = −∂νjuj + αuj + Ti uj (5.1)

∂νjuj + αuj + Tj uj = −∂νiui + αui + Tj ui (5.2)

where α ∈ C is a constant and Ti, Tj are operators to be defined later. The first step

in defining the new transmission condition involves moving the terms containing Ti
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and Tj to the right hand side:

∂νiui + αui = −∂νjuj + αuj + Ti (uj − ui) (5.3)

∂νiuj + αuj = −∂νiui + αui + Tj (ui − uj) (5.4)

We now define an iteration procedure in which the following problems are solved at

each step:

∆u
(n+1)
i + k2u

(n+1)
i = 0 in Ωi

∂νiu
(n+1)
i = ∂νiu

i on Γi

∂νiu
(n+1)
i − iku(n+1)

i = 0 on Σi

(5.5)

∂νiu
(n+1)
i + αu

(n+1)
i = g

(n)
ij for Σij (5.6)

where:

g
(n)
ij = −∂νju

(n)
j + αu

(n)
j + Ti

(
u

(n)
j − u

(n)
i

)
(5.7)

is the interface datum corresponding to an interface Σij. Introduction of an iterative

scheme allowed us to relax the continuity conditions (5.1)-(5.2) and close the local

problems with the transmission condition (5.6). The update equation is determined

the same way as in Chapter 2. A simple algebraic manipulation yields:

g
(n+1)
ij = −g(n)

ji + 2αu
(n+1)
i + Ti

(
u

(n)
j − u

(n)
i

)
(5.8)

As we can see, α could be chosen so that the local problems are always well-

posed. Furthermore, the operator Ti could be non-local without affecting the cost and

conditioning of the local problems. In what follows, we are going to describe the new

algorithm in a particular case where the operators T are the Padé approximations

to the the square-root operator used previously.
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To that end, let us recall the form of the transmission condition used in the

quasi-optimal DDM. For an interface Σij it is given by the equation below:

∂νiui − ikC0ui − ik
Np∑
l=1

Al Sij ui = −∂νjuj − ikC0uj − ik
Np∑
l=1

Al Sij uj (5.9)

where the operators Sij are defined by:

Sij = ∇Σij ·
(
k−2
ε ∇Σij

) (
1 +Bl∇Σij ·

(
k−2
ε ∇Σij

))−1
. (5.10)

Comparing Equations (5.9) and (5.1) we immediately see that the two are

equivalent provided that we make following definitions for α and Ti:

α = −ikC0 (5.11)

Ti = −ik
Np∑
l=1

Al Sij (5.12)

The well-posedness of local problems with the above choices for α and Ti is relatively

easy to establish. C0 is a complex constant since it is the coefficient of the rational

approximation of the square root function (2.26). The homogeneous local problems

therefore, have the same structure as those studied by Boubendir in [15] in the

context of EMDA technique. Their well-posedness have been established in that

same reference.

The presence of the inverse of a differential operator in Sij is inconvenient.

The make the derivation of a variational formulation of the resulting local problems

easier, we introduce auxiliary functions ϕi(l). For each interface Σij, they are the

solutions of the surface PDEs:

(
1 +Bl∇Σij ·

(
k−2
ε ∇Σij

))
ϕi(l) = ui (5.13)
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With their help, we can rewrite Equation (5.12) defining the operator Ti as:

Ti ui = −ik
Np∑
l=1

Al∇Σij ·
(
k−2
ε ∇Σij ϕi(l)

)
(5.14)

Since the problems (5.13) are linear, the right hand side gij of the transmission

condition (5.6) can be conveniently written as:

gij = −∂νjuj − ikC0uj − ik
Np∑
l=1

Al∇Σij ·
(
k−2
ε ∇Σij

[
ϕj(l) − ϕi(l)

])
(5.15)

It should be noted that in this formulation of local problems, the auxiliary functions

ϕi(l) are no longer coupled to the local solution ui. This is in contrast to the case

of the quasi-optimal algorithm described in Chapter 2. This is easy to see once we

realize that at step n + 1, the function gij is evaluated at index n. Consequently,

the size of the resulting local matrices is exactly the same as in the case of the

original algorithm due to Déspres [33]. The update and exchange of interface data

is slightly more involved however. For each subdomain, matrices related to finite

element discretization of Equation (5.13) need to inverted. Since the number of

interface unknowns is relatively small compared to the total number of unknowns in

the system, these matrices can be pre-factorized and stored in memory during the

initialization phase. In this case the exchange procedure involves only a simple back

substitution process which is very efficient.

5.3 Discussion of the Structure of Local Matrices

Let us consider the 2D model scattering problem (2.1) of Section (2.1). The

quasi-optimal domain decomposition method for that problem was presented in the

subsequent Section (2.2). In that formulation of the method, the local problems are

given by Equations (2.30) - (2.34). The nodal finite element method applied to these
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problems yields systems of equations of the following form:

(
SΩhi − k2MΩhi − ikC0M

∂Ωhi

)
u

(n+1)
i + ik

Np∑
l=1

AlS
∂Ωhiϕ

(n+1)
i(l) = −M∂Ωhi g (5.16)

−M∂Ωhi u
(n+1)
i −

(
BlS

∂Ωhi
k−2
ε
−M∂Ωhi

)
ϕ

(n+1)
i(l) = 0, l = 1, . . . , Np (5.17)

where by SΩhi and MΩhi respectively, we denote the stiffness and mass matrices for

linear elements associated with the domains Ωi. These matrices have size N
Ωhi
v ×NΩhi

v .

The constant N
Ωhi
v represents the number of degrees of freedom of the finite element

space over Ωh
i . Furthermore, we introduce S∂Ωhi and M∂Ωhi as the respective matrices

stiffness and mass matrices related to the totality of the transmitting surfaces of Ωi.

If these correspond to a generalized stiffness matrix for a surface functions δ, then it

is denoted with a subscript S
∂Ωhi
δ . All these matrices have size N

∂Ωhi
v × N∂Ωhi

v where

N
∂Ωhi
v is the number of degrees of freedom associated with the transmitting interface.

How the mass and stiffness matrices are generated by the finite element method is

outlined in Appendix (A.3). Let us denote by u
(n+1)
i ∈ CN

Ωhi
v to be the local unknown

vector and ϕ
(n+1)
i(l) ∈ CN

Ωhi
v the surface unknown auxiliary vectors obtained with linear

finite element. The discrete test-vectors and right hand side are also bold typed.

The strength of the Padé localization technique lies in the fact that it

approximates the Dirichlet-to-Neumann operator by local, differential operators

uniformly over all wavelengths. Consequently, an accurate representation of the

operator can be obtained by finite element discretization which yields sparse instead

of dense matrices as in the case of boundary element method. The size of the

local finite element matrices however, is proportional to the order of the Padé

approximation used. This can potentially lead to prohibitively large linear problems

that need to be solved at each iteration.

This claim can be easily visualized by observing the structure of the linear

system given by Equations (5.16) - (5.17). This square system has dimension
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N
Ωhi
v + NpN

∂Ωhi
v . It is clear that the size of the system grows as the number

of unknowns increases, or as the finite element mesh is refined, especially in

three-dimensional geometries. More importantly, higher values of the order of the

Páde series Np also result in larger local systems needed to be assembled and

factorized. Mesh partitioning could be used to decrease the number of degrees of

freedom by making the local domain Ωi smaller. Such strategy however, does not

guarantee the decrease in the computational time of the resulting parallel iterative

solver due to the associated communication overhead. In fact, the well known

Amdahl’s law states that the speed-up of a parallel application is linear only for

small number of the processing units utilized. It is not to say that the use of large

number of subdomains does not result in the decrease of the computational time.

Rather, to quantify the potential speedup is very difficult in a practical setting.

Moreover, as we show shortly, the use of the modified condition results in smaller

local systems and an iterative method with satisfactory convergence rates. In fact,

our numerical study shows that the use of the transmission condition proposed here

results in a method whose convergence properties are comparable to those of the

quasi-optimal method presented in [22], and which achieves the same accuracy at a

much lower computational cost.

5.4 Numerical Results

In this section we study the performance of the new transmission condition. We

compare it with the quasi-optimal domain decomposition method. We are interested

not only in the iteration count and accuracy, but also in the computational time

required to obtain the solution. In 3D setting, the quasi-optimal method can be

costly, especially when the order Np of the approximating series is high. We will show

that the transmission conditions proposed in this chapter achieves small iteration

count, good accuracy and is computationally much more tractable.
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2D Problem We begin with a simple 2D model problem of scattering of time-

harmonic plane acoustic waves from a sound hard unit disk centered at the origin.

The problem geometry is shown below (Figure 5.1). The artificial, circular boundary

Σ with three unit radius is centered at the origin as well.

Ω
−

Γ

Ω

Σ

u
i

u
s

Figure 5.1 Two-dimensional geometry of the model problem.

