Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

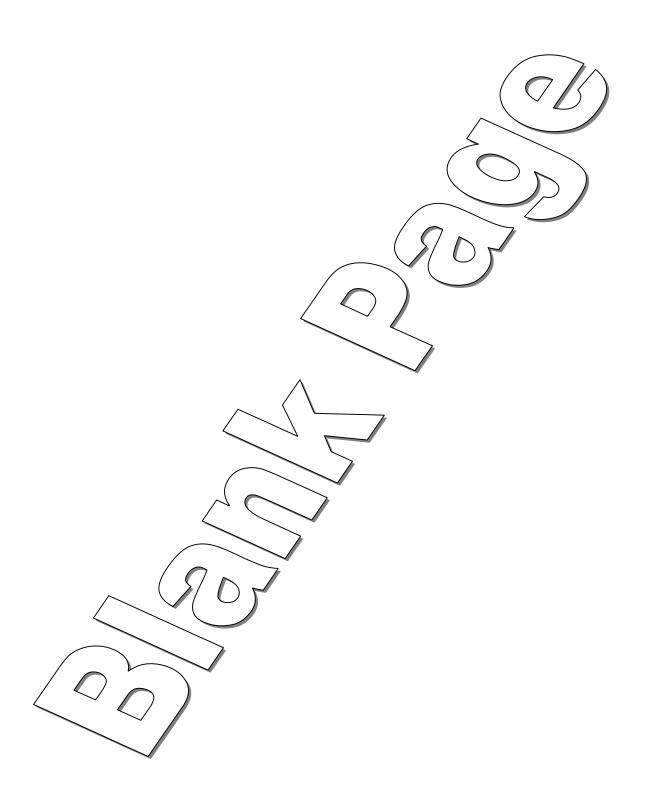
ABSTRACT

THERMOCHEMICAL PROPERTIES OF C3 TO C5 UNSATURATED CARBONYL ALKENES: ENTHALPIES OF FORMATION, ENTROPY, HEAT CAPACITY, BOND ENTHALPY

by Ruiqi Jian

 α,β and $\alpha-\gamma$ unsaturated carbonyl compounds are important classes of carbonyl compounds with the general structure R-(O=C)- C^{α} = C^{β} -R' and R-(O= C^{γ})- C^{β} - C^{α} = C^{β} -R'. These compounds are utilized in industry and are also produced as intermediates of hydrocarbon oxidation in chemistry of the atmosphere and in combustion. These unsaturated carbonyls are common environmental pollutants, are frequently associated with adverse effects, and are considered to play an important role in human cancer. Their stability, thermochemical properties are important to understanding their reaction paths in atmospheric, combustion and bio related environments. Enthalpy, entropy, and heat capacity of unsaturated alkene molecules, and radicals corresponding to hydrogen atom loss from the parent stable molecules are determined in this study. Structures and enthalpies of formation ($\Delta_f H^o_{298}$) are determined for series of unsaturated carbonyl hydrocarbons and their carbon centered radicals at B3LYP/6-31g(d,p), CBS-QB3 and M062X/6-31+G(d,p) theory levels by using the isodesmic reactions approach. Entropy(S°) and heat capacities (Cp(T)), and the contributions from vibrational, translational and external rotational are calculated using the rigid-rotor-harmonic oscillator approximation, based on the vibration frequencies and structures obtained from density functional studies. Potential barriers for internal rotors in each molecule are determined and used to calculate contributions to S^{o} and Cp(T) from the hindered rotors. $\Delta_{f}H^{o}_{298}$ for unsaturated carbonyl alkenes are, CH₂=CHCH=O, 16.89 kcal/mol, CH₃CH=CHCH₂CH=O (trans),

27.41 kcal/mol, CH₂=CHCH₂CH=O, 19.91 kcal/mol. The trans conformation of CH₃CH=CHCH₂CH=O is more stable than cis form. For a C-H bond on allylic adjacent to carbonyl group, the allylic has resonance with the carbonyl group. Several bond enthalpies are quite different from that normally found on olefins, and carbonyls. The bond enthalpy for the secondary C-H bonds, adjacent to carbonyl group, are quite low: 77.0 kcal/mol for CC=CC(-H)C=O and 77.8 kcal/mol for C=CC(-H)C=O. The C--H bond enthalpy at the position of secondary vinyl, adjacent to carbonyl group, C=C(-H)C=O shows a value of 113.1 kcal/mol, which is about 5 kcal/mol higher than a normal secondary vinyl C--H bond. The C-H bond enthalpy of the primary vinyl of cdccdo is increased but only by 0.7 kcal/mol from a normal primary.


THERMOCHEMICAL PROPERTIES OF C3 TO C5 UNSATURATED CARBONYL ALKENES: ENTHALPIES OF FORMATION, ENTROPY, HEAT CAPACITY, BOND ENTHALPY

by Ruiqi Jian

A Thesis
Submitted to the Faculty of
New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of
Master of Science in Chemistry

Department of Chemistry and Environmental Science

January 2014

APPROVAL PAGE

THERMOCHEMICAL PROPERTIES OF C3 TO C5 UNSATURATED CARBONYL ALKENES: ENTHALPIES OF FORMATION, ENTROPY, HEAT CAPACITY, BOND ENTHALPY

Ruiqi Jian

Dr. Joseph W. Bozzelli, Thesis Advisor	Date
Distinguished Professor of Chemistry and Environmental Science, NJIT	
Dr. Tamara M. Gund, Committee Member	Date
Professor of Chemistry and Environmental Science, NJIT	
Dr. Alexei Khalizov, Committee Member	Date
Assistant Professor of Chemistry and Environmental Science, NJIT	

BIOGRAPHICAL SKETCH

Author: Ruiqi Jian

Degree: Master of Science

Date: January 2014

Undergraduate and Graduate Education:

- Master of Science in Chemistry, New Jersey Institute of Technology, Newark, NJ, 2014
- Bachelor of Engineering in Applied Chemistry, Huaqiao University, Xiamen, P. R. China, 2009

Major: Chemistry

TO MY PARENTS, WITH LOVE

ACKNOWLEDGMENT

I would like to express the deepest appreciation to my committee chair Professor Joseph W. Bozzelli, who has shown the attitude and the substance of a genius: he continually and persuasively conveyed a spirit of adventure in regard to research and scholarship, and an excitement in regard to teaching. Without his supervision and constant help this thesis would not have been possible.

I would like to thank my committee members, Professor Tamara M. Gund and Professor Alexei Khalizov, whose work demonstrated to me that concern for global affairs supported by an "engagement" in comparative literature and modern technology, should always transcend academia and provide a quest for our times.

In addition, a thank you to Professor Carol A. Venanzi, who provided insights that guided and challenged my thinking, substantially improving the finished product. I also want to thank to my friend Bingheng Yan, provided on-going support throughout the whole thesis process, as well as technical assistance critical for completing the project in a timely manner. Finally, I would also like to thank Suriyakit Yommee, Itsaso Auzmendi Murua and Snitsiriwat Suarwee for their help and for their direction with this thesis.

TABLE OF CONTENTS

Cł	apte	r	Page
1	INT	RODUCTION	1
2	CON	MPUTATIONAL METHODS	5
3	RES	ULT AND DISCUSSION	7
	3.1	Selection of Lowest Energy Conformer: Internal Rotor Potential Analysis	7
	3.2	Enthalpies of Formation.	10
	3.3	Bond Enthalpies.	20
	3.4	Entropy and Heat Capacity.	22
4	SUN	MMARY	28
ΑI	PPEN	DIX A FIGURES.	29
ΑI	PPEN	DIX B PARAMETER RESULTS SUMMARY	35
RE	EFER	ENCES	47

LIST OF TABLES

Tabl	le	Page
3.1	Standard Enthalpies of Formation at 298.15 K of References Species	11
3.2	Isodesmic Reactions and Calculated $\Delta_f H^o_{298}$ at 298 K for Target Molecules	13
3.3	Isodesmic Work Reactions and Calculated Enthalpies of Formation at 298 K of Radicals	16
3.4	Summary of C-H Bond Enthalpies from This Study	20
3.5	Internal Rotor Torsion Frequencies, not Listed in SMCPS Input Files	23
3.6	Comparison of Heat Capacities for Parent Species from SMCPS and VIBIR.	25
3.7	Comparison of Thermochemical Properties of 2-Propenal from This Study and Literature Values by Asatryan, da Silva and Bozzelli	26
3.8	Comparison of Thermochemical Properties of Radical cdccjdo from This Study and Literature Values by Rutz, da Silva and Bozzelli	26
3.9	Comparison of Thermochemical Properties of cdccdo and Corresponding Radicals from This Study and Reference Value by Goldsmith	27
B.1	Optimized Structure Coordinates for Parent Molecules and Radicals from CBS-QB3 Level.	35
B.2	Ideal Gas-phase Entropy S ^o vs. Temperature	43
B.3	Summary of Enthalpy of Formation, Entropy and Heat Capacity for Parent Molecules and Corresponding Radicals	46

LIST OF FIGURES

Figu	re	Page
3.1	Geometry of the Lowest Energy Conformer of the Parent Molecules and the Radicals	9
A.1	Potential Energy Profiles for Internal Rotations in cdccdo and cjdccdo	29
A.2	Potential Energy Profiles for Internal Rotations in ccdcccdo(trans), ccdcccdo(cis), cjcdcccdo, ccjdcccdo, ccdcjcdo, ccdccjcdo and ccdcccjdo	30
A.3	Potential Energy Profiles for Internal Rotations in cdcccdo, cjdcccdo, cdcjccdo, cdccjcdo and cdcccjdo	33

CHAPTER 1

INTRODUCTION

 α,β -unsaturated carbonyl compounds are an important class of carbonyl compounds with the general structure -(O=C)-C $^{\alpha}$ =C $^{\beta}$ -. The α,β -unsaturated carbonyl moiety is present in a large number of natural and synthetic products exhibiting a variety of biological properties. The epoxidation reactions of unsaturated carbonyl compounds are widely applied and highly valuable to industry in the synthesis of intermediates in pharmaceutical and fine chemicals. The very high value dictates the reason that the reactions of these species are widely studied with focus of improving their reaction selectivity, which in general is not high. Many research works have focused on their epoxidation reactions to improve and / or achieve selectivity.

These unsaturated carbonyl compounds are also used in as solvents including paint thinners and additives, nail polish removers, food additives, disinfectants, and dental restorative materials. They are routinely observed in hydrocarbon analysis of air in tropospheric environments. They are also formed from oxidation of unsaturated hydrocarbons, for example, 1-butenal can be formed from reaction of butadiene with OH radical.

$$CH_2$$
= CH - CH_2 + OH => CH_2 = CH - CH_2 - OH => CH_2 = CH - CH_2 - CHO + H (1)
$$\Delta Hrxn = -2 \ kcal/mol$$

Chemo-selective hydrogenation of compounds containing both C=C and C=O groups is one of the most fundamental molecular transformations described in textbooks.

Hydrogenation of C=C bond is relatively easier than hydrogenation of a C=O bond

because: (a) thermodynamics favors the hydrogenation of the olefin CH_2 = CH_2 bond over that of the carbonyl bond CH_2 =O.

$$CH_2=CH_2 + H_2 = CH_3CH_3$$
 $\Delta Hrxn = -23 \text{ kcal / mol}$

$$CH_3CH=O + H_2 = CH_3CH_2OH \Delta Hrxn = -16 \text{ kcal/mol}$$

and

CH₃CH₂CH=CH₂ + H₂ = CH₃CH₂CH₂CH₃
$$\Delta$$
Hrxn = - 30 kcal/mol
CH₃CH₂CH=O + H₂ = CH₃CH₂CH₂CH₂OH Δ Hrxn = - 16 kcal/mol

(b) Kinetic reactivity also favors reactivity of the olefin group, it is harder to react the carbonyl group because it the C=O π bond is ~ 20 kcal/mol stronger than the C=C π bond and of an olefin C=C; and it is harder to attack the carbonyl bond.³

 α,β -Unsaturated carbonyls also possess a more strongly polarized carbon -oxygen double bond due to the presence of an adjacent double bond between α carbons and β carbons. In these compounds the carbonyl group draws electrons away from the alkene, and is conjugated with an alkene, which makes it even more reactive than simple carbonyls. Unlike the case for simple carbonyls, α,β -unsaturated carbonyl compounds are often attacked by nucleophiles at the β carbon.

$$R-C=C-C=O + :Nu^{-} \rightarrow R-C(-Nu)-C=C-O^{-}$$

Since α,β -unsaturated compounds are electrophiles, many of them are toxic, mutagenic and carcinogenic.

For unsaturated carbonyls like butenal (CH₂=CHCH₂CHO) and 2-pentenal (CH₃CH=CHCH₂CHO) there is a sp2 CH₂ group between the carbonyl and the olefin groups. These CH₂ groups have weak C-H bond because of resulting resonance of the electron remaining on the carbon after loss of the H• atom with the olefin and with the

carbonyl. These weak C-H bonds are readily attached by radicals like OH and other species in the radical pool. Once these resonantly stabilized radicals are formed the radical site reactions with molecule oxygen O₂ are slow, as the R-OO• bonding is not strong due to loss of resonance.

An ultimate goal of this research is to study the reactions of these stabilized intermediates with O_2 ; as these radicals are readily formed via in atmospheric and combustion processes are on a relative scale to other radicals they are stable or less reactive. They have longer lifetimes due to the stability from resonance and thus may have a significant presence in these chemical systems.

Thermochemical parameters for only a few of these unsaturated carbonyl compounds have been reported in the literature. Enthalpy of formation, entropy, and bond of energy data for 2-propenal are reported by Li, Bear, Asatryan, da Silva⁴, Benson, Rutz, Bozzelli⁵, Alfassi, Golden⁶, and Goldsmith⁷. 2-propenal serves as a model compound for methacrolein ($CH_2=C(CH_3)CH=O$) and methyl vinyl ketone, ($CH_2=CHC(=O)CH_3$) because of its specific formation. Compare to 108 kcal/mol bond strength of $CH_2=C(-H)CH_3$, C=C-CH(-H)CH=O has bond strength of 77.8 kcal/mol as a result of conjugation of the odd carbon electron with the π bond systems of the carbonyl and / or the olefin. This is a very significant difference.

