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ABSTRACT

CONGESTION CONTROL, ENERGY EFFICIENCY AND VIRTUAL MACHINE
PLACEMENT FOR DATA CENTERS

by
Yan Zhang

Data centers, facilities with communications network equipment and servers for data

processing and/or storage, are prevalent and essential to provide a myriad of services and

applications for various private, non-profit, and government systems, and they also form

the foundation of cloud computing, which is transforming the technological landscape of

the Internet. With rapid deployment of modern high-speed low-latency large-scale data

centers, many issues have emerged in data centers, such as data center architecture design,

congestion control, energy efficiency, virtual machine placement, and load balancing.

The objective of this thesis is multi-fold. First, an enhanced Quantized Congestion

Notification (QCN) congestion notification algorithm, called fair QCN (FQCN), is proposed

to improve rate allocation fairness of multiple flows sharing one bottleneck link in data

center networks. Detailed analysis on FQCN and simulation results is provided to validate

the fair share rate allocation while maintaining the queue length stability. Furthermore,

the effects of congestion notification algorithms, including QCN, AF-QCN and FQCN, are

investigated with respect to TCP throughput collapse. The results show that FQCN can

significantly enhance TCP throughput performance, and achieve better TCP throughput

than QCN and AF-QCN in a TCP Incast setting.

Second, a unified congestion detection, notification and control system for data

center networks is designed to efficiently resolve network congestion in a uniform solution

and to ensure convergence to statistical fairness with “no state” switches simultaneously.

The architecture of the proposed system is described in detail and the FQCN algorithm is

implemented in the proposed framework. The simulation results of the FQCN algorithm

implemented in the proposed framework validate the robustness and efficiency of the

proposed congestion control system.



Third, a two-level power optimization model, namely, Hierarchical EneRgy Optimiza-

tion (HERO), is established to reduce the power consumption of data center networks by

switching off network switches and links while still guaranteeing full connectivity and

maximizing link utilization. The power-saving performance of the proposed HERO model

is evaluated by simulations with different traffic patterns. The simulation results have

shown that HERO can reduce the power consumption of data center networks effectively

with reduced complexity.

Last, several heterogeneity aware dominant resource assistant heuristic algorithms,

namely, dominant residual resource aware first-fit decreasing (DRR-FFD), individual

DRR-FFD (iDRR-FFD) and dominant residual resource based bin fill (DRR-BinFill), are

proposed for virtual machine (VM) consolidation. The proposed heuristic algorithms

exploit the heterogeneity of the VMs’ requirements for different resources by capturing

the differences among VMs’ demands, and the heterogeneity of the physical machines’

resource capacities by capturing the differences among physical machines’ resources. The

performance of the proposed heuristic algorithms is evaluated with different classes of

synthetic workloads under different VM requirement heterogeneity conditions, and the

simulation results demonstrate that the proposed heuristics achieve quite similar consol-

idation performance as dimension-aware heuristics with almost the same computational

cost as those of the single dimensional heuristics.
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CHAPTER 1

INTRODUCTION

Data centers, facilities with communications network equipment and servers for data

processing and/or storage, are prevalent and essential to provide a myriad of services and

applications for various private, non-profit, and government systems. They are used and

deployed in nearly every sector of the economy, e.g., financial services, media, universities,

and government institutions. Many large data centers have been built in recent years

to host online services such as web search and online gaming, distributed file systems

such as Google File System (GFS) [1], and distributed Storage System such as BigTable

[2] and MapReduce [3]. With rapid deployment of modern high-speed low-latency

large-scale data centers, many problems have been observed in data centers, such as data

center architecture design, congestion notification, TCP Incast, power consumption, virtual

machine placement and load balancing.

1.1 Scope of Study

This thesis focuses on four issues in data center networks: the Ethernet layer or Layer

2 congestion notification, a unified congestion control framework, energy efficiency, and

virtual machine placement issues.

1.1.1 Ethernet Layer Congestion Notification in Data Centers

Owing to the inherent merits of Ethernet, such as low cost, ubiquitous connectivity, and

ease of management, Ethernet has become the primary network protocol for computer-to-

computer communications in a data center. However, Ethernet was designed for best-effort

transmissions that may drop packets when the network or switches are busy. In order to

address issues raised within a data center, such as increasing demand for higher bandwidth

and performance, and low latency interconnect for high performance cluster computing,

several congestion notification algorithms have been proposed and developed to reduce or

1



eliminate packet drops at congestion switches in data centers, e.g., Backward Congestion

Notification (BCN) [4], Forward Explicit Congestion Notification (FECN) [5], enhanced

FECN (E-FECN) [6], and Quantized Congestion Notification (QCN) [7–9]. BCN, FECN,

E-FECN and QCN are all queue-based congestion notification algorithms. They all assume

that a congestion detector is integrated into each switch, where congestion happens. The

switches detect the congestion and generate the feedback congestion messages to the

sources based on the calculated congestion measure, and the rate regulators at the sources

will adjust the rates of individual flows according to congestion feedback messages received

from switches. It has been shown that BCN achieves only proportional fairness but not

max-min fairness [10]. FECN and E-FECN can achieve perfect fairness, but the control

message overhead is high. The QCN algorithm has been developed for inclusion in the

IEEE 802.1Qau standard to provide end-to-end congestion control at the Ethernet Layer or

Layer 2 (L2) in DCNs by the IEEE Data Center Bridging Task Group. QCN can effectively

control link rates very rapidly in a data center. However, one drawback of QCN is the rate

unfairness of different flows when sharing one bottleneck link. One of the main tasks of

this thesis is to design an Ethernet layer congestion control algorithm to resolve network

congestion efficiently and to improve rate allocation fairness of multiple flows sharing one

bottleneck link simultaneously for data center networks.

1.1.2 A Unified Congestion Detection, Notification and Control System for Data

Center Networks

Current congestion control algorithms for data center networks implemented on different

layers work independently from each other. Every congestion control algorithm requires

a congestion detection mechanism, a congestion notification mechanism and a congestion

control intelligence method. Such independent congestion control mechanisms may reduce

the congestion control efficiency, increase the congestion control overhead, and cannot

provide an efficient congestion detection, notification and control over the whole data center

network. Primarily, network congestion is detected and notified repeatedly, resulting in

2



the increase of the congestion information messages over the network. In addition, the

detected congestion information is not efficiently deployed to resolve network congestion.

The congestion control mechanisms deployed on different layers encapsulate the detected

congestion information in different congestion notification messages, and therefore, the

congestion information detected by congestion control mechanisms cannot be identified

and utilized to resolve network congestion uniformly. By capitalizing the architecture

of software defined networks (SDNs), network layer congestion control mechanisms can

collect the network congestion information over the whole network. However, such global

network congestion information is only utilized for rerouting some specific traffic flows to

balance the network traffic and is not fully explored for Ethernet layer and transport layer

congestion control mechanisms, which can benefit from such global network congestion

information. One of the main tasks of this thesis is to design a unified congestion detection,

notification and control for data center networks.

1.1.3 Energy Efficiency of Data Centers

In order to provide reliable and scalable computing infrastructure, the high capacity of data

centers is especially provisioned for worst-case or busy-hour load, and thus data centers

consume a huge amount of energy. And the total cost of ownership (TCO) of physical data

center infrastructure, and

It was found that the cost of electrical power consumption contributed to about

20 percent of the total cost of ownership (TCO) of the physical data center infrastructure

[11]. However, numerous studies have shown that data center servers rarely operate at full

utilization, and it has been well established in the research literature that the average server

utilization is often below 30 percent of the maximum utilization in data centers [12], and

a great number of servers work in the idle state in these richly-connected data centers. At

low levels of workload, servers are highly energy-inefficient. The high operational costs

and the mismatch between the data center utilization and power consumption have spurred

great interest in improving data center energy efficiency. Therefore, another task of this
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thesis is to optimize the power consumptions and improve the energy efficiency of data

centers.

1.1.4 Virtual Machine Placement

Machine virtualization is one of the mostly used techniques to provide flexible and

cost-effective resource sharing among users in data centers. Consolidating virtual machines

(VMs) to physical servers in data center infrastructure helps to increase the utilization

of data center resources, improve the energy efficiency of data centers since the idle

infrastructures can be shut down or put into the low power mode to save energy, balance

the workload across the whole data center to avoid hotspots, and ensure the quality of

service for cloud computing applications. In general, VM consolidation is formulated as a

vector bin packing problem, which is a well-known NP-hard problem. Hence, heuristic

algorithms, such as single dimensional heuristics (e.g., first fit decreasing (FFD)) and

dimension-aware heuristics (e.g., DotProduct), are usually deployed in practice for VM

consolidation. However, all of these previous heuristic algorithms do not sufficiently

explore the heterogeneity of the VMs’ resource requirements and the heterogeneity of the

physical servers’ resource capacities. VM consolidation by exploring the heterogeneity

among VMs and physical servers is another task of this thesis.

1.2 Organization

The rest of this thesis is organized as follows. Chapter 2 presents an enhanced QCN

congestion notification algorithm, called fair QCN (FQCN), to improve rate allocation

fairness of multiple flows sharing one bottleneck link in DCNs. Chapter 3 describes a

unified congestion detection, notification and control framework to efficiently reduce or

eliminate network congestion and to simultaneously ensure fairness among the sharing

traffic flows for data center networks. Chapter 4 shows a two-level power optimization

model, namely, Hierarchical EneRgy Optimization (HERO), to reduce the power consumption

of DCNs by switching off network switches and links while still guaranteeing full

4



connectivity and maximizing link utilization. Chapter 5 describes several heterogeneity

aware dominant resource assistant heuristic algorithms for VM consolidation. Finally,

Chapter 6 discusses some future research directions, and concludes the thesis.
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CHAPTER 2

FAIR QUANTIZED CONGESTION NOTIFICATION IN DATA CENTERS

Quantized Congestion Notification (QCN) has been developed for IEEE 802.1Qau to

provide congestion control at the Ethernet Layer or Layer 2 in data center networks

(DCNs) by the IEEE Data Center Bridging Task Group. One drawback of QCN is the

rate unfairness of different flows when sharing one bottleneck link. In this chapter, an

enhanced QCN congestion notification algorithm, called fair QCN (FQCN), is proposed

to improve rate allocation fairness of multiple flows sharing one bottleneck link in data

center networks. FQCN identifies congestion culprits through joint queue and per flow

monitoring, feedbacks individual congestion information to each identified congestion

culprit through multi-casting, and ensures convergence to statistical fairness. The stability

and fairness of FQCN is analyzed by using Lyapunov functions and the performance

of FQCN is evaluated through simulations in terms of the queue length stability, link

throughput and rate allocations to traffic flows with different traffic dynamics under three

network topologies, namely, the dumb-bell topology, parking-lot topology, and a simple

and representative TCP Incast network topology. Simulation results confirm the rate

allocation unfairness of QCN, and validate that FQCN can maintain the queue length

stability, successfully allocate the fair share rate to each traffic source sharing the link

capacity, and enhance TCP throughput performance in the TCP incast setting.

2.1 Introduction

Owing to the inherent merits of Ethernet, such as low cost, ubiquitous connectivity, and

ease of management, Ethernet has become the primary network protocol to provide a

consolidated network solution for data center networks (DCNs). However, Ethernet was

originally designed for best-effort communications in a local area network (LAN) and not

optimized for data center networks. The Data Center Bridging Task Group [13] in the IEEE

802.1 Ethernet standards body thus aims to enhance classical switched Ethernet to provide
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more services for DCNs. Project IEEE 802.1Qau is concerned with specifications of the

Ethernet Layer or Layer 2 congestion notification mechanism for data center networks.

Several congestion notification algorithms have been proposed and developed to

reduce or eliminate packet drops at the congestion switch in DCNs, e.g., Backward

Congestion Notification (BCN) [4], Forward Explicit Congestion Notification (FECN) [5],

enhanced FECN (E-FECN) [6], and Quantized Congestion Notification (QCN) [7–9]. It

has been shown that BCN achieves only proportional fairness but not max-min fairness

[10]. FECN and E-FECN can achieve perfect fairness, but the control message overhead

is high. QCN can effectively control link rates to resolve switch congestion in several

round trips, i.e., several hundred micro seconds with 10 Gbps link capacity in today’s

typical DCNs. However, one drawback of QCN is the rate unfairness of different flows

when sharing one bottleneck link. Such rate unfairness also degrades the TCP throughput

in synchronized readings of data blocks across multiple servers [14]. Thus, an enhanced

QCN congestion control algorithm, called fair Quantized Congestion Notification (FQCN)

[15, 16], is proposed to improve fairness of multiple flows sharing one bottleneck link.

The main idea of FQCN is to distinguish congestion culprits through queue and per flow

monitoring and feedback the global and per-flow congestion information to all culprits

through multi-casting when the switch is congested.

The rest of the chapter is organized as follows. In Section 2.2, related work are

summarized. The QCN algorithm is first introduced in Section 2.3. Section 2.4 details the

proposed FQCN congestion notification algorithm and analyzes the performance of FQCN

by using the fluid model and Lyapunov method. Then, the performance of the proposed

FQCN is evaluated in Section 2.6. Section 2.7 concludes the Chapter.

2.2 Related Work

BCN [4], FECN [5], E-FECN [6] and QCN [7–9] are all queue sampling based congestion

notification algorithms. They all assume that the switches detect congestion by sampling

the queue and generate the feedback congestion notification messages to the sources based

7



on the calculated congestion parameter. The rate regulators at the sources adjust the rates of

individual flows according to congestion notification messages received from the switches.

Both BCN [4] and QCN [7–9] are rate-based closed-loop feedback control mechanisms

between the rate regulator located at a source and a switch. In BCN, a switch feeds

back not only negative information regarding congestion but also positive rate increasing

information, and the rate regulator in BCN adjusts its rate by using a modified Additive

Increase and Multiplicative Decrease algorithm. In QCN, only negative congestion

feedback is used. Thus, the control overhead of QCN is smaller than that of BCN. Since

there is no positive feedback in QCN, the rate regulators in QCN provide mechanisms to

recover the lost bandwidth and probe for extra available bandwidth voluntarily. In addition,

the sampling probability is constant in BCN while it is proportional to the congestion

parameter in QCN.

To ensure scalability, one of the main requirements and design rationales of IEEE

802.1 for QCN is to enforce the QCN enabled switch to be “no state”, i.e., not storing

any per flow state. This requirement also prevents QCN from providing any fairness

stronger than proportional fairness, such as max-min fairness. An enhancement to QCN,

called approximate fairness QCN (AF-QCN) [17], was proposed to improve the fairness

allocation of link capacity among all sharing sources. AF-QCN extends the functionality

of QCN with an approximate fairness controller to provide weighted fairness on a per-flow

or per-class basis. For each incoming flow, the Ethernet switch with AF-QCN estimates its

arrival rate, calculates its fair share, and derives its dropping probability.

FECN [5] is a close-loop end-to-end explicit rate feedback control mechanism.

Each source periodically probes the congestion condition along the path to the destination.

The rate field in the probe message is modified along the forwarding path by each switch if

the available bandwidth at the switch in the forwarding path is smaller than the value of the

rate field in the probe message. When a source receives the probe message returned back

from the destination, the rate regulator adjusts the sending rate as indicated in the received

message. All flows are treated fairly in FECN since the same rate is advertised by the
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switch. The source rate in BCN and QCN can be reduced more quickly than that in FECN

because the message in BCN and QCN is sent directly from the congestion point while the

probe message in FECN has to take a round trip before it returns back to the source. Also,

the congestion control message overhead of FECN is higher than that of QCN, because the

probe message in FECN travels periodically a round trip from the source to the destination

while the congestion control message in QCN is generated only when the switch congestion

occurs and transmitted through a much shorter distance from the congested switch to the

source. E-FECN [6] enhances FECN by allowing the switches feedback to the source

directly under severe congestion. Reference [18] provides a more detailed discussion on

the Ethernet layer congestion notification algorithms for data center networks.

2.3 Quantized Congestion Notification

The QCN algorithm is composed of two parts as shown in Figure 2.1(a): switch or

congestion point (CP) dynamics and rate limiter (RL) dynamics. At CP, the switch buffer

attached to an oversubscribed link samples incoming packets and feeds the congestion

severity level back to the source of the sampled packet. At one traffic source, RL

decreases its sending rate based on the congestion notification message received from CP,

and increases its rate voluntarily to recover lost bandwidth and probe for extra available

bandwidth. The rate control mechanism and the operations of RL in QCN are summarized

in Figure 2.1(b) and (c), respectively. In order to ease the understanding, a list of all

symbols used in this chapter is summarized in Table 2.1.

2.3.1 The CP Algorithm

The goal of CP is to maintain the buffer occupancy at a desired operating point, Qeq,

which is the queue threshold for equilibrium. At time t, CP samples the incoming packets

with a sampling probability p(t), and computes the congestion feedback value Fb(t). The

sampling probability is initialized to 1%, and is updated after computing the congestion

feedback value Fb(t) at each sampling event. Denote Qlen(t) and Qlen(t − τ) as the

10



Table 2.1 Description of Symbols

Symbols Description

Network and Traffic Parameters

L The set of links.

Cl The capacity of link l.

S The set of sources.

Sl The set of sources using link l.

SL
l The set of low rate flows on link l.

SH
l The set of high rate flows on link l.

SR
l The set of overrated flows on link l.

Ri(t) The rate of source i.
−−→
R(t) The vector of rates of all sources.

al,i The fraction of traffic from source i over the link l.

fl(t) The total amount of traffic over link l.

Queue Parameters

Qlen(t) The instantaneous queue length at time t.

Qeq The queue threshold for equilibrium.

Qover(t) The excess queue length that exceeds the equilibrium Qeq at time t.

Qδ(t) The queue variation over the last sampling interval.

QCN Parameters

Fb(t) The congestion feedback value calculated at time t.

Ψ(Fb(t)) The quantized congestion feedback value of Fb(t).

w The weight parameter for the queue growth rate Qδ(t) in computing the congestion feedback value Fb(t).

Gd The multiplicative decrease parameter of rate.

p(t) The time varying sampling probability with which the CP samples the incoming packets.

CT The cycle threshold to determine the state of byte counter or rate increase timer, in the FR or AI phase.

BL Bytes transmitted to complete one byte counter cycle.

T The Rate Increase Timer period in milliseconds.

RC(t) The current sending rate.

RT (t) The target sending rate

RAI The sending rate incremental parameter when one cycle of BC or RIT completes in AI phase.

RHAI The sending rate incremental parameter when one cycle of BC or RIT completes in HAI phase.

FQCN Parameters

Bi(t) The byte counts of flow i at time t.

Wi The weight coefficient for flow i.

Mi(t) The fair share for flow i on link l at the sampling time t.

MF
i (t) The fine-grained fair share for high rate flow i ∈ SH

l on link l at the sampling time t.

ΨF
Fb
(i, t) The quantized congestion feedback value calculated with FQCN for the overrated source i at time t.

Analysis Parameters

pl(fl(t)) The probability of generating a QCN congestion message from link l with load fl(t) at time t.

Pl(t) The cumulative probability of generating a QCN congestion message from link l at time t.

P (
−−→
R(t)) The probability of generating a QCN message from all links at time t with vector of rates

−−→
R(t).

JA

(−→
R
)

The Lyapunov function of vector
−→
R .

To ease the reading and analysis, bits and bits/s are used as the units of queue length and transmission rate, respectively.
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instantaneous queue length in bits of the current sampling event at time t and last sampling

event at time t − τ , respectively, where τ is the time interval between two adjacent

sampling events. The congestion feedback value Fb(t) consists of a weighted sum of the

instantaneous queue offset Qover(t) = Qlen(t) − Qeq and the queue variation over the last

sampling interval Qδ(t) = Qlen(t)−Qlen(t− τ), as defined below:

Fb(t) = −(Qover(t) + w ∗Qδ(t)) (2.1)

where w is a non-negative constant, taken to be 2 for the baseline implementation. In fact,

Qover(t) indicates queue-size excess while Qδ(t) indicates rate excess. If Fb(t) is negative,

either the buffer or the link or both are oversubscribed and a congestion notification

message containing the value of quantized |Fb(t)|, denoted as Ψ(Fb(t)), is sent back to

the source of the sampled packet; otherwise, no feedback message is sent.