We are interested in obtaining the amplitude of the scattered field u governed

by: 
∆u+ k2u = 0 in Ω

∂ru = −∂r e−ikx on Γ

∂ru− iku = 0 on Σ

(5.18)

We apply DDM to the partition of Ω into five non-overlapping, washer-like

subdomains Ωi : i = 1, . . . , 5. The four artificial circular interfaces have radii Rj

equal to 1.4, 1.8, 2.2, 2.6 units respectively. In order to calculate the Páde coefficients

we fix the order of approximation Np = 8 and the parameter θ = π/4. Also, we

let kε = k + i0.4k1/3R
−2/3
j where Rj is the radius of the circular interface. These

quantities have been found numerically to produce good results [22]. The accuracy
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of the method is assessed by comparing with the true solution which can be written

in the following form:

u(r, θ) =
∞∑

n=−∞

[
αnH

(1)
n (kr) + βnH

(2)
n (kr)

]
einθ (5.19)

where H
(1)
n (z) and H

(2)
n (z) are the Hankel functions of first and second kind

respectively. The coefficients αn and βn are the solutions of the system of equations

given below: dzH
(1)
n (ka) dzH

(2)
n (ka)

dzH
(1)
n (kb)− iH(1)

n (kb) dzH
(1)
n (kb)− iH(1)

n (kb)


 αn

βn

 =

 indzJn(ka)

0


(5.20)

Function Jn(z) is the Bessel function of the first kind. We compare the proposed

algorithm (denoted by NEW PADE) with the quasi-optimal Páde method [22]

(denoted by PADE) with the same parameters.

Table 5.1 Iteration Count vs. k at 12 Points per Wavelength.

Residual Tolerance 10−6.

k NEW PADE PADE

π 38 30

2π 33 26

3π 32 27

4π 34 28
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Table 5.2 Relative l2-error vs. k at 12 Points per Wavelength (%).

k NEW PADE PADE

π 5.6 3.6

2π 7.4 6.4

3π 11.5 10.0

4π 13.6 13.3

Table 5.3 Computation Time vs. k at 12 Points per Wavelength (sec).

k NEW PADE PADE

π 2.4 2.2

2π 8.0 7.5

3π 22.0 21.2

4π 51.5 50.2

Table 5.4 Iteration Count vs. k at 20 Points per Wavelength.

Residual Tolerance 10−6.

k NEW PADE PADE

π 39 30

2π 35 26

3π 32 26

4π 35 28
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Table 5.5 Relative l2-error vs. k at 20 Points per Wavelength (%).

k NEW PADE PADE

π 2.4 1.5

2π 2.8 2.4

3π 4.6 4.0

4π 5.1 4.9

Table 5.6 Computation Time vs. k at 20 Points per Wavelength (sec).

k NEW PADE PADE

π 5.8 5.2

2π 30.8 28.7

3π 103.0 103.0

4π 295.0 290.0

The 2D simulations do not reveal the practicality of the new method since

the total number of unknowns and degrees of freedom involved in the exchange are

relatively low. In this case, the performance of the new transmission condition is

comparable with the quasi-optimal method. Both methods do perform better than

EMDA, which however is easier to implement. The figure below shows the amplitude

u of the scattered field at k = 2π and 4π respectively.
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(a) k = 2π (b) k = 4π

Figure 5.2 Plot of the numerical solution at different wavelengths.

3D Problem Let us now consider a 3D model problem of acoustic scattering from

a sound hard sphere centered at the origin. We can think of Figure (5.1) as showing

a cross section of the computational domain with the cut plane passing through

the origin. Domain decomposition method will be applied to the 3D counterpart of

Problem (5.18). The true solution to the problem can be obtained by the method

of separation of variables. With the vector of incidence pointing in the negative

z-direction, the solution can be written as a series expansion in spherical harmonics

[48]:

u(r, θ, φ) =
∞∑
n=0

[
αnH

(1)
n (kr) + βnH

(2)
n (kr)

]
P 0
n(cos θ) (5.21)

where the coefficients αn and βn are given by the solution of the following system of

equations: dzH
(1)
n (ka) dzH

(2)
n (ka)

dzH
(1)
n (kb)− iH(1)

n (kb) dzH
(1)
n (kb)− iH(1)

n (kb)


 αn

βn

 =

 in(2n+ 1)dzJn(ka)

0


(5.22)
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H(1)(z) andH(2)(z) are the first and second kind spherical Hankel functions, P 0
n(cos θ)

is the associated Legendre function, and Jn(z) is the Bessel function of the first kind.

Decomposition Without Cross-Points We first consider partitions of the

domain containing no cross-points. We will decompose the volumetric domain Ω

into 3, 5 and 7 spherical shells shown in the Figures (5.3) - (5.5) below. At each

wavelength k = 2π, 4π and 8π, we report the the number of iterations required

to attain prescribed residual tolerance, relative error as compared with the true

solution (5.21) and various timings at 10 and 20 points per wavelength for the domain

decomposition methods proposed in this chapter, denoted by NEW PADE, as well

as the quasi-optimal method discussed earlier (see Chapter 2), denoted by PADE.

Figure 5.3 3D spherical geometry partitioned into 3 subdomains.

Table 5.7 Number of Iterations Required vs. k at Nλ = 10, 3 Subdomains.

k NEW PADE PADE

2π 29 23

4π 27 22

8π 26 20
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Table 5.8 Relative Error vs. k (%) at Nλ = 10, 3 Subdomains.

k NEW PADE PADE

2π 15 15

4π 17 17

8π 30 30

Table 5.9 Total Computation Time vs. k (min) at Nλ = 10, 3 Subdomains.

k NEW PADE PADE

2π 0.6 2.5

4π 1.8 39

8π 18 668

Table 5.10 Number of Iterations Required vs. k at Nλ = 20, 3 Subdomains.

k NEW PADE PADE

2π 31 22

4π 33 24

8π 31 27

Table 5.11 Relative Error vs. k (%) at Nλ = 20, 3 Subdomains.

k NEW PADE PADE

2π 4 4

4π 4 4

8π 8 8
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Table 5.12 Total Computation Time vs. k (min) at Nλ = 20, 3 Subdomains.

k NEW PADE PADE

2π 2 39

4π 17 660

8π 1150 5345

Figure 5.4 3D spherical geometry partitioned into 5 subdomains.

Table 5.13 Number of Iterations Required vs. k at Nλ = 10, 5 Subdomains.

k NEW PADE PADE

2π 90 90

4π 102 102

8π 63 48
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Table 5.14 Relative Error vs. k (%) at Nλ = 10, 5 Subdomains.

k NEW PADE PADE

2π 10 10

4π 15 15

8π 29 29

Table 5.15 Total Computation Time vs. k (min) at Nλ = 10, 5 Subdomains.

k NEW PADE PADE

2π 1.2 4.5

4π 4.6 69

8π 15 962

Table 5.16 Number of Iterations Required vs. k at Nλ = 20, 5 Subdomains.

k NEW PADE PADE

2π 55 37

4π 51 40

8π 40 35

Table 5.17 Relative Error vs. k (%) at Nλ = 20, 5 Subdomains.

k NEW PADE PADE

2π 4 4

4π 5 5

8π 8 8
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Table 5.18 Total Computation Time vs. k (min) at Nλ = 20, 5 Subdomains.

k NEW PADE PADE

2π 2.5 48

4π 16 805

8π 450 6537

Figure 5.5 3D spherical geometry partitioned into 7 subdomains.

Table 5.19 Number of Iterations Required vs. k at Nλ = 10, 7 Subdomains.

k NEW PADE PADE

2π 75 66

4π 46 37

8π 38 29
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Table 5.20 Relative Error vs. k (%) at Nλ = 10, 7 Subdomains.

k NEW PADE PADE

2π 14 14

4π 19 19

8π 32 32

Table 5.21 Total Computation Time vs. k (min) at Nλ = 10, 7 Subdomains.

k NEW PADE PADE

2π 0.9 3.4

4π 2.2 45

8π 15 688

Table 5.22 Number of Iterations Required vs. k at Nλ = 20, 7 Subdomains.

k NEW PADE PADE

2π 110 88

4π 68 51

8π 62 48

Table 5.23 Relative Error vs. k (%) at Nλ = 20, Subdomains.

k NEW PADE PADE

2π 4 4

4π 4 4

8π 8 8

93



Table 5.24 Total Computation Time vs. k at Nλ = 20, 7 Subdomains.

k NEW PADE PADE

2π 5 70

4π 16 900

8π 185 7567

The accuracy of both methods is the same. Of course, the error is smaller in the

case of 20 points per wavelength. The quasi-optimal method (PADE) requires less

iterations to converge to a residual error tolerance of 10−6. However, a single iteration

of this method requires more work than that of the method proposed in this chapter

(NEW PADE). The initialization that includes the assembly and factorization of

local matrices is also more expensive in the latter case as explained in Section (5.3).

Tables that present the total running time of the algorithms show that the new

transmission condition results in a much more computationally effective algorithm

even though the iteration count is slightly higher. Next, we present few results of the

method applied to decompositions with cross-points. The same technique of adapting

the quasi-optimal method to the cross-point technique presented in Chapter 4 will

be used next.

