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ABSTRACT 

HYDRODYNAMIC CFD MODELING OF A PHARMACEUTICAL REACTOR 

VESSEL PROVIDED WITH A RETREAT-BLADE IMPELLER UNDER 

DIFFERENT BAFFLING CONDITIONS 

 

by 

Christopher G Foehner 

In the pharmaceutical industry, glass-lined reactors and vessels are often utilized to carry 

out a variety of different unit operations.  Within these systems, both the vessel and 

impellers are typically glass-lined in order to provide superior corrosion resistance, 

prevent product contamination, and enhance cleanability.  This approach, in turn, often 

requires the use of different, and sometimes sub-optimal, baffling conditions, which 

affect the hydrodynamics of the vessels and the reactor performance. 

Computational Fluid Dynamics (CFD) is a computational tool that employs 

numerical methods and algorithms to discretize and numerically solve partial differential 

equations (PDEs) representing mass, energy, and momentum conservation equations for 

the purpose of analyzing fluid flow problems.  In recent years, CFD has been used 

successfully to model hydrodynamically complex systems such as stirred mixing 

systems.  A variety of computational approaches and models are implemented in the CFD 

code to do so, including single reference frame (SRF), multiple reference frame (MRF), 

and sliding mesh (SM) models, also possibly combined with Volume of Fluid (VOF) 

models. 

In this study, a scaled-down version of a pharmaceutical glass-lined reactor vessel 

equipped with a retreat curve impeller (RCI) and a torispherical bottom is modeled using 

the CFD COMSOL software under a variety of setups, including variations in impeller 

speed, impeller clearance, and baffling conditions.  Several modeling approaches are 



used.  The CFD simulations result in the prediction of the power dissipated by the 

impeller and therefore the impeller Power Number.  These predictions are then compared 

with the experimental results obtained in previous work by this group. 

In the fully baffled system, the values of the Power Numbers predicted by the 

simulations under turbulent conditions using MRF modeling are in close agreement with 

the experimental results across all tested impeller rotational speeds.  In the partially 

baffled system, the results obtained with MRF modeling are very consistent with the 

experimental results.  However, even better agreement is obtained when using the much 

more computationally expensive SM modeling technique.  Finally, the simpler SRF 

approach proves to be very appropriate to model the unbaffled system, and good 

agreement between the simulation predictions and the experimental results is obtained, 

but only if the surface deformation of the liquid-air interface typically observed in 

unbaffled systems is small. 

It can be concluded that the computational method used to simulate the 

hydrodynamic behavior of a pharmaceutical reactor vessel generates predictions that are 

in close agreement with experimental results, thus validating the CFD approach used to 

model this system. 
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CHAPTER 1  

INTRODUCTION 

1.1  Background 

Glass-lined, stirred reactors are frequently utilized in the pharmaceutical industry to 

perform a variety of unit operations where product contamination is a primary concern.  

The vessel walls and corresponding impeller are lined with a glass coating to prevent 

corrosion and provide a smooth surface for superior cleanability [6].  In order to 

minimize turbulence and reduce shear stress on the product, this style reactor is typically 

fitted with a retreat-style impeller with low impeller clearance and smoothed edges [9].  

As the impeller agitation speed increases, the effects of vortex formation become more 

apparent and baffling is utilized to decrease liquid surface deformation and maintain 

mixing efficiency [7].  Common baffling configurations include a fully baffled system of 

four vertical plates placed evenly throughout the vessel, and a semi-baffled system 

consisting of a single, beavertail-style baffle. 

In this study, CFD is utilized to simulate the power dissipation of a scaled-down 

model of a glass-lined pharmaceutical reactor equipped with a three-blade RCI.  The 

glass lining has improved resistance to corrosion and has a smooth surface that is easy to 

clean.  The retreat-style impeller is selected to provide improved radial flow while 

maintaining a relatively low power number with a high Reynolds number.  The impeller 

is placed close to the vessel’s bottom such that the system can accommodate a wide range 

of liquid levels while maintaining mixing efficiency.  The smoothed surface on the 

impeller is also designed to subdue turbulence [6]. 
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As impeller speed increases in the system, the mixing action inside the vessel 

begins to create a large, centralized vortex and results in systemic mixing inefficiency.  

Therefore, baffling is often required to prevent significant vortex formation and support 

mixing effectiveness [7].  The system is modeled using three separate baffling systems, 

including fully baffled, semi-baffled, and un-baffled.  Due to the glass lining, the fully 

baffled system consists of four vertical plates that are inserted into the vessel and do not 

come into direct contact with the wall. This setup ensures that vortex formation is kept to 

a minimum.  For the purposes of modeling this type of system using CFD, surface 

deformation is assumed to be minimal and is effectively ignored in the calculation of 

power dissipation. 

The semi-baffled system includes a single beavertail baffle which helps to 

eliminate vortex formation while reducing shear [7].  The single beavertail baffle helps to 

minimize a large amount of surface deformation.  In this case, however, the Multiple 

Reference Frame (MRF) technique is not enough to accurately simulate the system.  A 

time dependent study with the sliding mesh technique is required in order obtain more 

reasonable results, but at the expense of significantly increased computational time that is 

highly sensitive to model design.  In the un-baffled system, large vortex formation will 

become an issue with mixing; however, CFD simulation of the Newton number is 

relatively accurate [12].  A fixed rotor approach is utilized, where the impeller is kept in 

place and the vessel walls are allowed to rotate in order to simulate the fluid flow.  Using 

this approach, it is expected that mesh construction and modeling assumptions will have a 

significant impact on results, even for power dissipation studies.  Therefore, numbers 

presented in this study for the un-baffled system using the frozen rotor approach do not 
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reveal a Newton number independent of the Reynolds number consistent with results 

achieved in previously conducted experiments.   

1.2  Objectives 

CFD is utilized to capture the impeller power dissipation for a pharmaceutical reactor 

using several different system setups, including various impeller speeds, impeller 

clearances, and baffling configurations.  The vessel is modeled after a scaled-down 

version of a ~61 L De Dietrich reactor, cylindrical in shape with a dished, torispherical 

bottom.  The impeller is modeled after a glassed steel 3-blade retreat impeller, placed 

vertically and centered inside the vessel.  Baffling configurations include fully baffled 

from four vertical plates with almost zero wall clearance, semi-baffled with a single 

beavertail style baffle, and un-baffled configuration.  Impeller speeds are considered from 

20 to 200 RPM.  Impeller clearance is considered at separate heights: 40 mm, 100 mm, 

and 200 mm.  The majority of all modeled systems utilize a frozen rotor approach, 

although a time dependent study is constructed for the semi-baffled system with H/T = 

1.0 and impeller clearance at 40 mm.  Modelling approach and meshing techniques are 

presented along with computational assumptions.  Comparison between simulated and 

experimental results is investigated. 
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CHAPTER 2 

THEORETICAL BACKGROUND 

2.1  Introduction to Computation Fluid Dynamics 

Computational Fluid Dynamics (CFD) is a computational tool that employs numerical 

methods and algorithms to discretize and solve partial differential equations (PDEs) into 

solvable systems of equations for the purposes of analyzing fluid flow problems.  Partial 

derivatives from the PDEs are replaced with finite difference quotients, which in turn are 

utilized to formulate difference equations.  The difference equations are algebraic 

representations of the PDE and are solvable.  In CFD, the object or system that is being 

studied is broken down into a finite number of cells.  These cells are arranged throughout 

the geometry of the system and are commonly referred to as the mesh or the grid [1]. 

The difference quotients are replaced in the governing flow equations, creating 

systems of equations with dependent variables at each grid point within the mesh and a 

computer is used to solve the system.  Numerical solutions of the equations are 

influenced mainly by two types of errors.  The first type is discretization error, which is 

the difference between the exact solution of the PDE and the corresponding solution of 

the difference equation.  This error is usually the cause of systems that fail to converge 

due to poorly defined boundary conditions.  The second type is referred to as round-off 

error and is caused by calculations errors that originate from the solving computer [1]. 

