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ABSTRACT 

MODEL PREDICTIVE CONTROL OF  

TIMED CONTINUOUS PETRI NETS  

 

by  

Huaiyu Zhan 

 

This thesis addresses the optimal control problem of timed continuous Petri nets. The 

theory of Model Predictive Control (MPC) is first discussed. Then continuous Petri nets 

(PN) are introduced as a powerful tool for modelling, simulation and analysis of discrete 

event/continuous systems. Their useful capabilities are studied. Finally, a macroscopic 

model based on PN as a tool for designing control laws that improve the behavior of 

traffic systems is given. The goal is to find an approach that minimizes the total delay of 

cars in an intersection by computing the switching sequence of the traffic lights. The 

simulation results show that by using an MPC strategy to handle the variability of traffic 

conditions, the total delay is dramatically reduced.  
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CHAPTER 1 

INTRODUCTION 

 

Petri Nets (PN) are a mathematical formalism with a graphical feature usually and 

successfully used for modeling, analysis, synthesis and simulation of discrete event 

systems [1]. Discrete PN may suffer from a state explosion problem. Thus, one way to 

solve it is to use continuous Petri nets, which are considered in this thesis, offering a fluid 

approximation of the discrete event dynamics [2]. 

The basic idea of Model Predictive Control (MPC) is due to [3]: by optimizing a 

performance criterion over a future horizon, a sequence of control actions is computed 

and applied to the plant to be controlled.  

This thesis proposes an optimal MPC strategy based on timed continuous Petri 

Nets. In particular, a traffic network model builds to study the advantages of this strategy. 

In Chapter 2, MPC is introduced. Then in Chapter 3, the basic idea of continuous 

PN, and some useful models are analyzed. An intersection traffic model is then built and 

simulated with an MPC algorithm in Chapters 4 and 5, respectively. The conclusion and 

future work are given in Chapter 6. 

The MPC of continuous PN related researches can be found in [4][5]. The traffic systems 

studies can be found in [6]. 
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CHAPTER 2 

MODEL PREDICTIVE CONTROL 

 

2.1 Introduction 

Model predictive control (MPC) has a long history in the field of control engineering. 

The general design objective of MPC is to compute a trajectory of a future manipulated 

variable   to optimize the future behavior of the plant output  . The terms are to be used 

frequently in following: the moving horizon window, prediction horizon, receding 

horizon control and control objective. They are introduced as below [7]. 

Moving horizon window: the time-dependent window from an arbitrary time    to 

     . Where    defines the beginning of the optimization window, and the length of the 

window    remains constant.  

Prediction horizon: dictates how ‘far’ the future is predicted for. This parameter 

equals the length of the moving horizon window,   . 

Receding horizon control: although the optimal trajectory of future control signal 

is completely described within the moving horizon window, the actual control input to 

the plant only takes the first sample of the control signal, while neglecting the rest of the 

trajectory. 

In the planning process, the information at time    is in order to predict the future. 

This information is denoted as       which is a vector containing many relevant factors, 

and is either directly measured or estimated. 
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A given model that will describe the dynamics of the system is paramount in 

predictive control. A good dynamic model will give a consistent and accurate prediction 

of the future [8]. 

In order to make the best decision, a criterion is needed to reflect the objective. 

The objective is related to an error function based on the difference between the desired 

and the actual responses. This objective function is often called the cost function  , and 

the optimal control action is found by minimizing this cost function within the 

optimization window. 

 

2.2 Single-input and Single-output System 

Model predictive control systems are designed based on a mathematical model of a plant. 

The model to be used in the control system design is taken to be a state-space model. By 

using a state-space model, the current information required for predicting ahead is 

represented by the state variable at the current time.  For simplicity, this work assumes 

that the underlying plant is a single-input and single-output system, described by: 

                                                            (2.1) 

                                                               (2.2) 

where   is the manipulated variable or input variable;   is the process output; and    is 

the state variable vector with assumed dimension   . 

Taking a difference operation on both sides of  (2.1) and (2.2), 

                                                         (2.3) 

                                                    (2.4) 

Putting together (2.3) with (2.4) leads to the following state-space model: 
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where    [       ] . By letting   [
    

 

     
] ,   [

  

    
] , and   

[   ], the triplet         is called the augmented model, which will be used in the 

design of predictive controllers. 