Decomposition With Cross-Points We have also considered a partition of the

computational domain that contains cross points. The Figure (5.6) below shows a

one half of the domain partitioned into four subdomains. The other half is symmetric

about the cut plane. The green points show location of the cross-points.
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Figure 5.6 3D spherical geometry partitioned into 8 subdomains.

Table 5.25 Iteration Count vs. k at Nλ = 10.

k NEW PADE PADE

π 21 20

2π 37 31

4π 50 50

8π 56 54

Table 5.26 Relative l2-error vs. k at Nλ = 10 (%).

k NEW PADE PADE

π 36 36

2π 14 14

4π 16 16

8π 28 28
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Table 5.27 Computation Time vs. k at Nλ = 10 (min).

k NEW PADE PADE

π 0.35 0.35

2π 0.42 0.47

4π 1.14 1.63

8π 8.53 22.83

Table 5.28 Iteration Count vs. k at Nλ = 20.

k NEW PADE PADE

π 31 25

2π 47 40

4π 62 51

8π 57 66

Table 5.29 Relative l2-error vs. k at Nλ = 20 (%).

k NEW PADE PADE

π 10 10

2π 5 5

4π 5 5

8π 8 8
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Table 5.30 Computation Time vs. k at Nλ = 20 (min).

k NEW PADE PADE

π 0.42 0.45

2π 1 1.47

4π 9 22

8π 478 927

Again, the accuracy of both methods is the same. The computational domain

used in this case is identical to that of the previous section. The only difference

is the way it has been decomposed. Of course, since there are cross-points, the

resulting iterative method is that given by the cross-point technique. Here however,

we do observe a stronger dependence of the iteration count on the wavenumber k.

Nevertheless, the computational time of the new algorithm remains relatively small

while preserving good accuracy of the solution.

5.5 Conclusions

In this chapter we have presented a new family of transmission conditions for domain

decomposition methods for the scattering problems. The modification of the usual

transmission conditions amounts to an introduction of a correcting term. The

strength of this approach lies in the realization that this term can be acted upon

by an operator which in principle, could be chosen to improve convergence as well

as efficiency of the resulting method. In this chapter, the choice of this operator

have been motivated by the structure of the transmission condition obtained from

the localization of the square-root operator. We were able to show numerically,

that the new method resulted in an efficient algorithm with very good accuracy.

As mentioned in the opening section of this chapter, the form of the transmission

conditions proposed here makes it possible to give proofs of well-posedness of the local
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problems. This is quite easy to see if we realize that local homogeneous problems

have the same form as those analyzed initially be B. Després. Further investigation is

needed to determine the properties of the operator T and the accompanying constant

α that would improve convergence as well as their response to varying problem

parameters such as the wavenumber, local problem geometry or number of point per

wavelength.
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CHAPTER 6

PARALLEL IMPLEMENTATION

In this chapter, we give an overview of data structures and algorithms necessary

for an efficient, parallel implementation of the domain decomposition methods

described thus far. We assume that our computational model is that of a single

program and multiple data (SPMD). Such computing paradigm is usually realized

via message passing on a distributed memory computer architectures. Clusters of

computers, connected to a dedicated, high speed network conforming to the Message

Passing Interface (MPI) specifications [38], are a prime example of such architectures.

The MPI programming model is now a standard in high performance computing

community. By abstracting away details related to low level network programming,

it allows the software developer to focus exclusively on the logic of data flow in the

cluster, and that greatly reduces the complexity of the resulting code.

The challenge to writing a parallel scientific application of this kind is two-fold.

Firstly, the underlying data structures have to be conceived totally differently.

Secondly, the algorithm and data structure design is not trivial when the goals is

to achieve scalability and extensibility. There exist many excellent finite element

libraries, but only few meet the above criteria. The deal.ii [8, 9] and Dune [10, 11]

libraries seems most mature in that respect. They are designed for massively parallel

computations from the ground up using modern C++ programming techniques.

They are also very big systems, promising to solve a wide variety of physical problems

using the finite element method. Unfortunately, we were unable to find an efficient

way to query their mesh objects for the cross-point nodes. For the purposes of

our algorithms, this operation is essential and we were therefore compelled to build
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our own parallel, finite element system. Many design decisions we have made were

influenced by both of the libraries just mentioned.

In the following sections, we shall look at the problems of scalability and

extensibility and how they relate to the implementation of our algorithms in more

detail. We begin with a list of necessary requirements that ought to be satisfied by

our system and an overview of the resulting architecture.

6.1 System Requirements and Architecture

Developing extensible finite element software is not trivial [34,35,77]. The goal of the

resulting framework is to support implementation and testing of a variety of domain

decomposition algorithms. There are many decisions that need to be made before

the development starts. Are we going to solve 2D, 3D problems or both? What

type of a mesh? Triangular, tetrahedral, quadrilateral? What finite element spaces

are we going to use? What quadrature rules will be most applicable? How are we

going to solve the resulting linear system? It is very difficult to give an answer to

these questions in advance. It is therefore imperative to approach the problem from

a modular perspective.

Modular approach to software design has many advantages. Every component

is seen as a black box by every other component in the system. The only way

components can communicate is through a well defined application programming

interface (API). The benefit of such a design is the ability to extend and modify the

system relatively easily without disrupting the whole.

The major components found in our framework are shown in the Figure (6.1)

below:
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Figure 6.1 System components. Arrows point in the direction of dependency.

Component Description:

• Mesh - Representation of the distributed mesh. It conforms to the mesh API

implemented by the (Mesh Proxy).

• Mesh Proxy - Encapsulates the mesh API. Hides details of the mesh represen-

tation from the user of the system.
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• DoF Mapper - Provides various sets of indices necessary in finite element and

domain decomposition computations such as mappings from global vertex IDs

to local (partition) vertex IDs, etc.

• ReferenceMap - Defines reference cells/elements and the corresponding mappings.

• FEM - Holds the definitions of shape functions and their gradients on reference

elements/cells.

• Quad - Defines quadrature weights and nodes for a variety of reference elements.

• Assembler - Encapsulates a user defined assembly routine.

• Linear System - Holds a linear system associated with a given problem. Also

user defined.

• Solver - This component abstracts away the paralell nature of the Linear

System by providing an intuitive interface to the iteration operator having

the semantics of matrix-vector multiplication.

• Iterator - An abstract object which implements an iterative method used

to solve the iteration equations associated with the domain decomposition

algorithm.

• Output - A component responsible for gathering of the solution and outputting

it into a user specified data format.

• Config - Holds parameters relevant to the problem being solved such as the

wave number, number of mesh partitions, etc.

• Config Proxy - Encapsulates the config API.

The major requirements we want our framework to satisfy are as follows:
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1. For efficiency, the system should be built on top of a distributed mesh,

automatically partitioned with automatic cross-point detection.

2. The API should allow to improve existing, or add new system features easily.

3. Variation formulations are dimension independent. We want to express our

algorithms in the same way.

4. The API should hide the details involved in the calculation of the action of

the iteration operator and provide an interface with semantics of matrix-vector

multiplication to that operation.

The first item on the list has to do with scalability. One cannot hope to perform

massively parallel simulation when the global mesh data is replicated through the

cluster. The only way to handle very large problems is to partition the mesh and

distribute the pieces to the corresponding cluster nodes. This way, a single node holds

only that portion of the mesh which is associated with the local problem assigned to

it. This reduces the memory footprint of the mesh object but also requires a more

advanced data structure which we describe in the next section.

The second item pertains a good API which is relatively easy to define once

the system has been decomposed into components with well defined responsibilities.

The mesh API reflects the topological structure of the mesh, which can be thought

of as a collection of mesh entities of lower dimensions [13]. A distributed mesh

is a collection of partitions. Each partition is a collection of cells and interfaces.

Here a geometric representation of a cell depends on the type of the mesh and the

dimension of the space it is embedded in. Cells could be triangles, quadrilaterals,

etc. in 2D or tetrahedral, prisms, etc. in 3D. A cell in turn, is a collection of faces.

Those could correspond to triangle edges, or tetrahedral faces, depending on the

kind of the mesh being represented. An interface is a collection of faces common

to two neighboring partitions. A face is a collection of vertices which represent
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points in space. Geometrically, a face is a convex hull of it vertices. The assembly

of discrete, finite element equations as well as the update and exchange steps in

the domain decomposition algorithms require traversal of many of these collections.

Programmatically, traversals are most conveniently expressed in terms of iterators

[66]. The concept of an iterator is language agnostic, but since we have implemented

our code in C++, the code snippets below show iterator semantics found in the

C++’s Standard Template Library (STL) [66]. The resulting high level interface

encapsulated by the Mesh Proxy component exposes the following abstract data

types:

template<int wdim>

class Vertex {

int id ;

Point<wdim> coo rd ina t e s ( ) ;

bool i s F r e e ( ) ;

bool i sCons t ra ined ( ) ;

bool i sCro s sPo in t ( ) ;

. . .

} ;

template<int wdim>

class Face {

HalfFace<wdim> id ;

Par t i t i on<wdim>∗ pa r en tPar t i t i on ;
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Vertex I t e ra to r<wdim> beg inVe r t i c e s ( ) ;

Ver t ex I t e ra to r<wdim> endVert i ce s ( ) ;

. . .

