
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



 

 

 

ABSTRACT 

EXPERIMENTAL DETERMINATION OF THE MIXING REQUIREMENTS 

FOR SOLID SUSPENSION IN PHARMACEUTICAL STIRRED TANK 

REACTORS 

 

by 

Anqi Zhou  

Glass and glass-lined, stirred-tank reactors are of significant importance in the 

pharmaceutical and related industries.  Because of fabrication issues, a retreat blade 

impeller (RBI) with a low impeller clearance off the tank bottom is commonly used in 

glass-lined reactors, typically combined with a single baffle (providing only partial 

baffling conditions) mounted from the top of the reactor.  In addition, these reactors are 

often provided with a torispherical bottom.  Other configurations are also used, including 

full baffling or no baffles at all, hemispherical bottoms, and different impeller types.  

Despite their common use, some of the most important mixing characteristics of this type 

of reactor have not been fully studied, such as the minimum impeller agitation speed, Njs, to 

just suspend finely divided solids. 

In this work, Njs was experimentally obtained for a number of different 

pharmaceutically-relevant agitation systems including vessels with different types of 

bottoms (torispherical or hemispherical), impeller types (RBI, disk turbine, 4-blade and 

6-blade pitched-blade turbine), baffling conditions (fully baffled, partially baffled, and 

unbaffled tanks), impeller clearance off the tank bottom, and solid particle size.  The power 

dissipated by the impeller was also measured. 

A novel experimental approach to determine Njs was developed here.  This 

approach consists of experimentally measuring the size of the circular region of the tank 

bottom covered by the solids at increasing values of the agitation speed, N, plotting N vs. 



 

the size of this region (expressed as either the region’s diameter DS or its area AS), and 

linearly regressing the data to obtain Njs as the limit of the N value for DS or AS going to 

zero.  The Njs results obtained with the new approach were compared with those obtained 

using the traditional Zwietering’s approach, visually requiring that the solids do not rest on 

the tank bottom for more than 1-2 seconds.  Excellent agreement was found between the 

results obtained using the novel approach and those obtained using Zwietering’s method.  

The novel method proposed here completely eliminates the observer’s bias from the 

experimental determination of Njs. 

The results obtained here show that Njs is a strong function of most of the variables 

listed above, and especially the baffling type. 
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CHAPTER 1    

INTRODUCTION 

1.1 Background Introduction 

Glass-lined reactors are commonly used in the chemical and pharmaceutical industries. 

Glass lining provides corrosion resistance, ease of cleaning, and reduced product 

contamination. A typical glass-lined reactor is equipped with a single retreat-blade 

impeller (RBI) close to the tank bottom and a single baffle. Baffles are long flat plates that 

attach to the side of the tank to prevent swirling and promote top to bottom movement. A 

standard baffling configuration in most mixing tanks consists of four vertical having width 

equal to 8% to 10% (T/12 to T/10) of the tank diameter. Without baffling or with 

insufficient baffling, the fluid moves in a swirling motion in the tank creating a central 

vortex, and mixing is insufficient (Myers and Reeder, 2002).  Installing baffles eliminates 

such swirling motion by breaking a vortex and ultimately improving the mixing process. 

Solid suspension and dispersion in a liquid is an important operation carried out in such 

mixing systems. The primary objective of solid-liquid mixing is to create and maintain 

solid-liquid slurry, and to promote and enhance the rate of mass transfer between the 

solid-liquid phases. Solid suspension is very common during API manufacturing (e.g., 

crystals). 

In agitated vessels, the degree of solid suspension is generally classified into three 

levels: on-bottom motion, complete off-bottom suspension, and uniform suspension (Paul 

et al., 2004). For many applications, it is often important just to provide enough agitation to 

completely suspend the solids off the tank bottom. Below this off-bottom particle 

suspension state, the total solid-liquid interfacial surface area is not completely or 
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efficiently utilized. Therefore, it is important to be able to determine the impeller agitation 

speed Njs, at which the just suspended state is achieved by the particles (Armenante and 

Uehara-Nagamine 1998). Although Njs has been obtained for a number of mixing systems, 

very little information is available in the literature for the solid suspension in the system 

most commonly used in pharmaceutical industry, i.e., a torispherical bottomed tank 

provided with a Pfaudler-type of impeller (i.e., a three-blade, retreat-blade impeller) and a 

single baffle. 

1.2  Objectives of This Work 

The typical method to measure experimentally Njs is that of Zwietering’s (1958).  

Accordingly, Njs is obtained by visually inspecting the tank bottom and visually 

determining the impeller agitation speed at which the solids are observed to rest on the tank 

bottom for no more than 1-2 seconds before being swept away.  Although this method is 

quite reliable, there is clearly the need to develop a method that is not observer-based.  

Therefore, the first objective of this work was to experimentally develop a new method to 

determine the minimum agitation speed, Njs, for just solid suspension that did not rely just 

on the observed assessment of the just-suspended solid state.   

This objective was pursued and eventually achieved by using a novel approach based on 

the measurement of the of the size of the circular region of the tank bottom covered by the 

solids at increasing values of the agitation speed, N, plotting N vs. the size of this region 

(expressed either as the region’s diameter DS or region’s area AS), and then linearly 

regressing the data to obtain Njs as the limit of the N value for DS or AS going to zero.   