2.2  Navier-Stokes and Development of the Governing Equations 

Fluid flow is fundamentally governed by three principles: conservation of energy, 

conservation of mass, and Newton’s second law of motion [1].  The corresponding 
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equations of these principles serve as the basis for the mathematical modeling of fluid 

motion.  For the system being modeling in this work, an assumption is made that the 

system is isothermal and that the effects of temperature on flow are negligible.  

Therefore, the energy equation is not considered.  For the conservation of mass, consider 

the continuity equation in conservation form: 

  

  
     (  )    (2.1) 

where ρ is the fluid density, t is time, and u is the vector field for the velocity of fluid 

flow [1]. 

Newton’s second law of motion is expressed as the momentum equation as 

follows: 

     (2.2) 

where F is force, m is mass, and a is acceleration.  Sources for this force can be divided 

into two categories: body forces, such as gravity, and surface forces [1].  Surface forces 

have two subcategories: pressure distribution and shear/normal stress distributions (i.e., 

friction).  Furthermore, the assumption is made that surface forces are proportional to the 

velocity gradients (i.e., Newtonian fluid).  The momentum equation written out in x, y, 

and z component form are collectively referred to as the Navier-Stokes equations: 

 (  )

  
     (   )    

  

  
  
    
  

  
    

  
  
    
  

       (2.3a) 

 (  )

  
     (   )    

  

  
  
    

  
  
    

  
  
    

  
        (2.3b) 

 (  )

  
     (   )    

  

  
  
    
  

  
    

  
  
    
  

       (2.3c) 
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where τ represents the viscous surface forces (normal and shear), f represents the body 

forces, and u is the flow velocity [1]. 

2.3  Two-equation Turbulence Model: k-ε 

In the system of interest for this study, the model was expected to operate under turbulent 

conditions.  In order to determine whether the flow can be characterized as laminar, 

turbulent, or in transition, the ratio of inertial and viscous forces is calculated for each 

scenario as follows: 

 nertial force   (N  )
    

  (2.4a) 

 iscous force   
 (   )  

 

  
 (2.4b) 

where N is the impeller speed, Di is the impeller diameter , and μ is the fluid viscosity.  

After reduction, the ratio of these two forces simplifies to the Reynolds number 

(dimensionless) [15]: 

    
    

  

 
 (2.5) 

In a mixing tank, transition from laminar to turbulent flow usually occurs between 

Re = 50 and Re = 5000, and can be largely dependent on the power number of the 

impeller.  In a fully baffled system, flow is considered fully turbulent where Re > 10
4
.  

However, in an un-baffled system, flows will not necessary reach full turbulence until 

approximately Re > 10
5
 [13] [15]. 

Incorporating turbulence into the Navier-Stokes equations is accomplished 

through the use Reynolds-Averaged Navier-Stokes equations, or RANS [7], which are 

added on top of Equations 2.3a, 2.3b, and 2.3c.  Recall that the governing equations are 
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computed for each node within the geometry that comprises the system.  By considering 

only the mean flow across each node, the amount of computation is reduced which can 

aid in helping the system to reach convergence faster [1].  The momentum flux after 

considering the time-averaged values across each node is referred to as Reynolds stresses.  

However, this also indicates the significance of the system mesh, that areas where eddies 

and large turbulence occur should have as dense or fine a mesh as possible to accurately 

describe the fluid flow in those areas.  Several methods have been devised in order to 

accomplish this and explored later in Chapter 3. 

In order to solve for the RANS equations, the assumption is made that the 

Reynolds stresses are proportional to the averaged velocity gradients, also known as the 

Boussinesq Hypothesis [7].  This relationship can be illustrated as follows: 

 u  u    
 

 
       [  (

   
   

  
   

   
)] (2.6) 

where        are the Reynolds stresses and μt is the turbulent viscosity [12]. 

To solve for the Reynolds stresses, a commonly used turbulence model for stirred 

reactors is the k-ε model, where k is the turbulence kinetic energy and ε is the rate of 

dissipation of turbulence kinetic energy [16].  These transport equations are presented as 

follows: 

 (  )

  
  

 

   
(   k)   

 

   
(   

  
  
) 
  

   
          (2.7) 

 (  )

  
  

 

   
(   ε)   

 

   
(   

  
  
) 
  

   
    

 

 
       

  

 
  (2.8) 

where μ is the dynamic fluid viscosity, μt is the eddy viscosity, Gk is the term for 

turbulence generation [12].  By introducing these additional equations into the model, 
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additional boundary conditions must also be applied and are derived experimentally.  C1, 

C2, σε, and σk are those empirical constants: they are listed as follows as they are applied 

within the CFD model: 

                                  (2.9) 

The generation of turbulence is dependent on the turbulent viscosity, and defined 

as follows: 

      (
   
   

  
   

   
)
   

   
 (2.10) 

where turbulent viscosity μt comes from a derivation of k and ε as follows: 

       
  

 
 (2.11) 

where Cμ is yet another constant determined experimentally and utilized within the model 

having a value of 0.09 [12].  This relation is commonly referred to as the Kolmogorov-

Prandtl Eddy Viscosity Expression.  To summarize, the model is employed to solve for k 

and ε, which in turn are used to find the turbulent viscosity.  Using the Boussinesq 

hypothsis, the RANS equations are computed and applied to the governing equations 

[12].  Additional body forces are considered later in Chapter 3. 
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CHAPTER 3 

CFD MODELING OF THE PHARMACEUTICAL MIXING SYSTEM 

INVESTIGATED IN THIS WORK 

3.1  Mixing Apparatus 

The mixing system studied in this work is a scaled down cylindrical vessel with a 

torishperical bottom.  The actual mixer used previously in experiments carried out by this 

group was commissioned and paid for by Eli Lilly; fabrication and design was completed 

with the assistance of Dr. David Brown from the BHR Group (UK) [2].  The tank is 

comprised of a of a 0.5 mm fluorinated ethylene propylene co-polymer (FEP) rigid film 

with a refractive index of 1.338.  The results of the experimental study using the actual 

system performed by Banerjee serve as the benchmark comparison for the CFD output as 

well as other similar studies using a similar setup [2]. 

In order to correctly model the system under study, the geometry of the tank was 

measured using a Stanley PowerLock Tape Rule (16 feet), Model 33-116. The internal 

diameter of the tank is 445 mm.  The overall height is 533.4 mm, consisting of a 

cylindrical height of 431.8 from the top down to the point where the wall begins 

curvature for the dished bottom, then 101.6 mm to the lowermost point of the dished 

bottom.  At the top of the vessel is a plastic lip that goes around the perimeter that is 12 

mm thick and 39 mm wide. 

The tank is without a lid and was left uncovered to open air during previous 

experimentation.  The walls and points of curvature of the tank are smooth, uniform, and 

symmetrical.  This is a minor indentation noticeable where the torishperical bottom was 

molded into the cylindrical top, but is does not appear a significant compromise to the 



10 

 

 

 

integrity of the design.  There are no points of attachment for baffling, consistent with the 

glass-lined scaled up version.  The assumption is made that the walls remain rigid during 

the mixing process and that any experimental limitation of data collection do not impart a 

significant contribution to the results utilized for the comparative study. 

3.2  Agitation System  

Impeller and baffling geometries were measured used a Neiko Digital Caliper (6 inches 

with metric LCD display), Model FR-8ZT5-LLNT.  The measuring device was calibrated 

using a Standard Gauge micrometer setting standard (2 inch), Part Number 02164102 

with +/- 0.00008 inch precision.  The overall length of both the impeller and baffles were 

measured using an Alvin Flexible Rule (18 inch), Model R590.  The impeller is a scaled-

down version of a De Dietrich style glassed steel 3-Blade Retreat impeller that is 

typically used in association with glass-lined vessels [6].  The edges are purposely 

smoothed to prevent the break-down of the glass coating at high stress, although the 

scaled-down version is without coating and is exhibiting minor corrosive properties on 

the blades. 

