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ABSTRACT  

ANALYSIS OF TRANSPORT PROPERTIES OF A ZAZ GRAPHENE 

NANORIBBON JUNCTION USING VARIOUS DOPANTS 

by 

Natasha Parikh 

 

A 12 atom wide ZAZ Graphene Junction was simulated and its transport properties were 

analyzed. I-V curves, calculated by nonequilibrium Greens function method combined 

with the density functional theory under external bias, showed varying semiconducting 

characteristics. Further, the width of the junction also showed significant effects in the 

determination of the semiconducting nature. A theoretical study was performed on the 

semiconducting characteristics by analyzing the I-V curve and transport coefficients in 

the junction.  
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CHAPTER 1  

INTRODUCTION 

1.1 Graphene: The New Carbon  

Carbon (chemical symbol C, atomic mass 12.07amu) (Figure 1.1a) is a widely distributed 

element in nature. It is found abundantly in the sun, stars, comets and the atmospheres of 

the planet. Carbon can form up to four bonds; it can bond with itself endlessly and with 

most other elements in many different shapes, making it a significant part of the 

construction for many kinds of complex molecules.
1
  

Two allotropes of carbon are commonly used, diamond and graphite (Figure 

1.1b). The bonding structures of diamond and graphite contribute to the properties 

individually. In diamond, all the p-orbitals are used forming a sp
3

 bonding whereas, in 

graphite, only two orbitals are occupied allowing the unpaired bond for the transport of 

electrons. Each carbon atom in graphene possesses sp
2
 hybridization i.e., each carbon 

atom is connected to three other carbon atoms via covalent bonds with a bond length of 

1.42Å and an angle of 120° between each bonded pair. This makes graphite a better 

conductor than diamond. Graphite consists of many layers of 2D carbon lattices (Figure 

1.1c) stacked on top of each other and held via Van der Waals forces. A single layer of 

graphite, where carbon atoms are arranged in a honeycomb lattice, is known as graphene 

(Figure 1.1c).  
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Figure 1.1  (a) Chemical representation of Carbon (b) Graphite ore (c) Structure of     

Graphite and a single layer Graphene.
2
 

 

Theoretical work on graphene was done specifically to study the other allotropes. 

The first study was done by Wallace in 1947, who calculated the band structure of 

graphene.
3
  Further, the peculiar Landau levels were known by McClure in 1957 and the 

relativistic Hofstadter butterfly by Ramal in 1985.
3
 Later in 1991, the invention of carbon 

nanotubes by Iijima boosted the theoretical research on graphene.
3
 Prior to the invention 

of carbon nanotubes, there were a few experimental papers on graphene growth via 

various methods like intercalation of graphite (Shioyama, 2001), free standing (Boehm, 

1962), epitaxial as well as graphene grown on metals (Bommel, 1975; Land 1992; Itoh 

1991)
3
.  With all the various discoveries, the electronic properties of graphene were not 

studied until 2004, when Berger and Novoselov were able to access the electronic 

properties with contact of graphene flakes
3
 (Figure 1.2).  
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Figure 1.2  An optical image of Graphene flake obtained by exfoliation of graphite.
3 

 

The specific lattice structure of graphene possesses a number of unique electronic 

properties making it an interesting material for theorists, experimentalists and engineers. 

Utilization of graphene, as a fundamental block of electronic devices, requires 

development of new theoretical methods for understanding the current propagations in 

graphene constriction.
4
 

1.2 Graphene Synthesis  

The discovery of graphene by mechanical exfoliation, called the ‘Scotch tape method’ led 

to serious attempts towards the production of top quality graphene.
5
 Graphene was first 

exfoliated mechanically from graphite in 2004.
6
 The importance of high quality graphene 

cannot be emphasized enough; however, electron transport has shown that defects play an 

important role in hindering the transport properties of electrons (holes).
7
 The two 

synthesizing methods for the large scale manufacture of graphene are chemical vapor 

deposition (CVD) and silicon carbide (SiC) desorption method.  
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Graphene can be synthesized by sublimation of silicon from SiC at high 

temperature (1200°C) in high vacuum.
5
 The major advantage of this method is that the 

SiC provides an insulating substrate and no transfer of the graphene layer is needed. Yet, 

the disadvantage of this method outweighs its advantages; the high temperature is cost-

ineffective making it unsuitable for large scale manufacturing.
8
 Also, the crystal growth 

face alters the properties of graphene. Graphene, grown on Si-terminated face, has poor 

homogeneity and is subjected to unintentional doping.
7
 Conversely, graphene grown on 

C-terminated SiC has higher mobility and is often called ‘turbostatic’ due to the 

rotational disorder.
7
  

Unlike the SiC method, the graphene produced via CVD method needs to be 

transferred to a substrate making it difficult to maintain the quality of graphene. Yet, 

CVD synthesized graphene has a larger grain size.
7
 More research is being done on 

various methods for synthesis of graphene. The methods include direct chemical 

synthesis, ion implantation, crystal sonification and lastly unzipping carbon nanotubes to 

form graphene sheets.
9
  

Graphene and few-layer graphene have been grown by CVD from carbon 

containing gases on catalytic metal surfaces and/by surface segregation of C dissolved in 

the bulk of such metals.
7
 Growing graphene with CVD is a very attractive solution, since 

it is compatible with the existing semiconductor industry.
9
 Graphene has been grown via 

CVD process on metal substrates such as Nickel (Ni) and Copper (Cu).  
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1.2.1 Synthesis of Graphene on Nickel (Ni) 

Polycrystalline Ni films are annealed in Ar/H2 atmosphere at 900-1000°C to increase 

grain size and are then exposed to H2/CH4 gas mixture.
10

 In this step, the hydrocarbon 

decomposes and dissolves in Ni to form a solid solution. Lastly, the samples are cooled in 

argon gas. Ni has high carbon solubility at elevated temperatures, and the solubility 

decreases as temperature is reduced. During the cooling process, the carbon atoms diffuse 

out from the Ni-C solid solution and precipitate on the Ni surface to form graphene films 

(Figure 1.3a). Since Ni (111) has a lattice similar to the densely packed hexagonal lattice 

of graphene, (Figure 1.3b), they also have similar lattice constants, and hence Ni surface 

serves as an excellent lattice matched substrate for graphene growth.
11

 

The growth of graphene on Ni is based on carbon segregation and precipitation 

process; different segregation behavior is produced by different cooling rates, which 

affect the thickness and quality of graphene films.
12

 Medium cooling rates lead to optimal 

carbon segregation and produce few layers.
12

 Graphene films, grown on Ni, are usually 

continuous with monolayer and few layer regions. Annealing of Ni substrates, at elevated 

temperatures in hydrogen atmosphere, not only increases the single-crystalline Ni grain 

size but also eliminates certain impurities in Ni, thereby improving the graphene quality. 

Furthermore, the graphene thickness can also be affected due to the amount of carbon 

dissolved in the Ni films during the growth time.  

 After synthesis, the graphene can be transferred to other insulator substrates for 

further characterization and applications. Figure 1.3c shows the selected area electron 

diffraction pattern of graphene film along the [001] direction, which confirms the 

graphene lattice structure shown. After transfer to insulator substrates, the geometry can 
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be retained as shown in Figure 1.3d.  Under optimal growth parameters, graphene growth 

is only limited by the Ni catalyst. Lastly, Figures 1.3e and 1.3f show the wafer-scale 

graphene synthesis and transfer of graphene to a flexible transparent substrate, 

respectively.  

