

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

NEW DIRECTIONS FOR REMOTE DATA INTEGRITY CHECKING OF CLOUD
STORAGE

by
Bo Chen

Cloud storage services allow data owners to outsource their data, and thus reduce their

workload and cost in data storage and management. However, most data owners today

are still reluctant to outsource their data to the cloud storage providers (CSP), simply

because they do not trust the CSPs, and have no confidence that the CSPs will secure their

valuable data. This dissertation focuses on Remote Data Checking (RDC), a collection of

protocols which can allow a client (data owner) to check the integrity of data outsourced at

an untrusted server, and thus to audit whether the server fulfills its contractual obligations.

Robustness has not been considered for the dynamic RDCs in the literature. The

R-DPDP scheme being designed is the first RDC scheme that provides robustness and,

at the same time, supports dynamic data updates, while requiring small, constant, client

storage. The main challenge that has to be overcome is to reduce the client-server

communication during updates under an adversarial setting. A security analysis for

R-DPDP is provided.

Single-server RDCs are useful to detect server misbehavior, but do not have

provisions to recover damaged data. Thus in practice, they should be extended to a

distributed setting, in which the data is stored redundantly at multiple servers. The client

can use RDC to check each server and, upon having detected a corrupted server, it can

repair this server by retrieving data from healthy servers, so that the reliability level can

be maintained. Previously, RDC has been investigated for replication-based and erasure

coding-based distributed storage systems. However, RDC has not been investigated for

network coding-based distributed storage systems that rely on untrusted servers. RDC-NC

is the first RDC scheme for network coding-based distributed storage systems to ensure data

remain intact when faced with data corruption, replay, and pollution attacks. Experimental

evaluation shows that RDC-NC is inexpensive for both the clients and the servers.

The setting considered so far outsources the storage of the data, but the data owner

is still heavily involved in the data management process (especially during the repair of

damaged data). A new paradigm is proposed, in which the data owner fully outsources

both the data storage and the management of the data. In traditional distributed RDC

schemes, the repair phase imposes a significant burden on the client, who needs to expend

a significant amount of computation and communication, thus, it is very difficult to keep

the client lightweight. A new self-repairing concept is developed, in which the servers are

responsible to repair the corruption, while the client acts as a lightweight coordinator during

repair. To realize this new concept, two novel RDC schemes, RDC-SR and ERDC-SR, are

designed for replication-based distributed storage systems, which enable Server-side Repair

and minimize the load on the client side.

Version control systems (VCS) provide the ability to track and control changes made

to the data over time. The changes are usually stored in a VCS repository which, due to

its massive size, is often hosted at an untrusted CSP. RDC can be used to address concerns

about the untrusted nature of the VCS server by allowing a data owner to periodically check

that the server continues to store the data. The RDC-AVCS scheme being designed relies

on RDC to ensure all the data versions are retrievable from the untrusted server over time.

The RDC-AVCS prototype built on top of Apache SVN only incurs a modest decrease in

performance compared to a regular (non-secure) SVN system.

NEW DIRECTIONS FOR REMOTE DATA INTEGRITY CHECKING OF CLOUD
STORAGE

by
Bo Chen

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

August 2014

Copyright © 2014 by Bo Chen

ALL RIGHTS RESERVED

APPROVAL PAGE

NEW DIRECTIONS FOR REMOTE DATA INTEGRITY CHECKING OF CLOUD
STORAGE

Bo Chen

Dr. Reza Curtmola, Dissertation Advisor Date
Associate Professor of Computer Science, NJIT

Dr. Cristian Borcea, Committee Member Date
Associate Professor of Computer Science, NJIT

Dr. Guiling Wang, Committee Member Date
Associate Professor of Computer Science, NJIT

Dr. Nirwan Ansari, Committee Member Date
Distinguished Professor of Electrical and Computer Engineering, NJIT

Dr. Ian Molloy, Committee Member Date
Research Staff Member, IBM T. J. Watson Research Center

iv

BIOGRAPHICAL SKETCH

Author: Bo Chen

Degree: Doctor of Philosophy

Date: August 2014

Undergraduate and Graduate Education:

 Doctor of Philosophy in Computer Science,
 New Jersey Institute of Technology, Newark, New Jersey, 2014

 Master of Engineering in Computer Science,
 Graduate University of Chinese Academy of Sciences, Beijing, China, 2008

 Bachelor of Engineering in Computer Science,
 University of Science and Technology Beijing, Beijing, China, 2005

Major: Computer Science

Presentations and Publications:

Bo Chen and Reza Curtmola, “Remote Data Integrity Checking with Server-Side Repair,”

journal article in preparation.

Bo Chen and Reza Curtmola, “Auditable Version Control Systems,” the 21th Annual

Network and Distributed System Security Symposium (NDSS ’14), San Diego, CA,
USA, February 2014.

Bo Chen and Reza Curtmola, “Towards Self-Repairing Replication-Based Storage Systems

Using Untrusted Clouds,” The Third ACM Conference on Data and Application
Security and Privacy (CODASPY ’13), San Antonio, TX, USA, pp. 377-388,
February 2013.

Bo Chen and Reza Curtmola, “POSTER: Robust Dynamic Remote Data Checking for

Public Clouds,” The 19th ACM Conference on Computer and Communications
Security (CCS ’12), Raleigh, NC, USA, pp. 1043-1045, October 2012.

Bo Chen and Reza Curtmola, “Robust Dynamic Provable Data Possession,” The Third

International Workshop on Security and Privacy in Cloud Computing (ICDCS-
SPCC ’12), Macau, China, pp. 515-525, June 2012

Bo Chen and Reza Curtmola, “Robust Dynamic Remote Data Checking for Public Clouds,”
The 35th IEEE Sarnoff Symposium, Newark, NJ, USA, May 2012

Bo Chen, Reza Curtmola, Giuseppe Ateniese, and Randal Burns, “Remote Data Checking
for Network Coding-based Distributed Storage Systems,” The Second ACM Cloud
Computing Security Workshop (CCSW ’10), Chicago, IL, USA, pp. 31-42, October
2010

v

I dedicate this thesis to:
=====

my beloved Jun Dai
my father Naiqiang Chen and my mother Yaqun Che

my elder brother Liang Chen and his wife Yuyan Chang and my little nephew Xiangyu
Chen

=====

vi

ACKNOWLEDGEMENTS

I first want to express my deepest thanks to my advisor, Professor Reza Curtmola. Reza

initially inspired me to do research in the field of applied cryptography and cloud storage

security. Throughout the years, he worked closely with me, providing me a great deal of

invaluable guidance and advice on both my research and my life. He helped me to improve

my reading, writing, presenting, and critical thinking, which prepared me for becoming

a qualified researcher. He also offered me a lot of good opportunities to go to academic

events such that I was able to learn from other researchers as well as disseminate our results

to the research community.

I also want to express my deep thanks to Professor Cristian Borcea, Professor Guiling

Wang, Professor Nirwan Ansari, and Dr. Ian Molloy. They served on my PhD dissertation

committee, and were dedicated to helping me to improve my dissertation. I benefited a lot

from their invaluable advice and suggestions.

Special thanks to Professor Giuseppe Ateniese and Professor Randal Burns. I was so

lucky to collaborate with them in the “network coding-based storage systems” project.

During my graduate studies, I was very lucky to receive invaluable advice regarding

to my research and (or) my future career from the following people: Professor Reza

Curtmola, Professor Radu Sion, Professor Cristina Nita-Rotaru, Professor Nirwan Ansari,

Professor Guiling Wang, and Professor Meng Yu.

I would like to thank Professor Reza Curtmola, Professor Marvin Nakayama,

Professor James Calvin, Professor Boris Verkhovsky, and Professor Andrew Sohn for

advising me in teaching when I was a teaching assistant.

vii

I would like to thank the professors who supervised my graduate courses: Reza

Curtmola, Cristian Borcea, Guiling Wang, David Nassimi, Alexandros Gerbessiotis,

Dimitrios Theodoratos, Joseph Leung, Yehoshua Perl, James Geller, and Chengjun Liu.

During the past few years, I was very lucky to have the opportunities to visit other

research institutes and present my work. Those would not be possible without the help of

the following people: Dr. Ian Molloy, Professor Yujun Zhang, Professor Hanwen Zhang,

Professor Zhan Wang, Dr. Xinchang Zhang, Professor Georgios Portokalidis.

I worked closely with the following students in my research, including: Ying Chen,

Arthur Hinds, Kirtan Shah, Anilkumar Ammula. I would like to thank them for their

invaluable contributions to the collaborative work.

I owe everything to my beloved Jun Dai, my parents and my elder brother. Without

their love and continuous support, it would have been tough for me to get through all the

difficulties in my everlasting studies. I also want to thank my cousin Hong Lin who offered

a lot of help to my parents in the past few years when I was far away in the United States.

The life in US was wonderful and interesting thanks to the help of my dear friends

and student colleagues. I would like to express my gratitude to them, including: Yang

Li, Zhiying Qiu, Tan Yan, Yiyi Wu, Jie Tian, Yaqiong Zhao, Suan Pan, David Paglia,

Xiaoyuan Liang, Xin Gao, Xin Xu, Xian Wu, Manoop Talasila, Hillol Debnath, Nafize

Paiker, Mohammad Ashrafuzzaman Khan, Daniel Boston, Pei Li, Xiangyi Kong, Jinglin

Jiang, Xi Chen, JLurker Kao, IMing Lee, Xian Hu, Wei Zhang, Shuo Chen, Zhiming Liu,

Duo Wei, Xinfa Hu, Xiaoying Wu, Yuan Yuan, Zhe He, Fang Chu, Wei Xiong, Lynn

Greiner, Xiangqian Yu, Ye Tian, Jinhui Zheng, Siyuan Lv, Na Li, Haitao Xu, Mengran Xu,

Shouxian Cheng, Man Zhang, Yong Zhang, Huigen Zhang, Jianhua Zhou.

viii

Also thanks to the administrative staffs from the Computer Science Department,

Office of Graduate Studies and Office of International Students including: Dr. George

Olsen, Ms. Kathy James, Ms. Angel Bell, Dr. Sotirios Ziavras, Ms. Clarisa

Gonzalez-Lenahan, Mr. Jeffrey Grundy.

The financial support for my graduate studies was possible thanks to the teaching

assistantship from the Department of Computer Science, NJIT and the NSF grants

CAREER 1054754-CNS and 1241976-DUE.

ix

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Remote Data Checking . 2

1.2 Dynamic Remote Data Checking . 3

1.3 Robust Remote Data Checking . 4

1.4 Remote Data Checking for Distributed Settings 5

1.5 Remote Data Checking for Version Control Systems 8

1.6 Organization . 9

1.7 Notations . 11

2 ROBUST DYNAMIC PROVABLE DATA POSSESSION 12

2.1 Background and Related Work . 14

2.1.1 Remote Data Checking for Dynamic Settings 14

2.1.2 Robust Auditing of Outsourced Data 16

2.2 Cauchy Reed-Solomon Codes . 20

2.2.1 Cauchy RS Encoding and Decoding 20

2.2.2 Cauchy RS Updating . 22

2.3 Robust Dynamic Provable Data Possession 24

2.3.1 R-DPDP Definition . 26

2.3.2 Enhancing πR: πR-D . 28

2.3.3 Variable Length Constraint Group 31

2.4 Security and Performance Analysis for VLCG 40

2.5 Discussion . 43

3 REMOTE DATA CHECKING FOR NETWORK CODING-BASED DISTRIBUTED
STORAGE SYSTEMS . 48

3.0.1 Solution Overview . 53

3.1 Related Work . 54

x

TABLE OF CONTENTS
(Continued)

Chapter Page

3.2 Background on Distributed Storage Systems 55

3.2.1 Replication . 56

3.2.2 Erasure Coding . 56

3.2.3 Network Coding for Distributed Storage 57

3.3 System and Adversarial Model . 61

3.4 RDC for Network Coding . 62

3.4.1 Can Existing RDC Schemes be Extended? 63

3.4.2 How to Maintain Constant Client Storage? 65

3.4.3 Replay Attacks . 65

3.4.4 Remote Data Checking for Network Coding (RDC-NC) 70

3.5 Analyses for RDC-NC . 76

3.6 Guidelines for Choosing Parameters for RDC-NC 78

3.7 Experimental Evaluation . 80

3.7.1 Pre-Processing Phase Results . 81

3.7.2 Repair Phase Results . 81

4 TOWARDS SELF-REPAIRING REPLICATION-BASED STORAGE SYSTEMS
USING UNTRUSTED CLOUDS . 85

4.0.3 Solution overview . 88

4.1 Related Work . 90

4.1.1 Remote Data Checking . 90

4.1.2 Proofs of Work (PoW) . 93

4.2 Models for Checking Replica Storage 94

4.2.1 A Network Delay-based Model and Its Limitations 95

4.2.2 A New Model to Enable Server-side Repair 98

4.3 System and Adversarial Model . 100

4.3.1 System Model . 100

xi

TABLE OF CONTENTS
(Continued)

Chapter Page

4.3.2 Adversarial Model . 101

4.4 An RDC Scheme with Server-side Repair 106

4.5 Guidelines for using RDC-SR . 112

4.6 Security Analysis . 115

4.7 Implementation and Evaluation . 118

4.7.1 Background on Amazon’s Cloud Services (AWS) 118

4.7.2 Experimental Results . 118

5 AN ENHANCED REMOTE DATA CHECKING SCHEME SUPPORTING
SERVER-SIDE REPAIR . 127

5.1 System and Adversarial Model . 130

5.1.1 System Model . 130

5.1.2 Adversarial Model . 131

5.2 An Enhanced RDC Scheme with Server-side Repair 131

5.2.1 β-butterfly encoding . 133

5.2.2 ERDC-SR . 133

5.3 Guidelines for ERDC-SR . 136

5.3.1 Instantiating The Cryptographic Transformation 138

5.3.2 Estimating The Parameters . 139

5.4 Security Analysis for ERDC-SR . 145

5.5 Performance Analysis for ERDC-SR . 148

6 AUDITABLE VERSION CONTROL SYSTEMS 155

6.1 Introduction . 155

6.2 Related Work . 159

6.3 Background on Version Control Systems and Remote Data Checking . . . 160

6.3.1 Version Control Systems . 160

6.3.2 Remote Data Checking . 164

xii

TABLE OF CONTENTS
(Continued)

Chapter Page

6.4 Model and Guarantees . 166

6.4.1 System Model . 166

6.4.2 Adversarial Model . 167

6.4.3 Security Guarantees . 168

6.5 Auditable Version Control Systems (AVCS) 169

6.5.1 Skip Delta-based Version Control Systems 170

6.5.2 Definition of an AVCS system 171

6.5.3 RDC-AVCS: An Auditable Version Control System based on
Remote Data Checking . 173

6.6 Analysis and Discussion . 182

6.6.1 Security Analysis . 182

6.6.2 Performance Analysis . 185

6.6.3 Remarks . 186

6.7 Implementation and Experiments . 188

6.7.1 Implementation . 188

6.7.2 Experimental Setup . 191

6.7.3 Commit Phase . 192

6.7.4 Retrieve Phase . 194

6.7.5 Migrating Repositories from Non-Secure SVN to SSVN 194

7 CONCLUSION . 196

APPENDIX A DYNAMIC PROVABLE DATA POSSESSION 199

A.1 Definition of Dynamic Provable Data Possession 199

APPENDIX B REPLAY ATTACKS IN NETWORK CODING-BASED DISTRIBUTED
STORAGE SYSTEMS . 201

B.1 Replay Attack against A Basic Network Coding-based Scheme 201

B.2 A Simulation to Validate Theorem 3.4.1 203

xiii

TABLE OF CONTENTS
(Continued)

Chapter Page

APPENDIX C EXPERIMENTS ON THE AMAZON CLOUD 204

C.1 Measurements for the Amazon CSP . 204

C.2 Sampling Blocks from Amazon S3 . 205

APPENDIX D MULTIPLE QUANTIFICATIONS IN ERDC-SR 206

D.1 Quantify The Computation Required for Generating One Replica Block
from The Original File Blocks in ERDC-SR 206

D.2 Quantify The Computation Needed to Generate A Replica Block When The
Adversary Only Stores One Intermediate Block 206

D.3 Determine The Minimum Value of e . 208

D.4 Quantify The Probability That All The c·(1−α) Missing Challenged Blocks
Depend on Different Sets of β Original File Blocks 208

D.5 Quantify The Minimum Computation for An α-cheating Server to Generate
the c · (1− α) Missing Challenged Blocks 209

APPENDIX E SKIP DELTA-BASED VERSION CONTROL SYSTEMS 214

E.1 The Cost for Retrieving an Arbitrary Version in a Skip Delta-based Version
Control System . 214

REFERENCES . 215

xiv

LIST OF TABLES

Table Page

1.1 Acronyms . 11

2.1 Statistics for Update Operations Based on Two CVS Repositories of OpenSSL
and Eclipse . 30

3.1 Parameters of Various RDC Schemes . 53

3.2 Experimental Test Cases . 81

4.1 Values of tij + tj − ti If The Client Is Located in An AWS S3 Region 113

4.2 Preprocessing Throughput . 120

5.1 mmin When c = 460, α = 0.9, ρ = 30%, φ = 2, τ = 12sec, and u = 0.1µs . 142

5.2 mmin When c = 460, α = 0.9, ρ = 30%, φ = 5, τ = 12sec, and u = 0.1µs . 142

5.3 mmin When c = 460, α = 0.9, ρ = 40%, φ = 2, τ = 12sec, and u = 0.1µs . 142

5.4 mmin When c = 460, α = 0.9, ρ = 40%, φ = 5, τ = 12sec, and u = 0.1µs . 142

5.5 Concrete Values for r1 by Varying φ and ρ (Recall That r1 Is The Ratio
between The Overall Computational Time of RDC-SR-1 and That of RDC-SR)151

5.6 Concrete Values for r2 by Varying φ and ρ When β = n (Recall That r2 Is The
Ratio between The Overall Computational Time of ERDC-SR and That of
RDC-SR-1) . 152

5.7 Concrete Values for r3 by Varying φ and ρ When c = 460, α = 0.9,
τ = 12s, e = 5325µs (Recall That r3 Is The Ratio between The Overall
Computational Time of ERDC-SR and That of RDC-SR 154

5.8 Concrete Values for r3 by Varying φ and ρ When c = 4600, α = 0.8,
τ = 12s, e = 5325µs (Recall That r3 Is The Ratio between The Overall
Computational Time of ERDC-SR and That of RDC-SR 154

6.1 Comparison of Different RDC Schemes for Version Control Systems 159

6.2 Statistics for The Selected Repositories of June 2013 191

6.3 The Average Time for Committing One Version in Both SSVN And Non-
secure SVN . 193

6.4 The Average Communication from The Client to The Server for Committing
One Version in Both SSVN And Non-secure SVN 193

xv

LIST OF TABLES
(Continued)

Table Page

6.5 The Average Communication from The Server to The Client for Committing
One Version in Both SSVN And Non-secure SVN 193

6.6 The Average Time for Retrieving One Version in Both Secure And Non-secure
SVN . 194

6.7 The Time for Migrating The First 3000 Versions of The Existing SVN
Repositories to SSVN . 195

B.1 Test Cases for Simulating The Replay Attack 203

C.1 Download Bandwidth (in MB/s) . 204

C.2 Propagation Delay (in Milliseconds) . 204

C.3 The Time for Randomly Sampling 4KB Blocks from S3 Virginia Region . . . 205

xvi

LIST OF FIGURES

Figure Page

1.1 A diagram summarizing the Remote Data Checking (RDC) literature. 10

2.1 Reference sheet for various notations. 25

2.2 VLCG: an R-DPDP construction. 37

2.3 Computing the parity symbols in VLCG. 38

3.1 Example of various approaches for redundantly storing a file F of 2 MB. . . . 60

3.2 An illustration of the information flow graph after t epochs. A node in this
graph represents the storage at a specific server in a particular epoch. The
source node S has the original file, which is then encoded using network
coding and stored at n servers. In each epoch, the data on at most n − k
servers can be corrupted (due to either benign or adversarial faults). At the
end of each epoch, the servers with corrupted data are detected and repaired
using data from k healthy servers. An information flow arrow incoming into
a node in epoch i means that the node is repaired at the end of epoch i using
data from healthy nodes. 68

3.3 RDC-NC: Setup and Challenge phase. 73

3.4 RDC-NC: Repair phase. 74

3.5 Components of the RDC-NC scheme. 75

3.6 Computational cost for client pre-processing and its various components (to
pre-process data for n servers). 82

3.7 The computational cost of the repair phase: (a) server cost, (b)-(f) client cost
to repair one server. 84

4.1 Auditing protocol: Client C checks if server si has a file copy F. 96

4.2 RDC-SR: a replication-based RDC system with Server-side Repair. 109

4.3 Components of RDC-SR. 110

4.4 Computational cost for both the server and the client in challenge phase
(benign case). 124

4.5 Computational cost for the server and its various components in challenge
phase (adversarial case). 125

4.6 Computational cost for repairing a replica. 126

xvii

LIST OF FIGURES
(Continued)

Figure Page

5.1 A reference sheet for various parameters. 132

5.2 β-butterfly encoding. 134

5.3 ERDC-SR: an Enhanced replication-based RDC system with Server-side Repair.136

5.4 Components for ERDC-SR. 137

5.5 A reference sheet for all the parameters used in ERDC-SR. 138

5.6 An example for the instantiation of cryptographic transformation. 139

6.1 Delta-based and skip delta-based version control systems. 163

6.2 The RDC-AVCS system. 180

6.3 The RDC-AVCS scheme. 181

6.4 Components of the RDC-AVCS scheme. 182

xviii

CHAPTER 1

INTRODUCTION

Outsourcing is a popular business model nowadays. A traditional way of outsourcing

involves transferring employees and assets from one firm to another [1]. In recent years,

a novel way of outsourcing – IT infrastructures outsourcing – has been developed. This

brand-new outsourcing model involves transferring IT infrastructures from one firm who

cannot budget too much on IT expenses, to another who has competencies and expertise on

IT management and maintenance. Cloud computing is the core technology supporting

this new outsourcing model. Cloud service providers like Amazon Web Services [2]

and Windows Azure [3] allow users (e.g., firms and organizations) to outsource their IT

infrastructures, and simply pay for what they have used (pay as you go). In this way, cloud

users can save their investments on the fixed assets of IT infrastructures, and thus may

greatly reduce their overall IT expenses. Besides low cost, cloud computing offers great

flexibility, good scalability, and high reliability, which make it a top technology priority for

chief information officers [4].

Cloud storage is one of the most prevalent cloud services. With the deployment

of cloud storage services (e.g., Amazon S3 [5] and Glacier [6], Azure cloud storage [3],

etc.), data owners can choose to outsource their data to the cloud storage providers (CSP),

such that they can get liberated from the burden of both data storage and management.

Although cloud storage has many benefits, most of the data owners today are reluctant to

outsource their data, simply because they do not trust the CSPs: they are not sure whether

their valuable data will be correctly maintained and protected by the CSPs; they are not

1

2

sure whether they can correctly retrieve their data over time. A gap thus arises between

a cloud’s benefits and its security breaches. To bridge this gap, a question is posed: Is it

possible to allow data owners to outsource their data to the cloud and, at the same

time, obtain similar security guarantees like when the data is stored in their own data

centers? In this dissertation, we try to answer this question by investigating remote data

checking (RDC), a technique which can allow data owners to obtain guarantees that their

outsourced data is retrievable over time. In general, a data owner may choose to delegate

the workload of obtaining such a guarantee to a third party, which is termed as “a verifier”

and “an auditor” interchangeably throughout the dissertation. In the following, we provide

an overview for the entire dissertation.

1.1 Remote Data Checking

Remote data checking allows a client (data owner) to check the integrity of data outsourced

at an untrusted server, and thus to audit whether the server fulfills its contractual

obligations. The ultimate goal of remote data checking is to ensure that data owners will

be able to recover the same exact data they have stored in the cloud. A basic RDC protocol

consists of three phases: Setup, Challenge and Retrieve. During Setup, the data owner

preprocesses the file F generating metadata Σ, and then stores both F and Σ at the server.

The data owner deletes F and Σ from its local storage and only keeps a small amount of

secret key material K (constant client storage). During Challenge, an auditor (the data

owner or another client) challenges the server to prove that it can produce the data that was

originally stored by the data owner. The server produces a proof of data possession based

on the stored data and metadata. The client can then use the secret key material K to check

3

the validity of the proof provided by the server. During Retrieve, the data owner recovers

the original data.

In general, both the Setup and the Retrieve are rare events, but the Challenge happens

periodically. Thus, how to minimize the cost of the Challenge phase is a main concern of an

efficient RDC scheme. In the literature, a technique based on spot checking – the auditor

only checks a random subset of the whole data – is adopted to minimize the cost of the

Challenge phase. Previous result [7] shows that, if the attacker corrupts a certain amount of

the whole data (e.g., 1%), the auditor can detect such corruptions with high probability by

only randomly checking a constant number of data blocks.

1.2 Dynamic Remote Data Checking

Early RDC schemes have focused on static data, in which the client cannot modify the

original data [7–10] or can only perform a limited set of updates [11]. Later work [12–15]

extends RDC to support the full range of dynamic operations with optimal cost.

Dynamic Provable Data Possession (DPDP) [12] proposes a model that provides

strong guarantees about data integrity while supporting the full range of dynamic operations

on the outsourced data, including modifications, insertions, deletions, and appends. A

DPDP protocol contains the three phases as in an RDC protocol for static data (Setup,

Challenge, and Retrieve), but also allows another phase, Update. During Update, the

original file may be changed by insertions, deletions, modifications, and appends. During

Challenge, the auditor obtains an integrity guarantee about the latest version of the file (due

to updates, this may be different from the original file). In Retrieve, the client recovers

the latest file version. As opposed to handling static data, the main challenge in DPDP is

ensuring that the client obtains a guarantee about the latest version of the file (i.e., prevent

4

the server from passing the client’s challenges by using old file versions) while meeting the

low overhead requirements for RDC.

1.3 Robust Remote Data Checking

Remote data checking schemes (static or dynamic) usually adopt spot checking technique

for efficiency. However, it is very difficult for spot checking to detect corruption of small

parts of the data, e.g., 1 byte. Robustness is thus proposed to supplement RDC for the small

corruption concern. A robust remote data checking scheme incorporates mechanisms for

mitigating arbitrary amounts of data corruption, in which a notion of mitigation should

include the ability to both efficiently detect data corruption and be impervious to data

corruption. When data corruption is detected, the owner can act in a timely fashion

(e.g., data can be repaired from other replicas). Even when data corruption (e.g., small

corruption) is not detected, a robust auditing scheme ensures that no data will be lost,

i.e., robustness guarantees that small corruptions which cannot be detected (e.g., by spot

checking) can always be recovered.

In general, error correcting codes can be used to add robustness to a remote

data checking scheme. The challenge is how to efficiently integrate error correcting

codes with RDC to achieve robustness guarantees. Prior work [8, 16, 17] investigates

how to add robustness to a static RDC scheme, but it is still an open problem to add

robustness to a dynamic RDC scheme with small, constant, client storage. In Chapter 2,

we design R-DPDP (Robust Dynamic Provable Data Possession), an RDC scheme that

provides robustness and, at the same time, supports dynamic updates, while requiring

small, constant, client storage. We propose two R-DPDP constructions. The first

construction πR-D achieves robustness by extending techniques from the static to the

5

dynamic setting. The resulting R-DPDP construction is efficient in encoding, but requires

a high communication cost for updates (insertions/deletions). The second construction,

VLCG (Variable Length Constraint Group), overcomes this drawback by: (a) decoupling

the encoding for robustness from the position of symbols in the file and instead relying on

the value of symbols, and (b) reducing expensive insert/delete operations to append/modify

operations when updating the RS-coded parity data, which ensures efficient updates even

under an adversarial setting.

1.4 Remote Data Checking for Distributed Settings

Remote data checking is a valuable technique by which a client (verifier) can efficiently

establish that data stored at an untrusted server remains intact over time. This kind of

assurance is essential to ensure long-term reliability of data outsourced at data centers or at

cloud storage providers. When used with a single server, the most valuable use of remote

data checking lies within its prevention capability: The verifier can periodically check data

possession at the server and can thus detect data corruption. However, once corruption is

detected, the single server setting does not necessarily allow data recovery. Thus, remote

data checking has to be complemented with storing the data redundantly at multiple servers.

In this way, the verifier can use remote data checking with each server and, upon detecting

data corruption at any of the servers, it can use the remaining healthy servers to restore the

desired level of redundancy by storing data on a new server.

When a distributed storage system is used in tandem with remote data checking,

one can distinguish several phases throughout the lifetime of the storage system: Setup,

Challenge, and Repair. To outsource a file, the data owner encodes the file by introducing

redundancy during Setup and distributes the encoded data to multiple storage servers.

6

During the Challenge phase, the data owner can ask periodically each server to provide

a proof that the server’s stored data has remained intact. If a server is found corrupted

during the Challenge phase, the data owner can take actions to Repair it relying on the data

from the healthy servers, thus restoring the desired redundancy level in the system.

The main approaches to introduce redundancy in distributed storage systems are

through replication, erasure coding, and more recently through network coding [18, 19].

The basic principle of data replication is to store multiple copies of the data at different

storage servers, whereas in erasure coding the original data is encoded into fragments

which are stored across multiple storage servers. Previous work [20] shows that erasure

codes can achieve equivalent or even better reliability level than replication by significantly

lower storage overhead. Network coding for storage [18, 19] provides nice performance

properties well suited to deep archival stores which are characterized by a read-rarely

workload. Similar to erasure coding, network coding can be used to redundantly encode

a file into fragments and store these fragments at multiple servers. Network coding

provides a significant advantage over erasure coding when coded fragments are lost

due to server failures and need to be reconstructed in order to maintain the same level

of reliability. Previously, network coding-based distributed storage systems have been

investigated in the benign setting [18,19]. We are the first to consider remote data checking

for network coding-based distributed storage systems which rely on untrusted servers (i.e.,

an adversarial setting). In Chapter 3, we identify new attacks and propose RDC-NC, a novel

Remote Data Checking scheme for Network Coding-based distributed storage systems.

We adapt RDC techniques used in the single server setting [10] to handle data corruption

attacks and collusion attacks (among malicious servers). We also identify the replay and

pollution attacks and come up with effective solutions. To handle replay attacks, we encrypt

7

the coding coefficients which are stored on the servers; moreover, the client is the one that

chooses the coding coefficients and enforces their use. To prevent pollution attacks, we use

an additional repair verification tag, which allows the client to check that a server combines

its blocks correctly during the repair phase.

The setting considered so far outsources the storage of the data, but the data owner

is still heavily involved in the data management process (especially during the repair of

damaged data). A new paradigm is thus investigated, in which the data owner fully

outsources both the data storage and the management of the data, i.e., after the Setup phase,

the data owner should only have to store a small, constant, amount of data and should be

involved as little as possible in the maintenance of the data. In traditional distributed RDC

schemes [21–23], the repair phase imposes a significant burden on the client, who needs

to expend a significant amount of computation and communication. For example, to repair

the data at a failed server, the data owner needs to first download an amount of data equal

to the file size, re-generate the data to be stored at a new server, and then upload this data

at a new healthy server. Archival storage deals with large amounts of data (Terabytes or

even Petabytes) and thus maintaining the health of the data imposes a heavy burden on the

data owner. We work on a new concept, namely, server-side repair, in which the servers

are responsible to repair the corruption, while the client acts as a lightweight coordinator

during repair. We propose two novel RDC schemes for replication-based distributed storage

systems, RDC-SR (Chapter 4) and ERDC-SR (Chapter 5), which enable server-side repair

and minimize the load on the client (data owner) side. In both schemes, servers are allowed

to collaborate in order to generate a new replica whenever a replica has failed. However,

this comes at the cost of allowing a new attack avenue for servers, the ROTF attack.

To overcome the ROTF (Replicate On The Fly) attack, we make replica creation to be

8

time consuming. In this way, malicious servers cannot generate replicas on the fly during

Challenge without being detected. Although they try to achieve a similar objective, RDC-SR

and ERDC-SR are different in that, RDC-SR assumes that the computational power of the

CSP will not grow over time, whereas ERDC-SR relaxes this assumption and is thus more

suitable for real-world applications.

1.5 Remote Data Checking for Version Control Systems

Version control provides the ability to track and control changes made to the data over

time. Software development often relies on a Version Control System (VCS) to automate

the management of source code, documentation and configuration files. The VCS system

stores all the changes to the data into a repository, such that any version of the data can be

retrieved at any time in the future. Due to their potentially massive size, VCS repositories

are often hosted at the untrusted CSPs. Remote data checking can thus be used to address

concerns about the untrusted nature the VCS server by allowing a data owner to periodically

and efficiently check that the server continues to store the data.

To reduce the storage overhead, modern version control systems usually adopt “delta

encoding”, in which only the differences (between versions) are recorded. As a particular

type of delta encoding, skip delta encoding can optimize the combined cost of storage and

retrieval.

In Chapter 6, we introduce Auditable Version Control Systems (AVCS), which are

VCS systems designed to function under an adversarial setting. We present the definition

of AVCS and then propose RDC-AVCS, an AVCS scheme for skip delta-based VCS systems,

which relies on RDC mechanisms to ensure all the versions of a file are retrievable from

the untrusted VCS server over time. In RDC-AVCS, the cost of checking the integrity

9

of all the versions of a file is the same as checking the integrity of one file version and

the client is only required to maintain the same amount of client storage like a regular

(non-secure) VCS system. We make the important observation that the only meaningful

operation for real-world VCS systems which use delta encoding is append and leverage

this observation to build RDC-AVCS. Unlike previous solutions which rely on dynamic

RDC and are interesting from a theoretical point of view, we take a pragmatic approach

and provide a solution for real-world VCS systems.

1.6 Organization

Portions of this dissertation are drawn from the following publications:

• “Robust dynamic provable data possession” [24]

• “POSTER: Robust dynamic remote data checking for public clouds” [25]

• “Remote data checking for network coding-based distributed storage systems” [23]

• “Towards self-repairing replication-based storage systems using untrusted clouds” [26]

• “Auditable Version Control Systems” [27]

In order to allow data owners to obtain security guarantees of the correctness and

retrievability of the outsourced data, RDC mechanisms have been investigated extensively

in the literature. In Figure 1.1, we provide a diagram for the RDC literature, which shows

how the RDC protocols designed in this dissertation fit into the RDC literature. These

newly designed RDC protocols are organized throughout the entire dissertation as follows:

In Chapter 2, we work on the robustness issue of dynamic RDC. We design a robust

dynamic provable data possession scheme (R-DPDP, Section 2.3), which mainly relies

on the interesting properties of Cauchy Reed-Solomon codes (Section 2.2). We provide

10

RDC	

basic	

RDC	

dynamic	

RDC	

distributed	

RDC	

PDP/PoR	

[7,8,9,10]	

	
 	
 	
 	
 D-­‐PoR	

[15,65,98]	

	

	
 	
 R-­‐DPDP	

	
 (Chap.	
 2)	

client-­‐side	

repair	

server-­‐side	

repair	

MR-­‐PDP	
 	

	
 	
 	
 	
 [22]	

HAIL	
 [21]	

WWRL[28]	

RAFT[68]	

RDC-­‐NC	

(Chap.	
 3)	

RDC-­‐SR	

(Chap.	
 4)	

ERDC-­‐SR	

(Chap.	
 5)	

replica6on	
 erasure	

coding	
 replica6on	
 network	

coding	

with	

robustness	

without	

robustness	

	
 	
 	
 	
 DPDP	

[11,12,13]	

RDC	
 for	
 VCS	

DR-­‐DPDP	

	
 	
 	
 	
 	
 [67]	

RDC-­‐AVCS	

	
 (Chap.	
 6)	

Figure 1.1 A diagram summarizing the Remote Data Checking (RDC) literature.

security and performance analysis for R-DPDP (Section 2.4), and discuss solutions for

further optimization (Section 2.5).

In Chapter 3, we devise RDC-NC, an RDC scheme for network coding-based

distributed storage systems (Section 3.4). We provide security analysis in Section 3.5.

We also provide guidelines on selecting the parameters (Section 3.6) and experimental

evaluations (Section 3.7).

We design two RDC schemes, RDC-SR (Chapter 4) and ERDC-SR (Chapter 5), for

replication-based storage systems which can support server-side repair. For RDC-SR, we

enhance a network delay-based model (Section 4.2), and adapt it to the design of RDC-SR

scheme (Section 4.4). We provide guidelines (Section 4.5) on how to use RDC-SR, analyze

11

its security (Section 4.6), and build a prototype on top of Amazon Cloud (Section 4.7).

For ERDC-SR, we elaborate its design (Section 5.2), as well as provide guidelines for

using it in practical applications (Section 5.3). We also provide security (Section 5.4) and

performance analysis (Section 5.5).

In Chapter 6, we introduce RDC-AVCS, an AVCS (Section 6.5.2) scheme for skip

delta-based version control systems. We provide the background of delta-based version

control systems in Section 6.3, and elaborate the designed scheme in Section 6.5. Security

analysis of RDC-AVCS (Section 6.6) and its prototype implementation on top of Apache

SVN (Section 6.7) are also provided.

We conclude in Chapter 7.

1.7 Notations

Acronyms used throughout the entire dissertation are shown in Table 1.1.

Table 1.1 Acronyms
RDC Remote Data Checking
PDP Provable Data Possession
PoR Proofs of Retrievability

DPDP Dynamic Provable Data Possession
D-PoR Dynamic Proofs of Retrievability
VLCG Variable Length Constraint Group
CSP Cloud Storage Provider

R-DPDP Robust Dynamic Provable Data Possession
RS Reed-Solomon

RDC-NC Remote Data Checking for Network Coding-based
distributed storage systems

ROTF Replicate On The Fly
RDC-SR a replication-based RDC scheme with Server-side Repair

ERDC-SR an Enhanced replication-based RDC scheme with Server-side Repair
VCS a Version Control System

AVCS an Auditable Version Control System
RDC-AVCS an Auditable Version Control System based on Remote Data Checking

SVN Subversion
SSVN Secure SVN
APR Apache Portable Runtime

CHAPTER 2

ROBUST DYNAMIC PROVABLE DATA POSSESSION

This chapter introduces R-DPDP, a robust dynamic provable data possession scheme.

R-DPDP is the first RDC scheme that provides robustness and, at the same time, supports

dynamic data updates, while requiring small, constant, client storage. R-DPDP initiates the

research of D-PoR (Dynamic Proofs of Retrievability), which received significant coverage

in the literature.

Remote Data Checking (RDC) is a technique that allows to check the integrity of

data stored at a third party, such as a Cloud Storage Provider (CSP). Especially when the

CSP is not fully trusted, RDC can be used for data auditing, allowing data owners to assess

the risk of outsourcing data in the cloud.

In an RDC protocol, the data owner (client) initially stores data and metadata with the

cloud storage provider (server); at a later time, an auditor (the data owner or another client)

can challenge the server to prove that it can produce the data that was originally stored by

the client; the server then generates a proof of data possession based on the data and the

metadata. Several RDC schemes have been proposed, including Provable Data Possession

(PDP) [7, 8] and Proofs of Retrievability (PoR) [9, 10], both for the single server [7, 9, 10]

and for the multiple server setting [21–23, 28].

Early RDC schemes have focused on static data, in which the client cannot modify

the original data [7, 9, 10] or can only perform a limited set of updates [11]. Erway et

al. [12] have proposed DPDP, a scheme that supports the full range of dynamic updates

on the outsourced data, while providing the same strong guarantees about data integrity.

12

13

The ability to perform updates such as insertions, modifications, or deletions, extends the

applicability of RDC to practical systems for file storage [29, 30], database services [31],

peer-to-peer storage [32, 33], and more complex cloud storage systems [34, 35].

A scheme for auditing remote data should be both lightweight and robust [8].

Lightweight means that it does not unduly burden the server; this includes both overhead

(i.e., computation and I/O) at the server and communication between the server and the

client. This goal can be achieved by relying on spot checking, in which the client randomly

samples small portions of the data and checks their integrity, thus minimizing the I/O at the

server. Spot checking allows the client to detect if a fraction of the data stored at the server

has been corrupted, but it cannot detect corruption of small parts of the data (e.g., 1 byte).

Robust means that the auditing scheme incorporates mechanisms for mitigating

arbitrary amounts of data corruption. Protecting against large corruptions ensures the CSP

has committed the contracted storage resources: Little space can be reclaimed undetectably,

making it unattractive to delete data to save on storage costs or sell the same storage

multiple times. Protecting against small corruptions protects the data itself, not just the

storage resource. Many data have value well beyond their storage costs, making attacks that

corrupt small amounts of data practical. For example, modifying a single bit may destroy

an encrypted file or invalidate authentication information. Thus, robustness is a necessary

property for all RDC schemes that rely on spot checking, which includes the majority of

static and dynamic RDC schemes.

Robustness is usually achieved by integrating forward error-correcting codes (FECs)

with remote data checking [8, 16, 17]. Attacks that corrupt small amounts of data do

no damage, because the corrupted data may be recovered by the FEC. Attacks that do

unrecoverable amounts of damage are easily detected using spot checking, because they

14

must corrupt many blocks of data to overcome the FEC redundancy. Unfortunately, under

an adversarial setting, there is a fundamental tension between the dynamic nature of the

updates supported in the DPDP scheme and FEC codes (which are mostly designed for

static data) because securely updating even a small portion of the file may require retrieving

the entire file.

On the Adversarial Model. In this work, the cloud storage server is assumed to be not

trustworthy. Protection against corruption of a large portion of the data is necessary in order

to handle servers that discard a significant fraction of the data. This applies to servers that

are financially motivated to sell the same storage resource to multiple clients.

Protection against corruption of a small portion of the data is necessary in order to

handle servers that try to hide data loss incidents. This applies to servers that wish to

preserve their reputation. Data loss incidents may be accidental (e.g., management errors

or hardware failures) or malicious (e.g., insider or outsider attacks).

Moreover, the storage server may try to provide a stale, older version of the data.

2.1 Background and Related Work

2.1.1 Remote Data Checking for Dynamic Settings

Early RDC schemes have focused on static data, in which the client cannot modify the

original data [7, 9, 10] or can only perform a limited set of updates [11]. Dynamic

Provable Data Possession (DPDP) [12] proposes a new RDC model that provides strong

guarantees about data integrity while supporting the full range of dynamic operations on

the outsourced data, including modifications, insertions, deletions, and appends. A DPDP

protocol contains four phases: Setup, Update, Challenge, and Retrieve. During Setup, the

client preprocesses the file generating the metadata, and then stores in the server both the

15

file and the metadata. The client can now delete the data and metadata locally to save

storage. During Update, the original file may be updated. During Challenge, the auditor

obtains an integrity guarantee about the latest version of the file, which may be different

from the original file due to updates. During Retrieve, the client retrieves the latest version

of the file. As opposed to handling static data, the main challenge in DPDP is ensuring that

the client obtains guarantees about the latest version of the file (i.e., prevent the server from

passing the client’s challenges by using old file versions) while meeting the low overhead

requirements for RDC.

A DPDP scheme is a collection of seven polynomial-time algorithms (KeyGen DPDP,

PrepareUpdate DPDP, PerformUpdate DPDP, VerifyUpdate DPDP, GenChallenge DPDP,

Prove DPDP, Verify DPDP) that can be used to construct a DPDP protocol as follows.

During the Setup phase, the client uses KeyGen DPDP to setup the scheme and

PrepareUpdate DPDP to preprocess the file and generate metadata. The server stores the

client’s data using PerformUpdate DPDP and the client uses VerifyUpdate DPDP to check

the success of the initial file submission (note that the initial file submission can be seen

as an update in which the client re-writes the entire file). In the Update phase, the client

and server use PrepareUpdate DPDP, PerformUpdate DPDP and VerifyUpdate DPDP to

prepare the update, apply the update on the file, and verify if the update was applied

correctly, respectively. During the Challenge phase, the client uses GenChallenge DPDP

to generate a challenge, the server generates a proof of data possession using Prove DPDP,

and the client verifies the proof using Verify DPDP.

A complete definition of a DPDP scheme is provided in Appendix A.1, which does

not include provisions for robustness.

16

Dynamic Proofs of Retrievability. Concurrently with our work, Stefanov et al. [15]

proposed Iris, a system that supports dynamic proofs of retrievability (D-PoR), including

protection against small data corruption. For practical reasons, Iris achieves robustness by

storing the parity data on the client. As this may place an additional burden on lightweight

clients, our work focuses on a more challenging setting which has stood as an open

problem: All data, including parity, is stored at the server, in order to minimize client

storage. Cash et al. [36] propose to use Oblivious RAM to construct a D-PoR scheme.

However, Oblivious RAM is too expensive to be used in a practical application. Another

proposal for D-PoR [14] does not offer protection against small data corruption when

clients rely on spot checking data stored at untrusted servers.

Authenticated Data Structures. In all the DPDP and D-PoR constructions, the

client uses an authenticated data structure to ensure the freshness of the retrieved file and

to prevent the server from using an old file version when answering challenges. This data

structure is usually a tree-like structure computed over the verification tags, and the client

keeps a copy of the root of this structure (e.g., skip lists [12], RSA trees [12], Merkle hash

trees [13,15], or 2-3 trees [14]). Our work can rely on any of these data structures to ensure

file data freshness and prevent the server from conducting replay attacks.

2.1.2 Robust Auditing of Outsourced Data

A robust auditing scheme incorporates mechanisms for mitigating arbitrary amounts of

data corruption. A notion of mitigation should include the ability to both efficiently detect

data corruption and be impervious to data corruption. When data corruption is detected, the

owner can act in a timely fashion (e.g., data can be restored from other replicas). Even when

17

data corruption (e.g., small corruption) is not detected, a robust auditing scheme ensures

that no data will be lost. More formally, a robust auditing scheme is defined as follows [8]:

Definition 2.1.1. A robust auditing schemeRA is a tuple (C, T), where C is a remote data

checking scheme for a file F and T is a transformation that yields F̃ when applied on F.

RA is considered to provide δ-robustness when:

the auditor will detect with high probability if the server corrupts more than a δ-fraction
of F̃ (protection against corruption of a large portion of F̃)

the auditor will recover the data in F with high probability if the server corrupts at most
a δ-fraction of F̃ (protection against corruption of a small portion of F̃)

δ-robustness guarantees that small corruptions (less than a δ fraction of the whole

data) which cannot be detected (i.e., by spot checking) can always be recovered. Several

methods can be employed to add robustness to a static remote data checking scheme [8,16].

The most straightforward method is to use an FEC code over the entire file. For a file of f

symbols, this can be achieved with an (n, f) Reed-Solomon code and would give an even

stronger guarantee than δ-robustness (Section 1.3), because this code can deterministically

correct up to n−f erasures and not just with high probability. Such an FEC code would be

impractical because RS codes become quite inefficient to compute even for moderate-size

files if the code were to be applied over the entire file.

For efficiency reasons, it is desirable to apply an RS code over a smaller number of

symbols: The file F is divided into k-symbol chunks and a (n, k) RS code is applied to

each chunk, expanding it into an n-symbol code word. The first k symbols of the code

word are the original k data symbols, followed by d = n− k parity symbols. A constraint

group is defined as the group of symbols from the same code word, i.e., the original k data

symbols and their corresponding n − k parity symbols. The number of constraint groups

in the encoded file is the same as the number of chunks in the original file, namely, f
k

.

18

To ensure the δ-robustness guarantee, it is necessary that the association between

symbols and constraint groups remain hidden (i.e., the malicious server should not know

which symbols belong to the same constraint group, so that it cannot make the data from

this constraint group unrecoverable by only deliberately corrupting a small portion of the

data from this constraint group, which is always smaller than a δ fraction of the whole file).

This can be achieved through a combination of permuting and then encrypting the symbols

of the file. Different encoding schemes to add robustness can lead to remote data checking

schemes with different properties and performance characteristics [8, 9, 16, 17]. Two of

them are reviewed in the following.

Let (G,E,D) be a symmetric-key encryption scheme and π, ψ, ω be pseudo-random

permutations (PRPs) defined as:

π : {0, 1}κ × {0, 1}log2(fn/k) → {0, 1}log2(fn/k)

ψ : {0, 1}κ × {0, 1}log2(f) → {0, 1}log2(f)

ω : {0, 1}κ × {0, 1}log2(fd/k) → {0, 1}log2(fd/k)

The keys w, z, v, u are used for the encryption scheme, PRP π, PRP ψ and PRP ω,

respectively.