Due to small variations in the geometry for each blade, the measurements were 

taken for each of the blades and averaged to obtain the final measurement.  The radius of 

the entire impeller is 101.29 mm.  Blade thickness is recorded as 12.7 mm and the blade 

height is 25.4 mm.  The blades are angled upwards with a 15° rise, measured using a 

Westcott protractor (6 inch), Model number 11200.  The blades are connected to a 

cylindrical connecting shaft with a diameter of 25.5 mm and height of 31.9 mm.  The 

main shaft that would connect to the motor and connecting shaft is cylindrical with a 12.7 

mm diameter and 470 mm in height. 
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Special attention and detail is given to the measurement and geometrical 

construction of the impeller, as this is vital to achieving accurate results in the 

computational model.  The impeller blades are curved in a counter-clockwise position.  In 

order to determine the radius of curvature, the length a and height h of the inner curve 

was measured as 89.5 mm and 11.66 mm, respectively.  The corresponding radius r that 

describes the curvature was then calculated at 91.7 mm using the trial and error method in 

conjunction with the following equation: 

        √    
  

 
 (3.1) 

The radius of curvature was then utilized to compute the central angle α (62.2°) of 

the impeller bade, which is necessary in order to generate the curve [3]: 

     arcsin
 

  
 (3.2) 

The blades are flush against the connecting shaft and anchored with a recessed 

screw on the top of the connecting shaft.  The screws show signs of rusting, but do not 

compromise the integrity of the geometry.  One additional screw is placed on the side of 

the connecting shaft to anchor it to the main shaft.  The screw slightly protrudes but not 

significantly enough to enter the model geometry.  The tips of each blade are 

significantly rounded and the edges are smooth.  The main shaft protrudes slight out of 

the bottom of the connecting shaft by 3.08 mm. 

The impeller is located centrally within the tank in an upright perpendicular 

position.  Unless otherwise indicated, all computational studies were conducted with an 

impeller clearance of 40 mm (measured from the impeller bottom to the bottom of the 

tank).  In another scenario, the impeller clearance is increased to 100 mm and 200 mm in 
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order to detect if power dissipation and the velocity flow fields are affected by impeller 

vertical clearance.  The geometry details of the impeller are presented in Figures 3.1 and 

3.2 below. 

 

 
 

 

 
 

Figure 3.1  Three blade impeller 

geometry, side view. 

             

Figure 3.2  Three blade impeller 

geometry, top view. 

3.3  Baffling Setup 

Three modelling systems are considered in this work: fully baffled, semi-baffled and un-

baffled.  In all scenarios, the baffling clearance for the fully-baffled system and semi-

baffled system is 101.6 mm (point of curvature in the vessel walls).  For the fully baffled 

system, four vertical plates are inserted into the tank.  The plates have a width of 45 mm 

and are placed symmetrically, against the vessel wall.  The plates are evenly spaced 

between one another and oriented such that the wide part is perpendicular to the 

rotational flow.  The thickness of the plates are not considered and modelled as two 

dimensional objects.  Geometry details of the fully baffled system are presented in Figure 

3.3. 
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Figure 3.3  Geometry of the fully baffled system, angular view. 

 

The semi-baffled system consists of a single beavertail style baffle.  The baffle is 

placed midway between the impeller main shaft and the vessel wall with 101.6 mm 

clearance.  Measurements are taken using the same caliper and ruler for the impeller.  

The overall length of the baffle is 445.1 mm and can be divided into three sections: 

lower, middle, and top.  The lower section is cylindrical in shape, 67.7 mm in length with 

a diameter of 40.12 mm.  The middle section is flattened to a thickness of 27.6 mm, 

where the diameter is 44.6 mm and the length is 152.4 mm.  The top section is cylindrical 

with a length of 225 mm and a diameter of 30.5 mm.  As the top section approaches the 

middle section, it becomes conical in shape, where the cone is 46 mm long and the 

bottom cone diameter is the same as that of the middle section.  Figures 3.4 and 3.5 

present the geometry details of the semi-baffled system. 
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Figure 3.4  Geometry of the semi-

baffled system, angular view. 

                        

 

       

Figure 3.5  Geometry study of the 

beavertail style baffle. 

3.4  Unstructured Adaptive Grid Technique Used in This Work 

The meshing utilized on the system takes into consideration two simplifying assumptions.  

First, the assumption is made that the system is isotropic as defined through the k-ε 

modelling approach (i.e., the Reynolds stresses are proportional to the rate of deformation 

in all directions) [7].  Second, the assumption is made that the fluid is incompressible at 

all times within the system throughout the mixing process.   

Additionally, the mesh was refined as much as possible while keeping the 

computation time to a minimum.  In a preliminary study using the fully baffled system, 

the meshing was adjusted to test how power dissipation is affected as the number of 

nodes is changed.  Based on this information and the time of convergence, the mesh was 



15 

 

 

 

selected to contain 472,258 node for the fully-baffled system, then 356,211 and 178,443 

nodes for the semi-baffled and un-baffled systems, respectively. 

The system mesh is an unstructured, free tetrahedral geometry.  The maximum 

and minimum elemental sizes of the nodes are 34.5 mm and 7.2 mm, respectively.  

Although this seems rather course for a vessel having a diameter of 445 mm, this is not 

uniform across the entire geometry.  Since the primary goal of this study is to determine 

systemic variations, the mesh is adaptive to selectively chosen boundaries and edges.  In 

other words, the node size becomes finer as it approaches areas where turbulence is more 

likely to occur, including the surfaces of the impeller, rotating shaft, and baffling.  For 

these structures, the node size range is considerably smaller, with the maximum and 

minimum sizes of 10.6 mm and 0.7 mm, respectively. 

The intricate geometry of the vessel ensures that the element growth rate remains 

very low and node sizes tend to stay closer to the minimum size.  See Figures 3.6, 3.7, 

3.8, and 3.9 for visual depictions of how the meshing is applied.  Note that a cylinder can 

be seen in the second figure.  This is the rotating domain that will be utilized in the bulk 

of the computation experimentation using a multiple reference frame technique and will 

be explained in the following sections. 
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Figure 3.6  Meshing of fully baffled system with angled view. 

 

Figure 3.7  Top view of meshing for the fully baffled system. 
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Figure 3.8  Retreat blade impeller meshing with free tetrahedral technique. 

 

Figure 3.9  Angular view of semi-baffled system with various meshing refinement. 
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Figures 3.6 and 3.7 depict the meshing for the fully baffled system.  Note that the nodes 

become smaller as they approach the baffling as well as the rotating impeller shaft.  

Figures 3.8 and 3.9 show the grid for the semi-baffled system using a single beavertail 

baffle.  Figure 3.9 specifically shows an angular view of the impeller, baffle, and dish 

bottom of the vessel with the walls removed.  Note the scaling of mesh generation, which 

becomes more refined in areas where it has greater influence on the flow fields. 

3.5  Computational Approaches Used in This Work 

A variety of computational approaches were implemented in the CFD code of this work 

to model hydrodynamically the mixing system studied here, including the single 

reference frame (SRF) model, the multiple reference frame (MRF) model, and the sliding 

mesh (SM) model. 

3.5.1  Multiple Reference Frame Approach 

In each baffled system, the fluid flow is in reality unsteady and therefore time dependent.  

However, an alternative method is utilized that significantly reduces computation and is 

capable of producing accurate steady state approximations of global numbers such as the 

power dissipation and Newton number [9].  The assumptions are made that the rotational 

speed is constant and that impeller-baffle interaction is insignificant in the global system.  

