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ABSTRACT

GLOBAL OPTIMIZATION METHODS FOR LOCALIZATION IN
COMPRESSIVE SENSING

by
Marco Rossi

The dissertation discusses compressive sensing and its applications to localization in

multiple-input multiple-output (MIMO) radars. Compressive sensing is a paradigm at

the intersection between signal processing and optimization. It advocates the sensing

of “sparse” signals (i.e., represented using just a few terms from a basis expansion)

by using a sampling rate much lower than that required by the Nyquist-Shannon

sampling theorem (i.e., twice the highest frequency present in the signal of interest).

Low-rate sampling reduces implementation’s constraints and translates into cost

savings due to fewer measurements required. This is particularly true in localization

applications when the number of measurements is commensurate to antenna elements.

The theory of compressive sensing provides precise guidance on how the measurements

should be acquired, and which optimization algorithm should be used for signal

recovery.

The first part of the dissertation addresses the application of compressive

sensing for localization in the spatial domain, specifically direction of arrival (DOA),

using MIMO radar. A sparse localization framework is proposed for a MIMO

array in which transmit and receive elements are placed at random. This allows

for a dramatic reduction in the number of elements needed, while still attaining

performance comparable to that of a filled (Nyquist) array. By leveraging properties of

structured random matrices, a bound on the coherence of the resulting measurement

matrix is obtained, and conditions under which the measurement matrix satisfies the

so-called isotropy property are detailed. The coherence and isotropy concepts are used

to establish uniform and non-uniform recovery guarantees within the proposed spatial



compressive sensing framework. In particular, it is shown that non-uniform recovery

is guaranteed if the product of the number of transmit and receive elements, MN

(which is also the number of degrees of freedom), scales with K (logG)2, where K is

the number of targets and G is proportional to the array aperture and determines the

angle resolution. In contrast with a filled virtual MIMO array where the product MN

scales linearly with G, the logarithmic dependence on G in the proposed framework

supports the high-resolution provided by the virtual array aperture while using a

small number of MIMO radar elements.

The second part of the dissertation focuses on the sparse recovery problem at

the heart of compressive sensing. An algorithm, dubbed Multi-Branch Matching

Pursuit (MBMP), is presented which combines three different paradigms: being a

greedy method, it performs iterative signal support estimation; as a rank-aware

method, it is able to exploit signal subspace information when multiple snapshots

are available; and, as its name foretells, it possesses a multi-branch structure which

allows it to trade-off performance (e.g., measurements) for computational complexity.

A sufficient condition under which MBMP can recover a sparse signal is obtained.

This condition, named MB-coherence, is met when the columns of the measurement

matrix are sufficiently “incoherent” and when the signal-to-noise ratio is sufficiently

high. The condition shows that successful recovery with MBMP is guaranteed

for dictionaries which do not satisfy previously known conditions (e.g., coherence,

cumulative coherence, or the Hanman relaxed coherence).

Finally, by leveraging the MBMP algorithm, a framework for target detection

from a set of compressive sensing radar measurements is established. The proposed

framework does not require any prior information about the targets’ scene, and it is

competitive with respect to state-of-the-art detection compressive sensing algorithms.
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CHAPTER 1

INTRODUCTION

The dissertation discusses the theory of compressive sensing [1], and its applications to

localization in MIMO radars. Detection, localization, and tracking of targets are basic

radar functions. Limited data support and low signal-to-noise ratios (SNR) are among

the many challenges frequently faced by localization systems. Another challenge

is the presence of nearby targets, whether in terms of location or Doppler, since

closely spaced targets are more difficult to discriminate. In multiple-input multiple-

output (MIMO) radar, targets are probed with multiple, simultaneous waveforms.

Relying on the orthogonality of the waveforms, returns from the targets are jointly

processed by multiple receive antennas. MIMO radar is typically used in two antenna

configurations, namely distributed [2] and colocated [3]. Depending on the mode of

operation and system architecture, MIMO radars have been shown to boost target

detection, enhance spatial resolution, and improve interference suppression. These

advantages are achieved by providing and exploiting a larger number of degrees of

freedom than “conventional” radar.

In general, target localization with radar consists of two stages: detection

and estimation [4]. The detection process establishes the presence of a target in

a prescribed resolution cell. This process is characterized by two parameters [5]:

probability of false alarm (PFA) and probability of detection (PD). The goal is to

maximize the probability of detection for a fixed level of false alarms. Classical

detection is a process that inherently relies on a single target point of view. Detection

performance is usually represented by receiver operating curves (ROC). Estimation

builds on detection by seeking to improve the accuracy of localization for detected

targets. In principle, estimation adopts a multi-target viewpoint. For example,

1
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maximum likelihood estimation accounts for the interaction between closely spaced

targets, hence localization performance is generally improved compared to detection.

1.1 Motivation of the Dissertation

The dissertation focuses on the detection and estimation of targets from direction-of-

arrival (DOA) measurements using colocated MIMO radar. It is well known in array

signal processing [4] that DOA resolution improves by increasing the array aperture.

However, increasing the aperture without increasing the number of sensors may lead

to ambiguities, i.e., measurements explained by erroneous sets of locations. A non-

ambiguous uniform linear array (ULA) must have its elements spaced at intervals no

larger than λ/2, where λ is the signal wavelength. For MIMO radar, unambiguous

direction finding of targets is possible if N receive elements are spaced λ/2, and M

transmit elements are spaced Nλ/2, a configuration known as virtual ULA [3]. In

sampling parlance, the λ/2-spaced array and the MIMO virtual ULA perform spatial

sampling at the Nyquist rate. The main disadvantage of this Nyquist setup is that

the product of the number of transmit and receive elements, MN , needs to scale

linearly with the array aperture, and thus with resolution.

The dissertation advocates the use of a sparse, random array architecture in

which a low number of transmit/receive elements are placed at random over a large

aperture. Random array theory can be traced back to the 1960’s. In [6], it is shown

that as the number of sensors is increased, the random array pattern, a well known

quantity to radar practitioners, converges to its average. This is because the array

pattern’s variance decreases linearly with the number of elements. This work was

extended to MIMO radar in [7]. The main conclusion of the classical random array

literature was that the random array pattern can be controlled by using a sufficient

number of sensors. However, two fundamental questions were left pending: How
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many sensors are needed for localization as a function of the number of targets, and

which method should be used for localization?

It is suggested that the theory and algorithms of compressed sensing may be

used to address these questions. Indeed, localizing targets from undersampled array

data links random arrays to compressed sensing. In particular, it is an example of

spatial compressive sensing since spatial sampling is applied at sub-Nyquist rates.

The goal of spatial compressive sensing is to achieve similar resolution as a filled

array, but with significantly fewer elements.

Undersampling, inherent to compressive sensing, causes ambiguities, i.e.,

interaction between targets may give rise to false peaks. Classical detection, in

which resolution bins are tested one-by-one for the presence of a target, is then not

suitable for compressive sensing scenarios. In contrast, classical estimation algorithms

can handle compressive sensing scenarios, but are not equipped to handle unknown

number of targets.

1.2 State of The Art

Compressive sensing considers linear inverse problems. These problems can be found

throughout engineering and the mathematical sciences. Usually these problems are

ill-conditioned or underdetermined, so that regularization must be introduced in order

to obtain meaningful solutions. Sparsity constraints have emerged as a fundamental

type of regularizer, and in the last decade, an enormous body of work has been

generated around the theory of compressed sensing [1]. Radar has been among the

many areas where compressive sensing has found application, and in particular, sparse

recovery has been effectively applied to multiple input multiple output (MIMO) radar

[8, 9, 10]. To fit sparse recovery in localization applications, one generates a grid

of possible targets’ locations and an associated unknown vector of responses, such

that only locations associated with targets are non-zero. Therefore, the localization
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problem aims to recover the support of such unknown vector (non-zero elements of

the vector).

1.2.1 Compressive Sensing for Radar

Early works on compressive sensing radar emphasize that the sparse nature of many

radar problems supports the reduction of temporal as well as spatial sampling (an

overview is given in [11]). Recent work on compressive sensing for single-input single-

output radar [12, 13, 14, 15] demonstrates either an increased resolution or a reduction

in the temporal sampling rate. Compressive sensing for MIMO radar has been applied

both on distributed [16] and colocated [17] setups. Much of the previous literature

on compressive sensing for colocated arrays discusses the ULA setup, either within a

passive system (with only receive elements) [18] or in a MIMO radar [10, 17] setup.

In particular, [10] imposes a MIMO radar virtual ULA and derives bounds on the

number of elements to perform range-angle and range-Doppler-angle recovery by using

compressive sensing techniques. As discussed above, the (virtual) ULA setup performs

Nyquist sampling in the spatial domain. In contrast, spatial compressive sensing (i.e.,

reducing the number of antenna elements while fixing the array aperture) relies on

a random array geometry. Links between compressive sensing and random arrays

have been explored in [19]. The author shows that spatial compressive sensing can

be applied to the passive DOA problem, allowing for a reduction in the number of

receiving elements. However, the MIMO radar framework poses a major challenge:

contrary to the passive setup, where the rows of the sensing matrix A are independent,

the MIMO radar MN measurements are dependent (they conform to the structure

of the MIMO random array steering vector). This lack of independence prevents the

application of the vast majority of results in the compressive sensing literature. A

MIMO radar random array architecture is studied in [8], but no recovery guarantees

are provided.
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Low-rate spatial sampling translates into cost savings due to fewer antenna

elements involved. It is of practical interest to determine the least amount of elements

required to guarantee correct targets recovery. Finding conditions that guarantee

recovery has been a main topic of research, and it is one of the underpinnings of

compressive sensing theory. Recent work has shown that, for a sufficient number of

independent and identically distributed (i.i.d.) compressive sensing measurements,

non-uniform recovery can be guaranteed if a specific property of the random sensing

matrix, called isotropy, holds [20]. While this property plays an important role,

this result does not apply to the MIMO radar setup, since the MN rows are

not independent. The dependent measurements problem was recently addressed in

[21]. There, the authors derived conditions for non-uniform recovery using spatial

compressive sensing in a MIMO radar system with N transceivers.

1.2.2 Compressive Sensing Algorithms

Compressive sensing algorithms seek to recover an G × P matrix X from a small

number of linear observations Y = AX (possibly corrupted by noise), where the

m × G matrix A, with m � G, is commonly referred to as measurement matrix

or dictionary, and its columns are called atoms. While the linear system is highly

underdetermined (m � G), the inverse problem has still a unique solution if X is

sparse, i.e., it has only K non-zero norm rows out of G (with K ≤ m� G). In this

case, the problem of recovering the signal X from Y can be cast as a non-convex

combinatorial `0-norm problem, i.e., minX ‖Y −AX‖F s.t. ‖X‖0 ≤ K, where ‖X‖0

counts the number of non-zero norm rows of X. In the following, the rows of Y are

addressed as measurements, and the columns of Y as snapshots. The `0-norm problem

is known also under other names, such as sparse approximation or highly nonlinear

approximation [22], and it can be related to the Deterministic Maximum Likelihood

(DML) estimator [4, 23]. Both problems (`0-norm minimization and DML) require
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a multi-dimensional search with exponential complexity [24], which is infeasible in

practical scenarios. A core algorithmic question arises for a given class of dictionaries,

how does one design a fast algorithm that provably recovers a K-sparse input signal?

Finding conditions that guarantee correct recovery with practical algorithms

has been a main topic of research and one of the underpinnings of compressive

sensing theory. Compressive sensing theory [1] shows that it is possible to recover

any K-sparse signal X using practical algorithms, if the measurement matrix A

satisfies specific properties. For instance a correct solution is guaranteed, if the

matrix is sufficiently incoherent (as measured by the cumulative coherence [25]) or if

it satisfies the restricted isometry property (RIP). Such properties are satisfied with

high probability for a wide class of measurement matrices (e.g., Gaussian, Bernoulli,

partial Fourier), as long as a sufficient number of measurements is available (e.g.,

m > βK logG for some constant β) [1].

While these guarantees are mainly consider the Single Measurement Vector

(SMV) scenario (when P = 1), they can be extended to the general Multiple

Measurement Vector (MMV) setup (when P ≥ 1). Under mild conditions, usually

satisfied by random matrices, a lower bound on the number of measurement m needed

for identifiability of the sparse recovery problem is m > 2K−rank (X) [26, 27]. Beside

the (unpractical) `0-norm problem and DML estimator, it is well known in array

processing that the so-called “super-resolution” techniques (e.g., subspace methods,

such as MUSIC [28]) as well as “rank aware” methods (e.g., RA-ORMP [26]), are

able to attain this bound with equality in a noiseless setting, whenever the signal has

full-rank (rank (X) = K). This behavior is traced to the ability to reliably estimate

the signal subspace (i.e., a vector basis of Y) which orthogonalizes the contribution

of non-zero rows of X to the received signal Y. If the signal subspace cannot be

accurately estimated (due to noise or if rank (X) < K), the contribution of non-zero
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rows of X cannot be orthogonalized, and a trade-off emerges between an algorithm’s

complexity and performance.

1.2.3 Compressive Sensing Detection

The sparsity assumption, which permeates compressive sensing, blurs the distinctions

between detection and estimation. In compressive sensing, the main unknown is the

signal support, which must be recovered. The recovery of the support is essentially an

estimation problem, but it requires decisions on zero and non-zero elements, which is

a detection problem. In the MMV setting, the aim is to recover a sparse signal matrix

X from noisy compressive measurements Y = AX + E, where A is a measurement

matrix and E represents the noise. It has been shown in [26] that, under certain

conditions on the matrix A and the sparsity K, the optimal method to recover X is by

solving the nonconvex noisy l0-norm problem, i.e., minX ‖Y −AX‖2
F +ν ‖X‖0, where

‖X‖0 counts the number of non-zero norm rows of X. The regularization parameter ν

governs the trade-off between fitting the data (‖Y −AX‖2
F ) and reducing the solution

cardinality (‖X‖0), hence it can be set based on prior information, for example, the

number of targets K or the noise level σ2. In a radar detection problem, where there

is no a priori information on the number of targets or on the noise level, setting the

parameter ν is non-trivial. The focus is on compressive sensing methods that bridge

between detection and estimation: they support the detection of multiple targets,

while accounting for mutual effects between them. In other words, the aim is to

recover information about the scene by compressive sensing methods without a priori

information about the number of targets.

In [29], the authors addressed target detection in the so-called single measurement

vector (SMV) setting (when a single snapshot is available, i.e., the matrix Y reduces

to a column vector) using the Complex Approximate Message Passing (CAMP)

algorithm, which aims to solve the l1-norm convex approximation of the l0-norm
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problem. Building on an asymptotic analysis of CAMP, the authors proposed a

detection framework, where K and σ2 are unknown. In addition to [29], several other

authors proposed compressed sensing algorithms to address this type of problem, but

either assumed the noise level and/or the number of targets to be known, or required

as input the regularization parameter ν.

1.3 Dissertation Outline and Contributions

The dissertation is outlined as follow: Chapter 2 introduces the sparse recovery

problem and an outline of compressive sensing. Chapter 3 introduces the proposed

spatial compressive sensing framework for MIMO radar DOA localization, analyzes

the properties of the measurement matrix A, and derives recovery guarantees.

Chapter 4 discusses recovery algorithms to solve the sparse recovery problem in a

general compressive sensing scenario. An algorithm, dubbed Multi-Branch Matching

Pursuit (MBMP), is presented and its recovery guarantees are derived. Finally, a

framework for target detection in compressive sensing using MBMP is proposed in

Chapter 5. The dissertation expands the prior literature in several ways, as detailed

below.

1.3.1 Spatial Compressive Sensing for MIMO Radar

A sparse localization framework for a MIMO random array is proposed assuming

a general setup of M transmitters and N receivers. A bound on the coherence of

the measurement matrix is derived, and the conditions under which the isotropy

property holds are derived. This allows to develop both uniform and non-uniform

recovery guarantees for target localization in MIMO radar systems. The proposed

MIMO random array framework is of practical interest to airborne and other radar

applications, where the spacing between antenna elements may vary as a function

of aspect angle towards the target, or where exact surveying of element locations is
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not practical due to natural flexing of the structures involved. The findings of the

dissertation show that one can obtain the high-resolution provided by a virtual array

aperture while using a reduced number of antenna elements.

1.3.2 Multi-Branch Matching Pursuit

A new approach for sparse recovery, called MBMP, is introduced and its recovery

guarantees are formulated: (i) A sufficient condition under which MBMP recovers

any sparse signal belonging to a given support; (ii) A sufficient condition under

which MBMP can recover any K-sparse signal. Condition (i), named Multi-Branch

Exact Recovery Condition (MB-ERC), generalizes the well-known Tropp’s ERC [25]

to a multi-branch algorithm. Condition (ii), named MB-coherence, is met when

the dictionary is sufficiently incoherent. This condition improves the state-of-the-

art in the sense that it enables to guarantee the success of the proposed MBMP

for dictionaries that do not satisfy previously known conditions (e.g., cumulative

coherence [25]). Moreover, MB-coherence provides a guideline to design the multi-

branch structure of MBMP. The proposed MBMP method is suited both for MMV

and for SMV problems, and in both cases performs better than alternatives. Due

to its ability to adjust computational complexity, MBMP is particularly well suited

to applications in which measurements are very expensive, such as in MIMO radar

applications where the number of measurements is commensurate with the number

of antenna elements.