Though polycrystalline Ni is a good substrate, the percentage and size of 

graphene monolayer are still limited. Researchers have hence tried other metal substrates 

for graphene synthesis.  
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Figure 1.3  (a) Graphene formation on Nickel; (b) Graphene atoms on Ni (111) lattice; 

(c) Low magnification TEM image of graphene edges; (d) Optical image of graphene 

transferred from the Ni surface to SiO2/Si substrate; (e) Full-wafer scale deposition of 

graphene layers on polycrystalline Ni; (f) Transparent and flexible graphene films on 

PDMS substrate.
10
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1.2.2 Synthesis of Graphene on Copper (Cu) 

Graphene films are grown on 25µm thick Cu foils in a hot wall furnace.
13

 The Cu foil is 

first annealed in hydrogen atmosphere at 1000°C and a mixture of H2/CH4 is introduced 

into the system to initiate graphene growth. After a continuous graphene layer is formed 

on the Cu foil, the system is cooled to room temperature. Figure 1.4a shows an SEM 

image of graphene on Cu substrate, indicating the Cu grains with contrast. The Cu 

surface steps are formed during thermal annealing and the darker flakes indicate multiple-

layer graphene (Figure 1.4b).
10

 The graphene wrinkles, in Figure 1.4(b), originate from 

different thermal expansion coefficient of graphene and Cu. They go across the Cu grain 

boundaries indicating that the graphene film is continuous.  

 

Figure 1.4  (a) SEM image of graphene on copper foil (b) High-resolution SEM image of 

graphene on Cu.
10 

 

1.2.3 Transfer of Graphene films  

In order to facilitate the applications of graphene for electronic applications, we need to 

separate the graphene from the catalytic metal substrate. Figure 1.5a shows the transfer 

process of graphene. Graphene is first coated with a thin layer of polymethyl 

methacrylate (PMMA) and baked at 120°C to evaporate the solvent.
10

 The metal layer is 

then removed by Ni or Cu etchant, leaving behind the PMMA graphene film. The film is 

then cleaned by deionized water and then transferred onto the target substrate. After the 
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evaporation of water vapor, the PMMA is removed by acetone, leaving graphene film on 

top of the target substrate. Figure 1.5b shows a graphene wafer transferred from the 

substrate onto glass and polyethylene terephthalate (PET) films.  

 

 

Figure 1.5  (a). Transfer process; (b). Wafer-scale synthesis of graphene; (c). Graphene 

films transferred onto glass wafer; (d). Si/SiO2 with device patterned; (e). PET film.
10

  

 

 

1.2.4 Synthesis of Graphene Junction        

Graphene junctions, with smooth armchair and zigzag edges, are difficult to produce by 

conventional methods such as mechanical exfoliation, chemical exfoliation or lithography 

etching.
14

 The conventional methods can only produce rough edges. Recently, 

Dresselhaus reported an edge reconstruction of graphene by Joule heating in a TEM-STM 
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(Figure1.6b) system.
15

 An individual nanoribbon sample is attached to the sample holder 

at one end and to the STM tip at the other end; these ends also serve as the two 

electrodes. The structural transformation in the growth of graphene from armchair to zig-

zag is mainly attributed to the vaporization of carbon edges that reconstruct at high 

temperatures, in which resistive Joule heating and preferred current flow play an 

important role. This means that, by controlling the flow of current, a perfectly smooth 

edged ribbon can be synthesized making graphene-based electronics possible.
16

 

 

Figure 1.6  (a) High-magnification image of the annealed sample showing that well-

defined zigzag armchair and zigzag-zigzag edges are formed. (b) STM image of an 8 nm 

wide bent junction connecting an armchair and a zigzag graphene nanoribbon, which was 

carved by STM tips.
14

 
. 

1.2.5 Doping in Graphene  

The doping of graphene can be roughly classified into two categories - electrical and 

chemical. Electrical doping involves changing gate voltages of graphene devices and 

chemical doping uses chemical routes such as substitutional or interstitial. This thesis 

discusses chemical doping and the importance of doping sites by changing the dopant.  

Chemical doping is a common approach to tailor the electronic properties of 
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semiconductors. Doping of graphene can cause its electronic properties to alter leading to 

a metal-semiconductor transition. The two means of doping graphene are interstitial and 

substitutional. In interstitial doping, the dopant atoms or molecules are introduced as 

adatoms or admolecules on the surface of graphene, whereas in substitutional doping, the 

dopant atoms are replaced in the carbon lattice forming a bond in the lattice of 

graphene.
16

 Doping graphene results in the formation of n or p-type semiconductors 

depending on the kind of dopant. If the dopant is an electron donor, it causes the Fermi 

level to shift up resulting in n-type behavior of graphene. Furthermore, if the dopant is an 

electron acceptor, it causes the Fermi level to shift down resulting in a p-type behavior of 

graphene (Figure 1.7).
16

  

 

Figure 1.7  Band structure of graphene before and after doping. The image shows shift 

towards the Fermi level.
16

  

 
 

Graphene nanoribbons (GNR) can be made into a p- and n- type semiconductor 

by doping with boron (B) and nitrogen (N) respectively. In theory, GNR p-n junction is 

formed by doping GNR with B and N in different regions. However, experimentally, 

doping graphene with both these elements is very difficult due to the dopants reacting 

with each other.
17

 Hence, most experimental studies use GNR doped by only one 
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element. N-doped graphene was synthesized by Wei et al., Wang and B-doped Graphene 

was realized by Endo.
17

 

Many researchers have demonstrated interstitial doping of graphene by gas, metal 

and organic molecules.
16

 The various gases and metals used are NO2, NH3, An-CH3, Na-

NH2, F4-TCNQ, TPa, TCNE and others.
16

 Doping in graphene is hence possible by 

electrons or holes in high concentration without deterioration of its mobility. Interstitial 

doping is highly sensitive due to most of the conducting channel being exposed to surface 

absorbates and hence can be used in molecule detection.  

In substitutional doping, the dopant atoms are included in the graphene lattice and 

thus chemically bonded. Substitutional doping is done via the CVD method using a 

carbon and dopant source.  Substitutional doping opens up many applications in device 

engineering making graphene a very good candidate as a semiconductor. This study 

involves the study of transport properties of graphene doped by substitution.  

1.2.6 Nitrogen (N) Doped Graphene Synthesis (Substitutional)  

N-Doped graphene is prepared via a CVD process, using a 25µm thick Cu film on a Si 

substrate. The substrate is placed in a quartz tube with the flow of hydrogen (20sccm) and 

argon (100 sccm).
18

 When the center of the furnace reaches 800°C, 60 sccm of CH4 and 

60 sccm of NH3 is introduced into the flow as C source and N source respectively. The 

substrate is then moved to high temperature and after 10 min growth; the sample is 

cooled to room temperature under H2 ambient. Figure 1. 8 shows the growth of N-doped 

graphene.
18
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Figure 1.8  Low resolution TEM image of N-doped graphene. Background is the lacey 

carbon TEM grid, graphene sheet is crumpled with many ripples.
18

 

 

1.3 Structure of Graphene Nanoribbon (GNR) 

Graphene Nanoribbons (GNR) are strips of graphene with very thin width of <50nm. 

GNRs can be terminated in three separate ways called zig-zag (0, n), armchair (m, 0) and 

chiral (m, n) (Figure1.9), and this termination along the width of the ribbon dictates the 

size of the band gap.
19

  

Figure 1.9  Zigzag and Armchair orientation of Graphene.
5
 

 

Due to their various edge structures, GNRs exhibit different electronic properties 

ranging from normal semiconductors to spin-polarized half metals, which open the 

possibility of GNRs as electronic devices.
19
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Within a tight binding approach, (AGNRs) could be metallic or semiconducting 

depending on their ribbon width; but all zigzag graphene nanoribbons (ZGNRs) are 

metallic, with a high density of electronic states at the edges. Hence, ZGNRs exhibit 

characteristic edge effects which are not present in AGNRs. These edge effects, in 

ZGNR, create a flat band close to the Fermi level making the ZGNR edges more 

reactive.
19

 First-principles calculations show that the GNRs possess a non-zero, direct 

band gaps. These gaps are small for ZGNR (Figure 1.10) caused due to spin ordering 

effects at the edges. For AGNRs, the band gap arises from quantum confinement (Figure 

1.11) effect that has larger magnitudes than ZGNR.
20

 

 
Figure 1.10  Band structure of ZGNR. 
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Figure 1.11   Band structure of AGNR. 

