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ABSTRACT 

DYNAMICS OF 1D GRANULAR COLUMN 

by 

Luo Zuo 

This dissertation is focused on a discrete element study of the dynamics of a one-

dimensional column of inelastic spheres that it subjected to taps by prescribing a half sine 

wave pulse to supporting floor. Contact interactions obey the Walton-Braun soft-sphere 

model in which the loading (unloading) path is governing by linear springs of stiffness 

K1, thereby producing collisional energy loss through a constant restitution coefficient e. 

Over a ‘short time scale’, computations are done to examine the floor pulse wave as it 

propagates through the column contact network. Comparisons of the simulated findings 

are made with experimental measurements in the literature where possible. Principal 

emphasis is placed on computing various measures of the evolution of the system that 

occurs over a long time scale, i.e., the time interval over which the system undergoes a 

dilation and contraction to a quiescent state after the application of the tap. Here the goal 

is to chart the column behavior as a function of the amplitude and frequency of the tap, as 

well as the number of particles in the system and energy dissipation as characterized by. 

While at the outset, it may appear that this is a simple system, the dynamics in fact are 

enormously complex as computed Poincaré maps of the mass center trajectories reveal 

periodic, period doubling and chaotic regimes. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

Granular materials exist all over our world. Soil, sand and snow, fracture of stones may 

be viewed as complex granular systems. In industry, tons of raw materials are handled 

and processed daily to produce goods in everyday use.  Industrial processes developed to 

work with bulk solids generally require various systems that are used to transport and 

manipulate the material (for example [1-3]).  The design of these systems requires some 

knowledge of how the materials behavior under various loading scenarios[4]. And one of 

the most important of these is vibration (e.g., [5-11]), which is often used to induce 

motion and enhance mobility.  

Over the course of the last 60 years since the pioneering work of R. Bagnold[12, 

13], research efforts to understand the behavior of granular systems have been 

intensifying as evidenced by collaborative efforts between various communities (i.e., 

mathematics, engineering and physics). And while substantial process has been made, a 

model capable of describing the behavior of granular systems over the full gamut of 

observed phenomena remains tenuous.  Indeed, in comparison to the well-understood 

behavior of fluids, gases and solids, for which there are predictive models, the science of 

granular materials is really still in its infancy[4].  

Early laboratory experiments carried out on granular materials generally focused 

on measuring flow properties that were easily observed as acquiring data within the 

material was extremely difficult. The development of very sophisticated, non-invasive 
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methods (e.g., magnetic resonance imaging[14-18], X-ray tomography[19-21], positron-

emission tracking[22, 23]) has opened up the field so that it is now feasible to collect data 

on physical processes within the material – albeit at high cost.  What’s more, experiments 

of this nature have enhanced our understanding of the behavior of granular solids within 

restricted flow regimes. And while it is expected that continued advances in non-invasive 

technologies will enlarge the archive of experimentally-gathered data to realistic 

(industrial) flows, broader discoveries and insights can be achieved via an approach that 

couples experimental findings and particle-level computer simulations under an umbrella 

of emerging theoretical models.  It is within this philosophical framework that the 

investigation reported in this dissertation was done.   

Perhaps one of the most interesting loading scenarios for a granular system are 

vibrations or discrete taps[24, 25], as, by carefully controlling the input, it is possible to 

observe a full gamut of behavioral regimes, from quasi-static [26-29]to rapid energetic 

flows[30-35].  The fact that many industrial handling processes make use of some form 

of mechanical vibrations[10, 11] to either enhance or induce motion provides a strong 

motivation to pursue research focused on unraveling governing physics that dictates 

observed behavior.  It is well-know that particle masses can be fluidized through the 

application of energetic vibrations, or its bulk density (or solids fraction
1
) can evolve to a 

rather ordered structure with dislocations [5, 36-44].  In fact, the degree to which the 

density grows and characterization of the microstructure has been the subject of extensive 

studies over many hundreds of years – starting with crystal structures.  In between these 

two disparate states, other behaviors engendered through continuous vibrations have been 

                                                 

1 The ratio of the volume of solids to the volume occupied. 
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observed and studied, such as period doubling instabilities, arching, and surface effects 

[45-57].   

An important and possibly critical mechanism is related to the coupling of energy 

into a particle assembly from a boundary – typically a supporting floor - via taps or 

continuous vibrations. In particular, one is interested in the propagation of momentum 

through particle contacts, the effect of collisional losses and relaxation to a rest state 

when the input is discontinued.  This dissertation focuses on these issues for a seemingly 

simple one-dimensional column of inelastic, uniform spheres that are subjected to taps 

via a prescribed pulse applied to the supporting floor.  The investigative approach 

involves discrete element simulations, in which the Walton-Braun linear loading-

unloading model[58, 59] is used to approximate collisional interactions.  A concise 

description of the methodology and the physical simulation model appears in Chapter 2.  

The transmission of a pulse or wave through a granular chain is a well-studied 

phenomenon that continues to be of interest due to its relevance among other things to 

designing granular structures capable of mitigating impact loads. In 1984, V.F. 

Nesterenko[60] developed a continuum model to study the propagation of waves in 

compressed one-dimensional chains. His elastic, non-dissipative theory featuring 

Hertzian contacts predicted a solitary wave(or a soliton) propagating through the 

assembly. And although there is no energy dissipation in the model
2
, the nonlinearity of 

the contact interactions isan important feature. The soliton has been experimentally 

validated by several groups ([61],[62-64]and [65]).  More recently, a continuum model 

                                                 

2 Because energy loss is an inherent attribute of real particles, contact models necessarily 

must incorporate dissipation so that one is able to study behavior beyond the short-time 

scale over which waves propagate. 
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was derived[66], based on a locally averaged limit as the number of particles goes to 

infinity, which incorporates collisional dissipation via simplified linear loading-unloading 

contacts.  Most significantly, it has been shown through rigorous analysis that this model 

admits soliton-like solutions in the perfectly elastic  case.[67].  

The literature survey that follows is organized from the perspective of the time 

scale relevant to the phenomenon under scrutiny:  (1) motion of the column from the 

onset of the tap through its collapse to a rest state –expressed as ‘long time scale’; and (2) 

dynamics in accord with the propagation of the wave disturbance through the column – 

designated as ‘short time scale’.  By far, there has been a great deal more written on (2) 

involving theory, experiments and simulations, while papers related to (1) are 

comparatively few. Consequently, this dissertation is primarily focused on the long time 

scale behavior of the tapped column.  

 

1.2 Literature Review – Long Time Scale 

In 1990, Bernu and Mazighi[68]considered the problem of   inelastic spheres (restitution 

coefficient  )  striking a wall (moving at constant velocity) in the absence of gravity. 

They reported the condensing of the spheres onto the wall below a critical restitution 

coefficient        ( 
   

  
)       ⁄         . Several years later[68], they 

communicated their results on the steady states of a vibrated column of inelastic beads, 

where three identified phases (labeled as gas, partially-condensed and collapsed) could be 

characterized by       .In 1993, Clement et al. [69]reported experimental and 

simulation findings on a continuously vibrated column of inelastic spheres, for which the 

principal breakthrough was that transitions between ‘solid’ to a fluidized state took place 
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with an increase in the external acceleration        ⁄ (  is the tap amplitude and   is 

the frequency). They also examined the column’s mean dilation as a function of  , as 

well as the dependence of profiles of density and kinetic energy on  . A discrete element 

study by Luding et al. [70]considered the same problem, in which one of the primary 

parameters was a normalized expansion (or dilatation) defined as   〈     〉   ⁄ .  For 

large      , their data suggested that      so that in the fluidized regime, the 

dimensionless energy    was the proper scaling parameter.The relative height of the 

mass center was found to represent the average behavior of the entire column, which 

scaled with       . 

In 1999, Goldshtein et al. [71]reported on both hard and soft-sphere simulations in 

which a column of slightly inelastic particles within a closed-end tube of length  was 

energized via periodic motion of a piston in the absence of gravity. Periodic oscillations 

of the column (equal to the vibration period of the piston) in the tube were found for 

sufficiently large amplitudes that featured constant velocity shock waves propagating 

across the tube (to the closed end) and back.  Computations of the average kinetic energy 

per particle suggested a square dependency on tap frequency  , such that its maximum 

scaled with      .  In 2001, the same authors presented results [72] on resonance 

oscillations in the tube. It was reported that the material move back and forth periodically 

with frequency   ⁄ , where   is a positive integer such that the oscillation pattern was 

governed by the shock wave transmitted through the column. Then, in  2001, Alexeev et 

al. [73]extended their earlier work to investigate (via a discrete element simulations) 

liquid-state / solid state regimes of vertical, sinusoidal vibrations (amplitude   and 

frequency  ) applied to a column of inelastic spheres under gravity. Dissipation was 
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incorporated into the contact model via a non-linear (displacement-weighted) dashpot 

with coefficient depending on particle material parameters. They were able to classify the 

liquid state via the dependence of the kinetic energy of the relative motion of the particles 

      
 

 
∑   ̇     ̇  

  
   and the mean-free-path      

 

   
(            

      )on the system dissipation parameter            .As a measure of the 

intensity of the relative motion between particles,      was perceived to be independent 

of      for the liquid state when       , representing highly dissipative particles. 

Moreover, an upper bound for the maximum value of the relative kinetic energy was 

identified as               
 
 ⁄           

 
 ⁄ , valid for        and          

  .The authors thereby delineate a highly dissipative column to be one in which the 

maximum relative kinetic energy is bounded as described above. Graphs of    versus 

tap acceleration   indicated that for dissipative particles (      ), the mean free path  

       for narrow ranges of  , which the authors reference as ‘repacking regions’. And 

thus, as  is increased, the system undergoes a sequence of transitions from a fluidized 

state to a solid-like (repacked) state. Upon renormalizing    by               ⁄ so that 

 ̂   
        

         
 over a range of      values the, there was a collapse of the data, from which 

       
         

      for       . The latter bound suggests the non-intuitive behavior 

that in the fluidized state, there is more dilation as dissipation increases. Further, all 

systems with large dissipation that are vibrated with sufficient energy undergo transitions 

from an expanded (‘liquid’) to the compacted (‘solid’) state.  
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1.3   Short Time Scale 

This section focuses on papers that are concerned with phenomena that take place over a 

time duration needed for a disturbance wave to propagate through the column. Although 

the subject matter of this dissertation is on the long-time dynamics of the column, this 

brief survey is included with the intention of presenting a larger picture of the complexity 

of the system.  Because the scale of the literature is quite extensive, in what follows, only 

a small, representative subset of the important theoretical, experimental and simulation 

findings is discussed.  

1.3.1 Theoretical Approaches 

Perhaps one of the most significant papers is that of Nesterenko[60], who in 1984 

developed a theoretical model that predicted the existence of a soliton (wave) propagating 

through a compressed chain of inelastic spherical beads governed by Hertzian contacts. 

Subsequently, various aspects of the phenomenon were explored, notably S. Sen and 

colleagues, and others. (See for example [74-88]).    

In 1985, Nesterenko and Lazaridi[89]numerically solved the model reported in 

[60] for a granular chain against a rigid wall that was impacted by a piston on the free 

end. The disturbance decayed into a train of solitary waves, which were reflected by the 

rigid wall. The soliton phase velocity was found to be in agreement with the original 

model. In 1994, Nesterenko[90]described the soliton solutions and a sonic vacuum type 

which comes from the rapid decomposition of an initial disturbance with steep fronts into 

the sequence of pulses. Experimentally measured forces transmitted from initial taps were 

observed to agree well with numerical calculations. The influence of gravity and 

nonlinear nature of the contacts on the propagation of a signal down long chains 
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(typically 1000 to 5000 particles) under weak to strong impulses was examined by 

Hong and  Xu[91]. The weak impulse spawned as weakly nonlinear, oscillatory signal in 

the chain, while the strong impulse generated a solitary signal. For both type of pulses, 

power-law behavior of the signal as a function of the depth was observed. The effect of 

gravity for the strong impulse was negligible so that the system could be viewed simply 

as a horizontal chain. The literature on uniform chains is quite extensive (for example, 

see [65, 83, 88, 92-101] ) so that a complete survey is beyond the scope of this survey.  

There has been great interest in ‘decorated’ chains as these one-dimensional 

structures have been shown to generate fascinating behavior, such as band gaps [80, 102, 

103] and impulse mitigation [104, 105]. For example, Harbola et al. [106]analytically 

studied decorated chains for various arrangements of smaller spheres placed between 

larger spheres.  The mapping of decorated chains into ‘effective’ undecorated chains 

allowed the authors to develop analytical results via the binary collision approximation 

for pulse propagation in the original decorated chains.  The authors continued this work 

in a follow-up paper [107] that included variation in the particle radius as well.  

1.3.2 Experiments 

Experimental validation of the predictions of Nesterenko’s theory was reported by 

Falcon[61],  Job[62-64], Santibanez et al. [65], and others. In 1997, Coste et al. [78] 

conducted experiments in which a force was applied to one end of a horizontal chain of 

beads, resulting in very good agreement with predictions from Nesterenko’s theory [89] 

for the velocity and shape of the solitary waves. For zero static pre-compression, the 

wave velocity was found to be proportional to the     power of the maximum amplitude 

of the wave. And with a static pre-compression, the wave velocity was inversely 

http://publish.aps.org/search/field/author/Jongbae%20Hong
http://publish.aps.org/search/field/author/Aiguo%20Xu
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proportional to the ratio of the maximum force and static pre-compression. In 1998, the 

same group [61] conducted another experiment in which the position and net force on 

each sphere was measured for a column dropped down an enclosing glass tube to the 

floor. They reached the follow conclusions from the data.  

1. The largest force experienced by the floor is independent of the number of 

particles   in the column.  

 

2. The duration of impact of the column with the floor varies linearly with  .  

 

3. The velocity of the deformation wave transmitted through the column was 

measured, consisting (first) of a compression wave propagating up to the top 

sphere, followed by an expansion wave moving downwards.   

4. The measured ‘effective restitution coefficient      was found to be in reasonably 

good agreement with Luding et al.’s hard-sphere simulation results, i.e.,      is 

reduced as   increases.  

Moreover, they were able to explain the first three findings above via 

Nesterenko’s theory for Hertzian contacts between the particles of the column.  In 2005, 

Job et al. [62] measured the solitary wave propagation of a granular chain bounded by a 

rigid wall without static pre-compression. Dynamic impulses measured through force 

sensors were in good agreement with Nesterenko’s theory. It was observed that the 

reflected wave depended on the material properties of the wall. In 2006, the same group 

reported experimental results on tapered chains [108] to demonstrate its shock attenuation 

capability.  The radii of the spheres    chosen in accordance to the rule              , 

where                  , resulted in a reduction of the wave amplitude coupled with 

an increase in its speed. The speed ratio of the solitary wave 
    

  
 [

  

        
]    was 

agreed very well with numerical predictions of Sen et al.[109].The authors published 

their experimental findings [63] on solitary waves and solitary wave trains in 2007 for 

mono-disperse and stepped chains. An explanation of the mechanism responsible for the 
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formation of either a solitary wave or solitary wave train was offered that involved the 

magnitude of the striker force and material properties of the chain. 

If the striker force is larger and force duration on the chain is shorter, then a single 

solitary wave is generated. If striker force is smaller (like the stepped chain from large 

balls to small balls) and force duration time is longer, then a solitary wave train will 

emerge. The authors also concluded that the force at the interface will be an exponential 

decay function of the duration time. 

In 2009, this group presented their experimental results [64] on energy 

localization of a granular chain. They pointed out that the wave propagating inside the 

chain will cause a local strain gradient that will excite localized oscillations. And the 

amplitude of these oscillations will be enhanced by the presence of a spatial gap near the 

tap. The nonlinear localization traps some energy and this will play an important role in 

wave mitigation. In 2011 [65], they reported experimental results on the interactions of 

two solitary waves.  When the two counter-acting waves collide, they cross each other 

with a small phase shift due to nonlinear interaction. This has been predicted previously 

from simulations by Sen et al. Also, this collision effect is independent of viscoelastic 

dissipation. More importantly, a secondary wave was observed when two equal 

amplitude and synchronized waves collide, thereby corroborating the numerical 

prediction of secondary waves. Also, as observed in simulation results, the secondary 

wave is stronger when collisions occur among an even number of particles and the 

amplitude of the secondary wave is proportional to the amplitude of the initial wave. 

However, experimentally measured wave amplitude were slightly larger than numerical 
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predictions – a discrepancy attributed to the rolling effect at the bead contact during the 

wave propagation.  

1.3.3 Simulation Studies 

In 1995, Sen and Sinkovits[110]examined the sound speed in a granular column 

subjected to weak and strong perturbations (i.e., a downward velocity was applied to the 

top particle) via simulations. The interaction potential was given by  

 (   )  {
 (   )

 
 ‖     ‖    

     ‖     ‖    

, 

where    is the position of particle  , is the cut-off distance for   beyond which there is 

no force between the particles, and   is a constant.For weak disturbances, the speed was 

found to vary with depth according to    (         ) in agreement with elasticity theory.  

They extended their work to investigations [111] on two-dimensional systems (disks) 

with voids and randomly distributed mass defects. 

In 2000, Sen et al. reported [112] that the crossing of identical solitary waves in a 

granular chain with Hertzian contacts spawned a secondary wave having an energy of 

approximately 0.5% of the original solitary waves.  The authors argued that secondary 

waves were a fundamental property of discrete systems.  

In 2007, Sen et al. published an extended review summarizing principal results 

and discoveries related to disturbance propagation and solitons in chains, focusing on 

nonlinear effects, the shape and speed of the wave, the formation of secondary waves and 

solitary waves in tapered and decorated chains. In the same year, Rosas et al. [113] 

reported findings concerning a two-wave structure in strongly nonlinear dissipative 

chains. 
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The influence of dissipation in the contact model has also been investigated, 

notably in the work of Liu et al. [114-116] and [88, 117, 118].  Results from simulations 

compared favorably with experiments findings of Sen et al. with regarding to the 

formation of secondary waves.  

 

1.4 Objective 

The objective of the research is to use DEM simulation to analyze the dynamics of a 

granular column for both long and short time scales. Long time scale problems are 

mainly focused on the column expansion and cooling process; trying to explain how tap 

parameters and material parameters affect the dynamics of the system and how energy 

evolves inside the system. For the short time scale part, the problem is to explain how the 

shock wave propagates through the column. During this process, it is also of interest to 

determine how the dissipative elements in the column affect the wave and furthermore 

make some comparison with other researcher’s work.  

 

1.5 Outline of Dissertation 

The remainder of this dissertation is organized as follows.  Chapter 2 describes the 

discrete element simulation model and arrangement of physical problem. Chapter 3 

presents the results for short time scales with a focus on the propagation of waves in the 

column and some comparisons with previous work by Falcon et al. Chapter 4 presents 

and discusses results of cooling dynamics of the system, while Chapter 5 discusses 

expansion dynamics of the column. Chapter 6proceeds with a discussion of results 
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regarding Poincaré maps computed from the data in the 1D dynamical granular system.  

Finally, Chapter 7 contains the conclusions and recommendations for further work. 
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CHAPTER 2 

SIMULATION METHOLODY AND DESCRIPTION OF THE PROBLEM 

 

2.1 Introduction to the Discrete Element Method 

The development of the discrete element method (DEM) is attributed to Peter Cundall 

[119] in the 1970’s independently as an outgrowth of molecular dynamics simulations 

used in the statistical physics community [120, 121]. The code that was used in this 

dissertation was developed by O. Walton [58, 59, 122, 123] in the early 1980’s to 

investigate uniform shear flows of inelastic, frictional spheres.  The basic idea is the 

numerical solution of the equations of motion of a system of particles that interact via 

known or approximate collisions models. Essentially, there are two classes of models. 

Hard sphere interactions [124, 125] feature instantaneous collisions in which post-

collisional velocities are determined via a collision operator that is a function of the pre-

collisional velocities and three material properties, i.e., a normal coefficient of restitution, 

a tangential restitution coefficient and a friction coefficient. Soft sphere model feature 

finite duration interactions in which the contact forces are functions of an allowed, 

physically realistic overlap between particles.   

There are significant scientific and technical challenges associated with extracting 

and processing meaningful data from particle-based simulations, not the least of which is 

the modeling of physical problems involving transitions to chaotic behavior accompanied 

by sensitivity to initial conditions and convergence of results.  Moreover, despite 

improvements in computing infrastructure that allows one to examine relatively large 

systems of the order of hundreds of thousands to millions of spherical particles 
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interacting with relatively simplistic (yet realistic) contact models, this is still a small 

sample as compared real granular solids. Consequently, the extraction of physically 

meaningful results for comparison with experimental measurements often requires 

ensemble averaging. Lastly, particles used in the bulk solids industries may vary greatly 

in size and shape, which adds enormous complexity due to the need to incorporate 

realistic interaction models and efficient contact detection strategies.   

