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ABSTRACT 

PERFORMANCE ANALYSIS AND SCHEDULING STRATEGIES FOR 

AMBULATORY SURGICAL FACILITIES 

 

by 

Xuanqi Zhang 

Ambulatory surgery is a procedure that does not require an overnight hospital stay and is 

cost effective and efficient. The goal of this research is to develop an ASF operational 

model which allows management to make key decisions. This research develops and 

utilizes the simulation software ARENA based model to accommodate: (a) Time related 

uncertainties – Three system uncertainties characterize the problem (ii) Surgery time 

variance (ii) Physician arrival delay and (iii) Patient arrival delay; (b) Resource Capture 

Complexities – Patient flows vary significantly and capture/utilize both staffing and/or 

physical resources at different points and varying levels; and (c) Processing Time 

Differences – Patient care activities and surgical operation times vary by type and have a 

high level of variance between patient acuity within the same surgery type.  A multi-

dimensional ASF non-clinical performance objective is formulated and includes: (i) 

Fixed Labor Costs – regular time staffing costs for two nurse groups and medical/tech 

assistants, (ii) Overtime Labor Costs – staffing costs beyond the regular schedule, (iii) 

Patient Delay Penalty – Imputed costs of waiting time experienced patients, and (iv) 

Physician Delay Penalty – Imputed costs of physicians having to delay surgical 

procedures due to ASF causes (limited staffing, patient delays, blocked OR, etc.).  

Three ASF decision problems are studied: (i) Optimize Staffing Resources Levels 

- Variations in staffing levels though are inversely related to patient waiting times and 

physician delays. The decision variable is the number of staff for three resource groups, 



for a given physician assignment and surgery profile. The results show that the decision 

space is convex, but decision robustness varies by problem type. For the problems 

studied the optimal levels provided 9% to 28% improvements relative to the baseline 

staffing level. The convergence rate is highest for less than optimal levels of Nurse-A. 

The problem is thus amenable to a gradient based search. (ii) Physician Block 

Assignment - The decision variables are the block assignments and the patient arrivals by 

type in each block. Five block assignment heuristics are developed and evaluated. 

Heuristic #4 which utilizes robust activity estimates (75% likelihood) and  generates an 

asymmetrical resource utilization schedule, is found to be statistically better or equivalent 

to all other heuristics for 9 out of the 10 problems and (iii) Patient Arrival Schedule – 

Three decision variables in the patient arrival control (a) Arrival time of first patient in a 

block (b) The distribution  and sequence of patients for each surgery type within the 

assigned windows and (c) The inter arrival time between patients, which could be 

constant or varying. Seven scheduling heuristics were developed and tested. Two 

heuristics one based on Palmers Rule and the other based on the SPT (Shortest 

Processing Time) Rule gave very strong results. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Research Background 

Ambulatory or outpatient surgery is a surgical procedure that does not require an 

overnight hospital stay. Ambulatory surgery is a cost effective for providers and provides 

patients with effective and efficient care, making it one of the fastest growing segments 

of the US Healthcare system. Ambulatory surgical facilities (ASFs) provide the surgical 

facilities and associated staffing resources, while physician groups who contract with the 

ASF provide the patients and perform specific surgeries. ASFs are thus challenged to 

keep operating costs down, while at the same time keeping both physician and patient 

groups satisfied. Some key facts about ambulatory facilities are (all the following 

information is from Ambulatory Surgery in the United States, 2006, NHS) in: 

 In 2006, an estimated 53.3 million procedures were performed during 34.7 million 

ambulatory surgery visits to 7000 different facilities in the US.  

 Average times for surgical visits were higher for hospital-based centers than for 

visits to freestanding ambulatory surgery centers (147 minutes compared with 98 

minutes). 

 Frequently performed procedures included endoscopy of large intestine (5.7 

million), endoscopy of the small intestine (3.5 million), extraction of lens (3.1 

million), injection of agent into spinal canal (2.0 million), and insertion of 

prosthetic lens (2.6 million) 

 ASFs allow surgeons to perform cases more efficiently. One study comparing 

spine procedures performed at hospitals and ASFs found 20% less time spent in the 

operating room. The turnaround time between procedures is also significantly less 

at an ASF than at a hospital. One spine surgeon found that the turnaround time 

between procedures at his ASF is 12 minutes, compared to a turnaround time of 1 

hour and twenty 20 minutes at the local hospital.  



2 
 

 ASFs are a key part of the national healthcare cost reduction initiative. Currently, 

Medicare pays ASFs 58% of the amount paid to hospital outpatient for performing 

the same services. For example, Medicare pays hospitals $1,670 for performing an 

outpatient cataract surgery while paying ASFs only $964 for performing the same 

surgery. 

ASFs are structurally complex in that patient volumes are dependent on 

independent physician groups. The ASFs do not directly recruit patients. So the ASF 

must satisfy both patient and physician groups while at the same time reducing labor cost, 

their primary cost driver. Currently the performance relationship between these three 

groups, and the sensibility to schedule and other operating parameter is unknown. ASFs 

thus use a variety of experience based trial-and-error to improve performance. A 

simulation is an effective approach to characterize system dynamic, and create algorithm 

solution for schedule, control staffing level, real time adjustment, and other ASF 

domains. Especially there is a need for improving the current resource (including staffing 

and facility) utilization and physician groups’ schedule flexibility to get higher 

performance with lower cost. More accurate appointment schedules and more 

uncertainties within patients’ appointment in ASFs are in need as well. Figure 1.1 lists the 

most common procedures performed in ASFs. 

ASFs also require significant capital investment. Usually running about $1 

million per OR, a small, single-specialty center with two surgical suites ranges from $2 

million to $3 million, with larger-multispecialty ASFs costing $4 million to $8 million, 

according to calculations provided by Meridian Surgical Partners, which partners with 

physicians seeking to develop new ASFs in addition to acquiring interests in existing 

physician-owned facilities. As a result any costs saving can have a significant impact on 

ASF operations. 
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Figure 1.1 Volume of surgical procedures in ASFs. 

Source: National Health Statistics Reports Number 11 January 28, 2009–Revised 

Healthcare systems typically involve multiple patient flow pathways, and tend not 

to be amenable to exact modeling methods. The literature demonstrates that simulation 

modeling is an effective and popular approach in healthcare analysis. This research also 

uses an ARENA based simulation model of a ASF as the primary analytical platform. 

The specific objectives of this research are: (i) Characterize and build a simulation model 

to represent the operating behavior of ambulatory surgical facilities (ASF), and use it to 

study performance sensitivity to key parameters such as capacity loading, physician 

assignment, staffing levels and patient arrival schedules; (ii) Develop a simulation 

experimental search procedure to derive the optimal ASF staffing strategy (nursing levels 
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and medical assistant staffing levels) for a given daily schedule and physician 

assignment; (iii) Develop a heuristic procedure(s) for generating the physician 

assignment including the specification of schedule blocks, surgery type balancing, and 

patient arrival rates. ASF would use this procedure (medium term intervals) to negotiate 

with physician groups. Objective is to optimize ASF performance as estimated by the 

simulation model; (iv) Develop a heuristic procedure to generate the daily patient arrival 

schedule based on surgery profile for the specific day. Objective is to minimize patient 

waiting time, without effective ASF performance. ASFs frequently experience extreme 

events, which are the common cause of performance slack. This dissertation will report in 

detail on the work associated with all objectives above. 

 

1.2 Research Objectives and Accomplishments 

This research is organized into the four research objectives described below. For each 

objective the accomplishments described in the subsequent chapters is briefly 

summarized. 

1. Characterize and build a simulation model to represent the operating behavior of 

ambulatory surgical facilities (ASF), and use it to study performance behavior as 

a function of key parameters such as (i) capacity loading (ii) physician assignment 

(iii) staffing levels and (iv) patient arrival schedules. 

 

Accomplishments:  Field research of current operational flows of ASFs was done to 

build typical operations process diagram. Activities included (i) Direct Work Study 
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(ii) Discussions/Interviews with ASF Staff and (iii) Review of ASF Operations as 

Reported in the Literature. A generalized ASF process flowchart which identified (i) 

Patient transfer logic (ii) Resource usage profiles and (iii) Physician schedules and 

patient relationships has been created. A novel ASF operations objective function 

(non-clinical) which models (i) Regular and overtime staffing costs (ii) Patient 

waiting time costs and (iii) Physician delay costs has been formulated. Built and 

validated the corresponding ASF simulation model in the ARENA platform. Model 

was populated with reliable surgery and associated times (mean and standard 

deviations) allowing for accurate estimates that capture all systems variances. 

 

2. Define and optimize the ASF staffing resource problem. Staffing costs are the 

largest direct cost of an ASF and the primary operations objective of ASF 

managers. Current practice, involves manual expertise whereby a person with 

staffing experience will make decisions on staff levels for the upcoming week. 

ASF operators need decision models that can characterize the relationship 

between staffing levels and operating costs, and consequently prescribe optimal 

staffing levels. 

 

Accomplishments:  Introduced the decision space as the staffing level for Nurse-A, 

Nurse-B and Medical Assistant, which are inversely related to two objective function 

terms: patient waiting times and physician delays. Since an analytical technique is 

inapplicable, a simulation based optimization approach was used to solve the 

problem. Two-dimensional convexity (Nurse-A and Nurse-B levels) of the objective 
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function is demonstrated for several test problems, confirming that a gradient search 

method can be efficiently used. The convergence rate is consistently highest for 

Nurse-A at the lowest staffing levels. Also shown is that the robustness of the 

decision space is not consistent across the problems. Variance analysis indicates a 

large performance range due the systemic combinations of the multiple variance 

sources in the ASF. Indicating that even with an optimal policy, major differences 

could be seen from day to day. 

 

3. Defining and solve the physician block assignment problem. ASFs have the 

flexibility to decide how to assign schedule blocks (3 to 4 hour windows) to the 

different physician groups. The assignment solution affects the overall 

performance of the ASF for a multiple reasons including the combinatorial effect 

of the surgery types, surgery time variances, and resources requirements. ASFs 

need the assignment problem to be formalized and readily applicable solutions to 

be developed.  

 

Accomplishments:  Formulated the physician block assignment problem for the fixed 

staffing level case, as having two decision variables (i) Physician group is assigned to 

one or more continuous schedule block sufficient to meet their capacity needs and (ii) 

Number of patients for each surgery type scheduled to arrive in a block. Combining 

classical machine scheduling and assembly line balancing methods, several solution 

heuristics were developed. A theory of constraints approach was used to estimate 

robust process times. Heuristics were evaluated on a benchmark set of 10 problems 
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using the simulation model. Three heuristics are statistically dominant across the set 

of benchmark problems, with one proving the best solution for 9 of the 10 problems. 

The asymmetrical load balancing strategy is shown to be clearly effective in 

improving the ASF operation performance. A realistic lower bound was also derived, 

and for two problems the performance gap was about 20% indicating room for further 

improvement. 

 

4. Defining and solving the ASF patient arrival time scheduling problem. Due to the 

order of magnitude difference between physician delay costs and patient delay 

costs, healthcare facilities in general schedule all patients to arrive much earlier 

than needed. There is now much research interest in developing patient arrival 

scheduling models. Specifically, ASFs needed models which consider patient 

surgery types and the associated physician group in generating an arrival 

schedule.  

 

Accomplishments:  Formulated the patient arrival time scheduling problem for the 

fixed staffing level case, as having three decision sets (i) identifying the patient 

arrival sequences for each group (ii) dynamic setting of the inter arrival time between 

every pair of patients and (ii) prescribing the arrival time of the first patient in each 

time block. Several solution heuristics were developed utilizing classical 3-machine 

sequencing methods such as the Cambell-Dudek-Smith and Palmer heuristics. 

Heuristics were evaluated on a benchmark set of 10 problems using the simulation 

model. 
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Figure 1.2 below shows the interrelationships between four the objectives. 

Clearly, the simulation model is central to this research since it provides the key 

estimates of physician delay, patient delay and staffing overtime. The three analytical 

models each make a decision utilizing a heuristic approach, but the quality of these 

decisions can only be assessed from the simulation model. In objectives #2 to #4 the 

model decisions for each experiment are entered into the simulation model which then 

estimates the performance variables. This in turn provides the objective function value 

which is the key to the evaluation analysis. 

 

Figure 1.2 Connections among different research objectives 
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1.3 Research Significance 

Compare to others’ work, some significant research targets within different levels have 

been set up at the beginning or during process. The first target is about performance 

criteria settings which will be explained compared in the later sections. Multiple levels of 

performance criteria in this dissertation, which has been considered and expressed into 

one unite financial factor as different levels of measurements, are proved better single 

level. The advantages of this multiple levels criteria are making the optimal solutions 

more overall reasonable and with more inspects than single level criteria. Besides, cost 

factors are used to express different levels performance which can give administrators of 

the ambulatory surgical facilities direct investment options.  

Next, three main tasks will have been illustrated in this dissertation containing 

staffing level optimization, physician group schedule optimization and individual patient 

scheduling by discrete–event simulation method quoting classical sequencing and 

scheduling rules. The staffing level strategy can help administer from ASFs clarify and 

save extra human resource cost under fixed physician schedules without sacrifice 

patients’ satisfactory. The physicians’ scheduling strategy has a significant role in ASFs 

because the ASFs are depending physician groups to assign them patients, and the 

scheduling efficiency matters because a better scheduling strategy would allow more 

patients to do the surgery within fixed time and improved the quality of care of ASFs 

because of the decreasing of physicians’ delay. In the patient scheduling topic, a more 

patient-centered scheduling is offered by quoting classical sequencing and scheduling 

rules. It has reduced the time variations for patient arrivals and decreased the physicians’ 
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delay time as well. In a word, ASF’s total performance could be improved significantly 

by using the strategies prompted from this dissertation. 

The remainder of the dissertation is organized as follows. In the next chapter the 

authors provide a brief review of the literatures in US healthcare and ASFs. The model 

construction and general assumptions are described in Chapter 3. Several experiments in 

staffing level optimization have been applied to the model and results and analysis are 

displayed in the chapter 4. Five different heuristic algorithms which would generate a 

daily physician group schedules have been explained and tested on ten environmental 

problems in Chapter 5, and one linear programming of balancing the resource and 

operative usage have been proved to dominant these heuristics which gave the best total 

performance. The statistical comparison among these results and the lower bound for the 

ten problems are also explained in Chapter 5. Chapter 6 describes the individual patient 

arrival scheduling problem with seven heuristic algorithms which are referred to classical 

flow shop problem have been introduced, and five algorithms’ results have been 

compared with statistical analysis. Chapter 7 is about future work and reference is in 

Chapter 8. 
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CHAPTER 2 

LITERATURE REVIEW 

 

An overview picture has been sketched in this chapter over the development of global 

and US healthcare, appearance of ASFs, specific characters of ASFs, and current research 

work in the field. The first sub-topic (2.1) of this chapter is the historical view upon ASF 

in healthcare including healthcare improvement and IE applications (2.1.1) and 

appearance and specific characters of ASFs (2.1.2).  The second topic (2.2) is focused on 

performance objectives composed by patient delay (2.2.1), physician delay (2.2.2), labor 

productivity (2.2.3) and facility utilization (2.2.4). In 2.3 modeling applications collect 

papers mainly in two categories mathematic programming (2.3.1) and simulation tools 

(2.3.2). Later in Chapter 4’s staffing level optimization problems is more based on 

simulation results, but heuristic algorithms are added in Chapter 5’s physician group 

scheduling problem. Standing as the most important part of ASF, operation rooms’ 

analysis composed the whole section 2.4 on scheduling problems from facility (2.4.1), 

physician teams (2.4.2) and patients’ perspectives (2.4.3). The last 2.5 is about 

Applicability of research, several examples from author’ in this field have been 

demonstrated offered a way towards our case but some applicable problems have been 

prompted as well. 
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2.1 Introduction to ASF 

As our nation struggles with how to improve the costly and troubled health care system, 

the ASF is a great example of a successful transformation in health care delivery. 

Ambulatory surgery, also known as outpatient surgery, is surgery that does not require an 

overnight hospital stay. Such surgery is commonly less complicated than that requiring 

hospitalization. The first facility was opened in Phoenix, Arizona, in 1970 by two 

physicians who saw an opportunity to establish a high quality, cost effective to inpatient 

hospital care for surgical services. Basically, (Cardoen, Demeulemeester et al. 2010) 

there are two major input patient classes in the literature review on operating room 

planning and scheduling, namely elective or non-elective patients and in patients or out 

patients.  For the elective patients who will have a surgery appointment in advance, 

whereas the non-elective patients for whom a surgery is unexpected and hence needs to 

be performed urgently mostly on emergency rooms. On the other side, in patients refer to 

hospitalized patients who have to stay overnight, whereas outpatient typically enter and 

leave the hospital on the same day.  

In 2006, (Karen A. Cullen, 2009 #59)an estimated 53.3 million procedures were 

performed during 34.7 million ambulatory surgery visits to 7000 different facilities in the 

US. Average times for surgical visits were higher for hospital-based centers than for 

visits to freestanding ambulatory surgery centers (147 minutes compared with 98 

minutes).Frequently performed procedures included endoscopy of large intestine (5.7 

million), endoscopy of the small intestine (3.5 million), extraction of lens (3.1 million), 

injection of agent into spinal canal (2.0 million), and insertion of prosthetic lens (2.6 

million). 

http://en.wikipedia.org/wiki/Hospital
http://en.wikipedia.org/wiki/Hospitalization
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2.1.1 The Importance of IE Applications in Health Care 

Human health has improved significantly in the last 50 years.  In 1950 global life 

expectancy was 46 which rose to 61 years by 1980 and 67 years by 1998. However, in 

low and middle-income countries, where 80% of the world’s population lives, 

malnutrition and infectious diseases account for significant numbers of premature deaths. 

Although high-income countries spend more on health than low-income countries, 

performance of health care systems varies markedly among them. France, which spends 

half as much as the U.S. on per capita annual health care, was ranked first in overall 

health systems performance ( a recent report by the World Health Organization, health 

system performance includes not only measures of health, but also systems fairness and 

responsiveness.)In countries with no national health system, such as the U.S., a 

significant fraction of individuals have no health insurance coverage and thus have only 

limited access to health care. 

The health care industry represents approximately 20% (recent data from times 

magazine) of the gross domestic product of United States currently and its expenditures 

are going to be doubled by 2050.(Gupta and Denton 2008) Moreover, health managers 

have to anticipate the increasing demand for surgical services caused by the aging 

population. In a word, there is no surprise that there is an increasing pressure for health 

care providers in efficiency and cost effective in health care services. There are many 

factors that affect the ability of health care’s efficiency and effectiveness among the three 

basic cares: primary care, specialty care and elective surgical care.(Gupta and Denton 

2008) The common big issues for the managers in these cases are how to maximize the 

labor productivity by using the least numbers of staff necessary to care for the patients 
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and how to schedule the patients and physician groups to facilities to get the maximize 

utilization under some fixed cost. The complexity is increasing from the primary care, 

specialty care to elective surgical care. Especially in the elective surgeries, there are 

uncertainties during every procedure time (pre operation time, surgery time and post 

operation time), in patients delay, in staffing or physician group delay.  Upon these 

uncertain issues, the authors believe that a critical bottleneck lays with the application of 

Industrial Engineering & Operations Research models. Since 18th and 19th centuries, 

many people took time and efforts to apply science to process optimization in 

manufacturing and military systems. Nowadays, some successful IE applications have 

been used in airline, car rental agencies and hotels and the authors believe that IE/OR 

decision support techniques can be also applied in health care system to save budget and 

increase facility utilization at the same time. 

Depending on the subspecialties involved, industrial engineering may also be 

known as, or overlap with, operations management and management science, depending 

on the viewpoint or motives of the user. For example, in health care, the engineers known 

as health management engineers or health systems engineers are, in essence, industrial 

engineers by another name. Basically speaking, there are a lot of fields in health care 

industry upon which engineers can work including health care financing, health care 

administration and regulation, health information technology and so on. As the 

information technology developed, more data (time, surveys and patients’ records) 

tracked can bring us revolutionary efficiency improvement in this field. All these tracked 

factors have been helped in building the loop cycle in the system to get better 
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performance objects (patients’ delay, doctors’ delay, overtime control and facility 

utilization). 

To conclude, along with the increasing occupancy and pressure nationwide, health 

care industry needs some urgent optimization methods to improve the performance 

objects. These complicated uncertainties in it can be viewed systematically and be solved 

through IE/OR applications, for example a lot of researches have been done in surgical 

suite optimization by simulations like (Cardoen, Demeulemeester et al. 2010) wrote 

generally; (Denton, Rahman et al.) offered a monte-carlo simulation model dealing with 

multi-OR surgical suite scheduling under different staffing scenarios;(Franklin Dexter 

2002)illustrates the appointment scheduling problem for elective surgeries upon two 

patient-scheduling rules: earliest start time and late start time; while (Gul, Denton et al.) 

demonstrated DES( discrete  event simulation) model to evaluate the appointment 

scheduling  and also Genetic Algorithm to get near optimal sequences and appointment 

times, and another paper (Erdogan and Denton 2011)from Denton also considers 

situations when no patient show up, cancellation and dynamic cases from patients. 

All of the above research is involved in the Ambulatory surgical scheduling 

problem which the authors will talk in details in the following sections.  Besides, another 

Dexter’s paper (Marcon and Dexter 2006) illustrated the scheduling sequence effects to 

PACU (post anesthesia care unit); (Alexopoulos, Goldsman et al.) described one tool 

concerned about children and poor people with low cost; (Carter 2010) did some research 

in scheduling in endoscopy suites according to physician average procedure time. Besides  

DES model, (Zhang, Murali et al. 2008) allocated the operating room capacity through 

MIP (mixed integer programming) and (Thor, Lundberg et al. 2007) concluded some 



16 
 

statistical process control in healthcare improvement. Though lots work have been done 

by IE applications, along with the increasing pressures from this filed and higher level of 

requirements from patients, further future work should consider more details in the 

system. 

2.1.2. Specific Characteristics of ASF 

The following  Figure 2.2 (association) showing an decreasing trend in inpatient 

surgeries. (association) Avoiding hospitalization can result in cost savings to the party 

responsible for paying for the patient's health care. Frequently performed procedures 

included endoscopy of large intestine (5.7 million), endoscopy of the small intestine (3.5 

million), extraction of lens (3.1 million), injection of agent into spinal canal (2.0 million), 

and insertion of prosthetic lens (2.6 million). The purpose of outpatient surgery is to keep 

hospital costs down, as well as saving the patient and physician group’s time. The Figure 

2.1 below shows the ambulatory surgery’s application among different ages. 
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Figure 2.1 Ambulatory surgery’s application among different ages. 

Source: National Health Statistics Reports Number 11 January 28, 2009–Revised 

 

 

Figure 2.2 Surgical trend by volume. 