 

For GNRs, the band gap decreases as the ribbon width increases, and in order to 

create a semiconductor with a desirable band gap, the nanoribbon width should be 

adjusted accordingly. This property of adjusting the band gap makes graphene an 

excellent candidate for transistor switching. By applying an electric field, GNR can be 

altered from an insulator to a conductor. GNRs exhibit very intriguing properties and 

have become one of the promising candidates for electronic applications.  

1.4 Overview of Graphene Junction 

The invention of p-n junctions date back to 1940s which later resulted in the invention of 

junction transistors. One of the key technological reasons for success of the p-n junction 

is mainly due to its ability to locally modulate the energy band gaps via an applied bias.
21

  

A graphene p-n junction is created via single layer of graphene in which the 

carrier type and density in two adjacent regions are controlled by electrostatic gating
8
. 

For materials with a band gap, the electric field can either switch ‘off’ the current or 

rectify it (p-n diode).
22

  Being a “gapless” material, the off state is not achievable in 



16 

 

graphene. In order to achieve an off state, the gap can be created by doping graphene with 

various elements (Group III or Group V). Doping allows p-n junctions to be 

reconfigurable, using a gate voltage to distinguish between graphene p- n regions within a 

single sheet. Many researchers have studied the electronic as well as transport properties 

of doped graphene junctions.  

In 2009, Fangping OuYang studied the transport properties of T-shaped graphene 

junctions using the ATK software and showed that the conductance depends on 

geometric structures which can be controlled by selective doping.
23

 Wei Yao, in 2013, 

studied the transport properties in graphene p-n junctions and showed that the 

rectification effect depends on boron doping density and position.
17

  

The study of transport properties in graphene p-n junctions is a recent 

advancement. The thesis discusses transport properties including the current-voltage (I-

V) characteristics of doped graphene junctions. Moreover, the software used is similar to 

the software in use by current researchers since they have produced viable data using 

ATK.  
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CHAPTER 2  

                                              RESEARCH BACKGROUND 

2.1 Band Structure of Graphene 

The unique electronic properties of graphene were first predicted in 1946. Figure 2.1 

shows a top view of the hexagonal arrangement of carbon atoms in real space as well as 

the first Brillouin zone in reciprocal space.  

 
Figure 2.1  Left. Real space graphene lattice with basis vectors   ⃗⃗ ⃗⃗  and   ⃗⃗ ⃗⃗  ⃗. Right. The 

first Brillouin zone of graphene in reciprocal space with basis vectors   
⃗⃗ ⃗⃗  and   

⃗⃗ ⃗⃗ . K and 

K’ are responsible for massless transport at low energy
24

.  

 

The real space basis vectors are    ⃗⃗⃗⃗       
√ 

 
 ̂  

 

 
 ̂  and  ⃗⃗⃗⃗       

√ 

 
 ̂  

 

 
 ̂ . 

The reciprocal space basis vectors are 1 2

0 0

4 1 3 4 1 3
( )and ( )
2 2 2 23 3

b x y b x y
a a

 
      

where, the magnitude of the basis vectors is |a0| = √ acc. The distance between nearest 

neighbor carbon atoms is acc=0.142nm.  
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The band structure can be calculated  by solving the eigenvalues using the 

dispersion relation, E( ⃗⃗ ):  

1 2 3( ) 3 2cos 2cos 2cosE k t k a k a k a      (2.1) 

Transport properties of solids are closely related to the energy dispersion 

relations, E ( ⃗ ) in the material and in particular to the behavior of E ( ⃗ ) near the Fermi 

level. Graphene is a zero gap semimetal whose specific linear electronic band dispersion 

near the Brillouin zone corners (Dirac points) gives rise to electrons and holes that 

propagate as massless Fermions.
25

 The valence and conduction bands do not overlap in 

graphene; they touch at the Fermi Level (Figure 2.2).  

 

 

Figure 2.2  Band structure of a graphene sheet showing a band gap of 0eV. 

 

The low energy properties of graphene can be well described by making a linear 

expansion of the band structure around the K and K’. This energy can be written as:  
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E(k) = ±ħvF|k 
(2.2) 

where, vF is the Fermi velocity of 1.10
6
m/s given by,  

 

1
F

E
v

k




ħ
 (2.3) 

 

 
Figure 2.3  Band structure of graphene calculated with the tight-binding model.

22
 

 

 

The Fermi surface of graphene consists of double cones with Fermi energy at the 

intersection of these cones (Figure 2.3). The slope of the band is zero, and hence the 

effective mass of electrons in that region is zero, which leads to an entirely new transport 

mechanism in graphene.
26
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2.2 Transport Characteristics of Graphene  

Transport process usually involves a flow of charge or energy or both. The flow is mainly 

due to external perturbations such as electric field and temperature gradient. The 

relationship between forces and flow usually defines various transport coefficients that 

are the characteristics of electrons and phonons in the material. All modern electronics 

are based on the ability to control the electronic properties of a material by applying 

external voltage. This is done by an electric field effect where the gate voltage changes 

the carrier concentration of the material and consequently its conductivity. The electric 

field effect in graphene was reported by Novoselov in 2004 and is used in transport 

measurements.
8
 

The electron-phonon interaction in graphene plays an important role in 

understanding the photoemission spectra observed in graphene. The electric field effect is 

an alternative method for changing the charge carrier density in low dimensional systems. 

The electric field effect in graphene, which was first reported by Novoselov et al. in 

2004, is widely used as a characterization tool in transport measurements.
25

  

The transport characteristics of the material are directly related to the 

bandstructure of graphene. The carriers in graphene lattice are free to move in two 

dimensions. In the carrier transport of graphene, the carriers – electrons and holes – close 

to the Dirac points are of importance. The transport is described by a two component 

wave function (Equation 2.4) which obeys the 2D Dirac-like equation for massless 

particles
27

. 
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-ivFσ 
. ∇ψ(r) = Eψ(r) 

(2.4) 

where, σ is the 2D Pauli spin matrix. In the continuum limit, the above (Equation 

2.4) corresponds to the effective low energy Dirac Hamiltonian (Equation 2.5) 

 

0
( )

0

x y

F F

x y

i
H k k

i

k k
v v

k k


 
  
 
 

 

(2.5) 

The electronic band structure of the energy (E) versus wave vector (k) relation for 

graphene is given by Equation 2.4. 

The two component wave function resembles the spin or wave function of 

quantum electro dynamics (QED).
27

 Corresponding to the spin of particles in QED, the 

charge carriers of graphene can be attributed with a pseudospin σ. The pseudospin is the 

direct result of two different carbon sublattices corresponding to the bonding and 

antibonding combinations.
27
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Figure 2.4 The energy dispersion around the K point.
27

 

 

In Figure 2.4, the red and blue lines correspond to the antibonding and bonding 

states, respectively. The pseudospin can have two values, either in the direction of or 

against the momentum. It can be seen that the electrons with energy E travelling in the 

positive direction originates from the same branch as a hole with energy –E travelling in 

the negative direction giving it the same pseudospin. This results in suppressed 

backscattering and Klein tunneling. The back scattering process requires the pseudospin 

to flip, which is possible in the presence of short range scatters that act differently on sub 

lattices.
27

  

2.3 Drude Theory  

The classical theory of metallic conductivity was presented by Drude in 1900 and was 

elaborated by Lorentz in 1905.
28

 Drude treated the free electrons as classical ideal gas, 

meaning the electrons collide with stationary ions and not each other.  
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Figure 2.5   Electrons colliding with stationary ions.
28

 

 

 

The Drude theory applied the kinetic theory of gases to a metal, considered as a gas of 

electrons. The basic assumptions made by the Drude theory are:
28

 

 When metallic elements are brought together to form a solid, then the valence 

electrons become freely moving through the metal, whereas the ions remain intact 

as nearly immobile positive particles.  

 

 Between collisions, the electrons move freely; i.e., there is neither electron-

electron interaction nor electron-ion interaction.  