In the work presented in this dissertation, the Walton-Braun model is used [123], 

in which particle load on a linear spring of stiffness    and unload on another linear 

spring of stiffness    such that      .  In simplified form, the normal force (along the 

line of centers) between two contacting spheres can be written as, 

                                {
                      

                     
                                        

where   is the overlap and    is the overlap when the unloading force goes to zero. At 

𝛼 

𝐾  

𝐹 

𝛼 

𝛼𝑜 

𝐾  

Figure 2.1  Illustration of the linear loading – unloading normal force model.  
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this point, the two spheres separate from each other at constant velocity. Figure 2.1 

depicts the model.  It can be shown [126] that the model produces a constant coefficient 

of restitution given by,   

                                                         √
  

  
                                                                               

which is valid for spheres whose relative normal impact velocity is of the order of       

or less [127].  The equations of motion are explicitly integrated via a Verlet leap-frog 

method [128] in which the time step is based on the loading period partitioned into   sub-

steps. Thus, the time step given by, 

    
 

 
√

 

   
                                                                             

For the value of the loading stiffness used in this dissertation (               ), 

particle density (            ⁄  which corresponds to acrylic),            . This 

value was sufficient to ensure overlap of less than approximately a percent of the 

diameter in accordance the behavior of real colliding spheres. However, simulations 

conducted to examine the wave speed (Chapter 3) required that the time step be reduced 

by two orders of magnitude. Details on the actual structure of the code can be found in 

several other sources (e.g., [129, 130])  and so they are not included in this work.  

 

2.2 Description of the Physical Problem 

The problem of interest in this dissertation involved a column of uniform, inelastic 

spheres that are supported by an rigid (infinite mass) floor, to which is prescribed a half-
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since pulse having displacement amplitude   ⁄  and frequency  . The period of the pulse 

is given by      ⁄    Each pulse is followed by a relaxation interval denoted by   . 

Figure 2.2 depicts the motion applied to the floor as well as a graphic showing the 

column of spheres. In order to ensure that the particles remained stacked along their lines 

of centers, no motion was permitted in the lateral directions by commenting out the

  

 

 

integration equations in those directions. The coordinate system is such that gravity acts 

in the –   direction.  

 

Figure 2.2  Graphic of the physical problem, showing the form of the floor’s motion.  
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2.3 Parameter Space and Diagnostic Quantities 

The space of parameters for the simulations in this dissertation consists of variables that 

affect the behavior of the system.  Table 2.1 lists these parameters (number of spheres  , 

restitution coefficient  , tap amplitude    , frequency  , and relaxation time   ) and their 

range of values.    

 

Table 2.1   Parameter Space of the Simulations 

                  (s) 

                          ⁄                  

 

Various diagnostic quantities are computed in order to understand the physical behavior 

of the column.  Each of these quantities is introduced and explicitly defined in the chapter 

in which they are first used.  
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CHAPTER 3 

WAVE DYNAMICS OF GRANULAR COLUMN 

 

This Chapter will discuss the dynamics of the disturbance wave transfer through the 

column as a result of the tap from the floor. In an attempt to compare the computed wave 

speed with experimental measurement [61], all results described in this Chapter are for a 

column of        stainless spheres such that          ,            (   

        ) , and       . 

 

3.1 Formation of the Wave 

The displacement of the floor causes it to interact at the outset with the first particle 

through a transfer of momentum that propagates upwards to the top.  Depending on the 

energetics of the tap, the column will undergo some level of dilation. However, if the 

frequency of the tap is not large enough (regardless of the amplitude), the column will 

simply move in tact with the floor and there will be no dilation. (see Chapter 5, Section 

5.5 for details).   

The time scale over which the disturbance imparted by the floor propagates to the 

top of the column is termed the short time scale. The relationship between dynamics over 

this scale (which is intimately connected with the contact model), and what occurs over 

the duration over which the column dilates and returns to a rest configuration remains a 

topic requiring further research.  However, the short time scale dynamics will have a 

significant role in distributing the kinetic energy to the particles, which in turn affects the 

ensuring behavior of the column.  
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Upon imposition of the tap, contact forces (via the      model) between 

particles are activated as a result of an increase of the overlap beyond pre-tapped values 

(due to gravitational overburden).  As the explicit integration scheme marches forward, 

the first particle (nearest to the floor) undergoes a displacement that alters the overlap 

between it and the second particle. The process continues in this fashion until the top of 

the column is reached – constituting a compression wave.  Effectively, the tap causes a 

small change in the density profile (due to the overlaps between particles) that is reflected 

by each particle undergoing a net (or resultant) force that evolves to produce this 

compression wave.  From a broader perspective (and in accord with the experimentally 

𝑡  𝑠  

𝐹𝑟 𝑡  

Figure 3.1  Evolution of the resultant force (designated by the different line colors) in 

a 40 particle column subjected to a single tap such that 𝑎 𝑑⁄       , 𝑓      𝐻𝑧, 

𝑒       . The labels 𝑃  𝑃  𝑃  designate particles 1, 3 and 5, respectively.  

𝑃  

𝑃  

𝑃  
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determined delineation of [1]), the tap first causes a compression wave that propagates 

from the bottom  through the column to the top sphere, followed by a downward moving 

expansion wave.  

 

 

 

3.2  Wave Speed 

The objective here is to measure the speed of the compression wave, gravity is set to zero 

and particles are stacked on top of each other. Consequently, when the tap is initiated, all 

inter-particle contact forces are zero. The speed of transmission of the wave is measured 

𝑡  𝑠  

𝑣
  
𝑚

𝑠
⁄

  

𝑃  
𝑃  𝑃  

Figure 3.2  Evolution of the particles velocities 𝑣  𝑚 𝑠⁄   (different colors) in a 40 

particle column subjected to a single tap such that 𝑎 𝑑⁄       , 𝑓      𝐻𝑧, 

𝑒       . The labels 𝑃  𝑃  𝑃  designate particles 1, 3 and 5, respectively.  
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carefully monitoring the evolution of resultant forces (acting at particle centers).  For any 

particular sphere, this resultant is due to the contacts forces from the two adjacent 

particles. Alternatively, it is possible to quantify the wave speed from cross-correlations 

of particle velocities. Figure 3.1 shows the resultant force       acting at the center of 

each sphere (different line colors) in a 40-particle column that is subjected to a single tap 

for which   ⁄   ,       , and        . The tap is initiated at         . Note that 

         ⁄          so that time scale             in the figure is       , or 

roughly half of a period. Particle velocities in the column are presented in Figure 3.2 

where the labels            designate particles 1, 3 and 5, respectively. The wave is 

𝑡  𝑠  

𝐹𝑟 𝑡  

Figure 3.3  Resulting force versus time for particle 1 (black line), particle 20 

(red line) and particle 40 (blue) in a column of 40 stainless steel spheres 

tapped at  𝑎 𝑑⁄       , 𝑓      𝐻𝑧, 𝑒       . 
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transmitted through the entire column over a time interval                     

                      . Figure 3.3 shows the resultant force on particles 1, 20 and 

40 as the black, red and blue lines, respectively. Positive values correspond to the 

direction opposite gravity (upwards).  The first particle experiences the largest peak in the 

resultant force accompanied by a drastic reduction after a very short time interval. The 

other particles also attain a maximum value which decreases and oscillates. The reduction 

in force amplitudes is due to dissipation inherent in the contact model, while the 

oscillations are characteristics of time variations in forces from the adjacent (touching) 

particles. The time delay between signals can be used to estimate the speed of the 

compression wave. The threshold value used to decide when a sphere undergoes a force 

is selected to be       .  That is, for each particle         , the time  ̂  when 

  
         is when the compression wave arrives.  For each pair of particles, a 

velocity   
    is computed as 

𝑘 

Figure 3.4  Velocity 𝑣𝑘
𝑘   as per (3.1) along the chain of particles, which is tapped at 

𝑎 𝑑⁄     , 𝑓     𝐻𝑧, 𝑒       and 𝑁     . 

𝑣
  
𝑚

𝑠
⁄
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 ̂     ̂ 
                                                                    

Figure 3.4 shows   
    versus particle number  .  The estimated wave speed is 

given by   
   

   

 ̂    ̂ 
         ⁄ .  By dropping a column of 40 spheres onto a plate, 

Falcon et al. [61] measured compression wave speeds between         to        , 

which were found to be in good agreement with theoretical arguments based on Hertzian 

contacts. Several possible reasons for the discrepancy with the simulations are 

conjectured: (a). value of    used in the simulations; (b) strength of the tap as compared 

to the impulse exerted by the floor in Falcon et al.’s experiments; (c) difference between 

applying a tap (as in the simulation) and dropping the column; (d) nonlinear effect of 

Hertzian contacts as opposed to bilinear springs. 

Consider the following simple paradigm. Let the displacements from equilibrium 

of three adjacent particles be denoted by             . Also suppose that the equilibrium 

spacing between particles is   , which in the case of the simulation corresponds to the 

particle diameter  .  As depicted in Figure 3.5, the force on the     particle is 

                        ,                             (3.2)  

where a spring of stiffness   is assumed to act.  Application of Newton’s second law 

yields,  

Figure 3.5 Force balance on the 𝑖th particle.  
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]

                                         

And thus, (3.3) suggests a wave speed       √  ⁄ .  Upon substitution of     ,  

                 , and            into the latter expression, one finds that 

           , which is consistent with the simulation result, but again very different 

from the findings of Falcon et al. [61].  Hertzian theory maintains that the normal force 

between two contacting spheres is       
   , where   is the overlap between the 

spheres and     
√ 

 

 

    , where   is the elastic modulus and   is Poisson’s ratio of the 

material.  Suppose that the average overlap between interacting spheres in the column 

           , and the linear loading stiffness    is approximated as the slope   

 ̂  
          

   

      
   √                                                        

For steel spheres of diameter          ,                

     so that by 

(3.4),   ̂             

 
. A substitution of  ̂ into       √  ⁄  yields          , 

which is in better agreement with the experiments.  Consequently, for the bi-linear model 

in the simulation code, the value of the stiffness is an extremely important factor in 

obtaining quantitative agreement with physical experiments.  

The final observation to be made regarding the velocities shown in Figure 3.2 is 

that although there are some oscillations, the peak speed acquired by each particle does 

not change. This is a characteristic of the linear nature of the loading /unloading contact 

law, that is, the compression wave speed (for a fixed tap input) in this model is dictated 

by the loading stiffness.   This would not be the case for Hertzian contacts in which the 
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stiffness is a function of the deformation (or overlap) and is given by the slope of the 

loading curve,      ⁄  
 

 
  √ .   

 

3.3 Comparisons with Drop Test Experiments 

Falcon et al. [61] conducted detailed experiments in which columns stainless steel beads 

were dropped collectively onto a floor. They reported on a number of important aspects 

of the physical problem, including: (1) evolution of the force experienced by the floor as 

a function of the number of spheres   in the column; (2) duration of the contact time of 

𝑡      𝑠 𝑡      𝑠 

𝑡      𝑠 𝑡      𝑠 

𝐹𝑓𝑙 𝐹𝑓𝑙 

𝐹𝑓𝑙 𝐹𝑓𝑙 

𝑁   →   𝑁   →   

𝑁   →    𝑁    →    

Figure 3.6  Evolution of the floor force (in Newtons) experienced by the floor as it is 

hit by the column of stainless steel spheres  𝑑         𝑚, 𝑒       ).  
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the dropped column with the floor as a function of  ; (3) compression wave propagation 

velocity; and (4) effective restitution coefficient of the column. With regard to (1), 

experiments showed that the floor force was independent of   – which is surprising as it 

contradicts one’s physical intuition.  Item (3) has already been discussed in the previous 

sections.   

Simulations were carried out with the intention of making qualitative comparisons 

with the experimental findings – items (1), (2) and (4) above.  It should be noted here as 

well that the relatively soft particles used in these simulations (as reflected in the loading 

stiffness            ) will have a significant effect on quantitative values that are 

computed.   

𝑁 

 
𝜏 𝐹

 
 
 
 
 
 

Figure 3.7  Contact duration  𝜏𝐹 of columns of stainless steel spheres with the floor 

as a function of 𝑁.  
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The time evolution of the force experienced by the floor as a function of the 

number of particles in the column measured in the experiments involved dropping each 

column from various heights above the floor. For           ⁄        ), the 

impact velocity      √            ⁄ . In lieu of placing the column at distance 

  above the floor and then allowing gravity to pull it down, particles were assigned initial 

velocities                    so that the column struck the floor with velocity 

magnitude        The evolution of the force on the floor was then computed and results 

are plotted in Figure 3.6 for columns of size              .  Results for the other 

columns (              ) were similar. Each sub-plot of the figure contains the 

evolution curves corresponding to the number of particle as labeled. With the exception 

𝑡       𝑠 

𝐹𝑓𝑙 

Figure 3.8  Evolution of the floor force (in Newtons) experienced by the floor as it is 

hit by the columns of stainless steel spheres  𝑑         𝑚, 𝑒       ). Each color 

represents the result for a column of different number of spheres,   𝑁    . 
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of           , the forces evolve in the same manner with no discernible disparity in 

magnitudes. Moreover, for all column sizes,    
         , and the time when this 

occurs is approximately the same for all column sizes, that is     
  

             . The 

significant difference between them is the time instant at which the force goes to zero, 

which is essentially the duration of contact of the column with the floor.  Very similar 

trends to Figure 3.6 were reported from the experiments (See Figure 4 in [61]).  The fact 

that the floor force is found to be independent of   is counterintuitive, but this is 

probably related to the discrete nature of the column as a granular system. Indeed, one 

would expect that the maximum floor force would increase with the mass of a single 

body. The physical explanation given by Falcon et al. is related to the propagating 

compression wave from the impact and the rigidity of the floor.  

The duration of impact of the column with the floor, denoted by    , is presented 

in Figure 3.7 for which a linear regression gives that                          

(shown as the red line through the data points). The evolution of     is shown in Figure 

3.8 for all 40 columns.  The linear behavior of     versus   is also in excellent 

qualitative agreement with the physical experiments (See Figure 7 in [61]).  

As a final comparison with the experiments, simulations were carried out in the 

absence of gravity (    ) to compute an effective restitution coefficient     , defined 

as, 

     √
∑    

    
   

∑    
    

   

 
 

     

√∑   
   

 

   

                                              

The simulation procedure consisted of assigning                 to all 
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particles so that the column descends to the floor uniformly until contact is made. For 

           , ,  
        in equation (3.5).   The primed velocities were determined 

by finding the time when the momentum of the system reaches its maximum positive 

value. This occurred when the bottom ball just leaves the floor.  The results of this study 

are summarized in Figure 3.9. The decreasing trend of      versus   agrees with the 

experiments (Figure 11 of [61]), although a much more extensive investigation is needed 

to match the data.  

 

 

𝑁 

𝑒𝑒𝑓𝑓 

Figure 3.9   Effective restitution coefficient as per (3.5) versus 𝑁. 
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CHAPTER 4 

 

COOLING DYNAMICS OF THE TAPPED COLUMN 

 

This chapter presents the results of the findings on the dynamics of the tapped column as 

it evolves towards a state of zero kinetic energy. This evolution is typically given the 

name “cooling dynamics”.  Physically, one imagines that the application of a tap applied 

to the column causes it to dilate, the degree of which depends on the energy of the tap. Of 

course, this admits the possibility that the energy of the tap may not sufficient to cause 

dilation so that the phenomenon is simply the transmission of the impulse through the 

contacts. On the presumption that the system expands so that particle contacts are broken, 

there will then be a period of collapse characterized by dissipative collisions between the 

particles. Consequently, the question that will be addressed here concerns the time scale 

over which the collapse takes place.  

 

4.1 Description of the Simulated System 

As detailed in Chapter 2, the particle contact model employed for these simulations is the 

Walton-Braun linear loading/unloading soft sphere interaction. Here, the force between 

particles (along the line of centers) is a function of an allowed overlap between 

contacting spheres - typically of the order of 0.01d.  Loading via a spring of stiffness    

to a maximum overlap is following by unloading through a spring of stiffness   , such 

that      .  This model admits a constant coefficient of restitution given by  

   √    ⁄ .  A tap is applied to the column through the motion of the floor in the form 
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of a half-sine wave of the form,      {
                  
                        

,  where      ⁄ ,    is 

the displacement amplitude and      . 

 
Figure 4.1  A column of   uniform spheres is depicted in an expanded state after the 

application of a tap. 

 

4.2 Problem Description 

 

It is intuitively clear that the dynamics of the system as it cools down must depend on the 

tap parameters, namely the dimensionless amplitude   ⁄  and frequency  , the number of 

spheres  , and the energy loss in a single tap as quantified by the restitution coefficient  . 

The reason is that these parameters in a sense control whether or not individual particles 

separate from one another as a result of the transmission of forces through the contact 

network (as depicted in Figure 4.1). It is possible that very low energetic taps may simply 

spawn the propagation of a wave through the column that merely kicks off the very top 

particle slightly. Alternatively, the column will simply follow the motion of the floor 
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when     ⁄   .   This behavior was shown in Chapter 3.  Other parameters that may 

affect the dynamics include the loading stiffness   , material density  , and sphere 

diameter  .  As pointed out in Chapter 2 (Section 2.3), an explicit integration time step of 

the order of       is used instead of that dictated by the loading period    

 

 
√

 

   
       so that the influence of    and   on the dynamics is not expected to be 

significant. Moreover, earlier simulation studies on vibration-induced densification 

[Zhang]
3
 indicated only small sensitivity to    to within an order of magnitude of its 

value. For the results that follow,        ,                , and   

           .   

 

4.3  Stopping Time of a Single Sphere 

It is instructive to compare the theoretical ‘stopping time’ of a single sphere, denoted as 

  , with simulation results as a benchmark of the validity of the computational model. 

This will be done by determining the time required for the sphere, dropped from a 

distance   above the floor, to come to rest.  To begin, suppose that the mass center of the 

sphere has an initial upward velocity equal to     after it interacts with the floor. In this 

simplistic analysis, detailed interaction dynamics of the impulsive motion of the floor on 

the sphere is ignored as this takes place over a time scale that is orders of magnitude 

smaller than the scale of interest in this analysis.  The time required for the sphere is 

attain its maximum height above the floor is    ⁄  so that it reaches the floor again at 

       ⁄ .  It then bounces back up at a reduced velocity based on energy loss 

                                                 

3 N. Zhang, “Vibration-Induced Densification of Granular Materials”, Ph.D Dissertation, 

New Jersey Institute of Technology, January 2004.  
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characterized by the restitution coefficient   and returns to the floor in a time duration of 

         ⁄  . The process is repeated so that time required for the third bounce is 

          ⁄  , and in general, the time required for bounce   is given by    

         ⁄  . Thus, time required for   bounces is given by 

  
      ∑   

 

   

  
   

 
∑    

 

   

 (
   

 
) 

      

   
                                                

where       denotes the stopping time for a single ball. Since      , one obtains, 

                                
 → 

  
      

   

 

 

     
                                                     

 

Figure 4.2  Trajectory     of a single sphere released from   ⁄     above the floor.       

Now suppose that the sphere is simply dropped from a distance   above a stationary a 
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floor so that the time to reach the floor √   ⁄ . This term replaces the     in (4.2) so 

that the stopping time, denoted by     is given by 

                                   
 √   ⁄

   
 √

  

 
 

   

   
√
  

 
                                                            

A simulation is conducted in which a single sphere having a restitution coefficient 

       is dropped from           above a stationary floor, after which it 

executes a sequence of impacts with the floor (each of which causes a reduction in its 

velocity). The sphere trajectory is depicted in Figure 4.2. After many bounces, sufficient 

energy is lost through collisions so that the spring force is insufficient for the sphere to 

separate from the floor, at which point it undergoes very minute oscillations. The 

stopping time           is recorded at the instant that the oscillations are such that the 

system kinetic energy is less than or equal to            , where       denotes the 

maximum value of the energy.  The simulated stopping time                   is in 

very good agreement with               as the predicted by equation (4.3).  Section 

4.5 includes a discussion of the stopping time criterion.  

 

4.4 General Dynamical Features of the  -ball System 

A portrait of the dynamics in the cooling process can be seen in the evolution of column 

mass center, kinetic energy, total energy (= kinetic + potential) and granular temperature 

as parameterized by the number of spheres   in the system. All of these quantities show 

an eventual decay as the spheres transition to their initial condition.  

Figure 4.3 presents the normalized mass center trajectories   ⁄  for        

as indicated by different colors, where the black line is the result for a single sphere. One 
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observes that as   increases, the time duration for the collapse is reduced as a result of 

greater collisional energy loss. Comparable behavior can be seen from the kinetic energy 

(normalized by      ) results of Figure 4.4 in that the time scale over which the system 

collapses is reduced as the number of particles increases. The system is at its peak 

dilation when the kinetic energy is a minimum.  The evolution of the kinetic energy to a 

maximum value near     is visible in the inset. For each  , the energy reaches a 

minimum (which is zero for      ) as the system expands, followed by a rise to a 

second peak and subsequent smaller peaks towards a final value of nearly zero (not 

shown in the figure) as the system collapses back to its pre-tapped state. One also 

observes a shift in the location of the 2
nd

 peak towards smaller times as   increases.  

 

Figure 4.3  Evolution of mass center    . Colors signify different values of   
         . The black line is the result for a single sphere (     ). 
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Figure 4.5 shows the normalized total system energy (       ), which is the 

sum of the kinetic ( ∑   
  ⁄ 

   ) and potential energy (∑    
 
   ). For each  , this 

quantity eventually asymptotes proportionally to ∑       
 
    as the kinetic energy goes 

to zero.   