Source: SMG Marketing Group INC 
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Ambulatory surgery centers (ASC) or ambulatory surgical facility (ASF), also 

known as outpatient surgery centers or same day surgery centers, was first built in 

Phoenix, Arizona. At that time, after faced scheduling delays, limited operating room 

availability and slow turnover  times, two physicians got this opportunity to build the first 

ASF with more physician’ involvement. Nowadays, some ASFs are still owned by 

physicians, the authors call it free-stand ASF, others are owned by hospitals. According 

to most recent data, 21% of ASFs’ interests are owned by hospitals and around 3% ASFs 

are owned entirely by hospitals(association). The comparison between the HOPD and 

ASF in volume is shown in the following  Figure 2.3 (Hair, Hussey et al. 2012) also 

compared the surgery time intervals, post-surgery time intervals and total time spent in 

freestanding ASF and hospital – based ASFs. 

 

Figure 2.3 ASC vs. HOPD volume. 

Source: SMG Marketing Group INC 
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ASFs now are adding considerable value (around $90 billion) to the US from 

some data from 2009, and ASFs employ the equivalent of approximate 117,700 full-time 

workers.  Accordingly, a lot of researches have been done in this field. (Durant 1993) and 

(Durant and Battaglia 1993) are two early papers gave us a view in future ASF’s 

development directions and some government policies. (Roberts 1994) is a later paper 

suggests that some newly formed centers build the accreditation systems.(Reis, 

Mosimann et al. 1999)recommend implementing ambulatory surgery in a teaching 

hospital and encourage the expansion of this practice. (Joshi and Twersky 2000) 

introduced and highly suggest a new paradigm “fast tracking” which involves 

transferring patients from the operating room to the recovery unit prevent complications. 

Besides physical equipment, (Yeung, Cheung et al. 2002) and (Franklin Dexter and 

Margaret Hopwood) both add some surveys to get feedbacks from the patients to 

continuously improve the total performance. In 2010, there are two papers concerned 

different parts of ASFs,(Hollingsworth, Krein et al. 2010) evaluated how opening of an 

ASF center impacts stone surgery use in a health care market and assessed the effect of 

its opening on the patient mix at nearby hospitals;  the author just stayed in one hospital 

which converted to an ASF, which gives him a chance to get a comparison the time 

intervals between  a hospital and an ASF. 

 

2.2 Performance Objectives 

There are various research aspects can be set as performance measures, from the paper 

(Cardoen, Demeulemeester et al. 2010), they concluded the basic eight objects from 
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previous researchers: waiting time, throughput, utilization, leveling, makespan, patient 

deferrals, financial measures and preferences. one of the performance measures in the 

paper (Weng and Houshmand) is to maximize the patient throughput. In the paper (Weng 

and Houshmand), they used throughput, time in system and queue times and lengths with 

total cash flow to get alternatives for resource or scheduling requirements for a local 

clinic. The following section is arranged to overview papers in patient delay, physician 

delay, staffing utilization and facility utilization.  

2.2.1. Patient Delay  

Generally speaking, there are various criteria are proposed to evaluate the performance of 

the planning and scheduling methods. Among the eight objects, the most common 

complaints from patients are the waiting time, and it is also an important part of patients’ 

satisfactory. Especially in some emergency cases, this waiting time can be critical 

because it relates people’ life. However, how to define the waiting time can be different 

in different cases. In the paper (Franklin Dexter and Margaret Hopwood), since it’s a 

block scheduling problem for the operating room, the author defined two different types 

of patient waiting time: indirect waiting time and direct waiting time, and the latter 

concept is what the authors usually define patient waiting time. And for the first indirect 

waiting time, is the time starts when the patient submit his/her willing time windows till 

receive the confirmation time. As the common sense, when the authors collect more 

information of patients, it getting better scheduling results for hospitals, however, it 

accompanied with cancelations during the waiting period as well. However, this search is 

also based on one survey about patients’ preferences for surgical waiting time (2-4 weeks 

are acceptable).  
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In the mapped arrival process of review paper (Gupta and Denton 2008), the 

author explained the process types in different situation. The single batch process with 

irrelevant inter-arrival times is commonly assumed in elective surgery start times; the unit 

process which assumed to at a time and at random time epochs is commonly used in 

primary and specialty care appointment scheduling design; the periodic process happened 

when all requests are accumulated at the end of one period which is commonly assumed 

in specialty and elective surgery cases and then the single batch process can be treated as 

one of this category with intervals covering entire booking horizon, but the former one’s 

model is quite distinct from this. 

In addition to these different types of patient waiting time categories, some papers 

which concerned about patient scheduling are taken patient delay as the performance 

measures. (Gul, Denton et al.) took both DES (Discrete Event Simulation) and GA 

(Genetic Algorithm) to find the optimal scheduling strategies for patients with patient 

waiting time and overtime as objects. In the paper(Hsu, de Matta et al. 2003) formulate 

the patient scheduling problem as variants of the no-wait time when to get minimized 

number of nurses at post anesthesia care unit. There is another object, throughput, is 

closely related to patient waiting time, and lots of papers have been involved with this 

object. 

2.2.2. Physician Delay  

As one of the most expensive resources in operating rooms, physician groups’ 

satisfactory becomes an important object for hospitals. Although from the paper 

(Cardoen, Demeulemeester et al. 2010), the lists of performances’ measure table, more 

papers focused on patient delay, in ASF and other physician group based systems, the 
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physician delay is the most important factor. In the ASFs, the manager would try best to 

have physician groups’ satisfactory because it’s the physicians who bring them patients. 

However, this satisfactory mainly comes from the less waiting time during the surgery 

process. In another Denton’s paper (Denton, Viapiano et al. 2006), physician’s delay also 

defined as operating room idling time, and they studied how the sequencing affects 

patient waiting time, physician idling time and operating room overtime. Accordingly to 

reduce the physician idle time, more physician blocks’ scheduling problems have been 

the subject of recent research and I will talk about this in detail in the later sections. 

2.2.3. Labor Productivity 

As another big issue for managers to consider is the labor productivity. (Franklin Dexter 

and Margaret Hopwood)talked about this issue in OR managers side, they said that the 

OR managers must try to maximize “labor productivity” by using the least number of 

staff necessary to care for the patients for the first step task. When the authors have more 

staffing members, it will increase the total operating budget for hospitals, on the opposite 

side, not enough staffing members (When only concern about staffing members like 

nurses and medical assistants) will decrease the satisfactory from both patients and 

physician groups by increasing their waiting time.  For the time they work are divided 

into two basic parts: regular time and overflow time. (Cardoen, Demeulemeester et al. 

2010)Utilization (here is also productivity) actually refers to the workload of a resource, 

whereas under time or overtime includes some timing aspect. On the one hand, setting the 

overflow payment for staffing members is realistic and necessary to get patient through, 

on the other hand, it also reflects the regular utilization of labor resource and controls the 

idle resource waste as well.  
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Some hospitals may hire some lower levels of nurses to be on the overflow time 

shift, while others still keep the original nurses on duty but with some extra payments for 

that. From hospitals’ financial side, it is better not have over time for nurses or medical 

assistants, and also from the ergonomic side, longer high-concentrate working hours may 

lead to fatigue quickly and also result to unsafe factors.  In one of Dexter’s paper 

(Marcon and Dexter 2006) they analyzed the impact of sequencing rules on the phase I 

PACU( post anesthesia care unit) staffing and over-utilized operating room time resulting 

from delays in PACU admission, and they suggested some adjustment in PACU nurse 

staffing around the times of OR admissions. 

In the model, the authors also have patients’ waiting time and doctors’ delay time 

as two of the performance criteria. As it mentioned in the literature review, there are 

other criteria can be used in different models like the patient through put number. In 

particular, patient throughput numbers can be changed by the capacity of facilities and 

the operating schedule. Since if the authors just ignore other changing parameters would 

lead to inefficiency output data for the key focus, the authors have some assumptions 

ahead before the experiment, and one of them is make the difference between patient 

through put number and total patient coming number less than 5 units. In addition, the 

time load and numbers for operating rooms are fixed elements since the authors focus on 

labor utilization. After these assumptions about other changing factors, the objective, best 

labor resource utilization can be gained with best optimal time and cost balance and 

without other conflict factors.  
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2.2.4. Facility Utilization 

Besides the two waiting time criteria below, the authors also have the other criteria from 

the resource utilization side.  On the one hand, utilization should be maximized as 

underutilization operating rooms represent unnecessary costs. On the other hand, 

operating rooms without any time buffers could easily result to labor’s overtime cost and 

other uncertainty costs. Although in the case, the facility cost is fixed in a head of time, 

many studies elaborate on this trade-off and evaluate procedures based on the OR 

efficiency. Not only in OR,  but also in ICU(intensive care unit), there is one paper (Zhu 

2009)focused the ICU beds because lack of it may cause ambulance diversion and 

surgery cancellation, DES is used and real data from the hospitals are as inputs and 

finally they offer better solutions to trade off the utilization of ICU beds and waste of 

resources. 

 

2.3 Modeling Applications 

In an overview, industrial engineering typically use computer simulation (especially 

discrete event simulation), along with extensive mathematical tools and modeling and 

computational methods for system analysis, evaluation and optimization. As listed in the 

review paper about operating room planning and scheduling (Cardoen, Demeulemeester 

et al. 2010) table 7 solution technique, there are mathematic programming includes :LP 

(linear programming), quadratic programming, Goal programming, MIP (mixed integer 

programming), dynamic programming, column generation, branch-and-price 

programming and so on. The two common simulations are DES and monte-carlo. After 
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some simulations, some heuristics are generated which some has improved ones called 

Meta-heuristic with simulation annealing, tabu search, GA (genetic algorithm) and 

others. Some papers involved more than one methods in the research like the paper  (Gul, 

Denton et al.) DES and GA at the same time; (Lamiri, Grimaud et al. 2009) combined 

Monte- Carlo simulation to optimize the surgery planning when OR rooms are shared by 

elective and emergency case at the same time. 

2.3.1 Mathematic Programming 

LP (Linear programming) is a mathematical method for determining a way to achieve the 

maximum or the lowest cost in a given mathematical model for some list of requirements 

represented as linear relationships.(from Wikipedia) (Erdogan and Denton 2011) 

formulated with stochastic LP formulations in the appointment scheduling problems of 

patients fail to show up in the first model and another model with multistage LP program 

to solve dynamical customers’ request. 

As one subject of LP, MIP (Mixed Integer Programming) is mostly used in 

discrete optimization problem such as transportation, airline crew scheduling and 

production planning. In the paper (Zhang, Murali et al. 2008), they developed a finite-

horizon MIP model for allocating operating room capacity to specialties. A tabu search-

based heuristics algorithm is generated in the paper (Hsu, de Matta et al. 2003) to get 

minimized nurses numbers in PACU. 

2.3.2 Simulation Tools 

Simulation is a tool in which a mathematical is built to act like a system of interest and it 

is popular in engineering and management sciences for analyzing problems which there is 
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uncertainty. The DES (discrete- event simulation) method is widely used in health care 

system because of the variability and complexity of the process within health care 

system. (Ferreira, Coelli et al. 2008)Discrete –event simulation is a computer modeling 

strategy in which events are assumed to take place one at a time, with subsequent events 

happening exclusively after the end of the predecessor. Discrete Systems– the state of the 

system changes only at discrete points in time due to the occurrence of certain events. 

Whereas Continuous 6me systems the state changes continually. In engineering, discrete- 

event models are commonly used to study the behavior of systems, their performances, 

limits and future states. In our simulation case, since it involved a lot of processes and 

different satisfactory levels, the authors build the model using discrete event simulation.  

(Alexopoulos, Goldsman et al.) is one paper using DES to build one flexible 

simulation serve for small facilities for the poor which has problems in finances and 

personnel.(Ferreira, Coelli et al. 2008) also used DES but to optimize the patient flow in a 

large hospital surgical center. (Marcon and Dexter 2006) applied DES to show the 

importance of nurse capacity in the PACU. By using DES, wullink compared two 

approaches to deal with emergency surgery by have some ORs reserved or sharing with 

elective patients. Some common DES software like  

 Arena - a simulation and automation software developed by Rockwell 

Automation. It uses the SIMAN processor and simulation language.  

 

 Flexsim – FlexSim Healthcare includes a whole library of objects that are ready 

out-of-the-box for building almost any healthcare model 

 

 Simio -Models built with all four Editions are fully compatible both up and down 

the product family. All four products provide the same powerful 3D object-based 

modeling environment. 
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Monte Carlo simulations are a class of computational algorithms that rely on 

repeated random sampling to compute their results. Monte Carlo methods are often used 

in computer simulations of physical and mathematical systems. These methods are most 

suited to calculation by a computer and tend to be used when it is infeasible to compute 

an exact result with a deterministic algorithm. This method is also used to complement 

theoretical derivations.  (Lamiri, Grimaud et al. 2009) combined Monte- Carlo simulation 

to optimize the surgery planning when OR rooms are shared by elective and emergency 

case at the same time. This method is also used in paper to find the functional ICU beds 

under conditions when the operative procedures were canceled by Monte Carlo 

Simulation. 

 

2.4 OR Room Scheduling Modeling 

The single largest cost from hospitals’ surgical delivery comes from the OR room 

because of the salaries for OR staffs and nurses. Operating rooms (ORs) have been 

estimated to account for more than 40% of a hospital’s total revenues and a similarly 

large proportion of their total expenses, which makes them a hospital’s largest cost center 

as well as its greatest revenue source. ORs represent the hospital’s greatest revenue 

source ( Denton et al., 2007)  For example, the French health ministry and health 

regulators have encouraged OR managers to achieve 80% or more OR utilization. 

Therefore, the first task for the OR managers is to reduce the least necessary staff and 

nurses members. Then since the appointment scheduling problem just lies at the 

intersection of the efficiency and timely access to health services, which would be the 

http://en.wikipedia.org/wiki/Computation
http://en.wikipedia.org/wiki/Computer
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second important factor the managers will concern after the resource capacity. According 

to different main research objects in the system, the OR scheduling can be divided into 

physician block scheduling and patient scheduling. Though OR scheduling comes the 

most important part in surgical care, it will affect the PACU scheduling in which is 

another topic a lot of people have done researches and it will be affected by other 

connection factors such as patients’ cancellation and no show up rate .  

Similar in some degree in paper (Cardoen, Demeulemeester et al. 2010) decision 

delineation: they distinguish these decisions between the discipline, the surgeon and the 

patient level. The discipline level they defined as unites contributions in which decisions 

are taken for a medical or department as a whole such as operating room time. While the 

surgeon level will arrange the operation room, time and time block for the surgeon. 

Besides, in patients’ level, they are usually divided into elective and non-elective 

categories. In addition, there are other people did optimizations in ICU (Intensive Care 

Unit) room and the authors will explain them in details in the following paragraphs. 

2.4.1. Resource Capacity Analysis 

In some papers, they define a master surgery schedule as a schedule which specifies the 

number and the types of operating rooms, the hours that operating rooms are available. In 

the paper (Weng and Houshmand),by maximizing patient throughput and minimizing 

patient flow time,  they found the 6 second year residents and 2 medical assistants is the 

optimal staff size in the local clinic. Partly, the paper (Marcon and Dexter 2006)shows 

the importance of enough nurses in the PACU through the DES.  In the paper by Philip 

about ICU beds, the authors found out the functional ICU capacity. 
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2.4.2. Physician Block Scheduling Problem 

From one of Franklin Dexter’s papers (Franklin Dexter and Margaret Hopwood), the 

authors tried to determine the appropriate amount of block time to allocate to surgeons 

and selecting the days on which to schedule elective cases can maximize operating room 

scheduling.  They also defined the OR utilization: equals the time and OR is used divided 

by the length of time an OR is available and staffed. To get maximized OR utilization, 

several algorithms are generated such as next fit, first fit, best fit and worst fit and next fit 

produced OR utilization values as high as the other algorithm and it’s the simplest. To 

conclude, they found out the most importance parameter affecting OR utilization is the 

mean length of time patients have to wait before surgery: the longer patients have to wait, 

the less unused block time there will be. According to some survey data, the patients are 

provided that open block time within 4 weeks; otherwise, they will be scheduled in 

overflow time outside the block time. 

Sequencing and scheduling is raised by scary resources’ allocation to activities 

through the time in production planning, computation control and other general 

situations. The three main topics included are single or parallel machine sequencing, flow 

shop sequencing and job shop scheduling. Since the definition of scheduling almost 

covered sequencing, though they focused on different aspects, the scheduling is chosen to 

stand for sequencing and scheduling in the following content.  Single-machine 

scheduling or single-resource scheduling is the process of assigning a group of tasks to a 

single machine or resource. The tasks are arranged so that one or many performance 

measures may be optimized. Parallel machines are parallel identical machines meaning 

that tasks or jobs can be finished by either of the machines.  The main difference between 
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single machine sequencing and flow shop sequencing is that more machine quantities and 

given process order (the definition of flow shop scheduling is given later). However, the 

range of job shop scheduling is wider than that of flow shop scheduling, for example, 

both with process orders, usually one job is not allowed to rework in the same machine in 

the flow shop scheduling problems but there is no path route rule for jobs in job shop 

scheduling problems.  

With about 70 years’ investigation, major findings include: Graham had already 

provided the List scheduling algorithm in 1966, which is (2 − 1/m)-competitive, where m 

is the number of machines. Also, it was proved that List scheduling is optimum online 

algorithm for 2 and 3 machines. The Coffman–Graham algorithm (1972) for uniform-

length jobs is also optimum for two machines, and is (2 − 2/m)-competitive. In 1992, 

Bartal, Fiat, Karloff and Vohra presented an algorithm that is 1.986 competitive. A 1.945-

competitive algorithm was presented by Karger, Philips and Torng in 1994. In 1992, 

Albers provided a different algorithm that is 1.923-competitive. Currently, the best 

known result is an algorithm given by Fleischer and Wahl, which achieves a competitive 

ratio of 1.9201. A lower bound of 1.852 was presented by Albers. Taillard instances has 

an important role in developing job shop scheduling with makespan objective.In 1976 

Garey provided a proof that this problem is NP-complete for m>2, that is, no optimal 

solution can be computed in polynomial time for three or more machines (unless P=NP). 

2.4.3. Patient Scheduling Problem 

Standing at the patients’ side, there are basically two types of patients: non-elective 

(emergency cases) and elective cases. The patients’ types of that hospital depend on the 

hospitals’ type. If it is free stand ASF, it would only have elective patients. If the ASF 

http://en.wikipedia.org/wiki/Coffman%E2%80%93Graham_algorithm
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/P%3DNP
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was combined with ER (emergency room), both types may have to share some resources. 

Only few studies have considered the situation where ORs are used to provide service to 

elective and emergency. (Gerchak et al), proposed a stochastic dynamic programming 

model for the advance scheduling of elective patients for ORs serving elective and 

emergency patients. They focus on how many additional requests from patients assigned 

for that day. Some people also compare strategies between having reserved beds for 

emergency cases and sharing with elective cases like in the paper by Wullink et al, 

(2007). 

2.4.4. Others 

Although a lot of efforts are put in the ORs, efforts to increase OR utilization can affect 

the functioning and the efficiency of other stages of the surgical process such as the phase 

I post anesthesia care unit (PACU). The paper from Marcon and Dexter (Marcon and 

Dexter 2006)analyzed the impact of sequencing rules on the PACU staffing and over-

utilized operating room time resulting from delays in PACU admissions.  Seven 

sequencing rules are tested: random, LCF (Longest Cases First), SCF (Shortest Cases 

First), Johnson, HIHD, HDHI and MIX, and the best rule is HIHD (Half Increase in OR 

time and half decrease in OR time) which can offer smooth patients’ entering. On the 

other side, they against the LCF rule which will generate more over-utilized OR time and 

require more nurses in PACU. Others researches also have been done in the ICU about 

the number of occupied ICU beds at which operative procedures were canceled if they 

were known to require an ICU stay. 
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2.5. Applicability of Research 

This section is focused on some research results which have been offered by previous 

authors, the challenges of applying these into real-world have also explained after some 

examples of results. Figure 2.4 illustrates the empirical probability in OR1. Distributions 

for two specific examples of surgeries in OR1.The structure of these example 

distributions is typical of uncertainty in surgery durations, where there is a fairly 

significant mass of probability confined to a predictable range, and a tail indicating a 

lower probability of extended surgery duration resulting from unexpected complications. 

Instances of the stochastic linear programming model were created using 10, 000 

scenarios. To evaluate the effect of sample size 100 replications of the optimal solution 

with K = 10, 000 were performed for each of the 5 daily schedules for the OR1 weekly 

schedule. The confidence intervals for the optimal solution for OR1 test models ranged 

from approximately ±1 to 2.5% relative to the mean. Based on these results the authors 

use K = 10, 000 scenarios for the remainder of the numerical experiments. 
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Figure 2.4 Process duration (minutes) distributions for two surgery types. 

 

Figure 2.5 Range in the optimal objective function for the best and worst sequences of 

surgeries as a function of the relative difference in the waiting cost coefficient. 

After the formulations, simulations tools have been used, even a theoretical 

strategy has been prompted at last, many researches provide that a thorough testing phase 

cannot simply implemented in practice and it is hard to find statements in contributions 

that explicitly confirm the implementation and use of the procedures in practice. Though 

most of the research data is from real hospitals, only limited research is performed to 

indicate what planning and scheduling expertise is currently in use in hospitals. In the 

review paper (Cardoen, Demeulemeester et al. 2010) also demonstrated that it is hard to 

provide details on the process of implementation and they encourage the provision of 

additional information on the behavioral factors that coincide with the actual  

implementation under some implementation can be assumed in some situations. 

Therefore, in the future, more work can be done in verifying the research results. 
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CHAPTER 3 

SIMULATION MODEL OF AN AMBULATORY SURGICAL FACILITY 

 

Simulation modeling is a powerful analytical tool for modeling the behavior of systems 

with complex processes and multiple sources of variability. As such they are ideally 

suitable for the study and analysis of healthcare systems. The review indicates that 

simulation is also and effective and amenable tool for the study of ASFs. The authors find 

that it is difficult if not impossible to develop exact analytical models for the following 

reasons: (a) Time related uncertainties - Three system uncertainties characterize the 

problem (ii) Surgery time variance (ii) Physician arrival delay and (iii) Patient arrival 

delay; (b) Resource Capture Complexities – Patient flows vary significantly and 

capture/utilize both staffing and/or physical resources at different points and varying 

levels; and (c) Processing Time Differences – Patient care activities and surgical 

operation times vary by type and have a high level of variance between patient acuity 

within the same surgery type. In this chapter we present the development of an ARENA 

based simulation model that accurately characterizes the activities and operating behavior 

of a typical ASF. 

This chapter is organized as follows. Section 3.1 defines all the resources in the 

model which will be used in later model constructions; The second section (3.2) of this 

chapter is about model constructions in details to a general ASF including: ASF operating 

process analysis with assumptions and an event flow chart clarify logic connections 

between process; (3.3) introduces model input data in different tables under one scenario 
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and general performance objective function set up is in (3.4); (3.5) states that rational 

reason of choosing discrete-event simulation(3.5.1) and key surgical processes converting 

into Arena model (3.5.2); statistical validation of the simulation model is in ( 3.6); and 

the last  section of the chapter (3.7) concluded causes of uncertainties in ASF system and 

those changeable decisions which the authors could make to optimize ASFs. The listed 

topics in the conclusion will be analyzed in details in following chapters. 