1.3.3 Compressive Sensing Detection via MBMP

A framework for target detection using MBMP is presented. The proposed framework

is fully adaptive (i.e., it does not require prior knowledge of the number of targets

K or noise level σ2), it addresses the general MMV setting (rather than the SMV

setting addressed in [29]), and it provides an analysis of false alarm and detection
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probabilities that holds for finite data records and any measurement matrix A. The

proposed algorithm is tested in a spatial compressive sensing-radar setting, where

undersampling in space enables considerable savings in the number of array elements,

while still enabling high resolution localization.

1.4 Notation

The following notation is used: boldface denotes matrices (uppercase) and vectors

(lowercase); for a vector a, the i-th index is ai, while for a matrix A, [X]i,j denotes

the element at i-th row and j-th column, A (i, :) denotes the i-th row, and vec (X)

produces a column vector by stacking the columns of X. The complex conjugate

operator is (·)∗, the transpose operator is (·)T , the complex conjugate-transpose

operator is (·)H , and the pseudo-inverse operator is (·)†. For a full rank matrix

X ∈ Cm×n with m > n, X† =
(
XHX

)−1
XH . The Frobenius norm of X is

‖X‖F , the `1-induced norm is ‖X‖1 , maxj
∑

i |X (i, j)| and the `∞-induced norm is

‖X‖∞ , maxi
∑

j |X (i, j)|. Given a set S of indices, |S| denotes its cardinality, AS is

the matrix obtained by considering only the columns with indices in S, ΠAS
, ASA†S

is the orthogonal projection matrix onto the range of AH
S , and Π⊥AS

, I−ΠAS
is the

orthogonal projection matrix onto the null space of AH
S . Given two set of indices, S

and S ′, S\S ′ contains the indices of S which are not present in S ′. A K-sparse matrix

has only K non-zero norm rows, the number of non-zero norm rows of X is ‖X‖0 and

the support of X collects the indices of such non-zero norm rows. The operator E

denotes expectation and ψx (u) , E [exp (jxu)] is the characteristic function of the

random variable x. The symbol “⊗” denotes the Kronecker product. The notation

x ∼ CN (µ,C) means that the vector x has a circular symmetric complex normal

distribution with mean µ and covariance matrix C. Fa,b denotes an F distribution

with a numerator degrees of freedom and b denominator degrees of freedom, while

F ′a,b (η) denotes a non-central F distribution with a numerator degrees of freedom and
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b denominator degrees of freedom, and non-centrality parameter η. For a probability

density function X, the right-tail probability at γ is denoted by P = QX (γ), while

γ = Q−1
X (P ) denotes its inverse function. Finally, Kα (·) denotes the modified Bessel

function of the second kind.

The work in the following chapters is mainly based on author’s publications

[9, 30, 31].



CHAPTER 2

SPARSE RECOVERY PROBLEM AND COMPRESSIVE SENSING

In a noiseless setting, sparse recovery seeks the solution to a linear system

y = Ax (2.1)

while requiring that the unknown is sparsest [22]:

min
x
‖x‖0 s.t. y = Ax. (2.2)

This setup is known as Single Measurement Vector (SMV), highlighting the fact

that a single vector of measurements y is available. More generally, when multiple

measurement vectors have the same sparsity pattern, the setting is known as Multiple

Measurement Vectors (MMV) or joint sparse. In this case, the model is

Y = AX (2.3)

where Y ∈ Cm×l is the observed signal matrix, A ∈ Cm×n is the measurement matrix

and the matrix X ∈ Cn×l is the unknown. The linear system in Eq. (2.3) is sparse

in the sense that X has only K � n non-zero norm rows. The MMV sparse recovery

problem is to estimate the sparse matrix X. It has been shown [1] that, under certain

conditions on the matrix A and the sparsity K, the sparse matrix X can be recovered

from linear measurements Y by solving the nonconvex l0-norm problem:

min
X
‖X‖0 s.t. Y = AX. (2.4)

In this dissertation, it is assumed that spark (A) > 2K−rank (X)+1, where spark (A)

is the smallest number of linearly dependent columns of the matrix A. This is

a necessary and sufficient condition for the measurements Y = AX to uniquely

determine any K-sparse matrix X (see [1]).

12
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In the presence of noise, the measurements comply with

Y = AX + E (2.5)

where E ∈ Cm×l is the noise term. In this scenario, the sparse matrix X can

be recovered by solving a relaxation of the problem in Eq. (2.4), minX ‖X‖0 s.t.

‖Y −AX‖F ≤ ε, where the Frobenius norm is used if the noise is supposed to be

Gaussian distributed. Other formulations can also be used: a Lagrangian formulation,

minX ‖Y −AX‖F + ν ‖X‖0, or a cardinality-constrained formulation

min
X
‖Y −AX‖F s.t. ‖X‖0 ≤ τ. (2.6)

The parameters τ , ν and ε depend on prior information, e.g., the signal sparsity

K or the noise level ‖E‖F . Unfortunately, the solution to any of these formulations

requires an exhaustive search among all combinations of non-zero norm row indices

of X, necessitating exponential complexity [1].

The problem (2.6) can be also reformulated in terms of the support S of the

solution X. In particular, the problem in Eq. (2.6) is equivalent to

min
S

∥∥Π⊥AS
Y
∥∥
F

s.t. |S| ≤ τ. (2.7)

The reformulation follows by noticing that the minimization with respect to X in

the problem in Eq. (2.6) can be separated into the minimization with respect to

the support S and the minimization with respect to the actual non-zero value of

X. In particular, assuming that the spark condition is satisfied (i.e., spark (A) >

2K − rank (X) + 1), the optimal non-zero value of X for a fixed support S is given

by the least square solution: X∗S = A†SY. This reduces the problem in Eq. (2.6) to

the problem in Eq. (2.7).

Finding conditions that guarantee correct recovery (i.e., find the solution to the

problem in Eq. (2.6)) with a practical complexity algorithm has been a main topic
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of research and one of the underpinnings of compressive sensing theory [1]. A variety

of polynomial complexity algorithms have been proposed to obtain an approximate

solution to the problem in Eq. (2.6) or one of the other formulations, and the area

is still very active. These methods adopt sophisticated convex optimization theory

concepts applied to the relaxation of the `0-norm in Eq. (2.4) with an `1-norm

[32, 33, 34, 35]. This reformulation is known as Basis Pursuit (BP) or LASSO, and

it is defined by

min
x
‖x‖1 s.t. ‖y −Ax‖2 ≤ σ. (2.8)

Unlike the problem in Eq. (2.4), this problem is convex, and thus a global solution

can be found in polynomial time. However, since it is a relaxation, the solution

obtained could be different from that of the problem in Eq. (2.4). Other algorithms

use graphical models to take advantage of additional sparsity priors [36, 37], find

local solutions of non-convex relaxations (such as the `p-norm (with p < 1) [38], the

reweighting family [39, 40], or the M-FOCUSS algorithm [41]), or leverage simple,

but effective, Matching Pursuit (MP) strategies (also known as greedy algorithms

from combinatorial optimization) to address the reformulation in (2.7). In particular,

the matching pursuit idea is to refine an empty provisional support by adding one

element at each iteration. Among the matching pursuit algorithms, the most notable

in the SMV setting are Orthogonal Matching Pursuit (OMP) [42], Orthogonal Least

Squares (OLS) [43], and CoSaMP [44], where the latter allows to add more than

one element at each iteration. For the general MMV setting, examples are the Rank

Aware-Orthogonal Recursive Matching Pursuit (RA-ORMP) algorithm [26] and its

generalization, Multi-Branch Matching Pursuit (MBMP) [45]. In some extensions

of the matching pursuit, at each iteration, more than one index is added to the

provisional support at each iteration. Notable examples are CoSaMP [44] and IHT

[46].



15

It has been shown that (see [1] for a review), under suitable conditions on the

measurement matrix A, on the sparsity level K, and on the recovery algorithm, the

approximate solution coincides with the solution of the problem in Eq. (2.4). The

remaining of the dissertation studies these conditions.



CHAPTER 3

SPATIAL COMPRESSIVE SENSING FOR MIMO RADAR

3.1 System Model

3.1.1 MIMO Radar Model

A MIMO radar system (see Figure 3.1)is modeled in which N sensors collect a finite

train of P pulses sent by M transmitters and returned from K stationary targets.

Transmitters and receivers are assumed to each form a (possibly overlapping) linear

array of total aperture ZTX and ZRX , respectively. The quantities ZTX and ZRX are

normalized in wavelength units. Defining Z , ZTX +ZRX , the m-th transmitter is at

position Zξm/2 on the x-axis, while the n-th receiver is at position Zζn/2. Here ξm lies

in the interval
[
−ZTX

Z
, ZTX

Z

]
, and ζn is in

[
−ZRX

Z
, ZRX

Z

]
. This definition ensures that

when ZTX = ZRX , both ξm and ζn are confined to the interval
[
−1

2
, 1

2

]
, simplifying

the notation in the sequel.

Let sm (t) denote the continuous-time baseband signal transmitted by the m-th

transmit antenna and let θ denote the location parameter(s) of a generic target, for

example, its azimuth angle. Assume that the propagation is nondispersive and that

the transmitted probing signals are narrowband (in the sense that the envelope of the

signal does not change appreciably across the antenna array). Then the baseband

signal at the target location, considering the p-th transmitted pulse, can be described

by (see, e.g., [2])

M∑
m=1

exp (j2πf0τm (θ)) sm (t− pT ) , cT (θ) s (t− pT ) . (3.1)

Here f0 is the carrier frequency of the radar, τm (θ) is the time needed by the

signal emitted by the m-th transmit antenna to arrive at the target, s (t) ,

[s1 (t) , . . . , sM (t)]T , T denotes the pulse repetition interval, and

c (θ) = [exp (j2πf0τ1 (θ)) , . . . , exp (j2πf0τM (θ))]T (3.2)

16
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is the transmit steering vector. Assuming that the transmit array is calibrated, c (θ)

is a known function of θ.

To develop an expression for the received signal rn (t) at the n-th receive

antenna, let

b (θ) = [exp (j2πf0τ̃1 (θ)) , . . . , exp (j2πf0τ̃N (θ))]T (3.3)

denote the receive steering vector. Here τ̃n (θ) is the time needed for the signal

reflected by the target located at θ to arrive at the n-th receive antenna. Define

the vector of received signals as r (t) , [r1 (t) , . . . , rN (t)]T . Under the simplifying

assumption of point targets, the received data vector is described by [2]

r (t) =
K∑
k=1

P−1∑
p=1

xk,pb (θk) cT (θk) s (t− pT ) + e (t) (3.4)

where K is the number of targets that reflect the signals back to the radar receiver,

xk,p is the complex amplitude proportional to the radar cross sections of the k-th

target relative to pulse p-th, θk are locations, and e (t) denotes the interference

plus-noise term. The targets’ positions are assumed constant over the observation

interval of P pulses. The target gains {xk,p} are assumed to follow a Swerling Case II

model, meaning that they are fixed during the pulse repetition interval T , and vary

independently from pulse to pulse [47].

Analyzing how to estimate the number of targets K, or the noise level, without

prior information is investigated in Chapter 5. In this chapter, the number of targets

K and the noise level are assumed to be known.

3.1.2 Problem Formulation

The purpose of the system is to determine the DOA angles to targets of interest.

Targets associated with a particular range and Doppler bin are considered, while

targets in adjacent range-Doppler bins contribute as interferences to the bin of
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Figure 3.1 MIMO radar system model.

interest. The assumption of a common range bin implies that all waveforms are

received with the same time delay after transmission. Since range and Doppler

measurements are not of interest, the common time delay and Doppler shift are

not explicitly shown in the following model. This approach is justified because angle

resolution is essentially independent of range-Doppler resolution in antenna arrays

[48]. Being capable to handle targets with non-zero Doppler, the proposed approach

is applicable to airborne or ground targets. Targets are assumed in the far-field,

meaning that a target’s DOA parameter θ , sinϑ (where ϑ is the DOA angle) is

constant across the array. Under these assumptions, the receiver and transmitter

steering vectors, b (θ) and c (θ), respectively, become

b (θ) = [exp (jπZθζ1) , . . . , exp (jπZθζN)]T (3.5)

and

c (θ) = [exp (jπZθξ1) , . . . , exp (jπZθξM)]T . (3.6)
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By cross-correlating the received signal at each sensor with filters matched to

each of the probing waveforms, one obtain

yp = vec

[∫
r (t) sH (t− pT ) dt

]
(3.7)

= vec
[∑K

k=1

∑P−1

p=0
xk,pb (θk) cT (θk) W+

+

∫
e (t) sH (t− pT ) dt

]

where the M ×M matrix W has elements

[W]m,j =

∫
sm (t) s∗j (t) dt. (3.8)

The M probing waveforms are assumed to be orthogonal (e.g., pulses modulated by an

orthogonal code), therefore W = I. Defining the MN × P matrix Y , [y1, . . . ,yP ],

from Eq. (3.7) it follows that

Y = Ã (θ) X̃ + E. (3.9)

Here X̃ = [x̃1, . . . , x̃P ] is a K × P matrix with x̃p = [x1,p, . . . , xK,p]
T ,

Ã (θ) = [a (θ1) , . . . , a (θK)] (3.10)

is a MN ×K matrix with columns

a (θ) , c (θ)⊗ b (θ) (3.11)

known as the “virtual array” steering vector, and E = [e1, . . . , eP ] is MN × P with

ep = vec
[∫

e (t) sH (t− pT ) dt
]
. The term “virtual array” indicates that a (θ) can be

thought of as a steering vector with MN elements.

The aim is to recover θ and X̃ from Y using a small number of antenna elements.

To do this, a sparse localization framework is employed. Neglecting the discretization

error, it is assumed that the target possible locations θ comply with a grid of G
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points φ1:G (with G � K). Since each element of θ parameterizes one column of

Ã (θ), it is possible to define an MN ×G dictionary matrix A = [a1, . . . , aG], where

ag = a (φg). From Eq. (3.11), the steering vector ag is the Kronecker product of the

receive steering vector bg = b (φg) and the transmit steering vector cg = c (φg):

ag = cg ⊗ bg. (3.12)

The received signal is then expressed as

Y = AX + E, (3.13)

where the unknown G × P matrix X contains the target locations and gains. Zero

rows of X correspond to grid points without a target. The system model in Eq. (3.13)

is sparse in the sense that X has only K � G non-zero rows. Note that in the sparse

localization framework, the matrix A is known, whereas in the array processing model

in Eq. (3.9), the matrix Ã (θ) is unknown.

Given the measurements Y and matrix A, the goal translates into determining

the non-zero norm rows’ indices of X, i.e., the support of X. The matrix A is governed

by the choice of grid points φ1:G, by the number M of transmitters and their positions,

ξ1:M , and by the number N of receivers and their positions, ζ1:N . In the following, the

transmitter (receiver) elements’ positions ξ1:M (ζ1:N) are assumed to be independent

and identically distributed (i.i.d.) random variables governed by a probability density

function (pdf) p (ξ) (p (ζ)).

3.2 Spatial Compressive Sensing Framework

The aim of spatial compressive sensing is to recover the unknown X from the

measurements Y (see Eq. (3.13)) using a small number of antenna elements, MN ,

while fixing the array aperture Z. This section introduces the proposed spatial
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compressive sensing framework and overview practical recovery algorithms (the

well-known beamforming method as well as compressive sensing based algorithms).

3.2.1 Beamforming

Consider the scenario in which the transmitters and receivers locations support the

Nyquist array (virtual ULA) geometry. In this setting, the matrix A in Eq. (3.13)

has a Vandermonde structure, and the aperture scales linearly with the number of

antenna elements, Z = (MN − 1) /2. If the (uniform) grid of possible target locations

φ1:G is chosen to match the array resolution, that is G = 2Z + 1, then the matrix A

becomes a Fourier matrix. In this case, Q , AHA = MN ·I. It follows that X can be

estimated as (1/MN) ·AHY. In array processing, this method is called beamforming.

The support of the unknown X is recovered by looking for peak values of
∥∥aHg Y

∥∥
2

over the grid points. Beamforming is also applied to estimate the locations of targets

not limited to a grid. This is done by finding the peaks of
∥∥aH (θ) Y

∥∥
2
, where a (θ)

is the steering vector in Eq. (3.11), as θ is swept over the angles of interest. The

shortcoming of the Nyquist array setup is that the number of elements MN must

scale linearly with the array aperture Z and consequently, with the resolution (i.e.,

such sampling mode requires MN = G).