Using the Multiple Reference Frame (MRF) approach, the volume within the vessel is 

divided into two reference frames or domains: the rotating domain and the stationary 

domain. 

A boundary is created that encapsulates the impeller section: inside this area is the 

rotating domain and contains the rotating machinery.  Within this area, the impeller does 
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not move as defined by the model; rather, flow is considered around the impeller 

geometry, where centrifugal and Coriolis forces are added to the governing equations 

2.3a, 2.3b, and 2.3c in order to account for the rotational effect [5]: 

     oriolis     entrifugal    [          (   )] (3.3) 

where   is the angular velocity vector, v is velocity and m is mass. 

This approach considers the instantaneous flow fields at the fully developed stage 

of impeller speed, and thereby provides a means to produce a steady state approximation 

without changing the mesh positioning.  Outside this boundary is the stationary domain 

that contains the non-rotational components, including baffling and walls. Flow 

continuity is applied at the interface of these two regions for vector quantities of velocity 

and the velocity gradients [5]. 

The fully baffled system utilizes the MRF approach; see Figure 3.10 for a side 

view of the geometry. 

 

 

Figure 3.10  Side view of the geometry, Multiple Reference Frame, fully baffled system. 
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3.5.2  Single Reference Frame Approach 

In the un-baffled system, only one rotating reference frame is utilized in the simulation, 

herein referred to as the Single Reference Frame (SRF).  In this case, the impeller is held 

in a fixed position and the outside vessel wall is allowed to rotate.  As in MRF, fluid flow 

is considered around the impeller geometry and centrifugal and Coriolis forces are 

applied in each scenario. 

3.5.3  Sliding Mesh Approach and Free Surface Deformation 

The semi-baffled system is truly a time dependent model and is also influenced by 

surface degradation due to vortex formation.  Therefore, a steady state approximation is 

not appropriate and may not accurately describe the system under turbulent conditions.  

In the sliding mesh approach, the grid within the rotating domain is physically rotated 

about the impeller and moved is small, discrete steps in order to better simulate flow.  

The system is then solved for at each step in an iterative process until convergence is 

reached [1].  The system is simulated until the torque measurements on the impeller reach 

a quasi-steady state: 

  

  
    (3.4) 

In this case, the interface with the stationary domain will not line up perfectly and 

an interpolation step is needed in order to model the corresponding velocity gradients into 

the stationary domain [12].   

A few additional steps are required for system setup.  The main impeller shaft is 

removed in order to accommodate the free surface concept presented earlier.  The impact 

to results from this minor alteration is considered insignificant.  The rotating domain is 

modeled so that only the impeller section is encapsulated within the stationary domain 
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[14].  Figures 3.11 and 3.12 demonstrate the geometries used in the Sliding Mesh 

approach.  The surface area of the stationary domain that is exposed to the air is assumed 

to have normal atmospheric pressure (p = 101325 Pa). 

It is desired to model the vortex formation in the un-baffled system.  In these 

scenarios, viscous stress    is modelled at the surface as follows: 

                        {(     )      } (3.5) 

where    is the normal, P is the outside pressure,    is the surface tension force, σ is the 

surface tension coefficient, and    is the surface gradient [5].  Consider the definition of 

the Contact Line to be the point where the liquid, air, and vessel wall meet together.   At 

this intersection, a slip boundary condition is applied that allows that Contact Line to 

move free freely along the vessel wall.  For simplicity, the contact angle is held constant 

at 90°. 

 

           
 

Figure 3.11  Sliding Mesh geometry 

with submerged rotating domain, un-

baffled. 

          

 

Figure 3.12  Sliding Mesh geometry 

with submerged rotating domain, semi-

baffled. 
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There are a few drawbacks to this technique.  Recall that the mesh within the 

rotating domain does not deform; therefore, the effects of vortex formation on the power 

requirements of the impeller may not be fully realized.  Furthermore, the simulated 

surface deformation can never go past the rotating domain and the system may not 

converge.  For these reasons and the complexity of model setup, the free surface is only 

considered for the purposes of simulating the vortex. 

3.6  Liquid Free Surface Modeling 

In fully baffled mixing systems, the liquid free surface is nearly perfectly horizontal 

because of the presence of the baffles that convert some of the tangential flow generated 

by the impeller into axial flow.  The liquid free surface is similarly horizontal in partially 

baffled systems, although a very small asymmetric vortex can be observed.  Therefore, in 

this work, the liquid free surface for fully baffled and partially baffled systems was 

always assumed to be flat. 

However, in the unbaffled system, liquid free surface may actually inflect and 

create a vortex depending on the agitation intensity.  In such a case, the liquid exhibits a 

tangential motion from the rotating impeller that, as the impeller speed increases, begins 

to approximate a solid body rotation and mixing efficiency deceases.  Furthermore, the 

quasi-rigid body of fluid produces a rotational inertial force centered on the rotating shaft 

of the impeller [12].  This corresponds to a dynamic pressure gradient that is lowest in the 

center, gradually increasing towards the wall of the vessel, producing a central vortex 

surface deformation.  As expected, the free surface of the liquid within the cylindrical 

vessel assumes a parabolic surface shape from the centrifugal force [5]. 
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As the Reynolds number increases, the vortex will begin to appear without 

baffling and the Froude number increasingly becomes a factor [15].  The Froude number, 

Fr, is the ratio of inertial and gravitational forces: 

    
   

 
 (3.6) 

This equation clearly demonstrates that Fr will increase as impeller speed 

increases.   

Vortex formation is undesirable as mixing efficiency is diminished [7].  In 

physical experiments, evidence of the vortex has been shown to significantly reduce the 

power dissipation of the system, and therefore may produce faulty CFD results if the 

forces that induce surface deformation are not considered in the modeling approach [5] 

[10] [14].  Three methods are generally utilized in order to minimize vortex formation: 

baffling, offsetting the impeller shaft, and angling the impeller shaft in a non-

perpendicular fashion [7]. 

Centrifugal forces are accounted for within each modelling scenario.  However, in 

order to model vortex formation effectively using CFD, a time dependent study is a 

requirement.  This is very computationally expensive and is only performed on the un-

baffled systems in this study.  The approach was taken to submerge the reference frame 

such that it is encapsulated by the spatial frame, where the spatial frame presents the 

liquid surface [14].  Influence from the impeller shaft is ignored and removed from the 

geometry.  The reference frame surrounds the impeller, whereas the spatial frame 

comprises the rest of the volume within the vessel.   

In the geometry of the sliding mesh technique, there exists an exposed surface of 

the spatial frame to the air, creating a three-phase intersection: the liquid within the 
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spatial frame, the vessel wall, and the air to which the surface is exposed.  The 

assumption is made that external conditions such as pressure and temperature within the 

air have a negligible impact on vortex formation.  Although the mesh within the reference 

frame cannot be altered, the nodes contained within the spatial frame can be deformed to 

model the surface deformation and takes into consideration the surface tension forces 

within the rotation system. 