} ;

template<int wdim>

class Ce l l {

int id ;

enum CELL TYPE;

Par t i t i on<wdim>∗ pa r en tPar t i t i on ;

Face I t e ra to r<wdim> beginFaces ( ) ;

Face I t e ra to r<wdim> endFaces ( ) ;

Ver t ex I t e ra to r<wdim> beg inVe r t i c e s ( ) ;

Ver t ex I t e ra to r<wdim> endVert i ce s ( ) ;

. . .

} ;

template<int wdim>

class I n t e r f a c e {

Part i t i on<wdim>∗ pa r en tPar t i t i on ;

int neighborRank ;

Face I t e ra to r<wdim> beginFaces ( ) ;

Face I t e ra to r<wdim> endFaces ( ) ;

Ver t ex I t e ra to r<wdim> beg inVe r t i c e s ( ) ;

Ver t ex I t e ra to r<wdim> endVert i ce s ( ) ;
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. . .

} ;

template<int wdim>

class P a r t i t i o n {

Partit ionRaw∗ part it ionRaw ;

int myRank ;

int meshRank ;

I n t e r f a c e I t e r a t o r<wdim> b e g i n I n t e r f a c e s ( ) ;

I n t e r f a c e I t e r a t o r<wdim> e n d I n t e r f a c e s ( ) ;

C e l l I t e r a t o r<wdim> b e g i n C e l l s ( ) ;

C e l l I t e r a t o r<wdim> endCe l l s ( ) ;

Face I t e ra to r<wdim> beginFaces ( ) ;

Face I t e ra to r<wdim> endFaces ( ) ;

Ver t ex I t e ra to r<wdim> beg inVe r t i c e s ( ) ;

Ver t ex I t e ra to r<wdim> endVert i ce s ( ) ;

. . .

} ;

template<int wdim>

class Mesh {

vector<int> part i t i onRanks ;

Para l l e lNe ighborhood para l l e lNbd ;

. . .

} ;
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The integer template parameter wdim is used to specify the dimension of the problem

domain. That is, wdim = 2 for 2D problems, and wdim = 3 for 3D problems. Such

use of C++ template system allows us to implement finite element formulations

in a dimension independent way, which takes care of the third requirement. The

integer rank variables are used for communication within the MPI context. The

rank is also an id of the corresponding partition. Each iterator extends the STL

Iterator class. The Vertex, Face, Cell, and Partition classes are simple proxies

that utilize the globally unique integer id variables to fulfill user mesh queries by

accessing appropriate fields in the PartitionRaw data structure. They are helper

classes that hide the implementation details of PartitionRaw and provide a uniform

access to its contents. Except for the id variables used to identify them, they hold

no other data. PartitionRaw itself, is the distributed mesh data structure described

in the next section. The CELL TYPE is used by the ReferenceMap, FEM and

Quad components to determine respectively, which reference element, which shape

functions and which quadrature rule are appropriate.

These ReferenceMap, FEM and Quad modules abstract the notion of the a

reference cell, finite element space, and a quadrature rule respectively. They provide

the following interface:

template<int wdim>

class ReferenceMap {

void r e i n i t ( const Cel l<wdim>& c e l l ) ;

double j a cob ian ( const Point<wdim>& quadNode ) ;

Point<wdim> map( const Point<wdim>& quadNode ) ;

. . .

} ;
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template<int wdim>

class FEM {

FEM(enum FEM TYPE, const Quad& quad ) ;

void r e i n i t ( const Cel l<wdim>& c e l l ) ;

double evalShape ( int shapeIndex ,

const Point<wdim>& quadNode ) ;

. . .

} ;

template<int wdim>

class Quad {

Quad(enum QUAD TYPE) ;

void r e i n i t ( const Cel l<wdim>& c e l l ) ;

double weight ( int quadNodeIndex ) ;

Point<wdim> node ( int quadNodeIndex ) ;

. . .

} ;

The enumerated types FEM TYPE and QUAD TYPE are used to specify the

type of the finite element space and the degree of precision of the quadrature rule

respectively.

The Assembler and LinearSystem components define functions that need to be

provided by the user:
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template<int wdim>

class Assembler {

Part i t i on<wdim>∗ p a r t i t i o n ;

ReferenceMapper<wdim>∗ refMap ;

FEM<wdim>∗ fem ;

Quad<wdim>∗ quad ;

virtual void assemble ( ) = 0 ;

. . .

} ;

template<int wdim>

class LinearSystem {

Part i t i on<wdim>∗ p a r t i t i o n ;

virtual void d e f i n e ( ) = 0 ;

virtual void s o l v e ( ) = 0 ;

. . .

} ;

The assemble function assembles the linear system corresponding to the local

partition, which is defined by the define function and solve specifies how to solve

it.

To satisfy the last requirement, we introduced the Solver component into our

framework. It resides on the same rank as the Mesh component. Its responsibility
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is to coordinate the process of determination of the local solutions by LinearSystems

as well as the exchange and update phase in the domain decomposition algorithm.

It also provides a natural interface which can be conveniently used by an iterative

method encapsulated in the Iterator component.

template<int wdim , class T>

class So lve r {

Mesh<wdim>∗ mesh ;

vector<T> r e q u e s t S o l u t i o n ( int part i t ionRank ) ;

virtual vector<T> operator ∗( const vector<T>& x ) = 0 ;

. . .

} ;

The requestSolution contacts the LinearSystem with rank partitionRank and

obtains a solution of the corresponding local problem. That information is then used

by a user provided function operator* which encapsulates the exchange and update

of interface data in the domain decomposition method.

The Iterator component can now make use of the Solver in the following way:

So lve r A;

X = A∗x ; // to c a l c u l a t e the a c t i o n o f the i t e r a t i o n opera tor

6.2 Distributed Mesh Data Structure

We should mention that the implementation of highly scalable, distributed meshes

is very challenging. For example, deal.ii library mesh data structure is build on top

of p4est [26] library which takes care of mesh partitioning, load balancing, parallel

neighborhood context, etc. The lack of time and resources did not permit us to use a

similar approach. We have therefore opted for a simpler parallel mesh representation.
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However, since the access to the mesh data structure is moderated by the Mesh Proxy

object, the future improvements to the Mesh component could be carried out without

any changes to the existing code.

6.2.1 Compact Array-Based Mesh Data Structure

Since massively parallel simulations cannot afford to replicate the entire mesh on

every cluster node, a robust distributed mesh data structure is necessary for the

development of efficient domain decomposition algorithms. We have decided to adapt

the compact, array-based mesh data structure [1] for our particular application.

This structure is efficient in both time and space. The mesh entities and their

neighborhood information can be queried without performing global search while

requiring a minimal amount of storage. This characteristic is very important for an

efficient determination of the cross-point vertices. The classic mesh representations

for finite element analysis bases on element connectivity [44] do not support fast

neighborhood queries. For example, finding all mesh triangles incident on a given

vertex is linear in the total number of triangles. This is impractical. In order

to implement automatic partitioning and apply the cross-point technique to the

resulting nodal finite element system, we need this particular operation to perform

very quickly, and the mesh data structure described here can achieve this in O(1)

time.

This data structure is based on half-edge mesh representation. For the sake of

simplicity we assume that we are working with a 2D mesh composed of triangles.

Extensions to higher dimensions are trivial [1]. In this representation, each triangle

in addition to having a unique ID, is encoded as a linear sequence of half-edges. A

half edge represents a triangle edge. However, unlike a regular edge, it is associated

with only a single triangle. Its twin half-edge is the half-edge corresponding to the

same mesh edge, contained in the neighboring triangle. A half-edge is represented
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by a tuple < T, i >, where T is the ID of the containing triangle and i is the index

of the corresponding edge within that triangle. The following tables are used by the

mesh data structure:

• VC: map each vertex ID to the vertex coordinates.

• EC: map each triangle ID to the IDs of its vertices.

• V2e: map each vertex to the ID of an incident half-edge originated from the

vertex; map a border vertex to a border half-edge; map an interface vertex to

a interface half-edge.

• E2e: map each non-border half-edge to the ID of its twin half-edge.

• B2e: map each border half-edge to the ID of its twin non-border half-edge.

• Vg2l: map global vertex ID to a local vertex ID within the containing partition.

The tables V2e, E2e and B2e are fundamental. Table V2e gives access to the

local neighborhood of a vertex. By looking up an incident edge in V2e we can

determine all half-edges incident on the vertex by consulting the E2e table. By

looking at the the resulting sequence of half-edges we can determine which triangles

they are contained in, whether they lie on a physical border or a partition interface by

looking up the B2e table. A cross-point is a vertex which belongs to more than two

partitions. If the above procedure, which takes a constant time for each vertex, finds

incident half-edges that happen to lie on two different interfaces, then the vertex is

a marked as possible cross-point. Every partition reports the set of these points to a

single process on rank 0 whose responsibility is to hold the global Mesh component

described in the previous section. The process then assigns the unique cross-point

IDs to these vertices and communicates that information back to the participating

partitions.

