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ABSTRACT 

GAUSSIAN BEAM SCATTERING FROM  

A DETERMINISTIC ROUGH METAL SURFACE 

by 

Qi Wang 

A full-wave theory of plane wave scattering from rough surfaces called the Correction 

Current (CC) method was recently developed for the two-dimensional scatter problem 

that have a one-dimensional roughness profile. The method involves a primary field and 

radiation modes that are plane-wave-type fields that satisfy the boundary conditions at the 

rough surface. These fields do not satisfy Maxwell’s source free equations, but they are 

forced to satisfy Maxwell’s equations with distributed sources upon the introduction of 

fictitious volume currents distributions which correct for the field errors. Additionally, 

current sheet distributions are introduced which generate a radiation modal field that 

satisfies the boundary conditions, the radiation condition for plane waves, and Maxwell’s 

equations with distributed sources. The scatter problem is solved by eliminating these 

volume and sheet current densities in an iterative procedure which produces a composite 

field that satisfies all requirements. Reciprocity is satisfied by using only the first-order 

field solution. The first-order solution of the CC method reduces to the small perturbation 

and the Kirchhoff methods in the regions of validity and is more accurate than these 

methods in regions where neither are considered valid. This paper extends the CC method 

to the more general and important case of beam wave scattering by a deterministic rough 

metal surface. 
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CHAPTER 1  

INTRODUCTION 

 

Since all real surfaces are rough, there is considerable interest among researchers to 

understand how rough surfaces affect the scattering of incident waves. Advancement in 

this area of research is useful in many fields, such as cellular communication, optics, radar 

targeting and detection, medical imaging, antenna design, and radio astronomy. Scattering 

plays an important role in situations involving high frequency waves, where the size of 

surface perturbations is a certain fraction of the wavelength of the incident wave. 

Scattering depends not only on the relationship between wavelength and surface variations, 

but also on the angle of incidence, the polarization of the incident wave, and the electric 

properties of the surface. In scattering experiments, the incident field is a beam wave that is 

excited by an antenna or a laser. Theoretical studies of scattering, however, often assume 

an incident plane wave to simplify the analysis. This was done in [1-2] in the development 

of the full wave solution called the Correction Current (CC) method for plane wave 

scattering from rough metal and dielectric surfaces
1
. The CC method as developed for 

plane wave rough surface scattering in [1] was shown to provide a first-order solution that 

satisfies reciprocity and bridges the gap between the small perturbation and Kirchhoff 

theories, to furnish error criteria to determine its range of validity, and to be 

mathematically rigorous and physically clear. Refer to [1] for comparisons and references 

concerning several other methods for rough surface scattering, such as the Rayleigh or 

small-perturbation method, the Kirchhoff or physical optics approximation, the full-wave 

                                                 
1 In [1], the CC theory was applied to deterministic rough surface with a well defined roughness profile as well as to 

random rough surfaces that have Gaussian statistics such that end effects due to the finite width of the rough surface 

corrugations are negligible. 



 

2 

 

solutions of Bahar and Thorsos’s method of moment/integral equation approach. In this 

dissertation, the CC method is extended to beam wave scattering from a deterministic 

rough metal surface.  

Chapter 2 reviews Gaussian beams and their properties. The full wave theory for 

rough surface scattering, known as the Correction Current (CC) method, is then developed 

for scattering of an incident Gaussian beam from a perfectly conducting infinite plate with 

finite rough surface segment (PEC). The scatter geometry is two dimensional and the 

scatter profile depends on one variable. The electric field of the incident beam wave is 

derived for the two dimension coordinate system ( , )x z . The first-order scatter pattern 

formula is derived from knowledge of the scatter pattern formula for an incident plane 

wave since the beam wave is represented by a superposition of plane waves. A 

conservation of power criterion is presented and an approximate formula for the CC beam 

wave scatter pattern is also derived. 

Chapter 3 reviews the well-known numerical method used to solve a variety of 

electromagnetic problems called the Method of Moment (MOM). This numerical method 

is used as the reference solution for comparison to the CC method. The MOM solution is 

developed for scattering from the perfectly conducting plate with a finite rough surface 

segment using image theory. The numerical procedure is illustrated for scattering from a 

single bump on an infinite planar perfect conductor. 

Chapter 4 presents the definition of the normalized power scatter pattern and 

numerical results using the CC method and the Method of Moments. 

Finally, conclusions and possible extensions are discussed in Chapter 5. 
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CHAPTER 2  

FORMULATION AND SOLUTION OF BEAM WAVE SCATTER PROBLEM 

BY USE OF THE CC METHOD 

 

The scatter problem under consideration is shown in Figure 2.1. The geometry and all the 

field quantities are two dimensional and are independent of the y-coordinate variable. The 

reference two-dimensional coordinate system is ( , )x z . A perfectly conducting metal 

surface lies along the z-axis that has a one-dimensional sinusoidal roughness profile 

2

0(z) 1 sin
2

bN z
D D

L


  
    

  
 in the region z L , but is planar ( 0D  ) over the region 

z L , where bN  is the number of bumps. Above the metal surface is air. At z L   , the 

surface height (z)D  and the surface slope /D dD dz  are continuous. 

The aperture antenna shown in the Figure 2.1 is the source of the incident beam 

radiation. The antenna’s main beam axis points toward the origin of the ( , )x z  coordinate 

system in the direction 0  measured positive from the positive x-axis. The origin of the 

primed coordinates ( ', ')x z  is located in the antenna’s aperture plane ' 0x   at the phase 

center of the antenna at the point 0 0( , )x z , a distance 0  from the origin of the reference 

coordinate system ( , )x z . From the geometry of Figure 2.1, 0 0 0cos 0x    and
 

0 0 0sin 0z     . 
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Figure 2.1  Rough PEC surface illuminated by a Gaussian beam due to an aperture antenna. 

Rays eminating from the antenna represent the spectrum of plane waves of the beam. 

2.1 Incident Plane Wave 

Before expressions for the incident Gaussian Beam are introduced, it is convenient to first 

describe an incident plane wave. This is needed because the Gaussian beam is expressed as 

a superposition or angular spectrum of plane waves. 

