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ABSTRACT 

INNOVATIVE LOCAL TEXTURE DESCRIPTORS  

WITH APPLICATION TO EYE DETECTION 

by 

Jiayu Gu 

Local Binary Patterns (LBP), which is one of the well-known texture descriptors, has 

broad applications in pattern recognition and computer vision. The attractive properties of 

LBP are its tolerance to illumination variations and its computational simplicity. 

However, LBP only compares a pixel with those in its own neighborhood and encodes 

little information about the relationship of the local texture with the features. This 

dissertation introduces a new Feature Local Binary Patterns (FLBP) texture descriptor 

that can compare a pixel with those in its own neighborhood as well as in other 

neighborhoods and encodes the information of both local texture and features. The 

features encoded in FLBP are broadly defined, such as edges, Gabor wavelet features, 

and color features. Specifically, a binary image is first derived by extracting feature 

pixels from a given image, and then a distance vector field is obtained by computing the 

distance vector between each pixel and its nearest feature pixel defined in the binary 

image. Based on the distance vector field and the FLBP parameters, the FLBP 

representation of the given image is derived. The feasibility of the proposed FLBP is 

demonstrated on eye detection using the BioID and the FERET databases. Experimental 

results show that the FLBP method significantly improves upon the LBP method in terms 

of both the eye detection rate and the eye center localization accuracy. 

 As LBP is sensitive to noise especially in near-uniform image regions, Local 

Ternary Patterns (LTP) was proposed to address this problem by extending LBP to three-



 

 

valued codes. However, further research reveals that both LTP and LBP achieve similar 

results for face and facial expression recognition, while LTP has a higher computational 

cost than LBP. To improve upon LTP, this dissertation introduces another new local 

texture descriptor: Local Quaternary Patterns (LQP) and its extension, Feature Local 

Quaternary Patterns (FLQP). LQP encodes four relationships of local texture, and 

therefore, it includes more information of local texture than the LBP and the LTP. FLQP, 

which encodes both local and feature information, is expected to perform even better than 

LQP for texture description and pattern analysis. The LQP and FLQP are applied to eye 

detection on the BioID database. Experimental results show that both FLQP and LQP 

achieve better eye detection performance than FLTP, LTP, FLBP and LBP. The FLQP 

method achieves the highest eye detection rate.
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CHAPTER 1  

INTRODUCTION 

1.1 Feature Local Binary Patterns 

The Local Binary Patterns (LBP) method, which defines a gray-scale invariant texture 

description by comparing a center pixel with its neighbors, is a popular method for 

texture analysis (Ojala et al., 1994), (Ojala et al., 1996), (Ojala et al., 2002). At an earlier 

stage for texture analysis, the concept of texture unit and texture spectrum was introduced 

(L. Wang and He, 1990). A texture unit of a pixel is represented by eight elements, which 

correspond to the eight neighbors in a 3 × 3 neighborhood with three possible values: 0, 

1, 2. The three values represent three possible relationships between the center pixel and 

its neighbors: “less than”, “equal to”, or “greater than”. As a result, there are 6561 (3
8
) 

possible texture units in total. A texture spectrum of a region is defined by the histogram 

of the texture units over the region. However, the large number of possible texture units 

poses a computational challenge. To reduce the computational burden, a method that 

applies two relationships: “less than” or “greater than or equal to” that are represented by 

two possible values: 0 or 1 is proposed (Gong et al., 1992), (Ojala et al., 1994). The two 

relationships method thus reduces the total number of texture units from 6561 to 256 (2
8
), 

which can be represented by eight binary numbers. The two relationship version of 

texture units is named as local binary patterns or LBP (Ojala et al., 1994). 

The LBP method has been applied in many pattern recognition tasks. However, 

LBP has two problems. First, LBP only compares a pixel with the pixels in its own 

neighborhood. More information could be revealed if a pixel compares with the pixels in 

other neighborhoods. Second, LBP encodes a little information about the relationship
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 of local texture with the features, such as edges, peaks and valleys. To solve these two 

problems, this dissertation proposes a new Feature Local Binary Patterns (FLBP) texture 

descriptor that compares a pixel with the pixels in its own neighborhood as well as in 

other neighborhoods, and encodes the information of both local texture and features. The 

features encoded in FLBP are broadly defined by any features which meet the 

requirements of specific applications, such as the edges, the intensity peaks or valleys, the 

Gabor wavelet features (Liu and Wechsler, 2002), (Liu, 2004) and the color features (Z. 

