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ABSTRACT

CHARACTERIZING MOTOR CONTROL SIGNALS
IN THE SPINAL CORD

by
Yi Guo

The main goal of this project is to develop a radandel to study the central command
signals generated in the brain and spinal cordHercontrol of motor function in the
forearms. The nature of the central command sibaalbeen debated for many decades
with only limited progress. This thesis presentsr@ject that investigated this problem
using novel techniques. Rats are instrumenteddordethe control signals in their spinal
cord while they are performing lever press task @ trained in. A haptic interface and
wireless neural data amplifier system simultangpasllects dynamic and neural data.

Isometric force is predicted from force signal gsia combination of time-
frequency analysis, Principle component analysiklgmear filters. Neural-force mapping
obtained at one location are subsequently appbeddmetric data recorded at other
locations.

Prediction errors exhibited negative relationshiphwthe isometric position at
upper half of movement range. This suggests the&epee of restorative forces which are
consistent with positional feedback at spinal levéle animal also appears to become
unstable in the lower half of their movement randigely caused by a transition from

bipedal to quadruped posture.



The presence of local feedback and ability for atémo plan postures that are
unstable in absence of external forces suggestdéstending signal is a reference
trajectory planned using internal models. This imagortant consequences in design of
neuroprosthetic actuators: Inverse dynamic modefsabent limbs and local positional

feedbacks can improve their performance.
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CHAPTER 1

INTRODUCTION

The overall objective of this thesis project waguagng an understanding of descending
signal for voluntary movement and posture in theacord via direct investigation. The
overreaching goal was accomplished in three stefsyuisition, Analysis and
Interpretation. Each objective was design to hamdependent application while
supplying necessary knowledge for the subsequegetike. This chapter will provide

justifications for these goals.

Aim 1. Develop an Advanced System for Accurate Quantification

of Forelimb Movement in Rats.

The initial focus of the project was to replace dhaligitization previously used for this
task and provide very accurate measurements foothgpis testing. This technology
must be modular so that it may be adopted by laboes interested in making similar
measurement. The forelimb movements must be peduid study the command control
signals during experimental trials. This will benasved through the control of the forces
applied to the end effector, using a programmablaeasor known as a haptic device. In
addition to applying a force, the haptic device elso measure its position and rotation
in space. The device would also be engineereddade sensors that precisely measure
force and torque in multiple directions. This airmsaexpected to provide physiological

measurement such as end effector force and positicaim three.



Aim 2. Record Command Signalsfrom Spinal White and Gray Matter

Chronic recording in the dorsal funiculus was aebiepreviously using planar arrays.

Trauma to the tissue was observed during thoseestu@ther type of electrodes will be

tested for their ability to produce stable recogdiBoth white (descending axonal tracts)
and gray matter (neuronal circuitry in the spiregreents) signals was to be recorded to
gain insights about how the descending signalspereessed in the spinal cord neural
circuitry. Post synaptic potentials in the grey tmatwere expected to contain lower

frequency content than white matter. This measun¢mwas expected to provide neural

activity measurement for aim three.

Aim 3: Develop a Model of Central Control for the Motor Function

The electrodes would collect field potentials framarea populated with axons. It is only
necessary for some component of the descendinglsm@rnepresent a variable of interest.
Appropriate algorithms would be selected to sepas&inals present in the raw data and
identify the relevant sources. Tests would be cotetlion measured and predicted forces
under a variety of conditions in order to draw dasmons on the nature of descending

signal.



1.1 Acquisition

Haptic force feedback devices simulate tactile mmwments by generating forces
dependent on position and velocity of a manipulaiidiey can simulate characteristics of
different mediums such as oil and water, or arbjtishapes in space. Haptic systems
also stimulate perturbations of a movement. Tlikesgces were instrumental in studies
of motor planning in human subjects (need refereniger example, insights in motor
learning obtained by training subjects to compengat persistent biasing forces (e.g., a
constant force normal to direction of travel) amdierstanding of feedback mechanisms
were obtained by observing trajectories movemeites brief perturbations.

Rodents are more economically advantageous compangimates. Availability
of neural signals can help in reducing ambiguitynterpretation of movement data. The
ability to repeat invasive experiments makes raglant attractive choice when effective
duration of recording is limited by tissue respase

One conventional method is to have rodents presmgspoaded levers in
behavioral tests [1]. However, these experimerasgige limited insights for movement
planning. For a spring loaded lever, the posit@alivays related to force by a constant.
Applicability of such a system is limited. For fasce, it cannot be used to determine if
the neuromuscular system produces position-depéfolee because the force generated
by a lever is a linear function of position.

In order to study motor planning in the contextngfural command signals, a
system was developed to perform haptic experimentsrained rodents. The system

simultaneously collects synchronized neural sign@lse system was designed to be



flexible enough to be configured for several typé®xperiments including basic lever

press, viscous lever press and halting experiments.

1.2 Analysis
Severe injuries at the cervical spinal cord camltes quadriplegia due to extensive
paralysis of the body below shoulders. The braimjmater interfacing (BCI) is a
technique to substitute for the lost command sgjnal these severely paralyzed
individuals, using the neural signals recorded ha brain. Brain-computer interfaces
attempt to ‘read’ the volitional information fronasious cerebral cortices, primarily those
involved in planning and execution of the motor dion. A large number of
microelectrodes implanted in the brain parenchyewnd single spike activity of local
neurons to extract the volitional information. Hawe three decades of research has
repeatedly concluded that stable recordings of viddal cell activities with
microelectrodes have many technical challenges. mbst significant problem is the
layer of activated astrocytes that forms aroundréeerding electrode and makes it very
difficult to follow single spikes over an extendpdriod of time [2]. Attempts have also
been made to characterize the local field potentaald cortical surface recordings with
non-penetrating electrodes as a source of volitioarmation [3, 4].

Looking at the big picture, the final pathway fdirtae motor control information
processed in the brain is the descending tractiseo$pinal cord before the signals reach
the skeletal muscle. The corticospinal tract (C&hg the rubrospinal tract (RST)
together make up the lateral descending system d¢batrols the muscles of the
extremities in all the mammals [5]. These two tsagbrk synergistically [6, 7], although

the relative importance of each may be differendiiffierent species. For instance, the

4



magnocellular portion of the red nucleus, whereRBF originates [8], is larger and thus
suggesting a greater role in rodents than it iprimates [9] The RST was reported to
have a larger effect on the finger extensors tharQST in the rat [6] Unilateral lesioning
experiments of the medullary pyramid in rats imgdirrotatory movements in the
contralateral arm including limb aiming, pronati@amd supination but spared limb
advancement, digit opening, arpeggio and graspifijg The red nucleus lesions, in
addition to producing similar impairments in rotgtomovements, also attenuated
arpeggio. Both lesions affected both proximal aistetimusculature, however, even after
combined lesions the rats were able to advancédirtiie grasp food and withdraw the
limb [7], suggesting that some components of gkillenb use are supported by
descending neural pathways or spinal cord circtiter than the crossed RST or CST.
Whishaw et al. [7] concluded that rats with pyraahilact lesions were more impaired in
limb guidance than rats with red nucleus lesiomsydver the relative contributions of
each tract were reversed in the control of the twaisd digits. In support of the
importance of the CST in the rat, a recent studynsld that the supination of the hand
while reaching for a vertical bar was lost afteoatralateral pyradoctomy [10]. Thus, the
current research collectively suggests that botdl @8d RST are recruited in rats
synergistically in the control of the forelimbs & complementary way although the
relative importance of each may be different dependn the behavioral context.

The nature of the control information descending the CST is not known
perhaps due to technical difficulties in neuralorelings directly from the tract in
experimental animals. Instead, indirect observatiare made though micro stimulation

of the motor cortex in animals or transcranial megnstimulation in human subjects



where the modulatory effect of CST is seen on treesponding muscle activities. Micro
stimulation of the primary motor cortex in rhesuacaques generated both facilitatory
and suppression effects in both flexor and extensascles of the distal and proximal
forearm [11]; which is a response presumably mediahrough the corticospinal tract.
Transcranial magnetic stimulation of the supplemgnand primary motor areas during
isometric static hand force task produced EMG &ffewith similar amplitude and
latencies recorded from the intrinsic hand muscegigesting that both cortical areas
effectively control the spinal cord excitability4]l Indeed, many areas of the neocortex
send projections to the spinal cord through the .CAmother method of gleaning
information about the CST function during behavs#oto correlate the single cell activity
recorded from a brain region or scalp EEG and tlhesae EMG signals. Frequency-
domain analysis in humans has shown that isomeuigcle contractions at submaximal
voluntary force levels are characterized by EEG-EMy@&chrony in the 15-30Hz band
[13, 14]. This synchronization diminishes duringhdgnic muscle contractions and gets
replaced by a higher frequency band around 30-608} The postspike facilitation
studies in awake monkeys demonstrated that the thetharges related to the static limb
torque were more prominent in the corticomotonesiy@ortical neurons that synapse on
the spinal motor neurons, in contrast to the rulotmmeuronal cells [16, 17].

The number of fiber counts in the medullary pyramaties between 73,000-
150,000 in the rat (depending on whether lightlecteon microscopy is used [18-20]).
Most of the fibers are slow conducting with diamgtess than 1 um with the largest
ones around 3.7 um [21]. Being located in the mestral side of the dorsal column of

the rat spinal cord, the fine fibers of the CST caadily be contrasted with the large



fibers of the more superficially placed ascendiathgrays of the dorsal column. The fast
fibers reaching up to the speed of 19 m/s [22], pre$umably the largest ones, are very
small in number in the rat CST [23].

As an alternative approach to the Brain Computtgrfaces (BCls), the lateral
descending tracts of the spinal cord may be a patesite for tapping into volitional
motor signals. Due to the convergence of the artautputs into a final common
pathway in the descending tracts of the spinal,aoedral interfaces with the spinal cord
have a potential of being more compact than thesBfelcause the cell bodies of upper
motor neurons are dispersed over the cortex. intsresting to note that complete
ablation of the sensorimotor cortex led to the losenly about 50% of the axons in the
medullary pyramid in rats, suggesting that rema&rs0% of the myelinated axons come
from areas other than the sensorimotor cortexght bf what is known about the CST, It
can be asserted that multi-electrode recordingsenmadhis tract will be able to extract
the volitional motor information in behaving animaAs in the cortical approaches, the
mechanical stability of the recording electrodesha spinal cord is crucial for those
source weights to be stable over time.

Both CST and RST neurons are known to survive sgiaed injuries.[24-26]
After an injury Wallerian degeneration occurs i @xons distal to the injury. Stumps
proximal to axon injuries often survive the injuayd sprout growth in order to bridge the
lesion. In CNS regenerative processes are impedsrhuse Oligodendrocytes has
difficulty surviving in the absence of axons. Fhistreason it is reasonable to assert that
spinal cord injuries will have minimal impact onetlguality of recording performed

proximal to the injury.



In previous work by Abishek and Sahin, recordingsf the rubrospinal tract
(RST) were found to be stable in signal amplitudes, cross validation of regression
coefficients for the forelimb kinematics betweenltiple trials was not successful [27,
28]. The poor reproducibility of the regression fficeents was most likely to be caused
by mechanical instability of the electrode integfathe wire and Utah array electrodes. It
was then decided to test a flexible substrate,golatectrode array for this application.
An electrode assembly with a stainless steel suimgoframe was developed to restrict
the movement of the array in the cord and extemdlifetime of the interconnecting
ribbon cable that runs to the external connectdre Tell-defined positions of the
contacts in the array also permitted sampling efttct more uniformly than the wire
electrodes.