3.7  Impeller Power Number Calculation 

For each scenario ran on the model, it is desired to obtain the power dissipation.  The 

torque applied to the impeller is calculated by taking the force applied to the impeller 

blade and integrating across the surface of the impeller.  This is multiplied by three to 

account for each of the blades of the impeller: 

      ∫          (3.7) 

where M is the torque, A is the surface area of the impeller blade, and F is the force 

applied [7].  The torque from the rotating shaft itself is negligible and ignored for 

practical purposes.  Torque is then multiplied by the angular velocity to obtain the power 

required to overcome the magnitude of forces that resist impeller rotation at a specified 

speed.  Note that the impeller speed is in Hertz: 

                 ∫          (3.8) 

where P is power [7].  When flow within the vessel is fully turbulent, power is also 

approximated from the kinetic energy per unit volume of the liquid multiplied by the flow 

from the impeller.  For the volumetric flow rate Q, recall the standard equation: 
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    v     (3.9a) 

where A is the cross-sectional vector area [10].  However, if the impeller blade width W 

is considered proportional to the impeller diameter    and the impeller speed is 

considered at the tip of the impeller blade, the following relationship emerges: 

    v       (      
  
 
) (    

  
 
)  (        ) (    ) (3.9b) 

The above equation includes   as a scalar to accommodate discrepancies in actual 

versus ideal velocities: 

              
    (3.9c) 

The kinetic energy per unit volume (
 

 
) follows a similar substitution for velocity: 
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If W is proportional to   , then Equation 3.9c and 3.10b are combined to formulate a final 

relationship with the power dissipation: 
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  (3.11) 

After the rearranging of terms, the dimensionless Newton number    is obtained [7] [10]: 

   
 

   
   

   (3.12) 

Power and the impeller Newton number will be the primary means of evaluating 

the CFD modelled systems.  In the fully and semi baffled systems, it is expected that     

will be a function of the Reynolds number in laminar flow [10].  In turbulent flow, 

however, inertial forces will dominate and the Newton number will become proportional 
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to    
   

 , essentially remaining constant.  In the un-baffled system, vortex formation 

increases with impeller speed and the Froude number becomes part of the equation [15].  

Therefore, a decreasing trend in the Newton number is predicted. 

An alternative method of calculating the power dissipation is possible but may not 

be as robust as that presented in Equation 3.8.  If the power is considered per unit mass, 

the result can be equated to the turbulent energy dissipation rate ε: 

   
 

  
         (2.19) 

where P is power and V is the liquid volume within the vessel [12].  For the vessel 

utilized in this study, liquid volume of the tank is estimated assuming the geometry 

consists of a cylindrical wall conjoined with a halved ellipsoid: 

      (   )   (
 

 
) (
 

 
)     (2.20) 

where r is the tank radius, l is the liquid height inside the tank, and c is the radius of the 

ellipsoid along the z-axis [3].  From prior measurements, r is 222.5 mm, l is 445 mm, and 

c is 101.6 mm.  The tank volume is calculated as 0.0654 m
3
.  The fluid properties of the 

liquid used in the experimental system is assumed to be deionized water and low 

viscosity [2].   

3.8  Summary of the Modeling Procedure Used in This Work 

The CFD models are designed to mimic experimental results in order to gauge accuracy 

of the computational assumptions, techniques, and equations presented in the theoretical 

section of this paper.  Three models are built separately, one for each baffled/un-baffled 
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system.  Computer and software specifications are presented in Appendix B.  The basic 

design process consists of the following steps: 

1. Model selection: Three models are considered based on the baffling system 

selected for simulation.  The standard k-ε turbulence model is selected for 

running all scenarios with RANS.  Fluid is considered incompressible; 

temperature, density, and dynamic viscosity are all held as constants: 293 K, 

998.2 kg/m
3
, and 993×10

-6 
 a s, respectively. 

2. Geometry: The vessel, impeller, and baffling system are created according to 

the specifications outlined in Chapter 3.  Careful consideration is given to 

impeller design and removing edges along smooth surfaces that were created 

during the design process in order to create uniform meshing. 

3. Reference framing:  Boundaries are created that divide the geometry into 

rotating and stationary domains.  When the MRF or Sliding Mesh approach is 

selected, the rotating domain is submerged to encapsulate the impeller only, as 

displayed in Figures 3.11 and 3.12.  Flow continuity is assigned to this 

boundary, allowing velocity gradient information to flow from the rotating to 

the stationary domain.  At this point, the impeller speed is defined and 

rotational direction is set to the negative angular velocity.  Rotating machinery 

is distinguished from the interior walls (i.e., baffling).  Surface roughness is 

ignored for simplification of computation.  Also for the sliding mesh 

approach, the stationary domain allows for surface deformation and, 

consequently, a condition for the mesh (the stationary domain only) to become 

adaptive to the vortex formation, including a slip condition along the inside 
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vessel walls.  The surface tension coefficient is initially set at 7.28×10
-2

 N/m 

and the contact angle is held constant at 90°. The fluid above the liquid is 

defined as normal air with an atmospheric pressure application (101325 Pa). 

4. Meshing: The grid is applied using an adaptive, free tetrahedral technique.  

See Chapter 2 for further details.  Finer meshing is applied for the impeller, 

baffling, and flow continuity between the rotating and stationary domains. 

5. Study: The modeling technique will define how the study will proceed.  For 

the MRF approach, the model at this point is ready for computation.  For the 

sliding mesh study, the model is first run using the MRF approach.  The 

results will then serve as the initial solution for the time dependent study in 

order to minimize computation time.  The time dependent study is carried out 

to cover several rotations under the specified impeller speed.  For instance, 

when impeller speed is 75 revolutions per minute (RPM), or 1.25 Hz (1/s), the 

system is ran to cover a span of 40 seconds, solving the system in 0.1 second 

intervals.  Literature suggests that a quasi-steady state is reached within 30 

revolutions [9]. 
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CHAPTER 4 

RESULTS 

4.1 Power Numbers for Varying Baffling Systems and Impeller Speeds 

Impeller speed in the simulations is varied between 20 RPM and 200 RPM.  At each 

speed the model is ran independently until convergence is reached with a residual error of 

less than 10
-6

, which equates the sum of terms in partially converged solutions. The first 

system considered is the fully baffled system, which is run using the MRF approach.  

Liquid height is set equal to the vessel diameter and impeller clearance is 40 mm from the 

torispherical bottom.  Time to convergence averages 7.5 hours per scenario. 

Calculating the Reynolds number reveals that the flow is turbulent flow for all 

impeller speeds considered in this system.  Furthermore, the expectation is that the 

inertial forces will dominate and the power will become proportional to    
   

 , the 

denominator of the Newton number Np [15].  After convergence in the system is reached, 

the torque is calculated on the surface of the impeller blades and power is calculated 

using Equation 3.8.  Summary of the data for this series of computations is presented in 

Table 4.1 below. 

 

Table 4.1  Newton Numbers for the Fully Baffled System, H/T = 1 

Agitation Rate 
Ni (RPM) 

Reynolds Number 
Re 

Torque 
M (N∙m) 

Power 
P (W) 

Newton Number 
Np 

20 1.38E+04 0.00447 0.009 0.743 

50 3.44E+04 0.0279 0.146 0.741 

75 5.16E+04 0.0630 0.495 0.744 

100 6.88E+04 0.111 1.164 0.739 

150 1.03E+05 0.250 3.932 0.739 

200 1.38E+05 0.444 9.296 0.737 
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In the fully baffled system, the Newton number remains fairly constant at each 

impeller speed.  Figure 4.1 clearly illustrates that that in turbulent flow, Np becomes 

independent of Reynolds number, which is consistent with our expectations.  There is a 

very slight decrease in the Newton number as the agitation rate increases; however, it is 

not statistically significant and is possibly due to residual error in the calculation process.  

On average, the Newton in turbulent flow remains around 0.74.  Figures 4.2, 4.3, and 4.4 

depict the normalized velocity flow fields across each grid element. 

 

 

Figure 4.1  Plot of Newton numbers for the Fully Baffled System, H/T = 1. 
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Figure 4.2  Top view of the velocity profile, fully baffled system, 100 RPM,  normalized 

vector flow field across each element, cross sectional slice of the xy-plane 100 mm from 

the liquid surface. 

 

 

Figure 4.3  Velocity profile of the fully baffled system, side view, 100 RPM, normalized 

vector flow field across each element, cross sectional slice of the yz plane down the 

center of the vessel. 
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Figure 4.4  Close up of the velocity profile around the impeller, fully baffled system, 100 

RPM, normalized vector flow field across each element, cross sectional slice of the yz 

plane down the center of the vessel. 