The value of enthalpy of formation for 2-propenal $\Delta_f H^o{}_{298} = -16.5 \pm 2.4 \text{ kcal/mol}$ was reported by Li and Bear.⁴ In the earlier literature, Alfassi and Benson⁶ used group additivity to estimate $\Delta_f H^o{}_{298} = -17.7 \text{ kcal/mol}$; there is also a reference reported $\Delta_f H^o{}_{298} = -17.8 \text{ kcal/mol}$ cited by Asatryan, da Silva and Bozzelli. It is apparent from surveys that the 2-propenal enthalpy of formation likely lies in the range of -14.0 to -19.0 kcal/mol.⁴

A standard enthalpy, entropy for the radical CH_2 = $CHC \cdot O$ are 21.9 kcal/mol, 68.0 cal/mol/K by Rutz, da Silva, and Bozzelli. An older value for the C-H bond enthalpy for this radicals is 87.1 ± 1.2 kcal/mol by Alfassi and Golden and in more recent literature by Goldsmith et al⁷, report a value of 23.2 kcal/mol for the enthalpy of formation. Goldsmith also reports entropy and heat capacity for 2-propenal and all corresponding radical.

In this study, the thermochemistry of three stable (parent) molecules and their allylic, carbonyl and vinylic carbon radicals are determined. Enthalpies of formation, C--H bond energies, entropy and heat capacity for parent molecules 2-propenal CH₂=CHCH=O (cdccdo), 3-butental CH₂=CHCH₂CH=O (cdccdo), 3-pentenal CH₃CH=CHCH₂CH=O (ccdccdo), and their radicals are studied using several different methods in computational chemistry. Comparison of the thermochemical properties with literature values are presented and analyzed. This study also calculated the bond dissociation enthalpies of the allyl, carbonyl and vinyl C-H bonds, in order to evaluate if the levels of stabilization in corresponding radicals. The thermochemical parameters are needed in order to evaluate, reaction paths and kinetic processes of parent molecules and radicals in atmospheric (troposphere) and in combustion environments. These values also provide a base for estimation of barriers for abstraction of the resulting resonantly stabilized C-H bond by radical specie. Equilibria and energies for simple C-H and C-C bond dissociation reactions are important to understand reaction paths and chemistry of these unsaturated aldehydes.

CHAPTER 2

COMPUTATIONAL METHODS

All structure and absolute energy (enthalpy) calculations are performed using the Gaussian 09 program suites⁴ and structures are drawn using the GaussView application.⁸ Geometries for the parent molecules and radicals are initially calculated at the B3LYP/6-31G(d,p) level. There is a general consensus that B3LYP methods provide excellent low-cost performance for structure optimizations.⁸ The B3LYP/6-31G level of theory is indicated to be one of the most reliable computational methods for optimization geometries of small polar compounds as well as being widely used for the calculation of radical species. Optimized geometries, vibrational frequencies for molecules and related radical species are then calculated at B3LYP/6-31G level of the theory.⁹ To identify and verify the lowest energy conformation or each molecule and radical, potential energy curves for the internal rotation barriers at B3LYP/6-31G(d,p) level of theory are calculated.

CBS-QB3 is a multilevel model that combines the results of several ab initio and density functional theory individual methods and empirical correction terms to predict molecular energies with high accuracy and relatively low computational cost. ¹⁰ It is a complete basis set method that uses geometries and frequencies from the B3LYP, specifically B3LYP/6-31G(2d,d,p) level followed by single point energy calculations at the CCSD(T), MP4SDQ, and MP2 levels. ¹¹ The M062X functional is a high non-locality density functional theory with double amount of nonlocal exchange (2x). ¹²

Isodesmic reactions are implemented to accurately calculate enthalpy of formation and bond enthalpies for parent molecules and stable species, using the enthalpies from B3LYP/6-31G(d,p), CBS-QB3 and then M062X/6-31+G(d,p) level. Isodesmic reactions are hypothetical reactions which incorporate similar bonding environments for both reactants and products that allows for cancellation of error associated with each method of analysis.

The C-H bond enthalpies are derived using the bond cleavage reaction,

$$R-H = R \cdot + H \cdot$$

where R=H and R• are both calculated and H atom uses the established standard enthalpy of 52.1 kcal/mol.

Contributions to the entropy and the heat capacity from translation, vibrations and external rotation, optical isomers, and symmetry are calculated using the "SMCPS" program.¹³ Contributions from hindered internal rotors to S° and Cp(T) are determined using "VIBIR" program.¹⁴ The VIBIR program utilizes the method of Pitzer and Gwinn. In the theory, there is no adjustment for coupling of internal rotor motion with vibration; the rotational groups are assumed symmetrical which is accurate for the primary and terminal methyl group rotation in isomers. The reduced moments of inertia are calculated based on the optimized geometries using the mass and radius of rotation for the rotational groups.²⁰

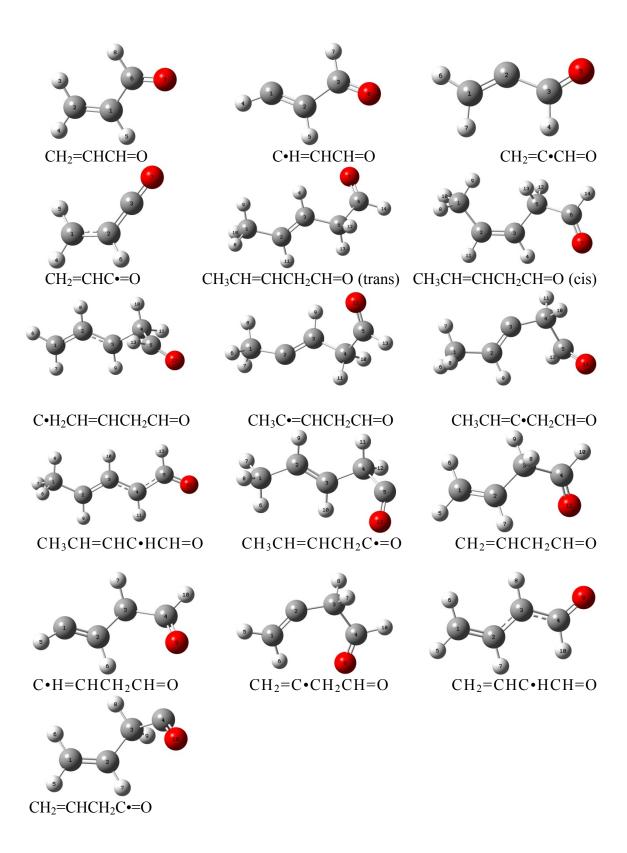
Notation

Throughout this article, abbreviations utilized in molecule names are: "d" presents a double bond; "j" or "•" represents a radical site on the preceding carbon atom.

CHAPTER 3

RESULT AND DISCUSSION

3.1 Selection of Low Energy Conformer: Internal Rotor Potential Analysis


Rotational conformer energies are calculated to determine the lowest energy conformation of each molecule and radical and to identify the barriers to torsional motion. The intramolecular torsional motion, an internal rotor contributes to entropy and heat capacity of the molecular and radical. Internal rotor potential energy curves are calculated and used to determine internal rotation barriers, symmetries (folds) and the lowest energy structures. The barriers and moments of inertial are used to determine the entropy and heat capacity contributions using the VIBIR program and the method of Pitzer and Gwinn.

The B3LYP/6–31G(d,p) level of theory is used to determine the enthalpy as a function of the dihedral angles in each of the molecules and radicals. The torsion angles are scanned between 0° and 360° in steps of 14°, to determine the lowest energy geometries. If lower energy geometry is found, the new geometry is set and all dihedral scans repeated to ensure the lowest energy conformation.

The resulting potential energy barriers for internal rotations in the stable parent and radical molecules are illustrated in Figures A.1-A.3. The geometries of the lowest energy structures are illustrated in Figure 3.1. The optimized Z-Matrix for parent unsaturated carbonyl alkene and radicals from CBS-QB3 level are listed in Table B.1.

- All of the terminal methyl groups adjacent to vinyl group (CH₃--CH=CH-) for parent unsaturated carbonyl alkene and radicals, exhibit three fold symmetry with energy barriers between 1 and 2 kcal/mol.

- All internal rotors between a carbonyl group and a secondary carbon (CHO--CH₂-) for parent molecules and radicals exhibit three folds and barrier energies between 0.5-3 kcal/mol.
- The fold number decrease from three to two symmetry folds, and the fold barrier energy for carbonyl increases to 8.5-9.5 kcal/mol when carbonyl adjacent to vinyl group (CHO--C=C-).
- When the radical site is on carbonyl group, the barrier fold number for internal rotor between carbonyl group and secondary (C•O--CH₂-) is two and the barrier energies are low at 1 to 2 kcal/mol. When radical site on secondary adjacent to carbonyl group, the internal rotor between radical site and vinyl group (CHO-C•--C=C-) have barriers over 10 kcal/mol; this is because of the radical formation have the resonance with the carbonyl group.

Figure 3.1 Geometry of the Lowest Energy Conformer of the Parent Molecules and the Radicals.

3.2 Enthalpies of Formation

Enthalpies of formation of the parent molecules have been determined using corresponding $\Delta Hrxn_{298}$ from the calculated enthalpies of each species in each of the isodesmic work reactions and calculated enthalpies of each species. $\Delta rxnH^o_{298}$ are calculated at the B3LYP/6-31G(d,p), CBS-QB3 and M062X/6-31+G(d,p) level.

Density Functional Theory (DFT), as noted earlier is considered to have relative very good accuracy for structure and moderate accuracy for structure. DFT performs a less accurate calculation of energies, because these calculations usually start with a molecule that have a closed shell of electrons and when the molecule breaks into two or more fragments that are open shell molecules (radicals). The energy difference between closed and open shell molecules is less well described in density functional theory methods, as a result of the difference in electron correlation in closed vs. open shell system. Is Isodesmic reactions are implemented to cancel calculation error and achieve greater accuracy for the gas phase enthalpies of formation. These reactions are hypothetical reactions which incorporate similar bonding environments for both reactants and products that allows for cancellation of error associated with each method of analysis. Isodesmic reactions conserve the number and type of bonds on both sides of an equation. In the equation, two products and one reactant are reference molecules for which the thermodynamic properties known.

$$\Delta_{\text{rxn}} H^{\circ}_{298} = \Sigma \Delta H_{\text{f}} \text{ products} - \Sigma \Delta H_{\text{f}} \text{ reactants}$$

The calculated enthalpy of each species in the hypo-theoretical work reaction is used to calculate the enthalpy of reaction, $\Delta rxnH^{\circ}_{298}$, Literature values for enthalpies of formation of the three reference compounds are then used along with the calculated $\Delta rxnH^{\circ}_{298}$ to obtain the enthalpies of formation on the target molecules. Standard enthalpies of formation at 298.15 K of the reference species used in the reactions are shown in Table 3.1.

Table 3.1 Standard Enthalpies of Formation at 298.15 K of References Species

Species	Δ _f H° ₂₉₈ (kcal/mol)	Source (Ref. No.)
CH ₃ CH ₃	-20.04	21
CH ₃ CH ₂ CH ₃	-25.02	21
CH ₃ CHO	-39.6 ± 0.1	7
CH ₃ CH ₂ CHO	-45.09 ± 0.18	22
CH ₂ =CHCH ₃	4.879	21
CH ₂ =CHCH ₂ CH ₃	-0.15 ± 0.19	21
CH ₃ CH=CHCH ₃ (trans)	-1.5 ± 0.30	7
CH ₃ CH=CHCH ₃ (cis)	-2.7 ± 0.2	7
CH ₃ C(=O)CH ₃	-51.90 ± 0.12	21
CH ₂ =CH ₂	12.54	21
C ₆ H ₆	19.8 ± 0.2	21
CH₂=CH·	71.2 ± 0.2	7
C•H=CHCH ₃	63.66	23
CH ₂ =CHCH=CH ₂	26.5 ± 0.9	21
CH ₂ =C•CH=CH ₂ ^a	75	24
CH ₂ =CHCH=C•H	85.4	25
CH ₂ =C•CH ₃	58.6	21
CH ₂ •CHO	4.4 ± 0.9	7
CH₃C•HCHO ^b	-5.7 ± 0.9	7
CH ₃ C•O	-2.3 ± 0.1	7
CH ₃ CH ₂ C•O	-6.9 ± 0.9	7
CH ₃ CH ₂ C(=O)CH ₃	-57.02 ± 0.20	21
CH ₃ C•HC(=O)CH ₃	-18.6 ± 0.4	19
C•H=CHCH ₂ CH ₃	59.3 ± 0.9	7
С•Н=СНСНО	44.4 ± 0.9	7

a. Resonant forms are CH₂=C•-C(-H)=CH₂ & CH₂=C=C(-H)-C•H₂

b. Resonant forms are CH₃-C•H-CHO & CH₃-CH=CH(-O•)

Each of the parent compounds is analyzed with five isodesmic work reactions. Each parent species contains one carbon – carbon double bond (olefin) group and an aldehyde carbonyl group. The species used in the work reactions for these parent species all incorporate an olefin and a carbonyl group in order to obtain error cancelation for the corresponding bonding of these groups. The agreement obtained between the different work reactions and the different species in the reactions lends support to accuracy of the calculation values. There is also very good agreement between the computational methods. The work reactions for the parent stable species are listed in Table 3.2.