In this study, neural signals were collected frats itrained for the lever pressing
task in order to assess the feasibility of extrartiolitional motor signals from the CST.
The level of success in predicting the forelimbmgtric forces using the neural signals
were comparable to that of BCI studies. Partialltssvere published as a conference

paper [29].

1.3 Interpretation
1.3.1 Understanding Representation of Descending Spinal Signals
Any neural-prosthetic device intended to restordum@ary movement to patients
suffering from paralysis must perform one of theotfunctions. They must either
transmit properly encoded command signal to comagpients to bypass the lesion [30,
31] or interpret this signal in order to drive rdicoactuators. In both cases, an

understanding of neural coding of motor contralésessary.



Extensive human studies were carried out in ordedeétermine the control
mechanism of voluntary movements. Two apparentiytrealictory school of theories
were developed on these results. Due to the inklsive nature of the discussion on this
topic, this study was designed to determine thareatf descending command signal by

direct investigation.

1.3.2 Controversy on Control Mechanisms

There has been a long-standing controversy regafaw the central nervous system
plan and execute voluntary movements. There acerh&in school of theory on this
topic. The first school - Inverse dynamic contjabstulates that CNS calculates forces
required to execute a movement prior to the movefdh And the second school,
Equilibrium control theory - speculate that cortaxd cerebellum generates a reference
trajectory that is followed by local feedback taguce the movement. [33] There is

compelling evidence for either school of thought.

1.3.3 Internal Dynamic Models
It was demonstrated that a subject operating ioraef field that constantly applied
disruptive force in one direction will generate ggly distorted trajectories. [34] The
subject will learn to compensate for the field otigre, and will continue to compensate
for the field for a time after it's turned off. Bhsuggests that motor learning plays an
important role in the planning and execution of ements.

A number of related study suggested motor learngfiges internal forward and

inverse dynamic models in the cerebellum. [35-3@jward dynamic models predict



outcomes of command signals and inverse modelsilatdcnecessary command signals
to generate a movement. Pairs of forward and ievemsdels working in conjunction
allow predictive correction of command signal byeleénce copy. [38] Using a copy of
the command signal send to the periphery, theratemodels can anticipate error in
execution of movements and correct them preemgtivel

In his 1996 paper, Mitsuo Kawato argued that Ebriim trajectory cannot
resemble physical trajectory in reaching movemef88] This was derived in an
experiment that measured position and stiffneseraf effectors of human subjects
performing reaching movements. Possible Referenajectory was estimated using
physical trajectory and measured stiffness. Tlagttory did not resemble the physical
trajectory. [40]

This result was sometimes interpreted as the CNSifigs force [41, 42], which
leads to the controversies described above. Hawievanly contradicts a descending
reference trajectory that resembles a physicadtajy. Internal dynamic models can co-
exist with a descending virtue trajectory [43]idtpossible for internal dynamic models
to modify the reference trajectories to generateirdd force [44]. For instance, when
human subjects generating a fixed amount of isaen&irce using a single finger were
suddenly unloaded, the finger will displace a distaproportional to the intended force

until corrected.
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1.3.4 Equilibrium Control
Observations were made that a force abruptly appleg a short period during a
movement does not affect the final position of [45] [46]This suggests that some
feedback mechanism must exist at spinal level pidha restore a perturbed movement
because there is no time for intervention fromesodr cerebellum.

It was suggested that this is same stretch reflélat stabilizes postures in
stationary vertebrates. [47-49] If this was n& tase, the final posture after a movement
would be unstable, the postural mechanism wouldrteanimals to their original posture

after completion of movements.

1.3.5 Coordinate I nvariance of the Reference Trajectory

This investigation deals only with the potentiak fkinetic or kinematic coding of
descending signals. It does not address the plitysidd muscle force vs. joint moment,
or the alternatives of joint or Cartesisian kineggat

A number of stimulation studies hinted that movetseare constructed by
combination of force fields that defines point @attors and limit circles. [50-54] While
the coordinate system is abstract, it's possiblddfine the behavior on biological end
effector as a potential field defined in three dnsienal space.

It has been mathematically determined that if afion defines a potential field
over a three dimensional space, the potential frelshain the same regardless the
coordinate system used to describe the space f&fjording to Equilibrium control
theory, any given combination of descending sigtefines the potential field of end

effectors. Therefore the equilibrium trajectory daa written in muscular, joint or end

11



effecter coordinates [56]. This invariance does mud true for force command signals

because they do not form a potential field.

1.3.6 Direct Investigation of Descending Neural Code

This work does not seek to support or deny eitheclranism for planning movement.
This controversy could be the consequence of ctende of both internal model and
reference trajectory. The effects of cortical cohtoop can be eliminated by extraction
of command signal in the spinal cord. By predictiogce using spinal signals, it is
possible to implement experiments without assumptif intentions.

When examined as a whole a closed looped systeding the muscle, spinal
cord and the brain may appear to be regulatingefareen it internally accomplishes this
by modification of a positional trajectory. A ditaavestigation of the descending signal
has sufficient finesse to analyze such a system.

Recent Advances in recording techniques had opemeshues for such
investigations [27, 28] . The current study usémptic experiment designed for rodents
to investigate the properties of descending comnsaguil, taking advantage of possible

coordinate-invariant nature of possible descentfimgctories.
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CHAPTER 2

EFFICIENT IMPLIMENTATION OF

HAPTIC EXPERIMENTSFOR RODENTS

2.1 Method

2.1.1 Modular Instrumentation

Figure 2.1 A picture of The DAQ system in operation.
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Figure 2.2 A photo of the Falcon haptic manipulator with fleece sensor (Nano 17,

ATI) and custom-design lever installed into a tgarent training box. The picture shows
the corner of the box from inside where a windowswaened through which the lever
arm was brought in. The rats are trained to puskindon the contact pad with their
preferred hand. The lever is switched to the opgpaside of the box for a left-handed
animal.

The cage was designed to be as optically transparehresistant to cracks. This
was accomplished by using brackets instead of screwsecure non-load-bearing
elements. An added benefit was that the cage doailduickly reassembled in various
configurations for different experimental paradigms

The cage was built around two 20mm cast acrylid lo@aring panels secured to a
plastic base via brackets. A horizontal strip ofag connected the two panels and
anchored the stainless steel mesh floor and tragdik it. The tray and mesh floor are

interchangeable with components from Lafayetterumsént modular cages.

14



Two vertically oriented brackets were attacheddmers at the top of both load-
bearing panels. These brackets hold in place 6ntercilangeable cast acrylic side
panels. Two holes were drilled into the top swefat each 20mm panel to allow for the
roof to be adjusted. The roof was constructed ftara 6mm polycarbonate panels
separated by vertical polycarbonate strips. Thghth@f interior space of the cage can be
changed by moving hex nuts that slide along fouewes. The adjustable roof was
interchangeable with a standard roof panel thatdmdpening to accommodate tethered

recording systems.

Iﬁ

HEOL
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Figure 2.3 Assembly schematics of the experimental cage.
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Both the load-bearing panels were made from traespanaterial (what type) to
facilitate imaging. The side panels were intercleafide because infrared LED on high
speed cameras cast reflections that interfere téitking. Reflection on the near wall
could be eliminated with adaptation filtering (seection 2.1.4), but reflections that are
periodically obstructed by the animal cannot. Agigainted chalkboard black served as
backdrop that reduced reflections so it was ndgkgi

Falcon haptic force feedback devices were usedenstudy. The handle was
modified into a level and a force transducer wasgrated into it. Modified handles were
sculpted from ABS plastic using a 3D scan performedhe original. A piece of brass at
the back of the handle connected the second camrtalodth sides and allowed the falcon
to recognize the modified lever.

The spherical handle was modified into a cylindrgracket mount for ATl Nano
17 force/torque transducers. The transducer wasikgplace by friction generated via
four radially placed screws. Levers were also gedlfrom ABS plastic and mounted to

the force transducer using a trio of screws.
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Figure 2.4 Assembly schematics for the lever.
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Fy<0

Fp Is the force exerted by the haptic deviEgis the force exerted by the animal.
Fy 5 Is the sum of force on the moui;y, is the sum of force on the lever.

Fy 1 andF 1 are the forces measured by the transducer.

M, is the mass of the mount and the tranducer and

M, is the mass of the lever.

The analysis assumes that the acceleration onceotiponents must be identical.
My +m, Y

Therefore

FM,2=(

Fyr = (m+g>MM_FR_MMg

FaMy FrMy FrMy FrM,
= + gMy — -
My +M, My+M, My +M, My+M,

— Myg

FyMy — Fr M,
=M, M,
M L
Or that the force measured by the sensor at argngime is a weighted average of the forces exdiye
the animal and the forces exerted by the hapticcdeffrom this, one further conclusion can be drawn

M
Fy — Fg M_AL4
lim Fyr=—————=F
My /Mpy—0 T 14 M, 4
My

If the lever is light compared to its mount and thensducer, the device essentially detects theef

exerted by the animal.

Equation 2.1 Dynamic analysis of the lever

18



The default lever was curved 45 degrees to thet.righis increased the area
where the cameras could be positioned. An altaradtiver was curved 45 degrees to the
left to accommodate left handed animals.

Cameras were located atop custom mounts with tthegeees of freedom. The
mounts were designed so that each degree of freedod be locked using a break
controlled by a thumbscrew. This allowed cameradbeofixed at desired orientation
relative to their base. Packing tape was used ti tha locations of the cameras and the
cage, ensuring that their relative position anémation did not change after calibration.

The calibration method is described in Section32.1.
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Figure 2.5 Assembly schematics for camera mounts.
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2.1.2 Flexible Force Field Definition

Virtual force fields are commonly used by haptisteyns to simulate a variety of tactile
sensations. For example, a rigid surface can belaied by a combination of large single
sided elastic and viscous field. A weightless emwinent can be simulated by a negative
inertial field and a constant upward force. A camalion of virtual force fields defines a
haptic experiment.

Force fields are functions of the three dimensi@paice and time relative to start
of each experimental trial. To accommodate diffexperimental requirements, force
fields are defined in a separate library and linklythamically at run time. A library
containing common fields such as elastic, viscaus iaertial field was developed for

lever press experiments.

Table 2.1 Force Field Export Definition Template, C++

#tdefine ffexport extern "C" _ declspec( dllexport )
ffexport void forcefield( const vector<float>& paramin,
const vector<float>& statesin, D3DXVECTOR3& resout );

/I paramin: force field parameters. Different typieforce field has different array of paramet&se the next table for the
complete list

[/I* statein: state of the haptic system. Definedmarray of XYZ position, followed by velocity,lfowed by acceleration

/I* resout: force output of the force field as arag of 3 numbers corresponding to force outpl @artesian directions.

Field Type Parameter Definition Qutput
Threshold Lower and Upper bond for X,Y,Zand T Femch axis, 1 if device is within bond, |0
otherwise
Attractor Attraction center for X,Y,Z and strengtbf the | Force pointing towards the center if strength| is
attractor positive
Viscosity A single number indicating the strengthhe field A force opposing current velocity
Staticfrc Force in X, Y, Z direction Force spedifim field defination
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Composite force fields were constructed by pairewishodulations. Each
continuous field was modulated by a binary fieldttbutput either one or zero along each
of the Cartesian axes. The binary field defined rdgion in space and time where the
continuous field is active. By multiplying the outpof the fields for each point in time, a
field could be restricted to be active only alomgtain directions, within a certain range,
or at a certain time. The outputs of such restli¢telds were than summed to compose

the desired field.
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Table 2.2 Force Field Template

/I Field template for training.