Spatial compressive sensing implies that a sparse X can be recovered from

a number of spatial measurements significantly lower than the Nyquist array, i.e.,

MN � G. The idea is to design the sensing procedure so that the matrix Q is

a scalar multiple of the identity matrix on average1, i.e., E [Q] = MN · I, and to

control the variance of the non-diagonal elements by using a sufficient number of

measurements. Intuitively, the more measurements MN are employed, the closer Q

get to a diagonal matrix. Furthermore, because when MN < G, each realization of Q

has non-zero off-diagonal terms, the beamforming metric
∥∥aHg Y

∥∥
2

is affected not only

1For instance, this is obtained when using a partial Fourier matrix.



22

by the g-th row of X and by the noise, but also by any row of X that has non-zero

norm. This entails that, instead of beamforming, one should resort to compressive

sensing recovery algorithms (introduced in Chapter 2), which take advantage of the

signal’s sparsity to mitigate the mutual interference among non-zero rows of X, and

therefore enhance the support recovery capabilities. In the following, an SMV scenario

(i.e., P = 1, Y = y, X = x and E = e in Eq. (3.13)) is considered.

3.3 Recovery Guarantees

In this section, recovery guarantees for sparse localization with MIMO random arrays

are derived. In detail, it is shown how to choose the grid-points φ1:G, the number of

elements MN and the distributions governing the element positions p (ξ) and p (ζ),

in order to guarantee target localization by spatial compressive sensing using the

solution of the LASSO problem in Eq. (2.8).

Two kinds of recovery guarantees are defined in compressive sensing: uniform

and non-uniform. A uniform recovery guarantee (addressed below by Theorem

3.3.5) means that for a fixed instantiation of the random measurement matrix

A, all possible K-sparse signals are recovered with high probability. In contrast,

a non-uniform recovery result (addressed by Theorem 3.3.7) captures the typical

recovery behavior for a random measurement matrix A. Specifically, suppose an

arbitrary K-sparse vector x is given, and then A is drown at random (independent

of x). Non-uniform recovery details under what conditions an algorithm will recover

x with high probability. Note that, for a non-uniform guarantee, A is being asked

to recover only a specific x, not any K-sparse vectors. Therefore, uniform recovery

implies non-uniform recovery, but the converse is not true.

Loosely speaking, a uniform recovery guarantee can be obtained if, with high

probability, the matrix A has small coherence [1]. The coherence is defined as the
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maximum inner product between the normalized columns of A,

µ , max
i 6=l

∣∣aHi al
∣∣

‖ai‖2 ‖al‖2

. (3.14)

Alternatively, uniform recovery is guaranteed if A satisfies the Restricted Isometry

Property (RIP) [1] with high probability. Non-uniform recovery follows if a specific

property of the random measurement matrix A, called isotropy, holds [20]. The

isotropy property states that the components of each row of A have unit variance

and are uncorrelated, i.e.,

E
[
AH (t, :) A (t, :)

]
= I (3.15)

for every t.

Both Eq. (3.14) and Eq. (3.15) suggest that the matrix Q , AHA plays

a key role in establishing recovery guarantees. Indeed, because in the considered

setting the rows of A are identically distributed, a simple calculation shows that

E
[
AH (t, :) A (t, :)

]
= 1

MN
E [Q], thus the isotropy property requires E [Q] = MN · I.

Furthermore, as evident by the definition of coherence in Eq. (3.14), µ is the maximum

absolute value among normalized off-diagonal elements of Q.

Due to the role of the matrix Q to obtain (uniform and non-uniform) recovery

guarantees, the statistics of the matrix Q are first studied.

3.3.1 Statistics of Q , AHA

To study the statistics of Q, first it is analyzed its relationship to the array pattern

[49], a quantity well known to radar practitioners. In array processing, the array

pattern β (ui,l) is the system response of an array beamformed in direction φl to a

unit amplitude target located in direction φi. In other words, β (ui,l) is the inner
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product between two normalized columns of the measurement matrix:

β (ui,l) ,
aHi al

‖ai‖2 ‖al‖2

(3.16)

=
1

MN

M∑
m=1

N∑
n=1

exp [jui,l (ζn + ξm)] ,

where

ui,l , πZ (φl − φi) . (3.17)

The peak of the absolute value of the array pattern for a target colinear with the

beamforming direction, |β (0)|, is called the mainlobe. Peaks of |β (u)| for u 6= 0, are

known as sidelobes, and the highest among all the sidelobes is called the peak sidelobe.

Thus the terms aHi al in (3.16) play the role of sidelobes.

The relation between coherence, isotropy and array pattern is apparent. Indeed,

from Eq. (3.14), Eq. (3.16), and the definition of sidelobes, the coherence, in array

processing parlance, is the peak sidelobe associated with the matrix A. Similarly,

from Eq. (3.15) and Eq. (3.16), the isotropy can be related to the mean array

pattern

η (ui,l) , E [β (ui,l)] , (3.18)

where the expectation E [β (ui,l)] is taken with respect to the ensemble of element

locations. In particular, isotropy requires that η (ui,l) = 0 for any i 6= l.

For a system with randomly placed sensors, the array pattern β (ui,l) is a

stochastic process. Naturally, statistics of the array pattern of a random array

depend on the pdf of the sensor locations. In [7], the authors derive the means and

the variances of the real and imaginary parts of β (ui,l). The following proposition

formalizes pertinent results from [7]. For the sake of brevity, the dependency on i and

l is dropped, and denote the array pattern as β (u). Define z , ζ + ξ, and assume

that the pdf of z, p (z), is an even function (so that Im η (u) = 0). Further, define
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the variances of the array pattern σ2
1 (u) , var [Re β (u)], σ2

2 (u) , var [Im β (u)] and

σ12 (u) , E [(Re β (u)− η (u)) Im β (u)].

Proposition 3.3.1. Let the locations ξ of the transmit elements be i.i.d., drawn from

a distribution p (ξ), and the locations ζ of the receive elements be i.i.d., drawn from

a distribution p (ζ). Then, for a given u, the following holds:

1. The mean array pattern is the characteristic function of z, i.e.,

η (u) = ψz (u) . (3.19)

2. If ξ and ζ are identically distributed, then Eq. (3.20), Eq. (3.21) (at the bottom

of this page), and σ12 (u) = 0 hold.

Proof. See Appendix A.0.1.

Proposition 3.3.1 links the probability distributions p (ξ) and p (ζ) (via ψz (u)

and ψ (u)) to the mean and variances of each element of the matrix Q, i.e.,

β (ui,l) = 1
MN

aHi al. As shown below, this result is used to obtain non-uniform recovery

guarantees.

To characterize the statistics of the coherence µ (defined in Eq. (3.14)), the

distribution of the maximum absolute value among normalized off-diagonal elements

of Q is needed. It is now shown that, by imposing specific constraints on the grid

points φ1:G and on the probability distributions p (ξ) and p (ζ), the distributions of

σ2
1 (u) =

1

2MN
(1 + ψz (2u)) + ψz (u)

[
N +M − 2

2MN
(1 + ψξ (2u))− ψz (u)

N +M − 1

MN

]
(3.20)

σ2
2 (u) =

1

2MN
(1− ψz (2u)) + ψz (u)

N +M − 2

2MN
(1 + ψξ (2u)) (3.21)
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the elements of Q can be characterized. To do this, it is required an intermediate

result about the structure of the matrix Q when φ1:G is a uniform grid:

Lemma 3.3.2. If φ1:G is a uniform grid, Q is a Toeplitz matrix.

Proof. See Appendix A.0.2.

Thanks to Lemma 3.3.2, whenever φ1:G is a uniform grid, Q is described

completely by the elements of the first row of A, aH1 ai for i = 1, . . . , G. From

the definition of A, its columns all have squared-norm equal to MN . Therefore the

elements on the main diagonal of Q are equal to MN . Thus, it is needed to investigate

the remaining random elements, aH1 ai for i = 2, . . . , G. By exploiting the Kronecker

structure of the columns of A in Eq. (3.12), the elements of Q can be expressed as:

aHi aj ,
(
cHi ⊗ bHi

)
(cj ⊗ bj)

= cHi cjb
H
i bj, (3.22)

where b and c are the steering vectors of the receiver and transmitter arrays,

respectively.

From Eq. (3.22), the random variable β (u1,i) , 1
MN

aH1 ai is the product

between the random variables βζ (u1,i) , 1
N

bH1 bi and βξ (u1,i) , 1
M

cH1 ci. As such,

the distribution of β (u1,i) (or equivalently, aH1 ai) can be characterized from the

distributions of βζ (u1,i) and βξ (u1,i). Following the approach in [6], in Appendix

A.0.3 is detailed that the real and imaginary parts of βζ (u1,i) (or βξ (u1,i)) have

an asymptotic joint Gaussian distribution, but, in general, the variances of real and

imaginary parts of such variables are not equal. Interestingly, a closed form expression

for the cumulative density function (cdf) of the product of βζ (u1,i) and βξ (u1,i) (i.e.,

the cdf of 1
MN

aH1 ai) exists in the special case when var [Re βζ (u1,i)] = var [Im βζ (u1,i)]

and var [Re βξ (u1,i)] = var [Im βξ (u1,i)]. By meeting these conditions, the following
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theorem derives an upper bound on the sidelobes’ complementary cdf (ccdf), i.e.,

Pr
(

1
MN

∣∣aH1 ai
∣∣ > q

)
, and show that sidelobes have uniformly distributed phases.

Two MIMO radar setups are addressed: (1) M transmitters and N receivers,

where ξ and ζ are independent, and (2) N transceivers, where ξn = ζn, for all n and

M = N .

Theorem 3.3.3. Let the locations ξ of the transmit elements be drawn i.i.d. from a

distribution p (ξ), and the locations ζ of the receive elements be drawn i.i.d. from a

distribution p (ζ). Assume that p (ξ), p (ζ) and the uniform grid φ1:G are such that

the transmitter and receiver characteristic functions satisfy

ψξ (u1,i) = ψξ (2u1,i) = ψζ (u1,i) = ψζ (2u1,i) = 0 (3.23)

for i = 2, . . . , G, where u1,i = πZ (φi − φ1). Then for i = 2, . . . , G:

1) If ξ and ζ are independent:

Pr

(
1

MN

∣∣aH1 ai
∣∣ > q

)
< x ·K1 (x) , (3.24)

where x , 2
√
MNq.

2) If ξn = ζn for all n:

Pr

(
1

N2

∣∣aH1 ai
∣∣ > q

)
< exp (−Nq) . (3.25)

3) In both scenarios, the phase of aH1 ai is uniformly distributed on the unit circle,

i.e.,

]aH1 ai ∼ U [0, 2π] . (3.26)

Proof. See Appendix A.0.3.

This theorem characterizes the distribution of 1
MN

aH1 ai for the M transmitters

N receivers setup, and for the N transceivers setup. Subsection 3.3.4 provides a
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practical setup that satisfies Eq. (3.23). As shown below, this allows to obtain a

uniform recovery guarantee for spatial compressive sensing.

3.3.2 Uniform Recovery

The following corollary of Theorem 3.3.3 bounds the probability that the matrix A

has high coherence, or equivalently, the probability of a peak sidelobe:

Corollary 3.3.4. Let the locations of the transmit elements ξ be drawn i.i.d. from

a distribution p (ξ), and the locations of the receivers ζ be drawn i.i.d. from a

distribution p (ζ). Assume that the distributions p (ξ) and p (ζ) and the uniformly

spaced grid-points φ1:G are such that Eq. (3.23) holds for i = 2, . . . , G. Then:

1) If ξ and ζ are independent:

Pr (µ > q) < 1− [1− x ·K1 (x)]G−1 , (3.27)

where x , 2
√
MNq.

2) If ξn = ζn for all n:

Pr (µ > q) < 1− [1− exp (−Nq)]G−1 . (3.28)

Proof. See Appendix A.0.4.

Since µ can be interpreted as the peak sidelobe of the array pattern, Eq. (3.27)

(Eq. (3.28)) characterizes the probability of having a peak sidelobe higher than q in

a system with M transmitters and N receivers (N transceivers). These results are

not asymptotic (i.e., they do not need the number of measurements M and N to

tend to infinity). To further explore this point, in numerical results these bounds are

compared against empirical simulations.

The coherence µ plays a major role in obtaining uniform recovery guarantees

for compressive sensing algorithms, as well as guaranteeing the uniqueness of the
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sparsest solution to Eq. (2.4). For instance, using the coherence µ, it is possible

to obtain a bound on the RIP constant, δK ≤ (K − 1)µ [50]. This ensures stable

and robust recovery by l1-minimization (i.e., using LASSO in Eq. (2.8)) from noisy

measurements. By building on Corollary 3.3.4, the following theorem establishes the

number of elements MN needed to obtain uniform recovery with high probability

using (2.8):

Theorem 3.3.5 (Uniform recovery guarantee). Let the locations ξ of the transmit

elements be drawn i.i.d. from a distribution p (ξ), and the locations ζ of the receivers

be drawn i.i.d. from a distribution p (ζ). Let the distributions p (ξ) and p (ζ), and the

uniform grid φ1:G be such that relations (3.23) hold for i = 2, . . . , G. Further, let

MN ≥ C

(
K − 1

2

)2 [
log γ +

1

2
log (2 log γ)

]2

(3.29)

where γ ,
√
πG/ (2ε), and the constant C =

(
43 + 12

√
7
)
/16 ≈ 4.6718. Then, with

probability at least 1− ε, for any K-sparse signal x ∈ CG measured from MN MIMO

radar measurements y = Ax + e, with ‖e‖2 ≤ σ, the solution x̂ of (2.8) satisfies

‖x̂− x‖2 ≤ cσ, (3.30)

where c is a constant that depends only on ε.

Proof. See Appendix A.0.5.

The significance of (3.29) is to indicate the number of elements necessary to

control the peak sidelobe. This is used to obtain a uniform recovery guarantee for

spatial compressive sensing. In addition, the previous theorem ensures exact recovery

of any K-sparse signal using (2.8) in the noise-free case σ = 0.

It is important to point out that the number of grid points G is not a free

variable since φ1:G must satisfy (3.23). This point will be explored in subsection
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3.3.4, where it is shown that the resolution G must be linearly proportional to the

“virtual” array aperture Z.

Uniform recovery guarantees capture a worst case recovery scenario. Indeed, the

average performance is usually much better than that predicted by uniform recovery

guarantees. In the following section, it is shown that if a non-uniform recovery

guarantee is considered, then the zero mean conditions (3.23) can be relaxed, and

recovery guarantees that scale linearly with K are obtained.

3.3.3 Non-uniform Recovery

In this subsection non-uniform recovery guarantees are investigated. In recent work

[20], it has been shown that for a sufficient number of i.i.d. compressive sensing

measurements, non-uniform recovery is guaranteed if isotropy holds. However, the

result in [20] cannot be directly used in the proposed framework since the MN rows of

the matrix A, following (3.11), are not i.i.d. This scenario is addressed in [21] in which

non-uniform recovery is guaranteed for a MIMO radar system with N transceivers

if the isotropy property (under the name aperture condition) holds. The following

theorem derives conditions on grid points φ1:G and probability distributions p (ξ) and

p (ζ), in order for the random matrix A to satisfy the isotropy property:

Theorem 3.3.6. Let the locations ξ of the transmit elements be drawn i.i.d. from

a distribution p (ξ), and the locations ζ of the receivers be drawn i.i.d. from a

distribution p (ζ). For every t, the t-th row of A in (3.13) satisfies the isotropy

property [20], i.e.,

E
[
AH (t, :) A (t, :)

]
= I, (3.31)

iff p (ξ), p (ζ) and φ1:G are chosen such that, for i = 2, . . . , G,

ψz (u1,i) = 0, (3.32)
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where z , ζ + ξ and u1,i , πZ (φi − φ1).

Proof. See Appendix A.0.6.

Theorem 3.3.6 links grid points φ1:G and probability distributions p (ξ) and p (ζ)

(through the characteristic function of z) with the isotropy property of A. When

(3.32) holds, it can be shown that the aperture condition used in [21] holds too.

Therefore, using the same approach as in [21], non-uniform recovery of K targets

via (2.8) is guaranteed in the proposed spatial compressive sensing framework. The

following Theorem customizes Theorem 2.1 in [21] to the proposed framework:

Theorem 3.3.7 (Non-uniform recovery guarantee). Consider a K-sparse x ∈ CG

measured from MN MIMO radar measurements y = Ax + e, where ‖e‖2 ≤ σ. Let

ε > 0 be an arbitrary scalar, and suppose that the random matrix A satisfies the

isotropy property, E
[
AH (t, :) A (t, :)

]
= I ∀t. Then with probability at least 1−ε, the

solution x̂ to (2.8) obeys

‖x̂− x‖2 ≤ C1σ

√
K

MN
, (3.33)

provided that the number of rows of A meets

MN ≥ CK log2

(
cG

ε

)
, (3.34)

where C1, C and c are constants.