 

3.1. The Model Building Approach 

A wide range of professional group, insurance industry and federal healthcare practices 

and regulations govern specific clinical procedures. In contrast patient flows and resource 

use behavior are less standardized and tend to vary between different healthcare facilities 

across the USA. For ASFs also operational systems do vary but generally are less variant 

when compared to patient flows in hospitals or large clinics. The first step of the model 

building approach was to therefore research the current operational flows of ASFs, with 

the goal of identifying a typical operation process flow. Specifically the following 

activities were carried out: 

 Direct Work Study – The authors were provided access to four different 

ASF facilities all located in New Jersey. For some extensive access was 

provided with multiple days of visits recorded (Meadowlands Outpatient 

Surgery), while for other limited access was provided with a single day of 

access but access to operations records and time sheets (Virtua Healthcare). 

Note that HIPAA regulations and standard practice limit the flexibility that 
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ASF managers have in providing access.  Most common work study 

information source was in the nurse break room where the staff were able to 

allocate time to the team. All team members had to wear nursing attire within 

the ASF clean areas. For the different observation data was recorded on an 

Excel template designed for this purpose. 

 Discussions/Interviews with ASF Staff – The authors were able to have 

discussions/interviews with 8 staff members at different ASF facilities all 

located in New Jersey. An example facility is Surgicare of Central Jersey 

which specializes in Gastroenterology, Orthopedic and Opthalmic surgeries. 

This activity occurred after the direct works study, and many of the questions 

were focused on clarifying issues identified in that activity. 

 Review of ASF Operations as Reported in the Literature – Several reports 

identify and describe different parts and operations with an ASF. A key source 

of such data is the Ambulatory Surgery Center Association (ASCA). The 

review activity was used to validate the constructive assumptions and modify 

the ASF process flow model developed in this chapter. 

 

Based on the above activities the authors have identified (i) the significant cost 

variable resources in an ASF, (ii) the associated patient flow process in a typical ASF and 

(iii) the performance relationship between resources and patient flows. Further, all 

needed logical rules and data needed to construct the model were developed. 
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3.2. Resources in an Ambulatory Surgical Facility 

From the work flow analysis four primary categories of resources are identified: (i) 

Staffing or labor resources need to run the ASF healthcare activities these are estimated 

to be 32% of operating costs nationally (ii) Administrative resources consisting mainly of 

administrative staff needed to run the non-healthcare activities at the ASF, estimated at 

20% of costs, (iii) Medical and Surgical Facilities/Equipment needed to provide the 

needed quality of care and surgical support (e.g; preoperative beds, operational bed and 

postoperative beds), estimated at 29% of costs, and (iv) Physicians who perform the 

surgery including anesthesiologists or other professionals that are directly associated with 

the physician, this resource category is a not a cost resource for the ASF since they are 

directly compensated by the insurance company. The authors found that the first category 

is the only real variable or controllable cost for an ASF, and we identify several different 

sub-categories that are modeled here. 

Staffing Resource - Nurses: ASF nursing is characterized by rapid and 

focused assessments of patients, and building of immediate patient relationships. 

These nurses work in outpatient settings, responding to high volumes of patients 

in short term spans while dealing with issues that are not always predictable. On 

the basis of different medical care jobs, education background and skills, different 

levels of nurses are categorized. A licensed practical nurse (LPN) typically 

handles preoperative and post-operative care, including starting IVs, assisting 

patients with bathing and dressing, and providing bedside care during recovery. In 

the operating room, registered nurses (RNs) or advanced practice nurses assist the 

surgical team and coordinate all room activity. Surgical nurses are also 

http://en.wikipedia.org/wiki/Outpatient
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responsible for educating patients on procedures prior to surgery, adjusting 

treatment plans, and teaching them about post-operative self-care.  

The approach followed here is to setup two levels of nurses, group A and 

group B, which together can accommodate most patient flows. “B” group is a 

group of mixed nurses which are composed by more LPNs than RNs like nurse 

anesthetists; while “A” group nurses are in more advanced skill level who will 

assist physician groups in surgery process like first assistants, surgical nurses, 

surgical technologists and operating department practitioners.  

Staffing Resource – Medical/Tech Assistants: These assistants perform a 

range of clinical and healthcare technology tasks to support the work of 

physicians and nurses. They perform routine tasks and procedures such as 

measuring patients' vital signs, administering medications and injections, 

recording information in medical records-keeping systems, preparing and 

handling medical instruments and supplies, and collecting and preparing 

specimens of bodily fluids and tissues for laboratory testing. For preparation of 

some less complex surgeries, medical/tech assistants will in charge of 

preoperative and postoperative processes.  The approach here is to model only 

one group of assistants. 

Physician Resource: Physicians is the key resource in an ASF and no 

surgery can be performed without them. ASF physicians specialize in a specialty 

and hence perform a specific sub-group of ambulatory surgeries (e.g. 

gastroenterology). Physicians are not a direct expense resource for an ASF, in that 
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they are on the ASF payroll. It is common industry practice for physicians to be 

organized into groups. The authors assume that all physicians in a group can 

perform all surgeries in associated specialty. An ASF will typically have several 

physician groups working there, as a result the ASF can handle a wide range of 

surgeries. 

Facility Resource: Common facilities in an ASF include lounge or 

registration area, preoperative beds (PreOP), surgery operating rooms (Surgery 

OR), and postoperative beds (Post OP) or post anesthesia care unit (PACU). 

Lounge room in ASFs is a place for patients waiting for the preoperative process. 

In lots of hospitals’ introduction webpage, either beds or rooms numbers have 

been used to earn patients’ surgery confidence upon their facility capability. To 

have the same unit to measure in preoperative, surgical and postoperative spots, 

beds are chosen instead of rooms to describe the ASFs’ facility situation. 

Preoperative: The preoperative phase is used to perform tests, attempt to limit 

preoperational anxiety and may include the preoperative fasting. It starts when 

any preoperative bed and staffing resource are available, otherwise patients 

should wait in the ASF lounge room, and ends when patients are transferred to 

operative room.   

The intra-operative period begins when the patient is transferred to the operating 

room bed and ends with the transfer of a patient to the PACU. During this period the 

patient is monitored, anesthetized, prepped, and draped, and the operation is performed. It 

starts when any operative beds and needed resources are available, and ends till patients 

are sent to PACU. Some clean up time should be left after the surgery. The postoperative 

http://en.wikipedia.org/wiki/Medical_test
http://en.wikipedia.org/wiki/Preoperational_anxiety
http://en.wikipedia.org/wiki/Operating_room
http://en.wikipedia.org/wiki/Operating_room
http://en.wikipedia.org/wiki/Intraoperative_monitoring
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period begins after the transfer to the PACU bed and terminates with the resolution of the 

surgical squeal. It is quite common for this period to end outside of the care of the 

surgical team but the postoperative time the authors tracked is only in ASFs. 

In the model, several surgeries are performed in some specific ASFs and parts of 

them are in a less complexity level. Those surgeries will be assisted mainly by Medical 

Assistant Group, which is composed mostly by medical assistants. Here, medical 

assistants and nurses are called staffing resources. 

 

3.3. ASF Process Flow Model 

A generalized ASF process flow model was developed from the work flow analysis 

reported earlier. This flow model is representative of the operations seen at most ASFs. 

Figure 3.1 summarizes the macro flow while Figure 3.2 shows a flow chart including 

some of the key logical decisions associated with patient transfers. 

 

Figure 3.1 Macro flow model of an ASF. 



41 

 

 

Figure 3.2 Patient transfer logical flow model of an ASF. 

As shown in figure 3.1, the resources under the direct control of the ASF include 

two staffing resources and four facility resources. All arriving patients will flow 

sequentially through the four resources. Registration only uses administrative resources 

that are fixed to the registration desk and hence the staff resource is not independently 

modeled. Based on the work flow investigations the patient view flow process is 

described by the following steps: 

1. Patients are scheduled to arrive at the ASF at a given time, on a given date, for a 

specific surgery to be performed by a specific physician group. Assumption – patient 

arrivals are uncertain and are described by a Poisson arrival process, and arrival 

sequence follows schedule sequence. 
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2. On arrival patients enter a common queue for the registration desk, where there is 

one or more administrative staff. Assumption – registration time is normally 

distributed with an average time of 5 minutes and standard deviation of 0.5 minutes 

based on the work flow survey. 

3. Patient wait in the lounge area until a PreOp Bed is available, at which time they 

are moved to the PreOp Bed. Assumption – There is a fixed 10 minute setup time for 

each PreOp bed between patients, this does not require any of the modeled staffing 

resources. All beds have multi functions and not linked to a specific procedure and can 

therefore be used for any type of patient.   

4. The PreOP procedure is approximated by three different types each of which uses 

different staffing resources. Additionally three time length distributions are possible 

each with a different mean process time. The specific type of PreOP is dependent on 

the surgery type and the patient acuity. Patient waits in the PreOP bed for the 

procedure to begin until the needed staffing resource is free and captured for the entire 

procedure time. Assumption – For each surgery two patient types based on acuity are 

modeled, the patient type will determine the PreOP type. Patient type is known prior 

to arrival. PreOP length is determined in real time after patient enter the PreOP, actual 

time follows a triangular distribution. 

5. Patient remains in PreOP (blocked) until a Surgery OR is available.  Additionally 

the move only occurs if the number of patients waiting in Surgery OR for a physician 

group is less than the physicians in that group. For example, if there is only physician 

in the group and there is already one patient waiting in Surgery OR for this physician 
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then the patient remains in PreOP. Assumption – Patient transfer time is zero, and all 

staffing resources are released immediately after PreOP procedure end. 

6. Patients wait in the Surgery OR for the procedure to begin until the needed 

staffing resource and physicians are free and captured for the entire procedure time. 

Capture only occurs when all resources are available. Each surgery has two levels with 

different staffing resources, but the process time is the same. Assumption – Patient 

transfer time is zero, and all staffing resources are released immediately after surgery 

end. Surgery level is determined by patient type and surgery time follows a truncated 

normal distribution. 

7. Patient remains in Surgery OR (blocked) until a Post OP bed is available. The 

PostOp process similar to PreOP has three time length distributions. The PostOp 

process uses the required staffing resources for only short periods in the start and end 

of the process.  After patients have been transferred to the post operation rooms, 

staffing members are only needed in the first and last 10 minutes other than 

companying during the whole recovery process. In these total 20 minutes, nurses and 

medical assistants can only serve one patient at a time. The process can only start and 

end therefore when the resource is captured for these intervals. Assumption – PostOp 

bed is released immediately after process end and there is no blocking. There is a fixed 

5 minute setup time for each PreOp bed. 

8. Patient exits the ASF after release from the PostOP. 

From the above flow process the authors know that staffing members will involve 

in the whole process from PreOP to PostOP, while the physician group members are in 

need  of showing up only during surgery process after all preparation finished. Like what 
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the authors mentioned in the assumptions, all patients can be served only after beds are 

available for that process, otherwise, they should wait in queue for the bed (shows in a 

condition decision box). 

 

3.4. Physician Schedules and Patient Relationships 

The ASF work flow provided detailed insights on both physician scheduling 

arrangements at ASFs and the patient relationships. Patients are associated with a 

physician group, and the facility is therefore fully dependent on the physicians groups for 

the surgical business. Here the authors first introduce the setup of the physician schedule 

which relates the operations of the ASF to the different physician groups who perform 

surgeries at the facility. Most ASFs operate on a 9 or 12 hour day, which is further 

divided into 3 schedule blocks. A schedule block is defined as a continuous window, 

usually 3 to 4 hours long, during which assigned physician groups can schedule their 

surgery patients. Physician groups will contract with the ASF for to perform surgeries 

during one or more blocks. Clearly, these contracts must be within the capacity 

constraints of the ASF. In this research, it has been structured this relationship into the 

scheduling matrix shown in Figure 3.3. Note that some ASFs are not well organized and 

the physician scheduling arrangements tend to be more loosely setup.  
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Physician Group 
Number 

of 
Physicians 

Scheduling Blocks 

8 am to 12 
Noon 

(Morning) 

12 Noon to 4 pm 
(Mid Day) 

4 pm to 8 pm 
(Evening) 

#1 - Gastroenterology 3    

#2 - Orthopaedics 2      

#3 - Gastroenterology 1    

#4 - Opthalmic 2    

#5 - Pain Management 2      

 

Figure 3.3 Physician scheduling matrix. 

3.4.1. Patient Arrival Times and Rates 

A patient’s primary relationship is with the physician office, which will direct them to the 

ASF for appointments. The work flow analysis revealed two approaches by which ASF 

patient scheduling occurs. Approach -1: The physician schedule is divided into half-hour 

intervals, and patients are allotted slots on FCFS basis, with the first patient arriving 30 to 

90 minutes before physician arrival. Approach-2: Using a scheduling tool the ASF 

projects the surgery start time for each patients and then back schedules their target 

arrival time. Here the authors employ a Poisson arrival process based on approach-1. The 

first patient for a group will arrive 45 minutes before the window start. Subsequent 

patients will arrive in a Poisson process with inter arrival time equal to the window length 

minus 60 minutes. The authors introduce the following notation: 

t Scheduling blocks at the ASF, (t=1 to B) 

k Physician groups active at the ASF, (1 to H) 

N
k 
 Number of physicians in group k  

L
k 
 Total number of daily patients for physicians in group k ,  
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E
k 
 Number of continuous schedule blocks assigned to group k (E

k
 ≤B) 


k 
 Patient arrival rate per hour for group k 

Then the authors set the arrival rate such that the first patient for the group will 

arrive 45 minutes before the start of their first block, and the last about 1 hour before the 

end of their last assigned blocks. Then, 
k 
is derived as follows: 

   [
  

       
] 

Where L
k
 ≤ 4E

k
N

k
. Note that patient are given specific arrival times, for example 

11 am, but in reality the arrival time is variant about this time. The Poisson arrival 

process described above integrates the inherent uncertainty in the arrival process. The 

early arrival is common in ASFs to minimize surgery start delay. Administrative staffing 

resources should be available during those appointment blocks. 

Figure 3.3 illustrates the case of an ASF where H=5 groups are practicing, with 

1≤ N
k 
≤3 for each physician group. The ASF schedule is organized into B=3 blocks with 

each block of 4 hour duration. As shown in Figure 3.3 the different groups have been 

assigned specific blocks, during which they will perform surgeries on their patients. Note 

that the maximum physician in any block is 6, since the example ASF has only 7 Surgery 

ORs. Some assumptions (i) All physicians in the group are active during the window (ii) 

Number of patients for each group are proportionate to their allocated capacity (iii) 

Surgery time and other delays may cause a physician to continue activities into the next 

window or into overtime, (iv) the same schedule is followed every day. 
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3.5. Surgery Processing Times 

Central to the operating efficiency of an ASF are the processing times associated with the 

three key activities PreOP, Surgery OR and PostOP. Macario (2009, 2010) notes those 

surgical case durations are stochastic. Cases with easier-to-predict durations include ASF 

type standardized surgeries or specialties that operate on the body surface or extremities, 

such as hysterectomy, hernia repair, or cystoscopy. In contrast, difficult-to-predict cases 

are the more complex, nonstandard surgeries done in an in-patient setting, such as cancer 

surgeries or major intra-abdominal procedures. The longer the surgery, the lower the 

accuracy in estimating case duration. These surgeries also are more correlated to the 

operating behavior of a specific physician. While the authors did track some surgery 

times during the work flow analysis, this data is not sufficient to make reliable time 

estimates for the range of surgeries seen in ASFs. This research will be based on data 

reported by the National Center for Health Statistics. NHS Report (2009) provides 

national estimates of surgical and nonsurgical procedures performed on an ambulatory 

basis in hospitals and freestanding ambulatory surgery centers in the United States during 

2006. Procedures presented are coded using the ICD–9–CM code. The ICD-9-CM 

(International Classification of Diseases, 9th Revision, Clinical Modification) coding 

system is used to code signs, symptoms, injuries, diseases, and conditions.  

Surgery procedures are also coded using the CPT (Current Procedural 

Terminology) code. The critical relationship between an ICD-9 code and a CPT code is 

that the diagnosis supports the medical necessity of the procedure.   Strum et al. (2003) 
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confirm CPT code and the associated SM code is the most important factor when 

predicting surgical time. 

In this report Surgery OR time is defined as the time spent in the operating room 

during which the surgical procedure occurs. Typically, the surgical time is the time from 

when the process is initiated by the physician (e.g. incision) till when physician indicates 

process end (e.g. wound is closed). From this report 15 surgeries were selected for 

incorporation in our simulation model. The associated processing data for the 10 

surgeries is shown in Table 3.1 which exhibits details of the surgery type with names and 

processing time. Note that the study reports the standard error and the authors have 

estimated the standard deviation using n=40. Further for all surgeries a ten minute 

Surgery OR capture time is added to account for the intervals before and after the actual 

surgery process. Commonly, this is referred to as the case duration time, which is defined 

as the time from "wheels in" (when the patient is brought into the room) to "wheels out" 

(when the patient exits the room). These none operative factors are a small fraction of the 

entire case duration and tend to be constant within one type of surgery. 

The processing time of PreOP and PostOp activities are also shown below in 

Table 3.2. The NHS Report (2009) provides PostOP times aggregated for all surgeries, 

and does not study them as a function of the surgery code. Further no estimates of PreOp 

times are provided. Results from the workflow analysis were used to estimate this data. 

The PostOP times are recorded as Mean = 54 minutes, 25
th

 percentile = 30 minutes and 

75
th

 percentile 68 minutes. Based on this data combined with the work flow analysis the 

PreOP and PostOP times are arranged into three lengths, which are then associated with 
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different surgeries in the next section. These process times include 10-15 minutes 

entry/exit and setup times associated with each patient transit. 

Table 3.1 Processing Times for Common ASF Surgeries  

Surgery 
# 

Surgery Procedure and ICD-9-CM codes 
Mean Time 
(Minutes) 

Std. Dev. 
(Minutes) 

1 Cataract - 366 29 4.5 

2 Benign neoplasm of the colon  - 2113 31 4.2 

3 Diverticula of the intestine - 562 25 5.1 

4 Intervertebral disc disorders - 722 32 10.8 

5 Hemorrhoids - 455 27 3.2 

6 Gastritis and duodenitis - 535 24 5.1 

7 Chronic diseases of tonsils and adenoids - 474 31 4.8 

8 Otitis media and Eustachian tube disorders - 382 21 4.6 

9 Carpal tunnel syndrome - 3540 28 3.9 

10 Inguinal hernia - 550 55 7.4 

Source: National Health Statistics Reports Number 11 January 28, 2009–Revised  

 

Table 3.2 Processing Times for ASF Surgery PreOP and PostOP Times 

# Pre OP Procedures 
Mean Time 
(Minutes) 

Std. Dev. 
(Minutes) 

1 Short Preparation 20 6 
2 Average Preparation 40 8 
3 Long Preparation 60 11 

# Post-Operative Procedures 
Mean Time 
(Minutes) 

Std. Dev. 
(Minutes) 

1 Short Recovery 45 6 
2 Average Recovery 65 8 
3 Long Recovery 90 15 
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Empirical studies have shown that surgery times are best modeled using a log-

normal distribution. Strum, May, and Vargas (2000) conclude that lognormal 

distributions fit the surgery data better than normal distributions for large sets of surgery 

times. Consequently, the practice of estimating surgery times based on a lognormal 

model has been widely adopted. A log-normal distribution has positive support and 

positive skewedness, which is applicable to surgery times. 

 

3.6. Patient Types & Resource Usage 

The simulation literature in surgery OR modeling typically models the flow path as a 

function of the surgery time. Frequently, these models have considered a set of surgeries 

to be performed and are then exploring sequencing solutions to reduce patient wait time. 

The approach here is to define a set of patient flow paths that represent different 

combinations of physician groups, PreOP times, PostOP times, surgery codes, and the 

associated staffing resources usage in a typical ASF. The notation is as follows: 

î  Surgery codes performed at the facility (Surgery # in table 3.1) 

i Patient types that flow through the facility  

n Patient activity sequence through facility resources (1=PreOP, 2=Surgery 

OR, 3=PostOP) 

e PreOP procedures types, e = 1 to 3 (PreOP # table 3.2) 

f PostOP procedures types,  f = 1 to 3 (PostOP # table 3.2) 
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g PreOP procedures length, (1=Short, 2=Average, 3=Long) 

h PostOP procedures length,  (1=Short, 2=Average, 3=Long) 

j Staffing resource categories (1=Nurse A, 2=Nurse B, 3=Med/Tech 

Assistant) 

M
j,t

 Number of staffing resource j in block t 

i,î Patient type i has surgery code î (1=yes), where î i,î =1 

i,j,n Patient type i will utilize staff resource j during activity n (1=yes) 

µi,n Patient type i mean process time during activity n  

i,n Patient type i process time standard deviation during activity n 

 

For the purposes of this research a set of 20 patient types was setup based on the 

workflow analysis data, and other data reported in the literature. Tables 3.3 and 3.4 

describe the resource usage associated with each of the three PreOP and Post types. 

Again these are based on what was observed during the workflow analysis.  

Table 3.3 PreOP Procedure Staffing Resource Usage 

 

 

 

 

PreOP - e Staff j=1 Staff j=2 Staff j=3 

1 
  

 

2  
 

 

3 
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Table 3.4 PostOP Procedure Staffing Resource Usage 

 

 

  

 

Table 3.5 describes the PreOp and PostOP lengths and types associated with each 

patient type, plus the associated Surgery OR resources. Each surgery code generates two 

patient types, with the second one representing a higher acuity or complexity level. The 

example ASF has H=5 physician groups, and for simplicity the authors label them as 

1=V, 2=W, 3=X, 4=Y, and 5=Z. The table 3.5 data derives the resource access parameter 

for each patient type. That is, i,1,1 =1 if PreOP type is 2, else i,1,1 =0. Likewise the 

processing times are also derived. For instance, µ1,2 =29 minutes and 1,2 =4.5 minutes 

since i,î =1 and the associated surgery time is given in Table 3.1. 

 

 

 

 

 

 

 

 

 

 

PreOP - e Staff j=1 Staff j=2 Staff j=3 

1 
  

 

2  
 

 

3 
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Table 3.5 Patient Type Staffing & Physician Resource Usage 

Patient 
Type - 

i 

PreOP 
Length 

- g 

PreOp 
Type - 

e 

Surgery Procedure 
PostOP 
Length - 

h 

PostOP 
Type - f Surgery 

Code - î 
Staff  
j=1 

Staff  
j=2 

Staff  
j=3 

Physician 
Group - k 

1 1 1 1   
 

X  1 

2 2 2 1   
 

X  1 

3 2 2 2 
 

  Y  2 

4 3 3 2 
 

  Y  2 

5 1 1 3    Y  2 

6 2 1 3    Y  2 

7 2 3 4 
 

 
 

W  1 

8 3 3 4 
 

 
 

W  1 

9 1 1 5   
 

V  2 

10 2 2 5   
 

V  2 

11 1 1 6    Y  2 

12 2 2 6    Y  2 

13 2 2 7 
 

 
 

Z  3 

14 3 1 7 
 

 
 

Z  3 

15 1 2 8   
 

Z  1 

16 2 2 8   
 

Z  1 

17 1 1 9   
 

W  2 

18 2 1 9   
 

W  2 

19 2 2 10 
 

  V  3 

20 3 3 10 
 

  V  3 

 

3.7. Load Balanced Surgery Schedule 

As a consequence of the wide range of surgery types and patient acuities, ASFs are 

challenged to develop a surgery schedule which maximizes the utilization of its staffing 

and facility resources while at the same time, minimizing the overtime activity and 

surgery overhang. The research into ASF modeling thus requires the generation of a 

surgery schedule. An overloaded or under loaded schedule would give skewed results, 

making it difficult to generalize the results across the ASF industry. For the simulation 

research conducted here were create a surgery for the case where H=5 and N
1 

=2, N
2 

=2, 
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N
3 

=1, N
4 
=4 and N

5 
=2. The baseline patient arrival schedule design is shown in table 3.6. 