Liu and C. Liu, 2008a), (Z. Liu and C. Liu, 2008b), (Yang and Liu, 2007), (Yang and 

Liu, 2008). As the FLBP method encodes both local and feature information, the 

performance of FLBP depends on the extraction of the feature pixels. To improve FLBP 

performance, a new feature pixel extraction method, the LBP with Relative Biased 

Threshold (LRBT) method is present in this dissertation. 

The FLBP is applied to eye detection using the BioID and FERET databases. The 

experimental results show that: 

1. The FLBP method significantly improves upon the LBP method in terms of both 

eye detection rate and eye center localization accuracy. 

2. The new LRBT feature pixel extraction method helps improve the FLBP eye 

detection performance when compared with other feature pixel extraction 

methods. 

3. The FLBP method displays superior representational power and flexibility to the 

LBP method due to the introduction of feature pixels as well as its parameters. 

4. In comparison with the state of the art methods, the FLBP method achieves the 

highest accuracy of eye center localization. 

 

1.2 Local Quaternary Patterns and Feature Local Quaternary Patterns 

Tan and Triggs (2007, 2010) argued that LBP tends to be sensitive to noise, especially in 

near-uniform image regions, because it thresholds exactly at the value of the central 
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pixel.  To solve the problem, they proposed three-valued codes, called Local Ternary 

Patterns (LTP). In LTP, neighbor pixels are compared with an interval [-r, +r] around the 

value of the center pixel. A neighbor pixel is assigned 1, 0 or -1, if its value is above +r, 

in the interval [-r, +r] or below –r, respectively. Because the radius r is not changed with 

the gray scale, the LTP is no longer a strictly gray-scale invariant texture description, and 

is less tolerance against illumination than LBP. Similar to the text unit method, LTP has 

6561 possible values as well, which not only poses a computational challenge but also 

leads to sparse histograms. To solve these problems, a coding scheme is introduced to 

split a LTP code into two binary codes, the positive one (PLTP) and the negative one 

(NLTP). Therefore, the total number of possible values of two split binary codes is 

reduced to 512. LTP doubles the size of feature dimensions and histograms. Some of 

experiments show that LTP and LBP achieved similar results for face and facial 

expression recognition, although LTP has a higher computational cost than LBP (Tan & 

Triggs, 2007, 2010), (Gritti, 2008). 

To improve the performance of LTP, this dissertation proposes another new local 

texture descriptor, Local Quaternary Patterns (LQP) and its extension, Feature Local 

Quaternary Patterns (FLQP). LQP encodes four relationships of local texture, and 

therefore, it includes more information of local texture than the LBP and LTP which 

encodes two, and three relationships, respectively. LQP has 65535 (4
8
) possible values. 

To reduce the size of feature dimensions and histograms of LQP, a coding scheme is 

introduced to split each LQP code into two binary codes, the upper LQP (ULQP) and the 

lower LQP (LLQP). After splitting, the possible LQP values are reduced to 512. FLQP is 

the extension of LQP using the same approach of FLBP. FLQP can compare a pixel with 
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the pixels in its own neighborhood as well as in other neighborhoods, and encodes the 

information of both local texture and features. FLQP also has 65535 possible values. To 

reduce the size of feature dimensions and histograms, an FLQP code can be split into two 

binary codes as well, the upper FLQP (UFLQP) and the lower FLQP (LFLQP).  

To demonstrate their feasibility, the proposed LQP and FLQP methods are 

applied to eye detection on the BioID database. Experimental results show that both 

FLQP and LQP achieve better eye detection performance than Feature Local Ternary 

Patterns (FLTP), LTP, FLBP and LBP. The FLQP method achieves the highest eye 

detection rates. 

1.3 Overview of Dissertation 

The remaining part of the dissertation is organized as follows. Chapter 2 first reviews the 

origin, applications and extensions of LBP, and then discusses the objective, performance 

and extensions of LTP. Last the chapter reviews the recent works and techniques for eye 

detection. Chapter 3 reviews the definitions of LBP, distance transform and distance 

vector, and then introduces FLBP. The three special cases of FLBP which are LBP, 

FLBP1 and FLBP2 are also descripts in the chapter. Chapter 4 first reviews the LTP and 

its code schema, and then introduces the LQP and it extension, FLQP. The new code 

schemas to reduce the dimension of LQP and FLQP are presented in the chapter. Chapter 

5 descripts the application of FLBP and FLQP to eye detection. A new feature pixel 

extraction method, LBP with Relative Biased Threshold (LRBT) is introduced. The 

system architecture of the FLBP-based and FLQP-based eye detection method is 

descripted. A fast algorithm that is used to computer FLBP histogram and similarity is 

explained. The FLBP application on gradient images is discussed. Chapter 6 discusses the 
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experimental results of FLBP-based eye detection method. In chapter 6 the performance 

of the FLBP method is compared with the LBP method, and the methods using other 

local texture descriptors. The performance of the FLBP method in terms of feature pixels 

and parameters is assessed. An enhanced eye detection method is introduced and its 

performance is compared with other state of the art eye detection methods. Chapter 7 

discusses the experimental results of LQP-based and FLQP-based eye detection methods. 