Table 3.2 Isodesmic Reactions and Calculated $\Delta_f H^o_{298}$ at 298 K for Target Molecules

Work Reactions	Reaction Enthalpies (298 K) kcal/mol			δ K for Target Molecules Δ _f H° ₂₉₈ kcal/mol		
WOIR Reactions	B3LYP/ 6-31g(d,p)	CBS-QB3	M062X/ 6-31+G(d,p)	B3LYP/ 6-31g(d,p)	CBS-QB3	M062X/ 6-31+G(d,p)
cdccdo(ch2chcho)	B(*/IF/		(-)47	B("/I')		()
cdccdo + cc→ ccdo +cdcc	3.71	2.38	0.95	-18.67	-17.34	-15.91
cdccdo +ccc→ccdo+ccdcc(cis)	0.74	0.10	-0.50	-17.15	-16.18	-15.58
cdccdo +ccc →ccdo+ccdcc(trans)	-1.18	-1.32	-1.73	-16.10	-15.96	-15.55
cdccdo +ccc→ccdo+cdccc	2.63	1.52	1.22	-17.36	-16.25	-15.95
cdccdo +ccc →cccdo+cdcc	4.29	3.05	1.62	-19.76	-18.52	-17.09
Average				-17.81	-16.85	-16.02
Standard Deviation				1.27	0.96	0.56
cdcccdo(ch2chch2cho)						
cdccdo+cc→cccdo+cdcc	1.24	0.85	-0.47	-21.69	-21.30	-19.98
cdcccdo+cc →ccdoc+cdcc	-6.79	-6.90	-8.89	-20.47	-20.36	-18.37
cdccdo+cc→ccdo+cdccc	-0.42	-0.68	-0.87	-19.29	-19.03	-18.84
cdcccdo+c6h6→y(c6h5)cdo+cdcc	-5.89	-4.50	-5.76	-18.21	-19.62	-18.36
cdccdo+cdc→cdccdo+cdcc	-5.48	-3.65	-5.31	-20.27	-21.99	-18.65
Average				-20.43	-20.46	-18.84
Standard Deviation				1.25	1.08	0.60
ccdcccdo(ch3chchch2cho) trans						
ccdccdo+cc→cccdo+cdccc	3.26	2.86	2.39	-28.46	-28.06	-27.59
ccdcccdo+cc →ccdo+cdcccc	2.67	1,82	1.55	-27.80	-26.95	-26.68
ccdcccdo+cc →ccdoc+cdccc	-4.76	-4.89	-6.03	-27.25	-27.12	-25.98
ccdcccdo+cc →cccdo+ccdcc(cis)	1.38	1.45	0.67	-27.93	-28.00	-27.22
ccdcccdo+cc→cccdo+ccdcc(trans)	-0.54	0.02	-0.57	-27.21	-27.77	-27.18
Average				-27.73	-27.58	-26.93
Standard Deviation				0.46	0.46	0.55
ccdcccdo(ch3chchch2cho) cis						
ccdccdo+cc→cccdo+cdccc	2.52	1.46	1.74	-27.72	-26.66	-26.94
ccdcccdo+cc →ccdo+cdcccc	1.93	0.42	0.90	-27.06	-25.55	-26.03
ccdcccdo+cc →ccdoc+cdccc	-5.51	-6.28	-6.67	-26.50	-25.72	-25.34
ccdcccdo+cc →cccdo+ccdcc(cis)	0.64	0.05	0.02	-27.19	-26.60	-26.57
ccdcccdo+ccdcc(trans)	-1.28	1.37	-1.22	-26.47	-26.38	-26.53
Average				-26.99	-26.18	-26.28
Standard Deviation				0.47	0.46	0.55
$\Delta_{\rm f}{\rm H^o}_{298}({ m cis})$ - $\Delta_{\rm f}{\rm H^o}_{298}({ m trans})^{ m a}$			Δcis-trn	0.74	1.40	0.65
Δ Hrxn for Cis = Trans				0.74	1.39	0.64

Values are standard deviation of calculated values. They do not represent error limits. Error limits are larger a. from calculated enthalpies of reaction above.

The work reactions for the radical species are also chosen to have similar olefin, carbonyl and radical sites on both sides of the equations for error cancelation. These also include the parent specie to the radical on the product side of the target reacting molecule.

The calculated Δ Hrxn, the work reactions and the calculated enthalpies of formation of the target compounds are listed in Table 3.2. The average values in bold from CBS-QB3 are recommended. $\Delta_f H^o_{298}$ for parent molecules are, cdccdo (CH₂=CHCH=O), -16.85 kcal/mol, ccdcccdo trans (CH₃CH=CHCH₂CH=O), -27.58 kcal/mol, ccdcccdo cis (CH₃CH=CHCH₂CH=O), -26.18 kcal/mol, cdcccdo (CH₂=CHCH₂CH=O), -20.46 kcal/mol. The trans conformation of CH₃CH=CHCH₂CH=O is more stable than cis form by 0.74 kcal/mol in B3LYP/6-31g(d,p) level, 1.39 kcal/mol in CBS-QB3 level, and 0.64 kcal/mol in M062X/6-31+G(d,p) level.

The different calculation method work reaction from CBS-QB3 show the lowest standard deviations and the CBS-QB3 method values are chosen as recommended. The minimum standard deviation for parent molecules is 0.46 kcal/mol, and the maximum standard deviation for parent molecules is 1.07 kcal/mol. The enthalpy of formation in CBS-QB3 level of cdccdo is in good agreement to the one calculated by Asatryan, da Silva and Bozzelli.⁴ The value from this study is -16.85 kcal/mol; the value from literature⁴ is -16.5 kcal/mol. The comparison is listed in Table 3.7. It is noted that these are standard deviations from the work reaction sets as a function of calculation method, they do not include error from the uncertainty of the reference specie in the reaction sets and they are not error limits.

The enthalpies of formation of radicals are listed in Table 3.3. The data demonstrates good agreement for the $\Delta_f H^o_{298}$ values between the B3LYP/6-31g(d,p),

CBS-QB3 and M062X/6-31+G(d,p). Because CBS-QB3, is the highest level method in this study and has the lowest standard deviation; the values in bold from CBS-QB3 are recommended. Δ_fH°₂₉₈ for radicals are, cjdccdo, 42.91 kcal/mol, cdcjcdo, 43.87 kcal/mol, cdccjdo, 21.53 kcal/mol, cjcdccdo, 7.49 kcal/mol, ccjdccdo, 28.50 kcal/mol, ccdcjcdo, 29.90 kcal/mol, ccdccjcdo, -1.83 kcal/mol, ccdccjdo, 9.38 kcal/mol, cjdccdo, 38.74 kcal/mol, cdcjccdo, 35.83 kcal/mol, cdccjcdo, 5.93 kcal/mol, and cdcccjdo, 16.78 kcal/mol. In CBS-QB3 method, the minimum standard deviation of radicals is 0.07 kcal/mol, and the maximum standard deviation is 0.80 kcal/mol.

Table 3.3 Isodesmic Work Reactions and Calculated Enthalpies of Formation at 298 K of Radicals

Work Reactions		action Entha 298K) kcal/r		Δ _f H°(298) kcal/mol		
	B3LYP/ 6-31g(d,p)	CBS-QB3	M062X/ 6-31G(d,p)	B3LYP/ 6-31g(d,p)	CBS-QB3	M062X/ 6-31+G(d,p)
cdccdo system						
ejdeedo						
cjdccdo+cdc→cdccdo+cdcj	-1.21	-1.18	-1.18	42.06	42.99	43.82
cjdccdo+cdcc →cdccdo+cjdcc	-0.63	-0.71	-0.37	41.88	42.92	43.81
cjdccdo+cdccc →cdccdo+cjdccc	-0.22	-0.21	-0.16	41.86	42.81	43.59
Average				41.93	42.91	43.61
Standard Deviation				0.09	0.07	0.17
Bond Energy				111.84	111.86	111.73
cdcjcdo						
cdcjcdo+cdcc →cdccdo+cdcjc	-6.35	-6.12	-5.27	42.54	43.27	43.25
cdcjcdo+cdccdc →cdccd + cdcdccj	-13.43	-11.99	-12.30	44.12	43.64	44.78
cdcjcdo+cdccdc →cdccdo + cdccdcj	0.46	-0.89	-0.60	40.63	42.94	43.48
cdcjcdo+ccdo →cdccdo+cjcdo	-17.67	-17.15	-17.58	43.86	44.30	45.57
cdcjcdo+cccdo →cdccdo+ccjcdo	-24.66	-22.65	-23.78	46.24	45.19	47.15
Average				43.38	43.87	44.85
Standard Deviation				1.86	0.80	1.43
Bond Energy				113.39	112.82	112.96
cdccjdo						
cdccjdo+ccdo→cdccdo+ccjdo	0.71	-0.85	-0.85	18.78	21.30	22.13
cdccjdo+cccdo→cdccdo+cccjdo	0.17	-1.15	-1.45	20.21	22.49	23.63
cdeejdo+ccedoc→cdeedo+ccjedoc	0.04	0.77	-0.11	20.57	20.80	22.51
Average				19.86	21.53	22.76
Standard Deviation				0.77	0.71	0.64
Bond Energy				89.77	90.48	90.87

Table 3.3 Isodesmic Work Reactions and Calculated Enthalpies of Formation at 298 K of Radicals (Continued)

Radicals (Continued) ccdcccdo system						
cjcdccdo						
cjedecedo+ede→ecdecedo+edej	24.96	23.51	22.45	5.96	7.57	9.28
cjedecedo+edec→eedecedo+ejdec	25.54	23.98	23.27	5.79	7.50	8.87
cjcdccdo+cdcc→ccdccdo+cjdcc	25.96	24.48	23.47	5.76	7.39	9.05
Average	23.70	24.40	23.47	5.84	7.49	9.07
Standard Deviation				0.09	0.07	0.17
Bond Energy				85.67	87.17	88.09
cejdecedo				05.07	07.17	00.03
ccjdcccdo+cdc→ccdcccdo+cdcj	4.04	2.50	2.98	26.89	28.58	28.75
ccjdcccdo+cdcc →ccdcccdo+cjdcc	4.62	2.97	3.03	26.71	28.51	29.10
ccjdcccdo+cdccc → ccdcccdo + cjdccc	5.03	3.47	4.00	26.69	28.40	28.52
Average				26.76	28.50	28.79
Standard Deviation				0.09	0.07	0.24
Bond Energy				106.59	108.18	107.82
cedejcedo						
cedejcedo+edec→eedecedo+edejc	-2.85	-2.88	-1.53	29.11	29.30	28.60
ccdcjccdo+cdccdc→ccdcccdo+cdcdccj	-9.92	-8.75	-8.56	30.69	29.67	30.13
ccdcjccdo+cdccdc→ccdcccdo+cdccdcj	3.97	2.36	3.14	27.20	28.97	28.83
ccdcjccdo+ccdo→ccdcccdo+cjcdo	-14.16	-13.91	-13.84	30.43	30.33	30.92
ccdcjccdo+cccdo →ccdcccdo+ccjcdo	-21.16	-19.41	-20.04	32.81	31.22	32.50
Average				30.05	29.90	30.20
Standard Deviation				1.85	0.80	1.43
Bond Energy				109.88	109.58	109.22
ccdccjcdo						
ccdccjcdo+cdcc →ccdcccdo +cdcjc	31.69	28.85	29.73	-5.42	-2.43	-2.66
ccdccjcdo+cdccdc →ccdcccdo+cdcdccj	24.61	22.98	22.70	-3.84	-2.06	-1.13
ccdccjcdo+cdccdc →ccdcccdo+cdccdcj	39.05	34.08	34.41	-7.88	-2.76	-2.43
ccdccjcdo+ccdo→ccdcccdo+cjcdo	20.37	17.82	17.42	-4.10	-1.40	-0.35
ccdccjcdo+cccdo→ccdcccdo+ccjcdo	13.38	12.32	11.22	-1.72	-0.51	1.24
Average				-4.59	-1.83	-1.07
Standard Deviation				2.02	0.80	1.43
Bond Energy				75.24	77.85	77.96
cedecejdo						
cedecejdo+cedo→cedecedo+cejdo	0.44	0.57	0.78	9.13	9.15	9.60
cedecejdo+ecedo→ecedecedo+ecejdo	-0.10	0.27	0.17	10.56	10.34	11.09
ccdcccjdo+cccdoc→ccdcccdo+ccjcdoc	-0.23	2.19	1.52	10.92	8.65	9.97
Average				10.20	9.38	10.22
Standard Deviation				0.77	0.71	0.63
Bond Energy				90.03	89.06	89.25

Table 3.3 Isodesmic Work Reactions and Calculated Enthalpies of Formation at 298 K of Radicals (Continued)

cdcccdo system						
cjdcccdo						
cjdcccdo +cdc→cdcccdo+cjdc	-0.60	-0.66	-0.69	38.83	38.86	40.51
cjdcccdo+cdccdo→cdcccdo+cjdccdo	0.61	0.52	0.49	38.70	38.78	40.30
cjdcccdo+cdcc→cdcccdo+cjdcc	-0.03	-0.19	0.12	38.65	38.79	40.10
cjdcccdo+cdcc→cdcccdo+cdcjc	-5.99	-4.96	-3.69	39.28	38.50	38.85
Average				38.87	38.74	39.94
Standard Deviation				0.25	0.14	0.65
Bond Energy				111.40	111.29	110.88
cdcjccdo						
cdcjccdo+cdc→cdcccdo+cjdc	3.37	2.25	2.24	34.86	35.96	37.58
cdcjccdo+cdccdo→cdcccdo+cjdccdo	4.58	3.43	3.42	34.73	35.87	37.37
cdcjccdo+cdcc→cdcccdo+cjdcc	3.95	2.72	3.05	34.68	35.88	37.17
cdcjccdo+cdcc→cdcccdo+cdcjc	-2.02	-2.06	-0.76	35.59	35.60	35.92
Average				34.97	35.83	37.01
Standard Deviation				0.37	0.14	2.14
Bond Energy				107.50	108.39	107.95
cdccjcdo						
cdccjcdo +cdc→cdcccdo+cjdc	35.13	32.14	30.99	3.10	6.06	8.83
cdccjcdo+cdccdo→cdcccdo+cjdccdo	36.34	33.33	32.17	2.98	5.97	8.62
cdccjcdo+cdcc→cdcccdo+cjdcc	35.70	32.62	31.80	2.92	5.98	8.42
cdccjcdo+cdcc→cdcccdo+cdcjc	29.74	27.84	27.99	3.83	5.70	7.17
Average				3.21	5.93	8.26
Standard Deviation				0.36	0.14	0.65
Bond Energy				75.74	78.49	79.20
cdcccjdo						
cdcccjdo+cdc→cdcccdo+cjdc	21.53	21.29	20.74	16.70	16.91	19.08
cdcccjdo+cdccdo→cdcccdo+cjdccdo	22.74	22.47	21.93	16.57	16.83	18.86
cdcccjdo+cdcc→cdcccdo+cjdcc	22.11	21.76	21.56	16.52	16.84	18.66
cdcccjdo+cdcc→cdcccdo+cdcjc	16.14	16.99	17.75	17.43	16.55	17.42
Average				16.80	16.78	18.50
Standard Deviation				0.37	0.14	0.64
Bond Energy				89.34	89.34	89.44
			1	1	1	1

The enthalpy of formation in CBS-QB3 level determination for cdccjdo are in good agreement to the ones calculated by Rutz, da Silva and Bozzelli. The value from this study is 21.53 kcal/mol; the value from literature is 21.9 kcal/mol. Comparisons for thermochemical properties from this study and report by Rutz, da Silva and Bozzelli are list in Table 3.8.