Consider the TE polarized incident plane wave in air that propagates in the wave 

vector direction 
i

k  at an angle   measured positive from the positive 'x -axis as shown in 

Figure 2.2. This plane wave is written as 

  ,

0', 'ˆ ˆi PL j

y

iE x z E e  
i

i,PL k r
E y y , (2.1) 

z

0x

x'z

'x
0

O0z

i
k

'O

,i PL

yE

 

Figure 2.2  Plane wave in direction 
i

k . 
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where the incident wave vector and the position vector measured from the antenna’s phase 

center are given by, respectively, 

 ˆˆ
x' z'k ki

k x' '= z , ˆ ˆx' z'r = x' + z' , (2.1a) 

with wave vector components 

  ' 0 cosxk k =  (2.1b) 

  z' 0 sink k = . (2.1c) 

Substituting (2.1b) and (2.1c) into (2.1) gives 

 0[x'cos z'sin ],

0( ', ')
jki PL i

yE x z E e
  

 . (2.2) 

The incident plane wave formula (2.2) needs to be expressed in terms of the reference 

coordinates ( , )x z . To do this, it is convenient to first introduce the rotated coordinates 

( , )x z , which are defined in Figure 2.3 and given by the coordinate transformations 

0'x x  , z' z . Substituting these transformations into equation (2.2) gives 

 
 0 0 cos sin,

0( , )
jk x zi PL i

yE Ex z e
        (2.3) 

z

x

'x

z'

O'

0

Air

O O

x

z0 0x 

 

Figure 2.3  Coordinate systems ( , )x z , ( , )x z  and ( ', ')x z . 
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As shown in Figure 2.3, the ( , )x z coordinates are related to the ( , )x z coordinates via 

the coordinate transformations 

 
0 0

0 0

cos sin

sin cos

x x z

z x z

 

 

 

 
 (2.4) 

Substituting (2.4) into (2.3) gives, after using trigonometry, 

    0 0 0 00 0
cos sincos,

0( , )
jk x jk zjki PL i

yE E ex e ez
       

 . (2.5) 

Equation (2.5) is a TE polarized electric field plane wave that propagates in the 

angular direction  measured positive from the positive 'x -axis or, equivalently, 

propagates in the angular direction 0( )  measured positive from the positive x-axis. 

This incident plane wave field has an amplitude 0 0 cos

0

jkiE e
   at the origin of the ( , )x z

coordinate system. 

2.2 Incident Gaussian Beam 

2.2.1 Gaussian Beam 

In optics, a Gaussian beam is a beam of electromagnetic radiation whose transverse electric 

field and intensity distributions are well approximated by Gaussian functions. In this 

section, it will be assumed that a Gaussian beam propagates in the z direction in the 

cylindrical coordinate system ( , , )z  2
 so that it is rotationally symmetry and, therefore, 

independent of the polar angle  . A mathematical expression for the complex electric 

field amplitude of a Gaussian beam is [3] 

 
2 2

0
0 2

( , ) ( )
( ) ( ) 2 ( )

w
E z E exp ikz ik i z

w z w z R z

 
 

 
    

 
 (2.6) 

                                                 
2 The symbolic notation for coordinate and parameters used in this section is not consistent with Section 2.1. 
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where 

 

1/2
2

0

1

(z) 1
z

w w
z

  
    
   

, (2.6a) 

 1

2

(z) 1
z

R z
z

  
   

   

, (2.6b) 

 
1

1

(z) tan
z

z
  , (2.6c) 

  
1/2

1
0 0

z
w w





 
   

 
. (2.6d) 

  is the radial distance from the center axis of the beam; z  is the axial distance from the 

beam's narrowest point (the "waist"); 2k    is the wave number (in radians per meter); 

0 (0,0)E E ; 1z  is known as the Rayleigh range; (z)w  is the measure of the beam width;

0w  is the beam waist; (z)R  is the radius of curvature of the beam's wavefronts, and (z)  is 

the Gouy phase shift. 

The optical intensity 
2

( , ) ( , )I z E z   is a function of the axial and radial distance z 

and 
2 2 1 2( )x y   . For the Gaussian beam (2.6), intensity is given by 

 

2 2

0
0 2

2
,

(z) (z)
( )

w
I z I exp

w w




  
   

   
 (2.7) 

where 
2

0 0I E . At each value of z , the intensity is a Gaussian function of the radial 

distance  . This is why the wave is called a Gaussian beam. The Gaussian function has its 

peak at 0   (on the z-axis) and drops monotonically with increasing  . The width (z)w  

of the Gaussian distribution increases with the axial distance z . 
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The total optical power P  carried by the beam is the integral of the optical intensity 

over a transverse plane at a specified distance z . Thus, 

 
0

( , )2P I z d  


  , (2.8) 

which reduces to 

 
2

0 0(
1

2
)P I w . (2.8a) 

This result is independent of z  as expected since the medium is lossless. The ratio of the 

power carried within a circle of radius 1  in the transverse plane at position z  to the total 

power is 

 
1 2

2

0

1( )
2

)

1
, 2 1

(
I z d exp

P w z




  
 

   
 

  (2.9) 

The power contained within a circle of radius 1 ( )w z   is approximately 86% of the 

total power. About 99% of the power is contained within a circle of radius 1.5 ( )w z . Since 

86%  of power is carried within a circle of radius ( )w z , ( )w z  is regarded as the beam 

radius (also called the beam width). 

The dependence of the beam radius on z is governed by (2.6a) , 

 

1/

1

2
2

0(z) 1
z

w w
z

  
    
   

. (2.6a) 

The beam radius ( )w z reaches its minimum value 0w  in the plane 0z   and is called the 

beam waist, 
  
w

0
 is also called the waist radius. The beam radius increases gradually with z , 
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reaching 
  

2w
0
 at 1z z , and continues increasing monotonically with z . For 1z z , the 

first term of (2.6a) may be neglected, resulting in the linear relation 

  
1

0
0

w
w z z z

z
   for 1z z , (2.10) 

where 10 0

0

/
2

2
w z

w





   (2.10a) 

is a cone with half-angle 0 . About 86% of the beam power is confined within this cone. 

The beam divergence 0  is directly proportional to the ratio of wavelength   and the 

beam-waist diameter 02w . If the waist is squeezed, the beam diverges. To obtain a highly 

directional beam, a short wavelength (high frequency) and fat beam waist should be used. 

2.2.2 Incident Gaussian Beam as a Spectrum of Plane Waves 

The aperture antenna in Figure 2.1 is assumed to produce a tangential y-directed
3
 (TE 

polarized) electric field that has a real Gaussian amplitude distribution
4
 in the aperture 

plane ' 0x   at the antenna phase center as shown in Figure 2.4, which is given by 

  
2

0( ' ),

0'' 0,
z wi B

yE x z E e


  . (2.11) 

0E

z'O 0w
0w

 , ' 0, 'i B

yE x z

0

1
E

e

 

Figure 2.4  Gaussian amplitude distribution in the antenna aperture plane ' 0x  . 

                                                 
3 The symbolic notation for coordinate and parameters used in this section and those to follow is consistent with Section 

2.1. 
4 The Gaussian amplitude distribution is real because the antenna phase centre is located in the aperture plane. 
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The antenna aperture diameter 02w  is chosen such that the aperture illumination is 

negligible at the aperture edges. Thus, the antenna aperture can be taken to be infinite in 

extent for the determination of the field radiated by the antenna [4]. To extend the CC 

method, which was developed for plane wave scattering from a rough metal surface, to 

beam wave scattering, a representation of the incident Gaussian beam as a superposition of 

plane waves is needed. Such a representation at an arbitrary point ( ', ')x z  in free space (air) 

is given by the inverse Fourier transform 

 ' '' ',

' '( )', ' [ ( ) ]x zjk x jk zi B

y z zE x z E k e dk



 



  , (2.12) 

where '( )zE k  are the amplitudes of the plane wave spectral components. The spectrum of 

plane waves in (2.12) contain both propagating and evanescent plane waves since 

2 2

' 0 'x zk k k   is real for 2 2

0 'zk k  and negative imaginary for 2 2

0 'zk k , where 0k  is the 

free space wavenumber. Each plane wave constituent has a wave vector direction given by 

x' '
ˆ ˆ

zk kk x' '= z  and may be associated with a real angular direction of propagation   in 

the range 2 2       as can be seen from Figure 2.2. 