 

 

 

 
Figure 4.4   Normalized kinetic energy of the system. Line colors signify different values 

of  , while the black line is the result for a single sphere. The inset shows the evolution 

of the system kinetic energy near     at the initiation of the tap.  
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Figure 4.5   Normalized total energy (= kinetic + potential) evolution for       . 

 

 

 

 

Figure 4.6   Evolution of fluctuating velocity given by (4.4) 

 

 

Lastly, the evolution of fluctuating velocity as a function of the number of 

particles in the system is measured by computing the square of the deviation of the 
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velocities from the spatial mean  ̅     
 

 
∑   

     
   . The fluctuating velocity evolution 

over the time interval of a tap and computed as  

 ́    √
 

 
∑(    ̅   )

 
 

   

                                                             

 is shown in Figure 4.6 for       .   

 

4.5 Stopping Time and Collision Frequency of the  -Ball System 

The simulated findings Figures. 4.3 – 4.6 reflect that the stopping time    depends on the 

number of particles   in the system. The aim of this section is to determine a relationship 

between      , with the expectation that it also varies with other important physical 

parameters, such as  ,     and       ⁄ . So that unambiguous values of the stopping 

time can be extracted from the simulation data, an energy criterion is used. Accordingly, 

the value of       is defined as that time when the system kinetic energy first reaches 

           , and all subsequent values of the energy lie below this value.  For 

example, Figure 4.7 is the kinetic energy evolution of a sphere released under gravity 

from         ,  where the red horizontal line denotes where        ⁄       .   
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The use of this criterion was assessed by extracting       at different        ⁄  

ratios in the drop test (i.e., single sphere released from   ⁄    ). Results from this test 

recorded in Table 4.1 suggest that      is optimal. A further validation was conducted by 

determining the ratio        ⁄               via linear interpolation of the kinetic 

energy evolution data at                    .  Then this ratio was used to extract the 

stopping time (denoted as  ̂ ) from the simulation data for system sizes       .  The 

root-mean-square value of the difference            √
 

 
∑ [ ̂          ]

  
    

           along with the comparison of  ̂  and    displayed in Figure 4.8 indicates no 

Figure 4.7   Kinetic energy evolution of a single sphere dropped from   𝑑     . The 

intersection of the horizontal red line and the dashed vertical line shows the time 𝑡𝑠    
when 𝐾𝐸 𝐾𝐸𝑚𝑎𝑥⁄  remains       . The inset shows the first 6 seconds of the process.   
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significant difference in the stopping time values.  All subsequent reported results are for 

               ⁄ . 

Table 4.1  Single Sphere Stopping Time from Drop Test at Different Values of 

       ⁄  

       ⁄        [         ]    ⁄  

10
-4 

              

10
-5

              

10
-6

       0.0021 
10

-7
       0.0027 

 

Figure 4.8   Absolute stopping time    for                ⁄  in seconds compared 

with  ̂  for                    ⁄  versus  . 

 

Consistent with physical intuition,          decays with  , as shown in Figure 4.9 

for the case       ,        , and   ⁄     , a behavior that was found to be 

typical for other values of   and     (See Figure 4.16 and 4.19). An increase in the 

number of particles is accompanied by a rise in the collision frequency, denoted as    and 

defined as the number of collisions per second. Larger collision frequencies result in a 
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faster rate of decrease of the system kinetic energy as reflected in a reduced stopping 

time.  

Figure 4.9   Normalized stopping time         as a function of  , where       is the 

stopping time required for a single sphere. 
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Figure 4.10  Evolution of the cumulative number of collisions       over the duration of 

a single tap (  ⁄        as a function of    . Each curve represents a different system 

size. The dashed line is added as an aid to identify the location of the plateaus in the data.  

 

4.5.1 Collision Frequency 

It is clear that    must depend on   and  , which is the subject matter of this section. A 

collision is counted when a particle overlaps with another, undergoes an interaction 

modeled by the linear loading/unloading springs (     ) and then separates. For a single 

tap of each system of size  , the evolution of the cumulative number of collisions    is 

computed  over the duration of the process from tap initiation to the end of the relaxation 

phase. After the system dilation phase has ended and the cooling process begins,     

increases (at a rate that depends on  ), and then saturates to a plateau, indicating that the 

column has reached a ‘static’ state. Figure 4.10 shows        , where the different colors 
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represent   for       . The upper curve is for       , while the lowest is for 

     . From this data, two important quantities can be extracted. For each  , the 

stopping time       can be found at the location of the plateau, while the slope of the 

graph provides an approximation to the collision frequency   .  The dashed line in the 

figure has been included to aid in the location of plateaus in the data.. Some important 

observations from the trends depicted in Figure 4.10 are warranted.  As   increases, there 

is a clustering of the        curves, and for large  , the values of        derived from the 

data oscillates. It is hypothesized that these oscillations reflect the complex dynamics 

present in relatively large systems, where collisional interactions become more severe 

due to the greater effect of an increased mass overburden. Moreover, the influence of 

initial conditions (i.e., momentum of the spheres and the inter-particle forces) as the 

system size grows may also have a bearing on the ensuing dynamics, akin to sensitive 

dependence on initial condition characteristic of chaotic behavior.  

In addition to extracting the average collision frequency- dividing the final total 

number of collisions by the time required to reach this value (see Figure 4.10) -  the 

number of collisions   is also computed every 0.01 seconds and plotted as a function of 

time. The result of this computation for        is displayed in Figure 4.11. The motion 

of the floor representing the tap triggers a wave that moves up through the column, 

followed by a dilation in which sphere contacts are broken.  This can be seen in the figure 

immediately after the first small peak   ⁄     . Subsequently, as the spheres begin their 

descent in the cooling phase, collisions are prevalent as evidenced in the figure from 

       to       .   
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Figure 4.11  Collision frequency    (collisions / second) as a function of time for a 20 

particle column. The cooling phase begins at       . The inset shows the motion of 

the floor.  

 

Figure 4.12 shows    versus    , where the inset is the result for a single sphere 

and the colors represent columns of different size (      ).   The spread of the data 

simply reflects the variation of    with  . It is possible now to compute a mean collision 

frequency   ̅ by numerical integration, i.e., Simpson’s rule   ̅
   

, 

  ̅
   

   
 

  
[
 
 
 
      ∑     

 

 
  

   

  ∑       

 

 

   

     

]
 
 
 
                                    

 or trapezoidal integration   ̅
    

,  

  ̅
    

 
 

 
∑  
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where    is the number of collisions that occur in a 0.01s time interval, and   is the 

number of intervals spanning the data set.  

 
Figure 4.12     versus    , where the colors represent column sizes        

 

The result of the calculations displayed in Figure 4.13 indicates fairly good 

agreement between the three averaging methods, albeit some slight differences for larger 

values of   exist. A linear fit to the data obtained from Simpson’s method (4.5.1) with 

          suggests that   ̅ scales directly with   for       .  
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Figure 4.13    Average collision frequency   ̅ versus system size  :  correspond to 

  ̅
   

;  Trapezoidal integration;  corresponds to   ̅
   

. The straight line is the fit to the 

data obtained from Simpson’s rule (4.5.2).  

 

4.5.2 Heuristic Considerations: Stopping Time Versus System Size 

A heuristic model of the behavior just described is developed by expressing the rate of 

energy loss as the product of the collision frequency and the energy lost in a single 

collision, i.e.,  

 

  
                                                                                       

where                 , and     is the initial kinetic energy. A rearrangement of 

the latter relation leads to 

                                                                                                                      

Upon setting         ⁄ ,  and noting that  |     ,  |         ,  
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∫   
 

 

       ∫   (    
 

 
    )   

  

 

                                               

where the terms in the parenthesis indicate the dependency of    ̅ on  ,  ,     and  .  If 

all of these parameters are considered constant except for  , then 

 

    
 ∫          

  

 

    ̅                                                             

In the latter relation, it has been assumed that the integral can be approximated by the 

mean collision frequency   ̅, which  depends on   as seen in the simulation results of 

Figure 4.13. Therefore, one might expect a scaling of the form,  

                                                             
 

        ̅
                                                                      

If the linear scaling suggested by Figure 4.2 is substituted in (4.10),  

                                           
 

    
        

     
 

 
                                                 

Naturally, the coefficients   and   in (4.11) must depend on the restitution coefficient in 

such a way that a reduction of   will result in a shorter stopping time.  

A fit of the data             to equation (4.11) for        is presented as 

the solid line in Figure 4.14 for which           suggests a good correlation. The 

solid lines in Figure 4.14 are fits to equation (4.11) normalized by       for          

(      ), while Table. 4.2 tabulates the corresponding values (   ) and correlation 

coefficients.  In Figure 4.15, the fluctuations in           ⁄  that appear as   increases 

beyond 20 (   for      was somewhat smaller as compared with     ) may be a 

consequence of progressively complex system dynamics. 
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It is noted that least-square fits to the form          yielded values of   very 

close to unity, as seen in Table 4.3, which lists fitted values of  ,  , and  , their 95% 

confidence intervals, and     for              and     .   

Table 4.2   Correlation Coefficients of Fits of the Normalized Stopping Time 

          ⁄  Data to           for   ⁄                          at       , 

and           .  (See Figures. 4.14, 4.15 and 4.16).  

                        
  ⁄              1.427 1.372 - 1.482 0.1418 0.126 - 0.157 0.9936 

       1.31 1.216 - 1.404 0.1981 0.181 - 0.215 0.941 
  ⁄             2.965 2.865 - 3.064 0.2101 0.182 - 0.238 0.9952 

       2.919 2.841 - 2.997 0.2303 0.216 - 0.244 0.9914 
  ⁄           5.918 5.764 - 6.073 0.4187 0.391 - 0.447 0.9919 

       5.93 5.684 – 6.176 0.4168 0.347 - 0.486 0.993 
  ⁄              7.486   7.131, 7.841   0.508   0.408, 0.608 0.9904 

        7.49   7.287, 7.692 0.5022   0.466, 0.539 0.9912 
  ⁄             8.962    8.541, 9.383 0.6173   0.498, 0.736 0.9906 

        8.987   8.754, 9.221 0.6008   0.559, 0.643 0.9919 

 

Table 4.3  Fit Values of  ,  ,   in (4.11) and Confidence Intervals    ,     and     for 

            ,   ⁄      , and     .  Figure 4.19 Shows    vs.   for    .  

                       
0.91 2.533 2.423 - 2.643 1.037 0.995 - 1.079 0.2587 0.239 - 0.278 0.9781 
0.92 2.908 2.826 - 2.989 0.983 0.960- 1.007 0.2237 0.209 - 0.239 0.9908 
0.93 3.413 3.312 - 3.514 0.938 0.884 - 0.993 0.1951 0.159 - 0.232 0.9875 
0.94 4.099 3.977 - 4.220 1.014 0.972 - 1.047 0.2417 0.220- 0.263 0.9895 
0.95 4.942 4.808 - 5.075 0.985 0.949 - 0.993 0.2203 0.196 - 0.245 0.9913 
0.96 6.446 6.229 - 6.662 1.007 0.967 - 1.036 0.2442 0.205 - 0.283 0.9868 
0.97 8.501 8.327 - 8.675 0.957 0.945 - 0.976 0.1967 0.165 - 0.229 0.9951 
0.98 13.15 12.73 - 13.56 1.008 0.983 - 1.032 0.3296 0.255 - 0.404 0.9883 
0.99 26.68 25.92 - 27.44 0.964 0.944 - 0.985 0.3598 0.221 - 0.499 0.9905 

 A further series of studies was conducted at four other displacement amplitudes 

(                          ⁄ ) at       , and the data was fit to the form given by 

(4.11) for       .  The symbols on Figure 4.16 are the values of    (sec.) while the 

solid lines are the fitted curves.  Note that the normalization constant was selected to be 

the time required for a single ball tapped at   ⁄    to come to rest.  Except for the case 
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  ⁄       and       ,     values were all larger than 0.98, suggesting a strong 

correlation of the data with (4.11).   

 
Figure 4.14   Normalized stopping time           ⁄  versus system size  , where 

             ,        ,   ⁄      . 

 
Figure 4.15  Normalized stopping time           ⁄  versus   for       , 

       ⁄  and       .  The inset shows the result for       . Solid lines are 

the fitted curve from (4.11)  
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Figure 4.16   Absolute stopping time    versus   (      ,        ) for   ⁄  
                        .  The solid lines are fits to           (equation (4.11)), 

for which the fit parameters are listed in Table 4.2. 

 

 

 

4.5.3 Stopping Time Versus Restitution Coefficient 

 

If the coefficient of restitution decreases so that more energy is dissipated in a collision, 

there will be a reduction in the collision frequency (assuming that  ,     and   are 

fixed). In order to substantiate this expected behavior, a study was done in which   was 

varied (            ) for     ,        , and          . The possibility of 

there being an exponential relationship between   ̅ and   for fixed  ,     and   is tested 

by plotting        ̅  versus  . The result shown in Figure 4.17 suggests a moderate 

correlation for      .Therefore, the mean collision frequency data (  ̅), computed via 

the method detailed in Section 4.5.1, was fit to an exponential of the form,  

  ̅                                                                                 
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for five different tap amplitudes,    ⁄                        . The symbols in Figure 

4.18 are the simulation data and the lines are fits to (4.12).   Fit parameters are listed in 

Table 4.4, where the    values and overlapping 95% confidence intervals of the 

coefficients suggest weak correlation with (4.13).   The fact that there is no clear 

separation of the data with     indicates that   ̅ may not be strongly dependent on    .  

Table 4.4  Fit Parameters for  ̅                 (Equation 4.12 and Figure 4.18) 

  ⁄         
                              

0.25 1.17    -1.536, 3.876 24.63  22.26, 27.00 9.01    5.365, 12.66 0.947 
0.5 7.607    -5.865, 21.08 22.84    21.02, 24.65 10.62    7.183, 14.06 0.963 
1.0 2.715    -2.392, 7.821 24.16    22.23, 26.09 12.77    8.341, 17.21 0.964 

1.25 19.46    -16.59, 55.52 22.08    20.18, 23.98 12.48    7.892, 17.06 0.957 
1.5 23.48    -18.49, 65.45 21.93    20.1, 23.76 13.09    8.46, 17.72 0.960 

A plot of          versus   shown in Figure 4.17b suggests a fairly good 

correlation so that an exponential behavior of the stopping time with   is reasonable, 

except at      , where physical intuition dictates that    should diverge. The          

term in equation (4.10) captures this behavior. Under the assumption that   varies and all 

other parameters are fixed, a substitution of (4.12) into (4.10) gives,  

             Figure 4.17a  Log of 𝑓�̅� versus restitution coefficient 𝑒.  
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Fits of the data to (4.13) are shown in Figure 4.19 as the solid lines, where the symbols 

are the data for   ⁄                         . Table 4.5 lists the fit parameters 

        , their 95% confidence intervals and    values. One sees a clearer separation of 

the curves with    , that is, as     increases, more time is needed for the system to 

relax.    

Table 4.5     Fit Parameters for   [                     ]  (Equation (4.13) 

and Figure 4.19) 

  ⁄         
                              

0.25 40.28 3.573, 76.98 13.97 13.04, 14.9 9.558 9.23, 9.886 0.9655 
0.5 474.8 166.6, 783.0 10.87  10.2, 11.53 5.224  5.052, 5.397 0.9737 
1.0 1265.  425.1, 2105 9.157  8.48, 9.835 2.886    2.769, 3.002 0.9811 

1.25 1597. 863.3, 2331 8.694 8.226, 9.162 2.358 2.288, 2.427 0.9576 
1.5 1736. 977.6, 2495 8.417 7.972, 8.862 2.031  1.973, 2.09 0.9854 

 

 

Figure 4.17b𝑙𝑜𝑔 𝑡𝑠  vs. 𝑒. The data () is well-correlated to 𝑙𝑜𝑔 𝑡𝑠  𝑎𝑒  𝑏, 

with 𝑎        𝑏        , 𝑅        , shown by the straight line.  
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Figure 4.18  (𝑓�̅�) vs. 𝑒 for 𝑁     and 𝑓     𝐻𝑧. Open symbols are the data and the 

lines are fits to (4.12), for which parameters are listed in Table 4.4. 𝑎 𝑑⁄      ; 

𝑎 𝑑⁄      ; 𝑎 𝑑⁄     ; 𝑎 𝑑⁄      ; 𝑎 𝑑⁄      .  The inset shows a 

reduced range of the data. 

Figure 4.19 𝑡𝑠 (s) vs. 𝑒 for 𝑁    , 𝑓     𝐻𝑧. Solid lines are fits to (4.13). 

𝑎 𝑑⁄      ; 𝑎 𝑑⁄      ; 𝑎 𝑑⁄     ; 𝑎 𝑑⁄      ; 𝑎 𝑑⁄      . 

The inset shows the full range of data. 

𝑒 

𝑡𝑠  𝑠  
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The variation of    with   for                is shown in Figure 4.20, where 

again the data is well-correlated with (4.13).  The inset is the result for           ⁄ .   

 

 

 

 

 

 

Figure 4.20  Stopping time as a function of 𝑁 for different restitution  

coefficients      𝑒       at 𝑎 𝑑⁄       .  Solid lines are fits to  

equation (4.11), i.e., 𝑡𝑠  𝛼𝑁    𝛽. The inset is the same plot for  

a restricted range of stopping times.  

𝑁 
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CHAPTER 5 

EXPANSION DYNAMICS OF GRANULAR COLUMN 

 

In this chapter, an attempt is made to map the dependence of the evolution of the total 

kinetic energy on the parameter set   ⁄ ,  ,  ,  , and to connect this with system’s 

general behavior as regards its dilation and collapse.  During the course of the study, 

various physical measures of the column’s dilation or expansion are used.  For a single 

ball, a tap applied to the floor on which it rests causes the ball to move upwards, the 

height of which depends on the tap energy and the mass of the ball. But if there are 

several spheres placed on top of each other so as to create a column, energy will be 

distributed to each particle in some manner. If the tap energy is sufficient, the system 

density will evolve to a minimum value corresponding to the maximum dilation of the 

column. Even if the tap energy is not sufficient to break the column apart, there will 

always be an impulse wave transmitted through the column. This occurs over a short time 

scale     √        ⁄ , as per the contact model, where   is the number of particles 

each of mass   and    is the contact loading stiffness.  For the value of          

     ⁄   and              ⁄  used in this dissertation,                . In this 

chapter, an attempt is made to map the dependence of the evolution of the total kinetic 

energy on   ⁄ ,  ,  ,and  , and to connect this with  system’s general behavior as 

regards its dilation and collapse.    

 

5.1    Problem Description 

Consider the situation where the particles of the column are just touching each other with 
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no active overlaps, which would be the situation in the presence of gravity. Then, as the 

floor begins to move upwards, the overlap between it and the first sphere (sitting on top 

of the floor) begins to increase so that after one integration time step, that particle begins 

to intersect (or overlap) at the contact point with its upper neighbor. This process 

continues upwards through the column until integration of the top particle’s equation is 

initiated.  The latter illustration reflects in a simple manner the explicit Verlet leap-frog 

time integration scheme featured in the DEM code.  If the condition     ⁄    is 

satisfied, contacts between some of the adjacent particles will break as the floor separates 

from the first particle in its downward stroke.  Consequently, the amplitude   ⁄  and 

frequency   play a critical role in the system dynamics, as well as   and  .   The 

subsequent sections present the results of an exploratory study of the effects of these 

parameters on the system.  

�̅� 𝑑⁄  

𝑡   𝑠  

In
cr

ea
si

n
g
 𝑁

 

𝑁    

Figure 5.1   Evolution of the mass center as a result of a single tap (𝑎 𝑑⁄      𝑓  
   𝐻𝑧  applied to the column for varying system sizes   𝑁    . 
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5.2   Dependence of the Column Expansion on System Size 

The dynamic behavior of the column is strongly dependent on the number of particles. 

One expects that as   increases under fixed tap conditions (   , and  ),  eventually the 

input energy will not be sufficient to promote any significant dilation
4
 (if any at all) of the 

system. A measure of the behavior of the system is provided by the evolution of its mass 

center trajectory  ̅      ⁄ , which is shown in Figure 5.1 for a single tap (  ⁄        

              ) as a function of the number of particles,       .  The damping 

of the oscillations with increasing   reflects greater energy dissipation as a result of 

larger collision frequencies. In fact, for     , the second peak of the  ̅      ⁄  

disappears.  A somewhat clearer picture of the effect of   emerges in Figure 5.2 -  the 

                                                 

4 Loss of contacts between particles 

𝑁 

 
𝑚
𝑎
𝑥
 

Figure 5.2  Graph of  𝑚𝑎𝑥 as a function of 𝑁 for tap parameters 𝑎 𝑑⁄      𝑓  
   𝐻𝑧, and 𝑒         The horizontal dashed line demarcates the value of 𝑁     when 

significant fluctuations appear.  
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graph of the maximum value of  ̅      ⁄  relative to  ̅      ⁄  versus  , given by  

           ⏟
   

{
 ̅

 
    

 ̅

 
   }                                                 

There is a decreasing trend of         with   as would be expected since the 

fixed input energy of the tap becomes less effective - a consequence of greater collisional 

dissipation for larger  .  One also observes fluctuations in      grow with  , and they 

become significant (and physically improbable) for     , as indicated by the vertical 

dashed line. The reason for these fluctuations (explained in what follows) is connected 

with the dynamic state of the system when the tap is initiated.  