Permute-All (πA). The constraints among symbols can be concealed by randomly

permuting and then encrypting all the symbols of the encoded file. Starting from the file

F = b1, . . . ,bf , an (n, k) RS code (with d = n − k) is used to generate the encoded file

F̂ = b1, . . . ,bf ,c1, . . . ,c f
k
d, in which symbols bik+1, . . . ,b(i+1)k are constrained by parity

symbols cid+1, . . . ,c(i+1)d, for 0 ≤ i ≤ f
k
− 1. π and E are used to randomly permute and

then encrypt all the symbols of F̂, obtaining the encoded file F̃, where F̃[i] = Ew(F̂[πz(i)]),

for 1 ≤ i ≤ fn/k.

19

This strategy leads to a δ-robustness guarantee [8, 9, 16], but has two major

drawbacks: Permuting the entire encoded file can be inefficient and the systematic nature

of the RS code is sacrificed.

Permute-Redundancy (πR). The drawbacks of the πA scheme can be overcome based

on the observation that it is sufficient to permute and then encrypt only the parity symbols.

The input file F = b1, . . . ,bf is encoded as follows:

1. Use ψ to randomly permute the symbols of F to obtain the file P = p1, . . . ,pf , where
pi = bψv(i), 1 ≤ i ≤ f .

2. Compute parity symbols C = c1, . . . ,c f
k
d so that symbos pik+1, . . . ,p(i+1)k are

constrained by cid+1, . . . ,c(i+1)d, for 0 ≤ i ≤ f
k
− 1.

3. Permute and then encrypt the parity symbols to obtain R = r1, . . . ,r f
k
d, where ri =

Ew(cωu(i)), 1 ≤ i ≤ f
k
d.

4. Output redundancy encoded file F̃ = F||R.

By computing RS codes over the permuted input file, rather than the original input

file, an attacker does not know the relationship among symbols of the input file. By

permuting the parity symbols, the attacker does not know the relationship among the

symbols in the redundant portion R of the output file. By encrypting the parity symbols, an

attacker cannot find the combinations of input symbols that correspond to output symbols.

When compared to πA, πR is more efficient (as it requires to permute and encrypt

only the parity symbols) and preserves the systematic nature of the RS code. πRwas shown

to achieve the δ-robustness guarantee [16, 17] (this construction is also known as a “server

code” in the literature [17, 21]).

20

2.2 Cauchy Reed-Solomon Codes

Towards achieving robustness for dynamic RDC schemes, in this section we first review

Reed-Solomon encoding and decoding based on Cauchy matrices. We then study how to

update a Reed-Solomon code when an update is applied to the original data. Note that

in this section we study these operations under a benign setting (i.e., when the server is

trustworthy).

We consider an (n, k) Reed-Solomon (RS) code that can correct up to d = n − k

known erasures or bd
2
c unknown errors, or any combination of E errors and S erasures

with 2E + S ≤ d. The minimum Hamming distance of the RS code is d + 1, where

d = n − k. If two RS codes have the same value d, we say they provide the same fault

tolerance level.

To encode a k-symbol message into an n-symbol code word, we need an n ∗ k

encoding matrix, known as the distribution matrix. Typically, Vandermonde or Cauchy

matrices are used to construct the distribution matrix. We use Cauchy RS codes, which

are Reed-Solomon codes based on Cauchy matrices [37], for two reasons: They are

more suitable to handle dynamic operations on the original data and they were shown

to be approximately twice as fast as the classical Reed-Solomon encoding based on

Vandermonde matrices [38–41].

2.2.1 Cauchy RS Encoding and Decoding

For ease of presentation, we present the Cauchy RS encoding and decoding using a (6,4)

RS code as an example (i.e., n = 6, k = 4, d = 2). All the arithmetic operations are in

F2w , assuming the condition 2w>n always holds (the +, − operations can be regarded as

⊕, logical XOR). We use LT to denote the transpose of a vector L.

21

Encode. The message L contains 4 data symbols, all of which are in the Galois Field F2w :

L = (b1 b2 b3 b4
).

We use the method introduced in [42] to construct the Cauchy matrix, which has

the useful property that it can be re-generated on the fly based on a constant amount of

information. The distribution matrix M1, which is composed of the identity matrix in the

first 4 rows and Cauchy matrix in the remaining 2 rows, is as follows:

M1 =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
a11 a12 a13 a14

a21 a22 a23 a24

 ,where aij =
1

i⊕ (d+ j)

The codeword C is computed as

C = M1 × LT =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
a11 a12 a13 a14

a21 a22 a23 a24

×


b1
b2
b3
b4

 =



b1
b2
b3
b4
p1

p2



where the parity symbols p1 and p2 are

p1 = a11 ∗ b1 + a12 ∗ b2 + a13 ∗ b3 + a14 ∗ b4

p2 = a21 ∗ b1 + a22 ∗ b2 + a23 ∗ b3 + a24 ∗ b4

Decode. When using a (6, 4) RS code, any 4 out of 6 symbols are enough to recover L.

Assume that b3 and b4 are corrupted. To recover L, the decoding process is:

LT = M−1 ×


b1
b2
p1

p2

 ,where M =


1 0 0 0
0 1 0 0
a11 a12 a13 a14

a21 a22 a23 a24



22

The decoding matrix,M , is invertible based on the fact that all of the 4∗4 submatrices

of M1 are invertible [43]. Moreover, M has the useful property that it can be re-generated

by knowing the indices of the non-corrupted symbols in the code word. By putting the

non-corrupted symbols into their right locations in the code word for decoding, M can be

re-generated based on a constant amount of information.

2.2.2 Cauchy RS Updating

Consider a (n, k) Cauchy RS code computed over a message. If the symbols in the original

message are updated (e.g., modified, appended, inserted, deleted), we are interested to

update the RS parity data so that it reflects the updated message. We seek to answer the

question: How can we minimize the cost of updating the RS code? More precisely, how

can we update the parity symbols efficiently by minimizing the number of symbols that

need to be read from the original RS code?1. We answer this question by using the same

example introduced from Section 2.2.1. The conclusion is that modify/append operations

have a lower bandwidth overhead than insert/delete operations.

Modify a data symbol. For example, if symbol b1 is modified to b′1, we should update the

parity data correspondingly: p1 is updated to p′1, and p2 is updated to p′2. To compute p′1

and p′2, only the old parity symbols (p1, p2) and the old data symbol (b1) are required to

be retrieved (i.e., there is no need to retrieve any other data symbol except the one to be

modified):

1For the purpose of RDC, the client needs to update the RS code on the server after each update
operation, so we are interested in minimizing the data communication required to update the RS
code.

23

p′1 = a11 ∗ b′1 + a12 ∗ b2 + a13 ∗ b3 + a14 ∗ b4

= a11 ∗ b1 + a12 ∗ b2 + a13 ∗ b3 + a14 ∗ b4 + a11 ∗ b′1 − a11 ∗ b1

= p1 + a11 ∗ b′1 − a11 ∗ b1

p′2 = a21 ∗ b′1 + a22 ∗ b2 + a23 ∗ b3 + a24 ∗ b4

= a21 ∗ b1 + a22 ∗ b2 + a23 ∗ b3 + a24 ∗ b4 + a21 ∗ b′1 − a21 ∗ b1

= p2 + a21 ∗ b′1 − a21 ∗ b1

Append a data symbol. For example, if b5 is appended to L, to maintain the same fault

tolerance level, the (6, 4) RS code should become a (7, 5) RS code and the new distribution

matrix M2 is (assuming the condition 2w>n still holds):

M2 =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
a11 a12 a13 a14 a15

a21 a22 a23 a24 a25


, where aij =

1

i⊕ (d+ j)

Compared to M1, most of the elements in M2 are the same although n has changed

(this is a useful property of Cauchy RS codes). To update the parity data correspondingly,

only the old parity symbols (p1, p2) are required to be retrieved (i.e., there is no need to

retrieve any of the data symbols):

p′1 = a11 ∗ b1 + a12 ∗ b2 + a13 ∗ b3 + a14 ∗ b4 + a15 ∗ b5

= p1 + a15 ∗ b5

p′2 = a21 ∗ b1 + a22 ∗ b2 + a23 ∗ b3 + a24 ∗ b4 + a25 ∗ b5

= p2 + a25 ∗ b5

Insert a data symbol. For example, if b′2 is inserted into L after b2, to maintain the

same fault tolerance level, the (6, 4) RS code should become a (7, 5) RS code. The new

24

distribution matrix will be M2, thus, we can update the parity data (p1 to p′1, p2 to p′2) by

retrieving whichever one is smaller between: (i) all the data symbols (i.e., b1, b2, b3, b4), or

(ii) all the parity symbols (p1, p2) and the data symbols after b2 (i.e., b3, b4):

p′1 = a11 ∗ b1 + a12 ∗ b2 + a13 ∗ b′2 + a14 ∗ b3 + a15 ∗ b4

= p1 − a13 ∗ b3 − a14 ∗ b4 + a13 ∗ b′2 + a14 ∗ b3 + a15 ∗ b4

p′2 = a21 ∗ b1 + a22 ∗ b2 + a23 ∗ b′2 + a24 ∗ b3 + a25 ∗ b4

= p2 − a23 ∗ b3 − a24 ∗ b4 + a23 ∗ b′2 + a24 ∗ b3 + a25 ∗ b4

Delete a data symbol. Similar to inserting a data symbol, to update the parity when

deleting the i-th symbol from L, we need to retrieve the smaller between either all the

data symbols, or all the parity symbols and the data symbols after position i.

2.3 Robust Dynamic Provable Data Possession

In this section, we present R-DPDP, Robust Dynamic Provable Data Possession, a new

framework to add robustness to dynamic RDC setting. R-DPDP allows to audit remote data

that is dynamically changing and, at the same time, offers protection against both large and

small data corruption. To the best of our knowledge, robustness has not been previously

considered for dynamic remote data checking while maintaining small, constant, client

storage. For the convenience of presentation, we build our R-DPDP on top of one specific

dynamic RDC scheme, namely, DPDP (Section 2.1.1). The proposed R-DPDP can be

easily adapted to other dynamic RDC schemes [13, 14].

We start by summarizing the challenges that need to be overcome when adding

robustness to DPDP. We then present the definition of an R-DPDP scheme and propose two

R-DPDP constructions: πR-D (an extension of the πR scheme presented in Section 2.1.2)

25

• D is the encoded file, F is the original file, P is the redundancy added after applying a RS code
over F. We have D = F||P.
• n is the number of symbols in a constraint group: n = k + d, where k is the number of data
symbols and d is the number of parity symbols. A (n, k) RS code is applied over each constraint
group.
• M is the server metadata computed over D (stored at the server, includes the verification
tags).
• Fi is the i-th version of F. We have Di = Fi||Pi and Mi is the server metadata for Di.
•Mc is the client metadata (e.g., the root of the skip list/RSA tree [12]).
• info is the information about the update operation (e.g., full re-write, delete block i, modify
block i, insert a block after block i, etc.).

Figure 2.1 Reference sheet for various notations.

and VLCG (Variable Length Constraint Group, a new construction that improves the

communication efficiency of πR-D in the Update phase). To facilitate the exposition, we

include a reference sheet with various notations in Figure 2.1.

Challenges. It is challenging to add robustness to DPDP in an adversarial setting and also

maintain low bandwidth overhead for updates, because:

• Adding robustness to DPDP requires encoding the data using Reed-Solomon codes. RS
codes, as a type of linear codes, provide error correction in a static setting, as they
compute redundancy over every portion of the original data. Unfortunately, they are
not immediately suitable when the data can be dynamically updated. As shown in
Section 2.2, for certain update operations (insert/delete), updating even a small portion
of the original data imposes a high communication cost (this holds even under a benign
setting, in which the server is trustworthy).

• Robustness applies RS encoding over groups of symbols (constraint groups) and it
requires to hide the association between symbols and constraint groups (i.e., the
malicious server should not know which symbols belong to the same constraint group).
When dynamic updates are performed over file data, the parity of the affected constraint
groups should also be updated, which requires knowledge of the data and the parity
symbols in those constraint groups (Section 2.2). However, the client cannot simply
retrieve only the symbols of the affected constraint groups, as that would reveal the
secret of the corresponding constraint groups and break robustness. Moreover, the client
cannot simply update and send back only the parity symbols in the affected constraint
groups, as that may allow the malicious server to infer which parity symbols are in the
same constraint group by comparing the new parity with the old parity.

26

File representation. We use two independent logical representation of the file for different

purposes:

• For the purpose of file updating (during the Update phase), the file is seen as an ordered
collection of blocks. Basically, update operations occur at the block level. This is also
the representation used for checking data possession (during the Challenge phase), as
each block has one corresponding verification tag.

• For the purpose of encoding for robustness, the file is seen as a collection of symbols,
which are grouped into constraint groups and each constraint group is encoded
independently.

For each file block, there is a corresponding verification tag which needs to be stored

at the server. Thus, larger file blocks result in smaller additional server storage overhead

due to verification tags. On the other hand, efficient encoding and decoding requires the

symbols to be from a small size field. As a result, one file block will usually contain

multiple symbols. Each file update operation which is performed at the block level results

into several operations applied to the symbols in that block (for example, when modifying

a data block, all the symbols in that block and the corresponding parity symbols should be

modified).

Metric. To measure the communication overhead for data updates, we use as a metric the

update bandwidth factor α defined as

α = the amount of data downloaded for updating one file block
the total amount of data at the server

2.3.1 R-DPDP Definition

We introduce the definition of a robust dynamic provable data possession (R-DPDP)

scheme. Compared to a DPDP scheme, R-DPDP adds robustness, which is reflected

in slightly different definitions for the data-updating algorithms. We have also added

27

an explicit algorithm to decode the data, since data decoding is more challenging when

robustness is needed.

Definition 2.3.1. (R-DPDP SCHEME) A Robust Dynamic Provable Data Possession

(R-DPDP) scheme is a collection of eight polynomial-time algorithms:

• KeyGen(1κ) → {sk, pk}: a probabilistic key generation algorithm run by the client to
setup the scheme. Input: the security parameter κ. Output: the secret key sk and public
key pk.

• PrepareUpdate(sk, pk,∆F,∆Di−1, info,Mc) → {e(∆D), e(info
′
), e(∆M)}: an

algorithm run by the client to prepare (a part of) the file for untrusted storage. Input:
the secret key sk, the public key pk, (a part of) the file ∆F , (a part of) the previous
version of the encoded file ∆Di−1, information about the update operation info, and the
client metadata Mc. Output: the “encoded” version of the update data e(∆D) (add to
∆D randomness, sentinels, or simply let e(∆(D)) = ∆D. ∆D is the data to be updated),
the “encoded” version of the update information e(info′) (info will be changed to info′,
since updating ∆F may lead to updating of the redundancy. info′ should be changed to
fit the encoded version of ∆D), and the new server metadata e(∆M). The client will send
e(∆D), e(info′), and e(∆M) to the server.

• PerformUpdate(pk,Di−1,Mi−1, e(∆D), e(info), e(∆M)) → {Di,Mi,M
′
c, PM ′c}: an

algorithm run by the server in response to an update request from the client. Input:
public key pk, the old version of the encoded file Di−1, the metadata Mi−1, and the values
e(∆D), e(info), e(∆M) provided by the client. Output: the new version of the encoded
file Di and metadata Mi, the metadata to be sent to client M

′
c and its proof of correctness

PM ′c . The server will send M
′
c and PM ′c back to the client.

• VerifyUpdate(sk, pk,∆F,∆Di−1, info,Mc,M
′
c, PM ′c)→ {accept, reject}: an algorithm

run by the client to verify the server’s behavior during the update. Input: all the inputs
from PrepareUpdate, M

′
c and the proof PM ′c which are sent back by the server. Output:

accept if the check succeeds, reject otherwise.

• GenChallenge(sk, pk,Mc) → {c}: a probabilistic algorithm run by the client to issue
a challenge for the server. Input: the secret key sk, public key pk, and the latest client
metadata Mc. Output: the challenge c that will be sent to the server.

• Prove(pk,Di,Mi, c) → {Π}: an algorithm run by the server to generate the proof of
possession upon receiving the challenge from the client. Input: the public key pk, the
latest version of the encoded file Di, the metadata Mi, and the challenge c. Output: a
proof of possession Π that will be sent back to the client.

• Verify(sk, pk,Mc, c,Π) → {accept, reject}: an algorithm run by the client to validate
a proof of possession upon receiving the proof Π from the server. Input: the secret key

28

sk, the public key pk, the client metadata Mc, the challenge c, and the proof Π. Output:
accept if Π is a valid proof of possession, reject otherwise.

• Decode(sk, pk,Di,Mi,Mc) → {Fi, failure}: an algorithm run by the client to decode
the latest version of the encoded file Di (repair it if small corruption exists). Input: the
secret key sk, the public key pk, the latest version of the encoded file Di (where Di =
Fi||Pi), metadata Mi, and client metadata Mc. Output: the latest version of the file Fi if
the decode process is successful, failure otherwise.

A R-DPDP protocol can be constructed in four phases, Setup, Challenge, Update,

and Retrieve.

Setup: The client C who is in possession of file F runs (pk, sk) ← KeyGen(1κ), followed
by {e(∆D), e(info′), e(∆M)} ← PrepareUpdate(sk, pk, F,NULL, “full re-write”, NULL).
C sends e(∆D), e(info′), e(∆M) to the server S. S runs {D1,M1,M

′
c, PM ′c} ←

PerformUpdate(pk,NULL,NULL, e(∆D), e(info′), e(∆M)) and sends M
′
c, PM ′c back

to C. C then runs VerifyUpdate(sk, pk, F,NULL, “full re-write”, NULL,M ′
c, PM ′c) to

check whether the initial data outsourcing is successful or not. If successful, C sets
Mc = M

′
c, and deletes F .

Challenge: C generates challenge c by running GenChallenge(sk, pk,Mc), and sends c to
S. S runs {Π} ← Prove(pk,Di,Mi, c) and sends to C the proof of possession Π. C can
check the validity of the proof Π by running Verify(sk, pk,Mc, c,Π).

Update: C downloads ∆Di−1 from S, and runs {e(∆D), e(info′), e(∆M)} ←
PrepareUpdate(sk, pk,∆F,∆Di−1, info,Mc). C sends e(∆D), e(info′), e(∆M) to S.
S runs {Di,Mi,M

′
c, PM ′c} ← PerformUpdate(pk,Di−1,Mi−1, e(∆D), e(info′), e(∆M))

and sendsM
′
c, PM ′c back toC. C then runs VerifyUpdate(sk, pk,∆F,∆Di−1, info,Mc,M

′
c, PM ′c)

to check whether the update is successful or not. If successful, C sets Mc = M
′
c, then

deletes ∆F and ∆Di−1.

Retrieve: C downloads the current version of the encoded file Di and the server metadata
Mi, then runs {Fi, failure} ← Decode(sk, pk,Di,Mi,Mc).

2.3.2 Enhancing πR: πR-D

We first describe πR-D, an R-DPDP construction obtained by adapting the πR scheme

(Section 2.1.2) to add robustness on top of a DPDP scheme DPDP = (KeyGen DPDP,

PrepareUpdate DPDP, PerformUpdate DPDP, VerifyUpdate DPDP, GenChallenge DPDP,

29

Prove DPDP, Verify DPDP) (refer to [12] for the detailed definition of a DPDP scheme).

In the Setup phase, the file F is first processed according to πR, and the parity data P is

generated. The encoded file D = F||P is further processed using the DPDP algorithms

PrepareUpdate DPDP, PerformUpdate DPDP, and VerifyUpdate DPDP, after which the

initial file version has been sent to store in the server. During the Challenge phase, we can

use directly the DPDP algorithms GenChallenge DPDP, Prove DPDP, and Verify DPDP

to verify the integrity of the latest file version.

In the Update phase, the main operations are:

• Insert/Delete a data block. A data block may contain multiple symbols, which may
belong to more than one constraint groups. Inserting/deleting a data block is equivalent
to inserting/deleting all the symbols in that block. Inserting/deleting a data symbol will
affect the indices of the following data symbols in the whole file, as well as the parameter
f of the PRP ψ in πR. Since in πR the contents of each constraint group are decided
based on the indices provided by the PRP ψ, the changing of the parameter f of PRP ψ
will require the client to download the entire file F and re-compute the parity P based
on a new set of constraint groups. The update bandwidth factor is α = |F|

|D| . The updated
file F is pre-processed using the technique described in πR, but the new parity P will be
permuted and encrypted by a new key (the client will only keep the new key and discard
the previous key). For an insert operation, the newly inserted block is sent back to the
server using the corresponding DPDP update algorithms, whereas for a delete operation
the corresponding block should be deleted. Also, P should replace the old parity at the
server.

• Modify a data block. The client downloads the data block to be modified (i.e., the old data
block) and the latest version of the parity P, decrypts P and restores the original order,
updates the parity symbols in the affected constraint groups according to P, the data
symbols in the old and the new data block (exact procedure described in Section 2.2).
The update bandwidth factor is α = |P|

|D| . To prevent the server from learning the contents
of the constraint groups by comparing the new parity with the old parity, the client should
use a new key to permute and encrypt the parity symbols (the client will keep the new
key and discard the previous key). The new data block and the new parity P are sent
back to the server using the DPDP update algorithms, replacing the corresponding old
block and old P.

In the Retrieve phase, the client simply retrieves the file F and may use the parity P

to correct data corruption.

30

Table 2.1 Statistics for Update Operations Based on Two CVS Repositories of OpenSSL
and Eclipse

OpenSSL Eclipse
dates of activity 1998-2011 2001-2011

of files 4,283 180,662
of commits 67,846 883,045

of insertions (lines) 707,978 8,579,577
of deletions (lines) 678,936 7,009,582

of modifications (lines) 371,159 6,714,823
Avg. # commits/file 15.8 4.9

Avg. # insertions/commit 10.4 9.7
Avg. # deletions/commit 10 7.9
Avg. # modifies./commit 5.5 7.6

Performance analysis. πR-D is efficient during Setup and Retrieve, but has high

communication overhead during Update, since for every insertion/deletion the update

bandwidth factor is α = |F|
|D| , which approaches 1 in practice. We have analyzed the pattern

of updates for the source files of two popular projects, OpenSSL [44] and Eclipse [45].

Table 2.1 shows that the number of insert and delete operations, compared to modifications,

represent a majority of the total number of updates. Thus, it is likely that one small

update may require to download the entire file F. We need a construction with lower

communication overhead for data updates.

Security analysis. The δ-robustness (Section 1.3) of πR-D can be established similarly

as for πR [8]: Once we fix a target for the probability of a successful attack (e.g., 10−10),

we can determine the RS encoding parameters that minimize the number of blocks being

spot-checked during a challenge. The resulting RS encoding provides the value of δ. If

the adversary corrupts more than a δ-fraction of the encoded file, the spot-checking based

strategy and the authentication structure of the underlying DPDP scheme guarantee that the

auditor can detect such corruptions with high probability. If the adversary corrupts at most

a δ-fraction, the data can be retrieved based on the recovery capability of the RS code.

31

2.3.3 Variable Length Constraint Group

Though efficient in encoding, πR-D has a high communication overhead for updates.

In πR-D, the PRP ψ is applied to the index of data symbols, thus making it sensitive

to insert/delete operations (e.g., one simple insertion/deletion may require the client to

download and to re-encode the entire file F).

To mitigate the drawbacks of πR-D, we propose a second construction called Variable

Length Constraint Group (VLCG). Like in πR-D, we still use the notion of constraint

groups, which are groups of symbols over which an RS code is computed. However, we

rely on two additional main insights.

Firstly, unlike in πR-D, in which symbols are assigned to constrained groups based

on the position (i.e., index) of the symbols in the file, VLCG assigns symbols to constraint

groups based on the value of the symbols. More precisely, for a data symbol b, we use hK(b)

to decide the index of the constraint group to which b belongs. This has the advantage

that, after we have inserted/deleted a data symbol into/from f , to update the parity, we

can insert/delete the data symbol into/from the corresponding constraint group, without

affecting other constraint groups.

Secondly, we employ several techniques to preserve robustness and minimize the

bandwidth overhead. For example, we reduce insert operations to append operations and

delete operations to modify operations when updating the RS-coded parity data.

We seek to maintain the same fault tolerance level (see definition in Section 2.2) for

all constraint groups (that is, for every (n, k) constraint group, d = n − k will be kept the

same after each update operation). All the parity symbols P should be permuted like in πR,

but there is no need to encrypt them (this is explained later in more detail).

32

Next, we give an overview of the VLCG construction, focusing on the Update and

Retrieve phases.

Update operations. For all update operations, we first execute the actual block update on

the file data, but the challenging step is how to efficiently update the RS-coded parity data.

Inserting a symbol into the file requires updating the parity symbols of the constraint

group to which the symbol is assigned. According to the analysis in Section 2.2, inserting a

symbol into a RS code (equivalent to inserting it into a constraint group) requires to retrieve

either all the data symbols in that constraint group, or all the parity symbols and some of

the data symbols in that constraint group. As we argued for the πR scheme (Section 2.1.2),

to ensure the δ-robustness guarantee, it is necessary that the association between symbols

and constraint groups remains hidden. Thus, it is insufficient to only retrieve symbols from

the corresponding constraint group. Moreover, it is not possible for the client to efficiently

determine which other symbols belong to that constraint group considering that the whole

file has been outsourced to the server and then deleted from the client. For these reasons,

the client would have to retrieve the entire file F. We overcome this limitation by: After we

have inserted a data symbol to the file, to update the parity symbols in the corresponding

constraint group, we always append this symbol to the end of the data symbols in that

constraint group (note that this operation is only for the purpose of updating parity, of

course, the symbol is physically inserted in the file at the desired location). The advantage

of this method is that appending a data symbol to a Cauchy RS code does not require to

download any data symbols and we can update the corresponding parity symbols based

only on the old parity (cf. Section 2.2). We note that ensuring δ-robustness prevents us

from retrieving only the parity symbols from this constraint group. Instead, we retrieve all

33

the parity data P (refer to Section 2.5 for further optimization). Thus the update bandwidth

factor is α = |P|
|D| .

Deleting a data symbol is more complex. Although under a benign setting this

operation could be achieved by only retrieving symbols from the same constraint group,

ensuring δ-robustness prevents us from using this strategy. Instead, we use a different

strategy: To delete a data symbol, we ask the server to physically delete the symbol from

F, but we update the parity symbols from the corresponding constraint group as if that

symbol was modified to have the value 0 (note that this operation is only for the purpose

of updating parity, of course, the symbol is physically deleted from the file). As a result,

the delete operation is converted into a modify operation when updating the RS-encoded

parity data for the corresponding constraint group (a similar strategy was previously used

in [11, 28]). A code modify operation, according to Section 2.2, only requires to download

the parity data and the old symbol from the corresponding constraint group. This means

that the update bandwidth factor can be kept as α = |P|
|D| for deletion.

Modifying a data symbol is the most complex operation because if a symbol is

modified to a new different value, it may be re-assigned to a different constraint group. The

old symbol must first be deleted from its current constraint group and the new symbol must

be inserted into a (possibly) new constraint group (i.e., it is a combination of an insertion

and a deletion). The update bandwidth factor remains α = |P|
|D| .

In Section 2.5, we propose an alternative method to optimize the communication

overhead for updates (α = log2 |P|
|D|) by using Oblivious RAMs to only retrieve the parity

symbols from the corresponding constraint groups.

34

Retrieve data. The method we use for deciding to which constraint group does a symbol

belong in VLCG introduces an additional challenge in the Retrieve phase. By using a

PRF over the value of the symbol to decide its constraint group, the encoded file contains

no information about the relative position of the symbols inside a constraint group. Note

that the initial position of the symbols inside a constraint group may change because of

update operations (i.e., modification of symbols). In case of data corruption, the RS code

computed over a constraint group will be used to recover the original symbols; however,

successfully decoding the RS code requires knowledge of the correct position of symbols

inside the constraint group. During file recovery, the correct position of symbols inside a

constraint group may be uncertain because of two reasons: (a) if a symbol is corrupted, the

client does not know to which constraint group did that symbol belong, and thus the symbol

will be missing from that constraint group during RS decoding; (b) if a symbol is deleted

(i.e., a valid delete operation), it does not exist anymore at the server (i.e., we cannot find

this symbol in the latest file version), but for RS decoding purposes the client should still

use a symbol with value 0 at the corresponding position in the constraint group to which the

symbol belongs (recall previously when deleting a symbol, we update the parity symbols

from the corresponding constraint group as if that symbol was modified to have the value

0).

We illustrate the uncertainty in decoding with an example. Assume that a constraint

group is a (6, 4) RS code (b1 b2 b3 b4 p1 p2). If b3 was corrupted, the RS decoding should

take as input (b1 b2 ? b4 p1 p2), whereas if b3 was deleted, the input for RS decoding should

be (b1 b2 0 b4 p1 p2). But how does the client know that in position 3 there should be a

corrupted symbol or a 0 symbol?

35

To deal with the uncertainty about symbol position in a constraint group during

decoding, we propose a strategy similar with the one used in HAIL [21]: To identify

the correct locations of data symbols (healthy and 0 symbols) in their corresponding

constraint groups, we convert the parity symbols into cryptographically secure Message

Authentication Codes (MACs). Based on these MACs, we use a brute force approach to

determine the correct position of symbols for RS decoding (full details in Figure 2.2). The

parity symbols are converted to secure MACs by composing them with a pseudorandom

function (PRF) (we call this operation masking). The PRF is computed over the file

identifier, the index of the corresponding constraint group, and the index of the parity

symbol in the constraint group. For example, using the (6,4) RS code described in

Section 2.2, the new parity symbols p′1 and p′2, which are also secure MACs over

b1, b2, b3, b4, are computed as:

p′1 = p1 + gK′ (file id||constraint group index||5)

p′2 = p2 + gK′ (file id||constraint group index||6),

where g is a PRF and all operations are over F2w , in which “+” and “−” can be regarded

as bitwise XORs. To strip off g from p′1 and p′2, we compute:

p1 = p′1 − gK′ (file id||constraint group index||5)

p2 = p′2 − gK′ (file id||constraint group index||6)

Since different constraint groups may end up having different sizes, the client needs

to keep track of the size of each constraint group 2. This can be done by recording either n

or k for each (n, k) RS code (because d = n−k is fixed for all constraint groups). Let Φ be

the set of (n, k) parameters for all constraint groups. For ease of presentation, we assume

2Knowledge of the (n, k) parameters is required for the operations in the Update and Retrieve
phases.

36

that Φ is stored (and updated) at the client. In Section 2.5 we discuss how to store Φ more

efficiently.

Finally, we note that since the parity symbols are masked with a PRF, there is no need

to further encrypt them as in step 3 of the πR construction (described in Section 2.1.2).

The VLCG construction.We are now ready to present the details of our main R-DPDP

construction, Variable Length Constraint Group (VLCG). We fix the parameters n and k

as the initial size of the RS code computed over each constraint group of k data symbols

and let d = n − k be the fault tolerance level of the code. For a file with f symbols

F = {b1,b2, . . . ,bf}, there will be m = f/k constraint groups and each constraint group

will initially have approximately n symbols (k data and d parity symbols). As file updates

are performed, the (n, k) parameters for different constraint groups will change, but the

fault tolerance level d = n − k will be preserved. Each file symbol is an element in the

Galois Field F2w .

Let κ be a security parameter. In addition, we make use of a pseudo-random

permutation (PRP) ϕ and two pseudo-random functions (PRF) h and g with the following

parameters:

ϕ : {0, 1}κ × {0, 1}md → {0, 1}md
h : {0, 1}κ × {0, 1}w → {0, 1}logm

g : {0, 1}κ × {0, 1}∗ → {0, 1}w

Figures 2.2 and 2.3 describe our VLCG construction, which can be built on top of any

DPDP scheme DPDP = (KeyGen DPDP, PrepareUpdate DPDP, PerformUpdate DPDP,

VerifyUpdate DPDP, GenChallenge DPDP, Prove DPDP, Verify DPDP). We construct

VLCG in four phases Setup, Challenge, Update, and Retrieve as follows.

37

KeyGen(1κ):

1. {skDPDP , pk} ← KeyGen DPDP(1κ), and K,K′ R← {0, 1}κ

2. Return {sk = {skDPDP ,K,K′}, pk}

PrepareUpdate(sk, pk,∆F,∆Di−1, info,Mc):

1. If info =“full re-write ” /*occurs in the Setup phase, to prepare the original file for outsourcing. ∆F is the original version
of the file, i = 1*/

• P = ComputeParityData(sk, pk,∆F,NULL, 0), ∆D = ∆F ||P , info′ = “full re-write”
• Return PrepareUpdate DPDP(skDPDP , pk,∆D, info

′,Mc)

/*For ease of presentation, we only consider block-level updates (this can be easily extended to arbitrary file portions), thus, in
the following, the block B = ∆F . If info is “delete” or “modify” a block, then ∆Di−1 is Pi−1||B′, and B′ denotes the
block to be deleted or modified. If info is “insert” a block, then ∆Di−1 is Pi−1.*/

2. Restore the original order of symbols in Pi−1 and strip off PRF g from them
3. If info = “insert B”

• Pi = ComputeParityData(sk, pk,B, Pi−1, 1), ∆D = Pi||B, info′ = “replace Pi−1 with Pi, insert block B”
4. Else if info = “delete B′ ”

• Pi = ComputeParityData(sk, pk,B′, Pi−1, 2), ∆D = Pi, info′ = “replace Pi−1 with Pi, delete block B
′”

5. Else if info = “modify B′to B”
• Pi = ComputeParityData(sk, pk,B′||B,Pi−1, 3), ∆D = Pi||B, info′ =
“replace Pi−1 with Pi, modify B

′ to B ”
6. Return PrepareUpdate DPDP(skDPDP , pk,∆D, info

′,Mc)

PerformUpdate(pk,Di−1,Mi−1, e(∆D), e(info), e(∆M)):
Return PerformUpdate DPDP(pk,Di−1,Mi−1, e(∆D), e(info), e(∆M))

VerifyUpdate(sk, pk,∆F,∆Di−1, info,Mc,M ′c, PM′
c
):

1. Re-compute ∆D and info′ according to the procedure in PrepareUpdate /*In fact, ∆D and info′ can directly be stored at
the client after PrepareUpdate, and there is no need to re-compute them*/

2. Return VerifyUpdate DPDP(skDPDP , pk,∆D, info
′
,Mc,M

′
c, PM′

c
)

GenChallenge(sk, pk,Mc): Return GenChallenge DPDP(skDPDP , pk,Mc)

Prove(pk,Di,Mi, c): Return Prove DPDP(pk,Di,Mi, c)

Verify(sk, pk,Mc, c,Π): Return Verify DPDP(skDPDP , pk,Mc, c,Π)

Decode(sk, pk,Di = Fi||Pi,Mi,Mc):

1. Check the freshness of the retrieved file using the dynamic verification structure (e.g., for DPDP that uses a skip list, re-compute
the root of the skip list using the verification tags as leaves and compare to the root stored at the client, which is part ofMc [12]).
If the check fails, then return failure.

2. Check the data blocks in Fi using the corresponding verification tags in Mi and discard the corrupted blocks. If there are no
corrupted data blocks, return Fi. Otherwise, assign the symbols in healthy data blocks to their constraint groups (i.e., for a
symbol b, the index of its constraint group is hK(b)).

3. Re-order all the parity symbols in Pi, strip off PRF g from them, and put them back to their right locations in the corresponding
constraint groups based on the (n, k) parameters of each constraint group.

4. For each (n, k) constraint group, apply brute force decoding as follows. Let k′ be the number of healthy symbols that have been
assigned to this constraint group. Consider all permutations of k′ symbols in k′ locations (out of k locations for data symbols),
together with k − k′ parity symbols (out of d parity symbols): (a) apply RS decoding on the k symbols to recover the original
data symbols; (b) re-compute the parity symbols; (c) if at least one of the newly computed parity symbols match the parity
symbols retrieved from the server, then the decoding for this constraint group is considered successful. If there are no successful
decodings, then further consider ` of the k−k′ locations as zero symbols (with 1 ≤ ` ≤ k−k′), together with k−k′− ` parity
symbols (out of d parity symbols), and further decode the k symbols as previously described. If there are still no successful
decodings, then return failure.

5. Return the successfully decoded file Fi.

Figure 2.2 VLCG: an R-DPDP construction.

38

ComputeParityData(sk, pk,B, Pi−1, f lag):
(run by the client to compute the parity in Setup phase or update the parity in Update phase)

1. If flag = 0 /*compute the parity for the original file in Setup phase. B represents the original file*/
• For each symbol b in file B, compute hK(b) to determine to which constraint group will b be assigned
• For each constraint group with k symbols (k may be different for different groups), apply a (k + d, k) RS code
• Let Pi be the collection of all the md parity symbols
• All the parity symbols in Pi are masked using PRF g and permuted using PRP ϕ, both keyed with K′

• Return Pi
2. Else if flag = 1 /*insertion, B represents the block to be inserted*/

• For each symbol b in block B, update in Pi−1 the constraint group with index hK(b) by appending b to the data symbols
of this constraint group

• Pi = Pi−1

3. Else if flag = 2 /*deletion, B represents the block to be deleted*/
• For each symbol b in block B, update in Pi−1 the constraint group with index hK(b) by modifying b to the zero symbol
• Pi = Pi−1

4. Else if flag = 3 /*modification of B′ to B, B = B′||B*/
• For each symbol b in blockB′, update in Pi−1 the constraint group with index hK(b) by setting b to be the zero symbol
• For each symbol b in blockB, update in Pi−1 the constraint group with index hK(b) by appending b to the data symbols
of this constraint group

• Pi = Pi−1

5. All the parity symbols in Pi are masked using PRF g and permuted using PRP ϕ, both with a new key K′ (the previous K′ will
be discarded after having verified the update successfully)

6. Return Pi

Figure 2.3 Computing the parity symbols in VLCG.

Setup. The client C runs {sk, pk} ← KeyGen(1κ), and then runs PrepareUpdate on the

file F. PrepareUpdate applies the PRF h over every symbol in F, determining the group

where each symbol is assigned to (there are m groups). For every group of k symbols (k

may be different for different groups, depending on how many symbols are assigned to the

groups), PrepareUpdate applies a (n = k+d, k) RS code and every group becomes a (n, k)

constraint group. Themd parity symbols from all the constraint groups will form the parity

data P. All the symbols in P are masked using PRF g and permuted using PRP ϕ, both

keyed with key K ′ (similar as in πR). PrepareUpdate then calls the PrepareUpdate DPDP

algorithm of DPDP to further process D = F||P.

The output of PrepareUpdate is sent to the server S. S runs PerformUpdate to fully

re-write the data (D and the corresponding verification tags inM) and sends back the proof.

C verifies the proof by running VerifyUpdate. If the verification is successful, C discards

39

D and M , and keeps all the (n, k) parameters; otherwise, C quits the protocol and retries

with a different server.

Challenge. As described in Section 2.3.1, the client challenges the server to prove data

possession using the GenChallenge, Prove, and Verify algorithms which simply call their

counterpart algorithms of DPDP.

Update. Three operations are available in the Update phase: insert, delete, and modify a

data block.

• Insert a data blockB. After having downloaded the whole file parity Pi−1 (i.e., ∆Di−1 =
Pi−1), C runs PrepareUpdate. C first restores the original order of the parity symbols
in Pi−1 and then strips off PRF g from them. For each symbol b in B, C updates the
constraint group with index hK(b) by appending b to the data symbols of the constraint
group (cf. Section 2.2). C obtains Pi by using PRF g to mask all the symbols in the
file parity P and by using PRP ϕ to permute them (g and ϕ are keyed with a new key
K ′). PrepareUpdate then calls the PrepareUpdate DPDP algorithm of DPDP to further
process the data Pi||B. The output of PrepareUpdate is sent to S. S runs PerformUpdate
and sends back the proof for updating the corresponding data correctly. C then runs
VerifyUpdate to check the proof. If successful, C discards Pi−1, B, and the old key K ′,
and updates the (n, k) parameters for the corresponding constraint groups to (n+ 1, k+
1); otherwise, C aborts the protocol and raises an alarm.

• Delete a data block B′. After having downloaded the whole parity data Pi−1 and the
block B′ that is to be deleted (i.e., ∆Di−1 = Pi−1||B′), C runs PrepareUpdate. It first
restores the original order of the parity symbols in Pi−1 and strips off PRF g from them.
For each symbol b in B′, it updates the constraint group with index hK(b) by modifying
the value of b to be zero (cf. Section 2.2). C obtains Pi by using PRF g to mask all the
symbols in the file parity P and by using PRP ϕ to permute them (g and ϕ are keyed
with a new key K ′). PrepareUpdate then calls the PrepareUpdate DPDP algorithm of
DPDP to further process Pi. The output of PrepareUpdate is sent to S. PerformUpdate
and VerifyUpdate are run just like in the insert a block operation above, except that there
is no need to update the (n, k) parameters after C verifies the update successfully.

• Modify a data block B′ to B. Modifying a data block B′ to B is equivalent to first
deleting the old block B′ and then inserting the new block B.

40

For each of these operations (insert, delete, modify a block), the client discards the

previous key K ′ after running VerifyUpdate and replaces it with the new K ′. Thus, C only

stores a constant amount of key material.

Retrieve. C downloads Di (the latest version of the encoded file D) and metadata Mi. C

then applies the Decode algorithm. If Decode returns failure, C should raise an alarm.

The Decode algorithm relies on brute force decoding to recover the file (VLCG can

tolerate up to d−1 erasures in each constraint group). We argue this is not a major concern

because, firstly, file recovery is usually a rare event; secondly, in Section 2.5 we present

an optimization that trades-off client computation during decoding for additional server

storage. We also note that during Decoding, verification tags are used to determine the

healthy data blocks and only symbols in healthy data blocks are assigned to their constraint

groups (thus, if the server swaps two symbols in the data file, the corresponding blocks will

be considered corrupted).

2.4 Security and Performance Analysis for VLCG

Security analysis for VLCG. The main difference between VLCG and πR-D in the Setup

phase is that VLCG determines the constraint groups by applying a PRF over the content

of data symbols, whereas πR-D determines them by applying a PRF over the indices of the

data symbols. The security properties of the PRF used to decide the constraint groups and

of the randomized encryption applied on the file data before being stored at the server,

ensure that the server can infer which symbols are in the same constraint group with

negligible probability. Moreover, VLCG masks and permutes the parity in a similar fashion

41

with the permuting and encrypting of the parity in πR-D, ensuring a similar δ-robustness

guarantee as for πR-D (see security analysis for πR-D).

The security of the Challenge and Update phases in VLCG relies on the security of

the underlying DPDP scheme (which ensures that large corruptions will be detected based

on spot-checking and that the server possesses the latest version of the file based on the

authenticated structure).

In the Update phase, for insert/delete operations, VLCG only downloads the parity,

updates the corresponding parity symbols, then re-masks and re-permutes the parity with

a new key, which is comparative to πR-D, in which although the whole file data is

downloaded (for the purpose of re-computing the parity), only the newly generated parity

is re-permuted and re-encrypted with a new key; for modify operations, both VLCG and

πR-D only download the parity (rather than the whole file data) and update the parity

correspondingly. In the Retrieve phase, both schemes rely on the same mechanisms

(metadata and authenticated data structure) to detect corruption. This implies that VLCG

and πR-D provide a similar security level. We leave a rigorous security analysis of VLCG

as future work.

Performance analysis for VLCG. For every update operation (insertion, deletion, and

modification), the update bandwidth factor α for VLCG is approximately |P||D| , whereas for

πR-D α is approximately |F||D| for insertion/deletion. Since d is usually small compared to

k (i.e., |P| is a lot smaller than |F|), the communication overhead for updates in VLCG is

significantly smaller than in πR-D.

The encoding computation for VLCG is close to that of πR-D, as expressed in the

following theorem:

42

Theorem 2.4.1. Let f be the number of symbols in the file F. If C1(f) is the computation

for encoding in πR-D, and C2(f) is the computation for encoding in VLCG, then we have:

C2(f) = Θ(C1(f)).

Proof. In πR-D, the encoding computation of one constraint group is approximately c(f
m

)2

(the computation for Cauchy RS encoding is approximately quadratic. d is small compared

to f
m

), while c is constant, thus, C1(f) ≈ m ∗ c(f
m

)2 = cf
2

m
.

In VLCG, the f symbols are distributed to m groups by using PRF h. Assume the

number of data symbols in the m constraint groups are k1, k2, ..., km. Then, C2(f) ≈

c(k2
1 + k2

2 + ...+ k2
m).

Let X be a random variable that denotes the number of data symbols in one constraint

group. We have:

The expected value of X: E(X) = f
m

The variance of X: V ar(X) = E(X2)− (E(X))2

C2(f) ≈ c(k2
1 + k2

2 + ...+ k2
m) ≈ c(mE(X2))

= cm(E(X)2 + V ar(X)) = cm((
f

m
)2 + V ar(X))

= c(
f 2

m
+mV ar(X))

limf→∞(C2(f)
C1(f)

) = limf→∞(1 + V ar(X)m
2

f2
) ≈ 1 (if h is a good PRF and the input for h is

random enough, V ar(X) will be approximately constant). Thus, C2(f) = ΘC1(f).

43

2.5 Discussion

Unlike πR-D in which all the constraint groups have the same fixed size, in VLCG the

length of each constraint group is variable. The client can determine which symbols belong

to the same constraint group by keeping track of the set Φ of (n, k) parameters for all the

constraint groups. A basic approach is to store Φ at the client, which will result in O(m)

additional client storage. An alternative approach is to store Φ at the server and securely

manage it using a Merkle hash tree; the client only stores the root of the tree, thus preserving

theO(1) client storage overhead; the communication overhead is increased byO(m) during

challenges of data possession, and by O(logm) during updates.

The number k of data symbols in a constraint group should be kept relatively small,

so that the (n, k) RS code can be computed efficiently over the constraint group. Once the n

and k parameters are fixed, the number of constraint groups m is determined as m = f/k.

As updates are performed, m remains the same, but the number of data symbols k in each

constraint groups may change (though the level of fault tolerance d = n− k is preserved).

Since delete operations do not reduce the size of the (n, k) RS code, k will increase over

time due to insert/modify operations. To avoid a prohibitive increase of k and keep the

(n, k) RS codes efficient to compute, as well as keep the zero symbols as few as possible

(to keep the brute force computation in the Decode algorithm at a minimum), the client C

should periodically perform a dynamic adjustment: After a certain number of updates C

retrieves the file and runs Setup to pre-process the file again; in this process, C may pick a

different m, depending on the size of the updated file. The amortized bandwidth factor for

updates will remain α = |P|
|D| .

We now describe one step that was previously omitted to simplify the description

of the VLCG construction. The assignment of data symbols to constraint groups is done

44

based on the value of each symbol. To ensure robustness, the server should not know which

symbols belong to the same constraint group. The client applies a layer of encryption before

storing the file at the server in order to hide that two equal symbols are mapped to the same

constraint group. Specifically, in the Setup phase, the succession of steps for the client

is: (1) encode the file and obtain the parity, (2) encrypt the file blocks (using randomized

encryption), (3) mask and permute the parity, (4) generate verification metadata over the

encrypted file and parity, (5) store the encrypted file, parity, and metadata at the server. As

a result, the client needs to remove this encryption layer whenever it gets file data from the

server, and add the encryption whenever it stores blocks at the server.

Finally, we remark that our VLCG construction is better suited for files with random

data in order to ensure that PRF h provides a balanced distribution of symbols into

constraint groups. For instance, files could be encrypted before applying the PRF, and then

be stored encrypted at the server (this may be desirable anyway if the data is of sensitive

nature).

Optimizing the worst-case computation for decoding in VLCG. The Decode algorithm

in VLCG has a high worst-case computation, since we do not know the correct positions

of healthy data symbols in their corresponding constraint groups. We propose to record

the position of each data symbol in its constraint group. For a file F with f symbols, we

maintain V a vector of positions with f elements. The vector V is stored encrypted at

the server (each element in V is encrypted independently), which prevents the server from

learning information about constraint groups. V is regarded as part of the file data during

the Setup and Challenge phases (thus, there will be verification tags computed over blocks

made of elements of V).

45

In the Update phase, changes on the file symbols should be mirrored by changes

in V: Whenever symbols are inserted, deleted, or modified in the file, a corresponding

element in V should be inserted, deleted, or modified, respectively (reflecting the symbol’s

new position in its constraint group).