Once this approach was validated against the conventional visual approach to Njs 

determination, a second objective was pursued, i.e., the determination of Njs for a variety of 
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mixing systems of relevance to the pharmaceutical industry, and especially the glass-lined 

type of tank with a torispherical bottom agitated with a retreat-blade impeller (RBI) 

commonly used for chemical synthesis. 

The configuration of the system used here is based on the previous work of 

Nonjaros Chomcharn and Dilanji Bhagya Wijayasekara who completed their thesis in this 

lab. Additionally to prove the novel method approach can be used in general tank mixing 

system, different tank systems (torispherical-bottomed tank, hemispherical-bottomed 

tank), different impeller types (retreat-blade curved impeller (RBI), 4-blade and 6-blade 

pitched-blade turbine (4-PBT and 6-PBT), disk turbine (DT)) and different baffling 

configurations (fully baffled, partially baffled and unbaffled) must consider.   
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CHAPTER 2    

EXPERIMENTAL APPARATUS, MATERIALS AND METHODS 

2.1 Apparatus  

2.1.1 Torispherical-Bottom Mixing Vessel and Impellers 

A scaled-down model of a commercial (DeDietrich), torispherical-bottomed 

(dish-bottomed) reactor, similar to the type of glass-lined reactors frequently utilized in the 

pharmaceutical industry was used.  This tank was commissioned, and paid for, by Eli Lilly 

(thanks to Dr. Billy Allen, Eli Lilly, Indianapolis, IN).  BHR Group in the UK (with Dr. 

David Brown’s assistant) completed the fabrication of this tank.  It is made of a thin (0.5 

mm) fluorinated ethylene propylene co-polymer (FEP) semi-rigid film having a refractive 

index of 1.338, which is very close to that of water (1.333) in order to minimize curvature 

effects during observation and image processing steps. The basic dimensions of this tank, 

shown in Figure 2.1 (a), were as follows: 

• Internal diameter (T): 450 mm 

• Overall height: 540 mm 

• Height of dish bottom: 155 mm 

• Height of cylindrical section: 385 mm 

The tank had a rigid collar and lip at its top, which allowed the tank to be suspended 

in a larger ‘host’ square tank, as shown in Figure 2.1(a). During the experiment, the mixing 

tank was placed in the host Plexiglas square tank filled with water in order to minimize the 

optical distortion introduced by the curvature of the cylindrical mixing tank.  The mixing 
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tank was filled with water so that the liquid level, H, was equal to the tank diameter (H/T = 

1), corresponding to a liquid volume, V, of 60.488 liters. 

Circles and radii were drawn on the tank bottom using a black mark pen in order to 

measure the portion of the tank bottom covered by solids during an experiment, as shown 

in Figure 2.1(b). 

Experiments in this system were conducted under three baffling configurations, 

i.e., with unbaffled, partially baffled, and fully baffled tanks.  For the partially baffled 

system, a single beaver-tail baffle (Figure 2.2) was placed midway between the tank wall 

and the central impeller shaft (baffle distance from the wall: 75 mm). In the fully baffled 

system, four vertical baffles were mounted and fixed from the top of the tank. Each of the 

baffles was made of two pieces vertical rectangular metal plates (width 25 mm and 

19.1mm) mounted from the top. The total width of each baffle was 44.1 mm. 

  

(a)                                                                       (b) 

Figure 2.1 (a) Torispherical-bottomed glass-lined tank system (b) Bottom view of the tank 

with equally spaced circles drawn on its bottom. 
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Figure 2.2 Single Beaver-tail Baffle. 

Two types of impellers were used in this system, as shown in Figures 2.3(a) and (b).  Most 

experiments were conducted with a scaled-down version (based on that of the De Dietrich 

Company) of a single retreat-blade, three-blade curved impeller (RBI), used with 

glass-lined vessels in the pharmaceutical industry (Figure 2.3(a)). The following are the 

impeller dimensions measured with a caliper: impeller diameter (D) = 203 mm; the radius 

of curvature of the blades = 92.08 mm; height of the blade = 25.4 mm; thickness of the 

blade = 12.7 mm; and an impeller diameter-to-tank diameter ratio, D/T, of 0.451. The 

impeller was kindly donated by Dr. San Kiang of Bristol-Myers Squibb, New Brunswick, 

NJ. The other impeller was a typical four-blade, 45⁰ pitch-blade turbine (4-PBT; Figure 

2.3(b)).  The dimensions of the 4-PBT were as follows: impeller diameter D = 190.6 mm; 

blade length = 75.7 mm; blade width = 38.4 mm; and blade thickness = 3.2 mm.  The 

impeller clearance was varied depending on the experiments. 
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(a)                                                  (b) 

  

(c)                                                  (d) 

Figure 2.3 Impellers used in this work: (a) RBI impeller (b) 4-blade PBT (c) DT; and (d) 

6-PBT.  Impellers (a) and (b) were used in the torispherical-bottom mixing system and 

impellers (c) and (d) were used in the hemispherical-bottom mixing system. 