 

 The scattering mechanism leads to instantaneous collisions of the electron with 

the scatterers. 

 

 The collisions are characterized by a relaxation time τ. 

 The electrons achieve thermal equilibrium only through collisions; the velocity 

after a collision is randomly directed, the speed is as appropriate to the 

temperature.  

 

With the relaxation time, Drude obtained the electrical conductivity expression, 

where n is the number of electrons per unit volume.  

    σ = ne
2
τ/m   

(2.5) 

He also calculated the thermal conductivity and successfully provided the 

theoretical basis for Wiedemann-Frantz law already established in 1853, which states that 
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the ratio of electrical and thermal conductivity of any metals is a universal constant at any 

given temperature.
28

 

 The Drude theory gives results which are qualitatively correct outside of the 

quantum Hall regime.
28

 In the Drude theory of the electrical conductivity of a metal, an 

electron is accelerated by the electric field for an average time τ, before being scattered 

by impurities, lattice imperfections and phonons to a state which has zero average 

velocity. The average drift velocity of the electron is,  

/
d

eE mv  
 (2.6) 

It is assumed that all electrons drift together and hence the current density, 

  j = -ne  ⃗⃗ ⃗⃗                                                            (2.7) 

This Drude theory works well for fields below ~ 0.1T. At stronger fields, the Hall 

resistivity becomes nearly constant over finite intervals of magnetic fields.
28

 The QHE 

reflects both novel disorder physics as well as novel interaction physics in the quantum 

Hall regime.   

2.4 Quantum Hall Effect (QHE)  

The discovery of QHE is a remarkable achievement in condensed matter physics. The 

Hall Effect was discovered by Edwin Hall in 1879.
29

 However, the precise quantization 

of the Hall conductance in units of e
2
/h was not recognized until February, 1980. Five 

years later, in 1985, Klaus von Klitzing was awarded the Nobel Prize in Physics for the 

discovery of QHE.
29

 

The quantum Hall effect occurs in two-dimensional electron systems in the limit 

of strong perpendicular magnetic field that stems from electronic transport 
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measurements, where one drives a current I through the sample and where one measures 

both the longitudinal and transverse resistance (Hall resistance). A longitudinal resistance 

is a resistance measured between two contacts that may be connected by a line which 

does not connect C1 and C4.
30

 Transverse resistance is measured between two contacts 

connected by an imaginary line connecting C1 and C4 (Figure 2.6a). 

 

 

Figure 2.6  (a) 2D electrons in a perpendicular magnetic field. Logitudinal resistance 

measured across C5 and C6. Transverse resistance measured across C3 and C5. 

(b) Classical Hall resistance as a function on the magnetic field.
30

 

 

Due to the existence of quantum Hall effect, it is natural to expect that there exists 

a classical Hall Effect. Hall showed that the transverse resistance of a thin metallic plate 

varies linearly with the strength B of the perpendicular magnetic field (Figure 2.6 b): 

                                         

 RH = B/qnel                                                               (2.8) 

 

More quantitatively, the classical Hall Effect can be understood within the Drude 

model for diffusive transport in a metal. Within this model, one considers independent 
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charge carriers of momentum p described by the equation of motion:  

( )

b

dp p p
e E B

dt m 
         (2.9) 

where, E and B are the electric and magnetic field respectively. The macroscopic 

transport characteristics, i.e., resistivity of the system, are obtained from the static 

solution of the equation of motion, dp/dt = 0, and one finds for 2D electrons with p = 

(px.py):  

x

x y
b

y

y x
b

eB
e

eB
e

p
pE

m

p
pE

m





  

  

         (2.10) 

 

In the above expression, characteristic frequency is visible as, 

 

C

b

eB

m
                                                          (2.11) 

This is known as cyclotron frequency as it characterizes the cyclotron motion of a 

charged particle in a magnetic field.
30

 With the Drude theory, the conductivity can be 

written as: 

 j = -enelp/mb      (2.12) 

and the mobility can be given as:   

µ = eτ/mb      (2.13) 

 

 The transport properties in the limit of ω
C
τ-> ∞ are entirely governed in the presence of 
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a magnetic field by the off-diagonal, i.e., transverse components of 

conductivity/resistivity.  

The theory of quantum Hall effect subjects all physical properties of 2D electron 

system in the limit where the magnetic field is strong so that the mixing of Landau levels 

by disorder or electron-electron interaction is considered to be a weak perturbation.
30

 

This is known as the quantum Hall regime. The ratios between the energy scales 

corresponding to the two interactions are important. The limit where disorder potential is 

much stronger is referred to as integer quantum hall regime whereas the limit where the 

interaction potential is much stronger is referred to as fractional quantum Hall regime. 

2.5 Resistivity and Resistance  

The electronic transport, in the framework of the Drude theory, allows for the calculation 

of conductivity or resistivity of a classical diffusive 2D electrons in a magnetic field.
30

 

The conductivity and conductance are related to one another but they depend on the 

geometry of the conductor-the resistance R and hence the resistivity is given by,  

     R = (L/A)ρ                                         (2.14) 

where, L is the length of the conductor and A is the cross section. 

For a d-dimensional conductor, the cross section scales as L
d-1

, such that the 

scaling relation between the resistance and the resistivity is:  

                R~ ρL
2-d

      (2.15) 

From the dimension point of view, resistance and resistivity are the same in 2D, and the 

resistance is scale-invariant. Further, the resistance of a 2D conductor depends, in 

general, on the so-called aspect ratio L/W via some factor f (L/W).
30

 However, for 

transverse Hall resistance, it is the length of the conductor that plays the role of cross 
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section, such that the Hall resistivity and the Hall resistance truly coincide i.e. f=1. The 

Quantum Hall effect is highly insensitive to the particular geometric properties of the 

sample used in transport measurements. Recently, quantum Hall physics experienced the 

discovery of “relativistic” quantum Hall effect in graphene. The electrons in graphene 

behave as if they were relativistic massless particles contributing to a very interesting 

field of research.
30

 

2.6 Klein Tunneling 

Klein tunneling, in which relativistic particles penetrate through a potential barrier 

without the exponential damping that is characteristic for nonrelativistic quantum 

tunneling, has never been observed for elementary particles. The tunneling allows 

transmission of a particle through a potential barrier higher than its kinetic energy, 

violating the principle of classical mechanics.
30

 On the quantum scale, the objects exhibit 

wave-like characteristics, in which the quanta move against a potential hill described by 

their wave function. This wave function represents the probability amplitude of finding 

the object in a particular location. The transmission of the object through the potential hill 

is termed as tunneling. When E<V then the ψ(x) over V is returned by ψ’(x). In quantum 

mechanics, an electron tunnels from the conduction into the valence band. Such a 

tunneling from an electron-like to hole-like state is called as Klein Tunneling in which the 

electron avoids backscattering.  

In Figure 2.7, it is shown that an electron hitting a potential barrier is reflected 

with 100% certainty. In non-relativistic quantum mechanics, the electrons can tunnel 

through the barrier, but the probability of tunneling exponentially decays with increasing 
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height and width of the barrier. However, in relativistic quantum mechanics, the barrier 

gets transparent, even in the limit of infinite barrier height (Klein paradox).
31

 

 

Figure 2.7   Klein tunneling through an npn barrier.
30

  
 

  

The Klein paradox in graphene can be understood in terms of electrons and holes. 

In graphene, the massless carriers behave differently than ordinary carriers (with mass) in 

the presence of an electric field. A barrier which is repulsive for electrons will be 

attractive for holes. Since there are hole states inside the barrier with the same energy as 

the electrons outside, an electron arriving at the barrier can tunnel through it as a hole 

before leaving again as an electron. Klein tunneling for transport in graphene is that the 

charge carriers cannot be confined by potential barriers.  The Klein tunneling effect has 

been experimentally observed by Ando in 1998 in which the absence of backscattering 

(Figure 2.8) is responsible for high conductivity in carbon nanotubes.  
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Figure 2.8  Electron trajectory considering the linear electrostatic potential U(x) = Fx.
30

 

  

The electron is able to propagate through an infinitely high potential barrier since 

it makes a transition from the conduction band to valence band. In this transition from 

conduction band to valence band, its dynamics changes from electron-like to hole-like.  