For the baseline problem the authors assume the staffing resources are the same for all 

blocks, and each patient type is associated with only one physician group. This denoted 

by: 

i,k Patient type i associated with physician group k then i,k =1 else i,k =0 


i
 Total number of patient type i to be serviced during the day 

A
i,t

 Number of patient type i  scheduled to arrive in block t 

Note that ∑t Ai,t = αi. The surgery load ratio for a physician group in each block is 

the ratio of the mean schedule surgery time and the available block capacity, this is given 

by:  

     
∑ (        |      ) 

   
 

And the total patient arrivals for the group k are: 

   ∑{∑(    |      )

 

}
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Table 3.6 Baseline Arrival Schedule of Patients at the ASF (N=20, B=3, H=3) 

Patient 
Type - i 

Physician 
Group - k 

Patients Scheduled/Block - A
i,t

 

Day 
Total 

Group 
Total  

L
k
 

Arrival 
Rate - 

k
 t=1 

8-12 am 

t=2 
12 am - 4 

pm 

t=3 
4-8 pm 

9 V 2 3 0 5 

18 2.6 
10 V 3 2 0 5 

19 V 2 2 0 4 

20 V 2 2 0 4 

7 W 3 3 0 6 

20 2.9 
8 W 3 3 0 6 

17 W 2 3 0 5 

18 W 2 1 0 3 

1 X 0 0 3 3 
6 2.0 

2 X 0 0 3 3 

3 Y 4 5 5 14 

74 6.7 

4 Y 4 4 5 13 

5 Y 4 4 4 12 

6 Y 4 4 4 12 

11 Y 4 4 3 11 

12 Y 5 4 3 12 
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13 Z 0 4 4 8 

26 3.7 
14 Z 0 4 4 8 

15 Z 0 3 3 6 

16 Z 0 2 2 4 

Total Arrivals = 44 57 43 144 
  

 

A total of 144 patients are processed in the baseline schedule, with t=2 being the 

blocks with the highest load. Note that the maximum
k
 = 2N

k
, and physician groups Y 

and Z are close to the maximum, while the others have a schedule around 70% of the 

maximum rate. This is typical of ASFs where one or two groups tend to dominate the 

schedule. The baseline staffing level is set to M
j,tB

 = 6, M
j,tB

 = 5 and M
j,tB

 = 6. Based 

on a 75 percentile processing time for all activities accessing these resources, plus a 15% 

rest time, this gives a direct resource utilization of just above 50% for each staffing 

resource. The facility resources are set to 10 PreOP beads, 12 Surgery ORs and 20 

PostOP beds.  

 

3.8. ASF Performance Objectives – Non Clinical 

The focus of this research is on optimizing the operational (non-clinical) objectives of an 

ASF. The key assumption in all of the healthcare operation modeling research is that 

acceptable clinical performance levels are not comprised as the authors search for greater 

efficiencies, and that is true here also. As shown in chapter 2, simulation modeling is an 

active area of research in healthcare systems. The authors found that in surgery OR flow 

modeling the research focus is commonly on reducing patient waiting. A classical 
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surgery OR scheduling algorithm will consider a given set of surgery cases and then 

derive the sequence that will minimize wait times and maximize utilization through a set 

of parallel ORs. Further, these models typically consider the operating room as an 

integrated resource, in that all the needed staff resources are captured permanently hence 

do not need to be separately modeled. Additionally, there are limited constraints in 

physician availability. With these assumptions the systems is amenable to exact model 

analysis using mathematical programming techniques. Some examples include works 

reported by Blake et al (2002), Belien and Demeulemeester (2012), and Zhang et al 

(2009).  

In this research the authors have opted to use a simulation approach allowing us to 

significantly expand the model characteristics, and bringing it closer to actual ASF 

practice. Based on the research the authors identify three performance objectives that are 

of significance in ASF analysis.  

3.8.1. Staffing Costs 

As noted earlier the ASF maintains three types of staffing resources, and these represent 

the only variable direct cost of the facility. The facility will hire a numbers of nurses and 

med/tech assistants all of who will be active through the daily operations. If all surgery 

related activities are not completed by the end of the day, then some staff will continue to 

work beyond the close time. This staffs are then compensated at an overtime rate. The 

authors introduce the following notation: 


j,R

  Regular time  hourly rates for staffing resource j 


j,o 

Overtime hourly rates for staffing resource j 
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O
j 

Overtime hours worked by staffing resource j on a typical day 

 

Observe that once staffing level decisions are made then the regular time staffing 

cost is fixed. Actual operational decisions will determine O
j
 for a typical ASF day. 

The Association of Perioperative Registered Nurses (AORN) conducts periodic 

surveys of nursing salaries. Its 2011 survey showed staff nurses averaging $64,900  at the 

general level and $ $77,700 at the higher skill level.  Based on this date the authors 

estimate the direct staffing costs rates as shown in table 3.7 below. 

Table 3.7 Estimated Hourly Staffing Resource Costs Rates 

STAFF RESOURCE 

CATEGORY (j) 

REGULAR 

RATE
j,R

 

OVERTIME 

RATE
j,O

 

(j=1) Nurse Group - A $ 28 $ 40 

(j=2) Nurse Group - B $ 21 $ 31 

(j=3) Med/Tech Assistant $ 17 $ 25 

 

After some surveys from ASFs, staffing members should get paid extra 50% 

(average level) more than the regular salary rate if they work after regular time.   

3.8.2. Patient Waiting Time Costs 

Patient wait time is a widely studied objective in many healthcare systems engineering 

research projects. The basic premise is that patients would want to wait a minimum time, 

and are inconvenienced when the wait becomes progressively longer. Healthcare is a 

service industry in which patients flow through a series of healthcare processes, as a 

result patient waiting is inherent in the system. The literature identifies two types of 
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patient waiting time (Gupta and Denton 2008, Liu et al 2010): (i) Indirect waiting - times 

between the day patients call to schedule a surgery or appointment and the actual 

appointment date, (ii) Direct Waiting – Scheduled start of surgery or appointment and 

actual start. In this research the authors model only the direct waiting time. Papers that 

deal with direct waiting time typically consider it along with other objectives by 

minimizing an objective function that is a weighted sum of a subset of these various 

performance measures.  

Krueger (2009) estimates that Americans age 15 and older collectively spent 847 

million hours waiting for medical services to be provided. He notes that patient waiting 

time is an important input in the health care system. Failing to take account of patient 

time leads us to exaggerate the productivity of the health care sector, and to understate 

the cost of health care. Laganga and Lawrence (2007) not that healthcare facilities 

frequently overbook their capacity a common cause for increased patient waiting times. 

Clearly, the penalty for a patient’s waiting time is another virtual cost since ASFs 

don’t really pay for it. This is also referred to as a welfare cost. However, ASFs operate 

in a highly competitive market and are looking to improve their service efficiency 

through less waiting time. While patient waiting time is used in a wide variety of 

healthcare analysis models, there is little data on what the cost rate is and what its 

functional nature is. From the review the authors summarize that there are three possible 

approaches to characterize the time function nature of the patient waiting time cost curve: 

(i) Linear Waiting Cost: A direct product of the waiting time and a waiting penalty 
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(ii) Squared Waiting Cost: A weighted square of the waiting time and a waiting 

penalty 

(iii) Step Function Waiting Cost: Described by an increasing staggered step in fixed 

cycle 

The authors introduce the following notation associated with the linear waiting 

cost model: 

 
P
  Patient waiting time penalty rate - $/hour 

 

Figure 3.3 Patient time cost models. 

 

Figure 3.3 illustrates the three cost models for the case where 
P
 =$20. The three 

models are then set such that they are benchmarked to the congruent cost of $20 at the 1 

hour time point. Observe that in the sub 1-hour the linear model emphasizes patient 

waiting time, while the squared model emphasizes the cost in the plus 1-hour range. The 

Linear Model 

Squared Model 

Step Function Model 
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literature review indicates that the linear model is more widely used in research analysis, 

while in the healthcare economics literature there is a preference for the other two 

models.  

 

The authors also observe, though, that there is little discussion in the literature on 

the actual value of 
P
. A common approach is to assume the ratio 

P
/

j,R
 instead. More 

frequently the authors see anecdotal mention of 
P
 in news articles. Most of these 

recommend using some standard labor rate as a surrogate for 
P
. Princeton economics 

professor Alan Krueger argues in a widely cited NY Times article that 
P
 should be set 

equal to U.S. average hourly wage of the private nonsupervisory non-farm payroll 

($20.25 for 2013). Agarwal (2012) at the University of Maryland's Center for Health 

Information and Decision Systems goes further and say’s it should be equal to the 

average wage of the entire non-farm payroll ($24.08 for 2013). There is also a school of 

thought that wages already account for waiting times in that workers are eligible of sick 

days etc., and should therefore not be a cost since there no real wage lost. The conclusion 

is that the best cost model for ASFs is a linear model with a cost rate discounted from 

average non-farm payroll. The authors thus set 
P
 = $17.50 a 25% discount from the 

average of $24.05. A key motivation for this is that surgical settings even short waits are 

uncomfortable for the patients. 

 

3.8.3. Physician Delay Costs 
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Physicians are the most valuable and critical resource in any healthcare facility. Quoting 

from Agarwal (2012) “A physician's time is perhaps the scarcest resource in our health 

care system and needs to be utilized optimally. Doctors play a noble role in our society 

— they save lives and relieve pain. Their time is valuable. And it is preferable if the 

patient waits rather than the doctor”. In our research on the current operational flow of 

ASFs the authors found that the primary operational concern of ASF managers was 

physician satisfaction. While quality of resources and facilities are key components of 

physician satisfaction, timely completion of all surgeries is of primary concern. 

Quantifying this time cost though can be challenging. The authors start with the 

appointment scheduling literature. In most patient appointment scheduling models the 

objective is to minimize the weighted sum of three costs: patient waiting cost, doctor’s 

idle time and overtime costs (Zacharias and Pinedo, 2013). In the literature most papers 

avoid an explicit mention of the physician cost and rather develop their model to use a 

cost ratio defined as the ratio between the patient waiting cost and physician idle time 

(Robinson and Chen, 2010). Frequently, this ratio is set in the 10-20% range. 

The investigation reveals that in ASFs the physician idle time is not the metric of 

focus, but rather the physician delay. As noted in section 3.4 physicians contract for and 

are assigned a set of surgery blocks. The physician group then schedules a set of surgeries 

to perform in their allocated blocks such that k,t is less than a contract maximum, for 

example k,t <0.65. The assumption here is that in an efficient ASF the group can service 

all patients in the block. Figure 3.4 illustrates the actual flow of operations. Patients are 

delayed in the processes leading up to the surgery starts. Additionally the surgery is 

delayed due to either lack of resources and/or the Surgery OR being unavailable. As a 
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result at the end of the block group k has not completed all surgeries and the physician 

has to continue working past the end time. This extended duration is the physician delay. 

The physician considers this delay to be the responsibility of the ASF. The authors find 

that surgery physicians are very sensitive to this delay since it has a tandem effect on 

their sequential activities. Dissatisfaction with this delay could cause one or more doctors 

in a physician group to take their patients to a competitive facility. Physician delay is 

therefore a business opportunity cost that an ASF must consider in planning its 

operations. 

 

 

 

 

 

 

 

Figure 3.4 Physician delay explanation. 

The authors assume here without loss of generality the physician delay penalty 

rate is the same for all physicians in all groups. Introducing: 


D
  Physician surgery block completion delay penalty - $/hour 

Surgery OR - Block 

Patient Arrivals & Wait for Service 

PreOP 

Block Start Block End 

Delay  

Physicians (on time arrival) 
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To estimate the value of the authors start with the average hourly earnings for a 

general surgeon, a practice most representatives of ASF physicians. The Medical Group 

Management Association's physician compensation and production survey (MGMA 

Report 2011) estimates annual compensation at $265,000 or $155/hour, assuming a 

workload of 1700 hours/years. Applying a penalty factor of two for the delay impact here 

the authors set 
D
 =$300 for the ASF analysis. 

The ASF operational objective function can then be derived as the daily sum of 

three costs (i) Staffing – both regular and overtime costs (ii) Patient waiting time costs 

and (iii) Physician delay costs. Using the notation introduced above the cost objective 

then is: 

                 ∑∑(         )

  

    ∑(      )

 

             

Where, 

TP Total waiting time all patients entering ASF in a day 

TD Total delay time for all physicians active at the ASF in a day 

The first term in the objective is deterministic, that is once a decision is made on 

the staffing levels (Mj,t) then this cost is directly calculated. The other three costs are 

stochastic in nature since they are dependent on three system performance variables - Oj, 

TP and TD. A key research question is how to derive an accurate estimate for these 

variables. 

 



65 

 

3.9. Deriving Oj, TP and TD 

The key variables in deriving the cost objective  are the variables Mj,t , Oj, TP and TD. Of 

these Mj,t is a management decision and becomes a fixed cost once decided. The other 

three are operational outcomes and have to be derived either analytically or by the use of 

a simulation model. Key factors which limit the application of mathematical 

programming methods in healthcare setting include (i) flexible and complex flow paths, 

(ii) multiple classes of patient entities (iii) multiple floating and fixed resources (iv) 

uncertain services times and (v) scheduled but uncertain patient arrivals. (Marcon and 

Dexter (2006)) state that dynamic simulation is one of the best ways for studying the 

performances of healthcare systems. Denton et al (2006) observe that while the single OR 

scheduling problem can be optimized using stochastic linear program, multi OR problems 

are much more complex and can only be analyzed using simulation model. In a 

comprehensive overview of the outpatient appointment scheduling literature (Cayirli and 

Veral, 2003; Westeneng, 2007) the authors see that of 23 papers, 17 apply a simulation 

method to solve the problem. The approach here is also to use a discrete event simulation 

model to derive accurate estimates of Oj, TP and TD. 

 

3.10. ASF Simulation Model 

The simulation model was built and implemented on the ARENA 14 platform. ARENA 

is a well-known and popular discrete event simulation software platform. ARENA uses a 

graphical interface allowing the user to build model by placing functional modules that 

represent pre-coded processes or logic in a flow system. Connector lines are used to join 
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these modules together and specify the flow of entities. While modules have specific 

actions relative to entities, flow, and timing, the precise representation of each module 

and entity relative to real-life objects is subject to the modeler. Statistical data, such as 

cycle time and WIP (work in process) levels, can be recorded and outputted as reports. 

ARENA has been used by many healthcare process analysis research groups. 

 

Figure 3.5 an ARENA simulation animation layout for an ambulatory surgical facility. 

The model was developed in the windows platform and all experiments were 

conducted in this platform. Figure 3.5 illustrates the visual interface of the program 

which provides an animation screen of the ASF operations. The animation mode can be 

used to help users better understand the ASF models operations, particularly when 

complex patient flows are involved. The animation also helps in program debugging.  

3.10.1 – Patient Arrivals through Registration 
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The patient arrivals activities include (i) patient tagging by type of physician group and 

(ii) registration process. The flowchart describing the overall process is shown in Figure 

3.6. Physically these activities occur in the ASF lounge. The lounge is capacity 

unbounded and can accommodate all arriving patients. Two arrival processes are 

followed:  

(i) A Poisson arrival process generated within the ARENA model in which 

case patient arrivals are independent both by physician group and patient type. 

The process is controlled the logic and parameters described earlier, which is 

characterized by patient type arrival independence.  

(ii) An externally generated fixed arrival schedule that is entered through an 

Excel file identifying patient type and arrival time. In this case arrivals may or 

may not be independent in terms of physician group or patient type. It will 

depend on the rule by which the arrival sequence is created. 

 

The common process through which all patients will go is registration following 

which they enter the ASF. Registration is modelled as a basic M/M/1 queue with 

dedicated resources, that is they are captive to the server.  

3.10.2 – Pre Operation Process 

Includes the activities of (i) assigning PreOp Type, (ii) Queue and capture of PreOp bed 

resource  (iii) Queue and capture of needed staffing resources (iv) Execute PreOp process 

and (v) Block PreOp bed resource while in queue for surgery bed resource. Since the 

PreOP bed resource is capacitated two logic blocks are created, one to manage the PreOp 
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queue and the other to generate the PreOp parameters once the bed resource becomes 

available (Figure 3.7). The PreOP activity block will delay process start unit the 

corresponding nursing resources are captured. Figure 3.7 shows the logic sequence for a 

specific PreOp type. Those blocks as explained stand for different sub processes which 

could have different parameter settings covering process time and related distribution, 

resource needed and queuing related types and those lines connect between the ins and 

outs.  At the end of the process time the nursing resources are released, but the PreOp bed 

resource remains blocked till a Surgery OR is available, at which point the patient will 

enter the surgery process. 

3.10.3 – Surgery Process 

Includes the activities of (i) assigning Surgery Type, (ii) Queue and capture of Surgery 

OR resource  (iii) Queue and capture of needed staffing resources (iii) Queue and capture 

of associated physician resource (iv) Execute surgery process and (v) Block Surgery OR  

resource while in queue for PACU bed resource. The flowchart describing the overall 

process is shown in Figure 3.8. Similar to the PreOP bed resource the Surgery OR 

resource is also capacitated and modelled likewise. The Surgery activity is setup as a 

Seize-Delay-Release block which will delay process start unit the corresponding nursing 

resources and physician resources are captured. Figure 3.8 shows the logic sequence for a 

specific surgery type. The Surgery OR also includes a fixed time clean-up process 

between surgeries, which is embedded in the logic in the end of the process time, the 

nursing resources and physician resource are released, but the Surgery bed resource 

remains blocked till a PACU bed resource is available, at which point the patient will 

enter the PACU process. 
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3.10.4 – Post Anesthesia Care Unit (PACU) Process 

Includes the activities of (i) assigning PACU Type, (ii) Queue and capture of PACU bed 

resource  (iii) Queue and capture of needed staffing resources (iii) Execute PACU 

process and (v) Release patient from ASF. The flowchart describing the overall process is 

shown in Figure 3.9. A key difference between PACU and PreOP or Surgery is that 

nursing resources are not captured for the entire process. Rather, they are used for an 

initial setup period and a final release period. Thus two queue and capture processes are 

needed. Similar to the Surgery OR the PACU activity is setup as a Seize-Delay-Release 

block which will delay process start unit the corresponding nursing resources are 

captured.  

3.10.5 – Staffing and Physician Resource Control 

 Both physician and staffing resources are modelled as floating resources. That is they are 

not captive to any specific server or activity block. Capture times also vary by PreOp 

type, Surgery type and PACU type. As shown in Figure 3.10 logic blocks are 

programmed to link the various ASF activities to the resources. Delays are also setup to 

control the flow of staff resources between activities. 

The Figure 3.11 is in the “Statistical” module where you can create special output 

file. In the “expression builder” where you can pick up existing value codes or combine 

those codes to be your simulation output value just like the option box on the left in the 

chart. In addition, you can label the file for the special output and save it in the wanted 

place by checking the left two columns. “Building the model”→”verify it”→”error 

found”→”modify”  is a system loop until the model reaches the final requirement. All the 

examples of easy set ups cannot be displayed here all and its original version is the 
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example model called “emergency room” from Arena official install package. However, 

because of different logic behind the original and current, they are totally different two 

models except the similar animation layout.  
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Figure 3.6 Model flowchart patients arrivals to patient assignment. 
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Figure 3.7 Model flowchart patient assignments through pre operation. 
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Figure 3.8 Model flowchart surgery activity in OR. 
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Figure 3.9 Model flowchart post operation activity in PACU. 
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Figure 3.10 Model Flowchart for Floating Resource Allocation. 
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Figure 3.11 Arena statistical module. 
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3.11. Model Process Validation 

To have valid experimental data is an important task for further results analysis; therefore 

several statistical methods have been applied to confirm its logic correction.  Some 

attached functions from Arena can help us track the real numbers in process when the 

authors change inputs. Firstly a real time clock (on the upper left corner of Figure 3.12) 

has been added to the system to check its working time and relate to those numbers 

accordingly.  The numbers the authors picked up here basically from two main aspects: 

patient and staffing members (the number of doctors and facilities are fixed). The Work 

in Process (WIP) number of patients has been tracked to ensure the completion of all 

arranged surgeries per day. Because one of the optimization focus may be concerning on 

best staffing levels, the three types of staffing members are also listed here with two 

statuses (busy and idle) and total number, from which you can track what will be the 

enough level for staffing. Several extreme cases have been studied (listed below) and all 

the results have proved the validation of the data. 
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Figure 3.12 Arena animation. 

 Patients’ quantity, path through the process: 

The total number of patients which have gone through the simulation model will 

be recorded by the software and shown in the results report. By manually calculation, you 

have some planned number once you input the data, see if the total number matches the 

results quantity, there may be some patients still in some process after the end simulation 

time, so the quantity you planned for the model should equal to the WIP patients add 

final out patients.  

To track the paths of patients is another validation of model, and the software 

itself gives us shortcuts to do it by observing the dynamic running process. Since the 

patients are in groups belonging to some physician group, specify one group and mark 

them as different animation icons, from the planned path combined with the time, you 
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could get the paths for the patients in ASF, by waiting in some preoperative, operatives or 

postoperative and checking with special icons you put and even the time and the number 

of them gives you an immediate confidence all the paths setting up correctly.  

 Resource quantity and utilization  

As shown in the chart 3.6, total resources quantity have been tracked during the 

simulation process could immediately give you an idea that the number you put is more 

or less than needed.  However, not from running the simulation, the expected number of 

enough resources could be calculated through the input data by finding out the number 

and the time of patients who are assigned to need that resource. But the number 

calculated is just the estimation under certain variance and confidence level so usually the 

calculated number will be initially put in the model and by running and adjusting several 

times the final results could be confirmed to be corresponding to the planed input 

quantity.  For the utilization’s estimation is just combined with  the quantity has been put 

in the system, however, since all resources have an effects on each other, hardly the 

authors could expect how much the utilization could drop from adding more resources, 

but the trend of utilization should be composite with their quantities.  

 General extreme cases 

Zero staffing members:  since staffing members are in need for different process 

here and there, the expectation result for the number of total patients out should be 0. By 

setting members to be zero separately, only part of the patients can go through upon 

simple reasoning consequence. Zero physician members in groups: five physician groups 

are planned to operate ten types of surgeries for twenty types of patients, thus separate 
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zeros in each group would lead to lacking of patients in that group accordingly and other 

patients won’t get affected supposedly.  But when all doctors are disappearing from the 

system, no patients will be helped but trapped waiting for the doctors in the operating 

room. 