Compared the enthalpy of formation of 2-propenal and corresponding radicals calculated by Goldsmith, Magoon and Green, values calculated in M062X/6-31+G(d,p) level show agreement with the Goldsmith et al method⁷ where atomization method was used. The enthalpy of formation for cdccdo from this study is -16.02 kcal/mol at M062X/6-31+G(d,p) level and -16.85 kcal/mol at CBS-QB3 level, the value from literature⁷ is -15.5 kcal/mol; for cjdccdo, value from this study is 43.61 kcal/mol in M062X/6-31+G(d,p) level and 42.91 kcal/mol in CBS-QB3 level, the value from literature⁷ is 44.4 kcal/mol; for cdcjcdo, value from this study is 44.85 kcal/mol in M062X/6-31+G(d,p) level and 43.87 kcal/mol in CBS-QB3 level, the value from literature⁷ is 45.2 kcal/mol; for cdcjdo, value from this study is 22.76 kcal/mol in M062X/6-31+G(d,p) level and 21.53 kcal/mol in CBS-QB3 level, the value from Goldsmith literature⁷ is 23.2 kcal/mol. Comparisons for thermochemical properties from this study and by Goldsmith, Magoon and Green are listed in Table 3.9.

3.3 Bond Enthalpies

The calculated $\Delta_f H^o_{298}$ of the parent and of the radical species corresponding to loss of a hydrogen atom are used along with standard enthalpy of formation of 52.1 kcal/mol for the hydrogen atom. ¹⁶ A bond cleavage reaction is used to calculate bond enthalpy.

$$R \longrightarrow H \longrightarrow R \bullet + H \bullet$$

Parent molecules bond enthalpies are computed from work reactions listed in Table 3.4 and corresponding data for radical is listed in Table 3.3. C-H bond enthalpies from CBS-QB3 and M062X/6-31+G(d,p) levels show excellent agreement.

Analysis of the C-H bond of enthalpies for the unsaturated carbonyl in this study can be broken down into six bond types: (i) primary adjacent to vinyl, (ii) secondary adjacent to the carbonyl, (iii) primary vinyl, (iv) secondary vinyl, (v) secondary vinyl adjacent to carbonyl, (vi) carbonyl. Table 3.4 has a summary of these different bond classes for unsaturated carbonyl parent molecules.

Table 3.4 Summary of C-H Bond Enthalpies from This Study

Species	Carbon- Hydrogen Bond Dissociation Classes (kcal/mol)								
	Primary	Secondary	Primary	Secondary	Secondary	Carbonyl			
	adjacent	Adjacent to	Vinyl	Vinyl	Vinyl Adjacent				
	to vinyl	Carbonyl			to Carbonyl				
cdccdo			111.8		113.1	90.4			
ccdcccdo	87.0	77.0 s		107.5,109.6		89.4			
		+ allylic							
cdcccdo		77.81s	111.2	108.0		89.4			
		+ allylic							
References	88	17.10.10	110-112	102-111		87-89			

Available Literature Value, Ref 17, 18, 19

The primary C-H bond adjacent to vinyl of C(-H)C=CCC=O has bond enthalpy 87.0 kcal/mol, which is lower than the literature value, published by Luo¹⁷, by approximately 1 kcal/mol. The primary C-H bond enthalpy is 87 kcal/mol. There is a 14 kcal/mol stabilization from resonance, compared to 101 kcal/mol primary C-H bond enthalpy, because the odd carbon electron conjugate to vinyl pi bond.

The values for the secondary C-H bond enthalpies, adjacent to carbonyl group, are: 77.0 kcal/mol for CC=CC(-H)C=O and 77.8 kcal/mol for C=CC(-H)C=O. Comparing this to a secondary C-H bond enthalpy (98.5 kcal/mol) for a normal alkane and 94.5 for a normal secondary adjacent to a ketone by Hudzik and Bozzelli. The high stabilization in allylic secondary C-H bond is due to resonance between the carbonyl group and secondary carbon.

The primary vinyl C-H bond enthalpies for C(-H)=CC=O and C(-H)=CCC=O are 111.8 kcal/mol and 111.2 kcal/mol, which are similar to 110-112 kcal/mol from literature values. The secondary vinyl C-H bond enthalpies for CC(-H)=CCC=O, CC=C(-H)CC=O and C=C(-H)CC=O are 107.5 kcal/mol, 109.6 kcal/mol and 108.0 kcal/mol respectively. Compared to literature value, the secondary vinyl C-H bond enthalpies for CC=CCC=O and C=CCC=O are in the range of 102-111 kcal/mol for the bond enthalpies from the literature value in Moussaoui and Mare's report. The secondary vinyl C-H bond enthalpies from the literature value in Moussaoui and Mare's report.

The enthalpy for C-H bond at the position of secondary vinyl, adjacent to carbonyl group, C=C(-H)C=O shows a very different trend; it is increased by ~ 5 kcal/mol to 113.1 kcal/mol from a conventional secondary vinyl on an olefin, which we evaluate as being ~ 108 kcal/mol. The carbonyl group is interpreted as drawing electrons from the vinyl group here. This increases the positive energy on the vinyl carbons which increase the C-H bond

energy. The C-H bond enthalpy of the primary vinyl of cdccdo is increased but only by 0.7 kcal/mol from a normal primary, which we evaluate as being ~ 111 kcal/mol.

The carbonyl C-H bond enthalpies for C=CC=O, CC=CCC=O and C=CCC=O are 90.4 kcal/mol, 89.4 kcal/mol and 89.4 kcal/mol. There is a reported range of 87-89 kcal/mol for C-H bond of enthalpies on aldehyde carbonyl group. The C-H bond enthalpy of aldehyde carbonyl in this study is the same as the carbonyl C-H bond strength in formaldehyde (87 \pm 1 kcal/mol) indicating no extra stabilization energy as a result of the allylic group. The fact that different α substituents (CH₂=CH, CH₂=CHCH₂, CH₃CH=CHCH₂) in aldehydes appears to have a small effect on the carbonyl C-H bond strength decreasing of about 2 kcal/mol.

3.4 Entropy and Heat Capacity

The entropy S° and heat capacity Cp(T)data for the parent molecules as a function of temperature are determined from the optimized structures, moments of inertia, vibrational frequencies, symmetries, electron degeneracy, mass of the molecules, number of optical isomers and internal rotor contributions.²⁰

Contributions of translation, vibration and external rotation to entropy and heat capacity for each parent molecule and radical are calculated using the SMCPS program with rigid-rotor-harmonic-oscillator approximation for vibration frequencies and vibration frequencies adjusted as recommended by Scott and Radom.¹⁴ The SMCPS program utilizes the rigid-harmonic oscillator approximation from the optimized structures obtained at B3LYP/6-31G (d,p) level.

Internal rotor torsion frequencies are identified using visual inspection of the torsion frequency movement in GaussView and calculated rotor contributions are used to

replace the vibration torsion contribution. The lower frequency is selected, in case when identification of a frequency is uncertain due to coupling to other motions. As noted the torsion frequencies contributions are replaced with entropy and heat capacity contributions from "VIBIR" program for hindered rotor analysis. In this study, internal rotor barriers with energy below 6.5 kcal/mol are treated; internal rotors with barriers higher than 6.5 kcal/mol are calculated as the torsion frequency contributions. Table 3.5 has a summary of the internal rotor torsion frequencies identified using GaussView.

Table 3.5 Internal Rotor Torsion Frequencies, not Listed in SMCPS Input Files

species	Internal rotor torsion frequencies (cm ⁻¹)						
cdccdo	cdccdo 172.78						
cjdccdo	cjdccdo 165.99						
ccdcccdo	ccdcccdo 206.06	ccdcccdo 65.75	ccdcccdo 137.70				
cjcdcccdo	cjedecedo 73.56	cjcdcccdo 58.01					
ccjdcccdo	ccjdcccdo 129.46	ccjdcccdo 54.63	ccjdcccdo 139.68				
ccdcjccdo	ccdcjccdo 190.36	ccdcjccdo 78.95	ccdcjccdo 48.58				
ccdccjcdo	ccdccjcdo 155.36	ccdccjcdo 255.03					
ccdcccjdo	ccdcccjdo 205.88	ccdcccjdo 130.24	ccdcccjdo 60.22				
cdcccdo	cdcccdo 74.14	cdcccdo 156,43					
cjdcccdo	cjdcccdo 74.24	cjdcccdo 156.36					
cdcjccdo	cdcjccdo 164.03	cdcjccdo 136.48					
cdccjcdo	cdccjcdo 273.94						
cdcccjdo	cdcccjdo 142.86	cdcccjdo 73.58					

Heat capacities and entropies for parent unsaturated carbonyl alkenes and corresponding radicals from SMCPS and VIBIR are listed in Table 3.6 and Table B.2. Comparisons for thermochemical properties from this study and literatures are listed in Table 3.7-3.9. The tables show great agreement between values from this study and from literatures.

Table 3.6 Comparison of Heat Capacities for Parent Species from SMCPS and VIBIR.

Species	Cp(T) (cal/mol/K)					Method	Rotors		
T	300k	400k	500k	600k	800k	1000k	1500k	5.200200	
. 1 1.	15.74	19.35	22.55	25.26	29.50	32.58	37.28	SMCPS	0
cdccdo	15.90	19.53	22.78	25.55	29.85	32.91	37.33	SMCPS+VIBIR	1
منطميطم	15.80	18.95	21.55	23.70	26.99	29.35	32.92	SMCPS	0
cjdccdo	15.98	19.18	21.85	24.05	27.34	29.60	32.79	SMCPS+VIBIR	1
cdcjcdo	16.16	19.00	21.48	23.59	26.90	29.31	32.94	SMCPS	0
cdccjdo	16.87	19.87	22.24	24.16	27.12	29.32	32.78	SMCPS	0
ccdcccdo	26.24	32.88	38.88	44.01	52.15	58.11	67.18	SMCPS	0
(trans)	26.00	31.85	37.31	42.11	49.82	55.55	64.40	SMCPS+VIBIR	3
ccdcccdo	26.11	32.84	38.87	44,04	52.15	58.09	67.15	SMCPS	0
(cis)	25.58	31.96	37.78	42.80	50.60	56.26	64.86	SMCPS+VIBIR	3
cjcdcccdo	25.73	32.26	37.86	42.53	49.68	54.81	62.71	SMCPS	0
cjedecedo	25.89	31.91	37.12	41.50	48.29	53.26	60.91	SMCPS+VIBIR	2
ccjdcccdo	26.21	32.21	37.57	42.18	49.42	54.73	62.76	SMCPS	0
ecjacecao	25.58	30.78	35.69	39.99	46.91	52.05	59.92	SMCPS+VIBIR	3
aadajaada	26.16	32.15	37.52	42.12	49.35	54.64	62.68	SMCPS	0
ccdcjccdo	25.58	30.83	35.72	40.02	46.90	52.01	59.86	SMCPS+VIBIR	3
	25.56	31.79	37.33	42.05	49.35	54.64	62.64	SMCPS	0
ccdccjcdo	23.65	31.55	36.91	41.52	48.74	54.04	62.07	SMCPS+VIBIR	2
	25.99	32.05	37.43	42.02	49.20	54.46	62.51	SMCPS	0
ccdcccjdo	25.87	31.13	35.95	40.17	46.91	51.94	59.75	SMCPS+VIBIR	3
adaaada	20.87	26.16	30.82	34.77	40.93	45.42	52.26	SMCPS	0
cdcccdo	19.81	24.78	29.26	33.10	39.12	43.55	50.33	SMCPS+VIBIR	2
.:44.	20.95	25.75	29.82	33.20	38.41	42.18	47.90	SMCPS	0
cjdcccdo	20.66	24.90	28.62	31.79	36.76	40.42	46.01	SMCPS+VIBIR	2
1 . 1	21.06	25.71	29.70	33.07	38.31	42.12	47.89	SMCPS	0
cdcjccdo	20.28	24.47	28.22	31.45	36.53	40.27	45.97	SMCPS+VIBIR	2
1 . 1	20.29	25.19	29.39	32.88	38.18	41.98	46.89	SMCPS	0
cdccjcdo	18.57	25.38	29.57	33.06	38.41	42.28	48.10	SMCPS+VIBIR	1
-d:1-	20.60	25.30	29.35	32.74	37.97	41.77	47.59	SMCPS	0
cdcccjdo	20.38	24.51	28.21	31.37	36.35	40.02	45.72	SMCPS+VIBIR	2
			l			l	l	1	