 

2.1.2 Hemispherical-Bottom Mixing Vessel and Impellers 

An open glass cylindrical tank with a hemispherical bottom was also used.  The total tank 

height for this tank was 530 mm and its internal diameter was 300 mm.  The bottom section 

of the glass tank was 100 mm and the cylindrical section was and 430 mm, although the 

tank was filled with water so that the liquid level, H, was equal to the tank diameter (H/T = 

1), corresponding to a liquid volume, V, of 17.1 liters.  The glass tank was supported by a 

square bracket (kindly made by Mr. Shawn Yetman) and placed in the host Plexiglas 
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square tank in order to minimize the optical distortion introduced by the curvature of the 

cylindrical mixing tank.  This tank was operated under two baffling conditions, i.e., either 

unbaffled of fully baffled.  For the fully baffled tank, the baffles were set up similarly to the 

torispherical system, but the baffle width was 25 mm.  Two types of impellers were used in 

this system, i.e., a six-blade, 45º degree pitched-blade turbine (6-PBT) and a 6-blade disk 

turbine (DT), as shown in Figures 2.3(c) and (d).  The dimensions of the impellers are as 

follows: for the DT, impeller diameter D = 102.5 mm, blade height: 20.3 mm, blade 

length= 20.4 mm, blade thickness = 1.7 mm; for the 6-PBT: D = 102.5 mm, blade width: 

17.5 mm, blade length= 20.4 mm, blade thickness = 1.7 mm. 

2.1.3 Agitation System and Data Acquisition 

The selected impeller were attached to a central located shaft (diameter 12.52 mm) inside 

the tank, rotated by a 0.25 HP motor (Chemglass, Model CG-2033-11) controlled by an 

external controller (Chemglass, Model CG-2033-31), as shown in Figure 2.4.   

A data acquisition system was used to measure the agitation speed, the torque 

applied to the impeller, and the power dissipated by the impeller. The torque (Γ) applied to 

the impeller by the motor was experimentally measured using a strain gage-based rotary 

torque transducer (Model, T6-5-Dual Range, Interface, Inc. Scottsdale, AZ) mounted 

between the motor and the impeller. The transducer was connected to the Interface series 

9850 Multi-Channel Load Cell Indicator. The transducer can measure the torque in two 

different scales, i.e., 0-0.5 Nm and 0-5 Nm. The same instrument could also measure the 

agitation speed, N, and internally calculate the instantaneous power delivered, P, by the 

shaft according to (Brown et al., 2004): 

                                                           2P N   
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The indicator utilized the M700 software to interface with a computer, which was used for 

data acquisition and processing. 

Motor

Torque Transducer 
and Tachometer

Signal Conditioner 
Display and 
Controller

Data Acquisition 
System

Traversing 
System

Couplings

 

Figure 2.4 Schematic of experimental set-up of agitation system. 

2.2   Materials 

Tap water at room temperature was used as the liquid in all experiment. The liquid height 

was equal to the tank diameter in all cases. Glass beads having average of diameters of 150 

µm and 200 µm were used as the disperse phase. Prior to their use, prescreened glass beads 

were sieved. Four US standard screens of mesh size 40, 60, 80 and 100 were selected. 30 g 

of glass beads were processed at a time, by placing them in the top screen with the smallest 

mesh size, and shaking them for five minutes. The particles retained on the size 100 mesh 

screen (with an average diameter size of 150 µm) and size 80 mesh screen (with an average 

diameter size of 200 µm) were collected separately and used in the experiments.  In each 

experiment, the solid fraction of solids was equal to 0.5% of the liquid weight (g/g), 

corresponding to 302 g in the in torispherical tank, and 85.5 g in hemispherical tank, 

respectively, as measured by an electronic scale.  
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2.3 Experimental Method and Approach to Njs Determination 

Before each experiment, the selected mixing tank was inserted in the square tank and the 

whole assembly was placed on a heavy-duty lift platform.  This assembly was positioned 

under the impeller so that the impeller was centered in the mixing tank.  The mixing tank 

and the square tank were then filled with tap water, up to 450 mm for glass-lined tank and 

300 mm for the glass system, so that H/T = 1 in all cases. The impeller off-bottom 

clearance, Cb, measured from the bottom of the impeller to the bottom of the tank along the 

tank centerline, was set to the required value by moving the whole tank assembly 

vertically.  The solid particles were then added and a mirror was placed at a 45⁰ angle under 

the tank so that the bottom of the mixing tank could be clearly seen, a light illuminating the 

bottom portion of the vessel was turned one, and a video camera (VIXIA HF200, Canon) 

was used to record the solid distribution on the vessel bottom. 

An interesting phenomenon was observed in the torispherical-bottom tank. This 

tank was made of a thin FEP semi-rigid film and could be easily deformed. Therefore, this 

tank was placed in the square tank, which was filled with water to a level similar to the 

liquid level inside the FEP tank to minimize mechanical stresses on the FEP wall. 

However, at higher agitation speeds it was noticed that the bottom portion of the FEP 

vessel just under the impeller would deform slightly and lift up in response to the low 

pressure region generated just below the rotating impeller. In order to compensate, the 

water level in the square tank was lowered until no such a deformation of the tank bottom 

occurred. 

The approach used here to determine Njs was derived from the “steady cone radius 

method” (SCRM) developed by Brucato et al. (2010).  These authors studied solid 
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suspension in top-covered unbaffled tanks by taking images of the vessel bottom at 

different N values using low shutter speeds (large image capture times) to determine which 

portion of the solids cone was rotating and which was not.  They obtained Njs by 

determining the N value at which the inner stationary solids portion would vanish. 