Proof. The theorem is obtained from Theorem 2.1 in [21] by performing the following

substitutions: K for s (sparsity), MN for n2 (number of rows of A), and G for N

(number of columns of A). Since only K-sparse signals are considered, in (3.33) the

term that accounts for nearly-sparse signals present in [21] is discarded.

Theorem 3.3.7 shows that, when the isotropy property is satisfied, the proposed

framework is capable to localize K targets using about MN = K (logG)2 MIMO

radar measurements.
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Some comments are in order. First, it is important to stress that in (3.34),

the number of elements scales linearly with the sparsity K. This is in contrast with

uniform recovery bounds based on coherence (e.g., (3.29)), which scale quadratically

with K. Moreover, the significance of the logarithmic dependence on G is that the

proposed framework enables high resolution with a small number of MIMO radar

elements. This is in contrast with a filled virtual MIMO array where the product MN

scales linearly with G. Again, it is crucial to point out that the number of grid points

G is not a free variable, because the grid points φ1:G must satisfy (3.32). Second,

differently from (3.33), in (3.30) the error did not depend on K, M and N . Third,

(3.33) shows that reconstruction is stable even when the measurements are noisy.

Additionally, it can be seen from (3.33) that when σ = 0, Theorem 3.3.7 guarantees

exact reconstruction with high probability, when (3.34) holds. Both results above can

be extended to approximately sparse vectors, in which case an extra term appears in

the right hand-side of (3.30) and (3.33). This situation may emerge when targets are

not exactly on a grid, however, the analysis of such scenario is outside the scope of

this paper. Finally, to suggest some intuition into the above conditions, notice that

recovery can be guaranteed by requiring the matrix A to satisfy the isotropy property,

E [Q] = MN · I, and by controlling the variances of the non-diagonal elements of

Q(which, according to (3.20) and (3.21), scale with 1/MN) through the use of a

sufficient number of measurements MN .

3.3.4 Element Locations and Grid-points

Here an example of p (ξ), p (ζ) and φ1:G that meet the requirements of Theorem 3.3.3

and Theorem 3.3.6 is provided.

The conditions needed by each theorem constraint the characteristic function of

the random variables ξ, ζ. Let, ZTX = ZRX = Z/2, such that the random variables

ξ and ζ are both confined to the interval
[
−1

2
, 1

2

]
. The characteristic function of a
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uniform random variable ζ ∼ U
[
−1

2
, 1

2

]
is the sinc function, i.e.,

ψζ (u) =
sin (u/2)

u/2
. (3.35)

Therefore, when ζ is uniformly distributed, by choosing φ1:G as a uniform grid of

2/Z-spaced points in the range [−1, 1], it results ψζ (ui,l) = ψζ (2ui,l) = 0 for any i 6= l

(since ui,l , πZ (φl − φi) = 2π |i− l|). The number of grid points G is not a free

variable, because the grid points φ1:G must satisfy (3.23) or (3.32). For instance, in

the example above, φ1:G must be a uniform grid of 2/Z-spaced points between [−1, 1],

and, assuming that Z is an integer, the number of grid points is G = Z + 1.

The dependence between the number of grid points G and the virtual array

aperture Z can be understood by noticing that both (3.23) and (3.32) impose that

grid points are placed at the zeros of the characteristic function of the relative random

variable (i.e. the sinc function). The spacing of the zeros is dictated by the virtual

array aperture Z. The bigger the aperture the more grid points fit in the range [−1, 1].

Summarizing, choose φ1:G as a uniform grid of 2/Z-spaced points in the range

[−1, 1]. Then:

1. If both ζ and ξ are uniformly distributed, relations (3.23) hold, and Theorem

3.3.3 (for uniform recovery) can be invoked;

2. If either ζ or ξ are uniformly distributed, relation (3.32) holds, and Theorem

3.3.6 (for non-uniform recovery) can be invoked.

Note that non-uniform recovery, i.e., (3.32), requires only one density function, say

p (ζ), to be uniform, while the other distribution, p (ξ), can be arbitrarily chosen, e.g.,

it can be even deterministically dependent on ζ. For instance, (3.32) is satisfied in a

MIMO radar system with N transceivers, i.e., when ζ1:N are i.i.d. uniform distributed

and it is set deterministically ξn = ζn.
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Figure 3.2 Empirical ccdf of the coherence of the measurement matrix A and
its upper bound as a function of the number of elements. (a) considers the M
transmitters and N receivers setup and the upper bound is given in (3.27); (b)
considers the N transceivers setup and the upper bound is given in (3.28).

As a final remark, the analysis provided in this section regarding the statistics

of the matrix A may be used with block-sparsity results in the compressive sensing

literature [1] to obtain guarantees for the general MMV scenario.

3.4 Numerical Results

In this section, numerical results illustrating the proposed spatial compressive sensing

framework are presented.

It is designed an example to follow Theorem 3.3.3, in which p (ξ) and p (ζ) are

both uniform distributions, and φ1:G represents a uniform grid of 2/Z-spaced points

in the interval [−1, 1], which implies that the number of grid points is G = Z+1. The

system transmits a total of P pulses. When expressed in discrete form, each pulse

consists of M orthogonal codes composed by M symbols. In particular, the codes are

selected to be the rows of the M ×M Fourier matrix. Equal length apertures were

assumed for the transmit and receive arrays, i.e., ZTX = ZRX = Z/2. The target

gains were given by xk = exp (−jϕk), with ϕk drawn i.i.d., uniform over [0, 2π), for all
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k = 1, ..., K (where K is the number of targets). The noise (see (3.13)) was assumed

to be distributed as vec (E) ∼ CN (0, σ2I) and the SNR is defined as −10 log10 σ
2.

From the definition of the measurement matrix A, its columns all have squared-norm

equal to MN . Throughout the numerical results, the columns of A are normalized

in order to have unit norm.

First, the statistics of the matrix Q discussed in Section 3.2 are investigated. In

particular, the coherence µ of the measurement matrix A is compared to the result

given in Theorem 3.3.3. The virtual aperture was Z = 250 (thus G = 251). In

Figure 3.2, the ccdf of the coherence µ, i.e. Pr (µ > q), is plotted as a function of the

number of elements for (a) the M transmitters and N receivers setup and (b) the N

transceivers setup. As a reference, it is also plotted the upper bound given in (3.27)

and (3.28), respectively. It can be seen how the upper bound becomes tighter and

tighter as the number of elements increases. In addition, it is interesting to notice

that the coherence of the matrix A for the N ′ transceivers setup is very close to the

coherence of the matrix A for the the M transmitters and N receivers setup when

M = N = N ′/2.

Next, localization performance using practical algorithms are presented. Target

localization is implemented using LASSO (following the algorithm proposed in [21])

to solve problem (2.8). In addition, Beamforming, OLS, OMP, CoSaMP, FOCUSS

[41] and MBMP are implemented. In the MMV setup, MBMP, RA-ORMP [26],

M-FOCUSS [41], and MUSIC [28] are compared. Concerning MBMP, it requires as

input a K length branch vector d, which define the algorithm’s complexity (see [45]

for details on setting parameters for MBMP). The output of MBMP is the estimated

support. Notice that, when d = [1, . . . , 1], MBMP reduces to OLS in the SMV

scenario, and to RA-ORMP in the MMV scenario. A support recovery error is defined

as the event when the estimated support does not coincide with the true one. For

algorithms that return an estimate x̂ of the sparse vector x (e.g., LASSO, FOCUSS
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and MUSIC), the support was then identified as the K largest modulo entries of the

signal x̂.

Analyzing how to set the noise parameter σ in (2.4), or the sparsity K, without

prior information is the topic of current work [31], but outside the scope of this paper.

Therefore, it is assumed that the noise level is available and that the number of targets

K is known (notice that this information is needed by all the algorithms including

MBMP). The virtual aperture was Z = 250 (thus G = 251), and tests were carried

out for K = 5 targets. The SNR was 20 dB throughout.

The main focus of the paper is to reduce the number of antenna elements while

avoiding sidelobes errors and while preserving the high-resolution provided by the

virtual array aperture Z (i.e., recovering 2/Z-spaced targets). Therefore, to account

for errors due to sidelobes (an erroneous target is estimated at a sidelobe location) and

unresolved targets (the responses of two targets in consecutive grid-points is merged

in only one grid-point), it is considered as performance metric the support recovery

error probability, defined as the error event when at least one target is estimated

erroneously.

First, consider the non-uniform guarantee setting. Monte Carlo simulations were

carried out using independent realizations of target gains, targets locations, noise and

element positions. Figure 3.3 illustrates the probability of support recovery error as

a function of the number of measurements MN . From the figure, it can be seen

that compressive sensing algorithms enable better performance (smaller probability

of sidelobe error and better resolution) than beamforming, which is not well-suited

for the sparse recovery framework. Among compressive sensing algorithms, two main

groups appear: on one side, OLS and OMP, which both have practically the same

performance; on the other side, L1-norm opt., CoSaMP, FOCUSS and MBMP. Among

the latter group, it is important to point out that, although the recovery guarantee
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Figure 3.3 Probability of support recovery error as a function of the number of rows
MN of A. Non-uniform SMV setup. The system settings are Z = 250, G = 251,
P = 1 and K = 5 targets with |xk| = 1 for all k. The SNR is 20db.

established in Theorem 3.3.7 requires the solution of (2.8), and thus, using LASSO,

MBMP provides a viable and competitive way to perform target localization.

Next, consider uniform guarantees. In this setup, first a realization of the matrix

A is generated by drawing at random the element positions. Maintaining the matrix

A fixed, 500 Monte Carlo simulations are performed using independent realizations

of target gains, targets locations and noise. For each recovery method, a support

recovery error is defined if an error occur in any of the 500 simulations. The results

are then averaged throughout element positions realizations. Figure 3.4 illustrates the

probability of support recovery error as a function of the number of measurements

MN . The difference among OLS/OMP and the more sophisticated methods (i.e.,

LASSO, CoSaMP, FOCUSS and MBMP) is even more evident in this setup (e.g., at

MN = 81, the probability of OLS/OMP error is greater than 0.1), confirming the

theoretical finding [51] of OLS/OMP unfitness to deliver uniform recovery. On the

other hand, MBMP, an extension of OLS, still provides competitive performance. In

particular, MBMP with d = [3, 3, 3, 3, 1] outperform the other methods.
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Figure 3.4 Probability of support recovery error as a function of the number of
rows MN of A. Uniform SMV setup. The system settings are Z = 250, G = 251,
P = 1 and K = 5 targets with |xk| = 1 for all k. The SNR is 20db.
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The theoretical results presented in this work focus on the SMV setting.

However, in practice several snapshots can be available. To explore the benefits

of the proposed MIMO random array framework in such case, in Figure 3.5 an MMV

setting (P = 5) is considered and sparse recovery methods are compared against the

well-known MUSIC algorithm. Five different elements configurations are considered:

[M,N ] = [3, 3], [4, 4], [5, 5], [6, 6] and [7, 7]. The figure illustrates the probability of

support recovery error as a function of the number of measurements MN (nonuniform

setup). Sparse recovery algorithms have better performances than MUSIC, and

the availability of multiple snapshots allows to considerably reduce the number of

antenna elements. Moreover, in the MMV setting, algorithms which are able to

exploit the signal subspace information (e.g., MBMP and RA-ORMP) posses a clear

advantage over those algorithms that are unable (e.g., M-FOCUSS). For instance,

this can be appreciated by the difference in performance of FOCUSS and MBMP

with d = [2, 2, 2, 2, 1] when comparing the SMV (Figure 3.3) and MMV (Figure 3.5)

settings. The numerical simulations presented in this paper considered a medium

SNR level and show a superior performance of sparse recovery methods over classical

methods (e.g., beamforming or MUSIC) in the proposed framework. Since the sparsity

property, upon which sparse recovery methods rely, is independent from the SNR, a

similar behavior is also expected at low SNR (e.g., SNR = 0 dB or lower).

3.5 Concluding Remarks

The proposed sparse framework for source localization using random array MIMO

radar links system design quantities, i.e., the probability distributions p (ξ) and p (ζ)

of the tx/rx sensors location and the sparse localization grid points φ1:G, with the

statistics of the Gram matrix Q and the related coherence of the matrix A. Based

on this result, uniform and non-uniform recovery guarantees for spatial compressive

sensing are developed. Within the proposed framework, it is possible to localize K
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targets using about MN = K (logG)2 MIMO radar noisy measurements, where G

is proportional to the array aperture and determines the angle resolution. In other

words, the proposed framework supports the high-resolution provided by the virtual

array aperture while using a reduced number of MIMO radar elements. This is in

contrast with a filled virtual MIMO array for which the product MN scales linearly

withG. Moreover, since the results characterize the product of the number of transmit

and receive elements, MIMO random array implementation further reduces the total

number of antenna elements needed. From numerical simulations it emerges that, in

the proposed framework, compressive sensing recovery algorithms (e.g., MBMP) are

capable of better performance (i.e., smaller probability of sidelobe errors and better

resolution) than classical methods, such as beamforming and MUSIC.



CHAPTER 4

MULTI-BRANCH MATCHING PURSUIT

This chapter introduces the Multi-Branch Matching Pursuit (MBMP) algorithm,

which belongs to the matching pursuit family and aims to solve problem in Eq. (2.7),

which is restated here:

min
C

∥∥Π⊥AC
Y
∥∥
F

s.t. |C| ≤ τ (4.1)

where τ is a given parameter. In the following, state-of-the-art algorithms are

overviewed and then MBMP is detailed.

4.0.1 Matching Pursuit

Matching pursuit [1] is a strategy that starts with an empty provisional support

C = ∅, and then adds a new index to C at each iteration based on a selection

strategy. For example, in OMP, the index g that maximizes
∥∥aHg Π⊥AC

Y
∥∥

2
is selected.

This selection strategy can be refined in two ways: a dictionary refinement and a

subspace refinement.

The dictionary refinement applies when a non-empty provisional support C is

already available. In this case, instead of using the original dictionary’s atoms, the

current dictionary is projected on the orthogonal subspace of AC , i.e., ăCg , Π⊥AC
ag,

and each atom is renormalized according to,

āCg ,

 ăCg /
∥∥ăCg ∥∥2

if
∥∥ăCg ∥∥2

> 0

0 otherwise
. (4.2)

The dictionary refinement procedure (4.2) distinguishes OLS from OMP [52]: OLS

evaluates the inner product between the residual and the modified atoms āCg , while

OMP computes the inner product using ăCg .

41
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Figure 4.1 Graph of MBMP algorithm: (a) for a branch vector d = [1, 1] - MBMP
reduces to RA-ORMP; (b) for a branch vector d = [3, 2].

The subspace refinement is possible in a MMV scenario (when rank (X) > 1). In

such case, rather than evaluating the norm of the inner product
∥∥aHg Π⊥AC

Y
∥∥

2
using the

residual Π⊥AC
Y, one can use an orthonormal basis U of Π⊥AC

Y, and compute
∥∥aHg U

∥∥
2
.

The matrix U is also known as the signal subspace. When the signal subspace can

be accurately estimated, this procedure eliminates the mutual-interference between

signals.

Depending on how refinement strategies are combined (dictionary refinement

and/or subspace refinement), four different algorithms can be obtained. Three of

them have been already introduced in the literature [26]: if dictionary and subspace

refinements are not used, Simultaneous Orthogonal Matching Pursuit (SOMP) is

obtained, which extends OMP to the general MMV scenario; if dictionary refinement

is not used, but subspace refinement is used, the RA-OMP (which is not fully

rank-aware); finally, if both dictionary and subspace refinements are used, the best

algorithm is obtained, namely RA-ORMP, which is fully rank-aware. In particular,

rank awareness means that, assuming spark (A) > 2K− rank (X)+1 and considering

a noiseless scenario, whenever the received signal Y is full rank the correct support

is recovered by RA-ORMP with probability one. As a final remark, RA-ORMP

can be contrasted with the MUSIC algorithm. The difference between them is

the selection strategy: while RA-ORMP performs an iterative selection of nonzero

elements, MUSIC identifies nonzero elements as the K largest values of
∥∥aHg U

∥∥
2
.
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4.0.2 Multi-Branch Matching Pursuit

The proposed MBMP algorithm, which generalizes RA-ORMP by including a multi-

branch structure, is now detailed. It is possible to visualize RA-ORMP as a linear

network of nodes, depicted in Figure 4.1-(a). Node A is tagged with an empty support.

A new index is selected following a chosen selection strategy, and it becomes the

provisional support of node B. To solve problem in Eq. (4.1), this procedure is

repeated until level τ + 1 is reached.