The fluctuations originate from differences (consequent on the value of  ) in 

dynamic initial conditions, or equivalently, the point in phase space of dimension   (i.e., 

𝑁 

 
𝑚
𝑎
𝑥
 

Figure 5.3  Graph of  𝑚𝑎𝑥 as a function of 𝑁 for tap parameters 𝑎 𝑑⁄      𝑓  
   𝐻𝑧, and 𝑒         Each of the 𝑁      systems had the same initial conditions, 

i.e., {𝒚    𝒗   }  {𝟎 𝟎}.  The dotted line shows the trend of the data.  
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particle positions      and velocities     ) of the system when the tap is initiated. 

As further explication, consider a column of   spheres whose initial placement is such 

that the particles are just touching each other. When the simulation begins, gravity acts on 

each particle, causing it to overlap with its neighbors thus activating the linear springs 

                                          ) between them. Consequently, there will be 

small oscillations of the spheres until eventually (say at     ) the assembly attains a 

state of dynamic equilibrium. That is, 

      ,(         )         {         |‖             ‖      }          

where (         )                            . For the results depicted in Figure 

5.2, the tap (i.e., floor begins to move) is initiated at        at which time it is 

presumed that (           )       . Because the system size is varied in generating 

Figure 5.2, each column of size   will occupy a different point of the system phase space 

(size   ) so that the particle positions and velocities will not be the same when the tap is 

initiated.  In order to test the conjecture that the fluctuations seen in Figure 5.2 are due to 

the initial conditions, a series of simulations were done for which the initial state (at 

   ) was such that particles were simply placed on top of each other (just touching). In 

this way, each system of size   was static so that           {   }.  A simulation 

begins by moving the floor simultaneously with gravity operating on the particles. The 

result of this simulation series depicted in Figure 5.3 confirms that the fluctuations seen 

in Figure 5.2 disappear.    



61 
 

 

 

An equivalent characterization of the effect of   is given by the graph of the 

maximum free space      in Figure 5.4, defined as,  

          ⏟  
   

{
            (   

 
) 

 
}                                               

One observes a peak in      followed by a decreasing trend with fluctuations 

growing with  .  These fluctuations are caused by differences in initial conditions as was 

the case for      (see Figure 5.2). For the same initial conditions ({         }  {   }) 

for each system of size  , the fluctuations disappear, as seen in Figure 5.5.  

A final portrait of the dynamics of the system resulting from the application of a 

single tap can be obtained through the evolution of the total specific kinetic energy, 

    
 

 
∑   

  
   .  The tap was initiated with particles just touching each other so 

that{         }  {   }. Figure 5.7 shows        
   ⁄  (     

   
 denotes the maximum 

𝑁 

𝜑
𝑚
𝑎
𝑥
 

Figure 5.4   Graph of 𝜑𝑚𝑎𝑥 versus 𝑁 for 𝑎 𝑑⁄      𝑓     𝐻𝑧, and 𝑒      .  
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kinetic energy attained by a single sphere, i.e.,      ) versus   ⁄  , where the 

colorspectrum represents columns of sizes       , with pure red signifying      , 

transitioning through orange as   increases, and finally to violet for        (the top 

curve).  In describing the graph of        
   ⁄  versus   ⁄ , reference to the term ‘peak’ 

will be used to generically explain the physical phenomenon, with the understanding that 

the actual location (in time) and magnitude of the peak depends on  . The first peak of  

 

 

 

 

𝑁 

𝜑
𝑚
𝑎
𝑥
 

Figure 5.5   Graph of 𝜑𝑚𝑎𝑥 as a function of 𝑁 for tap parameters 𝑎 𝑑⁄      
𝑓     𝐻𝑧, and 𝑒         Each of the 𝑁 systems have the same initial 

conditions, {𝒚    𝒗   }  {𝟎 𝟎}.  The dotted line shows the trend of the data.  
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the graph is a result of the tap (floor motion) transmitting energy (velocities) to the 

particles of the column5.  In fact, during this initial stage while the tap is being applied, 

the only collisional dissipation is that due to ensuing contact interactions between the 

particles as they begin to acquire their velocities. After attaining a maximum kinetic  

 

 

energy, the system as a whole begins to dilate (or expand) as inter-particle contacts are 

broken, accompanied by a reduction of particle velocities (due to gravity) until the 

                                                 

5 Note that the sharp gradient up to this peak is due to the scale of the horizontal axis. 

𝑡 𝑇⁄  

𝐾
𝐸

𝐾
𝐸
𝑚
𝑎
𝑥

  
 

⁄
 

System dilation 

is a maximum. 

Collisional dissipation 

stage –System collapse 

Figure 5.6   Normalized kinetic energy of the system versus 𝑡 𝑇⁄  for a single tap 

(𝑎 𝑑⁄      𝑓     𝐻𝑧 𝑒      . The color scale (red through violet) signifies 

columns of increasing size,   𝑁    .  

Expansion 

Stage 
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dilation is maximum, as can been seen in the figure.  From the maximum dilated state, 

the system then begins to experience a collapse from gravitational forces during which 

time, particle velocities increase until the second peak of the graph. In due course, 

particles begin to collide, signaling the onset of the collisional dissipation stage that is 

roughly denoted in the figure.  The first peak of        
   ⁄  as a function of   (    

   ) displayed in Figure 5.7 grows with  , reaches a maximum, and then begins to drop 

at      as a consequence of the interplay between a fixed input energy and greater 

contact dissipation.  In a similar fashion, the second peak of        
   ⁄  versus  (  

𝑁 

𝑁
 

 
 

 

(𝐾
𝐸

𝐾
𝐸
𝑚
𝑎
𝑥

  
 

⁄
)  

 

Figure 5.7  The first peak of 𝐾𝐸 𝐾𝐸𝑚𝑎𝑥
   ⁄  as a function of 𝑁 (  𝑁     ) for a single 

tap (𝑎 𝑑⁄      𝑓     𝐻𝑧 𝑒      . 
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     ) is plotted in Figure 5.8.  The peak scaled with   for       , which is 

consistent with the proportionality of the average collision frequency   ̅  versus   for 

       as shown in Figure 4.13. In particular, a linear regression on the data yields 

that  (       
   ⁄ )

 
                 with         .   

5.2.1   Further Discussion on the Effect of Gravity Preload on the Dynamics 

As exhibited in the previous section, the initial state of the system (equivalently, the 

initial phase space point) when tapping begins has a significant effect on the ensuing 

𝑁 

Figure 5.8  The second peak of 𝐾𝐸 𝐾𝐸𝑚𝑎𝑥
   ⁄  as a function of 𝑁 (  𝑁     ) for a 

single tap (𝑎 𝑑⁄      𝑓     𝐻𝑧 𝑒      .  The inset shows the linear regression 

line for   𝑁    . 

 

(𝐾
𝐸

𝐾
𝐸
𝑚
𝑎
𝑥

  
 

⁄
)  

 

𝑁 
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dynamics (e.g., see Figures 5.2 to 5.5).  Under the preloading6 caused by gravity, 

contacts are active due to slight overlaps between particles. Despite the fact that tapping 

is initiated at the same time instant for all of the systems, the state of each will be at 

different point of phase space since this is contingent upon the number of particles   in 

the column.  Indeed, if one were to fix the column size and then very slightly perturb the 

time instant when the floor begins to move, analogous fluctuations would be present in 

computed physical quantities, as was observed in Figures 5.2 – 5.5.   

The aforementioned conjecture is tested by computing the evolution of the 

maximum free space       (equation (5.2)) for a column having        particles over 

a range of tap starting times in a small time interval [       ]  .  The 10 second waiting 

period was chosen to ensure stability of the column fluctuations from the gravity preload. 

                                                 

6 Before the floor is moved. 

𝑦  

𝑣  

𝜑
𝑚
𝑎
𝑥
 

𝑡𝑜 

Figure 5.9  Variation of 𝜑𝑚𝑎𝑥as a function of the time instant 𝑡𝑜when the tap is 

initiated. The top and center graphs show the location of the mass center �̅� and its 

velocity �̅�, respectively at 𝑡𝑜.  (𝑎 𝑑⁄      𝑓     𝐻𝑧 𝑒      ). 
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Results are summarized in Figure 5.9, which shows the phase point coordinate   ̅  ̅  of 

the mass center at the instant when the tap is initiated (denoted as   ) versus      

 [         ]. Dashed vertical lines in the figure are drawn to display correlations between 

the data. The data of Figure 5.8 can be rearranged by plotting      against   ̅     and 

 ̅    , the results of which are shown in Figures 5.10 and 5.11, respectively. For both 

plots, the data takes on an elliptical shape whose parametric equations are given by 

       
                             

                               
                                   

�̅� 𝑡𝑜    𝑚  

𝜑𝑚𝑎𝑥 

Figure 5.10  𝜑𝑚𝑎𝑥 plotted against the location of the mass center �̅� at the time 𝑡𝑜 when 

the floor motion is initiated over the duration of a single tap (𝑎 𝑑⁄     , 𝑓     𝐻𝑧, 

𝑒      ). The dotted line signifies the major axis of the ellipse at angle 𝛼 from the 

horizontal axis.   

𝛼 
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where     ̅  (Figure 5.10),      ̅ (Figure 5.11),    
         is ellipse center,   is the 

angle between the  –axis and the major axis of the ellipse and   is the parameter.  

It was noted in Figure 5.4 that the magnitude of the fluctuations in      

increased with the number of particles in the column.  Although the dimension of the 

phase space increases with   so that initial conditions are not the same upon initiation of 

the tap for different column sizes, this does not explain why the fluctuations grow. 

However, as the column size grows, the magnitude of the overlap between any particular 

sphere and its upper neighbor depends on the overburden load, i.e., number of sphere 

sitting on top of it. Consequently, the cumulative overlap and subsequently the net force 

acting at the column mass center increases with   so that the amplitude of oscillations of 

the phase space also grows with  .  This in turn will cause larger fluctuations in      as 

  increases.  

�̅� 𝑡𝑜   𝑚 𝑠  

𝜑𝑚𝑎𝑥 

Figure 5.11  𝜑𝑚𝑎𝑥 plotted against the velocity of the mass center �̅� at the time 𝑡𝑜 when 

the floor motion is initiated over the duration of a single tap (𝑎 𝑑⁄     , 𝑓     𝐻𝑧, 

𝑒      ). The dotted line signifies the major axis of the ellipse.  
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5.3 Influence of Restitution Coefficient on Column Dilation 

The restitution coefficient determines the quantity of energy lost in collisions and as such,  

it will have a significant effect on the dynamics of each particle in the column. 

Consequently, the mass center embodies the behavior of the individual particles.   Figure 

5.12 shows the mass center evolution for a single tap (initiated at       , such that 

  ⁄              ) applied to a column of        spheres for              

as indicated by the different line colors. For small restitution coefficients, the trajectories 

𝑡  𝑠  

�̅� 𝑑⁄  

Figure 5.12  Evolution of the mass center for a single tap (initiated at 𝑡     𝑠, such 

that 𝑎 𝑑⁄       𝑓     𝐻𝑧) applied to a column of 𝑁      spheres for       
𝑒       as indicated by the different line colors. The inset shows the evolution for 

𝑒       and 𝑒      . 

𝑡  𝑠  

𝑒       

𝑒       
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exhibit only a single large peak characteristic of enough collisional dissipation to damp 

out the motion; however, as   increases, one begins to observe the formation of other 

peaks. The maximum dilation or expansion of the system is associated with the first 

peak of the mass center, denoted by      (see equation (5.1) for definition) which is 

shown versus   in Figure 5.13. 

𝑒 

 
𝑚
𝑎
𝑥
 

Figure 5.13  Graph of  𝑚𝑎𝑥 𝑚𝑎𝑥⏟
𝑡  

{
�̅�

𝑑
 𝑡  

�̅�

𝑑
    } (equation (5.1)) versus 𝑒 for a 

column of 𝑁      spheres tapped at 𝑎 𝑑⁄       and  𝑓     𝐻𝑧. 
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𝑒 

𝜑
𝑚
𝑎
𝑥
 

Figure 5.14  𝜑𝑚𝑎𝑥 (see equation (5.2)) versus 𝑒 for a column of 𝑁      

spheres tapped at 𝑎 𝑑⁄       and  𝑓     𝐻𝑧. 

 



72 
 

 

 

The slight upward bending of the data for large   points to the availability of more of the 

initial tap energy, which will cause it to execute a progression of bounces as its motion 

damps out.  Another representation of the effect of restitution coefficient is obtained via 

the maximum free space (equation (5.2))     , as shown in Figure 5.14. When   

    , the data bends upward more steeply than what occurs for       (Figure 5.13) since 

     captures the dynamics of only the top particle of the column.  

The evolution of the scaled kinetic energy        
   ⁄  of the system in a single 

tap as a function restitution coefficient (           ) is depicted in Figure 5.15. 

(Recall that      
   

 denotes the maximum kinetic energy of a single sphere during a tap). 

The inset  shows the results for          and         .  In the former case (   

𝑡  

𝐾
𝐸

𝐾
𝐸
𝑚
𝑎
𝑥

  
 

⁄
 

𝑒       

𝑒       

Figure 5.15  Kinetic energy of the system 𝐾𝐸 𝐾𝐸𝑚𝑎𝑥
   ⁄  versus 𝑡    𝑡     𝑇⁄  

Fora column of 𝑁      spheres tapped at 𝑎 𝑑⁄       and  𝑓     𝐻𝑧.  The  

different colors represent restitution coefficients       𝑒      .  The inset  

shows the evolution for 𝑒        and 𝑒       . 

72 
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     ), the energy evolution consists of two symmetric peaks (see figure inset), which 

reflects that fact that due to the very dissipative nature of the contacts, the column will 

simply bounce upward with spheres in contact with each other.  When it returns and 

strikes the floor, all but approximately 0.16% of the initial tap energy remains. As 

dissipation decreases, spheres will begin to lose contact with each other, which is 

reflected in increasing decay rate after the 2
nd

 peak. Note that for         , the system 

requires much more time to relax to a state of ‘zero’ kinetic energy. In fact, the data 

suggests that for       , the relaxation process involves particles bouncing upwards as 

they ultimately settle down to their pre-tapped state. The first and second peaks of the 

normalized kinetic energy        
   ⁄  versus   are shown on the same set of axes in 

Figure 5.16. The first peak  essentially characterizes the transmission of energy from the 

tap into the system.  The source of the small oscillations at larger values of   in the 

second peak is due to collisions of particles that take place during the collapse of the 

𝑒 

1
st
 Peak 

2
nd

 Peak 

Figure 5.16  First and second peaks of 𝐾𝐸 𝐾𝐸𝑚𝑎𝑥
   ⁄ versus 𝑒 (data presented in Figure 

5.15) for a column of 𝑁      spheres tapped at 𝑎 𝑑⁄       and  𝑓     𝐻𝑧. 

𝐾
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column. 

5.4 Effect of the Tap Amplitude on Column Dilation 

The tap amplitude   ⁄  will change the dynamics of the column by either increasing or 

decreasing the energy transferred into the system. This subsection presents results of a 

series of studies in which the tap amplitude is varied while keeping other parameters 

fixed:        ,       ,     .  Figure 5.17 shows the evolution 

(           ⁄ ) of the mass center for            ⁄ , which are denoted by lines 

of different color, while Figure 5.18 is a graph of the maximum mass center coordinate 

  ̅  ⁄      as a function of    .  A parabolic fit (    ) to the data (shown as the red 

line in the figure),   

𝑎

𝑑
     

𝑡  

Figure 5.17  Evolution of the mass center �̅� 𝑑⁄  for tap amplitudes      𝑎 𝑑     ⁄ , 

𝑓     𝐻𝑧, 𝑒      , and 𝑁    . Each color represents a different amplitude, with 

the largest noted on the figure. The inset shows �̅� 𝑑⁄  for the first five 𝑎 𝑑 values. 
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  ̅  ⁄          (
 

 
)
 

                                                          

is suggestive of the quadratic relationship governing the maximum height attained by a  

single ball having an initial velocity   , that is,   
     

  
   ⁄   . Thus the motion of 

the mass center of the column is qualitatively similar to that of a single particle.  Unlike a 

single ball however, the column will undergo dilation, whose maximum is given by 

                              
      

   
{
           

 
}       (  

 

 
)                                       

The equality follows directly from (5.2).  Figure 5.19 shows     
  versus   ⁄ , where the 

red line is a parabolic fit (    ) of the form,  

                                          
          ⁄                                                                          

The evolution of the kinetic to energy should also scale with the square of the tap 

𝑎 𝑑⁄  

(
�̅�

𝑑
)
𝑚𝑎𝑥

 

Figure 5.18  Maximum value �̅� 𝑑⁄  versus 𝑎 𝑑⁄  over the duration of a single tap for 

𝑁     , 𝑓      𝐻𝑧 and 𝑒      0.  The red line is the parabolic regression given 

by (5.4).  
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amplitude in support of the trends reported above (i.e., (5.4) and (5.6)).  Let   be the 

ratio of the system kinetic to potential energy at time  , written as  

                                  
∑    

  
   

 ∑     
 
   

 
∑   

  
   

    ̅
                                                                     

So as to maintain the same normalization over all amplitudes, the denominator is chosen 

to be potential before the tap begins, so that  ̅     ⁄  and  

                                
 

    
      (∑   

  
   )                                                          

Figure 5.20 shows   versus            ⁄ , where the colors represent 

different values of   ⁄ , such that            ⁄ , while Figure 5.21 presents      

versus   ⁄ .  Regression of the data to a quadratic form yields, 

𝑎 𝑑⁄  

𝑦𝑚𝑎𝑥
𝑑  

Figure 5.19  Maximum dilation of the column (5.5) versus 𝑎 𝑑⁄  over the duration of a 

single tap for 𝑁     , 𝑓      𝐻𝑧 and 𝑒      0.  The red line is the parabolic 

regression given by (5.6).  
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                                            ⁄                                                         

Table 5.1 summarizes the statistics of the fits represented by (5.4), (5.6) and (5.9).  

For each   ⁄ ,      regulates the degree to which the column dilates, corresponding to 

the minimum point on each of the curves in Figure 5.20.    

Table 5.1  Statistical Parameters for (5.4), (5.6) and (5.9);        ⁄      

Bracketed Numbers are 95% Confidence Intervals. 

         

  ̅  ⁄                                                 

    
                                           

                                                             

 

  

𝑡  

𝒦 

Figure 5.20  Evolution of the kinetic energy 𝒦 for      𝑎 𝑑     ⁄ , 𝑓     𝐻𝑧, 

𝑒      , and 𝑁     over the duration of a single tap.  Each color represents a 

different amplitude, which decreases from the uppermost curve where 𝑎 𝑑      . 

𝑎

𝑑
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 𝑡     𝑠 

 𝑡      𝑠 

𝑓     𝐻𝑧 

Figure 5.22  Evolution of the mass center �̅� 𝑑⁄  for    𝑓     𝐻𝑧, 𝑎 𝑑⁄     , 

𝑒      , and 𝑁     for a single tap initiated at 𝑡      𝑠. Each color represents a 

different frequency, with the largest noted on the figure. The inset shows �̅� 𝑑⁄  for 

𝑓            𝐻𝑧.  

 

𝑎 𝑑⁄  

𝒦𝑚𝑎𝑥 

Figure 5.21  The first peak 𝒦𝑚𝑎𝑥 of the scaled kinetic energy (Figure 5.20) versus 

𝑎 𝑑⁄  over the duration of a single tap at 𝑓     𝐻𝑧 applied to a column of 𝑁      

spheres with 𝑒      . The red regression line is given by (5.9).   
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5.5 Effect of the Tap Frequency on Column Dilation 

In this section, the effect of changing the frequency of the tap at a constant   ⁄      is 

discussed for a column of 20 spheres with restitution coefficient         .  The 

frequencies here were chosen so that the dimensionless tap energy        ⁄ , or simply 

the product of the relative acceleration     ⁄  and the normalized amplitude   ⁄ , is the 

same as for the study (Section 5.4) where         and             ⁄ .  The most 

ostensible effect is associated with the distribution of velocities of the particles over the 

time scale of the disturbance propagation through the system, which in turn influences 

column’s dilation. Figure 5.22 shows the evolution of the mass center of the column for 

frequencies          , which are distinguished by the different line colors, for a 

single tap initiated at       .  Note that the time axis         was not scaled by the 

(
𝑦 

𝑑
)
𝑚𝑎𝑥

 

Figure 5.23  Maximum value �̅� 𝑑⁄  versus 𝑓 over the duration of a single tap for 

𝑁     , 𝑓      𝐻𝑧 and 𝑒      0.  For 𝑓    𝐻𝑧, the mass center does not 

experience any appreciable change in its location before the tap was applied.   

(See inset of Figure 5.22) 
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period       ⁄       since its value changes with frequency. Peak values   ̅  ⁄      

presented in Figure 5.23 begin to increase with   for       . However, for       , 

the mass center doesn’t change appreciably from its pre-tapped position, as is apparent 

from the inset of Figure 5.22.  A plausible explanation for this behavior is related to the 

fact that for ‘hard’ spheres (i.e., no overlaps), the column would move intact and in sync 

with the floor when the tap acceleration is less than  , which corresponds to   

 (   ⁄ √  ⁄ )          when       ⁄ .    