At each sampling event, the sampling probability is updated as follows:

p(t) =

 (1 + 9
64
Ψ(Fb(t)))% (Fb(t) < 0)

1% (Fb(t) ≥ 0)
(2.2)

From the above equation, it can be observed that if there is no congestion (Fb(t) ≥ 0), CP

checks the congestion status with a probability of 1%; otherwise, the sampling probability

is increased as a linear function of the quantized congestion feedback value Ψ(Fb(t)). In

the default implementation, the congestion feedback value Fb(t) is quantized to six bits

and the maximum quantized value of Fb(t) is 64, and therefore, the maximum sampling

probability is 10%.

2.3.2 The RL Algorithm

As shown in Figure 2.1 (c), RL adjusts the sending rate of the associated traffic source by

decreasing the sending rate based on the quantized congestion feedback value contained in

the congestion notification message, and increasing the sending rate voluntarily to recover

lost bandwidth and probe for extra available bandwidth.
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Rate Decrease When a congestion notification message is received, the current sending

rate RC(t) is set as the target rate RT (t) and the current rate is reduced by a factor of

Rd(t) = RC(t)Gd ×Ψ(Fb(t)) as follows:

RT (t) = RC(t)

RC(t) = RC(t)(1−Gd ×Ψ(Fb(t)))
(2.3)

where the constant Gd is chosen to ensure that the sending rate cannot decrease by more

than 50%, and thus Gd ∗ Ψ(Fbmax) = 1
2
, where Fbmax denotes the maximum of Fb(t).

In the default implementation, the maximum quantized value of Fb(t) is 64; thus, Gd is

configured to 1/128.

Rate Increase Two modules, Byte Counter (BC) and Rate Increase Timer (RIT), are

introduced in RL for rate increases. BC is a counter for counting the number of bytes

transmitted by the traffic source, which is used to increase the sending rate by RL. Based on

BC only, it will take a long time for a low rate source to increase its sending rate; this might

result in low bandwidth utilization if there is tremendous available bandwidth. Besides, the

unfair sharing of bottleneck bandwidth can be observed when a low rate flow competes for

the bandwidth with a high rate flow. In order to enable fast bandwidth recovery, rather than

getting stuck at a low sending rate for a long time, RIT is introduced in RL to increase the

source’s sending rate periodically instead of based on the amount of data transferred as BC

does.

BC and RIT work in two phases, Fast Recover (FR) and Active Increase (AI). At the

FR phase, BC counts data bytes transmitted and increases the BC cycle by 1 when BL bytes

are transmitted. After each cycle, RL increases its rate to recover some of the bandwidth

it lost at the previous rate decrease episode. After the CT cycle (where CT is a constant

chosen to be 5 cycles in the baseline implementation), BC enters the AI phase to probe for

extra bandwidth on the path. In the AI phase, RL counts the data bytes transmitted and

increases the BC cycle by 1 when BL/2 bytes are transmitted. BC is reset every time a
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rate decrease is applied and enters the FR state. RIT functions similarly as BC. In the FR

phase, RIT completes one cycle with T ms duration. After it counts out CT cycles of T

ms duration, it enters the AI phase where each cycle is set to T/2ms long. It is reset when

a congestion notification message arrives and enters the FR phase.

RL works in the FR, AI or Hyper-Active Increase (HAI) phase depending on the

state of BC and RIT. BC and RIT jointly determine rate increases of RL, when either BC

or RIT completes one cycle of data transfer, which will trigger a rate increase event. When

a rate increase event occurs, the update of the current rate RC(t) and target rate RT (t) in

different RL state is summarized as follows:

a) RL is in FR if both BC and RIT are in FR. In this case, when either BC or RIT completes

a cycle, the target rate RT (t) remains unchanged while the current rate RC(t) is updated

as:

RC(t) =
1

2
(RC(t) +RT (t)) = Rc(t) +

1

2
(RT (t)−Rc(t)) (2.4)

b) RL is in AI if either BC or RIT is in AI. In this case, when either BC or RIT completes

a cycle, the current rate and target rate are updated as:

RT (t) = RT (t) +RAI

RC(t) = 1
2
(RC(t) +RT (t))

(2.5)

where RAI is a constant sending rate increment for RL in the AI state, and it is set to be 5

Mbps in the baseline implementation.

c) RL is in HAI if both BC and RIT are in AI. In this case, the target rate and current rate

are updated as:

RT (t) = RT (t) + α ∗RHAI

RC(t) = 1
2
(RC(t) +RT (t))

(2.6)

where RHAI is a constant sending rate increment for RL in the HAI state, and is set to 50

Mbps in the baseline implementation, and α is the minimum cycle count of BC and RIT in

the AI state.
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2.4 FQCN

One drawback of QCN is the rate allocation unfairness of different flows when sharing

one bottleneck link, which can be seen clearly in our simulation results shown in Section

2.6. To improve the fair allocation of link capacity among all sharing sources in QCN, the

proposed fair Quantized Congestion Notification (FQCN) identifies congestion culprits,

which send packets at rates above their fair shares of the bottleneck link capacity, and

feeds the congestion notification messages back to all these identified congestion culprits.

FQCN differs from QCN at the CP algorithm. As shown in Eq. (2.1), QCN randomly

samples the traffic packets at CP and feedbacks a global congestion status sequentially to

a single traffic source deemed as the congestion culprit. This random congestion feedback

in QCN prevents the sending rates from converging to statistical fairness. FQCN addresses

these deficiencies: 1) it identifies the overrated flows, which are deemed as congestion

culprits and whose sending rates are larger than their fair share rates; 2) through joint queue

and per flow monitoring, it feedbacks individual congestion status to each culprit through

multi-casting, thus ensuring convergence to statistical fairness.

2.4.1 Congestion Culprits Identification

Consider a network consisting of a set L = {1, · · · , L} of links of capacity Cl (l ∈ L). The

network is shared by a set S = {1, · · · , S} of sources.
−−→
R(t) = [R1(t), · · · , RS(t)] is the

vector of rates of all sources with Ri(t) denoting source i’s sending rate. Sl is the set of

sources using link l.

In each sampling period, which is the time interval between two adjacent packet

sampling events, the switch monitors the queue length, the number of arriving and

departing packets to calculate the congestion feedback value using Eq. (2.1) as in QCN.

The switch also monitors the number of total bytes received for each flow Bi(t) (i ∈ Sl),

which shares one bottleneck link l within one sampling interval at time t. The switch

identifies congestion culprits by using a two-step approach, which removes the influence

of low rate flows to enable precise identification of congestion culprits.
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Step 1: Identify high rate flows. The fair share for each flow i ∈ Sl on link l at the

sampling time t can be estimated as:

Mi(t) = Wi∑
i∈Sl

Wi

∑
i∈Sl

Bi(t) (2.7)

where Wi is the weight coefficient for flow i, which can be determined by traffic class,

source address, destination address, etc. Thus, the traffic flows can be classified into two

categories by comparing Bi(t) with Mi(t) (i ∈ Sl). A traffic flow i from which the total

number of bytes received at the switch Bi(t) is smaller than its estimated fair share Mi(t)

(Bi(t) < Mi(t)) will be assigned to the low rate source set SL
l = {∀i ∈ Sl|Bi(t) < Mi(t)}.

Otherwise, it will be assigned to the high rate source set SH
l = {∀i ∈ Sl|Bi(t) ≥ Mi(t)}.

Step 2: Identify congestion culprits in the high rate flow set SH
l . The fair share can

be fine-grained among the high rate source set SH
l as:

MF
i (t) = Wi∑

i∈SH
l

Wi

∑
i∈SH

l
Bi(t) (2.8)

Similar to the identification of high rate flows, the congestion culprits can be identified by

comparing Bi(t) with MF
i (t) (i ∈ SH

l ). The source in the high rate source set SH
l with

the total number of bytes received at the switch equal to or larger than its fine-grained fair

share MF
i (t) is considered as an overrated flow, which is deemed as a congestion culprit.

All of overrated flows form an overrated flow set SR
l = {i ∈ SH

l |Bi(t) ≥ MF
i (t)}.

2.4.2 Per Flow Congestion Parameter Calculation

If the calculated congestion feedback value Fb(t) using Eq. (2.1) is negative, the

congestion notification message will be sent back to all identified overrated flows through

multi-casting. For each overrated flow i ∈ SR
l , the quantized congestion feedback value

ΨFb
(i, t) in the congestion notification message to the source of the overrated flow i ∈ SR

l

is calculated as follows:

ΨFb
(i, t) = Bi(t)/Wi∑

k∈SR
l

Bk(t)/Wk
×Ψ(Fb(t)) (2.9)
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From the above equation, it can be observed that the quantized congestion feedback

value ΨFb
(i, t) in each congestion notification message is proportional to Ψ(Fb(t)) and the

total number of bytes received at the switch normalized by its weight coefficient Bi(t)/Wi,

while the sum of the congestion feedback values for all congestion culprits is equal to

Ψ(Fb(t)). Also, ΨFb
(i, t) is quantized to 6 bits because Fb(t) is quantized to six bits.

Figure 2.2 describes the FQCN system model with three source flows. In this

example, sources 1 and 3 are identified as congestion culprits, and the congestion

notification message with the quantized congestion feedback values ΨFb
(1) and ΨFb

(3),

calculated according to Eq. (2.9), are fed back to sources 1 and 3, respectively.

FQCN differs from QCN as well as AF-QCN in computing the congestion feedback

value. QCN does not distinguish flow-dependent congestion information and feedbacks the

same congestion status to the source of the randomly sampled packet, while the congestion

feedback value in the congestion notification message in both AF-QCN and FQCN is

flow-dependent. FQCN distinguishes from QCN as well as AF-QCN by sending QCN

congestion notification message to the sources of all congestion culprits rather than to the

source of the randomly sampled packet in QCN and AF-QCN. Thus, the switch congestion

is resolved much faster with FQCN than that with QCN or AF-QCN. Furthermore, the

signaling overhead of FQCN is lighter than that of QCN and AF-QCN because congestion

messages could also be received by low rate sources, which are not the real congestion

culprits. That is, throttling low rate sources are not as effective as throttling high rate

sources in mitigating congestion. AF-QCN increases the congestion control algorithm

complexity with arrival rate estimation, fair share calculation, and dropping probability

calculation for each flow. AF-QCN can also identify congestion culprits, but it still feeds

congestion information only back to the source of the randomly sampled packet.

2.5 Analysis of FQCN

The stability and fairness of FQCN can be analyzed via the Lyapunov method [19], which

is an important tool to determine the stability of the equilibrium solution of a system
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of ordinary differential equations (ODEs). In this section, a simplified FQCN with RIT

disabled was analyzed.

As introduced in Section 2.4, the FQCN control mechanism can be separated into

two parts: CP control and RL control. At the switch, by assuming that the queue length is

differentiable, the switch dynamics are given by:

dQlen(t)

dt
=

∑
i∈Sl

Ri(t)− Cl (2.10)

Based on Eq. (2.1), the congestion feedback value Fb(t) generated by link l can be

calculated by:

Fb(t) = −(Qlen(t)−Qeq)− w
Cl∗p(t)

(
∑
i∈Sl

Ri(t)− Cl) (2.11)

where p(t) is the time-varying sampling probability at the switch. This equation is the

continuous version of calculating the congestion feedback value of Eq. (2.1). If Fb(t) is

negative, each congestion notification message is sent back to individual sources of the

overrated flows with congestion parameter calculated by Eq. (2.9).

RP adjusts the sending rate by performing additive increase and multiplicative

decrease (AIMD). At each rate increase event, the sending rate is increased by (RT
i (t) −

Ri(t))/2, and the rate increase interval is 8BL/Ri(t) with BC, where RT
i (t) and Ri(t) are
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the target and current sending rate of source i, respectively. Therefore, the expected rate

increase per unit time is (RT
i (t)−Ri(t))Ri(t)

16BL
.

Denote pl(fl(t)) as the probability that a congestion message will be sent to each

overrated source i ∈ SR
l at each packet sampling event when the load on link l is fl(t).

This probability is a monotonically increasing and differentiable function of the load [20],

fl(t) =
∑

j∈Sl
al,jRj(t), where al,j = {0, 1} indicates whether the traffic from source j

flows on link l (al,j = 1) or not (al,j = 0). Note that the splitting of traffic over multiple

parallel paths is not considered because the split traffic flows between the same source and

destination pair can be treated as multiple flows independently. When a negative congestion

message is received by RP at source i, it will reduce the sending rate by GdΨFb
(i, t)Ri(t).

The expected interval between successive congestion messages received at an overrated

source is equal to K/(Cl

∑
l∈L pl(fl(t)), where K is the packet size in bits. Therefore, the

expected rate decrease per unit time is GdΨFb
(i)Cl

∑
l∈L pl(fl(t)Ri(t)/K, where ΨFb

(i) is

the expected congestion feedback value received at source i.

An ODE describing the expected rate change at source i can be expressed as:

dRi(t)

dt
=
(RT

i (t)−Ri(t))Ri(t)

16BL

× (1−
∑
l∈L

pl(fl(t)))−
GdΨFb

(i)ClRi(t)

K
×

∑
l∈L

pl(fl(t))

(2.12)

In order to study the attractors of the ODE Eq. (2.12), a Lyapunov function for this

ODE [19–21] was identified as follows:

∑
l∈L

pl(fl(t)) =
∂

∂Ri(t)

∑
l∈L

Pl(fl(t)) =
∂P

(−−→
R(t)

)
∂Ri(t)

(2.13)

where Pl(t) is a primitive of pl(
−−−→
Rl(t)) defined by

Pl

(−−−→
Rl(t)

)
=

∫ fl(t)

0
pl(u)du

and

P
(−−→
R(t)

)
=

∑
l∈L

Pl (fl(t))
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Here, Pl(fl(t)) is the cumulative probability of generating a negative QCN congestion

notification message from link l with the link load fl(t), and P (
−−→
R(t)) is the cumulative

probability of generating a congestion notification message from all links with the vector

of rates
−−→
R(t).

The ODE Eq. (2.12) can be rewritten as:

dRi(t)

dt
=
Ri(t)[αi −KRi(t)]

16KBL

×
{
K(RT

i (t)−Ri(t))

αi −KRi(t)
− ∂P (−−→R(t))

∂Ri(t)

}
(2.14)

where αi = KRT
i + 16BLClGdΨFb

(i).

The Lyapunov function for the ODE Eq. (2.14) is identified as:

JA
(−→
R
)
=

∑
i∈S

Φ
(
Ri

)
− P

(−→
R
)

(2.15)

with

Φ
(
Ri

)
=

∫ Ri

0

K(RT
i − vi)

αi −KRi(t)
dvi = Ri +

16BLClGdΨFb
(i)

K
log (1− K

αi

Ri) (2.16)

The Lyapunov function Eq. (2.15) for the ODE Eq. (2.14) can be transformed to:

JA
(−→
R
)
=

∑
i∈S

Ri +
∑
i∈S

16BLClGdΨFb
(i)

K
log (1− K

αi

Ri)− P
(−→
R
)

(2.17)

Similarly, following the same above procedure by replacing the expected interval between

successive congestion messages received at source i with K/(Ri(t)
∑

l∈L pl(fl(t))), a

Lyapunov function JB(
−→
R ) can also be identified for a QCN system as:

JB
(−→
R
)
=

K

K − η

∑
i∈S

[Ri +
ηRT

i

K − η
log (1− K − η

KRT
i

Ri)]− P
(−→
R
)

(2.18)

with η = 16BLGdΨFb
, where ΨFb

is the expected congestion feedback value.

2.5.1 Stability Analysis

Proposition 1: The strictly concave function JA(
−→
R) is a Lyapunov function for the

differential equation of the FQCN system Eq. (2.14), which is stable, and the unique value
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−→
R that maximizes JA(

−→
R) is an equilibrium point of the system, to which all trajectories

converge and maximize the link utilization.

Proof: From Eq. (2.17), it is easy to see that JA(
−→
R) is strictly concave over

the bounded region (
−→
R ≽ 0) with an interior maximum, and therefore the value of

−→
R

that maximizes JA(
−→
R) is unique. The equilibrium rates

−→
R that maximizes JA(

−→
R) can be

identified by setting the following derivatives to zero:

∂JA(
−−→
R(t))

∂Ri(t)
=

K(RT
i (t)−Ri(t))

αi −KRi(t)
− ∂P (−−→R(t))

∂Ri(t)
(2.19)

Further, along any solution of
−−→
R(t), its gradient over t is:

d

dt
JA(

−−→
R(t)) =

∑
i∈S

∂JA(
−−→
R(t))

∂Ri(t)

dRi(t)

dt

=
∑
i∈S

Ri(t)[αi −KRi(t)]

16KBL

(
∂JA(

−−→
R(t))

∂Ri(t)
)2 (2.20)

Thus, JA(
−−→
R(t)) is strictly increasing with t, unless

−−→
R(t) =

−→
R , the unique

−→
R that maximizes

JA(
−→
R). The function JA(

−→
R) is thus a Lyapunov function for the differential equations of the

FQCN system Eq. (2.14). The maximization of JA(
−→
R) is constrained by the link capacity,

and hence the equilibrium rates
−→
R maximize the link utilization. Since the equilibrium

rates are stable, the queue is also stable. Similar results can be observed with the Lyapunov

function JB(
−→
R) for the QCN system. Hence, both FQCN and QCN are stable, and the rate

of each source converges to an equilibrium point that maximizes the link utilization.

2.5.2 Fairness Analysis of FQCN

Proposition 2: With multiple sources sharing a link, FQCN is closer to max-min fairness

than to proportional fairness.

Proof: As shown in [20], the expectation of the congestion feedback pl(fl) at link l

is close to a Dirac function in the limiting case as:

δCl
(fl) =

 0 if (fl < Cl)

+∞ if (fl ≥ Cl)
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Thus, following the method in [20], the rates with FQCN are distributed so as to maximize:

FA(
−→
R) =

∑
i∈S

16BLClGdΨFb
(i)

K
log (1− K

αi

Ri) (2.21)

subject to the constraints:

∑
l∈L

al,iRi ≤ Cl,∀l ∈ L

Similarly, in a QCN system, the rates are distributed to maximize:

FB(
−→
R) =

Kη

(K − η)2

∑
i∈S

RT
i log (1− K − η

KRT
i

Ri) (2.22)

At an equilibrium point, Ri is very close to RT
i . Hence, it can be observed that in a QCN

system, the weight given to Ri is close to Kη/(K − η)2RT
i log (η/K) for large Ri, while

the weight given to Ri in a FQCN system tends to −16BLGdΨFb
(i)Cl

K
log (1 +

16BLGdΨFb
(i)

K
)

as Ri tends to Cl. Thus, FQCN is closer to max-min fairness than to proportional

fairness. This conforms to the intuition of FQCN: low rate sources are less likely to receive

QCN congestion notification messages, while overrated flows will decrease the sending

rate according to the quantized congestion feedback value in the congestion notification

messages.

2.6 Performance Evaluation

In this section, the performance of FQCN with different traffic dynamics was evaluated

by using NS2 [22] under three network topologies, namely, the dumb-bell topology,

parking-lot topology and a simple and representative TCP Incast network topology. The

performance of FQCN was compared with that of QCN and AF-QCN in terms of fairness

and convergence, and the effects of these congestion notification algorithms on TCP Incast.