 

2.3 Prediction of State and Output Variables 

Upon the formulation of a mathematical model, the next step in the design of a predictive 

control system is to calculate the predicted plant output with the future control signal as 

the adjustable variables. Assuming that at the sampling instant     , the state variable 

vector       provides the current plant information. The future control trajectory is 

denoted by 

                               

where    is called the control horizon dictating the number of parameters used to capture 

the future control trajectory. The future state variables are 

                                     

where            is the predicted state variable at     . The control horizon    is 

less than (or equal to) the prediction horizon   . 

Based on the state-space mode        , the future state variables and the 

predicted output variables are, by substitution 
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                                                           (2.7) 

Note that all predicted variables are formulated in terms of current state variable 

information       and the future control movement         . Define vectors  

  [                                    ]
  

   [                              ] . 

Combine (2.6) and (2.7) together into a compact matrix form as 

                                                           (2.8) 

where 
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2.4 Optimization 

For a given set-point signal       at sample time   , within a prediction horizon the 

objective of a predictive control system is to bring the predicted output as close as 
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possible to the set-point signal, where we assume that the set-point signal remains 

constant in the optimization window. This objective is then translated into a design to 

find the ‘best’ control parameter vector    such that an error function between the 

set-point and the predicted output is minimized. 

Assuming that the data vector that contains the set-point information is 

  
  [   ]       

the cost function   that reflects the control objective as 

                    ̅                                        (2.9) 

where the first term is linked to the objective to minimize the errors between the 

predicted output and the set-point signal while the second term reflects the consideration 

given to the size of    when the objective function   is made to be as small as possible.  ̅ 

is a diagonal matrix in the form that  ̅     , where    is used as a tuning parameter for 

the desired closed-loop performance. For the case that     , the cost function (2.9) is 

interpreted as the situation that the goal would be solely to make the error     

          as small as possible. For the case of large   , the cost function (2.9) is 

interpreted as the situation that how large    might be while cautiously reducing the 

error              . 

To find the optimal    that will minimize  , by using (2.8),   is expressed as 

  (         )
 
(         )        (         ) 

          ̅                                      (2.10) 

From the fist derivative of the cost function  : 

  

   
     (         )         ̅                             (2.11) 

the necessary condition to minimize   is obtained as 
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from which the optimal solution for the control signal is 

         ̅     (         )                               (2.12) 

Note that    is a data vector that contains the set-point information expressed as 

   [    ] ⏞          

  

       ̅        

The optimal solution of the control signal is linked to the set-point signal       

and the state variable       via the following equation: 

         ̅     ( ̅             )                           (2.13) 

 

2.5 Receding Horizon Control 

Fig. 2.1    Receding horizon control 

 

Although the optimal parameter vector    contains the controls               

                  with the receding horizon control principle, we only implement 

the first one of this sequence, i.e.,       , while ignoring the rest of the sequence. When 

the next sample period arrives, the more recent measurement is taken to form the state 



8 

 

vector           for calculation of the new sequence of control signal. This procedure is 

repeated in real time to give the receding horizon control law. 

Fig. 2.1 shows the trajectories of the state variable    and  , as well as the control 

signal that is used to regulate the output. This example also illustrates the differences 

between the    parameter vectors at different time instances. As the output response 

reaches the desired set-point signal,    approaches zero. 
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CHAPTER 3 

PETRI NETS 

 

3.1 Introduction 

In the engineering discipline, system evolution has invariably been facing three 

major needs. 

1. The need to develop increasingly complex systems to accomplish more and more 

desired functions; 

2. The need to assess the system’s operational risks; 

3. The need to have a cost competitive solution to attain these requirements. 

Due to time and money constraints, it is no longer feasible to follow the design 

cycle of trial and error prototyping. Instead, the industry is leaning more towards 

simulation, such that the design flaws can be worked out even before the prototype is 

built. 

That Petri nets (PN) comes in. They are a net-based abstraction, which can be 

used as a modeling tool (graphical and mathematical), as a simulation tool and as an 

analysis tool. 

As a modeling tool, they helps one performs system design. The graphical nature 

aids system visualization while, the mathematical nature captures system behavior and 

allows one to perform a rigorous analysis of important properties. 

As a simulation tool, they enables one to identify design errors. Extensive 

simulations may detect errors. 
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As an analysis tool, they can reveal various properties of the model and hence of 

the actual physical system. Thus, one can draw important conclusions about the system 

without going for experimentation or performing lengthy calculation of conventional 

system modeling. 