Instead of a linear network of nodes, the MBMP algorithm may be visualized as

a tree of nodes as shown in Figure 4.1-(b), where each node is allowed to have multiple

children (node A is the parent of nodes B, C and D; B is the parent of E and F). For

instance, in Figure 4.1-(b), node A has three branches, resulting in three nodes at

level 2. Node A is tagged with an empty support. Then, the index with the largest

value according to the chosen selection strategy becomes the provisional support of

node B. While RA-ORMP stops here, with MBMP, the index with the second largest

value is assigned to the provisional support of node C. Similarly, the index with the

third largest value is assigned to the provisional support of node D. One of these

atom indices will necessarily be part of the solution reached by the algorithm. Then,

MBMP removes from the dictionary the three atom indices selected at level 2, and

continues to populate nodes at level 3. For example, consider node B. Since node

B has two branches, it has two children. Following the selection strategy, two new

indices are selected (the indices with the largest and the second largest values in the

selection strategy metric). Each of these is added to the provisional support of node B

and used to tag node E and F, respectively. This procedure is performed for all nodes

at level 2 (i.e., nodes C and D), thus populating nodes G, H, I and J. The process

stops when all nodes at level τ + 1 have been populated. The provisional support S

achieving the minimum data-fit
∥∥Π⊥AS

Y
∥∥
F

is elected as the solution to problem in

Eq. (4.1).
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The MBMP tree depends on the number of levels and on the number of branches

at each level (assumed constant for nodes within the same level of the tree). The

MBMP structure can be specified using a vector d , [d1, . . . , dτ ] referred to as branch

vector : di represents the number of branches of each node at level i. For instance,

the tree in Figure 4.1-(a) has d = [1, 1] while the tree in Figure 4.1-(b) has d = [3, 2]

(node A at level 1 has d1 = 3 branches, and each node at level 2 (i.e., B, C, and D)

possesses d2 = 2 branches).

The pseudo-code of the MBMP algorithm is detailed in the following table. A

leaf node is defined as a node without children, and orth (Y) indicates an estimate

of the signal subspace of the matrix Y.

Algorithm 1 Multi-branch matching pursuit algorithm

Input: Y ∈ Cm×P , A ∈ Cm×G, and d ∈ Nτ

Output: Support of approximate solution to problem in Eq. (4.1)

1: Set U = Y and tag root node with S = ∅ and S̄ = ∅

2: while ∃ leaf node with |S| < τ

3: Select a leaf node with |S| < τ

4: Set Γ = S, Γ̄ = S̄ and i = |S|+ 1

5: if P > 1 set U = orth
(
Π⊥AΓ

Y
)

5: {ĝ1:di} is the set of di indices g ∈ Γ̄ that maximize
∥∥UH āΓ

g

∥∥
2

6: for d = 1, . . . , di

8: Tag a new child node with:

S = Γ ∪ ĝd, S̄ = Γ̄ ∪ {ĝ1:d} and f =
∥∥Π⊥AS

Y
∥∥
F

9: end

10: end

11: Return a support S that minimizes f
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Finally, it is noted that nodes at level τ need only dτ = 1 branch. This is

because any additional branch would result in a provisional support S with higher

cost function and thus would not be selected at step 11 of the MBMP algorithm.

4.0.3 Computational Complexity

Given an m×G matrix A and an m×P matrix1 Y, the computational requirements

of MBMP depend on the specific implementation details, the structure of the

measurement matrix A and the branch vector d = [d1, . . . , dτ ] (MBMP has 1 node at

level 1 and
∏

j<idj nodes at level i). Due to the variability of the computation costs of

applying the transform AH (ranging fromO (G log (m)P ) for an FFT-type operations

to O (mGl) for unstructured matrices), F denotes the computational cost associated

with performing AHU without specifying an associated number of flops. Furthermore,

to perform subspace refinement, a practical implementation of MBMP would also

need to incorporate an estimate of the signal subspace, and R denotes the relative

cost. For a node at level i, other operations performed by MBMP are: selecting the

di largest inner products, which is known as the “selection problem” [53] and can

be solved using O (G) flops; the dictionary refinement, which costs 2m (G− i+ 1)

flops; the update of the projection matrix Π⊥AS
, which requires 2m flops, and the

computation of the residual, that needs mP flops. An efficient implementation of

both the dictionary refinement and the projection matrix update is obtained by using

a QR factorization [1].

Summarizing, the first node requires F +R +O (G) flops, since the dictionary

refinement and the projection matrix update are not performed. Any node at level

i (with 2 ≤ i ≤ τ) requires F + R + O (G) + 2m (G− i+ 2) + mP flops. Finally, a

node at level τ + 1 requires m (P + 2) flops to update the projection matrix and to

compute the residual norm.

1It is assumed that P ≤ m. When P > m, Y can be substituted with any square root of
YYH (an m×m matrix) without affecting the solution to problem in Eq. (4.1).
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This result can be contrasted with the complexity of the beamforming estimator

F + O (G) (which selects the τ indices with the largest metric
∥∥aHg Y

∥∥
2

among g =

1, . . . , G), or with the MUSIC estimator F+R+O (G) (which selects the τ indices with

the largest metric
∥∥aHg U

∥∥
2

among g = 1, . . . , G, where U is an estimate of the signal

subspace of Y). As discussed previously, when di = 1 for all i, the MBMP algorithm

reduces to the RA-ORMP. It is worth mentioning that, due to the tree-structure, the

proposed MBMP algorithm lends itself to a parallel implementation. Indeed, although

the total number of MBMP operations remains the same, they can be performed in

parallel, reducing the algorithm’s execution time.

4.1 Recovery Guarantees for MBMP

This section provides recovery guarantees for MBMP in a noiseless scenario Y = AX.

Throughout this section, the measurement matrix A is a given deterministic matrix,

with no assumptions imposed on its structure. The sparsity level K is assumed to

be known and, thus τ = K for the problem in Eq. (4.1), and MBMP is executed

with a branch vector d , [d1, . . . , dK ] of length K. The information available to

the recovery algorithm includes Y, A, and K. Moreover, as MBMP is executed,

provisional supports, denoted Ci, are available at all nodes of level i. By convention,

C1 = ∅, since at level 1, no provisional support is available. MBMP succeeds in

recovering a K-sparse X if one MBMP node at level K + 1 is tagged with the correct

support of X, denoted S∗.

The road map of this section is as follows: First, Tropp’s ERC [25] is overviewed.

This condition considers signals with a specific support S∗. This restriction enables

to obtain recovery guarantees for pursuit algorithms (e.g., OMP, OLS, BP, and RA-

ORMP). By generalizing ERC to a multi-branch algorithm, in Definition 4.1.1 the

MB-ERC is formulated. Theorem 4.1.2 relies on the MB-ERC to provide a sufficient

condition to guarantee successful recovery with MBMP. Similar to ERC, MB-ERC
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is non-constructive, since it focuses only on signals with a specific support S∗. To

overcome this limitation, in Definition 4.1.3 the MB-coherence condition for multi-

branch algorithms is introduced. With the help of the MB-coherence, Theorem 4.1.4

specifies a sufficient condition that guarantees the recovery of any K-sparse signal

X using MBMP. Interestingly, the MB-coherence condition is the generalization to a

multi-branch algorithm of the Neuman ERC (or weak ERC) [54] and it improves on

the cumulative coherence condition proposed in [25].

4.1.1 MB-ERC

The ERC characterizes the ability of practical algorithms to recover sparse signals

supported on a specific support S∗. For a given support S∗ and for a matrix A, the

ERC is defined as [25]

max
g/∈S∗

∥∥∥A†S∗ag∥∥∥
1
< 1. (4.3)

This condition addresses linear systems of equations of the form AS∗x = ag,

where ag is a column from A that is outside the support S∗. The ERC states that the

minimum (`2-)energy solution to all these systems should have an `1-length smaller

than 1. The importance of the ERC comes from its strong connection to the success of

pursuit techniques. In particular, ERC is a sufficient condition for successful recovery

via RA-ORMP (as shown in [26]) and thus for MBMP as well as. ERC is also sufficient

for correct recovery via OMP, OLS and BP in the SMV setup (see [25] and [55]).

Next MB-ERC is introduced, which generalizes ERC to a multi-branch algorithm

and leads to a stronger sufficient condition to guarantee the success of MBMP. In

contrast to RA-ORMP, in which each node has only one child, the number of children

of each node of MBMP is specified by the branch vector d = [d1, . . . , dK ], where di is

the number of branches of each node at level i. As a result, MB-ERC is a function

of di. To proceed, it is convenient to define the di max operator. Explicitly, given a
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real vector z and a positive integer di, di maxg/∈S∗ (z) selects the di-ranked maximum

among the indices of z outside the support S∗. For instance, if z = [.7, 1.4, 1.1, .8, .9]T

and S∗ = {2}, then index 2 should be excluded, and 1 maxg/∈S∗ (z) = 1.1 (the largest

entry outside S∗), while 2 maxg/∈S∗ (z) = .9 (the second largest entry outside S∗), and

so on.

Now MB-ERC can be defined. Consider level i of MBMP. Given a correct

provisional support Ci (with Ci ⊂ S∗ and |Ci| = i − 1), the dictionary refinement

modification can be implemented, and a refined dictionary Ā ,
{
āCi
g , g /∈ Ci

}
is

obtained (see also Eq. (4.2)). Denoting S , S∗ \ Ci the support’s indices yet to be

identified, consider a sub-matrix of Ā obtained by collecting only atoms āCi
g such that

g ∈ S, i.e., ĀS ,
{
āCi
g , g ∈ S

}
. The MB-ERC is defined as follows:

Definition 4.1.1. [MB-ERC]Consider a support S∗, a matrix A, a positive integer

di, and a correct provisional support Ci. Let S , S∗ \ Ci be the set of indices yet to

be identified. The MB-ERC is defined as

di max
g/∈S∗

(∥∥∥Ā†SāCi
g

∥∥∥
1

)
< 1. (4.4)

MB-ERC generalizes ERC to a multi-branch algorithm. By using MB-ERC,

success of MBMP can guaranteed for any signal X supported on S∗:

Theorem 4.1.2 (Recovery of any signal supported on S∗). Given Y = AX where X

is an unknown, K-sparse matrix of rank r and known to be supported on S∗. If the

MB-ERC in Eq. (4.4) is met for all nodes at levels i = 1, . . . , K − r, then MBMP

with branch vector d = [d1, . . . , dK−r, 1, . . . , 1] is guaranteed to recover X successfully.

Proof. See Appendix B.0.7.

Theorem 4.1.2 formulates a sufficient condition for MBMP successful recovery

of sparse signals supported on a specific support S∗. In the next subsection, another

condition that guarantees MBMP successful recovery for any K-sparse signal is
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obtained. Before proceeding, it is worth contrasting MB-ERC and ERC. Consider

level 1 of MBMP. Since the provisional support C1 = ∅, MB-ERC reduces to

d1 max
g/∈S∗

(∥∥∥A†S∗ag∥∥∥
1

)
< 1, (4.5)

where d1 is the number of branches at level 1. The difference between Eq. (4.5) and

Eq. (4.3) is the d1 max operator in Eq. (4.5), which replaces the max operator in Eq.

(4.3). This embodies the effect of seeking the d1-largest (instead of the maximum)

value of
∥∥∥A†S∗ag∥∥∥

1
among indices g outside the support S∗. In other words, up to

d1 − 1 indices {g} outside the support S∗ with `1-length of the minimum (`2-)energy

solution of AS∗x = ag greater than 1 can be tolerated. Furthermore, since ERC is

obtained as a special case of Eq. (4.5) when d1 = 1, for d1 > 1 Eq. (4.5) is easier

to meet than ERC (i.e., higher tolerance). As a concrete example, assume S∗ = {2}

and
∥∥∥A†S∗ag∥∥∥

1
= zg for g = 1, . . . , 5, with z = [.7, 1.4, 1.1, .8, .9]T . The values of∥∥∥A†S∗ag∥∥∥

1
outside S∗ are {.7, 1.1, .8, .9}. Therefore, while ERC is not satisfied (since

maxg/∈S∗ (z) = 1.1 > 1), MB-ERC is satisfied, if MBMP is designed with d1 ≥ 2

branches at level 1 (since 2 maxg/∈S∗ (z) = .9 < 1).

4.1.2 MB-coherence Condition

A disadvantage of MB-ERC and ERC is that both require the knowledge of the true

support S∗, hardly available in practice. This implies that to check if a measurement

matrix A satisfies MB-ERC (or ERC), one has to compute the conditions for all
(
n
K

)
possible supports S∗ of cardinality K, which is usually prohibitive even for small

values of K. To overcome this limitation, a practical condition that guarantees

recovery via MBMP for any K-sparse signal X is developed. The main problem

with MB-ERC and ERC is the presence of the pseudo-inverse. As shown in [25],

by using standard norm inequalities to upper bound ERC, it is possible to obtain

practical conditions that include only inner products rather than the pseudo-inverse
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operator. These conditions rely on the notion of coherence of a measurement matrix

A, defined in [25] as

µ (A) , max
i 6=j

∣∣aHi aj
∣∣ , (4.6)

and on the notion of cumulative coherence (also known as Babel’s function [56]),

defined in [25] as

µ̄ (k,A) , max
S,|S|=k

max
g/∈S

∥∥AH
S ag

∥∥
1
, (4.7)

for a positive integer k. Using these definitions, it was shown in [25] that the ERC

holds for any K-sparse signal X, if either the coherence satisfies

µ (A) <
1

2K − 1
(4.8)

or the cumulative coherence satisfies

µ̄ (K − 1,A) + µ̄ (K,A) < 1. (4.9)

Inspection of the definition of the coherence and cumulative coherence shows

that µ̄ (k,A) ≤ kµ (A) for any k. This is because the term
∥∥AH

S∗ag
∥∥

1
in the definition

of µ̄ (k,A) is the sum of the absolute value of k elements from AHA− I, whereas

µ (A) is the maximum among them. Since the cumulative coherence condition in Eq.

(4.9) sums 2K − 1 such terms, it follows that the coherence condition in Eq. (4.8)

implies the cumulative coherence condition in Eq. (4.9), i.e., Eq. (4.8) ⇒ Eq. (4.9).

Condition in Eq. (4.9) (or Eq. (4.8)) implies ERC, and it is thus sufficient

to guarantee recovery of any K-sparse X using MBMP or RA-ORMP. However,

condition in Eq. (4.9) does not capture the multi-branch structure of MBMP. Thus

a stronger condition for multi-branch algorithms, dubbed MB-coherence condition,

is proposed. This condition is sufficient to guarantee recovery of any K-sparse X
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using MBMP. Considering a provisional support Ci, let ĀCi ,
{
āCi
g , g /∈ Ci

}
be the

associated refined measurement matrix.

Definition 4.1.3. [MB-coherence]Consider a matrix A, positive integers K and di,

and a correct provisional support Ci (with |Ci| = i− 1). The MB-coherence condition

is defined as

max
S,|S|=K−i+1

(
max
g∈S

∥∥ĀH
S āCi

g

∥∥
1
+ di max

g/∈S∪Ci

(∥∥ĀH
S āCi

g

∥∥
1

))
< 2. (4.10)

A key aspect of the MB-coherence condition is that it includes only inner

products among columns of the matrix ĀCi (as opposed to MB-ERC in Eq. (4.4)

which includes the pseudo-inverse operator). As discussed in Appendix B.0.9, this

enables to practically compute the smallest integer di such that the MB-coherence

condition Eq. (4.10) is met.

By using the MB-coherence condition, it is possible to obtain a sufficient

condition to guarantee that MBMP recovers any K-sparse signal X:

Theorem 4.1.4 (Recovery of any K-sparse signal). Given Y = AX where X is an

unknown, K-sparse matrix of rank r. If the MB-coherence condition in Eq. (4.10)

is met for all nodes at levels i = 1, . . . , K − r, then MBMP with branch vector d =

[d1, . . . , dK−r, 1, . . . , 1] is guaranteed to recover X successfully.

Proof. See Appendix B.0.8.

Theorem 4.1.4 guarantees correct recovery of any K-sparse signal using MBMP

(without requiring the knowledge of its support S∗). The special case of Theorem

4.1.4 for a single branch algorithm (when d = [1, . . . , 1]), i.e.,

max
S,|S|=K

(
max
g∈S

∥∥AH
S ag

∥∥
1

+ max
g/∈S

∥∥AH
S ag

∥∥
1

)
< 2 (4.11)
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is addressed as Neuman ERC or weak ERC and it was proposed in [54]. This condition

guarantees correct recovery using RA-ORMP (the special case of MBMP when d =

[1, . . . , 1]), BP, OMP or OLS.