/I Lever is set to InitHeight and held for InitTime

/I Then the holding field is deleted and the lexem be pushed down with minimal effort, specifigdMertFrc
/I The lever is halted by a virtual floor at Stopdte

/l Each trial has variables replaced by their v&luem a row of the Variable Table

fflibary  fflib.dll
operator  pair_mod

/I Triggers for record, reward and termination.
/I Rat don't get food if he keeps the arm on therle

trigrecord threshold 1 -1 -1 RewardHeight 1 -1 Tiite 29000
trigreward threshold 1 -1 -1 RewardHeight 1 -1 Tiite 29000
trigendexp threshold -1 1 -1 1 -1 1 29001 40000

nofld

/I Horizontal Restoration

field attractor 0 0 0 256

field threshold -1 1 1 -1 -1 1 0 30000
field viscosity 4096

field threshold -1 1 1 -1 -1 1 0 30000
/I Initial Upward Displacement

field attractor 0 InitHeight O 256

field threshold 1 -1 -1 1 1 -1 0 InitTime
field viscosity 16384

field threshold 1 -1 -1 1 1 -1 0 InitTime
field staticfrc 0 2.0 0

field threshold 1 -1 -1 1 1 -1 0 20

I/ Vertical compensation

field staticfrc 0 VertFrc 0

field threshold 1 -1 -1 1 1 -1 InitTime 30000
/I Vertical Reistance

field viscosity 256

field threshold 1 -1 -1 1 1 -1 InitTime 30000

/I Logical Hard Stop
/I A region with ultra-high viscosity and a bit efasticty
/I viscosity cannot be too high because instability be caused at interface.

field attractor 0 StopHeight 0 2048

field threshold 1 -1 -1 StopHeight 1 -1 0 30000
field viscosity 16384

field threshold 1 -1 -1 StopHeight 1 -1 0 30000

Each experimental trial was defined by a compdagtd. (For instanceT able 2.2
Force Field Template shows definition of a fieldedisin training) An experimental
session contained up to 200 trials and was genklate template with a variable table.
Experimental trials were generated by a Matlabpsdhat replaced keywords in the
template with their corresponding value from theialzle table. Variable tables were

created by separate Matlab scripts.
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Table 2.3 Segment Of Variable Table For Rising Phase

InitTime InitHeight RewardHeight StopHeight VertFrc|
500 -0.017 -0.018 -0.02 -0.75
500 -0.0168 -0.018 -0.02 -0.75
500 -0.0166 -0.018 -0.02 -0.75
500 -0.0164 -0.018 -0.02 -0.75
500 -0.0162 -0.018 -0.02 -0.75
500 -0.016 -0.018 -0.02 -0.75
500 -0.0158 -0.018 -0.02 -0.75
500 -0.0156 -0.018 -0.02 -0.75
500 -0.0154 -0.018 -0.02 -0.75

For instance, during the second phase of trainihgrev the animals learned to

press the lever instead of tapping it, the initi@ight of each trial increased successively

while other parameters (such as Initial heighthaf kever and height at which reward is

released) remain unchangékkble 2.3 shows a segment of the variable table used to

generate this session. It was generated using atstript (not shown).
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2.1.3 Synchronized Data Collection

Effective analyses of neural signal required coitec of a large amount of data (31
channels @ 16000Hz, or 1.89MB/S in binary format)veell as synchronization of
neural, haptic and imaging data (within 1ms). DAQ&DK was used to accomplish this.
A DAQmx task was set to run continuously, and avearfe loop was used to transfer data
to a RAM buffer for manipulation.

A DAQ device can generate more data than it isiptesgo write to a hard drive
in real time. To overcome this, data were contirslypacquired into a RAM buffer and
were transferred to the hard drive after completbreach trial. In order to limit the
amount of physical memory committed to this taskewe buffers were used and data
were continuously removed from the back of the du#fs new data were added to the
front of the buffer so they would remain a constangth until the DAQ module received
a Synchronization Signal.

The synchronization signal is used to align neumaptic and image collection
treads because these tasks cannot be startedt@m&tansly. The unpredictable amount of
time it takes to start data collection tasks introgs timing errors in data collected by
them. Synchronization can only be ensured by afigwdata acquisition threads to run
continuously and discard data to ensure the leafithe buffer remain constant until the

sync signal was sent.

25



ZERO PADDING

T weemc
T omce + nevRaL
< >

BACKLOG INTERTRIAL

SYNC TRIGGER COMPLETE TRIGGER

Figure 2.6 lllustration of structure of collected raw data.
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Table 2.4 Recording Protocol

1. Calibrate the camera if tracking is required anteas are not already calibrated
a. Set Session in expconfig.txt to CamCalib
b. Depress the lever until the first notification tone
c. Wave the wand in front of the cameras. Ensure thkken appear in each cameral;
maximize the range of motion while collecting cedition data
d. Set calibconfig.txt, optimal configurations areeatatined by trial and error.
e. Run The calibration program (SEELE.EXE)
f.  Run flipcams.m if the calibration program outputneaas facing incorrectly.
2. Create DAQ task “Neural” and “Food” in Automatioxpdorer
a. Task “Neural” should be set to continuous acquisiti
and contain analog input for both neural and faigeals.
b. Task “Food” should be set to one sample on demand,
and contain analogue output channel for rewardaségn
3. Set config\dagconfig.txt
a. Ensure that the “Neural” and “Food” tasks are ideld in the task list.
4. Define force field configurations in config\temp&emplate_name.txt
5. Define force field variable tables in config\tentelar _name.txt; Defining variable table using
matlab scripts is recommended. This step shoulépeated for each randomized session.
6. Generate sessions using fldgen\fldgen.m
a. Make sure tmpname and varname are set to the niatine emplate and the table
b. Set Subject and Session to desired values
7. Set config\expconfig.txt
a. Ensure Subject and Session matches name of thecsalpid session in step 6
8. Begin Data Acquisition by starting NERV.EXE
a. To abort experiment, hit the Escape key.
b. If the program reports an error, close the prograpen task manager and look for a
ghost instance of the program in the processdisd, terminate it.

» See sample configuration files expconfig.txt, cadibfig.txt and daqconfig.txt in the appendix.
« Template and variable table were describefable 2.2 andTable 2.3
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2.1.4 Triangulation
Naturalpoint (Corvallis, Oregon) offers a softwangte that provides tracking for their
camera. This suite cannot simultaneously outputwidnd tracking data from the same
camera. A custom software module was developeaihtaltaneously acquire both types
of data. Real time processing allows tracking rimfation to be collected at much higher
rate than associated images.

Infrared LED generates strong glares when dirdeityng an acrylic surface. An
adaptation filter was used to remove these arifadhe adaptation filter was designed to
imitate the adaptive features of human vision systé accomplishes this by subtracting

the value of each pixel with its moving average.

Table 2.5 Adaptation Filter

adapbyte[@] = (float(adapbyte[@]) * (1-_f->_adpcst) +
float(thisbyte[0]) * (_f->_adpcst))

float delta = float(thisbyte[@]) - float (adapbyte[@]);
if (delta < @) {delta = 0; }

diffbyte[@] = (unsigned char) (float(diffbyte[@]) * (1-_f->_difcst) +
(delta) * (_f->_difcst))

Markers were located by finding cluster in a thaddhmage. It's not necessary to
scan each point to locate a cluster because mahdre some minimum size. By
evaluating every N point in both horizontal andtial directions, markers could be
located. The extent of the marker was determineckbyrsive expansion from the initial
point that exceeded threshold value. A queue bwsfered pixels currently being
processed. Each call of the recursive expansiooritign checks the first pixel in the
buffer, if it was not already in the cluster, it svadded to the cluster and removed from
the image and its adjacent points were added tgukee. For each cluster, this process

repeats until the queue became empty. [See App&dinnotated C++ Code]
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2.1.5 Calibration

To calibrate the camera system, the location ofcHmaera and the cage were marked by
tape. The cage was subsequently removed and alD@te on the camera mounts were
fixed. A wand with a single marker at its tip iswed in front of the cameras while the
lever was used as a switch to signal start andaftdata collection.

Single point calibrations, where the software datees relative position and
orientation of the cameras from the image coordir@ft a single marker in space on
multiple cameras. However, this is considered piinozation problem. The goal of
optimization is to minimize the sum of line distascand point distance between lines
projected from possible camera location to possiideker locations.

Line distance was defined by minimal distance betwéwo lines, and was
calculated by projecting both lines onto their srpsoduct. Point distance was defined by
the sum of distances between the nearest poirgaadf pair of lines and was calculated
by projecting the lines to the plane defined byirtheoss product and calculating the 2D
intersect. The point distance prevents the optitiwrafrom biasing towards solutions

where all cameras lie on the same plane. [See Al &}
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Figure 2.7 lllustration of point distances. In the illusimat there are two parallel lines A
and C and line B is normal to both of them. Linstaice is sum of lengths of blue lines
and point distances is the sum of lengths of glees.

This optimization problem was solved by paralledjent decent. Searches took
place in a space where dimensions were camera rpegpéoosition, direction, roll and
focal length). The gradients were estimated byngla small step in each dimension and
calculate the changes to the goal function. Thechaghien takes a step in the direction of
steepest gradient proportional to the current valuthe goal function. This process is
carried out simultaneously from hundreds of randeahiinitial states until a satisfactory
solution was found. Such a solution position andmdrcameras in such a way that each
point used for calibration was represented as dneespoint in space with respect to all
cameras.

The triangulation module also saves grayscale isage separate output. To
reduce the amount of space required to store tinesges, they were compressed into
JPEG format using a library (JPEG lib) at real tinfénis process was conducted using a

spate thread to take advantage of multi-core CPUs.
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2.1.6 Visualization

An user interface (Ul) module provided real-timedback from the DAQ system and
helped the operation diagnose operational probléansg the recording. The Ul was
functionally a statically linked library. By callinthe library with arguments containing
pointers, the Ul module was connected to other nesdirendering the Ul was carried
out by its own thread, and flag variables allowoitbe disabled to avoid thread conflict
caused by the Ul access of the same variable aatine time as another module.

Status messages provide important update on thexiengnt’s progress as well as
any errors encountered. The Ul model containedtebigffer to store status messages, as
it is more efficient than attaching a text bufferstach module separately.

A Library (library specifics) was used to calcul&ET of neural signals in real
time. This alerts the user of any defects in elegitrconnection. The library’s output
pointer is set to a buffer declared by the Ul med#FT was calculated after each data
acquisition call; however the result was only daseld during the next render update.

The virtual force field was visualized as a vedteld that changes in time. This
allowed the operator to correct errors in forcédfigefinition. To ensure the visualized
field is the same one simulated by the lever, treef output of the composite force field

was calculated for multiple locations in 3D spaaemy each display update.
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Figure 2.8 Annotated Screenshot of the DAQ system.
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2.1.7 Animal Training

Rats were trained in Phases. Initially the hapiicd system was programmed to release
sugar pellets on contact. Rats that consistentlghitdhe lever were moved to the next
phase. In the second phase, the lever was reseictessively higher initial conditions
each time. This trains the animal to press therlregreater distances each time.

In the third phase, the amount of force requireg@ress the lever was gradually
increased. This phase is usually omitted becausega force requirement can lead to
undesirable behaviors. Typically rats will presgels with one forelimb, but they will
press the lever with both arms if pressing therevith one arm becomes difficult.

In the fourth phase, the lever starts at a predwted height in each trial.
However, this training session is conducted in phesence of an adjustable roof that
gradually lowered. At end of this phase the anibetome accustomed to pressing the
lever without standing up. The purpose of thisiireg phase is to reduce the involvement
of back muscle. Ideally movement should be resiatne single arm. This phase of
training was conducted before the surgery during éxperiments presented in the
subsequent chapters because the collision betwesn antenna and the roof causes
artifacts in the recording, so movement restricti@re not applied to animals after their
surgery.