The default QCN configuration is used in our evaluations: w=2, Gd=1/128, T=15 ms, CT

= 5, BL = 150 KB, RAI=5 Mbps and RHAI=50 Mbps when the link capacity of the switch

is 10 Gbps, while RAI=0.5 Mbps and RHAI=5 Mbps when the link capacity of the switch

is 1 Gbps.
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Figure 2.3 Simulation topologies.
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2.6.1 Simulation Topologies

The dumb-bell and parking-lot topologies are shown in Figure 2.3(a) and 2.3 (b),

respectively. In these two topologies, all the links have 10 Gbps link capacity and 50 µs

round-trip time (RTT) delay unless otherwise stated. 150 kilobytes (KB) of switch buffers

are used and the equilibrium queue length Qeq is set to 33 KB. Furthermore, the application

performance with synchronized reads over TCP was simulated in NS2 to model a typical

striped file system data transfer operation to test the effects of QCN, AF-QCN and FQCN

on the TCP Incast problem.

TCP Incast [23, 24], also called TCP throughput collapse, has been observed in

many data center applications, e.g., in cluster storage [1], when storage servers concurrently

respond to requests for a data block, in web search, when many workers respond near

simultaneously to search queries, and in batch processing jobs like MapReduce [3], in

which intermediate key-value pairs from many Mappers are transferred to appropriate

Reducers during the “shuffle” stage. TCP Incast is attributed to having multiple senders

overwhelming a switch buffer, thus resulting in TCP timeout due to packet drops at the

congestion switch as analyzed in [24–26]. A simple and basic representative network

topology in which TCP throughput collapse can occur is shown in Figure 2.3(c). Data

is stripped over a number of servers, and stored as a server request unit (SRU) on each

server. In order to access one particular data block, a client needs to perform synchronized

readings: sending request packets to all of the storage servers containing a fragment of data

block for this particular block. The client will not generate data block requests until it has

received all the data for the current block. Upon receiving the requests, the servers transmit

the data to the receiver through one Ethernet switch almost concurrently. Small Ethernet

buffers may be exhausted by these concurrent flood of traffic, thus resulting in packet loss

and TCP timeouts. Therefore, TCP Incast may be observed during synchronized readings

for data blocks across an increasing number of servers. In this testing scenario, all the links

have 1 Gbps link capacity and 100 µs RTT delay and the switch buffer size is 64KB. In

order to validate the simulation results, all of these experimental parameters are configured
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Figure 2.4 The average throughput of four simultaneous static sources (left) and switch
queue length (right) in the dumb-bell topology.

as the same as one of those experiments conducted in [24], which explored the TCP Incast

problem with various configuration parameters, such as buffer size, SRU size, and TCP

variants.

2.6.2 Simulation Results

Backlogged Static Traffic Several experiments were conducted with static backlogged

flows in the dumbbell topology and parking-lot topology to validate the fairness improvement

and queue length stability of FQCN. The static backlogged traffic sources in our evaluations

are simulated with constant bit rate (CBR) traffic flows carried by User Datagram Protocol

(UDP), unless otherwise stated.

In the first experiment, four static flows are initiated simultaneously to traverse

through the single bottleneck in the dumb-bell topology. The total simulation time is 6
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Figure 2.5 The average throughput of four simultaneous static sources and one low rate
flow (500 Mbps) in the dumb-bell topology with QCN, AF-QCN and FQCN.

seconds, and the switch service rate is reduced from 10 Gbps to 1 Gbps and changed back to

10 Gbps at 2 and 4 second of the simulation time, respectively. The flow rates of individual

flows and the switch queue length for QCN, AF-QCN and FQCN are shown in Figure 2.4.

Note that the four sources achieve very different rates by QCN, showing the unfairness

of QCN. In this experiment, AF-QCN and FQCN can allocate their equal fair share rates

successfully while maintaining the queue length stability. The sending rates with FQCN

stabilize to their fair share rates faster and smoother than those of AF-QCN. The standard

deviation of sending rates for AF-QCN are 3-4 times larger than that of FQCN.

One more experiment was conducted with four simultaneous static flows and one

low rate 500 Mbps CBR source starting periodically as shown in Figure 2.5. The low rate

source lasts 1 second each time, and restarts 1 second later. Note that with one low rate
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Figure 2.6 The average throughput in the parking-lot topology.

source flow, the total throughput of the bottleneck link can reach its link capacity with

all three congestion notification algorithms, QCN, AF-QCN and FQCN. The four high rate

sources can share the left over link capacity almost equally fairly with AF-QCN and FQCN.

It can further be noticed that FQCN adjusts the transmission rates of four high rate sources

and converges to their new rates much faster than AF-QCN when the low rate flow stops or

restarts.

In the parking-lot topology, six static source flows are initiated one after another at

an interval of 1 second. The sending rates of each individual flow with QCN, AF-QCN and

FQCN are shown in Figure 2.6. All of these experiments further confirm the successful

allocation of fair share rates with AF-QCN and FQCN while the queue length stability

is also maintained which is not shown here. Again, the flow sending rates with FQCN

stabilize to their fair share rates faster and smoother than those with AF-QCN. All of these

27



0 5
0

1

2

3

4

5

6

7

T
hr

ou
gh

pu
t (

G
bp

s)

QCN

0 5
0

1

2

3

4

5

6

7

Time (second)

AF−QCN

0 5
0

1

2

3

4

5

6

7
FQCN

 

 
Flow 1
Flow 2
Flow 3
Flow 4
Flow 5

(a) Mixed static and burst traffic

0 2 4 6
0

1

2

3

4

5

6

T
hr

ou
gh

pu
t (

G
bp

s)

QCN

0 2 4 6
0

1

2

3

4

5

6

Time (second)

AF−QCN

0 2 4 6
0

1

2

3

4

5

6
FQCN

 

 
Source 1
Source 2
Source 3
Source 4
Source 5
Source 6
Source 7
Source 8

(b) Mixed static and poisson traffic

Figure 2.7 The average throughputs for individual flows of mix traffic in the dumb-bell
topology.

experiments validate our propositions in Section 2.5 that FQCN is stable and the rates

converge to maximize the link utilization.

Mixture of Static and Dynamic Traffic Figure 2.7 (a) shows the average throughput

of mixed traffic of three static flows and two ON-OFF burst traffic flows in the dumb-bell

topology. The average offered traffic loads for these two ON-OFF burst traffic flows are

1 Gbps and 5 Gbps, respectively. All the static flows are initiated at 0 second and the

burst traffic flow is initiated at 1.0 second. The “ON” period of the burst traffic flow is

determined by completing 10 KB data transfer, and the “OFF” period is chosen to meet the

average burst traffic load. The average throughput of the burst flow with lower load is equal

to its 1 Gbps burst traffic load since its offered load is lower than its fair share. If the offered

burst traffic load is larger than its fair share, its throughput will be limited to its fair share.

As seen in the experiment with 5 Gbps burst traffic load, the average throughput for this

burst flow is limited to its fair share of 2.25 Gbps. The simulation results in this experiment

also validate again that the left over capacity is shared by other three static flows unfairly

with QCN and almost equally fairly with AF-QCN and FQCN, and the average throughput

is more stable to reach its fair share with FQCN than that with AF-QCN.
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Figure 2.7 (b) shows the average throughput of mixed traffic of backlogged static

flows and dynamic flows, whose arrival rates are Poisson distributed, in the dumb-

bell topology with eight source-destination pairs under different congestion notification

algorithms. The first four sources are backlogged static flows, and the other four dynamic

sources are built up with [8 8 4 2] connections at the flow arrival rates of [250 125

125 125] Mbps and the flow size with Pareto distribution with a mean of 10 KB and a

shape parameter of 1.1, respectively. Thus, these four dynamic sources offer [2.0 1.0 0.5

0.25] Gbps traffic load in total, respectively. Simulation results show that the average

throughput for each individual dynamic flow is around [1.6 1.0 0.5 0.25], respectively.

The average throughput for dynamic source with 2.0 Gbps total traffic load is overloaded

and is limited to its fair share of 1.65 Gbps. The other dynamic sources are light-loaded

sources whose traffic loads are smaller than their equal fair shares, and therefore the average

throughput for these light-loaded dynamic sources are equal to their offered load. Note that

FQCN successfully allocates the residual capacity, left over from the light-loaded dynamic

sources, equally fair among four backlogged static sources and one overloaded dynamic

source, and each individual source quickly converges to and stays stably at its fair share.

Effect of Congestion Notification Algorithms to TCP Incast Figure 2.8 depicts the

TCP throughput collapse for a synchronized read application performed on the network

shown in Figure 2.3 (c). As a comparison, TCP goodput without any congestion control is

also shown in the same figure. In this simulation, a SRU size of 256 KB is chosen to model

a production storage system, the default Minimum Timeout Retransmission (RTO) is 200

ms, TCP NewReno implementation with the default packet size of 1000 bytes is used in the

simulation, and the equilibrium queue size is set to 14 KB. From the simulation results, it

can be observed that without any congestion control, TCP goodput drops very quickly with

the increase of the number of servers. Note that QCN and AF-QCN perform poorly in the

TCP Incast setup (Figure 2.3 (c)). QCN can delay the occurrence of TCP Incast, but the

TCP goodput also decreases with the increase of the number of servers, reducing to around
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Figure 2.8 TCP throughput for a synchronized reading application.

500 Mbps with 16 servers. AF-QCN achieves a TCP goodput of 50 Mbps more than QCN.

On the other hand, FQCN is able to mitigate TCP Incast superbly without much goodput

degradation, maintaining a high goodput of around 900 Mbps even with a large number of

servers, as shown in Figure 2.8.

The poor performance of TCP throughput with QCN and AF-QCN is attributed to

the rate unfairness of different flows. The rate fluctuation of different flows within one

synchronous reading request with QCN was examined. Figure 2.9 shows the instantaneous

TCP throughput over 1 ms of different flows within one synchronous reading request over

eight servers with QCN. The average time to complete one synchronous reading over eight

servers is around 25.8 ms, corresponding to about 650 Mbps as shown in Figure 2.8. As

shown in Figure 2.9, the time between the first server and the last server having completed

their respective data transfers is about 13 ms. Additionally, the sending rates allocated
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Figure 2.9 The instantaneous throughput of one synchronized reading over eight servers
with QCN.

to different traffic flows are quite different from each other. Traffic flows 6 and 7 have

higher allocated sending rates than other flows, and more than 30% of the bottleneck link

capacity is utilized by these two flows. Thus, they finish the data transfer first, after which

other traffic flows attempt to increase their sending rates to recover the available bandwidth

previously utilized by traffic flows 6 and 7. It takes several milliseconds to recover this

part of available bandwidth by other traffic flows since the departure of traffic flows with

relatively higher sending rates; during this period, the bandwidth is not fully utilized.

Hence, the unfair rate allocation with QCN results in poor TCP throughput in this TCP

Incast setting.

Similar unfair rate allocation to different flows in this TCP Incast setup with AF-

QCN can also be observed, but with smaller sending rate variations among different traffic

31



flows and smaller time interval between the first and last server in completing the data

transfer than that with QCN in one synchronous reading request. Further, what cause the

rate unfairness of different flows in TCP Incast setup with AF-QCN was examined. Similar

to QCN, AF-QCN only feeds the congestion notification message back to the source of the

sampled packet. It takes some time to let all sources receive the congestion information, and

so the later the source gets the congestion notification message, the more likely the source

experiences packet drops. As a transmission control protocol, TCP exercises a congestion

control mechanism itself. When packet drops occur, TCP slows down its sending rate by

adjusting the congestion window size and slow start threshold. AF-QCN only regulates

Layer 2 sending rate and attempts to allocate bandwidth fairly among all sources by taking

into account of the flow-dependent congestion information in the congestion notification

message. However, TCP does not take any flow-dependent congestion information to adjust

its congestion window size and slow start threshold. This causes the rate unfairness of

different flows in TCP Incast setup with AF-QCN eventually.

The rates of all flows are examined within one barrier synchronous reading request

with the FQCN congestion control algorithm, thus facilitating fair sharing of the link

capacity among all the source flows because all the overrated flows receive the congestion

notification messages at almost the same time.

Different Traffic Weights FQCN can also allocate weighted fair share rates as well as

AF-QCN. The flows rates in the dumb-bell topology with FQCN and weight coefficient

settings [4, 3, 2, 1] for four static simultaneous flows are shown in Figure 2.10. The larger

the weight coefficient, the larger share rate will be allocated to the flow. In this simulation,

the maximum sending rate for the first flow whose weight coefficient is set to 4 will be

cut down from 10 Gbps to 1 Gbps at the third second of the simulation time. From the

simulation results, it can be observed that before the maximum sending rate changes, the

flow rates are allocated fairly consistent to their weight coefficients. After the third second,

the sending rate of the first flow is limited by its maximum sending rate of 1 Gbps, and
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Figure 2.10 Flows rates in the dumb-bell topology with FQCN and weight coefficient
settings [4, 3, 2, 1] for four static flows.

the leftover link capacity is shared by other traffic flows fairly consistent to their weight

coefficients. Similar results with AF-QCN can also be obtained as those of FQCN in this

experiment.

2.7 Summary

In this chapter, an enhanced QCN congestion notification algorithm, called FQCN, has

been proposed to improve fairness allocation of bottleneck link capacity among all sharing

sources. The performance of FQCN have been evaluated with different traffic dynamics by

simulations under three network topologies, namely, the dumb-bell topology, parking-lot

topology and a simple and representative TCP Incast network topology. The simulation

results have shown that FQCN can successfully allocate the fair share rate to each traffic

source while maintaining the queue length stability. As compared to AF-QCN, the flow
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sending rates with FQCN are more stable with respect to the fair share rates. FQCN

can also provide weighted fair share allocation of the bottleneck link capacity. Moreover,

FQCN significantly enhances TCP throughput performance with respect to TCP Incast, and

achieves better TCP throughput than QCN and AF-QCN in a TCP Incast setting. FQCN

performance under other traffic conditions will be further studied in the future. Finally,

millions of flows co-existing in a data center network may raise the scalability problem for

FQCN due to the need of estimating per-flow information. A distributed flow monitoring

system can be helpful to solve this problem, which is left for our future work.
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CHAPTER 3

A UNIFIED CONGESTION DETECTION, NOTIFICATION AND CONTROL

SYSTEM FOR DATA CENTER NETWORKS

In this chapter, a unified congestion detection, notification and control system for data

center networks has been designed to efficiently resolve the network congestions in a

uniform solution and to ensure convergence to statistical fairness with “no state” switches

simultaneously. The proposed system decouples the congestion control intelligence from

switches, and incorporates a distributed potential congestion culprit estimation mechanism

and a distributed congestion detection mechanism. In addition, it can easily be incorporated

with any congestion notification and control algorithm, and can be deployed for cross-layer

congestion control. The fair quantized congestion notification (FQCN) algorithm has

been incorporated in the proposed congestion detection, notification and control system,

and its performance has been evaluated through extensive simulations, which validate the

successful allocation of fair share rates and the maintenance of queue length stability of the

proposed congestion control system.

3.1 Introduction

Building an efficient network to interconnect servers within a data center and across

multiple data centers is a critically important task for modern data center providers.

Congestion detection, notification and control is very crucial to provision such an efficient

network.. Currently, most of congestion control mechanisms for data center networks are

independently incorporated in different layers, such as Ethernet layer [4–9,15–18], network

layer [27–30], or transport layer [31, 32].

The Ethernet Layer or Layer 2 congestion notification mechanism [4–9,15–18] is an

extremely important technology for data center bridging (DCB) [13] to provide end to end

congestion management in switched Ethernet to avoid frame loss. Quantized Congestion

Notification (QCN) [7] is the state-of-the-art congestion notification algorithm incorporated
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into the IEEE 802.1Qau standard for DCB. QCN randomly samples the traffic packets at

the switch and feedbacks a global flow-independent congestion status sequentially to a

single traffic source deemed as the congestion culprit. This random congestion feedback

in QCN prevents the sending rates from converging to statistical fairness [14]. In order to

ensure scalability and practical implementation, one of the main requirements and design

rationales of IEEE 802.1 for QCN is to enforce the QCN enabled switch to be a “no

state” switch, which will not store any per flow state. This requirement also prevents

QCN from providing any fairness stronger than proportional fairness, such as max-min

fairness. To enhance QCN, approximate fairness QCN (AF-QCN) [17] and fair QCN

(FQCN) [15, 16] have been proposed to improve the fairness allocation of link capacity

among all shared sources. Both AF-QCN and FQCN require per-flow information, such as

flow rate estimate. Millions of flows co-existing in a data center may present the scalability

problem for AFQCN and FQCN to estimate per-flow information.

Several traffic engineering solutions in the network layer [27–30] have been

proposed to deal with network congestion caused by unbalanced link utilization in data

centers. These solutions have been proposed and embodied in software defined networking

(SDN) [33], which simplifies the network management by decoupling the control plane

from the data plane. The main idea behind these solutions is to balance the traffic load by

rerouting the identified elephant traffic flows to resolve network congestion. Even though

all the congestion information has already been collected by the SDN controller, traffic

engineering solutions are limited to congestion eliminations caused by elephant flows only.

Therefore, the detected congestion information may not be fully explored.

TCP is the de facto standard for Internet-based commercial communication networks.

However, today’s state-of-the-art TCP protocol falls short in data centers and several TCP

variants [31,32] have been proposed. Considering the specific traffic characteristics of data

centers, such as the interaction between short latency sensitive flows and long background

throughput-oriented flows, DCTCP [31] leverages Explicit Congestion Notification (ECN)

and extracts multi-bit feedback on congestion in the network from the single bit stream of
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ECN marks. In DCTCP, switches mark the ECN bit in the packet if the queue length is

over a predefined threshold. Sources estimate the fraction of ECN marked packets, and use

this estimate as an indication of the extent of congestion to adjust the congestion window

size accordingly. DCTCP can reduce the Ethernet switch buffer occupation, but both TCP

sender and receiver are required to be modified. ICTCP [32], a receiver window based

congestion control algorithm for TCP at end hosts, was proposed to improve the throughput

on incast congestion. ICTCP targets to avoid packet loss caused by buffer overflow, but

ICTCP only works for the last-hop congestion.

Such an independent congestion control mechanism may reduce the congestion

control efficiency, increase the congestion control overhead, and cannot provide an

efficient congestion detection, notification and control over the whole data center network.

Primarily, network congestion is detected and notified repeatedly, resulting in the increase

of the congestion information messages over the network. In addition, the detected

congestion information is not efficiently deployed to resolve network congestion. The

congestion control mechanisms deployed on different layers encapsulate the detected

congestion information in different congestion notification messages, and therefore, the

congestion information detected by congestion control mechanisms cannot be identified

and utilized to resolve network congestion uniformly. SDN allows network layer

congestion control mechanisms to collect the network congestion information over the

whole network. However, such global network congestion information is only utilized for

rerouting some specific traffic flows to balance the network traffic and is not fully explored

for Ethernet layer and transport layer congestion control mechanisms, which can greatly

benefit from such global network congestion information.

Inspired by SDN [33], a unified congestion detection, notification and control

system to ensure convergence to statistical fairness with “no state” switches is introduced in

this chapter. The proposed system exhibits a number of advantages. First, it decouples the

congestion control intelligence from switches, and thus simplifies the implementation and

upgrade of the congestion control algorithms. Second, it incorporates a distributed potential
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Figure 3.1 The architecture of the proposed congestion detection, notification and control
system for data center networks.

congestion culprit detection mechanism. Third, switches are ”no state”, i.e., switches

monitor the local congestion status, forward the congestion status to the centralized

congestion controller, and do not need to store per-flow information. Also, the proposed

congestion control system can easily be incorporated with any congestion notification and

control algorithm, regardless whether per-flow information is required or not. Besides, it

can be deployed for cross-layer congestion control.