 

The next system considered is the semi-baffled system with a single beavertail-

style baffle.  The same series of impeller speeds are run in the model using the same 

parameters.  For these simulations, impeller clearance was set at 40, H/T = 1, and 

agitations speed is considered from 20 to 200 RPM.  Surface deformation is not in 

consideration.  Results are based on the MRF approach and presented in Table 4.2 below.  

Time to convergence averages 8.1 hours per scenario. 
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Table 4.2  Newton Numbers for the Semi-baffled System, H/T = 1 

Agitation Rate 

Ni (RPM) 

Reynolds Number 

Re 

Torque 

M (N m) 

Power 

P (W) 

Newton Number 

Np 

20 1.38E+04 0.00378 0.008 0.627 

50 3.44E+04 0.0236 0.124 0.627 

75 5.16E+04 0.0532 0.418 0.628 

100 6.88E+04 0.0950 0.995 0.631 

150 1.03E+05 0.212 3.329 0.626 

200 1.38E+05 0.377 7.896 0.626 

 

In this system, there is a considerable decrease the Newton number as a result of 

the decreased power consumption from the use of a single baffle. Figure 4.5 illustrates 

that the Newton number remains essentially constant at each impeller speed.  Figures 4.6 

and 4.7 depict the normalized velocity flow fields across each grid element. 

 

 

Figure 4.5  Plot of the Newton number in the semi-baffled system, H/T=1. 

0.500

0.550

0.600

0.650

0.700

0.750

Reynolds Number, Re 

Semi-Baffled Sytem 
Newton Number, Np 



34 

 

 

 

 

Figure 4.6  Top view of the velocity profile, semi-baffled system, 100 RPM,  normalized 

vector flow field across each element, cross sectional slice of the xy-plane 100 mm from 

the liquid surface. 

 

 

Figure 4.7  Velocity profile of the semi-baffled system, side view, 100 RPM, normalized 

vector flow field across each element, cross sectional slice of the yz plane down the 

center of the vessel. 
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As in indicated in Chapter 3, the semi-baffled system requires a time dependent 

study in order to accurately describe the fluid flow.  Therefore, the results of the scenario 

above for 100 RPM are utilized as initial conditions for the sliding mesh technique over 

the course of 40 seconds in 0.1 second intervals.  Impeller clearance is 40 mm.  Time to 

convergence was approximately 64 hours.  Torque measurements are taken across the 

impeller blades at each time interval and used to calculate power.  After approximately 

37 revolutions, a quasi-steady state is reached and power becomes linear over time.  

Between 45 and 55 revolutions, power essentially becomes 0.826 W with a standard 

deviation of less than 6.15E-04 W.  Using Equation 3.12, the Newton number for the 

semi-baffled system at 100 RPM (Re = 6.88E04) is 0.523.  Details are presented in 

Figure 4.8 below and the full set of data is given in Appendix C. 

 

 

Figure 4.8  Power measurements, semi-baffled time dependent study. 
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Finally, this series of computations end with the un-baffled system.  Again, the 

same experiments are run using the same parameters as earlier.  Impeller clearance set to 

40 mm.  Time to convergence was approximately 3.5 hours per scenario.  Results for the 

un-baffled system using the SRF approach are presented in Table 4.3 below. 

 

Table 4.3  Newton Numbers for the Un-baffled System, H/T = 1 

Agitation Rate 
Ni (RPM) 

Reynolds Number 
Re 

Torque 
M (N∙m) 

Power 
P (W) 

Newton Number 
Np 

                        75  5.16E+04 0.0263 0.207 0.311 
                      100  6.88E+04 0.0471 0.494 0.313 
                      150  1.03E+05 0.105 1.64 0.309 
                      200  1.38E+05 0.187 3.91 0.310 

 

 

 

Figure 4.9  Plot of the Newton number in the un-baffled system, H/T=1. 
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4.2 Power Numbers for Varying Impeller Clearance 

The change in impeller clearance is considered for the fully baffled system and semi-

baffled systems only.  Three separate clearances are studied for the fully baffled system: 

40 mm, 100 mm, and 200 mm.  Two separate clearances are studied for the semi- baffled 

system: 40 mm and 100 mm.  At 40 mm, the results have already been obtained in 

Section 4.1 and presented again here for comparative purposes.  By increasing impeller 

clearance, the flow pattern for the entire system may change and the effect on power 

consumption is unknown.  Aside from altering impeller clearance, all system parameters 

remain the same as the setup in Section 4.1.  Data for the impeller clearance is presented 

in Tables 4.4 and 4.5. 

 

Table 4.4  Newton Numbers, Fully Baffled, H/T = 1, Impeller Clearance = 100mm 

Agitation Rate 
Ni (RPM) 

Reynolds Number 
Re 

Torque 
M (N∙m) 

Power 
P (W) 

Newton Number 
Np 

20 1.38E+04 0.00456 0.010 0.757 
50 3.44E+04 0.0284 0.149 0.755 
75 5.16E+04 0.0641 0.503 0.757 
100 6.88E+04 0.112 1.176 0.746 
150 1.03E+05 0.254 3.996 0.751 
200 1.38E+05 0.452 9.473 0.751 

 

Table 4.5  Newton Numbers, Fully Baffled, H/T = 1, Impeller Clearance = 200mm 

Agitation Rate 
Ni (RPM) 

Reynolds Number 
Re 

Torque 
M (N∙m) 

Power 
P (W) 

Newton Number 
Np 

20 1.38E+04 0.00463 0.010 0.769 

50 3.44E+04 0.0291 0.152 0.773 

75 5.16E+04 0.0636 0.500 0.751 

100 6.88E+04 0.115 1.204 0.764 

150 1.03E+05 0.256 4.021 0.756 

200 1.38E+05 0.457 9.571 0.759 
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Figure 4.10  Velocity profile of the fully baffled system, side view, 100 mm clearance, 

100 RPM, normalized vector flow field across each element, cross sectional slice of the 

yz plane down the center of the vessel. 

 

 

 

Figure 4.11  Close up of velocity around the impeller, fully baffled, 100 mm clearance, 

100 RPM, normalized vector flow field across each element, cross sectional slice of the 

yz plane down the center of the vessel. 
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The newton number distribution across multiple rotational speeds when impeller 

clearance is increased to 200 mm is surprisingly close to the results achieved at 100 mm 

clearance.  The Newton number remains fairly constant in the turbulent environment, 

averaging approximately 0.76 between 20 and 200 RPM.  Figures 4.10 and 4.11 depict 

the normalized velocity flow fields across each grid element.  From the velocity profile, 

there is considerable interaction between the baffling and flow from the impeller.  In 

contrast to the velocity cross section profile in Figure 4.11, the vortex is more developed, 

as evidenced in the lower left right quadrant immediately under the plate baffling. Also, 

the velocity gradients closer to the surface appear more oriented towards the center as 

opposed to Figure 4.13, where the orientation is more parallel with the impeller main 

shaft.  Finally, the vortex immediately under the impeller is less pronounced.  Figure 4.12 

shows the similarities in Newton number between the clearances. 

 

 

Figure 4.12  Plot of Newton number, fully-baffled system, varying impeller clearance. 
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Figure 4.13  Velocity profile, fully baffled system, impeller clearance set to 200 mm, 100 

rpm, normalized vector flow field across each element, cross sectional slice of the yz 

plane down the center of the vessel. 

 

In the semi-baffled system, the impeller clearance is adjusted to 100 mm using the 

MRF approach.  The Newton number remains fairly constant at approximately 0.631, 

slightly increased from the impeller clearance set at 40 mm, which gave 0.627.  Details of 

the data and velocity profile are presented in Table 4.6 below.  Figure 4.14 indicates that 

using the MRF approach without surface deformation results in a linear result across 
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various impeller speeds.  Figure 4.15 depicts the normalized velocity flow fields across 

each grid element. 