The final phase involved slowly removing the lefrem the cage so the subjects
learn to press the lever by extruding an arm frbendage. However this stage is usually
omitted for wireless recording because the wirelessd stage collide with side panels of

the cage when an animal attempts to extend it§rammthe cage.
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Table 2.6 Training Protocol

1. Animals should undergo acclimation as per facijtydelines
a. Animals should be handled regularly to increaseilfarity with experimenters

b. Animals should be provided with pellets intended rasvard during acclimation;

This will speed up their identification during ttraining
2. Animals should be food restricted to 80% body wemirecommendation by guidelines.
a. Ensure that animals are interested in the pelletefore proceeding
stale or unflavored pellets generate no motivation.
3. Set the system to release food upon contact, dobaté collection protocol, step 4-8
a. The rat learns initially by accidentally colliding with the lever.
Keeping the lever close to the floor of the cageéases the probability
b. Rats prefer exploring in low-light conditions.
c. Fresh Scent sources on the lever will encouragedntion.
d. The animal should hit the lever consistently befoeving to the next step.
4. Gradually increase the distance the rat has to rtievéever.
5. Gradually increase the force required for the lgress.
a. Mechanical viscosity for falcon is very large for a rat.
Initially a downward assistive force is recommended
b. Very large force requirement (.6N+) encouragesattieals to use both forelimbs.
6. Gradually apply movement restrictions
a. If an adjustable roof is used, lower it over muéigays.
b. If levers need to be outside the cage, gradualllgdwaw it over multiple days.
7. Perform surgery for electrode for neural signaleation.
a. Animals must wundergo a recovery period as per ifacil guidelines,
however retraining is only required for animalstthaffering neural injury.

b. Reduced doze Antibiotics is recommended for theeedtiration of the study.
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2.1.8 Marker Attachments

IR Reflective markers provided Naturalpoint do adhere to the fur, therefore additional
steps had to be taken to attach them to the anirDedpilatory cream were used to

remove fur from the rat’'s dominant arm. Spray bgedawere then used to create a
uniform surface the markers can attach to. Thisgss created attachments strong
enough to resist unintentional perturbations; iaiélly the animals can still remove

them without injury to themselves.

2.1.9 Modular Data Processing
The data processing module was written in Matlewas designed in stages so alteration
of calculations performed at one stage does notinegrepetition of calculations
performed at pervious stages. This greatly reddabedamount of time required to find
optimal parameters (e.g., time constant, time ddigr cutoff) by iteration.
Time-Frequency analysis is instrumental in analgdiseural signals. However,
calculation of Short Time Fourier transform (STHE&juires a considerable amount of
time. In order to facilitate evaluation of filterBpwer Files were generated as the first
step of the data processing by calculating FFT stiding window so filter changes did

not require recalculation of power spectrums.
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Power Files were filtered in the second stage dfudation. Power spectrum
density were first convolved with an exponentiatale function to quickly calculate a
recursive average, then filtered by a low passeBwtirth filter (3rd Order butterworth
8Hz cutoff). Force values were also calculatechia stage by multiplying output of the
force sensor with its calibration matrix. Optidgalthe second stage also calculates
power-power interaction or position-power interant and prediction statistics.

Regression files — outputs of the second stage re wised to estimate the
mapping from independent variables (position, poweteraction) to the dependent
variables.. PCA (Principle Component Analysis) veasried out with all independent
variables because regression only works on uneteetlsignals; De-correlated principle
components were independently regressed to dependanables. Regression
coefficients of PCs were pre-multiplied by the ph®inverse of PCA combination
matrix to produces the mapping from independemtejoendent variables. See Chapter 2
for details.

When the Matlab script performing the second stafgealculations were run in
the presence of a mapping file, it produced stesigor prediction performed using those

mappings. This allows testing of mappings on arragbeof data.
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Table 2.7 Data Processing Protocol

1.

2.
3.

Noahk

10.
11.

12.

13.

14.
15.

Recording data generate experiment_num_neural.ggperiment_num_haptic.xls and

experiment_num_imlog folders (see recording prdjoco
Create exclude.txt (tab delimited), list trailsexclude from analysis

Run  xform\pwrcalcm to perform time/frequency ams&dy Outputs are

experiment_num_power.xls and experiment_num_folxe.x
a. Set subject to the name of the folder containingiband neural files
b. Frccols should be a list force channels and nestaisild list neural channels

c. Lthwis window length in seconds, Iths is the st in seconds (1 recommended)

d. Neufrq is the list of frequencies to be analyzédhbuld be increasing
Copy force calibration matrix matcalfrc.xls to ttedder containing output of step 3.
Remove existing regression.xls, samples.xls anslitrgls from the directory
Delete sn_PWR_num.fig corresponding to trials tiiest
Run unified\visualize_batch.m to perform filteriraytputs are regression.xls, samples.xls
sn_PWR_num.fig files
a. Subject should be set to the same as step 3.
b. Set params.fiso to 1 to include only isometric segin-1 to exclude them
c. nfilt.hghtau sets the time constant for the remgrsiverage in seconds
d. [nfilt.nb, nfilt.na] defines filter for neural data
e. [nfilt.fb, nfilt.fa] defines filter for force data
Copy regression.xls, samples.xls to another fodaher rename them
Copy electrode mapping files to the same directoopsult mapelectrode.m for details
a. Chans.xls is a list of channel number for each pimghe connector.
b. Cons_lefthand.xls or cons_righthand.xlIs is a l[fstantact number for each ping
c. Eles.xls is a map of contact numbers on the eldetsurface.
Delete weight.xls in the same directory
Run unified\reconstest.m to perform regression. te€tutputs are figure files as well
weights.xls for the optimal weight.
a. Regname and smpname are names for regressionrapteddes respectively.
b. Colssel list columns containing dependent variables
c. Chanfrg should match Neufrq in step 3.
Copy weight matrix to the original session foldentining power and force files.
Repeat step 5 to 7 to produce predictions, in smidit to regression and sample files,

additional output file vresults.xls will be createidl will contain statistics of predictior.

Consult hvalidate.m for details
Rename vresult.xls
Run stastats.m to perform the error analysis

a. The first number sweepwin is the sigma of Gaussiadow displayed on the plots;

the second number is the sigma for the window ursélak optimization.
b. DC correction by subtracting median should be esthbhly for controls.

See Appendixes for example of configuration file aetails of matlab scripts

and

AS

an
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2.2 Results
The capability of the system has been adequatshyfiad by results in the subsequent
chapters. In additional those results, the systammdemonstrated its ability to track at
least one marker. Although the complications relatgth tracking system limited its
applicability during experiments. See section Recatt Concerns of Tracking for
additional details.

2.2.1 Tracking

Figure 2.9 Trajectory of a single marker on the rat’'s shoulii&ring a typical lever press
trial.

The Figure above shows the trajectory of a markesgal on an animal’s shoulder
during a lever press trial. The camera systemdtitated its roughly circular motion in
space at 100Hz. This is a demonstration the systamcapable of production motion

data if remaining issues mentioned in the followdligrussion section can be resolved.
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2.3 Discussion

2.3.1 Software Architecture Overview

With the exception of the force field library, tlBAQ and instrumentation code were
implemented as static libraries linked at builddinThis allows any component of the
program to be replaced with libraries containingnpatible interface functions. Each
module has a control thread that performs the ¢ddke module (e.g., rendering GUI,
Perform Haptic or Camera Timing) according to ttedues of global variable of the
module (e.g., GUI text list). The Global variablancthen in term be set by calling
interface functions or be changed in configurafiites. The configuration files provide
ways to configure all aspect of an experiment withmodification to C++ code or
recompilation.

The program could crash when multiple thread accgdbe same resources for
instance, when camera interface module intend dat@an image that is been displayed.
This problem was solved by binary local variablest tcan be set to indicate if a thread
can proceed (e.g., GUI enable). If a control threatects such a variable set to the
disabled state, it will suspend itself, only checkthat variable every millisecond until it

can proceed. For instance
while (_add) {::Sleep (1);}

Multiple such variables can be used to ensure sei@lieexecution of specific

commands.
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Each Control thread could spool a large number atkwhreads. These threads
allow parallel computation on computer with mukiptores. For instance, during
calibration, a separate thread was created for gtaghof uphill searches from each initial
condition so all searches can proceed simultangoWsbrk threads contain no loop, and
an operating system call was used to determine ¢beaipletion.

The only module that does not contain a contra@alirwas the force field library.
The force field library declares force fields aseemal functions. These functions could
then be found and execute at run time by anotheluleo This allows force fields to have
any name, as long as their functional declarati@iches the name in the force field

definition file.

2.3.2 Practical Concernsof Tracking

Triangulation error causes artifacts to appear lasest point of lines projected to
different points. They are difficult to eliminateitivout the ability to match image of a
marker to the image of the same marker taken btheaneamera.

The tracking system encounters large errors whédibraaon was performed
without the cage. This is due to refractive propeitAcrylic. This error can be reduced
by using calibration data collected with the wamside the cage.

Additional cameras will be required to track maskat wrist and elbow. Due to
motion of the animal, the markers vanished fromwieom one or more cameras during
the lever press depending on positioning of therekttive to the lever. This can be

resolved by having more than minimum number of gamequired for triangulation.
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CHAPTER 3
ENCODING OF FORELIMB FORCESBY

CORTICOSPINAL TRACT ACTIVITY IN THE RAT

3.1 Methodology

3.1.1 Electrode I mplant

Polyimide substrate electrode arrays were custasigded for this study (NeuroNexus,
MI). The array consisted of 4x8 arrangement of 8 gontacts with 15um diameter and
80um spacing. Every other column of contacts wésebfvith respect to the neighboring
columns by 40um to sample the CST cross sectiaeal more uniformly (seBigure
3.8). A 2x2mm PDMS sheet (127 um thick) was attadileda collar around the MEA
ribbon cable (thickness 12um) exactly 1300um frame tip Eigure 3.1). This
attachment allowed precise control of penetratieptid and enhanced the mechanical
stability of the array by keeping it in verticai@mtation in the cord.

Dorsal laminectomy was performed on C3-C4 segmemtier ketamine/xylazine
anesthesia (80mg/kg and 12mg/kg). The modifiedtrelde array was inserted into the
dorsal column mid-sagittally with its contact siféeing the preferred hand at C4. The
point of entry was the posterior median sulcushefdord and adjacent to the dorsal vein.
The array was pushed into the median septum aféing a small cut with a #11 blade
into the pia matter. The CST occupies a regiorherhost ventral region of the dorsal
column extending from a depth of 1000 to 1300pumsuesl from the pial surface in the

cervical cord. The supporting PDMS attachment wiasunder the dura after electrode
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insertion and a small amount of cyanoacrylate wasdied to the ribbon cable where it
passes through the dura.

The stainless steel wireframe (& 0.75mm) showRigure 3.1 held the electrode
assembly in place. The wireframe was tied to theoags process of C2 vertebra on the
rostral side and to the C5 on the caudal end wibhsBk sutures. The plastic connector
was fixed to the frame with dental acrylic at agmithat allowed some slack in the
ribbon cable to reduce tension and hence the ahrtbauma to the neural tissue. The
reference electrode was placed on the dura neRketelectrode ribbon cable and glued in
place. The neck muscles and the skin were closdalyers around the connector using
fine sutures. The plastic connector was protrucimmm through the skin opening. The
gap around the connector was sealed with furthetatlacrylic, which also housed the

nuts for anchoring the multi-channel wireless neanaplifier.