The rest of the chapter is organized as follows. The architecture of the proposed

data center congestion detection, notification and control system is described in Section

3.2. The performance of the proposed congestion control algorithm is evaluated in Section

3.3. Section 3.4 concludes the chapter.

3.2 The Architecture of the Proposed Unified Congestion Detection, Notification

and Control Framework

The framework architecture of the proposed congestion detection, notification and control

system is quite similar to that of SDN. In SDN, a centralized controller calculates the

routing paths for traffic flows and helps switches to build routing tables. Figure 3.1 shows
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the architecture of the proposed congestion detection, notification and control system,

which is composed of four components: congestion detectors, a centralized congestion

controller, traffic flow monitors, and congestion reaction coordinators. The congestion

detectors are implemented at switches to detect the local congestion status through queue

monitoring. A traffic flow monitor and a congestion reaction coordinator are deployed at

each end host. The traffic flow monitor estimates the sending rates of traffic flows sent

out from the attached end host, and informs the flow rates to the centralized congestion

controller. The centralized congestion controller collects the congestion information from

the congestion detectors and the flow information from the traffic flow monitors. Based

on these information, the congestion controller identifies congestion culprits and informs

the end hosts of the identified congestion culprits about the congestion status. After the

end hosts receive the congestion messages from the centralized congestion controller, the

corresponding congestion reaction coordinators will react accordingly to resolve network

congestion. As a preliminary example, how to incorporate FQCN [15,16] into the proposed

framework is illustrated.

3.2.1 Congestion Detectors

One congestion detector is deployed at each switch to detect the switch congestion. At

time t, the congestion detector samples the incoming packets with a sampling probability

p(t), and computes the congestion value Fb(t). The sampling probability is initialized to

1%, and is updated after computing the congestion value Fb(t) at each sampling event.

Denote Qlen(t) and Qlen(t − τ) as the instantaneous queue length in bits of the current

sampling event at time t and last sampling event at time t− τ , respectively, where τ is the

time interval between two adjacent sampling events. The congestion value Fb(t) consists

of a weighted sum of the instantaneous queue offset Qover(t) = Qlen(t)−Qeq, where Qeq

is the equilibrium queue length, and the queue variation over the last sampling interval

Qδ(t) = Qlen(t)−Qlen(t− τ), as defined below:

Fb(t) = −(Qover(t) + w ∗Qδ(t)) (3.1)
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where w is a non-negative constant, taken to be 2 for the baseline implementation.

If Fb(t) is negative, a congestion message containing the value of quantized |Fb(t)|,

denoted as Ψ(Fb(t)), the source of the sampled packet, as well as the identification of the

congested link, expressed in the addresses of the two end nodes connecting to the congested

link, is sent to the centralized congestion controller; otherwise, no congestion notification

message is generated. Ψ(Fb(t)) is used to inform the congestion control center how severe

the congestion is, the identification of the congested link is used to distinguish where the

congestion occurs, and the source of the sampled packet is identified as a congestion culprit

if no flow information related to the congested link has been collected by the congestion

controller, because the flow information collected at the end servers experiences longer

delays than the congestion information collected by switches in general.

At each sampling event, the sampling probability is updated as a function of the

calculated congestion feedback value Fb(t) as follows:

p(t) =

 (1 + 9
64
Ψ(Fb(t)))% (Fb(t) < 0)

1% (Fb(t) ≥ 0)
(3.2)

The above equation shows that if there is no congestion (Fb(t) ≥ 0), the congestion detector

checks the congestion status with a probability of 1%; otherwise, the sampling probability

is increased as a linear function of the quantized congestion information value Ψ(Fb(t)).

Since the maximum quantized value of Fb(t) in the default QCN implementation is 64, the

maximum sampling probability is 10%.

3.2.2 Traffic Flow Monitors

The traffic flow monitor counts the amount of traffic measured in bytes for each flow

originating from the attached end host during a time interval Ts seconds, and estimates

the sending rate for each flow. The estimated sending rate for flow i is denoted as Bi, and

is updated every Ts milliseconds (ms) as follows:

Bi = (1− β)Bi + βB
′

i (3.3)
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where B
′
i is the newly estimated sending rate of traffic flow i during the last Ts interval,

and β ∈ (0, 1) is the weight given to the newly estimated sending rate B
′
i against the old

estimation of Bi.

If the estimated sending rate of flow i, Bi, is larger than a predefined rate threshold,

it is assumed to be a potential congestion culprit. The predefined rate threshold is used to

filter out the small size mice traffic flows, i.e., smaller than 1 MB, which account for a large

percent of all traffic flows in data center networks [34–36].

The flow monitor periodically estimates the sending rate for each flow originating

from the attached end host and updates the flow information of those potential congestion

culprits, including the estimated sending rate and the flow identification tuple, which is

composed of a couple of values to represent the flow, such as the source and destination

addresses, and the source and destination port numbers, to the centralized congestion

controller.

3.2.3 The Centralized Congestion Controller

When a congestion notification message is received by the centralized congestion controller,

it implements congestion control intelligence to identify the congestion culprits based

on the flow information collected by the flow monitors and the congestion information

collected by congestion detectors, and informs the congestion status to all identified

congestion culprits through multi-casting.

The congestion notification message originated from a switch contains the quantized

congestion information value Ψ(Fb(t)), the source of the sampled packet, and the

identification of the congested link l, which can be used to fetch all the flow information

of the potential congestion culprits on this link, denoted as Tl. If the set of Tl is empty,

meaning that there is no flow information of the potential congestion culprits related to

link l stored at the congestion controller, the intelligent congestion control resumes the

QCN algorithm, in which the congestion message will be sent to the source of the sampled

packet with Ψ(Fb(t)). Otherwise, FQCN [15, 16], a congestion control algorithm based on
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per-flow information, will be utilized to resolve the network congestion. FQCN identifies

the congestion culprits using the flow information of the potential congestion culprits

traveling over the congested link l and informs the congestion status to all the identified

congestion culprits.

The fair share for each flow i on link l can be estimated as:

Mi = Wi∑
k∈Tl

Wk

∑
k∈Tl

Bk (3.4)

where Wi is the weight coefficient for flow i, which can be determined by the traffic class,

the source address, the destination address, and etc. A traffic flow i whose estimated

sending rate Bi is smaller than its estimated fair share Mi (Bi < Mi) is considered as a low

rate flow. Otherwise, it will be assigned to the high rate source set TH
l = {i ∈ Tl|Bi ≥ Mi}.

The fair share can be fine-grained among the high rate source set TH
l as:

MF
i = Wi∑

k∈TH
l

Wk

∑
k∈TH

l
Bk (3.5)

The congestion culprits can be identified by comparing Bi with MF
i . A traffic flow i whose

estimated sending rate Bi is equal to or larger than its estimated fine-grained fair share MF
i

(Bi ≥ MF
i ) is considered as an overrated flow, which is deemed as a congestion culprit.

All of overrated flows form an overrated flow set TR
l = {i ∈ Tl|Bi ≥ MF

i }.

For each congestion culprit, the quantized congestion feedback value ΨFb
(i, t) in

the congestion message to the source of the congestion culprit i is calculated as follows:

ΨFb
(i, t) = Bi/Wi∑

k∈TR
l

Bk/Wk
×Ψ(Fb(t)) (3.6)

3.2.4 Congestion Reaction Coordinator

The operations of the congestion reaction coordinator are the same as those of the reaction

point in QCN [7]. It adjusts the sending rate of the associated traffic source by decreasing

the sending rate based on the quantized congestion feedback value contained in the

congestion notification message, and increasing the sending rate voluntarily to recover lost

bandwidth and probe for extra available bandwidth.
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Rate increase Two modules, Byte Counter (BC) and Rate Increase Timer (RIT), are

introduced for rate increases. BC and RIT work in two phases, Fast Recover (FR)

and Active Increase (AI), based on the state of BC, SBC , and the state of RIT, SRIT ,

respectively. If the value of SBC is smaller than a predefined threshold value ST (where

ST is set to 5 in the baseline implementation), BC is in the FR phase; otherwise, BC is

in the AI phase. Similarly, RIT staying at the FR or AI phase is determined based on the

comparison of SRIT and ST . Initially, both BC and RIT are in the FR phase and SBC and

SRIT are set to 0. SBC is increased by 1 for every BL or BL/2 bytes transmitted if BC is

in the FR or AI phase, respectively. RIT functions similarly as BC. In the FR phase, RIT

increases SRIT by 1 for every T ms duration. While in the AI phase, SRIT is increased by

1 for every T/2 ms time duration. Both BC and RIT can raise a rate increase event, when

SBC or SRIT is increased, respectively.

When a rate increase event occurs, the current rate RC(t) and target rate RT (t) are

updated as follows:

RT (t) =


RT (t) (both BC & RIT in FR)

RT (t) +RHAI (both BC & RIT in AI)

RT (t) +RAI (otherwise)

RC(t) =
1

2
(RC(t) +RT (t))

where RAI is the constant target rate increment if either BC or RIT is in the AI phase, and

RHAI is the constant target rate increment if both BC and RIT are in the AI phase.

Rate decrease When a congestion notification message is received by an end host,

the congestion reaction coordinator will reduce the sending rate to resolve the network

congestion accordingly. The current sending rate RC(t) is set as the target rate RT (t) and

the current rate is reduced by a factor of RC(t)Gd ×Ψ(Fb(t)) as follows:

RT (t) = RC(t)

RC(t) = RC(t)(1−Gd ×Ψ(Fb(t)))
(3.7)
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where the constant Gd is chosen to ensure that the sending rate cannot decrease by more

than 50%, and thus Gd ∗ Ψ(Fbmax) =
1
2
, where Fbmax denotes the maximum of Fb(t). In

the default implementation, the congestion feedback value Fb(t) is quantized to 6 bits and

the maximum quantized value of Fb(t) is 64; thus, Gd is configured to 1/128.

3.3 Performance Evaluation

In this section, the performance of the proposed congestion control system which is

incorporated with the FQCN algorithm is evaluated by using NS2 under two network

topologies, namely, the dumbbell topology and parking-lot topology. The default QCN

configuration is used in our evaluations: w = 2, Gd = 1/128, T = 15 ms, ST = 5, BL = 150

kilobytes (KB), RAI = 5 Mbps and RHAI = 50 Mbps when the link capacity of the switch is

10 Gbps, while RAI = 0.5 Mbps and RHAI = 5 Mbps when the link capacity of the switch

is 1 Gbps.

3.3.1 Simulation Topologies

The dumbbell and parking-lot topologies are shown in Figure 3.2(a) and (b), respectively.

In these two topologies, all the links connecting between switches and servers or between

switches have 10 Gbps link capacity and 50 µs round-trip time (RTT) delay unless

otherwise stated. In each topology, there is a centralized congestion controller, which is

connected to each switch to collect the congestion information and implement congestion

control. The links between the centralized congestion controller and switches have 1 Gbps

link capacity and 100 µs RTT delay. A congestion detector is incorporated at each switch,

and a flow monitor and a congestion reaction coordinator are merged to each end server.

The flow monitor at each end server updates flow rates every 1 ms. The end servers are

traffic sources or traffic sinks. In the dumbbell topology as shown in 3.2(a), all traffic

sources, noted as “Senders”, are connected to the switch R1; while all traffic sinks, noted

as “Receivers”, are connected to the switch R2. In the parkinglot topology, there are six

traffic sources and six traffic sinks, denoted as “Sender i” and “Receiver i” (i ∈ [1, 6]),
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Figure 3.2 Simulation topologies.

respectively, and there is one traffic flow transmitting between a sender and receiver pair

(Sender i, Receiver i) (i ∈ [1, 6]).

3.3.2 Simulation Results

Experiments have been conducted with static backlogged flows in the dumbbell topology

and parking-lot topology to validate that FQCN incorporated in the proposed system

can successfully allocate the fair share rates among the shared sources and maintain the

queue length stability. Constant bit rate (CBR) traffic flows are used to simulate the

static backlogged traffic in our simulations. 150 KB of switch buffers are used and the

equilibrium queue length Qeq is set to 33 KB.
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Figure 3.3 The average throughput of four simultaneous static sources (left) and switch
queue length (right) in the dumbbell topology.

In the dumbbell topology, four static backlogged traffic flows are initiated simulta-

neously to traverse through the single bottleneck link between routers R1 and R2 as shown

in Figure 3.2(a). The switch service rate decreases from 10 Gbps to 1 Gbps and increases

back to 10 Gbps at 2 and 4 second of the simulation time, respectively. The flow rates

of individual flows and the switch queue length between routers R1 and R2 are shown in

Figure 3.3(a) and (b), respectively. Figure 3.3(a) shows that at 2 second of the simulation

time, the queue between R1 and R2 is built up very quickly due to the switch service rate

shrunk from 10 Gbps to 1 Gbps. As the queue length increases, the congestion is detected

at router R1 and is informed to the centralized congestion controller, which reacts to the

congestion by sending the congestion notification messages to all the identified congestion

culprits based on the collected flow information and the congestion information. At 4

seconds of the simulation time, the switch service rate is restored back to 10 Gbps. The

congestion reaction coordinator at each end server probes for the available spare bandwidth

and increases its source sending rate. Its can also be observed from Figure 3.3(a) that the

sending rates of these four backlogged traffic flows are recovered to their original fair share

rates about 2.50 Gbps at 4 seconds of the simulation time very quickly. During this period,

these four backlogged flows compete with each other for the spare available bandwidth,
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Figure 3.4 The average throughput (left) and switch queue lengths (right) in the parking-
lot topology.

causing another queue length built up and network congestion between routers R1 and R2.

However, this congestion is also resolved very quickly and the queue is stabilized at the

desired equilibrium point 33 KB again very fast.

In the parking-lot topology, six static backlogged traffic flows, which transmit data

from “Sender i” to “Receiver i” (i ∈ [1, 6]), are initiated one after another at an interval of 1

second. The sending rate of each individual flow and the queue length between the routers

R1 and R2, R2 and R3, and R3 and R4 are shown in Figure 3.4(a) and (b), respectively. In

the first second of the simulation, only flow 1 is activated, which transmits data in the rate

of link capacity. No queue is built up at each router. At 1 second of the simulation time,

flow 2 is activated, which travels over the switches R2, R3 and R4. Flows 1 and 2 compete

the bandwidth of the link between R2 and R3 and eventually converge to their fair share

rates. During the simulation from 1 second to 2 seconds, the link between R2 and R3 is also

the bottleneck link and the queue for this link is stabilized to its desired equilibrium point,

and no queue is built for the link between R1 and R2 and the link between R3 and R4.

At 2 seconds of the simulation time, flow 3 is activated, which travels over the switches

R3 and R4. All these three flows 1-3 travel over the link between R3 and R4, which is

also the bottleneck link during the simulation from 2 seconds to 3 seconds. These three
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flows converge to their fair share rates of about 3.3 Gbps and the queue between R3 and

R4 stabilizes to its desired equilibrium point. During the simulation from 3 seconds to

4 seconds, there are two bottleneck links. One is the link between R1 and R2, and the

other is the link between R3 and R4. The queues on these two links are stabilized to their

desired equilibrium points during this one second simulation interval. The rates of Flows

1-3 are limited by their fair share rates over the link between R3 and R4. Only Flow 1 and

Flow 4 travel over the link between R1 and R2, while the rate of Flow 1 is limited by its

fair share over the link R3 and R4, i.e., 3.3 Gbps. Therefore, Flow 4 uses up the leftover

link capacity, about 6.7 Gbps. At 4 seconds of the simulation time, another flow, Flow 5,

is activated. Flow 5 travels over the switches R2 and R3. During the simulation from 4

seconds to 5 seconds, the link between R1 and R2, the link between R2 and R3, and the

link between R3 and R4 serve the traffic for Flows 1 and 4, Flows 1, 2, and 5, and Flows 1,

2, and 3, respectively. It is easy to identify that during this one second simulation period,

all links between switches are bottleneck links. The newly activated traffic flow, Flow 5,

converges to its fair share rate, 3.3 Gbps, very quickly, while the fair share for other four

traffic flows are kept the same as last one second of the simulation time. In the last second

of the simulation, all traffic flows are activated, and the link between R1 and R2, the link

between R2 and R3, and the link between R3 and R4 serve the traffic for Flows 1, 4 and

6, Flows 1, 2, 5 and 6, and Flows 1, 2, and 3, respectively. The rates of Flows 1, 2, 5

and 6 are limited by the their fair share rates over the link between R2 and R3, 2.5 Gbps.

Flows 3 and 4 use up the leftover link capacity between R3 and R4 and between R1 and

R2, respectively, which is 5 Gbps. Similar to the simulation of the last one second, all

links between switches are bottleneck links and the queues on these links converge to their

desired equilibrium points, 33 KB.

These experiments validate that FQCN implemented in the proposed system

successfully allocates fair share rates to each backlogged traffic flow while maintaining

the queue length stabilized round the desired equilibrium queue length. Similar results
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are obtained in the dumbbell and parking-lot topologies with the RTT delay between the

centralized congestion controller and switches increased to 0.1 ms.

3.4 Summary

In this chapter, a unified congestion detection, notification and control system for data

center networks has been proposed and developed. The proposed system decouples the

congestion control intelligence from switches, employs a distributed potential congestion

culprit detection mechanism and a distributed congestion detection mechanism, can be

easily incorporated with any congestion notification and control algorithm, and can be

deployed for cross-layer congestion control. The FQCN algorithm has been implemented

in the proposed system and its performance has been evaluated through simulations.

The simulation results have validated the successful allocation of fair share rates and

the maintenance of queue length stability with FQCN incorporated in the proposed

congestion control system. The performance of other congestion notification algorithms

incorporated in the proposed congestion control system will further be studied in the future.

Additionally, cross-layer congestion control algorithms for data center networks require

further studies within the context of the proposed congestion control system.
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CHAPTER 4

HERO: HIERARCHICAL ENERGY OPTIMIZATION FOR DATA CENTER

NETWORKS

In this chapter, the power optimization of network elements in data centers is investigated

in a hierarchical perspective. Considering the hierarchical architecture of data centers, a

two-level power optimization model, namely, Hierarchical EneRgy Optimization (HERO),

has been established to reduce the power consumption of data centers by switching off

network switches and links while still guaranteeing full connectivity and maximizing link

utilization. Given a physical data center network (DCN) topology and a traffic matrix,

the proposed two-level power optimizations in HERO, pod-level power optimization

and core-level power optimization, are illustrated to fall in the class of capacitated

multi-commodity minimum cost flow (CMCF) problem, which is NP-hard. Therefore,

several heuristic algorithms based on different switch elimination criteria are designed to

solve the proposed HERO optimization problem. The power saving performances of the

proposed HERO model are evaluated by several experiments with different traffic patterns.

The simulations show that HERO can save power consumptions in data centers effectively

with reduced complexity. The optimized power consumptions with HERO are almost the

same as those with non-hierarchical model. As compared to the non-hierarchical model, at

least 65% and 60% of variables and constraints can be reduced with HERO, respectively.

The results also show that among all of the proposed heuristics, switch power consumption

heuristic algorithm based on the total power consumption of the core and aggregation

switches in the core-level power optimization achieves the minimum power consumption.

4.1 Introduction

In order to provide a reliable and scalable computing infrastructure, the network capacity

of data centers is especially provisioned for worst-case or peak-hour workload, and thus

data centers consume a huge amount of energy. Report to Congress on Server and Data

50



Center Energy Efficiency [37] indicated that data centers and servers consumed about 61

billion kilowatt-hours (kWh) in 2006 (1.5% of the total U.S. electricity consumption) for

a total electricity cost of about $4.5 billion, and the electricity usage of data centers has

been almost doubled from 2000 to 2006. The data center electricity usage is still growing,

but the growth rate has slowed down significantly from 2005 to 2010 due to the economic

slowdown and a significant reduction in the actual servers installed as compared to the

predicted number of servers to be installed with the improved virtualization techniques. As

reported in [38], the total power consumption of data centers in 2010 increases about 56%

from 2005 to 2010 for worldwide data centers, and increases only 36% for U.S. data centers

instead of doubling, which is significantly lower than that was predicted by the EPA Report

to Congress on data centers [37]. The rapid increasing power consumption of data centers

exerts great impacts on the environment and society, such as increasing in CO2 emissions,

burden on the power grid, and rise in water usage for cooling [39].