The column will also dilate as indicated in Figure 5.24, which shows     
  

(equation (5.5)) versus  .  The dotted line marks the location of the top sphere      ⁄  

  ) if there were no gravitationally-induced overlaps between particles of the column. 

Note that there is only miniscule dilation for        in agreement with Figure 5.23.   It 

was found that the data was well-fit by a quadratic of the form,  
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Careful observations of the particle configurations at selected points on Figure 

5.19 (amplitude varied) and Figure 5.24 indicated very different distributions of the 

locations of the particles. When the amplitude was fixed and frequency varied, particles 

tended to be somewhat evenly spread out. However, this was not the case when the 

frequency was fixed and the amplitude varied.  The reason for this difference is not fully 

understood so that further investigation is required. The evolution of the scaled kinetic 

energy   is plotted against        in Figure 5.25 for          , denoted by the 

different line colors. The inset shows   vs.        for the first five frequencies.  As 

 

𝑦𝑚𝑎𝑥
𝑑  

Figure 5.24  Maximum dilation 𝑦𝑚𝑎𝑥
𝑑  as a function of 𝑓 over the duration of a single tap 

applied to the column for 𝑎 𝑑      ⁄ , 𝑒      and 𝑁     . The dotted line marks the 

theoretical location of the top sphere before application of the tap.  
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compared with the profiles seen in Figure 5.20, the sharp second peak in   is not 

markedly evident, and the time scale over which the column collapses appears to be 

longer. It is conjectured that latter observation is a consequence of the configuration of 

the particles at the time when the column begin its final progression to a state of minimal 

kinetic energy. Another observation relevant to the influence of increasing tap frequency 

at a fixed amplitude is the rather complex evolution seen in the insert to Figure 5.25 

compared with the insert of Figure 5.22, where     was varied at          .  The first 

peak in   versus  are shown in Figure 5.26.   

 𝑡     𝑠 

𝒦 

𝒦 

 𝑡      𝑠 

  𝐻𝑧 

  𝐻𝑧 

Figure 5.25  Evolution of 𝒦 for    𝑓     𝐻𝑧, 𝑎 𝑑⁄     , 𝑒      , and 𝑁     

for a single tap initiated at 𝑡      𝑠. Each color represents a different frequency, 

with the largest noted on the figure. The inset shows �̅� 𝑑⁄  for 𝑓          𝐻𝑧. 

   𝐻𝑧 
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5.6  Comparison of Results for Equally Energetic Taps 

In order to compare findings for the two studies in which the amplitude and frequency 

were varied, results are plotted on the same set of axes in Figures 5.27 and 5.28. It is 

important to note that tap energy for the two case studies matches point for point. That is, 

{        |        ⁄         ⁄ }   {        |              ⁄       ⁄ }. 

One observes that for both   ̅  ⁄      and      at        , the frequency-

varied data (open squares) begins to diverge from the data where the amplitude was 

varied (open circles).  A clearer delineation of this divergence is given in Figures 5.29 

and 5.30, in which the data is plotted against the dimensionless tap energy        ⁄ , or 

simply the product of the relative acceleration     ⁄  and the normalized amplitude 

  ⁄ .  A linear regression (5.11) to the amplitude-varied data (red line) yielded a perfect 

𝒦𝑚𝑎𝑥 

Figure 5.26  The first peak of the scaled kinetic energy 𝒦𝑚𝑎𝑥 (Figure 5.25) versus 

𝑓 over the duration of a single tap at 𝑎 𝑑       applied to a column of 𝑁  
    spheres with 𝑒       .  
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fits of both   ̅  ⁄      and      against        ⁄ , suggesting a direct variation of 

these quantities with the tap input energy.   

    
        [       ⁄ ]       

          [       ⁄ ]           

                                                   

However, quadratic variation of   ̅  ⁄      and      with        ⁄  was not 

found as evident in Figures 5.29 and 5.30. Table 5.2 lists the fitting parameters.  The 

application of the same tap energy, regardless of whether the amplitude is fixed and 

frequency varied, or visa versa, produces the same maximum dilation     
  of the 

     𝑎

𝑑
       𝑓     𝐻𝑧 

  𝑓     𝐻𝑧;  𝑎 𝑑⁄      

(
𝑦 

𝑑
)
𝑚𝑎𝑥

 

Figure 5.27   �̅� 𝑑⁄  𝑚𝑎𝑥 versus 𝑎 𝑑 () and versus 𝑓 () over the duration of a 

single tap for 𝑁     and 𝑒       .  
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column.  This can be seen in Figures 5.31 and 5.32. However, the internal arrangement or 

distribution of the spheres differs depending on how the tap was applied.  

 

5.7 A General Portrait of the Column’s Dynamics 

In general, one can qualitatively describe the behavior of the system through the 

evolution of its kinetic energy as depicted in the specific case of Figure 5.6, or via the 

general characterization of the process as shown in Figure 5.31. As the tap is applied to 

the column, particles gain kinetic energy over a short time scale associated with the 

propagation of a disturbance wave through the system. The system kinetic energy attains 

a maximum, and thereafter, the column expands (i.e., particles lose contact with other) to 

its lowest density. The presumption here is that the tap is sufficiently energetic so that 

particles eventually break contacts, as opposed to the entire system moving in sync with 

     𝑎

𝑑
       𝑓     𝐻𝑧 

  𝑓     𝐻𝑧;  𝑎 𝑑⁄      

𝒦𝑚𝑎𝑥 

Figure 5.28  𝒦𝑚𝑎𝑥 versus 𝑎 𝑑 () and versus 𝑓 () over the duration of a 

single tap for 𝑁     and 𝑒       .  
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the floor.  From this point, the system as a whole starts to collapse as particles gain 

kinetic energy due to gravitational acceleration. Eventually, collisions start to occur 

between adjacent particles in the column to produce energy loss, which ultimately takes 

the system to a point in its phase space having minimal kinetic energy with very minute 

fluctuations.  As depicted in Figure 5.27, one expects that the time scale over which the 

system energy decays will depend on the phase point. For instance, consider two identical 

systems (i.e., same  ,   and mass  ) at phase points         and         that have the 

same system energy    at time   when the column begins to collapse.  Further suppose 

each has the same potential energy ∑   
  

     ∑   
  

 , and that they have the same 

dilation so that   
     

 .  It is conjectured that the system at         which is more 

uniformly distributed along the column’s length follows a more circuitous trajectory in 

phase space, thus requiring great time to decay to a state of zero kinetic energy. This 

conjecture is consistent with results seen in Figures 5.22 and 5.25.   More generally, the 

time scale over which the energy decays is contingent on the path through phase space.  

 

Table 5.2  Statistical Parameters Regression            ⁄   . Bracketed 

Numbers Are 95% Confidence Intervals. 

         

                        -0.002769(-0.00324,-0.002299)    

    
                                           

 



87 
 

 

 

  

     𝑎

𝑑
       𝑓     𝐻𝑧 

  𝑓     𝐻𝑧;  𝑎 𝑑⁄      

 𝑎𝜔  𝑑𝑔⁄  

(
�̅�

𝑑
)
𝑚𝑎𝑥

 

Figure 5.29   �̅� 𝑑⁄  𝑚𝑎𝑥 plotted against  𝑎𝜔  𝑑𝑔⁄  over the duration of a 

single tap of 𝑁      spheres (𝑒      ) for  𝑓     𝐻𝑧,      
𝑎 𝑑     ⁄ , and 𝑎 𝑑⁄    ,   𝑓     𝐻𝑧. The red line through the open 

circles is a linear regression given in equation (5.11). 



88 
 

 

 

 

𝒦𝑚𝑎𝑥 

 𝑎𝜔  𝑑𝑔⁄  

     𝑎

𝑑
       𝑓     𝐻𝑧 

  𝑓     𝐻𝑧;  𝑎 𝑑⁄      

Figure 5.30  𝒦𝑚𝑎𝑥 plotted against  𝑎𝜔  𝑑𝑔⁄  over the duration of a  

single tap of 𝑁      spheres (𝑒      ) for  𝑓     𝐻𝑧,      
𝑎 𝑑     ⁄ , and 𝑎 𝑑⁄    ,   𝑓     𝐻𝑧. The red line through the 

open circles is a linear regression given in equation (5.11). 



89 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.31  Maximum dilation of the column 𝑦𝑚𝑎𝑥
𝑑  as a function of 𝑓 and 

𝑎 𝑑 over the duration of a single tap of 𝑁      spheres (𝑒      ) for  

𝑓     𝐻𝑧,      𝑎 𝑑     ⁄ , and 𝑎 𝑑  ⁄    ,   𝑓     𝐻𝑧. 

     𝑎

𝑑
       𝑓     𝐻𝑧 

  𝑓     𝐻𝑧;  𝑎 𝑑⁄      
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 𝑎𝜔  𝑑𝑔⁄  

     𝑎

𝑑
       𝑓     𝐻𝑧  

  𝑓     𝐻𝑧;  𝑎 𝑑⁄      

 

Figure 5.32  Maximum dilation of the column 𝑦𝑚𝑎𝑥
𝑑  as a function 

 𝑎𝜔  𝑑𝑔⁄  over the duration of a single tap of 𝑁      spheres (𝑒      ) 

for  𝑓     𝐻𝑧,      𝑎 𝑑     ⁄ , and 𝑎 𝑑⁄    ,   𝑓     𝐻𝑧.  

The red line through the data is a linear regression given by (equation 

(5.11)).  
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   𝒚𝒂 𝒗𝒂    (𝒚𝒃 𝒗𝒃)   

   

  𝑡  

𝑡 

Figure 5.33  Representation of two systems having the same total energy    at 

time 𝑡, but at different points in phase space,  𝒚𝑎 𝒗𝑎  and  𝒚𝑏  𝒗𝑏 . The time 

scale over which the system energy decays depends on the phase point.  

𝑦𝑁
𝑎  𝑦𝑁

𝑏  
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CHAPTER 6 

POINCARE MAPS OF THE MASS CENTER TRAJECTORIES 

 

In this chapter, the dynamics of the mass center trajectory are examined via Poincaré 

maps extracted from the simulation data.  The question that is addressed herein is 

whether or not the mass center of the tapped column possesses features akin to those of a 

single bouncing ball on an oscillating plate. Particular emphasis is placed on the influence 

of tap parameters (i.e.,    ⁄ ,   and relaxation time   ) on the maps with a view towards 

identifying periodic, period doubling and transitions to chaotic behavior. A brief 

discussion of the technique and how the maps are extracted from the discrete simulation 

data appears in the ensuing sections followed by a presentation and analysis of the 

results.  

 

6.1 Introduction to Poincaré Maps 

A dynamical system is comprised of a set of possible states and a function or rule that 

determines the evolution of the states. An easy example is an iterative map 

                      

In this system,    are states and   is the deterministic rule. Researchers are 

interested in how the states evolve under this rule, with the totality of states, starting with 

an initial point, called the orbit. Some of the orbits are periodic, which means they are 

finite and cyclic, some are quasi-periodic, which means that are infinite and nearly cyclic 

in a certain sense and some are chaotic, which means they are definitely not cyclic – in 

fact, they appear to be almost randomly distributed. When   is linear the orbits always 
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have a very simple structure and are said to be regular, but when the function is 

nonlinear, chaotic orbits can occur. Chaos theory is a field that has been actively 

researched for the last several decades, yet there still remain many unsolved problems. 

In 1890, Poincaré introduced a 2D map while he was studying the classical three-

body problem of celestial mechanics. This map was obtained from the successive 

intersections of the trajectories of the governing differential equations with a surface in 

the state space under investigation. In effect, it reduced the analysis of certain properties 

(including periodicity) of the solution curves of the differential equations to the discrete 

iterates of the map. This map showed some chaotic feature which had not been 

understood at that time. These types of maps are now often used in the theory and 

applications of dynamical systems and have come to be called Poincaré maps.  

Since granular flows can be viewed as dynamical systems; for example, the 

motion of a column of spheres stacked on top of each other and subjected to gravity as 

well as an applied vertical force has been studied using dynamical systems analysis by 

several researchers. In particular, Blackmore et al. [131, 132] constructed a discrete 

dynamical systems model to analyze this kind of problem. Part of this analysis used 

Poincaré maps to help determine the motion of the stacked spheres subjected to a periodic 

tapping force, after reducing the problem – at least approximately – to describing the 

dynamics of the center of mass of the configuration. In this case a 1D Poincaré map is 

created by following the position of the mass center at multiples (or submultiples) of the 

period of oscillation of the applied force. The deterministic rule (function) for this map is 

simulated using the collision force model in the DEM code that is described in Chapter 2. 

Up to 100 values of the vertical position of the mass center (states) are recorded by the 
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mass center location at the same time in each period cycle. How the map varies with tap 

amplitude and frequency, and the transition from periodic to chaotic dynamics thereby 

generated, will be discussed in this chapter. 

 

6.2 Extracting the Poincaré Maps 

Results discussed herein are for a column of 20 particles. The Poincaré map is 

constructed by extracting the position of the mass center over       taps at times that 

are multiples of   
 

  
   , from which the influence of variations in   ⁄ ,   and    can 

𝑦
𝑑

⁄
 

𝑡 

Figure 6.1  Normalized mass center �̅� 𝑑⁄  versus 𝑡 for the first 20 taps at 

𝑎 𝑑⁄          𝑓     𝐻𝑧.  The vertical blue lines positioned at {𝑡 }   
   𝑇  𝑇  𝑇     𝑇 intersect the trajectory at points of the Poincaré map 

identified by the red dots.  

Figure 6.2 A red crosses signifies a point on the Poincaré map at 𝑡     𝑇  𝑇     𝑇 

corresponding to the red dots in Figure 7.1. 
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be visualized. As an example, suppose that         and          so that   
 

  
 

         . Let    {  }               such that for each  ,     {(  

         ) |             }. The mass center location is thus extracted from the 

discrete trajectory at {  }. The procedure is illustrated in Figure 6.1, in which the 

intersections of the vertical blue lines with the mass center trajectory are the points  ̅  ⁄  

of the map.  Note that the figure shows only a small portion of the mass center trajectory. 

Figure 6.2 is a graphic depicting points the Poincaré map (red crosses) at    

                 

 

6.3   Poincaré Map Versus Tap Amplitude 

It is well-known that the behavior of a single, inelastic ball on an oscillating plate 

depends very strongly on the tap amplitude. Various behavioral regimes are possible – 

Figure 6.3  Poincaré map as a function of 𝑎 𝑑 sampled at {𝑡 }      𝑇  𝑇     𝑇 

for 𝑓     𝐻𝑧 and 𝑁    . 

 

𝑎 𝑑⁄  
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from periodic solutions, period doubling and cascades to chaos.  This section presents the 

results of an exploration of the motion of the mass center of the tapped column towards a 

goal of identifying similarities with the behavior of a single ball through the use of 

Poincaré maps. While it was not possible to identify a period-doubling cascade, findings 

reveal what appears to be chaotic dynamics. An initial series of studies was done with a 

fixed tap frequency (       ) with a set of 600 amplitudes in          .  The 

bifurcation diagram (showing stable orbits) Poincaré map (Figure 6.3) sampled at 

{  }               of the normalized mass center at  ̅  ⁄ as a function of     reveals 

both periodic and period-doubling behavior that ultimately transitions into what appears 

to be chaotic dynamics. However, one also observes a maximum mass center height of 

130 , which is clearly physically unrealistic. The reason for this is a consequence of an 

overlap   between colliding spheres that is much larger than would occur in reality 

(typically   ⁄      ) so that the collisional impulse (as per the loading spring 

             ) effectively launches the particles. In order to check this carefully, the 

maximum overlap between particles was extracted by monitoring the evolution of the 

overlaps during a single tap for        . Figure 6.4 shows    ⁄      at   ⁄  

              from which it can been seen that beyond       ⁄ , the normalized 

overlap exceeds the threshold. In particular,    ⁄           . Therefore, restricted tap 

amplitudes           are used as shown in Figure 6.5. Within this range, the mass 

center exhibits periodic, period doubling and chaotic behaviors depending on the value of 

   .  
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6.3.1 Behavioral Regimes 

Studies of an inelastic ball on an oscillating plate have shown that, depending on the tap 

parameters (    and  ) and  , various behaviors are possible, such as periodicity and 

period doubling cascades leading to chaos. While it is relatively straightforward to find at 

which amplitude period doubling takes place, locating other orbits (period 4, 8, etc.) is 

not a trivial matter. And the complexity is magnified when considering the mass center of 

a column as its dynamics is an average of the motion of all of the particles in the column. 

The difficulty is compounded by the sensitivity of the dynamics to initial conditions 

coupled with the need to resolve the time domain into sufficiently small intervals.  

 

 

 𝑎 𝑑 

 𝛿
𝑑

⁄
 𝑚

𝑎
𝑥
 

Figure 6.4  Maximum normalized overlap  𝛿 𝑑⁄  𝑚𝑎𝑥 during a single tap of the 

column at 𝑎 𝑑⁄              at 𝑓      𝐻𝑧. The solid line is provided as a 

guide. 
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The map of Figure 6.5, which has been labeled to delineate these regions, shows 

what appears to be a single line for           , corresponding to the periodic 

region.  (A discussion of the determination of transition values appears in Section 6.3.2). 

At each value of   ⁄  in this region, there are 100 nearly identical values of  ̅  ⁄  that 

correspond to the positions of the mass center at {  }                . The evolution 

of  ̅  ⁄  over 100 taps at       ⁄ is shown in the top half of Figure 6.6, in which the 

triangles on the     axis denote the instants of tap initiation. As the amplitude is 

increased, the mass center locations start to disperse until the onset of period doubling, 

while further increase in   ⁄  ultimately produces what appears to be chaotic behavior.  

Mass center trajectories at   ⁄          are shown in Figures 6.7. 

Figure 6.5  Bifurcation diagram of Poincaré map of �̅� 𝑑⁄  versus 𝑎 𝑑 sampled 

at {𝑡 }      𝑇  𝑇     𝑇 (𝑁     , 𝑓     𝐻𝑧) reveals periodic, period 

doubling and chaotic regimes. 
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𝑡 𝑇 

𝑡 𝑇 

𝑡 𝑇 

𝑡 𝑇 

Figure 6.6   Evolution of mass center trajectory over 100 taps at 𝑎 𝑑⁄      (top) 

and 0.75 (bottom). Triangles on the time axis denote the instants of tap initiation.  

𝑡 𝑇 

𝑡 𝑇 
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Figure 6.7   Evolution of mass center trajectory �̅� 𝑑⁄  over 100 taps at 𝑎 𝑑⁄      

(top) and 1.50 (bottom). Triangles on the time axis denote the instants of tap 

initiation.  

   

   

   

   

   

   

   

   

𝑡 𝑇⁄  

𝑡 𝑇⁄  

𝑡 𝑇⁄  

𝑡 𝑇⁄  

   

   

   

   

   

   

   

   

𝑡 𝑇⁄  

𝑡 𝑇⁄  

𝑡 𝑇⁄  

𝑡 𝑇⁄  
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Frequency (Hz) 

𝑡 𝑓
𝑙𝑖
𝑔
 
𝑡
  
𝑠 

 

Column 

moves with 

floor 

Figure 6.9  Flight time 𝑡𝑓𝑙𝑖𝑔 𝑡  𝑠 versus frequency (Hz) at 𝑎 𝑑⁄     , 𝑁     

and 𝑡𝑟      𝑠. The column moves in sync with the floor for   𝑓      𝐻𝑧. 

𝑎 𝑑⁄  

𝑡 𝑓
𝑙𝑖
𝑔
 
𝑡
  
𝑠 

 

𝑡  𝑡𝑡𝑟
     𝑠  

      

𝑓
    𝐻𝑧 

𝑓
    𝐻𝑧 

Figure 6.8  Flight time 𝑡𝑓𝑙𝑖𝑔 𝑡  𝑠 versus 𝑎 𝑑⁄  at  𝑓     𝐻𝑧 (black) and 𝑓  

   𝐻𝑧 (red),  𝑁    .  The red line through the data points is the linear 

regression curve (𝑓     𝐻𝑧 𝑡𝑓𝑙𝑖𝑔 𝑡  𝑐  𝑎 𝑑⁄   𝑐 , with  𝑐         ±

       and 𝑐           ±         . 
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Figure 6.10 Mass center trajectory �̅� 𝑑⁄  as a function of 𝑎 𝑑⁄  (     𝑎 𝑑⁄  

    ) at points {𝑡 }      𝑇  𝑇     𝑇 for 𝑡𝑟      𝑠 and 𝑁    . The inset 

shows �̅� 𝑑⁄  for     𝑎 𝑑      ⁄ .  

Figure  6.11 Standard deviation of the mass center 𝑆�̅�trajectory (equation 

(6.1)) versus 𝑎 𝑑⁄ for 𝑡𝑟      𝑠, 𝑓     𝐻𝑧 and 𝑁    . 

𝑎 𝑑⁄  

𝑆 𝑦
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The existence of the periodic, period doubling and chaotic phenomenon is 

understood as a ‘competition’ between the flight time of the mass center and the 

relaxation time   , relative to when a tap is applied. That is, for small tap amplitudes, the 

mass center’s flight time is small compared to    so that it undergoes periodic motion, as 

is clearly visible in the trajectory at   ⁄      of Figure 6.6. 