In the Retrieve phase, V is retrieved together with all the data D. After having

checked the verification tags on D||V, the elements in V which have been found corrupted

are discarded. The healthy elements in V will indicate the position of each symbol inside

its constraint group. A lightweight brute force computation may still be required because,

firstly, for the corrupted elements in V, the client will lose the position information of

the corresponding (healthy) data symbols, thus, the positions of these symbols in their

constraint groups would have to be determined by brute force; secondly, symbols with 0

value introduced by “delete” and “modify” operations may exist in some constraint groups,

and the right positions for such symbols (if needed) will be determined by brute force

search. The parameters of the RS code should be selected to ensure that the brute force

search during Decode remains reasonable (e.g., for a code with n = 140, k = 128, d =

12, which requires to spot-check 1188 blocks in the Challenge phase to guarantee high

probability of corruption detection [8], the worse case running time for brute force is
(

140
12

)
,

which is approximately 238). This computation is reasonable considering that data retrieval

is a rare event.

Further optimizing the update communication. Compared to πR-D, which requires

to download the entire file for every update, VLCG only needs to download the parity

symbols. Although the parity is usually very small compared to the whole data, the

asymptotic communication per update is O(f), where f is the number of file symbols.

46

To further optimize the update communication to O(log2 f), we can use Oblivious RAM

(ORAM) techniques [46]. To update one symbol, instead of downloading the parity P

over the entire file, we use ORAM over P to only retrieve the d parity symbols of the

constraint group corresponding to the updated symbol. These symbols are updated (cf.

Section 2.3.3) and then written back to the server using ORAM. For example, when using

the ORAM scheme in [47], the amortized communication for every update will be reduced

to O(log2 f), at the cost of a slight increase in server storage (asymptotically, the server

storage remains O(f)) and server computation (by O(log2 f)).

Verification tags in VLCG. Remote data checking schemes designed for the static

case [7,10] embed the index of a block (i.e. its position in the file) inside the corresponding

verification tag. In order to support efficient dynamic updates, verification tags in

DPDP [12] are fundamentally different, as they do not embed the block indices inside

the verification tags. In DPDP, the tag for a block B is computed as gB mod N , where

N = pq is a product of two large primes p, q, and g is an element of high order in Z∗N .

Since N should be at least 1024 bits, when the block size is smaller than 1024 bits the size

of a tag will be larger than the size of a data block, which may result in an undesirably high

additional storage overhead. [13] provides another tag construction which can avoid this

issue, but the tags will be of the same size as the data blocks and the verification process is

based on expensive bilinear maps. In the following, we provide an alternative to compute

the verification tags in a prime-order field and the size of the verification tags will be smaller

than the data even when choosing the block size as small as a few hundred bits.

We adopt the tag construction method from [48]. Suppose every file block contains

s symbols (i.e., block mi consists of symbols mi1,mi2, ...,mis). Choose a group G of

47

prime order p, with p > max(2λ, 2w) (λ is a security parameter, and w is the length of the

symbol). Choose generators gi
R← G for i = 1, .., s. The public key pk = (p), and secret

key sk = (g1, ..., gs).

In the Setup phase, the tag Tmi for the block mi is computed as Tmi = Πs
k=1g

mik
k .

In the Challenge phase, the client sends to the server pairs (ij, aj), for 1 ≤ j ≤ C,

where C is the number of blocks to be challenged. The server runs Prove DPDP and

returns a proof (T, µk), where

T = ΠC
j=1T ajmij , µk =

C∑
j=1

ajmijk

for 1 ≤ k ≤ s (mijk is the k-th symbol in block mij).

The client runs Verify DPDP and accepts if T = Πs
k=1g

uk
k and if Mc verifies.

Proof of correctness:

T = ΠC
j=1T ajmij = ΠC

j=1(Πs
k=1g

mijk

k)aj = Πs
k=1g

∑C
j=1 ajmijk

k

= Πs
k=1g

uk
k

CHAPTER 3

REMOTE DATA CHECKING FOR NETWORK CODING-BASED DISTRIBUTED

STORAGE SYSTEMS

This chapter introduces RDC-NC, an RDC scheme for Network Coding-based distributed

storage systems. RDC-NC is the first RDC protocol built specifically for storage systems

which use network codes to distribute data redundantly across multiple untrusted servers.

It can be used to ensure data remain intact when faced with data corruption, replay, and

pollution attacks.

Remote data checking (RDC) has been shown to be a valuable technique by which

a client (acting as a verifier) can efficiently establish that data stored at an untrusted server

remains intact over time [7, 9, 10]. This kind of assurance is essential to ensure long-term

reliability of data outsourced at data centers or at cloud storage providers. When used with

a single server, the most valuable use of remote data checking lies within its prevention

capability: The verifier can periodically check data possession at the server and can thus

detect data corruption. However, once corruption is detected, the single server setting does

not necessarily allow data recovery. In previous chapter (Chapter 2), we present robust

dynamic provable data possession scheme, which ensures that data can be recovered upon

small corruptions. Unfortunately, it cannot allow data recovery upon large corruptions.

Thus, remote data checking has to be complemented with storing the data redundantly at

multiple servers. In this way, the verifier can use remote data checking with each server

and, upon detecting data corruption (e.g., a large corruption) at any of the servers, it can

48

49

use the remaining healthy servers to restore the desired level of redundancy by storing data

on a new server.

The main approaches to introduce redundancy in distributed storage systems are

through replication, erasure coding, and more recently through network coding [18, 19].

The basic principle of data replication is to store multiple copies of the data at different

storage servers, whereas in erasure coding the original data is encoded into fragments

which are stored across multiple storage servers. In network coding, the coded blocks

stored across servers are computed as linear combinations of the original data blocks.

Network coding for distributed storage systems and application scenarios. Network

coding for storage [18, 19] provides unusual performance properties well suited to deep

archival stores which are characterized by a read-rarely workload. The parameters of

network coding make reading data more expensive than data maintenance. Similar with

erasure coding, network coding can be used to redundantly encode a file into fragments

and store these fragments at n servers so that the file can be recovered (and read) from any

k servers. However, network coding provides a significant advantage over erasure coding

when coded fragments are lost due to server failures and need to be reconstructed in order

to maintain the same level of reliability: A new coded fragment can be constructed with

optimally minimum communication cost by contacting some of the healthy servers (the

repair bandwidth can be made as low as the repaired fragment). This is in sharp contrast

with conventional erasure codes, such as Reed-Solomon codes [49] which must rebuild the

entire file prior to recovering from data loss. Recent results in network coding for storage

have established that the maintenance bandwidth can be reduced by orders of magnitude

compared to standard erasure codes.

50

The proposals for using network coding in storage have one drawback though: The

code is not systematic; it does not embed the input as part of the encoded output. Small

portions of the file cannot be read without reconstructing the entire file. Online storage

systems do not use network coding, because they prefer to optimize performance for read

(the common operation). They use systematic codes to support sub-file access to data.

Network-coding for storage really only makes sense for systems in which data repair occurs

much more often than read.

Regulatory storage, data escrow, and deep archival applications present read-rarely

workloads that match well the performance properties of network coding. These

applications preserve data for future access with few objects being accessed during any

period of time. Many of these applications do not require sub-file access; they retrieve files

in their entirety. Auditing presents several examples, including keeping business records for

seven years in accordance with Sarbanes-Oxley and keeping back tax returns for five years.

Only those records that are audited or amended ever need to be accessed, but retaining

all data is a legal or regulatory requirement. Medical records are equally relevant. The

Johns Hopkins University Medical Image Archive retains all MRI, CAT-scan, and X-ray

images collected in the hospitals in a central repository of more than 6 PB. A small fraction

of images are ever accessed for historical tracking of patients or to examine outcomes of

similar cases. Preservation systems for the storage of old books, manuscripts, data sets also

present a read-rarely workload. Furthermore, standards for archival storage [50] represent

data as an indivisible package and do not support subfile access. In applications, the size of

the data and the infrequency of reads dictate that the performance of storage maintenance,

re-encoding to mitigate data loss from device or system failures, dominates the performance

requirements of read.

51

A holistic approach for long-term reliability. To ensure long-term data reliability in a

distributed storage system, after data are redundantly stored at multiple servers, we can

loosely classify the actions of a client into two components: prevention and repair. In

the prevention component, the client uses remote data checking protocols to ensure the

integrity of the data at the storage servers. In the repair component, which is invoked

when data corruption is detected at any of the servers, the client uses data from the healthy

servers to restore the desired redundancy level. Over the lifetime of a storage system, the

prevention and repair components will alternate. Eventually, there will also be a retrieval

component, in which the client recovers the original data (although this happens rarely for

archival storage systems).

In this work, we take a holistic approach and propose novel remote data checking

techniques to minimize the combined costs of the prevention and repair components.

Previous work on remote data checking has focused exclusively on minimizing the cost

of the prevention component (e.g., replication [22] and erasure coding [21, 28] based

approaches). However, in the distributed storage settings we consider, the cost of the repair

component is significant because over a long period of time servers fail and data needs to

be re-distributed on new servers. Our work builds on recent work in coding for distributed

storage [18, 19], which leverages network coding to achieve a remarkable reduction in the

communication overhead of the repair component compared to an erasure coding-based

approach. Unfortunately, this work was proposed for a benign setting. In essence, we seek

to preserve in an adversarial setting the minimal communication overhead of the repair

component when using network coding. The main challenge towards achieving this goal

stems from the very nature of network coding: In the repair phase, the client must ensure

the correctness of the coding operations performed by servers, without having access to the

52

original data. At the same time, the client storage should remain small and constant over

time, to conform with the notion of outsourced storage.

The need for remote data checking in distributed storage systems. Read-rarely archival

storage also requires introspection and data checking to ensure that data are being preserved

and are retrievable. Since data are rarely read, it is inadequate to only check the correctness

and integrity of data on retrieval. Storage errors, from device failures, torn writes [51],

latent errors [52], and mismanagement may damage data undetectably. Also, storage

providers may desire to hide data loss incidents in an attempt to preserve their reputation or

to delete data maliciously to reduce expenses [7]. Deep archival applications employ data

centers, cloud storage, and peer-to-peer storage systems [53] in which the management of

data resides with a third party: Not with the owner of the data. This furthers the need for

the data owner to check the preservation status of stored data to audit whether the third

party fulfills its obligation to preserve data.

The performance properties of remote data checking protocols, such as PDP [7]

and PoR [9], also conform to read-rarely workloads. These protocols allow an auditor

to guarantee that data are intact on storage and retrievable using a constant amount of

client metadata, constant amount of network traffic, and (most importantly) by reading a

constant number of file fragments [7]. Large archival data sets make it prohibitive to read

every byte periodically. Remote data checking protocols sample stored data to achieve

probabilistic guarantees. When combined with error correcting codes, the guarantees can

reach confidence of 10−10 for practical parameters [16]. Error correcting codes ensure

that small amounts of data corruption do no damage, because the corrupted data may

be recovered by the code, and that large amounts of data corruption are easily detected,

because they must corrupt many blocks of data to overcome the redundancy.

53

Table 3.1 Parameters of Various RDC Schemes
Replication Erasure Coding Network Coding

(MR-PDP [22]) (HAIL [21]) (RDC-NC)
Total server storage n|F| n|F|

k
2n|F|
k+1

Communication (repair phase) |F| |F| 2|F|
k+1

Network overhead factor (repair phase) 1 k 1
Server computation (repair phase) O(1) O(1) O(1)

We assume that RDC-NC uses an MBR code, under the additional constraint to minimize the total
server storage, as introduced in Section 3.6. For the repair phase, we describe the costs for the case
when one storage server fails.

The combination of remote data checking and network coding makes it possible to

manage a read-rarely archive with a minimum amount of I/O. Specifically, one can detect

damage to data and recover from data using I/O sub-linear in the file size: A constant

amount I/O per file to detect damage and I/O in proportion to the amount of damage to

repair the file.

3.0.1 Solution Overview

We propose RDC-NC, Remote Data Checking for Network Coding-based distributed

storage systems. Table 3.1 compares RDC-NC with previous RDC schemes. The

underlying substrate for adding redundancy in RDC-NC is based on network coding,

whereas in previous work it is based on replication and erasure-coding.

To ensure the security of the prevention component, we adapt RDC techniques used

in the single server setting [10]. We present a scheme in which only the data owner can

check data possession (i.e., it is privately verifiable). However, our scheme can be extended

using the techniques in [7, 10] to achieve public verifiability for the prevention phase (i.e.,

anyone, not just the data owner, can challenge the server to prove data possession).

54

For the security of the repair component, our solution ensures that the data provided

by contributing servers is valid and preserves the amount of desired redundancy in the

system. This will ultimately ensure that the original data can be recovered after an

arbitrarily many repairs. We identify the replay and pollution attacks. The proposed RDC

schemes successfully mitigate these attacks. To render replay attacks harmless, we use a

simple but effective solution: The network coding coefficients are stored encrypted on the

server; moreover, the client is the one that chooses the coding coefficients and enforces

their use. To prevent pollution attacks, we use an additional repair verification tag, which

allows the client to check that a server combines its blocks correctly during the repair phase.

3.1 Related Work

Multiple-server RDCs. Single-server RDC schemes [8–15, 24, 25] focus on detecting

corruptions among outsourced data, which cannot allow data recovery upon having found

out a corruption (specifically, a large corruption). Multiple-server RDC schemes allow both

corruption detection, as well as data recovery. Curtmola et al. [22] proposed an efficient

RDC scheme for replication-based distributed storage systems, while Bowers et al. [21]

and Wang et al. [28] built RDC schemes for erasure coding-based distributed storage

systems. Currently, no RDC scheme is available for network coding-based distributed

storage systems, which provide unusual performance properties well suited to read-rarely

archival stores.

Replay attacks and pollution attacks in network coding. The replay attacks we identify

may lead to a reduction in data redundancy, similar to the entropy attacks identified by

Jiang et al. [54] in a network setting, in which intermediate nodes forward non-innovative

55

packets. The solution of Jiang et al. relies on checking if a new coded packet is linearly

independent with all previously coded packets. In our distributed storage setting, their

solution cannot preserve the minimal communication overhead of the repair component.

Pollution attacks always exist when network coding is used to improve the throughput of

communication over a network, since the untrusted intermediate servers are responsible to

re-encode the data blocks. A line of work on signatures for network coding [48,55] ensures

that intermediate nodes perform correctly the encoding operations. Our storage setting is

different because the client is the one that chooses the coding coefficients and enforces

their use by the servers. Moreover, the solution in [55] leads to an increase in the size of

the coded blocks after each encoding operation and cannot be used in a long-term storage

setting where the number of repair operations is unbounded.

3.2 Background on Distributed Storage Systems

We give an overview of the main approaches proposed in distributed storage systems to

store data redundantly across multiple storage servers: replication-based, erasure coding-

based, and network coding-based. These are effective in a non-adversarial setting, where

only benign faults may occur. For each, we outline the storage cost to store data redundantly

and the network cost to restore the desired level of redundancy when a server fails. We also

formulate the data recovery condition, which captures the amount of corruption that can

be tolerated without affecting the ability to recover the original data. These approaches are

illustrated in Figure 3.1.

We consider a file F that needs to be stored redundantly (we denote the size of F

by |F|). To express the network overhead of the repair component, we define the network

overhead factor as the ratio between the amount of data that needs to be retrieved (from

56

healthy servers) to the amount of data that is created to be stored on a new server. This will

be our primary metric to measure the communication cost of the repair component.

3.2.1 Replication

Replication is the simplest form of redundancy and many storage systems have adopted

it. The client stores one file replica at each of ` servers. Thus, the original file can be

recovered from any of the ` servers. The storage cost is `|F| across all servers. Upon

detecting corruption of a replica, the client can use any one of the healthy replicas to create

a new replica. As part of the repair component, in order to create a new replica of size |F|,

the client needs to retrieve a replica of size |F|. Thus, the network overhead factor is 1.

Data recovery condition: The original file can be recovered as long as at least one

of the ` replicas is not corrupted.

3.2.2 Erasure Coding

In erasure coding, given a file F of k blocks, the client uses a (n, k) maximum distance

separable erasure code to create n coded blocks out of the original k file blocks, and stores

them at n servers (one coded block per server). Thus, the original file can be recovered

from any k out of the n servers. Whenever the client detects corruption of one of the

coded blocks, it can use the remaining healthy blocks to regenerate the corrupted coded

block. The storage cost is |F|n
k

across all servers (|F|
k

per server). This is optimal in terms

of redundancy-reliability storage tradeoff1. Compared with the replication-based solution,

erasure coding has a higher network overhead cost for the repair component: To create

1Compared with replication, erasure coding achieves a reliability level that is an order of magnitude
higher for the same redundancy level [56].

57

one new coded block, the client has to first reconstruct the entire file (i.e., retrieve k coded

blocks), thus incurring a network overhead factor of k.

Data recovery condition: The original file can be recovered as long as at least k out

of the n coded blocks are not corrupted.

3.2.3 Network Coding for Distributed Storage

Recent work in coding for distributed storage [18, 19] has shown that the k network

overhead factor for the repair component is not unavoidable (as it was commonly believed).

Given a file represented by m input blocks, b̄1, b̄2, . . . , b̄m, the client uses network coding

to generate coded blocks as linear combinations of the original m file blocks. Each input

block b̄i can be viewed as a column vector: b̄i = (bi1, bi2, . . . , biu), where bij are elements

in a finite field F2w and are referred to as symbols.

Given a coding coefficient vector (x1, . . . , xm), in which xi are chosen at random

from F2w , a coded block c̄ is computed as a linear combination of the input blocks:

c̄ =
m∑
i=1

xib̄i, where all algebraic operations are over F2w .

The linear combinations of the symbols in the input blocks are performed over a

finite field using randomly chosen coefficients. Thus, a coded block has the same size as an

original file block and can also be viewed as a column vector c̄ = (c1, . . . , cu). It has been

shown [57, 58] that if the coding coefficients are chosen at random from a large enough

field (i.e., at least F28), then the original file can be recovered from m coded blocks by

solving a system of m equations (because the m coded blocks will be linearly independent

with high probability).

58

These coded blocks are then stored at servers, with each server storing α′ bits2, which

comprises of α = α′/|B| coded blocks, where |B| = |F|/m denotes the size of a block (both

original and coded). Thus, α = α′m/|F|.

To achieve a similar reliability level as in erasure coding, the client stores data on n

servers such that any k servers can be used to recover the original file with high probability.

This means that any k servers will collectively store at least m coded blocks.

When the client detects corruption at one of the storage servers, it contacts ` healthy

servers and retrieves from each server β′ bits (which comprises of β = β′/|B| = β′m/|F|

coded blocks, obtained as linear combinations of the blocks stored by the server). The

client then further linearly combines the retrieved blocks to generate α coded blocks to

be stored at a new server. Unlike in the erasure coding-based approach, the client does

not have to reconstruct the entire file in order to generate coded blocks for a new server;

instead, the coded blocks retrieved from healthy servers contain enough novel information

to generate new coded blocks. The network overhead factor is thus less than k.

The storage cost is nα′ bits across all servers (α′ bits per server). The network

overhead of the repair component is γ′ = `β′ bits, so the network overhead factor is γ′

α′
.

There is a tradeoff between the storage cost and the repair network overhead cost [19].

In short, for every tuple (n, k, `, α′, γ′), there exists a family of solutions which has two

extremal points on the optimal tradeoff curve:

• One extremal point uses the pair (α′, γ′) =
(
|F|
k
, |F|`
k(`−k+1)

)
to minimize the storage cost

on the servers. It is referred to as a minimum storage regenerating (MSR) code. The

2For each coded block, the coding coefficients are also stored. This assumption is implicit in any
network coding-based system and for simplicity we do not add the coefficients to the storage cost
as their size is usually negligible compared to the actual coded data.

59

storage cost per server is |F|/k, same as in the erasure coding-based approach3, but this
approach has a network overhead factor of `

`−k+1
and outperforms erasure coding in

terms of network cost of the repair component whenever ` > k.

• The other extremal point minimizes the network overhead of the repair component by
using the pair (α′, γ′) =

(
2|F|`

2k`−k2+k
, 2|F|`

2k`−k2+k

)
. It is referred to as a minimum bandwidth

regenerating (MBR) code. Remarkably, it incurs a network overhead factor of 1, the
same as a replication-based approach. The tradeoff is that this point requires each server
to store (slightly) more data than in erasure coding.

Data recovery condition: The original file can be recovered as long as at least k out

of the n servers collectively store at least m coded blocks which are linearly independent

combinations of the original m file blocks.

An Example. We illustrate the three approaches in Figure 3.1. Detailed explanations

are as follows:

(a) In replication, copies of the file are stored at three servers, S1, S2, S3. When the replica
at S3 gets corrupted, the client uses the non-corrupted replica at S1 to create a new
replica of size 2 MB. The client retrieves 2 MB in order to generate a new replica of
size 2 MB, so the network overhead factor is 1.

(b) In erasure coding, the original file has two 1 MB blocks (b1,b2) and is encoded into
three blocks (c1,c2,c3), using a (3, 2) erasure code (so that F can be reconstructed
from any two coded blocks). Each coded block is stored at a different server. When c3

gets corrupted, the client first retrieves c1 and c2 to reconstruct F and then regenerates
the coded block c3. The client retrieves 2 MB in order to generate a new block of size
1 MB, so the network overhead factor is 2.

(c) In network coding, the original file has three 0.66 MB blocks and the client computes
coded blocks as linear combinations of the original blocks. Two such coded blocks are
stored on each of three storage servers. Note that this choice of parameters respects
the guarantees of a (3, 2) erasure code (i.e., any two servers can be used to recover
F, because they will have at least three linearly independent equations, which allows
to reconstruct the original blocks b1,b2,b3). When the data at S3 gets corrupted,
the client uses the remaining two servers to create two new blocks: The client first
retrieves one block from each healthy server (obtained as a linear combination of the
server’s blocks), and then further mixes these blocks (using linear combinations) to

3Indeed, this extremal point provides the same reliability-redundancy performance with erasure
coding.

60

F

F

F

F

F

2 MB

S1

S2

S3

S'

S3 fails

new replica
created

(a) Replication

b1

b2

c1

c2

c3

c3
1 MB

1 MB

S1

S2

S3

S'

S3 fails

new coded
block created

(b) Erasure coding

b1

b2

b3

b1
b2

 b3
 b1+b2

 b1+b3
 b2+b3

b1+2b2
1

2

b1+b2+b3
1

1

2b1+3b2+b3
3b1+4b2+2b3

1

1
2

10.66 MB

0.66 MB

0.66 MB

S1

S'

S2

S3

S3 fails

new coded
blocks created

(c) Network coding

Figure 3.1 Example of various approaches for redundantly storing a file F of 2 MB.

obtain two new coded blocks which are stored at a new server. The numbers on the
arrows represent the coefficients used for the linear combinations. The client retrieves
1.33 MB in order to generate a new coded block of size 1.33 MB, so the network
overhead factor is 1.

61

3.3 System and Adversarial Model

Initially, the client stores data redundantly across a set of n storage servers, S1, S2, . . . , Sn.

We adopt an adversarial model similar to the one in HAIL [21]. We assume a mobile

adversary that can behave arbitrarily (i.e., exhibits Byzantine behavior) and can corrupt

any (and potentially all) of the servers over the system lifetime. However, the adversary

can corrupt at most n − k out of the n servers within any given time interval. We refer to

such a time interval as an epoch.

From an adversarial point of view, a storage server is seen as having two components,

the code and the storage. The code refers to the software that runs on the server and defines

the server’s behavior in the interaction with the client, whereas the storage refers to the data

stored by the server.

In every epoch, the adversary may choose a new set of n − k servers and corrupt

both the code and the storage component on these servers. At the end of each epoch, we

assume that the code component of each server is restored to a correct state4. Although the

code component is restored, the storage component may remain corrupted across epochs.

Thus, in the absence of explicit defense mechanisms, the storage at more than n−k servers

may become corrupted and cause the original data to become unrecoverable. The client’s

goal is to detect and repair storage corruption before it renders the data unavailable. To

this end, the client checks data possession with the servers in every epoch and if it detects

faulty servers, it uses the redundancy at the remaining healthy servers to repair data at faulty

servers.

An epoch consists of two phases:

4From a practical point of view, this is equivalent to removal of malware by reinstalling software.

62

1. A challenge phase that contains two sub-phases:
(a) corruption sub-phase: The adversary corrupts up to b1 servers.
(b) challenge sub-phase: The client performs checks of data possession with the
servers. As a result, the client may detect servers with corrupted storage (i.e., faulty
servers).

2. A repair phase that contains two sub-phases and is triggered only if corruption is
detected during the challenge phase:
(a) corruption sub-phase: The adversary corrupts up to b2 servers.
(b) repair sub-phase: The client repairs the data at any faulty servers detected in the
challenge phase.

The total number of servers that can be corrupted by the attacker during an epoch is

at most n− k (i.e., b1 + b2 ≤ n− k).

The structure of an epoch is similar with the one in [21], with one modification:

We explicitly allow the adversary to corrupt data after the challenge phase. This models

attackers that act honestly during the challenge phase, but are malicious in the repair phase.

3.4 RDC for Network Coding

In this section, we present our main RDC-NC scheme. To facilitate the exposition, we

gradually introduce a series of challenges and our approaches to overcome them, leading

to the main RDC-NC scheme in Section 3.4.4.

We consider remote data checking schemes for a storage system that relies on

network coding to store and repair data as described in Section 3.2.3. The client chooses

a set of parameters (n, k, `, α′, γ′) (in Section 3.6 we give guidelines on how to choose the

parameters in a setting where the storage servers are untrusted). The file F is split into m

blocks, b̄1, . . . , b̄m. The client computes and stores α = α′m
|F| coded blocks at each of the

n servers (i.e., server Si stores coded blocks c̄i1, . . . , c̄iα). A coded block is computed as a

linear combination of the original m file blocks.

63

3.4.1 Can Existing RDC Schemes be Extended?

We start by examining challenges that arise when designing RDC schemes for a network

coding-based distributed storage system. These stem from the underlying operating

principle of network coding, which computes new coded blocks as linear combinations

of existing blocks in the repair phase. We first focus on the challenge phase, followed by

the repair phase.

The challenge phase. Single-server RDC schemes compute verification metadata,

which is stored together with the data and facilitates data integrity checks (Section 6.3.2).

Such schemes can be extended to a multiple-server setting if we regard each coded block

as a collection of segments and the client computes a challenge verification tag for each

segment. A single-server RDC scheme based on spot checking (Section 6.3.2) can then be

used to check integrity of each of the α blocks stored by each of the n servers.

This approach must ensure that server Si stores the blocks that it is supposed to store

(i.e., blocks c̄i1, . . . , c̄iα). Note that a direct application of a single-server RDC scheme

does not achieve this guarantee, as a malicious server Si could simply store the blocks and

tags of another (honest) server and successfully pass the integrity challenges. This would

reduce the overall redundancy across servers and will eventually lead to a state where the

file becomes unrecoverable, without the client’s knowledge. To prevent this attack, the

index of a block must be embedded into the verification tags associated with the segments

of that block.

In a distributed storage system that uses erasure coding to store a file redundantly

across multiple servers, each of the n storage servers is assigned one erasure-coded block

(i.e., server Si is assigned erasure-coded block i). For erasure coding, the layout of the

encoded file is fixed and is known to the client (because the client knows the parity matrix

64

used for the erasure code). As a result, when coded block i is found corrupted, the same

exact block i will be reconstructed by the repair phase. Thus, it is straightforward to embed

the index of a block into challenge verification tags, as the client can use the same index

i to challenge possession of the i-th block regardless of how many repair operations have

occurred.

When the storage system relies on network coding (as opposed to erasure coding),

one complication arises because the layout of the coded file is not fixed anymore. As

servers fail, the client does not reconstruct the same blocks on the failed servers (like in

the erasure coding-based solution). Instead, the client retrieves new coded blocks from the

healthy servers and recombines them using randomly chosen coefficients to obtain other

new coded blocks. Thus, it becomes challenging to maintain constant storage on the client

and, at the same time, verify that each server stores the blocks it is supposed to store.

The repair phase. A malicious server may store the correct blocks it is supposed

to store, and may act honestly in the challenge phase. However, the server may act

maliciously in the repair phase, when it is asked to contribute coded blocks during the

process of reconstructing blocks after a server failure. If the server does not combine its

blocks correctly and contributes corrupted blocks, the corrupted blocks will lead to further

corruption in the system as they are being combined with blocks from other servers. This

pollution attack is possible because the client does not have access to the original blocks

in order to check if the encoding operation was performed correctly by the server. Our

RDC-NC scheme in Section 3.4.4 prevents pollution attacks in the repair phase by using a

repair verification tag (different from challenge verification tags).

65

3.4.2 How to Maintain Constant Client Storage?

The intuition behind our solution to maintain constant storage on the client is that we assign

logical identifiers to the coded blocks stored at each server and embed these identifiers

into the challenge verification tags. Each server stores α coded blocks, thus the n servers

collectively store nα coded blocks. We assign logical identifiers to these nα coded blocks,

in the form “i.j”, where i is the server number and j is the block number stored at server

i. For example, in Figure 3.1(c), the blocks stored at servers S1 have identifiers “1.1” and

“1.2”, and the blocks stored at S3 have identifiers “3.1” and “3.2”. Note that server S1

cannot pass integrity challenges by using blocks with identifiers “2.1” or “2.2”, which are

supposed to be stored on S2.

When S3 fails, the new coded blocks computed by the client to be stored on S ′

maintain the same identifiers “3.1” and “3.2”. This identifier is embedded into the challenge

verification tags for the segments of each coded block. When the client wants to challenge

the blocks stored on S ′, it can regenerate the logical identifiers “3.1” and “3.2” (thus the

client can maintain constant storage).

We place no restriction on which server stores a block with a certain logical identifier,

as long as each server keeps track of the logical identifier of the blocks it stores. Thus, we

allow coded blocks to freely migrate among storage servers. The only assumption we make

is the existence of a discovery service which can locate the server which stores the block

with a given logical identifier “i.j”.

3.4.3 Replay Attacks

One concern with using logical identifiers is that a malicious server can reuse previously

coded blocks with the same logical identifier (even old coded blocks that were previously

66

stored on failed servers) in order to successfully pass the integrity verification challenge.

The data recovery condition could be broken if the malicious server is able to find and

reuse old coded blocks such that they are linearly dependent with other coded blocks that

are currently stored across servers. In essence, this is a replay attack that could potentially

lead to breaking the data recovery condition. In Appendix B.1, we give a concrete replay

attack example for a configuration similar with the one in Figure 3.1.

Simple defense against replay attacks. The client stores an additional version information

in the challenge verification tags. The version acts as a counter that starts from 0 and is

incremented each time the blocks on a server are recreated due to server failure. There is

only one version counter for all the blocks at a server (repairing a faulty server involves

regenerating all the blocks on that server). The client needs to store locally the latest value

of the counter for each of the n servers. In addition to the usual integrity check, the client

also checks that its current counter value is embedded in the tags used by the servers to

pass the check, which prevents a server from passing the check by using an old version of

a block with the same logical identifier. The storage cost for the client now becomes O(n),

which may be acceptable in practical settings where n (the number of storage servers) is

small. Unfortunately, O(n) client storage does not conform with our notion of outsourced

storage and, from an asymptotic point of view, a more efficient solution is desirable.

A more efficient solution to mitigate replay attacks. While the example in Appendix B.1

shows that successful replay attacks are possible, the example is somewhat artificial in that

the coding coefficients used in the repair phase are specifically chosen in order to break the

data recovery condition. In fact, replaying old coded blocks is only harmful if it introduces

additional linear dependencies among the coded blocks stored at the servers (i.e., entropy

67

is reduced). Otherwise, replay attacks are not harmful, because the underlying principle

that ensures the validity of network coding is preserved.

We mitigate replay attacks by adopting a very simple but effective solution: In

traditional network coding, the coding coefficients are stored in plaintext at the servers

together with their corresponding coded blocks (note that to maintain constant client

storage, the coding coefficients should always be stored in the servers, rather than in

the client). Instead, we store the coding coefficients encrypted in the servers, which will

prevent the adversary from knowing how the original blocks were combined to obtain the

coded block. Thus, even if the adversary corrupts servers, its ability to execute harmful

replay attacks is negligible, as it does not have the necessary knowledge to target certain

blocks on certain servers or to know which old coded blocks to replay. Theorem 3.4.1

shows that by encrypting the coding coefficients, a malicious server’s ability to execute a

harmful replay attack becomes negligible.

Theorem 3.4.1. We consider a network coding-based distributed storage system in which

any k out of n servers can recover a file with high probability. Let P1 be the probability

to recover the file in a setting where the coding coefficients are stored in plaintext and the

storage servers are not malicious (i.e. a benign setting). Let P2 be the probability to recover

the file in a setting where the coding coefficients are stored encrypted and the adversary

can corrupt storage servers and execute replay attacks. Then, |P1 − P2| ≤ ε, where ε→ 0

(i.e., these probabilities are negligibly close).

Proof. (sketch) In Fig. 3.2, we use a representation of the distributed storage system similar

with the information flow graph used in [18, 19] to describe how encoded data is stored at

storage nodes and how data is transmitted for the purpose of repairing faulty storage nodes

68

S

...
...

epoch 1

...

...

S
Legend

source node
server 1

server i1

server i2

server n

healthy node

corrupted node

information
flow

...

...
...

server i3

... ...

...
...

...

epoch 2 epoch t-1 epoch t

Figure 3.2 An illustration of the information flow graph after t epochs. A node in this
graph represents the storage at a specific server in a particular epoch. The source node S
has the original file, which is then encoded using network coding and stored at n servers.
In each epoch, the data on at most n − k servers can be corrupted (due to either benign or
adversarial faults). At the end of each epoch, the servers with corrupted data are detected
and repaired using data from k healthy servers. An information flow arrow incoming into
a node in epoch i means that the node is repaired at the end of epoch i using data from
healthy nodes.

and for recovering the original data. In each epoch the data on at most n− k servers can be

corrupted due to benign faults or due to the attacker. At the end of each epoch, the servers

with corrupted data are detected and repaired using data from k healthy servers.

We first consider the benign setting, where only non-adversarial faults may occur.

The system guarantees that the original file can be recovered from any k out of the n

nodes with high probability. This guarantee holds for any epoch, after the repair phase.

Equivalently, there are
(
n
k

)
receivers [58] that can recover the file (i.e., receiver 1 can recover

the file from servers 1, . . . , k, receiver 2 can recover the file from servers 1, . . . , k−1, k+1,

etc).

We then consider a setting in which data may be corrupted due to both non-

adversarial or adversarial faults (i.e., servers may fail due to benign faults or the adversary

69

may target to corrupt data on specific servers). Corrupted data is detected and repaired in

each epoch. However, the attacker records all data prior to corruption and accumulates all

old coded blocks. Let Nt denote the number of all nodes in the information flow graph

after t epochs, except for the source node (this includes both healthy and corrupted nodes).

Thus, in epoch t + 1, the attacker can access data from Nt nodes to execute the replay

attack. We distinguish between two cases:

Unencrypted coefficients. The coding coefficients are stored in plaintext together with
the coded data. We now show that, at the end of epoch t, the system must guarantee that
any k nodes out of Nt can recover the file, under the condition that the k nodes belong
to different servers (since the logical identifier ensures that a node can only be used for a
specific server). If, at the end of epoch t, there exists at least one set of k nodes out of
Nt which belong to different servers and which do not have enough information to recover
the file, then the attacker can use this set to cause permanent damage (we refer to this
one set as the “bad” set). Then, over the course of at most d k

n−ke epochs (n − k servers
per epoch), the attacker can execute replay attacks and gradually replace current data on
the k servers corresponding to the nodes in the “bad” set with old data from the nodes
in the “bad” set. The replay attacks will not be detected. Then, in the next epoch, the
attacker corrupts data on the other n− k servers, causing permanent file damage, since the
k servers corresponding to the “bad” set do not have enough information to recover the file.
Equivalently, there are

(
Nt
k

)
− f(t) receivers that should be able to recover the file, where

f(t) represents the number of receiver that are connected to nodes that belong to the same
server. We have (t − 1)(

(
n
k

)
− 1) +

(
n
k

)
≤
(
Nt
k

)
− f(t) ≤ tn

(
n
k

)
. According to Theorem 1

in [58], for a fixed field size, a system based on random linear network coding has an upper
bound on the number of receivers it can support. Thus, since

(
Nt
k

)
− f(t) grows unbounded

as t grows, the system cannot guarantee that the original file can be recovered.
Encrypted coefficients. The coding coefficients are stored encrypted together with the

coded data. Since the attacker has no knowledge of the coding coefficients, it has no better
strategy than picking at random data it has stored from nodes that were corrupted in the
past, and using this data to replace data currently stored on servers. Note that replay attacks
remain undetectable only if old data from server i is replayed on the same server i, because
of the logical identifiers embedded in the challenge verification tags. This means that,
unlike in the case of unencrypted coefficients, the system should only guarantee that at
the end of epoch t the file can be recovered from any k out of n nodes. But this is the
same guarantee that is already achieved by the system in the benign case! Intuitively, the
guarantee is preserved because, even if there exists a “bad” set of k nodes (belonging to k
different servers), the attacker cannot identify these nodes (as the coefficients are encrypted)
and can only pick nodes at random for the replay attack.

70

In Appendix B.2, we provide a simulation to further validate Theorem 3.4.1. Thus,

we conclude that when coding coefficients are encrypted, the replay attack is a negligible

threat. As a result, the client does not need to take other explicit countermeasures to

mitigate the replay attack, besides encrypting the coefficients.

Additionally, since the malicious servers will help generate the data in the repair

phase, and they can simply use the coefficients which are not random enough to generate

the data, so that the entropy of the network coding-based storage systems may be reduced

(i.e., entropy attack). To mitigate such an attack, in the repair phase, the client chooses the

random coefficients that should be used by the servers and enforces their use by the servers.

For the remainder of this section, we will give a solution in which the coding coefficients are

encrypted before being stored on the servers, and the client picks the random coefficients,

and enforces the servers to use them during repair.

3.4.4 Remote Data Checking for Network Coding (RDC-NC)

We are now ready to present the network coding-based RDC scheme (RDC-NC) that

provides defense against both direct data corruption attacks and replay attacks, and is able

to maintain constant client storage.

Recall that the file F is split into m blocks, b̄1, . . . , b̄m. The client computes and

stores α = α′m
|F| coded blocks at each of n servers (i.e., server i stores coded blocks

c̄i1, . . . , c̄iα). We use the notation c̄ij to refer to the j-th coded block stored by the i-th

server). A coded block is computed as a linear combination of the original m file blocks.

We use two independent logical representations of file blocks, for different purposes:

• For the purpose of checking data possession (in the challenge phase), a block (either
original or coded) is viewed as an ordered collection of s segments. For example a

71

coded block c̄ij = (cij1, . . . ,cijs), where each segment cijk is a contiguous portion of
the block c̄ij (in fact, each segment contains one symbol).

• For the purpose of network coding, a block (either original or coded) is viewed as a
column vector of u symbols (as described in Section 3.2.3). For example, a coded block
c̄ij = (cij1, . . . , ciju), where cijk ∈ Fp5.

Consequently, we use two types of verification tags. To check data possession (in the

challenge phase) we use challenge verification tags (in short challenge tags), and to ensure

the security of the repair phase we use repair verification tags (in short repair tags). There

is one challenge tag for each segment in a block, and one repair tag for each block. From

a notational point of view, we use t (lowercase) for challenge tags and T (uppercase) for

repair tags.

To detect direct data corruption attacks, the client performs a spot checking-based

challenge similar as in POR [10] and PDP [7] to check the integrity of each network coded

block stored by each of the n servers. The challenge tag for a segment in a coded block

binds the data in the segment with the block’s logical identifier and also with the coefficient

vector that was used to obtain that block. Thus, the client implicitly verifies that the server

cannot use segments from a block with a different logical identifier to pass the challenge,

and also that the coefficient vector retrieved by the client corresponds to the block used by

the server to pass the challenge. If a faulty server is found in the challenge phase, the client

uses the remaining healthy servers to construct new coded blocks in the repair phase and

stores them on a new server.

The details of RDC-NC scheme are presented in Figures 3.3, 3.4, and 3.5. We rely on

a construction of a message authentication code which, as indicated by Bowers et al. [21],

5Note that, unlike the description for network coding in Section 3.2.3 which uses symbols from F2w ,
we use symbols from the finite field Fp over the integers modulo p, where p is a prime such that Fp
and F2w have about the same order (e.g., when w = 8, p is 257). Based on a similar analysis as
in [55], the successful decoding probability for network coding under F2w and under Fp is similar.

72

has been proposed as a combination of universal hashing with a PRF [59–62]. Shacham

and Waters [10] use a similar construction. We adapt this construction to our network

coding-based distributed storage setting.

The Setup phase. The client first generates secret key material. It then generates the coded

blocks and the metadata to be stored on each of the n servers. For each server, the client

calls GenBlockAndMetadata α times in order to generate the coded blocks, the coding

coefficients, the challenge tags corresponding to segments in each coded block, and the

repair tag corresponding to each coded block. The coding coefficients and the tags are

then stored on the server, together with their corresponding blocks (the coefficients are first

encrypted by the client).

In GenBlockAndMetadata, the client picks random coefficients from Fp and uses

them to compute a new coded block c̄ij (steps 2 and 3). For each segment in the coded

block, the client computes a challenge tag which is stored at the server and will be used by

the server in the Challenge phase to prove data possession. For each segment in the coded

block c̄ij , the client embeds into the challenge tags of that segment the coefficient vector

used to obtain c̄ij from the original file blocks (step 4). For example, in Figure 3.1(c), the

second block stored at server S1 has been computed using the coefficient vector [0, 1, 0]

(and its logical identifier is “1.2”). Thus, the challenge tag for the k-th segment in this

block is6:

fKprf3(1||2︸︷︷︸
block logical

identifier

||k|| 0||1||0︸ ︷︷ ︸
coefficient

vector

) + δb2k mod p.

6The input to the PRF are encoded as fixed length strings.

73

Recall from Section 3.2.3 that α = α′m/|F| and β = β′m/|F|. We construct a network coding-
based RDC scheme in three phases, Setup, Challenge, and Repair. Let f : {0, 1}∗ × {0, 1}κ →
Fp be a PRF and let (G,E,D) be a semantically secure encryption scheme. We work over the
field Fp of integers modulo p, where p is a large prime (at least 80 bits).

Setup: The client generates the secret key key = (Kprf1,Kprf2,Kprf3,Kprf4,Kenc), where
each of these five keys is chosen at random from {0, 1}κ. The client then executes:
For 1 ≤ i ≤ n:

(a) Generate a value δ using f and Kprf1: δ = fKprf1(i) (the δ value will be used for
generating the challenge tags)
Generate u values λ1, ..., λu using f and Kprf2: λk = fKprf2(i||k), with 1 ≤ k ≤ u (the
λ values will be used for generating the repair tag)
For 1 ≤ j ≤ α: // generate coded blocks and metadata to be stored at server Si

• run (c̄ij , zij1, . . . , zijm,tij1, . . . ,tijs,Tij)← GenBlockAndMetadata(b̄1, . . . , b̄m,
“i.j”, δ, λ1, . . . , λu, key)

• For 1 ≤ k ≤ m: εijk = EKenc(zijk) //encrypt coefficients zij1, . . . , zijm

(b) Send c̄ij , εij1, . . . , εijm,tij1, . . . ,tijs,Tij to server Si for storage, with 1 ≤ j ≤ α
The client may now delete the file F and stores only the secret key key.

Challenge: For each of the n servers, the client checks possession of each of the α coded blocks
stored at each server (by using spot checking of segments for each coded block). In this process,
each server uses its stored blocks and the corresponding challenge tags to prove data possession.
For 1 ≤ i ≤ n:

(a) C randomly generates r pairs (k, νk), where k R← [1, s] and νk
R← Fp. Let the query

Q be the r-element set {(k, νk)}. C sends Q to S. (The (k, νk) pairs could also be
pseudo-randomly generated – this would reduce the server-client communication – but for
simplicity here we generate them at random.)

(b) For 1 ≤ j ≤ α: Si runs (tij , ρij) ← GenProofPossession(Q, c̄ij ,tij1, . . . ,tijs).
Si sends to C the proofs of possession (tij , ρij) and the encrypted coding coefficients
(εi11, . . . , εi1m, εi21, . . . , εi2m, . . . , εiα1, . . . , εiαm) corresponding to the α coded blocks at
Si.

(c) For 1 ≤ j ≤ α:
// C checks the validity of the proof of possession (tij , ρij)
– Decrypt the encrypted coefficients: zijk = DKenc(εijk), with 1 ≤ k ≤ m.
– Re-generate δ ∈ Fp : δ = fKprf1(i)

– If tij 6=
∑

(k,νk)∈Q

νkfKprf3(i||j||k||zij1|| . . . ||zijm) + δρij mod p, then C declares Si

faulty.

Figure 3.3 RDC-NC: Setup and Challenge phase.

For each coded block, the client also computes a repair verification tag (step 5), which

will be used in the Repair phase to ensure that the server used the correct blocks and the

coefficients provided by the client to generate new coded blocks.

74

Repair: Assume that in the challenge phase C has identified a faulty server whose blocks have
logical identifiers “y.1”, . . . , “y.α”. The client C contacts ` healthy servers Si1 , . . . , Si` and
asks each one of them to generate a new coded block (step 1). The client further combines these
` coded blocks to generate α new coded blocks and metadata (step 2), and then stores them on a
new server S′ (step 3).

1. For each i ∈ {i1, . . . , i`}:
(a) C generates a set of coefficients (x1, . . . , xα), where xk

R← Fp, with 1 ≤ k ≤ α
(b)C asks server Si to provide a new coded block and a proof of correct encoding using the

coefficients (x1, . . . , xα)

(c) server Si runs (āi, τi)← GenRepairBlock(c̄i1, . . . , c̄iα, x1, . . . , xα,Ti1, . . . ,Tiα) and sends
(āi, τi, εi11, . . . , εi1m, εi21, . . . , εi2m, . . . , εiα1, . . . , εiαm) to C

(d)C decrypts the encrypted coefficients ε to recover coefficients
zi11, . . . , zi1m, zi21, . . . , zi2m, . . . , ziα1, . . . , ziαm

(e) C re-generates u values λ1, ..., λu ∈ Fp using f keyed with Kprf2: λk = fKprf2(i||k), with
1 ≤ k ≤ u

(f) If τi 6=
∑α

j=1 xjfKprf4(i||j||zij1||zij2|| . . . ||zijm) +
∑u

k=1 λkaik mod p, then C declares Si
faulty (here, ai1, . . . , aiu are the symbols of block āi)

7. Generate a value δ using f and Kprf1: δ = fKprf1(y) (the δ value will be used for generating
the challenge tags)
Generate u values λ1, ..., λu using f and Kprf2: λk = fKprf2(y||k), with 1 ≤ k ≤ u (the λ
values will be used for generating the repair tag)
For 1 ≤ j ≤ α:

• C runs (c̄yj , zyj1, . . . , zyjm,tyj1, . . . ,tyjs,Tyj) ←
GenBlockAndMetadata(āi1 , . . . , āi` ,
“y.j”, δ, λ1, . . . , λu, key)

• For 1 ≤ k ≤ m: εyjk = EKenc(zyjk) //encrypt coefficients zyj1, . . . , zyjm
8. Client C sends c̄yj , εyj1, . . . , εyjm,tyj1, . . . ,tyjs,Tyj for storage to server S′, with 1 ≤ j ≤
α

Figure 3.4 RDC-NC: Repair phase.

The Challenge phase. For this phase, we rely on the scheme in [10], adapted as described

in Sections 3.4.1 and 3.4.2 (in short, the challenge tags include the logical identifier of the

block, the index of the segment, and the coding coefficients used to obtain that block). Note

that we rely on the scheme in [10] that allows private verifiability (i.e., only the data owner

can check possession of the data). However, RDC schemes that allow public verifiability [7,

10] could also be adapted following a similar strategy.

75

GenBlockAndMetadata(b̄1, . . . , b̄m, “i.j”, δ, λ1, . . . , λu, key):
(run by the client to generate a coded block with logical identifier “i.j” and its associated
metadata)

1. Parse key as (Kprf1,Kprf2,Kprf3,Kprf4,Kenc)

2. For 1 ≤ k ≤ m: randomly generate coding coefficients zk
R← Fp

3. Compute coded block c̄ij =
∑m

k=1 zkb̄k //the symbols in the vector c̄ij are elements in Fp
4. View block c̄ij as an ordered collection of s segments c̄ij = (cij1, . . . ,cijs), where each

segment contains one symbol from Fp, and compute a challenge tag for each segment:
For 1 ≤ k ≤ s: tijk = fKprf3(i||j||k||z1||z2|| . . . ||zm) + δcijk mod p

5. View c̄ij as a column vector of u symbols c̄ij = (cij1, . . . , ciju), with cijk ∈ Fp, and compute
a repair tag for block c̄ij :
Tij = fKprf4(i||j||z1||z2|| . . . ||zm) +

∑u
k=1 λkcijk mod p

6. Return (c̄ij , z1, . . . , zm,tij1, . . . ,tijs,Tij)

GenProofPossession(Q, c̄ij ,tij1, . . . ,tijs)
// run by a server to compute a proof of possession for the block c̄ij , using the client’s query Q,
the segments in the block cij1, . . . ,cijs, and their associated challenge tags tij1, . . . ,tijs.