Since  
2

0' ( ' )',

' ' 0' 0, ' [ ( ) ]( ) z z wjk zi B

y z zE x z E k e dk E e







    (2.13) 

is the inverse Fourier transform of '( )zE k , the spectral amplitude '( )zE k  can be obtained 

from the Fourier transform, 

 '
2

' 0' ( )

' '

40 0( ) ( )
2

1
' 0, ' ]

2
zzj k wk zi

z y zE k E
E w

z e dk ex
 








   . (2.14) 
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Substituting (2.14) into (2.12) gives 

 
2

' 0 ' '( 2) ' ', 0 0
'( )', '

2

z x zk w jk x jk zi B

y z

E w
E x z e e dk





  



   (2.15) 

Expressing the incident beam wave field in (2.15) in terms of ( , )x z  coordinates in 

Figure 2.3 using 0'x x   and 'z z  gives 

 
2

' 0 ' 0 '( /2), 0 0
'

( )
( ),

2

z x zk w jk x jk zi B

y zE x z e e e d
E

k
w 





   



   (2.16) 

where 0  is the distance to the antenna phase center from the origin of the ( , )x z  or ( , )x z  

coordinate system. Recall from equation (2.4) that the coordinates ( , )x z  are related to the 

coordinates ( , )x z  by rotation through the angle 0 . 

The spectrum of plane waves of the incident beam in (2.16) includes propagating and 

evanescent plane waves. For 0  sufficiently large, evanescent waves in (2.16) do not reach 

the scatter surface and are neglected. In addition, plane waves that do not travel toward the 

scatter surface are excluded. Hence, as can be seen from Figure 2.5, the allowable angular 

plane wave directions   associated with the incident beam wave fall in the range 

02      , where 0 02     . The angular direction 0
  is associated with the 

direction of the plane wave that travels in the +z direction parallel to the 0x   plane and 

constitutes the upper bound for incident waves that can strike the scatter surface; plane 

waves in the range 0 2      cannot strike the metal scatterer. 

 Assuming that the incident beam is symmetric further restricts the plane wave 

spectrum in (2.16) to angular directions   that fall in the truncated range 0 0      . 

This range of directional angles   corresponds to values of 'zk  in the range 
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0 0 ' 0 0cos coszk k k     since ' 0 sinzk k  . Thus, the incident Gaussian beam as 

originally represented by the infinite spectrum of pane waves in equation (2.16) is now 

represented by the truncated spectrum of plane waves given by 

    
0 0

2

' 0 ' 0 '

0 0

cos

/2, 0 0
'

cos

, )
2

( z x z

k

k jk x jk zi B

y z

k

wE
E x z e e e dk

w








   



   (2.17) 

x

z

z'

O'

0

0

0



0


'x

O O
 

Figure 2.5  Directional angles   associated with the incident symmetric Gaussian beam.  

 

Changing the integration variable in (2.17) from 'zk  to   using ' 0 sinzk k   and 

x' 0 cosk k   yields 

 
 

0

2

0 0 0 0 0

0

( )
2

sin /2 )cos sin, 0 0
0

(

( z

)
2

, ) co( s
2

k jk x jki B

y

wwE
E x z e e e k d




   




 


 

  

 

  . (2.18) 

Defining the amplitude function 

  
 

2

0 0k sin /20 0
0

k
A e c( ) os

2

ww 
 




   (2.19) 
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permits re-writing (2.18) as 

 
 

0

0 0 0

0

( )
2

cos sin,

0

( )
2

z

0( ), ( )
jk x jki B

yE x z E A e e d




  




 

 

 

 

  . (2.20) 

Thus, the electric field of TE polarized the incident beam as represented by (2.20) is a 

symmetric, truncated spectrum of propagating plane waves with Gaussian amplitudes 

 0 0E A  . For this beam to be narrow, the Gaussian amplitude function  0A   is assumed 

to decay rapidly away from the main beam direction 0  . This means that at the 

end-points of the truncated  -range,  0A   is small, i.e., 

 0

0

(

(
1

)

0)

i

i

A

A


 for 0 0( )

2


       . (2.21) 

Substituting (2.19) into (2.21) gives 

 

2

0 0 si

0

n

20

0

( )
sin 1

(0)

wk
A

e
A






 
 
   for 

0 0( )
2


       . (2.22)

 

This condition for a narrow incident beam requires 0  not too close to 2  and that 

 
 

2

0 0 0cos /2
1

k w
e


. (2.23) 

For reasonable 0  and 0 4w  , the condition (2.23) is very well satisfied. 

The incident beam field
,i B

yE  in (2.20) is now expressed in terms of ( , )x z  coordinates 

so that the first-order scatter field according to the CC method can be used. Consider (2.20) 

written as 

 

0

0 0 0 0

0

( )

( )

2
cos cos sin,

0 0

2

,( ) ( )
jk jk x jk zi B

yE x z E A e e d




   




 

 

 

 

    . (2.24) 
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Using (2.4) in (2.24) gives 

 

0

0 0 0 0 0 0

0

2
cos cos sin( ),

0 0

2

( )

( )

( )

,( () )
jk jk x jk zi B

yE x z E A e e d




     




 



   

 

    (2.25) 

with  
 

2

0 0 sin /20 0
0 ( ) cos

2

k wwk
A e


 




 . (2.25a) 

Combining (2.25a) and (2.25) gives 

 
     

0

2

0 0 0 0 0 00 0

0

( )
2

sin /2 cos sincos, 0 0 0

( )
2

, ) co( s
2

k jk x jk zjkB

y

wi E k
E x z e e e

w
d




     




 




   

 

   (2.26) 

2.3 First-Order Gaussian Beam Scatter Field 

It will now be shown how the CC first-order scatter field for the case of an incident plane 

wave is used to obtain the CC first-order scatter field for an incident beam wave. 

The first-order scatter far field formula for plane wave scattering from an infinite 

perfectly conducting metal plate having a finite rough segment over the region 

L z L     using the CC method was determined and given by (28) in [1] in terms of the 

plane wave incident angle 0  and scatter angle  ; see Figure 2.6. Applying the CC scatter 

formula in (28) of [1] for the incident plane wave given in (2.5) requires replacing in (28) 

of [1] the incident angle 0  by the incident angle 0   and the amplitude 0E  by the 

amplitude 0 0 cos

0

jk
E e

 
. These substitutions yield, for the incident plane wave of (2.5), the 

CC first-order scatter far field formula 

  
 

 
0 4

(1), (1),

0 0 0

0

2
, ; ,

j k

PL PL

y TE

e
E j E S

k



      
 

 

    (2.26) 
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with plane wave scatter pattern 

 

 
 

 

     

0 0

0 01 0

1

0 1

0 0 cos(1),

0

0

cos cos sin sin

1

2

1

cos cos
,

cos cos

1 ( ' )1

jkPL

TE

L
jk D jk z

z L

k
S e

D e e dz

 

     

  
  

  



   






  

 

  
 

 (2.27) 

for –
2 2

 
  , 0–

2 2

 
    and 0  not near 

2


 , 

with condition (2.23), where the observation point  ,   lies in the far field, cosx    , 

sinz    and  1 1D D z , 1 1 1'D dD dz . 