3.1.2 Animal Training

Six Long Evans rats (350-4509) were used in thidystFood restricted rats were placed
in a cage with a lever attached to a computer obeatr haptic (with force feedback)
device (Falcon, Novint Technologies, NM; sEeure 2.1). The lever was initially
programmed to trigger release of 20mg sugar pedetsontact. Once the animal became
familiar with the lever, the displacement requitedtrigger food reward was increased
incrementally over time to 15mm. The animals usetth thands initially to press the lever
in most cases and learned to do the task with greferred hand by training that took 1-
2 weeks prior to the implant surgery. (Additionatalls for animal training can be found

in Section 2.1.7)
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Figure 3.1 A photo of the implanted electrode/connector asdemThe electrode
assembly was firmly fixed over the cervical spioalumn by suturing the wire frame to
vertebral bones of C2 on the rostral and C5 ordisial side.

1mm

Figure 3.2 Luxol fast blue stained transverse section ofraical spinal cord from one of
the rats. The lesion demarcates where the electiodg was implanted in the dorsal
white matter. (Red arrow)

3.1.3 Data Collection

The haptic device produced 3D positional informatat a rate of 1000 samples/s. A
force/torque sensor (Nano 17, ATI systems) integranto the lever measured the 3D
forces applied to the contact pad at the end ofetver by the rat's arnir(gure 2.2).

Neural signals were amplified by a 30 channel wselsystem (W32, Triangle
Biosystems) before they were digitized at 16 kHnufaneously with the force data.
Infrared cameras generated video logs at 10fpgdality assessment of the behavioral
task. All data streams were synchronized usingoonsC++ code. (See Section 2.1.3 for

additional details)



Trained animals performed sessions of 50 to 208rlpvesses per day until they
lost interest in the sugar pellets. Trials with oo defects were excluded from the
analysis (e.g., if the operator touched the levehe antenna came into contact with cage
roof.) A rat typically produced one to two sessiasf usable data before incurring
damage to electrode ribbon cable. For consistemty the best session for each rat is

reported.

3.1.4 Time-Frequency Analysis

Neural signals were filtered in both directiongime (to cancel phase delay) using a 3rd
order Butterworth band-pass filter at 75-425 Hrig@re 3.3). Any component that
exceeded £100uV in the filtered signals was comsdi@n artifact, and upon detection
30 ms of the signal (10ms preceding to it and 2@fter) was substituted with zeros to
remove it. Power spectral density was computedefch channel of filtered neural
signals within a 40 ms moving window that shiftedli ms steps (Step B) using short
time Fourier transform (STFT), which produced omeaifier coefficient per 25 Hz up to
the sampling frequency of 16 kHz. Only the corregfog 13 components that
represented signal power from 75 to 425 Hz weresidaened for further analysis. Time
signals representing the power variations in 25fidguency bands were generated by
taking the absolute value of FFT coefficients irs tmoving time window (Step C). A
total of 390 channels of neural power signals wereed from 30 channels of neural
signals (30x13) in each trial. Both the neural algnand the forearm forces were
smoothed with a"3order Butterworth low-pass filter (fc=8 Hz) in badirections in time

to eliminate any phase lag.
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Figure 3.3 Flow chart of data processing algorithm for regr@s of the forelimb force in
a single axis. The same algorithm was applied ftdahate dimensions of the force in
Cartesian coordinates. See methods for details.

3.1.5 Regression and Cross Validation
The principle components (PCs) were computed amttdon a descending order of
variance. The PCs were grouped and regressed tgacs one of the 3-axes of the
measured force as well as the magnitude of the feector (Step G). Regression weights
of PCs in each group were pre-multiplied with pseud/erse of corresponding columns
of PCA score to generate weights for power sigfalthe reasons below.

Let A be the transformation matrix from principle compotsT back to power

signals:
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Forces can be estimated using PCs or power sighldse Z contain regression

coefficient of principle components aiid is the coefficients of power signals:

Therefore weights of power signal can be calculdteth weights of principle
component as follows.
(W] = 111/1A] x [Z] (3.1)

I is the identity matrix. Matrix division is useddariseA may not be invertible.

Every third trial in each session was held backésting and the remaining trials
were used for computation of the regression caefits (training set). The test set data
underwent the same time-frequency analysis asrtieirtg set. The weights for the
power signals corresponding to each set of PCslleddl in the training set were applied
to the test set. The number of PCs in the groupim@sased incrementally to search for
the best regression coefficients. Goodness ofd# measured by both the coefficient of
correlation (R) and the coefficient of determinatidk-squaredTable 3.2), for all the
trials in the set and the mean values were reporteel weights that generated the best fit

to the force data were selected.

2 _ _Zt(F—ﬁ)z
R?=1-2028 (3.2)

Where the nominator is the sum of squares of ptiedicerrors and the
denominator is the variance of the measured fofgceMean of measured forcé,,

Predicted force.
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3.2 Results

Three dimensional force and position informatiooorded from the lever is plotted in
Figure 3.4 in a typical trial. The lever starts moving abd®0ms before the isometric
portion begins at 2000ms. All data channels are&klbgged continuously for 2000ms
until the lever press is detected. The isometatestshown as the highlighted portion in
the traces, is achieved by increasing the simubatbsity of the medium to a very large
value by the computer controlled haptic interfatbe isometric vertical force (y in
green) is the largest as expected for the levessprg behavior. Nonetheless, small forces
are recorded in the side-to-side (X in blue) andkkend-forth (Z in red) directions as
well. The magnitude of the combined force vectoB&) resembles that of the vertical
force since it is the largest component. Isometrierval ends when the rat lifts the hand
from the lever to move towards the food rewardhat énd. The onset and offset time
points of the isometric period are decided basethervertical force being larger than a
threshold (~0.11 N). On the bottom plot, the resdffiltered versions of the neural
signals show different patterns in each chann€licating spatially selective recordings
of the neural sources via different electrode odstaContrary to the force signals, the

neural channels contain large components thataageng at fast rates.
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Figure 3.4 Plots of position (top) and force traces (middi®ni a typical lever press
trial. The isometric portion of the trial that wased in regression analysis is highlighted.
A threshold force value of 0.11 N was used to nthekstarting and ending points of the
isometric region. The bottom plot shows the reetifaveraged neural signals for 13 of
the thirty channels in arbitrary scale as a samphe two last figures show the same
neural signals with two different filters.
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3.2.1 Optimizing the Regression Coefficients

As mentioned above, the number of PCs was varisddoch for the best force prediction
in each session. Correlation and R-squared value®ased (not monotonously but)
steadily as additional PCs were included in theeggon until a point of diminishing
returns (vertical dash line iRigure 3.5). Adding more PCs over-fit the training set and
yielded smaller correlation and R-squared valuabéntest set, which means that the set
of PCs corresponding to the dashed line producedbist possible reconstruction.
Furthermore, inclusion of additional trials inteetket (e.g. compare the plots for 16 vs.
46 trials in Figure 3.5) improved the prediction. This further suggestéattthe

reconstruction did not select features that oveih@ training data.

% 1r i
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Figure 3.5 Searching for the optimum regression coefficidntsncreasing the number
of PCs and the number of trials from the sessi@fuded into the analysis. Top plot:
correlation (R), bottom: R-squared values obtain®g applying the regression
coefficients to the test set. This procedure pragtiover-fitting the data in the training
set. PCs were sort in order of variance, increasivggsize of training set gradually
increase both the prediction effectiveness and murmbPCs used.
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Figure 3.6 Plot of measured and reconstructed forces in adktlirections in a set of test
trials from one rat. Discontinuities in the plotsparate the isometric force segments
taken from different trials. Overall correlationdaR-squared values are givenTiable
3.1

3.2.2 Reconstruction of Forelimb Forces

Forelimb forces in all three directions were rednrged by applying the best
coefficients to the test seFigure 3.6). Prediction was more effective for the absolute
magnitude (not shown) and the vertical force tHaam dther two directions in this and
other animals, as indicated by the R and R-squaressures. In general, the
reconstruction algorithm was more successful irdipteng the average force amplitude
than the rapidly changing components of the fornesach trial (see Section 5.2.1 for a
discussion about this). Coefficients of correlatlmetween reconstructed and measured
forces for individual trials (not shown) were natlagh as the overall value for groups of
trials in a training or test set. This is becalsedorrelation coefficient for the entire test
set accounts for the baseline changes from triatrigd but the correlation for an
individual trial removes the baseline and only ledér the resemblance between phasic

components of the predicted and actual force m®fitithin a trial. Thus, the R values
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mostly represent the success in reconstructingotiseline level changes of the forces
across multiple trials, although the phasic comptare reproduced in some of the

trials.

3.2.3 Frequency Contributions

Because the neural signals were separated intougafrequency band&igure 3.3), it
was possible to do back projection and determimeftbquency components and the
neural channels that were selected more often dtlzers by the regression algorithm.
The relative contributions of various neural chdsnend frequencies are plotted in
Figure 3.6 for R1. The middle bar plot in the bottom is trextically averaged version of
the map on top to investigate relative power cbatrons in different frequency bands to
the y-force, with no attention paid to the charmaiber. The bar plots for the other two
directions (X and Z) were produced from similar smalp is interesting to note that lower
frequencies contributed more to the predicted fancall three dimensions (see Section
5.2.2 for a discussion). There is a local maximuouad 300 Hz in the X and Y axes.
The small standard deviation bars suggest thatréggiency contributions are relatively
stable across multiple trials and somewhat siniilaall three directions in this session.
The analysis was retrospectively limited to frequies below 425 Hz since percent
contributions above this frequency were negligibtyall. Components below 75Hz had

to be disregarded due to movement artifacts.
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3.2.4 Spatial Distribution of Neural Sources

The spatial organization of the neural channeés (iontacts) on the array could also be
determined by back projection. Figure 3.8 illustgatthe signal strengths (in all
frequencies) by each contact on the array foriedctions of force in Rat 1. Interestingly,
certain contacts were selected much more frequélmdly others and these contacts are
located mostly near the distal end of the arrayafbthree directions of force. No single
contact dominates as a single signal source andoyedll the contacts make a significant
contribution either. The standard deviations (rimgsund contacts) are not very large,
which suggest spatial stability of the neural searthat are selected by the algorithm

across multiple trials in the same session (i.mesday).
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Figure 3.7 Average neural contributions with different frequgncontents to the
reconstructed forces in the trials showrigure 3.6. A: Contributions from the contacts
of the array vs. the frequencies; this plot is foe vertical force only. Each small
rectangle indicates the variance across multiidéstat the corresponding frequency by
the corresponding contact multiplied by its regi@ssoefficient. B: Contributions from
all contacts are lumped together and the mean tamdlard deviations are shown as a
function of frequency for all three directions dfetforce. Highest contributions come
from lower end of the spectrum, although there liscal maximum around 300 Hz for X
and Y forces.
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Figure 3.8 Signal contributions from individual neural chatsnguperimposed on a map

of the electrode array in Rat 1. Each array pictumetains percent contributions for one
direction of the forelimb force (X, Y, and Z, top bottom). The sizes of the filled, black

circles indicate average percent contributions sraultiple trials and the rings around
the circles show the standard deviations. The lalgek circle on the bottom represents a
contribution of 10%. Contacts 24 and 32 were nobraed from.



3.2.5 Group Results

Force reconstruction plots (from the test set)him temaining rats of this study (except
that of Figure 3.6) are shown in Figure 3.9. Only the vertical foraae plotted for
brevity. In each implant, the vertical force amydies were predicted by the algorithm
with a positive correlation coefficient that is &e00.58. The duration of the isometric
lever holding and the force profiles during werdstantially different between trials.
Moreover, each animal had somewhat different graseof lever pressing behavior.
Therefore, the force data profiles did not appeard stereotypical and thereby allowing
a large area of the parameter space to be visited.