Zero facilities:  three types of beds are set to be zeros individually first, since all 

beds are necessary for any process except registration, all patients are supposed to be 

stuck at matching process which lacks of beds and the queue for the beds is accumulating 

fast. 

Above three extreme validation methods are basic levels’ strategies and all of 

which are stopped by Arena with the warning that too many entities (patients) in one 

module which exceeds the original setting. Other factors like processing time in mean 

and variance could also be changed to check the validation of the results by using almost 

the same ways: compare the results from extreme cases with the expectation conclusions. 

In the meantime, lots of variables you can setup or pick up from the software package, 

and the current simulation statuses are easy to be read from the numbers, graphs or even 

some elaborate charts after times of modifying. For some tracked records are about 

patients’ arrival time in between, resulting in blur in distribution identifications, Arena 

also has its data analysis function helping organizing input data and finding proper 

distributions. Additionally, it has automatic breakpoint to pause at any conditions you set 

up.  

To conclude, either by manually calculating the expected number and then 

comparing with the simulation results, or by using help tools attached from Arena 
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software package, lots of work has been done behind until the model finally could be 

setup for running experiments. 

3.12. Potential Decision Making Problems 

The purpose of this research is to develop decision making models that allow us to 

optimize the performance of ASFs. The authors have formulated the operational structure 

of the problem and described a new objective function which accurately represents ASF 

practice. Our analysis reveals several ASF problems than can effectively and efficiently 

be solved using the model developed here. The authors introduce them here: 

Optimizing Staffing Resources Levels – As noted earlier the variable largest 

direct cost in an ASF is the staffing cost. In our interaction with ASF facilities this 

was a key management concern. Current practice, involves manual expertise 

whereby a person with staffing experience will make decisions on staff levels 

typically for the upcoming week. ASG operators need decision models that can 

characterize the relationship between staffing levels and operating costs, and 

consequently prescribe optimal staffing levels. 

Assignment of Schedule Blocks to Physician Groups – In section 3.xx the 

authors introduced the block scheduling arrangement that ASFs negotiate with 

physician groups. Since many schedule combinations are possible, ASF need 

models that can predict the performance impact of the combinations. Further, they 

are looking for assignment rules to derive block schedules which optimize 

performance. 
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Specifying Patient Arrival Schedules – The common approach to patient 

scheduling is to setup a uniform arrival pattern in which patients are scheduled to 

arrival at a constant mean rate. Frequently, then mean inter arrival time is 45 

minutes which is then factored as described.  ASFs are keen to learn of alternative 

scheduling method which dynamically adjusts the arrival rate so as to optimize 

performance. This problem is of much interest in physician office visit scheduling, 

and the literature is rich with many models. ASFs need models which address this 

problem specific to their operating structure. 

Patient Arrival Sequences – This problem is an extension of the schedule 

problem. Typically, patient schedules are generated without considering the specific 

type of surgery to be performed. If a physician group performs only type of surgery 

then the sequencing problem is mute. But when multiple surgery types are 

performed then the OR scheduling literature shows that classical machine 

sequencing rules can be used to improve performance. ASFs need sequencing rules 

that can be used in conjunction with patients scheduling methods. 

Physical Resource Capacity Levels – Another major cost of the ASF are the 

physical resources, specifically the ORs, PACU beds and PreOP beds. While these 

are fixed capital costs, the ASF does have the option of activating and deactivating 

these resources as needed. These actions will involve some kind of setup cost and 

possibly a maintenance cost. ASFs need models which can prescribe a strategy for 

managing these resources. 
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CHAPTER 4 

ANALYSIS OF THE STAFFING STRATEGY IN AN ASF FACILITY 

 

In chapter 3 the authors introduced a new objective function for evaluating the operating 

performance of ASFs. A simulation model to track this objective in an ASF was also 

developed and presented. In this chapter the research transitions to investigation of 

decisions and solutions which can be utilized to improve the operating performance of an 

ASF. In this chapter the specific focus is on Optimizing Staffing Resources Levels. As 

noted earlier the variable largest direct cost in an ASF is the staffing cost. In the 

interaction with ASF facilities this was a key management concern. Current practice, 

involves manual expertise whereby a person with staffing experience will make decisions 

on staff levels typically for the upcoming week. ASF operators need decision models that 

can characterize the relationship between staffing levels and operating costs, and 

consequently prescribe optimal staffing levels. Question: What is the staffing level for 

Nurse-A, Nurse-B and Medical Assistant that minimizes the ASF Performance Goal? 

Solution: Use a simulation experimental approach to determine the staffing level. 

Decision variables are: 

 Mj,t  Number of resource j in block t 

This chapter is organized as follows. Section 3.1 defines all the resources in the 

model which will be used in later model constructions; The second section (3.2) of this 

chapter is about model constructions in details to a general ASF including: ASF operating 

process analysis with assumptions and an event flow chart clarify logic connections 
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between process; (3.3) introduces model input data in different tables under one scenario 

and general performance objective function set up is in (3.4); (3.5) states that rational 

reason of choosing discrete-event simulation(3.5.1) and key surgical processes converting 

into Arena model (3.5.2); statistical validation of the simulation model is in ( 3.6); and 

the last  section of the chapter (3.7) concluded causes of uncertainties in ASF system and 

those changeable decisions which the authors could make to optimize ASFs. The listed 

topics in the conclusion will be analyzed in details in following chapters. 

 

4.1. Defining the Staffing Problem 

An ASF maintains three staffing resources (j = 1 to 3) which together account for the 

primary direct cost of the facility. Clearly then the ASF attempts to reduce the staffing 

levels. Variations in staffing levels though are inversely related to two other objectives 

patient waiting times and physician delays. The ASF staffing problem can then be 

defined as follows: 

                 ∑∑(         )

  

    ∑(      )

 

             

The decision space is: 1 ≤ Mj,t ≤ Mj,MAX  for j = 1 to 3 and t = 1 to 3. Where Mj,MAX 

is the maximum assignable staffing resources and Mj,t is integer. As noted earlier in 

section 3.9 Of these Mj,t is a management decision and becomes a fixed cost once 

decided. The other three are operational outcomes and have to be derived either 

analytically or by the use of a simulation model. Clearly there is an inverse relationship 

between the effect of Mj,t and the operational outcomes. Thus the authors would expect a 
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convex relationship between Mj,t and . In this chapter the authors investigate this 

relationship and used it to prescribe optimal values of Mj,t . The research strategy is to 

create a series of Mj,t decision scenarios to track  for a specific ASF example. This is 

repeated for additional problems to detect a generalized trend. 

 

4.2. Experimental Strategy to Determine Mj,t 

Simulation models allow decision optimization under stochastic conditions. For simple 

problems, analytical techniques can be applied (Ross, 2003). Those analytical techniques 

become inapplicable when the problem gets more complicated. In these cases a 

simulation based optimization approach has been shown to be a powerful tool (Kao & 

Chen, 2006). Modern simulation platforms typically include a black-box parameter 

optimization tool. ARENA integrates an optimization toolbox OptQuest (Glover et al., 

1999) which contains several scenario and configuration analysis algorithms (mainly 

meta heuristics). Figure 4.1 provides a classification of the various possible optimization 

approaches. 
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Figure 4.1 Classification of grouping of simulation optimization approaches.  

Source: (Tekin & Sabuncuoglu, 2004) 

 

4.3 Design of Experiments 

Given that multiple resource types are involved the approach is to design a multi-factor 

experiment to derive Mj,t. The developed ASF simulation model uses classical scenario 

analysis to capture the relationship between the decision factors and the performance 

objective described above. Each scenario is represented by a simulation experiment. Each 

scenario is represented by a unique combination of staffing levels. In general usage, DOE 

or experimental design is the design of any information-gathering exercises where 

variation is present, whether under the full control of the experimenter or not. Unlike the 

one factor test which changes one factor at a time while keeps others constant, DOE 

provides a full insight of the interaction between design elements rather than individual 

effects. To develop the experimental strategy the authors introduce the baseline problem 

as introduced in chapter 3 with B=3, H=5 and P=20. Key data for the baseline problem 
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are introduced in Figure 3.3 and Tables 3.1 to 3.7. Additionally, the performance function 

cost coefficients are P = $24.05 and set D = $300. 

4.3.1. Selecting the Experimental Array/Space 

To determine the expected staffing resource utility and other performance parameters 

resulting from staffing levels, the authors conducted a full factorial simulation study. As 

noted above at the starting point there are 9 decision factors for the baseline problem: 1 ≤ 

Mj,t ≤ Mj,MAX  for j = 1 to 3 and t = 1 to 3.  Several initial experiments were conducted on 

the baseline problem. Based on the observed sensitivity of the performance measure to 

the factors it was decided to trim the experimental space. Specifically, (i) The staffing 

level was the same for all time periods, that is Mj = Mj,t for t = 1 to 3 and (ii) the staffing 

level for medical assistants was predetermined at M3 = 10 and therefore not an 

experimental factor. For the remaining two factors the authors set M1,MAX  = 9 and M2,MAX  

= 11. Beyond these levels the authors see sharp increases in Ω. The experimental array is 

then shown in Table 4.1 Later the authors will add two new problems to validate the 

conclusions, and for these problems the experimental array is similarly derived. Note that 

the decision space is discrete. 

Table 4.1 DOE Experimental Array for Baseline Staffing Problem 

Expt # 1 to 5 6 to 10 11 to 15 16 to 20 21 to 25 

M1 5 6 7 8 9 

M2 7,8,9,10,11 7,8,9,10,11 7,8,9,10,11 7,8,9,10,11 7,8,9,10,11 

 



88 
 

Patient wait times W, doctor delay, and staffing overtime were the dependent 

variables measured during the simulations. 

4.3.2. Replication Estimate for the Experiments 

Simulation experiments are inherently characterized by errors or measure variance. For a 

valid study the simulation replication number should be estimated to get more accurate 

experimental results. Half width is reported by Arena as a term for variance, and 

“acceptable variance” is defined to be < 4% of the changeable value. If initially 100 

replication number has been set and the reported half width is 175, while 4% of 

changeable value (which is the total value subtract the fixed regular salary payment) is 

45, then the required replication times should be far more than 100. To estimate the valid 

number of replications under certain half width, the following definitions and equations 

are used. Standing as the most direct output value, half width is just showing everywhere 

after mean value in the simulation reports. If a value is returned in the Half Width 

category, this value may be interpreted by saying "in 95% of repeated trials, the sample 

mean would be reported as within the interval sample mean ± half width."  

The half width can be reduced by running the simulation for a longer period of 

time, and not enough replication times will lead to “insufficient” in the half width column 

from the simulation reports. The first half is about the mathematic equation for half width 

which would derive to an equation which has “n” on both sides (*). Introducing the 

following notation: 

N = number of simulation replications 

x  = sample mean 
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s = sample standard deviation 

           = critical value from t tables 

Confidence interval:  ̅            
 

  
 

Half-width: h=          
 

  
                         

  

      (*)           

The first half is about the mathematic equation for half width which would derive 

to an equation which has “n” on both sides (*). The second half is an approximation 

method to estimate the “n” which is the number of replications. 

Approximation: 

 Replace t by z, corresponding normal critical value 

 Pretend that current “s” will hold for larger samples 

 Get     
     

  

   (where s=sample standard deviation from 

“initial” number     of replications 

Easier but different approximation: 

     
  
 

   (  =half width from “initial” number    of replications, 

and n grows quadratic ally as h decrease ) 
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Experiments with Baseline Problem with M1 =8 and M2 =9: From initial an initial 

simulation run of 10 replications, 95% half-width on Ω was ±$380.89. Objective is to get 

that value down to ±$169.68 (2% of mean value) or less. This is done by setting: 

n  10(380.89
2
/169.69

2
) = 50.39 rounded up to 51 

Running the simulation with 100 replications (conservative based on above), Ω= 

8730.49 ± 174.38, not less than 169.68, but 174.38 is still less than 2% of 

8730.49(174.6089). However, in the definition of Ω, part of it is regular salary cost for 

ASF which is a fixed amount under same rates and hours in every experiment. Therefore, 

the acceptable half width has been set up to 4% of the varied amount of cost which is the 

total cost minus fixed cost. The initial results are shown in table 4.2, based on which the 

replication time is set at 1850 for the baseline problem. 

Table 4.2 Initial Results for Replication Calculation 

Total 
Cost 

Fixed 
Cost 

Variable 
Cost 

4% Of 
Variable 

Half 
Width 

Estimate 
Replication 
Time 

8602.29 7620 982.29 39.2916 119.35 1845.33 

 

A total of 1850 replications were completed for each of the 25 experiments, for a 

total of 46250 observations.  

4.4. Staffing Experimental Results – Baseline Problem 

Fu (2002) identifies 4 main approaches for optimizing simulations: 

1. Stochastic approximation (gradient-based approaches) 
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2. Sequential response surface methodology 

3. Random search 

4. Sample path optimization (also known as stochastic counterpart) 

Here the approach follows the response surface methodology. The “local response 

surface” is used to determine a search strategy (e.g., moving to the estimated gradient 

direction) and the process is repeated. In other words, the meta models do not attempt to 

characterize the objective function in the entire solution space but rather concentrate in 

the local area that the search is currently exploring. The analysis of the experimental 

results is reported in the following sections. 

4.4.1. Convexity of the Objective Function 

The performance objective of the ASF operation was shown above in section 4.1. The 

first analysis focuses on studying the convexity behavior of this objective function. 

Especially the authors attempt to build an understanding of the simulation’s ‘response 

surface’. That is the combination effect of Mj,t. on the objective outcome . Simulation 

results for three problems (#s 1, 2 and 3) are shown in Figures 4.2 to 4.7 and in Tables 

4.2 to 4.4. Note the results shown the expected costs for a simulation run of 100 

replications. It is clear from the expected cost curves that  is a strictly convex function. 

The 3-D response surfaces indicate though that  is not always smooth convex (for 

example problem 3). 
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Figure 4.2 Total expected costs for problem-1. 

 

Figure 4.3 Overall performance convexities for the NA x NB Decision Space – 

Problem 1. 
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Figure 4.4 Total expected costs for problem – 2. 

 

Figure 4.5 Overall performance convexity for the NAxNB decision space – 

problem 2. 
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Figure 4.6 Total expected costs – problem 3. 

 

Figure 4.7 Overall performance convexities for the NAxNB Decision Space –

Problem 3. 
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Table 4.3 Total Expected Optimal Solution Space for Problem-1. 

 

Table 4.4 Total Expected Optimal Solution Space for Problem-2. 

 

Table 4.5 Total Expected Optimal Solution Space for Problem-3. 

  

8.97% 5.85% 4.63% 7.24% 10.53%

7.65% 2.42% 1.04% 0.12% 2.62%

9.16% 3.22% 0.05% 0.00% 2.95%

10.86% 4.85% 1.68% 1.90% 4.04%

13.54% 6.67% 3.44% 3.87% 5.56%

Total Cost ($) - Increase from Optimal

11.34% 9.19% 7.42% 7.33% 7.93%

10.26% 4.15% 2.30% 3.92% 6.00%

11.35% 1.61% 0.44% 1.94% 3.40%

9.78% 2.11% 0.00% 1.55% 2.98%

8.97% 2.72% 1.06% 2.44% 4.59%

Total Cost ($) - Increase from Optimal

28.57% 19.08% 26.19% 34.05% 39.71%

29.33% 16.46% 15.01% 24.83% 33.47%

28.85% 0.00% 4.92% 11.98% 19.50%

28.16% 3.41% 5.80% 10.96% 19.12%

28.66% 7.76% 8.08% 13.06% 21.15%

Total Cost ($) - Increase from Optimal
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This behavior confirms that a gradient search method can efficiently be used to 

solve ASF problems even those with a larger number. Problem-2 is the largest problem 

with maximum of 28 nurses involved, and the graphs confirm that a 2-D gradient search 

method would work well. For ASF analysts the experiments show optimal staffing 

decisions can be made quickly, precluding the need for developing approximate 

mathematical models. For the experimental space the  range was for Problem-1 = 

13.5%, Problem-2 = 11.3% and Problem-3 = 28.6%. Significant reductions in ASF 

operational costs can thus be achieved by optimizing Mj,t. 

4.4.2. Robustness of Decision Space 

A key issue in studying the  response surface is the robustness of the optimal decision 

(*), that is the loss of optimality as the authors switch to alternate decision points. This 

behavior is shown in tables 4.2 to 4.4 which records (-*)/*. In addition to * the 

tables highlight *+1% and *+3% solution points. The authors observe that the 

robustness of the decision space is not consistent across the problems. For problem-1 the 

space is robust with number of solutions (*+1%) = 3 and solutions (*+3%) = 5. In 

contrast for problem-3 number of solutions (*+1%) = 0 and solutions (*+3%) = 0. For 

problem-3 the optimal solution is quite distinct and the authors observe that closest non-

optimal solution is away by 3.4%. The results confirm that approximate solutions to the 

problem may be significantly deviant from the optimal. 

4.4.3.  Convergence Rate 

In simulation optimization a common approach is to evaluate the convergence 

rate of the objective function. These are derived as follows: 
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Nurse-A Convergence Rate {M1 , M2} = {Ω(M1+1, M2) - Ω(M1, M2)} / * 

Nurse-B Convergence Rate {M1 , M2} = {Ω(M1, M2+1) - Ω(M1, M2)} / * 

Tables 4.5 to 4.7 show the convergence rates for the three problems. The 

convergence rate is highest for highest Nurse-A at the lowest staffing levels. This 

behavior is consistent across all three problems. Problem-3 displays a non-smooth convex 

behavior in that the Nurse-B convergence rate does show more than one turning point. 

This implies a purely gradient search method may not always work in a staffing problem 

of this type. 

Table 4.6  Convergence Rate for Problem-1 

 

 

 

NURSE-B 5 6 7 8 9

7 -3.35% -1.31% 2.81% 3.53%

8 -5.62% -1.49% -0.99% 2.70%

9 -6.39% -3.41% -0.05% 3.17%

10 -6.45% -3.41% 0.23% 2.31%

11 -7.39% -3.47% 0.47% 1.82%

NURSE-A

Nurse-A Convergence

NURSE-B 5 6 7 8 9

7

8 -1.41% -3.69% -3.86% -7.66% -8.49%

9 1.62% 0.86% -1.06% -0.12% 0.35%

10 1.82% 1.76% 1.75% 2.04% 1.17%

11 2.88% 1.95% 1.89% 2.12% 1.63%

Nurse-B Convergence

NURSE-A
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Table 4.7  Convergence Rate for Problem-2 

 

 

Table 4.8  Convergence Rate for Problem-3 

 

NURSE-B 11 12 13 14 15

14 -2.16% -1.77% -0.09% 0.61%

15 -6.11% -1.85% 1.62% 2.08%

16 -9.73% -1.18% 1.51% 1.45%

17 -7.66% -2.11% 1.55% 1.42%

18 -6.25% -1.66% 1.38% 2.15%

Nurse-A Convergence

NURSE-A

NURSE-B 11 12 13 14 15

14

15 -1.08% -5.03% -5.12% -3.41% -1.93%

16 1.09% -2.54% -1.86% -1.97% -2.60%

17 -1.57% 0.50% -0.44% -0.39% -0.42%

18 -0.81% 0.61% 1.06% 0.89% 1.61%

Nurse-B Convergence

NURSE-A

NURSE-B 2 3 4 5 6

4 -9.49% 7.11% 7.85% 5.66%

5 -12.87% -1.45% 9.82% 8.63%

6 -28.85% 4.92% 7.06% 7.52%

7 -24.74% 2.38% 5.16% 8.16%

8 -20.90% 0.32% 4.98% 8.09%

Nurse-A Convergence

NURSE-A



99 

 

 

 

4.5. Variance Analysis of  

The chart 4.2.5 displays the histogram of one experiment under 1850 replications when 

nurse A=8, nurse B=9, which is under enough resource level scenario but the variance 

range is so wide that with a high chance it may cause delays in ASFs. However, it is the 

natures of ASFs that the surgery variance cannot be avoid, and comparison between 

variance will be the next evaluate factor in next topics.  

NURSE-B 2 3 4 5 6

4

5 0.75% -2.62% -11.18% -9.21% -6.24%

6 -0.48% -16.46% -10.09% -12.85% -13.97%

7 -0.69% 3.41% 0.88% -1.02% -0.38%

8 0.50% 4.34% 2.28% 2.10% 2.03%

Nurse-B Convergence

NURSE-A
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Figure 4.2.5 Histogram for A8B9 with 1850 replications. 
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Figure 4.2.6 A8b9, a8b8, a7b9, and a7b8 total cost comparison. 

 Doc delay Staff 
overflow 

Patient delay Regular 
salary 

Total cost 

A7b8(1) 2687.69 597.37 537.84 4829.00 8651.90 

A7b9(2) 2458.59 551.97 506.87 5027.00 8544.44 

A8b9(3) 2220.50 497.23 482.78 5302.00 8502.52 

A8b8(4) 2442.66 546.98 514.47 5104.00 8608.11 

 

 

A8b9

A7b8 

A7b9

A8b8 

 

A7b9

A8b8

A7b8

A8b9

Figure 4.2.7 Separate mean cost for A8b9, a8b8, a7b9, 

a7b8 
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Figure 4.3.1 Doctor’s delay and staff’s overflow mean cost for A8b9, a8b8, a7b9, a8b8. 

 

Figure 4.3.2 Staff delay and staff’s overflow mean cost for A8b9, a8b8, a7b9, a8b8. 

 

 

 

 

0

500

1000

1500

2000

2500

3000

1 2 3 4

Doc delay 

Doc delay

0

200

400

600

800

1 2 3 4

Staff overflow 

Staff overflow



103 

 

 

Figure 4.3.3 Patients’ delay and staff’s overflow mean cost for A8b9, a8b8, a7b9, a7b8. 

 

Figure 4.3.4 Total mean cost for A8b9, a8b8, a7b9, a7b8. 
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Though in a small range within that flat area which is at the bottom of the U-

convex graph, same growing and decreasing trend is in those four factors has also been 

displayed here through these five graphs: as the number of staffing increase, the doctor’s 

delay penalty goes down so as staffing’s overflow penalty and the patient delay penalty, 

however, at the point of nurse A=8. Nurse B=9, it reaches the lowest total cost under the 

highest staffing salary, as you can predict that even more staffing have been added into 

the system, higher regular salary would prevent it to be the lowest total cost, in the other 

words, when nurse A=8, Nurse B=9 is the optimal result even in that equal good area 

under specific conditions. 