Given a matrix A, the number of branches of MBMP may be designed to

guarantee recovery of any K-sparse signals for some targeted sparsity level K. An

application of Theorem 4.1.4 is to provide an upper bound on the number of branches

needed by each node of MBMP. Consider level 1 of MBMP. By choosing d1 as the

smallest integer such that Eq. (4.10) holds at level 1, it is guaranteed that at least

one node at level 2 has a support C2 such that C2 ⊂ S∗. Therefore, there is no need

to increase d1 further. Similarly, for each node at level 2, the refined measurement

matrix ĀC2 ,
{
āC2
g , g /∈ C2

}
is computed, and the number of branches d2 is chosen

as the smallest integer that satisfies condition in Eq. (4.10) at level 2. By doing so, it

is guaranteed that at least one node at level 3 has support C3 such that C3 ⊂ S∗. In

general, for each node at level i, the refined measurement matrix ĀCi ,
{
āCi
g , g /∈ Ci

}
is computed, and di is selected to satisfy Eq. (4.10) at level i. The process continues

until dK−r is set at level K−r, since, as shown in Lemma B.0.2 in Appendix B, nodes

at level i > K − r need only di = 1 branch. Furthermore, it can be shown that the

number of branches di needed to satisfy Eq. (4.10) is non-increasing with respect to

the level i. Therefore, if at some node, Eq. (4.10) holds with a given di, then, at any

children of such node, the number of branches dj needed to met Eq. (4.10) obeys

dj ≤ di. This implies that if at some node, Eq. (4.10) holds with di = 1, then it can

be set dj = 1 branch for all children of such node.

4.2 Numerical Results

This section presents numerical results to illustrate the guarantees obtained in

Section 4.1 and to investigate the performance of the proposed MBMP algorithm

for MIMO radar direction-of-arrival (DOA) localization, utilizing the MIMO radar
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spatial compressive sensing setup, introduced in Chapter 3. Below, the main settings

of the Spatial Compressive Sensing setup are restated.

4.2.1 MIMO Radar Setup

A MIMO radar system where N sensors collect a finite train of P pulses is considered.

Each pulse consists of M orthogonal spread spectrum waveforms of length M chips.

Each one of the waveforms is sent by one of the M transmitters and returned from

K stationary targets. Transmitters and receivers are assumed to form (possibly

overlapping) linear arrays of equal aperture Z/2, respectively (Z is normalized in

wavelength units): the i-th transmitter is at position ξi, where ξi ∈ [0, Z/2] for

i = 1, . . . ,M on the x-axis; the i-th receiver is at position ζi, where ζi ∈ [0, Z/2]

for i = 1, . . . , N . The targets’ positions are assumed constant over the observation

interval of P pulses.

The purpose of the system is to determine the DOA angles to targets of interest.

Targets associated with a particular range and Doppler bin are considered. Targets

in adjacent range-Doppler bins contribute as interference to the bin of interest. The

assumption of a common range bin implies that all waveforms are received with the

same time delay after transmission. Targets are assumed in the far-field, meaning

that a target’s DOA parameter θ , sinϑ (where ϑ is the DOA angle) is constant

across the array. Following [9], the DOA estimation problem can be cast within a

sparse localization framework. Neglecting the discretization error, it is assumed that

the target possible locations comply with a grid of G points φ1:n (with G� K). By

defining the MN ×G matrix

A = [a (φ1) , . . . , a (φn)] (4.12)

where a (θ) , c (θ) ⊗ b (θ) with b (θ) = [exp (j2πZθζ1) , . . . , exp (j2πZθζN)]T

the receiver steering vector and c (θ) = [exp (j2πZθξ1) , . . . , exp (j2πZθξM)]T the
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transmitter steering vector (see [9] for further details), the signal model is expressed

as Eq. (2.5). In particular, the unknown matrix X ∈ CG×P contains the targets

locations and gains. Non-zero rows of X correspond to grid points with a target.

Spatial compressive sensing assumes that the elements’ positions are random

variables (described by the probability density functions (pdf) p (ξ) and p (ζ)).

Following the setup discussed in [9], p (ξ) and p (ζ) are chosen as uniform distributions,

and φ1:G as a uniform grid of 2/Z-spaced points in the range [−1, 1]. This implies

that the number of grid points is G = Z+1 (columns of the measurement matrix A).

The target gains are given by xk,p = exp (−jϕk,p), with ϕk,p drawn i.i.d.,

uniform over [0, 2π), for all k = 1, ..., K (where K is the number of targets) and

p = 1, . . . , P (where P is the number of snapshots). In other words, the target

gains follow a Swerling Case II model, meaning that they are fixed during the pulse

repetition interval, and vary independently from pulse to pulse [47]. The noise (see

Eq. (2.5)) is assumed to be distributed as vec (E) ∼ CN (0, σ2I) (where vec (·) is the

vectorization operator) and the SNR is defined −10 log10 σ
2. From the definition of

the measurement matrix A, its columns all have norms equal to
√
MN . Throughout

the numerical results, the columns of A are normalized to unit norm.

4.2.2 Numerical Experiments

First, the guarantees obtained in Section 4.1 using the MB-coherence are explored.

The trade-off between the number of measurements and number of branches d1 at

level 1 of MBMP (which relates to the algorithm’s complexity) in order to meet the

MB-coherence condition (4.10) at level 1 is investigated, i.e.,

max
S,|S|=K

(
max
g∈S

∥∥AH
S ag

∥∥
1

+ d1 max
g/∈S

(∥∥AH
S ag

∥∥
1

))
< 2, (4.13)

where ĀC1 = A (since C1 = ∅). The probabilities of meeting the coherence condition

in Eq. (4.8) and the cumulative coherence condition in Eq. (4.9) are also plot as
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references. Several realizations of the MIMO radar measurement matrix A ∈ CMN×n

(as defined in Eq. (4.12)) are generated, and for each realization it is tested whether

Eq. (4.13) holds. Figure 4.2 plots the probability of meeting condition in Eq. (4.13)

as a function of the number of measurements MN and parametrized by the number

of branches d1. Let K = 3, Z = 500, p (ξ) and p (ζ) be uniform distributions, and

φ1:n be a uniform grid of 2/Z-spaced points in the range [−1, 1]. This implies that

the number of grid points is n = Z + 1 = 501. The main insight of the figure

is the fewer measurements needed by the proposed MB-coherence condition with

d1 = 1 compared to the previous conditions (coherence and cumulative coherence).

For instance, while the cumulative coherence condition needs almost MN = n =

501 to guarantee recovery with high probability, the proposed MB-coherence is met

with high probability for MN = 400 (i.e., M = N = 20 elements). Furthermore,

increasing the number of branches d1 of MBMP enables to further reduce the number

of measurements needed to guarantee recovery. For example, if d1 = 3 branches are

used, only MN = 289 measurements (i.e., M = N = 17 elements) are needed to

obtain the guarantee with high probability, saving 6 antenna elements with respect

to the d1 = 1 setup.

In addition to the MIMO radar measurement matrix, a Gaussian measurement

matrix, which has been widely studied in compressive sensing [1], is also investigated.

The matrix A ∈ Cm×G is formed by generating mG i.i.d. random samples from

the complex Gaussian distribution (arranged in matrix form), and subsequently

normalizing each column of A. In Figure 4.3, the probability of meeting condition

in Eq. (4.13) is plotted as a function of the number of measurements m for different

value of d1. As before, K = 3 and G = 501. The advantage of the proposed

MB-coherence condition, with d1 = 1, over previous conditions is even more marked

than in the MIMO radar setting. For instance, whereas the proposed MB-coherence

is met with high probability for m = 180, the cumulative coherence condition is never
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met at m = 180 requiring around m = 270 measurements to guarantee recovery with

high probability. The reduction in the number of measurements when the number of

branches d1 of MBMP is increased can be seen from the figure. For instance, while,

using d1 = 1 branch, about m = 200 measurements are needed to guarantee with high

probability that MBMP correctly identify an atom in the support at level 1, by using

d1 = 2 branches the same guarantee is obtained with only m = 160 measurements,

and the measurements can be further reduced to m = 140 if d1 = 4 branches are

employed.

The MB-coherence condition, investigated in Figures 4.2 and 4.3, relates to the

correct recovery of any K-sparse signal using MBMP. A uniform recovery guarantee

certifies that, given a fixed instantiation of the random measurement matrix A, all

possible K-sparse signals are recovered correctly [1]. Uniform recovery conditions

capture the worst-case behavior of a measurement matrix A. However, if one focuses

on typical recovery, the conditions to obtain successful (non-uniform) recovery with

high probability can be relaxed significantly, as shown in the numerical examples

below.

To investigate the typical recovery behavior of MBMP, numerical results for

non-uniform recovery (i.e., at each realization, the matrix A and the signal X are

draw independently at random) are presented and the localization performance in

the presence of noise is explored by comparing MBMP with other SMV and MMV

algorithms. For the SMV setting, target localization is implemented using LASSO

(applying the algorithm proposed in [21]). In addition, beamforming, OLS and

FOCUSS [41] are implemented. For the MMV scenario, MBMP is compared against

RA-ORMP, M-FOCUSS, and MUSIC. Notice that when d = [1, . . . , 1], MBMP

reduces to RA-ORMP (which equals OLS in the SMV scenario).

A support recovery error is defined as the event when the estimated support

does not coincide with the true one. For algorithms that return an estimate X̂ of
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the sparse signal X (e.g., LASSO and M-FOCUSS), the support is identified as the

K largest norm rows of the signal X̂. Concerning MBMP, it requires as input a K

length branch vector d. The output of MBMP is the estimated support. Therefore in

this chapter, K is assumed to be known (notice that this information is needed by all

the algorithms including MBMP). It is further assumed that the noise parameter σ in

Eq. (2.4) is known, since this information is needed by LASSO and M-FOCUSS. The

virtual aperture was Z = 250 (thus G = 251), and numerical results were obtained

for K = 5 targets.

In Figure 4.4, it is addressed an MMV setting (P = 5) and it is investigated

the probability of support recovery error as a function of the SNR. The number of

antenna elements are M = N = 4. From the figure, it can be seen that MBMP

has performance superior to both M-FOCUSS and MUSIC. The floor incurred by

M-FOCUSS is due to the inability of this method to exploit the signal subspace

information (since M-FOCUSS utilizes Y instead of U). In addition, MBMP requires

a much smaller SNR than MUSIC: for instance, to achieve a probability of error of

10−3, MUSIC requires SNR = 47 dB, while MBMP with d = [2, 2, 2, 2, 1] achieves the
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same probability of error with just 20 dB. This gain is ascribed to the iterative signal

support estimation performed by MBMP, which differs from the one-shot support

estimation performed by MUSIC (target locations correspond to the K highest peaks

of
∥∥aHg U

∥∥2

F
). In addition it can be seen that increasing the number of branches for

MBMP translates into further SNR gain.

Maintaining the antenna configuration of Figure 4.4, i.e., M = N = 4, the

SNR is fixed to 30 dB, and Figure 4.5 plots the probability of support recovery

error as a function of the number of snapshots P . Although with this figure, all the

methods hit a floor as P increase, M-FOCUSS has clearly the worst performance.

Comparing MBMP and MUSIC, two main regions emerge: when the number of

snapshots P is small, the signal subspace estimation is not sufficiently accurate, and

any additional snapshot considerably reduces the error probability. Once the signal

subspace estimation is sufficiently accurate (P number of snapshots ≥ K number of

targets), the value of additional snapshots diminishes. Nevertheless, MBMP requires

a smaller number of snapshots P than MUSIC to deliver the same performance.
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Moreover, increasing the MBMP number of branches (i.e., algorithm complexity)

enables to further decrease the error probability.

In Figure 4.6, the number of snapshots is P = 5, the SNR is 20 dB, and

the probability of support recovery error is plotted as a function of the number

of measurements MN (number of rows of the matrix A). Five different elements

configurations are evaluated: (M,N) = (3, 3), (4, 4), (5, 5), (6, 6) and (7, 7). It can

be seen that, by increasing the complexity of MBMP, the probability of error can

be decreased even when a limited number of antenna elements is used (e.g., MBMP

with d = [2, 2, 2, 2, 1] achieves a probability of error close to 10−5 with MN = 25).

Moreover, in all cases, MBMP performs much better than MUSIC.

In Figure 4.7, the probability of support recovery error is analyzed as a function

of the number of measurements MN in an SMV setting (P = 1). Six different

configurations are considered: (M,N) = (5, 5), (6, 6), (7, 7), (8, 8), (9, 9) and (10, 10),

and keep the SNR = 20 dB. In an SMV setting, MUSIC cannot be applied since

the signal is not full-rank (rank (X) = 1 < K). In addition to MBMP and M-

FOCUSS, target DOA recovery using beamforming and LASSO is performed. From

Figure 4.7 it can be seen that beamforming is not well suited to the sparse recovery

framework, incurring a very high probability of error compared to sparse recovery

methods. Moreover, although in a SMV scenario the signal subspace is not available,

MBMP still provides competitive performance. Comparing Figure 4.6 and Figure

4.7, it can be appreciated that by having multiple snapshots (P > 1), the number of

antenna elements can be dramatically reduced.

4.3 Concluding Remarks

The MBMP algorithm for sparse recovery is develop, and a sufficient condition

under which MBMP can recover any sparse signal belonging to a given support is

derived. The MB-coherence is then introduced, and it is applied to derive a second
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sufficient condition (easier to check) under which MBMP can recover any K-sparse

signal. This condition enables to guarantee the success of the proposed MBMP for

dictionaries that do not satisfy previously known conditions based on coherence or on

cumulative coherence. Furthermore, it is demonstrated by numerical examples that

MBMP supports trading off measurements (e.g., antenna elements) for computational

complexity. Both theoretical guarantees and numerical results illustrate that MBMP

enables recovery with fewer measurements than other practical algorithms such as

RA-ORMP or OMP.



CHAPTER 5

DETECTION VIA MULTI-BRANCH MATCHING PURSUIT

This chapter addresses target detection from a set of compressive sensing radar

measurements corrupted by additive white Gaussian noise. The previous chapters

focused on target localization using compressive sensing in the spatial domain, i.e.,

the use of an undersampled MIMO radar array, and discussed the Multi-Branch

Matching Pursuit (MBMP) algorithm, which requires knowledge of the number of

targets. Generalizing the MBMP algorithm, a framework for target detection is

proposed, which has several important advantages over previous methods: (i) it is

fully adaptive; (ii) it addresses the general multiple measurement vector (MMV)

setting; (iii) it provides a finite data records analysis of false alarm and detection

probabilities, which holds for any measurement matrix. Using numerical simulations,

it is shown that the proposed algorithm is competitive with respect to state-of-the-art

compressive sensing algorithms for target detection.

5.1 System Model

In the proposed spatial compressive sensing framework for MIMO radar (see Chapter

3), N sensors collect a finite train of P pulses sent by M transmitters and returned

from K stationary targets. In this chapter, it is assumed that transmitters and

receivers each form a linear arrays of aperture Z/2: the m-th transmitter is at

position ξm, ξm ∈ [0, Z/2] ∀m, on the x-axis; the n-th receiver is at position ζn,

ζn ∈ [0, Z/2] ∀n. Targets are assumed in the far-field, meaning that a target’s aspect

angle1 θk is constant across the array. The purpose of the system is to detect the

presence of targets and determine their DOA angles. Neglecting the discretization

error, it is assumed that the target possible locations comply with a grid of G points

1θk is defined as the sine of the k-th target’s DOA angle.

63
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φ1:G (with G � K). By defining the MN × G matrix A = [a (φ1) , . . . , a (φn)]

where a (θ) , c (θ)⊗b (θ) with b (θ) =
[
exp

(
−j2πZθ

λ
ζ1

)
, . . . , exp

(
−j2πZθ

λ
ζN
)]T

the

transmitter steering vector and c (θ) =
[
exp

(
−j2πZθ

λ
ξ1

)
, . . . , exp

(
−j2πZθ

λ
ξM
)]T

the

receiver steering vector (see [45] for further details), the signal model is expressed:

Y = AX + E (5.1)

where E ∈ CMN×P represents the noise, which is assumed to be independent and

identically distributed (i.i.d.) complex Gaussian, i.e., vec (E) ∼ CN (0, σ2I), with

unknown σ2. The unknown matrix X ∈ CG×P contains the targets locations and

gains. Zero rows of X correspond to grid points without a target. The problem (5.1)

is sparse in the sense that X has only K � G non-zero rows.

The properties of the measurement matrix A are governed by the grid-points

φ1:G and by the sensors’ number and positions ξ1:M and ζ1:N . Since the sensors’

positions are assumed random (described by the probability density functions (pdf)

p (ξ) and p (ζ)), the elements of the measurement matrix A are also random. In the

following discussion, p (ξ) and p (ζ) are chosen to be uniform distributions, and φ1:G

is a uniform grid of 2λ/Z-spaced points in the range [−1, 1].

5.2 Detection Using MBMP

The goal of the detection problem is to identify the non-zero norm rows of X (i.e., its

support) given the measurements Y in Eq. (5.1). It has been shown [26] that, under

certain conditions on the matrix A and the sparsity K, the matrix X in Eq. (5.1)

can be recovered by solving the nonconvex noisy l0-norm problem (see also Chapter

2):

min
X
‖Y −AX‖2

F + ν ‖X‖0 (5.2)
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where ν is a regularization parameter which depends on prior information, e.g., the

number of targets K or the noise level σ2. In the following, the proposed framework

for target detection is detailed. The MBMP algorithm (introduced in Chapter 4) is

extended to handle an unknown number of targets K.