The frequency band contributions to the verticatéopredictions are shown in
Figure 3.10 for all the animals. The mean and stahdeviations are calculated across
all the trials in the test sets. Ashingure 3.10, most of the signal power comes from the
lower frequencies, except in R4 where there isak@round 300 Hz. Again, the band
limited signal contributions deviate from the meany slightly across multiple trials in

each animal.
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Figure 3.9 Plot of measured and reconstructed forces in thiestds from all rats of the
study, except the one shown Kigure 3.6. Only the vertical forces are shown.
Correlations and R-squared values are giverainle 3.1.
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Figure 3.10 Percent neural contributions to the vertical fof¢g in different frequency
bands, for all the rats in the study except thealready shown ifrigure 3.7.
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Figure 3.11 Signal contributions to the vertical force (Y) frandividual neural channels
superimposed on a map of the electrode array ®rdts R2 through R6 (top to bottom).
SeeFigure 3.8 caption for further clarifications. Rarely doesiagle contact dominate
the prediction, only in two cases contribution frarsingle contact was greater than 10%.
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The spatial locations of the neural sources arectdzpin Figure 3.11 for the
remaining rats of this study, excluding the onerigure 3.8. Only the vertical force
maps are shown for brevity. The fact that the sdeshdleviations are small, particularly
for the contacts with large percent contributioimgreases the confidence level in the
reproducibility of the neural source locations witlthe spinal cord. The map does not
reveal a preference in the dorsoventral directmrpdint a certain depth where most
neural sources controlling the forelimb muscleshhlge located in the spinal cord cross-
section. That is, the plots do not support the gares of somatotopic organization in the
corticospinal tract. The map looks completely déf& in each animal, as expected, since
it is virtually impossible to implant the arraytime same anatomical position even if there
were not any differences between the animals. megd, the contributions distribute
across many contacts and even the largest contmisutio not go above 10%, with one

exception in R2.
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3.2.6 Statistics of Reconstruction

Group statistics are summarizedliable 3.1 and
Table 3.2. The number of trials in the training and tess st shown on the left most
columns. The best correlation and R-squared vale® obtained with R6, and the
lowest coefficients with R5. Both measures werdidor the vertical force (Y) and the
magnitude of the force vector (ABS) than that fug tther two horizontal directions (X
and Z) in all subjects. The vertical correlatiorried between 0.58 and 0.77 with a
meanzstd of 0.66+0.07 (N=6). Similarly, the R-sahivalue for the vertical force
changed between 0.33 and 0.59 with meanzstd of+0.48 (N=6). The R-squared
values are lower because it looks for an exact ima¢tween the actual and reconstructed
forces, unlike the correlation coefficient which asares only the waveform similarity.
Both measures for the ABS force were very closiab of the vertical force, presumably
because the vertical force was the dominating cor@pbin the force vector. The last
row in the table contains the mean values weigbtethe number of trials in each test
set. The weighted means are slightly higher bectheséargest test sets produced better
predictions, especially in R5.

The statistics inrable 3.2 are the mean correlations and R-squared values fro
the training sets that produced the coefficientaesE numbers illustrate that the
regression algorithm performed only slightly beftethe training set than it did in the

test set, and evidence showing that the regresgsmot an over fit to the data.
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Table 3.1 Correlation (R) and R-Squared Statistics in thet Bets From All the Rats of
the Study

TESTR ;EST

RAT ggﬁl HT -CI;I(E)SULT X Y Z ABS X Y z ABS

1 46 23 0.65 0.73 0.52 0.72 0.35 0.52 0.26 0.52
2 38 18 0.60 0.64 0.53 0.64 0.36 0.39 0.24 0.38
3 34 18 0.56 0.62 0.51 0.60 0.30 0.36 0.25 0.35
4 51 26 0.59 0.67 0.43 0.66 0.35 0.44 0.17 0.42
5 22 12 0.24 0.58 0.33 0.53 0.05 0.33 0.10 0.28
6 81 39 0.69 0.77 0.49 0.78 0.46 0.59 0.22 0.60
Mean 45.33 22.67 0.56 0.67 0.47 0.66 0.31 0.44 0.21 0.43
STD 20.16 9.33 0.16 0.07 0.08 0.09 0.14 0.10 0.06 0.12
Weighted 0.60 0.69 0.48 0.68 0.35 0.47 0.21 0.46| .600

Table 3.2 Overall Average Correlation (R) and R-SquarediStes from All the Rats of
The Study

ALLR ALL R2
TOTAL
RAT COUNT X Y Z ABS X Y Z ABS
Mean 68.00 0.57 0.72 0.50 0.70 0.32 0.53 0.26 0.50
STD 29.47 0.13 0.10 0.09 0.10 0.14 0.14 0.09 0.15
Weighted 0.58 0.71 0.47 0.70 0.32 0.51 0.23 0.49
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3.3 Discussion
3.3.1 Frequency Analysis
Time-Frequency analysis [57] was invaluable in safireg the neural signals that are
most relevant to the forearm forces. Short TimerieouTransform allowed multiple
time-varying signals to be generated from a simlgsical channel. A single physical
electrode can carry information from different redusources in different frequency
bands and extraction of these sources into diffeceannels was useful to improve the
prediction. It is important to note that greatemitability of signals required a larger
training set. Additional trials were required tocamately estimate the extended set of
coefficients.

The persistency of relative signal contributionsttie force in various different
frequency bands (Figurdsigure 3.7 and Figure 3.10) can be interpreted in different
ways. This may be because the neural signals amgpased of individual action
potentials that have stereotypical shapes, whighliés similar frequency components.
However, the multi-unit neural signals usually qeg@ frequency band starting around
300 Hz and reach up to a few kHz. The entire spactmay have moved to lower
frequencies in these recordings because of thel simal spectra of the fibers in the rat
CST. The fact that the frequency spectrum of themaural activity was reaching up to 1
kHz and even higher argues against this interpogtaindividual action potentials were
observed to last 3-4 ms in the raw data. Althougtvsthe fundamental frequencies and
harmonics should still be above 250Hz. The largetrdautions below 200 Hz may be
interpreted as local field potentials. This raiies question if there is a contamination

from the gray matter neurons into the recordedviagtiHowever, the largest neural

62



activities are not recorded from the most ventmaitacts inFigure 3.11, as one would
expect if the array is too close to the gray maitethe dorsal column. Therefore, the
most plausible explanation is that the low freqyecomponents are the local field
potentials arising within the white matter. Althduthe local field is a terminology that
usually applies to the gray matter recordings, sfosgquencies can theoretically be
recorded within axon bundles if the neural spilefrencies are modulated as a function
of time. If this is true, the descending activitythe CST must be varied by the cortical
networks at rates in the high gamma band (60-9@#Hd)higher frequencies. If indeed it
is the local field potentials where the predictp@wver of the signals lie, the regression
coefficients are expected to be stable over tineedhe chronic tissue response stabilizes
to the electrode. Unlike the single spike recordiechnique, the local field potentials
should be immune to micro motions of the implargkzttrode.

3.3.2 Factorson Regression Success

Compared to brain-computer interfaces where siaglke activities are used to predict
the forelimb or arm kinematics, the spinal methbdusd be able to access signal with
much richer volitional content. Nonetheless, it nséilf not be possible to collect all the
forelimb related activity from the CST because loé fimited recording range of the
electrode array. The dorsoventral extent of thetedde is approximately 300 um and it
matches the size of the CST in the rat. Howevejornita of the fibers are smaller than
3.7um in the CST [58] and the number of recordingtacts in the array is too small
compared to the number of neural sources if mgjofiaxons become active at any time
instant. This issue of under sampling the availaidaral sources can be resolved to a

large extent with much denser arrays and smalletacts.
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Force prediction could also be limited by the fa@t the RST activity was not
accessed in this study. The RST plays an importdetin voluntary movements both in
rodents and primates [5, 59, 60]. The RST is atsmw to take over the function of an
injured CST [61]. A second array implanted in R8T can demonstrate the predictive
power of this tract in comparison to the CST infetéint behavioral contexts in future
experiments.

Accounting for the neuromuscular delay had negkg#ffects on the success of
reconstructions. This may be explained by the spralbagation delays. The myelinated
descending fibers reach up to velocities ~19 méstha mean velocity is about 11.4 m/s
[22], where the latter may be an overestimatiothencited study because of the tendency
of microelectrodes to record mostly from larger dmhce faster fibers. Nevertheless,
because the distance to the muscle is only in ter®f centimeters, most of the delay
can be attributed to muscle activation. The defaynfthe stimulation of cervical gray
matter to the forelimb force initiation was lessarth50ms (unpublished results) in
anesthetized rats. Because the forelimb forcesndidcontain very high frequencies,
accounting for the neuro-muscular delay did notehawsubstantial effect on regression

results.

3.3.3 Recording Electrodes

Two other types of electrodes were tested prewoasd the performance of flexible
electrode arrays was deemed superior to both feragpplication. Utah type penetrating
electrodes can generate severe neural damage linesinaals due to their rigid substrate

not conforming around the spinal cord [62]. Flegildlectrode array also offered an
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additional benefit of recording from multiple sitesthe same sagittal plane. The well-
defined contact positions allowed a more uniforrmgiéng of the CST activity in the
mid-sagittal plane. Single wire electrodes hadraléacy to disintegrate [28] faster than
the flexible electrode arrays even when wires wewadled within a silicone tube.
Furthermore, the relative positions of wire elede® were very difficult to control during

implantation.

3.4 Conclusions
This study demonstrated that the forelimb isoméiices can be predicted using the
corticospinal tract activity recorded from the catvical spinal cord. The flexible MEAs
may be a good choice to achieve a mechanicallyestadural interface in the spinal cord.
These results support the supposition that spioral-computer interfaces can eventually
be built for subjects with spinal cord injury toespte manipulators with relatively little
training, provided that other issues such as tigeaetion and reliability of electrical

interconnects can be overcome.
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CHAPTER 4
EVIDENCE OF POSITIONAL DEPENDENCE IN DESCENDING

FORELIMB SIGNALSIN THE RAT SPINAL CORD

4.1 Methods
4.1.1 Behavioral Training and Surgical Procedure
The behavioral training and Surgical Proceduredeniical to those conducted for the
study described in the previous chapter. Pleassutio8ections 2.1.7 , 3.1.1 and 3.1.2 for

details for these procedures.

4.1.2 Apparatus

A time varying force field (See Section 2.1.2) wdssigned with the following
properties: Before T1 the lever is restored taiggosition by a 20 ms pulse of 2 N and
held in position by a servomotor-controlled spraegnper with setpoint, o¢ 0 mm, and
spring constant, K=256 N/m, and damping constartl@384 N/(m/s). The spring is
deleted after one second and replaced with damplgry 8=4.096N/(m/s). With no
applied force, the lever remains at YWhen animal places its forearm on the lever (T2)
it is displaced downward. When the lever reachesspecified arrest height; $hown at
T2, a new one-sided spring-damper is initiated wghsetpoint at ¥ with high stiffness
and damping, K=2048 N/m and 16.384N/(m/s), to gateea crisp arrest of downward
movement. Thus the spring is effective only préwgnmovement pastand does not

affect movement above;Ythus creating the isometric period of intereghis study.
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Figure 4.1 time course of the position in the control trial.

4.1.3 Data Collection
The method of data collection in this study wasidal to that of the previous study.

Please consult Sections 2.1.3 and 3.1.3 for awesféhe data collection method.