A measure of the response of the column to the ‘strength’ of a tap (that it, the 

amplitude and frequency) is the flight time (denoted by        ). This is computed 

determining the time required for the mass center to return to its initial position
7
 when a 

single tap is applied to the column of spheres.  Figures 6.8 and 6.9 displays (respectively) 

        versus tap amplitude   ⁄  and frequency   for         . (i.e., for       , 

 ̅  ⁄ |      ). Note that for ‘hard’ spheres (i.e., no overlaps), the entire column would 

                                                 

7 This is mass center coordinate at the instant that the tap is applied. 

Figure  6.12 Standard deviation of the mass center 𝑆�̅�trajectory (equation (6.1)) 

versus 𝑎 𝑑⁄ for 𝑡𝑟      𝑠, 𝑓     𝐻𝑧 and 𝑁    . 

𝑎 𝑑⁄  

𝑆 𝑦
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move in synchronization with the floor when the tap acceleration is less than  , which 

corresponds to frequencies    (   ⁄ √  ⁄ ).  In Figure 6.9 where   ⁄     , the 

flight time
8
 decreases with frequency for         Hz, for which the upper limit is 

slightly smaller than the theoretical ‘hard sphere’ value       ⁄ √  ⁄ |
      

 

       . The discrepancy between this value and the hard sphere limit is an artefact of 

the bilinear soft-sphere interaction model which allows energy to be stored in the system 

due to very small overlaps between contacting spheres as a result of gravitational forces, 

even when the floor is stationary.   

A linear regression analysis of the data yields that              ⁄     , for 

which          ,           ±      and             ±         .  When 

                , the regression line predicts a cut-off value   ⁄        (illustrated 

                                                 

8 The use of the term ‘flight time’ is not strictly correct here as the column moves in 

synchronization with the floor.  

𝑎 𝑑⁄  

𝑆 𝑦
 

Figure  6.13 Standard deviation of the mass center 𝑆�̅�trajectory (equation (6.1)) 

versus 𝑎 𝑑⁄ for 𝑡𝑟      𝑠, 𝑓     𝐻𝑧 and 𝑁    . 



105 
 

 

 

in Figure 6.8) after which           .  As the amplitude is increased beyond the cut-off 

  ⁄ , one anticipates that at times {  }                , the mass center’s position will 

in due course begin to deviate (as         becomes larger than   ). This can be seen in 

Figure 6.10, which shows the mass center location over the range           ⁄ .  

Further increases in the tap amplitude produce a flight time that is significantly longer 

than    so that taps are applied when the column is in an energetic state.   

6.3.2  Identification of Behavioral Regimes 

In this section, the mass center trajectory is further analyzed by determining the deviation  

 

from its mean value taken over the time span from when the taps begin. Calculation of 

the deviation, denoted by   ̅, proceeds as follows. The time duration for a tap-relaxation 

𝑎 𝑑⁄  

𝑆 𝑦
 

Figure  6.14 Standard deviation of the mass center 𝑆�̅�trajectory (equation (6.1)) 

versus 𝑎 𝑑⁄ for 𝑡𝑟      𝑠,  𝑓     𝐻𝑧 and 𝑁    . 
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cycle  [   ] is partitioned into   intervals of size            so that for   taps, there 

are    mass center positions    { ̅  ⁄      |               }.  Thus, 

 

  ̅   
 

  
∑  ̅  ⁄       〈 ̅  ⁄ 〉 

  

   

〈 ̅  ⁄ 〉   
 

  
∑ ̅  ⁄      

  

   

                                                                 

 

 

Figures 6.11 – 6.14 present (respectively)   ̅ versus   ⁄  for                

      Each of the graphs have similar characteristics. There is a periodic region in which 

  ̅ increases with   ⁄  due to the column experiencing greater dilation (reflected in the 

Figure 6.15  Bifurcation diagram for Poincaré map for 𝑡𝑟      𝑠, 𝑓     𝐻𝑧 at 
{𝑡 }      𝑇  𝑇     𝑇, 𝑁    .  
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graph of         vs.   ⁄  in Figure 6.8). A flat transition region entitled oscillation 

follows, which is viewed as a transition separating periodic dynamics from the ensuing 

period doubling behavior where   ̅ continues to rise with   ⁄ . The last region where 

  ̅appears to undergo a very small decrease and slight upturn with oscillations 

corresponds to chaotic dynamics.  The latter results suggest that one it possible to roughly 

delineate the regions of periodic, period-doubling and chaotic behavior from the graph of 

  ̅ versus   ⁄ .  This study leads to the matter of the next section – an examination of 

how a change in relaxation time    affects the Poincaré map. As was done previously, for 

each   , the tap amplitude was varied over a discrete set of values in      ⁄      . 

6.3.3 Influence of Relaxation Time on Poincaré Map 

The Poincare map for the case when          for     ⁄    and         is 

shown in Figure 6.15 reveals periodic, period-doubling and chaotic regions as was seen 

in the case when       , albeit the transitions occur at different values of    ⁄ .  The 

maps for        and        plotted together in Figure 6.16 suggests that the map 

Figure 6.16  Bifurcation diagrams for Poincaré maps for 𝑡𝑟      𝑠     𝑠, at 

{𝑡 }      𝑇  𝑇     𝑇, 𝑁     and 𝑓     𝐻𝑧. 

𝑡𝑟
     𝑠 

𝑡𝑟
     𝑠 
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corresponding to        is simply scaled down.  This can be seen more clearly from the 

Poincare maps for relaxation times                       in Figure 6.17. 

The Poincaré map of a single ball on an oscillating plate exhibits the full gamut of 

dynamical regimes – from periodicity to chaos. In particular, there is a period-doubling 

cascade that leads to chaotic dynamics. As was noted earlier in this chapter, because the 

the mass center dynamics is an average motion of all of the particle in the column,  a 

determination of the parameters (  ⁄  and  ) triggering the onset of the period-doubling 

cascade is problematic at best. The difficulty is further compounded by the sensitivity of 

the dynamics to initial conditions coupled with the need to resolve the time domain into 

sufficiently small intervals. It was demonstrated in the previous section that the graph of 

the deviation of the mass center trajectory   ̅ versus   ⁄  exhibited demarcations in 

behavior that roughly corresponded to the transition points for periodic, period-doubling 

𝑎 𝑑⁄  

𝑡𝑟
     𝑠 

𝑡𝑟
     𝑠 

𝑡𝑟
     𝑠 𝑡𝑟

     𝑠 

Figure 6.17  Poincaré maps for 𝑡𝑟                  𝑠, 𝑓     𝐻𝑧 sampled at 

{𝑡 }      𝑇  𝑇     𝑇, 𝑁    . 
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and chaotic dynamics.  Table 6.1 presents the transition point results displayed on Figures 

6.11 – 6.14.  

Table 6.1   Poincaré Map Transition Points 

 
Periodic - Transition 

Transition – Period 

Doubling 

Period Doubling - 

Chaos 

       0.20 0.24 0.365 

       0.355 0.415 0.665 

       0.475 0.570 0.940 

       0.620 0.740 1.215 

 

 

 

 

 𝛿
𝑑

⁄
 𝑚

𝑎
𝑥
 

Figure 6.18  Maximum normalized overlap  𝛿 𝑑⁄  𝑚𝑎𝑥 during a single tap of the 

column (𝑁    ) at 𝑓              𝐻𝑧  and 𝑎 𝑑⁄     . The solid line is provided 

as a guide.   

Threshold  
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6.4  Poincaré Map Versus Tap Frequency 

The behavior of the Poincaré map as a function of frequency for a fixed tap amplitude 

  ⁄        is shown in Figure 6.18 for          . It was found that at frequencies 

larger than the       upper bound, nonphysical overlaps between particles, resulting in 

very large repulsive forces and thus unrealistic displacements.  As corroboration, the 

maximum overlap between particles    ⁄     was extracted by monitoring the evolution 

of the overlaps during a single tap for          . Figure 6.18 presents    ⁄      

versus   at   ⁄       from which it can been seen that for        ,    ⁄      

exceeds the threshold. Within the frequency range          , the mass center 

exhibits periodic, period doubling and chaotic behaviors depending on  

the value of   as seen in Figure 6.19.   As per equation (6.1), the deviation of the 

mass center’s motion   ̅ is computed and plotted as a function of frequency for   ⁄  

Figure 6.19  Bifurcation diagram of Poincaré map sampled at {𝑡 } of the mass center 

trajectory at 𝑎 𝑑⁄      versus frequency for 𝑁    . 
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    and     , the result of which is shown in Figure 6.20.  One observes again (as in 

Figures 6.11 – 6.14) that the graph of   ̅ versus   exhibits distinct regions delineating 

periodic, transition, period doubling and chaotic dynamics.  

 

 

6.5  Evolution of Poincaré Map – Shifting the Sampling Times 

Up to this juncture, the discussion has been restricted to Poincaré maps constructed by 

extracting mass center positions sampled at {  }  {               }.  In this section, 

inspection points {  }   {(           ) |             }            are 

used so that 100 incremental Poincaré maps are generated (one map for each  ).  By 

sweeping through the tap-relaxation time interval in this manner, one is able to obtain a 

superficial portrait of the evolving dynamics of the system. The result of this procedure 

for        ,          and          produces maps spaced at         intervals. 

𝑓  𝐻𝑧  

               

𝑆�̅� 

     

     

     

     

     

     

     

Figure  6.20 Standard deviation of the mass center 𝑆�̅�trajectory (equation (6.1)) 

versus 𝑓 for 𝑡𝑟      𝑠,    𝑓     𝐻𝑧 and 𝑁    . 
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Figure 6.22 depicts a subset of the generated maps at sampling sets 

{  } {   } {   }   {   }, from which several observations can be made.  Each map of 

the figure features an amplitude interval (that varies with the inspection set {  }   

           ) in which the mass center exhibits periodic motion. At sampling set {  }, 

the region of periodicity appears as a horizontal line. (A detailed discussion of this region 

was given in Sections 6.3.1, 6.3.2). As the mass center location is charted at later times in  

its trajectory, corresponding to sampling times {  } {  } {  } , the horizontal line begins 

to acquire a constant positive slope over an interval of tap amplitudes   ⁄  through which 

the dynamics remain periodic. This slope is in concert with the results of Figure 6.8, 

where the flight time was observed to increase in proportion to   ⁄ .  Another common 

feature of the maps is the emergence of period doubling dynamics as evidenced by a 

bifurcation of the mass center trajectory over     intervals that depend on the inspection 

times {  }              .  One also sees evidence of periodic to period-doubling 

cascades that return to stabile period-2 orbits.  For example, consider the map obtained at 

inspection points {   }, which is shown as an enlarged view in Figure 6.21. Here, one 

sees the periodic regime for     ⁄      , followed by a thickening of the map that 

suggests a cascade with a return to a period-2 (bifurcation) orbit.  Analogous dissections 

can be conjectured from the other maps depicted in Figure 6.22.  Complete confirmation 

of the dynamics conjectured here will necessarily require a CPU-intensive scrutiny of the 

system that focuses on isolating the various dynamical regions to actually map the 

cascades and transitions.  
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6.6  Dilation Map 

Another signature of the column’s dynamics can be acquired by the evolution of the 

column’s dilation, i.e.,       ⁄    (            )  ⁄ , where   ⁄  is regarded as a 

parameter. Here,     and    are the locations of the centers of the first and top particles in 

the column. A Poincaré map of   can be constructed in the same manner as was done  

Cascad

e 

𝑎 𝑑⁄               

Stabile 

Period-

2  

Cascad

e 

Figure 6.21  Bifurcation diagram of incremental Poincaré map of the mass center 

trajectory �̅� 𝑑⁄ obtained from inspection points {𝑡  } at 𝑓     𝐻𝑧 as a function of tap 

amplitude 𝑎 𝑑⁄ . 
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𝑎 𝑑⁄  

{𝑡 } 

𝑎 𝑑⁄  

{𝑡  } 

𝑎 𝑑⁄  

{𝑡  } 
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{𝑡  } 

𝑎 𝑑⁄  

𝑎 𝑑⁄  

{𝑡  } 

𝑎 𝑑⁄  

{𝑡  } 

𝑎 𝑑⁄  

{𝑡  } 

𝑎 𝑑⁄  

{𝑡  } 

𝑎 𝑑⁄  

{𝑡  } 

{𝑡  } 

𝑎 𝑑⁄  

Figure 6.22   Poincaré maps of the mass center trajectory �̅� 𝑑⁄ at {𝑡 } {𝑡  } {𝑡  } {𝑡  }   {𝑡  } for 𝑓     𝐻𝑧, 𝑡𝑟      𝑠, 𝑁    . 
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for the mass center. Intuitively, one expects that   increases with     (for a fixed 

frequency), and that there is a threshold value of     below which the column 

experiences no dilation. (Here the column simply moves in unison with the floor). Figure 

6.23 shows a Poincaré map (sampled at {  }) of the dilation as a function of     at 

       .  The dynamic behavior of the column that is portrayed in the dilation map is 

not understood (in the same manner as those of the mass center) so that further study is 

required.  

 

 

6.7 Reduced Relaxation Map 

As suggested earlier in this chapter, the features of the Poincaré map revealing periodic, 

period doubling, cascades and chaotic dynamics are deemed to be a consequence of the 

  

𝑎 𝑑⁄               

No 

dilation 

Figure 6.23   Dilation ( ) map sampled at {𝑡 } and 𝑓     𝐻𝑧. 

Region of increasing 
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difference between the relaxation time    (i.e., interval between taps) and the flight time 

        of the column mass center. For fixed   , the flight time will increase with 

amplitude or frequency as shown in Figures 6.8 and 6.9, and when           , the mass 

center trajectory will shift away from periodicity to period-doubling cascade, ultimately 

leading to chaos.  In order to demonstrate this phenomenon in a rough manner, the 

Poincare map is constructed at   ⁄              for           , with the lower 

limit corresponding to continuous half-sine pulses. Thus, a fixed flight time is (by Figure 

6.8) found to be              ⁄                                  .     The 

result is shown in Figure 6.24 for 100 taps at inspection times {  }.  What is significant is 

that as   →  , one observes that the dynamics evolves, starting with periodic behavior 

and transitioning to chaos.  

𝑡𝑟  𝑠  

𝑡𝑓𝑙𝑖𝑔 𝑡        𝑠 

Figure 6.24  Bifurcation diagram of incremental Poincaré map at inspection points 

{𝑡 }generated from 100 taps as a function of relaxation time 𝑡𝑟 at 𝑎 𝑑⁄     , 𝑓     𝐻𝑧.  
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CHAPTER 7 

SUMMARY AND SOME IDEAS FOR CONTINUED RESEARCH 

 

This chapter presents a summary of the dissertation and some ideas for continued 

research on related granular flow problems.  

For the most part, this dissertation has been divided into two parts, one is the 

analysis of short time scale motion and the other is that of long time scale dynamics.  

 

7.1 Brief Summary and Conclusions 

In the short time scale part, the main focus is on understanding how various perturbation 

and deformation waves propagate through the column using the DEM model. The speed 

of these waves is measured and the results are compared with the predictions of related 

linear wave theory. It is found that the simulations compare quite well with the theory. 

Then the affects of varying tap and material parameters on the wave propagation 

dynamics and properties are studied in considerable detail and comparisons with theory 

are made where possible and insightful. 

In the long time scale part, the research is focused on the whole process of the 

column motion, and in particular, how it behaves as a pulse is exerted on one end (usually 

the bottom) of the column in the presence of a gravity force field. The response to the 

applied force (pulse) starts with an expansion with the particles flying upward and apart 

and ends with  a cooling process of the column settling down to a nearly equilibrium 

state. Chapter 4 and Chapter 5 discussed the expansion process and cooling processes in 

considerable detail, respectively, and various conclusions and conjectures were made 
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about how the dynamics, density and energy of the configuration depend on the material 

properties, initial position of the stacked spheres, and the tap parameters. Some 

conclusions reached are listed below: 

 Increasing amplitude and frequency will increase the energy and column     

expansion 

 Smaller restitution coefficients and larger numbers of particles will dissipate the 

expansion faster and increasing the cooling effect 

Then in Chapter 6, the column is represented as a dynamical system, and the 

dynamical behavior is investigated in great detail. A useful tool called a Poincaré map is 

employed to describe this dynamical system and some important features of the motion 

are identified using this approach. If the controlling relaxation time is held fixed, the 

column motion typically follows a periodic to period doubling to period doubling cascade 

to chaotic progression as the tap energy increases. If the tap amplitude and frequency are 

fixed constants, then reducing the relaxation time will result in the same period doubling 

cascade to chaos sequence of dynamics.  

 

7.2 Some Ideas for Continuous Research 

There are still some elements that will affect the dynamics of the column that have not 

yet been completely investigated. For instance, the overall dependence of the dynamical 

behavior of the stacked spheres on particle size, sphere density and material stiffness is 

still largely unknown. These parameters are included in the DEM code and have certainly 

been observed to change the dynamics of the system. There is some work that needs to be 

done to determine just how these parameters affect the dynamics. Also, the Poincaré map 

needs to be investigated more thoroughly to determine precisely how such parameters as 

the number of particles and restitution coefficients influence the discrete dynamics of the 
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iterates. There is also much that remains to be learned about the dynamics in parameter 

regions associated with the end of period doubling cascades and the initiation of chaos. 

For the short time scale part, it is important to study how the dynamics is affected by the 

nature of the particle-particle and particle-boundary interaction force model is used in the 

simulations and mathematical treatments. In particular, it is quite possible that if one uses 

the Hertz model or FEM model (ABAQUS), it might be easier to analyze the wave 

propagation and the results might compare better with results from other theoretical 

approaches and some available experimental studies. Also, it remains to extend the 

analysis to 2D or 3D particle configuration by modifying the tangential force model and 

applying the rolling effect into the system. 
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APPENDIX A 

MATLAB CODE TO GENEARATE INPUT FILES 

 

 

This appendix gives the MATLAB code to generating initial input files i3ds. 

 

 
% for i = 1:5 

    for i = 1:30 

%         for j = 1:3 

    disp(['starting',num2str(i),' Hz']); 

% fid = fopen(['J:\matlab 

environment\Aw\A',num2str(0.01*i),'f',num2str(10*j),'\i3ds'],'wt'); 

% fid = fopen(['J:\matlab 

environment\Falcon\exp2\',num2str(i),'\i3ds'],'wt'); 

fid = fopen(['E:\matlab 

environment\generate_i3ds\freq\',num2str(i),'\i3ds'],'wt'); 

%fid=fopen(['I:\matlab 

environment\freq\longrelax\1tapfreq\',num2str(i),'\',num2str(i),'.txt']

,'wt') 

fprintf(fid,'\n s3dsNEwb i3ds343b particles  30.00deg  n=47  

n/mm=.55294 drag=0.0 z=6.7mm\n'); 

fprintf(fid,'fmub=0.25  fmu=0.1\n\n'); 

 

fprintf(fid,[' &var  np =          ',num2str(20+5),'      /Total number 

of particles in cell\n']); 

fprintf(fid,' &var  bdry =         1      /flag for boundry type 

(1;cubic, 2;tringular)\n'); 

fprintf(fid,' &var  nxby0 =        1      /No of boundary particles in 

x-dir. at y = 0\n'); 

fprintf(fid,' &var  nzby0 =        1      /No of boundary particles in 

z-dir. at y = 0\n'); 

fprintf(fid,' &var  nxby1 =        0      /No of boundary particles in 

x-dir. at ycell\n'); 

fprintf(fid,' &var  nzby1 =        0      /No of boundary particles in 

z-dir. at ycell\n'); 

% fprintf(fid,'\n'); 

% fprintf(fid,'\n'); 

% fprintf(fid,'\n'); 

fprintf(fid,' &var  nxbz0 =        1      /No of boundary particles in 

x-dir. at z = 0\n'); 

fprintf(fid,' &var  nybz0 =        1      /No of boundary particles in 

y-dir. at z = 0\n'); 

fprintf(fid,' &var  nxbz1 =        1      /No of boundary particles in 

x-dir. at zcell\n'); 

fprintf(fid,' &var  nybz1 =        1      /No of boundary particles in 

y-dir. at zcell\n'); 

fprintf(fid,' &var  nybx0 =        1      /No of boundary particles in 

y-dir. at x = 0\n'); 

fprintf(fid,' &var  nzbx0 =        1      /No of boundary particles in 

z-dir. at x = 0\n'); 
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fprintf(fid,' &var  nybx1 =        1      /No of boundary particles in 

y-dir. at xcell\n'); 

fprintf(fid,' &var  nzbx1 =        1      /No of boundary particles in 

z-dir. at xcell\n'); 

fprintf(fid,' &var  nfix =         0      / number of fixed 

particles\n'); 

fprintf(fid,' &var  nzcyl =        0      / number of fixed cylinders 

parallel to z-axis\n'); 

fprintf(fid,' &var  nycyl =        0      / number of fixed cylinders 

parallel to y-axis\n'); 

fprintf(fid,' &var  ncmax =        0      /number of collisions during 

entire run\n'); 

fprintf(fid,' &var  nout =         0      /No. of time to print out 

results\n'); 

fprintf(fid,' &var  nczero =       0      /number of collisions before 

start cum. ave.\n'); 

fprintf(fid,' &var  ntcol =      69       /number of time steps during 

a collision\n'); 

fprintf(fid,' &var  nvel =       20       /number of intervals for vel. 