112



Mesh queries related to the assembly of the finite element system are also

easily supported. In fact, what is needed are the triangle iterators which can be

built from the EC table, and the interface and boundary edge iterators which can

be implemented on top of the B2e table. Of course, the geometric information, ie,

the vertex coordinates can be easily looked up in the VC table.

The mesh can be generated using any mesh generation software. We have used

GMSH [42]. The output of GMSH is an element connectivity list with boundary

information attached to the mesh entities. The element connectivity list can be fed

into an automatic mesh partitioner such as METIS [50] producing an additional

partition information attached to the mesh entities. The whole output then needs to

be wrangled to populate the entries of the above tables. That is possible since the

two mesh representations are equivalent [1].

Since the implementation of this mesh representation is hidden from the user

implementing the domain decomposition algorithm, it can be easily exchanged for

a more advanced data structure. The approach to mesh handling presented in this

chapter suffers from the problem of scalability. The mesh needs to be generated

and partitioned on a single node. This limits the possible mesh size. The more

scalable solution would be to use local mesh refinements and recursive mesh splitting

with load balancing. Such functionality is provided by the p4est library [26] and

could potentially be used in our future work to improve the code to handle very

large problems very efficiently without running into problems posed by local memory

limitations.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this dissertation we have proposed new numerical approaches to the solution of the

scattering problem. In Chapters 3 and 4 we have concentrated on the solution of the

scattering problem truncated using the perfectly matched layer technique. We have

introduced a new, zero frequency limit preconditioner to improve the convergence

rate of Krylov subspace iterative methods applied to the PML system (Chapter

3). Our preconditioner reduces the number of required GMRES iterations by a

large factor, is sparse and very easy to assemble. In comparison with the other

popular choices of preconditioners for these type of problems, it achieves greatly

improved performance at a fraction of the computational cost. This is especially

true when we compare it with the approximate inverse preconditioner which if very

difficult to construct. The parameter space of the PML problem is very large

and a more exhaustive numerical study is needed to obtain a better picture of

the relative performance of the zero frequency limit preconditioner. We have only

covered the cases where σ∗, γ and k are being varied, and in particular, we did

were unable to replicate the results for values of k higher than π as those could

not be handled by Matlab due to their size. Future work should concentrate on

a much more further exploration of the parameter space, considerations of higher

values of the wavenumber k which should include the computation of the spectra of

the corresponding matrices which we were unable to obtain for k = 2π and k = 3π.

To the best of our knowledge, the behavior of the spectra in the complex place is

crucial to the understanding of the improved performance of the new preconditioner

and therefore, the determination of eigenvalues is particularly important.
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In Chapter 4 we have applied a domain decomposition method to the perfectly

matched layer problem. This is a novel technique whose development has been

motivated by the fact that the PML problem can become too large for a single

computer to handle. We have analyzed the resulting method applied to a simple

problem of scattering from a plane wall and showed that the use of square-root

transmission operator guarantees convergence. However, since the operator is non

local, its use in practical numerical simulations is not efficient. The state of the

art localization procedure based on rational approximation to the symbol of the

operator cannot be used in a straightforward manner since the natural decomposition

of the PML problem geometry contains cross-points. We have proposed an

adaptation of the cross-point algorithm that doesn’t suffer from this deficiency. Our

numerical studies have shown that the resulting domain decomposition method that

combines the cross-point technique with the Padé type localization of the square-root

transmission operator yields an efficient algorithm. In the context of the PML

problem, we have only considered two dimensional geometries, a further study should

focus on examining the performance of the algorithm in three dimensions although

we have no reason to assume that it would deteriorate. Also, our analysis indicates

that the convergence rate of the algorithm depends on the PML parameters, the the

choice of their optimal values should be investigated as well.

The second part of the thesis introduced a new family of transmission conditions

for domain decomposition methods for the scattering problem. To the best of our

knowledge, there are no well-posedness results pertaining to local problems appearing

in the current state of the art, quasi-optimal DDM that utilize Padé type localization

of the transmission operator. We have also observed that the size of the discrete local

problem increases with the order of the approximating series Np. The introduction

of new transmission conditions in Chapter 5 has been motivated to remove these two

main deficiencies of the current methods just described. The form of the improved
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transmission conditions allows to prove well-posedness of local problems by choosing

α appropriately whereas the operators Ti can be chosen non local, to improve

convergence without affecting the structure of the local problems. Our numerical

studies have shown that in the context of the square-root transmission operator,

choosing α and Ti appropriately leads to a very efficient, and robust algorithm,

especially when applied to three dimensional problems. There, the reduction in

computational time over the current DDMs is very pronounced. Future work should

include investigation of the method as the order of the approximation Np is varied.

Our numerical results were obtained for the typical value Np = 8 which is commonly

used. Also, an analysis of the convergence of the new method should be considered

in the case of GMRES iterations. Such work could help to answer the question as to

how pick the operators Ti to improve convergence even further.

In Chapter 6 we have discussed an extensible, object oriented architecture

that supports development of parallel domain decomposition algorithms where local

problems are solved using the finite element method. While there exist quite an

extensive literature on object oriented design of finite element codes, to the best of

our knowledge, the design of domain decomposition algorithms based on the same

principles have not been thoroughly studied. Making the framework extensible is

essential as it is very difficult to precisely state the system requirement in advance.

Those requirements pertain the query capabilities of the mesh object, finite element

spaces used, the degree of precision of quadrature formulas or the type of an

iterative method to solve the DDM system. In Chapter 6 we gave an example

of a framework for DDM codes that are independent of the problem dimensionality

as well as the low level details listed above. We have implemented the resulting

architecture using modern C++ techniques with great success. In the future, to

achieve greater scalability, the underlying mesh representation should be modified

to handle refinement, partitioning and load balancing dynamically, at run time to
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tackle the largest problems found in the industry. This would constitute the first

step to hiding the very difficult and cumbersome task of mesh partitioning from the

user and making the domain decomposition algorithms more automatized.
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APPENDIX A

FINITE ELEMENT METHOD FOR A MODEL HELMHOLTZ

BOUNDARY VALUE PROBLEM

A.1 Model Helmholtz Boundary Value Problem

We consider the problem of acoustic scattering of a signal g from a surface Γ of a

bounded obstacle Ω− ⊂ R2. A Dirichlet-to-Neumann map is used as an absorbing

boundary condition on an artificial surface Σ (see figure A.1):

∆u+ k2u = 0 in Ω

∂nu = g on Γ

∂nu− Λu = 0 on Σ

(A.1)

where n is the unit normal vector to Γ and Σ pointing away from the computational

domain Ω.

Γ

R
2

Ω

Σ

Ω
−

Figure A.1 Problem domain.

We take the operator Λ to be the Padé approximation to the Dirichlet-to-Neumann

operator of the form:

Λu = −ik

(
C0u+

Np∑
l=1

Al ∂s
(
k−2
ε ∂sϕl

))
on Σ (A.2)
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where ϕl : l = 1, . . . , Np are solutions to the auxiliary surface equations:

ϕl +Bl ∂s
(
k−2
ε ∂sϕl

)
= u on Σ (A.3)

with Al, Bl and C0 being the coefficients of Padé series of order Np.

A.2 Weak Formulation

Let us denote by L2(Ω) the space of square Lebesgue integrable functions over Ω.

The multi-index α is an n-dimensional tuple:

α = (α1, α2, . . . , αn)

of non-negative integers. The order of the index is |α| = α1 + α2 + · · · + αn and it

becomes the order of a derivative in the following notation:

∂α = ∂α1
1 ∂α2

2 . . . ∂αnn

Definition A.2.1. Given an integer m ≥ 0 we denote by Hm(Ω) the set of all

functions f ∈ L2(Ω) which poses weak derivatives ∂αf for all |α| ≤ m.

Assuming u, v ∈ H1(Ω) and ϕl, vl ∈ H1(Σ), integration by parts gives a

coupled variational formulation:∫
Ω

∇u · ∇v − k2uv dA− ikC0

∫
Σ

uv ds+ ik

Np∑
l=1

Al

∫
Σ

k−2
ε ∂sϕl ∂sv ds =

∫
Γ

gv ds

(A.4)∫
Σ

ϕlvl ds+Bl

∫
Σ

k−2
ε ∂sϕl ∂svl ds−

∫
Σ

uvl ds = 0 for l = 1, . . . , Np (A.5)

Let us denote by XΩ, and XΣ respectively, the Sobolev spaces H1(Ω) and H1(Σ).