In this work, a typical experiment consisted of setting the agitation speed at a given 

value N, video recording the vessel bottom to determine the region of the tank bottom 

covered with solids once a dynamic equilibrium had been reached, and repeating this 

procedure at increasing values of the impeller agitation speed.  Since the tank bottom had 

been marked with circles and radii emanating from the vessel bottom center, both the 

diameter DS of the area covered by solids at a given N and the corresponding area AS could 

be recorded and measured. Typically, the solids covered on a circular area, although 

non-circular areas were also observed, in which case the average values of DS and AS were 

recorded.  In a typical experimental run in the torispherical-bottomed tank system, N values 

were typically recorded at DS values equal to 10 cm, 9 cm, 8 cm, 7 cm, 6 cm, and 5 cm.  In 

the hemispherical tank, N measurements were typically taken at DS values equal to 8 cm, 6 

cm, 4 cm, 2 cm.  Plots of N vs. DS and N vs AS were then constructed, and linear regression 

lines were obtained to find the predicted extrapolated values of N when DS→0 as well as 

when AS→0.  These values were taken as the expected Njs values based on these two 

approaches, and were labeled respectively as Njs-Ds-Method and Njs-As-Method. Examples of this 

method are presented in Figure 3.1. In addition, the visual value of Njs (Njs-Visual) was 

obtained using the Zweitering’s criterion (Zwietering, 1958), defined as the agitation speed 

at which no particles were visually observed to be at rest on the tank bottom for more than 

one to two seconds. In general, Njs-Ds-Method was found to agree well with Njs-Visual for 
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unbaffled systems whereas Njs-As-Method was found to agree with Njs-Visual for fully baffled 

and partially baffled systems, as further discussed in the Results section. 

All experiments were repeated in triplicates. The power dissipation at each 

agitation speed was also recorded. Experiments were conducted in different vessels, using 

different impellers, impeller clearances, baffling conditions, and particles size, as 

summarized in Table 2.1. 

Table 2.1 Summary of Experimental Conditions and Variable Ranges Tested in This 

Work. 

System Variable Torispherical-Bottomed Tank Hemispherical-Bottomed Tank 

Impeller Type RBI, 4-PBT DT, 6-PBT 

Baffling Conditions UB, PB, FB UB, FB 

Cb/T 0.333, 0.267, 0.2, 0.133, 0.089   0.333, 0.267, 0.2, 0.133, 0.089   

Particle Size 150 µm (for RBI only); 200 µm 200 µm  
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CHAPTER 3  

RESULTS AND DISCUSSION 

3.1Results of Solid Suspension Experiment 

3.1.1 Comparison of the Njs Values Obtained with the Proposed Methods with Those 

Obtained with the Conventional Zwietering’s Approach 

 

In this section, the results of the experiments aimed at validating the proposed method are 

presented and compared with results obtained the conventional Zwietering’s approach.   

According to the procedure developed for the proposed method, the values of DS of 

AS were obtained at increasing values of the agitation speed, N.  For each experimental 

configuration at least four measurements of N vs. DS and N vs. AS were taken.  Njs-Visual was 

also determined.  All experiments were conducted in triplicate.  Figures 3.1-3.5 show the 

N-vs.-DS and N-vs.-AS plots for different cases and the resulting Njs values. 

The values of Njs were firstly experimentally obtained in torispherical-bottomed 

tank equipped with the three-blade retreat-blade curved impeller (RBI) with two particle 

sizes, 150 µm and 200 µm. The results for are shown in Figure 3.1 for 150 µm particles.  

The first observation from this figure is that the experimental points align themselves on 

straight lines (R=0.992).  It is therefore possible to regress the lines and predict the value of 

Njs at the intersection of each line with the y-axis, thus identifying the values of Njs-As-Method 

and Njs-Ds-Method.  For the fully baffled systems, Figure 3.1 (a) and Figure (b) show that 

Njs-Visual is 246.44 rpm, Njs-As-Method is 244.72, Njs by Njs-Ds-Method is 281.01 rpm, i.e., that the 

Njs-As-Method is in excellent agreement with the visually determines value of Njs.  However, 

the difference between Njs-Visual and Njs-Ds-Method is significant.  This implies that, at least for 

this case, the AS method is a valid alternative to the conventional method to determine Njs.  
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For the partially baffled system shown in Figure 3.1 (c) and Figure 3.1(d), visual 

observation resulted in an Njs value of 166.96 rpm, which is close to Njs-As-Method (161.04 

rpm) whereas Njs-Ds-Method was 192.92 rpm.  However, for the unbaffled case shown in 

Figure 3.1 (e) and Figure 3.1 (f) visual observation resulted in Njs-Visual equal to 178.24 rpm 

which is very similar to Njs measured by Njs-Ds-Method (182.74 rpm) but different from the 

Njs-As-Method (145.11 rpm), unlike the fully baffled and partially baffled systems.  

The results for similar systems but with larger particles (dp = 200 µm) are shown in 

Figure 3.2.  As before, the Njs-As-Method was in excellent agreement with Njs-Vsual in the fully 

baffled system and partially baffled system, whereas Njs-Ds-Method agreed with the visual 

measurement of Njs in the unbaffled system. This means Njs-As-method and Njs-Ds-method can be 

applied to determination of Njs depending on the baffling configuration at least in 

torispherical-bottomed tank with retreat-blade curved impeller.  