distrib.\n'); 

fprintf(fid,' &var  nyzone =     48       /number of y zones\n'); 

fprintf(fid,' &var  mzcell =     4        /\n'); 

fprintf(fid,' &var  nycell =     10       /\n'); 

fprintf(fid,' &var  itervm =      1       /max iterations per time 

step\n'); 

fprintf(fid,' &var  icoord =      0       /flag for coordinates print 

out\n'); 

fprintf(fid,' &var  itty =        0       /flag for tty 

interaction\n'); 

fprintf(fid,' &var  ixyz =        0       /flag to read init coords of 

fxd & bnd particles\n'); 

fprintf(fid,' &var  istart =      0       /to restart the code rename 

d3ds to d3ds1000 and set istart=1000\n'); 

fprintf(fid,' &var  tmax =      750       /max time for 

calculation\n'); 

fprintf(fid,[' &var  tpour =  ',num2str(2),'         /time for 

pouring\n']); 

fprintf(fid,' &var  dt =       0.         /time step\n'); 

fprintf(fid,' &var  dtout =    0.001      /time interval for printing 

out results\n'); 

fprintf(fid,' &var  dtdump =   0.1        /time interval for 

dumping\n'); 

fprintf(fid,' &var  tzero =    0.25       /restart long-term cum. 

ave.\n'); 

fprintf(fid,' &var  search =  0.001       /search distance for near 

neighbors\n'); 

fprintf(fid,' &var  ycell =   1           /cell height (m) \n'); 

fprintf(fid,' &var  xyrat =   0.019999    /ratio used to compute xcell  

\n'); 

fprintf(fid,' &var  zyrat =   0.019999    /ratio used to compute zcell 

\n'); 

fprintf(fid,' &var  vave =    0.0         /average deviatoric transl. 

velocity\n'); 

fprintf(fid,' &var  vseed =   0.9         /seed for random initial 

particle velocities\n'); 

fprintf(fid,' &var  vxzero =  0.0         /initial velocity in the x-

direction (ave)\n'); 
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fprintf(fid,' &var  vyzero =  0.0         /initial velocity in y-

direction (ave)\n'); 

fprintf(fid,' &var  vzzero =  0.0         /loading stiffness K1\n'); 

fprintf(fid,' &var  skn1 =    2.8e+05     /normal force 

coefficient\n'); 

fprintf(fid,' &var  elast =   0.92        /coefficient of 

restitution\n'); 

fprintf(fid,' &var  slope =   1.0e+05     /alternative parameter for 

unloading\n'); 

fprintf(fid,' &var  ratk =    0.8         /ratio of tangential/normal 

stiffness\n'); 

fprintf(fid,' &var  fmu =     0.1         /coefficient of friction\n'); 

fprintf(fid,' &var  fmub =    0           /friction for boundary and 

fixed particles\n'); 

fprintf(fid,' &var  power =   0.3333333   /tangential force 

exponent\n'); 

fprintf(fid,[' &var  rmassz =  ',num2str(5026),'        /mass of unit 

sphere\n']); 

fprintf(fid,' &var  tstart=   0.0         /\n'); 

fprintf(fid,' &var  gravx =   0.0         /acceleration of gravity in x 

direction\n'); 

fprintf(fid,' &var  gravy =   -9.81       /acceleration of gravity in y 

direction\n'); 

fprintf(fid,' &var  gravz =   0.0         /acceleration of gravity in z 

direction\n'); 

fprintf(fid,' &var  vxby0 =   0.0         /x velocity of real boundary 

at y = zero\n'); 

fprintf(fid,' &var  vxby1 =   0.0         /x velocity of real boundary 

at y = ycell\n'); 

fprintf(fid,' &var  vyby0 =   0.0         /\n'); 

fprintf(fid,' &var  vyby1 =   0.0         /\n'); 

fprintf(fid,' &var  t2move =  30.0        /time when the floor starts 

to move\n'); 

fprintf(fid,' &var  vyfloor = 0.0         /velocity of the floor when 

moving\n'); 

fprintf(fid,' &var  draddt =  50.         /rate of increase of particle 

radii\n'); 

fprintf(fid,[' &var  number(1) = ',num2str(20),'        /number of 

particles in group 1\n']); 

fprintf(fid,' &var  radius(1) = 0.01     /particle radii for group 

1\n'); 

fprintf(fid,' &var  number(2) = 5         /number of particles in group 

2\n'); 

fprintf(fid,' &var  radius(2) = 0.01      /radius of cylindrical 

boundry\n'); 

fprintf(fid,' &var  skn1b = 2.8e+05       /\n'); 

fprintf(fid,' &var  elastb= 0.92           /\n'); 

fprintf(fid,' &var  slopeb= 1.0e+05       /\n'); 

% fprintf(fid,[' &var  vamp =    ',num2str(2*pi*9*i*0.001),'      

/velocity amplitude of boundary\n']); 

% fprintf(fid,[' &var  frq =     ',num2str(i),'           /frequency of 

bump\n']); 

fprintf(fid,[' &var  vamp =    ',num2str(i*0.001*2*pi*10),'      

/velocity amplitude of boundary\n']); 

fprintf(fid,[' &var  frq =     ',num2str(i),'           /frequency of 

bump\n']); 

fprintf(fid,' &var  tbump =   0.0667      /duration of one bump\n'); 
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% fprintf(fid,[' &var  nrcg  =   

',num2str(round((0.4+(0.4+1/2/10)*10)/(i+1/2/10))-1),'          /number 

of bumps to be processed\n']); 

fprintf(fid,[' &var  nrcg  =   ',num2str(1),'          /number of bumps 

to be processed\n']); 

fprintf(fid,' &var  finis =   1.          /end\n'); 

fprintf(fid,'\n\n\n\n'); 

% type i3ds 

%saveas(fig,['J:\matlab 

%environment\RC\tpour2\',num2str(0.02*i),'\each_paricle.jpg']) 

save%as(fid,['J:\matlab 

environment\ampl\ampl\1par\',num2str(0.001*i),'\i3ds.txt']); 

 % saveas(fid, ['M:\matlab 

environment\freq\longrelax\1tapfreq\',num2str(i),'\',num2str(i),'.txt']

) 

fclose(fid); 

%         end 

    End 
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APPENDIX B 

MATLAB CODE TO GENERATE MASS CENTER TRAJECTORIES 

 

 

This appendix gives the MATLAB code to generating mass center trajectories. 

 
clear; 

N = 20; 

d = 0.02; 

cc = hsv(N); 

for i = 0.03 

 

% C = load(['e:\matlab 

environment\chaos\SMALL\100taps\dt6\freq\',num2str(i),'\coord.txt']); 

% MC = load(['e:\matlab 

environment\chaos\SMALL\100taps\dt6\freq\',num2str(i),'\zmasscen']); 

C = load(['e:\matlab 

environment\chaos\SMALL\100taps\dt6\ampl\testBif1\',num2str(i),'\coord.

txt']); 

MC = load(['e:\matlab 

environment\chaos\SMALL\100taps\dt6\ampl\testBif1\',num2str(i),'\zmassc

en']); 

% C = load(['E:\matlab 

environment\chaos\SMALL\ampl\',num2str(i),'\coord.txt']); 

% MC = load(['E:\matlab 

environment\chaos\SMALL\ampl\',num2str(i),'\zmasscen']); 

% MC = load('C:\Users\LUO ZUO\Desktop\temp\zmasscen'); 

 

% MC = load(['zmasscen',num2str(i)]); 

 

% % %  j = 1:length(C)/N; 

 

 

% % %  for k = 1:N 

% % %      hold on 

% % % % plot(C((j-1)*N+k,2),C((j-1)*N+k,1),'color',cc(k,:)) 

% % % plot((C((j-1)*N+k,2)+0.05)./0.45,C((j-1)*N+k,1)/d,'k') 

% % % plot((MC(:,1)+0.05)./0.45,MC(:,2)/d,'k','LineWidth',5) 

% % %  

% % % for ii = 1:10 

% % % yy(ii) = 0.495; 

% % % end 

% % % 

plot(t(1:10),yy(1:10),'^k','MarkerEdgeColor','k','MarkerFaceColor','k',

'MarkerSize',13); 

% % %  

% % % xlim([0,11]) 

% % % set(gca,'FontSize',20); 

% % % xlabel('t/T','FontSize', 34,'Rotation',360) 

% % % ylabel('$ \frac{y}{d}$','Interpreter','latex','FontSize', 

44,'Rotation',360) 

% % %  end 
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t = zeros(100,1); 

 y = zeros(100,1); 

 

 

%  t(1) = 0.4; 

t(1) = 1; 

 period = 1/2/10+0.4; 

%  period = 1/2/(i*5)+0.4; 

 y(1) = (min(MC(:,2))-0.001)/d; 

 

 

% y(1) = min(C(:,1))-0.001; 

for jj = 2:100 

% t(jj) = t(jj-1)+1/2/(i*5)+0.4;%pay attention , there is a frequency 

parameter will affect the result 

% t(jj) = t(jj-1)+1/2/(10)+0.4;%pay attention , there is a frequency 

parameter will affect the result 

t(jj) = t(jj-1)+1; 

y(jj) = y(1); 

 

 

end 

% % % 

plot(t,y,'^k','MarkerEdgeColor','k','MarkerFaceColor','k','MarkerSize',

13); 

% % % xlim([0,11]) 

% % % set(gca,'fontsize',30) 

% % % xlabel('t/T','FontSize', 40,'Rotation',360) 

% % % ylabel('$ \frac{y}{d}$','Interpreter','latex','FontSize', 

50,'Rotation',360) 

 

Np = 4; 

    for L = 1:Np 

% %     j = length(C)/N/Np*(L-1)+1:L*length(C)/N/Np; 

% %     for k = 1:N 

 

        subplot(Np,1,L) 

% %         plot(C((j-1)*N+k,2),C((j-1)*N+k,1),'color',cc(k,:)) 

%      

% % plot(C((j-1)*N+k,2),C((j-1)*N+k,1)/d); 

% % plot(MC(:,1),MC(:,2)/d,'r') 

% plot(MC((length(MC)/Np*(L-

1)+1:L*length(MC)/Np),1),MC((length(MC)/Np*(L-

1)+1:L*length(MC)/Np),2)/d,'r'); 

% %  

 

% plot((MC((round(length(MC)/Np*(L-

1)+1):round(length(MC)/Np*L)),1)+1/2/5/i)./period,MC((round(length(MC)/

Np*(L-1)+1):round(length(MC)/Np*L)),2)/d,'k','LineWidth',2); 

plot((MC((round(length(MC)/Np*(L-

1)+1):round(length(MC)/Np*L)),1)+1/2/10)./period,MC((round(length(MC)/N

p*(L-1)+1):round(length(MC)/Np*L)),2)/d,'k','LineWidth',2); 

 

hold on 
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plot(t(round(length(t)/Np*(L-

1)+1):round(L*length(t)/Np)),y(round(length(y)/Np*(L-

1)+1):round(L*length(y)/Np)),'^k','MarkerEdgeColor','k','MarkerFaceColo

r','k','MarkerSize',13); 

% for iii = (L-1)*25+1:L*25 

%     hold on 

%     plot(t(iii),MC((round(MC(:,1)*1000)/1000==0.4+(t(iii)-

1)*period)),2) 

% end 

% plot(t,y/d,'k^') 

xlim([(MC(round(length(MC)/Np*(L-

1)+1),1)+1/2/10)./period,(MC(round(length(MC)/Np*L),1)+1/2/10)./period]

) 

 

% % xlim([0,0.4+1/10/2*10+0.4*10]) 

ylim([(min(MC(:,2))-0.001)/d,(max(MC(:,2))+0.002)/d]) 

% % ylim([min(C(:,1))/d-0.001/d,max(C(:,1))/d+0.002/d]) 

xlabel('t/T','FontSize', 34,'Rotation',360) 

ylabel('$ \frac{\overline{y}}{d}$','Interpreter','latex','FontSize', 

44,'Rotation',360) 

    if L ==1 

        title(['mass center trajectory at a/d = ',num2str(i/0.02),' 

with 100 taps'],'FontSize', 20) 

    end 

 

    set(gca,'fontsize',20) 

    end 

 

% subplot(Np,1,L) 

% plot(MC((length(MC)/5*(L-1)+1:L*length(MC)/5),1),MC((length(MC)/5*(L-

1)+1:L*length(MC)/5),2)); 

% xlim([MC(round(length(MC)/5*(L-1)+1),1),MC(round(length(MC)/5*L),1)]) 

% ylim([min(MC(:,2))-0.001,max(MC(:,2))+0.002]) 

% xlabel('time(secs)') 

% ylabel('position(m)'); 

% end 

% title(['A/d = ',num2str(i*0.005/0.02),' '],'FontSize',18) 

 

% title(['100 taps of mass center position of 20-particle column with 

amplitude A/d ',num2str(i*0.005/0.02),' particle diameters']) 

 

%  end 

% saveas(gca,'asf','jpg') 

%     close() 

end 
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APPENDIX C 

MATLAB CODE TO GENERATE POINCARE MAPS 

 

 

This appendix gives the MATLAB code to generating Poincare map. 

 
clear 

f = 10; 

tpour = 0.4; 

T = tpour+1/f/2; 

N = 1000; 

NP = 20; 

NT = N*T; 

tin = 100; 

 

for k = 51%1:10:tin 

 

 

 

    disp(k) 

for i = 0.0001:0.0001:0.03 

% for i = 0.5*0.02:0.0001:0.02 

disp(i) 

 

    MC = load(['e:\matlab 

environment\chaos\SMALL\100taps\dt6\ampl\testBif1\',num2str(i),'\zmassc

en']); 

    t = 0; 

for j = 1:100 

 

    t = tpour+T*(j-1)+T/tin*(k-1); 

    tn = fix(t*1000); 

    y = (t-tn/1000)*(MC(tn+2,2)-MC(tn+1,2))/0.001+MC(tn+1,2); 

    hold on 

plot(i/0.02,y/0.02,'kx') 

end 

end 

set(gca,'fontsize',18) 

xlabel('$ \frac{a}{d} $','interpreter','latex', 'FontSize', 

35,'Rotation',360) 

    ylabel('$ 

\frac{\overline{y}}{d}$','Interpreter','latex','FontSize', 

35,'Rotation',360) 

% title(['$ Poincare Map $',num2str(k),'interpreter','latex', 

'FontSize', 22,'Rotation',360]) 

title(['Poincare Map at t=T+',num2str((k-1)/100),'T']) 

xlim([0,1.5]) 

ylim([9,30]) 

% print(gca,'-djpeg','-r600',['F:\matlab 

environment\chaos\SMALL\100taps\dt6\ampl\testBif1\t',num2str(k-1),])  

end 



 

 

128 
 

REFERENCES 

 

1. A. Levy, and H. Kalman, eds. Handbook of conveying and handling of particulate 

solids. Handbook of Powder Technology, ed. J.C. Williams and T. Allen. 10. 

2001. Elsevier, Amsterdam, Netherlands. 

2. M.J. Rhodes, Introduction to particle technology.  1998. John Wiley & Sons. 320. 

Chichester, UK. 

3. G. Klinzing, F. Rizk, R.D. Marcus, and L.S. Leung, Pneumatic conveying of 

solids - atheoretical and practical approach. 3rd ed, 2010. Springer, Dordrecht, 

Netherlands. 

4. E.R. Merrow, Linking R&D to problems experienced in solids processing, 1984. 

Rand Corporation. p. 1-21. 

5. X.Z. An, C.X. Li, R.Y. Yang, R.P. Zou, and A.B. Yu, Experimental study of the 

packing of mono-sized spheres subjected to one-dimensional vibration. Powder 

Technology, 2009. 196(1): p. 50-55. 

6. J. Duffy, and R. Mindlin, Stress-strain relations and vibrations of granular 

medium. J. Appl. Mech. Trans. ASME, 1957. 7: p. 585-593. 

7. R. Linemann, J. Runge, M. Sommerfeld, and U. Weifguttel, Compaction of 

powders due to vibrations and shocks. Particle and Particle System 

Characterization, 2004. 21(4): p. 261-267. 

8. A.W. Roberts, and O.J. Scott, An investigation into the effects of sinusoidal and 

random vibrations on the strength and flow properties of bulk solids. Powder 

Technology, 1978. 21(1): p. 45-53. 

9. C.R. Wassgren, M.L. Hunt, P.J. Freese, J. Palamra, and C.E. Brennen, Effects of 

vertical vibration on hopper flows of granular material. Physics of Fluids, 2002. 

14(10): p. 3439-3448. 

10. F.J. Rademacher and L. ter Borg, On the theoretical and experimental conveying 

speed of granular bulk solids on vibratory conveyors. Forschung im 

Ingenieurwesen, 1994. 60(10): p. 261-283. 

11. K. Erdész, and A. Szalay, Experimental study on the vibrational transport of bulk 

solids. Powder Technology, 1988. 55(2): p. 87-96. 

12. R.A. Bagnold, Experiments on a gravity-free dispersion of large solid spheres in 

a newtonian fluid under shear. Proc. Roy. Soc. 1954. A 225: p. 49, London,UK. 

13. R.A. Bagnold, The physics of blown sand and desert Dunes. 4th ed  1973. 

Chapman and Hall. p. 264, London,UK. 

14. M.D. Mantle, A.J. Sederman, L.F. Gladden, J.M. Huntley, T.W. Martin, R.D. 

Wildman, and M.D. Shattuck, MRI investigations of particle motion within a 

three-dimensional vibro-fluidized granular bed. Powder Technology, 2008. 

179(3): p. 164-169. 



129 
 

 

 

15. M. Nakagawa, , A. Waggoner, and E. Fukushima, Non-invasive measurements of 

fabric of particle packing by MRI, Introduction to Mechanics of Granular 

Materials, M. Oda, Editor 1999. A, Balkema, Netherlands. 

16. T.-T. Ng, C. Wang, and S. Altobell, 3-D MRI experiment of granular materia, in 

mechanics of deformation and flow of particulate materials, C.S. Chang, et al., 

1997, ASCE, p. 189-198, Evanston, IL. 

17. R.A. Waggoner, M. Nakagawa, S.J. Glass, and E. Fukushima, Particle 

compaction as observed by MRI, Spatially Resolved Magnetic ResonanceP. 

Blumer, B. Blumich, and R. Botta, Editors. 1998, Wiley-VCH, Weinheim, 

Germany. 

18. S.A. Altobelli, A. Caprihan, E. Fukushima, and J.D. Seymour. Nuclear magnetic 

resonance studies of granular flows - current status. Materials Research Society 

Symposium - Proceedings. 2000, San Francisco, CA. 

19. L. Farber, G.I. Tardos, and J.N. Michaels, Use of x-ray tomography to study the 

porosity and morphology of granules. Powder Technology, 2003. 132(1): p. 57-

63. 

20. E.J. Garboczi, Three-dimensional mathematical analysis of particle shape using 

X-ray tomography and spherical harmonics: Application to aggregates used in 

concrete. Cement and Concrete Research, 2002. 32(10): p. 1621-1638. 

21. C. Wu, Y.D. Cheng, Y., F. Wei, and Y. Jin, A novel x-ray computed tomography 

method for fast measurement of multiphase flow. Chemical Engineering Science, 

2007. 62(16): p. 4235-4335. 

22. D.J. Parker, A.E. Dikjstra, T.W. Martin, and J.P.K. Seville, Positron emission 

particle tracking studies of spherical particle motion in rotating drums. Chemical 

Engineering Science, 1997. 52(13): p. 2011-2022. 

23. D.J. Parker, and X. Fan, Positron emission particle tracking,in Application and 

labelling techniques. Particuology, 2008. 6(1): p. 16-23. 

24. S. Linz, and A. Dohle, Minimal relaxation law for compaction of tapped granular 

matter. Phys. Rev. E, 1999. 60(5): p. 5737-5741. 

25. A.D. Rosato, , D. Blackmore, K. Urban, L. Zuo, and X. Tricoche, Dynamical 

systems model and discrete element simulations of a tapped granular column, 

Powders & Grains 2013 (under review), American Institute of Physics, Sydney, 

AU. 

26. P. Evesque, Modelling the micro-macro passage in the quasi-statics regime of 

granular matter. Powders & Grains 2001. Balkema, Netherlands. 

27. S. Kitsunezaki, Quasi-static deformation of a granular system with a regular 

arrangement of particles. Granular Matter, 2004. 6(4): p. 221-228. 

28. C. Thornton, Quasi-static simulations of compact polydisperse particle systems. 

Particuology, 2010. 8(2): p. 119-126. 



130 
 

 

 

29. C. Thornton, and S.J. Antony, Quasi-static deformation of particulate media. 

Phil. Trans. Roy. Soc. A, 1998. 356(2763-2782), London,UK. 

30. C. Campbell, Rapid granular flows. Ann. Rev. Fluid Mech., 1990. 22: p. 57-92. 

31. C. Chou, Kinetic theories of rapid granular flows of highly inelastic particles. 

ASME-ASCE-SES Joint Summer Meeting. 1997. 

32. J.T. Jenkins, Rapid flows of granular materials, in non-classical continuum 

mechanics, R. Knops and A. Lacey, Editors. 1987, Cambrige University Press, p. 

213-225. Cambridge, UK. 