First the performance of LQP-based and FLQP-based methods is assessed, and then the 

performance of LTP-Based and FLTP-based method is assessed. Last the performance of 

the LBP, FLBP, LTP, FLTP, LQP and FLQP eye detection methods is comparatively 

assessed. Chapter 8 summarizes the dissertation and discusses the future work. 
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CHAPTER 2  

BACKGROUND 

2.1 Local Binary Patterns 

The local binary pattern (LBP) was originally designed for texture description (Ojala et 

al., 1994), (Ojala et al., 1996), (Ojala et al., 2002). LBP assigns a label to every pixel of 

an image by compared with its eight neighbors in a 3 x 3 neighborhood. Two possible 

values: 0 or 1 is assigned to each neighbor whose value is “less than” or “greater than or 

equal to” the value of the center pixel, respectively. For each given pixel, a binary LBP 

code is obtained by concatenating the binary values of its eight neighbors in the 3 x 3 

neighborhood. The corresponding decimal value of the binary code is used to label the 

given pixel. As a result, there are 256 (2
8
) possible value in total. The most important 

properties of the LBP operator are its tolerance against illumination and computational 

simplicity, which makes it possible to analyze images in real-world in real-time.  

The LBP has been widely applied in many applications. Face recognition is one of 

the most popular and successful applications in recent years. Ahonen et al. (2004, 2006) 

presented a facial image representation based on local binary pattern (LBP). The face 

image is divided into several local regions from which the local LBP histograms are 

extracted, and then concatenated them into a feature vector to be used as a face 

descriptor. The performance of the proposed method was assessed in the face recognition 

problem. The weighted Chi square distance and nearest neighbor (NN) classifier are used 

as similarity measure between corresponding LBP histograms of two face images. Their
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 method was tested on the FERET database and yields the recognition rates of 97%, 79%, 

66% and 64% on the fb, fc, dup I and dup II sets, respectively. The experimental results 

showed that their approach outperforms the PCA, the elastic bunch graph matching 

(EBGM), and the Bayesian intra- and extra-personal classifier. G. Zhang et al. (2004) 

presented an approach for face recognition by boosting statistical local features based 

classifiers. The face image is scanned with a scalable sub-window from which the LBP 

histograms are obtained to describe the local features of a face image. The AdaBoost 

algorithm is used to learn a similarity of every face image pairs. The proposed method 

was tested on the fb set of FERET database. W. Zhang et al. (2005a) proposed a local 

Gabor binary pattern histogram sequence (LGBPHS) for face recognition. In their 

approach, a face image is modeled by concatenating the histograms of all the local 

regions of all the local Gabor magnitude binary pattern maps. For recognition, histogram 

intersection is used to measure the similarity of different LGBPHSs and the nearest 

neighborhood is exploited for final classification. They further proposed to assign 

different weights for each histogram piece when measuring two LGBPHSs. The proposed 

method was tested on the AR and FERET face databases. W. Zhang et al. (2005b) 

proposed Multi-resolution Histograms of Local Variation Patterns (MHLVP) to 

recognize faces. For a face image, multiple Gabor feature maps (GFM) are computed by 

convolving the image with the multi-scale and multi-orientation Gabor filters. Each GFM 

is then divided into small non-overlapped regions from which LBP histograms are 

extracted and concatenated into a feature histogram for GFM. Moreover, the feature 

histograms extracted from all GFM are concatenated into a single feature histogram as 

the final facial representation of the given face image. Histogram intersection is used as 
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the similarity matching between the histograms of two face images. Their method is 

tested on the fb, fc, dup I and dup II sets of FERET database. J. Zhao et al. (2005) 

presented a LBP based Kernel Fisher Discriminant Analysis (KFDA) approach by 

integrating the LBP descriptor of face images and the KFDA method for face classifier. 

They introduced the kernel function by using Chi square statistic distance and RBF as 

inner product for KFDA classifier. They tested their method on the FRGC database. 