To determine if the novel method can be used in general in torispherical-bottomed 

tanks, a four-blade pitched-blade turbine (4-PBT) was used.  Similar results were obtained 

as shown in Figure 3.3. In the fully baffled system, the value of Njs visual observation is 

135.72 rpm and the Njs by As-method is 132 rpm. In the partially baffled system, the value 

of Njs by visual observation is 141.74 rpm compared to 138.96 rpm by As-method. In the 

unbaffled configuration, the visually observed Njs (151.32 rpm) agreed with the Njs (152.79 

rpm) obtained by Ds-method. 
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(a)                                                                         (b) 

    
(c)                                                                         (d) 

    
(e)                                                                         (f) 

Figure 3.1 Njs measured the torispherical-bottomed tank with the RBI using for 150 m 

particles: (a) Njs-As-Method in fully baffled system (b) Njs-Ds-Method in fully baffled system (c) 

Njs-As-Method in partially baffled system (d) Njs-Ds-Method in partially baffled system (e) 

Njs-As-Method in unbaffled system (f) Njs-Ds-Method in unbaffled system. 
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(a)                                                                         (b) 

   
(c)                                                                         (d) 

   
(e)                                                                         (f) 

Figure 3.2 Njs measured in the torispherical-bottomed tank with the RBI using for 200 m 

particles: (a) Njs-As-Method in fully baffled system (b) Njs-Ds-Method in fully baffled system (c) 

Njs-As-Method in partially baffled system (d) Njs-Ds-Method in partially baffled system (e) 

Njs-As-Method in unbaffled system (f) Njs-Ds-Method in unbaffled system. 
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(a)                                                                         (b) 

   
(c)                                                                         (d) 

   
(e)                                                                         (f) 

Figure 3.3 Njs measured in the torispherical-bottomed tank with the 4-PBT using for 200 

m particles: (a) Njs-As-Method in fully baffled system (b) Njs-Ds-Method in fully baffled system 

(c) Njs-As-Method in partially baffled system (d) Njs-Ds-Method in partially baffled system (e) 

Njs-As-Method in unbaffled system (f) Njs-Ds-Method in unbaffled system. 
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(a)                                                                         (b) 

   

(c)                                                                         (d) 

Figure 3.4 Njs measured hemispherical-bottomed tank with the 6-PBT using for 200 m 

particles: Njs-As-Method in fully baffled system (b) Njs-Ds-Method in fully baffled system (c) 

Njs-As-Method in unbaffled system (d) Njs-Ds-Method in unbaffled system. 
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(a)                                                                         (b) 

   
(c)                                                                         (d) 

Figure 3.5 Njs measured hemispherical-bottomed tank with the 6-PBT using for 200 m 

particles: Njs-As-Method in fully baffled system (b) Njs-Ds-Method in fully baffled system (c) 

Njs-As-Method in unbaffled system (d) Njs-Ds-Method in unbaffled system. 

 

Additionally, the hemispherical-bottomed tank equipped with either the 6-PBT or 

the DT under fully baffled and unbaffled configuration was tested. Results of As-method 

and Ds-method applied to this system are shown in Figure 3.4 and Figure 3.5. The results 

of these experiments agreed with those of the previous experiments: in fully baffled 

systems visually determined the Njs values were in close agreement with the Njs-As-Method, 

and in the unbaffled system Njs-Visual was very close to by Njs-Ds-Method. 
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It can be concluded that the proposed approach to Njs determination is valid, at least 

for the systems tested here, and that this method can be extended to other systems under 

different operating conditions, as shown below. 

3.1.2 Njs Results for Different Systems and Operation Conditions 

Having preliminarily validated the newly proposed, observed-independent method to Njs 

determination, results for Njs were obtained for different systems under different operating 

conditions.  

The results for the RBI system with 150 m particles for different baffling 

conditions when the off-bottom ratio (Cb/T) was varied from 0.089 (impeller off-bottom 

distance = 4cm) to 0.333 (impeller off-bottom distance = 15cm) are presented in Table 3.1. 

The results show that with fully baffled and partially baffled system Njs can be predict by 

Njs-As-Method, whereas in unbaffled system predictions for Njs based on Njs-Ds-Method are more 

accurate. 

Additionally, results of Njs determined with 200 micrometer particles are shown in 

Table 3.2. Even for these larger particles, the AS-method works well to determine Njs under 

fully baffled and partially baffled configurations, while the value of Njs in unbaffled system 

is very close to Njs-Ds-Method obtained value. 
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Table 3.1 Results for Njs with RBI, 150 m Particles 

 

  

Cb/T 

Particle 

Size (µm) 

Impeller 

Type 

Baffling 

Type 

Njs-Ds-Method 

(rpm) 

Njs-As-Method 

(rpm) 

Njs-Visual 

(rpm) 

0.089 150 RBI Fully Baffled 277.15 242.64 246.44 

0.133 150 RBI Fully Baffled 354.11 314.88 326.66 

0.200 150 RBI Fully Baffled 448.58 399.68 398.74 

0.267 150 RBI Fully Baffled 453.29 397.84 403.54 

0.333 150 RBI Fully Baffled 440.55 395.39 403.24 

0.089 150 RBI 

Partially 

Baffled 

190.92 161.04 166.96 

0.089 150 RBI Unbaffled 182.74 145.11 178.24 

0.133 150 RBI Unbaffled 203.58 154.99 197.04 

0.200 150 RBI Unbaffled 230.73 171.12 221.92 

0.267 150 RBI Unbaffled 177.2 141.07 186.58 

0.333 150 RBI Unbaffled 196.49 152.46 204.02 
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Table 3.2 Results for Njs with RBI, 200 m Particles 

 

  

Cb/T 

Particle 

Size (µm) 