The equation of motion is thus given by,  

 

    

2

2 2 2| | ( )

pdr E

dt E Up

p E U

v

v




 



 

    at energy E,   (2.16) 

 

This shows that, in the conduction band, (U<E) and in the valence band, (U>E). 

In Klein tunneling, the pairs of electron-like and hole-like trajectories at the same E and 

py have turning points at  dmin given by dmin=2v|py|/F (Figure 2.9).  

 

Figure 2.9  Electron like and hole like trajectories at same E.
21
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The tunneling probability: exponential dependence on dmin: 

 

 
2
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| |

( ) exp( ) exp( )
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y y

y

v
T

F

p pd
p

  
     (2.17) 

 

 

The applications of the Klein tunneling include Atomic clock, Scanning tunneling 

Microscope, Tunnel diode, Tunneling transistor and many more.
32

 Since graphene 

exhibits Klein tunneling, it can be very useful to study the transport properties in 

graphene and use it in such applications.  

2.7 Quantum Hall Effect in a Graphene  

A monolayer graphene shows half-integer quantum Hall effects, where the Hall 

resistance is quantized at values of: 

2

1
/

xy
h v eR 

     (2.18) 

around filling factors,  

1
4( 1/ 2)Nv   

     (2.19) 

where, N is an integer, e is the electron charge, h is the Planck’s constant and the 

factor 4 is due to spin and valley degeneracy. QHE in graphene can be observed at room 

temperature, which is a very intriguing property (Figure 2.10). Graphene reveals 

significant differences with respect to conventional 2D electron systems. The Landau 

quantization yields energy levels that disperse differently in graphene as well as 

particular zero-energy  level that is only half filled at the charge neutrality point (v=o).  
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Figure 2.10  Quantum Hall effect in graphene.
22

 The Hall conductivity σxy and the 

longitudinal resistivity of monolayer graphene as a function of carrier density at B = 14T 

and T= 4K.  This shows half-integer QHE with chiral index J= 1.  

 

The QHE in graphene is not entirely similar to regular QHE, since the charge 

carriers in graphene are Dirac Fermions. The charge carriers governed by 

electrodynamics is given by (Equation 2.20), which does not apply for graphene and a 

QED quantization of graphene electronic band structure is used.   

En = (n+1/2)ħω         (2.20)   
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In the presence of magnetic field, the nature of the Dirac Fermions in graphene 

results in unevenly spaced Landau levels (LL) containing a distinctive LL at the electron-

hole degenerating a zero energy given by,  

2
MG

MGF
ehn B

n vE   
    (2.21) 

The LL levels at high magnetic fields in MG are shown in Figure 2.11. 

 

Figure 2.11  (a) LL for Graphene bilayer (b) Schematics of Hall conductivity as a 

function of n/n0, for bilayer Graphene (solid line), and monolayer Graphene (dotted line) 

(c) LL for monolayer Graphene.
33

 

 

It is found that the Hall resistance of a two dimensional electron system has 

plateaus as a function of the number of electrons at low temperatures and strong magnetic 

fields.
32

 At large B, the Dirac-like energy spectrum of graphene gives rise to a 

characteristic series of QH plateaus in conductance, reflecting the presence of a zero-

energy Landau level, that include only odd multiples of 2e
2
/h for uniform carrier density 

in the sheet. These plateaus of QH edge states at the edge of the sheet, circulating in a 
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direction, are determined by the direction of B and the carrier type.
33

 This is why QHE in 

graphene is known as Half-Integer Quantum Hall Effect.  

2.8 Thermoelectric Effect  

Thermoelectricity refers to a class of phenomena in which a temperature difference 

creates an electric potential or an electric potential creates a temperature difference. The 

principle of thermoelectric effect has been known for over 100 years. Recently the 

practical applications of  thermoelectric effect have become more viable.
34

 

 Thermoelectric effect is the direct conversion of temperature differences to 

electric voltage and vice versa. Joule heating is the heat generated whenever a voltage is 

applied across a resistive material. The Peltier-Seebeck effect is reversible whereas Joule 

heating is not. This effect can be used to generate electricity, to measure temperature to 

cool objects, or to heat them. Since the direction of heating and cooling is determined by 

the sign of the applied voltage, thermoelectric devices make very convenient temperature 

controllers.  

2.8.1 Seebeck Coefficient  

Thomas Johann Seebeck discovered that an emf appears in a circuit composed of two 

dissimilar metals when the junction between the metals is held at different 

temperatures.
34

 The thermoelectric emf causes a continuous current in the circuit when a 

complete loop is formed and the current is known as thermoelectric current. This is 

known as the Seebeck effect.  
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Figure 2.12  Seebeck Effect.
34

  

 

As long as the two junctions are at different temperatures, the thermoelectric emf 

exists and the current will keep flowing between the hot and cold junction that are at 

different temperatures. The Seebeck effect is the conversion of temperature difference 

directly into electricity. The voltage developed in the circuit, shown in Figure 2.12, is 

proportional to the difference in temperature between the two junctions and is given by,  

 

    V = α (T2-T1)      (2.22) 

 

This Seebeck effect is observed not only in metals but also in semiconductors. 

Here, α is known as the Seebeck coefficient. α measures the magnitude of an induced 

thermoelectric voltage in response to the temperature difference across the material. If the 

temperature difference ∆T between the two ends of a material is small, then the Seebeck 

coefficient of a material is written by,  

     α = ∆V/∆T      (2.23) 
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This can be expressed in terms of electric field as,  

     α   E/∆T      (2.24) 

The units of Seebeck coefficient is given as V/K. The higher the Seebeck coefficient 

value, the better it is since it will create a very large voltage that can be used to provide 

power.  

2.8.2 Peltier Coefficient  

Peltier effect is the inverse of Seebeck effect involving a junction phenomenon. There is 

heat absorption or generation at the junctions depending on the direction of current flow. 

Heat generated by current flowing in one direction is absorbed if the current is reversed.  

The heat absorbed per second at a junction carrying current I is given by:   

 

   Heat absorbed in t sec = πabIt    (2.25) 

 

Here, πab is the Peltier coefficient and given by H/It. Thus, Peltier coefficient is 

numerically equal to the applied potential difference expressed in Volts.  

 Overall, by studying the flow of electrons, the values of Seebeck 

coefficient and Peltier co-efficient can be estimated.  These values determine the various 

applications of the materials. In this thesis, the Peltier and Seebeck coefficient of the 

graphene junction and the new applications are discussed.  
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2.9 Early Research – ab intio studies  

In 2007, Androitis studied that the conducting properties of graphene nanoribbons and 

junctions are strongly dependent on their size and geometric features.
35

 He concluded that 

there is no conductance for small AZA or ZAZ ribbons (Figure 2.13).  

 
Figure 2.13  Transmission functions in units of (2e

2
/h) for AZA structures

35
. 

 

Figure 2.13 shows that T (E) exhibits a negligible peak [T (E) = 0.01 in units of 

2e
2
/h] at E= -2.25 and 2.50eV. However it was noted that, when the width of the arm type 

was increased, T (E) at -2.25 and 2.50eV was 0.20.
35

 

Later in 2007, Qimin Yan used first principles methods to investigate the Current-

Voltage characteristics of GNR Transistors and the effect of edge doping. He showed that 

GNR field effect transistors can achieve high performance levels with ON/OFF ratios on 

the order of 10
3
-10

4
.
36

 Figure 2.14 is an I-V curve of AZA GNR-FET connected via 

armchair metallic leads.
36
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Figure 2.14   I-V curve for a 5.91nm long channel (Vbias=20mV).