 

4.6. Sensitivity Analysis of Physician Delay Penalty 

Next the authors study the sensitivity effect of the physician delay penalty (D) on the 

decision space. Noting that this is a key feature of the proposed objective function, ASF 

operators which to learn more about how the decision space is effected for decreasing and 

increasing values of D . Experimental results are shown in Tables 4.12 to 4.14. 
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Table 4.12 Decision Sensitivity to Changing D –Problem 1 

D M1 M2 Ω Staff Cost 

$150 6 8 $6,048 $3,886 

$200 7 8 $6,556 $4,107 

$250 7 9 $6,987 $4,267 

$300 8 9 $7,421 $4,511 

$350 8 9 $7,820 $4,511 

$400 8 9 $8,219 $4,511 

$450 8 9 $8,618 $4,511 

 

Table 4.13 Decision Sensitivity to Changing D –Problem 2 

D M1 M2 Ω Staff Cost 

$150 12 15 $9,941 $8,143 

$200 12 16 $10,277 $8,363 

$250 13 16 $10,567 $8,608 

$300 13 17 $10,834 $8,812 

$350 13 17 $11,110 $8,812 

$400 13 17 $11,388 $8,812 

$450 13 17 $11,665 $8,812 
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Table 4.14 Decision Sensitivity to Changing D –Problem 3 

D M1 M2 Ω Staff Cost 

$150 3 5 $3,566 $2,475 

$200 3 6 $3,628 $2,605 

$250 3 6 $3,789 $2,605 

$300 3 6 $3,960 $2,605 

$350 3 6 $4,131 $2,605 

$400 3 6 $4,303 $2,605 

$450 3 6 $4,474 $2,605 
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CHAPTER 5 

ASSIGNMENT OF SCHEDULE BLOCKS TO PHYSICIAN GROUPS 

 

In chapter 3 the authors introduced the block scheduling arrangement that ASFs negotiate 

with physician groups. Since many schedule combinations are possible, In this chapter 

the authors develop and evaluate heuristic assignment rules to derive block schedules 

which optimize performance. Currently such assignments are done manually by ASF 

managers using their past experiences. The heuristics developed here would provide 

analytical solutions with the capability to handle relatively large problems. 

 

5.1. Defining the Physician Block Assignment Problem 

An ASF may have flexibility in the way it assigns schedule blocks to the different 

physician groups that are active in the ASF. A schedule block is defined as a continuous 

window, usually 3 to 4 hours long, during which assigned physician groups can schedule 

their surgery patients. A physician group k will contract with the ASF for to perform 

surgeries during Ek continuous blocks. Typically, Ek
 
is derived from the capacity 

requirements of the group and here the authors limit Ek to an integer.  The assumption 

here is that the assignment of blocks to physicians effects the overall performance Ω of 

the ASF. There a multiple reasons for this including the surgery types, surgery time 

variances, resources requirements. When Ek >1 and physician group k performs multiple 
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surgery types, the patients must also be divided among the assigned blocks. The decision 

variables then are: 

k,t Physician group k is assigned schedule block t (1 = yes, 0 = no) 

A
i,t

 Number of patient type i  scheduled to arrive in block t 

The ASF physician block assignment problem is then described as determining k,t 

such that the expected value of Ω is minimized. Where the decision space is constrained 

such that ∑ k,tt = E
k
 and Ai,t = 0 if k,t = 0 and k,t = 1. Further the authors assume the 

staffing level has already been fixed, that is Mj,t is predetermined. The ASF operational 

objective has been previously defined as follows: 

                 ∑∑(         )

  

    ∑(      )

 

             

Since Mj,t is fixed then the first term in Ω is a constant for a given problem. The 

effect of k,t on the objective function variables TP and TD is determined from the ASF 

simulation model, and used to evaluate the quality of the decision policy. Table 5.1. 

shows an example decision policy. 
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Table 5.1. An Example Physician Assignment Decision Policy 

Physician 
Group k 

Blocks >> t=1 t=2 t=3 

1 

1,t  1 1 0 

A1,t  4 1 0 

A2,t  0 4 0 

A3,t  2 2 0 

2 

2,t  1 0 1 

A4,t  5 0 2 

A5,t  0 0 5 

3 
3,t  0 0 1 

A6,t  0 0 5 

 

The research strategy is to leverage classical machine sequencing algorithmic 

knowledge to develop several heuristics for the determination of k,t. These heuristics are 

then tested using the ASF simulation model to characterize their performance.  All 

heuristics first determine k,t and then Ai,t. In a basic heuristic Ai,t is determined using the 

load balanced surgery schedule (section 3.7) while in an extended heuristic additional 

rules for the derivation of Ai,t are introduced. 

 

5.2. Similarity from Machine Scheduling 

The three main topics in machine scheduling are single or parallel machine sequencing, 

flow shop sequencing and job shop scheduling. Since the definition of scheduling almost 
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covered sequencing, though they focused on different aspects, the scheduling is chosen to 

stand for sequencing and scheduling in the following content.  Single-machine scheduling 

or single-resource scheduling is the process of assigning a group of tasks to a single 

machine or resource. The tasks are arranged so that one or many performance measures 

may be optimized. Parallel machines are parallel identical machines meaning that tasks or 

jobs can be finished by either of the machines.  The main difference between single 

machine sequencing and flow shop sequencing is that more machine quantities and given 

process order (the definition of flow shop scheduling is given later). However, the range 

of job shop scheduling is wider than that of flow shop scheduling, for example, both with 

process orders, usually one job is not allowed to rework in the same machine in the flow 

shop scheduling problems but there is no path route rule for jobs in job shop scheduling 

problems.  

With about 70 years’ investigation, major findings include: Graham had already 

provided the List scheduling algorithm in 1966, which is (2 − 1/m)-competitive, where m 

is the number of machines.[1] Also, it was proved that List scheduling is optimum online 

algorithm for 2 and 3 machines. The Coffman–Graham algorithm (1972) for uniform-

length jobs is also optimum for two machines, and is (2 − 2/m)-competitive.[2][3] In 

1992, Bartal, Fiat, Karloff and Vohra presented an algorithm that is 1.986 competitive.[4] 

A 1.945-competitive algorithm was presented by Karger, Philips and Torng in 1994.[5] 

In 1992, Albers provided a different algorithm that is 1.923-competitive.[6] Currently, 

the best known result is an algorithm given by Fleischer and Wahl, which achieves a 

competitive ratio of 1.9201.[7]A lower bound of 1.852 was presented by Albers.[8] 

Taillard instances has an important role in developing job shop scheduling with 
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makespan objective.In 1976 Garey provided a proof[9] that this problem is NP-complete 

for m>2, that is, no optimal solution can be computed in polynomial time for three or 

more machines (unless P=NP). 

By looking back to our ASF physician scheduling problems, patients are like jobs 

going through three processes (pre-operating, operating and post-operating process) with 

fixed order and will be helped by resources staffing members and physician groups using 

specific facilities. Therefore, the ASF physician scheduling problem is more like a flow 

shop scheduling problem. 

There is a long history in time that people have devoted on best algorithms for 

different flow shop situations. From the Wikipedia, the Flow Shop Scheduling Problems, 

or FSPs, are a class of scheduling problems with a work shop or group shop in which the 

flow control shall enable an appropriate sequencing for each job and for processing on a 

set of machines or with other resources 1,2,...,m in compliance with given processing 

orders. Especially the maintaining of a continuous flow of processing tasks is desired 

with a minimum of idle time and a minimum of waiting time. FSP may apply as well to 

production facilities as to computing designs. In a short word, the FSP is about to 

schedule some jobs or tasks on machines or resources to reach some specific performance 

objectives like the makespan, total completion time and so on. To minimize makespan, a 

heuristic algorithm by S.M. Johnson can be used to solve the case of a 2 machine N job 

problem when all jobs are to be processed in the same order but with 3 or more machines, 

it may not be the optimal. 
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In the case like ASF, physician groups scheduling problems are like class of 

scheduling problems with a management work shop in which the flow control shall 

enable an appropriate sequencing for each patient and for processing pre- operating, 

operating and post-operating on set of resources including staffing members, facilities 

and physician groups in compliance with given processing order (as it known to all from 

pre-operating to operating to post-operating), and the performance objective is to reduce 

the idle time for doctors, reduce the overflow time for the staffing members  and reduce 

the waiting time for patients. Accordingly, these objectives in ASF physician scheduling 

problems are matching different terms in FSP (will be explained in details in later 

sections) and the set-up of objective function considering multi aspect requirement has 

already been mentioned in the previous chapter three. Within certain complexities, there 

is no optimal solution for physician group scheduling problem and the advantages of 

discrete-event simulation has been explained in details in previous chapter, the following 

sub-section is about original problem extension and simulation model related 

assumptions. 

 

5.3. General Assumptions 

 The ASF opens at least half-hour before the first block for patient 

registrations 

 The ASF remain open after the last block in overtime mode till all patients 

are processed 

 No splitting of processes is allowed  
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 Patient arrivals are independent  

Several heuristics were developed and tested. The authors present here five of the 

most promising heuristics. All of these uses concepts and approaches utilized in the 

machine scheduling and sequencing literature. Steps 1 to 4 are common for all the 

heuristics. 

 

5.4. Heuristic #1 – Resource Balancing Algorithm 

The objective of this heuristic is to generate an assignment which minimizes the 

imbalance in staff resource usage between the blocks. Balancing algorithms are widely 

used in the scheduling literature and the authors follow the same approach here. 

Step – 1: Calculate the total resource usage by patient type i. Let Ti,j be the robust 

estimate of the total use of resource j by type i, derived as follows: 

       {∑      (              )

 

   

            (                 )} 

To derive a robust estimate the authors use the classical theory of constraints 

approach by adding a time buffer to each critical task. Since each resource is critical in 

this case, the authors add the buffer such that the actual activity time is 75% likely to be 

less than our robust estimate. 

Step – 2: Calculate the perfect balance resource usage level for each staffing 

resource as follows: 
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∑    

 

 

Step – 3: Calculate M*j  the minimum staffing level needed to meet the patient 

requirements plus a downtime buffer. The down time buffer j  for a staffing resource 

accounts for the inherent continuity gap between surgeries (5+%) plus the normal staff 

rest time (10+%). 

  
     {(    )

  

   
} 

INT is a function which returns the next largest integer. Each schedule block is 

assumed to be 240 minutes long without loss of generality. Here the authors assume j is 

a management decision based on location specific work policies and combination of 

surgeries. But j  could be a variable that is also investigated through the simulation 

experimentation process. For example in a location where a larger number of short 

surgeries are performed then the continuity gap buffer tends to be smaller and j  also 

smaller. 

Note that any solution with a non-zero Mj  is a feasible solution to the ASF 

physician assignment problem, for example Mj  =1 for all j is feasible but will result in an 

excessively large Ω. Then M*j  represents the baseline feasible solution and is used to 

compare the performance of the different heuristics by keeping the staffing cost constant 

at this level.  

Step – 4: Calculate the staff resource usage requirements for each physician group 

as follows: 
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       ∑              

 

 

Step – 5: Formulate the physician assignment balanced staffing resource load 

problem as a mixed integer program. The objective function in this program minimizes 

the total absolute resource usage variance from the perfect balance level 

 

Objective:  

              ∑∑    

 

  

 

 

Such that: 

     ∑    

 

    

  
                           

                                      

                                      

∑    

 

                       

Where: 

k,t = (0,1) and k,t ≥ 0  for all k and t 

k,t = 1 for all t when Ek = 3 

k,2 = 1 when Ek = 2 
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Step – 6: Formulate the patient assignment to physician block for balanced 

staffing usage problem as a linear program. The objective function in this program 

minimizes the total absolute resource usage variance from the perfect balance level. 

Objective:  

              ∑∑    

 

  

 

 

Such that: 

     ∑    

 

                                     

             ∑    

 

                            

∑    

 

                       

                                                  

∑         

 

    ∑
       

  
 

                          

Where: 

 Ai,t≥ 0 for all i and t 

j,t ≥ 0  for all j and t 
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The last constraint limits the imbalance between blocks for a specific physician 

group to 10%. In the absence of these constraints, the solution could generate high levels 

of imbalance which are infeasible for the group. 

 

5.4. Heuristic #2 – Asymmetrical Resource Balancing Algorithm 

In heuristic #1 the objective was to balance the resources load across all the scheduling 

windows. A detailed review of the generated solutions provides specific insights into 

possible improvement strategies. A key observation was that due to the uneven resource 

requirements between physician groups, there is an inherent imbalance in the solution. 

Solutions where the higher loaded assignments are in the first or second window, that is 

Vj,1  > vj, tend to outperform the inverse solutions where Vj,1  < vj. The front loaded 

solutions tend to opportunistically utilize the slack in the system, and thus have lower 

levels of overtime. Interestingly, this rule was mentioned in the discussions with ASF 

administrators. The objective of heuristic #2 is to generate an asymmetrical resource 

balance, that is the average loading of all resources is higher in block t=1 compared to 

t=3. 

Step – 1-4: Same as Heuristic #1 

Step – 5: Formulate the physician assignment balanced staffing resource load 

problem as a mixed integer program. The objective function in this program minimizes 

the total absolute resource usage variance from the target asymmetrical balance level . 

Introducing:  
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Wt Asymmetry rate (-25% to +25%) by which block t target load   

 is offset from perfect balance 

Here the authors set W1=0.1, W2=0, and W3=-0.1.  Observe that Wt=0 indicates no 

asymmetry for that period. In heuristic #1 the objective gives equal importance to all the 

staffing resources. In this heuristic the objective is expanded such that the priority of each 

resource is weighted by the ratio of their regular plus overtime cost rates to the average 

rates for all resources. The MIP is then formulated as follows: 

Objective:  

              
 

 
 
∑           

∑∑(         )     

 

  

 

 

Such that: 

     ∑    

 

    

  
                           

                                            

                                            

∑    

 

                       

Where: 

k,t = (0,1) and k,t ≥ 0  for all k and t 

k,t = 1 for all t when Ek = 3 

k,2 = 1 when Ek = 2 
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Step – 6: Also adding the weighted parameter for the objective formula. 

Objective:  

              
 

 
 
∑           

∑∑(         )     

 

  

 

 

Such that: 

     ∑    

 

                                           

                   ∑    

 

                            

∑    

 

                       

                                                  

∑         

 

    ∑
       

  
 

                          

Where: 

Ai,t ≥ 0 for all i and t 

j,t ≥ 0  for all j and t 

 

5.4. Heuristic #3 – Pre-operative and Resource Balancing Algorithm 

From a review of the solutions for the previous problems, the authors find that in some 

cases the generated solution while having staffing resource use is imbalanced at the 

activity level. That is total activity times for pre-operation, surgery or PACU are not 
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balanced. The result is that the simulation results show weak performance for these 

schedules, because longer activity queues tend to form during blocks with high activity 

use. In this heuristic the authors attempt to address this issue by adding an additional 

constraint to Step #6, which limits the imbalance in pre-operation activity time to ±10%. 

The authors also found that attempting to balance all activities simultaneously was not an 

effective approach, since the solution space is overtly restricted. 

Step – 1-5: Same as Heuristic #2 

Step – 6: Formulate the patient assignment to physician block problem for 

balancing both staffing usage and pre-operative activity times. The objective function in 

this program minimizes the total absolute resource usage variance from the weighted 

balance level. 

Objective:  

              
 

 
 
∑           

∑∑(         )     

 

  

 

 

Such that: 

     ∑    

 

                                           

                   ∑    

 

                            

∑    
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∑         

 

     ∑
       

  
 

                          

∑    (              )

 

 
    

 
∑  (              )

 

                    

Where: 

Ai,t ≥ 0 for all i and t 

j,t ≥ 0  for all j and t 

 

In balancing the pre-operation time the minimum level is set at 90% for the 3 

schedule blocks. A robust activity processing time estimate (75% likelihood) is used. 

 

5.4. Heuristic #4 – Operative and Resource Balancing Algorithm 

This heuristic is similar to Heuristic #3 in that it attempts to also balance the total 

processing time for a specific activity. Here the focus activity is the surgery processing 

time. This is a key activity in that not only does it affect resource usage but it has a direct 

impact on physician delay a significant component of the objective function. 

Step – 1-5: Same as Heuristic #2 

Step – 6: Formulate the patient assignment to physician block for balanced both 

staffing usage and operative time problem as a linear program. The objective function in 

this program minimizes the total absolute resource usage variance from the weighted 

balance level. 
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Objective:  
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Such that: 
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∑    (              )

 

 
    

 
∑  (              )

 

                    

Where: 

Ai,t ≥ 0 for all i and t 

j,t ≥ 0  for all j and t 

 

In balancing the surgery activity processing time the minimum level is set at 90% 

for the 3 schedule blocks. A robust activity processing time estimate (75% likelihood) is 

used. 
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5.4. Heuristic #5 – Priority Blocks and Balancing Algorithm 

In balancing the surgery activity processing time the minimum level is set at 90% for the 

3 schedule blocks. A robust activity processing time estimate (75% likelihood) is used. 

Step – 1-4: Same as Heuristic #1 

Step – 5: Block arrangement is based on ScoreK, the highest ScoreK will be 

arranged first in the early time slot. When the first Vj is greater than νj, go to next higher 

ScoreK’s physician group and assign the next available block. 

        
∑           

  
                                                    

                   

           ∑    

 

    

  
                           

    
 

 
∑    

 

 

Step – 6: Same as Heuristic #2 

 

5.5. Test Problems for Heuristics Evaluation 
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The evaluation plan was to generate the physician assignment solution ( k,t and Ai,t) for a 

diverse set of problems, and then generate the performance measure Ω using the ASF 

simulator developed in chapter 3. Classical approaches to heuristic research require a 

comparative analysis of candidate heuristics across a range of problems. Using the set of 

surgeries introduced in chapter 3 and the associated parameters, a set of 10 benchmark 

test problems were designed. Key attributes of the problems are shown in table 5.3. We 

have used concepts and approaches used in classical assembly line balancing to develop 

these problems. 

Table 5.3 Set of Benchmark Test Problems 

Problem 
#  

Patient 
Types 

i 

Total 
Arrivals 
∑iαi 

Physician 
Groups 

H 

Total 
Physicians 

∑kNk 

Blocks / 
Group 
Avg Ek 

Nurse-A 
Loading 

(j=1)  

Nurse-B 
Loading 

(j=2) 

MedTech 
Loading 

(j=3) 

1 20 144 5 11 2.00 75% 72% 72% 

2 30 274 6 18 2.33 85% 80% 80% 

3 15 116 4 9 2.25 80% 75% 80% 

4 30 350 6 22 2.83 82% 77% 77% 

5 30 286 6 22 2.33 82% 78% 77% 

6 16 78 4 9 1.50 85% 75% 75% 

7 19 140 4 9 2.75 80% 70% 74% 

8 21 133 5 11 1.80 85% 73% 70% 

9 18 36 6 6 1.00 70% 60% 70% 

10 21 74 5 9 1.40 70% 75% 79% 

 

Problems #2, #4 and #5 are relatively large problems with 30 patient types, with 

problem #4 being the largest with 350 patients/day.  In contrast problem #6 is the 
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smallest problem with only 16 patient types and serving only 78 patients/day. Problem 

#10 is a highly diverse problem in that its 74 patient/day are distributed over 21 patient 

types implying a large variety of resource use profiles are in play. Problems #8, #9 and 

#10 have an average Ek<2 implying a large decision space for the physician assignment 

problem. In contrast, problems #4 and #7 have an average Ek>2.75 implying a small; 

decision space.  

Problems # 1 and #3 are nominal problems in hat most of their descriptive metrics 

are at a mean level. From table 5.3 the authors that resource loading levels range from 

60% to 85% with most problems having a loading in the 70 to 80% range. The loading 

level was kept in a narrow range by design to minimize the effect of surplus staffing 

capacity on the heuristics evaluation process.  

5.5.1. Replication Estimate for the Experiments 

Similar to the analysis done in section 4.3.2, a series of initial simulation experiments 

were conducted to derive the valid replication number for each of the test problems. As 

noted earlier simulation experiments are inherently characterized by errors or measure 

variance. For a valid study the simulation replication number should be estimated to get 

more accurate experimental results. Table 5.4 shows the results for the test problems 

using an initial run of 200 replications.  

For each problem the staffing level is constant across all the heuristics being 

evaluated, thus the staffing cost is fixed. The variable cost then included the patient delay 

and physician delay penalties plus the overtime costs. The variable cost is of primary 

interest here, and is thus separated out from the total cost. Based on the half width data 
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the replication number for each problem was calculated and reported in table 5.5. Arena’s 

built in “Output Analyzer” offers us a convenient function of doing outputs analysis and 

this tool was utilized here. 

 

Table 5.4 Statistical behavior of test problems (200 Replications) 

Problem Total Cost Fixed cost 
Variable 

Cost 
4% of 

Variable 
Half 

Width 

1 8602.29 $7,620 $982 39.29 119.35 

2 $15,927 $13,764 $2,162 86.51 206.84 

3 $6,553 $5,568 $984 39.38 96.88 

4 $19,727 $18,108 $1,619 64.78 131.38 

5 $16,256 $14,892 $1,364 54.57 145.58 

6 $5,049 $3,876 $1,173 46.93 143.21 

7 $7,853 $6,960 $893 35.74 118.99 

8 $7,742 $6,564 $1,178 47.14 149.81 

9 $2,903 $2,088 $815 32.61 93.63 

10 $4,981 $3,828 $1,153 46.10 126.61 

 

Table 5.5 Simulation Replication for Test Problems 

Problem 1 2 3 4 5 6 7 8 9 10 

Reps 1850 2120 1790 1140 1430 2440 3670 2020 1650 1920 
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5.6. Decisions Generated by the Heuristics 

For all 10 problems the decision or solution sets (δk,t and Ai,t) were first generated by the 

5 heuristics. For problem #1 the results are shown in Table 5.6. Reviewing first δk,t the 

authors note that by design heuristics #2, #3 and #4 have the same decisions. Comparing 

heuristics #1 and #2 the authors that apart from physician group k=4, the two solutions 

are completely different. Clearly, the move to an asymmetrical balance had an impact on 

the decision policy. Reviewing the Ai,t decisions the authors compare the results of 

heuristics #2, #3 and #4 since they have the same δk,t  decision. Apart from group k=3 and 

k=5, the authors see that the decisions vary significantly for the other groups across these 

three heuristics. Heuristic #3 tends to concentrate same surgery types into the same block. 