To present the proposed framework, it is instructive to focus on the equivalent

reformulation of problem in Eq. (5.2) in terms of the support S of the solution X

using similar steps as in Eq. (2.7), i.e.,

min
S

∥∥Π⊥AS
Y
∥∥2

F
+ ν |S| . (5.3)

The regularization parameter ν in Eq. (5.3) affects only the cardinality of the

solution’s support S. Therefore, for a fixed cardinality, the support can be found

from

Sj = arg min
S

∥∥Π⊥AS
Y
∥∥2

F
s.t. |S| = j (5.4)

which does not require the knowledge of ν. In general, finding the global optimal

solution to this problem requires combinatorial complexity, however the solution can

be efficiently approximated by using the MBMP algorithm presented in Chapter 4.

5.2.1 MBMP with Unknown Sparsity K

In this section, the MBMP is extended to handle an unknown number of targets K.

While K is unknown, it is assumed that an upper limit K̄ is available. Note that K

has to be lower than the number of rows of A, i.e., K < MN , since otherwise the

uniqueness of the solution is not guaranteed, even in a noiseless scenario [26].

The MBMP algorithm is extended as follows: (1) MBMP is applied using

the upper limit K̄, to obtain K̄ supports, S1, . . . , SK̄ ; (2) by relying on results

from detection theory, one support among the K̄ supports is chosen. The idea

is to approximate the solution to (5.4) for j = 1 to K̄, to obtain K̄ supports,
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S1, . . . , SK̄ , with cardinality ranging from 1 to K̄. This entire process can be efficiently

approximated by using the MBMP algorithm to solve problem in Eq. (5.4) for j = K̄.

The provisional support achieving the minimum data-fit (
∥∥Π⊥AS

Y
∥∥2

F
), among nodes

at level j, can be used to approximate Sj. In the following, the detection process is

analyzed, meaning determining which of the supports S1, . . . , SK̄ is the true one.

The idea of the detection process is to check whether a test statistic is higher

than a threshold. For a given support S, consider the data model Y = ASX̃ + E,

where AS ∈ CMN×|S| (MN > |S|) is a known measurement matrix of rank |S|,

X̃ ∈ C|S|×P is a matrix of unknown parameters, and the noise term E ∈ CMN×P

satisfies vec (E) ∼ CN (0, σ2I), where σ2 is unknown. The goal of the detection

process is to decide which of the rows of X̃ are non-zero. The SMV setting (P = 1)

for a real measurement matrix was addressed in [5, p. 345]. In the following theorem

the general MMV (P ≥ 1) in complex case is addressed:

Theorem 5.2.1. (GLRT for MMV Model - σ2 Unknown) The hypothesis

testing problem of whether a specific row i of X̃ is non-zero given that the other rows

l 6= i are known to be non-zero, is formulated

Hi,0 :
∥∥∥X̃ (i, :)

∥∥∥ = 0, σ2 > 0 (5.5)

Hi,1 :
∥∥∥X̃ (i, :)

∥∥∥ 6= 0, σ2 > 0

Then:

1) The Generalized Log-likelihood Ratio Test (GLRT) for deciding Hi,1 is

Ti (Y, S) =

∥∥∥X̂ (i, :)
∥∥∥2

2∥∥∥Π⊥AS
Y
∥∥∥2

F

MN−|S|

[
(AH

S AS)
−1
]
i,i

> γ (5.6)
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Figure 5.1 Block diagram of the proposed architecture for CS-radar detection.

where X̂ , A†SY is the MLE of X̃ under Hi,1.

2) The exact probability of false alarm for finite data records is given by

PFA = QF2P,2P (MN−|S|) (γ) . (5.7)

3) If the elements of the i-th row of X̃ have constant modulo, i.e.,

∣∣∣∣[X̃]
i,t

∣∣∣∣ = β for

every t, the exact probability of detection for finite data records is given by

PD = QF ′
2P,2P (MN−|S|)(ηi)

(γ) (5.8)

where the non-centrality parameter is given by ηi = Pβ2/

(
σ2

2

[(
AH
S AS

)−1
]
i,i

)
.

Proof. See Appendix C.

The theorem is applicable when one wants to test the support S , SK−1 ∪ i for

i = 1, . . . , G and i /∈ SK−1, where SK−1 is a subset of the true support with cardinality

K − 1. The case when i matches the remaining non-zero row index (i.e., the true

support index not in SK−1) is equivalent to the Hi,1 hypothesis. Furthermore, the

theorem also applies when one wants to test for S , Strue ∪ i for i = 1, . . . , G and

i /∈ Strue, where Strue is the true support: this case matches the Hi,0 hypothesis. The

importance of this theorem is that it characterizes the test statistic Ti (Y, S) and

its distribution under Hi,0. In other words, the theorem implies that, assuming S

contains the true support Strue, the test statistics for a row’s index i with only noise

(i.e., i ∈ S\Strue) follows the F2P,2P (MN−|S|) distribution.
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In MBMP, when the correct support is estimated and a new index is added to the

support, the new index is the one that correlates the most with the noise realization

E among the G − K columns with indices outside the support. Therefore the test

statistic, at cardinality K+1, is maxi/∈Strue T1 (Y, i ∪ Strue), and its distributions is the

maximum among G−K random variables, each having a F2P,2P (MN−K−1) distribution.

The dependency among these random variables is hard to analyze, hence a closed

form seams difficult to obtain. In the numerical results, it is shown that a reasonable

assumption is to approximate them as independent. Using this assumption, the test

statistic maxi/∈Strue T1 (Y, i ∪ Strue) is distributed as the maximum of G − K i.i.d.

F2P,2P (MN−K−1) random variables (which for ease of reference is denoted as g (K + 1)).

Therefore, the threshold for the test statistic at cardinality j can be set as

γj , Q−1
g(j) (PFA) (5.9)

for a given probability of false alarm PFA. Notice that the threshold γj depends on the

cardinality of the support under test. Focusing at cardinality j, the detection process

aims to detect whether all the indices in Sj are non-zero, given that the indices in

Sj−1 are non-zero (i.e., contain targets plus noise). This translates to check whether

the minimum test statistic among the indices of Sj not contained in Sj−1, i.e.,

fj , min
i∈Sj\Sj−1

Ti (Y,Sj) (5.10)

is higher then the given threshold γj. A high value of the metric fj indicates that Sj

is likely to be the true support, whereas a small value of this metric indicates that Sj

is likely to contain at least one index that contains only noise.

Summarizing, in order to detect the support among S1, . . . , SK̄ , obtained from

MBMP, let j = K̄, compute γj using Eq. (5.9) and fj using Eq. (5.10), and check

whether fj > γj. In this case the process stops and SK̄ is picked as the support of the
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Figure 5.2 Simulated and theoretical pdf of the test statistic Ti (Y, Sj). System
settings: G = 181, K = 8, P = 1, M = N = 7, SNR = 15db.

0 2 4 6 8 10 12
0

0.5

1

1.5

2

P
D

F

Outcome of T

 

 
Simulation
TheoreticalT1(Y,i ∪  Strue)

maxi ≠ Strue T1(Y,i ∪  Strue)

T1(Y,Strue)

Figure 5.3 Simulated and theoretical pdf of the test statistic Ti (Y, Sj). System
settings: G = 181, K = 8, P = 10, M = N = 7, SNR = 8db.

detected targets; otherwise set j = j− 1 until fj > γj or j = 0 (which corresponds to

the case of detecting no targets). Figure 5.1 depicts a block diagram of the process.

5.3 Numerical Results

In this section, numerical results are presented to demonstrate the potential of the

MBMP algorithm for detection using the spatial compressive sensing signal model in

Eq. (5.1). To produce each figure, first a random realization of the array sensors’

positions is drawn, which is maintained fixed throughout independent Monte-Carlo

realizations of the noise (vec (Ep) ∼ CN (0, σ2I) ∀p) and of the targets’ positions and

responses (xk,p = exp (−jϕk) , ∀p, p = 1, ..., P, and ϕk ∼ U (0, 2π) ∀k, k = 1, ..., K).

The signal-to-noise ratio (SNR) is defined as 10 log10 σ
2.

To start, the simulated and theoretical probability density functions of the test

statistic in Eq. (5.6), over the ensemble of random targets and noise, are analyzed in

three different cases: (i) the test statistic T1 (Y, i ∪ Strue) , where i is a fixed index
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outside the support; (ii) the maximum test statistic over indices i outside the support,

i.e., maxi/∈Strue T1 (Y, i ∪ Strue); (iii) the test statistic T1 (Y, Strue) for the first index

in the true support. Consider K = 8 targets and an array aperture of Z = 180λ

(where λ is the transmitted signal wavelength). The grid size is G = 181 grid-points.

Figure 5.2 plots the results for an SMV scenario (P = 1), while Figure 5.3 shows an

MMV scenario (P = 10). The theoretical distributions for cases (i) and (iii) (used in

Eq. (5.7) and Eq. (5.8), respectively) are exact. It can be seen that the theoretical

distributions in case (ii), obtained by assuming independent random variables, closely

matches the Monte-Carlo simulations results.

Next, the performance of the proposed detection scheme based on MBMP (i.e.,

Figure 5.1) are investigated. MBMP is compared with the detection scheme proposed

in [29] based on the CAMP algorithm. The MBMP algorithm’s complexity can be

adjusted by varying the branch vector d. To give an idea of how the complexity of

the algorithm affects the performance, the MBMP is run with two different choices of

the branch vector d, both of length K̄ = 20: the first uses d = [5, 4, 3, 2, 1, 1, . . . , 1],

while the second uses d = [1, 1, . . . , 1]. Consider K = 9 targets and an array aperture

of Z = 250λ. The grid size is G = 181 grid-points. In order to compare with the

architecture proposed in [29], an SMV scenario is simulated. Denoting with Strue

the true support, and with Ŝ the support determined by a detection algorithm, let(
Ŝ\Strue

)
/ (G−K) be the empirical probability of false alarm and

(
Ŝ ∩ Strue

)
/K

be the empirical probability of detection.

Figure 5.4 plots the ROC curve for the different algorithms. It can be seen

how the proposed architecture is able to achieve higher probability of detection for

the same false alarm probability as compared to the CAMP algorithm. Further tests

would be required to establish which algorithm performs better and under which

conditions.
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5.4 Concluding Remarks

This chapter addresses target detection from compressive sensing radar measurements

corrupted by additive white Gaussian noise. By taking a detection point-of-view, the

MBMP algorithm proposed in [45] is generalized to allow for an unknown number of

targets. The resulting architecture for the sparse recovery problem is fully adaptive,

i.e., it does not require knowledge of the number of targets or the noise variance. In

addition, the false alarm and detection probabilities for the proposed architecture are

analyzed. Using numerical simulations, the proposed algorithm is compared against

a state-of-the-art compressive sensing algorithm for target detection.



APPENDIX A

PROOFS OF CHAPTER 3

A.0.1 Proof of Proposition 3.3.1

Mean The mean η (u) is by definition the expectation of the random array pattern,

i.e., E [β (u)], over zmn = ξm + ζn. The expectation and the summations can be

interchanged obtaining

η (u) =
1

MN

M∑
m=1

N∑
n=1

E [exp (juzmn)] . (A.1)

Moreover, the average of exp [jui,l (ζn + ξm)] does not depend on the index n and m,

since ζ1:N are identically distributed, and so are ξ1:M . By dropping the indexes of ζn

and ξm and using z = ξ + ζ, it is obtained the sum of MN identical terms, divided

by MN . Thus η (u) equals E [exp (juz)], the characteristic function of the random

variable z.

Variance Let σ2
1 (u) = Re β (u) and σ2

2 (u) = Im β (u). For brevity of notation, the

dependency on u is dropped. First notice that since p (z) is even, its characteristic

function is real, thus so is the mean value of the array pattern η. Moreover,

E [(Re β − η) Im β] = E [Re β Im β] − ηE [Im β] = 0, since the real and imaginary

parts are uncorrelated and because E [Im β] = 0. Next, focus on σ2
1 , E

[
(Re β − η)2]

and σ2
2 , E

[
(Im β)2]. In order to derive these quantities, consider the expectations

given by E
[
(β − η)2] and E [|β − η|2]. It can be shown that,

E
[
(β − η)2] = σ2

1 − σ2
2 + j2σ12 (A.2)

and

E
[
|β − η|2

]
= σ2

1 + σ2
2. (A.3)
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Substituting the definition of the random array pattern β (u) in Eq. (3.16) and Eq.

(3.19) inside Eq. (A.2) and Eq. (A.3), Eq. (3.20) and Eq. (3.21) are obtained.

A.0.2 Proof of Lemma 3.3.2

From Eq. (3.16), it follows that aHi al = MN · β (ui,l), where ui,l , πZ (φi − φl).

When φ1:G is a uniform grid, φi−φl is constant whenever i− l is constant, i.e., along

every diagonal of the matrix Q. Since β (ui,l) depends only on the term φi − φl (not

on the actual φi and φj), Q is a Toeplitz matrix.

A.0.3 Proof of Theorem 3.3.3

The array pattern associated with the transmitter is defined as

βζ (ui,l) ,
1

N

N∑
n=1

exp [jui,lζn] =
1

N
bHi bl (A.4)

and with the receiver arrays as:

βξ (ui,l) ,
1

M

M∑
m=1

exp [jui,lξm] =
1

M
cHi cl. (A.5)

Statistical properties of random arrays were analyzed in [6] in the case of passive

localization (i.e., an array with only receiving elements). The following lemma

customizes useful results from [6]:

Lemma A.0.1. Let the locations ζ1:N of the receiving array be i.i.d., drawn from an

even distribution p (ζ) and consider a given u. Then βζ (u) is asymptotically jointly

Gaussian distributed (neglecting the dependency on u): Re βζ

Im βζ

 ∼ N

 Reψζ

Imψζ

 ,
 σ2

1 0

0 σ2
2


 (A.6)

where σ2
1 (u) = 1

2N
[1 + ψζ (2u)]− 1

N
ψ2
ζ (u) and σ2

2 (u) = 1
2N

[1− ψζ (2u)].
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Proof. See [6].

The joint distribution of Re βξ (u) and Im βξ (u) can be obtained similarly.

For a given i ∈ {2, . . . , G}, using Lemma 3.3.1 and the assumption that the

mean patterns of both the transmitter and receiver arrays satisfy Eq. (3.23), i.e.,

ψξ (u1,i) = ψξ (2u1,i) = ψζ (u1,i) = ψζ (2u1,i) = 0, thus, for both transmitter and

receiver arrays, the array pattern evaluated at any grid point is being drawn from an

asymptotically complex normal distribution with variance defined by the number of

transmit and receive elements, i.e., βξ (u1,i) ∼ CN
(
0, 1

M

)
and βζ (u1,i) ∼ CN

(
0, 1

N

)
.

It follows that the random variable q = 1
N

∣∣bH1 bi
∣∣ can be approximated as belonging

to Rayleigh distribution, i.e., p (q) = (q/σ2) exp (−q2/2σ2), where σ2 = 1/ (2N), and

similarly the random variable 1
N

∣∣cH1 ci
∣∣ is governed by a Rayleigh distribution with

variance σ2 = 1/ (2M).

If ξ and ζ are independent (part 1), the two random variables 1
N

∣∣bH1 bi
∣∣ and

1
N

∣∣cH1 ci
∣∣ are independent. Using Eq. (3.22), the distribution of 1

MN

∣∣aH1 ai
∣∣ is the

product of two independent Rayleigh distributed variables. The cumulative density

function of such a variable is given in [57]. It follows that the ccdf of 1
MN

∣∣aH1 ai
∣∣

satisfies

Pr

(
1

MN

∣∣aH1 ai
∣∣ > q

)
< x ·K1 (x) , (A.7)

where x , 2
√
MNq.

If ξn = ζn for all n (part 2), by using Eq. (3.22), it results 1
N2

∣∣aH1 ai
∣∣ =

(
1
N

∣∣bH1 bi
∣∣)2

.

Since the random variable 1
N

∣∣bH1 bi
∣∣ has a Rayleigh distribution, 1

N2

∣∣aH1 ai
∣∣ is

distributed as the square of a Rayleigh distribution, which has cdf 1− exp (−Nq). As

such, its ccdf satisfies

Pr

(
1

N2

∣∣aH1 ai
∣∣ > q

)
< exp (−Nq) . (A.8)
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Part 3 follows because, from Eq. (3.22), the phase of aH1 ai is the sum of the phases

of bH1 bi and cH1 ci. In the case of transceivers the phase of aH1 ai is evidently uniform

since it is the same phase of bH1 bi. In the case of M transmitter and N receivers,

since both bH1 bi and cH1 ci are two independent circular symmetric complex normal

variables, the sum of the phases is itself uniformly distributed over [0, 2π).