Furthermore, it has been well established in the research literature that the average

server utilization is often below 30% of the maximum utilization in data centers [12]. A

clear diurnal traffic variation pattern, traffic peaks during the day and falls at night, has been

observed in DCNs through production data center trace analysis [36,40]. The combination

of peak load dimensioning and diurnal demand pattern leads to low resource utilization.

Unfortunately, today’s servers and network elements are not energy-proportional [12, 41–

43] since many components incur fixed power overheads when active such as clock, fans,

switch chips, and transceivers at low loads. At low levels of workload, servers are highly

energy-inefficient because even in the idle state, the power consumed is over 50% of its

peak power for an energy-efficient server [12] and often over 80% for a commodity server

[41]. Besides, switches are not energy efficient currently either, and they consume 70-80%

of their peak power in their idle state [44].

The high operational costs and the mismatch between data center utilization and

power consumption have spurred great interest in improving data center energy efficiency.

Most efforts to reduce the power consumption of data centers have focused on the power
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management schemes for server and storage clusters [45–48] and cooling techniques

[49–51], which are the largest energy gushers in data centers. With these techniques

implemented well in place, network elements, such as routers and switches, become an

important, non-negligible and continuously increasing contributor to the overall power

consumption in a data center; thus, reducing the power cost of network elements without

adversely affecting network performance presents a great challenge.

Several studies [40, 52–54] have investigated the power savings of the network

infrastructure in data center networks by switching off some unneeded network devices

or by putting them into sleep. In a recent work, a network-wide power manager,

ElasticTree [40], was proposed to optimize the energy consumption of DCNs by dynam-

ically optimizing the subset of active network elements, switches and links, to satisfy

dynamic traffic loads while still meeting the performance and fault tolerance requirements.

ElasticTree optimizes a data center local area network and finds the power-optimal network

subset and routing to use by extending the idea of power proportionality into the network

domain, as described in [12]. Shang et al. [52] solved the energy-saving problem in data

center networks from a routing perspective. They established an energy-aware routing

model, which minimizes the total number of switches for a given traffic matrix, and

proved that the proposed energy-aware routing model is NP-hard, and designed a heuristic

algorithm to solve the energy-aware routing problem. Mann et al. [53] presented a network

power aware framework VMFLow for placement and migration of VMs by taking into

account of the network topology as well as network traffic demands to optimize the

network power consumption while satisfying as many network traffic demands as possible.

However, one assumption in VMFlow does not hold well in practice: at most one VM or

a group of VMs, which cannot be separately migrated to different physical host servers,

will be placed on one physical server. A more general solution VMPlanner [54] has

been proposed to reduce the network elements power consumption by optimizing both

virtual machine placement and traffic flow routing. Especially, VMPlanner is a stepwise

optimization approach with three approximation algorithms, namely, traffic-aware VM
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grouping, distance-aware VM-group to server-rack mapping and power-aware inter-VM

traffic flow routing. A survey on power consumption in data centers along with solutions

has recently been reported in [18].

All of these prior works formulated the power optimization problem for a general

network topology, and required a centralized power management controller, which monitors

and predicts traffic demands at each network element, and controls the power status of all

network elements. As DCNs become larger and larger, the complexity of solving this

optimization problem increases rapidly. By investigating the DCN topologies, it can be

observed that almost all DCN topologies have hierarchical structures, no matter conven-

tional tree like switching infrastructure [55] or newly proposed data center architectures

such as VL2 [56], Portland [57], DCell [58] and BCube [59].

Considering the existing centralized power management mechanisms, a Hierarchical

EneRgy Optimization (HERO) model is proposed for power consumption reduction of data

centers in this chapter. Given a data center network topology and a traffic matrix, the possi-

bility of turning off some network elements (i.e., routers, switches and links) hierarchically

without violating the network connectivity and QoS constraints is investigated. The main

contributions of HERO are described as follows. First, a hierarchical energy optimization

model for DCNs is proposed. One of the major advantages of the proposed hierarchical

model is that it reduces the algorithm complexity by transforming the whole network power

optimization problem into several sub-network power optimization problems. Second,

several heuristic algorithms to solve the proposed hierarchical energy optimization model

are verified. One more major advantage of the proposed energy optimization model is that

different heuristic algorithms at different levels can be adopted.

The rest of the chapter is organized as follows. Section 4.2 presents the background

and motivation of the hierarchical approach to reduce the power consumption of data center

networks. Details of the proposed hierarchical approach, the network connectivity of the

proposed HERO model, and the algorithm complexity are described in Section 4.3. Then,

the hierarchical heuristic algorithm is presented in Section 4.4. The performance of the
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proposed HERO model and heuristic algorithms is evaluated in Section 4.5. Section 4.6

concludes the chapter.

4.2 Background and Motivation

The main idea of the proposed hierarchical power optimization model of the network

elements is inspired from the observations and analysis of the data centers’ architectures

and traffic patterns. In this section, the architectures and the traffic patterns in data centers

are discussed in detail.

4.2.1 Data Center Topology

Conventional data center networks [55] typically consist of a two- or three-tier hierarchical

switching infrastructure. Two-tier architecture only has the core and the edge tiers of

switches. In the three-tier architecture, an aggregation switch tier is inserted in the middle

of the core and the edge switch tiers. All servers attach to DCNs through edge tier switches.

The edge switches and aggregation switches can form several switch groups, and the core

switches can form another switch group as shown in Figure 4.1(a). As analyzed in previous

works, conventional DCNs incur some well-known problems, e.g., scalability and resource

fragmentation, server to server connectivity, and cost. Several new topologies have been

proposed for DCNs recently, and they can be divided into two categories, switch-centric

topology, e.g., VL2 [56] and Portland [57], and server-centric topology, e.g., DCell [58]

and BCube [59].

VL2 [56] is a three-tier architecture and shares almost all of the features with

the conventional DCN architecture except the rich connectivity between the aggregation

switches and the core switches. PortLand [57] is another three-tier architecture that forms

the fat-tree topology. The edge and aggregation switches form a complete bipartite graph,

i.e., a Clos graph. A collection of edge and aggregation switches is called a pod in PortLand

architecture. Each pod is connected with all core switches, and thus forms a second Clos

topology. Thus, each pod can form a switch group, and the aggregation switches and the
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(a) Conventional data center network tree-like topology.

(b) Fat-tree data center network topology and traffic pattern.

Figure 4.1 Data center network topologies and traffic categories.

core switches can form another switch group. DCell [58] and BCube [59] are representative

modular DCN architectures, which are constructed with new building blocks of shipping

containers instead of server racks. Each container houses up to a few thousands of servers

on multiple racks within a standard 40- or 20-feet shipping container. The shipping

container-based modular data center simplifies supply management by hooking up power,

networking, and cooling infrastructure to commence the services, shortens deployment

time, increases system and power density, and reduces cooling and manufacturing cost.

Both DCell and BCube are multi-level, recursively defined DCN architectures built with

mini-switches and severs equipped with multiple network ports. A k-level DCellk and

BCubek can be constructed recursively with several (k−1)-level DCellk−1 and BCubek−1,
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respectively. Therefore, each DCellk−1 and BCubek−1 can form one switch collection and

the k-level switches can form another switch group.

As analyzed above, it can be observed that almost all the topologies of data center

networks typically consist of a two- or three-tier hierarchical switching infrastructure,

including the conventional tree-like switching infrastructure and recently proposed data

center architectures. The networking elements, including switches and links, can be

organized into several groups.

4.2.2 Data Center Traffic Patterns

Traffic in data center networks can be categorized into five classes: intra-edge switch

traffic, inter-edge but intra-pod traffic, inter-pod traffic, incoming, and outgoing traffic. For

intra-edge switch traffic shown as F1 in Figure 4.1(b), it only requires the connected edge

switches and links to be powered on to minimize the power consumption. Inter-edge but

intra-pod traffic goes within the same pod, but needs to go through different edge switches

as shown as F2 in Figure 4.1(b). Inter-pod traffic is the flows that go through different pods

as shown as F3 in Figure 4.1(b). Incoming (F4) and outgoing (F5) are traffic flows that go

into and out of data center networks, respectively.

The above observations on hierarchical data center network topologies and data

center traffic patterns suggest that a DCN can be divided into several pod-level sub-

networks and a core-level sub-network, and the traffic can also be reorganized accordingly.

As an example, Figure 4.2 shows the sub-network topologies of a 4-ary fat-tree [60]

network as shown in Figure 1(b), which shows a typical 3-tier hierarchical network

topology. There are four pods (Pod0-Pod3) in this network topology. Each pod contains

edge switches, aggregation switches, and servers connecting to edge switches belonging to

this pod. As discussed above, the traffic related to one pod can be reorganized as intra-edge

switch traffic, inter-edge but intra-pod traffic, pod-incoming and pod-outgoing traffic.

Intra-edge switch traffic and inter-edge but intra-pod traffic are the same as discussed

before. The pod-incoming traffic is merged from inter-pod traffic and incoming traffic
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Figure 4.2 Sub-network topologies of a 4-ary fat-tree network.

from outside of the data center network destination to one of the servers belonging to this

pod, while the pod-outgoing traffic is merged from inter-pod traffic and outgoing traffic

to outside of the data center network originated from one of the servers belonging to this

pod. For each pod, a pod-level sub-network can be formed with the original pod, which

contains the edge and aggregation switches belonging to this pod, servers connecting to this

pod’s edge switches and links connecting between this pod’s edge switches and aggregation

switches or between these edge switches and servers, a virtual node representing the

destination of the pod-incoming traffic and the source of the pod-outgoing traffic, and

virtual links, each of which connects the virtual node with one of the aggregation switches

belonging to this pod as shown in Figure 4.2(a).

Similarly, by abstracting each pod in Figure 4.1(b) to a virtual pod node, a

core-level sub-network can be formulated with these virtual pod nodes, the core switches,

a virtual source/destination node representing the source of the incoming traffic and the

destination of the outgoing traffic, and some virtual links, each of which connects the virtual

source/destination node with each of the core switches as shown in Figure 4.2(b). The

traffic for this core-level sub-network can be reorganized from the original traffic matrix
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for the whole data center network by removing the intra-edge switch traffic and inter-edge

but intra-pod traffic because the paths for these two types of traffic only travel within one

single pod.

The above observations and analysis call for hierarchical energy optimization. The

power optimization of data centers can be divided into two levels: core-level and pod-

level. The objectives of core-level power optimization are two-fold: to determine the core

switches that must stay active to send the outgoing traffic, and the aggregation switches

which serve the out-pod traffic in each pod. The objective of pod-level power optimization

is to determine the aggregation and edge switches that must be stay alive to flow the intra-

pod traffic. The potential benefit of hierarchical energy optimization is to simplify the

energy optimization problem of network elements by reducing the number of variables and

constraint greatly.

4.3 Hierarchical Energy Optimization Algorithm

As analyzed in the above, the networking infrastructure power optimization of DCNs

can be divided into core-level and pod-level network elements power optimization. The

optimizer’s role in each level is to find the minimum power network subset to meet the

performance and fault tolerance goals by powering off the unneeded switches and links. In

this section, the hierarchical energy optimization algorithm is described, and the algorithm

complexity is analyzed.

4.3.1 Problem Formulation

Given the network topology, the traffic matrix, and the power consumption of each link and

switch, the designed core-level and pod-level power optimization can be modeled as two

capacitated multi-commodity minimum cost flow (CMCF) [61] problems. Various symbols

are summarized in Table 4.1 and the basic assumptions are given as follows:

1) A physical network topology is given. The data center network infrastructure

can be modeled by a graph G = (V,E), where V and E are the set of vertices and edges,
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respectively. The vertices represent network nodes while the edges represent network

links. N and L denote the cardinality of V and E, namely, N = |V | and L = |E|,

respectively. Cij represents the capacity of link from node i to node j and α ∈ [0, 1]

denotes the maximum link utilization. The core-level and pod-level power optimization

problems can be solved based on the core-level sub-graph Gc = (V c, Ec) and a series

of pod-level sub-graphs Gp
i = (V p

i , E
p
i ) (i ∈ [1, Np]), respectively, where Np is the total

number of pods. The core-level subgraph Gc = (V c, Ec) as shown in Figure 4.2(b) is

formulated in terms of the core switches, the links connecting the aggregation switches and

core switches, and the virtual nodes, each of which represents a pod. V c and Ec denote the

set of core-level vertices and edges, and N c = |V c| and Lc = |Ec| are the total number

of nodes and links in the core-level sub-graph Gc. A pod-level subgraph Gp
i = (V p

i , E
p
i )

(i ∈ [1, Np]) as shown in Figure 4.2(a) is formulated in terms of a pod and a virtual node

representing the destination of the out-pod traffic. V p
i and Ep

i denote the set of pod-level

vertices and edges in the pod-level subgraph Gp
i for the pod pi (i ∈ [1, Np]), respectively.

And Np
i = |V p

i | and Lp
i = |Ep

i | are the total number of nodes and links in the pod-level

subgraph Gp
i for the pod pi.

2) The average amount of traffic exchanged by any source/destination node pair is

also given. Denote tsd as the average amount of traffic for the source-target pair (s, d) ∈

V × V , meaning the traffic that goes from source s to destination d. T = {tsd} (∀s, d ∈

V ) represents the traffic demand matrix which specifies the amount of traffic tsd to be

transmitted for each source-destination pair (s, d) ∈ V × V . The core-level traffic matrix

T c = {tcsd} (∀s, d ∈ V c) and a series of pod-level traffic matrices T p
i = {tpisd} (i ∈ [1, Np]),

where pi (i ∈ [1, Np]) denotes the ith pod, can be obtained by transforming the traffic

demand matrix T = {tsd} (∀s, d ∈ V ). tcpmpn is the average amount of traffic going from

source pod pm (m ∈ [1, Np]) to destination pod pn (n ∈ [1, Np]), where Np is the total

number of pods.

3) The power consumption of each node and link is given. Denote PN
i and PL

ij as the

power consumption of node i, and that of the link between node i and node j, respectively.
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Based on the above definitions, the core-level CMCF problem can be formulated as follows:

The objective function is to minimize:

P c
total =

Nc∑
i=1

Nc∑
j=1

xijP
L
ij +

Nc∑
i=1

yiP
N
i (4.1)

where P c
total denotes the total power consumption of network switches and links in the

core-level sub-graph Gc. xij ∈ {0, 1} and yi ∈ {0, 1} represent the power status of link

(i, j) ∈ E and node i ∈ V , respectively. xij ∈ {0, 1} is a binary variable that is equal to 1

if the link between node i and node j is powered on; otherwise, it is equal to 0. Similarly,

yi ∈ {0, 1} is a binary variable that takes the value of 1 if node i is powered on.

Subject to:

1) Flow conservation: commodities are neither created nor destroyed at intermediate nodes.

Nc∑
i=1

(f sd
ij )

c −
Nc∑
i=1

(f sd
ji )

c = 0, (∀s, d, i, j ∈ V c, j ̸= s, d) (4.2)

where (f sd
ij )

c denotes the amount of traffic flow from node s to node d routing through the

arc from node i to node j in the core-level subgraph Gc.

2) Demand satisfaction: each source sends and sink receives an amount of flow equal to its

demand.
Nc∑
i=1

(f sd
ij )

c −
Nc∑
i=1

(f sd
ji )

c =


tcsd ∀s, d ∈ V c, j = s

−tcsd ∀s, d ∈ V c, j = d
(4.3)

3) Capacity and utilization constraint: the total flow along each link f c
ij (∀i, j ∈ V c) must

be smaller than the link capacity weighed by the link utilization requirement factor α.

f c
ij =

Nc∑
s=1

Nc∑
d=1

(f sd
ij )

c ≤ αCijxij, ∀i, j ∈ V c (4.4)

where f c
ij represents the total amount of traffic flowing on the link (i, j) ∈ Ec in the core-

level subgraph Gc.

4) Switch turn off rule: a node can be turned off only if all incoming and outgoing links are
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Table 4.1 Description of Symbols

Parameters Description

G = (V,E) network topology

V the set of vertices

E the set of edges

N = |V | the cardinality of set V

L = |E| the cardinality of set E

Gc = (V c, Ec) the core-level network topology

V c the set of vertices in Gc

Ec the set of edges in Gc

N c = |V c| the cardinality of set V c

Lc = |Ec| the cardinality of set Ec

Gp
i = (V p

i , E
p
i ) the pod-level network topology for pod pi

V p
i the set of vertices in Gp

i

Ec
i the set of edges in Gp

i

Np
i = |V c

i | the cardinality of set V c
i

Lp
i = |Ec

i | the cardinality of set Ec
i

Cij the capacity of the link from node i to node j

α ∈ [0, 1] the maximum link utilization

Np the total number of pods

T = {tsd} the traffic demand matrix

T c = {tcsd} the core-level traffic matrix

T p
i = {tpi

sd} the pod-level traffic matrix for subgraph Gp
i

(fsd
ij )

c the amount of traffic flow from node s to node d routing through the arc (i, j) ∈ Ec

f c
ij the total amount of traffic flowing on the link (i, j) ∈ Ec

(fsd
ij )

pm the amount of traffic flow from node s to node d routing through the arc (i, j) ∈ Ep
m

fpm

ij the total amount of traffic flowing on the link (i, j) ∈ Ep
m

P c
total the total power consumption of Gc

P pm

total the total power consumption of Gp
m

PL
ij the power consumption of link (i, j) ∈ E

PN
i the power consumption of node i

xij ∈ {0, 1} the power status of link (i, j) ∈ E

yi ∈ {0, 1} the power status of node i ∈ V
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actually turned off.
Nc∑
j=1

xij +
Nc∑
j=1

xji ≤ Myi , ∀i ∈ V c (4.5)

where M is twice the total number of links connected to node i in the subgraph Gc.

Similarly, the pod-level CMCF power optimization can also be formulated as

follows:

The objective function for pod pm power optimization is to minimize:

P pm
total =

Np
m∑

i=1

Np
m∑

j=1

xijP
L
ij +

Np
m∑

i=1

yiP
N
i (4.6)

where P pm
total denotes the total power consumption of network switches and links in the

pod-level sub-graph Gp
m.

Subject to:

1) Flow conservation:
Np

m∑
i=1

(f sd
ij )

pm −
Np

m∑
i=1

(f sd
ji )

pm = 0, (∀s, d, i, j ∈ V p
m, j ̸= s, d) (4.7)

where (f sd
ij )

pm denotes the amount of flow from node s to node d routing through the arc

from node i to node j in the core-level subgraph Gp
m.

2) Demand satisfaction:

Np
m∑

i=1

(f sd
ij )

pm −
Np

m∑
i=1

(f sd
ji )

pm =


tpmsd ∀s, d ∈ V p

m, j = s

−tpmsd ∀s, d ∈ V p
m, j = d

(4.8)

where f sd
ij denotes the amount of traffic flow from source s to destination d that is routed

through the arc between node i and node j in pod pm.

3) Capacity and utilization constraint:

f pm
ij =

Np
m∑

s=1

Np
m∑

d=1

(f sd
ij )

pm ≤ αCijxij, ∀i, j ∈ V p
m (4.9)

where f pm
ij represents the total amount of traffic flowing on the link (i, j) ∈ Ep

m in the

pod-level subgraph Gp
m.
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4) Switch turn off rule:

Np
m∑

j=1

xij +

Np
m∑

j=1

xji ≤ Myi , ∀i ∈ V p
m (4.10)

In order to avoid switching frequently between ON/OFF power states, the switching

power penalty of each switch is introduced in our optimization model: the core-level and

pod-level objective functions can be extended with Eq. (4.11) and Eq. (4.12), respectively,

while the constraints in the core-level and pod-level power optimizations can be kept the

same as described above.