We say that u ∈ XΩ is a weak solution of (A.1) provided that (A.4)-(A.5) is satisfied

for all test functions v ∈ XΩ and all vl ∈ XΣ.
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A.3 Galerkin Method

Let Xh
Ω be a finite NΩ-dimensional subspace of XΩ. The finite element method looks

for a best approximation uh to u in Xh
Ω. We introduce a basis for Xh

Ω comprised of

functions ψi and write:

uh =

NΩ∑
i=1

αiψi (A.6)

where the coefficients αi ∈ C1. Restriction of the basis ψi to Σ induces a basis for

the NΣ-dimensional subspace Xh
Σ of XΣ containing functions ωi : 1, . . . , NΣ. To be

more precise, assume that the basis for Xh
Ω has been enumerated in such a way that

{ψi}NΣ
i=1 are the only basis functions with a non zero trace on Σ. Then we define

ωi = ψi|Σ for i = 1, . . . , NΣ. The approximate solution ϕhl ∈ Xh
Σ to problem (A.5)

may be written as:

ϕhl =

NΣ∑
i=1

βliωi (A.7)

where the coefficients βli ∈ C1. Since the variational equality (A.4)-(A.5) holds for

all uh, v ∈ Xh
Ω, and all ϕh, vl ∈ Xh

Σ it evidently holds on the basis function {ψi}NΩ
i=1,

and {ωi}NΣ
i=1. Galerkin method consists of substituting the expansions for uh and

ϕhl : l = 1, . . . , NΣ into (A.4)-(A.5) and evaluating it on every basis function which

yields:

(
SΩ − k2MΩ − ikC0M

Σ
)
u + ik

Np∑
l=1

AlS
Σ
k−2
ε
ϕl = MΓg (A.8)

−MΣu +
(
MΣ −BlS

Σ
k−2
ε

)
ϕl = 0 l = 1, . . . , Np (A.9)

where u and ϕl are the vectors of coefficients with [u]i = αi and [ϕl]i = βli. The

matrices SΩ and MΩ denote the stiffness and mass matrices associated with domain
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Ω. That is:

[
SΩ
]
ij

=

∫
Ω

∇ψi · ∇ψj dA
[
MΩ

]
ij

=

∫
Ω

ψiψj dA (A.10)

Similarly, matrices SΣ and MΣ are respectively the stiffness and mass matrices

associated with the boundary Σ:

[
SΣ
]
ij

=

∫
Σ

∂sωi∂sωj ds
[
MΣ

]
ij

=

∫
Σ

ωiωj ds (A.11)

Also, the generalized stiffness matrix SΣ
k−2
ε

corresponding to a surface function k−2
ε

over Σ is:

SΣ
k−2
ε

=

∫
Σ

k−2
ε ∂sωi∂sωj ds (A.12)

We have abused the notation slightly in equations (A.8) - (A.9). For example, in

equation (A.8) the matrices SΩ and MΩ are both NΩ by NΩ whereas matrix SΣ
k−2
ε

has

size NΣ by NΣ. If we introduce a basis for Xh
Γ = H1(Γ) just as we did for the space

Xh
Ω we would see that the dimensions of the right hand side are also inconsistent.

What we haven’t included in those equations for the sake of clarity are the various

matrices that establish a mapping between bases of different subspaces. For instance,

in order to make the equation (A.8) dimensionally correct we need to define a matrix

RΣ
Ω : CNΣ → CNΩ such that:

[
RΣ

Ωϕl
]
i

=

 βli if ψi|Σ 6= 0

0 otherwise
i = 1, . . . , NΩ (A.13)

Defining matrix RΓ
Ω in a similar fashion we would have written the equation (A.8)

as follows:

(
SΩ − k2MΩ − ikC0M

Σ
)

u + ik

Np∑
l=1

AlR
Σ
Ω SΣ

k−2
ε
ϕl = RΓ

Ω MΓg (A.14)
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The action of a matrix RΩ
Σ : CNΩ → CNΣ is defined as:

[
RΩ

Σϕl
]
i

= αj where j is such that ψj|Σ = ωi for i = 1, . . . , NΣ (A.15)

Consequently the precise, dimensionaly correct form of (A.9) is:

−RΩ
ΣMΣu +

(
MΣ −BlS

Σ
k−2
ε

)
ϕl = 0 l = 1, . . . , Np (A.16)

In practice however, the matrices R are not explicitly constructed. The assembly of

the system (A.17) is the most conveniently performed by considering a single block

matrix at a time and distributing its entries accordingly to the mappings between

the various bases described above.

SΩ − k2MΩ − ikC0M
Σ ikA1R

Σ
ΩSΣ

k−2
ε

. . . ikANpR
Σ
ΩSΣ

k−2
ε

−RΩ
ΣMΣ MΣ −B1S

Σ
k−2
ε

0 . . .

...
. . . . . .

...

−RΩ
ΣMΣ 0 . . . MΣ −BNpS

Σ
k−2
ε





u

ϕ1

...

ϕNp


=

=



RΓ
ΩMΓg

0

...

0


(A.17)

A.4 Finite Element Functions

A convenient choice ofXh
Ω corresponds to the space of piecewise polynomial functions.

To define such functions we partition the computational domain Ω into finitely

many regions referred to as elements. For planar problems, they can be triangles

or quadrilaterals. For three-dimensional problems, one can use tetrahedra, cubes,

prisms, rectangular parallelepipeds, etc. For the solution of our model problem we

will employ a triangular mesh over Ω denoted by T hΩ. We assume that triangulation
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T hΩ is a collection of NT triangles Ti : i = 1, . . . , NT that is admissible in the following

sense:

• if Ti∩Tj consists of exactly one point, then it is a common vertex of Ti and Tj,

• if for i 6= j, Ti ∩ Tj consists of more than one point, then Ti ∩ Tj is a common

edge of Ti and Tj.

If Xh
Ω is the space of piecewise polynomials of degree ≤ d then the restriction of

every function in that space to a mesh triangle is a polynomial of degree ≤ d. These

functions are called finite elements. The finite element space is said to be Ck-element

provided it is contained in Ck(Ω). The degree of smoothness of the finite element

space necessary for the Galerkin method to achieve the best approximation is stated

in the following therem [24, chapter 5]:

Theorem A.4.1. Let k ≥ 1 and suppose Ω is bounded. Then a piecewise infinitely

differentiable function v : Ω→ R belongs to Hk(Ω) if and only if v ∈ Ck−1(Ω).

A.5 Nodal Basis

Definition A.5.1. Suppose that for a given finite element space there exists a set

of points which uniquely determines any function in the space by its values at the

points. Then the set of functions in the space which take a value of one at precisely

one of the points and zero everywhere else forms a basis for the space, called the

nodal basis.

For the polynomial finite element spaces, the existence of the nodal basis is

guaranteed by the following theorem [24, chapter 5]:

Theorem A.5.2. Let d ≥ 0. Give a triangle T , suppose z1, z2, . . . , zNf are the

s = 1 + 2 + · · · + (d + 1) points in T which lie on d + 1 lines parallel to one side of

a triangle. Then for every f ∈ C(T ), there is a unique polynomial ψ of degree ≤ d
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satisfying the interpolation conditions:

ψ(zj) = f(zj) (A.18)

Example A.5.3. A Nodal Basis for C0-elements. For our model problem, and

in fact for many second order problems, theorem (A.4.1) guarantees that globally

continuous finite elements are sufficient to approximate a solution in the H1(Ω)

space. In comparison with higher order elements, the construction of the nodal basis

for C0 finite element space is considerably less involved. As an example we construct

a nodal basis for the finite element space Xh
Ω consisting of piecewise polynomials

of degree ≤ d for the solution of our model problem. To this end, in each triangle

T ∈ T hΩ we place s := (d + 1)(d + 2)/2 points along the d + 1 lines parallel to one

side of the triangle so that there are d+ 1 points on each edge (see figure A.2).

bc bc bc bc

bc bc bc

bc bc

bc

Figure A.2 Nodes of the nodal basis for cubic triangular element (red dots).

By theorem (A.5.2) s polynomials ψi : i = 1, . . . , s of degree d in two variables can

be found such that ψi(zj) = δij. The restriction of any such polynomial to an edge

is a polynomial of degree d in one variable. Now given an edge, the two polynomials

on either side must interpolate the same values at the d+ 1 points on that edge, and

thus must reduce to the same one-dimensional polynomial. This ensures that the

finite elements are globally continuous.
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One advantage of using piecewise polynomial finite element space as the

approximating subspace in the Galerking method is the ease with which polynomials

can be evaluated, differentiated and integrated. The second reason is that when

the standard nodal basis is used as described above, the resulting block matrices in

(A.17) are all sparse.

From the computational point of view however, the determination of nodal

basis on each triangle can be quite expensive as it requires inversion of s dense

matrices each with dimension s by s associated with the interpolation condition

ψi(zj) = δij : i, j = 1, . . . , s. Since polynomials are invariant under an affine linear

transformation it is more efficient to define the nodal basis over a reference triangle

TR with vertices at (0, 0), (0, 1) and (1, 0). The nodal basis functions over a reference

element are called shape functions and are easy to determine. The affine linear

transformation γT that takes TR into an arbitrary triangle T also transforms a shape

function φi : i = 1, . . . , s into a nodal basis function ψi over T . The transformation

γT is easy to compute. The advantage of this approach is twofold. Firstly, the

shape functions can be precomputed ahead of time. Thus the work involved in

determination of ψi over a triangle T is equal to the work involved in an application

of γT to φi. Secondly, the assembly of the matrix blocks of (A.17) requires the use

of numerical quadrature in the most general case in which the related functionals

contain non-constant coefficient terms. Since the quadrature formulas are most often

specified on reference simplexes such as TR, the use of shape functions is well justified.