Air
0D 

( )x D z

L L PEC
zO

0


090 , 90   
,i PLE

x

(1) ,PL

yE

 

Figure 2.6  Plane wave incidence angle 0  and scatter angle   of the first-order scatter 

field based on the CC method. 

 

Consider now the incident Gaussian beam wave (2.25), which consists of a directional 

spectrum of plane waves over the finite angular domain 0 0( ( )
2 2

)
 

        that are 

incident upon the metal scatter at angles 0   (measured positive from the positive 

x-axis) with amplitudes  0 0E A  . Comparing the plane waves of the incident Gaussian 

beam (2.25) to the incident plane wave (2.5), which is also incident upon the metal 

scatterer at the angle 0  , it is evident that the scatter far field due to the incident 
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Gaussian beam is a superposition, over the range 0 0( ( )
2 2

)
 

       , of the plane 

wave scatter far fields with the amplitude 0E  in (2.5) replaced by the amplitude  0 0E A  . 

Thus, the beam wave scattered far field is given by 

    
0

0

( )
2

(1), (1)

(

,

0 0

2
)

, , ;( )B PL

y yE A E d







       



 

  , (2.28) 

Substituting (2.26) into (2.28) gives 

  
 

 
0 4

(1), (1),

0 0

0

2
, ,

j k

B B

y TE

e
E j E S

k



   
 

 

 , (2.29) 

where  

    
0

0

2
(1), (1),

(

)

0

(

0

2

)

0( ), ,B PL

TE TES A S d







     



 

   (2.30) 

and  (1), ,B

yE   is the first-order scatter field according to the CC-Theory for Gaussian 

beam scattering from PEC surface with finite rough surface segment. 

Thus 

 

 
 

 

     

2
0

0 0

0 0

0

0 0 0 01 1

1

sin2 2
0 cos(1), 20 0

0

0

2

cos cos sin sin2

1

( )

( )

1

cos cos

(

, cos
cos

)

cos2

1 1 '

k w

jkB

TE

L
jk D jk z

z L

k w
S e e

D e e dz d


 

 




     

  
  

  




 

   

 

   



  
  

  
 

       
  





 (2.31) 

for –
2 2

 
  , 0–

2 2

 
    and 0  not near 

2


 . 
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2.4 Specular Reflected Beam 

For a plane wave incident upon a PEC scatter surface, the CC method designated the total 

field to consist of a primary field plus a series of scatter fields of which the lowest order one 

is referred to as the first-order scatter field. The primary field is defined to be the incident 

plane wave and the specularly reflected plane wave such that in the region z L , 0x   

the primary field is identical to the primary field for the case of a planar metal surface. In 

Section 2.3, first-order scatter field was determined for an incident Gaussian beam 

scattered from a deterministic rough metal surface. In this section, the reflected Gaussian 

beam according to the CC method in z L , 0x  is determined for reflection from an 

infinite planar PEC surface. Since the incident Gaussian beam is a truncated spectrum of 

plane waves, the reflected field due to one plane wave will first be developed. This is then 

followed by the determination of the reflected Gaussian beam which is synthesized as a 

superposition of reflected plane waves. 

 

x

z

0
 i

k r
k

'z

O

Air

Planar PEC 
Surface

 ,r PL

yE
'x

,i PL

yE
0x

0z

i s

( , )P  

0

i s     

 

Figure 2.7  Incident and specular reflected TE polarized plane waves with a planar PEC 

surface at 0x  . 
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2.4.1 Reflected Plane Wave 

Consider the TE polarized incident plane wave (2.5). In Figure 2.7, this plane wave 

propagates in the wave vector direction 
i

k  and is incident at angle 0   (measured 

positive from the positive x -axis) upon the infinite PEC planar surface. The incident plane 

wave gives rise to the TE polarized specularly reflected plane wave 

 
,

0, ˆ ˆ( ) r PL r j

yE E ex z   
r

r,P RL k
E y y , (2.32) 

where the reflected wave vector and position vector (with origin at the antenna phase 

center) are given, respectively, by 

    0 0 0 0
ˆ ˆcos sinxk zk    r

k ,    0 0
ˆ ˆx x x z z z  R . (2.33) 

Using (2.33) in (2.32) gives the reflected TE polarized electric field plane wave 

 
       0 0 0 0 0cos sin,

0)( ,
jk x x z zr PL

y

rE x z E e
           . (2.34) 

At the perfectly conducting planar scatter surface, the tangential electric field must be 

zero, i.e., 

  , , 0i PL r PL

y yE E   at 0x  , z   .  (2.35) 

Substituting (2.5) and (2.34) into (2.35) gives 

 
   0 0 0 0 00 0

cos sincos

0 0

jk x zkir j
E E e e

             . (2.36) 

Substituting (2.36) into (2.34) gives the reflected electric field 

 
   0 0 00 0

xcos sincos,

0,( )
jk zjkr PL i

yE x z E e e
             . (2.37) 

Recall that the incident Gaussian beam in (2.25) was constructed as a truncated 

spectrum of plane waves using the incident plane wave (2.5) with amplitude 0 0 ( )E A  . In 

the same manner, the reflected Gaussian beam, represented as a superposition of reflected 
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plane waves, using the reflected plane waves (2.37) with amplitude 0 0 ( )E A  , is obtained 

as 

      
0

0 0 00 0

0

( )
2

xcos sincos,

0 0

( )
2

( , )
jk zjkr B i

yE x z E A e e d




    




 



      

 

   , (2.38) 

where 0 0 0cosx   , 0 0 0sinz    , cosx   , sinz    and 
2 2

 
  

0
2 2

 
    with 0  not near 0 . 

Replacing the x  and z  coordinate variables with polar coordinate ( , )   and using 

familiar trigonometric expressions, the reflected beam wave in (2.38) is written as 

     
0

0 00 0

0

( )
2

coscos,

0 0

( )
2

( , )
jkjkr B i

yE E A e e dx z




    




 



  

 

   . (2.39) 

Asymptotic evaluation of (2.39) for 0k   large by the Method of Stationary Phase gives the 

reflected beam 

    
 

 
0 4

, , ,

0 0

0

2
, , ,

j k

r B r B r B

y y TE

e
E E j E S

k



     
 

 

   (2.40) 

with reflected scatter pattern 

    
   

2 2
0 0 0 0 0

0 0

1 1
sin

, 2 2

0 0 0

1
, cos

2

k jk
jkr B

TES k e e
   

    
 

         (2.41) 

Recall that the formula for the reflected beam field ,r B

yE  is asymptotic, which requires 

that 0k   be large. It was also assumed for the incident Gaussian beam that 0  not be close 

to 2  and that condition (2.23), i.e., 
 

2

0 0 0cos /2
1

k w
e


 be satisfied. The latter inequality 
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means that  
2

0 0 2k w  and, therefore, 0 0k w  must also be sufficiently large. The composite 

requirement to obtain the far field to insure that the asymptotic evaluation remains the 

dominant effect is that 2

0 0 0( 2)k k w . In other words, in the context of the plane wave 

spectrum representation, it is required that the “peaked” spectrum function 0 ( )A   does not 

become more important than the phase exponential in (2.39) in determining the far field. 