4.1.4 Experimental Procedure

Experiments were designed to record isometric heund force data at various positions
in order to determine whether mapping from neuashdo isometric force at one location
completely predict isometric forces from neuralnsigat another. Testing occurred on
multiple days allowing for 90-100 trials in whiclet animal pushed the lever and
received food until its appetite was satisfied. i/khe animals were all trained to push
to a fixed arrest height (e.g., 15 mm) only 60%tldf test trials were terminated at the
trained height. Randomly interspersed among thei@ng 40% of the trials in which
the arrest was made (unexpectedly to the animal)different height. Two thirds of the
trials arrested at training height were used agrtieing set for determining the function
that maps neural signal to predicted force. Reimgitrials arrested at training height
were used as a test set to verify the accuracyh@fmapping weights.  The trials
terminated at different heights were used as amgkteEst set to examine the ability of the
mapping function to predict forces of trials aressat heights other than the trained arrest

position.
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4.1.5 Estimating Force from Neural Signalsduring | sometric Phase
The methods used to estimate mapping from neugalabkito isometric position was
identical to those used in the previous study. $#lezonsult Sections 2.1.9, 3.1.4 and

3.1.5 for details.
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Figure 4.2 Control Trial. A weight was placed on the levehieh was held up by a
string. The string was cut and lever fell to targesition. The force sensor measured a
near constant level of force during the fall.
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4.1.6 Overview of AnalysisAlgorithm

According to Equilibrium Point Hypothesis (EPH),given Virtual Trajectory (VT)
produces parallel forces trajectory for differestmetric levels. The difference between
these forces depends only on the distances betilveeasometric locations.

Because isometric coefficients were derived at stixee isometric height and do
not contain coefficients for position, the preditterce for a trial is the force that would
be generated by the same VT at the height wereabtficients were derived, plus an AC
noise component. Ideally the predicted and meadored should be parallel.

Under fixed isometric conditions the intent andctrare one of the same;
therefore effectiveness of prediction (reconstamgtiis the same as effectiveness of
estimating the intent.

Therefore, the measured and estimated force casidsyed as force trajectories
generated by the same VT. The relationship betwmmsition and position-dependent
force can be derived by plotting their mean diffee against position (For a
mathematical analysis, see Section 4.3.2). A pasislope indicates instability (or
negative spring constant): movement in one diradgad to increasing force in the same
direction. A negative slope indicate stability fmsitive spring constant): movements in

one direction lead to increasing restoring forcéhimopposite direction.

4.1.7 Static Error Analysis
Sessions containing mixed trials were carried dbe haptic system was programmed to
stop 60% the trials at a predetermined positiore fEmaining trials were stop at random

positions. Neural weight coefficients for isometfarce were estimated using trials
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halted at the fixed position. The coefficients wéren used to predict isometric forces
for remaining trials.

Means and standard deviations of prediction ef@asured Force - Prediction)
were calculated for each trial. Trials with veryga error mean or deviations (>0.2N)
were considered failed predictions and discardedhlsT with large error mean or
deviations overlapped strongly with trials with ela@t movement profiles. (e.g., the
animal pressed the lever with both arms or redtetldad on the lever). Trials stopped at
predetermined position and were used to estima&artpping was also excluded from
the calculation.

An optimization was performed to determine the heif stability transition. At
this height the rat switches from a stable bipguature to an unstable quadruped one
(see Section 4.3.4). Therefore this point is at ieximum of the theoretical force-
position relationship. The optimization finds adtgithat minimizes correlation between
stop position and mean error of all trials stopddve it. Trials were then grouped
depending whether they were stopped above or b#dmaheight and the slope between
mean errors and positions were calculated for gealp using robust fit.

A moving Gaussian window with sigma of 1mm was &uplto the signal
produce a non-parametric estimate of relationsbkigveéen mean error and position. This

estimate is displayed in green on the result figure

4.1.8 Controlsfor Static Error Analysis

To test whether relationships between predictionreand position is a consequence of

spinal signals, control were performed for eaclsises Predictions were calculated using

70



zero mapping weights instead of regressed mappgights Figure 4.4). Mean errors
were centered by subtracting their median. The ndari of the error analysis was

performed as described in the previous section.

4.2 Results
Four animals from the last study were used for stigly. Dropping rat 1 and 3 from
Table 3.1 produced result below. Rat 1 did not participatehis experiment because it
performed no arrested trials, Rat 3 did not paéite because its posture was always
unstable.

Table 3.1 andTable 3.2 shows the R and R2 values for the test set cantpin
trials at the originally trained stopping heighithe mean R (.66) and R2 (.43) values for
the Y direction are the highest among the Cartegigattions. This is to be expected as
the trained activity was to move the lever in thedivection. This shows a strong

prediction of forces from neural signal.

Table4.1 Table of R and R2 for Test Set with Varying Arrelgtights

RAT YR Y R R Reg. Halt RReg. Halt Delta R DeltaR

2 0.635 0.389 0.511 0.243 -0.124 -0.146
4 0.672 0.438 0.609 0.349 -0.063 -0.089
5 0.58 0.332 0.251 -0.178 -0.329 -0.511
6 0.773 0.591 0.382 0.076 -0.391 -0.514
Mean 0.665 0.438 0.438 0.123 -0.227 -0.315
STD 0.081 0.111 0.155 0.23 0.074 0.119

Weighted 0.695 0.478 0.495 0.206 0.2 -0.273
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4.2.1 Analysisof Static Errors
Analysis of the prediction error (measured forcpredicted force) among the test trials
with differing arrest heights for each animal shdwbat this error was not a constant
function of positionFigure 4.3 shows the mean error for each termination heighhe
training and test sets for rat 2. The black shthvesmean error of all trials terminated at
the original trained height. The average of albewas centered near 0. The blue shows
that the mean error of trials arrested before thméd height has a negative slope. In,
Figure4.5 a Red line shows a positive slope for mean afarials terminated beyond
the trained slope. Plot so mean error for othémals have a very similar appearance.
Statistically speaking, rats exhibit a spring cansof 21.4N/m (+ 9.3N/m) above 15mm.
below this height there is no reliable dependeidd&#m(x 15.1N/m).

There appear to be two major regimes in the foosstion relationship of all rats.
If the lever was halted above 15mm, the slope edligtion error is negative, suggesting
a force that acts in opposition to displacementhdf lever was halted below 15mm, the
slope of the error is positive, suggesting fordengan direction of displacement.

The first two rats were rewarded when they readi#edm during training and the
remaining rats were rewarded at 18mm. Stabilityiglh isometric position and instability
at low isometric positions were observed in allnsals, regardless of their training

targets.
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Figure 4.3 Static Error Analysis for Rat 6 (last row in tal@eBlue: Trials in the stable

region with robust regression estimate. Red: timalthe unstable region. Black: Trials
used to generate isometric coefficients for nepratliction. Grey: Ignored trials Error
Bars indicate the variation of prediction error hiit individual trials. Green line:

Gaussian estimate of Force/Position relationshiphe session.
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Figure 4.4 Control for the session iRigure 4.3 All isometric coefficients except for the
Non-neural dependent DC term was set to zero. Vghedliction coefficients were set to
zero, the same analysis indicate no relationshiyden force and position (K= 0.10143
N/m, p=0.62).
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Figure 4.5 Force/Position analysis for Rat 5, second torlast

Table 4.2 Overall Statistics Of Force Vs. Position: Slopal##: Blue, Slope Unstable:
Red.

STAB: Stable, UNST: Unstable, H. TRANS: Transitiogight

RAT HALT ggﬁ?\j SLOPE P lCJgS-II\-I SLOPE P TFTAN CTRL | SLOPE P
CNT T STAB STAB T UNST UNST S CNT CTRL CTRL
2 43 23 -29.702 0.081 20 23.97 0.1 -0.013 28 -3.0330.86
4 72 39 -13.374 0.09 33 -5.47% 0.766 -0.015 15 02®. 0.18
5 17 10 -29.348 0.04 7 3.35 0.961 -0.015 21 9.7p5 .31
6 42 42 -13.318 0.032 0 -0.018 47 1.484 0.779
Mean 44 29 -21.435 0.061 15 7.26% 0.609 -0.015 28 7.944 0.533
STD 22 15 9.342 0.029 15 15.084 0.45p 0.002 14 382.p 0.337
Weighted -18.048 0.062 5.353 0.567 -0.015 -3.692 0.63
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Figure 4.6 Force/Position analysis for Rat 2, first row ie #tatistic.
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4.2.2 Examination of Non-Passive Lever Pushes With Trained And Arrested

Terminations

Position (m)

e
) force X
04 —— face Y
02 — forceZ
; ~ fitered X
o [ * fitered Y
NI \C/—Ss\*y@—b " may
\ P fitered ABS
V

. — - Predicted x
v — ~ Predictedy
068l —_—

Predicted z
| 1 1 1 Predicted sbs
1000 2000 2000 4000 5000 €000

Force (N)

Figure4.7 Arrest at 15mm.

Kinematic and kinetic examples of a reach to thesit was shown here (i.e. no
force on the lever before push is initiated.) Figure 4.7, the arrest is at 15mm and in
Figure4.8itis at 12mm. The EPH would predict that if thescending signal were the
trajectory of an attractor, the same attractor wolé applied in both cases due to
training. The arrest at 12 mm would produce adargistance between the arrested
position and the attractor, resulting in a largecé immediately after the arrest. Such
results have been seen in human studies in whiichbais perturbed by a manipulandum
(usually a haptic interface). This pattern is sgea subset of the rat trials typified by
this example . A force of -.35 N is found aftee thnd of the dynamic period in the 15
mm arrest and a force of -.67 N is measures whematrest is at 12 mm. As these
represent one of the four rat strategies, furthmalysis of this specific strategy is

anticipated.
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Figure 4.9 Example of isotonic force control. Sudden movenwrever between 1850
and 2000ms resulted in force changes in the ompdsiéction. The isometric force was
maintained between .3 and .4 newton before and #ite movement, regardless of

position.
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4.2.3 Isotonic Trials

A significant number of trials were observed whigre rat exerted a nearly constant level
of force regardless of position, as long as nodapovements are taking placeridure
4.9 shows a typical trial of this kind). However, imese trials rapid changes of position

cause force to change in the opposite direction.
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4.3 Discussion

4.3.1 Choicein Segmentsof I nterest

There are several reasons for this study to focushe isometric force after the lever
press rather than the lever press itself. Firstegtimation of mapping from neural signal
to force could only be carried out using only istmeedata collected at the same height,
because the mapping did not contain terms thatuatdor position. Since it's possible

that force depend on position, estimating mappistai data collected under non-
isometric conditions or from different positionstroduces an error in the mapping.
Secondly, study of isometric forces eliminatesrieed to account for dynamics. There is
no need to account for the relationship betweemots! and force under isometric

conditions, this make easier to estimate the ndaraé mapping.
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Another reason for studying only the isometric databservation of passive lever
presses. A number of trials were similar to the betow. The animal distributed its
weight onto the lever, so it fell each time it waitialized without additional effort
from the rat. In this situation, the relevant commohaignal to shift the weight occurred
before the lever press, and no signal relevanteight generation is present before onset
of the isometric condition. Analyzing neural sigrdiring the lever press when the
animal is passive reduces signal to noise ratio.

Even when an animal is pressing the lever passivelynust redistribute its
weight in order to handle food pellet, thereforalgsis of isometric activity always

contain signals relevant to the force generated.

Pasition (m)

|
|
|
il | _

' \

J 1

] A\

e Y Sunp——
0 1000 2000 2000 000 5000 8000

Time (ms

force X
force Y

—force Z
*  fikered X

fikered Y
i fitered Z
S gt———— fiered ABS

Force (N)

1000 2000 2000 <000 £000 €000

Figure 4.10 an apparently passive trial.
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4.3.2 Analysisof Neural Code under |sometric Conditions

Power Spectral Density weight coefficients werénested using isometric segments of a

series of trials. These weights have different iogtions according to different theories.
Under the Equilibrium Point Hypothesis, positiorfakdback generates forces

according to a descending reference signal. Foressured under isometric conditions

are proportional to the reference trajectory. Tfoeeethe force estimation under this

condition can be also considered as estimatioheoféference trajectory.
f(N)+&=F(t) = k(xo(t) — X) (4.1)

N =[m@®) m@ -]
f(N) = (W N)

Where f(N) is force estimationN(t) is vector of neural Power Spectral
Densities.é is the estimation error, a random variable cedteme 0.F(t) is measured
force.k is a positive spring constanis (t) is the theoretical reference position a@hds
the fixed position for the isometric segment. Fongdicity force is estimated as a linear
combination of neural PSD without rectification.