P ′c
total =

Nc∑
i=1

Nc∑
j=1

xijP
L
ij +

Nc∑
i=1

yiP
N
i +

Nc∑
i=1

P s[yi(1− y−i ) + y−i (1− yi)] (4.11)

P ′pm
total =

Np
m∑

i=1

Np
m∑

j=1

xijP
L
ij +

Np
m∑

i=1

yiP
N
i +

Np
m∑

i=1

P s[yi(1− y−i ) + y−i (1− yi)](m ∈ [1, Np])

(4.12)

where P s represents the switching penalty for turning a node off if it was on and for turning

a node on if it was off, and y−i denotes the power status of node i determined at the last

power optimization.

4.3.2 Algorithm Description

A formal description of the HERO algorithm is shown in Algorithm 1. The HERO

algorithm can be performed in four steps. In the first step, the power status of the

edge switches and edge links connecting the end hosts and edge switches is determined

according to traffic matrix T . All edge switches, connecting to any source server

or destination server in the traffic matrix T , must be powered on, and others can be

powered off. The power status of the core switches and core-level links connecting the

core switches and aggregation switches is determined by solving the core-level CMCF

optimization problem with the core-level sub-graph Gc, the traffic demand matrix among

pods T c, and the power consumptions of each core switch PN
i and the core-level links

PL
ij . The aggregation switches serve the pod-incoming and pod-outgoing traffics, which

63



Algorithm 1 Hierarchical Energy Optimization Algorithm

Step 1: Determine the power status of edge switches and edge links according to traffic

demand matrix T .

Step 2: Solve the core-level CMCF optimization problem.

Step 2.1: The power status of core switches and core-level links connecting the

aggregation switches and the core switches is decided by solving the core-level CMCF

optimization problem.

Step 2.2: The aggregation switches serving the out-pod traffic in each pod are selected

with the power status of the core-level links, and the selected aggregation switches are

powered on.

Step 3: Solve the pod-level CMCF optimization problem.

for i = 1 to Np do

Determine the power status of the aggregation switches and the pod-level links

connecting the edge switches and the aggregation switches by solving the pod-level

optimization problem.

end for

Step 4: In order to provision the whole network connectivity and to meet QoS goals, a

merging process is performed.

are also the traffic to be considered in the core-level power optimization, and so the

aggregation switches with the lowest power consumptions should be selected in the

core-level power optimization. However, the aggregation switches are not involved directly

in the core-level power optimization because they are contained in the virtual pod nodes.

The link connecting an aggregation switch and a core switch is unique, and HERO

performs power optimization from the core-level power optimization to the pod-level power

optimization, and therefore, the power status of the link connecting one core switch and

one aggregation switch in the core-level power optimization also determines the power

status of the aggregation switch that this link connects to since if the link is powered
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up, the switch that it connects to must be powered on anyway. Therefore, in order to

guarantee that the aggregation switches with the lowest power consumptions are selected

for flowing the pod-incoming and pod-outgoing traffic in the core-level power optimization,

the power consumption parameter of the core-level link uses the power consumption of the

aggregation switch it uniquely connects to instead of its own power consumption in the

core-level power optimization problem. This is based on the observation that the power

consumed by one link is much smaller than one switch. The power status of these selected

aggregation switches will be used as the input to the pod-level optimization problem in

Step 3. The power consumptions of the virtual pod nodes, the virtual source/destination

node, and the virtual links connecting the core switches with the virtual source/destination

node in the core-level power optimization are assumed to be zero.

Then, in each pod, the power status of the aggregation switches serving intra-pod

traffic and that of the pod level links connecting the edge switches and aggregation switches

are determined by solving the pod-level optimization problem with the pod-level sub-graph

Gp
i , the traffic demand matrix T p

i in pod pi, the power consumption of each link PL
ij and

node pNi in pod pi, and the power status of the aggregation switches that serve the out-pod

traffic determined in Step 2. The aggregation switches selected to be powered on in the

second step and the link connecting the selected aggregation switch to the virtual node in

each pod are switched on.

Finally, in order to maintain the whole network connectivity, some fault tolerance

and QoS guarantees, a complementary process is performed. The basic network connec-

tivity to route traffic defined in the given traffic matrix is ensured by the HERO algorithm,

which will be illustrated in the next subsection. From the HERO algorithm, it can be

observed that the power status of switches and links optimized with HERO is determined

by the given traffic matrix. In most of the cases, the HERO optimization model maintains

the whole network connectivity, but in some special cases, the whole network connectivity

could be broken. For example, all the traffic flows in a traffic matrix can be classified

into intra-edge traffic or inter-edge but intra-pod traffic, meaning that no traffic will travel
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through any one of the core switches. Therefore, given such a traffic matrix, the optimal

solution obtained by the optimization problem in HERO will put all core switches into the

idle state, and thus all core switches can be turned off and the connection between the data

center and the Internet outside the data center is broken.

Similarly, the connection between a pod and other pods in the data center or the

connection between a pod and the Internet outside the data center may be broken if the

power status of switches and links in a pod is determined by solving the HERO optimization

problem with the given traffic matrix only. In addition, more switches and links might

be activated to meet some QoS and fault tolerance goals. The balance between reducing

power consumption by turning off part of network elements and turning down QoS and

fault tolerance is another research topic and is beyond the scope of this chapter. In this

chapter, two basic rules are implemented in the complementary process. One is that at

least one core switch is powered on. If none of the core switches is turned on, one core

switch is randomly selected to be powered on. Another rule is that at least one aggregation

switch that can connect to one active core switch must be turned on in each pod. If no such

aggregation switch is turned on in one pod, the one which connects to a powered-on core

switch will be switched on, and the link connecting this aggregation switch and the core

switch can also be powered on or kept off since switching on a link is much faster than

switching on a router or a switch.

4.3.3 Connectivity Certification

The connectivity between the servers and edge switches is maintained since the power

statuses of edge switches and edge links are determined according to the traffic matrix

directly. The connectivity between the edge and aggregation switches in each pod and the

connectivity between the aggregation and core switches are guaranteed by the pod-level

optimization and the core-level optimization, respectively. The optimal solutions of the

pod-level optimization and the core-level optimization may activate different aggregation

switches. Thus, the connectivity for out-pod traffic might be broken. In order to ensure
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Table 4.2 Comparison of Algorithm Complexity

Parameters Non-Hierarchical HERO-core HERO-pod

Nnodes 5K2/4 K2/4 +K + 1 K + 1

Nlinks 3K3/4 K3/4 +K2/4 K2/2 +K/2

Nvar 3K3/2 ∗ ND +

3K3/4 + 5K2/4

(K3 + K2) ∗ N c
D/2 +

K3/4 +K2/2 +K + 1

(K2 + K) ∗ Npi
D +

K2/2 + 3K/2 + 1

Ncon 3K3/2 + 5K2/4 ∗

(ND + 1)

(K3+K2)/2+(K2/4+

K + 1) ∗ (N c
D + 1)

K2 +K + (K + 1) ∗

(Npi
D + 1)

K denotes the degree of the fat-tree structure, and ND, N c
D and Npi

D denote the total number of
traffic demands for the entire network, the total number of core-level traffic demands, and the
total number of pod-level traffic demands in pod pi, respectively.

the connectivity for out-pod traffic, the links connecting the aggregation switches activated

in the core-level optimization and the edge switches in each pod together with these edge

switches are required to be activated in the pod-level optimization. To realize this, the

power status of the aggregation switches determined in the core-level optimization is input

to the pod-level optimization. If the leftover capacity of the active aggregation switches

is not enough to accommodate the intra-pod inter-edge traffic, more aggregation switches

will be activated in the pod-level optimization. Therefore, the connectivity of out-pod

traffic flows is ensured by introducing the power status of aggregation switches obtained in

the core-level optimization as the initial condition for the pod-level optimization.

4.3.4 Algorithm Complexity

The algorithm complexity of the CMCF optimization problems increases with the increase

of the total number of variables and the total number of constraints. As described in

Section 4.3.1, the total number of variables in the CMCF power optimization problem
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can be expressed as the sum of the product of the total number of traffic demands and twice

the total number of links considering two directions of communication, the total number of

nodes, and the total number of links as follows:

Nvar = Nlinks × 2×Ndemands +Nlinks +Nnodes (4.13)

where Nvar, Nnodes, Nlinks, and Ndemands denote the total number of optimization variables,

nodes, links, and traffic demands, respectively.

The total number of constraints in the CMCF power optimization problem can be

expressed as the sum of twice the total number of links, the product of the total number of

nodes and the total number of demands, and the total number of nodes, by the following

equation:

Ncon = Nlinks × 2 +Nnodes × (Ndemands + 1) (4.14)

where Ncon represents the total number of constraints.

Table 4.2 compares some major parameters related to the algorithm complexity

of the CMCF optimization with a K-ary fat-tree topology. As shown in Figure 4.1(b),

a K-ary fat-tree DCN is built up with 5K2/4 K-port switches and the edges switches

and aggregation switches are constructed to form K pods, each of which consists of K/2

edge switches and K/2 aggregation switches. The edge and aggregation switches form

a complete bipartite graph in each pod. Therefore, the total numbers of nodes and links

in pod-level optimization are K + 1 and K2/2 + K/2, respectively. There are (K/2)2

K-port core switches, and each core switch has one port connected to each of k pods,

while each pod is connected to all core switches, and thus, if each pod is virtualized as

a node, the core switches and these virtual nodes form a second bipartite graph. So,

the total numbers of nodes and links in the core-level optimization are K2/4 + K + 1

and K3/4 + K2/4, respectively. The total numbers of switches and links of the whole

K-ary fat-tree network are 5K2/4 and 3K3/4, respectively. The algorithm complexities

of hierarchical and non-hierarchical energy optimization problems can be compared in
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Figure 4.3 The ratios of the total number of (a) variables and (b) constraints between
hierarchical and non-hierarchical energy optimization algorithms for the fat-tree network
topology.

terms of the ratio of the total number of variables and the ratio of the total number of

constraints. Since the total numbers of links and nodes in each pod are much smaller

than those in the core-level, and the core-level and pod-level optimization problems can

be solved serially, the algorithm complexity of the core-level power optimization problem

dominates the algorithm complexity in the hierarchical power optimization model. Hence,

the ratio of the total number of variables and the ratio of the total number of constraints

between the hierarchical and non-hierarchical energy optimization algorithm in a K-ary

fat-tree DCN can be expressed as:

ρvar =
K3/2×Nc

D+K3/4+(K2/4+K)

3/2K3∗ND+3/4K3+5/4K2
(4.15)

ρcon =
K3/2+(K2/4+K)∗(Nc

D+1)

3/2K3+5/4K2∗(ND+1)
(4.16)

where ρvar and ρcon denote the ratio of the total number of variables and the ratio of the

total number of constraints, respectively. ND and N c
D denote the total number of the traffic

demands of the entire network and the core-level traffic demands, respectively.

Figure 4.3 presents the ratios of the total number of variables and the total number

of constraints between hierarchical and non-hierarchical energy optimization algorithms
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with different values of K and the total number of flows. Under different K and ND

values, it is obvious that the ratios of the total number of variables and the ratios of the total

number of constraints between the hierarchical and the non-hierarchical model are smaller

than 35% and 40%, respectively, implying that at least 65% and 60% of variables and

constraints in the CMCF optimization problem can be reduced with HERO as compared to

the non-hierarchical power optimization model, respectively. The ratio of the total number

of constraints decreases with the increase of parameter K with the same number of flows.

The results shown in Figure 4.3 are the worst case because the ratio values are calculated

under the condition that the total number of the core-level flows is the same as that of

the entire network, while in fact the total number of the core-level flows is usually much

smaller than that of the whole network.

In general, there are multiple independent pods in a data center. Since the pod-level

optimization problems can be solved in parallel, the total computational time to obtain

the optimal solution of the HERO model is roughly the sum of the computational time

to solve the core-level optimization problem and one pod-level optimization problem. As

compared to the non-hierarchical optimization model, the computational time to obtain the

optimal solution of the HERO model can also be cut down because both the total number

of variables and the total number of constraints are reduced in the optimization problems

of the HERO model.

4.4 Heuristic Algorithms

The proposed HERO energy optimization for data centers falls in the class of the CMCF

problem. CMCF is NP-hard, and so exact methods can only be used to solve trivial cases.

Simple greedy heuristics of node optimization and link optimization were proposed [62]

by trying to switch off an additional network node or link. An improved version of this

heuristic algorithm was reported in [63] by explicitly considering the power consumption

amount of the devices. The basic idea is to iterate through the node set or link set by

sorting the nodes or links according to their power consumption in the node optimization
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or in the link optimization stage. An energy-aware greedy heuristic routing algorithm for

data center networks was presented in [52]. The basic idea of this heuristic routing is to

gradually eliminate the lightest-loaded switch from those involved in the routing, based on

the total throughput of flows carried by each active switch. The problem of this heuristic is

that it does not take the switch power consumption model into consideration while different

switch models may co-exist in a data center.

In this chapter, several simple greedy heuristic algorithms based on different switch

elimination criteria are designed to solve the hierarchical optimization problem for large

data center networks. The proposed energy-efficient heuristic algorithm is based on

the observation that the power consumed by one link is much smaller than one switch.

The switch elimination criterion could be switch throughput, switch power consumption,

and switch power efficiency, that gradually eliminates the lightest loaded switch based

on the total throughput of flows carried by each active switch, the switch with the

highest maximum power consumption per port, and the lowest power-efficient switches,

respectively. The power efficiency of a switch is defined as the total throughput of flows

carried by the switch divided by its power consumption. The basic idea of the proposed

heuristic algorithms is to try to turn off the core switches and core-level links iteratively

as well as the aggregation switches and pod-level links iteratively in the core-level and

pod-level power optimization, respectively, so that as few switches and links as possible

are powered on in DCNs to meet the traffic demands and QoS goals.

All switches and links are assumed to be powered on initially, and the traffic is

routed as normal, and then the switches and links are selectively powered off hierarchically

in the core-level and pod-level energy optimizations. In the core-level heuristic, the core

switches are sorted based on different criteria, and then the selected core switches are

attempted to be switched off by checking if the traffic can be flowed through other active

core switches; if so, they are turned off. Based on the throughput-based criterion and switch

power efficiency criterion, the core switches are sorted in the ascending order, while the

core switches are sorted in the descending order if the switch power consumption criterion
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is adopted. Therefore, the core switch with the lowest throughput, the lowest power

efficiency, or the highest power consumption model is eliminated first. A similar heuristic

is applied to the pod-level optimization except that it tries to turn off aggregation switches

in each pod. As an improvement to the switch power consumption based criterion, another

switch power consumption based criterion is proposed by sorting the core switches in the

descending order of the total power consumption of each core switch and its connecting

aggregation switches in the core-level power optimization.

4.5 Performance Evaluation

In this section, the optimal power consumptions of network elements of the HERO model

and those of the non-hierarchical optimization model are compared first. Then, the power

saving performance of different heuristic algorithms is investigated. The relationship of

the power consumptions and the network utilization is further studied with a diurnal traffic

variation over a day. Also, the effects of the power penalty when powering on or off network

elements in the power optimization model are examined.

Three different switch power consumption models investigated in [40] are referenced

to build a DCN in each evaluation experiment. Each switch selects its switch model

randomly (uniform distribution) from these three types. In [40], the power consumptions

of three 48-port different switch models with all ports staying at the idle state are measured

as 151 W, 133 W and 76 W, respectively. Also, a 1/3 extra power consumption required

to turn on all ports is observed in [40]. A positive linear relationship between the switch

power consumption with all ports staying at the idle state and the number of switch ports is

assumed in our evaluations, meaning that a switch consumes more power with the increase

of the number of switch ports.

4.5.1 Traffic Patterns

Currently, the commercial data center traffic traces are not available in the public domain,

but tremendous variations in the data center communication matrix over space and time
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have been observed and reported in [34–36, 56]. According to their reports, data center

traffic exhibits a clear diurnal variation pattern, in which traffic peaks during the day and

falls at night; most flows (90%) in DCNs are transactional and small in size (<1MB),

such as search results; the majority of traffic (90%) are transferred in a small fraction of

elephant flows, such as backups and back-end operations; a significant fraction of traffic in

data centers (80% for cloud data centers and 40-90% for university and private enterprise

data centers) are transferred within a rack. Intra-rack traffic amount is larger than inter-rack

traffic greatly. The majority of traffic flows last under a few hundreds of milliseconds. In

the absence of commercial DCN traffic traces, several traffic patterns were generated to

verify the power saving performance of HERO.

1. Random Elephant: an end host sends large elephant flows to any other end host

equally likely in DCN.

2. All-to-All Data Shuffle: every end host transfers a large amount of data to every other

end hosts.

3. Staggered (Pout, Pedge, Ppod): a source host sends traffic out of a DCN with

probability Pout, to an end host which is connected by the same edge switch as the

source host with probability Pedge, and to an end host which is within the same pod

as the source host but connected by different edge switches with probability Ppod,

and to the rest of the end hosts with probability 1− Pedge − Ppod − Pout.

4. Diurnal Traffic Variation: the data center traffic variation over one day exhibits a

clear diurnal pattern, in which traffic peaks during the day and falls at night.

4.5.2 Simulation Results

HERO vs. Non-hierarchical Model The traffic patterns “Random Elephant” and “All-

to-All Data Shuffle” are two extreme cases with large elephant traffic flows only and with

small traffic flows only, respectively. In order to compare the optimal power savings of the
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Figure 4.4 The power consumptions of a 4-ary fat-tree DCN with different number of
elephant traffic flows.

proposed HERO model and those of the non-hierarchical optimization model, CPLEX [64]

is used to obtain the solutions of the CMCF problems in the evaluations with these two

traffic patterns.

Since current commodity switches are not power proportional to work loads (even

more than 80% to its peak power consumption at idle state) and the elephant flows dominate

the traffic volume in DCNs, the performance of the HERO model with elephant flows only

was investigated first, the traffic demand of which for each source-destination pair will

consume the whole edge link capacity. Figure 4.4 shows the average power consumption

of a 4-ary fat-tree network with different numbers of traffic flows. For each number of

traffic flows, 1000 simulations are performed with randomly generated traffic flows, and

the power consumption is normalized with respect to the maximum power consumption of
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Figure 4.5 The power consumptions of a 4-ary fat-tree DCN with all-to-all data shuffle
under different traffic loads.

the whole network. The power consumption of the non-hierarchical power saving model

and traffic-load proportional power consumption model are also plotted for comparison.

The non-hierarchical power saving model takes the whole DCN topology as an input to

the optimization problem and does not consider the hierarchical property of the DCN

topology. ElasticTree [40] is a typical example of the non-hierarchical power optimization

model. The traffic-load proportional power consumption model is a primary design goal

for power optimization schemes, and thus this model provides the lower bound of power

consumptions under different traffic loads. Such an energy-proportional model ideally

consumes no power when idle, nearly no power when very little traffic is transmitted

through the network and gradually more power as the traffic increases.

As shown in Figure 4.4, smaller than 5% more of the maximum power consumption

of the whole network is consumed in HERO than that of the non-hierarchical model.
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Owing to the QoS and fault tolerance protection rules implemented in the complementary

procedure, more about 20% of the maximum power consumption of the whole network

is needed as compared to the traffic-load power proportional model under the worst case.

The lower bound and upper bound power consumption under different numbers of elephant

flows are also shown in Figure 4.4, which reflects the influence of source and destination

locations on the power consumption. Since no aggregation and core switches are required

to be powered on for intra-edge switch traffic flows, the power consumption under some

specific number of traffic flows is minimized if all the flows are intra-edge switch traffic.

Similarly, the power consumption is maximized if all the flows are inter-pod traffic.