For example in the case of k=2 the authors see that patients with the same surgery type 

are scheduling in the same block. Heuristic #4 on the other hand is closer to the #2 

solution, clearly surgery processing time balance is achieved by smaller changes relative 

to the #2 solution. 
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Table 5.6 Heuristic Decisions – Problem #1 

Group 

k 

Blocks  

t 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Heuristic #1 Heuristic #2 Heuristic #3 Heuristic #4 Heuristic #5 

1 

1,t  0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 

A9,t  0 5 0 0 5 0 0 5 0 0 5 0 3 2 0 

A10,t  0 3 2 4 1 0 0 5 0 2 3 0 0 5 0 

A19,t  0 0 4 4 0 0 4 0 0 2 2 0 4 0 0 

A20,t  0 0 4 2 2 0 4 0 0 4 0 0 3 1 0 

2 

2,t  1 1 0 0 1 1 0 1 1 0 1 1 1 1 0 

A7,t  3 3 0 0 6 0 0 6 0 0 5 1 6 0 0 

A8,t  6 0 0 0 3 3 0 0 6 0 0 6 1 5 0 

A17,t  0 5 0 0 0 5 0 0 5 0 1 4 1 4 0 

A18,t  2 1 0 0 0 3 0 3 0 0 3 0 3 0 0 

3 

3,t  0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 

A6,t  0 0 3 3 0 0 3 0 0 3 0 0 3 0 0 

A6,t  0 0 3 3 0 0 3 0 0 3 0 0 3 0 0 

A6,t  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A6,t  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 

4,t  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

A6,t  0 9 5 14 0 0 14 0 0 0 3 11 0 0 14 

A6,t  0 7 6 6 2 5 3 6 4 9 4 0 0 5 8 
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Table 5.6 Continued 

A6,t  5 0 7 0 0 12 4 8 0 0 12 0 1 11 0 

A6,t  12 0 0 0 12 0 0 0 12 7 3 2 6 0 6 

A6,t  9 2 0 3 8 0 0 2 9 0 0 11 11 0 0 

A6,t  0 5 7 4 0 8 6 4 1 11 0 1 4 6 2 

5 

t 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 

A6,t  8 0 0 0 0 8 0 0 8 0 4 4 0 0 8 

A6,t  2 6 0 0 1 7 0 7 1 0 4 4 0 8 0 

A6,t  0 6 0 0 6 0 0 6 0 0 1 6 0 0 6 

A6,t  4 0 0 0 4 0 0 0 4 0 4 0 0 4 0 
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5.7. Dominance of Heuristics 

For all 10 problems the decision or solution sets (δk,t and Ai,t) were applied and run on the 

ASF simulation model with replication set as per table 5.5. The results are shown in table 

5.7 which documents both the mean and half-width values for each problem across all 

five heuristics. As expected the performance function Ω gives different results for the 

different heuristics, with some decision solutions clearly outperforming the others. Note 

we consider only the variable cost portion of Ω. For some problems the Ω – half width is 

relatively small (#7, #9), while for others it is relatively large (#2, #4). 

Table 5.7 Simulation Results for Function Ω Variable Costs by Heuristic  

Prob  
# 

Heuristic #1 Heuristic #2 Heuristic #3 Heuristic #4 Heuristic #5 

Ω - 
Mean 

Ω - Half 
Width 

Ω - 
Mean 

Ω - Half 
Width 

Ω - 
Mean 

Ω - Half 
Width 

Ω - 
Mean 

Ω - Half 
Width 

Ω - 
Mean 

Ω - Half 
Width 

1 1290 48.1 1020 41.4 1190 46.3 1330 45.3 1090 44.2 

2 2136 84.1 1836 68.8 1631 64.3 1636 68.4 2736 106.1 

3 1002 34.8 992 35.6 1122 39.8 902 35.2 1242 47.5 

4 1592 60.5 992 39.6 1492 61.6 992 37.8 1892 70.3 

5 1408 51.8 1157 43.7 1208 51.6 1105 40.6 2308 81 

6 1104 36.8 1014 39.3 934 33.5 964 37 1214 38.1 

7 950 28.6 910 34.1 920 31 820 25.7 910 34.1 

8 1156 42.1 1046 38.2 1516 49.2 1096 38.2 1506 49.2 

9 872 29.3 882 30.1 882 30.1 882 30.1 962 36.5 

10 1031 36.6 1058 38 1036 37.2 1058 38 1392 45.3 
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To determine which decision solutions are the best for each problem, the authors 

conduct a paired t-test for each pair of heuristics in each problem. Based on the Ω-Mean 

values the rank of each solution is determined, this is shown in table 5.8. Defining the 

hypothesis test for the first two ranked solutions as follows:  

H0: The performance of Rank-1 and Rank-2 heuristics is the same 

H1: The performance of Rank-1 and Rank-2 heuristics is not the same 

If the null hypothesis is accepted then both decision solutions are included in the 

optimal solution set. The process is then repeated with the third and fourth ranked 

solutions. The test results are shown in table 5.8 below.  

Table 5.8  Paired t-Test Comparison of Heuristic  

 
Heuristic Performance # 

   

Prob 
# 

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 
Rank 1/2  
Ω - Mean 

Rank 1/2 95%  
CI Half-Width 

Heuristics  
Optimal 

Decision Set 

1 2 5 3 1 4 -64.4 57.9 2 

2 3 4 2 1 5 -22.8 89.5 3,4 

3 4 2 1 3 5 -87.4 48.9 4 

4 2 4 3 1 5 -49.3 54.7 2,4 

5 4 2 3 1 5 -52.6 58.4 2,3,4 

6 3 4 2 1 5 -26.8 44.6 3,4 

7 4 2 5 3 1 -90 41.1 4 

8 2 4 1 3 5 -47.4 50.6 2,4 

9 1 2 3 4 5 -7.76 36.3 1,2,3,4 

10 1 3 2 4 5 -26.9 45.9 1,2,3,4 
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According to the results shown in table 5.8, the authors have the following 

conclusions: 

 Heuristics #2, #3 and #4 show better results than 1 and 5 and are statistically 

dominant across the set of benchmark problems. 

 The asymmetrical load balancing strategy is clearly effective in improving the 

ASF operation performance. 

 Heuristic #4 is the best performing and is in the optimal set for 9 of the 10 

problems. Indicating that surgery activity time balance is a significant factor in 

ASF performance. 

 Heuristic #2 also performs well and has an Ω differential ranging from 0% to 13% 

with an average disadvantage of 5%. 

 In combination Heuristics #2 and #4 are a dominant pair by giving the best 

solutions for the full set of problems. 

 Heuristic #5 is the weakest performing with the Ω differential ranging from 7% to 

109% with an average disadvantage of 44%. 

 

5.7.1. Cost Component Analysis of Heuristic Solutions 

The three cost components comprising the variable cost in were studied further 

specifically for the heuristic #1, #2 and #4 solutions. The percentage distribution for each 

component across the first five test problems is shown below in Figure 5.1 to 5.3. 
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Figure  5.1 Physician Delay as Part of Variable Cost in Ω. 

 

Figure  5.2 Patient Delay as Part of Variable Cost in Ω. 
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Figure  5.3 Overtime as Part of Variable Cost in Ω. 

First the authors evaluate the differences across the five test problems. Problem 

#2 has on average the highest percentage of physician delay cost. In general problems #1, 

#2 and #3 have physician delay in the 55-65% range. In contrast problem #4 has a 

significantly different cost behavior, with overtime being the dominant cost. Both 

problems #4 and #5 have physician delay less than 50% and the solutions are pressed to 

resolve the overtime cost. Across the problems patient delay is typically the smallest 

component and is in the 12-17% range. A key finding of this research is that patient delay 

is rarely a dominant cost in ASF operations. The authors suspect that this true for many 

healthcare operations. This is in contrast to the primary focus the authors see on reducing 

patient waiting time in the healthcare systems research. 
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Next the authors evaluate the solution differences between heuristics. This is most 

pronounced in heuristic #1 which tends to have a higher physician delay compared to #2 

and #3. Clearly the asymmetrical resource loading strategy is favorable to the physician 

delay component. This difference is greatest in problem #4 where there is a 20% 

difference between the solutions. Comparing heuristics #2 and #4, problem #1 is most 

interesting. By balancing the surgery times the authors see that heuristic #4 raises 

physician delay by 6% but gives a 7% reduction in the patient delay. This behavior is not 

consistent though across all the problems. The results confirm that the heuristics each 

behave uniquely and do have different strategies across the problems. 

 

5.8. Deriving a Lower Bound to Ω 

A key issue in the performance analysis of heuristics is to have a good estimate of the 

lower bound solution, and this allows us to gauge the true quality of the solutions. Where 

an exact solution is available then that becomes the lower bound. Following the 

experience and with the ASF model and its operations, the authors find the following two 

methods can give us ways to get lower bound for doctor’s delay, patient waiting time and 

resource overtime cost and both of these methods will be applied to the original best 

results: 

 Lower Bound 1 (LB-1): By increasing the staffing resource levels Mj by 20% for 

al j. Since the three variable cost objectives are inverse to the fixed staffing cost, 

by relaxing the staffing constraint the variable cost will drop. This revised 

variable cost then serves as the lower bound. 
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 Lower Bound 2 (LB-2): The model study shows that patient arrival times are a 

key factor in performance. By initiating patient arrivals into the system 15 

minutes earlier than the original setting this relaxes then patient arrival constraint. 

As a result the variable costs of overtime and physician delay will go down, 

though the patient delay cost will go up. The overall lower variable cost then 

serves as the lower bound. 

 

Let Ω* represent the best solution generated from the heuristics. The associated 

physician assignment solution (δk,t and Ai,t) is then rerun with the relaxed constraints 

listed above. There are therefore three solutions to each problem Ω*, LB-1and LB-2. For 

each solution the three variable costs components are tracked: Physician Delay, Patient 

Delay and Overtime. The overall lower bound LB* is then give by the sum of the 

minimum of each component for the three solution. That is: 

       {                           }

    {                         }

    {                    } 

Table 5.9 below provides LB* for the test problems and compares it against the 

best heuristic solution.  The LB* gap ranges from 3.26% from 7
th

 problem to 27.04% 

from the 10
th

 problem.  The highest three gaps are from problems #3, #8 and #10 which 

are all above 20% relative to LB*. 
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Table 5.9 Lower Bound Gap Analysis  

Prob 
# 

Best 
Heuristic 

Solution 
Physician 
Delay ($) 

Patient 
Delay ($) 

Overtime ($) Total Cost ($) Gap 

1 #2 
Ω* 566 238 216 1020 

18.69% 
LB* 431 204 194 829 

2 #3 
Ω* 980 289 362 1631 

7.78% 
LB* 894 279 331 1504 

3 #4 
Ω* 509 154 239 902 

20.43% 
LB* 366 151 201 718 

4 #2 
Ω* 178 245 569 992 

14.09% 
LB* 120 239 493 852 

5 #4 
Ω* 447 221 437 1105 

14.12% 
LB* 355 215 379 949 

6 #3 
Ω* 531 207 196 934 

11.87% 
LB* 464 179 181 823 

7 #2 
Ω* 315 265 240 820 

3.26% 
LB* 315 246 232 793 

8 #2 
Ω* 636 203 207 1046 

22.39% 
LB* 465 177 169 812 

9 #2 
Ω* 605 197 80 882 

14.96% 
LB* 514 169 67 750 

10 #2 
Ω* 668 196 172 1036 

27.04% 
LB* 451 160 145 756 

 

5.9 Results Data Analysis 

To explain the reason why the three problems have comparably higher gaps to others, the 

authors investigate the nature of 10 problems by tracking several factors from the 
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problems’ themselves.  From the fourth (total pre-operation time in minutes over total 

patient number) and sixth factor (total pre-operation time in minutes over total staffing 

numbers) the authors listed in the left column, p3, p8 and p10 gives higher numbers than 

any problems else. Because of the heavier pre-operation load than other problems, these 

three cases may decrease more when the authors arrange more staffing members in the 

system and make patients come earlier. 
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CHAPTER 6 

SCHEDULING ARRIVAL TIMES OF INDIVIDUAL PATIENTS 

 

The physician assignment problem discussed in chapter 5 included the derivation of the 

arrival volume of all patients Ai,t in a time block. The common approach is to convert the 

sum of all for a physician group k into a series of equal interval arrivals. A base strategy 

is to set the interval in the 20-30 minute range. In this chapter the authors expand further 

on by (i) identifying the patient arrival sequences (ii) dynamic setting of the inter arrival 

time between every pair of patients and (ii) prescribing the arrival time of the first patient 

in each time block. In this chapter, new updates to the simulation model were made to 

adapt to new specific appointment time for a specific patient. Considering the surgery 

process as flow shop problem, some classic flow shop heuristic rules were adapted to the 

problem here. 

 

6.1. Defining the Patient Arrival Time Scheduling Problem 

The results from the simulations experiments in chapter 4 and 5 have demonstrated the 

importance of patient arrival rates and mix to the overall objective function. The results 

have also shown that contrary to common beliefs patient delay costs are not dominant. It 

is unlikely that the authors will see close to zero patient waiting times in almost any 

healthcare service facility. This is primarily due to the order of magnitude difference 

between physician delay costs and patient delay costs. There is much interest know in 
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scheduling patient arrivals more specifically, that is each patient is given a specific arrival 

time which minimize their project delay time. In the extreme case these arrival are 

scheduled in real time, patient are given an arrival window and then as the effect of the 

system variance becomes more apparent the time is updated in real time. The patient 

arrival time scheduling problem therefore involves prescribing the specific arrival time of 

each patient in the system, which then functions as the expected arrival time of that 

patient. The problem decisions are then as follows: 

 p Sequence number of patient arriving for each physician group 

 T
k,t

 The early arrival buffer for the first patient in block t for group k 

 Z
p.k

 The expected inter-arrival time between patient p-1 and p for group k 

 Y
p.k

 The expected arrival time of patient p for group k 

The schematic relationship of these decision variables is in shown in Figure 6.1, 

including an example decision table. Note that Z
p.k

 is a dependent decision, since Z
p.k

 = 

Y
p.k

 - Y
p-1.k

 .  Depending on the decision strategy one or the other is determined first.  

 

Sequence p 1 2 3 4 5 6 7 8 9 

Type i 7 7 7 4 4 3 3 9 9 

Y
p.k hours -0.75 -0.42 -0.15 0.80 1.08 3.25 3.60 4.50 5.40 

 

Block t=1 Block t=2 

Time 

8:00 am 
Tkt 

Zpk 

Ypk 

0 
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Figure 6.1 Patient arrival time decisions and relationships. 

The ASF patient arrival time scheduling problem is then described as determining 

the sequence p, T
k,t

, and Y
p.k

 for each physician group k, such that the expected value of Ω 

is minimized. Further the authors assume the staffing level has already been fixed, that is 

Mj,t is predetermined. The ASF operational objective has been previously defined as 

follows: 

                 ∑∑(         )

  

    ∑(      )

 

             

Since Mj,t is fixed then the first term in Ω is a constant for a given problem. The 

authors present here several heuristics based on classical flow shop scheduling rules to 

solve this problem. 

 

6.2. Review of Flowshop Scheduling and Sequencing 

There are different ways to classify scheduling and sequencing problems, commonly 

based on the quantity of machines, quantity of jobs, or the objective function etc. In the 

multiple machines’ category, according to the characteristics of jobs and operation orders, 

job-shop and flow-shop problem have been classified as two different types.  

Job-shop problem is a number of jobs have to be done and every job consists of 

using a number of machines for a certain amount of time. Flow shop scheduling problem 

is with a work shop or group shop in which the flow control shall enable an appropriate 

sequencing for each job and for processing on a set of machines or with other resources 
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1,2,...,m in compliance with given processing orders. The job shop process differs from 

flow shop process in that the flow of work is not unidirectional in job shop, hence it is 

one of the complex scheduling problems. One interesting example of job-shop problem is 

the traveling salesman problem. The travelling salesman problem (TSP) asks the 

following question: Given a list of cities and the distances between each pair of cities, 

what is the shortest possible route that visits each city exactly once and returns to the 

origin city? It is an NP-hard problem in combinatorial optimization, important in 

operations research and theoretical computer science. Then the job-shop problem is 

clearly also NP-hard, since the TSP is special case of the JSP with m = 1 (the salesman is 

the machine and the cities are the jobs.) 

 

Figure 6.2 job-shop  
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Figure 6.3 Flexible flow-shops. 

Typical specification of scheduling problems involves first specifying the 

problem in the format: 

N/M/A/B 

N: 1, 2, or N (number of jobs) 

M: 1, 2, or M (number of machines) 

A: the job flow pattern (discussed later in these notes), and 

B: the performance measure (e.g. average flow time) 

NOTE: The performance measure is always stated in terms of a measure that 

needs to be MINIMIZED, so the B-field only shows the criterion, not the optimization 

condition. 

Usually, the authors are interested in N-jobs problems, and therefore the authors 

may specify only the last three of these in the problem, that is, M/A/B specification. 

Some people call this the α/β/γ specification) 

Notations: 

α machine environment 

β processing characteristics/constraints  
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γ objective functions 

Table 6.1 α -field notations 

1 Single machine 

Pm m identical machines in parallel; job-j can be processed by any one of them. 

Qm m machines in parallel with different processing time; job-j can go to any one. 

Rm m unrelated machines in parallel; each job can go to a particular one (or one of a 

subset) of these m.             

Fm Flow shop: m machines in series. Each job goes to each machine. All jobs have 

same routing. Most common schedule is a permutation schedule (FIFO at each 

machine) 

FFs Flexible flow shop. S-stages in series, each stage has 1, 2, or more machines, and 

each job may be assigned to exactly one machine in each stage. 

 

Om Open shops. Each job must visit each of m machines; each job has unique route; If 

jobs can visit same machine more than once, then Om|recrc| 

 

Jm m machine job shop. Each job can visit one or more machine, and has its own 

route. 
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Table 6.2 β -field notations 

rj Release dates are specified 

sjk Sequence dependent setup times: setup time between job j and job k depends on 

machine. 

 

prmp Preemptions. A job being processed can be interrupted by another (remaining 

operations must be completed at a later time). 

prec Precendeces are specified, as a set A of pairs (j,k) if task j is an immediate 

predecessor of task k. 

brkdwn Breakdown: machines are not available continuously; in deterministic scenarios, 

scheduled maintenance shut downs can be modeled thus. 

 

Mj Machine eligibility restrictions; Mj is th set of machines that can do task j. 

prmu Permutation schedule: in flow shops -- each machine processes tasks in FIFO. 

block Blocking. If buffer before machine j is full, then upstream machine cannot release 

task. 

recrc Recirculation: job can visit same machine more than one time. 

no-wait Streaming: jobs cannot wait between one process and next. 

 

NOTE: while any given problem specification will contain only one entry in the 

a-field, it may contain several comma-separated values in the b-field. 

 

γ -field notations: 

Cj : Completion time 
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Lj : Lateness (Cj - dj) 

Tj : Tardiness, ( = max{ 0, Lj} ). 

Uj : Unit penalty ( = 1, if Tj is non-zero, 0 otherwise) 

Fj:        The flow time of a job, the time the job is in the system, Fj=Cj-rj  

Fmax: Maximum flow time in the system 

Cmax : Makespan ( = completion time of the last task of the last job to be 

completed) 

Lmax : Maximum lateness. 

ΣwjCj= total weighted completion time. Weight of each job indicates its relative 

importance. 

ΣwjTj = total weighted tardiness. 

ΣwjUj= total weighted unit penalty. 

 

Each of the above are objectives that must be minimized. Typically, a shop 

manager will select his/her favorite from among these objectives to schedule their factory. 

Most of these are self-explanatory, except for the last one. There, the authors see use, 

instead of a linear importance of the completion time, a non-linear function, which 

depending upon the rate, r, and makes jobs with closer completion times relatively more 

important than others. 

 

6.3. Heuristic Algorithms for Three Machine Problem 

Considering the three stage process for the whole surgery (preoperative, surgery and 

postoperative) to be three machines flexible flow-shop problem with release time rj, 
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permutation schedule, set up time and block constraints, targeting at minimal total 

weighted tardiness time. However, minimizing the total tardiness on one machine is NP-

hard (Leung, 1990), different heuristic algorithms have been promoted to achieve both 

less calculation complexity and enough good solutions. 

However, the ASF surgery scheduling problem is unlike any of the classical 

minimize of the total tardiness problem, and the multi objectives are not just equal to the 

total tardiness. Therefore, other famous three machine flow shop heuristics have been 

reviewed and tested.  Three heuristic algorithms to solve the n/3/P/Makespan problem 

have been generally used and also been tested on the simulation model, and they are 

Cambell-Dudek-Smith’s Rule, Palmer’s Rule and Critical Path Method. Though not in 

optimizing the total weighted tardiness, heuristics based on these rules gave good results 

from the ASF experiments, not only in general total cost but also in separate single 

objectives. Seven heuristic are generated and five of their results are shown in the 

following sections. The general ideas for these rules are:  

 

1. Find the first arrival time 

2. Calculate the time intervals 

3. Decide the patient group sequence 

4. Assign overall patient 

 

Let p = 1 to Uk, where    ∑   for group k, that is total patient for group k  

 

Model variables are introduced as follows: 
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St  is the window start time for each window t 

Zpk  is the inter arrival time between patient p and p-1 (hour)  

Tkt  is the early time for first patient (hour) 

Ypk  is the planned arrival time of patient p for group k (hour) 

SPTi  is the total processing time for patient type i 

ζi  is the ratio of Palmer’s Rule  

 

6.3.1. Heuristic #1- Based on Cambell-Dudek-Smith CDS 

In the chapter 5, Ait is used to stand for patient arrival rate, however here the specific 

arrival time Ypk (like 7.5 hour) will be specified.  

 

Step – 1: Calculate the first arrival time for the physician group k based on δk,t 

where δk,t is the same as the dummy problem. In the daily three of the four hour window: 

8:00-12:00, 12:00-16:00, and 16:00-18:00, the patients are required to arrive 45 minutes 

(0.75 hour) earlier to the system to finish the documentation. 

When the first δk,t >0  for physician group k appears on window t,  

            

If t=1, Tk1=8-0.75=7.25 (hour) 

If t=2, Tk2=12-0.75=11.25(hour) 

If t=3, Tk2=16-0.75=15.25(hour) 
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Step – 2: Calculate the inter arrival time Zpk, because the authors have 4 hour 

window for each physician group, but all the patients are allowed only to arrival within 3 

hours to reduce post-operative delay.  

    
  ∑      

  
⁄  

Step – 3: Patient group sequence decision. The CDS algorithm uses Johnson’s 

Rule in a heuristic fashion and creates several schedules from which a “best” schedule is 

chosen. The algorithm corresponds to a multistage use of Johnson’s Rule applied to a 

two-machine pseudo-problem derived from the original. The Johnson’s rule will be 

simply introduced for CDS explanation.  

 

Johnson's rule is as follows: 

1. List the jobs and their times at each work center. 

2. Select the job with the shortest activity time. If that activity time is for the first 

work center, then schedule the job first. If that activity time is for the second work 

center then schedule the job last. Break ties arbitrarily. 

3. Eliminate the shortest job from further consideration. 

4. Repeat steps 2 and 3, working towards the center of the job schedule until all jobs 

have been scheduled. 

5. Given significant idle time at the second work center (from waiting for the job to 

be finished at the first work center), job splitting may be used. 

Each of five jobs needs to go through work center A and B. Find the optimum 

sequence of jobs using Johnson's rule. To solve three machines problem, CDS follows 

Johnson’s rule by either not consider the middle processing time or by adding the first 

http://en.wikipedia.org/wiki/Arbitrariness
http://en.wikipedia.org/wiki/Idle
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and second and the second and the third processing time, then pick up the smaller 

makespan  by comparing these two methods. Though CDS targets at minimize makespan, 

same ideas and format could also be copied to the ASF problem. The following is an 

example for CDS’s rule, it applies Johnson’s rule without considering the operative time. 

Example.1 

Table 6.3 physician group v’s patient types 

Patient 

Type i 

75% process time (min) 

pre op post total 

9 28 31 65 124 

10 51 31 65 147 

19 51 60 130 241 

20 75 60 130 265 

 

1. Find the smallest pre or post processing time within one physician group, which I 

highlighted here (28). Because it appears in the first preoperative process, so 

patient type 9 will be put to the earliest. (If it appears in the post process, the 

patient type 9 will be put to the end.) 