According to Inverse Dynamic hypothesis, local fesks are disabled when an
animal carries out a voluntary action. Thereforeyural signal encodes pre-calculated
forces. In the other words:

Fit)=f(N)+eé (4.2)
Hold true for all voluntary forces, including thogeoduced under isometric

conditions.

81



4.3.3 Prediction Error Analysis

If local positional feedback exists below the lewdl recording, measured force is a
function of both neural input and current positiBormally

F(@®) = k(xo () — x(1)) (4.3)

Therefore the prediction error should be a decnggisinction of position.

F(t) — f(N) = (kX + &) — kx(¢t) (4.4)

If local positional feedback does not exist, n@atiehship between prediction error and

position can expected.

F() —f(N) =& (4.5)
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4.3.4 Stability Change

Rats also exhibit unstable behavior (K=-58N/m+ #Br6) when the lever was
sufficiently low. This was likely caused by tramsit to Quadruped postures.
Redistributions of weight caused by this change aezount for the instability at low
isometric positions. This suggests that the arsmalre capable of planning postures that

were unstable without external support.

Upward slope before -15mm is caused by a 1-sided mechanical instability at that location.
At approximately -15mm from center of haptic space,
the rat transitions from stable to unstable posture.

Instability is reflected as a negative spring constant or upward slope.

RAT SITTING ON HAUNCH
5cm

) POSTURE STABLE
<
STABLE ZONE
RAT LEANING ON LEVER
3em POSTURE UNSTABLE
o

Figure4.11 lllustration of postures in the stable (top) and tinstable (bottom) regime.
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4.3.5 Evidence of Spinal Feedback
Rats respond to unexpected rapid forward movemeits @aw with decreasing force.
This is consistent with behavior of human subjectsloading experiments and is
explained by equilibrium control.

Results from analyzing forces predicted from nesrghals Table 4.2) suggest
that the neuromuscular system at the spinal lewel lzelow can exhibit spring-like
behavior under isometric conditions. The lower position, the more likely it is for the
neural force trajectory to deviate from measuradddrajectory in the same direction.
The prediction error is expected to be centeredava in absence of feedback regardless

of position.

4.3.6 Close Loop Control of Force
It is reasonable to assert that well trained rag¢saavare of minimum forces required to
drive the lever. Therefore, given enough time, sarclanimal would adjust its postures to
produce a near constant level of force. This isoled in a number of trials.

If control of force requires the involvement of ttioal or cerebellar systems, rapid
changes in position would still result in changecirange of force in the other direction
until the animal adjusted its command signal to pgensate. This is consistent with the

observation.
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Conscious modifications to posture can also berebdein the instability. The
animals were capable of planning postures that dvbel unstable in the absence of the
lever. A different command signal would be requifeda similar posture that is stable
without the lever. This implies that animals webdeao encode posture that differs only
by force output. The observation of both positiepehdent force and isotonic close loop

control suggest the coexistence of internal modetsspinal feedback.

4.3.7 Towards A Unified Theory of Motor Planning

Efference copies and (forward and inverse) intedyadamic models can coexist with
spinal feedback. There are no irreconcilable cotsflibetween mechanisms behind
Equilibrium Trajectory and Inverse Dynamic Contrdlherefore evidence for local

feedbacks should not be considered evidence agauesse dynamic model.

It is more probable that inverse dynamics and éxjuiin control are models of
systems that works in conjunction to deliver colfdidb movements. Spinal feedback
stabilizes posture and movements against unexppetdarbations while internal models
preemptively correct errors that can be anticipated allow trajectories to be refined
through motor learning.

The following figure presents simplified schematiésa possible unified control
model. The coupled forward/ inverse internal dyrambdel is shown on the left side of
the dash dot line. The internal models combinerdddbrce and position trajectories into

a reference trajectory.
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This trajectory descends to the spinal circuitgshenright side of the dash dot line
as gains of synergistic groups of muscles. Speadiback allows each synergy to define
a static attractor or limit circle in the three-dinsional space. Altering the relative gains
of multiple synergies defines the trajectory of aving attractor in the same space.
Proprioception is also returned to the brain asampatric feedback for tuning the internal

models.

Attractor field
N

External
Perturbations

Muscle lengths

Volitional
position signal

Figure 4.12 simplified schematics of unified control.
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4.4 Conclusions
Inherent stabilities of rats during lever pressiagks suggested that positional feedback
exists at the spinal level. This is consistent wathdescending reference position.
Observed isotonic behaviors suggest that force lmeagontrolled by modification to the

reference trajectory in the presence of corticdlancerebellar feedbacks.

4.4.1 Implication in Design of Neural Prosthetics
Robotic actuators under control of Brain computgedface or Spinal cord Computer
Interfaces should emulate positional feedback wfudis they replaces. This feedback is
vital in any application where stability is impanta Furthermore, for such devices to
perform fast movements, velocity feedbacks shoaelthiplemented. [63]

In addition, High performance robotic actuator coléd by neural signals should
contain inverse dynamic model of the limb they muteto replace. Because the
descending reference signal can contain both ietkrmbsition and force, an inverse

dynamic model is required to separate them.
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CHAPTER S

DISCUSSION

5.1 Overall Conclusions
This project concludes that a linear model is sidfit to predict isometric force from
only corticospinal tract signals. In practical terhis means Spinal Cord Computer
Interfaces (SCCI) that require relatively littl@itting to operate are possible, providing
the reliability of electrodes can be improved.

The project also determined that positional feellbaare performed by spinal
cord circuits and the descending control signaltheospinal cord are likely referential
positions. The practical implication of this obsaren is that actuators driven by SCCI
can benefit from positional feedback and inverseaglyic model of the limbs it intend to

replace.
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5.2 Theoretical Discussion and Speculations
5.2.1 Reconstruction of DC Force versus Fast Force Changes
The method described in chapter 3 is much bettezanstructing slow changes in the
force than fast changing details of the force. Retoictions were attempted with
multiple different delays in order to determine tteaise. Reconstructions were possible
with delay up to 50ms. It stands to reason thafediht fibers in spinal cord have
different conduction velocities. It may be possitwepredict rapidly changing forces by

estimating delay for each signal.

5.2.2 Possible Sour ces of Signals at Various Frequency Bands

Figure 3.10 suggest that neural signal come from two majorces) low frequency
signal below 200Hz and high frequency signal be@@0Hz. It is possible the low
frequency signal arose from post synaptic actiintyhe nearby grey matter while the

high frequency signal were result of activity obdending tract.

5.2.3 Speculation on the Coordinate System Of Voluntary Movements
It's unlikely the control signal to the spinal coisl encoded in Cartesian coordinates
because it's possible maintain different eloow anghile holding the hand in the same
position and orientation. This implies that deséegdcommand signal must encode
movements in some abstract postural space.

Bizzi et al. has suggested a basis of this spaaaé@tent paper [50]. According to

that publication, muscles are controlled in grougs] together their activity defines an
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attractor: either a point attractor or a limit é&&cMovements were then constructed from

these attractors.

5.2.4 Speculation on Parallel and Serial Feedback / Feed Forward Connections
The evidence presented by this project does natiredte the possibility of parallel
feedback/feed forward systenfagure 4.12 suggests the internal models are in series
with the spinal feedback. It's possible for thenetast in parallel. It's possible that some
lower motor neurons do not receive propriocepteedback and act as a feed forward
“transient” controller.

This scheme was proposed by Alvarez et al [64fjHerocular motor system. It is
possible this architecture also exist in other aft neuromuscular system considering
the existence of myriad of descending tracts. Atgresent there is no evidence pointing

to type of architecture or the other.

5.3 Future Directions
While the thesis project has completed all of itgeotives, a number of possible
improvements have been realized during the invatstig. A brief discussion should be

dedicated to them for completion of this thesis.

5.3.1 EMG Analysis

Simultaneous EMG recording scan be used to exphereoordinate system of command
signals. By predicting activities of muscles or igge of muscles, and comparing the
result with prediction of overall force, it will bpossible to study if the descending

command is in muscle, joint or spacial coordinates.
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5.3.2 Recording from Grey Matter and RST
Grey matter contains signal of interest. It wasogmized that power of low frequency
signals (60-100Hz) recorded by an electrode uniideally placed in the grey matter
could be used to predict force. Similarly previousrk had shown that signals from
Rubospinal tract can be used to prediction of jamtgles.

Due to anatomical landmarks, reproducible recordiogh grey matter and RST
is difficult. Final location of the implant can gnbe determined by histology. Therefore a
large number of repetitions is required. Investae into these areas are likely to yield

useful result if additional resources can be daéao it.

5.3.3 Staging

The ultimate validation of SCI will be direct cooltrof external actuators using neural
signals. The DAQ system already performs FFT ofralesignals. It's possible to

compute an animal’s intended position in real tiafeer a transformation matrix is

calculated from neural signals and force recorded@ positions.

Rats will undergo gradual training process wheeeliver becomes increasingly
controlled by neural signals. An attractor fieldllve placed at the computed target
position. The strength of the attractor will incseayradually.

Unlike cortical signals, there is no differenceviietn intent and command in the
spinal cord - a spinal signal will generate fortkis means that rat will continue to press
the lever physically, but this force will move tlever, but the neural intention of them
will. The effectiveness of neural control can beasured by the force exerted on the

lever. In the ideal case, the lever should measulggravitational forces.
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5.3.4 Horizontal Movements

The transition from bipedal to quadruple posturdsriferes with analysis of stability of
spring-like neuromuscular system. The study camnggoved if rats can be trained to
move the lever horizontally for a food reward.

The rat could be trained in the vertical lever présst. Then the force field that
restores the horizontal position could be gradualhated so that the path of resistance
will become horizontal over time. Alternatively thields that restores horizontal position
should be disabled and the animal will be requinedzontally displace the lever for
increasing large distances. The neuromuscular rysggeexpected to be stable for the

entire range of horizontal motion.

5.3.5 Nonlinear Estimation Techniques
Difficulty in prediction of high frequency moment-moment change could be caused by
variation in transmission speed of neural signacdiise time delay is a non-linear
operation, it may be accounted using nonlinear nsodach as Volterra functional
expansion or neural networks. These models cansbmated using well established
technigues such as Laguerre basis function and gropagation.

However nonlinear models present additional teciniproblems. Neural
networks are opaque to interpretations and volierael further expands dimensionality
of the system and may render it computationallyractable without specialized

hardware.
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5.3.6 Movement Restrictions
Attempts were made to restrict the animals’ ranfjenotion by lowering an adjustable
roof so they could not stand on their hind legsisTaradoxically reduced prediction
accuracy. It may be possible that rats were stmgghgainst the restraints and
introducing additional irrelevant neural signals.

It may be possible to design movement restrictizat inimals will voluntarily
comply with. A potential method is requiring ratsgress levers after passing a forelimb

though a small hole.

5.3.7 Force Distribution Analysis/ Gait Lab
Weight of the rat must be distributed between theell and the cage floor. Therefore
pressure sensors could be employed to confirm hagge in weight distribution. This

could be used to positively identify transitionrfrdipedal to quadruped postures.
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