A data shuffle is an expensive but necessary operation for some data center

operations. Figure 4.5 shows the normalized power consumption of a 4-ary fat-tree network

with all-to-all traffic under different traffic loads. With all-to-all traffic, any host will have

a traffic flow to any other end host. The traffic load generated at any host will be distributed

to other hosts uniformly. As shown in Figure 4.5, the power consumptions of HERO

and the non-hierarchical model are almost the same under different traffic loads. The

power consumption at low traffic load is much higher than that of the traffic-load power

proportional model because every edge switch is active with all-to-all traffic.

Besides, in these two evaluations, it can also be observed that the computational

time to obtain the optimal solution of the HERO model is about half of the computational

time to solve the non-hierarchal power optimization problem.

Performance of Heuristic Algorithms The staggered traffic pattern is a mix of intra-

edge traffic, inter-edge but intra-pod traffic, inter-pod traffic, and outgoing traffic as

discussed in Section II.B, and it is generated to emulate typical data center traffic patterns

based on the published work [34–36,56]. With the staggered traffic pattern, experiments are

conducted to study the DCN power consumptions with different heuristic algorithms. The

power consumptions of four heuristic algorithms under different traffic load with staggered

traffic pattern (0.2, 0.4, 0.24) in a 4-ary and 16-ary fat-tree DCN are shown in Figure 4.6(a)
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Figure 4.6 The power consumptions of different heuristic algorithms in a fat-tree DCN
with staggered (0.2, 0.4, 0.24) traffic.

and Figure 4.6(b), respectively. Traffic demands are generated randomly. Around 20%

of the traffic leaves the data center, and 50%, 30% and 20% of the remaining traffic are

intra-edge switch traffic, inter-edge but intra-pod traffic, and inter-pod traffic within the

data center, respectively.

As shown in both figures, throughput-based and power-efficiency based switch

elimination criteria consume almost the same power. Switch power consumption method

based on the total power consumption of the core and aggregation switches in the core-level

power optimization, labeled with “Switch Power (Core + Aggregation)”, achieves the

minimum power consumption among these four heuristics. At low utilization, about

37% and 53% of the original DCN power consumption can be saved by using this

heuristic algorithm in a 4-ary and 16-ary fat-tree DCN, respectively, which are quite close

to the corresponding 38% and 60% optimal power savings analyzed in [40]. Also, a

linear relationship between the power consumption and the traffic load in the range of

20% - 70% of the maximum traffic load can be observed using this heuristic algorithm.

Therefore, the power consumption achieved by this heuristic algorithm is very close to

that of the optimal solutions of HERO and non-hierarchical optimization model. Another

phenomenon of this heuristic algorithm in a 16-ary fat-tree DCN is also observed: the
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Figure 4.7 The power consumptions over a day with a diurnal traffic variation pattern in
a fat-tree data center network with staggered (0.2, 0.4, 0.24) traffic.

power consumptions of network elements optimized with HERO under different network

utilizations in this evaluation with the staggered traffic pattern (0.2, 0.4, 0.24) are between

the power consumptions of network elements optimized by ElasticTree [40] with 50% far

traffic (which needs to transmit through one of the core switches) and 50% middle traffic

(which needs to transmit through one of the aggregation switches, but does not need to

transmit through a core switch) and those obtained by ElasticTree with all middle traffic.

This is due to the staggered traffic pattern (0.2, 0.4, 0.24) used in this evaluation.

Diurnal Traffic Variation and Switching Power Penalty The performance of HERO

with a diurnal traffic variation over a day is further studied. The power consumptions

with the proposed HERO model over one day in 10-minutes intervals with a diurnal traffic

variation pattern with staggered traffic pattern (0.2, 0.4, 0.24) in a 4-ary and 16-ary fat-

tree DCN are depicted in Figure 4.7(a) and Figure 4.7(b), respectively. In this evaluation,

the heuristic algorithm based on the total power consumption of the core and aggregation

switches in the core-level power optimization is used. From these two figures, it can be

seen that the power consumptions of data center networks also show a clear diurnal pattern

and follow the network utilization curve.
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In all of the previous power optimization evaluations, the power penalty when

powering on or off network elements are ignored. Such total power penalty was

investigated in a 4-ary fat-tree data center network over a one-day diurnal traffic variation

with the HERO model and its extended optimization model, which considers the switching

power penalty of each switch, respectively. In this evaluation, several experiments were

conducted with different settings to the switching power penalty parameter P S in Eq. (4.11)

and (4.12) in the range of [10%, 50%] of the switch’s power consumption. The results show

that in a 4-ary fat-tree data center network, the total switching power penalty in a day with

HERO is more than five times larger than that of its extended optimization model which

takes the switching power penalty into account. It can also be observed that by taking the

switching power cost into the power optimization model, the unnecessary switching power

penalty can be minimized.

4.6 Summary

With the increase of scale of DCNs, existing centralized power management schemes to

reduce the power consumptions of network elements in DCNs do not scale well. Inspired

from the hierarchical architectures and traffic patterns of data centers, the HERO model

has been proposed to reduce the power consumption of network elements without violating

the connectivity and QoS constraints. In fact, the power optimization of networking

elements by switching off the idle switches or links can be divided into core-level and

pod-level network elements power optimization. Given a physical DCN topology, the

traffic matrix, and the power consumption of each link and switch, the designed core-level

and pod-level power optimization problems in the proposed HERO model fall in the class of

CMCF problem, which is NP-hard. Several heuristic algorithms based on different switch

elimination criteria have been designed to solve the hierarchical optimization problem for

large data centers. The switch elimination criteria could be switch throughput, switch

power consumption, and switch power efficiency. The basic idea of the proposed heuristic

algorithms is to try to turn off the core switches and core-level links iteratively as well
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as the aggregation switches and pod-level links iteratively in the core-level and pod-level

power optimization, respectively.

The performance of the proposed HERO model has been evaluated by generating

several traffic patterns, including random elephant, all-to-all data shuffle, staggered (Pout,

Pedge, Ppod) and diurnal traffic variation. The simulation results show that the proposed

HERO model can achieve optimized power consumptions of a DCN similar to that of

the non-hierarchical model but with much less computational efforts. The algorithm

complexities of HERO and non-hierarchical energy optimization problems have been

compared in terms of the total number of variables and the total number of constraints in a

fat-tree DCN. As compared to the non-hierarchical energy optimization model, at least 65%

and 60% of variables and constraints can be reduced with the HERO model, respectively.

The simulation results show that among all of the proposed heuristic algorithms, switch

power consumption heuristic algorithm based on the total power consumption of the core

and aggregation switches in the core-level power optimization achieves the minimum

power consumption since it considers the power consumption of core switches and

aggregation switches in a whole instead of separately.
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CHAPTER 5

HETEROGENEITY AWARE DOMINANT RESOURCE ASSISTANT

HEURISTICS FOR VIRTUAL MACHINE CONSOLIDATION

In this chapter, several heterogeneity aware dominant resource assistant heuristic algorithms

for virtual machine (VM) consolidation are described. The proposed heuristic algorithms

explore the heterogeneity of the VMs’ requirements for different resources and the

heterogeneity of the PM’s resource capacities, and utilize the dominant resource (i.e.,

the resource corresponding to the largest element in the vector of the VM’s resource

demand or the physical machine’s resource capacity) to assist VM consolidation. The

performance evaluations using the synthetic workloads validate the effects of the proposed

heterogeneity aware heuristics on VM consolidation. The proposed heuristics can achieve

quite similar consolidation performance as dimension-aware heuristics with almost the

same computational cost as those of the single dimensional heuristics.

5.1 Introduction

Virtual machine consolidation is an important technique for efficient usage of server

resources to reduce the total number of servers, thus potentially resulting in reducing

the power consumption of data centers. VM consolidation is often modeled as vector

bin packing problems, which are well-known to be NP-hard [65]. Therefore, heuristic

algorithms are usually used to solve this type of problems [66–68] in practice.

First fit decreasing (FFD) and best fit decreasing (BFD) are the most popular

heuristic algorithms to solve the VM consolidation problem. Verma et al. [66] inves-

tigated a power and migration cost aware application placement framework, referred

to as pMapper, to minimize power and migration costs while meeting the performance

guarantees in heterogeneous server clusters. They also proposed an improved FFD heuristic

algorithm, namely, min power parity (mPP), to map VMs to physical machines (PMs).

The basic idea of mPP is to allocate VMs to the most energy-efficient PM, thus resulting
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in the least power increase per unit increase in resource utilization. Beloglazov and

Buyya [67] applied BFD for VM placement in their proposed energy efficient resource

management system for virtualized cloud data centers. Similar to mPP, a modified best

fit decreasing (MBFD) heuristic algorithm [68] was designed to consolidate VMs onto the

most energy-efficient PMs. The main difference between mPP and MBFD is that mPP sorts

PMs in the descending order of power efficiency, while MBFD does not.

Besides FFD and BFD, a minimum bin slack based heuristic, namely, incremental

power aware consolidation (IPAC), was proposed in [69]. For a given server, IPAC

allocates a subset of unallocated VMs to maximize the server’s CPU utilization constrained

by the server’s resource capacity. As shown in [69], IPAC provides a better solution

in terms of power consumption than FFD does, but the computational complexity to

solve the minimum slack problem may limit its application in practice. Computational

intelligence [70,71], such as genetic algorithms [72–74] and simulated annealing [75], has

also been deployed to improve the VM consolidation performance. The VM consolidation

performance can be improved with genetic algorithms or simulated annealing over FFD.

However, these algorithms are computational expensive, and generally take more time to

reach the optimal result.

In this chapter, several heuristic algorithms are described. The proposed heuristic

algorithms explore the heterogeneity of the VMs’ requirements for different resources

and the heterogeneity of the PM’s resource capacities, and utilize the dominant resource

(i.e., the resource corresponding to the largest element in the vector of the VM’s resource

demand or the PM’s resource capacity) to assist VM consolidation. The dominant resource

demand of a VM and the dominant resource capacity of a PM captures the primary request

of a VM and the primary resource of a PM, respectively. These two characteristics have

not been considered in the previous heuristic algorithms for VM consolidation.

The remainder of this chapter is organized as follows. In the next section, the VM

placement problem is introduced. Some popular heuristics for VM placement are described

in Section 5.3. Several proposed dominant resource aware heuristics are presented in
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Section 5.4. The performance of the proposed heuristic algorithms for VM placement

is evaluated in Section 5.5. The summary of the chapter is presented in Section 5.6.

5.2 Virtual Machine Consolidation Problem

Most works published in the research literature formulate the VM consolidation as an

optimization problem to minimize the number of active servers with constraints imposed

by server capacities, service level agreements, etc. Assume that K VMs {V1, · · · , VK} are

requested by clients and assigned to a data center consisting of M distinct host physical

machines {Mi} (i ∈ [1,M ]). Each PM Mi can be characterized by a d-dimensional

resource capacity vector Ci = [Ci1, · · · , Cid] (i ∈ [1,M ]). Each dimension corresponds

to a different resource such as CPU, memory, network bandwidth, or disk bandwidth.

Similarly, each VM is characterized by a d-dimensional resource request vector Rk =

[rk1, · · · , rkd], where rkj (j ∈ [1, d]) is the VM Vk’s resource demand for dimension j. The

VM consolidation algorithm determines how to allocate these K VMs on M PMs, denoted

by xij = {0, 1} (i ∈ [1, K], j ∈ [1,M ]) which is the binary variable indicating whether

the VM Vi is assigned to PM Mj . If the VM Vi is assigned to PM Mj , xij = 1; otherwise,

xij = 0.

Based on the above definitions, the goal of the VM consolidation is to place the

VMs on as few as possible active PMs, while at the same time ensuring that the total

resource demands of VMs allocated on any active PM does not exceed its resource capacity

across any dimension. If PM Mj has been assigned one or more VMs, this PM is said to be

active, yj = 1; otherwise, it stays in the idle state, yj = 0. Thus, the objective function of

the VM consolidation algorithm is to minimize the total number of active PMs as:

min
∑M

j=1 yj (5.1)

subject to

1) Resource capacity constraints: for each resource of one PM Mj , the total quantity

utilized by VMs allocated to this PM cannot exceed its corresponding resource capacity
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weighed by its maximum resource utilization factor γjk (k ∈ [1, d]).

∑K
i=1 rik · xij ≤ γjk · Cjk (∀j ∈ [1,M ], ∀k ∈ [1, d]) (5.2)

2) Placement guarantee constraints: each VM can only be assigned to one PM.

∑M
j=1 xij = 1 (∀i ∈ [1, K]) (5.3)

3) Correlation between the binary status of PMs yj with VMs allocation xij: for each PM

Mj , its binary status yj should not be smaller than the binary allocation status of VM Vi

allocated to PM Mj xij , since any one of the VM Vi assigned to PM Mj will result in

yj = 1.

yj ≥ xij (∀i ∈ [1, K], ∀j ∈ [1,M ]) (5.4)

5.3 Heuristics for Virtual Machine Consolidation

In this section, some popular heuristic algorithms for virtual machine consolidation will be

reviewed and discussed. Based on the scale used for VM assignment, heuristic algorithms

for VM consolidation can be classified into two categories: single dimensional heuristics

and dimension aware heuristics.

5.3.1 Single Dimensional Heuristics

The basic idea behind the single dimensional heuristics is mapping the vector of PM’s

resource capacities and the VM’s resource demands into a single scalar, which will be used

to perform VM consolidation while ignoring the relationships across dimensions.

First Fit Decreasing (FFD) FFD heuristic sorts the VMs and PMs in the non-increasing

order of their “size”. It could be the normalized resource demand or capacity in any one of

the dimensions (e.g., CPU, memory), or the weighted sum of normalized resource demand

or normalized resource capacity across all dimensions, or the product of normalized

demand or normalized capacity across all dimensions [76]. The FFD heuristic algorithms
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based on these different sorting rules are denoted as FFDSDim, FFDSum, and FFDProd,

respectively, throughout this chapter. Hence, the VM “size” can be defined as follows:

Size(Vi) =


ri (FFDSDim)∑d

j=1 wjrij (FFDSum)∏d
j=1 rij (FFDProd)

(5.5)

where {wj} (j ∈ [1, d]) denotes the weight coefficients for different resources. Similarly,

the PM’s “size” can be defined by replacing the vector of the VM’s resource requests with

the vector of the PM’s resource capacity.

Starting from the largest VM in size, FFD iteratively assigns VMs to PMs. For

each VM, FFD also starts from the largest PM in size to iteratively check the PM’s residual

capacity, which is defined as the PM’s resource capacity subtracting the total resource

demands of VMs assigned to this PM. The VM will be packed to the first PM which has

enough residual capacity, implying that the residual capacity of this PM is larger than the

VM’s resource demand across any dimension. If none of active PMs can host the VM, the

largest idle PM will be activated.

Best Fit Decreasing (BFD) Similar to FFD, the BFD heuristic also sorts the VMs in

no-increasing “size”, and iteratively assigns each VM to active PMs starting from the

largest VM. The main difference between BFD and FFD is that BFD allocates the VM

to PMs based on some rules, such as Least Full First (LFF) and Most Full First (MFF).

With LFF, the VM will be assigned to the active PM with the least resource utilization.

On the other hand, with MFF, the VM will be assigned to the active PM with the highest

resource utilization.

5.3.2 Dimension Aware Heuristics

The main drawback of single dimensional heuristics is that the vectors of the PM’s

resource capacities and the VM’s resource requests are mapped into a single scalar, and

thus the PMs’ complimentary requirements for different resources are not considered
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during the VM assignment procedure. Contrary to the single dimensional heuristics, the

dimension aware heuristics attempt to take advantages of the PMs’ complimentary resource

requirements across all resource dimensions.

DotProduct Singh et al. [77] proposed a load balancing scheme, called VectorDot, for

handling the multi-dimensional resource constraints in data centers. Basically, VectorDot

utilizes the dot product
∑d

i wirihi(t) between the vector of a PM’s residual capacities

at time t, H(t) = {h1(t), · · · , hd(t)}, and the vector of the VM’s resource requirement

elements Ri = {ri1, · · · , rid} across all dimensions to choose the target PM for VM

placement, where wi is the weight parameters calculated in the same manner as described in

the FFDSum heuristic. This idea can also be used for VM consolidation, which is denoted

as the DotProduct heuristic algorithm. Given a PM, DotProduct selects and allocates the

VM that maximizes the dot product
∑d

i wirihi(t) while not violating the PM’s capacity

constraints. The main idea of DotProduct is to select and assign a VM on a given PM

for which the resource requirement vector of the VM is complementary to the resource

utilization vector of the PM.

Norm-based Greedy (L(2)) For each newly activated PM, the norm-based greedy

heuristic algorithm iteratively selects one VM Vi among all unassigned VMs that does

not violate the PM’s capacity constraint and minimizes the weighted norm distance∑
iwi∥Ri − hi(t)∥ between the VM resource request vector Ri and the residual capacity

vector of the current PM H(t) = [h1(t), · · · , hd(t)] as well, until no VM can be packed

into the current PM.

5.3.3 Comparison

The comparison study among these heuristic algorithms has been performed in [78].

According to [78], FFDSum dominates other single dimensional heuristics and dimension

aware heuristics can achieve up to 10% improvement over FFDSum with realistic
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Algorithm 2 DRR-FFD Heuristic
1: Cluster VMs by their dominant resources {G1, · · · , Gd}.

2: In each cluster, sort VMs in non-increasing size.

3: Sort PMs in the non-increasing order of the power efficiency.

4: Activate the most power efficient PM and assign the largest VM to it.

5: while not All VMs have been allocated do

6: Calculate the total residual capacity {
∑

j yjhj1, · · · ,
∑

j yjhjd} and identify the

dominant residual capacity vector {DR
1 , · · · , DR

d }.

7: Allocate the largest unassigned VM in the non-increasing order of the identified

dominant residual capacity vector {DR
1 , · · · , DR

d } with FFD heuristic.

8: end while

workloads, and more consolidation gain can be obtained when VMs are mixed with

different dominant resources, such as mix of CPU-intensive VMs and memory-intensive

VMs. The heuristic comparison study [78] also shows that if all VMs are constrained by a

single resource, the single dimensional heuristics are efficient and can provide almost the

same results as dimension-aware heuristics.

5.4 Heterogeneity Aware Dominant Resource Assistant Heuristics

All of the heuristic algorithms discussed in the last section do not consider the heterogeneity

of VMs’ requirements for different resources. Inspired by the concept of “dominant

resource” introduced in [79], which is the resource corresponding to the maximum among

all requested resources of a user, several heterogeneity aware dominant resource assistant

heuristic algorithms are proposed in this section.

5.4.1 Dominant Residual Resource Aware FFD (DRR-FFD)

Inspired by the efficiency and VM consolidation performance of FFD heuristics, a new FFD

derivative heuristic by considering the dominant residual resource, denoted as Dominant

Residual Resource aware FFD (DRR-FFD), is proposed in this paper. The basic idea behind
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DRR-FFD is that it always tries to balance the resource utilizations across all dimensions

by matching up the PM’s residual resource capacity with the next VM to be allocated.

For example, if more CPU resource than the memory resource is left, a CPU-intensive

unassigned VM will be allocated to consume more CPU resource than memory resource.

The DRR-FFD heuristic is summarized in Algorithm 2.

Unlike FFD, DRR-FFD clusters the VMs based on their dominant resources, which

are the resources corresponding to the largest requirements in the VMs’ normalized d-

dimensional resource request vectors (line 1 in Algorithm 2). In each cluster, the VMs

are sorted in non-increasing order of the predefined VM “size” (line 2 in Algorithm 2).

DRR-FFD also sorts PMs in non-increasing order of their power efficiency to ensure that

VMs are always assigned to the subset of the most power efficient servers to reduce power

consumption (line 3 in Algorithm 2). Similar to FFD, DRR-FFD starts from the largest VM

(line 4 in Algorithm 2) and iteratively assigns one VM to the first PM which has enough

residual resource capacity to host it until all the VMs have been allocated (lines 5-8 in

Algorithm 2).