36
 

 

In 2009, Fangping OuYang demonstrated the intrinsic transport properties and 

effective B or N doping of the junctions by using first-principles quantum transport 

simulations. He concluded that the I-V characteristics of pure-carbon T-shaped junctions 

exhibit metallic behavior, and the current in the junction strongly depends on the height 

of the stem.
23

 He reported that the conductance of the devices depends on the geometric 

structures which can be controlled by selective doping. 

In 2012, Wei Yao used the first principle calculations, based on Density 

Functional Theory (DFT) and Non-equilibrium Green's Function (NEGF), to study the 

electronic as well as the transport properties of B-doped 6-GNR p-n junction. His results 

showed that the boron doping interval can influence the rectification effect at low bias 

and also exhibit Negative Differential Resistance (NDR) phenomena at high positive 

bias.   
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CHAPTER 3  

COMPUTATIONAL DETAILS 

3.1 Introduction 

The physical, chemical, electrical, electronic and optical properties of a solid are 

determined by their quantized electronic states. The quantum states in low-dimensional 

systems are produced due to the confinement of the carrier charges in one or two 

dimensions. Graphene is a conductor; electrons are able to flow through graphene more 

easily than through even copper. The electrons can travel through the sheet of graphene 

like mass-less particles, as fast as just one hundredth that of the speed of light.  The ways 

in which electrons behave in graphene make it very helpful to study their fundamental 

physical properties. Graphene’s near perfect crystal lattice provides a very clean system 

to experiment. By restricting the electrons to only two dimensions, they exhibit some 

interesting properties such as the 'anomalous quantum Hall effect' and 'Klein tunneling'.  

In this chapter, two theoretical concepts used for calculating the electronic structure 

and the transport properties for graphene are described.  These include the Extended 

Huckel Theory and Non-Equilibrium Green’s Function (NEGF) method.  

3.1.1 Extended Huckel Theory 

Erich Hückel was born in Germany on August 9
th

 1896. He studied mathematics and 

physics in Berlin. He is best known for his work in the field of chemistry and physics for 

two contributions: (1). Debye- Hückel theory of electrolytic solutions, (2). Hückel 

method of approximate molecular orbital calculations on  electron systems. In 1930, he 

published his findings on  systems; in 1931, he generalized and expanded the system 
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theory to explain benzene. Due to his poor communication skills, his findings went 

unrecognized for over 20 years. It was in 1951 that his 4n + 2 rule was finally clarified by 

Doering to show if C=C bonds would show aromaticity. Hückel died on February 16
th

, 

1980 with very little worldwide recognition for his contributions to chemistry. Today 

chemistry students recognize his name and his contributions to the field are quite 

substantial.  

One of the first semi-empirical methods to be developed was Hückel Molecular 

Orbital Theory (HMO). HMO was developed to describe molecules containing 

conjugated double bonds. HMO considered only electrons in pi orbitals and ignored all 

other electrons in a molecule. The Extended Hückel Molecular Orbital Method (EH) was 

developed out of the need to consider all valence electrons in a molecular orbital 

calculation.  

By considering all the valence electrons, chemists could determine molecular 

structure, compute energy barriers for bond rotations, and determine energies and 

structures of transition states for reactions. By considering only the valence electrons, the 

computed energies could be used to choose between proposed transition states to clarify 

reaction mechanisms. The total valence electron wavefunction is described as a product 

of the one-electron wave functions. 

1 2 3(1) (2) (3).... ( )valence j n          (3.1) 

where, n is the number of electrons and j identifies the molecular orbital. Each 

molecular orbital is written as a linear combination of atomic orbitals (LCAO).  

1
, 1,2...

N

j jr rr
c j N 


        (3.2) 

http://wiki.chemeddl.org/mediawiki/index.php/H%C3%BCckel_MO_Theory
http://wiki.chemeddl.org/mediawiki/index.php/H%C3%BCckel_MO_Theory
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The energy of the j
th

 molecular orbital is given by a one-electron Schrödinger 

equation using an effective one electron Hamiltonian, heff, which expresses the interaction 

of an electron with the rest of the molecule: 

eff j j jh           (3.3) 

This is the energy eigenvalue of j
th

 molecular orbital, corresponding to the Eigen 

function j . The advantage of using this method is that the exact form of heff is not 

required. The total energy of the molecule is the sum of the single electron energies: 

j j
j

E n       (3.4) 

where, nj is the number of electrons in orbital j. 

In order to use the Extended Huckel method, a set of calculation parameters and 

approximations must be followed. These parameters include the Basis set, K-point and 

the Brillouin Zone and lastly the Mesh cut-off.  

3.1.2 Introduction to NEGF   

The Green’s function is a function of two space-time coordinates. From the knowledge of 

this function, one can calculate time-dependent expectation values such as currents and 

densities, electron addition and removal energies and the total energy of the system. In 

the absence of external fields, the non-equilibrium Green function method reduces to the 

equilibrium Green functions. NEGF can be applied to both extended and finite systems. 

The generic system of NEGF consists of the electron dynamics of the channel described 

by the Hamiltonian. This channel consists of two contact reservoirs with respective 

chemical potential μR and μL. The NEGF assumes ballistic transport, neglecting self-
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energy from scattering. The system is insulated from gate contacts, whose effects are 

realized via a 3D Poisson solver, which solves for the potential at a given point in real 

space based on electron density,  

2
2 ( ) [ ( ) ( )]D

q
r N r n r


       (3.5) 

 

 

Figure 3.1  NEGF system 

  

The system is easily expandable to systems with several contacts or gate 

configurations by adding additional self-energy matrices to NEGF or additional sources 

to the Poisson solver.  

3.1.3  Electrostatics 

Electrostatic potential is created every time in the presence of a charge density due to an 

induced electric field. The Poisson’s equation correlates the electrostatic potential to 

charge density as given in Equation 3.6: 
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       (3.6) 

 

where, ɛ(r) is the dielectric permittivity of the material, ρ(r), n(r), ND(r) and NA(r) are the 

hole, electron, donor and acceptor concentrations of the system, respectively.  

Two types of boundary conditions are usually applied to the Poisson’s equation:  

 Dirichlet boundary conditions  

Φ (0) = F0 and Φ (L) = FL 

 von Neumann boundary conditions: 

0
0

( )

x

d x

dx
B






  

and 

 

( )
L

x L

d x

dx
B






  

For the transport problems with open boundary conditions, the von Neumann 

boundary conditions are used assuming that the potential vanishes at the boundary, i.e. 

B0=BL=0.  

The Poisson’s equation can hence be discretized on a grid as,  

2 ( )
( )

( )

r
x

r




     = M         (3.7) 

where, M is the matrix, Φ and ρ are vectors containing the discretized values of 

the electrostatic potential Φ and charge density ρ, respectively.  
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The Schrödinger and Poisson equations are coupled since V(x) = -qΦ(x) is used 

for the Schrödinger to compute ρ(x). This self-consistent loop stops when the 

convergence is reached.  

 

   ( )r  

           

       V(x) = -qΦ(x) 

 

3.1.4 Non-Equilibrium Green’s Function 

Green’s functions are a mathematical construction that are used to solve differential 

equations subject to specific initial or boundary conditions. They are named after the 

British mathematician George Green. The 1-D equation of L( )f( )=S( ) can be defined 

by the Green’s Function as given below,  

( , ') ( ) ( ')G x x f x x x                   (3.8) 

The general Green’s function is given by,  

   
( ) ' ( , ') ( ')f x dx G x x S x       (3.9) 

Applying the operator L( ) to the solution f( ) satisfies the original differential 

equation. The Green’s Function G( ,  ) is the propagator, which propagates the influence 

of a perturbation S(  ) originally situated at the point    to the point   at which the 

function f( ) is evaluated.  

The Green’s Function G( ,   ) can also be a correlation function. If the points   

and    are strongly (weakly) correlated, then S(  ) will greatly (poorly) affect f( ).  