1. Parse Q as a set of r pairs (k, νk) (these pairs correspond to the segments that are being
checked, where k is the index of the segment and νk is the corresponding query coefficient).

2. Compute tij =
∑

(k,νk)∈Q

νktijk mod p.

Compute ρij =
∑

(k,νk)∈Q

νkcijk mod p.

3. Return (tij , ρij).

GenRepairBlock(c̄i1, . . . , c̄ik, xi1, . . . , xik,Ti1, . . . ,Tik):

1. Compute āi =
∑k

j=1 xijc̄ij (here the symbols air of block āi are computed as air =∑k
j=1 xijcijr mod p, for 1 ≤ r ≤ u)

2. Compute a proof of correct encoding τi =
∑k

j=1 xijTij mod p

3. Return (āi, τi)

Figure 3.5 Components of the RDC-NC scheme.

The Repair phase. The client contacts ` healthy servers Si1 , . . . , Si` and asks each one of

them to generate a new coded block (step 1)7. The client further combines these ` coded

blocks to generate α new coded blocks and metadata (step 2), and then stores them on a

new server S ′ (step 3). As part of step 1, for each contacted server, the client chooses

random coefficients from Fp that should be used by the server to generate the new coded

7For ease of exposition, we use β = 1 (i.e., each server produces only one new coded block), but
this can be easily generalized to any value of β.

76

block (step 1(a)). Each contacted server, based on its α stored blocks and on the coefficients

provided by the client, runs GenRepairBlock (step 1(c)) to compute a new coded block āi

(GenRepairBlock, step 1) and a proof of correct encoding τi (GenRepairBlock, step 2); the

server then sends these to the client, together with the encrypted coefficients corresponding

to the blocks used to compute the new coded block. The client decrypts the coefficients

(step 1(d)), re-generates the λ values used to compute the repair tags (step 1(e)), and then

checks whether the encoding was done correctly by the server (step 1(f)). As a result, the

client is ensured that the server has computed the new coded block by using the correct

blocks and the coefficients supplied by the client.

3.5 Analyses for RDC-NC

A tradeoff between storage and communication. In the RDC-NC scheme described in

Figures 3.3, 3.4, and 3.5, each segment contains only one symbol (i.e., an element from Fp)

and is accompanied by a challenge tag of equal length. The scheme can be modified to use

a similar strategy as in [10]: Each segment can contain r symbols, which reduces the server

storage overhead by a factor of r and increases the client-server communication overhead

of the challenge phase by a factor of r.

Protection against small data corruption. A spot checking mechanism for the challenge

phase is only effective in detecting “large” data corruption [7,9]. To protect against “small”

data corruption, we can combine the RDC-NC scheme with error correction codes such as

a “server code” [17, 21] or a method to add “robustness” [16]. The client applies a server

code on the network coded blocks before computing the challenge and repair tags. In the

repair phase, a server does not include the server code portion when computing new coded

77

blocks. Instead, the client computes the server code for the new coded blocks. We leave

as future work the design of schemes in which the server code portion can be computed

together with the rest of the block using network coding.

Security analysis. We now restate the data recovery condition for a network coding-based

system and then give a theorem that states the sufficiency of this condition to ensure file

recoverability.

Data recovery condition: In any given epoch, the original data can be recovered as

long as at least k out of the n servers collectively store at least m coded blocks which are

linearly independent combinations of the original m file blocks.

Theorem 3.5.1. The data recovery condition is a sufficient condition to ensure data

recoverability in the RDC-NC scheme augmented with protection against small data

corruption.

Proof. (sketch) In its initial state (i.e., right after Setup), the system based on RDC-NC

guarantees that the original file can be recovered from any k out of the n servers with high

probability. We want to show that the RDC-NC scheme preserves this guarantee throughout

its lifetime, thus ensuring file recoverability.

In any given epoch, the adversary can corrupt at most n − k servers. The adversary

may split the corruptions between direct data corruptions and replay attacks. Faulty servers

affected by direct data corruptions are detected by the integrity checks in the challenge

phase, or by the correct encoding check in the repair phase. The client uses the remaining

healthy servers (at least k remain healthy) to regenerate new coded blocks to be stored

on new servers. Protection against small data corruption is provided by the server code

layer. From Theorem 3.4.1, replay attacks against RDC-NC are not harmful, and they do

78

not increase the attacker’s advantage in breaking the data recovery condition. The check

in Repair, step 1(f), ensures protection against pollution attacks. Thus, at the end of the

epoch, the system is restored to a state equivalent to its initial state, in which the file can be

recovered from any k out of the n servers.

3.6 Guidelines for Choosing Parameters for RDC-NC

For a benign setting, the network coding-based substrate of our RDC-NC scheme is

characterized by a tuple of parameters (n, k, α,m, `, β). Compared to a benign setting,

an adversarial setting imposes additional constraints for choosing these parameters. In this

section, we provide guidelines for choosing the parameters, subject to two constraints: (a)

up to n−k servers can be corrupted in each epoch, and (b) minimize the total server storage.

Not all these parameters are independent, and we will see that fixing the values for some of

the parameters will determine the value of the remaining parameters.

Based on the desired reliability level (which is a function of perceived fault rate of

the storage environment), the client picks the values for n and k. We focus on MBR codes,

which are characterized by the pair (α′, γ′) =
(

2|F|`
2k`−k2+k

, 2|F|`
2k`−k2+k

)
and which minimize

the network overhead factor of the repair phase (i.e., γ′/α′ = 1). Although we give

guidelines on choosing parameters for MBR codes, our RDC-NC scheme is general and

can be applied to any parameter tuple.

After fixing n, k, and the use of an MBR code, we study the choice of the remaining

parameters. Before the system is initialized, the client also needs to decide the values of m

and α, so that it can compute the initial coded blocks that will be stored at servers.

79

From α′ = 2|F|`
2k`−k2+k

, m = |F|/|B|, and α′ = |B|α, we get:

α =
2`m

2k`− k2 + k
(3.1)

Even though we have fixed a point characterized by a minimal network overhead

factor of 1, different values of the parameters α, m, and ` will result in different storage

overheads at the servers. We now show that by choosing ` = k, we minimize the total

storage across the n servers (recall that ` is the number of healthy servers that are contacted

by the client in the repair phase). We need to provision the system for the worst case, in

which the adversary corrupts n − k servers in some epoch. In this case, the maximum

number of servers that remain healthy in that epoch is k. Thus, we need to set ` ≤ k.

Minimizing the total storage across the n servers means we need to minimize the quantity

nα′ = n|F| α
m

. Since n is fixed, for a given file size |F|, we should minimize α
m

. From

Eq. (3.1), α
m

= 2`
2k`−k2+k

= 2

2k− k2−k
`

, which is minimized when ` is maximized. Thus, we

need to set ` = k.

From γ′ = 2|F|`
2k`−k2+k

and from γ′ = `β |F|
m

, we get:

m =
β(2k`− k2 + k)

2
=
β(k2 + k)

2
(3.2)

From α′ = γ′, α′ = α|B|, and γ′ = `β|B| we get:

α = `β = kβ (3.3)

Thus, after fixing n and k, under the constraints of achieving a minimal network

overhead factor of 1 and minimizing the total storage across the n servers, it suffices to

choose the β parameter in order to determine the values of m and α.

80

3.7 Experimental Evaluation

In this section, we evaluate the computational performance of our RDC-NC scheme

(the analysis of its communication and storage overhead can be found in Table 3.1 of

Section 3.0.1).

Implementation issues: Working over Fp rather than F2w . When working over F2w , the

symbols used in network coding have exactly w bits. One implementation complication

arises when working over Fp, where p is a prime. In theory, the symbols should be

represented using dlg(p)e bits. For example, when p = 257, 9 bits should be used to

represent a symbol. However, when encoding the file in the pre-processing phase, we

cannot treat a chunk of 9 consecutive bits in the original file as a symbol, because the value

represented by that chunk may be larger (or equal) than 257 (since with 9 bits we can

represent values up to 511). Instead, before the encoding step in the pre-processing phase,

we run an additional step in which we read 8-bit chunks and write them as 9-bit chunks

(this leads to an increase in storage of 12.5%). This ensures that every 9-bit chunk has a

value less than 257 and is thus a valid symbol.

Experimental Setup. All experiments were conducted on an Intel Core 2 Duo system with

two CPUs (each running at 3.0GHz, with a 6144KB cache), 1.333GHz frontside bus,

4GB RAM and a Hitachi HDP725032GLA360 360GB hard disk with ext3 file system.

The system runs Ubuntu 9.10, kernel version 2.6.31-14-generic. The implementation uses

OpenSSL version 1.0.0. We work over the finite field Fp of integers modulo p, where p is

an 80-bit prime and each segment for the challenge phase contains one 80-bit symbol.

81

Table 3.2 Experimental Test Cases
case n k α m l β

1 10 3 3 6 3 1
2 12 3 3 6 3 1
3 10 5 5 15 5 1

When evaluating the performance of RDC-NC, we are only concerned with pre-

processing (in the setup phase) and the repair phase (the performance of the challenge

phase was evaluated in [7]).

We choose to evaluate three cases, as shown in Table 3.2. They satisfy the condition

of MBR codes with minimal server storage (see Section 3.6). We use β = 1.

3.7.1 Pre-Processing Phase Results

The client pre-processes the file before outsourcing it. Specifically, the client: (a) encodes

the m-block file using network coding over Fp, generating nα coded blocks (α blocks for

each server), (b) computes the challenge tags, and (c) computes the repair tags. Figure 3.6

shows the computational cost of client pre-processing and its various components for

different file sizes under the three test cases. Note that the amount of data that needs to

be pre-processed can be significantly larger than the original file size. For example, for test

case 1 (n = 10, α = 3,m = 6), if |F| = 10MB then the client has to pre-process |F|αn/m

= 50MB. We can see that these computational costs are all increasing linearly with the file

size. The cost of generating challenge and repair tags is determined by the total amount of

pre-processed data nα′, which can be further expressed as 2n∗|F|
k+1

(α′ = 2∗|F|
k+1

, inferred from

Section 3.6). Thus, for fixed |F|, the cost for generating challenge and repair tags increases

with n and decreases with k.

82

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1 2 3 4 5 6 7 8 9 10

tim
e

[s
]

filesize [MB]

n=10 k=3
n=12 k=3
n=10 k=5

(a) Total pre-processing.

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

tim
e

[s
]

filesize [MB]

n=10 k=3
n=12 k=3
n=10 k=5

(b) Encoding.

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9 10

tim
e

[s
]

filesize [MB]

n=10 k=3
n=12 k=3
n=10 k=5

(c) Challenge tags.

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8 9 10

tim
e

[s
]

filesize [MB]

n=10 k=3
n=12 k=3
n=10 k=5

(d) Repair tags.

Figure 3.6 Computational cost for client pre-processing and its various components (to
pre-process data for n servers).

3.7.2 Repair Phase Results

We assume that the client needs to repair one server.

Server computation. In the repair phase, the client retrieves blocks from ` servers.

Every server generates β new blocks, together with the aggregation of the tags using the

coefficients sent by client. Figure 3.7(a) shows the per-server computational cost under the

three test cases. The computational cost increases linearly with the file size for all test cases.

We observe that the per server computation varies by k, rather than by n; specifically, for

fixed file size, when k increases, per server computation decreases. This can be explained

as follows. Per server computation contains two components, encoding and aggregating

the tags, and is dominated by the encoding component. The cost of encoding is O(βα|F|
m

),

83

which can be further expressed as O(2∗|F|
k+1

) (cf.Section 3.6, with β = 1). Thus, for fixed

|F|, per server computation is only determined by k in a monotonically decreasing way.

Client computation. After getting β blocks from each of the ` servers, the client checks

the proof sent by each server. The client then generates α new coded blocks from these β`

blocks (using random network coding over Fp), together with the challenge tags and repair

tags. Figures 3.7(b)-3.7(f) show the total client computational cost to repair one server and

the costs of its various components. These figures show that the client computational cost

is linear to the file size and varies by k, rather than by n. The storage at one server, 2∗|F|
k+1

,

determines the cost of proof checking, generating challenge tags and repair tags, thus can

explain why computational costs of these components are decreasing with k for fixed file

size. The cost of encoding in the repair phase is O(αβ`|F|
m

), i.e., O(|F|
1+1/k

) (cf. Section 3.6,

with β = 1), thus, encoding cost increases with k for fixed file size.

84

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 2 3 4 5 6 7 8 9 10

tim
e

[s
]

filesize [MB]

n=10 k=3
n=12 k=3
n=10 k=5

(a) Server computation (per server).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 2 3 4 5 6 7 8 9 10

tim
e

[s
]

filesize [MB]

n=10 k=3
n=12 k=3
n=10 k=5

(b) Total client computation.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 2 3 4 5 6 7 8 9 10

tim
e

[s
]

filesize [MB]

n=10 k=3
n=12 k=3
n=10 k=5

(c) Client proof checking.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10

tim
e

[s
]

filesize [MB]

n=10 k=3
n=12 k=3
n=10 k=5

(d) Client network coding new blocks.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8 9 10

tim
e

[s
]

filesize [MB]

n=10 k=3
n=12 k=3
n=10 k=5

(e) Client generating new challenge tags.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 3 4 5 6 7 8 9 10

tim
e

[s
]

filesize [MB]

n=10 k=3
n=12 k=3
n=10 k=5

(f) Client generating new repair tags.

Figure 3.7 The computational cost of the repair phase: (a) server cost, (b)-(f) client cost
to repair one server.

CHAPTER 4

TOWARDS SELF-REPAIRING REPLICATION-BASED STORAGE SYSTEMS

USING UNTRUSTED CLOUDS

In Chapter 3, we have introduced RDC-NC, a remote data checking scheme for network

coding-based distributed storage systems, in which we investigate RDC in a multiple-server

setting (specifically, the original file is first encoded by network coding, then the encoded

data is distributed to multiple untrusted servers). The setting considered so far outsources

the storage of the data, but the data owner is still heavily involved in the data management

process (especially during the repair of damaged data). In this chapter, we propose a

new paradigm, in which the data owner fully outsources both the data storage and the

management of the data. Specifically, we enable the self-repairing functionality in the

cloud servers, so that the client can get liberated from the burden of repair and thus is able

to be kept lightweight.

The recent proliferation of cloud services has made it easier than ever to build

distributed storage systems based on Cloud Storage Providers (CSPs). Traditionally,

a distributed storage system stores data redundantly at multiple servers which are

geographically spread throughout the world. In a benign setting where the storage servers

always behave in a non-adversarial manner, this basic approach would be sufficient in order

to deal with server failure due to natural faults. In this work, we consider a setting in which

the storage servers are untrusted and may act maliciously. In this setting, Remote Data

Checking (RDC) [7–10] can be used to ensure that the data remains recoverable over time

even if the storage servers are untrusted.

85

86

When a distributed storage system is used in tandem with remote data checking,

we can distinguish several phases throughout the lifetime of the storage system: Setup,

Challenge, and Repair. To outsource a file F, the data owner creates multiple replicas of

the file during Setup and stores them at multiple storage servers (one replica per server).

During the Challenge phase, the data owner can ask periodically each server to provide a

proof that the server’s replica has remained intact. If a replica is found corrupt during the

Challenge phase, the data owner can take actions to Repair the corrupted replica using data

from the healthy replicas, thus restoring the desired redundancy level in the system. The

Challenge and Repair phases will alternate over the lifetime of the system.

In cloud storage outsourcing, a data owner stores data in a distributed storage system

that consists of multiple cloud storage servers. The storage servers may belong to the same

CSP (e.g., Amazon has multiple data centers in different locations), or to different CSPs.

The ultimate goal of the data owner is that the data will be retrievable at any point of time

in the future. Conforming to this notion of storage outsourcing, the data owner would like

to outsource both the storage and the management of the data. In other words, after the

Setup phase, the data owner should only have to store a small, constant, amount of data and

should be involved as little as possible in the maintenance of the data. In previous work,

the data owner can have minimal involvement in the Challenge phase when using an RDC

scheme that has public verifiability (i.e., the task of verifying that data remains retrievable

can be delegated to a third party auditor). However, in all previous work [21,22], the Repair

phase imposes a significant burden on the data owner, who needs to expend a significant

amount of computation and communication. For example, to repair data at a failed server,

the data owner needs to first download an amount of data equal to the file size, re-generate

the data to be stored at a new server, and then upload this data at a new healthy server

87

([21, 22]). Archival storage deals with large amounts of data (Terabytes or Petabytes) and

thus maintaining the health of the data imposes a heavy burden on the data owner.

In this chapter, we ask the question: Is it possible to design an RDC scheme which

can repair corrupted data with the least data owner intervention? We answer this question

in the positive by exploring a model which minimizes the data owner’s involvement in

the Repair phase, thus fully realizing the vision of outsourcing both the storage and

management of data. During Repair, the data owner simply acts as a repair coordinator,

which allows the data owner to manage data using a lightweight device. This is in contrast

with previous work, which imposes a heavy burden on the data owner during Repair. The

main challenge is how to ensure that the untrusted servers manage the data properly over

time (i.e., take necessary actions to maintain the desired level of redundancy when some of

the replicas have failed).

Main objective: Informally, our main objective is to design an RDC scheme for a

replication-based distributed storage system which has the following properties:

the system stores t replicas of the data owner’s original file
the system imposes a small load on the verifier during the Challenge phase.
the system imposes a small management load on the data owner (by minimizing the

involvement of the data owner during the Repair phase).

The first two properties alone can be achieved based on techniques proposed

in previous work ([22] provides multiple replica guarantees, whereas RDC based on

spot-checking [8–10] supports a lightweight verification mechanism in the Challenge

phase). The challenge is to achieve the third property without giving up any of the first

two properties. We meet these objectives by proposing a new model and by redesigning

the three phases of a traditional RDC protocol.

88

4.0.3 Solution Overview

Two insights motivate the design of our solution:

Insight 1. Replica differentiation: The storage servers should be required to store t

different replicas. Otherwise, if all replicas are identical, an economically motivated set

of colluding servers could attempt to save storage by simply storing only one replica and

redirect all client’s challenges to the one server storing the replica.

Previous work [63, 64] proposed to store identical replicas at storage servers which

are in different locations. To check that each server stores a replica, they require servers

to respond fast, thus relying on the network delay and bandwidth properties. While

storing identical replicas has the advantage of simplicity, in Section 4.2.1 we show that

this approach has major limitations. Moreover, we show that for real-world CSPs, one of

the assumptions made by [63] does not hold.

Insight 2. Server-side repair: We can minimize the load on the data owner during the

Repair phase by relying on the servers to collaborate in order to generate a new replica

whenever a replica has failed. This is advantageous because of two reasons:

(a) the servers are usually connected through premium network connections (high bandwidth),
as opposed to the data owner’s connection which may have limited download/upload
bandwidth. Our experiments in Table C.1 (Appendix C.1) show that Amazon AWS has
premium Internet connection of up to tens of MB/s between its data centers.

(b) the computational burden during the Repair phase is shifted to the servers, allowing data
owners to remain lightweight.

Previous RDC schemes for replication-based distributed storage systems ([22]) do

not give the storage servers access to the original data owner’s file. Each replica is a

masked/encrypted version of the original file. As a result, the Repair phase imposes a

high burden on the data owner: The communication and computation cost to create a new

replica is linear with the size of the replica because the data owner needs to download a

89

replica, unmask/decrypt it, create a new replica and upload the new replica. If the servers

do not have access to the original file, this intense level of data owner involvement during

Repair is unavoidable.

In this work, we propose to use a different paradigm, in which the data owner gives

the servers both access to the original file and the means to generate new replicas. This will

allow the servers to generate a new replica by collaborating between themselves during

Repair.

A Basic Approach and Its Limitations. A straightforward approach would be for the data

owner to create different replicas by using masking/encryption of the original file. The data

owner would reveal to the servers the key material used to create the masked/encrypted

replicas. During Repair, the servers themselves could recover the original file from a

healthy replica and restore the corrupted replica, reducing the burden on the data owner.

This basic approach is vulnerable to a potential attack, the replicate on the fly (ROTF)

attack: During Repair, a malicious set of servers could claim they generate a new replica

whenever an existing replica has failed, but in reality they do not create the replica (using

this strategy, an economically motivated set of servers tries to use less storage than their

contractual obligation). When the client checks the newly generated replica during the

Challenge phase, the set of malicious servers can collaborate to generate the replica on

the fly and pass the verification successfully (this replica is then immediately deleted

after passing the challenge in order to save storage). This will hurt the reliability of the

storage system, because in time the system will end up storing much fewer than t replicas,

unbeknownst to the client.

90

Overcoming the ROTF attack. The new paradigm we introduce in this work, which

allows the servers to generate a new replica by collaborating between themselves during

Repair, has the important advantage of minimizing the load on the data owner during data

maintenance. Unfortunately, this comes at the cost of allowing a new attack avenue for

servers, the ROTF attack.

To overcome the ROTF attack, we make replica creation to be time consuming. In

this way, malicious servers cannot generate replicas on the fly during Challenge without

being detected.

4.1 Related Work

4.1.1 Remote Data Checking

RDC for the single-server setting. Early RDC schemes have focused on ensuring the

integrity of outsourced data in the static setting. Such schemes include Provable Data

Possession (PDP) [8] and Proofs of Retrievability (PoR) [9, 10]. Later RDC schemes

investigated models that can provide strong integrity guarantees while supporting dynamic

operations on the outsourced data [11–15, 24, 25, 65–67]. Recently, several RDC schemes

have been designed to secure outsourced version control systems [27, 68].

RDCs for the multiple-server setting. RDC has been extended to the multiple-server

setting (distributed RDC). Curtmola et al. proposed MR-PDP [22], an efficient RDC

scheme for replication-based distributed storage systems, which differentiates the replicas

by random masking. We adapt this technique in our work. Bowers et al. [21] and Wang et

al. [28] built RDC schemes for erasure coding-based distributed storage systems. Chen et

al. [23] proposed an RDC scheme for network coding-based distributed storage systems.

91

All the aforementioned distributed RDCs adopt client-side repair, in which the client is

intensively involved in the repair procedure, i.e., the client will retrieve the data, generate

and upload the new data to repair the corruption. Our work proposes server-side repair, a

novel strategy which is different from all the previous distributed RDCs.

A new direction for RDC. All the previous RDC schemes are cryptography-based, i.e.,

the security of the proposed schemes are inherited from the security of the cryptographic

primitives. Bowers et al. [69] propose RAFT, a new time-based RDC scheme which can

enable a client to obtain a proof that a given file is distributed across an expected number

of physical storage devices in a single datacenter.

Although RAFT and our work share the idea of using a time-based mechanism to

detect malicious behavior, they are fundamentally different in their basic approach and

goals, and in the system and adversarial models. First, while in RDC-SR the replicas are

differentiated based on controllable masking to mitigate the ROTF attack, RAFT mainly

relies on the I/O bottleneck of a single hard drive, specifically, on the fact that the time

required for two parallel reads from two different drives is clearly less that the time required

for two sequential reads from a single drive. Second, in RDC-SR the file is replicated t times

and the t replicas are stored in t different data centers (which may belong to the same CSP

or to different CSPs). Within one data center, RDC-SR does not impose requirements on

how exactly should the replica be stored. The data owner seeks to enable the self-repairing

functionality while ensuring that a certain number of replicas are stored in the cloud at all

times, so that the desired level of reliability is maintained. In RAFT, the file is encoded

and is stored by the cloud server using the desired number of hard drives. The data owner

wants to ensure that the server stores the file so that it can tolerate a certain number of hard

92

drive failures. Third, in RDC-SR we introduce the α-cheating adversary, in which the cloud

servers collude with each other to cheat by only storing an α fraction of the contractual

storage, and there are no requirements for how exactly the adversary stores the data on

the hard drives. In RAFT, a cheap-and-lazy adversary tries to cut corners by storing less

redundant data on a smaller number of disks or by mapping file blocks unevenly across

hard drives.

Benson et al. [63] propose another time-based model (BDS model) to guarantee that

multiple replicas are distributed to different data centers of the CSP. Our work adapts this

model to enable the server-side repair.

Watson et al. [70] propose LoSt, which formalizes the concept of Proofs of Location

(PoL). A PoL relies on a geolocation scheme [63] and a Proof of Retrievability (PoR)

scheme. We summarize the differences between RDC-SR and LoSt. First, the goals are

different. RDC-SR aims at enabling self-repair, a novel functionality for replication-based

distributed storage systems that, when combined with periodic integrity checks provides an

efficient mechanism to ensure long-term data reliability. In particular, RDC-SR does not

try to enforce specific locations of the data. LoSt aims at ensuring that the outsourced file

copies are stored within the specified region and requires a landmark infrastructure to verify

the location of the data. Second, the system model is different. RDC-SR has two entities,

namely, the client and the storage servers (CSP), in which the client is always trusted and

the storage servers are untrusted and may collude. In LoSt there are three entities, the client,

the CSP, and the data centers, and the model assumes that there is no collusion between the

CSP and the data centers. Third, the basic idea for the solution is different. RDC-SR

relies on the differentiation of the replicas based on controllable masking to defend against

the ROTF (replicate on the fly) attack. Instead, LoSt relies on “recoding” to efficiently

93

differentiate (done at the CSP with CSP’s private key) the file tags for each server, while

each server will keep the same file copy.

Gondree and Peterson [71] further relax the adversarial models and assumptions of

previous PoL scheme [63], and propose a constraint-based data geolocation protocol that

binds the latency-based geolocation techniques with PDP scheme.

4.1.2 Proofs of Work (PoW)

CPU-bound PoW. Dwork and Naor [72] pioneer the concept of proofs of work, which is

originally proposed to discourage junk emails. The basic idea is two-fold: firstly, when

sending an email m, the sender is required to compute some moderately-hard function

f(m), and sends (m, f(m)) to the receiver; secondly, the receiver can efficiently verify

f(m), i.e., verifying f(m) is a lot faster than computing f(m). They suggest some CPU-

intensive candidates for function f(), e.g., a function based on the signature scheme of Fiat

and Shamir [73]. RDC-SR is in effect a CPU-bound PoW, in which we assume the CPU

capability is bounded.

Memory-bound PoW and proofs of space. Abadi et al. [74] observe sharp disparities

of the CPU speed across distinct computer systems, e.g., a PC always runs much faster

than a PDA, and a high-end computer system which has sophisticated pipelines and other

advantageous features runs much faster than a low-end machine. They thus investigate an

alternative of PoW which measures the number of times the memory is accessed. Their

approach is further improved in [75–77]. Recently, Dziembowski et al. [78] and Ateniese

at al. [79] independently propose a new concept of proofs of space in which, the prover

needs to employ a specified amount of memory space in order to compute a proof of

94

work. As it is pointed out in [79], the schemes proposed by Dziembowski et al. [78] are

in effect a variant of memory-bound PoWs, since their prover can possibly trade off space

with computation. RDC-SR scheme relies on CPU-bound rather than memory-bound PoW

mechanisms because we do not have a significant disparity between different computer

systems in our CSP-based setting. The sharp disparities among different computer systems

observed in [74] are due to the heterogeneous nature of the applications like emails, e.g.,

the email senders and the receivers can be all types of computing devices like servers,

desktops, laptops, tablets, smart phones, etc. Our CSP setting is homogeneous, i.e., the

computing devices in the data centers of the CSP are purely cloud servers.

Other work. Similar to the work of Reiter et al. [80], RDC-SR relies on the idea that

only a prover which has the data can respond quickly enough to pass a challenge. Unlike

RDC-SR, their work is set in the context of P2P networks and the verifier (client) needs to

keep the data for the verification purpose.

4.2 Models for Checking Replica Storage

In this section, we first review a previously proposed theoretical framework that relies

purely on network delay to establish the geolocation of files at cloud providers, and point

out several limitations of this model when used with a basic RDC protocol on the Amazon

cloud service provider. The main limitation is that one of its assumptions does not hold

in a practical setting, and thus a protocol that relies only on the network delay to detect

server misbehavior can only offer a very low data possession guarantee. We then augment

this model to include time-consuming replica generation in order to make RDC usable for

geolocation of files in the context of a real-world cloud storage provider such as Amazon.

95

4.2.1 A Network Delay-based Model and Its Limitations

Benson, Dowsley and Shacham proposed a theoretical model for verifying that copies of

a client’s data are stored at different geographic locations [63] (we refer to it as the “BDS

model”). This model allows to derive a condition which can be used to detect if a server

at some location does not have a copy of the data. The idea behind the condition is that

an auditor which challenges a storage server must receive an answer within a certain time,

otherwise the server is considered malicious. The time is chosen such that a server that

does not have the challenged data cannot provide an answer by using data from a server at

a different geolocation.

The BDS model [63]. The customer (client) makes a contract with the CSP to store

one copy of the client’s file in each of the CSP’s k data centers. For simplicity, if we assume

that k = 2, then a file copy should be stored at si and another file copy at sj . The goal is to

build an audit protocol that tests if the cloud provider is really storing one copy of the file

in each of the two data centers si and sj . Several assumptions need to be made:

(Assumption 1) The locations of all data centers of the cloud provider are known.
(Assumption 2) The cloud provider does not have any exclusive Internet connection
between the data centers.
(Assumption 3) For each datacenter s, it is possible to have access to a machine that is
located very close to s (i.e., very small network latency), such as in the same data center.

Consider the case when the client wants to check if si is storing a copy of the file.

As shown in Figure 4.1(b), si and sj may be colluding malicious servers who only store

one copy of the file at sj; when si is challenged by the client to prove data possession, it

redirects the challenge to sj , who answers directly to the client. To prevent such an attack,

the client imposes a certain time limit for receiving the answer.

96

Si Sj

C

F

① ②

F

ti ti

(a) Benign server behavior.

Si Sj

C

F

①

②

③ti

tij

tj

(b) Malicious server
behavior.

Figure 4.1 Auditing protocol: Client C checks if server si has a file copy F.

Let Ti be the upper bound on the execution time of some auditing protocol by a

datacenter si, ti be the network delay between the client and si, and tij be the network

delay between data centers si and sj . For a network delay time t, we use the notation

max(t) to denote the upper bound on t and min(t) to denote the lower bound on t.

If the data center si is honest, the client accepts the audit protocol execution as valid if

the elapsed time for receiving the answer is Ti+2∗max(ti), because that is the time needed

to receive the answer in the worst case scenario. On the other hand, if the answer is received

after min(ti) +min(tij) +min(tj), the client should consider the audit protocol execution

invalid, since si may be dishonest and may be using data from another data center. Thus

Ti + 2 ∗max(ti) ≤ min(ti) +min(tij) +min(tj), or

Ti ≤ min(ti) +min(tij) +min(tj)− 2 ∗max(ti) (4.1)

Limitations of the basic PoR protocol based on BDS model. Based on the

condition derived from the BDS model, [63] proposed a basic Proof of Retrievability (PoR)

protocol which seeks to ensure that a set of storage servers not only store n copies of the

97

client’s data, but also that these copies are stored at specific geographic locations known to

the client. In the PoR protocol, the client stores identical copies of a file at multiple storage

servers, and for each copy, it also stores authentication tags (one tag for each file block).

To check that a server has a copy of the file, the auditor asks the server to provide several

randomly chosen file blocks and their corresponding MAC tags. If the auditor receives the

answer within a certain time, the auditor checks if the MAC tags are valid tags for the file

blocks. In this protocol, the auditor challenges as many random blocks as it is possible for

si to access in time Ti.

Based on Assumption 3 in the BDS model, the auditor can be located very close to

si, which means that min(ti) and max(ti) will be small compared to tij and tj . Thus, the

value of Ti will be mainly determined by min(tij) and min(tj), which is determined by

the quality (bandwidth) of the Internet connection between si and sj and by the distance

between si and sj . Low bandwidth Internet connection and large distance between si and

sj will result in larger values of min(tij) and min(tj), thus resulting in a larger Ti. A

larger Ti means the auditor can challenge more blocks while still being able to differentiate

a benign server from a malicious server (the auditor should be able to challenge a large

enough number of randomly chosen blocks in order to gain a reasonable confidence that

the entire file is stored by the server).

To ensure that Ti is large enough (and thus the protocol has practical value),

the BDS model relies explicitly on the assumption that there is no exclusive Internet

connection between data centers (Assumption 2). The BDS model also relies on the

implicit assumption that the data centers should be far away from each other. However,

our measurements with the Amazon CSP show that these assumptions do not hold (see

Tables C.1 and C.2 in Appendix C.1). In general, the network delay is the sum between

98

propagation delay (the time it takes the signal to travel from sender to the receiver) and

the transmission delay (the time required to push all the data bits into the wire). From

Table C.1, we can see that the download bandwidth between different S3 data centers varies

between 11-36 MB/s, which is significantly higher than the bandwidth between a point

outside the data centers and the data centers (less than 1 MB/s between our institution and

different S3 data centers). We also notice that inside a data center the download bandwidth

is very high (between 32-52 MB/s) and the propagation delay is very small (between 0.2-0.7

milliseconds). Finally, we notice from Table C.2 that the propagation delay between certain

S3 data centers is quite small (e.g., 11 milliseconds between N. California and Oregon).

Using the numbers in Tables C.1 and C.2, with si and sj being the Virginia and the N.

California data centers respectively, and assuming that the auditor is located within si and

challenges k 4KB random file blocks from si, Equation (4.1) for the basic PoR protocol

becomes x ·k ≤ 80 + 0.3k, where x is the time to access one random file block. According

to our experiments on Amazon S3, x ≈ 30 milliseconds (refer to Appendix C.2), thus k ≤

2.66. This means the basic PoR protocol applied in the setting of the Amazon CSP allows

the auditor to challenge at most two random file blocks in each protocol execution. This

provides a very low data possession assurance (comparatively, to achieve 99% confidence

that misbehavior will be detected when the server corrupts 1% of the file, the auditor should

challenge 460 randomly chosen file blocks [8]).

4.2.2 A New Model to Enable Server-side Repair

The main problem with the basic PoR protocol based on the BDS model (cf. Section 4.2.1)

is that all the file copies are identical and the auditor relies solely on the network delay

to detect malicious server behavior. As a result, the protocol must assume that there is no

99

exclusive Internet connection between the data centers (Assumption 2 in the BDS model).

Having established in Section 4.2.1 that this assumption does not hold in a practical setting,

we augment the BDS model to make it usable in a practical setting. Namely, we require

that the file replicas stored at each server must be different and personalized for each

server. Upon being challenged, each server must produce an answer that is dependent on

its own replica. As a result, a server cannot answer a challenge by using another server’s

replica. An economically-motivated server who does not possess its assigned replica may

try to cheat by using another server’s replica. But to do this, the cheating server must

first generate its own replica in order to successfully answer a challenge. As a result,

our model does not rely purely on network delay to differentiate benign behavior from

malicious behavior, but also on the time it takes to generate a file replica. This allows us to

eliminate Assumption 2 from the BDS model, because we require that replica generation

be time consuming.

We propose a model in which the client creates t different file replicas and stores

them at t data centers owned by the same CSP (one replica at each data center). To illustrate

the model for t = 2, the data owner generates file replicas Fi and Fj; server si stores Fi

and sj stores Fj . Even when replicas are different, malicious servers may execute the

ROTF attack, in which a server that does not possess its assigned replica may try to cheat

by using replicas from other servers to generate its assigned replica on the fly during the

Challenge phase. Using the same notation as in the BDS model in Section 4.2.1, an audit

protocol execution should be considered invalid if the answer is received after min(ti) +

min(tij) + min(tj) + min(tR), where tR denotes the time required to generate replica Fi

(more precisely, the time required to generate the portion of Fi that is necessary to construct

100

a correct answer). Thus, the condition used to differentiate benign from malicious behavior

becomes:

Ti + 2 ∗max(ti) ≤ min(ti) +min(tij) +min(tj) +min(tR) (4.2)

We only need to make the following two assumptions (note that we do not assume

there is no exclusive Internet connection between the data centers like in the BDS model):

(Assumption 1) The locations of all datacenters of the cloud provider are known.
(Assumption 2) For each datacenter s, it is possible to have access to a machine that is
located very close to s (i.e., very small network latency), such as in the same data center.

4.3 System and Adversarial Model

4.3.1 System Model

The client wants to outsource the storage of a file F. To ensure high reliability and fault

tolerance of the data, the client creates t distinct replicas and outsources them to t data

centers (storage servers) owned by a CSP (one replica at each data center). To ensure

that the t replicas remain healthy over time, the client challenges each of the t servers

periodically. Upon finding a corrupted replica, the client acts as a repair coordinator who

oversees the repair of the corrupted replica (the CSP, who has premium network connection

between its data centers, uses the healthy replicas to repair the corrupted replica; the client

should have minimal involvement in the repair process).

We note that, given an individual file replica, say Fi, the CSP can generate any

another replica, say Fj , in two steps: first recover the original file F from Fi, and then

generate Fj .

101

4.3.2 Adversarial Model

We assume that the CSP is rational and economically motivated. The CSP will try to

cheat only if cheating cannot be detected and if it achieves some economic benefit, such

as using less storage than required by contract. An economically motivated adversary

captures many practical settings in which malicious servers will not cheat and risk their

reputation, unless they can achieve a clear financial gain. We also note that when the

adversary is fully malicious, i.e., it tries to corrupt the client’s data without regard to its

own resource consumption, there is no solution to the problem of building a reliable system

with t replicas [22, 69].

The ROTF Attack We are particularly concerned with the following replicate on the

fly (ROTF) attack: During Repair, a set of colluding servers could claim they generate a

new replica whenever an existing replica has failed, but in reality they do not create and

store the replica. When the client checks the newly generated replica during the Challenge

phase, the set of malicious servers can collaborate to generate the replica on the fly and

pass the verification successfully. Immediately after the check, the servers delete the newly

generated replica, only to re-generate it on the fly when the client initiates the next check.

This will hurt the reliability of the storage system, because in time the system will end up

storing much fewer than t replicas, unbeknownst to the client.

To illustrate the ROTF attack, consider the setting in Figure 4.1(b), where si and sj

should to store replicas Fi and Fj , respectively, but only sj stores Fj . When si is being

challenged to prove possession of Fi, si can retrieve Fj from sj , and generate Fi on the

fly in order to pass the challenge. Or, it can forward the challenge to sj , who uses Fj

102

to generate on the fly Fi and then uses Fi to construct a valid response to the challenge.

Immediately after the challenge, Fi is deleted.

The α-cheating Adversary A CSP is obligated by contract to store t file replicas, which

requires a total of t|F| storage. However, a dishonest CSP may try to use less than t|F|

storage space and hope that this will go undetected (e.g., executes the ROTF attack). We use

the following definition to denote a CSP that is using only an α fraction of its contractual

storage obligation:

Definition 4.3.1. An α-cheating adversary is an economically-motivated adversary that

can successfully pass a challenge by only using αt|F | storage (where 1
t
≤ α ≤ 1).

Note that if α < 1
t
, then the CSP stores less than |F|, which means that any single-

replica RDC scheme [8, 9] would be enough to detect the CSP’s dishonest behavior. Thus,

we do not consider the case when α < 1
t
.

We consider a static α-cheating adversary, which refers to an α-cheating CSP, who

possesses a fixed amount of computational power known by the client, and cannot grow its

computational power over time. This captures a setting that the CSP initially has a fixed

budget for the computational power, and will not increase its budget over time.

Adversarial Strategies Replica generation in our model is time consuming. A dishonest

CSP trying to cheat by storing less replicas and executing the ROTF attack is always better

off by keeping a copy of the original file F. While this strategy requires some additional

storage, it increases considerably the CSP’s chances to cheat undetectably because the CSP

can generate any individual replica from F in one step. Otherwise, cheating would require a

two-step process: To generate a particular replica that is being challenged and which is not

103

in its possession, say Fi, the CSP would need to first recover F from an existing replica, say

Fj , and then generate Fi from F. Since replica generation is a time consuming operation

(and similarly recovering F from one of its replicas is also time-consuming), this two-step

process would considerably increase the client’s chances of detecting the CSP’s dishonest

behavior. Thus, we assume a dishonest CSP always stores a copy of the original file F.

Also, recall that most RDC schemes ensure efficiency by using spot checking [8–10]:

The client challenges the server to prove possession of a randomly chosen subset of c blocks

out of all the n file blocks. This can provide a high likelihood that the server is storing the

entire file.

The data distribution strategy for an α-cheating adversary. An α-cheating

adversary can adopt several strategies to distribute its αt|F| storage among the t servers,

which will influence its ability to remain undetected. A basic strategy is when the adversary

chooses to store on one of the servers the original file F, and to store on each of bαtc − 1

servers an amount of data equal to the size of a replica (e.g., each of these servers stores

its corresponding replica). Thus, no data is stored on the remaining t − bαtc servers. In

this case, when one of the t− bαtc servers is challenged, it always needs to generate the c

challenged blocks on the fly and then construct the answer to the challenge.

It turns out that the best data distribution strategy for an α-cheating adversary is

when the adversary stores in each of the t servers an equal fraction of the whole storage

(Theorem 4.3.2), i.e., α|F | storage at each server. Thus, the adversary will still only use

αt|F| storage space in total1. When any of the t servers is challenged, this server will

already possess, on average, an α fraction of the c blocks that are being challenged (assume

1Recall that we have assumed that the adversary always stores one original file copy F, thus the total
storage is (αt+ 1)|F|; when t is large, this can be approximated by αt|F|.

104

this server stores an α fraction of the corresponding replica). Thus, on average, it only needs

to generate on the fly an (1− α) fraction of the c challenged blocks.

Theorem 4.3.2. For an α-cheating adversary, the best data distribution strategy is to store

in each of the t servers an equal fraction of the whole αt|F| storage.

Proof. (sketch) To prove this theorem, we first show that each of the t storage servers

should store an equal fraction of the whole storage, and we then show that the blocks

stored by each server should be the blocks from the corresponding replica for that server.

LetA denote the event that the α-cheating CSP remains undetected. LetAi denote the

event that server i can always pass the challenge successfully, where 1 ≤ i ≤ t. P denotes

the probability of a given event. Assume the client always checks a random subset of c

blocks out of n file blocks during each challenge. We have, P (A) = P (A1∩A2∩ . . .∩At).

In our setting, A1, A2, . . . , At can be seen as independent events, thus:

P (A) = P (A1)P (A2) . . . P (At) (4.3)

Let xi denote the number of blocks actually stored in server i, i.e., n− xi blocks are

missing in that server. We have:
t∑
i=1

(xi) = αnt (4.4)

Let τ (in seconds) be the time threshold, within which if the response from a server is

not received, then that replica will be considered corrupted. Assume a server can generate

λ blocks on the fly per second by performing the ROTF attack (Note that this captures all

types of ROTF attacks, which may have different values of λ). According to PDP [8], we

105

have:

P (Ai) =
xi + λτ

n

xi + λτ − 1

n− 1
. . .

xi + λτ − c+ 1

n− c+ 1
=

Πc−1
j=0(xi + λτ − j)

Πc−1
j=0(n− j)

(4.5)

According to Equation (4.3) and (4.5), we have:

P (A) = Πt
i=1(

Πc−1
j=0(xi+λτ−j)
Πc−1
j=0(n−j))=

Πti=1(xi+λτ)Πti=1(xi+λτ−1)...Πti=1(xi+λτ−c+1)

Πti=1Πc−1
j=0(n−j) .

Let function fj(x1, . . . , xt) = Πt
i=1(xi + λτ − j), in which 0 ≤ j ≤ c− 1, then:

P (A) =
f0(x1, . . . , xt)f1(x1, . . . , xt) . . . fc−1(x1, . . . , xt)

Πt
i=1Πc−1

j=0(n− j)
(4.6)

In practical applications, xi + λτ − j is always positive, in which 1 ≤ i ≤ t and

0 ≤ j ≤ c− 1. Thus, we have:

For 0 ≤ j ≤ c− 1 : fj(x1, . . . , xt) = Πt
i=1(xi + λτ − j) ≥ 0 (4.7)

The best data distribution strategy for an α-cheating CSP should be a strategy that

can maximize P (A). According to Arithmetic Mean-Geometric Mean Inequality [81], we

have: (Πt
i=1(xi + λτ))

1
t ≤

∑t
i=1(xi+λτ)

t
, and the equality holds if and only if x1 + λτ =

x2 + λτ = . . . = xt + λτ , i.e., if and only if x1 = x2 = . . . = xt = nα (Equation (4.4)).

This is equivalent to Πt
i=1(xi+λτ) ≤ (

∑t
i=1(xi+λτ)

t
)t, in which the equality holds if and only

if x1 = x2 = . . . = xt = nα. Similarly, we have the following inequality for the general

case: fj(x1, . . . , xt) = Πt
i=1(xi + λτ − j) ≤ (

∑t
i=1(xi+λτ−j)

t
)t, where 0 ≤ j ≤ c − 1, and

the equality holds if and only if x1 + λτ − j = x2 + λτ − j = . . . = xt + λτ − j, i.e., the

condition for maximizing fj(x1, . . . , xt) is:

For 0 ≤ j ≤ c−1 : fj(x1, . . . , xt) = max(fj(x1, . . . , xt)), if and only if x1 = . . . = xt = nα

(4.8)

106

According to Equation (4.6), (4.7) and (4.8), and due to Πt
i=1Πc−1

j=0(n − j) > 0,

P (A) = max(P (A)) if and only if x1 = x2 = . . . = xt = nα, i.e., to maximize the

probability that the α-cheating CSP remains undetected, we should store in each storage

server an equal fraction of the whole storage.

4.4 An RDC Scheme with Server-side Repair

In this section, we propose RDC-SR, the first replication-based Remote Data Checking

scheme that supports Server-side Repair.

The original file F has n blocks, F = {b1, . . . ,bn}, and each contains s symbols in

GF (p), where p is a large prime (at least 80 bits). We use j to denote the index of a block

within a file / replica (i.e., j ∈ {1 . . . n}), and k to denote the index of a symbol in a block

(i.e., k ∈ {1 . . . s}). Let κ be a security parameter. We make use of two pseudo-random

functions (PRFs) h and γ with the following parameters:

h : {0, 1}κ × {0, 1}∗ → {0, 1}log p

γ : {0, 1}κ × {0, 1}∗ → {0, 1}log p

RDC-SR overview. Like any RDC system for a multiple-server setting [21–23, 28],

RDC-SR consists of three phases: Setup, Challenge and Repair. During the Setup phase,

the client first preprocesses the original file and generates t distinct replicas. We use i to

denote the index of the replica (i.e., i ∈ {1 . . . t}). To differentiate the replicas, we adopt

a masking strategy similar as in [22], in which every symbol of the original file is masked

individually by adding a random value modulo p. We introduce a new parameter η, which

denotes the number of masking operations imposed on each symbol when generating a

distinct replica. η can help control the computational load caused by the masking, e.g., we

107

can choose a larger η if we try to make the masking more expensive for a block. This has

the advantage that we can adjust the load for masking to defend against different adversarial

strengths (see Section 4.3.2). The client then generates verification tags for every replica,

one tag per file block. Each verification tag is computed similarly as in [10], namely as a

message authentication code by combining universal hashing with a PRF [59–62]. After

having generated t distinct replicas and the corresponding verification tags, the client sends

those replicas to t different data centers of the CSP (one replica per server), and the set

of all verification tags to each data center. The client also makes public the key used for

generating the distinct replicas, so that the servers can use it during Repair to generate new

replicas on their own.

During the Challenge phase the client acting as the verifier challenges all the storage

servers simultaneously, so that a server, who does not store a replica honestly, cannot use

other servers’ computational power to compute a proof to answer the challenge. For each

challenge, the client uses spot checking to check the replica at that server, in which it

randomly samples a small subset of blocks from the corresponding replica and checks their

validity based on the server’s response. Such a technique can detect replica corruption with

high probability [8], and has the advantage of only imposing a small overhead on both the

client and the server. We use a time threshold τ for our new model (see Section 4.2.2): If

the response from a server is not received within time τ , then that replica will be considered

corrupted. Since a static α-cheating CSP possesses a fixed amount of computational power

known by the client (Section 4.3.2), it is possible for the client to estimate τ .