 

3.2 Continuous Petri Nets 

The PN systems that will be considered in this work are continuous. The basic 

difference between discrete and continuous PN (contPN) is that the components of the 

markings and firing count vectors are not restricted to take values in the set of natural 

numbers but can take non-negative real values. Let     represent the set of all non-

negative real numbers [5]. 

Definition 1: A continuous Petri net system is a pair 〈    〉 , where:   

〈            〉  is the net structure with set of places  , set of transitions  . 

                 
    are input and out functions that define the static structure of the 

net. 

     is the marking at time   and in discrete time      is the marking at 

sampling instant  , whre       and   is the sampling period.    is the i-th component 

of marking m and represents the number of tokens in place   . The preset and postset of a 

node       are denoted    and   , respectively. 

A transition   in a continuous PN is enabled at   iff            , and its 

enabling degree is 

                  
{

  

         
}                                    (3.1) 
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An enabled transition   can fire in any real amount               leading 

to a new marking             , where            is the token flow matrix. 

If   is reachable from   , through a sequence                         , the 

fundamental equation is: 

        ̂                                                  (3.2) 

where  ̂ represents the firing vector of   and its i-th component means the number of 

firing times of transition    in  . 

Definition 2: A timed contPN system is a contPN system together with a vector 

        , where    is the firing rate of   .  

With infinite server semantics, the flow of transition    is given by: 

         (    )            
{

  

         
}                        (3.3) 

 

3.3 Capabilities of Continuous Petri Nets 

To represent the behavior of some realistic models, this section analyzes some 

capabilities of continuous PNs with their fundamental structures. 

Infinite server semantics is used in system models in which the processing speed, 

i.e., the flow of transitions, is proportional to the number of customers in the upstream 

place, i.e., proportional to the enabling degree. The following examples show how the 

flow of transitions and the rate of change of the marking of places can be affected by the 

arc weights. 
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Fig. 3.1      In (a), the marking evolution does not depend on the arc weight. In (b), 

the marking evolution depends on the arc weights. 

 

As in Fig. 3.1(a), consider transition    has one input place   . Its flow is 

              where     is the weight of the arc. Under infinite server semantics 

the marking changes according to (3.2). Thus the evolution of the marking of    does not 

depend on  , i.e., on the weight of the arc. 

By slightly manipulating the system in Fig. 3.1 (a), it is possible to obtain a 

system in which the evolution o   depends on the weight of its input (output) arc. 

Consider the system in Fig. 3.1 (b), which is a self-loop. The flow of transition    is  

             , and the marking of    depends on the parameter values   and  . If 

   , the marking of    decreases (    is the condition). If    ,     is constant; if  

   , then     increases. 

Fig. 3.2    Continuous PN with several self-loops 
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Following these ideas, the flow of a transition can be modeled as a piecewise 

linear function of the marking of a given place. As the model in Fig. 3.2, let the internal 

speed of    be    , while the initial markings are given by                 

              and           where  ,  , and   are positive real values. From the 

net structure, the following marking invariants can be deduced:             

                               It helps to synthesize the PN structure and 

to choose the arc weights that realize a given piecewise linear relationship between the 

marking       and the flow      . 

Fig. 3.3    Flow of transition    is a piecewise linear function of the marking of   . 

Source: [11]. 

 

The line in Fig. 3.3 plots the piecewise linear relationship between       and 

     . When the marking of    is smaller than      it constrains the firing of   , and the 

flow of    is proportional to      . As soon as       satisfies 
     

 
  , the flow of    

is constrained by   . Given that       is constant the flow will also remain constant. 

Assume that       keeps increasing. This fact involves a decrease in       and       

since               and                . Given that    is also an input 
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place of   , it will constrain the flow of    if 
     

 
   what is equivalent to       

       . Since all markings are positive and              , the maximum 

value that       can get is  . Summing up, the flow of    is given by 

      

{
 

       
     

 
 

        

      
         

 
 

          

             

                      

                 

 

Interestingly, the plot in Fig. 3.3 can be softened by adding more self-loops. 

Assume that a new place   is added to the net in Fig. 3 such that    has the same arcs as 

   but the arc weight is  , and    . Let                 be the initial marking of 

  . Clearly, when       is high enough, the firing of    will be constrained by   . The 

new relationship between       and       is represented in Fig. 3.4. 

Fig. 3.4    Addition of a new self-loop can be used to slightly  

modify the piecewise relationship. 