Poisson equation 

 

2 ( )
( )

( )

r
r

r




     

  

Schrödinger equation 

2

*

2

( ( ) ) ( , )

( )
2

( ) | ( , ) |

E H r E r S

H V r
m

r dE E r

   

  

 

  

Figure 3.2  Self-consistent loop. 
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The Schrödinger equation with open boundaries can be written as,  

        ( )E H S         (3.10) 

Considering, a 1-D and homogenous system, ranging from   =0 to L assuming 

that Σ=0 and the form of equations is same before and after discretization then,  

  

22

2* 0
( ) ( ) ( )

2
E x S x

m

d
V

dx
  

       (3.11) 

The Green’s function can hence be computed corresponding to the Schrödinger 

equation,  

22

2* 0
( ) ( , ') ( ')

2
E G x x x x

m

d
V

dx
   

      (3.12) 

 

Due to the delta-function at   =  , a discontinuity is observed and hence the 

Greens function is evaluated at boundary conditions,  

 

*

0

2

exp( ( ')) x x' 2 ( )
( , ')

exp( ik(x x')) x x'

ik x x m E V
G x x k

A

A





    
  

        (3.13) 

 

By integrating the Schrödinger equation twice and setting the lower and upper 

integration boundaries to   =  -δ and   =   +δ, the Green’s Functions can be written as,  

 

*

2

' '

( ' , ') ( ' , ') 0

( , ') ( , ') 2

x x x x

G x x G x x

dG x x dG x x m

dx dx 

 

   

   

 

    (3.14) 
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The coefficient A
+
 and A

- 
become,  

*

i
k

m
A A

 
  

      (3.15) 

The Green’s Function takes a final form known as Retarded Green’s Function and 

is written as,  

*

( , ') exp( | ' |)G x x i ik x x
k

m  
    (3.16) 

And the wave function is,  

( ) ' ( , ') ( ')x dx G x x S x        (3.17) 

Retarded Green’s Function propagates the wave functions generated by a source 

or perturbation S from its origin at    to any point  .  

The retarded Green’s Function as discretized Schrödinger equation is written as,  

( )R RE H G I         (3.18) 

The wave function Φ can be calculated from the retarded Green’s function and the 

source vector as,  

    Φ = G
R
∙S     (3.19) 

 

Overall, in this section, the Green’s function approach in calculating the electron 

dynamics is reviewed. We defined the self-energy of each part of the system, spectral 

function and the probability current density; the electric current is derived explicitly using 

Non Equilibrium Green’s function. We will use this formalism to calculate the tunneling 

phenomena in coupled quantum dots isolated or otherwise.  
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CHAPTER 4  

ATOMISTIX TOOLKIT DETAILS 

4.1 Introduction 

Virtual NanoLab (VNL) is a graphical user interface (GUI) that provides a group of 

modeling tools; the function of these tools involves the set-up, investigation, and the 

study of nanoscale structures. The quantum mechanical equations are solved by the 

software by using the advanced software architecture and numerical methods to 

implement ab initio calculations. VNL simulates the electronic structure and calculates 

the transport properties based on the two systems mentioned earlier, NEGF and Extended 

Huckel. ATK is the main engine for computing the scripts and hence all the calculations 

performed in VNL are done by ATK. VNL is a user friendly software as it not only 

allows creating a script but also helps to set up a virtual experiment.  

This thesis involves the use of VNL in order to study the effect of the width and 

different orientations of the doped atoms. Since the software allows for virtual 

experiments, it makes it much easier to study the I-V characteristics based on the change 

in position of atoms.  

4.2 Device Structure  

In this thesis, AZA GNR p-n junction with boron doping (location) was created using the 

ATK software which is based on NEGF and DFT. Further, the thesis discusses the 

transport properties and the I-V curve of such junction.  

The input format of ATK is NanoLanguage which is an extension to Python 

scripting language. ATK uses the NEGF system for formalism of simulating device.  
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Figure 4.1  Geometry of device configuration with two electrodes

37
. 

The system is divided into three parts: left, central and right. The implementation 

relies on the screening approximation which assumes that the properties of the left and 

right regions can be decribed by solving a bulk problem for fully periodic electrode cell
37

. 

This screening approximation is fulfilled when the electrode regions can be described by 

an equilibrium electron distribution.  

 
Figure 4.2  The electron distribution in a device configuration which illustrates a left 

moving scattering state with origin in right electrode
37

.  

 

The system assumes that, in steady state, the electron density of the central region 

is constant in time, and hence the electron density is calculated independently from each 

electrode. The electron density is given by the occupied eigenstates of the system:  

       n(r) =  n
L
(r) + n

R
(r)          (4.1)  
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The left and right densities are calculated by summing up the occupied scattering 

states:  

 n
L
(r) = ∑         

   
     

  
                                 (4.2) 

                  n
R
(r) = ∑         

   
     

  
         (4.3) 

The scattering states are usually calculated by first calculating the Bloch states in 

the electrodes and then solving the Schrödinger equation of the central region using the 

Bloch state as matching boundary. Instead of using the scattering states, the ATK 

software uses the NEGF method to calculate the non-equilibrium electron density.  

The electron density is given in terms of electron density matrix:  

     D = D
L
 + D

R
       (4.4) 

The left density matrix is given by NEGF theory,  

D
L
 = ∫        

    

    
         (4.5) 

where,  

ρ
L
(ɛ) =

 

  
                     (4.6) 

ρ
L
(ɛ) = is the special density matrix.  

Also, if there is a non-equilibrium electron distribution in the central region, then 

the electron distribution in electrode is given by the Fermi function f with an electron 

temperature TL.   

G(ɛ) = 
 

          
;                (4.7) 

G = retarded Green function, 

δ+ is an infinitesimal positive number and S, H overlap the Hamiltonian matrices. 

  
L
 =

 

 
 ∑   ∑  

 
 ;     (4.8) 
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L 

is the broadening function of the left electrode, given in terms of left electrode 

self -energy∑ .  

4.3 Transmission Spectrum Calculations  

Once the self-consistent non-equilibrium density matrix has been obtained, the various 

transport properties of the system can be calculated. One of the most important properties 

is the transmission spectrum, from which the current and differential conductance can be 

obtained.  

The transmission coefficient in ATK is obtained by the retarded Greens function  

T(ɛ) = G(ɛ)Γ
L
(ɛ)G

ϯ
(ɛ)Γ

R
(ɛ)    (4.9) 

 

The transmission amplitude of individual scattering states may be obtained 

through the Transmission Eigenvalues. The “Transmission Eigenvalues” is an analysis 

which finds the eigenvalues of the transmission matrix.  

The transmission matrix at energy E and k-point is given by,  

Tnm(E,k) = ∑            
 
         (4.10) 

where,  

      = transmission amplitude from Bloch state ψn(k). 

The transmission coefficient is given by the trace of transmission matrix:  

T(E,k) = ∑               (4.11) 

Keeping in mind all quantities depend on the quantum numbers parametrically. 

Transmission eigenvalues sum up to the transmission coefficient:  

T = ∑          (4.12) 
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4.4 Calculating the Current   

Current is calculated from the transmission coefficient using:  

I( ) ( )
R L

L RL R

R LB B

e
E f f dE

h

E E
V V T T T

k kT T
 

 
 

    
    
   

     

 
    (4.13) 

where, f is the Fermi function, TR/L is the electron temperature of the right or left 

electrode and Tσ(E) is the transmission coefficient for the spin component σ.  

The chemical potentials of the left and right electrode, given by
//

L

F R LR L

eVE   , 

are defined relative to the Fermi level of the left electrode. These chemical potential are 

related to the applied bias and hence
biasR L

eV   ; therefore, 
bias L RV V V  .  

The transmission spectrum itself is usually rather insensitive to temperature and is 

used in self-consistent calculations, but often depends strongly on the electrode voltages. 

Thus, for an accurate estimate of the current, the transmission spectrum should be 

calculated self-consistently for each desired bias. 

ATK uses very precise method to calculate the transport properties of the system. 

Transmission spectra, for various concentrations of boron doped graphene p-n junctions, 

are generated in this Chapter and various coefficients such as Seebeck, Peltier, and 

Conductance are calculated.  