The major difference between FFD and DRR-FFD is that FFD sorts VMs in a

single queue according to their sizes while DRR-FFD organizes VMs into multiple groups

{G1, · · · , Gd} based on the dominant resources. It is simple to determine the next VM to

be assigned in FFD since all VMs are organized in a single queue, but DRR-FFD needs

to provide a mechanism to determine the next unassigned VM to be allocated. DRR-FFD

calculates the total normalized residual resource capacities of all active PMs across all

dimensions and identifies the dominant residual resource vector {DR
1 , · · · , DR

d }, which

organizes the resources corresponding to the non-increasing order of their residual resource

capacities. For example, the total normalized residual resource capacity of all active PMs is

[0.2, 0.6] in CPU and memory, respectively. Hence, the dominant residual resource vector

is [memory, CPU]. Then, DRR-FFD selects the largest unassigned VM in the cluster which

has the largest residual capacity. If there is no unassigned VM in this cluster, DRR-FFD

will search for the cluster with the next largest residual capacity. DRR-FFD might run this
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step on several clusters until it gets a VM to be allocated. Also, as in the last example,

DRR-FFD tries the cluster which contains all the memory-intensive VMs first. If this

cluster is empty, it tries the cluster which contains all the CPU-intensive VMs.

5.4.2 Individual DRR-FFD (iDRR-FFD)

One problem with DRR-FFD is that the sum of the residual capacities across all active PMs

might mislead the actual dominant residual resource. Consider the case with five active

PMs. Four of them have the normalized residual resource capacity [0.15 CPU, 0 memory],

and the residual resource capacity of the fifth PM is [0.3 CPU, 0.5 memory]. Thus, the total

residual resource capacity of these five PMs is [0.9 CPU, 0.5 memory], in which case DRR-

FFD will select a CPU-intensive VM to be allocated. However, among these normalized

CPU residual capacity, 67% cannot be assigned to any VM because there is no enough

memory to satisfy the resource capacity constraint. Also note that the utilization of the CPU

resource is already higher than that of memory on the fifth PM. The allocation of another

CPU-intensive VM to the fifth PM will even worsen the imbalance of resource utilization.

One solution to this problem is to use the residual capacity of each individual PM to identify

the dominant residual resource vector. This heuristic is referred to as individual DRR-FFD

(iDRR-FFD).

5.4.3 Dominant Residual Resource Based Bin Fill (DRR-BinFill)

Dominant Residual Resource based Bin Fill (DRR-BinFill) heuristic is quite similar

to DRR-FFD, except that it focuses on a given server. The DRR-BinFill heuristic is

summarized in Algorithm 3. First, DRR-BinFill clusters VMs according to their dominant

resources and sorts them in the non-increasing size (lines 1 and 2 in Algorithm 3), and

also sorts PMs in the non-increasing order of their energy efficiency (line 3 in Algorithm

3), which are the same as Steps 1-3 of DRR-FFD, and therefore, the idle PMs can be

activated in non-increasing order of their energy efficiency, thus ensuring that VMs are

allocated to the subset of the most energy-efficient PMs to reduce power consumption (line
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Algorithm 3 Dominant Residual Resource based Bin Fill

1: Cluster VMs by their dominant resources {G1, · · · , Gd}.

2: In each cluster, sort VMs in non-increasing size.

3: Sort PMs in the non-increasing order of the power efficiency.

4: while not All VMs has been allocated do

5: Activate the most energy efficient idle server Mi.

6: Allocate the largest unassigned VM to Mi.

7: Comment: The following is the Bin Filling Process.

8: while not Filling process finished do

9: Calculate the given server’s residual capacity hj (j ∈ [1, d]) and identify the

dominant residual capacity vector {DR
1 , · · · , DR

d }.

10: if The residual capacity of one resource is smaller than ϵ then

11: break; //bin filling process finishes.

12: end if

13: Search for the clusters corresponding to the order of dominant residual capacity

vector {DR
1 , · · · , DR

d } to get a VM to be allocated to the PM Mi without violating

the resource capacity constraints.

14: if Such a VM cannot be found then

15: break; //bin filling process finishes.

16: end if

17: end while

18: end while
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5 in Algorithm 3). The newly activated server is not necessary to be empty, meaning

that no VM has been assigned to it. If the given server is empty, the largest unassigned

VM will be allocated to it (line 6 in Algorithm 3); otherwise, this step will be skipped.

Then, DRR-BinFill will iteratively allocate one VM among all the unassigned VMs to the

given server to compensate for the server’s residual resource capacity. This procedure is

called the bin filling process. In each iteration, DRR-BinFill calculates the given server’s

residual capacity and identifies the dominant residual capacity vector (line 9 in Algorithm

3), and searches for the VM clusters in the order of the server’s dominant residual resource

vector (line 13 in Algorithm 3), implying that the larger the given server’s residual resource

capacity, the earlier the corresponding VM cluster will be searched. The VM searching

procedure will be stopped when one VM has been found without violating the given

server’s capacity constraints. If all clusters have been searched and such a VM cannot

be found (lines 14-16 in Algorithm 3), or some of resources in the server have reached

their capacity constraints (10-12), the bin filling process will be stopped.

5.5 Performance Evaluation

The performance of the proposed heterogeneity-aware heuristics is evaluated under

different synthetic workloads, and the results are compared with other single dimensional

heuristics and dimension aware heuristics.

5.5.1 Synthetic Workload

Currently, the commercial VM traces are not available in the public domain due to privacy

and security concerns and several synthetic workloads are generated to emulate VM

demands and evaluate the proposed heuristics on these synthetic workloads. Most of these

synthetic workloads are chosen from the ten classes used by Caprara and Toth [80] to

benchmark the effectiveness of two-dimensional bin-packing heuristics. In the first VM

class denoted by Random[h, α, β], the VM resource request in each dimension is drawn

randomly and independently from the range [α, β], and the resource capacity of a PM in
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each dimension is h. In this class Random[h, α, β], the dimensions are independently

generated and the parameters are set to h = 150 and [α, β] = [20, 100] as in the

experiments performed in [78]. The dimensions in the other two classes, namely, positive

correlation PosCorr[h, α, β] and negative correction NegCorr[h, α, β], are correlated. In

both classes, PMs have h = 150 capacity in each resource dimension, and for each VM,

the demand in the first dimension r1 is sampled uniformly in the range [20, 100], while the

demand in the second dimension r2 is sampled uniformly in the range [r1 − 10, r1 + 10]

for the positive correlation class PosCorr and in the range [110 − r1, 130 − r1] for

the negative correlation class NegCorr. The fourth class HeterExtrCase is generated

artificially to emulate the worst case of VM consolidation in terms of the heterogeneity

of the VMs’requirements for different resources. In this class, the PM capacity is set to

h = 100 in each resource dimension, and VMs have two types of resource requests. One

is the first resource dimension intensive VM request [20,1] and the other is the second

resource dimension intensive VM request [3, 20]. Each type of VM request has 1000 VMs.

5.5.2 VM Heterogeneity

The effects of the heterogeneity of VMs’ requirements for different resources to the

consolidation performance of different heuristics are investigated. The ratio of the VM’s

demands for two different resources ρjki = rij/rik (j ̸= k; j, k ∈ [1, d]) can reflect the

difference of the VM’s demands for these two resources. Under the two-dimensional

resource requirements, the heterogeneity of VMs’ resource demands can be captured with

the variance of the ratio of VM’s demands for these two resources ρi = ri1/ri2. The VMs’

resource demands are limited in two dimensions in this investigation. Assume the VM

resource request in each dimension is drawn randomly and independently from the range

[1, 20]. Hence, the ratio of the VM’s demands for the two resources is in the range [0.05, 20].

Further assume the average of the resource demand ratio of all VMs is µ ∈ [0.05, 20]. The

ratio of VM’s demands for the two resources is assumed to be a random variable with

the normal distribution N (µ, σ). The demand of the VM’s first resource ri1 is chosen
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Figure 5.1 VM consolidation performance of different heuristics.

randomly and uniformly in the range [1, 20], and the demand of the VM’s second resource

is obtained with ri2 = ri1/ρi. If ri2 is in the range [1, 20], the VM’s resource demands

Ri = {ri1, ri2} will be kept; otherwise, the demand of the VM’s first resource ri1 will be

reselected uniformly in the range [1, 20], and the demand for the VM’s second resource ri2

will be recalculated accordingly.

5.5.3 Results

The comparison study among different heuristic algorithms for VM consolidation is

performed first with the four classes of synthetic workloads described above and the VM

consolidation results are shown in Figure 5.1 in terms of the percentage overhead of the

number of active PMs calculated with different heuristic algorithms with respect to the

lower bound BL of the active PMs under different workload scenarios. The lower bound of
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the number of PMs is estimated with the maximum number of PMs required to satisfy the

total resource requests along any single resource dimension ⌈
∑K

k=1 rki/Ci⌉ (i ∈ [1, d]) as

follows:

BL = max{⌈
∑K

k=1 rk1/C1⌉, · · · , ⌈
∑K

k=1 rkd/Cd⌉} (5.6)

From the results shown in Figure 5.1, it can be observed that the consolidation

performances of FFDProd, FFDSum, LFF, and MFF are very close to each other. All of

these four single dimensional heuristics perform better than another single dimensional

heuristic algorithm FFDSDim, and the consolidation results in which VMs are sorted

according to the first resource dimension and the second resource dimension are repre-

sented as “FFDSDim1” and “FFDSDim2”, respectively. FFDSum performs a little bit

better than FFDProd does across all of the four classes of synthetic workloads, implying

that the weighted sum of the normalized resource demands is a better metric in sorting VMs

in “size” than the product of the normalized resource requirement elements. Therefore,

the weighted sum of the normalized resource requirement elements will be used as the

metric to sort VMs in other heuristics by default in this chapter, unless otherwise stated.

The consolidation performance of LFF is worse than that of MFF, because LFF also takes

care of the load balance among the active PMs except VM consolidation. The dominant

aware heuristics, DotProduct and Norm-based greedy L2, can achieve better consolidation

performance than those of single dimensional heuristics, especially in the fourth synthetic

workload scenario HeterExtrCase. Note that the variance of the ratios of the VM’s

requirements for two different resources is much larger than that in other three scenarios.

The performances of DotProduct and Norm-based greedy L2 are nearly the same to each

other. It is worth observing that the proposed heterogeneity aware dominant resource

assistant heuristics, namely DRR-FFD, iDRR-FFD and DRR-BinFill, perform quite well

in all of these four scenarios.

The performance of different heuristics under different VM heterogeneity in terms

of the standard deviation of the resource ratios ρi = ri1/ri2 is shown in Figure 5.2. This
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Figure 5.2 VM consolidation performance over different resource requirement hetero-
geneity.

figure shows clearly that FFDSum performs poorly with large resource requirement ratios.

Both the dimension aware heuristics, DotProduct and Norm-based greedy L2, and the

heterogeneity aware dominant resource assistant heuristics, DRR-FFD, iDRR-FFD, and

DRR-BinFill, perform quite well with large resource requirement ratios. As compared

to the dimension aware heuristics, the proposed heterogeneity aware heuristics save the

computations in calculating the dot product between the residual capacity vector of a PM

and the VM resource request vector, or the weighted norm distance between these two

vectors.

5.6 Summary

In this chapter, several heterogeneity-aware dominant resource assistant heuristic algorithms

have been proposed for virtual machine consolidation by exploring the heterogeneity of the

virtual machine’s requirements for different resources and utilizing the dominant resources
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to assist VM consolidation. The performance of the proposed heuristic algorithms

has been evaluated with different classes of synthetic workloads under different VM

requirement heterogeneity conditions. The simulation results have shown that the proposed

heterogeneity-aware dominant resource assistant heuristics achieve better consolidation

performance than single dimensional heuristics, i.e., FFDProd and FFDSum, with a little

extra effort in clustering VMs according to their dominant resources and identifying the

dominant residual resources. The results also show that the proposed heterogeneity-

aware heuristics can achieve quite similar consolidation performance as dimension-aware

heuristics with reduced computation.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Data centers, facilities with communications network equipments and servers for data

processing and/or storage, are prevalent and essential to host a myriad of diverse services

and applications for various private, non-profit, and government systems. With rapid

deployment of modern high-speed low-latency large-scale data centers, many problems

have been observed in data centers. In this dissertation, the Ethernet layer congestion

control, unified congestion control, power consumption and VM consolidation issues in

data centers have been studied.

6.1 Contributions

An enhanced QCN congestion notification algorithm, called Fair QCN (FQCN), has been

proposed to improve fairness allocation of bottleneck link capacity among all sharing

sources. FQCN identifies congestion culprits through joint queue and per flow monitoring,

feedbacks individual congestion information to each identified congestion culprit through

multi-casting, and ensures convergence to statistical fairness. The stability and fairness

of FQCN is analyzed by using Lyapunov functions and demonstrated that FQCN is stable

and closer to max-min fairness than to proportional fairness. The performance of FQCN

has been evaluated with different traffic dynamics in terms of the queue length stability,

link throughput and rate allocations to traffic flows with different traffic dynamics by NS2

simulations under three network topologies, namely, the dumb-bell topology, parking-lot

topology and a simple and representative TCP Incast network topology, and the effects

on TCP Incast has also been investigated. The simulation results have shown that FQCN

can successfully allocate the fair share rate to each traffic source while maintaining the

queue length stability. As compared to AF-QCN, the flow sending rates with FQCN are

more stable with respect to the fair share rates. FQCN can also provide weighted fair share

allocation of the bottleneck link capacity. In addition, FQCN significantly enhances TCP
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throughput performance with respect to TCP Incast, and achieves better TCP throughput

than QCN and AF-QCN in a TCP Incast setting.

Furthermore, a unified congestion detection, notification and control system for

data center networks has been designed to efficiently resolve network congestion in a

uniform solution and to ensure convergence to statistical fairness with “no state” switches

simultaneously. The proposed congestion control framework decouples the congestion

control intelligence from switches, and thus simplifies the implementation and upgrade of

the congestion control algorithms. Also, it incorporates a distributed potential congestion

culprit detection mechanism and does not require stateful switches, i.e., switches monitor

the local congestion status, forward the congestion status to the centralized congestion

controller, and do not need to store per-flow information. The proposed congestion control

system can easily be incorporated with any congestion notification and control algorithm,

regardless whether per-flow information is required or not. Besides, it can be deployed for

cross-layer congestion control. The FQCN algorithm has been incorporated in the proposed

system, and its performance has been evaluated through extensive simulations. The

simulation results validate the successful allocation of fair share rates and the maintenance

of queue length stability of the proposed congestion control system.

Also, a hierarchical energy optimization (HERO) model has been proposed and

evaluated to reduce the power consumption of data center networks without violating the

connectivity and Quality of Service (QoS) constraints. Especially, the power optimization

of networking elements in a DCN by switching off the idle switches or links can be

divided into core-level and pod-level network elements power optimization. Given a

physical DCN topology, the traffic matrix, and the power consumption of each link and

switch, the designed core-level and pod-level power optimization problems in the proposed

HERO model fall in the class of capacitated multi-commodity minimum cost flow (CMCF)

problem, which is NP-hard. Several heuristic algorithms have been designed based on

different switch elimination criteria to solve the hierarchical optimization problem for

large data centers. The switch elimination criterion could be switch throughput, switch
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power consumption, and switch power efficiency. The basic idea of the proposed heuristic

algorithms is to try to turn off the core switches and core-level links iteratively as well

as the aggregation switches and pod-level links iteratively in the core-level and pod-level

power optimization, respectively. Since the commercial data center traffic traces were not

available in the public domain due to privacy and security concerns, the performance of

the proposed HERO model has been evaluated by generating several traffic patterns to

emulate typical data center workloads, including random elephant, all-to-all data shuffle,

staggered (Pout, Pedge, Ppod) and diurnal traffic variation. The simulation results show that

the proposed HERO model can achieve optimized power consumptions of a DCN similar

to that of the non-hierarchical model but with much computational efforts. The algorithm

complexities of HERO and non-hierarchical energy optimization problems have been

compared in terms of the total number of variables and the total number of constraints in a

fat-tree DCN. As compared to the non-hierarchical energy optimization model, at least 65%

and 60% of variables and constraints can be reduced with the HERO model, respectively.

The simulation results show that among all of the proposed heuristic algorithms, switch

power consumption heuristic algorithm based on the total power consumption of the core

and aggregation switches in the core-level power optimization achieves the minimum

power consumption since it considers the power consumption of core switches and

aggregation switches in a whole instead of separately.

Finally, several heterogeneity aware dominant resource assistant heuristic algorithms,

namely, dominant residual resource aware first-fit decreasing (DRR-FFD), individual

DRR-FFD (iDRR-FFD) and dominant residual resource based bin fill (DRR-BinFill),

for VM consolidation have been proposed. The proposed virtual machine consolidation

heuristic algorithms explore the heterogeneity of the VMs’ requirements for different

resources as well as the heterogeneity of the PMs’ resource capacities and utilize the

dominant resource (i.e., the resource corresponding to the largest element in the vector of

the VM’s resource demand or the PM’s resource capacity) to assist VM consolidation. The

performance of the proposed heuristic algorithms has been evaluated with different classes
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of synthetic workloads under different VM requirement heterogeneity conditions. The

simulation results have validated that the proposed heterogeneity-aware dominant resource

assistant heuristics achieve quite similar consolidation performance as dimension-aware

heuristics with almost the same computational cost as those of the single dimensional

heuristics.

6.2 Future Work

Current state-of-the-art congestion control algorithms cannot provide a unified and efficient

congestion control algorithm for data center networks. Based on the proposed congestion

control framework in this thesis, a suit of congestion control protocols will be designed to

enable the network to dynamically detect network congestion, estimate and collect traffic

flow information, and finally resolve network congestion efficiently. Requirements on the

designed cross-layer multi-optional congestion control protocols include:

1. The designed protocols must be efficient to resolve network congestion. They must

be able to detect and react to network congestion quickly.

2. The designed protocols must be robust to congestion message losses and delays,

including the transmission delays and congestion message processing delays.

3. The designed protocols should minimize the congestion message overhead and

maximize the utilization of the congestion information.

4. The detected congestion information can be utilized by multiple layer protocols.

Moreover, the interactions of congestion control algorithms deployed on different

layers have not been investigated properly in the previous works. In this part, future works

will focus on addressing the following issues:

1. When multiple congestion control mechanisms are deployed in a single data

center, the interactions among different congestion control algorithms should be

investigated.
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2. The influence of current state-of-the-art congestion control algorithms on other

layer protocols should be studied. For example, Ethernet layer congestion control

mechanisms relieve network congestion by regulating the Ethernet transmission rate.

The influence of Ethernet layer congestion control algorithms on TCP throughput

and traffic routing should be investigated.

3. When network congestion happens, Ethernet layer, transport layer, or network layer

congestion control mechanism or multiple congestion control mechanisms should

be executed to resolve network congestion. Which layer of the congestion control

algorithms is the most effective solution to relieve network congestion?

4. The root cause to network congestion could be quite different from each other. For

example, some network congestion results from the interactions of multiple elephant

flows, while other network congestion is caused by some aggressive traffic flows.

Determining the root causes of network congestion and the influence of different

root causes to network congestion on the efficiency of different congestion control

algorithms will be a challenging endeavor.

Machine virtualization is one of the mostly used techniques to provide flexible

and cost-effective resource sharing among users in data centers. Consolidating virtual

machines (VMs) to physical servers in data center infrastructure helps to increase the

utilization of data center resources, improve the energy efficiency of data centers since

the idle infrastructures can be shut down or put into low power mode to save energy,

balance the workload across the whole data center to avoid hotspots in data centers, and

ensure the quality of service for cloud computing applications. Joint consideration of these

conflicting objectives to investigate the pairwise tradeoff is still a challenging problem to

virtual machine placement, and this multi-objective joint virtual machine placement and

traffic engineering problem will be studied in the future.
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