33. M.Y. Louge, Computer simulations of rapid granular flows of spheres interacting 

with a flat, frictional boundary. Phys. Fluids  1994. 6(7): p. 2253-2269. 

34. S.B. Savage, R.M. Nedderman, U. Tuzun, and G.T. Houlsby, Flow of granular 

materials - 3. Rapid shear flows Chem. Eng. Sci., 1983. 38(2): p. 189-195. 

35. R.D. Wildman, T.W. Martin, J.M. Huntley, J.T. Jenkins, H. Viswanathan, X. Fen, 

and D.J. Parker, Experimental investigation and kinetic-theory-based model of a 

rapid granular shear flow. J. Fluid. Mech., 2008. 602: p. 63-79. 

36. T. Akiyama, Y. Miyamoto, N. Yamanaka, and J.Q. Zhang, Densification of 

powders by means of air, vibratory and mechanical compactions. Powder 

Technology, 1986. 46(2-3): p. 173-180. 

37. O. Dybenko, A.D. Rosato, and D. Horntrop, Three-dimensional Monte Carlo 

simulations of density relaxation. KONA Powder and Particle, 2007. 25: p. 133-

144. 

38. J.B. Knight, C.G. Fandrich, C.N. Lau, H.M. Jaeger, and S.R. Nagel, Density 

relaxation in a vibrated granular material. Phys. Rev. E, 1995. 51: p. 3957-3963. 

39. P. Ribière, P. Richard, P. Philippe, D. Bideau, and R. Delannay, On the existence 

of stationary states during granular compaction. European Physical Journal E, 

2007. 22(3): p. 249-253. 

40. P. Richard, P. Philippe, F. Barbe, S. Bourle?s, X. Thibault, and D. Bideau, 

Analysis by x-ray microtomography of a granular packing undergoing 

compaction. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 

2003. 68(2). 

41. P. Richard, P. Philippe, F. Barbe, S. Bourlès, X. Thibault, and D. Bideau, Analysis 

by x-ray microtomography of a granular packing undergoing compaction. 

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2003. 68(2): 

p. 020301/1-020301/4. 

42. A.D. Rosato, O. Dybenko, V. Ratnaswamy, D. Horntrop, and L. Kondic, 

Microstructure evolution in density relaxation by tapping. Phys. Rev. E, 2010. 

81(061301). 

43. A.D. Rosato, V. Ratnaswamy, D.J. Horntrop, O. Dybenko, and L. Kondic. 

Temporal dynamics in density relaxation. 2010. Reggio Calabria, Italy. 



131 
 

 

 

44. N. Zhang, and A.D. Rosato, Experiments and simulations on vibration induced 

densification of bulk solids.KONA Powder and Particle, 2006. 24: p. 93-103. 

45. M.W. Richman, and R.E. Martin. Unconfined granular materials thermalized by 

fluctuating horizontal surfaces. Proceedings of the 9th Conference on Engineering 

Mechanics. 1992. ASCE. 

46. M. Faraday, On a peculiar class of acoustical figures and on certain forms 

assumed by groups of particles upon vibrating elastic surfaces. Philos. Trans. R. 

Soc. 1831. 52: p. 299, London,UK. 

47. G. Metcalfe, T. Shinbrot, J.J. McCarthy, and J.M. Ottino, Mising patterns for 

surface dominated granular flows. Phys. Fluids A, 1995. 7: p. cover article. 

48. S.L. Conway, D.J. Goldfarb, T. Shinbrot, and B.J. Glasser, Free surface 

instabilities in rapid granular chute flows. Phys. Rev. Lett., 2003. 90: p. 074301. 

49. S. Luding, Clustering insabilities, arching, and anomalous interacion 

probabiliies as examples for cooperative phenomena in dry granular media. 

T.A.S.K. Quarterly (Scientific Bulletin of Academic Computer Centre of the 

Technical University of Gdansk), 1998. 2(3): p. 417-443. 

50. S. Luding, Surface waves and pattern formation in vibrated granular 

media,Powders and Grains 1997, R. Behringer and J.T. Jenkins, Editors. 1997, A. 

Balkema,Netherlands. 

51. S.S. Hsiau, M.H. Wu, and C.H. Chen, Arching phenomena in a vibrated granular 

bed. Powder Technology, 1998. 99(2): p. 185-193. 

52. A. Saez, F. Vivanco, and F. Melo, Size segregation, convection, and arching 

effect. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2005. 

72(2): p. 1-7. 

53. T. Akiyama, K. Shinmura, S. Murakawa, and K.M. Aoki, A surface instability of 

granules under vibration in partitioned containers. Granular Matter, 2001. 3(3): 

p. 177-183. 

54. L.A. Pugnaloni, M.G. Valluzzi, and L.G. Valluzzi, Arching in tapped deposits of 

hard disks. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 

2006. 73(5). 

55. N. Mujica, and F. Melo, Experimental study of solid-liquid-type transitions in 

vibrated granular layers and the relation with surface waves. Physical Review E - 

Statistical, Nonlinear, and Soft Matter Physics, 2001. 63(1): p. 1-14. 

56. L. Bonneau, B. Andreotti, and E. Clement, Evidence of Rayleigh-Hertz surface 

waves and shear stiffness anomaly in granular media. Physical Review Letters, 

2008. 101(11). 

57. E. Clement, L. Bonneau, and B. Andreotti. Surface wave acoustics of granular 

packing under gravity. 2009, Golden, CO. 

58. O.R. Walton, and R.L. Braun, Viscosity and temperature calculations for 

assemblies of inelastic, frictional disks. J. Rheol., 1986. 30(5): p. 949-980. 



132 
 

 

 

59. O.R. Walton, Numerical simulation of inclined chute flows of monodisperse, 

inelastic, frictional spheres. Mechanics of Materials, 1993. 16: p. 239-247. 

60. V.F. Nesterenko, Propagation of nonlinear compression pulses in granular 

media. J. Appl. Mech. Tech. Phys., 1984. 24: p. 733-743. 

61. E. Falcon, C. Laroche, S. Fauve, and C. Coste, Collision of a 1-D column of beads 

with a wall. Eur. Phys. J. B, 1998. 5(1): p. 111-131. 

62. S. Job, F. Melo, A. Sokolow, and S. Sen, How hertzian solitary waves interact 

with boundaries in a 1D granular medium. Phys. Rev. Lett., 2005. 94(17): p. 1-4. 

63. S. Job, F. Melo, A. Sokolow, and S. Sen, Solitary wave trains in granular chains: 

experiments, theory and simulations. Granular Matter, 2007. 10(1): p. 13-20. 

64. S. Job, F. Santibanez, F. Tapia, and F. Melo, Wave localization in strongly 

nonlinear Hertzian chains with mass defect. Phys. Rev. E, 2009. 80(2). 

65. F. Santibanez, R. Munoz, A. Caussarieu, S. Job, and F. Melo, Experimental 

evidence of solitary wave interaction in Hertzian chains. Physical Review E - 

Statistical, Nonlinear, and Soft Matter Physics, 2011. 84(2). 

66. D. Blackmore, R. Samulyak, and A. Rosato, New mathematical model for particle 

flow dynamics. J. Nonlin. Math. Phys, 1999. 6: p. 198-221. 

67. D. Blackmore, K. Urban, and A. Rosato, Integrability analysis of regular and 

fractional BSR fields. Condensed Matter. Phys., 2010. 13(43403): p. 1-7. 

68. B. Bernu, and R. Mazighi, One-dimensional bounce of inelastically colliding 

marbles on a wall. Journal of Physics A, Mathematical and General 1990. 23(24): 

p. 5745. 

69. E. Clement, S. Luding, A. Blumen, J. Rajchenbach, and J. Duran, Fluidization, 

condensation and clusterization of a vibrating column of beads. Int. J. Mod. Phys. 

B, 1993. 7: p. 1807. 

70. S. Luding, E. Clement, A. Blumen, J. Rajchenbach, and J. Duran, Studies of 

columns of beads under external vibrations. Physical Review E, 1994. 49(2): p. 

1634-1646. 

71. A. Goldshtein, A. Alexeev, and M. Shapiro, Hydrodynamics of resonance 

oscillations of columns of inelastic particles. Physical Review E., 1999. 59(6): p. 

6967-6976. 

72. A. Goldshtein, A. Alexeev, and M. Shapiro, Resonance oscillations in granular 

gases. Lecture Notes in Physics, 2001. 564: p. 266-277. 

73. A. Alexeev, A. Goldshtein, and M. Shapiro, The liquid and solid states of highly 

dissipative vibrated granular columns: One-dimensional computer simulations. 

Powder Technology, 2002. 123(1): p. 83-104. 

74. S. Sen, J. Hong, J. Bang, E. Avalos, and R. Doney, Solitary waves in the granular 

chain. Physics Reports, 2008. 462(2): p. 21-66. 

75. S. Sen, and M. Manciu, Discrete hertzian chains and solitons. Physica A, 

Statistical Mechanics and its Applications, 1999. 268(3-4): p. 644-649. 



133 
 

 

 

76. S. Sen, and M. Manciu, Solitary wave dynamics in generalized Hertz chains: An 

improved solution of the equation of motion. Physical Review E - Statistical, 

Nonlinear, and Soft Matter Physics, 2001. 64(5). 

77. S. Sen, and T.R.K. Mohan, Dynamics of metastable breathers in nonlinear chains 

in acoustic vacuum. Physical Review E - Statistical, Nonlinear, and Soft Matter 

Physics, 2009. 79(3). 

78. C. Coste, C. Falcon, and S. Fauve, Solitary waves in a chain of beads under Hertz 

contact. Phys. Rev. E, 1997. 56(5): p. 6104-6117. 

79. C.A. Arancibia-Bulnes, and J.C. Ruiz-Suárez, Broad solitons in homogeneous 

Hertzian granular chains. Physica D, Nonlinear Phenomena, 2002. 168-169: p. 

159-164. 

80. N. Boechler and C. Daraio. An experimental investigation of acoustic band gaps 

and localization in granular elastic chains. Proceedings of the 22nd Biennial 

Conference on Mechanical Vibration and Noise. 2009, San Diego, CA. 

81. E. Hascoet, and H.J. Herrmann, Shocks in non-loaded bead chains with 

impurities. European Physical Journal B, 2000. 14(1): p. 183-190. 

82. E.B. Herbold, and V.F. Nesterenko. The role of dissipation on wave shape and 

attenuation in granular chains. 2010. Santiago, Chile. 

83. G. James, Periodic travelling waves and compactons in granular chains. J. 

Nonlin. Sci., 2012. 22(5): p. 813-848. 

84. D. Khatri, D. Ngo, and C. Daraio, Highly nonlinear solitary waves in chains of 

cylindrical particles. Granul. Matter, 2012. 14(1): p. 63-69. 

85. T.R. Krishna Mohan, and S. Sen, The quasi-equilibrium phase of nonlinear 

chains. Pramana - Journal of Physics, 2005. 64(3 SPEC. ISS.): p. 423-431. 

86. M. Manjunath, A.P. Awasthi, and P.H. Geubelle, Wave propagation in random 

granular chains. Physical Review E - Statistical, Nonlinear, and Soft Matter 

Physics, 2012. 85(3). 

87. A. Molinari, and C. Daraio, Stationary shocks in periodic highly nonlinear 

granular chains. Phys. Rev. E, 2009. 80(5). 

88. N.S. Nguyen, and B. Brogliato, Shock dynamics in granular chains: Numerical 

simulations and comparison with experimental tests. Granular Matter, 2012. 

14(3): p. 341-362. 

89. V.F. Nesterenko, and A.N. Lazaridi, Observation of a new type of solitary waves 

in a one-dimensional granular medium. J. Appl. Mech. Technol. Phys., 1985. 26: 

p. 405-408. 

90. V.F. Nesterenko, Solitary waves in discrete media with anomalous 

compressibility and similar to “sonic vacuum”. Journal de Physique IV, 1994. 

04(C8): p. C8-729 - C8-734. 



134 
 

 

 

91. J. Hong, and A. Xu, Effects of gravity and nonlinearity on the waves in the 

granular chain. Physical Review E - Statistical, Nonlinear, and Soft Matter 

Physics, 2001. 63(6). 

92. E. Ávalos, J.M.M. Pfannes, T.R. Krishna Mohan, and S. Sen, A numerical study 

of the dynamics of the surface grain in a granular chain and the role of gravity. 

Physica D, Nonlinear Phenomena, 2007. 225(2): p. 211-218. 

93. E. Avalos, and S. Sen, How solitary waves collide in discrete granular 

alignments. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 

2009. 79(4). 

94. C. Daraio, V.F. Nesterenko, E.B. Herbold, and S. Jin, Strongly nonlinear waves in 

a chain of Teflon beads. Phys. Rev. E, 2005. 72(1): p. 1-9. 

95. M. De Billy, Experimental study of sound propagation in a chain of spherical 

beads. Journal of the Acoustical Society of America, 2000. 108(4): p. 1486-1495. 

96. J. Hong, Slow dynamical behaviors of the propagating signal in granular chain 

under gravity. Physica A, Statistical Mechanics and its Applications, 2002. 315(1-

2): p. 187-193. 

97. J. Hong, J.Y. Ji, and H. Kim, Power laws in nonlinear granular chain under 

gravity. Physical Review Letters, 1999. 82(15): p. 3058-3061. 

98. K.R. Jayaprakash, Y. Starosvetsky, A.F. Vakakis, M. Peeters, and G. Kerschen, 

Nonlinear normal modes and band zones in granular chains with no pre-

compression. Nonlinear Dynamics, 2011. 63(3): p. 359-385. 

99. J.Y. Ji, and J. Hong, Existence criterion of solitary waves in a chain of grains. 

Physics Letters, Section A: General, Atomic and Solid State Physics, 1999. 

260(1-2): p. 60-61. 

100. S. Job, F. Santibanez, F. Tapia, and F. Melo, Nonlinear waves in dry and wet 

Hertzian granular chains. Ultrasonics, 2008. 48(6-7): p. 506-514. 

101. P.N. Panagopoulos, A.F. Vakakis, and S. Tsakirtzis, Transient resonant 

interactions of finite linear chains with essentially nonlinear end attachments 

leading to passive energy pumping. International Journal of Solids and Structures, 

2004. 41(22-23): p. 6505-6528. 

102. N. Boechler, J. Yang, G. Theocharis, P.G. Kevrekidis, and C. Daraio, Tunable 

vibrational band gaps in one-dimensional diatomic granular crystals with three-

particle unit cells. Journal of Applied Physics, 2011. 109(7). 

103. A.C. Hladky-Hennion, and M. de Billy, Experimental validation of band gaps and 

localization in a one-dimensional diatomic phononic crystal. J. Acoust. Soc. Am., 

2007. 122(5): p. 2594-2600. 

104. K.R. Jayaprakash, A.F. Vakakis, and Y. Starosvetsky, Strongly nonlinear 

traveling waves in granular dimer chains. Mechanical Systems and Signal 

Processing, 2012. 



135 
 

 

 

105. F. Fraternali, M.A. Porter, and C. Daraio, Optimal design of composite granular 

protectors. Mechanics of Advanced Materials and Structures, 2010. 17(1): p. 1-

19. 

106. U. Harbola, A. Rosas, A.H. Romero, M. Esposito, and K. Lindenberg, Pulse 

propagation in decorated granular chains: An analytical approach. Phys. Rev. E, 

2009. 80(5). 

107. U. Harbola, A. Rosas, A.H. Romero, and K. Lindenberg, Pulse propagation in 

randomly decorated chains. Phys Rev. E 2010. 82(1). 

108. F. Melo, S. Job, F. Santibanez, and F. Tapia, Experimental evidence of shock 

mitigation in a Hertzian tapered chain. Physical Review E - Statistical, Nonlinear, 

and Soft Matter Physics, 2006. 73(4). 

109. R.L. Doney, and S. Sen, Impulse absorption by tapered horizontal alignments of 

elastic spheres. Phys. Rev. E, 2005. 72(4): p. 1-11. 

110. R.S. Sinkovits, and S. Sen, Nonlinear dynamics in granular columns. Physical 

Review Letters, 1995. 74(14): p. 2686-2689. 

111. S. Sen, and R.S. Sinkovits, Sound propagation in impure granular columns. 

Physical Review E - Statistical Physics, Plasmas, Fluids, and Related 

Interdisciplinary Topics, 1996. 54(6): p. 6857-6865. 

112. M. Manciu, S. Sen, and A.J. Hurd, Crossing of identical solitary waves in a chain 

of elastic beads. Physical Review E - Statistical, Nonlinear, and Soft Matter 

Physics, 2001. 63(1 II): p. 1-6. 

113. A. Rosas, A.H. Romero, V.F. Nesterenko, and K. Lindenberg, Observation of 

two-wave structures in strongly nonlinear dissipative granular chains. Phys. Rev. 

Lett., 2007. 98: p. 164301. 

114. C. Liu, Z. Zhao, and B. Brogliato, Energy dissipation and dispersion effects in a 

granular media. Phys. Rev. E, 2008. 78: p. 031307. 

115. C. Liu, Z. Z., and B. B., Frictionless multiple impacts in multibody systems: Part 

I. Theoretical framework. Proc. R. Soc. A 2008. 464(2100), p. 3193–3211.  

116. C. Liu, Z. Z., and B. B., Frictionless multiple impacts in multibody systems: Part 

II. Numerical algorithm and simulation results. Proc. R. Soc. A, 2009. 465(2101),  

p. 1-23. 

117. H. Zhang, and B. Brogliato, The planar rocking block: analysis of kinematic 

restitution laws, and a new rigid-body impact model with friction, 2011. 

118. Z. Zhao, C. Liu, and B. Brogliato, Planar dynamics of a rigid body system with 

frictional impacts. II. Qualitative analysis and numerical simulations. Proc. R. 

Soc. A, 2009. 465(2107): p. 2267–2292.  

119. P.A. Cundall, Rational design of tunnel supports: A computer model for rock-

mass behavior using interactive graphics for input and output of geometrical 

data, U. S. Army Corp. of Engineers. 1974, p. 2074. 



136 
 

 

 

120. B.J. Alder, and T.E. Wainwright. Statistical mechanical theory of transport 

properties. Proceedings of the International Union of Pure and Applied Physics, 

1956. Brussels, Belgium. 

121. B.J. Alder, and T.E.WainWright, Studies in molecular dynamics. II. Behavior of a 

small number of elastic spheres. The Journal of Chemical Physics, 1960. 33(5): p. 

1439-1451. 

122. O.R. Walton, Numerical simulation of inelastic, frictional particle-particle 

interactions, in Particulate Two-Phase Flow, M.C. Roco, Editor 1992, 

Butterworths, p. 884-911, Boston, MA. 

123. O.R. Walton, and R.L. Braun, Stress calculations for assemblies of inelastic 

spheres in uniform shear. Acta Mech., 1986. 63(1-4): p. 73-86. 

124. S.F. Foerster, M.Y. Louge, H. Chang, and K. Allia, Measurements of the collision 

properties of small spheres. Phys. FLuids  1994. 6(3): p. 1108-1115. 

125. L. Labous, A.D. Rosato, and R. Dave, Measurement of sphere collision 

Properties. Phys. Rev. E., 1997. 56: p. 5717. 

126. Y. Lan, PhD Dissertation, Particle dynamics modeling of vibrating granular beds, 

1994, New Jersey Institute of Technology, Newark,NJ. 

127. W. Goldsmith, Impact: the theory and physical behavior of colliding solids  1960, 

Edward Arnold, London,UK. 

128. M.A. Cuendet, and W.F. van Gunsteren, On the calculation of velocity-dependent 

properties in molecular dynamics simulations using the leapfrog integration 

algorithm. The Journal of Chemical Physics, 2007. 127(18). 

129. M. Sweetman, master thesis, Addition of a chain-cell search method and a Van 

Der Waals force model to a particle dynamics code, 2003, New Jersey Institute of 

Technology: Newark, NJ. 

130. H.J. Kim, PhD Dissertation, Particle dynamics modeling of boundary effects in 

granular couette flow, 1992, New Jersey Institute of Technology: Newark, NJ. 

131. D. Blackmore, A. Rosato, X. Tricoche, K. Urban, and V. Ratnaswamy, Tapping 

dynamics for a column of particles and beyond. Journal of Mechanics of 

Materials and Structures, 2011. 6(1-4): p. 71-86. 

132. D. Blackmore, A. Rosato, X. Tricoche, K. Urban, and L. Zuo, D. Analysis, 

simulation and visualization of 1D tapping via reduced dynamical systems 

models. Physica D, 2013, under revision. 

 

 


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Simulation Metholody and Description of the Problem
	Chapter 3: Wave Dynamics of Granular Column
	Chapter 4: Cooling Dynamics of the Tapped Column
	Chapter 5: Expansion Dynamics of Granular Column
	Chapter 6: Poincare Maps of the Mass Center Trajectories
	Chapter 7: Summary and Some Ideas for Continued Research
	Appendix A: Matlab Code to Genearate Input Files
	Appendix B: Matlab Code to Generate Mass Center Trajectories
	Appendix C: Matlab Code to Generate Poincare Maps
	References

	List of Tables
	List of Figures (1 of 7)
	List of Figures (2 of 7)
	List of Figures (3 of 7)
	List of Figures (4 of 7)
	List of Figures (5 of 7)
	List of Figures (6 of 7)
	List of Figures (7 of 7)