 

Table 4.6  Newton Numbers for the Semi-baffled System, H/T = 1 

Agitation Rate 

Ni (RPM) 

Reynolds Number 

Re 

Torque 

M (N m) 

Power 

P (W) 

Newton Number 

Np 

20 1.38E+04 0.00380 0.008 0.631 

50 3.44E+04 0.0237 0.124 0.630 

75 5.16E+04 0.0534 0.419 0.631 

100 6.88E+04 0.0952 0.996 0.632 

150 1.03E+05 0.214 3.363 0.632 

200 1.38E+05 0.380 7.959 0.631 

 

 

 

 

Figure 4.14  Newton numbers, semi-baffled, H/T=1, varying impeller clearance. 
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Figure 4.15  Velocity profile of the semi-baffled system, side view, 100 mm clearance, 

100 RPM, normalized vector flow field across each element, cross sectional slice of the 

yz plane down the center of the vessel. 

4.3 Vortex Formation with Time Dependent Study 

Conditions are added for the modelling of surface deformation in the un-baffled system.  

The rotational speed is considered at 100 RPM and 200 RPM.  Liquid level is set equal to 

tank diameter at 445 mm.  The full vessel height is considered in the geometry to 

emphasize the slip condition applied to the inner walls.  Impeller clearance is 100 mm.  

Prior to running the model, an initial solution is calculated using the MRF approach.  The 

time dependent study is carried out using the Sliding Mesh approach with the reduced, 

submerged rotating domain and unstructured, adaptive stationary domain.  Viscous 
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stresses are applied at the surface using Equation 3.5.  The system is run over the course 

of 6 seconds in 0.1 second intervals.  At 6 seconds, vortex depth is measured from the 

bottommost point of the vortex to the original liquid height, giving 0.102 m at 100 RPM 

and 0.228 m at 200 RPM.  Figures 4.16, 4.17, and 4.18 reveal the simulated vortex 

formation.  Results suggest that CFD can be utilized as an effective tool to simulate 

vortex formation to aid the scale-up procedure of industrial-sized bioreactors. 

 

 

Figure 4.16  Velocity profile, un-baffled system surface deformation, 200 RPM, 

normalized vector flow field across each element, cross sectional slice of the yz plane 

down the center of the vessel. 
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Figure 4.17  Sliding Mesh, un-baffled system, course grid overlay, 100 RPM. 

 

 

 

Figure 4.18  Sliding Mesh, un-baffled system, course grid overlay, 200 RPM.
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CHAPTER 5  

DISCUSSION 

5.1 Comparison of Simulation Predictions for Power Number with Previous 

Experimental Results 

Previous studies on power dissipation have been conducted on systems somewhat similar 

to that studied here [2] [4] [5] [9] [11] [14].  However, the models built and tested in this 

study are based on an actual scaled down system used in this group [2].  Those 

experiments were carried out using a 0.25 HP motor for the retreat impeller.  Agitation 

speed and torque were measured using an Interface Rotary Torque Transducer, Model T6 

(Dual range 5/0.5 N*m) with a ±0.1 % maximum combined error.  The transducer is 

connected to an Interface Load Cell Indicator, Model 9850 (Digital, Multi-Channel) with 

a ±0.02 % maximum combined error.  

Power dissipation was measured for three separate baffling systems at varying 

impeller speeds.  All agitation speeds produced Reynolds numbers sufficiently high 

enough to warrant the use of the k-ε Turbulence model.  When fully baffled, the   D 

simulation using the MRF approach predicted an average Newton number of 0.753, 

which is very accurate when compared to the experimentally observed 0.764 (averaged 

over all agitation speeds) [2].  Table 5.1 gives a detailed comparison of the experimental 

and simulated studies using the MRF approach for each agitation speed and baffling 

system.  There is a noticeable decreasing trend in the power as the baffling is reduced in 

the simulations.  Furthermore, the experimental values show a slight decreasing trend in 

power as the agitation rate is increased, whereas the CFD study indicates a very stable, 

linear result across all impeller speeds. 
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Table 5.1  Comparative Study of the CFD Results to the Experimentally Derived Values, 

Impeller Clearance = 40 mm, H/T = 1 

 

System 

Impeller Speed (RPM) 

                                         
75             100             150  

           
200  

Fully baffled, experimental 0.838 0.763 0.757 0.724 

Fully baffled, CFD Result, MRF 0.757 0.746 0.751 0.751 

% Error -9.68% -2.23% -0.79% 3.73% 

     

System 

Impeller Speed (RPM) 

                                         
75             100             150  

           
200  

Un-baffled, experimental 0.355 0.297 0.266 0.295 

Un-baffled, CFD Result, SRF 0.311 0.313 0.309 0.310 

% Error -12.4% 5.39% 16.17% 5.08% 

     

System 

Impeller Speed (RPM) 

                                         
75             100             150  

           
200  

Semi-baffled, experimental 0.601 0.547 0.555 0.520 

Semi-baffled, CFD Result, MRF 0.631 0.630 0.632 0.631 

% Error 5.0% 15.17% 13.87% 21.34% 

     

System 

Impeller Speed (RPM) 

100 

Semi-baffled, experimental 0.547 

Semi-baffled, CFD Result, Sliding Mesh 0.532 

% Error -2.74% 

 

MRF is appropriate when vortex formation is minimized with the baffled system.  

However, the percentage error in semi-baffled systems from Table 4.2 shows that MRF is 

less adequate in these scenarios and a time dependent study is required for increased 

accuracy.  When the impeller clearance is raised to 200 mm in the fully baffled system, 
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the CFD model comes very close to the actual value and is also suitable for the MRF 

approach.  This comparison is presented in Table 5.2 below. 

 

Table 5.2  Comparative Study of the CFD results, Impeller Clearance = 200 mm 

System 

Impeller Speed (RPM) 

          75          100          150          200  

Fully baffled, experimental 0.751 0.764 0.756 0.759 

Fully baffled, CFD Result, MRF 0.816 0.801 0.763 0.726 

% Error 8.68% 4.78% 0.89% -4.32% 

 

The percentage error is reasonably within the same range as the same system at 40 

mm clearance.  At 40 mm, the impeller was rotating below the baffles, whereas at 200 

mm, the impeller flow is alongside the baffle.  Therefore, the interaction of the impeller 

and the baffling is greatly intensified at 200 mm as visualized in Figures 4.10 and 4.13; 

improving the meshing at the flow continuity boundary between the rotating and 

stationary domain is likely to produce better results.  Furthermore, there is also the 

possibility of a strong vortex near the surface that is also contributing to the power 

dissipation [5]. 

The Sliding Mesh approach was successful in narrowing the percentage error in 

the semi-baffled system.  Using this method, the overall percentage error between the 

MRF and Sliding Mesh study decreased from -12.4% to -2.74%, an overall increase in 

accuracy of 9.7%.  However, there are limitations to the approach taken in this study.  

The mesh should be made as refined as computationally feasible at the flow continuity 

condition to improve the flow fields as they approach the free surface. 
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Table 5.3  Comparative Study of the CFD results, Including Sliding Mesh, 100 RPM  

Semi-Baffled 
System 

Newton Number 
Np % Error 

Experimental 0.547 n/a 

CFD, MRF 0.632 -12.4% 

CFD, Sliding Mesh 0.532 -2.74% 

 

5.2  Optimization and Computation Time 

Due to the combination of a three blade impeller and either a four plated or single 

beavertail baffling system, a periodic flow was not considered for this study.  Assuming a 

symmetrical system, such as a four blade impeller with four baffles, the vessel can be 

divided into equal sections and the system is set to compute only one representative 

section.  For global variables, the value is simply multiplied by the total number of 

sections to obtain the system value.  For demonstration purposes, a sample study was 

performed on the un-baffled system, where the vessel was divided into three equal 

sections, one for each of the three impeller blades.  After convergence, the Newton 

number was found to be identical to the value obtained in Section 4.1, but computation 

time was reduced by over 70%.  When sliding mesh or adaptive mesh is not required, 

adding a periodic flow condition may be sufficient for power dissipation simulations. 
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Figure 5.1  Top view, fully-baffled meshing, MRF technique, periodic flow condition. 