Table 3.7 Comparison of Thermochemical Properties of 2-Propenal from This Study and Literature Values by Asatryan, da Silva and Bozzelli⁴

T(K)	Δ _f H ^o ₂₉₈ (kcal/mol)		Cp (cal/mol/K)		S° (cal/mol/K)	
	Ref 4	this study	this study SMCPS+VIBIR	Ref 4	this study SMCPS+VIBIR	Ref 4
298	-16.5	-16.85 ^a	21.9	16.47	66.72	68.17
300			15.90	16.55	68.70	66.82
400			19.53	20.28	73.59	72.11
500			22.78	23.51	78.07	76.99
600			25.55	26.19	82.29	81.52
800			29.85	30.26	89.97	89.64
1000			32.91	33.14	96.75	96.72
1500			37.33	37.35	110.63	111.07

a. Value calculated in CBS-QB3 method

Table 3.8 Comparison of Thermochemical Properties of Radical cdccjdo from This Study and Literature Values by Rutz, da Silva and Bozzelli⁵

T(K)	Δ _f H ^o ₂₉₈ (kcal/mol)		Ср	Cp (cal/mol/K)		So (cal/mol/K)	
	Ref 5	this study	Ref 5	this study SMCPS+VIBIR	Ref 5	this study SMCPS+VIBIR	
298	21.9	21.53 ^a			67.98	68.17 ^a	
300			15.53	16.87			
400			18.46	19.87			
500			21.03	22.24			
600			23.18	24.16			
800			26.50	27.12			
1000			28.92	29.32			
1500			32.62	32.78			

a. Value calculated in CBS-QB3 method

Table 3.9 Comparison of Thermochemical Properties of cdccdo and Corresponding Radicals from This Study and Reference Value by Goldsmith⁷

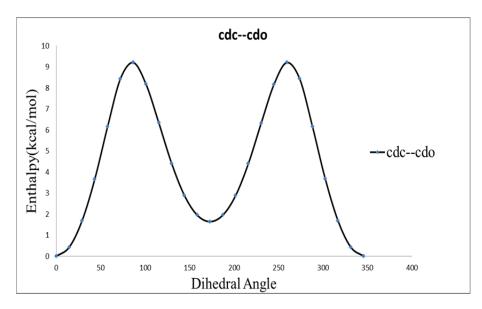
	cdccdo		cjdccdo		cdcjcdo		cdccjdo	
	this study	Ref 7	this study	Ref 7	this study	Ref 7	this study	Ref 7
$\Delta_{\rm f} {\rm H^o}_{298}$	-16.02 ^a	-15.5	43.61 ^a	44.4	44.85 ^a	45.2	22.76 ^a	23.2
	-16.85 ^b		42.91 ^b		43.87 ^b		21.53 ^b	
S ⁰ 298	68.70	65.3	70.01	67.3	70.00	70.3	68.17	67.9
T(K)				Ср	(T)			
300	15.90	16.9	15.98	16.2	16.16	16.3	16.87	15.6
400	19.53	20.4	19.18	19.7	19.00	19.1	19.87	18.6
500	22.78	23.5	21.85	22.7	21.48	21.6	22.24	21.2
600	25.55	26.1	24.05	25.0	23.59	23.7	24.16	23.3
700	29.85	30.1	27.34	28.3	26.90	27.0	27.12	26.6
1000	32.91	33.0	29.60	30.4	29.31	29.4	29.32	29.1
1500	37.33	37.3	32.79	33.2	32.94	33.0	32.78	32.7

Units of $\Delta_{\rm f} H^o_{298}$ in kcal/mol Units of Cp(T) and S^o_{298} in cal/mol/K a. Value calculated in M062X/6-31+G(d,p) method

b. Value calculated in CBS-QB3 method

CHAPTER 4

SUMMARY

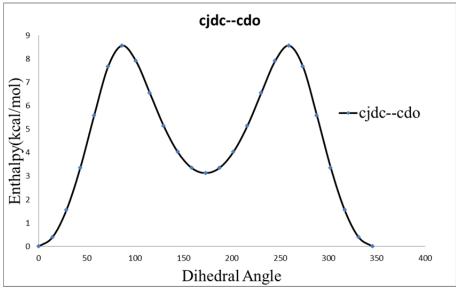
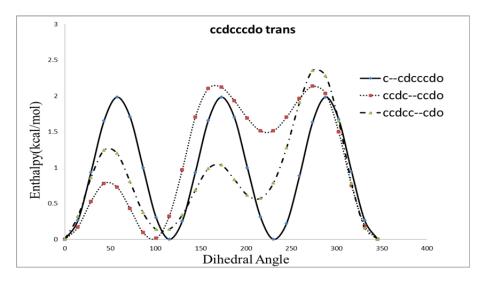
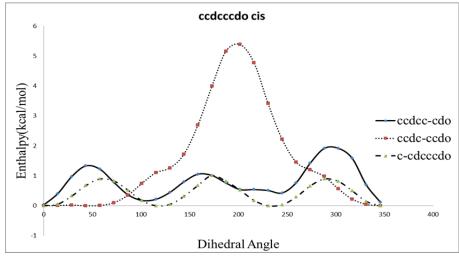
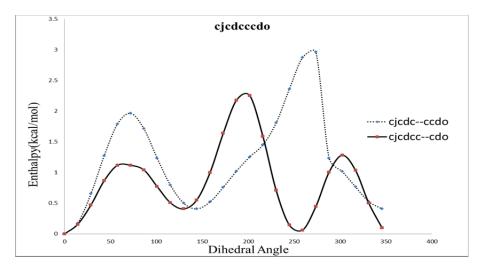

Thermochemical properties, including enthalpies of formation, entropy, heat capacity, and bond enthalpies are determined for the C3 to C5 unsaturated carbonyl alkenes and corresponding radicals. The enthalpies of formation of the target molecules, averaged over five isodesmic reactions for molecule C=CC=O, CC=CCC=O, and C=CCC=O are evaluated as 16.89, 27.41 and 19.91 kcal/mol respectively. There is good consistency with the B3LYP method for the enthalpies of formation between the CBS-QB3 and M062X/6-31+G(d,p) levels of theory, with differences less than 0.71 kcal/mol for target molecules, and less than 1.73 kcal/mol for their corresponding radicals. The enthalpy of formation, entropy and heat capacity for 2-propenal and corresponding radicals are in satisfactory agreement with the limited literature data available. C-H Bond enthalpies of carbonyl in this study are in range of 89.4-90.4 kcal/mol, which are similar to carbonyl C-H bond strength in formaldehyde (87±1 kcal/mol) indicating no extra stabilization energy as a result of the allelic group.

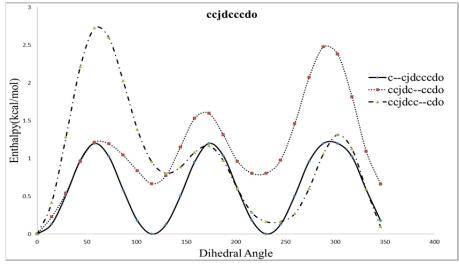
The bond enthalpy for the secondary C-H bonds, adjacent to carbonyl group, are quite low: 77.0 kcal/mol for CC=CC(-H)C=O and 77.8 kcal/mol for C=CC(-H)C=O. The C--H bond enthalpy at the position of secondary vinyl, adjacent to carbonyl group, C=C(-H)C=O shows a value of 113.1 kcal/mol, which is about 5 kcal/mol higher than a normal secondary vinyl C--H bond. The C-H bond enthalpy of the primary vinyl of cdccdo is increased but only by 0.7 kcal/mol. These bond enthalpies are different from that normally found on olefins or carbonyls.

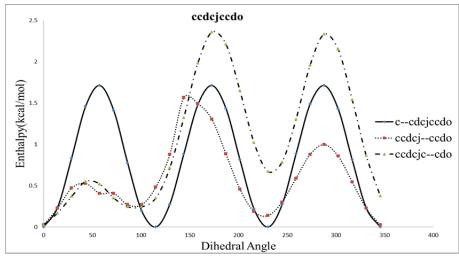
APPENDIX A

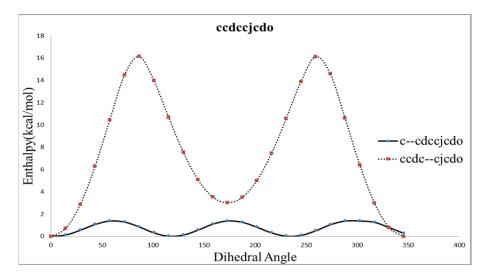
FIGURES

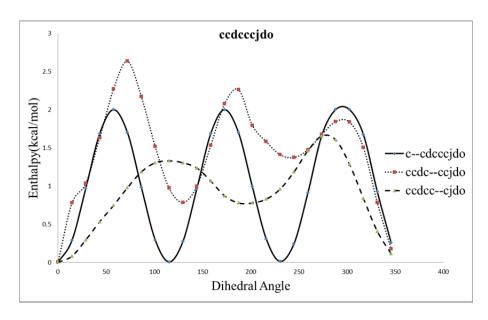
Figure A.1 to A.3 show potential barriers for parent molecules and radicals.

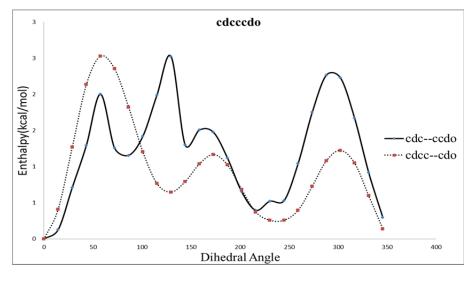





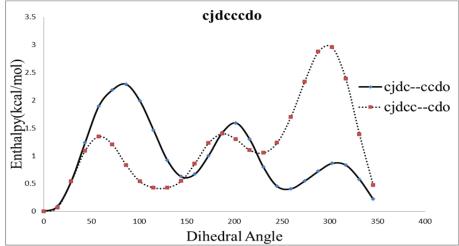

Figure A.1 Potential Energy Profiles for Internal Rotations in cdccdo and cjdccdo.

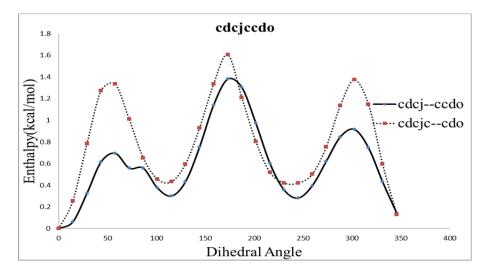





Figure A.2 Potential Energy Profiles for Internal Rotations in ccdcccdo (trans), ccdcccdo (cis), cjedccedo, ccjdccedo, ccdcjedo, ccdccjedo and ccdcccjdo.






Figure A.2 Potential Energy Profiles for Internal Rotations in ccdcccdo (trans), ccdcccdo (cis), cjcdcccdo, ccjdcccdo, ccdcjcdo, ccdccjcdo and ccdcccjdo (Continued)

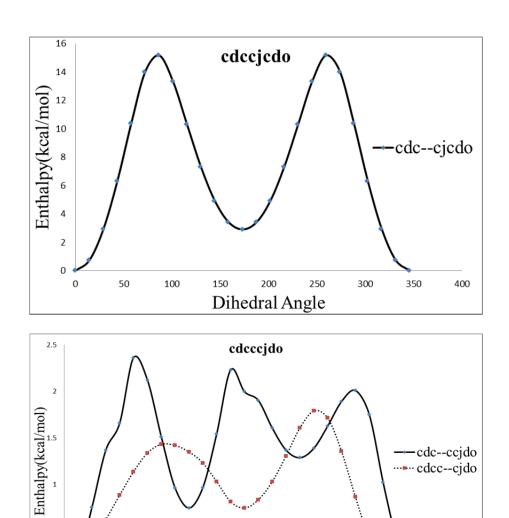

Figure A.2 Potential Energy Profiles for Internal Rotations in ccdcccdo (trans), ccdcccdo (cis), cjcdcccdo, ccjdcccdo, ccdcjcdo, ccdccjcdo and ccdcccjdo. (Continued)

Figure A.3 Potential Energy Profiles for Internal Rotations in cdcccdo, cjdcccdo, cdcjccdo, cdccjcdo and cdcccjdo.

Figure A.3 Potential Energy Profiles for Internal Rotations in cdcccdo, cjdcccdo, cdcjccdo, cdccjcdo and cdcccjdo. (Continued)

Dihedral Angle

0.5

APPENDIX B

PARAMETER RESULTS SUMMARY

Structure and thermo parameter results for parent molecules and radicals are provided in the following tables.