The total beam wave scatter pattern is 

      , (1), ,

0 0 0, , ,TOT B B r B

TE TE TES S S        (2.42) 

2.5 Accuracy Check – Power Conservation Criterion 

Since the scatter surface is perfectly conducting, the total scattered and reflected power 

must equal the power carried by the incident beam, which means that conservation of 

power requires  

 ,i S TOT

B BP P . (2.43) 

To measure how well this conservation of power criterion is satisfied in the CC method, 

define the % error 

 
,

100%
S TOT i

B B

i

B

P P

P


 
  
 

, (2.44) 

where the power per unit width of the incident beam is given by 

 
1 20

0
0

0

1
ˆ

2 2

i

B
z y

w
P dy dz E







  
    

i

AVS x' , (2.45) 

and the total scattered power per unit width is 

 
2 1 2 2

, S,

2 0 2
0

1
ˆ

2

S TOT TOT

B B
y

P d dy E d
 

   
   

  
    

S,TOT

AV
S  , (2.46) 
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where  

    
2

(1
2 2S ),,

0

0

,

0 0

1
,

2
,BTOT B

T TB

r

E EE E S S
k 

    . (2.46a) 

Substituting (2.46a) into (2.46) gives 

    
22,

0
2

0

2
(1), ,

0

0

0, ,
1 B r B

TE TE

S TOT

B SE SP d
k



 
  

 
 


  . (2.47) 

2.6 The Approximation First-Order Scatter Pattern 

For sufficiently large 0 0k w , the double integrations in (2.31) for the first-order beam scatter 

pattern can be reduced to a single integration over the metal scatter surface. This is 

accomplished because   is small by using the following approximations: 

(a)  0 0cos cos     in the amplitude terms.  (2.48a) 

(b)  21
cos 1 sin

2
    in the phase terms. (2.48b) 

Substituting (2.48) into (2.31) and changing the order of the integrations give for the 

first-order beam scatter pattern 

 
   

    

0 00 0

0 0

1

1

1

2
sin sin(1), 0 0 0

0

0

cos co

2

s 2

1 11

cos cos
,

cos cos2

1 '

L
jk zjkB

TE

z L

jk D

w

I I z

S

d

k
e e

e D

 

 

 
 

 










  


 (2.49) 

where 

 

2
20 0

0 0 0 1 0

0

0

0

2

0

1

1 1
sin sin

2 2 cos

1

s4 in
cose

k
jk jk

z

w
z

jk
e dI

 











 





 
   

  



   (2.49a) 

  

2
20 0

0 0 0 1 0 0 1 0

0

0

0

2

0

101 0

1 1 1
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Using the change in variable sinu  , the integrations over   in 1I  and 2I  

transform to integrations over u . Since 0 0k w is large, the integrand decays and the range of 

integration over u  can be extended over the infinite range u  because the 

extended portions do not alter the valuation of the integrals. The integrals over the infinite 

range is then evaluated in closed form to give the approximate beam scatter pattern  

 

 

     1 1

0

0 0

0 0 0 0

(1), 0
0 0

0

sin sin cos c s

1 1 2 0

o2

cos cos
,

cos cos

ˆ 1 ' ˆ

Approx jkB

TE

L
jk z jk D

z L

S k e

e I D e I dz



   

 
 

 



 






  
 


 (2.50) 

where 
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CHAPTER 3 

FORMULATION AND SOLUTION OF BEAM WAVE SCATTER PROBLEM 

 BY USE OF THE METHOD OF MOMENTS  

 

In this chapter, the well known numerical method in electromagnetic called the Method of 

Moment [5] is developed for comparison. An integral equation for the surface current 

induced on a perfectly conducting scatterer is derived from boundary conditions on the 

electric field. To solve the integral equation by the MOM, a set of expansion functions and 

a testing procedure are developed and used to derive the elements of the moment matrix. 

The problem is reduced to a consideration of the fields over a single period. Finally, the 

numerical computation of the moment matrix elements is discussed. 

3.1 MOM Using Image Theory 

The scatter surface under investigation is shown in Figure 3.1. It is a perfectly conducting 

surface that lies along the z-axis and has a sinusoidal one-dimensional roughness profile 

  2

0 1 sin
2

bN z
x D z D

L


  
     

  
 in the region, z L , but is planar ( 0D  ) over the 

regions z L , where bN  is the number of bumps. A TE polarized beam wave is assumed 

incident upon this rough metal surface. The MOM is implemented to find the scattered 

field after applying image theory. For convenience, the simpler scatter surface shown in 

Figure 3.2 – that of a single bump on an infinite PEC planar surface - is used to illustrate 

how image theory is implemented. Extension to more scatter surfaces with several bumps 

is straightforward. 
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Figure 3.1  Deterministic rough PEC scatter surface. 
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Figure 3.2  PEC scatter surface with one bump illuminated by an incident TE polarized 

Gaussian beam. 
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Figure 3.3  Incident and image TE polarized Gaussian beams and surface current densities. 

 

In Figure 3.2, the TE polarized Gaussian beam with an electric field in the +y 

direction ˆ i,B

yEi,B
E y  is shown incident upon the infinite PEC scatterer with one bump. In 

Figure 3.3, the equivalent image problem is shown, which can be understood by placing an 

infinite PEC planar surface along the entire z-axis under the infinite one bump PEC scatter 

surface. Image theory predicts that the image problem of Figure 3.3 includes the original 



 

25 

 

incident Gaussian beam wave field ˆ i, B

yEi,B
E y , an image incident TE polarized Gaussian 

beam with an electric field in the –y direction ,ˆ im B

yEi,B
E y , the surface current density 

ˆ
syJ

s
J y  in the + y direction that was induced on the surface of the original PEC single 

bump and its image surface current density ˆ im

syJim

s
J y that flows in the –y direction. The 

direction of the current flow is determined from the boundary condition ˆ x
s

J n H  at the 

PEC surface, i.e., at (z),x D z   , where n̂  is the unit normal vector directed into the 

air region from the PEC. The incident fields and induced surface current densities in the 

image problem are all located in air. The field solution to the image problem is equivalent 

to the field solution to the one bump scatter problem in Figure 3.2 in the physical regions 

(z)x D , z   . Note that in these regions, the image incident Gaussian beam is 

identical to the reflected Gaussian beam from an infinite planar PEC surface that was 

developed in Section 2.4 and that the reference MOM scatter field is approximated by the 

CC first-order scatter field due to the rough scatter segment only. 

The boundary condition that the tangential electric field at the PEC surfaces in Figure 

3.2 be zero is written as   

 0yE   at (z),x D  z    (3.1) 

where yE  is the total electric field at the surface of the PEC. Since the field solution to the 

image problem of Figure 3.3 is equivalent to the field solution of the original one bump 

problem of Figure 3.2 (in the region above and at the bump), the field at the surface 

containing the induced current ˆ
syJ

s
J y in the image problem must also satisfy the 

boundary condition (3.1) . Because of image theory, the total electric field in the image 
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problem of Figure 3.3 is given by 
yE = , , ,i B im B S B

y y yE E E  , the boundary condition (3.1) 

becomes 

 , , , 0i B im B S B

y y yE E E    at (z),x D   z   . (3.2) 

The scatter field ,S B

yE  is due only to the surface current densities on the bump and its 

image because the induced surface current density and its image on the planar PEC 

portions of the surface give zero current, i.e., syJ + im

syJ =0 over , 0z L x  . 