  

Additionally, the system is very sensitive to the size of the rotating domain for 

MRF and Sliding Mesh studies.  If the rotating domain boundary is too close to the 

impeller blade tips, the system may over-estimate the torque; too far away and the system 

may under-estimate torque or even fail to converge.  Geometries should be simplified to 

avoid inverted meshing and edges should be smoothed where appropriate.
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CHAPTER 6  

CONCLUSIONS 

 

From the modeling work presented in this study, several conclusions may be drawn about 

the CFD simulation of the mixing system studied here.  The Multiple Reference Frame 

approach is appropriate for scenarios where surface deformation does not become an 

issue (i.e., fully baffled systems).  In the fully baffled system, the power dissipation was 

in very close agreement with the experimental results.  At the agitation rates considered 

in this study, the Reynolds number was sufficiently high enough that the inertial forces 

dominated the viscous forces.  Therefore, the power became proportional to the Reynolds 

number; consequently, the Newton number essentially remained constant for each 

impeller speed.  Overall, the Newton number of the three blade retreat impeller in fully 

baffled conditions where H/T =1 was calculated at approximately 0.75, consistent with 

the experimental result and also in published literature. 

In the un-baffled system, the SRF was appropriate to describe the power 

requirements of the system.  The Froude number becomes a considerable dynamic 

beyond a Reynolds Number of 200 where vortex formation is associated with a decrease 

in power dissipation.  The impact of inertial forces is simulated with the application of 

centrifugal and Coriolis effects.  Accuracy is achieved without performing time 

dependent studies.  At H/T =1, 100 RPM, and Re = 6.88E04, the Newton number is 

calculated as 0.313 and in agreement with experimental value.  For the purposes of 

modeling the actual vortex, three conditions were added to the model: submerge the 

rotating domain so that it is encapsulated within a stationary domain, apply a free surface 
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condition that allows for deformation of the grid within the stationary domain, and allow 

slippage on the interior portion of the vessel walls.  Running the model with these 

additions revealed a large central vortex consistent with expectations. 

By increasing the impeller clearance, a noticeable difference in the flow pattern 

emerges, as evidenced by Figures 4.10 and 4.13.  Furthermore, the increased impeller 

clearance also increases the flow interaction between the impeller and baffling, further 

changing the velocity profile of the system.  These two changes drive a minor increase in 

Newton number which is consistent with the experimental value.  Also, changes to the 

velocity profile closer to the liquid surface suggest that the solution is not truly steady 

state, but it may produce acceptable approximations.  A best practice would be to utilize 

the results from the approximation and set it as the initial solution of a time dependent 

study in order to fully model the unsteady solution of at least one full rotation. 

This work reveals that CFD is capable of modeling and reproducing similar 

results as those recorded from the physical experiments.  Steady state approximations can 

be utilized to calculate global variables with accuracy in baffled systems.  Further 

research could be conducted by refining the meshing around the impeller and also 

recalculating the time dependent study at increasing impeller speeds in order to 

demonstrate a decreasing trend in the Newton number for semi-baffled and un-baffled 

systems.
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APPENDIX A 

SYSTEM GEOMETRY SPECIFICATIONS 

Appendix A contains the values utilized in the geometry construction. 

 

Table A.1  Geometry Specifications 

 

Variable Value Description

VesselDiam 445 mm vessel diameter

LiquidHeight VesselDiam  liquid height

VesselHeightBottomToFlat 101.6 mm vessel height from bottom to flat section

VesselHeightFromFlat LiquidHeight-VesselHeightBottomToFlat  vessel height from flat section

ImpDiam 101.29 mm impeller total diameter

ImpShaftDiam 12.7 mm impeller shaft diameter

ImpShaftHeight 470 mm impeller shaft height

ImpSpeed 1.25 1/s impeller rotational speed

ImpBottomClearance 100 mm impeller bottom clearance

RetreatImpBladeThickness 12.7 mm retreat impeller blade thickness

RetreatImpConnShaftDiam 25.5 mm retreat impeller connecting shaft diameter

RetreatImpBladeHeight 25.4 mm retreat impeller blade height

RetreatImpBladeRadOfCurve 91.7 mm retreat impeller blade radius of curvature

RetreatImpBladeCurveCentralAngle 62.2 deg retreat impeller blade curve central angle

RetreatImpConnShaftHeight 31.9 mm retreat impeller connecting shaft height

RetreatImpShaftOffset 3.08 mm retreat impeller shaft offset

RetreatImpBladeAngle 15 deg retreat impeller blade angle

BaffleOffsetFromWall 70.3 mm baffle offset from vessel wall

BaffleOffsetFromBottom 170 mm baffle offset from vessel bottom

BeaverBaffleBottomDiam 40.12 mm beavertail baffle bottom diameter

BeaverBaffleBottomLength 67.7 mm beavertail baffle bottom length

BeaverBaffleMidDiam 44.6 mm beavertail baffle middle diameter

BeaverBaffleMidLength 152.4 mm beavertail baffle middle length

BeaverBaffleTopDiam 30.5 mm beavertail baffle top diameter

BeaverBaffleTopaLength 225 mm beavertail baffle top length

BeaverBaffleThickness 27.6 mm beavertail baffle thickness

BeaverBaffleConeHeight 46 mm beavertail baffle cone section height

PlateBaffleWidth 45 mm plate baffle width

PlateBaffleThickness 4.76 mm plate baffle thickness

PlateBaffleHeight 445 mm plate baffle height
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APPENDIX B 

TECHNICAL INFORMATION OF THE COMPUTATIONAL HARDWARE AND 

SOFTWARE USED IN THIS WORK 

Appendix B contains the computer and software information utilized in this study. 

 

 

Figure A.1  Computer technical information.

Component Description

Operating System Windows 7 Professional, 64 bit, Service Pack 1, Microsoft Corporation

Processor AMD Phenom 9950 Quad-Core Processor, 2.60 GHz

RAM 8 GB 240-Pin DDR2 SDRAM 1066

Graphics EVGA GeForce GT 630, 2 GB DDR3

Computing Software COMSOL Multiphysics 4.4 with CFD Module
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APPENDIX C 

TIME DEPENDENT STUDY DATA 

Appendix C contains the data from the time dependent study performed on the semi-

baffled system. 

 

Table A.2  Time Dependent Study Data, Semi-baffled System 

 

Semi-baffled system, Sliding Mesh Technique

H/T =1, 100 RPM, Re = 6.88E-04

Time (s) Revolutions Power (W)

0 -                0.000

1 1.67              0.965

2 3.33              1.004

3 5.00              0.939

4 6.67              0.895

5 8.33              0.878

6 10.00            0.866

7 11.67            0.861

8 13.33            0.855

9 15.00            0.851

10 16.67            0.844

11 18.33            0.837

12 20.00            0.829

13 21.67            0.818

14 23.33            0.811

15 25.00            0.806

16 26.67            0.807

17 28.33            0.809

18 30.00            0.812

19 31.67            0.816

20 33.33            0.821

21 35.00            0.824

22 36.67            0.826

23 38.33            0.827

24 40.00            0.828

25 41.67            0.828

26 43.33            0.828

27 45.00            0.827

28 46.67            0.827

29 48.33            0.826

30 50.00            0.826

31 51.67            0.826

32 53.33            0.827

33 55.00            0.826
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