Table B.1 Optimized Structure Coordinates for Parent Molecules and Radicals from CBS-QB3 Level

	Z -	Matrix	
cdccdo	cjdccdo	cdcjcdo	cdccjdo
С	С	С	С
C,1,r21	C,1,r21	C,1,r21	C,1,r21
H,2,r32,1,a321	C,2,r32,1,a321	C,2,r32,1,a321	C,2,r32,1,a321
H,2,r42,1,a421,3,d4213,0	H,1,r41,2,a412,3,d4123,0	H,3,r43,2,a432,1,d4321,0	H,1,r41,2,a412,3,d4123,0
H,1,r51,2,a512,3,d5123,0	H,2,r52,3,a523,1,d5231,0	O,3,r53,2,a532,1,d5321,0	H,1,r51,2,a512,3,d5123,0
C,1,r61,2,a612,3,d6123,0	O,3,r63,2,a632,1,d6321,0	H,1,r61,2,a612,3,d6123,0	H,2,r62,1,a621,4,d6214,0
O,6,r76,1,a761,2,d7612,0	H,3,r73,2,a732,1,d7321,0	H,1,r71,2,a712,3,d7123,0	O,3,r73,2,a732,1,d7321,0
H,6,r86,1,a861,2,d8612,0	Variables:	Variables:	Variables:
Variables:	r21=1.31150413	r21=1.314873	r21=1.33346269
r21=1.33392472	r32=1.48700727	r32=1.47194469	r32=1.47592526
r32=1.08647744	r41=1.07932165	r43=1.10443891	r41=1.08366427
r42=1.08349908	r52=1.09401598	r53=1.21086884	r51=1.08442206
r51=1.0856196	r63=1.20698466	r61=1.08629531	r62=1.08953033
r61=1.47530358	r73=1.10796043	r71=1.09221286	r73=1.18510216
r76=1.20854383	a321=122.85674626	a321=133.94486599	a321=120.45532053
r86=1.11304943	a412=139.80699287	a432=116.57722257	a412=121.76298657
a321=120.95983101	a523=115.15068544	a532=121.91934908	a512=120.55947303
a421=122.29538112	a632=123.26845142	a612=122.32195804	a621=122.34960948
a512=122.42911211	a732=114.818632	a712=120.75787832	a732=128.32918951
a612=121.24024855	d4123=-179.99862705	d4321=-179.91353837	d4123=-179.99349392
a761=124.30405247	d5231=-179.99675056	d5321=0.09028959	d5123=-0.00246065
a861=114.47711313	d6321=-179.9998074	d6123=-179.98391735	d6214=0.00289567
d4213=179.99959195	d7321=-0.00162056	d7123=0.02203529	d7321=179.99958398
d5123=-179.9999018			
d6123=-0.00039659			
d7612=179.99052463			
d8612=0.01021259			

Table B.1 Optimized Structure Coordinates for Parent Molecules and Radicals from CBS-QB3 Level (Continued)

CBS-QB3 Level (Continu		., ,
ccdcccdo	cjedecedo	ccjdcccdo
C	C	C
C,1,r21	C,1,r21	C,1,r21
C,2,r32,1,a321	C,2,r32,1,a321	C,2,r32,1,a321
H,3,r43,2,a432,1,d4321,0	C,3,r43,2,a432,1,d4321,0	C,3,r43,2,a432,1,d4321,0
C,3,r53,2,a532,1,d5321,0	C,4,r54,3,a543,2,d5432,0	C,4,r54,3,a543,2,d5432,0
C,5,r65,3,a653,4,d6534,0	H,1,r61,2,a612,3,d6123,0	H,1,r61,2,a612,3,d6123,0
O,6,r76,5,a765,3,d7653,0	H,1,r71,2,a712,3,d7123,0	H,1,r71,2,a712,3,d7123,0
H,1,r81,2,a812,3,d8123,0	H,2,r82,1,a821,6,d8216,0	H,1,r81,2,a812,3,d8123,0
H,1,r91,2,a912,8,d9128,0	H,3,r93,4,a934,5,d9345,0	H,3,r93,4,a934,5,d9345,0
H,1,r101,2,a1012,8,d10128,0	H,4,r104,3,a1043,2,d10432,0	H,4,r104,3,a1043,2,d10432,0
H,2,r112,1,a1121,8,d11218,0	H,4,r114,3,a1143,2,d11432,0	H,4,r114,3,a1143,2,d11432,0
H,5,r125,3,a1253,2,d12532,0	O,5,r125,4,a1254,3,d12543,0	O,5,r125,4,a1254,3,d12543,0
	H,5,r135,4,a1354,3,d13543,0	H,5,r135,4,a1354,3,d13543,0
H,5,r135,3,a1353,12,d135312,0	Variables:	Variables:
H,6,r146,5,a1465,7,d14657,0	r21=1.38059238	r21=1.4688656
Variables:	r32=1.38774195	r32=1.30939059
r21=1.50002563	r43=1.49799807	r43=1.50593641
r32=1.33070234	r54=1.52783081	r54=1.51444414
r43=1.08705514	r61=1.08218608	r61=1.09451693
r53=1.49936269	r71=1.08433621	r71=1.09460715
r65=1.51632858	r82=1.08930577	r81=1.10100216
r76=1.20330105	r93=1.08701224	r93=1.09538662
r81=1.09580836	r104=1.09637551	r104=1.10226466
r91=1.09232193	r114=1.0936891	r114=1.09565066
r101=1.0956047	r125=1.20245845	r125=1.20342784
r112=1.09005649	r135=1.11210445	r135=1.11355204
r125=1.10274312	a321=125.12553124	a321=140.19116329
r135=1.09726327	a432=124.42140752	a432=125.13683483
r146=1.1138317	a543=110.04169915	a543=114.33978469
a321=125.15029716	a612=121.37896143	a612=111.39095244
a432=119.60292112	a712=121.17414022	a712=111.46744441
a532=124.55355076	a821=117.61790847	a812=110.7953449
a653=114.75401626	a934=116.69137776	a934=115.42050083
a765=125.20491077	a1043=110.22248183	a1043=111.09942543
a812=111.15034943	a1143=111.88768632	a1143=111.45064399
a912=111.5212865 a1012=111.04745539	a1254=124.49033437 a1354=114.22309892	a1254=125.21764055 a1354=114.12312902
a1121=116.02463418	d4321=-177.77607033	d4321=-179.87915912
a1253=111.31039603	d5432=104.96227666	d5432=-135.7102038
a1353=111.80619472	d3432=104.96227666 d6123=-179.12660905	d5432=-133./102038 d6123=-120.41064437
a1465=114.13562036	do123=-179.12000903 d7123=0.68476792	d6123=-120.41064437 d7123=119.56737975
d4321=-0.99263492	d8216=0.14655062	d8123=-0.49165737
d5321=179.70831705	d9345=-72.25566787	d9345=43.31586113
d6534=-48.35539388	d10432=-14.1149147	d10432=104.78960933
d7653=4.79650757	d11432=-135.74421587	d11432=-12.13345258
d8123=-120.42872281	d12543=113.28229026	d12543=-5.96117338
d9128=120.79330392	d13543=-64.9051291	d13543=175.29941511
d10128=-118.56811663	01.7001271	410010 170.27711011
d11218=59.68533992		
d12532=-109.46552183		
d135312=116.99431106		
d14657=178.90224802		
41 1057 170.7022T002		

Table B.1 Optimized Structure Coordinates for Parent Molecules and Radicals from CBS-QB3 Level (Continued)

BS-QB3 Level (Continued)					
ccdcjccdo	cedeejedo	cedecejdo			
С	С	С			
C,1,r21	C,1,r21	C,1,r21			
C,2,r32,1,a321	C,2,r32,1,a321	C,2,r32,1,a321			
C,3,r43,2,a432,1,d4321,0	C,3,r43,2,a432,1,d4321,0	C,3,r43,2,a432,1,d4321,0			
C,4,r54,3,a543,2,d5432,0	C,4,r54,3,a543,2,d5432,0	C,4,r54,3,a543,2,d5432,0			
H,1,r61,2,a612,3,d6123,0	H,1,r61,2,a612,3,d6123,0	H,1,r61,2,a612,3,d6123,0			
H,1,r71,2,a712,3,d7123,0	H,1,r71,2,a712,3,d7123,0	H,1,r71,2,a712,3,d7123,0			
H,1,r81,2,a812,3,d8123,0	H,1,r81,2,a812,3,d8123,0	H,1,r81,2,a812,3,d8123,0			
H,2,r92,1,a921,6,d9216,0	H,2,r92,1,a921,6,d9216,0	H,2,r92,1,a921,6,d9216,0			
H,4,r104,5,a1045,3,d10453,0	H,3,r103,2,a1032,1,d10321,0	H,3,r103,4,a1034,5,d10345,0			
H,4,r114,5,a1145,3,d11453,0	H,4,r114,3,a1143,2,d11432,0	H,4,r114,3,a1143,2,d11432,0			
O,5,r125,4,a1254,3,d12543,0	O,5,r125,4,a1254,3,d12543,0	H,4,r124,3,a1243,2,d12432,0			
H,5,r135,4,a1354,3,d13543,0	H,5,r135,4,a1354,3,d13543,0	O,5,r135,4,a1354,3,d13543,0			
Variables:	Variables:	Variables:			
r21=1.50754682	r21=1.49114129	r21=1.49960373			
r32=1.31125525	r32=1.37387156	r32=1.3316757			
r43=1.47644047	r43=1.39720895	r43=1.50094933			
r54=1.52924086	r54=1.44312448	r54=1.53600875			
r61=1.09495645	r61=1.09682019	r61=1.09222697			
r71=1.09071823	r71=1.09681442	r71=1.09559964			
r81=1.09493267	r81=1.09190412	r81=1.09562484			
r92=1.0975769	r92=1.08783564	r92=1.0898138			
r104=1.09373313	r103=1.08979926	r103=1.08744857			
r114=1.09854782	r114=1.08610851	r114=1.09240157			
r125=1.20134021	r125=1.22249339	r124=1.09896014			
r135=1.11082499	r135=1.11170237	r135=1.17976646			
a321=125.64374498	a321=124.86541328	a321=125.16365184			
a432=140.12917689	a432=124.81421508	a432=124.19681799			
a543=110.2624213	a543=122.46181878	a543=114.05642381			
a612=110.75730066	a612=111.00714659	a612=111.60642882			
a712=111.21003947	a712=111.00790051	a712=111.08807108			
a812=110.6464523	a812=111.95258015	a812=110.95571103			
a921=115.50847958	a921=117.00627019	a921=116.11779764			
a1045=108.79007381	a1032=117.94770233	a1034=115.9499208			
a1145=107.9022073	a1143=120.74044828	a1143=112.29924452			
a1254=124.14506211	a1254=124.29537722	a1243=112.00741632			
a1354=114.23841703	a1354=115.1840306	a1354=128.0721871			
d4321=-179.98326553	d4321=179.99795554	d4321=-179.38721489			
d5432=22.39043849	d5432=179.99979244	d5432=121.93967721			
d6123=121.25671541	d6123=-121.09353249	d6123=0.32532565			
d7123=0.49483111	d7123=121.12980921	d7123=-120.52619799			
d8123=-120.17814676	d8123=0.01702366	d8123=121.0099492			
d9216=-59.65283569	d9216=58.90466792	d9216=-179.83283933			
d10453=122.74532347	d10321=-0.00204678	d10345=-56.30235034			
d11453=-120.0635306	d11432=-0.00015895	d11432=-1.38251884			
d12543=-112.90323748	d12543=179.99821934	d12432=-120.77249805			
d13543=64.9544628	d13543=0.0019525	d13543=18.81854553			

Table B.1 Optimized Structure Coordinates for Parent Molecules and Radicals from CBS-QB3 Level (Continued)

CBS-QB3 Level (Continue		1 . 1
cdcccdo	cjdcccdo	cdcjccdo
С	С	С
C,1,r21	C,1,r21	C,1,r21
C,2,r32,1,a321	C,2,r32,1,a321	C,2,r32,1,a321
C,3,r43,2,a432,1,d4321,0	C,3,r43,2,a432,1,d4321,0	C,3,r43,2,a432,1,d4321,0
H,1,r51,2,a512,3,d5123,0	H,1,r51,2,a512,3,d5123,0	H,1,r51,2,a512,3,d5123,0
H,1,r61,2,a612,3,d6123,0	H,2,r62,3,a623,4,d6234,0	H,1,r61,2,a612,3,d6123,0
H,2,r72,3,a723,4,d7234,0	H,3,r73,2,a732,1,d7321,0	H,3,r73,4,a734,2,d7342,0
H,3,r83,2,a832,1,d8321,0	H,3,r83,2,a832,1,d8321,0	H,3,r83,4,a834,2,d8342,0
H,3,r93,2,a932,1,d9321,0	O,4,r94,3,a943,2,d9432,0	O,4,r94,3,a943,2,d9432,0
H,4,r104,3,a1043,2,d10432,0	H,4,r104,3,a1043,2,d10432,0	
O,4,r114,3,a1143,2,d11432,0	Variables:	H,4,r104,3,a1043,2,d10432,
Variables:	r21=1.30638592	0
r21=1.32840553	r32=1.5074575	Variables:
r32=1.49993447	r43=1.51485536	r21=1.30672766
r43=1.51664435	r51=1.07958556	r32=1.46754808
r51=1.08392137	r62=1.09441828	r43=1.53049191
r61=1.08617388	r73=1.09512807	r51=1.08738601
r72=1.08597448	r83=1.10168936	r61=1.09217212
r83=1.10231096	r94=1.2031103	r73=1.1003036
r93=1.09689883	r104=1.11280814	r83=1.10030361
r104=1.11343667	a321=125.02461501	r94=1.19986782
r114=1.2030707	a432=114.02883006	r104=1.11422333
a321=124.49802276	a512=137.97278105	a321=140.7893974
a432=114.65187162	a623=115.18907415	a432=117.08413482
a512=121.45949922	a732=111.57831122	a512=122.12802618
a612=121.86561586	a832=110.66361462	a612=120.68549927
a723=115.67270621	a943=125.04399913	a734=106.20698429
a832=110.93053435	a1043=114.18525658	a834=106.20723004
a932=111.79603027	d4321=139.15785182	a943=126.27385316
a1043=114.14351677	d5123=179.61319654	a1043=112.78049613
a1143=125.12009479	d6234=-39.94947675	d4321=-0.00199019
d4321=-132.45180585	d7321=15.28233346	d5123=-179.98929357
d5123=-179.48953002	d8321=-101.6210999	d6123=-0.0073028
d6123=0.58774147	d9432=6.78465988	d7342=124.6597616
d7234=47.11902454	d10432=-174.4995831	d8342=-124.66000803
d8321=108.16042894		d9432=-0.00304072
d9321=-8.78217166		d10432=179.99785984
d10432=175.85186039		
d11432=-5.21227409		

Table B.1 Optimized Structure Coordinates for Parent Molecules and Radicals from CBS-QB3 Level (Continued)