The incident Gaussian beam wave field in (3.2) is given in (2.25) by  

        0 0 0 00
0

0

0
cos sincos

( )
2

( )
0

2

,

0,
jk x jk zjki B

yE x z E A e e d











   
 




 


  , (3.3) 

which consists of a spectrum of plane waves that propagate in the wave vector directions  

 0 00 0ˆ cos( ) sin( )ˆ
i

k k      k x z , 
0 0/ 2      . (3.3a) 

The image incident Gaussian beam wave field is given by  

        0 0

0

0 00 0
0 cos( )

2

( )

si

2

ncos,

0 0,
jk x jk zjkim B

yE x z E A e e d



   






 
  

 




   , (3.4) 

which consists of a spectrum of plane waves that propagate in the wave vector directions  

 0 0 0 0
ˆ ˆcos( ) sin( )k k      im

k x z , 
0 0/ 2      . (3.4a) 

The scatter field is obtained from the surface current densities and is given by 

  )

0 0

, (20 0( ) ( ') ' '
4

S B

y sy
C

E
k

J H k dc



      , (3.5) 

where use has been made of the two-dimensional free space Green’s function which is 

proportional to the Hankel function of the second kind of order zero [5]. The position 

vector   locates points on the surface occupied by the current density and its image while 

the position vector   reaches observations points in the physical space (z)x D , z L ; 
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refer to Figure 3.4. 0  is the free space intrinsic impedance. The integration path in (3.5) 

runs along the contour 
   

' ' '
a b

c c c   which is shown in Figure 3.3. 

Substituting (3.3), (3.4) and (3.5) into (3.2) gives the electric field integral equation (EFIE) 

for the unknown current densities ( ')syJ   

 

          

 

0 0 0 0 0 00
0

0

0
cos sin cos sinco

( )
2

( )
2

(2)0 0
0

s

0 0

0( ') ' '
4

jk x z jk x zjk

sy
C

E A e

k
J H k dc

e e d
      









  



             


 





 



   

. (3.6) 

In (3.6) both the source point and the observation point are located at points on the surface 

occupied by the current density and its image, which for the simple geometry of Figure 3.6 

means on the surface of the bump and on the image surface of the bump. In general, the 

observation point is located on the surface defined by the equations ( ),x D z   z L . 

Care must be used in making calculations when the source point ( , )P      is near the 

observation point ( , )P   . 

The EFIE (3.6) is an integral equation for the unknown surface current density that 

appears in the integrand. To solve such an equation, numerical techniques are used. We 

approximate the unknown current density  'syJ   in (3.6) over the path 
(a) (b)' ' 'c c c   by 

means of a piecewise constant function (a staircase representation). As illustrated in Figure 

3.5, the above path is divided into 2N segments and each segment has a corresponding 

subspace projection on the z-axis of length 2 / 2L N  , with the center of the  n
th

 

segment designated 
 
z

n
 and where 

 ( 1 2)nz L n    , n=1,2, , 2N. (3.7) 
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Figure 3.4  Geometry of the surfaces occupied by the current densities and the coordinate 

designations of source and observation points. 

 

To find the unknown induced current density
syJ , the first step is to approximate it by 

a series of known expansion functions  'ng    such that  

    
2

1

' '
N

sy n n

n

J a g


  , (3.8) 

where the expansion coefficients 
 
a

n
 are unknown constants. For simplicity, the expansion 

functions  'ng   are chosen to be a set of orthogonal pulse functions given by  

  
 1, / 2, / 2

0,

n n

n

z z z
g

otherwise

   
 


ρ' , (3.9) 

The expansion of the current density in terms of pulse functions in (3.8) is a “staircase” 

approximation where the current is divided into 2N segments of length  . 

znz0

na
nc

( ')yJ 



 

Figure 3.5  A pulse approximation of one segment of the current density. 
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In Figure 3.5 within the 
thn  segment  / 2, / 2n nz z  ,  'syJ   is approximated by 

the constant 
 
a

n
; that is,  'sy nJ a  for  / 2, / 2n nz z z   . 
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 
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'

a
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Figure 3.6  Discretizations between points on the coutours and their projections onto 

z-axis. 

 

A similar situation occurs over the path 
(b)'c  as shown in Figure 3.6, where 

2 1 4N n N   ,  x D z  and    ' 'im

sy yJ J    with  

2 2 2 21 ( ) 1 ( (z ))n
n n n n n n

n

x
c x z z D z z

z


  


         , for n=1, 2, 3, , 4N.(3.10) 

Substituting pulse expansion functions for the unknown currents into (3.6) gives 

    ,B ,B (2)0 0
0 0( ') ' '

4

i im S

y y y sy
C

k
E E E J H k dc


        , 

     
 

     
 

2 4
2 2(a) (b)0 0 0 0

0 0 0 0

1 2 1' '

' ' ' ' ' '
4 4a b

N N

n n n n n

n n Nc c

k k
a g H k dc a g H k dc

 

  

   
      

   
   n     

  (3.11) 

where ,i B

yE and ,im B

yE are known and given by equations (3.3) and (3.4 ). 
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Interchanging the order of the integration and the summation in (3.11) gives  

      
4

20 0
0 0

'
1

,B , ' ' '
4

N
i im B

y n
c

y n

n

k
a g H dE k cE





   n    (3.12) 

Since the  n
th

 pulse is unity for  / 2, / 2n nz z z   and is zero outside this interval, 

(3.12) reduces to 

       
/24 4

2 20 0 0 0
0 0 0 0

1 1

B ,

/2

, ' '
4 4

n

n

c

i i
N

m B

y y

c

N

n n n

n n

k k
a H kE dc kE H c a

 




 

      n nρ ρ (3.13) 

which, for convenience, is expressed as 

        
4

1 1 2 2 4 4

1

, ,(z) (z)
N

n n N

i B im B

y y N

n

A Y z AY z A Y A Y zE zE


      (3.14) 

where n nA a  and 

      20 0
0 0

4
n n

k
Y z c H k


  nρ - ρ '  (3.14a) 

Equation (3.14) reflects the fact that the problem of determining  syJ ρ'  at all points 

of the surface has been replaced by that of computing the 4N constants n nA a . Clearly, 

(3.14) is a single equation containing 4N unknowns and it cannot be solved for the 

constants 
 
A

n
 in its present form. 

The exact solution  'syJ   of the integral equation (3.6) ensures that the right- and 

left-hand sides of this equation are equal at every point of the surface, but any approximate 

solution does not ensure equality at all points. A solution is sought which is as nearly equal 

as possible to  'syJ   in the sense that, at specified match points at the surface, (3.14), 

which is an approximation to (3.6), is forced to hold exactly. The center point 
 
z

n
 of each 
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segment  / 2, / 2n nz z   is selected as a match point but, to distinguish it from the nz  

employed in (3.7)-(3.14), the match point is designated mz  where 

 
1

( )
2

mz L m    , m=1, 2, , 2N 

 4 1m N mz z   , m=2N+1,2N+2, , 4N (3.15) 

and the observation point m   with    , ,m mx y x y . 