The Repair phase is activated when the verifier has detected a corrupted replica during

Challenge. The client acts as the repair coordinator, i.e., it coordinates the CSP’s servers

to repair the corruption. We take advantage of the fact that a CSP usually has premium

108

bandwidth between its data centers (refer to Table C.1) and permit the servers to collaborate

among themselves to restore the corrupted replica (the key for generating distinct replicas

is known to the CSP). Thus, the system only imposes a small management load on the

client (data owner).

A detailed description of RDC-SR is provided in Figures 4.2 and 4.3, together with

the following explanation of the three phases.

The Setup phase. The client first generates keys K1 and K2. K1 will be used to compute

the verification tags and K2 will be used in generating distinct replicas. It then picks s

random numbers, η, and threshold τ (refer to Section 4.5 – Parameterization and Guidelines

on how to exactly determine η and τ). The client then calls GenReplicaAndMetadata t

times in order to generate t distinct replicas and the corresponding verification tags. Each

replica will be sent to a server located in a different data center of the CSP. The entire set

of verification tags will be sent to each server. The client may then delete the original file

and only keep a small amount of key material.

In GenReplicaAndMetadata, the client masks the original file at the symbol level,

applying η masking operations to each symbol. Each masking operation consists of adding

a pseudo-random value to the symbol; this pseudo-random value is the output of a PRF

applied over the concatenation of the replica index, the block index, the symbol index, and

an integer l (l ∈ {1 . . . η}).

The Challenge phase. For this phase, we integrate spot checking [8–10] with our new

model introduced in Section 4.2.2. The client (verifier) simultaneously sends a challenge

request to each of the t servers. For each challenge, the client selects c random replica

109

We construct RDC-SR in three phases, Setup, Challenge, and Repair. All arithmetic operations
are in GF (p), unless noted otherwise explicitly.

Setup: The client runs (K1,K2) ← KeyGen(1κ), and picks s random numbers δ1, . . . , δs
R←

GF (p). The client also chooses α and determines the values η and τ , and then executes:
For 1 ≤ i ≤ t:
1. Run (ti1, . . . ,tin,Fi)← GenReplicaAndMetadata(K1,K2,F, i, δ1, . . . , δs, η)

2. Send Fi to server Si for storage (each Si is located in a different data center of the CSP) and
send the verification tags ti1, . . . ,tin to each server .

The client may now delete the file F and stores only a small, constant, amount of data: K1,
δ1, . . . , δs, η, and τ . K2 is made public.

Challenge: Client C simultaneously challenges all the storage servers, using spot checking to
check possession of each replica stored at each server. In this process, each server uses its
stored replica and the corresponding verification tags to prove data possession. As an example,
we show the process of challenging server Si. Let query Q be the c-element set {(j, vj)}, in
which j denotes the index of the block to be challenged, and vj is a randomly chosen value from
GF (p).

1.C generates Q and sends Q to server Si
2.Si runs (ρ1, . . . , ρs,t)← GenProof(Q,Fi,ti1, . . . ,tin)

3.Si sends to C the proof of possession (ρ1, . . . , ρs,t)

4.C checks whether the response time is larger than or equal to τ . If yes, C declares
Si as faulty. Otherwise, C checks the validity of the proof (ρ1, . . . , ρs,t) by running
CheckProof(K1, δ1, . . . , δs, Q, ρ1, . . . , ρs,t, i)

Repair: Assume that in the Challenge phaseC has identified a faulty server whose index is y (i.e.,
the corresponding replica has been corrupted). C acts as the repair coordinator. It communicates
with the CSP, asks for a new server from the same data center to replace the corrupted server,
and coordinates from where the new server can retrieve a healthy replica to restore the corrupted
replica. Suppose Si is selected to provide the healthy replica. The new server will reuse the
index of the faulty server, namely, y.

1. Server Sy retrieves the replica Fi = {mi1, . . . ,min} and all the verification tags from server Si
2. Server Sy generates its own replica:

For 1 ≤ j ≤ n:
•For 1 ≤ k ≤ s: myjk = mijk −

∑η
l=1 γK2(i||j||k||l) +

∑η
l=1 γK2(y||j||k||l)

Figure 4.2 RDC-SR: a replication-based RDC system with Server-side Repair.

blocks for checking. The challenged server parses the request, calls GenProof to generate

the proof, and sends back the proof. If the client does not receive the proof within time τ , it

marks that particular server as faulty and its replica as corrupt. Otherwise, the client checks

the validity of the proof by calling CheckProof.

110

KeyGen(1κ): Randomly choose two keys: K1,K2
R← {0, 1}κ. Return (K1,K2)

GenReplicaAndMetadata(K1,K2,F, i, δ1, . . . , δs, η):

1. Parse F as {b1, . . . ,bn}
2. Generate the i-th replica:

For 1 ≤ j ≤ n:
•Mask block bj at the symbol level and get mij :
For 1 ≤ k ≤ s: mijk = bjk +

∑η
l=1 γK2(i||j||k||l)

3. Compute verification tags:
For 1 ≤ j ≤ n: tij = hK1(i||j) +

∑s
k=1 δkmijk

4. Return (ti1, . . . ,tin,Fi = {mi1, . . . ,min})

GenProof(Q,Fi,ti1, . . . ,tin):

1. Parse Q as a set of c pairs (j, vj). Parse Fi as {mi1, . . . ,min}.
2. Compute ρ and t:

•For 1 ≤ k ≤ s: ρk =
∑

(j,vj) ∈ Q vjmijk mod p

•t =
∑

(j,vj) ∈ Q vjtij mod p

3. Return (ρ1, . . . , ρs,t)

CheckProof(K1, δ1, . . . , δs, Q, ρ1, . . . , ρs,t, i):

1. Parse Q as a set of c pairs (j, vj)

2. If t =
∑

(j,vj) ∈ Q vjhK1(i||j) +
∑s

k=1 δkρk mod p, return “success”. Otherwise return
“failure”.

Figure 4.3 Components of RDC-SR.

The Repair phase. During the Repair phase, the client acts as the repair coordinator; our

approach here is novel compared to previous work, in which the client itself repairs the data

by downloading the entire file to regenerate a corrupt replica [21–23]. The client contacts

the CSP, reports the corruption, and coordinates the CSP’s servers to repair the corruption.

The server which is found faulty in the Challenge phase should be replaced by a new server

from the same data center. The new server contacts one of the healthy servers, retrieves a

replica, un-masks it to restore the original file, and masks the original file to regenerate the

corrupted replica. The new server directly retrieves the entire set of verification tags from

this healthy server (recall that the entire set of verification tags is stored at every server).

Note that the size of the set of all verification tags is always small compared to the data.

111

A concrete example of using RDC-SR. For a concrete example of using RDC-SR, we

consider a 4GB file F which has n = 100, 000 40KB blocks. Each symbol in a block is

in GF (p), in which p is an 80-bit prime number, thus, a block should contain s = 4000

symbols. The client C wants to outsource this file to t = 10 different data centers of the

CSP. C considers an 80-bit security parameter κ, and randomly picks two keys K1 and

K2 from GF (2κ). C then chooses 4000 random numbers δ1, . . . , δ4000 from GF (p). C

also chooses α = 0.8, and determines the value η and τ according to the guidelines in

Section 4.5. During Setup, C generates 10 replicas F1, . . . ,F10 by masking the original

file F in symbol level. Each symbol in the original file is masked by η pseudo-random

values, which are generated by applying the PRF γ (C uses HMAC for γ, and uses K2

as HMAC’s key) over the concatenation of the replica index i(i ∈ {1, . . . , 10}), the block

index j(j ∈ {1, . . . , 100, 000}), the symbol index k(k ∈ {1, . . . , 4000}) and an integer

l(l ∈ {1, . . . , η}). For each replica, C generates the set of verification tags, in which C

uses HMAC for h, and uses K1 as HMAC’s key. C stores in each data center a replica

and the entire set of verification tags. The verification tags require additional storage of

10MB in each of the 10 data centers. C stores locally K1, δ1, . . . , δ4000, η and τ , which

require about 40KB storage (each of δ1, . . . , δ4000 is 10 bytes; both η and τ are small

numbers, each of which requires less than 10 bytes; K1 is 10 bytes). C makes K2 public.

During Challenge, C sends to each of the 10 servers a challenge request. Assuming that S

deletes 1% of the stored replica, then C can detect server misbehavior with probability over

99% by asking proof for c = 460 randomly selected blocks [8]. Each challenge request

contains the 460-element set {(j, vj)|j ∈ Z ∧ 1 ≤ j ≤ 460}, which totals around 5KB (j

is an integer smaller than 100, 000, vj is 10 bytes). Each server’s response contains values

ρ1, . . . , ρ4000,t, which total around 40KB (each of ρ1, . . . , ρ4000, t is 10 bytes). The client

112

checks the response time with τ , as well as validates the proof of data possession. During

Repair, the client coordinates the servers to repair the corrupted replicas, in which the client

only needs to send some small coordination messages.

4.5 Guidelines for Using RDC-SR

In order to setup the system, the data owner must initially decide the type of adversary it

wants to protect the data against. Concretely, by picking a value for α, the data owner seeks

to protect its data against a CSP that is modeled as an α-cheating adversary. For example,

by picking a small α, the data owner achieves protection against a CSP that will try to

cheat by corrupting a large amount of the data. This type of corruption is easier to detect

and, as a result, the data owner can afford to use a smaller masking factor. On the other

hand, by picking a large α, the data owner seeks protection against a more stealthy CSP

that only corrupts a small fraction of the data. As a result, the data owner needs to use a

larger masking factor.

Once the data owner fixes α, it can derive the two parameters: η (the masking factor)

and τ (the time threshold used to validate the audit). In the following, we first provide

the best adversarial storage strategy in RDC-SR, and then provide guidelines on how to

estimate the parameter η and τ in practical applications.

The best storage strategy for the adversary in RDC-SR. According to Theorem 4.3.2,

the best data distribution strategy for an α-cheating CSP is to store in each of the t servers

an equal fraction of the whole αt|F| storage, i.e., each server should store nα blocks. For

RDC-SR, server i can choose to store blocks of the original file, blocks of the corresponding

replica i, or blocks of other replicas. When a server stores blocks from its corresponding

113

replica, it is able to minimize the time needed to compute a proof of data possession. We

conclude that the best data distribution strategy for an α-cheating adversary in RDC-SR is

to store in each of the t servers an α fraction of the blocks of the corresponding replica for

that server.

Estimating η. From Section 6.4, we have Ti ≤ min(ti)+min(tij)+min(tj)+min(tR)−

2∗max(ti), which can be further simplified as Ti ≤ tij+tj−ti+tR. Let x be the time each

of the c challenged file blocks contributes to the generation of the proof by the server. By

knowing the CSP’s computational power, the client can estimate x. Since Ti is the upper

bound on the execution time of the auditing protocol (as defined in Section 4.2.1), we have

c · x ≤ Ti. Based on the triangle inequality, we always have tij + tj − ti ≥ 0. To have

a coarse evaluation of η, we neglect tij + tj − ti, which is always small compared to tR

(milliseconds compared to seconds, as shown in Table 4.1, which contains some typical

values based on our experiments for Amazon S3). Thus, we get c · x ≤ tR.

Table 4.1 Values of tij + tj − ti If The Client Is Located in An AWS S3 Region
i j tij + tj − ti (in seconds)

Virginia N. California 0.08
Virginia Oregon 0.098

N. California Virginia 0.08
N. California Oregon 0.022

Oregon Virginia 0.098
Oregon N. California 0.022

Let tprf denote the time required to compute one PRF (specifically, one computation

of the function γ used to mask a symbol in RDC-SR). Then, for a challenge that checks

c blocks, assuming that the adversary adopts the best storage strategy which is mentioned

earlier in this section, we have tR = (1 − α) · c · s · η · tprf . We thus get c · x ≤ tR =

(1 − α) · c · s · η · tprf , which means that η ≥ x
(1−α)·s·tprf

(recall that s is the number of

114

symbols in a file block). The client should choose η as the smallest integer which satisfies

this condition.

Estimating τ . The time threshold τ can be computed as c · x + 2 · ti. As defined earlier

in this section, x denotes the time each of the c challenged file blocks contributes to the

generation of the proof by the server, which should include the time for accessing one

block and computing the proof for one block. ti denotes the network delay between the

challenged server and the client.

It turns out it is not trivial to estimate x for the Amazon CSP. In our experiments, the

value x exhibits some variation due to the fact that sampling a random block in Amazon

S3 can be very large in some rare cases (in those cases it will be difficult to differentiate

between benign and malicious CSP behavior). However, based on our experiments we

observed that, out of 240 protocol executions, 95% of the values for x are within the range

[0.025 sec, 0.034 sec] for the AWS Oregon region. Thus, the data owner should use the

top value in this range (0.034 sec) to estimate x in the formula for τ if the data is stored

in the Oregon S3 region. We propose three ways in which the data owner can acquire x:

First of all, data owners can estimate x themselves by measuring it directly in the target

data centers; Secondly, the CSP could determine such a range and publish it; Thirdly, it can

be estimated by a trusted third party. Note that if x is estimated by data owners or trusted

third parties, the CSP should not be able to differentiate the events of “estimating x” and

“regular data access”, thus it cannot affect the effectiveness of verification by artificially

manipulating the value of x.

115

4.6 Security Analysis

Our RDC-SR scheme is an RDC scheme and it can be easily shown that, in the

context of each individual server that holds a replica, RDC-SR provides the data owner

with a guarantee of data possession of that replica by using an efficient spot checking

mechanism [8, 9]. Note that confidentiality of the data from the CSP is an orthogonal

problem to RDC (although our RDC-SR scheme could easily achieve confidentiality by

encrypting the original file and then storing masked replicas of the encrypted file).

As opposed to previous work on RDC, the paradigm we introduce in this paper allows

the servers themselves to generate new replicas for repair purposes. This opens the door to

a new attack, the replicate on the fly (ROTF) attack, in which the economically-motivated

servers claim to store t replicas, but in reality they store less than t|F| data and generate

the missing data on the fly upon being challenged by the client. Theorem 4.6.2 shows that

RDC-SR can mitigate the ROTF attack executed by an α-cheating adversary (defined in

Section 4.3.2):

Lemma 4.6.1. In RDC-SR, by choosing the parameters η and τ according to the guidelines

in Section 4.5, a cheating server who stores an α-fraction of its corresponding replica

cannot generate (1 − α)c missing blocks within time τ based on its own computational

power (where c is the number of file blocks checked by the client in a challenge).

Proof. According to Section 4.5, η ≥ x
(1−α)·s·tprf

, i.e., η · s · tprf · (1− α) · c ≥ c · x. Since

τ is computed as c · x + 2 · ti (Section 4.5), which is approximately c · x, considering ti is

negligibly small compared to c · x. Thus, η · s · tprf · (1 − α) · c ≥ τ , i.e., to generate the

(1−α)cmissing blocks, the cheating server at least needs η ·s ·tprf ·(1−α) ·c computation,

which cannot be done within τ based on her own computational power.

116

Theorem 4.6.2. In RDC-SR, by choosing the parameters η and τ according to the

guidelines in Section 4.5, an α-cheating adversary can successfully execute the ROTF

attack without being detected with a probability of at most αcc(1 − α), where c is the

number of file blocks checked by the client in a challenge.

For fixed values of α, we can always choose c such that the probability that a server

is cheating successfully without being detected becomes negligibly small. For example, if

a server is storing only 90% of the data (i.e., α = 0.9), challenging c = 400 random blocks,

ensures that the upper bound on the probability of server cheating is 1.99 ∗ 10−17.

Proof. Per Definition 4.3.1, an α-cheating adversary is an economically-motivated

adversary that only uses αt|F| storage (where 1/t ≤ α ≤ 1). We have established in

Section 4.5 that the best adversarial storage strategy for RDC-SR is when each malicious

server stores only an α fraction of the blocks from the replica it is supposed to store. Thus

each malicious server is missing an (1− α) fraction of the file blocks.

As described in Section 4.5, the time threshold τ in RDC-SR is computed based on

the assumption that every time the client randomly checks c blocks from a file stored in

one of the t servers, at least (1 − α)c blocks are from the missing (1 − α) fraction of the

file, and thus the server has to compute (1− α)c blocks on the fly. However, if the number

of challenged blocks from the (1 − α) missing fraction is less than (1 − α)c, then the

cheating server will be able to successfully pass the check because it has to generate less

than (1− α)c blocks on the fly and can provide a reply in a time less than τ .

When a server is missing an (1 − α) fraction of the file blocks and the client

randomly challenges c blocks, let E be the event that the cheating server is able to cheat

successfully without being detected. In RDC-SR, the client challenges all the storage

117

servers simultaneously, and a cheating server cannot use other servers’ computational

power to compute a data possession proof for the challenged replica. Thus, event E

happens when either (a) less than (1 − α)c blocks are challenged among the file blocks

that are missing at the server (event E1), or (b) at least (1 − α)c blocks are challenged

among the missing file blocks but the cheating server is able to generate these missing

challenged blocks and compute a proof to answer a challenge within time τ (event E2). We

compute the probability of E as P (E) = P (E1) + P (E2).

According to Lemma 4.6.1, if we choose the parameters η and τ according to the

guidelines in Section 4.5, the cheating server cannot generate the missing (1− α)c blocks

within time τ . Thus, by choosing η and τ appropriately, we can ensure that event E2 never

happens, so P (E2) = 0.

Evaluating P (E1) is equivalent to evaluating the probability that the number of

challenged blocks that are among the non-missing α fraction of blocks is at least cα+1. The

number of possible cases that more than cα+1 challenged blocks are from the non-missing

α fraction of the file is:
(
nα
c

)
+
(
nα
c−1

)
+ ... +

(
nα

c−c(1−α)+1

)
, where n is the total number of

file blocks.

Thus, P (E1) =
(nαc)+(nαc−1)+...+(nα

c−c(1−α)+1)
(nc)

. Considering that
(
nα
x−1

)
≤
(
nα
x

)
whenever

2 ≤ x ≤ nα+1
2

, and that c ≤ nα+1
2

always holds in practice because c is a small constant in

the RDC literature (e.g., c = 400) compared to n, we have:

P (E1) ≤ (nαc)c(1−α)

(nc)
=

(nαc)
(nc)

c(1 − α) = nα(nα−1)...(nα−c+1)
n(n−1)...(n−c+1)

c(1 − α) =

nα
n
nα−1
n−1

...nα−c+1
n−c+1

c(1− α) = αn
n
α
n− 1

α

n−1
...α

n− c−1
α

n−(c−1)
c(1− α) ≤ αcc(1− α).

Thus, P (E1) ≤ αcc(1− α), and so P (E) ≤ αcc(1− α).

118

4.7 Implementation and Evaluation

4.7.1 Background on Amazon’s Cloud Services (AWS)

We first provide some background for Amazon’s cloud services within the United States,

called Amazon Web Services (AWS). EC2 is Amazon’s cloud computing service and S3

is Amazon’s cloud storage service. In the United States, Amazon has three EC2 regions

(US East - Virginia, US West - North California, and US West - Oregon) and three S3

regions (US Standard, US West - North California, and US West - Oregon). Based on our

measurements in Table C.1 and C.2 of Appendix C.1, the following EC2 and S3 regions

are located extremely close to each other and have very high network connection between

them, thus we consider them in the same region: Virginia (EC2 US East - Virginia and S3

US Standard), N. California (EC2 US West - North California and S3 US West - North

California), and Oregon (EC2 US West - Oregon and S3 US West - Oregon).

4.7.2 Experimental Results

We build and test our prototype for RDC-SR on Amazon Web Services (AWS). Each server

is run on an EC2 large instance (4 ECUs, 2 Cores, and 7.5GB Memory, created from

Amazon Linux AMI 64-bit image). The client is run on a machine located in our institute,

equipped with Intel Core 2 Duo system with two CPUs (each running at 3.0GHz, with

a 6144KB cache), 333GHz frontside bus, 4GB RAM and a Hitachi HDP725032GLA360

360GB hard disk with ext4 file system. In the following, our EC2 instances and S3 data are

located in the Oregon region, unless noted otherwise. The prototype for RDC-SR has been

implemented in C and uses OpenSSL version 1.0.0e [44] for cryptographic operations.

119

From Section 4.5, we have η ≥ x
(1−α)·s·tprf

and we also choose x = 0.034 sec. We

estimate tprf = 4.3 µsec for an EC2 large instance (EC2 Oregon). We choose 40 KB for

the file block size and 80-bit prime number p, thus s is 4000.

We use the following values for (α, η) in our experiments: (0.6, 5), (0.7, 7), (0.8, 10)

(recall from Section 4.5 that once α is fixed, η can be computed). We use these values

for α to reflect an economically-motivated CSP (such a CSP would not likely be interested

in saving a small amount of storage, so we do not consider cases when α > 0.8). The

experimental results are averaged over 20 runs, unless noted otherwise.

Preprocess. The file to be outsourced is preprocessed by an EC2 large instance, generating

3 different replicas and the corresponding verification tags. The replicas are then stored at 3

different S3 regions, one replica per region. All the verification tags are stored at every S3

region. In our experiments, we adopt a slightly different strategy from the scheme described

in Section 4.4: One of the 3 different replicas is the actual original file. This strategy speeds

up the repairing of a corrupted replica, because the replica can be computed directly from

the original file (a similar approach was proposed in [19, 20]).

We measure the time for masking, verification tag generation and total preprocessing

for one masked replica under three sets of (α, η) parameters. We repeat the experiments

for four different file sizes (20MB, 50MB, 80MB, and 100MB). Table 4.2 shows the

throughput for total preprocessing and its different components.

We have several observations for Table 4.2: Firstly, the throughput of masking

operation decreases when α increases. This is expected because a larger α means that

it is more difficult to detect the adversarial behavior, thus, we need a larger η, hence

more computations are required for masking. Secondly, the throughput of verification

120

tag computation is independent of α, due to the fact that the verification tags are

computed over the masked replica, which is independent of η, hence independent of α.

Thirdly, the throughput of total preprocessing, which includes masking and verification tag

computation, is always close to but a little smaller than the throughput of masking, since

the verification tag computation is very efficient (can generate verification tags for more

than 5MB data in one second) and only has a small impact to the total preprocessing time.

Table 4.2 Preprocessing Throughput
α η operation throughput (MB/s)

0.6
masking 0.44

5 verification tag 5.2
total 0.41

0.7
masking 0.32

7 verification tag 5.2
total 0.3

0.8
masking 0.22

10 verification tag 5.2
total 0.21

Challenge. The client issues a challenge to the server (run in an EC2 large instance). The

server samples blocks from S3 in the same region, and computes and sends back the proof.

The client then checks the proof. For simplicity, we only challenge the server running in

EC2 Oregon which is responsible for the replica stored in S3 Oregon. The number of blocks

to be challenged is c = 400, which provides a high guarantee to detect data corruption by

the server [8]. For the chosen values of α (Table 4.2) and c, the probability that a server

performs the ROTF attack without being detected is less than 1.38 ∗ 10−37(cf. Section 4.6).

Amazon S3 offers a REST API to access data, which is based on the HTTP/1.0 protocol.

Although HTTP supports operations on multiple ranges of the target object in one request,

Amazon S3 only supports one range. This means that in order to sample 400 random

blocks, we must send 400 different requests for a one-block range. This explains partially

121

the large variation we observe in block access time for S3 (Figures 4.4(b) and 4.5(b)), thus

we average the block access time over 100 runs. We examine two cases:

• Benign case: The CSP is honest, i.e., it strictly stores the replicas in the corresponding
regions according to the contract. Upon challenge, the server uses the data from the same
region to pass the challenge. In this case, the total server computation includes sampling
challenged blocks from S3 of the same region and computing the proof.

• Adversarial case: The CSP is cheating by not storing all replicas in their entirety
according to the contract. The malicious CSP adopts the best attack strategy described
in Section 4.3.2. Because the server will only have an α fraction of the challenged blocks,
it retrieves the other (1−α) fraction from another region and recreates the missing blocks
on the fly. The total server computation for this case includes sampling challenged blocks
from S3 of the same region, generating a 1 − α fraction of the challenged blocks (by
masking the original file blocks), and computing the proof.

We repeat the experiments for different sets of (α, η) parameters and for different file

sizes. Figures 4.4 and 4.5 show the server computation and client computation for both

cases.

For the benign case, we observe from Figure 4.4 that the total server computation and

its various components as well as the client (verifier) computation are independent of file

size and of α. This is expected because: Firstly, we rely on spot checking [8] which always

randomly samples a fixed number of blocks from the masked replica, thus can maintain

constant server/client computation. Secondly, during a challenge, the operations on both

server and client are over the masked replica, which is independent of η, hence independent

of α. Figure 4.4(d) shows that the time for the client to check the proof is less than 7 msec,

which justifies our claim that the system imposes a small load on the verifier during the

challenge phase.

For the adversarial case, we observe from Figure 4.5 that the total server computation

and its various components are independent of filesize. The reason has been explained in

122

the benign case. For Figure 4.5(c), we expected to see that the masking time is independent

of α, because: The malicious server always stores only an α fraction of the corresponding

data, and generates the 1−α fraction of challenged blocks on the fly (by masking). Larger

α means that the malicious server has to generate less challenged blocks but generating

one challenged block will be more expensive, thus, the masking time for the 1−α fraction

of challenged blocks should be almost constant. Figure 4.5(c) shows that for the case of

α = 0.7, the masking time is larger than those of other two cases. This discrepancy can

be explained because we must always choose η as an integer number. The server masking

time is 400(1 − α) · s · η · tprf , which is determined by the multiplication of 1 − α and

η. For the case of α = 0.7, the minimum integer for η is 7, thus, (1 − α) · η = 2.1. For

both cases α = 0.6 and α = 0.8, (1 − α) · η = 2 < 2.1. This explains where such a

discrepancy comes from. Note that there is a lower bound on the server masking time,

because 400(1− α) · s · η · tprf ≥ 400(1− α) · s · tprf · x
(1−α)·s·tprf

= 400x = 13.6 sec. We

observe that most of the points in Figure 4.5(c) are over this lower bound, except the point

in 20MB filesize when α = 0.6, but we still consider this point as valid since it is only

1% smaller. The existence of the lower bound for the server masking time guarantees that

even if the malicious server has the magic power to access the data and compute the proof

instantly (i.e., the times shown in Figure 4.5(b) and Figure 4.5(d) are 0), it still cannot cheat

successfully, since the time for generating the 1 − α fraction of challenged blocks will be

always larger than 400x, which is the total server computation for the benign case.

Figure 4.5(d) shows that the time for the server to compute the proof varies with α.

We can still conclude that this time is independent of α given that the variance is quite

small (around 1%).

123

According to the guidelines for establishing the time threshold τ in Section 4.5, τ

should be 13.7 sec (c=400, x = 0.034 sec, ti = 0.045 sec based on our experiments). We

see that 95% of the individual runs for Figure 4.4(a) are below this threshold, and 100% of

the individual runs for Figure 4.5(a) are above this threshold. This confirms the practical

value of using a time threshold to establish if the CSP is malicious.

Repair. We assume that the replica stored in S3 Oregon has been found corrupted, and the

replica stored in S3 California is retrieved to repair the corruption. The repair server runs

in a large instance from EC2 Oregon. The server downloads the replica from S3 California

and masks it to generate the replica for S3 Oregon. The server also downloads all the

verification tags from another S3 region (this time is negligible in our experiment). The

results are shown in Figure 4.6 (this includes time for masking to generate a new replica,

as described Table 4.2). We observe from Figure 4.6(a) that, for repairing one replica, total

server computation increases with α. This is because, as shown in Preprocessing, larger

α will result in larger masking computation, and the masking computation dominates the

total repair computation.

One significant advantage in the repair phase is that the client can be kept lightweight,

e.g., the client only needs to exchange a few messages to coordinate the repair procedure.

This justifies our claim that the system imposes a small management load on the data owner

during repair.

124

 10.2

 10.4

 10.6

 10.8

 11

 11.2

 11.4

 20 30 40 50 60 70 80 90 100

ti
m

e
 [
s
]

filesize [MB]

alpha=0.6
alpha=0.7
alpha=0.8

(a) Total server computation.

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 20 30 40 50 60 70 80 90 100

ti
m

e
 [
s
]

filesize [MB]

alpha=0.6
alpha=0.7
alpha=0.8

(b) Server samples 400 blocks from S3 in the
same region.

 2.83

 2.831

 2.832

 2.833

 2.834

 2.835

 2.836

 2.837

 2.838

 2.839

 2.84

 20 30 40 50 60 70 80 90 100

ti
m

e
 [
s
]

filesize [MB]

alpha=0.6
alpha=0.7
alpha=0.8

(c) Server computes the proof.

 0.00678

 0.0068

 0.00682

 0.00684

 0.00686

 0.00688

 0.0069

 0.00692

 20 30 40 50 60 70 80 90 100

ti
m

e
 [
s
]

filesize [MB]

alpha=0.6
alpha=0.7
alpha=0.8

(d) Client computation.
Figure 4.4 Computational cost for both the server and the client in challenge phase
(benign case).

125

 24.2

 24.4

 24.6

 24.8

 25

 25.2

 25.4

 20 30 40 50 60 70 80 90 100

ti
m

e
 [
s
]

filesize [MB]

alpha=0.6
alpha=0.7
alpha=0.8

(a) Total server computation.

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 20 30 40 50 60 70 80 90 100

ti
m

e
 [
s
]

filesize [MB]

alpha=0.6
alpha=0.7
alpha=0.8

(b) Server samples 400 blocks from S3 in the
same region.

 13.2

 13.4

 13.6

 13.8

 14

 14.2

 14.4

 14.6

 14.8

 15

 20 30 40 50 60 70 80 90 100

ti
m

e
 [
s
]

filesize [MB]

alpha=0.6
alpha=0.7
alpha=0.8

(c) Server masks blocks.

 2.74

 2.745

 2.75

 2.755

 2.76

 2.765

 2.77

 2.775

 20 30 40 50 60 70 80 90 100

ti
m

e
 [
s
]

filesize [MB]

alpha=0.6
alpha=0.7
alpha=0.8

(d) Server computes the proof.

Figure 4.5 Computational cost for the server and its various components in challenge
phase (adversarial case).

126

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 20 30 40 50 60 70 80 90 100

ti
m

e
 [
s
]

filesize [MB]

alpha=0.6
alpha=0.7
alpha=0.8

(a) Total server computation.

 1

 1.5

 2

 2.5

 3

 3.5

 20 30 40 50 60 70 80 90 100

ti
m

e
 [
s
]

filesize [MB]

alpha=0.6, 0.7, 0.8

(b) Server downloads data from another
region.

Figure 4.6 Computational cost for repairing a replica.

CHAPTER 5

AN ENHANCED REMOTE DATA CHECKING SCHEME SUPPORTING

SERVER-SIDE REPAIR

In this chapter, an enhanced RDC-SR scheme for replication-based distributed storage

systems (ERDC-SR) is introduced. Similar to RDC-SR, ERDC-SR can allow server-side

repair and place a minimal load on the data owner. Different than RDC-SR, ERDC-SR

relaxes the assumption that the computational power of the CSP does not grow over time,

and is thus more suitable for real-world applications.

When a replication-based distributed storage system is used in tandem with remote

data checking, we can distinguish several phases throughout the lifetime of the storage

system: Setup, Challenge, and Repair. During Setup, the data owner creates multiple

replicas of the file F, and stores them at multiple storage servers (one replica at each server).

During the Challenge phase, the data owner periodically checks whether all the replicas

have remained intact. If a replica is found corrupt during Challenge, the data owner will

take actions to Repair it, such that the desired redundancy level in the system is restored.

The Challenge and Repair phases will alternate over the lifetime of the system.

Conforming to the notion of storage outsourcing, the data owner would like to

outsource both the storage and the management of the data. In other words, after the

Setup phase, the data owner should only have to store a small, constant, amount of data

and should be involved as little as possible in the maintenance of the data. RDC-SR

(Chapter 4) initiates the investigation of server-side repair, and defends against a new

replicate-on-the-fly (ROTF) attack. In an ROTF attack, an untrusted CSP who knows the

127

128

secrets on how to generate replicas, will try to convince the data owner that it stores the

expected number of replicas by generating on the fly a replica being challenged, even

though its actual number of stored replicas is much less than the expected. RDC-SR

formalizes the adversary who performs the ROTF attack as an α-cheating adversary, which

is an economically motivated untrusted CSP who is cheating by storing an α-fraction of the

expected storage.

The basic idea of RDC-SR is as follows: during Setup, the data owner creates

multiple replicas, each of which is created from F by using a controllable amount of

masking (the masking factor η is determined by the CSP’s computational power); during

Challenge, the verifier challenges each server to obtain a proof of data possession and

checks whether the response time is within a pre-determined threshold τ . RDC-SR can

successfully defend against an α-cheating CSP who will not grow its computational power

over time (i.e., a static α-cheating adversary). In practical applications, the α-cheating

CSP may increase its budget to grow its computational power, and RDC-SR cannot defend

against this type of dynamic α-cheating adversary because, firstly, in RDC-SR, the time

threshold τ is fixed during Setup, i.e., after the Setup phase, if the CSP upgrades its

computational power, the α-cheating adversary can easily pass the verification without

being detected by performing the ROTF attack; secondly, the client cannot dynamically

adjust τ in time after Setup, since it does not have any knowledge on when the CSP will

upgrade its computational power. Defending against the dynamic α-cheating adversary is

advantageous: After the client has outsourced the storage of a file F, it can always obtain

an assurance of the reliability and fault tolerance of the data, even if the CSP grows its

computational power, unbeknownst to the client.

129

A Straw Man Solution (the RDC-SR-1 scheme). To defend against the dynamic

α-cheating CSP, one can simply extend RDC-SR in the following way: During Setup,

the client first picks η according to the CSP’s initial computational power, the growth

rate of its computational power, and the length of a time period during which the client

wants to obtain an assurance of the reliability and fault tolerance of the outsourced data;

it then picks τ and pre-processes the file according to RDC-SR. During Challenge, the

client simultaneously challenges each storage server, requiring each server to prove data

possession of a random subset of blocks from its stored replica. For the chosen time period,

η is large enough such that an α-cheating server cannot generate the missing challenged

blocks on the fly and compute a proof to answer the challenge within τ . The resulting

scheme, RDC-SR-1, can successfully defend against the dynamic α-cheating adversary.

Unfortunately, it will lead to a much more expensive Setup and Repair phase, since creating

a replica will become much more expensive. We thus propose ERDC-SR (Enhanced

RDC-SR), in which we enhance RDC-SR by creating dependency between each of the

replica block and multiple original file blocks.

A comparison between RDC-SR and ERDC-SR. Both RDC-SR and ERDC-SR are RDC

schemes proposed to support server-side repair for replication-based distributed storage

systems. Though a lot in common, they are different in several aspects. Firstly, both

schemes allow server-side repair, and at the same time, overcome the ROTF attack

performed by the economically-motivated malicious CSP. Yet, RDC-SR can only defend

against an adversary who has a fixed amount of computational power, and ERDC-SR can

defend against a stronger adversary who can grow its computational power over time.

Secondly, during the Setup phase, both schemes pre-process the original file, generating

different replicas and the corresponding metadata. However, to create a replica, RDC-SR

130

relies on a controllable amount of masking, and ERDC-SR utilizes a variant of butterfly

encoding [82]. Thirdly, in RDC-SR, each replica block depends on only one original

file block. Oppositely, in ERDC-SR, each replica block depends on multiple original

file blocks. Thus, during the Challenge phase, to answer a challenge by performing the

ROTF attack, the adversary in ERDC-SR needs to compute not only the challenged replica

blocks that are missing, but also many other intermediate blocks needed to compute these

challenged blocks. Lastly, RDC-SR can be applied to files of arbitrary sizes, and ERDC-SR

can only be applied to files that are large enough (e.g., under typical parameters, a file needs

to be at least 60MB).

5.1 System and Adversarial Model

5.1.1 System Model

We adopt a system model similar to that of RDC-SR. The client wants to outsource the

storage of a file F. To ensure high reliability and fault tolerance of the data, the client

creates t distinct replicas and outsources them to t data centers (storage servers) owned

by a CSP (one replica at each data center). To ensure that the t replicas remain healthy

over time, the client challenges each of the t servers periodically. Upon finding a corrupted

replica, the client acts as a repair coordinator who oversees the repair of the corrupted

replica (the CSP, who has premium network connection between its data centers, uses the

healthy replicas to repair the corrupted replica; the client should have minimal involvement

in the repair process).

131

5.1.2 Adversarial Model

We assume the CSP is rational and economically motivated, i.e., it will try to cheat only if

cheating cannot be detected and meanwhile, can achieve certain economic benefits, such as

using less storage than required by contract.

Similar to RDC-SR, we consider an α-cheating adversary, which is an economically-

motivated adversary that can successfully pass a challenge by only storing an α fraction

of the expected storage (where 1
t
≤ α ≤ 1). Different from RDC-SR, in this work,

we consider a dynamic α-cheating adversary, a more powerful adversary who can

grow its computational power over time. A dynamic α-cheating adversary refers to an

α-cheating CSP, who initially has a known amount of computational power, and is capable

of growing its computational power at a known rate over time. Compared to the static

α-cheating adversary considered in RDC-SR, this captures a more flexible and realistic

setting, in which a CSP may choose to increase its budget on the computational power

due to its business strategy. Note that it is reasonable to assume the CSP grows its

computational power with a fixed growth rate known by the client since, firstly, a rational

and economically motivated CSP will increase its budget steadily, rather than arbitrarily,

and the client can possibly estimate how the CSP will grow its budget on the computational

power from the CSP’s historical data; secondly, the unit price of the computational power

usually decreases steadily, and the client can estimate how this price will decrease based

on the historical records, e.g., the historical price of processor and memory.

5.2 An Enhanced RDC Scheme with Server-side Repair

In this section, we propose ERDC-SR, an Enhanced RDC scheme which can support

Server-side Repair, and can defend against a dynamic α-cheating adversary. The basic idea

132

of ERDC-SR is two-fold: firstly, we make each replica block depend on multiple original

file blocks, such that computing a replica block on the fly is time-consuming. In order to

pass a challenge by performing the ROTF attack, an economically motivated dishonest CSP

needs to compute on the fly not only the challenged replica blocks that are missing, but also

many other blocks needed to compute these challenged blocks (i.e., intermediate blocks);

secondly, we determine both the time threshold τ and the amount of work needed to create

a replica block, based on the knowledge of the CSP’s initial computational power and the

growth rate. This can ensure that a cheating CSP is not able to compute the intermediate

blocks and hence the challenged blocks within τ when answering a challenge.

In ERDC-SR, we make each replica block depend on a subset of β original file blocks.

We term β as dependency factor. A butterfly network [82] was previously proposed to

create dependency between an encoded block and all the original blocks in a file. By tuning

this solution, we can create dependency between an encoded block and arbitrary number

of original file blocks. In the following, we first design a β-butterfly encoding, and then

propose an ERDC-SR scheme based on β-butterfly encoding. In Figure 5.1, we provide a

reference sheet showing various parameters of ERDC-SR used in this section.

• n: the number of PDP blocks in a file F.
• c: the number of PDP blocks in a replica checked by the verifier during Challenge.
• α: a parameter representing the adversarial strength, i.e., an α-cheating adversary will only
store an α fraction of the contractual storage.
• τ : the time threshold, which is used to measure the response time duing Challenge.
• β: dependency factor, defined as the number of original file blocks each replica block depends
on, which is equivalent to the number of levels in a butterfly network.

Figure 5.1 A reference sheet for various parameters.

133

5.2.1 β-butterfly Encoding

As shown in Figure 5.2, when creating a new replica, we use the collection of original

file blocks as input (at level 0), and apply an atomic cryptographic transformation to pairs

of blocks in a sequence of logβ levels, in which the collection of blocks at level j is the

output of a function (i.e., cryptographic transformations over pairs of blocks) over level

j − 1, where 1 ≤ j ≤ logβ. The cryptographic transformation used in Figure 5.2 has

the following properties: firstly, each bit of the pair of output blocks depends on each bit

of the pair of input blocks; secondly, each output block has the same size as the input

block. In Section 5.3.1, we provide an instantiation for the cryptographic transformation

used in ERDC-SR. Compared to the butterfly encoding used in [82], in which each of the

resulting blocks depends on all the original file blocks, the β-butterfly encoding offers more

flexibility: each resulting block (in level logβ) depends on β original file blocks (i.e., blocks

on level 0), where 1 ≤ β ≤ n. β determines the amount of dependency introduced between

the replica blocks and the original file blocks. By having a suitable β value (Section 5.3.2),

we can ensure that for a certain period of time after the data has been outsourced, a dynamic

α-cheating adversary cannot utilize additional computational power to generate the missing

data on the fly in order to pass a verification within time threshold τ .

5.2.2 ERDC-SR

In the following, we present the ERDC-SR scheme, in which we use the β-butterfly

encoding to create different replicas. The original file F has n blocks, F = {b1, . . . ,bn},

and each contains s symbols in GF (p), where p is a large prime (at least 80 bits). We use

j to denote the index of a block within a file / replica (i.e., j ∈ {1 . . . n}), and k to denote

134

Figure 5.2 β-butterfly encoding.

the index of a symbol in a block (i.e., k ∈ {1 . . . s}). Let κ be a security parameter. Let

B denote the blocksize. Let h and f be two PRFs, E be a cryptographic transformation

(Section 5.3.1) and D be the reverse operation of the cryptographic transformation. f , E

and D have the following parameters:

h : {0, 1}κ × {0, 1}∗ → {0, 1}log p

f : {0, 1}κ × {0, 1}∗ → {0, 1}κ
E : {0, 1}κ × {0, 1}B × {0, 1}B → {0, 1}B × {0, 1}B
D : {0, 1}κ × {0, 1}B × {0, 1}B → {0, 1}B × {0, 1}B

ERDC-SR overview. During the Setup phase, the client first generates two keys, K1 and

K2. It then preprocesses the original file, creating t distinct replicas. To create a replica,

the client generates a key specific for this replica based on K1 and the replica index, and

applies the β-butterfly encoding to the original file with this key, which will be used in

each cryptographic transformation during β-butterfly encoding. For each replica, the client

computes a set of verification tags based on key K2. After having created t distinct replicas

and the corresponding verification tags, the client outsources them to t different data centers

(servers) of the CSP, so that each data center stores one replica and the set of all verification

135

tags. The client then publishes K1 and β. The Challenge phase of ERDC-SR is similar

to that of RDC-SR. During the Repair phase, the client acts as the repair coordinator,

coordinating the CSP’s servers to repair the corrupted replicas.

We provide a detailed description of ERDC-SR in Figures 5.3 and 5.4, together with

the following explanation.

The Setup phase. The client generates two keys K1 and K2 by running KeyGen. It

picks s random values δ1, . . . , δs from GF (p), and determines threshold τ according to

the guidelines in Section 5.3. It then computes the dependency factor β (Section 5.3),

and calls EnhancedGenReplicaAndMetadata t times to generate t distinct replicas and the

corresponding verification tags. Each distinct replica will be stored in a different data center

of the CSP, and the entire set of verification tags will be stored in each data center. The

client then publishes key K2 and β, deletes the original file and only keeps a small amount

of data.

In EnhancedGenReplicaAndMetadata, the client calls ButterflyEncode to create

a new replica, and computes a set of verification tags for this new replica. In

ButterflyEncode, the client applies β-butterfly encoding over the collection of original file

blocks (Figure 5.2), in which the cryptographic transformation is based on a key derived

from K2 and the corresponding replica index.

The Repair phase. The client acts as the repair coordinator: It contacts the CSP, reports

the corruption, and coordinates the CSP’s servers to repair the corruption. A new server

from the same data center (as the corrupted server), which will be used to replace the

corrupted server, contacts one of the healthy servers, retrieves a replica, decodes (i.e.,

ButterflyDecode, which is actually the reverse operation of ButterflyEncode) it to restore

136

We construct ERDC-SR in three phases, Setup, Challenge and Repair by utilizing the
components in both Figures 4.3 and 5.4. All arithmetic operations are in GF (p), unless noted
otherwise explicitly.

Setup: The client runs (K1,K2) ← KeyGen(1κ), and picks s random numbers δ1, . . . , δs from
GF (p). The client also chooses α and determines τ , and then executes:

1. Compute dependency factor β according to the guidelines in Section 5.3
2. Compute and outsource the replicas and the verification tags

For 1 ≤ i ≤ t:
•Run (ti1, . . . ,tin,Fi)← EnhancedGenReplicaAndMetadata(β,K1,K2,F, i, δ1, . . . , δs)

•Send Fi to server Si for storage (each Si is located in a different data center of the CSP)
and send the verification tags ti1, . . . ,tin to each server

3. The client now deletes the file F and stores only a small, constant, amount of data: K1,
δ1, . . . , δs, and τ . K2 and β are made public.

Challenge: Similar to the Challenge phase of RDC-SR (Chapter 4).

Repair: Assume the client C has identified a faulty server with index y (i.e., replica Fy has been
corrupted). C acts as the repair coordinator: It communicates with the CSP, asks for a new server
from the same data center to replace the corrupted server, and coordinates from where the new
server can retrieve a healthy replica to restore the corrupted replica. Suppose Si is selected to
provide the healthy replica. The new server will reuse the index y.

1. Server Sy retrieves the replica Fi and the set of all verification tags from server Si
2.Sy recovers the original file F by running (F)← ButterflyDecode(β,K2,Fi, i)

3.Sy generates its own replica Fy by running (Fy)← ButterflyEncode(β,K2,F, y)

Figure 5.3 ERDC-SR: an Enhanced replication-based RDC system with Server-side
Repair.

the original file, and encodes (i.e., ButterflyEncode) the original file to regenerate the

corrupted replica. The new server directly retrieves from this healthy server the entire

set of verification tags.

5.3 Guidelines for ERDC-SR

In this section, we provide guidelines on applying ERDC-SR in practical applications. We

first provide an instantiation for the cryptographic transformation used in the β-butterfly

encoding, and then provide guidelines on how to estimate various parameters used in the

137

EnhancedGenReplicaAndMetadata(β,K1,K2,F, i, δ1, . . . , δs):

1. Generate the i-th replica: (Fi)← ButterflyEncode(β,K2,F, i)

2. Parse Fi as {mi1, . . . ,min}
3. Compute verification tags:

For 1 ≤ j ≤ n: tij = hK1(i||j) +
∑s

k=1 δkmijk
4. Return (ti1, . . . ,tin,Fi = {mi1, . . . ,min})

ButterflyEncode(β,K2,F, i):

1. Parse F as {b1, . . . ,bn}
2. Initiate an array G with F, i.e., G[0] = b1, G[1] = b2, . . . , G[n− 1] = bn
3. Generate a key K based on K2 and i: K = fK2(i)

4. For j from 1 to logβ do
5. For k from 0 to n

2j
− 1 do

6. For l from 1 to 2j−1 do
7. (G[l + k · 2j], G[l + k · 2j + 2j−1])← EK(G[l + k · 2j], G[l + k · 2j + 2j−1])

8. Return (Fi = {mi1 = G[0],mi2 = G[1], . . . ,min = G[n− 1]})

ButterflyDecode(β,K2,Fi, i):

1. Parse Fi as {mi1, . . . ,min}
2. Initiate an array G with Fi, i.e., G[0] = mi1, G[1] = mi2, . . . , G[n− 1] = bin
3. Generate a key K based on K2 and i: K = fK2(i)

4. For j from logβ to 1 do
5. For k from 0 to n

2j
− 1 do

6. For l from 1 to 2j−1 do
7. (G[l + k · 2j], G[l + k · 2j + 2j−1])← DK(G[l + k · 2j], G[l + k · 2j + 2j−1])

8. Return (F = {b1 = G[0],b2 = G[1], . . . ,bn = G[n− 1]})

Figure 5.4 Components for ERDC-SR.

ERDC-SR scheme. For convenience, we provide a reference sheet in Figure 5.5 for all the

parameters used in ERDC-SR.

138

• n: the number of PDP blocks in a file F.
•m: the number of 64-bit blocks in a PDP block.
• c: the number of PDP blocks in a replica checked by the verifier during Challenge.
• α: a parameter representing the adversarial strength, i.e., an α-cheating adversary will only
store an α fraction of the contractual storage.
• τ : the time threshold, which is used to measure the response time duing Challenge.
• β: dependency factor, defined as the number of original file blocks each replica block depends
on, which is equivalent to the number of levels in a butterfly network.
• ρ: the annual growth rate of CSP’s computational power.
• φ: the time period (e.g., 5 years), during which the client can obtain an assurance of the
reliability and fault tolerance of the outsourced data, regardless of whether the CSP upgrades its
computational power or not. After time period φ, the client should preprocess the data again.
• e: computational time needed for one cryptographic transformation based on CSP’s
computational power at Setup.
• u: the computational time needed for one AES operation over a 128-bit block based on CSP’s
computational power at Setup.