A.6 Linear Shape Functions over a Reference Triangle

The reference triangle TR is the triangle with vertices u0 = (0, 0), u1 = (0, 1) and

u2 = (1, 0). Let us denote an arbitrary point in TR by u = (s, t). The reference

triangle TR is mapped to a triangle T with vertices z0 = (x0, y0), z1 = (x1, y1) and
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z2 = (x2, y2) by the following transformation:

x = x0 + (x1 − x0)s+ (x2 − x0)t

y = y0 + (y1 − y0)s+ (y2 − y0)t

(A.19)

which sends u0 to z0, u1 to z1 and u2 to z2 and where z = (x, y) is a corresponding

point in T . Equation (A.19) in matix form becomes:

z = z0 + Ju (A.20)

where the matrix J is:

J =

 x1 − x0 x2 − x0

y1 − y0 y2 − y0


Suppose that we are interested in piecewise linear finite element space. That is,

the nodal basis reduces to a polynomial of degree one on every triangle T . The

reference mapping γT : u ∈ TR → z ∈ T given by (A.20) can now be used to

define the linear shape functions φi : i = 0, 1, 2 that satisfy: φi(u) = ψk(i)(γT (u))

where k(i) ∈ {1, 2, . . . , Nf} is the global index of the kth vertex of T in the mesh. If

such functions exist, the interpolation condition on the nodal basis yields: φi(uj) =

ψk(i)(γT (uj)) = δij. Since γT is an affine linear transformation and since ψk(i) are

linear, the shape functions must also be linear over TR. These two conditions on φj

are easy to fulfill. In fact:

φ0 = 1− s− t

φ1 = s

φ2 = t

(A.21)
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are just the functions we are looking for. The relationship between ∇(s,t)φi and

∇(x,y)ψk(i) follows from the chain rule:

∇(x,y)ψk(i) = J−T∇(s,t)φi (A.22)

A.7 Assembly of the Element Matrices

Assembly of the linear system (A.17) refers to the process in which its entries are

populated according to equatiosn (A.17), (A.10), (A.12) and so forth. This procedure

involves evaluation of integrals over Ω as well as its boundary composed of Γ and Σ.

We will instead consider integrals over triangular patches and edges induced by the

mesh, that cover the domain and its boundary. Thus for example, the entries of the

stiffness matrix associated with the domain Ω are approximated by:

[
SΩ
]
ij
≈
∑
T∈ThΩ

∫
T

∇ψi · ∇ψj dA (A.23)

with equality holding only in the case of Ω begin a polygonal domain. In a

general case when Ω is not polygonal, the above entries contain truncation error

due geometric approximation of Ω by T hΩ.

The integrals over triangles T in (A.23) are easy to evaluate with the use of

Gaussian quadrature formulas for a reference triangle. Suppose that such formula

consists of NTR
G points {(si, ti)}

N
TR
G

i=1 and weights {wi}
N
TR
G

i=1 then we may approximate:∫
T

∇ψi · ∇ψj dA =

∫
TR

J−T∇(s,t)φi · J−T∇(s,t)φj |J| dA

≈
N
TR
G∑
i=1

wi J
−T∇(s,t)φi(si, ti) · J−T∇(s,t)φj(si, ti) |J|

(A.24)

where |J| is the Jacobian determinant of the transformation γT .

The process of assembly of the surface stiffness and mass matrices is analogous.

Line integrals are approximated by integrals along straight line segments, which are
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the edges of the triangles in the mesh. For example:

[
SΣ
]
ij

=

∫
Σ

∂sωi∂sωj ds ≈
∑
e∈ThΣ

∫
e

∂sωi∂sωj ds (A.25)

Every edge e can be mapped onto an interval [−1, 1] on which standard single variable

Gaussian quadrature formulas are defined. The parametric representation of and

edge e with endpoints P0 and P1 is simply:

e(t) =
P0 + P1

2
+
P1 − P0

2
t for t ∈ [−1, 1] (A.26)

Consequently: ∫
e

∂sωi∂sωj ds =

∫ 1

−1

∂tζi∂tζj

∣∣∣∣dedt
∣∣∣∣ dt (A.27)

where ζi(t) = ωi(e(t)). In the case of linear piecewise polynomials whose restriction

to a triangle edge is a linear function the edge shape functions are respectively:

ζ0(t) =
1− t

2
ζ1(t) =

1 + t

2
(A.28)

Given an N eR
G Gaussian quadrature formula on eR = [−1, 1] with points {ti}

N
eR
G

i=1 and

weights {wi}
N
eR
G

i=1 we approximate the above by:

∫ 1

−1

∂tζi∂tζj

∣∣∣∣dedt
∣∣∣∣ dt ≈ N

eR
G∑
i=1

wi ∂tζi(ti)∂tζj(ti)

∣∣∣∣dedt
∣∣∣∣ (A.29)
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APPENDIX B

PERFECTLY MATCHED LAYER TECHNIQUE

B.1 Derivation of PML Equations for the Scattering Problem

Derivation of the perfectly matched layer equations for the acoustic scattering

problem is now well know. Detailed presentations of the technique can be found

in [48] and [30]. Here, we only outline the procedure to provide context for our

discussion and indicate the major features of the method.

We begin with the linearized equations of motion of an inviscid fluid (1.6) -

(1.7) derived in section (1.2). To recall, they take the form:

∂ρ̃

∂t
+ ρ0∇ · ṽ = 0 (B.1)

∂ṽ

∂t
= − 1

ρ0

∇p̃ (B.2)

Assume that the x and y components of the velocity vector ṽ are respectively ṽ1 and

ṽ2. Now, following Ihlenburg [48] we rewrite the mass conservation equation (B.1)

as follows:

∂ρ̃1

∂t
+ ρ0

∂ṽ1

∂x
= 0 (B.3)

∂ρ̃2

∂t
+ ρ0

∂ṽ2

∂y
= 0 (B.4)

where we must require that ρ̃ assumes a formal decomposition ρ̃ = ρ̃1+ρ̃2. Quantities

ρ̃1 and ρ̃2 carry no physical significance and are introduced only to facilitate the

derivation of the PML equations. We also write the leading order momentum

equation (B.2) in the component form:

∂ṽ1

∂t
= − 1

ρ0

∂p

∂x
(B.5)

∂ṽ2

∂t
= − 1

ρ0

∂p

∂y
(B.6)
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We recall that the material law (1.9) relating ρ̃ and p̃ assumes the form:

ρ̃ = c2p̃ (B.7)

We assume that the time-harmonic acoustic waves propagate in free space. We

place the layer interface at x = 0. The idea of PML is to modify equations in

the layer corresponding to the region of space with x ≥ 0 in such a way as to

obtain exponentially decaying solutions. This behavior is achieved by introducing

an absorption term in the equations that contain derivative orthogonal to the PML

interface. In our case this is simply the x-direction. The modified equations (B.3)

and (B.5) read as follows:

∂ρ̃1

∂t
+ σx(x)ρ̃1 = −ρ0

∂ṽ1

∂x
(B.8)

and

∂ṽ1

∂t
+ σx(x)ṽ1 = − 1

ρ0

∂p

∂x
(B.9)

Since we are considering time-harmonic waves, the solutions to the equations above

obtained by the method of integrating factors are of the form Ae−σx(x)t. Hence, in

order to obtain decaying solutions inside of the layer we must require that σx(x) ≥ 0

for x ≥ 0. Furthermore, we require that σx ≡ 0 for x < 0 and σx(x) ∈ C1(R1).

To deduce the modified time-harmonic equation for p̃ we replace time derivatives

in equations (B.8), (B.4), (B.9) and (B.6) with −iω to obtain respectively:

ρ̃1 =
ρ0

σx − iω
∂ṽ1

∂x
(B.10)

ρ̃2 =
ρ0

iω

∂ṽ2

∂y
(B.11)

ṽ1 = − 1

ρ0(σx − iω)

∂p̃

∂x
(B.12)

ṽ2 = − 1

iωρ0

∂p̃

∂y
(B.13)
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Deriving (B.12) and (B.13) with time, inserting the result into (B.10) and (B.11)

and finally using the material relation (B.7) gives us after some simplification:

iω

σx − iω
∂

∂x

(
iω

σx − iω
∂p̃

∂x

)
+
∂2p̃

∂y2
+ k2p̃ = 0 (B.14)

We note that the above equation correctly reduces to a Helmholtz equation in the

computational domain corresponding to x ≤ 0. Additionally, since there is no jump

in the material properties of the acoustic medium at the PML interface x = 0, the

interface is completely transparent, that is, it produces no spurious reflections.

For computational applications, the infinite PML region needs to be truncated

with a boundary at x = d where the thickness of the layer d ≥ 0. Correspondingly, a

condition on p̃ needs to be specified on the terminating boundary. The choice of the

boundary condition seems to have little effect on the performance of the PML [64].