CBS-QB3 Level (Continued)					
cdccjcdo	edecejdo				
C	C				
C,1,r21	C,1,r21				
C,2,r32,1,a321	C,2,r32,1,a321				
C,3,r43,2,a432,1,d4321,0	C,3,r43,2,a432,1,d4321,0				
H,1,r51,2,a512,3,d5123,0	H,1,r51,2,a512,3,d5123,0				
H,1,r61,2,a612,3,d6123,0	H,1,r61,2,a612,3,d6123,0				
H,2,r72,1,a721,5,d7215,0	H,2,r72,3,a723,4,d7234,0				
H,3,r83,2,a832,1,d8321,0	H,3,r83,2,a832,1,d8321,0				
O,4,r94,3,a943,2,d9432,0	H,3,r93,2,a932,1,d9321,0				
H,4,r104,3,a1043,2,d10432,0	O,4,r104,3,a1043,2,d10432,0				
Variables:	Variables:				
r21=1.37078899	r21=1.32906341				
r32=1.39811924	r32=1.50166997				
r43=1.44603707	r43=1.53511538				
r51=1.08262732	r51=1.08392001				
r61=1.08435908	r61=1.08591268				
r72=1.08870426	r72=1.08643262				
r83=1.08619398	r83=1.09217838				
r94=1.22102687	r93=1.09871602				
r104=1.11148477	r104=1.17938476				
a321=124.60449549	a321=124.15091368				
a432=122.4137579	a432=113.92910703				
a512=121.51068463	a512=121.43678998				
a612=121.11912354	a612=121.78212034				
a721=118.25579135	a723=115.76985823				
a832=120.74458964	a832=112.28453939				
a943=124.07558714	a932=111.71768981				
a1043=115.23616028	a1043=128.1303116				
d4321=180.	d4321=122.96941499				
d5123=180.	d5123=-179.4966453				
d6123=0.00007141	d6123=0.72812641				
d7215=0.	d7234=-55.43148928				
d8321=-0.00009605	d8321=-0.48715138				
d9432=-179.99892586	d9321=-119.88805661				
d10432=-0.00137625	d10432=18.81680143				

Table B.1 Optimized Structure Coordinates for Parent Molecules and Radicals from CBS-QB3 Level (Continued)

CBS-QB3 Level (Continued)				
internal coordinate				
cdccdo	cjdccdo			
Charge = 0 Multiplicity = 1	Charge = 0 Multiplicity = 2			
Redundant internal coordinates found in file.	Redundant internal coordinates found in file.			
C,0,0.0007610962,0.0000371611,0.0020087845	C,0,-0.0058830015,-0.0000551258,0.0044300769			
C,0,0.00018897,-0.0000051958,1.3359333813	C,0,-0.0001691656,-0.0001271574,1.3159217566			
H,0,0.931634168,0.0000455875,1.8952571333	C,0,1.2524640229,0.0000561963,2.1172336144			
H,0,-0.9159463253,-0.0000844242,1.9144369454				
	H,0,-0.7060241749,-0.0001201051,-0.8169940236			
H,0,-0.9153123863,-0.0000101836,-0.5805539126	H,0,-0.9254884754,-0.0002719369,1.899578426			
C,0,1.2624739274,0.0001629705,-0.762583502	O,0,1.266395128,-0.0000119047,3.3241378757			
O,0,1.3275857842,0.0000413898,-1.969372061	H,0,2.1861361812,0.0002309324,1.5207165767			
H,0,2.1818832011,0.0000365129,-0.1352354251				
cdcjcdo	cdccjdo			
Charge = 0 Multiplicity = 2	Charge = 0 Multiplicity = 2			
Redundant internal coordinates found in file.	Redundant internal coordinates found in file.			
C,0,0.0000815816,0.0000646284,0.0004819129	C,0,0.0004773638,0.0000261755,0.0008559713			
C,0,0.0042286951,0.0003973376,1.3153483307	C,0,0.0011007672,0.0000269079,1.334318518			
C,0,1.0672567441,-0.0000844867,2.3334801036	C,0,1.2737343688,0.0000140575,2.0818204212			
H,0,0.7409057268,-0.0010780131,3.3886006372	H,0,-0.9211562647,0.0001400894,-0.5691612969			
O,0,2.2405214982,0.0006401103,2.0340596097	H,0,0.9340173624,0.0000562428,-0.550935901			
H,0,-0.9197267523,0.0008165582,-0.5774363945	H,0,-0.9190605424,0.0000948218,1.9177390285			
H,0,0.9368925707,-0.0010932863,-0.5610452557	O,0,1.4366336198,0.0000197603,3.2556734601			
ccdcccdo	cjcdcccdo			
Redundant internal coordinates taken from	Redundant internal coordinates taken from			
checkpoint file:	checkpoint file:			
Charge = 0 Multiplicity = 1	Charge = 0 Multiplicity = 2			
C,0,0.0026929357,0.0006270978,0.0013355895	C,0,0.0017679714,0.0013519295,0.0022019466			
C,0,0.003576157,-0.0019632204,1.501358724	C,0,0.0020595768,-0.0026048757,1.3827886295			
C,0,1.0920096839,0.0080458085,2.2668526745	C,0,1.1372509987,-0.0026581588,2.181016761			
H,0,2.0749907888,0.0027127158,1.8027313681	C,0,1.1197883184,-0.0549354577,3.6780005133			
C,0,1.0772211892,0.0115803862,3.7661382634	C,0,1.5178014659,-1.4497711121,4.1578817497			
C,0,1.9814747084,-1.0198587685,4.4124440685	H,0,-0.9221773832,0.0152307233,-0.5610556057			
0,0,2.736879153,-1.7472084595,3.8223085265	H,0,0.929359036,-0.0063002439,-0.5593149962			
H,0,-0.5242926835,0.8770919275,-0.3922270035	H,0,-0.9629671962,0.0062910791,1.8879927913			
H,0,1.018615188,0.0054366659,-0.3999698327	H,0,2.1137701885,-0.0095617809,1.7035670649			
W 0 0 5150 (0500 4 0 000 5 (0 000 5 000 5 0 00	H,0,0.1119076014,0.1586897502,4.0529404904			
H,0,-0.5150625934,-0.8805626822,-0.3933585355	H,0,1.8244393948,0.6557790496,4.1190306699			
H,0,-0.9755974433,-0.0149408628,1.9801841571	0,0,2.5265887941,-1.6996701185,4.7626998503			
H,0,1.4083428998,0.9836886123,4.1678924098	H,0,0.8016465213,-2.2517084086,3.8736371887			
H,0,0.0643107305,-0.1285196301,4.1640969066				
H,0,1.9139586243,-1.052246862,5.5237557454				

Table B.1 Optimized Structure Coordinates for Parent Molecules and Radicals from CBS-QB3 Level (Continued)

CBS-QB3 Level (Continued)	
cejdecedo	ccdcjccdo
Redundant internal coordinates taken from	Redundant internal coordinates taken from
checkpoint file:	checkpoint file:
Charge = 0 Multiplicity = 2	Charge = 0 Multiplicity = 2
C,0,0.00022454,-0.000559896,0.0022281912	C,0,0.0017744443,0.0023523301,0.0004670497
C,0,0.0025669457,-0.0021408619,1.4710910749	C,0,0.0008552099,-0.001778428,1.5080079304
C,0,0.842477165,-0.0016300155,2.4756080096	C,0,1.0659881713,-0.0048642657,2.2727775622
C,0,0.4536603678,-0.0065361024,3.9304763514	C,0,1.4344237752,-0.0094014613,3.7025016874
C,0,1.243331623,0.9576803006,4.7908524861	C,0,0.2816830335,-0.5575015684,4.5447324553
H,0,-0.5179517316,0.8777956949,-0.3952037108	
H,0,-0.501389288,-0.8870963654,-0.3985229371	H,0,-0.5300676878,-0.8713534473,-0.3903165078
H,0,1.0288202055,0.0106493485,-0.3902906848	H,0,1.0188017875,-0.0062947438,-0.3935467476
H,0,1.9194644471,0.0194578255,2.2767976778	H,0,-0.5122278832,0.8896266989,-0.3834904397
H,0,0.6083165012,-1.0013882281,4.3791834923	H,0,-0.9898797807,0.0135730857,1.980113394
H,0,-0.6137124362,0.2037374881,4.0606711292	H,0,1.6841906344,0.9943663201,4.0579154102
O,0,2.1820803774,1.6117638723,4.4178055555	H,0,2.3070898144,-0.6573080068,3.8621212342
H,0,0.8983054957,1.011555725,5.8482325293	O,0,-0.3531897031,0.0975643695,5.3264251906
	H,0,0.0423871663,-1.6247503442,4.3506971694
ccdccjdo	ccdcccjdo
Redundant internal coordinates taken from	Redundant internal coordinates taken from
checkpoint file:	checkpoint file:
Charge = 0 Multiplicity = 2	Charge = 0 Multiplicity = 2
C,0,0.0014335507,0.0000039226,0.0020878791	C,0,0.0014113811,-0.0008004308,0.0017182488
C,0,0.0016933755,0.0000570593,1.4932291452	C,0,0.0026909092,-0.0007622706,1.5013214315
C,0,1.1290878364,0.0000063712,2.2784073292	C,0,1.0919927241,0.0041349076,2.2673225677
C,0,1.1280827832,0.0000971798,3.6756159099	C,0,1.0680473418,-0.0092172936,3.7680214811
C,0,2.3451605706,0.0000333618,4.4510705701	C,0,1.8125876701,-1.1971425539,4.3955692052
H,0,-0.527364026,0.8768362121,-0.3910441542	H,0,1.016548951,-0.0020267613,-0.4013375358
	H,0,-0.5220862017,0.8773964747,-0.3920571262
H,0,-0.5280359644,-0.8764385153,-0.3909929611	
H,0,1.0140963961,-0.0003822076,-0.4062850171	H,0,-0.5221056034,-0.8800886094,-0.3896588881
H,0,-0.9674351281,0.0001727483,1.9873711284	H,0,-0.9754318029,-0.0024330889,1.9819119866
H,0,2.0984003647,-0.0001134202,1.7803153386	H,0,2.077071879,-0.0113725857,1.8069716566
H,0,0.1941824984,0.0002199903,4.2301084236	H,0,0.0509491822,0.0008782449,4.1664566745
L O O 2 20220/7440 0 0001404040 5 /720/7070	I II 0 1 5722666600 0 0670260021 4 1057670740
O,0,2.3833967449,0.0001404949,5.6729658529 H,0,3.2847060051,-0.0000590687,3.8568176605	H,0,1.5733666699,0.8679368931,4.1957670748 O,0,2.6233141613,-1.8935861502,3.8960316402

Table B.1 Optimized Structure Coordinates for Parent Molecules and Radicals from CBS-QB3 Level (Continued)

CBS-QB3 Level (Continued)	
cdcccdo	cjdcccdo
Redundant internal coordinates taken from checkpoint file: Charge = 0 Multiplicity = 1	Redundant internal coordinates taken from checkpoint file: Charge = 0 Multiplicity = 2
C,0,0.0050228123,-0.0020030788,0.0001530271 C,0,-0.0002689939,0.0008512218,1.3285449538 C,0,1.2325013097,0.0035674564,2.1829882834	C,0,-0.0033478062,-0.0006002052,0.0046086875 C,0,-0.0003344435,-0.0023810019,1.3109899227 C,0,1.2361134811,0.0013497062,2.1733185845
C,0,1.2231452043,-1.0110741581,3.3102082909 H,0,-0.9172803056,0.004352563,-0.5692344609 H,0,0.9297328956,-0.0120329802,-0.5695700313 H,0,-0.9444875664,-0.0059984129,1.8649635701 H,0,1.3726491092,0.9830038117,2.6689434976 H,0,2.140733586,-0.1525664666,1.5880736919	C,0,1.1397195406,0.9041397514,3.3859459435 H,0,-0.7279189075,-0.007261056,-0.7956770969 H,0,-0.9488912244,0.0085292947,1.8567667748 H,0,2.127343169,0.2741025525,1.5983220445 H,0,1.440218862,-1.0080703164,2.5646389868 O,0,0.1464502232,1.4847847678,3.737715491
H,0,2.1705291856,-1.0522815305,3.8937378626 O,0,0.2922851009,-1.7165066105,3.5987280112	H,0,2.0829199422,0.983929133,3.9710515787
cdejecdo	edecjedo
Redundant internal coordinates taken from checkpoint file:	Redundant internal coordinates taken from checkpoint file:
Charge = 0 Multiplicity = 2 C,0,-0.0010579075,-0.0000809481,0.0029430939 C,0,0.0030260249,-0.0000725253,1.3096643713 C,0,0.9343191035,-0.0000955702,2.4438559677 C,0,2.4296479387,-0.0001939652,2.117670223 H,0,-0.9237264825,0.0001175488,-0.5724619821 H,0,0.9364433402,0.0000044227,-0.5573526786 H,0,0.7622812254,-0.8691475029,3.0964046084 H,0,0.762380967,0.8690105004,3.0963588022 O,0,2.9170719531,-0.0003056825,1.0212667373 H,0,3.0701099408,-0.0001676736,3.0294278925	Charge = 0 Multiplicity = 2 C,0,0.0009231799,0.0000325324,0.0019381732 C,0,0.0006523242,-0.0000663475,1.3727271328 C,0,1.1512759074,-0.0000358259,2.1669580634 C,0,1.0957137924,-0.0001432413,3.6119272845 H,0,-0.9219510223,0.0000033559,-0.5640875416 H,0,0.9293478805,0.0001426236,-0.5582958602 H,0,-0.9584269017,-0.0001769782,1.8879397031 H,0,2.138569997,0.0000706048,1.7141140095 O,0,2.0800558264,-0.0001012431,4.3344072972 H,0,0.072845333,-0.0002277127,4.0468278503
cdccjdo Redundant internal coordinates taken from checkpoint file: Charge = 0 Multiplicity = 2	
C,0,0.0004006803,0.001935368,0.0027538844 C,0,0.0000702242,-0.0040429229,1.3318038057 C,0,1.2425713106,-0.001937321,2.1751301407 C,0,1.3233599791,1.171238323,3.1618982626 H,0,-0.9242691652,0.0082140285,-0.5627802323	
H,0,0.9236013798,-0.002841913,-0.5689838132 H,0,-0.9400963658,0.0163507856,1.8758688055 H,0,2.152803825,-0.0034948238,1.5715342851 H,0,1.2975300613,-0.8895680418,2.8203185896 O,0,0.447084781,1.8597691239,3.5479235433	