Figure 5.5 A reference sheet for all the parameters used in ERDC-SR.

5.3.1 Instantiating The Cryptographic Transformation

The cryptographic transformation E used in ERDC-SR has the properties that each bit of

the output depends on each bit of the input, and both the output and the input are equal in

size. Simply instantiating E with a block cipher (e.g., AES) cannot work, because there is

a gap between the blocksize used for block cipher purpose and that used for provable data

possession (PDP [8]) purpose: block ciphers like AES always use a small blocksize, e.g.,

AES uses 128 bits as the blocksize; oppositely, the blocksize used in ERDC-SR for PDP

purpose should be always large enough (e.g., 4KB), such that the storage overhead for the

verification tags remains reasonable. It may seem that this gap can be filled by using a

block cipher with a mode of operation such as CBC [83] which, however, is not sufficient,

since it may not necessarily guarantee the property that each bit of the output depends on

each bit of the input. In the following, we provide a proper instantiation for E, which can

be achieved in two steps:

1. View the input (i.e., two PDP blocks) of E as a collection of 2 ·m 64-bit blocks.

139

2. Apply a butterfly encoding (Figure 5.2) over this collection of 64-bit blocks (at level
0) in a sequence of log(2 · m) levels, such that the collection of blocks at level j
is the output of a function (i.e., AES over pairs of blocks) over level j − 1, where
1 ≤ j ≤ log(2 ·m).

This full butterfly encoding can achieve “strong mixing” [82], such that each bit of the

output (two PDP blocks) depends on each bit of the input (two PDP blocks). In Figure 5.6,

we show a concrete example for the instantiation of a cryptographic transformation where

each PDP block has 4 64-bit blocks. Correspondingly, D (Section 5.2) can be instantiated

as the reverse process of E. Note that we should always choose m as a power of 2, so that

log(2 ·m) is always a positive integer.

Figure 5.6 An example for the instantiation of cryptographic transformation.

5.3.2 Estimating The Parameters

In the following, we first provide the best adversarial storage strategy for ERDC-SR, and

then provide guidelines on how to estimate the parameters used in ERDC-SR such that one

can apply ERDC-SR in practical applications. Among the parameters shown in Figure 5.5,

α, ρ and φ are known, and c can be determined according to PDP ([8]). We provide

guidelines for estimating the remaining parameters τ , m, n, e and β.

140

The best storage strategy for the adversary in ERDC-SR. Similarly to RDC-SR

(Chapter 4), the best data distribution strategy for an α-cheating CSP is to store in each

storage server nα blocks, which can be the original file blocks, intermediate blocks

(Figure 5.2), blocks of the corresponding replica (replica blocks), or a combination of

different types of blocks. According to Appendix D.2, if the adversary only stores a block

from level i (0 ≤ i ≤ logβ) of the butterfly network (Figure 5.2) and is able to access

the original file, to generate a randomly challenged replica block, she needs to perform

β
n·2i + β− β

n
− 1 cryptographic transformations. Let f(i) = β

n·2i + β− β
n
− 1. We observed

that for fixed n and β, f(i) decreases when i increases, i.e., f(i) is minimized when i is

maximized. Thus, to minimize the effort of computing a proof to answer a challenge, the

adversary should choose to store the blocks from the level corresponding to the maximum

i in the butterfly network, which are the blocks from the corresponding replica.

Estimate τ . Similar to RDC-SR (Chapter 4), the time threshold τ in ERDC-SR can be

computed as c·x+2·ti, where x denotes the time each of the c challenged blocks contributes

to the generation of the proof by the server at the time of Setup, which should include the

time for accessing one block and computing the proof for one block, and ti denotes the

network delay between the challenged server and the client.

Estimate m, n and e. Considering |F | is the size of a replica in bytes, n (the number of

PDP blocks in a replica) and m (the number of 64-bit blocks in a PDP block) have the

following relation: n · m · 8 = |F |, i.e., n = |F |
8·m . Each replica should have at least 2

PDP blocks, i.e., n ≥ 2. Thus, |F |
8·m ≥ 2. From Section 5.3.1, we have e = 2·m

2
· log(2 ·

m) · u, because E is instantiated as a butterfly encoding over 2 PDP blocks (i.e., 2 · m

64-bit blocks) with log(2 ·m) levels, and u is the computational time needed for one AES

141

operation over a 128-bit block during Setup (see Figure 5.5). According to Appendix D.3,

e > ((1+ρ)φ−1)·τ
n+ 1

2
·c·(1−α)−2

, i.e., 2·m
2
· log(2 · m) · u > ((1+ρ)φ−1)·τ

n+ 1
2
·c·(1−α)−2

. Since n = |F |
8·m , we have

m·log(2·m)·u > ((1+ρ)φ−1)·τ
|F |
8·m+ 1

2
·c·(1−α)−2

, i.e., log(2·m)·u· |F |
8

+m·log(2·m)·u·(1
2
·c·(1−α)−2) >

((1 + ρ)φ − 1) · τ , from which we can determine m by knowing |F |, c, α, u, ρ, φ and

τ . Specifically, m should be chosen such that the following conditions can be satisfied

simultaneously: First, |F |
8·m ≥ 2; Second, log(2·m)·u· |F |

8
+m·log(2·m)·u·(1

2
·c·(1−α)−2) >

((1 + ρ)φ − 1) · τ ; Third, m is a power of 2. We provide next an efficient algorithm

(Algorithm 1) to find out the minimum value of m (i.e., mmin).

Algorithm 1 keeps testing integers starting from 1. If it can not find such an integer

which can satisfy the aforementioned conditions, it will output −1, i.e., such an mmin

value does not exist. This may happen when |F | is small. For a concrete example, when

|F | = 100MB, c = 460, α = 0.9, ρ = 30%, φ = 2, τ = 12sec, and u = 0.1µs

(estimated from our local machine, which is equipped with Intel Core i5−4250U processor

and 4GB RAM), mmin is 64 (i.e., the minimum size of a PDP block is 512B). After

having determined the minimum value of m, how to pick the exact m value is a trade-off

between the storage overhead of verification tags and the computation/communication

overhead during Challenge. Specifically, a larger m will lead to a larger PDP blocksize,

which will lead to less storage overhead for verification tags, but more computation and

communication overhead in each challenge. In general, we choose m such that the PDP

blocksize is from KBs (i.e., 4KB) to tens of KBs (i.e., 40KB). In other words, to

guarantee we can always choose a meaningful PDP blocksize, mmin should be small

enough. We provide in Table 5.1, 5.2, 5.3 and 5.4 the mmin value by varying the filesize

under different sets of parameters. We observe that for a fixed set of parameters, in order to

142

have a small mmin, we should have a large enough filesize , e.g., in Table 5.1, the filesize

should be at least 60MB in order to choose m as 2048.

Algorithm 1: Compute mmin

input : |F |, c, α, u, ρ, φ and τ
output: The minimum value of m
i=0;
m=1;
while |F |

8·m ≥ 2 and
log(2 ·m) · u · |F |

8
+m · log(2 ·m) · u · (1

2
· c · (1−α)− 2) ≤ ((1 + ρ)φ− 1) · τ do

++i;
m=2i;

end
if |F |

8·m < 2 then
m=-1;

end
return m

Table 5.1 mmin When c = 460, α = 0.9, ρ = 30%, φ = 2, τ = 12sec, and u = 0.1µs
filesize
(MB)

50 60 70 80 90 100 120 140 180 230 350 500 1000

mmin 8192 2048 512 256 128 64 32 16 8 4 2 2 1

Table 5.2 mmin When c = 460, α = 0.9, ρ = 30%, φ = 5, τ = 12sec, and u = 0.1µs
filesize
(MB)

190 200 220 240 280 320 360 400 500 600 800 1000

mmin 8192 4096 2048 1024 512 256 128 64 32 16 8 4

Table 5.3 mmin When c = 460, α = 0.9, ρ = 40%, φ = 2, τ = 12sec, and u = 0.1µs
filesize
(MB)

70 80 90 100 110 120 140 160 200 300 400 500

mmin 8192 2048 1024 512 256 128 64 32 16 8 4 2

Table 5.4 mmin When c = 460, α = 0.9, ρ = 40%, φ = 5, τ = 12sec, and u = 0.1µs
filesize
(MB)

300 350 400 450 500 600 700 800 900 1000

mmin 8192 2048 1024 512 256 128 64 32 16 16

143

By knowing |F | and m, we can determine n, which is |F |
8·m . In the aforementioned

example, we choose m as 512 (i.e., the size of a PDP block is 4KB), which is larger than

the minimum value 64. Thus, n will be 25, 600. In general, we choose m such that, firstly,

it is larger than or equal to mmin; secondly, a PDP block should have a suitable size, e.g.,

4KB.

Once m is fixed, we can compute e by 2·m
2
· log(2 ·m) · u. Using the aforementioned

example, in which m is chosen as 512, we can compute e as 512µs.

Estimate β. As mentioned earlier in this section, the α-cheating CSP should store in each

storage server nα blocks of the corresponding replica in that server. Thus upon Challenge,

when the client randomly checks c blocks in each replica, c · (1−α) blocks will be missing

on average. To answer the challenge from the client, the α-cheating server needs to generate

these c · (1 − α) missing challenged blocks on the fly. By choosing β as large as n, we

can always guarantee the α-cheating adversary cannot pass the verification by generating

the missing challenged blocks on the fly, considering each cryptographic transformation is

expensive enough (Appendix D.3). However, a large β will lead to an expensive Setup and

Repair phase. Thus, we try to find a small β value after having fixed the parameters α, ρ, φ,

c, τ , m, n, and e. This small β value should be chosen under the condition that the dynamic

α-cheating adversary cannot cheat successfully without being detected.

Considering a certain time period φ over which the client wants to ensure the

reliability and fault tolerance of the outsourced data, the CSP will always possess the most

powerful computational capability at the end of φ, since it keeps growing its computational

power over time. Thus, if we guarantee the adversary cannot cheat successfully at the end

of φ, we will obtain a guarantee that it cannot cheat successfully at any time within φ.

144

Upon answering a challenge issued by the client (in which a random subset of c replica

blocks is challenged), a malicious server who is missing n · (1 − α) blocks, needs to

first generate the c · (1 − α) missing blocks being challenged, and then compute a proof

of data possession for this subset of c blocks. According to Appendix D.5, when the

condition n ≥ 2 · c · (1 − α) · β holds, the expected overall computation for creating the

c · (1−α) missing challenged blocks will be at least 1+p
2
· c · (1−α) · (β−1) cryptographic

transformations, where p = Π
c·(1−α)−1
i=1

n−iβ
n−i . At the end of φ, the CSP’s computational

power will be upgraded by (1 + ρ)φ times. Thus, generating the missing challenged blocks

can be done in time at least 1+p
2
·c ·(1−α) ·(β−1) · e

(1+ρ)φ
, and computing the proof of data

possession for the c challenged blocks can be done in time cx
(1+ρ)φ

, which is approximately

τ
(1+ρ)φ

. To ensure the malicious server cannot pass the verification at the end of φ, we have

1+p
2
· c · (1 − α) · (β − 1) · e

(1+ρ)φ
+ τ

(1+ρ)φ
> τ , i.e.,

1+p
2
·c·(1−α)·(β−1)·e

(1+ρ)φ−1
> τ , from which

we can estimate β by knowing n, c, α, e, ρ, φ and τ . Specifically, β should be chosen such

that the following conditions can be satisfied simultaneously: First, n ≥ 2 · c · (1− α) · β;

Second,
1+p
2
·c·(1−α)·(β−1)·e

(1+ρ)φ−1
> τ ; Third, β is a power of 2. If we can not find such a β value,

we simply choose β as n. We provide next an efficient algorithm (Algorithm 2) which can

find out the minimum β value.

Algorithm 2 adopts a brute-force method: It keeps testing the integers starting from

1; after each run, the integer to be tested will be doubled. The computational complexity

for Algorithm 2 is thus O(logn). In Algorithm 2, in order to determine β, we need to first

fix the input parameters n, c, α, e, ρ, φ and τ , which can be computed as follows:

1. Pick α, ρ and φ, which are known in practical applications; pick c according to
PDP [8].

2. Follow the aforementioned guidelines to determine τ .

145

3. Follow the aforementioned guidelines to determine the minimum value of m, and
choose m such that it is larger than or equal to its minimum value.

4. Compute n and e based on m.

Following the previous example, in which |F | = 100MB, c = 460, α = 0.9, ρ =

30%, φ = 2, τ = 12sec, m = 512, n = 25, 600, and e = 512µs, the output of Algorithm 2

will be 25, 600, i.e., each of the replica blocks should depend on all the original file blocks.

As another example, when |F | = 500MB, c = 460, α = 0.9, ρ = 30%, φ = 2, τ = 12sec,

m = 512 (by applying Algorithm 1, the minimum m will be 2 for this case, and we choose

m as 512 to maintain the PDP blocksize as 4KB), n = 128, 000, and e = 512µs, the output

of Algorithm 2 will be 1024, i.e., each of the replica blocks should depend on 1024 original

file blocks.

Algorithm 2: Estimate β
input : n, c, α, e, ρ, φ, τ
output: β
j = 0;
β = 1;
p = Π

c·(1−α)−1
i=1

n−iβ
n−i ;

while 2 · c · (1− α) · β ≤ n and
1+p
2
·c·(1−α)·(β−1)·e

(1+ρ)φ−1
≤ τ do

+ + j;
β=2j;
p = Π

c·(1−α)−1
i=1

n−iβ
n−i ;

end
if 2 · c · (1− α) · β > n then

β=n;
end
return β

5.4 Security Analysis for ERDC-SR

According to Section 5.3.2, φ is a time period after Setup, during which the client wants to

obtain a guarantee that a dynamic α-cheating adversary cannot perform the ROTF attack

without being detected. Let φend be an absolute point of time at the end of φ. At φend, the

146

dynamic α-cheating adversary can simply be seen as a static α-cheating adversary that has

the computational power corresponding to φend. Lemma 5.4.1 and Theorem 5.4.2 show

that ERDC-SR can mitigate the ROTF attack executed by the adversary at φend. At any

time before φend, the adversary has less computational power compared to φend. Thus, if

it cannot successfully execute the ROTF attack without being detected at φend, it will not

be able to do it at any time before φend. Thus, the client can obtain the aforementioned

security guarantee at any time during φ before φend.

When φ expires, the client estimates a new set of τ and β parameters according to the

guidelines in Section 5.3.2, and then retrieves the original file, preprocesses it again based

on this new set of parameters, and outsources the replicas again. This will provide a similar

security guarantee for the next time period. The client repeats this process until needed,

thus obtaining a long-term security guarantee for its outsourced data.

Lemma 5.4.1. In ERDC-SR, at φend, a cheating server who is storing an α-fraction of the

corresponding replica, based on its own computational power, cannot generate the (1−α)c

missing blocks and compute a proof to answer a challenge within τ , where c is the number

of file blocks checked by the client in a challenge, and the set of parameters τ and β is

computed according to the guidelines in Section 5.3.2.

Proof. According to Section 5.3.2, β is chosen such that the condition P (E) · c · (1− α) ·

(β−1)· e
(1+ρ)φ

+ τ
(1+ρ)φ

> τ always holds (recall P (E) is the probability that all the c·(1−α)

missing challenged blocks depend on different sets of β original file blocks). To answer a

challenge, a cheating server needs to first generate the (1 − α)c missing blocks, and then

compute a proof of data possession. The computation of the cheating server, based on its

own computational power at φend, is at least P (E) · c · (1 − α) · (β − 1) · e
(1+ρ)φ

for the

147

former component, and c·x
(1+ρ)φ

for the latter component. Since τ is approximately c · x, the

computation of the cheating server is at least P (E) · c · (1− α) · (β − 1) · e
(1+ρ)φ

+ τ
(1+ρ)φ

,

which is always greater than τ .

Theorem 5.4.2. By choosing the set of β and τ parameters according to the guidelines in

Section 5.3.2, at φend, an α-cheating adversary can successfully execute the ROTF attack

without being detected with a probability of at most αcc(1 − α), where c is the number of

file blocks checked by the client in a challenge.

Proof. We have established in Section 5.3.2 that the best adversarial storage strategy for

ERDC-SR is when each malicious server stores only an α fraction of the blocks of the

corresponding replica. Thus each malicious server will be missing an (1 − α) fraction of

the replica blocks at φend.

As described in Section 5.3.2, the set of parameters τ and β in ERDC-SR is computed

specifically for φend, based on the assumption that every time the client randomly checks c

blocks from a replica stored in one of the t servers, at least (1 − α)c blocks are from the

missing (1− α) fraction of the replica, and thus the server has to compute (1− α)c blocks

on the fly. However, if the number of checked blocks from the (1 − α) missing fraction

is less than (1 − α)c, then the cheating server will be able to successfully pass the check

because it has to generate less than (1− α)c blocks on the fly and can provide a reply in a

time less than τ .

When a server is missing a (1 − α) fraction of the file blocks and the client

randomly challenges c blocks, let V be the event that the cheating server is able to cheat

successfully without being detected. In ERDC-SR, the client challenges all the storage

servers simultaneously, and a cheating server cannot use other servers’ computational

148

power to compute a data possession proof for the challenged replica. Thus, event V

happens when either (a) less than (1 − α)c blocks are challenged among the file blocks

that are missing at the server (event V1), or (b) at least (1 − α)c blocks are challenged

among the missing file blocks but the cheating server is able to generate these missing

challenged blocks and compute a proof to answer a challenge within time τ (event V2). We

compute the probability of V as P (V) = P (V1) + P (V2).

According to Lemma 5.4.1, if we choose the parameters β and τ according to

Section 5.3.2, the cheating server cannot generate the missing (1−α)c blocks and compute

a proof within τ to pass a challenge successfully without being detected at φend. Thus, by

choosing β and τ appropriately, we can ensure that event V2 never happens, so P (V2) = 0.

From the proof of Theorem 4.6.2, P (V1) ≤ αcc(1− α), thus, P (V) ≤ αcc(1− α).

5.5 Performance Analysis for ERDC-SR

In this section, we provide an analytical performance analysis for ERDC-SR by comparing

ERDC-SR to RDC-SR-1 (a simple extension of RDC-SR presented at the beginning of

this chapter) and RDC-SR. In the following, we first estimate the parameters used in

the analysis, and then evaluate the computational time needed to create a new replica

from the original file during Setup for these three schemes. We further compare the

computational time of these three schemes in both the Setup and the Repair phase. Note

that throughout this section, we evaluate the computational time for both Setup and Repair

phase of different schemes in terms of the number of elementary cryptographic operations,

i.e., PRF for both RDC-SR and RDC-SR-1, cryptographic transformation (Section 5.3.1)

for ERDC-SR. Let tprf be the computational time required for one PRF during Setup (in

149

both RDC-SR and RDC-SR-1). e is defined in Section 5.3 as the computational time needed

for one cryptographic transformation during Setup (for ERDC-SR).

Estimating a concrete value for e. In the following, we estimate a concrete value for

e which will be used in our analysis. According to our instantiation of cryptographic

transformation (Section 5.3.1), e can be computed as m · log(2 · m) · u, where m is the

number of 64-bit blocks in a PDP block and u is the computational time needed for one

AES operation over a 128-bit block based on CSP’s computational power during Setup

(estimated as 0.1µs in Section 5.3.2). Thus, we need to first estimate m and then estimate

e. According to Section 5.3.2, after having computed mmin, we choose m such that, (a)

m ≥ mmin, and (b) the PDP blocksize is from KBs (i.e., 4KB) to tens of KBs (i.e.,

40KB), and (c) m is a power of 2. In general, m can be a value from 512 to 4096. In

the experimental evaluation of RDC-SR (Chapter 4), we use 40KB as the PDP blocksize.

For consistency, we choose m as 4096 such that the PDP blocksize in ERDC-SR is close to

40KB. Correspondingly, e is 5325µs.

For RDC-SR, we use η0 to denote the masking factor. Thus, the computational time

needed to create a new replica from the original file during Setup is approximately n ·s ·η0 ·

tprf (the file is divided into n blocks, each of which consists of s symbols. When creating

a new replica, each symbol is masked by adding η0 random values generated by the PRF).

By estimating η0 as x
(1−α)·s·tprf

(Chapter 4), n · s · η0 · tprf = n·x
1−α = n·c·x

c·(1−α)
≈ n·τ

c·(1−α)
.

To evaluate the computational time for creating a new replica in RDC-SR-1 from the

original file during Setup, we first estimate the parameters τ and η used in RDC-SR-1. For

τ : similar to RDC-SR, τ is estimated as c · x + 2 · ti. For η: upon answering a challenge

issued by the client (in which a random subset of c replica blocks is challenged), a malicious

150

server who is missing n ·(1−α) blocks, needs to first generate the c ·(1−α) missing blocks

being challenged, and then compute a proof of data possession for this subset of c blocks.

To generate the missing c · (1 − α) blocks, the computational time at the end of φ will be

c · (1−α) · s ·η · tprf
(1+ρ)φ

(generating one replica block requires s ·η · tprf computational time

during Setup). To compute the proof of data possession for the c challenged blocks, the

computational time at the end of φ will be cx
(1+ρ)φ

, which is approximately τ
(1+ρ)φ

. Thus, to

ensure an α-cheating adversary cannot cheat successfully by performing the ROTF attack

at the end of φ, we have: c · (1 − α) · s · η · tprf
(1+ρ)φ

+ τ
(1+ρ)φ

> τ , i.e., η > ((1+ρ)φ−1)·τ
c·(1−α)·s·tprf

.

The computational time needed to create a new replica from the original file during Setup

is n · s · η · tprf . By estimating η as ((1+ρ)φ−1)·τ
c·(1−α)·s·tprf

, it becomes n·((1+ρ)φ−1)·τ
c·(1−α)

.

For ERDC-SR, the computational time required for creating a new replica from the

original file during Setup is n
2
· logβ · e (to create a new replica in ERDC-SR, we apply a

β-butterfly encoding, which has logβ levels, and n
2

cryptographic transformations in each

level). When estimating β, Algorithm 2 in Section 5.3.2 will return a β value for which we

can distinguish two cases: β = n and β < n.

When β = n, the computational time for creating a distinct replica from the original
file during Setup (i.e., n

2
· logβ · e) becomes n

2
· logn · e.

When β < n, we approximate the β value in the following way: Recall from
Section 5.3.2,

1+p
2
·c·(1−α)·(β−1)·e

(1+ρ)φ−1
> τ . To guarantee

1+p
2
·c·(1−α)·(β−1)·e

(1+ρ)φ−1
is always larger

than τ , the lower bound of
1+p
2
·c·(1−α)·(β−1)·e

(1+ρ)φ−1
should be larger than τ . Since p =

Π
c·(1−α)−1
i=1

n−iβ
n−i ≥ 0, the lower bound of

1+p
2
·c·(1−α)·(β−1)·e

(1+ρ)φ−1
is

1
2
·c·(1−α)·(β−1)·e

(1+ρ)φ−1
. Thus,

we have
1
2
·c·(1−α)·(β−1)·e

(1+ρ)φ−1
> τ , i.e., β > 2·((1+ρ)φ−1)·τ

c·(1−α)·e + 1. By estimating β as
2·((1+ρ)φ−1)·τ

c·(1−α)·e +1, the computational time for creating a distinct replica from the original

file during Setup (i.e., n
2
· logβ · e) is n

2
· log(2·((1+ρ)φ−1)·τ

c·(1−α)·e + 1) · e.

Comparison between RDC-SR-1 and RDC-SR. In the following, we compare RDC-SR-1

and RDC-SR in both the Setup and the Repair phase. During Setup, the overall workload

151

for both RDC-SR-1 and RDC-SR contains two components, creating t different replicas and

computing t sets of verification tags. Since replica creation is always a lot more expensive

than verification tag generation (confirmed by the experimental evaluation for RDC-SR in

Chapter 4), we can estimate the overall computational time by simply calculating the time

needed for creating t different replicas. Thus, the overall computational time in Setup phase

is approximately t·n·((1+ρ)φ−1)·τ
c·(1−α)

for RDC-SR-1 and t·n·τ
c·(1−α)

for RDC-SR. We use r1 to denote

the ratio between the overall computational time of RDC-SR-1 and that of RDC-SR during

Setup. r1 is
t·n·((1+ρ)φ−1)·τ

c·(1−α)
t·n·τ
c·(1−α)

, which can be further reduced to (1 + ρ)φ − 1. During Repair,

for both RDC-SR-1 and RDC-SR, the overall workload contains two main components,

unmasking a replica to generate the original file and masking the original file to generate

the corresponding replica. Since unmasking is the reverse operation of masking, the ratio

of the overall computational time in Repair between RDC-SR-1 and RDC-SR is equal to r1.

In Table 5.5, we show some concrete values for r1 by varying φ and ρ.

Table 5.5 Concrete Values for r1 by Varying φ and ρ (Recall That r1 Is The Ratio between
The Overall Computational Time of RDC-SR-1 and That of RDC-SR)

HHH
HHφ
ρ 30% 40%

5 2.71 4.38
10 12.79 27.93
15 50.19 154.57

Comparison between ERDC-SR and RDC-SR-1. In the following, we compare ERDC-SR

and RDC-SR-1 in both the Setup and the Repair phase. Based on what we have established

previously, the overall computational time during Setup for ERDC-SR will be t · n
2
· logn · e

when β = n, and t · n
2
· log(2·((1+ρ)φ−1)·τ

c·(1−α)·e + 1) · e when β < n. We use r2 to denote the ratio

between the overall computational time of ERDC-SR and that of RDC-SR-1 during Setup.

152

When β = n, r2 is t·n
2
·logn·e

t·n·((1+ρ)
φ−1)·τ

c·(1−α)

, which can be further reduced to logn·e·c·(1−α)
2·((1+ρ)φ−1)·τ . To show

some concrete values for r2, we choose c = 460, α = 0.9, τ = 12s, e = 5325µs, n =
25, 600, and vary φ and ρ (see Table 5.6). Note that in the aforementioned examples,
each set of n, c, α, e, ρ, φ, τ values can guarantee β should be chosen as n (Algorithm 2
in Section 5.3.2). We observe from Table 5.6 that r2 is always smaller than 0.1, i.e., for
the case of β = n, the overall computational time of ERDC-SR in Setup is at least an
order of magnitude less than that of RDC-SR-1. Specifically for some case in Table 5.6
(e.g., φ = 15 and ρ = 40%), the overall computational time of ERDC-SR in Setup can
be 1000 times less expensive than that of RDC-SR-1.

When β < n, r2 is
t·n

2
·log(2·((1+ρ)φ−1)·τ

c·(1−α)·e +1)·e

t·n·((1+ρ)
φ−1)·τ

c·(1−α)

, which can be further reduced to t·n·logβ·e
t·n·(β−1)·e ,

i.e., logβ
β−1

. We observe that r2 always decreases when β increases (note that β is a positive
integer which is larger than 1). When β = 64, r2 = log64

64−1
= 0.095. Considering e has an

order of magnitude 10−3s, β (i.e., 2·((1+ρ)φ−1)·τ
c·(1−α)·e + 1) should have an order of magnitude

3, which is always larger than 64, i.e., r2 is always smaller than 0.095. Thus, for the
case of β < n, we conclude that the overall computational time of ERDC-SR in Setup
is at least an order of magnitude less than that of RDC-SR-1.

Table 5.6 Concrete Values for r2 by Varying φ and ρ When β = n (Recall That r2 Is The
Ratio between The Overall Computational Time of ERDC-SR and That of RDC-SR-1)

HHH
HHφ
ρ 30% 40%

5 0.054 0.033
10 0.011 0.005
15 0.003 0.001

During Repair, the overall workload contains two components, decoding (unmasking)

a replica to generate the original file and encoding (masking) the original file to generate

the corresponding replica. Since decoding (unmasking) a replica is the reverse operation of

encoding (masking) a replica, for both ERDC-SR and RDC-SR-1, the overall computational

time in the Repair phase is twice as much as that in the Setup phase, i.e., the ratio of the

overall computational time in Repair between ERDC-SR and RDC-SR-1 is the same as that

in Setup. Thus, we conclude that the overall computational time of ERDC-SR in Repair is

at least an order of magnitude less than that of RDC-SR-1.

153

Comparison between ERDC-SR and RDC-SR. We compare ERDC-SR and RDC-SR in

both the Setup and the Repair phase. As mentioned previously, for RDC-SR, the overall

computational time in Setup is t·n·τ
c·(1−α)

; for ERDC-SR, the overall computational time in

Setup is t · n
2
· logn · e when β = n, and t · n

2
· log(2·((1+ρ)φ−1)·τ

c·(1−α)·e + 1) · e when β < n. We

use r3 to denote the ratio between the overall computational time of ERDC-SR and that of

RDC-SR during Setup.

When β = n, r3 is t·n
2
·logn·e
t·n·τ
c·(1−α)

, which can be further reduced to logn·e·c·(1−α)
2·τ . For example,

we choose c = 460, α = 0.9, τ = 12s, e = 5325µs, and r3 becomes 0.01 · logn. In
practical applications, n will be always smaller than 2100, thus, for this set of c, α, τ, e
parameters, r3 (i.e., 0.01·logn) is always smaller than 1, i.e., ERDC-SR is less expensive
than RDC-SR in Setup. A second example is, we choose c = 4600 (e.g., in PDP [8], if
the malicious server corrupts 0.1% of the whole replica, the client needs to randomly
check 4600 blocks in order to obtain the 99% data possession guarantee), α = 0.9,
τ = 12s, e = 5325µs, and r3 becomes 0.1 · logn. When n is larger than 210, r3 will be
larger than 1, i.e., for this new set of c, α, τ, e parameters, ERDC-SR is more expensive
than RDC-SR in Setup when the file has more than 210 blocks.

When β < n, r3 is
t·n

2
·log(2·((1+ρ)φ−1)·τ

c·(1−α)·e +1)·e
t·n·τ
c·(1−α)

, which can be further reduced to

log(
2·((1+ρ)φ−1)·τ

c·(1−α)·e +1)·e·c·(1−α)

2·τ . For example, we choose c = 460, α = 0.9, τ = 12s,
e = 5325µs, and r3 becomes 0.01 · log(98 · ((1+ρ)φ−1)+1). We show some concrete
values of r3 by varying φ and ρ in Table 5.7, from which we observe that for this set of
c, α, τ, e parameters, r3 is always smaller than 1, i.e., ERDC-SR is less expensive than
RDC-SR in Setup. A second example is, we choose c = 4600, α = 0.8, τ = 12s,
e = 5325µs, and r3 becomes 0.2 · log(4.9 · ((1 + ρ)φ − 1) + 1). We also show some
concrete values of r3 by varying φ and ρ in Table 5.8, from which we observe that
for this new set of c, α, τ, e parameters, ERDC-SR is more expensive than RDC-SR in
Setup when φ is larger than or equal to 10 years.

We draw the following conclusion from the comparison of ERDC-SR and RDC-SR:

Firstly, if the client targets a low data possession guarantee (e.g., c = 460), ERDC-SR will

be always less expensive than RDC-SR. For this case, we should always choose ERDC-SR.

Secondly, if the client targets a high data possession guarantee (e.g., c = 4600), we can

differentiate two cases: 1) For the case of β = n, if the total number of PDP blocks in a file

154

is larger than a certain value (e.g., 210 in our example), ERDC-SR will be more expensive

in both the Setup and the Repair phase. Thus, we should choose RDC-SR. Otherwise,

we should choose ERDC-SR. 2) For the case of β < n, if the period of time φ (recall

φ is a time period during which the client can obtain an assurance of the reliability and

fault tolerance of the outsourced data) is larger than a certain value (e.g., 10 years in our

example), ERDC-SR will be more expensive in both the Setup and the Repair phase. Thus,

we should choose RDC-SR. Otherwise, we should choose ERDC-SR.

Table 5.7 Concrete Values for r3 by Varying φ and ρ When c = 460, α = 0.9, τ = 12s,
e = 5325µs (Recall That r3 Is The Ratio between The Overall Computational Time of
ERDC-SR and That of RDC-SR

HH
HHHφ

ρ 30% 40%
5 0.08 0.09
10 0.10 0.11
15 0.12 0.14

Table 5.8 Concrete Values for r3 by Varying φ and ρ When c = 4600, α = 0.8, τ = 12s,
e = 5325µs (Recall That r3 Is The Ratio between The Overall Computational Time of
ERDC-SR and That of RDC-SR

H
HHHHφ

ρ 30% 40%
5 0.77 0.90
10 1.2 1.42
15 1.59 1.91

CHAPTER 6

AUDITABLE VERSION CONTROL SYSTEMS

This chapter introduces RDC-AVCS, an auditable version control system which relies on

RDC to ensure that all the versions of a file are retrievable from the untrusted server over

time. Unlike previous solutions which rely on dynamic RDC and are interesting from a

theoretical point of view, RDC-AVCS is the first to take a pragmatic approach for auditing

real-world version control systems.

6.1 Introduction

Version control (also known as revision control) is the management of changes to

collections of information, such as documents, computer programs, web pages, or

configuration files. Version control provides the ability to track and control the changes

made to the data over time. This includes the ability to recover an old version of a

document. Software development often relies on a Version Control System (VCS) to

automate the management of source code, documentation and configuration files. A VCS

provides several useful features to software developers, such as: retrieve previous versions

of the source code in order to locate and fix bugs, roll back to earlier versions in case

the working version becomes corrupted, or allow team development in which multiple

developers can work simultaneously on updates. In fact, a VCS is indispensable for

managing large software projects. Popular version control systems include CVS [84],

Subversion [85], Git [86], and Mercurial [87].

155

156

A version control system automates the process of version control. A VCS records

all changes to the data into a data store called repository, so that any version of the data

can be retrieved at any time in the future. Oftentimes, repositories are hosted by a third

party, since they are potentially massive in size and cannot be stored and managed locally.

For example, both Sourceforge [88] and Google Code [89] host repositories (based on

Subversion or Git) for open-source projects, and GitHub [90] provides a paid service for

Git repositories. Unfortunately, a third party is not necessarily trusted, for several reasons.

Firstly, the service providers may rely on a public cloud storage platform, rather than an

internal infrastructure, to host their users’ data. For example, file hosting service providers

like Dropbox [91], Bitcasa [92], that offer version control functionality to the stored data,

use Amazon S3 [5] as a back-end storage service. Secondly, the service providers are

vulnerable to various outside or even inside attacks. Thirdly, the service providers usually

rely on complex distributed systems, which are vulnerable to various failures caused by

hardware, software, or even administrative faults [93]. Additionally, unexpected accidental

events may lead to the failure of services, e.g., power outage [94, 95]. In Section 6.4.2,

we provide additional arguments to support this threat model and the need to audit VCS

systems.

Remote Data Checking (RDC) [7–9] can be used to address these concerns about

the untrusted nature of a third party that hosts the VCS repository. RDC is a mechanism

that has been recently proposed to check the integrity of data stored at untrusted third party

providers of storage services. Briefly, RDC allows a client who initially stores a file with a

storage provider to later check if the storage provider continues to store the original file in

its entirety. This check can be done periodically, depending on the client’s needs.

157

From the data owner’s point of view, it should be possible to retrieve any previous

version of the data, even if the repository is hosted at an untrusted VCS server. In a

straightforward application of RDC, if a file F has t versions, F0 through Ft−1, then each

file version can be seen as an independent file and the client can use RDC independently

to check the integrity of each file version. This solution, unfortunately, has prohibitive

costs for several reasons. VCS repositories may store many versions and storage overhead

would be very large if every version is stored in its entirety (e.g., the source code for the

gcc compiler [96] has over 200,000 versions). Moreover, the RDC costs associated with

creating metadata and checking each version independently would be too large.

To reduce the storage overhead, modern version control systems adopt “delta

encoding” to store versions in a repository: Only the first version of a file is stored in

its entirety, and each subsequent version of the file is stored as the difference from the

immediate previous version. These differences are recorded in discrete files called “deltas”.

Thus, if there are t versions of a file, the VCS server stores them as the initial file and t− 1

deltas. A popular version control system that uses a variant of delta encoding is Git [86].

Delta encoding optimizes the storage required to represent all the versions of a file. Such a

delta encoded repository is not optimized towards retrieving individual versions: To retrieve

version t, the VCS server starts from the initial version and applies all subsequent deltas up

to version t, thus incurring a cost linear in t. Considering that source code repositories may

have hundreds of thousands of versions (e.g., GCC [96]), retrieving an arbitrary version can

be burdensome on the server.

Skip delta encoding is a type of delta encoding which is further optimized towards

reducing the cost of retrieval. A new file version is still stored as the difference from a

previous file version. This difference is not relative to the immediate previous version, but

158

it is relative to another previous version (more details in Section 6.3.1). This ensures that

retrieval of the t-th version only requires log(t) applications of deltas by the VCS server.

A popular VCS that uses skip delta encoding is Apache Subversion (in short, SVN) [85].

The evolution of a file managed with a VCS can be seen as a sequence of updates,

each update resulting in a new file version. As such, the integrity of a VCS repository could

be verified using an RDC protocol designed to allow dynamic updates to the data. Several

RDC schemes can handle the full range of dynamic update operations [12, 13], such as

modifications, insertions, and deletions. A dynamic RDC scheme can directly be used to

check the integrity of the latest file version (every new file version can be seen as a series

of updates to the previous file version). A dynamic RDC scheme can also be adapted to

check the integrity of the entire VCS repository – basically check all versions of a file – by

organizing the file versions in an authentication structure.

Using a dynamic RDC scheme to check the integrity of a VCS repository has several

important drawbacks:

First, all the real-world VCS systems require only the append operation – the repository
stores the initial file version and a series of deltas for subsequent versions, all of which can
be seen as append operations to the initial version. Thus, using a full-fledged dynamic RDC
scheme that supports the full range of updates is overkill and incurs additional unnecessary
overhead during the Challenge and Commit phases, as illustrated in Table 6.1. DPDP and
DR-DPDP are built on top of delta-based version control systems, whereas the designed
RDC-AVCS scheme is built on top of skip delta-based version control systems. Indeed,
previous work on checking integrity of version control systems [12, 65, 68] extends a
dynamic RDC scheme which relies on a tree-like structure, thus adding a logarithmic cost
to the Challenge and Commit phases. However, the only meaningful operation for modern
VCS systems (e.g., CVS, SVN, Git) is the append operation, since they are designed to
keep a record of all the data in all previous versions.

Second, a dynamic RDC scheme that supports the full range of dynamic updates has a
higher complexity than an RDC scheme designed to only support appends at the end of
the file. The additional complexity brings with it a more complex adversarial model and a
more complex proof of security, all of which make the scheme more prone to security and
implementation flaws.

159

Table 6.1 Comparison of Different RDC Schemes for Version Control Systems
DPDP [12] DR-DPDP [68] RDC-AVCS

Communication (Commit phase) O(n+ log(t)) O(n+ 1) O(n+ 1)
Server computation (Commit phase) O(n+ log(t)) O(n) O(nlog(t))
Client computation (Commit phase) O(n+ log(t)) O(n+ 1) O(n+ 1)

Communication (Challenge phase) O(logn+ log(t)) O(1 + logn) O(1)

Communication (Retrieve phase) O(n+ log(t)) O(n+ 1) O(n+ 1)
Server computation (Retrieve phase) O(tn+ log(t)) O(tn+ 1) O(nlog(t) + 1)
Client computation (Retrieve phase) O(n+ log(t)) O(n) O(n)
Client storage O(n) O(n) O(n)
Server storage O(nt) O(nt) O(nt)

6.2 Related Work

Remote data checking for archival storage. As an effective technique for ensuring the

integrity of data outsourced at an untrusted party, remote data checking (RDC) has been

investigated extensively for both the single-server setting ([8–11,97,98]) and the multiple-

server setting ([21–23,28]). Recent work on RDC focuses on new topics such as proofs of

fault tolerance [69], proofs of location [63, 70, 71] and server-side repair [26].

Dynamic remote data checking. Dynamic Provable Data Possession (DPDP) relies on

authenticated data structures (e.g., skip lists [12], RSA trees [12], Merkle trees [13], 2-3

trees [14]) to support the full range of dynamic operations. DPDP adopts spot checking for

efficiency and is thus vulnerable to small corruption attack. Follow-up work [24,25] tries to

mitigate such an attack by adding robustness. Concurrently with DPDP, Dynamic Proofs of

Retrievability (D-PoR) tries to adapt PoR to a dynamic setting. To support D-PoR, recent

work either computes and stores the parity of the data at the client side [15], or relies on

Oblivious RAM [36].

Remote data checking for version control systems. Anagnostopoulos et al. [99]

introduced the notion of persistent authenticated dictionaries, which allow the user to

160

check whether element e was on set S at time t. Erway et al. [12] adopted a two-level

authenticated data structure to provide integrity guarantee for version control systems.

Specifically, for each file version, a first-level authenticated data structure is used to

organize all of its blocks, generating a root for each version. A second-level authenticated

data structure is then used to organize all of these roots. The checking complexity is thus

O(log(tn)), in which t is the total number of versions and n is the total number of blocks

in a version. Etemad et al. [68] improved the solution proposed in [12]. They adopt a

PDP-like structure [8], rather than an authenticated data structure, to provide integrity

guarantee for the roots of the first-level authenticated data structure, thus reducing the

checking complexity to O(1 + log(n)). Zhang et al. [65] proposed an update tree-based

solution. Their scheme adopts a tree structure to organize all the update operations, and thus

the checking complexity is logarithmic in the total number of updates, i.e., approximately

O(log(t)). In RDC-AVCS, we provide the most efficient solution known to date, which

relies solely on an efficient RDC scheme to reduce the checking complexity to O(1).

6.3 Background on Version Control Systems and Remote Data Checking

6.3.1 Version Control Systems

Software development relies on a Version Control System (VCS) to automate the

management of source code, documentation and configuration files. Typically, one (or

more) VCS clients interact with a VCS server and the VCS server stores all the changes to

the data into a main repository, such that any prior version of the data can be retrieved at

any time in the future. Each VCS client has a local repository, which stores the working

copy, the changes made by the client to the working copy, and some metadata. The working

161

copy is the version of the data that was last checked out by the client from the main VCS

repository.

A VCS provides several useful features to track and control the revisions (changes)

made to the data over time. This includes operations such as commit, update, revert, branch,

merge, and log. In practice, the most commonly used operations by a VCS client are

commit and retrieve. Commit refers to the process of submitting the latest changes of the

data to the main repository, so that the changes to the working copy become permanent.

Retrieve refers to the process of replacing the working copy with an older or a newer version

stored on the server.

Delta-based VCS. With a version control system, the data owner would like to keep every

change of her data in the repository, so that at any point of time in the future, she can revert

to a previous version, or update to a new version. One simple solution is to store a new

version of the data in its entirety upon each commit (e.g., CVS [84] adopts this method

for binary files). Such a straightforward solution has large communication and storage

overhead, since in most cases, only a small portion of the whole data has been updated;

thus, sending and storing the whole new version may result in significant unnecessary

communication and storage.

To reduce the storage overhead, modern VCS systems adopt “delta encoding” to

store changes to the data in the repository: Only the first version of a file is stored in its

entirety, and each subsequent version of the file is sent and stored as the difference from

the immediate previous version. These differences are recorded in discrete files called

“deltas”. Thus, if there are t versions of a file, the VCS server stores them as the initial

file and t − 1 deltas (see Figure 6.1(a)). Popular version control systems that use variants

162

of delta encoding are Git [86], SVN [85] and CVS [84]1. Delta encoding optimizes the

storage required to represent all the versions of a file, but a delta encoded repository is

not optimized towards retrieving individual versions: To retrieve version t, the VCS server

starts from the initial version and applies all subsequent deltas up to version t, thus incurring

a cost linear in t (again, see Figure 6.1(a)). Considering that source code repositories may

have hundreds of thousands of versions (e.g., GCC [96]), retrieving an arbitrary version can

be burdensome on the server.

1CVS uses delta encoding only for text files

163

(a) Delta-based VCS

(b) Skip delta-based VCS

Figure 6.1 Delta-based and skip delta-based version control systems.

Skip delta-based VCS. Skip delta encoding is a type of delta encoding which is further

optimized towards reducing the cost of retrieval. A new file version is still stored as

164

the difference from a previous file version; however, this difference is not relative to the

immediate previous version, but it is relative to a certain previous version. This ensures that

retrieval of the t-th version only requires log(t) applications of deltas by the VCS server.

A popular VCS that uses skip delta encoding is Apache Subversion (in short, SVN) [85].

In this case, the difference is called a “skip delta” and the old version against which

a new version is encoded is called a “skip version”. When version i is committed, the skip

delta is computed against the skip version j. The rule for selecting the skip version j is:

Consider the binary representation of i and change the rightmost bit that has value “1” into

a bit with value “0”. For example, in Figure 6.1(b), version 4’s skip version is version 0,

because the binary representation of 4 is 100, and by changing the rightmost “1” bit into a

“0” bit, we get 0.

By adopting the skip delta-based approach, the cost to recover any version is

logarithmic in the total number of versions. For example, in Figure 6.1(b), to reconstruct

version 3, start from version 0 and apply δ2 and δ3; to reconstruct version 4, start from

version 0 and apply δ4. The skip version for version 25 is 24, whose skip version is 16,

whose skip version is 0. Thus, to reconstruct version 25, start from version 0 and apply

δ16, δ24, δ25. In Appendix E.1, we show that the cost for retrieving an arbitrary version t is

bounded by O(log(t)).

6.3.2 Remote Data Checking

Remote Data Checking (RDC) allows the data owner to check the integrity of data

outsourced at an untrusted server, and thus to audit whether the server fulfills its contractual

obligations. A remote data checking protocol consists of three phases: Setup, Challenge,

and Retrieve. Consider that the storage of one file is outsourced at an untrusted server.

165

Then, during the Setup phase, the data owner preprocesses the file F and generates

verification metadata Σ, and then stores both F and Σ at the untrusted server. The data

owner then deletes F and Σ from its local storage and only keeps a small constant amount

of secret key material K. During the Challenge phase, a verifier (the data owner or a

third-party verifier) challenges the server to prove that it really possesses the file previously

stored by the data owner. The server generates a proof of possession based on the stored

file and metadata, and sends back the proof. The client then checks the proof based on the

key material K. During Retrieve, the data owner recovers the original file.

PDP (Provable Data Possession [8]) and PoR (Proofs of Retrievability [9, 10]) are

two examples of RDC protocols. In PDP/PoR, during the Setup phase, the data is seen

as a collection of fixed-size blocks, and the client computes a tag for each block. During

the Challenge phase, the verifier randomly checks the integrity of a random subset of the

file blocks. The Challenge phase can be very efficient: For example, it is shown [8] that

if the server corrupts a certain fraction of the file (e.g., 1%), the verifier can detect such

corruptions with high probability by only randomly checking a constant number of blocks;

in this case, the communication between the verifier and the server is also constant in size.

PDP/PoR have been shown to be extremely efficient during the Challenge phase [8–

10], with constant communication and constant client/server computation. Both PDP

and PoR have been originally proposed for archival storage and only support static data.

Later, a more complex PDP protocol was proposed to support dynamic operations on the

outsourced data, such as insertions, deletions and modifications [12]. In Section 6.6.1 we

show that RDC schemes for static data can securely support one specific dynamic operation,

namely append at the end of the file. In Section 6.5, we build an RDC scheme for skip

166

delta-based VCS systems, which relies on any RDC scheme that supports block appends at

the end of the file.

6.4 Model and Guarantees

6.4.1 System Model

An Auditable Version Control System (AVCS) is a version control system (VCS) designed

to function under an adversarial setting. In AVCS, just like in a regular VCS, one or more

clients store data at a server. The server maintains the main repository, where all the

versions of the data are stored. Each client runs an AVCS client software. In this work,

we use the term client to refer to the AVCS client software and server to refer to the AVCS

server software. Each AVCS client has a local repository, which stores the working copy,

the changes made by the client to the working copy, and some metadata. The working

copy is the version of the data that was last checked out by the client from the main VCS

repository.

From a client’s point of view, the interface exposed by the server includes two main

operations: commit and retrieve2. Commit refers to the process of submitting the latest

changes of the data to the main repository, so that the changes in the client’s working copy

become permanent. Retrieve refers to the process of replacing the client’s working copy

with an older or a newer version stored on the server.

AVCS incorporates all the functionality offered by a regular VCS. In addition, the

AVCS server exposes one additional operation, check, which permits the client to check if

the server possesses all the versions of a file.

2VCS systems permit additional operations such as branch, merge, log, etc., but in this work we
focus on commit and retrieve, which are the most common operations.