                    Source:  [11]. 

 

This way, an appropriate choice of self-loop places and arc weights allows one to 

approximate any bell-shaped function, which is also known as the fundamental traffic 

diagram [12]. 
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CHAPTER 4 

TRAFFIC SYSTEM MODEL 

 

4.1 Road Section 

Petri nets can be used to design traffic control systems as done in [13] and [14]. This 

work builds a continuous Petri net traffic model. The model to be built requires a spatial 

discretization of the road, i.e., the road is divided into several sections [15].  

Figure 4.1 shows the simple steps to model a given road section  . The number of 

cars in section   is represented by the marking of place   
 , the flow of cars leaving the 

section is the flow of transition   , and the flow of cars entering the section is the flow of 

transition     . If   
  and   

 are ignored, the use of infinite server semantics establishes 

 (  )   (  )   (  
 ), i.e., the outflow is proportional to the density. Hence, the subnet 

having    
 and    with an appropriate  (  )models free flow traffic. Notice that this 

relationship between the flow and marking  (  )   (  )   (  
 ) cannot be represented 

with finite server semantics where the flow of a transition is independent of the marking 

of its positively marked input places. 

Fig. 4.1    PN model of a road section 
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For a better approximation of the fundamental traffic diagram [12], constant flow 

traffic can be modeled by adding  (  
 ). The marking of  (  

 ) is always constant and 

imposes an upper bound on the flow of   ,  (  )   (  )        (  
 )  (  

 ) . 

Also, the model must impose an upper bound on the marking of the place 

representing the number of cars.  (  
 )   (  

 )     ensures the capacity of the section, 

and  (  
 ) represents the gaps between cars. 

 

4.2 Traffic Lights 

Fig. 4.2    Discrete PN modeling traffic lights in an intersection. 

                        Source: [6]. 

 

Traffic lights can be seen as discrete event systems whose state can be either red, yellow, 

or green. This model as shown in Fig. 4.2 has four phases and only one token, the actions 

of each phase are: 

1.   : green lights for R1; and red lights for R2; 

2.   : yellow, then red light for R1; red, yellow, and finally green for R2; 

3.   : red lights for R1; and green lights for R2; 

4.   : red, yellow and finally green for R1, first yellow and then red for R2. 
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4.3 Intersection Model 

Figure 4.3 shows how the flow of cars coming from Road 1 (R1) and Road 2 (R2) is 

regulated by the traffic light.  

Fig. 4.3    Intersection modeled by a continuous PN 
 

 

Fig. 4.4    Sketch of the traffic system in Fig. 8 

 

The flow of cars crossing the intersection from R1 (R2) at a given time is 

obtained by multiplying the flow of the continuous transition at the corresponding time. 

For example, during phase    the flow of transition    is the same; but during phase   , 

the flow decreases linearly and becomes zero after   time units; all along phase   , the 
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flow remains zero; and finally,   time units before the end of   , the flow increases 

linearly to original.   Figure 4.4 shows the sketch of the traffic system in Figure 4.3.  

 

4.4 Control Strategy 

The control strategy used by the traffic lights is to minimize the sum of the time delays 

spent by all cars during a control horizon. 

The total delay of all the cars passing through the system is obtained by summing 

over all the places   
  in the network 

∑ ∫  (  
 )( )  

 

   
                                              (4.1) 

Because the output transition of the given section in the traffic model is the input 

transition of the other section, (3.1) can be rewritten as the cost function 

  ∑ ∫  (  
 )( )  

 

   
  ∑ ∫ ∫  ( )    

 

 

 

     
 ∑ ∫ ∫  ( )    

 

 

 

            (4.2) 

where    and    represent the input (output) transitions of the system. In Figure 4.3, 

            , and           . 

To simplify the system, the first two terms of (4.2) do not depend on the control 

policy. It turns out that minimizing the total delay is equivalent to maximizing the 

outflow. Moreover, the flow of any output transition is piecewise constant. 

At the end of the period  , where      ,   ( ) is the flow of transition   at the 

beginning of period  , the final expression for the cost function is  

      ∑ ((  (   )   )  ∑   ( )    ) 
   .                     (4.3) 

In order to avoid very long waiting times for individual cars, a maximum time 

interval     for red lights will be applied. Similarly, a minimum time interval       for 

green lights is used to avoid very short green light.  
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As all conditions show above, an MPC strategy can be given as follows: 

           

                                                              

1.                              