Impeller 

Type 

Baffling 

Type 

Njs-Ds-Method 

(rpm) 

Njs-As-Method 

(rpm) 

Njs-Visual 

(rpm) 

0.089 200 RBI Fully Baffled 325.78 293.14 296.12 

0.133 200 RBI Fully Baffled 414.6 376.36 383.76 

0.200 200 RBI Fully Baffled 487.22 446.99 444.74 

0.267 200 RBI Fully Baffled 448.19 415.16 419.12 

0.333 200 RBI Fully Baffled 468.17 429.79 446.9 

0.089 200 RBI 

Partially 

Baffled 

253.04 208.96 204.04 

0.089 200 RBI Unbaffled 209.74 167.95 208.3 

0.133 200 RBI Unbaffled 220.04 174.74 218.26 

0.200 200 RBI Unbaffled 233.45 181.23 228.62 

0.267 200 RBI Unbaffled 227.64 181.64 222.64 

0.333 200 RBI Unbaffled 236.89 187.01 228.58 
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Table 3.3 Results for Njs with 4-PBT, 200 m Particles 

 

  

Cb/T 

Particle 

Size (µm) 

Impeller 

Type 

Baffling 

Type 

Njs-Ds-Method 

(rpm) 

Njs-As-Method 

(rpm) 

Njs-Visual 

(rpm) 

0.089 200 4-PBT Fully Baffled 154.36 132 136.72 

0.133 200 4-PBT Fully Baffled 159.74 139.31 142.62 

0.200 200 4-PBT Fully Baffled 168.19 147.89 149.36 

0.267 200 4-PBT Fully Baffled 178.16 155.05 159.7 

0.333 200 4-PBT Fully Baffled 185.8 164.77 169.52 

0.089 200 4-PBT 

Partially 

Baffled 

170.31 138.96 141.74 

0.089 200 4-PBT Unbaffled 152.79 125.05 151.32 

0.133 200 4-PBT Unbaffled 162.32 131.33 157.42 

0.200 200 4-PBT Unbaffled 161.59 131.11 159.98 

0.267 200 4-PBT Unbaffled 172.56 139.56 169.36 

0.333 200 4-PBT Unbaffled 199.75 160.72 191.84 
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Table 3.4 Results for Njs with 6-PBT, 200 m Particles 

 

  

Cb/T 

Particle 

Size (µm) 

Impeller 

Type 

Baffling 

Type 

Njs-Ds-Method 

(rpm) 

Njs-As-Method 

(rpm) 

Njs-Visual 

(rpm) 

0.089 200 6-PBT Fully Baffled 244.24 212.83 218.64 

0.133 200 6-PBT Fully Baffled 269.83 240.54 250.72 

0.200 200 6-PBT Fully Baffled 275.44 246.46 255 

0.267 200 6-PBT Fully Baffled 279.94 254.51 253.76 

0.333 200 6-PBT Fully Baffled 300.86 275.64 285.08 

0.089 200 6-PBT Unbaffled 199.14 182.21 198.12 

0.133 200 6-PBT Unbaffled 213.13 193.53 210.58 

0.200 200 6-PBT Unbaffled 206.36 186.12 207.68 

0.267 200 6-PBT Unbaffled 200.12 181.36 200.98 

0.333 200 6-PBT Unbaffled 192.12 175.36 193.54 
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Table 3.5 Results for Njs with DT, 200 m Particles 

 

In order to better visualize these results, parity plots were generated using the visual 

values for Njs vs. those obtained with the proposed method.  The results are presented in 

Figure 3.6.  Panels (a)-(d) show the data for specific systems, whereas Figure 3.6(e) shows 

the results for all data systems.  The closer the points align themselves on a 45º-angle-line 

the better the agreement.  In all cases, one can see that the values of Njs-Visual agree well with 

those for Njs-As-method for the fully baffled and partially baffled systems and Njs-Ds-method for 

the unbaffled systems. The R-value for all the points is 0.999. 

  

Cb/T 

Particle 

Size (µm) 

Impeller 

Type 

Baffling 

Type 

Njs-Ds-Method 

(rpm) 

Njs-As-Method 

(rpm) 

Njs-Visual 

(rpm) 

0.200 200 DT Fully Baffled 232.03 199.25 206.12 

0.267 200 DT Fully Baffled 204.28 182.54 190.4 

0.333 200 DT Fully Baffled 219.04 192.55 200.58 

0.200 200 DT Unbaffled 215.31 181.56 209.56 

0.267 200 DT Unbaffled 226.02 188.8 220.1 

0.333 200 DT Unbaffled 224.32 186.68 224.18 
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(a)                                                                         (b) 

   

(c)                                                                         (d) 
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(e)                                                       

Figure 3.6 Parity plots of Njs-As-Method (for fully baffled (FB) and partially baffled (PB) 

systems) and Njs-Ds-Method (for unbaffled (UB) systems) vs. Njs-Visual. (a) Parity plot for all 

torispherical-bottom systems (b) Parity plot for all hemispherical-bottom systems (c) 

Parity plot for all unbaffled systems (d) Parity plot for all fully baffled and partially baffled 

systems (e) parity plot for all data. 