167

The AVCS main repository may contain several projects. Each project may contain

one or more files. For each file, the changes submitted by the client are stored by the server

using delta encoding, as described in Section 6.3.1. Each change is stored as a discrete

“delta” file. So, if there are t − 1 changes for a file, then the server will store the initial

version of the file and t − 1 delta files, δ1, ..., δt−1. We focus our discussion on storing,

checking, and retrieving the versions of one file; this can be easily generalized to multiple

files.

6.4.2 Adversarial Model

We consider a threat model in which there are no malicious clients, i.e., all clients are

trusted. Meanwhile, the server is not trusted and may misbehave [8]. This captures a

setting in which the employees of a company collaborate on a software development project

(so they are all trusted), but the AVCS server is outsourced at a third party which is not

necessarily trusted. The server may misbehave as follows:

It may reclaim storage by discarding data that is rarely accessed (economically
motivated), or try to hide data loss incidents to preserve its reputation. Data loss incidents
may be accidental (e.g., administrative errors, hardware and software failures) or malicious
(e.g., insider or outsider attacks).

During retrieve, it may not provide the requested version correctly, e.g., it may provide a
corrupted version, or a version which is either older or newer than the requested version.
Possible reasons for such misbehavior could be: The repository has been corrupted
(accidentally or maliciously), or the server has reclaimed some rarely accessed data, or
the server-side software does not function properly, etc.

We consider a server that is rational and economically motivated. In this context,

cheating is meaningful only if it cannot be detected and if it achieves some economic

benefit (e.g., using less storage than required by the contract). We note that such an

adversarial model is reasonable and captures many practical settings in which malicious

servers will not cheat and risk their reputation, unless they can achieve a clear financial

168

gain. In particular, we do not consider attacks in which the server simply corrupts a small

portion of the repository (e.g., 1 byte), because saving such a small amount of storage will

not provide a significant benefit for the server. For a discussion about protection against

small corruption attacks, see Section 6.6.

The server is assumed to at least respond to the client’s requests. Otherwise, if the

server is non-responsive, the client will terminate its contract with the server and choose

another service provider. To protect the client-server communication against external

adversaries, we assume that this communication occurs over secure channels, e.g., the

communication is secured using SSL/TLS.

On the importance of auditing VCS systems. We provide several arguments to motivate

this threat model and to highlight the importance of auditing VCS systems:

• Even though source code repositories are not very large (e.g., the entire gcc
repository is about 1GB), popular hosting services have a huge number of
repositories. In 2013, GitHub hosted over 6 million repositories [100], SourceForge
over 324,000 projects [101] and Google Code over 250,000 projects. It is conceivable
that some service providers may be economically motivated to misbehave.

• The techniques we propose are applicable to all VCS-es that rely on skip delta
encoding, including those that store other type of data than source code. For example,
Dropbox saves the history of all deleted and earlier versions of files (free for 30 days,
and unlimited deletion recovery and version history with the “Packrat” option).

• There are ongoing efforts to add support for large media binary files into VCS-es like
Git [102, 103].

• Hosting providers like Dropbox [91] and Bitcasa [92] that offer version control
functionality rely on cloud storage services like Amazon S3 as the back-end storage.
It is conceivable that even providers like GitHub may adopt a similar model in the
future. There is plenty of evidence that cloud service providers should not be fully
trusted.

169

6.4.3 Security Guarantees

Consider an AVCS repository which contains t versions of the file F (these are stored in the

repository as the initial version of the file F0 and t− 1 delta files, δ1, ..., δt−1). Let F̃ be the

virtual file obtained by concatenating F0, δ1, ..., δt−1, i.e. F̃ = F0||δ1||δ2||...δt−1. We seek

to build AVCS systems which provide the following security guarantees:

SG1 (Data Possession): Upon checking the integrity of all the versions of F stored in the
repository, the client can detect if the server corrupts a fraction of F̃.

SG2 (Version Correctness): Upon retrieving Fi (version i of F) from the server, the client
can verify the correctness of Fi, for any i ∈ [0, t− 1].

The practical implications of these guarantees are that the server cannot corrupt some

of the file’s versions without being detected and that it cannot serve an incorrect file version

to the client. SG1 captures the client’s ability to check if the server continues to possess all

of the versions of F that have been stored in the main repository. SG2 captures the client’s

ability to detect if the server provides a corrupt version, or a version that is different than

the version requested by the client.

6.5 Auditable Version Control Systems (AVCS)

In this section, we first give an overview of VCS systems designed to work under a benign

setting. We then introduce the definition of Auditable Version Control Systems (AVCS),

which are VCS systems designed to function under an adversarial setting, and propose a

construction based on remote data checking mechanisms.

Notation. The VCS repository contains t versions of the file F, which are stored in the

repository as F0, δ1, δ2, ..., δt−1. F0 is the initial version of the file, and the t− 1 delta files

are based on skip delta encoding as described in Section 6.3.1. We focus our discussion on

170

storing, checking, and retrieving the versions of one file; this can be generalized to multiple

files.

We use Fi to denote version i of the file. We use Fskip(t) to denote the skip version

for Ft (the algorithm for determining Fskip(t) is described in Section 6.3.1). We write Fi =

Fj + δ to denote that Fi is obtained by applying δ to Fj .

6.5.1 Skip Delta-based Version Control Systems

Version control systems which use skip delta encoding have been designed for a benign

setting, in which the VCS server is assumed to be fully trusted. A popular VCS which relies

on skip delta encoding is Apache Subversion [85] (in short, SVN), described on its website

as an “open-source, centralized version control system characterized by its reliability as a

safe haven for valuable data”.

The main operations of such VCS systems fall under three phases: Setup, Commit,

and Retrieve, as follows:

In the Setup phase, the client (data owner) contacts the server to create a new project

in the main VCS repository3. For example, in SVN, this can be achieved using the

command “svn import”, which will create a new project in the main VCS repository

using a codebase that exists at the client – this will be the first version of the project. The

client will then create its local working copy by checking out this first version from the

server, using the command “svn checkout”.

In the Commit phase, the client commits the changes in its local working copy into

the main VCS repository. For example, in SVN, this can be achieved using the command

“svn commit”. The client wants to commit a new version, Ft (note that the client also

3We assume that an (empty) VCS repository has been already created, e.g., by using the SVN
command “svnadmin create”.

171

has a local copy of Ft−1, which is the working copy). Then the client computes the “delta”

between Ft and Ft−1, i.e. δ such that Ft = Ft−1 + δ, and sends δ to the server. After

receiving δ, the server executes:

1. Compute Ft−1 based on data in the repository (i.e., start from F0 and apply skip deltas
. . . , δi, . . . , δt−1).

2. Compute Ft based on Ft−1 and δ: Ft = Ft−1 + δ.

3. Compute the skip version Fskip based on the data in the repository (i.e., start from F0

and apply skip deltas . . . , δi, . . . , δskip).

4. Compute δskip such that Ft = Fskip + δskip, and store δskip as δt in the repository.

In the Retrieve phase, the client retrieves an arbitrary version of the data. For

example, in SVN, this can be achieved using the “svn update -r i” command. The

client wants to replace version j (the working copy) with version i. The server executes:

1. Compute Fi based on the data in the repository (i.e., start from F0 and apply the
corresponding skip deltas).

2. Compute Fj based on the data in the repository (i.e., start from F0 and apply the
corresponding skip deltas).

3. Compute δ such that Fi = Fj + δ.

4. Return δ to the client.

The client then computes Fi: Fi = Fj + δ.

6.5.2 Definition of An AVCS System

The previous section described the behavior of a skip delta-based VCS system in a benign

setting, where the VCS server is fully trusted and does not deviate from the protocol. In this

work, we consider a setting in which the VCS server is untrusted (the adversarial model is

172

described in Section 6.4). We propose an Auditable Version Control System (AVCS), which

is a delta-based VCS enhanced to work in an adversarial setting.

An AVCS scheme consists of seven polynomial-time algorithms (KeyGen,ComputeDelta,

GenMetadata,GenProof,CheckProof,GenRetrieveVersionAndProof,

CheckRetrieveProof). KeyGen is a key generation algorithm run by the client to setup the

scheme. ComputeDelta is run by the client to compute a delta when committing a new file

version. GenMetadata is run by the client to generate the verification metadata for a new file

version, before committing the new version. GenProof is run by the server and CheckProof

is run by the client in order to generate and verify a proof of data possession, respectively.

Similarly, GenRetrieveVersionAndProof is run by the server and CheckRetrieveProof is run

by the client to retrieve an arbitrary file version.

An AVCS system has four phases: Setup, Commit, Challenge, and Retrieve.

Setup: The client runs KeyGen to generate the private key material and performs other
initialization operations.

Commit: To commit a new file version, the client runs ComputeDelta and GenMetadata
to compute the delta and the metadata for the new file version, respectively. The delta and
the metadata are both sent to the server.

Challenge: Periodically, the verifier (client) challenges the server to obtain a proof that
the server continues to store all the file versions committed by the client. The server uses
GenProof to compute a proof of data possession, and the client uses CheckProof to validate
the proof.

Retrieve: The client requests an arbitrary version of the stored data. The server runs
GenRetrieveVersionAndProof to obtain the requested file version, together with a proof
of correctness. The client verifies the correctness of the file retrieved from the server by
running CheckRetrieveProof.

Note that this definition encompasses VCS systems that use delta encoding. This

includes skip delta-based VCS systems.

173

6.5.3 RDC-AVCS: An Auditable Version Control System based on Remote Data

Checking

In this section, we present our main result, RDC-AVCS, the first auditable version control

system. RDC-AVCS is obtained by integrating RDC mechanisms into a VCS system.

Whereas our definition of AVCS targets VCS systems that use delta encoding in general, in

our RDC-AVCS construction we focus on VCS systems that use skip delta-based encoding.

As explained in Section 6.3.1, these are optimized for both storage and retrieval; however,

they are arguably more challenging to secure than VCS systems that use delta encoding,

because of the nature of computing the skip deltas.

Challenges. Going from a benign setting to an adversarial setting, we need to overcome

several challenges. These challenges stem from the adversarial nature of the VCS server

and from the format of a skip delta-based VCS repository which is optimized to minimize

the server’s storage and workload during the Retrieve phase:

The gap between the server’s and the client’s view of the repository. In a general-purpose
RDC protocol (Section 6.3.2), the client and the server have the same view of the
outsourced data: the client computes the verification metadata based on the data, and then
sends both data and metadata to the server. The server stores these unmodified. The server
then uses the data and metadata to answer the client’s challenges by computing a proof
that convinces the client that the server continues to store the same data outsourced by the
client.

In a skip delta-based VCS, there is a gap between the two views, which makes
skip delta-based VCS systems more difficult to audit: Although both client and server
view the main VCS repository as the initial version of the data plus a series of delta files
corresponding to subsequent data versions, they have a different understanding of the delta
files. To commit a new version t, the client computes and sends to the server a delta that
is the difference between the new version and its immediate previous version, that is the
difference between version t and t − 1 (recall that the client only stores the working copy
which is version t − 1, and version t which incorporates the changes made by the client
over version t− 1). This is different from the skip deltas that are stored by the server: a δi
file stored by the server is the difference between version i and a “skip version”, which is
not necessarily the immediate version previous to i. For example, the skip delta for version
128 will be computed as the difference against version 0 (the algorithm for selecting the

174

“skip version” is described in Section 6.3.1). Since the client does not have access to the
skip deltas stored by the server, it cannot compute the verification metadata over them, as
needed in an RDC protocol.

Delta encoding is not reversible. The client may try to retrieve the skip delta computed
by the server and then compute the verification metadata based on the retrieved skip delta.
Unfortunately, in an adversarial setting, the client cannot trust the server to provide a correct
skip delta value. This is exacerbated by the fact that delta encoding is not a reversible
operation. If δt−1→t is the difference between versions t−1 and t (i.e., Ft = Ft−1 +δt−1→t),
this does not imply that Ft−1 can be obtained based on Ft and δt−1→t. The reason comes
from the method used by delta encoding to encode update operations between versions,
such as insert, update, delete. If a delete operation was executed on version t− 1 to obtain
version t, then δt−1→t encodes only the position of the deleted portion from Ft−1, so that
given Ft−1 and δt−1→t, one can obtain Ft. Since δt−1→t does not encode the actual data that
has been deleted, Ft−1 cannot be obtained based on Ft and δt−1→t.

A first attempt. We make two observations which we then leverage to build an initial, alas

inefficient AVCS system:

First, we observe that any RDC protocol that supports the append operation securely
can be used to audit the integrity of a VCS server that relies on skip delta encoding,
simply because RDC can be used to spot check the blocks of a virtual file obtained by
concatenating the original file and the subsequent delta files. In Section 6.6.1, we show
that existing RDC protocols proposed for static data can be enhanced to securely support
the append operation.

Second, we need to unify the client’s and server’s views of the repository data so that the
client can compute on its own the metadata over the delta files that are stored at the server.

To bridge the gap between the server’s and the client’s view of the repository, we

require that, upon each commit, the skip delta is computed by the client and not by the

server. The client will then send the skip delta to the server, together with RDC verification

tags computed over the skip delta. To be able to compute the skip delta, the client should

store several previous versions, so that it has access to the “skip version” against which

the skip delta is computed. Theorem 6.5.1 shows that, unfortunately, the storage required

for storing enough previous versions on the client side is linear with the total number of

versions in a repository. This does not conform with our notion of outsourcing the VCS

repository, in which the client should only store one version of the file (the working copy).

175

Theorem 6.5.1. The client storage for the inefficient AVCS system is O(t), in which t is the

total number of versions in a repository.

Proof. (sketch) Let f(t) be the total number of versions needed to be stored in the client to

facilitate the computation of skip deltas in the inefficient AVCS system. Let i ← j denote

that version i is version j’s skip version; similarly i → j denotes version j is version i’s

skip version. Let b0 . . . bi . . . bt−1 be the binary representation of a version number t, in

which bi is either “0” or “1”, e.g., 00 is version number 0’s binary representation.

For t = 4, according to the rule of determining the skip version, we have: 01 → 00 ←
10← 11. One can observe that by only storing version 0, the client can always compute all
the skip deltas locally: The client can compute locally the skip deltas for versions 1 and 2,
since the skip version for both of these is version 0; The client can also compute locally the
skip delta for version 3, since version 2 (which is the skip version for version 3), is version
3’s immediate previous version. In other words, f(4) = 1 = 20 = 2log4−2.

For t = 8, one can simply divide all the 8 versions into 2 groups: Group 1, in which the
first bit is 0: 001 → 000 ← 010 ← 011; Group 2, in which the first bit is 1: 101 → 100
← 110 ← 111. Without considering the first bit, each of the aforementioned two groups
is equivalent to the case of t = 4, thus, f(8) should be twice compared to f(4): f(8) =
2 ∗ f(4) = 2 = 21 = 2log8−2. Similarly, for the general case, we have: f(t) = 2 ∗ (f(t

2
)),

by which we can further compute that f(t) = 2log(t)−2 = t
4
.

The RDC-AVCS Construction We are now ready to present RDC-AVCS, an auditable

VCS scheme which uses RDC mechanisms to ensure all the versions of a file can be

retrieved from the VCS server. RDC-AVCS only requires the same amount of storage on

the client like a regular VCS system. This scheme is the main result of this work.

Recall that the VCS repository contains t versions of the file, F0,F1, ...,Ft−1. The t

versions are stored in the repository as t files: F0, δ1, δ2, ..., δt−1 (i.e., the initial version of

the file and t− 1 skip delta files).

176

For the purpose of our scheme, we view all the information pertaining to the versions

of the file F as a virtual file F̃ obtained by concatenating the original file and the subsequent

delta files: F̃ = F0||δ1||δ2||...δt−1. We view F̃ as a collection of fixed-size blocks, each

block containing s symbols, and each symbol is an element of GF (p), where p is a large

prime (at least 80 bits). This view matches the view of a file in an RDC scheme: To check

the integrity of all the versions of F, it is enough to check the integrity of F̃ . Let n denote

the number of blocks in F̃. As the client commits new file versions, nwill grow accordingly

(note that n is maintained by the client).

RDC-AVCS overview. We use two types of verification tags. To check data possession (in

the Challenge phase) we use challenge tags; these are computed over the blocks in F̃ to

facilitate spot checking in RDC [8]. To check the integrity of individual file versions (in

both the Commit and the Retrieve phases), we use retrieve tags; these are computed over

entire versions of F.

To check the integrity of F̃, we adopt the challenge tags introduced by Shacham and

Waters [10]4. When the client commits a new file version, it computes a retrieve tag in the

form of a MAC over the whole file version that is to be committed. This retrieve tag will be

stored at the VCS server and will be used by the server to convince the client of file version

integrity during Commit and Retrieve.

In a benign setting, whenever the client commits a new file version, the server

computes and stores a skip delta file in the main VCS repository (as described in

Section 6.5.1). Under an adversarial setting, to leverage RDC techniques over the VCS

repository, the skip delta files must be accompanied by verification challenge tags. Since

4For efficiency reasons, we use the tags that support private verifiability. Our scheme could also be
instantiated using the challenge tags in [10] that are publicly verifiable.

177

the challenge tags can only be computed by the client, our scheme requires the client to

obtain the skip delta, compute the challenge tags over it and send both the skip delta and

the tags to the server.

When committing a new version Ft, the client must compute the skip delta (δskip) for

Ft. The δskip must be computed against a certain previous version of the file, called the

“skip version” (as described in Section 6.3.1). Recall that the client also has in its local

store a copy of Ft−1, the working copy.

If (skip(t) == t − 1), then the client can directly compute δskip such that Ft =

Ft−1 + δskip. Otherwise, the client computes δskip by interacting with the VCS server as

follows:

1.The client computes the difference between the new version and the immediate previous
version, i.e. computes δ such that Ft = Ft−1 + δ. The client sends δ to the server.

2.The server re-computes Ft−1 based on the data in the repository and then computes Ft =
Ft−1 + δ. The server then re-computes Fskip(t) (the skip version for Ft) based on the data
in the repository and computes the difference between Ft and Fskip(t), i.e. it computes
δreverse such that Fskip(t) = Ft + δreverse. The server sends δreverse to the client, together
with the retrieve tag for Fskip(t).

3.The client computes the skip version: Fskip(t) = Ft + δreverse and checks the validity of
Fskip(t) using the retrieve tag received from the server. The client then computes the skip
delta for the new file version, i.e. δskip such that Ft = Fskip(t) + δskip.

To give an example, when the client commits F15, the client also has the working

copy F14 which is the skip version for F15, and the client can compute directly δskip such

that F15 = F14 + δskip. However, when the client commits F20, it only has F19 in her local

store and must first retrieve from the server δreverse and then compute F16 which is the skip

version for F20, as F16 = F20 + δreverse. Only then can the client compute δskip such that

F20 = F16 + δskip.

For the Challenge phase, we leverage a mechanism based on checking the integrity

of the remotely stored data, like in previous RDC schemes [8, 9]. With every challenge,

178

the client challenges the server to prove possession of a random subset of the blocks in F̃.

The server provides a proof of possession which convinces the client that the server can

produce the data in the challenged blocks. This spot checking mechanism is quite efficient.

For example, when the server corrupts 1% of the repository (i.e., 1% of F̃), then the client

can detect this corruption with high probability by randomly checking only a small constant

number of blocks (e.g., checking 460 blocks results in a 99% detection probability) [8].

In the Retrieve phase, the client replaces her working copy with another file version.

The client can use the corresponding retrieve tag to check the correctness of the file version

provided by the server.

The RDC-AVCS scheme. The details of the RDC-AVCS scheme are presented in

Figures 6.2, 6.3 and 6.4. Let F̃ be a virtual file obtained by concatenating the original

file and the subsequent delta files: F̃ = F0||δ1||δ2||...δt−1. Let n be the number of blocks

in F̃. The client maintains n and updates n accordingly whenever she commits a new file

version to the repository.

The Setup phase. The client runs KeyGen to generate two private keys K1 and K2, and

picks s random numbers from GF (p), which will be used in computing the challenge tags.

The client also sets n = 0.

The Commit phase. To commit a new file version, the client uses ComputeDelta to

compute the skip delta for the new file version, and runs GenMetadata to generate the

corresponding challenge and retrieve tags. In ComputeDelta (Figure 6.3), the client first

uses SelectSkipVersion to determine the skip version. If the skip version is the immediate

previous version of the new version, the client simply computes the skip delta based on the

new version and its immediate previous version. Otherwise, the client contacts the server,

179

sending the delta of the new version against its immediate previous version. The server

uses ComputeReverseAndSkipDelta to generate the delta of the skip version against the

new version, i.e., δreverse, and returns to the client δreverse and the retrieve tag of the skip

version. The client then re-computes the skip version based on the new version and δreverse,

and verifies the validity of the computed skip version by running CheckRetrieveProof.

If the verification succeeds, the client computes the skip delta based on the new version

and the skip version. After having computed the skip delta, the client runs GenMetadata

(Figure 6.3) to compute the challenge tags and the retrieve tag, which will then be sent to

the server. The retrieve tag Tt is computed using an HMAC function [104]. Finally, the

client increases n by d, where d is the number of blocks in the skip delta.

The Challenge phase. Periodically, the client challenges the server to prove possession of

the virtual file F̃. The client sends a challenge to the server, in which it selects a random

subset of c blocks for checking. The server runs GenProof to generate the corresponding

proof, and sends it back to the client. The client then checks the validity of the received

proof by running CheckProof.

The Retrieve phase. The Retrieve phase is activated when the client wants to replace

her working copy with an older or a newer version. The client sends a request to the

server. The server uses GenRetrieveVersionAndProof to generate the delta of the desired

file version against the client’s local version (δretrieve in Figure 6.2), together with the

retrieve tag of the desired file version. Both the delta and the retrieve tag are returned

to the client. The client then computes the desired file version, and checks its validity by

running CheckRetrieveProof.

180

Let κ be a security parameter. Let h : {0, 1}κ × {0, 1}∗ → GF (p) be a PRF. All arithmetic
operations are over the field GF (p) of integers modulo p, where p is a large prime (at least 80
bits), unless noted otherwise explicitly. RDC-AVCS has four phases: Setup, Commit, Challenge,
and Retrieve.

Setup: The client runs (K1,K2)← KeyGen(1κ) and picks s random numbers α1, . . . , αs from
GF (p). The client sets n = 0

Commit: Having made updates to her working copy Ft−1, the client C wants to commit to the
repository a new version Ft. C performs the following operations:

1. Compute δ for Ft against the immediate previous version Ft−1, such that Ft = Ft−1 + δ

2. Run (δskip, skip(t))← ComputeDelta(K2, δ, t,Ft)

3. View δskip as a collection of blocks and run (Tt,Tbegin, . . . ,Tend, begin, end) ←
GenMetadata(K1,K2, δskip, n, α1, . . . , αs,Ft, t). This computes a set of challenge tags
{Tbegin, . . . ,Tend} for the blocks in δskip and a retrieve tag Tt for Ft.

4. If (skip(t) == t − 1) then send (δ,Tbegin, . . . ,Tend,Tt) to server S; Otherwise, send
(Tbegin, . . . ,Tend,Tt) to S

5. Update the number of blocks in F̃: n = end

Challenge: Client C uses spot checking to check possession of the virtual file F̃. In this process,
the server S uses its stored repository and the corresponding challenge tags to prove data
possession.

1.C generates a challenge Q and sends Q to S. The challenge Q is a c-element set {(j, vj)}, in
which j denotes the index of the block in F̃ to be challenged, and vj is chosen at random from
GF (p).

2.S runs (µ1, . . . , µs, σ) ← GenProof(Q, F̃,T1, . . . ,Tn) and returns to C the proof of
possession (µ1, . . . , µs, σ)

3.C checks the validity of the proof (µ1, . . . , µs, σ) by running
CheckProof(K1, α1, . . . , αs, Q, µ1, . . . , µs, σ)

Retrieve: To replace version j (the working copy) with another version i, the client C executes:

1.C sends a request to the server S
2. The server S runs (δretrieve,Ti) ← GenRetrieveVersionAndProof(j, i) and returns to the

client δretrieve and the retrieve tag Ti for version i
3.C computes Fi: Fi = Fj + δretrieve

4.C checks the validity of Fi by running CheckRetrieveProof(K2,Fi, i,Ti)

Figure 6.2 The RDC-AVCS system.

181

KeyGen(1κ): Choose two keys K1,K2 at random from {0, 1}κ. Return (K1,K2)

ComputeDelta(K2, δ, t,Ft):

1. Initialize the skip delta for Ft: δskip = δ, and run skip(t)← SelectSkipVersion(t)

2. If (skip(t) 6= t− 1) then client C executes:
(a)Send (δ, t, skip(t)) to the server S
(b)The server S runs (δreverse, δskip) ← ComputeReverseAndSkipDelta(δ, t, skip(t)). S

stores δskip and sends (δreverse,Tskip(t)) back to C
(c)The client C re-computes Fskip(t): Fskip(t) = Ft + δreverse. C runs

CheckRetrieveProof(K2,Fskip(t), skip(t),Tskip(t)) to check the correctness of the
δreverse received from S. If the check fails, conclude that S is faulty and exit. Otherwise,
compute δskip for Ft, such that Ft = Fskip(t) + δskip

3. Return (δskip, skip(t))

GenMetadata(K1,K2, δ, n, α1, . . . , αs,Ft, t):

1. begin = n+ 1

2. View δ as a collection of d fixed-size blocks: δ = (bn+1, . . . ,bn+d). For the purpose of
computing challenge tags, we use the range [n+ 1, n+ d] for the block indices of the blocks
in δ. Each block bi in δ contains s symbols from GF (p): bi = (bi,1, . . . ,bi,s).

3. end = n+ d

4. For begin ≤ j ≤ end: Tj = hK1(j) +
∑s

k=1 αkbjk
5.Tt = HMACK2(Ft||t)
6. Return (Tt,Tbegin, . . . ,Tend, begin, end)

GenProof(Q, F̃,T1, . . . ,Tn):

1. Parse Q as a set of c pairs (j, vj). Parse F̃ as {b1, . . . ,bn}.
2. Compute the proof of possession (µ1, . . . , µs, σ):

•For 1 ≤ k ≤ s: µk =
∑

(j,vj) ∈ Q vjbjk mod p

•σ =
∑

(j,vj) ∈ Q vjTj mod p

3. Return (µ1, . . . , µs, σ)

CheckProof(K1, α1, . . . , αs, Q, µ1, . . . , µs, σ):

1. Parse Q as a set of c pairs (j, vj)

2. If σ =
∑

(j,vj) ∈ Q vjhK1(j) +
∑s

k=1 αkµk mod p, return “success”. Otherwise return
“failure”.

GenRetrieveVersionAndProof(j, i):

1. Compute Fj by starting from F0 and apply the corresponding skip deltas
2. Compute Fi by starting from F0 and apply the corresponding skip deltas
3. Compute δretrieve such that Fi = Fj + δretrieve

4. Get the retrieve tag Ti from the repository
5. Return (δretrieve,Ti)

CheckRetrieveProof(K2,Ft, t,T):

1.Tt = HMACK2(Ft||t)
2. if (Tt == T) then return true; Otherwise, return false

Figure 6.3 The RDC-AVCS scheme.

182

SelectSkipVersion(t):

1. Considering the binary representation of the version number t, obtain skip(t) by changing the
rightmost bit that has value “1” into a bit with value “0”

2. Return skip(t)

ComputeReverseAndSkipDelta(δ, t, skip(t)):

1. Retrieve Ft’s immediate previous version, Ft−1, based on the data in the repository
2. Compute Ft: Ft = Ft−1 + δ

3. Retrieve Fskip(t) based on the data in the repository
4. Compute δreverse, such that Fskip(t) = Ft + δreverse

5. Compute the skip delta δskip for Ft, such that Ft = Fskip(t) + δskip

6. Return (δreverse, δskip)

Figure 6.4 Components of the RDC-AVCS scheme.

6.6 Analysis and Discussion

6.6.1 Security Analysis

The security of the RDC-AVCS scheme is captured by the following lemmas and theorems:

Lemma 6.6.1 (Corruption Detection Guarantee). Assume that the server stores an n-block

file, out of which x blocks are corrupted. By randomly checking c different blocks over the

entire file, the verifier (client) will detect the corruption with probability at least 1−(1− x
n
)c.

Proof. We refer the reader to [7, 8] for the proof.

Based on Lemma 6.6.1, if the server corrupts 1% of the whole file then, by randomly

checking 460 blocks, the verifier can detect the corruption with a probability of at least

99%, regardless of the file size.

Lemma 6.6.2. Let S be an RDC scheme, designed for static data, which achieves the PDP

security guarantee for a file F outsourced at un untrusted third party [7, 8], and let S ′ be

another RDC scheme obtained by enhancing S to support the append operation: Blocks

can be appended at the end of F and for each appended block a verification tag is computed

183

by the client and stored at the server. Then S ′ also achieves the PDP security guarantee

for the updated file.

Proof. (sketch) We show that an RDC scheme can guarantee data possession of an updated

version of the file after an arbitrary number of appends are performed. Assume the

client outsources a file F, which has n blocks b1,b2, . . . ,bn. The client applies RDC

scheme S over this file as follows. During the Setup phase, it computes verification tags

T1,T2, . . . ,Tn for all the blocks in F. The verification tag Ti is computed over the data in

file block bi and also over i, the index of block bi in F. The client then outsources F as

well as the verification tags to the untrusted server. During the Challenge phase, the verifier

(client) uses spot checking to check the integrity of F [8]. This RDC scheme S guarantees

data possession of file F. We obtain a new RDC scheme S ′ from S by adding support for

the append operation. When the client wants to append a new block bn+1 to file F, the

client computes a new verification tag Tn+1 over the data in bn+1 and over the index n+ 1

of the new block. The client then sends bn+1 and Tn+1 to the server. From the client’s view,

the server should now store the new file F′, which has n + 1 blocks b1,b2, . . . ,bn,bn+1,

together with the set of tags T1,T2, . . . ,Tn,Tn+1. The same argument used to prove that

S achieves the PDP security guarantee over the initial file F can now be used to show

that S ′ achieves the PDP security guarantee over the updated file F′. By induction, S ′ can

guarantee data possession of any updated version of the file after an arbitrary number of

append operations are performed. Thus, we conclude that a PDP scheme which supports

the append operation can achieve the PDP security guarantee for the updated file.

Lemma 6.6.3. RDC-AVCS guarantees that skip delta files are correctly computed by the

client.

184

Proof. (sketch) The skip delta may be computed in two ways during the Commit phase:

The skip version is the version immediately previous to the new version (skip(t) = t−1).
In this case, the client computes directly the correct skip delta.

The skip version is not the version immediately previous to the new version (skip(t) 6=
t−1). In this case, the client cooperates with the untrusted server to compute the skip delta.
The client computes the skip version of the file based on the data received from the server
and then verifies the correctness of the skip version using the retrieve tag provided by the
server. This check guarantees the correctness of the skip version, since the retrieve tag was
previously computed by the client. If this check is successful, the client then computes the
correct skip delta.

In both cases, the skip delta is guaranteed to be correctly computed by the client.

Lemma 6.6.3 guarantees that the client computes challenge tags over the correct skip

deltas. This is important, because otherwise corruptions introduced during the commit

operation may go undetected and may get incorporated in the VCS repository.

Theorem 6.6.4. RDC-AVCS achieves security guarantees SG1 and SG2.

Proof. (sketch). In RDC-AVCS, the repository, which is the collection of t versions of

file F, can be seen as a virtual file F̃, obtained by concatenating the initial file version F0,

and the skip delta files δ1, ..., δt−1 corresponding to the subsequent versions. In this view,

committing a new version to the repository is equivalent to appending the corresponding

skip delta to the file F̃. During the Commit phase, when committing the initial file version

F0, the client computes the challenge tags over F0, and when committing each subsequent

version, the client computes the challenge tags over the corresponding skip delta as if the

skip delta is appended to F̃. According to Lemma 6.6.3, each skip delta is guaranteed to be

correctly computed by the client.

During the Challenge phase, the client uses spot checking to check the integrity of

F̃. RDC schemes for static data, in which there is a verification tag for each file block

185

have been shown to achieve the PDP security guarantee [8, 10], i.e., the client can detect

corruption of a fraction of the outsourced data. RDC-AVCS falls in the same category,

except it supports an additional operation, append to F̃. According to lemma 6.6.2, an

RDC scheme supporting append operation achieves the same security guarantee as an RDC

scheme for static data. Finally, according to lemma 6.6.1, the verifier in RDC can detect if

the server corrupts a fraction of the outsourced file; thus, our RDC-AVCS scheme achieves

the security guarantee SG1.

In RDC-AVCS, the client computes a retrieve tag for each file version Fi by applying

an HMAC over the concatenation of the file version content (Fi) and the version number (i)

using a secret key (K2). The security of HMAC guarantees that the adversary cannot forge

a retrieve tag without knowing the secret key. Furthermore, the adversary cannot perform

a replay attack by providing in the Retrieve phase a different file version than the one

requested by the client. We conclude that the RDC-AVCS client can verify the correctness

of the retrieved versions, thus achieving the security guarantee SG2.

6.6.2 Performance Analysis

During the Commit phase, the client interacts with the sever to compute the skip deltas.

To retrieve any file version from the repository, the server has to go through at most log(t)

skip deltas, thus, the server computation is O(nlog(t)). The client has to compute the

skip version and the skip delta, and generate the metadata, which require a computation

complexity linear in the version size (see Table 3.1). The communication in a commit

operation is also linear with the version size, since it mainly includes two deltas (Figure 6.2

and 6.3) and a set of challenge tags for a skip delta.

186

During the Challenge phase, RDC-AVCS adopts the spot checking technique, in which

the client challenges the server to prove possession of a random subset of the blocks in F̃

(the number of challenged blocks is always a small constant [7]), and the server generates

a proof of data possession by aggregating the selected blocks and the corresponding

challenge tags. Thus, the computation (client and server) and the communication

complexity are bothO(1) (Table 3.1). This is a major advantage of RDC-AVCS compared to

previous schemes, in which the checking complexity is determined either by the repository

size or the version size (Table 3.1).

During the Retrieve phase, to retrieve a version from the repository, the server needs

to apply at most log(t) skip deltas, thus, the server computation is O(nlog(t)). Previous

schemes which are built on top of delta encoding (or can be easily built on top of delta

encoding) imposeO(nt) computation on the server (Table 3.1). The client storage overhead

in RDC-AVCS is O(n), since the client always stores locally the working copy.

6.6.3 Remarks

Small corruption protection. In RDC-AVCS, we adopt spot checking during the Challenge

phase for efficiency reasons. Spot checking was shown to detect data corruption with high

probability if the server corrupts a fraction of the data [7]. This provides defense against

an adversary which is rational and economically motivated, i.e., one that will not cheat

unless it can achieve a clear financial gain without being detected. Unfortunately, spot

checking is not necessarily effective under a stronger adversary, e.g., an adversary which

is fully malicious. Spot checking cannot detect if the adversary corrupts a small amount of

the data, such as 1 byte. To provide protection against small amounts of data corruption

– a property called robustness – previous RDC schemes for static data rely on a special

187

application of error correcting codes to generate redundant data, so that small corruptions

that are not detected can be repaired [8, 17, 21]. Integrating error correcting codes with

RDC when dynamic updates can be performed on the data is much more challenging than

in the static setting. A few RDC solutions have been proposed to achieve robustness for

the dynamic setting, but this involves substantial additional cost: one system requires to

store a large amount of redundant data on the client side [15]; other systems store and

access the redundant data on the server side either by requiring the client to access the

entire redundancy [24] or by using inefficient mechanisms such as PIR that hide the access

pattern [36].

In this work, we choose to sacrifice robustness for two reasons. First, the solutions

proposed to achieve robustness for RDC under a dynamic setting are designed to handle the

full range of update operations (insertions, deletions, modifications) and are thus overkill

for version control systems where the only meaningful operation is append. Second, one

of our main design goals was to achieve an auditable VCS scheme which is efficient and

has performance comparable to a regular (non-secure) VCS system.

Multiple-file support. We have described RDC-AVCS for the case when the main

repository only contains the versions of one file. A challenge tag for block with index

j in F̃ is computed as Tj = hK1(j) +
∑s

k=1 αkbjk. The index j used in the challenge

tag should be different across all the challenge tags. In other words, the client should not

reuse the same index j twice for computing challenge tags. In this case, the index j used

in the challenge tag is the block’s position in the file F̃, which ensures its unicity. When

multiple files are stored in the VCS repository, the client must ensure that the indices used

to compute the challenge tags are different not only across blocks of the same file, but also

188

across blocks of different files. This could be achieved by prepending a file identifier to

the block index. For example, if the identifier of a file F is given by id(F) and assuming

that each file has a unique identifier, then for the blocks in the various versions of F, the

client computes challenge tags as Tj = hK1(id(F)||j) +
∑s

k=1 αkbjk. Similarly, the file’s

identifier should be embedded in the retrieve tag for version Fi: Ti = hK2(Fi||id(F)||i).

6.7 Implementation and Experiments

6.7.1 Implementation

We built a prototype for RDC-AVCS on top of Apache Subversion (SVN) [85], a popular

open-source version control system. We added about 4,000 lines of C code into the SVN

code base (V1.7.8), and built Secure SVN (SSVN), a secure version control system based

on skip delta encoding. Since many SVN repositories already exist, we also built a tool,

SSVN-Migrate, which converts an existing (non-secure) SVN repository into a SSVN

repository.

Implementation overview. We modified the source code in both SVN client and SVN

server. For the SVN client, we mainly modified the following SVN commands

svn add: add files to the working copy. The corresponding new command in SSVN is
“ssvn add”.

svn rm: remove files from the working copy. The corresponding new command in SSVN
is “ssvn rm”.

svn commit: commit the changes to the repository. The corresponding new command in
SSVN is “ssvn commit”.

svn co: checkout the latest version of the data. The corresponding new command in
SSVN is “ssvn co”.

svn update: update the current version to an arbitrary version. The corresponding new
command in SSVN is “ssvn update”.

For the SVN server, we modified the stand-alone server “svnserve”. The new server

is named “sec-svnserve”.

189

During the Commit phase, the client updates the working copy and wants to commit

the changes to the repository. In RDC-AVCS, the changes for a new version Ft are encoded

in the skip delta, δskip, which is the difference between the skip version and the new version,

i.e., Ft = Fskip(t) + δskip. The algorithm for computing δskip is described in Section 6.5.3.

After computing the skip delta, the client computes the set of challenge tags for it and a

retrieve tag for the new version, and sends them to the server.

In SSVN we added functionality to the original SVN client (“svn commit”), so that

the SSVN client (“ssvn commit”) can communicate with the server to compute the skip

delta, as well as compute the challenge and retrieve tags. We also added functionality to

the original SVN server (“svnserve”) to allow the server to compute and send back the delta

of skip version against the new version, together with a proof for checking the validity of

the skip version.

During the Retrieve phase, the client wants to revert the working copy to an older

version or update it to a newer version. It sends a request to the server, which retrieves

the requested version from the repository, together with the corresponding retrieve tag.

The server can then choose to send back either the whole requested version or the delta

between the requested version and the working copy (SVN uses the latter strategy). The

client further validates the requested version based on the retrieve tag. Correspondingly,

in SSVN we added additional functionality to the original SVN client (“svn co” and “svn

update”), so that the SSVN client (“ssvn co” and “ssvn update”) can verify the retrieve tags

for the affected files. We also added additional functionality to the original SVN server

(“svnserve”) to allow it to retrieve and send back the corresponding retrieve tags for the

affected files.

190

Implementation issues. We highlight next some of the most interesting implementation

issues we encountered. First, we had to bridge the gap between how RDC-AVCS and SVN

view the data: RDC-AVCS abstracts each version of the data as a file, and thus one simply

performs update operations to this file. However, in SVN, each version is associated

with a project, which is a collection of files, and the delta (i.e., skip delta) is computed

independently for each file. In addition, files can be added and deleted from the project.

To reconcile the different views, we apply RDC-AVCS over each file in an SVN project,

i.e., we have a virtual project for each file, and the SVN project is a collection of virtual

projects corresponding to the files in the SVN project. When a file is added to the project,

the corresponding virtual project is initialized; when this file is updated (i.e., insert, delete,

modify, or append data), the corresponding virtual project is updated; when the file is

deleted, the corresponding virtual project should be kept rather than be deleted.

Another implementation issue is related to how SVN handles memory management.

Rather than requesting memory directly from the OS using the standard malloc() function,

SVN relies on Apache Portable Runtime (APR) [105] library for memory management.

Specifically, a program that links against APR can request a pool of memory by using

apr pool create(), and APR will allocate a moderate-size chunk of memory from the OS

which will be available for use to the program immediately. The pool will automatically

grow in size to accommodate programs that request more memory than the original pool

contained. Unfortunately, without carefully reclaiming back memory from the pool when

handling a large number of files, the pool becomes full, leading to an “out of memory”

error. In SSVN, we tackled this issue by clearing the pool after having handled a certain

number of files, e.g., 1000. We tested that SSVN is robust enough to handle hundreds of

thousands of files in a single commit operation.

191

6.7.2 Experimental Setup

We ran experiments in which both the server and the client are running on the same

machine, an Intel Core 2 Duo system with two CPUs (each running at 3.0GHz, with a

6144KB cache), 1.333GHz frontside bus, 4GB RAM and a Hitachi HDP725032GLA360

360GB hard disk with ext4 file system. The system runs Ubuntu 12.10, kernel version

3.5.0-17-generic. We used the OpenSSL library [44] version 1.0.1e.

Repository selection. We categorized the existing SVN repositories into three groups

based on the number of files in the repository: A small-size repository has less than

5, 000 files, a medium-size repository has between 5, 000 and 50, 000 files, and a large-size

repository has more than 50, 000 files. Based on these criteria, we selected three

representative public SVN repositories for our experimental evaluation: FileZilla [106]

for small-size repository, Wireshark [107] for medium-size repository, and GCC [96] for

large-size repository. Table 6.2 shows statistics about these three repositories.

Table 6.2 Statistics for The Selected Repositories of June 2013
FileZilla Wireshark GCC

Dates of activity 2001-2013 1998-2013 1987-2013
Number of versions 5,119 49,946 200,127
Number of files 1,023 5,342 80,183
Average filesize 19KB 32KB 6KB
Repository category small size medium size large size

Overview of experiments. We evaluated the computation and communication overhead

during the Commit phase (Section 6.7.3) and the computation overhead during the Retrieve

phase (Section 6.7.4), for both SSVN and SVN. The Challenge phase has been shown to be

very efficient for RDC schemes which rely on spot checking [7], so we do not include it in

our experiments.

192

We average the overhead over the first 1000 versions of the three repositories (labeled

FileZilla, Wireshark and GCC1). GCC has a large-size repository, with more than 200K

versions and more than 80K files in its latest version. Since for GCC the difference between

the first 1000 versions and the last 1000 versions is considerable in the size of the repository,

we also included in our experiments an average of the overhead over the last 1000 versions

of GCC (labeled GCC2).

In Section 6.7.5, we describe the migration tool which seamlessly converts an

existing (non-secure) SVN repository to a SSVN repository; we also perform an experiment

in which we migrate the first 3000 versions of the aforementioned three repositories.

6.7.3 Commit Phase

For SVN and SSVN, we evaluated the computation and communication overhead for the

commit operation. To measure the time for a commit operation, we measured the time

needed for running the shell commands “svn commit” and “ssvn commit” to commit

a version. To measure the communication overhead of non-secure SVN for a commit

operation, we observed that the non-secure SVN client relies on two write functions

writebuf output and svn ra svn writebuf output to send data, and two read functions

readbuf input and svn ra svn readbuf input to receive data. Thus, for each commit

operation, we accumulate the data sent in the write functions, which are the total

communication from the client to the server. Similarly, we accumulated the data received in

the read functions, which are the total communication from the server to the client. SSVN

also relies on these four I/O functions, thus we measured its communication overhead

similarly.

193

The experimental results for the commit phase are shown in Tables 6.3, 6.4 and 6.5.

We have several observations: Firstly, compared to the non-secure SVN, SSVN adds only

a small overhead to the total computation (between 3% and 11% in Table 6.3) and the total

communication from the client to the server (between 3% and 7% in Table 6.4). Secondly,

SSVN adds more overhead to the communication from the server to the client because in

SSVN the client retrieves data from the server to facilitate the computation of skip deltas

during commit; in contrast, for non-secure SVN, the client does not need to compute the

skip deltas locally and the server only sends back small control messages. This is the main

cost we need to pay for offering a secure version of SVN. Although the communication

overhead in Table 6.5 is higher for SSVN, we note that in the worst case the additional

overhead for committing one version in GCC2 is less than 3KB.

Table 6.3 The Average Time for Committing One Version in Both SSVN And Non-secure
SVN

FileZilla Wireshark GCC1 GCC2
SSVN (s) 0.427 0.416 0.417 10.776

non-secure SVN (s) 0.389 0.376 0.386 10.502

Table 6.4 The Average Communication from The Client to The Server for Committing
One Version in Both SSVN And Non-secure SVN

FileZilla Wireshark GCC1 GCC2
SSVN (KB) 4.599 3.458 4.123 6

non-secure SVN (KB) 4.391 3.246 4.017 5.696

Table 6.5 The Average Communication from The Server to The Client for Committing
One Version in Both SSVN And Non-secure SVN

FileZilla Wireshark GCC1 GCC2
SSVN (KB) 1.559 1.437 1.047 3.244

non-secure SVN (KB) 0.574 0.58 0.574 0.571

194

6.7.4 Retrieve Phase

For SSVN and non-secure SVN, we evaluated the computation overhead for the retrieve

operation by measuring the time needed to run the shell commands “svn update -r i” (for

non-secure SVN) and “ssvn update -r i” (for SSVN) to retrieve a version i by updating

version i− 1. The corresponding experimental results are shown in Table 6.6. We observe

that, compared to non-secure SVN, SSVN adds a reasonable overhead: Table 6.6 shows

the time needed to retrieve a version in SSVN increases between 6% and 29% compared to

non-secure SVN. Note that this additional time is less than 0.3 seconds in the worst case (for

GCC2). The additional overhead is caused by checking the validity of the corresponding

version, i.e. re-computing the retrieve tags for the affected files in this version and

comparing them with the retrieve tags sent back by the server. We did not provide

evaluation for communication overhead, since there is no additional communication from

the client to the server, and the additional communication from the server to the client will

only contains retrieve tags of the affected files in this version (we use HMAC-SHA1 to

implement retrieve tags, so only 20 bytes are needed for one retrieve tag).

Table 6.6 The Average Time for Retrieving One Version in Both Secure And Non-secure
SVN

FileZilla Wireshark GCC1 GCC2
secure SVN (s) 0.0535 0.0453 0.0506 5.086

non-secure SVN (s) 0.0416 0.0376 0.0416 4.779

6.7.5 Migrating Repositories from Non-Secure SVN to SSVN

Many commercial and non-commercial projects are using SVN for source control

management (e.g., FreeBSD [108], GCC, Wireshark, all the open-source projects in

Apache Software Foundation [109], etc.). Such projects already have repositories created

based on non-secure SVN. To facilitate the migration from non-secure SVN to SSVN,

195

we built SSVN-Migrate, a tool that seamlessly converts an existing non-secure SVN

repository into a repository for SSVN. SSVN-Migrate works as follows: Starting from

the first version (i.e., an empty version), each time it calls “svn update” to check out a new

version of the data from the non-secure SVN repository (i.e., version number increased

by 1), uses “ssvn add” and “ssvn rm” to update the working copy, and then calls “ssvn

commit” to commit the changes into the SSVN repository.

We used SSVN-Migrate to migrate FileZilla, Wireshark and GCC to secure SVN.

Table 6.7 shows the time needed for migrating all the first 3000 versions of these SVN

repositories. We observe that the time needed for migrating the same collection of versions

from different SVN repositories does not vary a lot. One possible reason is that the

migration time is mainly determined by the repository size, which is approximately linear

to the version number.

Note that our SSVN-Migrate tool tries to re-use as much as possible components we

have built for SSVN or existing SVN commands. We believe the results can be significantly

improved by optimizing the migration process (e.g., work directly with the raw non-secure

and secure repositories), using more powerful hardware, or obtaining additional computing

resources from public cloud computing services.