A.0.4 Proof of Corollary 3.3.4

Assume that the G−1 random variables
∣∣ 1
MN

aH1 ai
∣∣, for i = 2, . . . , G, are independent.

If ξ and ζ are independent (part 1), from Eq. (3.24), the ccdf of the maximum among

G− 1 such variables (which gives the coherence), is upper bounded by

Pr

(
max
i>1

∣∣∣∣ 1

MN
aH1 ai

∣∣∣∣ > q

)
< 1− [1− x ·K1 (x)]G−1 , (A.9)

where x , 2
√
MNq.

If ξn = ζn for all n (part 2), by using Eq. (3.25), the ccdf of the maximum among

G− 1 such variables, is upper bounded by

Pr

(
max
i>1

∣∣∣∣ 1

N2
aH1 ai

∣∣∣∣ > q

)
< 1− [1− exp (Nq)]G−1 . (A.10)

This concludes the proof.

A.0.5 Proof of Theorem 3.3.5

The theorem follows by combining the claims of Theorem 2.7 in [50] and Corollary

3.3.4. Theorem 2.7 in [50] provides stable recovery guarantees for any K-sparse

signal if the measurement matrix A has RIP δ2K < 2/
(

3 +
√

7/4
)
, α. The goal

is therefore to bound the RIP δ2K of the spatial compressive sensing measurement

matrix A with probability higher than 1 − ε. In other words, the goal is to find

how many measurements MN are needed to satisfy Pr (δ2K ≤ α) ≥ 1 − ε. By using
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δ2K ≤ (2K − 1)µ [50], it results δ2K ≤ α if (2K − 1)µ ≤ α. Moreover, the condition

Pr ((2K − 1)µ ≤ α) ≥ 1− ε is equivalent to Pr (µ > α/ (2K − 1)) < ε. Therefore by

invoking Eq. (3.27) in Corollary 3.3.4, it follows

Pr (δ2K > α) < 1− [1− x ·K1 (x)]G−1 (A.11)

where, by combining x , 2
√
MNq and q = α

2K−1
, x = 2

√
MNα

2K−1
. The aim is to find

value MN that makes the right hand-side equal to ε.

First approximate the modified Bessel function of the second kind K1 (x) for

a large absolute value and small phase of the argument (in the condidered setting,

the argument x is real) [58]: K1 (x) ≈
√

π
2x

exp (−x). Thus, it should be enforced

that 1 −
[
1−

√
πx
2

exp (−x)
]G−1

= ε. Defining t ,
√

πx
2

exp (−x) and linearizing

the function (1− t)G−1 around t = 0, it is obtained G
√

πx
2

exp (−x) = ε, where, for

simplicity, G has been used in place of G− 1. This equation can be rewritten in the

form−2x exp (−2x) = −γ−2, where γ ,
√
πG
2ε

. The inverse function of such equation is

called the Lambert W function [59]. For real arguments, it is not injective, therefore it

is divided in two branches: x > 1/2 or x ≤ 1/2. Since in the setup x ≤ 1/2, the lower

branch, denoted W−1, is considered, and the solution satisfies −2x = W−1 (−γ−2).

By using the asymptotic expansion W−1 (−γ−2) ≈ −2 ln γ− ln (2 ln γ) and solving for

MN , Eq. (3.29) is obtained. The claim of the theorem follows from Theorem 2.7

in [50]. Finally, since in this work K-sparse signals are considered, in the error term

(3.30), the term for nearly-sparse signals present in [50] is discarded.

A.0.6 Proof of Theorem 3.3.6

Because the variables ζ1:N are identically distributed, and so are ξ1:M , the average

E
[
AH (t, :) A (t, :)

]
does not depend on the index t = N (m− 1) + n, where the

last relation follows from the definition of ag. Therefore, E
[
AH (t, :) A (t, :)

]
=

1
MN

∑MN
t=1 E

[
AH (t, :) A (t, :)

]
= 1

MN
E [Q]. Thanks to Lemma 3.3.2, only the first
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row of 1
MN

E [Q] must be analyzed. Using Eq. (3.16), the elements of the first row

of such matrix are η (u1,i) for i = 1, . . . , G. From Eq. (3.19) in Proposition 3.3.1,

η (u1,i) = ψz (u1,i). Thus, requiring Eq. (3.32), i.e., ψz (u1,i) = 0 for i = 2, . . . , G,

together with the fact that exp (jzu1,1) = 1 (because u1,1 , πZ (φ1 − φ1) = 0), gives

the “if” direction of the claim.

The “only if” direction follows by noticing that when Eq. (3.32) is not satisfied

there will be at least one i such that η (u1,i) 6= 0. Therefore, the matrix A does not

satisfy the isotropy property, showing that Eq. (3.32) is also a necessary condition.



APPENDIX B

PROOFS OF CHAPTER 4

In order to prove Theorem 4.1.2 and Theorem 4.1.4, the following Lemma is needed:

Lemma B.0.2. Given a K-sparse matrix X with support S∗. Consider a MBMP

node at level i > K − r tagged with a correct provisional support Ci. If rank (X) = r

then, by setting di = 1, the one branch of the considered node successfully selects an

atom āCi
g from the set of indices yet to be identified g ∈ S∗ \ Ci.

Proof. The proof follows from the assumption made in Chapter 2 that spark (A) >

2K − rank (X) + 1 and by invoking Theorem 3 in [26].

B.0.7 Proof of Theorem 4.1.2

First, it is proved that, given a node at level i tagged with a correct provisional

support Ci ⊂ S∗ and S , S∗ \ Ci, if MB-ERC in Eq. (4.4) holds, i.e.,

di max
g/∈S∗

(∥∥∥Ā†SāCi
g

∥∥∥
1

)
< 1,

then at least one of the di branches of the considered node successfully selects an

atom āCi
g from the correct support set g ∈ S. The proof follows closely the proof

that ERC is sufficient for RA-ORMP, given in [26]. The only differences are the use

the d max operator and, since a provisional support Ci is known, a refined dictionary

Ā ,
{
āCi
g , g /∈ Ci

}
is considered.

Similar to other MP techniques, but with the key difference of the d max

operator, in order to guarantee that at least one of the di branches of the considered

node successfully selects an atom āCi
g from the remaining correct indices g ∈ S, it is

required that

di maxg/∈S∗
(∥∥UH āCi

g

∥∥
2

)
maxg∈S

∥∥UH āCi
g

∥∥
2

< 1, (B.1)
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where U = orth
(

Π⊥ACi
Y
)

. The norm di maxg/∈S∗
(∥∥UH āCi

g

∥∥
2

)
can be bounded for

any U, by using standard norm inequalities. Let g∗ , arg di maxg/∈S∗
(∥∥∥Ā†SāCi

g

∥∥∥
1

)
,

it can be wrote:

di max
g/∈S∗

(∥∥UH āCi
g

∥∥
2

)
= max

x 6=0

∣∣∣∣(Ā†SāCi
g∗

)H
ĀH
S Ux

∣∣∣∣
‖x‖2

≤
∥∥∥Ā†SāCi

g∗

∥∥∥
1

max
x 6=0

∥∥ĀH
S Ux

∥∥
∞

‖x‖2

=
∥∥∥Ā†SāCi

g∗

∥∥∥
1

max
g∈S

∥∥UH āCi
g

∥∥
2
. (B.2)

where the inequality follows since∣∣∣∣(Ā†SāCi
g∗

)H
ĀH
S Ux

∣∣∣∣
‖x‖2

=

∣∣∣∣(Ā†SāCi
g∗

)H
ĀH
S Ux

∣∣∣∣∥∥ĀH
S Ux

∥∥
∞

∥∥ĀH
S Ux

∥∥
∞

‖x‖2

. (B.3)

This shows that

di maxg/∈S∗
(∥∥UH āCi

g

∥∥
2

)
maxg∈S

∥∥UH āCi
g

∥∥
2

≤ di max
g/∈S∗

(∥∥∥Ā†SāCi
g

∥∥∥
1

)
. (B.4)

Thus it is concluded that, if Eq. (4.4), i.e.,

d max
g/∈S∗

(∥∥∥Ā†SāCi
g

∥∥∥
1

)
< 1,

holds for any Ci, Eq. (B.1) is guaranteed to hold too and, thus, at least one of the

di branches of the considered node successfully selects an atom āCi
g from the correct

support set g ∈ S.

It remain to prove that if, for any node at level i = 1, . . . , K − 1, MB-

ERC(A, S∗, di, Ci) holds for every possible Ci ⊂ S∗ (with |Ci| = i− 1), then MBMP

with branch vector d = [d1, . . . , dK ] is guaranteed to recover X from measurements

Y = AX (i.e., one node at level K + 1 contains the correct support S∗). To prove

this, note that if MB-ERC(A, S∗, di, Ci) holds for any node at level i = 1, . . . , K − r,
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it follows that a chain of correct decisions is made along the tree: MB-ERC holds for

the first node, thus one node at level 2 has a correct provisional support. Considering

such node, since MB-ERC holds, it will select a correct index, and there exists a

node at level 3 with correct provisional support, and so on up to level K − r. Since

rank (X) = r, by invoking Lemma B.0.2, the chain of correct decisions is guaranteed

also for successive level i > K − r. This concludes the proof.

B.0.8 Proof of Theorem 4.1.4

First, it is shown that, given a node at level i tagged with a correct provisional support

Ci, the MB-coherence condition in Eq. (4.10) implies MB-ERC(A, S∗, di, Ci) in Eq.

(4.4), i.e.,

di max
g/∈S∗

(∥∥∥Ā†SāCi
g

∥∥∥
1

)
< 1, (B.5)

for any support S∗ = S ∪ Ci of cardinality K (since |Ci| = i − 1 and S ∩ Ci = ∅).

Consider the left hand-side of Eq. (B.5). By using the definition of pseudo-inverse

Ā†S ,
(
ĀH
S ĀS

)−1
ĀH
S , for any g, it can be wrote∥∥∥Ā†SāCi

g

∥∥∥
1
≤
∥∥∥(ĀH

S ĀS

)−1
∥∥∥

1

∥∥ĀH
S āCi

g

∥∥
1
. (B.6)

By introducing the d max operator and by noticing that
∥∥∥(ĀH

S ĀS

)−1
∥∥∥

1
does not

depend on g, it follows that

di max
g/∈S∪Ci

(∥∥∥Ā†SāCi
g

∥∥∥
1

)
≤
∥∥∥(ĀH

S ĀS

)−1
∥∥∥

1
di max
g/∈S∪Ci

(∥∥ĀH
S āCi

g

∥∥
1

)
. (B.7)

Using standard arguments as in [25], the first term on the right-hand side can be

upper bounded as ∥∥∥(ĀH
S ĀS

)−1
∥∥∥

1
≤ 1

2−maxg∈S
∥∥ĀH

S āCi
g

∥∥
1

. (B.8)
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Therefore, for any support S, the left hand-side of Eq. (B.5) can be upper bounded

as

di max
g/∈S∗

(∥∥∥Ā†SāCi
g

∥∥∥
1

)
≤
di maxg/∈S∪Ci

(∥∥ĀH
S āCi

g

∥∥
1

)
2−maxg∈S

∥∥ĀH
S āCi

g

∥∥
1

. (B.9)

It follows that MB-ERC holds (for any support S∗ = S ∪ Ci of cardinality K) if

max
S,|S|=K−i+1

di maxg/∈S∪Ci

(∥∥ĀH
S āCi

g

∥∥
1

)
2−maxg∈S

∥∥ĀH
S āCi

g

∥∥
1

< 1. (B.10)

This can be manipulated to obtain the MB-coherence condition in Eq. (4.10), i.e.,

max
S,|S|=K−i+1

(
max
g∈S

∥∥ĀH
S āCi

g

∥∥
1
+ di max

g/∈S∪Ci

(∥∥ĀH
S āCi

g

∥∥
1

))
< 2 (B.11)

The claim of the theorem follows by invoking Theorem 4.1.2, completing the

proof.

B.0.9 Testing for MB-coherence

Here, a practical way to find the smallest integer di such that the MB-coherence

condition in Eq. (4.10) is met is outlined. The proposed strategy does not require

an exhaustive search over all
(
n
k

)
possible supports of cardinality k , K − i + 1. In

detail, by exploiting the one-to-one correspondence between a support S of cardinality

k (out of n elements) and a binary vector with k ones and n− k zeros, the following

proposition relates condition in Eq. (4.10) to an integer program [53]:
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Proposition B.0.3. The smallest integer di such that the MB-coherence condition

in Eq. (4.10) holds is given by the optimal objective value of the integer program

max
s,y,z

1 +
∑n

l=1
zl (B.12)

s.t.



(qj + qg)
T (s + y) ≥ yj + zg ∀g 6= j∑n

l=1 sl = K − i∑n
l=1 yl = 1

yl + sl + zl ≤ 1 ∀l

sl, yl, zl ∈ {0, 1} ∀l

,

where qg is the g-th column of Q ,
∣∣∣(ĀCi

)H
ĀCi

∣∣∣ (|·| denotes the element-wise

absolute value).

Proof. Let di be the smallest integer such that MB-coherence condition in Eq. (4.10)

holds. Since Eq. (4.10) does not hold for di−1, there exist a support S of cardinality

k, an index j ∈ S, and a set of indices G with |G| = di − 1, such that
∥∥ĀH

S āCi
j

∥∥
1

+∥∥ĀH
S āCi

g

∥∥
1
≥ 2 ∀g ∈ G. Define the binary vectors s, y, and z, as sl = 1 for l ∈ S,

yj = 1, and zl = 1 for l ∈ G). It can be shown that s, y, and z maximize problem in Eq.

(B.12). Indeed, these vectors are feasible (
∥∥ĀH

S āCi
j

∥∥
1
+
∥∥ĀH

S āCi
g

∥∥
1

= 1+(qj + qg)
T s ≥

2 = yj+zg ∀g ∈ G) and there cannot be feasible s, y, and z with 1+
∑n

l=1 zl = di, since

Eq. (4.10), by assumption, does not hold for di− 1. Conversely, the optimal solution

of the problem in Eq. (B.12) can be translated into a support S of cardinality k, an

index j ∈ S, and a set of indices G, such that Eq. (4.10) holds for di = |G|+1, but not

for di = |G|. As a result, finding the smallest integer di such that the MB-coherence

condition in Eq. (4.10) is met tantamounts to find feasible vectors s, y, and z to

maximize the problem in Eq. (B.12) and di = 1 +
∑n

l=1 zl, as claimed.

Problem (B.12) can be solved using techniques for integer programming [53].

Since di = 1 +
∑n

l=1 zl governs the MBMP complexity, only instances with a small
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objective value are of interest. As a result, it is usually relatively fast to check whether

Eq. (4.10) is met for practical values of the objective function di = 1 +
∑n

l=1 zl.



APPENDIX C

PROOF OF CHAPTER 5

C.0.10 Proof of Theorem 5.2.1

Following the same steps as [5, pp. 371-372], it can be shown that the GLRT

can be written as (σ̂2
0 − σ̂2

1) /σ̂2
1 where σ̂2

l is the MLE of the noise level σ2 under

Hi,l for l = 1, 2. Extending [60, pp. 176-177], it can be shown that σ̂2
1 =∥∥Π⊥AS

Y
∥∥2

F
/MNP , while, following similar steps as [5, Appendix 7B], σ̂2

0− σ̂2
1 reduces

to
∥∥∥X̂ (i, :)

∥∥∥2

2
/MNP

[(
AH
S AS

)−1
]
i,i

where X̂ , A†SY is the MLE of X̃ under

Hi,1. Therefore, Eq. (5.6) can be written as (MN − |S|) (σ̂2
0 − σ̂2

1) /σ̂2
1, which,

except from a scaling factor, is the GLRT. Now, consider the random variable∥∥∥X̂ (i, :)
∥∥∥2

2
/

([(
AH
S AS

)−1
]
i,i

σ2

2

)
. Under Hi,1 and assuming β =

∣∣∣∣[X̃]
i,t

∣∣∣∣, for every

t, it has a non-central Chi-Squared distribution with 2P degrees of freedom and

non-centrality parameter given by ηi, and, under Hi,0, it has a central Chi-Squared

distribution with 2P degrees of freedom. Equivalently, it can be shown that the

random variable
∥∥Π⊥AS

Y
∥∥2

F
/σ

2

2
has a Chi-Squared distribution with 2P (MN − |S|)

degrees of freedom under either Hi,0 and Hi,1. These two random variables are

independent. Notice that Eq. (5.6) can be obtained by normalizing each of the

random variables by the number of degrees of freedom, and by taking their ratio.

By definition, Eq. (5.6) follows a F ′2P,2P (MN−|S|) (ηi) distribution, under Hi,1, and a

F2P,2P (MN−|S|) distribution, under Hi,0.
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