10 51 31 65 147 

19 51 60 130 241 

20 75 60 130 265 

 

2. Remove patient type9; find the smallest number among patient 10, 19 and 20. If 

there are two numbers are equal, for this problem, just randomly pick one to 

process first. Then patient type 10 will be scheduled next. 
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19 51 60 130 241 

20 75 60 130 265 

 

1. Then same way, patient 19 will be followed by patient 10 

2. So the final sequence is 9,10,19,20. 

 

Step –5: Decide arrival time for patient p for physician group k 

                 

                      

                                    

 

Step – 6: Overall patient sequence for physician group k: 

According to the step 3 on group sequence scheduling results: 9, 10, 19, 20, all 

type 9 patients got the higher priority to be scheduled first. The δk,t  is given in the Table 

6.4 

Table 6.4 Given δk,t 

k\t t=1 t=2 t=3 

1 1 1 0 

2 1 1 0 

3 0 0 1 

4 1 1 1 

5 0 1 1 

6 0 0 0 
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  T11=8-0.75=7.25 (hour) 

And T12=12-0.75=11.25 (hour) 

If Ypk > (T12-1) = 10.25, let Ypk=11.25 

Overall performance for physician group v is shown below in Table 6.5 

Table 6.5 Overall Performance Results 

patient 
type i 

physician 
type k 

arrival 
time 
(min) 

arrival 
time Ypk  
(hour) 

9 v 435 7.25 

9 v 453.9474 7.57 

9 v 472.8947 7.88 

9 v 491.8421 8.20 

10 v 510.7895 8.51 

10 v 529.7368 8.83 

10 v 548.6842 9.14 

10 v 567.6316 9.46 

10 v 586.5789 9.78 

19 v 605.5263 10.09 

19 v 675 11.25 

19 v 693.9474 11.57 

19 v 712.8947 11.88 

19 v 731.8421 12.20 

20 v 750.7895 12.51 

20 v 769.7368 12.83 

20 v 788.6842 13.14 

20 v 807.6316 13.46 

20 v 826.5789 13.78 
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6.3.2. Heuristic #2-Cycle CDS 

Instead of having patient group sequencing rule, the cycle CDS made the single patient 

sequence the same as CDS rule, but the overall sequence is the repeat of the single 

sequence result. 

 

Step – 1-5: Same as Heuristic #1 

Step – 6: Overall patient sequence for all physician groups. 

Table 6.6 Overall Performance Results for Cycle CDS 

patient 
type i 

physician 
type k 

arrival 
time 
(min) 

arrival 
time Ypk  
(hour) 

9 v 435 7.25 

10 v 455 7.58 

19 v 475 7.92 

20 v 495 8.25 

9 v 515 8.58 

10 v 535 8.92 

19 v 555 9.25 

20 v 575 9.58 

9 v 595 9.92 

10 v 675 11.25 

19 v 695 11.58 

20 v 715 11.92 

9 v 735 12.25 

10 v 755 12.58 

19 v 775 12.92 

20 v 795 13.25 

9 v 815 13.58 

10 v 835 13.92 
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6.3.3. Heuristic #3-Batch CDS 

Based on the number of physicians in the group, ignoring about other limited resources 

like the operative beds, the batch of arrival patients are designed to the ASF at the same 

time.  

 

Step – 1-4: Same as Heuristic #1 

 

Step –5: Decide arrival time for patient p for physician group k 

                 

                                   

                                    

 

Step – 6: Overall patient sequence for all physician groups: 
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Table 6.7 Overall Performance Results for Batch CDS 

patient 
type i 

physician 
type k 

Time 
intervals 

(min) 

arrival 
time Zpk 

(min) 

arrival 
time Ypk  
(hour) 

9 v 0 435 7.25 

9 v 0 435 7.25 

9 v 40 475 7.92 

9 v 0 475 7.92 

9 v 40 515 8.58 

10 v 0 515 8.58 

10 v 40 555 9.25 

10 v 0 555 9.25 

10 v 40 595 9.92 

10 v 0 595 9.92 

19 v 0 675 11.25 

19 v 0 675 11.25 

19 v 40 715 11.92 

19 v 0 715 11.92 

20 v 40 755 12.58 

20 v 0 755 12.58 

20 v 40 795 13.25 

20 v 0 795 13.25 

 

6.3.4. Heuristic #4-Modified CDS 

Other steps are the same as heuristic #1 except step 3 

Step – 3: Patient group sequence decision 

If there are two types of patients have the same preoperative time which for 

example is shown below as patient type 10 and patient type 19. However, the 

postoperative time is the different for them. Unlike the first heuristic, some 

considerations will be made based on the different postoperative time even the 

preoperative time are the same for them. 
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Because the main ideal of the Johnson’s rule is: made the shorter processing 

time’s part go either front or to the end. When under the same shortest preoperative time, 

but patient type 10’s post-operative time is smaller than its of patient type 19’s, so patient 

type 10 should be put to later place and patient type 19 should be put to the second place. 

10 51 31 65 147 

19 51 60 130 241 

20 75 60 130 265 

 

So the final patient group sequence for this heuristic is 9,19,10,20 

 

Step – 6: Overall patient sequence for physician groups. 
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Table 6.8 Overall Performance Results for Modified CDS 

patient 
type i 

physician 
type k 

arrival 
time 
(min) 

arrival 
time Ypk 
(hour)  

9 v 435 7.25 

9 v 455 7.58 

9 v 475 7.92 

9 v 495 8.25 

9 v 515 8.58 

19 v 535 8.92 

19 v 555 9.25 

19 v 575 9.58 

19 v 595 9.92 

10 v 675 11.25 

10 v 695 11.58 

10 v 715 11.92 

10 v 735 12.25 

10 v 755 12.58 

20 v 775 12.92 

20 v 795 13.25 

20 v 815 13.58 

20 v 835 13.92 

 

 

6.3.5. Heuristic #5-Total Time SPT 

Other steps are the same as heuristic #1 except step 3 

Step – 3: Patient group sequence decision: give the shortest total processing time 

the highest priority to be scheduled.  

     ∑                 

 

 

Based on the total processing time SPTi which is shown in the last column (total), 

smaller total processing time’s patient type will be put to the earlier place.  



160 
 

Example 2 

Patient 

Type i 

75% process time (min) 

pre op post SPTi 

9 28 31 65 124 

10 51 31 65 147 

19 51 60 130 241 

20 75 60 130 265 

Because SPT9 < SPT10 < SPT19 < SPT20, the final group sequence for this 

heuristic is 9,10,19,20 

Step – 6: Overall patient sequence for physician group v: 

Table 6.9 Overall Performance Results for Total Time SPT  

patient 
type i 

physician 
type k 

arrival 
time 
(min) 

arrival 
time Ypk 
(hour) 

19 v 435 7.25 

19 v 455 7.58 

19 v 475 7.92 

19 v 495 8.25 

20 v 515 8.58 

20 v 535 8.92 

20 v 555 9.25 

20 v 575 9.58 

9 v 595 9.92 

9 v 675 11.25 

9 v 695 11.58 

9 v 715 11.92 

9 v 735 12.25 

10 v 755 12.58 

10 v 775 12.92 

10 v 795 13.25 

10 v 815 13.58 

10 v 835 13.92 
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6.3.6. Heuristic #6- Palmer 

Other steps are the same as heuristic #1 except step 3 

Step – 3: Patient group sequence decision 

Palmer’s Rule is based on the ratio ζi for different processing time, and sequences 

the highest priority job first. When for three machine problems, the equation is shown as 

follows:  

             

Example.3 

Table 6.10 Physician Group V’s patient types 

Patient 

Type i 

75% process time (min) 

pre op post ζi total 

9 28 31 65 37 124 

10 51 31 65 14 147 

19 51 60 130 79 241 

20 75 60 130 55 265 

 

Because ζ19> ζ20> ζ9> ζ10, the final sequence is 19, 20, 9, and 10. 

Step – 6: Overall patient sequence for physician group v: 
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Table 6.11 Overall Performance Results for Palmer 

patient 
type i 

physician 
type k 

arrival 
time 
(min) 

arrival 
time Ypk 
(hour) 

19 v 435 7.25 

19 v 455 7.58 

19 v 475 7.92 

19 v 495 8.25 

20 v 515 8.58 

20 v 535 8.92 

20 v 555 9.25 

20 v 575 9.58 

9 v 595 9.92 

9 v 675 11.25 

9 v 695 11.58 

9 v 715 11.92 

9 v 735 12.25 

10 v 755 12.58 

10 v 775 12.92 

10 v 795 13.25 

10 v 815 13.58 

10 v 835 13.92 

 

6.3.7. Heuristic #7-Critical Path Method 

Other steps are the same as heuristic #1 except step 3 

Step – 3: Patient group sequence decision 

 Find the highest total processing time, and consider the according patient type as 

the critical type (C) 

 for the rest parts, if the first processing time is less than the last processing time, 

sequence the shortest first processing time first(S1).  

 Otherwise, sequence the highest last processing time first (S2).  

 The whole sequence has been composed by (S1, C, S2) 
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Example 4  

Table 6.12 Physician Group V’s patient types 

Patient 

Type i 

75% process time (min) 

pre op post total 

9 28 31 65 124 

10 51 31 65 147 

19 51 60 130 241 

20 75 60 130 265 

 

1. Find the highest total processing time which is patient type 20, and that is the 

critical patient type. 

2. For the rest of the patient types, if μi,1<μi,3, which includes patient type 9, 10 and 

19, make an order based on increasing μi,1, which is 9, 10, 19. 

3. If μi,1>μi,3, by not increasing μi,3, make the order. 

4. If there are two numbers are the same, test it and choose the better one. 

The final sequence for this one is 9,19,10,20 

Step – 6: Overall patient sequence for physician group  
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Table 6.13 Overall Performance Results for Critical Path Method 

patient 
type 

physician 
type 

arrival 
time 
(min) 

arrival 
time  

(hour) 

9 v 435 7.25 

9 v 455 7.58 

9 v 475 7.92 

9 v 495 8.25 

9 v 515 8.58 

19 v 535 8.92 

19 v 555 9.25 

19 v 575 9.58 

19 v 595 9.92 

10 v 675 11.25 

10 v 695 11.58 

10 v 715 11.92 

10 v 735 12.25 

10 v 755 12.58 

20 v 775 12.92 

20 v 795 13.25 

20 v 815 13.58 

20 v 835 13.92 

 

 

6.4. Replication Estimate for Experiments 

Because of the overall performance, the results analysis is only from Heuristice#1, #4, #5, 

#6 and#7. In Heuristic #2, because of different αi, some long processing time patient 

types are arranged in the last which leads to high overflow cost. In Heuristic #3, it has 

effective on increasing the usage of physician groups, however, it results to the 

overcrowded queue for preoperative.  

To have more precise experimental results, the initial 100 replications 

experiments have been applied and the number of estimated replications has been 
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calculated by the same way which has been introduced in Chapter 5.  The following table 

6.14cis the calculation steps in details for the first heuristic under 100 initial replications. 

Table 6.14 Replication Estimate for Experiments Table 

Problem 
Total 
Cost 

Fixed 
Cost 

Variable 
Cost 

4%Ofvari
able 

Half Width 
Estimate 

Replication Time 

1 8861.69 7620 1241.69 49.6676 68.94 192.66 

2 16981.45 15336 1645.45 65.818 84.6 165.22 

3 7572.77 6924 899.24 35.9696 43.51 146.32 

4 24794 21996 2798 111.92 119.65 114.29 

5 19965 17856 2109 84.36 35.52 17.73 

6 6694.74 4872 1822.74 72.9096 89.77 151.60 

7 7986.96 6960 1026.96 41.0784 66.7 263.65 

8 10565.65 8256 2309.65 92.386 70.87 58.85 

9 2993.08 2784 209.08 8.3632 8.39 100.64 

10 6584.4 4740 1844.4 73.776 93.03 159.01 

 

The following Table 6.15 is the maximum number of replications among five 

heuristics, and this has been applied to all the problems with different heuristics to get 

smaller variance number.  

Table 6.15 Replication for Experiments Table 

Problem 1 2 3 4 5 6 7 8 9 10 

Reps 220 200 250 130 230 380 260 180 130 340 

 

 

6.5. Total Cost Comparison and Conclusion 

Table 6.16 shows the rank of five algorithms for total ten problems. Then paired t test has 

been applied to test the difference of the original experimental results with certain 

replication settings from table 6.15. The first step is to test the difference between rank 1 

and rank 2 results with the hypothesis test below. If the statistical results show that rank 1 
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is lower than rank 2, the rank 1 algorithm is proved to give the optimal results among five 

algorithms. If it fails to reject the H0, the next step is to compare the rank 2 and rank 3 

algorithm results, and equal algorithm results would be shown in this case.  The 

following table 6.17 displays the final results with mean and half width in details, and 

highlighted ones are the best. 

 

H0: Rank 2 algorithm is equal to rank 5 algorithm 

H1: Rank 2 algorithm is not equal to rank 5 algorithm 

Table 6.16 Hypotheses for Ten Problems 

 
Heuristic Performance 

   

Prob 
# 

Rank 
1 

Rank 
2 

Rank 
3 

Rank 
4 

Rank 
5 

Rank 
1/2  
Ω - 

Mean 

Rank 1/2 
95%  

CI Half-
Width 

Heuristics  
Optimal 

Decision Set 

1 2 5 3 1 4 -391 36.7 2 

2 3 4 1 5 2 -324 65 3 

3 1 3 5 2 4 -10.8 28 1,3 

4 3 4 5 2 1 -96.2 77.2 3 

5 4 3 5 1 2 -369 40.7 4 

6 4 5 2 1 3 -106 59.6 4 

7 2 5 4 1 3 -8.86 27.7 2,5 

8 4 2 5 3 1 -143 81.6 4 

9 3 2 5 1 4 -15.1 4.17 3 

10 4 3 1 5 2 -594 61.3 4 
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Table 6.17 Final Results 

Prob  
# 

Heuristic #1 Heuristic #2 Heuristic #3 Heuristic #4 Heuristic #5 

Ω - 
Mean 

Ω - Half 
Width 

Ω - 
Mean 

Ω - Half 
Width 

Ω - 
Mean 

Ω - Half 
Width 

Ω - 
Mean 

Ω - Half 
Width 

Ω - 
Mean 

Ω - 
Half 
Widt

h 

1 1253.73 45.88 691.822 20.93 1208.56 49.49 1326.48 59.15 1082.73 33.33 

2 1650.41 58.92 2419.17 94.47 1121.38 36.7 1445.65 53.18 1697.34 74.9 

3 649.465 23.1 971.788 29.63 660.307 21.13 2045.28 76.04 755.327 18.44 

4 2751.1 102.27 2079.11 78.45 1455.55 52.97 1551.75 57.22 2024.76 80.7 

5 2120.16 81.93 2581.36 91.63 1262.8 38.39 893.473 15.71 2107.6 83.46 

6 1879.66 49.02 1634.42 45.2 2064.37 55.83 1420.39 53.46 1526.16 41.87 

7 1050.85 40.11 813.963 24.65 1100.24 32.76 914.503 31.67 822.813 18.38 

8 2613.47 51.67 2017.33 75.42 2307.69 51.67 1874.56 52.53 2077.89 84.04 

9 245.15 6.78 204.572 5.16 189.64 4.81 261.466 11.69 223.311 4.99 

10 1851.34 51.53 1887 48.82 1770.25 50.75 1176.34 45.31 1866.68 43.35 

 

There is no dominance, SPT and Palmers are equally good. There are some proofs 

which may show that SPT has effects on patient waiting time cost, and the palmer’s rule 

has reduced the overflow cost. With more accurate arrival time, simulation variance have 

been reduced significantly (less number of replications), elaborately combined 

physician’s schedule and patients’  schedules would give a more comprehensive and 

better solution to ASFs. 
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CHAPTER 7 

SUMMARY & FUTURE RESEARCH 

 

Ever since the change of the healthcare reimbursement policy, medical practitioners are 

required to offer more effective and efficiency medical services to patients. To reduce the 

length of stay in hospitals, outpatient surgeries are increasing and ambulatory surgical 

facilities (ASFs) are widely open because it allows patients to finish their surgery within 

one day. The ASFs are either as the departments of one hospital or the stand alone 

facilities, depending one physician groups assigning patients to them, but both physicians 

and ASFs are paid by the private insurance companies or public insurance. However, all 

the medical bills relate to the number of patients brought by physicians and are not fully 

paid by insurance, so the operating cost for ASFs is becoming one big issue under such 

circumstances.   

In addition, ASFs also wants to give the physicians good surgical environment 

and time schedules to make them attract more patients. Operating cost, physician’s 

schedules, resources levels and quality of care are the most important factors for ASFs 

but none of the previous papers combined them all to study this ASF system. The multi 

aspect objective functions are set up includes the doctors’ delay penalty cost, medical 

staffing resources delay penalty, patients delay penalty and staffing salary cost.  Because 

of the complicity of the system, the absolute optimal results cannot be achieved but 

discrete-event simulation model has been built to evaluate different strategies for 

different levels of topics.  



169 

The first topic is about finding the optimal staffing strategy for ASFs which will 

results to a lower level of the combined total cost the authors mentioned above. After 

running the experiments, the conflicting matter between staffing salary cost and the other 

three penalties has been displayed and the overall lowest cost which will tradeoff all the 

factors are found, and it is not sharp convex but a U-convex, which means best staffing 

strategies can be achieved within a tight but flexible area.  

The next topic is the study of physician groups’ scheduling problem, five heuristic 

algorithms have been generated and tested on ten environmental problems, and these ten 

environmental problems are randomly set up with different parameters to stand for 

different scenarios of ASFs.  Linear programming with balancing the resource usage 

objective is used to reduce the medical staffing’s delay penalty.  Among these five 

heuristic algorithms, heuristic #4 which is the operative and resource balancing algorithm 

gave the best results for nine problems. The lower bound for each problem is also 

simulated and all the best results have shown a small gap (20%) compare with the lower 

bound.  All the comparisons are based on statistical analysis results, and scheduling 

solutions based heuristics have shown significantly better results than the dummy 

schedules. Though not with any absolute optimal strategy, by balancing the operative and 

resource usage gave some inspirations to further studies.  

In the physicians’ scheduling topic, the patient arrival ratios are provided as input 

to the simulation model which may arose higher variance in patients’ arrivals. To have a 

more specific time for patients’ arrival, patient individual scheduling has been studied by 

referring to flow-shop problem. Classical three machine minimizing makes span 

heuristics have been borrowed to apply in this three process problem.  
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Though not the exact same situations, the applications of these classical heuristics 

have a significant effect on the same ten problems. Seven heuristic algorithms are 

introduced and five heuristic algorithms are compared. There is no dominance among the 

five heuristics but the total time SPT rule and Palmers rule gave the better results for four 

problems. After separate cost analysis, proof is found to support that SPT rule has 

reduced patient waiting penalty effectively mean while palmer’s rule has decreased the 

overflow penalty for staffing.   

This ASF research has offered continuous solutions to ASFs’ current problems 

via multiple objectives. By using discrete-event simulation model, the initial (staffing 

levels and physician, patient scheduling) decision making module has created, and the 

heuristic algorithms for physicians’ scheduling problem and individual patient arrival 

problem have been proved effective to the current ten problems.  

7.1. ASF Trends and Managerial Insights 

In addition to the healthcare systems engineering research community, the primary group 

for whom this research is of significance is ASF managers and operators. The long term 

expectation is that ASFs will transition from a more manual expertise based decision 

making to model based data drive decisions making. There are several trends affecting 

the ASF business that will drive this trend, the authors list these first. 

 Progressive (inflation adjusted) decrease in surgery compensations rates for both 

physicians and ASFs. 

 Expansion of shorter surgery time procedures in the ASF portfolio. 

 Transition of more procedures currently restricted to hospital ORs to ASFs. These 

procedures will more resource intensive relative to current portfolio. 
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 Progressive growth in the number of larger (6+ ORs) corporate owned ASFs 

catering to a much large set (8+) of physician groups. 

 Large ASFs negotiating preferential pricing and exclusive service arrangements 

with insurance companies. 

 Decline in small physician owned ASFs. 

 Capacity growth providing physician with more choices in terms of where 

patients are directed. 

The results of this research provide several ASF managerial insights which are 

highlighted below. 

The practice of looking only at the direct staffing costs as the ASF operations 

planning objective is short sighted. The objective needed to be expanded to include 

quantitative assessments of the physician delay and patient delay costs. Use of the 

reliable costs coefficients presented here allows ASF management to build a competitive 

position in surgery practice industry. Traditional practice of simply basing decisions on 

physician and patient surveys is not sufficient. 

Simulation models can provide accurate estimates of staffing overtime, physician 

delay and patient delay for a given staffing level and patient load. ASF management 

should and can use these models to make better decisions which optimize their overall 

operating performance. These models become even more critical as the variety of 

surgeries and the resource use complexity increases. The research has shown in many 

cases the optimal decision is quite distinct hence even small deviations can result in 

significant performance drops. These behaviors cannot be reliably estimated using just 

human experience. 
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The physician block assignment problem formalized here introduces a key 

decision making model for ASF managers. Certainly, the current practice of making 

assignments simply on relationships with physician groups should be replaced with 

analytical solutions methods developed here. This allows optimal combinatorial data 

driven solutions to be developed. 

The patient scheduling problem formalized and introduced here should replace the 

current practice of scheduling batch patient arrivals on a fixed interval. These models 

base the arrival decisions on the current physician schedule and the mix of surgeries 

scheduled for a given day.  The model developed here will allow ASFs to better utilize 

current communication technology to provide patients with day before arrival schedule 

that minimize their patient delay. As this research as shown due to the cost ratios between 

physician and patient delay coefficients, patient delays tend to be a secondary objective. 

The use of the patient scheduling model will help mitigate this situation. 

 

7.2. Future Research Plan 

However, because of some limitations, there is still some work to be done in the future. 

Even though from the staffing level optimization, a prediction for levels of staffing is 

provided, an imbalanced medical practitioners from geographically and occupations as 

well would result to human resource problems. The limitation of implementing, even the 

smart strategies are offered by the research, the scheduling priorities from the physicians’ 

side are more difficult than theoretic planning.  

There is some percentage of no show up or cancelations in the ASFs, which will 

cause resource waste and different scenarios are under discussed for that case. The above 
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limitations are exist in ASFs but are uncontrollable from simulations, or mathematic 

programming. The ASF Simulation model developed here along with the accompanying 

problems solved provides a rich platform for future research. Specifically, complex ASF 

features and parameter changes can be studied. 

 

1. Other non-linear form and physician/patient priority of the objective function. 

2. Integrated heuristics for solving the Physicians Block Assignment plus Patient 

Arrival Scheduling problem. 

3. Better heuristic for Physician Block Assignment and Patient Arrival Scheduling 

problem. 

4. Investigate sensitivity to different surgery time distributions. 

5. Investigate the effect of ϕD and ϕP interaction on performance. 
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