Thus, at each match points 
 
z

m
, (3.14) is enforced to give the linear system of 

equations 

        1 1 1 2 2 4 4

,B ,

1 1 1 1 1(z ) (z )n n N

i im B

yN yAY z A Y z A EY z Y z EA        

        1 1 2 2 2

, ,

2 22 2 4 4 2 (z ) (z )n n N N

i B im B

y yAY z A Y z A E EY z A Y z        

              

         ,

1 1 2 2 4 4

,(z ) (z )m m n n m N

i B im

N m

B

y m y mAY z A Y z A Y z EA Y Ez        

                

         ,

1

,

41 4 2 4 4 42 4 4 4 (z ) (z )N N n n N N

i B im B

NN N yN yAY z A Y z A Y Ez A EY z        

  (3.16) 

Note that 
 
Y

n
 is a function only of z  and that, with a discrete value 

 
z

m
 substituted into this 

function, 
 
Y

n
z

m( )  is a known value which can in principle be computed from (3.14a). 

Hence, (3.16) is a set of 4N linear equations with constant coefficients 
 
Y

n
z

m( )  and 

unknowns
 
A

n
. Since 

, ,(z ) (z )i B im B

y m y mE E  is known, then 
 
A

n
 can be determined by 

standard techniques. 

 



 

32 

 

Equation (3.16) can be written as 

 
4

1

n

N

n

n

m mA Y H


 , m=1,2,…,4N, (3.17) 

where      20 0
0 0 '

4
mn n m

k
Y Y z H k


  m n   and 

, ,(z ) (z )i B im B

y m y mm EH E   are known 

quantities, and    
2 2

'mn m n m nR x x z z     m n  . 

Alternatively, (3.17) can be written as a matrix equation 

 
 

Y
mn

éë ùû A
n

éë ùû = H
m

éë ùû  (3.18) 

where 
 

A
n

éë ùû  and 
 

H
m

éë ùû  are column vectors with 4N elements and 
 

Y
mn

éë ùû  is an 4 4N N  

square matrix. Thus, we can get  

      
1

n mn mA Y H


 , (3.19) 

where  
1

mnY


 is the inverse of 
 

Y
mn

éë ùû , so the approximate solution is available as 

 
4

1

( ) ( )
N

sy n n

n

J A g


ρ' ρ' . (3.20) 
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CHAPTER 4 

NUMERICAL RESULTS 

 

Using the first-order CC theory, TE normalized power scatter patterns have been computed 

and plotted for a number of deterministic rough surfaces of the finite periodic type. The 

results are shown in Figures 4.3 to 4.15, where these patterns are compared to the scatter 

patterns obtained by an electric field integral equation/MOM technique. The 1Q , 2Q  and 

3Q  values indicated in the Figures 4.3-4.6 refer to an error criterion for the first-order 

CC-method that was developed in [1]. Conservation of power criterion (2.44) is also shown 

in each figure. 

4.1 Scatter Patterns of Deterministic Rough Surface 

Figure 4.1 displays an example of a scatter surface profile of finite periodicity; it has five 

bumps ( 5)bN   and is described by the expression 
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which satisfies the conditions that D(L)=D (L)=0 and is plotted for 2L= 8λ. 
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Figure 4.1  Surface Profile ( )x D z  with 5 bumps. 
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Figures 4.2-4.15 display curves of a normalized power scatter pattern for the surface 

profile (4.1) plotted versus scatter angle  . A TE polarized electric field Gaussian beam 

wave excited by an aperture antenna is assumed to be incident in the air half-space and the 

scatter pattern is calculated for the PEC scatter surface having the surface profile of Figure 

4.1.  Calculations were performed by using the first-order correction current solution and 

the method of moments (MOM) solution of an electric field integral equation formulation 

of the problem, which were discussed in Chapter 2 and 3, respectively. 

The normalized power scatter pattern is defined by the expression 

 
,

, 0
0

( , ; )
( , ) for    

S TOT
B TOT AV

i

B

S
R

P

   
    , (4.2) 

where 
,

0( , ; )S TOT

AVS     is the time-averaged power density (Poynting vector) of the total 

scattered beam field at a far distance from the origin, i.e., for 
2 2( )x z     and 

i

BP is 

the total power per unit width of an incident beam.  

For the Gaussian incident beam radiated by the aperture antenna and scattered by the 

metal surface in Figure 4.1, the incident power per width is  
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and the total scattered time-averaged power density in the far field is  
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For the CC solution method, the total scattered field is 
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where as for the moment method solution using image theory, the total scattered field is 
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Comparing (4.5) and (4.6) shows that the reflected beam in the CC method is identical to 

the image beam in the moment method and that the first-order scatter field in the CC 

method approximates the scatter field derived using MOM. 

Usually, scatter patterns are plotted using radar cross section (RCS). However, a RCS 

for the infinite two-dimensional scatter surface of Figure 4.1 does not make sense. Such a 

formula would make sense for a target of finite cross-section (which may be many 

wavelengths long) and an incident field near the target that could be regarded in good 

approximation as a plane wave. Both these conditions are not satisfied for the scatter 

problem under consideration, which involves an infinite PEC scatter surface and a 

Gaussian incident beam. 

For the CC solution method, substitution of (4.3) and (4.5) into (4.2) using the 

first-order scatter field (2.29) and the reflected beam field (2.40) yield the normalized 

power scatter pattern for TE polarization expressed in terms of the field scatter patterns 
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and additional normalized power pattern formulas are defined by  
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In the moment method solution presented in Chapter 3 using image theory, (3.5) gives 

the scattered electric field at an arbitrary point in space due to the current densities in 

Figure 3.3 in terms of the Hankel function of the second kind of order zero
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Using the asymptotic form of the Hankel function at large distances from the scatter in 

(4.8),  
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and substituting the resultant scattered far electric field into (4.4) yields the MOM scattered 

power density in the far field  
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Using the moment method solution for the surface current density  'syJ   allows for the 

numerical evaluation of the integral in (4.10), which can be written as 
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where the expansion coefficients nA  were found via the moment method in Chapter 3.  

Substituting (4.3) and (4.10) into (4.2) gives the normalized power scatter pattern 
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where 0E  is set to unity for all figures. 

Note that the power scatter pattern in (4.12) is given without inclusion of the reflected 

power scatter pattern, while the power scatter pattern in (4.7) includes the reflected beam. 
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4.2 Numerical Results 

In the numerical simulations using the MOM, spatial resolution (2N), which is the number 

of the projected segment onto the z axis of the induced current density in the x positive 

region in the simulation is set to 600 evenly spaced data points over the surface width 

z L , which is chosen after confirming that no changes occur in the results by increasing 

2N from 400 to 800 is shown in Figure 4.2. In Figures 4.3a, 4.4a, 4.5a and 4.6a, four curves 

are drawn which give the normalized power scatter pattern of the CC-Exact and 

CC-Approx formulas via 4.7(b), the MOM solution via (4.12) and the total scatter patter 

given by CC-Exact with the reflected beam via 4.7(a) for 5bN  . Figures 4.3b, 4.4b, 4.5b 

and 4.6b, in particularly, show why the total power scatter pattern is maximum in 

specularly reflected direction. It is because of the inclusion of the specularly reflected 

beam. 