3.1.3 Comparison of the Effect of the Impeller Off-bottom Clearance Ration Cb/T on 

the Minimum Agitation Speed for Solid Suspension Njs for Different Mixing Systems 

 

The values of Njs were experimentally obtained for different Cb/T ratios for all four systems 

(torispherical-bottomed tank with retreat blade impeller system, torispherical-bottomed 

tank with four-blade pitched-blade turbine, hemispherical-bottomed tank with six-blade 

pitched-blade turbine and hemispherical-bottomed tank with 6-disk turbine). The results 

with the 150 µm particles and 200 µm particles as dispersed phase are shown in Figure 

3.7(a) and 3.7(b), respectively.  This figure shows that in the fully baffled system, Njs 

increase sharply with Cb/T for Cb/T<0.2 and remains nearly constant for Cb/T>0.2.  Also, it 

is evident that Njs in the fully baffled system is much higher than in the other two baffling 

types. Panels (c) (d) and (e) in Figure 3.7 show that the effects of both baffling type and 

Cb/T on then minimum agitation speed are relatively small, especially using 4-PBT 

impeller.  Triplicates experiment were conducted with RBI and 4-PBT impellers and the 

standard deviation of triplicate data was calculated for each point.  The typical standard 
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deviation was too small (<1%) to be plotted, indicating that the results were highly 

reproducible. 
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(a)                                                                         (b) 

   
(c)                                                                         (d) 

 
(e) 

Figure 3.7 Effect of the impeller off-bottom clearance ratio Cb/T on Njs for different 

baffling configurations: (a) RBI (150 µm particles) (b) RBI (200 µm particles) (c) 4-PBT 

(200 µm particles) (d) DT (200 µm particles) (e) 6-PBT (200 µm particles). 
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3.1.4 Power Dissipation at Njs 

The results for the impeller power dissipation at Njs are shown in the Appendix.  For all 

four impellers, the highest power consumption to achieve the solids just suspended state 

occurred when the tank was fully baffled.  A comparison of the power consumed at Njs by 

each impeller in the same tank system shows that using the 4-PBT in the torispherical tank 

was more efficient than using the RBI.  For the hemispherical-bottom tank, the system 

equipped with 6-PBT used in this work was more efficient than that with the DT. 

In mixing systems, it is customary to use the Power Number, Po, defined as: 

3 5

P
Po

N D
  

to express the power dissipated by the impeller in a non-dimensional form.  Plots of Po at 

Njs (defined as Pojs here) vs. Cb/T are shown in Figure 3.8. 
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(a)                                                                         (b) 

    
(c)                                                                         (d) 

Figure 3.8 Impeller power number Pojs at different Cb/T values: (a) RBI impeller (b) 

4-PBT Impeller (c) 6-PBT impeller (d) DT impeller. 

 

3.1.5 S-Value for Zwietering Equation 

Based on the Zwietering Equation: 

  

The S-values were obtained by fitting the experimental Njs data to this equation using as 

densities 2572 kg/m
3
 and 997.537 kg./m

3
 for the glass particles (measured separately via a 

pycnometer) and for water, respectively. Figure 3.9 shows S-value vs. Cb/T for different 

systems. 

 
85.0

13.045.02.01.0

D

Xgd
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
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(a)                                                                         (b) 

    

(c)                                                                         (d) 

 

(e)                                                            

Figure 3.9 S-values for Zwithering equation. (a) RBI (150 µm particles) (b) 200 RBI (µm 

particles) (c) 4-PBT (200 µm particles) (d) 6-PBT (200 µm particles) (e) DT (200 µm 

particles). 
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3.2 Power Dissipation for Mixing System 

Power dissipation data and power numbers for RBI, 4-PBT, 6-PBT and DT are 

experimentally determined by different baffling conditions and impeller off-bottom ration 

Cb/T. Results are shown in Figure3.9, Figure3.10, Figure 3.11, Figure 3.12 and Figure 3.13. 

Power number obtained by this work were in good agreement with the limited literature 

data available. 

   
(a)                                                                         (b) 

   
(c)                                                                         (d) 

Figure 3.10 Power number at Cb/T = 0.333 (a) RBI impeller (b) 4-PBT impeller (c)6-PBT 

impeller (d) DT impeller. 
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(a)                                                                         (b) 

   
(c)                                                                         (d) 

Figure 3.11 Power number at Cb/T = 0.267 (a) RBI impeller (b) 4-PBT impeller (c) 6-PBT 

impeller (d) DT impeller. 
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(a)                                                                         (b) 

   
(c)                                                                         (d) 

 

Figure 3.12 Power number at Cb/T = 0.2 (a) RBI impeller (b) 4-PBT impeller (c) 6-PBT 

impeller (d) DT impeller. 
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(a)                                                                         (b) 

   
(c)                                                                         

Figure 3.13 Power number at Cb/T = 0.133 (a) RBI impeller (b) 4-PBT impeller (c) 6-PBT 

impeller. 
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(a)                                                                         (b) 

   
(c)                                                                          

Figure 3.14 Power number at Cb/T = 0.089 (a) RBI impeller (b) 4-PBT impeller (c) 6-PBT 

impeller. 
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CHAPTER 4  

CONCLUSION 

In this work, the minimum agitation speed to achieve solid suspension in vessels 

commonly used in the pharmaceutical industry as reactors was experimentally obtained 

using four different types of impellers, i.e., retreat curve-blade impeller, four-blade 

pitched-blade turbine, six-blade pitched-blade turbine and six-blade disk turbine under 

fully baffled, partially baffled and unbaffled configurations. A novel method for 

determination of minimum agitation speed, Njs, was obtained (Njs-As-Method and 

Njs-Ds-Method).  The Njs-As-Method can be used for fully baffled and partially baffled 

system; Njs-Ds-Method can be used for unbaffled system. The new method works well in 

the precise determination of Njs in torispherical- and hemispherical-bottomed tank systems. 