Table B.2 Ideal Gas-phase Entropy S^o vs. Temperature

T(K)		edeedo	c	jdccdo	cdcjcdo	cdccjdo
T(K)	SMCPS	SMCPS+VIBIR	SMCPS	SMCPS+VIBIR	SMCPS	SMCPS
50.00	47.23	54.44	48.30	55.51	48.99	48.40
100.00	53.39	60.07	54.50	61.13	55.93	54.39
150.00	57.56	63.66	58.68	64.72	60.52	58.61
200.00	60.91	66.54	62.06	64.72	64.16	62.17
250.00	63.86	66.24	65.03	67.52	67.29	65.36
298.00	66.47	68.70	67.66	70.01	70.00	68.17
400.00	71.60	73.59	72.75	74.87	75.15	73.57
500.00	76.26	78.07	77.26	79.21	79.66	78.26
600.00	80.61	82.29	81.38	83.21	83.76	82.48
700.00	84.68	86.25	85.17	86.90	87.54	86.33
800.00	88.48	89.97	88.67	90.32	91.02	89.85
1000.00	95.41	96.75	94.95	96.45	97.29	96.15
1500.00	109.60	110.63	107.61	108.72	109.94	108.76
2000.00	120.69	121.40	117.35	118.10	119.69	118.46
2500.00	129.68	130.10	125.21	125.62	127.55	126.29
3000.00	137.23	137.36	131.77	131.89	134.12	132.84
3500.00	143.70	143.58	137.39	137.25	139.74	138.45
4000.00	149.36	149.02	142.30	141.92	144.66	143.35
4500.00	154.39	153.84	146.65	146.06	149.01	147.70

Units in cal/mol/K

	ccdcccdo (trans)		ccdccc	do (cis)	cjcdc	ccdo	ccjdcccdo	
T(K)	SMCPS	SMCPS +VIBIR	SMCPS	SMCPS +VIBIR	SMCPS	SMCPS +VIBIR	SMCPS	SMCPS+ VIBIR
50.00	50.03	66.14	54.74	53.09	55.27	66.94	51.20	66.12
100.00	56.55	73.32	63.87	64.12	63.94	71.50	57.63	74.69
150.00	61.23	79.28	70.44	66.871	70.10	77.11	62.37	80.84
200.00	65.16	84.19	75.82	70.35	75.28	81.90	66.37	85.83
250.00	68.76	88.49	80.61	73.55	79.95	86.24	70.01	90.14
298.00	72.09	92.29	84.91	76.58	84.18	90.17	73.34	93.90
400.00	79.02	99.86	93.52	83.18	92.66	98.05	80.16	101.26
500.00	85.70	106.88	101.50	89.67	100.47	105.28	86.61	107.98
600.00	92.17	113.56	109.04	95.99	107.78	112.07	92.78	114.32
700.00	98.38	119.90	116.16	102.05	114.63	118.44	98.66	120.31
800.00	104.29	125.91	122.86	107.82	121.04	124.41	104.24	125.95
1000.00	115.26	137.00	135.15	118.50	132.69	133.10	114.53	136.32
1500.00	138.32	160.17	160.61	141.09	156.58	155.50	136.00	157.87
2000.00	156.62	178.50	180.62	159.13	175.22	173.03	152.94	174.84
2500.00	171.59	193.49	196.91	173.96	190.36	187.30	166.76	188.68
3000.00	184.17	206.09	210.58	186.46	203.04	199.27	178.37	200.29
3500.00	195.00	216.92	222.33	197.24	213.92	209.55	188.34	210.27
4000.00	204.49	226.41	232.61	206.69	223.45	218.55	197.08	219.01
4500.00	212.92	234.85	241.74	215.09	231.90	226.54	204.83	226.76
ccdcjccdo		ccdccjcdo		ccdcc	cjdo			
T(K)	SMCPS	SMCPS +VIBIR	SMCPS	SMCPS +VIBIR	SMCPS	SMCPS +VIBIR		
50.00	51.28	66.38	51.22	63.18	51.35	68.28]	
100.00	57.84	74.99	58.61	71.22	57.95	74.55]	
	1			i	†	1	1	

	ccdc	iccdo	ccdc	cjcdo	ccdcccjdo		
T(K)	SMCPS	SMCPS +VIBIR	SMCPS	SMCPS +VIBIR	SMCPS	SMCPS +VIBIR	
50.00	51.28	66.38	51.22	63.18	51.35	68.28	
100.00	57.84	74.99	58.61	71.22	57.95	74.55	
150.00	62.58	81.03	63.91	76.87	62.67	80.56	
200.00	66.57	85.95	68.32	81.58	66.63	85.50	
250.00	70.20	90.23	72.28	85.76	70.24	89.83	
298.00	73.53	93.99	75.87	89.49	73.54	93.63	
400.00	80.34	101.35	83.16	94.00	80.33	101.08	
500.00	86.78	108.09	90.00	101.17	86.75	107.88	
600.00	92.94	114.43	96.51	107.94	92.91	114.25	
700.00	98.81	120.41	102.69	114.33	98.76	120.26	
800.00	104.38	126.06	108.53	120.34	104.31	125.91	
1000.00	114.65	136.42	119.24	131.36	114.55	136.27	
1500.00	136.09	157.95	141.48	154.16	135.91	157.75	
2000.00	153.01	174.91	158.96	172.03	152.79	174.68	
2500.00	166.82	188.74	173.21	186.55	166.58	188.48	
3000.00	178.42	200.34	185.17	198.69	178.17	200.08	
3500.00	188.39	210.32	195.44	209.09	188.13	210.05	
4000.00	197.12	219.05	204.44	218.18	196.85	218.77	
4500.00	204.88	226.81	212.42	226.23	204.60	226.53	

Table B.2 Ideal Gas-phase Entropy S^o vs. Temperature (Continued)

cdcccdo		cjdcccdo		cdcjccdo		cdccjcdo		cdcccjdo		
T(K)	SMCPS	SMCPS +VIBIR								
50.00	50.01	62.95	51.20	61.76	51.24	62.42	50.96	58.79	51.26	61.63
100.00	55.90	69.52	57.09	68.98	57.30	70.01	57.54	65.37	57.18	68.94
150.00	59.85	73.99	61.05	73.96	61.46	75.14	62.11	69.94	61.16	73.94
200.00	63.12	77.61	64.35	77.96	64.90	79.14	65.88	73.70	64.45	77.95
250.00	66.11	80.84	67.38	81.47	68.01	82.60	69.25	77.08	67.43	81.43
298.00	68.87	83.76	70.16	84.56	70.84	85.63	72.30	80.13	70.16	84.48
400.00	74.60	89.69	75.86	90.64	76.56	91.60	78.43	83.36	75.73	90.46
500.00	80.07	95.25	81.17	96.15	81.85	97.01	84.09	89.25	80.94	95.88
600.00	85.32	100.56	86.19	101.29	86.85	102.08	89.41	94.78	85.87	100.94
700.00	90.32	105.60	90.91	106.08	91.55	106.83	94.40	99.93	90.52	105.67
800.00	95.06	110.37	95.34	110.57	95.98	111.27	99.07	104.76	94.89	110.10
1000.00	103.80	119.14	103.45	118.73	104.06	119.40	107.58	113.54	102.90	118.17
1500.00	122.05	137.42	120.14	135.49	120.75	136.12	125.01	131.51	119.45	134.79
2000.00	136.46	151.84	133.21	148.58	133.82	149.20	138.61	145.49	132.45	147.80
2500.00	148.23	163.61	143.84	159.21	144.44	159.83	149.66	156.78	143.03	158.40
3000.00	158.11	173.50	152.74	168.12	153.35	168.74	158.91	166.21	151.91	167.28
3500.00	166.61	182.00	160.39	175.77	161.00	176.39	166.86	174.27	159.54	174.92
4000.00	174.05	189.44	167.08	182.46	167.69	183.08	173.80	181.30	166.22	181.60
4500.00	180.66	196.05	173.02	188.40	173.63	189.02	179.97	187.53	172.15	187.53

Units in cal/mol/K

Table B.3 Summary of Enthalpy of Formation, Entropy and Heat Capacity for Parent Molecules and Corresponding Radicals

SPECIES	$\Delta_f H^0$	So				Ср			
T(K)	298	298	300	400	500	600	800	1000	1500
cdcdo	-16.85	68.70	15.90	19.53	22.78	25.55	29.85	32.91	37.33
cjdcdo	42.91	70.01	15.98	19.18	21.85	24.05	27.34	29.60	32.79
cdcjcdo	43.87	70.00	16.16	19.00	21.48	23.59	26.90	29.31	32.94
cdcejdo	21.53	68.17	16.87	19.87	22.24	24.16	27.12	29.32	32.78
ccdcccdo trans	-27.58	92.29	26.00	31.85	37.31	42.11	49.82	55.55	64.40
ccdcccdo cis	-26.28	76.58	25.58	31.96	37.78	42.80	50.60	56.26	64.86
cjcdcccdo	7.49	90.17	25.89	31.91	37.12	41.5	48.29	53.26	60.91
cejdecedo	28.5	93.90	25.58	30.78	35.69	39.99	46.91	52.05	59.92
ccdcjccdo	29.9	93.99	25.58	30.83	35.72	40.02	46.90	52.01	59.86
ccdccjcdo	-1.83	89.49	23.65	31.55	36.91	41.52	48.74	54.04	62.07
ccdcccjdo	9.38	93.63	25.87	31.13	35.95	40.17	46.91	51.94	59.75
cdcccdo	-20.46	83.76	19.81	24.78	29.26	33.10	39.12	43.55	50.33
cjdcccdo	38.74	84.56	20.66	24.90	28.62	31.79	36.76	40.42	46.01
cdcjccdo	35.83	85.63	20.28	24.47	28.22	31.45	36.53	40.27	45.97
cdccjcdo	5.93	80.13	18.57	25.38	29.57	33.06	38.41	42.28	48.10
cdcccjdo	16.78	84.48	20.38	24.51	28.21	31.37	36.35	40.02	45.72

REFERENCES

- 1. Xavier, N. M.; Rauter, A. P. Synthetic Chemistry. 2008, 343, 1523-1539.
- 2. Wang, B.; Kang, Y. R.; Yang, L. M. J. Molecular Catalysis A: Chemical. 2003, 203, 29-36.
- 3. Bianchini, B.; Cole-Hamilton, D, J,; Liguori, F; Barbaro, P. Heterogenized Homogeneous Catalysts for Fine Chemicals Production. Springer Science. 2010, 204.
- 4. Asatryan, R.; da Silva, G.; Bozzelli, J. W. J. Phys. Chem. A. 2010, 114, 8302-8311.
- 5. Rutz, L.K.; da Silva, G.; Bozzelli, J. W.; Bockhorn, H. J. Phys. Chem. A. 2011, 115, 1018-1026
- 6. Alfassi, Z. B.; Golden, D. M. J. Am. Chem. Soc. 1973, 95:2, 319-323.
- 7. Goldsmith, C. F.; Magoon, G. R.; Green, H. W. Phys. Chem. 2012, 116, 903-905.
- 8. Becke, A. D. Chem. Phys. Lett. 1995, 244, 427-432.
- 9. Glossman, D.M. Molecular Graphics and Modeling. 2006, 25, 455-458.
- 10. Auzmendi, M. I; Bozzelli, J. W. J. Phys. Chem. A. 2012, 116, 7550-7563.
- 11. Hudzik, M. J.; Bozzelli J. W. Thermochemistry and Bond Dissociation Energies of Ketones. The J. Phys. Chem. A. 2012, 116, 5707.
- 12. Quesada, M. M.; Aviles, J. R.; Marquez, A. A.; Partal, F.; Gonzalez, J. J. L. J. Molecular Structure. 2013, 1046, 136-146.
- 13. Kaur, D.; Kaur, P. R.; Kaur, R.J. Molecular Structure: Theochem. 2007, 803, 95-101.
- 14. Bozzelli J. W.; Sheng, C. J. Phys. Chem. 2002, 106(7):1113-1121.
- 15. Clark, A. E.; Davidson, E. R. J. Chem. Phys. 2001, 115, 7382.
- 16. Auzmendi, M. I; Bozzelli, J. W. Thermochemical Properties and Bond Dissociation Energies of C3-C5 Cycloalkyl Hydroperoxides and Peroxy Radicals: Cycloalkyl Radical + ³O₂ Reaction Thermochemistry. PhD Dissertation, New Jersey Institute of Technology, Newark, 2012.
- 17. Luo, Y. R. Handbook of Bond Dissociation Energies in Organic Compounds. N. W., D. C., CRC Press LLC, 2000.
- 18. Denisov, E. T.; Denisova, T. G. CRC Press LLC. 2nd Edition, 2000.
- 19. Moussaoui, Y.; De Maré, R. G. J. Molecular Structure: Theochem. 2009, 904, 43-48.
- 20. Hudzik, M. J.; Bozzelli, J. W. Advances in Phys. Chem. 2013, 673065, 7.
- 21. Furuyama, S.; Golden, D. M.; Benson, S. W. J. Chemical Thermodynamic. 1969, 4, 363-375.

- 22. Wiberg, K.B.; Crocker, L.S., Morgan, K.M.J. Am. Chem. Soc.1991, 113, 3447-3450.
- 23. Sebbar, N.; Bockhorn, H.; Bozzelli, J. W.J. Phys. Chem. 2002, 4, 3691-3703.
- 24. Rutz, L.K.; da Silva,G.; Bozzelli, J., Bockhorn, H.J. Phys. Chem. A. 2011, 115, 1018.
- 25. Wang H.; Frenklach. M. J. Phys. Chem., 1994, 98, 11465-11489.