A popular choice is a homogeneous Dirichlet type boundary condition. In that case

the the artificial boundary gives raise to reflected waves that propagate through the

layer back into the computational domain. However, due to the exponential decay,

the amplitude of the spurious waves is negligible and in fact can be controlled by

choosing the layer thickness parameter d sufficiently large. A simple analysis of this

behavior is presented in [18].

An extension of the above derivation to the problem of acoustic scattering from

a bounded obstacle in 2D is straightforward. As an example, in our model problem

(2.1) we introduce the PML in both x and y directions to enclose the obstacle.

Figure (B.1) shows the layer denoted by ΩA placed at x = ±a, y = ±b of thickness

d. The layer is now supposed to absorb waves traveling both in x and y directions.

Since the PML interface ΓI is parallel to the x and y axes, in addition to including

an absorption term into the decomposed equations of motion containing only the

x-derivatives, we also introduce a similar term in the other two equations containing

the y-derivatives.
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Γ

Ω
−
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l

d

ΓI

ΓD

Figure B.1 Perfectly matched layer ΩA surrounding the obstacle and the near

field region ΩF .

More precisely, in addition to equations (B.8) and (B.9) we also have the following

two equations:

∂ρ̃2

∂t
+ σy(y)ρ̃1 = −ρ0

∂ṽ1

∂y
(B.15)

∂ṽ2

∂t
+ σy(y)ṽ2 = − 1

ρ0

∂p

∂y
(B.16)

Of course, definition of the absorbing functions σx and σy needs to be modified

accordingly to our PML geometry. We recall that for |x| > a and |y| > b we

require that σx(x) ≥ 0 and σy(y) ≥ 0. Furthermore, we also require that σx(x) ≡ 0,

σy(y) ≡ 0 for |x| ≤ 0, |y| ≤ 0 respectively and that both functions belong to C1(R).

Assuming time-harmonic waves, derivation of the modified pressure equation

proceeds in exactly the same way as for the case of a single PML strip acting in the

x-direction. This equation takes the form:

iω

σx − iω
∂

∂x

(
iω

σx − iω
∂p̃

∂x

)
+

iω

σy − iω
∂

∂y

(
iω

σy − iω
∂p̃

∂y

)
+
∂2p̃

∂y2
+ k2p̃ = 0 (B.17)
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To show that the amplitude of the velocity fluctuations satisfy the same

modified equation in the PML region we proceed by first introducing a coordinate

transformation:

x̂ = x+
i

ω

∫ x

0

σx(ξ) dξ and ŷ = y +
i

ω

∫ y

0

σy(η) dη (B.18)

Application of chain rule shows that the derivatives transform correspondingly into:

∂

∂x
= −σx − iω

iω

∂

∂x̂
and

∂

∂y
= −σy − iω

iω

∂

∂ŷ
(B.19)

Therefore, in the x̂, ŷ coordinates the equation (B.17) simplifies to the original

Helmholtz equation:

∂2p̃

∂x̂2
+
∂2p̃

∂ŷ2
+ k2p̃ = 0 (B.20)

The above equation in time domain corresponds to a wave equation for the modified

pressure function p̃. This is a function of x̂, ŷ and t with temporal dependence of the

form e−iωt. Consequently, derivation of the Helmholtz equation for the amplitude

of the complex velocity potential follows the development of section (1.2) where we

substitute x̂ and ŷ for the original spatial variables x and y respectively. Terminating

the layer equation with a homogeneous Dirichlet boundary condition, and denoting

the amplitudes of the scattered fields in the computational and PML regions by usF

and usA respectively results in a system:

∆usF + k2usF = 0 in ΩF (B.21)

γ−1
x ∂x

(
γ−1
x ∂xu

s
A

)
+ γ−1

y ∂y
(
γ−1
y ∂yu

s
A

)
+ k2usA = 0 in ΩA (B.22)

∂νu
s
F = −∂νui on Γ (B.23)

usF = usA on ΓI (B.24)

∂νu
s
F = −∂νusA on ΓI (B.25)

usA = 0 on ΓD (B.26)
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where

γx(x) =

 1 x < a,

1 + i
k
σx(|x|) a ≤ |x| < a∗

and γy(x) =

 1 y < b,

1 + i
k
σy(|y|) b ≤ |y| < b∗

(B.27)

where ν is the vector normal to ΓI pointing away from ΩF . For simplicity, we take

c = 1 in the above.

B.2 Variational Formulation

Let Ω = ΩF ∪ΩA denote the computational domain. The appropriate space in which

to look for the solution to our Helmholtz problem is the subspace of the Sobolev

space H1(Ω) consisting of functions which vanish on the boundary ΓD [48]. We will

denote it by X. That is, X = {v ∈ H1(Ω) : v|ΓD = 0}. Now, let v ∈ X be a test

function. An application of divergence theorem over ΩF gives:∫
ΩF

∇uF · ∇v dx dy − k2

∫
ΩF

uFv dx dy −
∫

Γ

gv ds =

∫
ΓI

v
∂uF
∂νF

ds (B.28)

With little more work and noting that γx = γy = 1 on ΓI a similar expression can

be derived for ΩA:∫
ΩA

γyγ
−1
x ∂xuA ∂xv dA+

∫
ΩA

γxγ
−1
y ∂yuA ∂xv dA− k2

∫
ΩA

γxγyuAv dA =

∫
ΓI

v ∂νAuA ds

(B.29)

Using the interface condition ∂νFuF = −∂νAuA on ΓI we obtain:∫
ΩF

∇uF · ∇v dA− k2

∫
ΩF

uFv dA+

∫
ΩA

γyγ
−1
x ∂xuA ∂xv dA+

+

∫
ΩA

γxγ
−1
y ∂yuA ∂yv dA− k2

∫
ΩA

γxγyuAv dA =

∫
Γ

gv ds

(B.30)

Let us rewrite equation (B.30) as:

aF (uF , v) + aA(uA, v) = l(v) (B.31)
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where:

aA(u, v) =

∫
ΩF

∇u · ∇v dx dy − k2

∫
ΩF

uv dx dy

aF (u, v) =

∫
ΩA

γyγ
−1
x ∂xu ∂xv dA+

∫
ΩA

γxγ
−1
y ∂yu ∂yv dA− k2

∫
ΩA

γxγyuv dA

l(v) =

∫
Γ

gv ds

(B.32)

Let us also define XF and XA to be the subspaces of X containing functions that

vanish on ΩA and ΩF respectively. Then the variational problem is to find uF ∈ XF

and uA ∈ XA such that aF (uF , v) + aA(uA, v) = l(v) where uF |ΓI = uA|ΓI for all

v ∈ X.

B.3 Nodal Finite Element Method

We approximate the solution to (B.31) using triangular finite elements. To this end

we introduce triangulation T h of the computational domain Ω where parameter h

denotes the mesh size. We assume that T h induces conforming triangulations of

ΩF and ΩA which we denote by Ωh
F and Ωh

A respectively. We let Xh to be the finite

dimensional subspace of X consisting of piecewise linear polynomials. More precisely,

Xh = {vh ∈ X : vh|T ∈ P1, ∀T ∈ T h}. For uh, vh ∈ Xh we define the discrete version

of the functionals in (B.33) as follows:

ahA(u, v) =

∫
ΩhF

∇u · ∇v dx dy − k2

∫
ΩhF

uv dx dy

ahF (u, v) =

∫
ΩhA

γyγ
−1
x ∂xu ∂xv dA+

∫
ΩhA

γxγ
−1
y ∂yu ∂yv dA− k2

∫
ΩhA

γxγyuv dA

lh(v) =

∫
Γh
gv ds

(B.33)

In the above Γh is a piecewise linear approximation to curve Γ induced by T h. We also

define Xh
F and Xh

A to be the finite dimensional subsapces of XF and XA respectively.
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The approximate solution to (B.31) is obtained by the Galerkin method outlined in

appendix (A) which consists of finding uhF ∈ Xh
F and uhA ∈ Xh

A such that:

ahF (uhF , v
h) + ahA(uhA, v

h) = lh(vh) (B.34)

where uhF |ΓI = uhA|ΓI for all vh ∈ Xh.

To obtain a finite set of equations relating the nodal values of uhF and uhA it is

necessary to introduce the basis for Xh. This is the set of functions φi such that:

φi(zj) =

 δij if zi is a free vertex

0 if zi is a constrained vertex

and φi is non-zero only on triangle containing the vertex zi. The index i ∈

{0, . . . , Nv − 1} where Nv is the total number of vertices in T h corresponds to the

unique vertex identification number. The solution uhF and uhA to (3.9) can be written

as:

pF =
∑
i∈ΛF

αi φi and pA =
∑
i∈ΛA

αi φi (B.35)

where ΛF and ΛA are the sets of vertex indices belonging to Ωh
F and Ωh

A respectively.

Inserting (B.35) into (3.9) we obtain:

Nv−1∑
i=0

αi
(
ah(φi, φj) + bh(φi, φj)

)
= lh(φj) (B.36)

for all j = 0, . . . , Nv − 1. In matrix form, the above reads as:

Kα = f (B.37)

where Kij = ah(φi, φj) + bh(φi, φj), αj = αj and fj = lh(φj).
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