 

Figure 4.2  Normalized power scatter pattern ,

,

S B

TE MMR  versus scatter angle for the PEC 

scatter surface in Figure 4.1 of different spatial resolution (2N) to show convergence of the 

MOM solutions. 
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In Figures 4.3-4.6, the scatter width 2 8L  , but the profile height 0D  varies from 

0.1  to 0.7 . In each figure, the distance from the antenna phase center to the origin is 

0 20  . The antenna main beam direction is
0 45  .  

In [1], an heuristic “error criterion” was developed to predict when the CC method is 

expected to remain valid, which is 
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where 
2 4

1 2 ' 'Q D D  
   and 

2 2

2 ''Q D k  characterize the average slope and 

average curvature, respectively, of the scatter surface. Comparison of the first-order scatter 

pattern of the CC method with the integral equation/ method of moments (MOM) 

technique show in Figures 4.3a and 4.4a that good agreement is obtained for Q smaller than 

one, but show deviation in Figures 4.5a and 4.6a for Q greater than one. Although the 

criterion (4.13) was derived for a single incident plane wave in [1], it is valid for the 

incident beam wave since the beam wave is a superposition of plane waves. Figures 4.5 and 

4.6 with high Q values also have larger conservation of power errors  , which means that 

the CC method is not expected to be accurate. 

The MOM simulations require considerable computational resources. On a 2.5 GHz 

Intel Core i5 CPU with 4 GB of memory, a MOM simulation takes about 4 hours as 

compared to a simulation using the CC method which takes 30 minutes. 
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Figure 4.3a  Normalized power scatter pattern versus scatter angle for the PEC scatter 

surface in Figure 4.1 of length 2 8L   and height 0 0.1D  . 

 

 
Figure 4.3b  Normalized power scatter pattern versus scatter angle for the PEC scatter 

surface in Figure 4.1 of length 2 8L   and height 0 0.1D  . 
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Figure 4.4a  Normalized power scatter pattern versus scatter angle for the PEC scatter 

surface in Figure 4.1 of length 2 8L   and height 0 0.3D  . 

 

 
Figure 4.4b  Normalized power scatter pattern versus scatter angle for the PEC scatter 

surface in Figure 4.1 of length 2 8L   and height 0 0.3D  . 
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Figure 4.5a  Normalized power scatter pattern versus scatter angle for the PEC scatter 

surface in Figure 4.1 with of length 2 8L   and height 0 0.5D  . 

 

 
Figure 4.5b  Normalized power scatter pattern versus scatter angle for the PEC scatter 

surface in Figure 4.1 of length 2 8L   and height 0 0.5D  . 
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Figure 4.6a  Normalized power scatter pattern versus scatter angle for the PEC scatter 

surface in Figure 4.1 of length 2 8L   and height 0 0.7D  . 

 

 
Figure 4.6b  Normalized power scatter pattern versus scatter angle for the PEC scatter 

surface in Figure 4.1 of length 2 8L   and height 0 0.7D  . 
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In Figures 4.7-4.15, three curves are drawn which give the normalized power scatter 

pattern of the CC-Exact and CC-Approx formulas and the MOM solution with fixed 

1 2 0.6 0.1 0.7Q Q Q      because of the fixed parameters of the scattering surface. 

Comparison of the results in Figures 4.7-4.15 show excellent agreement. In addition, the Q 

values and the power criterion   are shown to be small, which indicates that the CC 

method is accurate. 

Comparisons of Figures 4.7 to 4.10 show that larger incident waist size 
0w  produces 

narrower scattered lobes. A larger waist size means the higher collimated beams results. 

Comparisons of Figures 4.11 to 4.15 show that as the distance from the antenna and 

the scatter surface increases, the scattered pattern develops many additional scatter lobes in 

different directions. As 0  increases, the incident beam broadens which allows more of the 

rough scatter surface to affect the scattering and results in the pattern getting rougher and 

less focused, which is similar to plane wave scattering. 
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Figure 4.7  Normalized power scatter pattern versus scatter angle for the PEC scatter 

surface with 25 bumps, height 0 0.3428D  , length 2 40L  , distance 0 100   and 

beam waist 
0 3w  . 

 

 
Figure 4.8  Normalized power scatter pattern versus scatter angle for the PEC scatter 

surface with 25 bumps, height 0 0.3428D  , length 2 40L  , distance 0 100   and 

beam waist 
0 4w  . 
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Figure 4.9  Normalized power scatter pattern versus scatter angle for the PEC scatter 

surface with 25 bumps, height 0 0.3428D  , length 2 40L  , distance 0 100   and 

beam waist 
0 7w  . 

 

 
Figure 4.10  Normalized power scatter pattern versus scatter angle for the PEC scatter 

surface with 25 bumps, height 0 0.3428D  , length 2 40L  , distance 0 100   and 

beam waist 
0 10w  . 
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Figure 4.11  Normalized power scatter pattern versus scatter angle for the PEC scatter 

surface with 25 bumps, height 0 0.3428D  , length 2 40L  , beam waist 
0 4w   and 

distance 0 50  . 

 

 
Figure 4.12  Normalized power scatter pattern versus scatter angle for the PEC scatter 

surface with 25 bumps, height 0 0.3428D  , length 2 40L  , beam waist 
0 4w   and 

distance 0 100  . 
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Figure 4.13  Normalized power scatter pattern versus scatter angle for the PEC scatter 

surface with 25 bumps, height 0 0.3428D  , length 2 40L  , beam waist 
0 4w   and 

distance 0 250  . 

 

 
Figure 4.14  Normalized power scatter pattern versus scatter angle for the PEC scatter 

surface with 25 bumps, height 0 0.3428D  , length 2 40L  , beam waist 
0 4w   and 

distance 0 500  . 
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Figure 4.15  Normalized power scatter pattern versus scatter angle for the PEC scatter 

surface with 25 bumps, height 0 0.3428D  , length 2 40L  , beam waist 
0 4w   and 

distance 0 1000  . 
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CHAPTER 5 

CONCLUSIONS AND SUGGESTIONS 

 

A full–wave theory of beam wave scattering from deterministic rough surfaces called the 

Correction Current (CC) method was presented. The method was applied to the 

two-dimensional scatter problem with a deterministic one dimensional scatter surface 

profile. The CC method involves a primary field and radiation modes, which do not satisfy 

Maxwell’s source-free equations, but do satisfy Maxwell’s equations with distributed 

current sources. The scatter problem is solved by eliminating these distributed current 

densities in an iterative procedure which produces a composite field that satisfies all 

requirements, but eliminates the current distributions by mutual compensation. The 

first-order solution of the CC method for beam wave scattering was shown to be accurate 

over a wide range of surface parameters. Comparisons were made between the CC-method 

and MOM method which showed very good agreement.  

The present thesis has addressed the TE-polarization case of beam scattering from a 

deterministic rough scatter surface. Suggestions for further studies include that of the 

TM-polarization case and beam wave scattering by more general random rough surfaces. 
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