2.      

3.                                                                

                                                         

4.                                                     

5.                                                        

6.                                                  

7.                         

8.          

The commands in steps 3 and 4 compute the control action for the next step 

according to the current state. The commands in steps 5, 6, and 7 apply the computed 

control action during one time period and update the system state. Given that the number 

of switching sequences is exponential with respect to the number of traffic lights, the 

computation time of step 4 might become too high if one must check every single 

sequence to find the optimal one. Fortunately, only the sequences satisfying the “   ” 

and “      ” constraints must be checked. The optimal sequence is obtained by 

simulation: after the simulation of each feasible sequence, the one yielding the minimum 

total delay is selected. 
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CHAPTER 5 

SIMULATION 

 

5.1 Model Parameters 

This traffic system, modeled in Figure 4.3 and sketched in Figure 4.4, consists of two 

one-way streets Road 1 and Road 2 that cross at an intersection. Each road has two 

sections, which Road 1 has Section 1 and Section 3, and Road 2 has Section 2 and 

Section 4.  

For simplicity, the model parameters for all sections are assumed to be the same, 

which the capacity of each section is 60 cars, and                ,       

                   ,              ,     
       

       
       

   

   . Set the initial distribution of cars in the system is      
     ,      

     , 

     
      and      

     . Thus      
      and      

      , as the capacity 

is 60.  

The flow rate of cars per second for Road 1 is set to be a uniform random variable 

distribution as          , respectively, and for Road 2,          .       ,       and 

     . The time of red lights is no longer than         . The control horizon is set 

as 48 s. 
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5.2 Simulation Results 

The goal of MPC is to minimize the total delay of cars in the intersection system. Fig. 5.1 

shows the evolution of the distribution of cars in S1, S2, S3 and S4, where m1, m2, m3 

and m4 stand for     
  ,     

  ,     
   and      

  , respectively. The green stars 

represent the traffic light. R1 has green light, i.e., red light for R2 when stars in the figure 

are located at the value equal to 1. R1 has Red lights and R2 has green lights when stars 

are at 3. When green stars go to 2, the traffic light is switching. 

Fig. 5.1    Evolution of the systems in Fig 4.3 under MPC 
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The result of MPC shows that the time of green lights for R2 is longer than for R1, 

as the given car flow to R2 is bigger than the flow to R1. Because the inflow to R2 is a 

random variable, the time last or traffic lights is not constant.The number of cars in each 

section is never bigger than 35, showing that the intersection system is working properly.  

Fig. 5.2    Evolution of the system without MPC 

 

Fig. 5.2 shows the evolution without MPC. A constant switching traffic light 

applies to the system, which is 32 s for green lights and another 32 s for red lights. 

Obviously, as the queue at m2 goes to longer and longer, and it will exceed the capacity 

of the road. Thus cars on R2 are going to suffer a traffic jam.  



23 

 

As an outstanding feature, the MPC can well react to any sudden traffic 

conditions change. Assume that at time      , the flow into R2 changes from a 

random variable in [0.4, 0.6] to a constant rate of 0.3. Fig. 5.3 shows how the MPC 

adjusts the green ratio for R2 after the flow change. The green lights time for R2 is now 

reduced to 24 s, while all the cars cross the section share a low delay rate. 

 

 

 

 

 

 

 

 

Fig. 5.3    MPC control of the system after a flow change 
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CHAPTER 6 

CONCLUSION 

 

The theory and applications of Model Predictive Control and timed continuous Petri Net 

are studied.  

Based on timed continuous Petri Nets, an intersection traffic system model is built. 

In such a model, the marking of a place represents the number of cars in a given section, 

and the firing speed of its output transitions stands for the flow of cars leaving that 

section. The advantages of continuous PN are surely helpful, as it can model a traffic 

system properly, and the different parts of the system can be separately designed and 

easily assembled. 

The control strategy of the traffic system is Model Predictive Control, which is a 

good choice to handle the changing traffic conditions. The simulation results show that 

this approach can minimize the total delay of cars in the traffic system remarkably. 

On the other hand, the parameters here in this PN model and the strategy of MPC 

are largely chosen based on the idea of simplifying the question but not totally based on 

the original one. It only considers one intersection with two one-way road crossing, but 

not the total nearby traffic network. With a different model, the stability of the MPC 

based on continuous PN may become an issue. Hence much more works are required in 

the future.  
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