Table 6.7 The Time for Migrating The First 3000 Versions of The Existing SVN
Repositories to SSVN

FileZilla Wireshark GCC
total time (s) 1,934 1,909 1,719

CHAPTER 7

CONCLUSION

Traditionally, data owners can only store and manage their data in their own data centers

which, unfortunately, may incur a considerable financial burden. The emerging cloud

storage model allows data owners to outsource the storage of their data to Cloud Storage

Providers (CSPs) and achieve several benefits such as low cost, improved reliability and

scalability, and great flexibility. However, data owners today may be reluctant to outsource

their data, simply because they do not trust the CSPs, and they are not convinced that their

outsourced data will be adequately protected and maintained over time. In this dissertation,

several remote data checking protocols have been designed and implemented in order to

ensure the integrity and retrievability of the outsourced data: R-DPDP, RDC-NC, RDC-SR,

ERDC-SR and RDC-AVCS.

Adding protection against small corruptions to remote data checking schemes that

support dynamic updates extends the range of applications that rely on outsourcing data

at untrusted servers. We design Robust Dynamic Provable Data Possession (R-DPDP)

schemes that provide robustness and, at the same time, support dynamic data updates, while

requiring small, constant, client storage. The main challenge that had to be overcome was

to reduce the client-server communication overhead during updates under an adversarial

setting.

The second RDC protocol presented is RDC-NC, a novel distributed RDC scheme

for network coding-based distributed storage systems that rely on untrusted servers. Our

RDC-NC scheme can be used to ensure data remains intact when faced with data corruption,

196

197

replay, and pollution attacks. We built a prototype for RDC-NC and experimentally

evaluated its performance, showing that RDC-NC is inexpensive for both clients and

servers.

Having observed that all the existing distributed RDC schemes involve the client

heavily during the Repair phase, we investigate a new self-repairing concept, in which

the untrusted servers are responsible to repair the corruption, while the client acts as

a lightweight coordinator during repair. Based on this novel concept, we design two

schemes for replication-based distributed storage systems, RDC-SR and ERDC-SR. They

enable server-side repair and minimize the load on the client side. Compared to RDC-SR,

ERDC-SR is more suitable for real-world settings, because it is designed to provide security

guarantees against an untrusted CSP whose computational power can grow over time. We

establish the effectiveness of these two schemes based on experiments using a prototype

built on Amazon AWS (for RDC-SR) and on an analytical performance analysis (for

ERDC-SR).

All the aforementioned RDC protocols can only ensure the integrity of the latest

version of the outsourced data. Ensuring the integrity of a version control system (VCS)

may provide data owners additional benefits, e.g., allowing them to roll back to an old file

version when the working file version is corrupted. We introduce Auditable Version Control

Systems (AVCS), which are delta-based VCS systems designed to function under an

adversarial setting. We propose RDC-AVCS, an AVCS scheme for skip delta-based version

control systems, which relies on RDC mechanisms to ensure all the versions of a file can be

retrieved from the untrusted VCS server over time. Unlike previous solutions which rely on

dynamic RDC and are interesting from a theoretical point of view, our RDC-AVCS scheme

is the first pragmatic approach for auditing real-world VCS systems. Our security analysis

198

and experimental evaluation show that RDC-AVCS achieves the desired security guarantees

at the cost of a modest decrease in performance compared to a regular (non-secure) VCS

system.

APPENDIX A

DYNAMIC PROVABLE DATA POSSESSION

A.1 Definition of Dynamic Provable Data Possession

A complete definition of a DPDP scheme [12] is provided in the following.

Definition A.1.1. (DPDP SCHEME) A Dynamic Provable Data Possession (DPDP)

scheme is a collection of seven polynomial-time algorithms:

• KeyGen DPDP(1κ) → {sk, pk}: a probabilistic key generation algorithm run by the
client to setup the scheme. Input: the security parameter κ. Output: the secret key sk
and public key pk.

• PrepareUpdate DPDP(sk, pk, F, info,Mc) → {e(F), e(info), e(M)}: an algorithm
run by the client to prepare (a part of) the file for untrusted storage. Input: the secret key
sk, the public key pk, (a part of) the file F , information about the update operation info
(e.g., full re-write, modify block i, delete block i, insert a block after block i, etc), and
the previous metadata Mc. Output: the “encoded” version of (a part of) the file e(F) (by
adding randomness, adding sentinels, etc.), the information about the update operation
e(info) (changed to fit the encoded version), and the new metadata e(M). The client
will send e(F), e(info), and e(M) to the server.

• PerformUpdate DPDP(pk, Fi−1,Mi−1, e(F), e(info), e(M) → {Fi,Mi,M
′
c, PM ′c}:

an algorithm run by the server in response to an update request from the client. Input:
public key pk, the old version of the file Fi−1, the metadata Mi−1, and the values
e(F), e(info) e(M) provided by the client. Output: the new version of the file Fi and
metadata Mi, the metadata to be sent to client M

′
c and its proof of correctness PM ′c . The

server will send M
′
c and PM ′c back to the client.

• VerifyUpdate DPDP(sk, pk, F, info,Mc,M
′
c, PM ′c) → {accept, reject}: an algorithm

run by the client to verify the server’s behavior during the update. Input: all the
inputs from PrepareUpdate DPDP and the values M

′
c, PM ′c which are sent by the server.

Output: accept if the verification succeeds, reject otherwise.

• GenChallenge DPDP(sk, pk,Mc) → {c}: a probabilistic algorithm run by the client
to issue a challenge for the server. Input: the secret key sk, public key pk, and the latest
client metadata Mc. Output: the challenge c that will be sent to the server.

199

200

• Prove DPDP(pk, Fi,Mi, c) → {Π}: an algorithm run by the server to generate the
proof of possession upon receiving the challenge from the client. Input: the public key
pk, the latest version of file Fi, the metadata Mi, and the challenge c. Output: a proof of
possession Π that will be sent back to the client.

• Verify DPDP(sk, pk,Mc, c,Π) → {accept, reject}: an algorithm run by the client to
validate a proof of possession upon receiving the proof Π from the server. Input: the
secret key sk, the public key pk, the client metadata Mc, the challenge c, and the proof
Π. Output: accept if Π is a valid proof of possession, reject otherwise.

APPENDIX B

REPLAY ATTACKS IN NETWORK CODING-BASED DISTRIBUTED STORAGE

SYSTEMS

B.1 Replay Attack against A Basic Network Coding-based Scheme

Assume the following chain of events in a configuration similar with the one in

Figure 3.1(c), in which the attacker can corrupt at most one server (out of three) in each

epoch.

Epoch 1: Each server stores 2 network coded blocks.
S1 : x11 = b1 , x12 = b2 + b3

(i.e., S1 stores coded blocks x11,x12)

S2 : x21 = b3 , x22 = b1 + b2

S3 : x31 = b1 + b3 , x32 = b2 + b3

The attacker corrupts S3, but keeps a copy of x31,x32 (and their challenge tags).

The client detects corruption at S3. Thus, it contacts S1 and S2 to generate new blocks

x′31 = 1 · (1 · x11 + 1 · x12) + 1 · (1 · x21 + 0 · x22) = b1 + b2 + 2b3

x′32 = 1 · (1 · x11 + 0 · x12) + 1 · (0 · x21 + 1 · x22) = 2b1 + b2

The new blocks x′31 and x′32 are then stored at S3.

At the end of this epoch, the data recovery condition holds true.

Epoch 2: The attacker corrupts S1. The client detects corruption at S1; thus, it contacts S2

and S3 to generate new blocks.

x′11 = 1 · (1 · x21 − 4 · x22) + 1 · (1 · x′31 + 3 · x′32) = 3b1 + 3b3

x′12 = 1 · (1 · x21 + 5 · x22) + 1 · (1 · x′31 − 3 · x′32) = 3b2 + 3b3

201

202

The new blocks x′11 and x′12 are then stored at S1.

The current configuration is now:

S1 : x′11 = 3b1 + 3b3 , x′12 = 3b2 + 3b3

S2 : x21 = b3 , x22 = b1 + b2

S3 : x′31 = b1 + b2 + 2b3 , x′32 = 2b1 + b2

At the end of this epoch, the data recovery condition holds true.

Epoch 3: Attacker corrupts S3 and replaces blocks x′31,x
′
32 with the previously stored

blocks x31,x32. The current configuration is now:

S1 : x′11 = 3b1 + 3b3 , x′12 = 3b2 + 3b3

S2 : x21 = b3 , x22 = b1 + b2

S3 : x31 = b1 + b3 , x32 = b2 + b3

All the servers successfully pass the integrity check individually. However, in epoch

4, the data recovery condition can be broken and the attacker can cause permanent damage.

Epoch 4: Attacker corrupts S2 and the client is not able to create new blocks, because S1

and S3 do not collectively store anymore at least 3 linearly independent combinations of

the original blocks. Thus, the original file is unrecoverable.

B.2 A Simulation to Validate Theorem 3.4.1

To validate Theorem 3.4.1 experimentally, a simulation is performed as follows: For each

of the first 10,000 epochs, the attacker corrupts the blocks on n − k servers, forcing the

203

data owner to repair the blocks on the corrupted servers. This strategy gives the attacker

the chance to accumulate new sets of coefficient vectors (encrypted) and the corresponding

blocks. The attacker reuses the accumulated data over the next 10,000 epochs in an attempt

to execute replay attacks. Since the coefficients are encrypted, the attacker has no better

strategy than picking at random from the accumulated coefficient vectors.

The simulations show that encrypting the coefficients successfully mitigates replay

attacks. The reason is that accumulating previously encrypted coefficient vectors does not

increase the chances of performing a successful replay attack. For various combinations

of (n, k) (shown in Table B.1), the attacker is unable to execute not even one successful

replay attack during the 10,000 attempts.

Table B.1 Test Cases for Simulating The Replay Attack
n k m α ` β
10 5 15 5 5 1
15 5 15 5 5 1
20 5 15 5 5 1
25 5 15 5 5 1
15 10 55 10 10 1
20 10 55 10 10 1
20 15 120 15 15 1

APPENDIX C

EXPERIMENTS ON THE AMAZON CLOUD

C.1 Measurements for The Amazon CSP

Tables C.1 and C.2 show the bandwidth and the propagation delay between Amazon S3 data

centers (regions) and between our institution and different S3 data centers (regions). For

measurements, we used an EC2 instance within the corresponding Amazon data centers.

To measure bandwidth, we used Wget [110] to download a large file. To measure the

propagation delay, we adopt the method introduced in [63] that is, we measure the time

between sending a SYN packet and receiving a SYN-ACK packet of a TCP connection,

half of which is considered as the propagation delay. All the results in Tables C.1 and C.2

are averaged over 20 runs.

Table C.1 Download Bandwidth (in MB/s)
Virginia N. California Oregon

Virginia 32.7 11.62 12.59
N. California 11.95 48.03 36.05

Oregon 14.07 26.43 52.18
Our institution 0.816 0.456 0.439

Table C.2 Propagation Delay (in Milliseconds)
Virginia N. California Oregon

Virginia 0.579 40 49
N. California 40 0.705 11

Oregon 49 11 0.212
Our institution 4 40 45

204

205

C.2 Sampling Blocks from Amazon S3

We wrote a program running in an EC2 instance (Amazon Virginia region) to randomly

sample 4KB blocks from S3 Virginia region. We collect the time in Table C.3. All the

results are averaged over 20 runs.

Table C.3 The Time for Randomly Sampling 4KB Blocks from S3 Virginia Region
of blocks 1 10 40 400
time (sec.) 0.026062 0.260492 1.024863 10.191946

APPENDIX D

MULTIPLE QUANTIFICATIONS IN ERDC-SR

D.1 Quantify The Computation Required for Generating One Replica Block from

The Original File Blocks in ERDC-SR

From Figure 5.2, we want to generate a block in level logβ from the original file blocks

which are in level 0. Each block in level logβ depends on 2 blocks in level logβ−1, i.e., we

need 1 cryptographic transformation in order to generate this block by knowing the 2 blocks

in level logβ − 1. Similarly, each of the 2 blocks in level logβ − 1 depends on a different

set of 2 blocks in level logβ − 2, i.e., by knowing the 4 blocks in level logβ − 2, we need 2

cryptographic transformations in order to generate the 2 blocks in level logβ−1. Similarly,

we need 4 cryptographic transformations in order to generate the 4 blocks in level logβ−2.

We can simply infer that to generate the blocks in level 1, we need 2logβ−1 cryptographic

transformations. Thus, the overall computation needed is 1+2+4+ · · ·+2logβ−1(= β−1)

cryptographic transformations.

D.2 Quantify The Computation Needed to Generate A Replica Block When The

Adversary Only Stores One Intermediate Block

In Figure 5.2, there are logβ + 1 levels, and n blocks at each level. Let i denote the level

index, i.e., 0 ≤ i ≤ logβ. Assume the adversary only stores one block at this server, which

can be the original file block (i = 0), the intermediate block (0<i<logβ), or the block

from the corresponding replica (replica block, i = logβ). We want to quantify the overall

206

207

computation needed to generate a replica block being challenged, considering the adversary

only stores one block in level i, and is able to access the original file (Section 4.3.2).

Considering a block from level i (we denote this block as B) is stored by the

adversary, we can categorize the replica blocks as two types: blocks which are related

to B (type I), and blocks which are not related to B (type II). According to Figure 5.2, B

will be related to 2logβ−i replica blocks, e.g., B will be related to 2logβ(= β) replica blocks

if it is from level 0 (i.e., i = 0), and will be related to 2logβ−1(= β
2
) replica blocks if it is

from level 1 (i.e., i=1). Thus, the number of replica blocks belonging to type I is 2logβ−i,

and the number of replica blocks belonging to type II is n − 2logβ−i. If the challenged

replica block belongs to type II, to compute such a block, the adversary needs to start from

the original file blocks, and the computation is β − 1 cryptographic transformations (see

Appendix D.1). Otherwise, if the challenged replica block belongs to type I, to compute

such a block, the adversary does not need to compute the intermediate block B as well as

all the other intermediate blocks needed to compute B. Thus, the computation needed to

generate such a replica block is β − 1− (2i− 1)(= β − 2i) cryptographic transformations.

During Challenge, the replica blocks being challenged are picked randomly, thus, each of

them has an equal probability of being picked, i.e., 1
n

. When picking a random replica

block, the probability that it is from type I category is 2logβ−i

n
, and the probability that

it is from type II category is n−2logβ−i

n
. Thus, the expected overall computation needed to

generate this block will be 2logβ−i

n
·(β−2i)+n−2logβ−i

n
·(β−1) cryptographic transformations,

which is β
n·2i + β − β

n
− 1 cryptographic transformations.

208

D.3 Determine The Minimum Value of e

Intuitively, β and e together determine the amount of computational effort the α-cheating

adversary needs to spend in order to cheat successfully without being detected. In other

words, when β is larger, e can be smaller. However, β cannot exceed n. Thus, e should

have a minimum value, i.e., emin, by which even if β is as large as n (this can happen if

the outsourced file is small in size), the α-cheating adversary cannot perform the ROTF

attack without being detected. In the following, we try to determine emin. When β is equal

to n, the computation needed to generate a missing replica block purely from the original

file blocks will be n− 1 cryptographic transformation (see Appendix D.1). To generate all

the c · (1 − α) missing challenged blocks, the α-cheating server at least needs to perform

n + 1
2
· c · (1 − α) − 2 cryptographic transformation based on the following observations:

the adversary needs n− 1 cryptographic transformation to generate the first missing block;

to generate the remaining c · (1 − α) − 1 missing blocks, the adversary at least needs

c·(1−α)−2
2

cryptographic transformation because, when finishing computing the first missing

block, the adversary has already computed a lot of intermediate blocks, and can re-use these

intermediate blocks to compute the remaining c · (1−α)− 1 missing blocks by performing

no less than c·(1−α)−2
2

cryptographic transformation. To ensure the malicious server cannot

pass the verification at the end of φ, we have (n+ 1
2
· c · (1− α)− 2) · e

(1+ρ)φ
+ τ

(1+ρ)φ
> τ ,

i.e., e > ((1+ρ)φ−1)·τ
n+ 1

2
·c·(1−α)−2

.

D.4 Quantify The Probability That All The c · (1− α) Missing Challenged Blocks

Depend on Different Sets of β Original File Blocks

From Figure 5.2, each of the replica blocks depends on a set of β original file blocks, e.g.,

a replica block with index i depends on a set of β file blocks with indices in the range

209

[b i
β
c · β, (b i

β
c + 1) · β − 1], where 0 ≤ i ≤ n − 1 (Section 5.3.2). During Challenge,

the client checks a random subset of c replica blocks. To pass the verification check, the

α-cheating server needs to generate the c · (1−α) missing challenged blocks on the fly. Let

E be the event that all the c · (1−α) missing challenged blocks depend on different sets of

β original file blocks. We evaluate the probability of E (i.e., P (E)) as follows.

We observed from Figure 5.2 that, all the replica blocks with indices in the range

[b i
β
c · β, (b i

β
c+ 1) · β − 1] depend on the same set of β original file blocks, where 0 ≤ i ≤

n − 1. We define the collection of replica blocks from this same range as a dependency

group, i.e., totally we have n
β

dependency groups. Thus, evaluating P (E) is equivalent to

evaluating the probability that all the c·(1−α) missing challenged blocks are from different

dependency groups. Let Ej be the event that the j-th missing challenged block (1 ≤ j ≤

c · (1 − α)) is from a different dependency group than the previously missing challenged

blocks. Thus, P (E) = Π
c·(1−α)
j=1 P (Ej). We further evaluate P (Ej) in the following:

P (E1) = 1

P (E2) =
β(n
β
−1)

n−1
= n−β

n−1

P (E3) =
β(n
β
−2)

n−2
= n−2β

n−2

· · ·

P (Ec·(1−α)) =
β(n
β
−(c·(1−α)−1))

n−(c·(1−α)−1)
= n−(c·(1−α)−1)β

n−(c·(1−α)−1)

Thus, P (E) = Π
c·(1−α)−1
j=1

n−jβ
n−j

D.5 Quantify The Minimum Computation for An α-cheating Server to Generate

The c · (1− α) Missing Challenged Blocks

During Challenge, the client checks a random subset of c replica blocks. To pass the check

successfully without being detected, an α-cheating server needs to generate the c · (1− α)

210

missing challenged blocks on the fly. By applying the β-butterfly encoding, each of the

replica blocks depends on a set of β original file blocks, specifically, in Figure 5.2, a replica

block with index i depends on β original file blocks with indices in the range [b i
β
c·β, (b i

β
c+

1) · β − 1], where 0 ≤ i ≤ n− 1. Let Ex be the event that these c · (1− α) missing blocks

depend on x different sets of β original file blocks, where 1 ≤ x ≤ c · (1 − α). When Ex

happens, the overall computation required to generate the c · (1−α) missing blocks will be

at least x · (β − 1) cryptographic transformation because, among these c · (1− α) missing

blocks, the adversary at least needs to generate x blocks purely from the original file (i.e.,

cannot re-use any intermediate block), and generating a block purely from the original file

requires β− 1 cryptographic transformation (Appendix D.1). Let P (Ex) be the probability

of Ex, thus, the expected overall computation required by the adversary to generate these

c · (1 − α) missing challenged blocks should be at least
∑c·(1−α)

x=1 P (Ex) · x · (β − 1)

cryptographic transformation.

Computing all the P (Ex) values (where 1 ≤ x ≤ c ·(1−α)) will be quite complicate,

thus, rather than compute the exact value for
∑c·(1−α)

x=1 P (Ex) · x · (β − 1), we evaluate its

lower bound. We observe when n ≥ 2 · c · (1 − α) · β, P (Ec·(1−α)) > P (Ec·(1−α)−1) >

· · · > P (E1), based on the following analysis. For the base case, we have P (Ec·(1−α)) >

P (Ec·(1−α)−1), because: From Appendix D.4, P (Ec·(1−α)) = Π
c·(1−α)−1
j=1

n−jβ
n−j . Similarly, we

can compute P (Ec·(1−α)−1) = (Π
c·(1−α)−2
j=1

n−jβ
n−j)· (c·(1−α)−1)·(β−1)

n−(c·(1−α)−1)
. When n ≥ 2·c·(1−α)·β,

n− (c · (1−α)−1) ·β > c · (1−α) ·β > 0. Since 0 < (c · (1−α)−1) ·β < c · (1−α) ·β,

P (Ec·(1−α))

P (Ec·(1−α)−1)
= n−(c·(1−α)−1)·β

(c·(1−α)−1)(β−1)
> 1, i.e., P (Ec·(1−α)) > P (Ec·(1−α)−1). For the general case,

we have P (Ex+1) > P (Ex), where 1 ≤ x ≤ c · (1− α)− 1, because: For event Ex, when

picking the c · (1 − α) missing blocks, we first pick x blocks from all the n
β

dependency

groups (Event Ex,1), such that each block is from a different dependency group, i.e., x

211

dependency groups have been picked; we then pick the remaining c · (1 − α) − x blocks

from these x dependency groups (Event Ex,2). For event Ex+1, similarly, we first pick x

blocks from the whole n
β

dependency groups (Event Ex+1,1), such that each block is from

a different dependency group; we then pick the remaining c · (1 − α) − x blocks in two

steps (Event Ex+1,2): step 1, pick 1 block from the other n
β
− x dependency groups, i.e.,

after step 1, x+ 1 dependency groups have been picked; step 2, pick the c · (1−α)−x− 1

blocks from these x+1 dependency groups. Ex,1 and Ex,2 are two independent events, and

Ex happens when both Ex,1 and Ex,2 happen, thus, we have P (Ex) = P (Ex,1) · P (Ex,2).

Similarly, we have P (Ex+1) = P (Ex+1,1) · P (Ex+1,2). Since n ≥ 2 · c · (1 − α) · β,

we have n
β
> 2 · c · (1 − α). Since x ≤ c · (1 − α) − 1 and n

β
> 2 · c · (1 − α), we have

n
β
−x > c ·(1−α), i.e., n

β
−x > x. Considering both n

β
−x > x and x+1 > x, we conclude

that P (Ex+1,2) > P (Ex,2). Since P (Ex+1,1) = P (Ex,1), we have P (Ex+1) > P (Ex).

Based on the aforementioned observation, we have Theorem D.5.1.

Theorem D.5.1. When n ≥ 2 · c · (1 − α) · β, we have
∑c·(1−α)−1

x=1 P (Ex) · x > 1
2
· (1 −

P (Ec·(1−α))) · c · (1− α).

Proof. We first show inequality (D.1) always holds when 1
2
· c · (1− α) < x < c · (1− α)

and n ≥ 2 · c · (1− α) · β.

P (Ex)·x+P (Ec·(1−α)−x)·(c·(1−α)−x) >
1

2
(P (Ex)+P (Ec·(1−α)−x))·(c·(1−α)) (D.1)

We justify inequality (D.1) by showing P (Ex) · x + P (Ec·(1−α)−x) · (c · (1 − α) − x) −

1
2
(P (Ex) + P (Ec·(1−α)−x)) · (c · (1− α)) > 0 in the following.

P (Ex) ·x+P (Ec·(1−α)−x) ·(c ·(1−α)−x)− 1
2
(P (Ex)+P (Ec·(1−α)−x)) ·(c ·(1−α))

= P (Ex) · (c · (1−α)− (c · (1−α)−x)) +P (Ec·(1−α)−x) · (c · (1−α)−x)− 1
2
(P (Ex) +

212

P (Ec·(1−α)−x)) · (c · (1− α))

= 1
2
·P (Ex)·c·(1−α)− 1

2
·P (Ec·(1−α)−x)·c·(1−α)−(P (Ex)−P (Ec·(1−α)−x))·(c·(1−α)−x)

= (P (Ex)− P (Ec·(1−α)−x))(x− 1
2
· c · (1− α))

Since x > 1
2
·c·(1−α), we have x− 1

2
·c·(1−α) > 0. Since 1

2
·c·(1−α) < x < c·(1−α), we

have c · (1− α)− x < x, thus, P (Ec·(1−α)−x) < P (Ex), i.e., P (Ex)− P (Ec·(1−α)−x) > 0.

We can further infer (P (Ex) − P (Ec·(1−α)−x))(x − 1
2
· c · (1 − α)) > 0, equivalently,

P (Ex) ·x+P (Ec·(1−α)−x) · (c · (1−α)−x)− 1
2
(P (Ex)+P (Ec·(1−α)−x)) · (c · (1−α)) > 0.

Based on Inequality D.1, we prove the theorem by differentiating two cases: c·(1−α)

is odd and c · (1− α) is even.

c · (1 − α) is odd:
∑c·(1−α)−1

x=1 P (Ex) · x = P (Ec·(1−α)−1) · (c · (1 − α) − 1) + P (E1) ·

1 + P (Ec·(1−α)−2) · (c · (1 − α) − 2) + P (E2) · 2 + · · · + P (Ed 1
2
·c·(1−α)e) · (d1

2
· c · (1 −

α)e) + P (Eb 1
2
·c·(1−α)c) · (b1

2
· c · (1 − α)c) > 1

2
(P (Ec·(1−α)−1) + P (E1)) · (c · (1 − α)) +

1
2
(P (Ec·(1−α)−2) +P (E2)) · (c · (1− α)) + · · ·+ 1

2
(P (Ed 1

2
·c·(1−α)e) +P (Ed 1

2
·c·(1−α)e)) · (c ·

(1− α)) = 1
2

∑c·(1−α)−1
x=1 P (Ex)(c · (1− α)) = 1

2
· (1− P (Ec·(1−α)))(c · (1− α)).

c · (1 − α) is even:
∑c·(1−α)−1

x=1 P (Ex) · x = P (Ec·(1−α)−1) · (c · (1 − α) − 1) + P (E1) ·

1 + P (Ec·(1−α)−2) · (c · (1 − α) − 2) + P (E2) · 2 + · · · + P (E 1
2
·c·(1−α)+1) · (1

2
· c · (1 −

α) + 1) + P (E 1
2
·c·(1−α)−1) · (1

2
· c · (1 − α) − 1) + P (E 1

2
·c·(1−α)) · 1

2
· c · (1 − α) >

1
2
(P (Ec·(1−α)−1) + P (E1)) · (c · (1 − α)) + 1

2
(P (Ec·(1−α)−2) + P (E2)) · (c · (1 − α)) +

· · ·+ 1
2
(P (E 1

2
·c·(1−α)+1) +P (E 1

2
·c·(1−α)−1)) · (c · (1−α)) + 1

2
·P (E 1

2
·c·(1−α)) · c · (1−α) =

1
2

∑c·(1−α)−1
x=1 P (Ex)(c · (1− α)) = 1

2
· (1− P (Ec·(1−α)))(c · (1− α)).

We are now ready to evaluate the lower bound of
∑c·(1−α)

x=1 P (Ex)·x·(β−1), which is

the expected overall computation required by the adversary to generate the c·(1−α) missing

213

challenged blocks. We have
∑c·(1−α)

x=1 P (Ex) · x · (β − 1) = (β − 1) ·
∑c·(1−α)

x=1 P (Ex) · x =

(β− 1) · (
∑c·(1−α)−1

x=1 P (Ex) ·x+P (Ec·(1−α)) · c · (1−α)). Based on Theorem D.5.1, when

n ≥ 2 · c · (1 − α) · β,
∑c·(1−α)−1

x=1 P (Ex) · x > 1
2
· (1 − P (Ec·(1−α)))c · (1 − α). Thus,∑c·(1−α)

x=1 P (Ex)·x·(β−1) > (β−1)·(1
2
·(1−P (Ec·(1−α)))·c·(1−α)+P (Ec·(1−α))·c·(1−α)),

i.e.,
∑c·(1−α)

x=1 P (Ex)·x·(β−1) > 1
2
·(1+P (Ec·(1−α)))·c·(1−α)·(β−1) =

1+Π
c·(1−α)−1
i=1

n−iβ
n−i

2
·

c · (1− α) · (β − 1), s.t. n ≥ 2 · c · (1− α) · β.

APPENDIX E

SKIP DELTA-BASED VERSION CONTROL SYSTEMS

E.1 The Cost for Retrieving An Arbitrary Version in A Skip Delta-based Version

Control System

Theorem E.1.1 shows that the cost of retrieving an arbitrary version in a skip delta-based

version control system is bounded byO(log(t)), in which t is the number of versions stored

in this version control system.

Theorem E.1.1. In a skip delta-based version control system, the cost for retrieving an

arbitrary version t is bounded by O(log(t)).

Proof. (sketch) According to Figure 6.1(b), one can always re-compute version Ft by

starting from the initial version F0, and applying all the corresponding skip deltas up to

δt. Let l be the total number of skip deltas used to re-construct Ft. Since the skip delta of

an arbitrary version is the delta of this version against its skip version, l is thus equal to

the total number of skip versions from F0 up to Ft. According to the rule of determining

a version’s skip version in Section 6.3.1, l is actually the total number of bits with value

“1” in t’s binary format, which is at most log(t). In other words, based on F0, one need

to go through at most log(t) skip deltas to re-compute Ft. Thus, the cost for retrieving an

arbitrary version t is bounded by O(log(t)).

214

REFERENCES

[1] “Outsourcing,” http://en.wikipedia.org/wiki/Outsourcing.

[2] “Amazon Web Services,” http://aws.amazon.com/.

[3] “Windows Azure,” http://www.windowsazure.com.

[4] “The Why of Cloud,” http://www.gartner.com/DisplayDocument?doc cd=226469&
ref=g noreg.

[5] “Amazon simple storage service,” http://aws.amazon.com/en/s3/.

[6] “Amazon Gracier,” http://aws.amazon.com/glacier/.

[7] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song,
“Provable data possession at untrusted stores,” in Proc. of ACM Conference on
Computer and Communications Security (CCS ’07), 2007.

[8] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner, Z. Peterson, and
D. Song, “Remote data checking using provable data possession,” ACM Trans. Inf.
Syst. Secur., vol. 14, June 2011.

[9] A. Juels and B. S. Kaliski, “PORs: Proofs of retrievability for large files,” in Proc. of ACM
Conference on Computer and Communications Security (CCS ’07), 2007.

[10] H. Shacham and B. Waters, “Compact proofs of retrievability,” in Proc. of Annual
International Conference on the Theory and Application of Cryptology and
Information Security (ASIACRYPT ’08), 2008.

[11] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, “Scalable and efficient provable
data possession,” in Proc. of International ICST Conference on Security and Privacy
in Communication Networks (SecureComm ’08), 2008.

[12] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia, “Dynamic provable data
possession,” in Proc. of ACM Conference on Computer and Communications Security
(CCS ’09), 2009.

[13] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling public auditability and data
dynamics for storage security in cloud computing,” IEEE Trans. on Parallel and
Distributed Syst., vol. 22, no. 5, May 2011.

[14] Q. Zheng and S. Xu, “Fair and dynamic proofs of retrievability,” in Proc. of ACM
Conference on Data and Application Security and Privacy (CODASPY ’11), 2011.

[15] E. Stefanov, M. van Dijk, A. Oprea, and A. Juels, “Iris: A scalable cloud file system
with efficient integrity checks,” in Proc. of Annual Computer Security Applications
Conference (ACSAC ’12), 2012.

215

http://en.wikipedia.org/wiki/Outsourcing
http://aws.amazon.com/
http://www.windowsazure.com
http://www.gartner.com/DisplayDocument?doc_cd=226469&ref=g_noreg
http://www.gartner.com/DisplayDocument?doc_cd=226469&ref=g_noreg
http://aws.amazon.com/en/s3/
http://aws.amazon.com/glacier/

216

[16] R. Curtmola, O. Khan, and R. Burns, “Robust remote data checking,” in Proc. of ACM
Workshop On Storage Security And Survivability (StorageSS ’08), 2008.

[17] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of retrievability: Theory and
implementation,” in Proc. of ACM Cloud Computing Security Workshop (CCSW ’09),
2009.

[18] A. G. Dimakis, B. Godfrey, M. J. Wainwright, and K. Ramchandran, “Network coding
for distributed storage systems,” in Proc. of Annual IEEE Conference on Computer
Communications (INFOCOM ’07), 2007.

[19] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. O. Wainwright, and K. Ramchandran, “Network
coding for distributed storage systems,” IEEE Trans. on Inf. Theory, vol. 56, Sept.
2010.

[20] R. Rodrigues and B. Liskov, “High availability in dhts: Erasure coding vs. replication,” in
Proc. of International workshop on Peer-To-Peer Systems (IPTPS ’05), 2005.

[21] K. Bowers, A. Oprea, and A. Juels, “HAIL: A high-availability and integrity layer for cloud
storage,” in Proc. of ACM Conference on Computer and Communications Security
(CCS ’09), 2009.

[22] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “MR-PDP: Multiple-replica provable
data possession,” in Proc. of International Conference on Distributed Computing
Systems (ICDCS ’08), 2008.

[23] B. Chen, R. Curtmola, G. Ateniese, and R. Burns, “Remote data checking for network
coding-based distributed storage systems,” in Proc. of ACM Cloud Computing Security
Workshop (CCSW ’10), 2010.

[24] B. Chen and R. Curtmola, “Robust dynamic provable data possession,” in Proc. of
International Workshop on Security and Privacy in Cloud Computing (ICDCS-SPCC
’12), 2012.

[25] B. Chen and R. Curtmola, “Poster: Robust dynamic remote data checking for public
clouds,” in Proc. of ACM Conference on Computer and Communications Security
(CCS ’12), 2012.

[26] B. Chen and R. Curtmola, “Towards self-repairing replication-based storage systems using
untrusted clouds,” in Proc. of ACM Conference on Data and Application Security and
Privacy (CODASPY ’13), 2013.

[27] B. Chen and R. Curtmola, “Auditable version control systems,” in Proc. of the 21th Annual
Network and Distributed System Security Symposium (NDSS ’14), 2014.

[28] C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring data storage security in cloud
computing,” in Proc. of IEEE International Workshop on Quality of Service (IWQoS
’09), 2009.

217

[29] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, “Plutus: Scalable secure
file sharing on untrusted storage,” in Proc. of 2nd USENIX Conference on File and
Storage Technologies (FAST ’03), 2003.

[30] J. Li, M. Krohn, D. Mazières, and D. Shasha, “Secure untrusted data repository
(SUNDR),” in Proceedings of USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’04), 2004.

[31] U. Maheshwari, R. Vingralek, and W. Shapiro, “How to build a trusted database system on
untrusted storage,” in Proc. of USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’00), 2000.

[32] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi,
S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao, “Oceanstore: an
architecture for global-scale persistent storage,” SIGPLAN Not., vol. 35, pp. 190–201,
November 2000.

[33] A. A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen, “Ivy: A read/write peer-to-
peer file system,” in Proceedings of 5th Symposium on Operating Systems Design and
Implementation (OSDI ’02), 2002.

[34] S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Workshop on Real-Life
Cryptographic Protocols and Standardization, 2010.

[35] S. Kamara, C. Papamanthou, and T. Roeder, “Cs2: A searchable cryptographic cloud
storage system,” in Technical Report MSR-TR-2011-58. Microsoft, 2011.

[36] D. Cash, A. Kupcu, and D. Wichs, “Dynamic proofs of retrievability via oblivious ram,” in
Proc. of EUROCRYPT ’13, 2013.

[37] J. S. Plank and L. Xu, “Optimizing cauchy reed-solomon codes for fault-tolerant network
storage applications,” Proc. of IEEE International Symposium on Network Computing
and Applications (NCA ’06), 2006.

[38] M. O. Rabin, “Efficient dispersal of information for security, load balancing, and fault
tolerance,” J. of the ACM, vol. 36, no. 2, 1989.

[39] J. Blomer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D. Zuckerman, “An xor-based
erasure-resilient coding scheme,” International Computer Science Institute, Tech. Rep.
TR-95-048, August 1995.

[40] J. S. Plank, “Erasure codes for storage applications,” Tutorial Slides, presented at FAST-
2005: 4th Usenix Conference on File and Storage Technologies, http://www.cs.utk.
edu/∼plank/plank/papers/FAST-2005.html, San Francisco, CA, 2005.

[41] J. S. Plank and Y. Ding, “Note: Correction to the 1997 tutorial on reed-solomon coding,”
2003.

http://www.cs.utk.edu/~plank/plank/papers/FAST-2005.html
http://www.cs.utk.edu/~plank/plank/papers/FAST-2005.html

218

[42] J. S. Plank, S. Simmerman, and C. D. Schuman, “Jerasure: A library in C/C++ facilitating
erasure coding for storage applications - Version 1.2,” University of Tennessee, Tech.
Rep. CS-08-627, August 2008.

[43] J. S. Plank, “Optimizing Cauchy Reed-Solomon codes for fault-tolerant storage
applications,” University of Tennessee, Tech. Rep. CS-05-569, December 2005.

[44] “OpenSSL,” http://www.openssl.org/.

[45] “Eclipse,” http://archive.eclipse.org/arch/.

[46] O. Goldreich and R. Ostrovsky, “Software protection and simulation on oblivious rams,”
Journal of the ACM, vol. 43, no. 3, May 1996.

[47] B. Pinkas and T. Reinman, “Oblivious ram revisited,” in Proc. of Annual International
Cryptology Conference (CRYPTO ’10), 2010.

[48] D. Boneh, D. Freeman, J. Katz, and B. Waters, “Signing a linear subspace: Signature
schemes for network coding,” in Proc. of International Conference on Practice and
Theory in Public Key Cryptography (PKC ’09), 2009.

[49] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Journal of the
Society for Industrial and Applied Mathematics, vol. 8, no. 2, pp. 300–304, 1960.

[50] “Reference model for an open archival information system (OAIS),” 2001, consultative
Committee for Space Data Systems.

[51] A. Krioukov, L. N. Bairavasundaram, G. R. Goodson, K. Srinivasan, R. Thelen, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Parity lost and parity regained,” in Proc.
of FAST’08, 2008.

[52] B. Schroeder, S. Damouras, and P. Gill, “Understanding latent sector errors and how to
protect against them,” in Proc. of FAST’10, 2010.

[53] P. Maniatis, M. Roussopoulos, T. Giuli, D. Rosenthal, M. Baker, and Y. Muliadi, “The
LOCKSS peer-to-peer digital preservation system,” ACM Transactions on Computer
Systems, vol. 23, no. 1, pp. 2–50, 2005.

[54] Y. Jiang, Y. Fan, X. Shena, and C. Lin, “A self-adaptive probabilistic packet filtering scheme
against entropy attacks in network coding,” Elsevier Computer Networks, August
2009.

[55] R. Gennaro, J. Katz, H. Krawczyk, and T. Rabin, “Secure network coding over the
integers,” in Proc. of International Conference on Practice and Theory in Public Key
Cryptography (PKC ’10), 2010.

[56] H. Weatherspoon and J. D. Kubiatowicz, “Erasure coding vs. replication: a quantitative
comparison,” in Proc. of International Workshop on Peer-to-Peer Systems (IPTPS
’02), 2002.

http://www.openssl.org/
http://archive.eclipse.org/arch/

219

[57] T. Ho, R. Koetter, M. Medard, D. R. Karger, and M. Effros, “The benefits of coding
over routing in a randomized setting,” in Proc. of IEEE International Symposium on
Information Theory (ISIT ’03), 2003.

[58] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong, “A random
linear network coding approach to multicast,” IEEE Trans. Inform. Theory, vol. 52,
no. 10, pp. 4413–4430, 2006.

[59] M. N. Wegman and J. L. Carter, “New hash functions and their use in authentication and
set equality,” Journal of Computer and System Sciences, vol. 22, no. 3, pp. 265 – 279,
1981.

[60] H. Krawczyk, “LFSR-based hashing and authentication,” in Proc. of Annual International
Cryptology Conference (CRYPTO ’94), 1994.

[61] P. Rogaway, “Bucket hashing and its application to fast message authentication,” in Proc.
of Annual International Cryptology Conference (CRYPTO ’95), 1995.

[62] V. Shoup, “On fast and provably secure message authentication based on universal
hashing,” in Proc. of Annual International Cryptology Conference (CRYPTO ’96),
1996.

[63] K. Benson, R. Dowsley, and H. Shacham, “Do you know where your cloud files are?” in
Proc. of ACM Cloud Computing Security Workshop (CCSW ’11), 2011.

[64] Z. N. J. Peterson, M. Gondree, and R. Beverly, “A position paper on data sovereignty: the
importance of geolocating data in the cloud,” in Proc. of USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud ’11), 2011.

[65] Y. Zhang and M. Blanton, “Efficient dynamic provable possession of remote data via
balanced update trees,” in Proc. of 8th ACM Symposium on Information, Computer
and Communications Security (ASIACCS ’13), 2013.

[66] E. Shi, E. Stefanov, and C. Papamanthou, “Practical dynamic proofs of retrievability,” in
Proc. of the 20th ACM Conference on Computer and Communications Security (CCS
’13), 2013.

[67] S. R. Tate, R. Vishwanathan, and L. Everhart, “Multi-user dynamic proofs of data
possession using trusted hardware,” in Proceedings of the third ACM conference on
Data and application security and privacy (CODASPY ’13), 2013.

[68] M. Etemad and A. Kupcu, “Transparent, distributed, and replicated dynamic provable data
possession,” in Proc. of 11th International Conference on Applied Cryptography and
Network Security (ACNS ’13), 2013.

[69] K. D. Bowers, M. V. Dijk, A. Juels, A. Oprea, and R. L. Rivest, “How to tell if your cloud
files are vulnerable to drive crashes,” in Proc. of ACM Conference on Computer and
Communications Security (CCS ’11), 2011.

220

[70] G. J. Watson, R. Safavi-Naini, M. Alimomeni, M. E. Locasto, and S. Narayan, “LoSt:
location based storage,” in Proc. of ACM Cloud Computing Security Workshop (CCSW
’12), 2012.

[71] M. Gondree and Z. N. J. Peterson, “Geolocation of data in the cloud,” in Proc. of ACM
Conference on Data and Application Security and Privacy (CODASPY ’13), 2013.

[72] C. Dwork and M. Naor, “Pricing via processing or combatting junk mail,” in Advances in
Cryptology (CRYPTO ’92), 1993.

[73] A. Fiat and A. Shamir, “How to prove yourself: practical solutions to identification and
signature problems,” in Advances in Cryptology (CRYPTO86), 1986.

[74] M. Abadi, M. Burrows, M. Manasse, and T. Wobber, “Moderately hard, memory-bound
functions,” ACM Transactions on Internet Technology (TOIT), vol. 5, no. 2, pp. 299–
327, 2005.

[75] C. Dwork, A. Goldberg, and M. Naor, “On memory-bound functions for fighting spam,” in
Advances in Cryptology (Crypto ’03), 2003.

[76] B. Waters, A. Juels, J. A. Halderman, and E. W. Felten, “New client puzzle outsourcing
techniques for dos resistance,” in Proceedings of the 11th ACM conference on
Computer and communications security (CCS ’04), 2004.

[77] C. Dwork, M. Naor, and H. Wee, “Pebbling and proofs of work,” in Advances in Cryptology
(CRYPTO ’05), 2005.

[78] S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak, “Proofs of space,” http://eprint.
iacr.org/2013/796.pdf.

[79] G. Ateniese, I. Bonacina, A. Faonio, and N. Galesi, “Proofs of space: When space is of the
essence,” http://eprint.iacr.org/2013/805.pdf.

[80] M. K. Reiter, V. Sekar, C. Spensky, and Z. Zhang, “Making peer-assisted content
distribution robust to collusion using bandwidth puzzles,” Information Systems
Security, pp. 132–147, 2009.

[81] J. M. Steele, The Cauchy-Schwarz master class: An introduction to the art of mathematical
inequalities. Cambridge University Press, 2004.

[82] M. van Dijk, A. Juels, A. Oprea, R. L. Rivest, E. Stefanov, and N. Triandopoulos,
“Hourglass schemes: How to prove that cloud files are encrypted,” in Proceedings
of the 19th ACM conference on Computer and communications security (CCS ’12),
2012.

[83] W. F. Ehrsam, C. H. Meyer, J. L. Smith, and W. L. Tuchman, “Message verification and
transmission error detection by block chaining,” 1978, uS Patent 4,074,066.

[84] “Concurrent versions system,” http://cvs.nongnu.org.

http://eprint.iacr.org/2013/796.pdf
http://eprint.iacr.org/2013/796.pdf
http://eprint.iacr.org/2013/805.pdf
http://cvs.nongnu.org

221

[85] “Apache subversion,” http://subversion.apache.org/.

[86] “Git,” http://git-scm.com.

[87] “Mercurial,” http://mercurial.selenic.com.

[88] “Sourceforge,” http://sourceforge.net.

[89] “Google code,” http://code.google.com.

[90] “Github,” https://github.com.

[91] “Dropbox,” https://www.dropbox.com.

[92] “Bitcasa,” https://www.bitcasa.com.

[93] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and M. Walfish, “Depot:
Cloud storage with minimal trust,” ACM Transactions on Computer Systems (TOCS),
vol. 29, no. 4, p. 12, 2011.

[94] “Summary of the amazon ec2, amazon ebs, and amazon rds service event in the eu west
region,” http://aws.amazon.com/cn/message/2329B7/.

[95] “Summary of the aws service event in the us east region,” http://aws.amazon.com/cn/
message/67457/.

[96] “Gcc,” http://gcc.gnu.org/.

[97] Y. Dodis, S. Vadhan, and D. Wichs, “Proofs of retrievability via hardness amplification,” in
Proc. of 6th IACR Theory of Cryptography Conference (TCC ’09), 2009.

[98] G. Ateniese, S. Kamara, and J. Katz, “Proofs of storage from homomorphic identification
protocols,” in Proc. of 15th Annual International Conference on the Theory and
Application of Cryptology and Information Security (ASIACRYPT ’09), 2009.

[99] A. Anagnostopoulos, M. T. Goodrich, and R. Tamassia, “Persistent authenticated
dictionaries and their applications,” in Information Security. Springer, 2001, pp.
379–393.

[100] “Code-sharing site github turns five and hits 3.5 million users, 6 million repositories,”
http://thenextweb.com/insider/2013/04/11/code-sharing-site-github-turns-five-and-
hits-3-5-million-users-6-million-repositories/.

[101] “What is sourceforge.net [tm]?” http://sourceforge.net/apps/trac/sourceforge/wiki/What%
20is%20SourceForge.net.

[102] “Summer of code 2012 ideas,” https://github.com/trast/git/wiki/SoC-2012-Ideas.

[103] “Summer of code 2013 ideas,” https://github.com/trast/git/wiki/SoC-2013-Ideas.

http://subversion.apache.org/
http://git-scm.com
http://mercurial.selenic.com
http://sourceforge.net
http://code.google.com
https://github.com
https://www.dropbox.com
https://www.bitcasa.com
http://aws.amazon.com/cn/message/2329B7/
http://aws.amazon.com/cn/message/67457/
http://aws.amazon.com/cn/message/67457/
http://gcc.gnu.org/
http://sourceforge.net/apps/trac/sourceforge/wiki/What%20is%20SourceForge.net
http://sourceforge.net/apps/trac/sourceforge/wiki/What%20is%20SourceForge.net
https://github.com/trast/git/wiki/SoC-2012-Ideas
https://github.com/trast/git/wiki/SoC-2013-Ideas

222

[104] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-hashing for message
authentication,” internet RFC 2104, February 1997.

[105] “Apache portable runtime,” http://apr.apache.org/.

[106] “Filezilla,” https://filezilla-project.org/.

[107] “Wireshark,” http://www.wireshark.org/.

[108] “Freebsd,” http://www.freebsd.org/.

[109] “The apache software foundation,” http://www.apache.org/.

[110] “Wget,” http://www.gnu.org/software/wget/.

http://apr.apache.org/
https://filezilla-project.org/
http://www.wireshark.org/
http://www.freebsd.org/
http://www.apache.org/
http://www.gnu.org/software/wget/

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgments (1 of 3)
	Acknowledgments (2 of 3)
	Acknowledgments (3 of 3)

	Table of Contents (1 of 5)
	Table of Contents (2 of 5)
	Table of Contents (3 of 5)
	Table of Contents (4 of 5)
	Table of Contents (5 of 5)
	Chapter 1: Introduction
	Chapter 2: Robust Dynamic Provable Data Possession
	Chapter 3: Remote Data Checking for Network Coding-Based Distributed Storage Systems
	Chapter 4: Towards Self-Repairing Replication-Based Storage Systems Using Untrusted Clouds
	Chapter 5: An Enhanced Remote Data Checking Scheme Supporting Server-Side Repair
	Chapter 6: Auditable Version Control Systems
	Chapter 7: Conclusion
	Appendix A: Dynamic Provable Data Possession
	Appendix B: Replay Attacks in Network Coding-Based Distributed Storage Systems
	Appendix C: Experiments on the Amazon Cloud
	Appendix D: Multiple Quantifications in ERDC-SR
	Appendix E: Skip Delta-Based Version Control Systems
	References

	List of Tables (1 of 2)
	List of Tables (2 of 2)

	List of Figures (1 of 2)
	List of Figures (2 of 2)