Triplicates experiment were conducted with RBI and 4-PBT, and the small standard 

deviation for Njs is an indication the novel approach is highly replicable. 

It was found that the value of Njs for the RBI under fully baffled conditions 

increased significantly with increasing values of Cb/T.  However, for the other baffling 

configurations and impellers, Njs change only slightly with impeller Cb/T.  

The power dissipated at the minimum agitation speed for off-bottom solid 

suspension were also obtained for different Cb/T values, impellers types, and baffling 

configurations. The results show that the highest power dissipations were obtained with the 

RBI under fully baffled system. For the other situations, power dissipation is much lower.  

The results obtained in this work are directly applicable to the pharmaceutical industry 

where these reactors are commonly used.   
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APPENDIX 
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Figure A1 Impeller consumption at Njs for all systems 
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Figure A2 Power consumption by each system 

 

 



 

44 

Table A1 S-Value from Zwietering Equation 

Impeller 

Type 

Type of Tank 

Bottom  

Baffling 

Type 

Particle 

Size, dp (m) 

Impeller 

Diameter, 

D (m) 

S-Value Cb/T 

6-PBT Hemispherical FB 0.0002 0.1015 3.6 0.089 

6-PBT Hemispherical FB 0.0002 0.1015 4.2 0.133 

6-PBT Hemispherical FB 0.0002 0.1015 4.2 0.200 

6-PBT Hemispherical FB 0.0002 0.1015 4.2 0.267 

6-PBT Hemispherical FB 0.0002 0.1015 4.7 0.333 

6-PBT Hemispherical UB 0.0002 0.1015 3.3 0.089 

6-PBT Hemispherical UB 0.0002 0.1015 3.5 0.133 

6-PBT Hemispherical UB 0.0002 0.1015 3.5 0.200 

6-PBT Hemispherical UB 0.0002 0.1015 3.3 0.267 

6-PBT Hemispherical UB 0.0002 0.1015 3.2 0.333 

DT Hemispherical FB 0.0002 0.1025 3.5 0.200 

DT Hemispherical FB 0.0002 0.1025 3.2 0.267 

DT Hemispherical FB 0.0002 0.1025 3.4 0.333 

DT Hemispherical UB 0.0002 0.1025 3.5 0.200 

DT Hemispherical UB 0.0002 0.1025 3.7 0.267 

DT Hemispherical UB 0.0002 0.1025 3.8 0.333 

4-PBT Torispherical FB 0.0002 0.1906 3.9 0.089 

4-PBT Torispherical FB 0.0002 0.1906 4.1 0.133 

4-PBT Torispherical FB 0.0002 0.1906 4.3 0.200 

4-PBT Torispherical FB 0.0002 0.1906 4.6 0.267 

4-PBT Torispherical FB 0.0002 0.1906 4.8 0.333 

4-PBT Torispherical PB 0.0002 0.1906 4.0 0.089 

4-PBT Torispherical UB 0.0002 0.1906 4.3 0.089 

4-PBT Torispherical UB 0.0002 0.1906 4.5 0.133 

4-PBT Torispherical UB 0.0002 0.1906 4.6 0.200 

4-PBT Torispherical UB 0.0002 0.1906 4.9 0.267 

4-PBT Torispherical UB 0.0002 0.1906 5.6 0.333 

RBI Torispherical FB 0.00015 0.2025 7.9 0.089 

RBI Torispherical FB 0.00015 0.2025 10.3 0.133 

RBI Torispherical FB 0.00015 0.2025 12.8 0.200 

RBI Torispherical FB 0.00015 0.2025 12.8 0.267 

RBI Torispherical FB 0.00015 0.2025 12.9 0.333 

RBI Torispherical FB 0.0002 0.2025 8.8 0.089 

RBI Torispherical FB 0.0002 0.2025 11.4 0.133 

RBI Torispherical FB 0.0002 0.2025 13.3 0.200 

RBI Torispherical FB 0.0002 0.2025 13.0 0.267 

RBI Torispherical FB 0.0002 0.2025 13.4 0.333 

RBI Torispherical PB 0.00015 0.2025 5.2 0.089 

RBI Torispherical PB 0.0002 0.2025 6.1 0.089 
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Table A1 S-Value from Zwietering Equation (Continued) 

Impeller 

Type 

Type of Tank 

Bottom  

Baffling 

Type 

Particle 

Size, dp (m) 

Impeller 

Diameter, 

D (m) 

S-Value Cb/T 

RBI Torispherical UB 0.00015 0.2025 5.8 0.089 

RBI Torispherical UB 0.00015 0.2025 6.2 0.133 

RBI Torispherical UB 0.00015 0.2025 7.0 0.200 

RBI Torispherical UB 0.00015 0.2025 6.1 0.267 

RBI Torispherical UB 0.00015 0.2025 6.4 0.333 

RBI Torispherical UB 0.0002 0.2025 6.2 0.089 

RBI Torispherical UB 0.0002 0.2025 6.6 0.133 

RBI Torispherical UB 0.0002 0.2025 6.8 0.200 

RBI Torispherical UB 0.0002 0.2025 6.7 0.267 

RBI Torispherical UB 0.0002 0.2025 6.9 0.333 
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