 

 

 



 

52 
 

4.5 Calculating Transport coefficients  

The linear response transport coefficient of an applied voltage difference or temperature 

difference between the two electrodes is given by,  

Conductance:  

    
| dT 0

e

dI

dU
G  

     (4.14) 

Peltier coefficient:  

    
| d 0

Q

I

I
  

     (4.15) 

Seebeck coefficient,  

    
| 0

dU
S I

dT T


   

     (4.16) 

These linear response coefficients are calculated by the Transport Coefficients. To 

perform these calculations, the ATK uses the Electron Transmission Spectrum. 
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CHAPTER 5  

 

RESULTS AND DISCUSSION 

5.1 Band Structure Analysis 

The electronic bandstructure of GNR, both doped and undoped, are discussed in this 

chapter.   

The armchair configuration of Pristine GNR (PGNR) has a band structure that is 

dependent on its width. This is explained by the fact that the sheet itself acts like a 

potential well where the electrons are confined to form standing waves along Cr, the 

rolling vector, albeit with slightly different boundary conditions. (Cr = m*a1 + n*a2, 

where, m and n are integers and a1 and a2 are the unit cell vectors of graphene lattice.) In 

a GNR, the two nodal points of the standing wave must be at the ribbon edge, while in a 

Single wall nanotube (SWNT), they can be anywhere, i.e., a circumferential periodic 

boundary condition.  

(a)            (b) 

        

Figure 5.1  Bandstructure of AGNR widths (a) 4 atoms (b) 5 atoms. 
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(a)            (b) 

   
Figure 5.2  Bandstructure of AGNR widths (a) 6 atoms (b) 7 atoms. 

 

 

(a) (b) 

  

Figure 5.3  Bandstructure of AGNR widths (a) 8 atoms (b) 9 atoms. 
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(a) (b) 

    

Figure 5.4  Bandstructure of AGNR widths (a) 10 atoms (b) 11 atoms.  

 

Figure 5.5 Bandstructure of AGNR with a width of 12 atoms. 

 

Figure 5.6  Variation in band gaps as the width (number of atoms) varies. 
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The band structure of 12 Atom AGNR is close to that of Ge (0.626 eV). The 

actual width of this nanoribbon is about 2.5 nm. 12 AGNR has been fabricated 

successfully and doped with various dopants. Hence the 12 Atom AGNR has been chosen 

to study the transport properties.   

A junction is created using ZGNR and AGNR. To maintain the consistency in the 

device analysis, it is imperative that the band structure of ZGNR is also calculated. From 

the simulation, it is evident that ZGNR-AGNR-ZGNR junction configuration displays the 

Metal –Semiconductor-Metal configuration that is addressed in this work. The Fermi 

Level in all the Z-GNR nanoribbons of widths 4-12 lies within the conduction band. 

  

Figure 5.7  Band structure of ZGNR width (a) 4 atoms (b) 6 atoms. 
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(a)  (b) 

     

Figure 5.8  Band structure of ZGNR width (a) 8 atoms and (b) 10 atoms.  

 

 

Figure 5.9  Band structure of ZGNR with a width of 12 atoms. 

In order to create viable junction that would show transistor properties, doping of 

the semiconductor part is necessary. The 12 atom AGNR is doped with boron (p-type) 

and nitrogen (n-type) - (Figure 5.10a) 4 % N doped; (Figure 5.10b) 4% B. In both cases, 

the impurities lie on the edge of the atoms.  For 2% nitrogen doped GNR, with the 
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impurities lying in the center of the ribbon, the Fermi level is found to be in the 

conduction band, as shown in (Figure 5.10c); (Figure 5.10d) shows the position of N with 

respect to the edge. A very clear departure from the expected (the valence band extending 

above Fermi level) is shown in (Figure 5.10a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10  Band structures of Doped AGNR (a) 4% N Doped (b) 4% B Doped (c) 2% 

N Doped (d) position of Nitrogen from (c).  

 

 

 

 

 
(a)      (b) 

 
(c)      (d) 
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5.2 I-V Characteristics of GNR junction  

In pristine graphene, the chirality determines the conductivity as seen from the I-V curves 

for various widths. At certain widths, the semiconducting properties are more 

pronounced. These widths determine the wavelengths of the standing waves, which, in 

turn, determine the sub-band locations in the E-k plot. When the biasing potential 

exceeds 0.12V, the I-V curve shows linearity. In case of the 8-atom wide PGNR, the 

band gap is about 0.3 eV and it is evident from the I-V plot that the On-State is + 0.33 V. 

The band gap of 10-atom and the 4-atom wide PGNR is large enough to show 

semiconducting properties 

 
 

 

Figure 5.11   Current Vs Voltage graph for varying graphene width showing 

conductivity. 

 

-30000

-20000

-10000

0

10000

20000

30000

-3 -2 -1 0 1 2 3

C
u

rr
e

n
t 

(n
A

) 

Voltage (V) (bias)  

Current (nA) Vs. Voltage  
for varying graphene width 

W=10

W=8

W=6

W=4



 

60 
 

The ZAZ GNR Configurations show the properties of a semiconductor junction. The 12 

atom ZAZ structure is studied for its I-V characteristics. In this Chapter, undoped, B-

doped, N-Doped, B and N Doped (P-N Junction) ZAZ junctions are simulated.  

 

 

 
Figure 5.12  ZAZ GNR junction device. 
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The boron doped ZAZ junction I-V characteristics are shown below (Figure 5.13). 

The impurity concentration is 2 % and 4 %. Various device configurations are studied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13  I-V curve of Boron Doped ZAZ junction. 
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Figure 5.14  I-V curve of Nitrogen Doped ZAZ. 
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Figure 5.13 and Figure 5.14 show the I-V characteristics of the GNR junction doped with 

2% boron and nitrogen, respectively. The location of N and B is at the central region of 

the edge of the GNR.  Both B doped and N doped GNR Junctions show significant 

Negative Differential Resistance (NDR). This is more pronounced in case of nitrogen 

doping. Another interesting observation is increasing ohmic nature with the change in 

location of the dopants. Nitrogen doped device configuration exhibits a pronounced 

semiconductor behavior and the NDR effect is observed to be minimal. 

5.3 Thermoelectric Properties  

In this study, the thermoelectric properties were simulated for the GNR Junctions that 

displayed high NDR effect. The variation in the Peltier coefficient with temperature is 

shown as function of doping. 

When the concentration of nitrogen increases, the dimensionless Figure of Merit, 

ZT, seems to decrease considerably. This is mostly explained by the decrease in both 

conductivity and mobility of the electrons. 

ZT = S
2
σT/k           (5.1) 

where, S is the Seebeck coefficient, σ is the electrical conductivity, T is the 

absolute temperature and k is the thermal conductivity. 
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Figure 5.15 Variation of Peltier coefficient with temperature as function of 

doping.   

Figure 5.15 shows the maximum Peltier coefficient for 2% boron. This is 

explained by the scattering by boron and the associated smallest mean free path.  
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CHAPTER 6  

CONCLUSIONS  

Graphene ZAZ junctions exhibit varying properties depending on the various structural 

configurations. In this thesis, it was found that the transport properties of graphene 

depend on their width, the edge of GNR, doping concentration and the type of dopant 

used. The calculations of the band structure contributed towards the determination of the 

minimum length of GNR required for studying the transport properties. The minimum 

length had a band gap equivalent to that of germanium and hence the importance of the 

width being 12 atoms wide. This band gap indicated fluctuating changes when doped 

with elements such as B and N. The viable junction showing transistor properties was 

hence created by doping the semiconductor part of ZAZ. By doping, the I-V 

characteristics were studied which showed significant NDR which was more pronounced 

in the case of nitrogen. Also, the changing positions of the dopants contributed towards 

the I-V curve to be more ohmic. The edge doping caused minimum NDR and 

semiconductor behavior as compared to central doping. Lastly, the thermoelectric 

properties were studied - the increasing concentration of N causes the Figure of Merit to 

decline due to the decrease in conductivity as well as mobility of electrons.  
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