Hadid et al. (2006a. 2007) introduced VLBP to extract and use the local facial dynamics 

for a spatio-temporal face recognition from video. AdaBoost was applied to learn the 

specific facial dynamics of each person, while ignoring intrapersonal temporal 

information, such as facial expressions. Yao et al. (2007) used Local Gabor Binary 

Pattern Histogram (LGBPH) features for face representation, and adopts RankBoost to 

select the most discriminative features for face recognition. Their approach was tested on 

the FERET databases. Chan et al. (2007) proposed a discriminative face representation 

derived by the Linear Discriminant Analysis (LDA) of multi-scale local binary pattern 

histograms for face recognition. The face image is first partitioned into several non-

overlapping regions. In each region, multi-scale local binary uniform pattern histograms 

are extracted and concatenated into a regional feature. The features are then projected on 

the LDA space to be used as a discriminative facial descriptor. The method is tested on 

the FERET and XM2VTS databases. Li et al. (2006, 2007) and D. Huang (2007) applied 

LBP to near-IR (NIR) facial images for face recognition. LBP feature has also be applied 

to 3-D face recognition (Li et al, 2005), (X. Huang et al, 2006), (Nanni and Lumini, 

2007). Yang and Wang (2007) presented a LBP-based face recognition method with 

Hamming distance constraint. By assuming that the illumination, pose or expression 
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changes of a face image are some kinds of "noise", they introduced the Hamming 

distance in channel coding to LBP so as to decrease the error rate caused by these noise 

disturbances. Experimental results on FRGC show that their method improves the 

recognition performance than the traditional LBP-based face recognition methods when 

face images are under uncontrolled circumstances. W. Zhang et al. (2008) argued that 

Gabor phases are also useful for face recognition by applying LBP on Gabor phases face 

image. Their experimental results show that the Gabor phases are quite compensatory to 

the magnitude information, since higher classification accuracy is achieved by combining 

Gabor phases and magnitudes. Lei et al. (2008) presented a face representation and 

recognition approach. The face image is first decomposed by multi-scale and multi-

orientation Gabor filters. The Gabor magnitude responses are reformulated as a 3rd-order 

volume and then apply LBP analysis on three orthogonal planes of the Gabor volume, 

named GV-LBPTOP.  Further, a computationally effective version, E-GV-LBP, is 

proposed to depict the neighboring changes in spatial, frequency and orientation domains 

simultaneously. Z. Liu and C. Liu (2010) presented a novel face recognition method by 

means of fusing color, local spatial and global frequency information. Specifically, the 

proposed method fuses the multiple features derived from a hybrid color space, the Gabor 

image representation, the local binary patterns (LBP), and the discrete cosine transform 

(DCT) of the input image. First, a hybrid color space, the RCrQ color space, is 

constructed by combining the R component image of the RGB color space and the 

chromatic component images, Cr and Q, of the YCbCr and YIQ color spaces, 

respectively. Second, three effective image encoding methods are proposed for the 

component images in the RCrQ hybrid color space to extract features: (i) a patch-based 
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Gabor image representation for the R component image, (ii) a multi-resolution LBP 

feature fusion scheme for the Cr component image, and (iii) a component-based DCT 

multiple face encoding for the Q component image. Experiments on the FRGC database 

show that the proposed method improves face recognition performance significantly. 

LBP has also been used for face detection. Hadid et al. (2004) proposed a face 

detection method that is based on LBP and consists of dividing the facial image into a set 

of regions from which LBP feature histograms are computed and concatenated into a 

single histogram. The approach uses a second degree polynomial kernel SVM for 

classification. They tested their method on the MIT-CMU database. H. Zhang and D. 

Zhao (2004) presented a face detection approach in color images using LBP. First, five 

measurements, Y, R, G, B, and θ, in the RGB and YUV color space are extracted from the 

original images. LBP spatial histograms are calculated on the five color measurements. 

Based on the spatial histogram representation, discriminating features are extracted for 

face detection. A hierarchical classifier combining histogram matching algorithm and 

support vector machine is utilized to identify face and non-face. Hadid et al. (2006b) 

proposed an approach which combines the advantages of both color and gray scale based 

methods to detect faces in natural and unconstrained environments. Their method first 

preprocesses the images using skin modeling in order to determine the potential skin 

regions. Thus, a scanning of the whole image when searching for faces is avoided. Then, 

they apply an exhaustive search in and around the detected skin regions using a gray 

scale based approach. The experimental results show that the proposed approach inherits 

the speed from the color based methods and the efficiency from the gray scale based 

ones. Jin et al. (2006) presented a face detection approach using improved local binary 
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patterns (ILBP) as facial representation. ILBP feature is an improvement of LBP feature 

that considers both local shape and texture information instead of raw grayscale 

information. They model the face and non-face class using multivariable Gaussian model 

and classify them under Bayesian framework. They tested their method on The Yale B 

and MIT-CMU database. L. Zhang et al. (2007) presented Multi-block Local Binary 

Patterns (MB-LBP) for face detection. Based on the MB-LBP features, a boosting-based 

learning method is developed to achieve the goal of face detection. Their experiments 

show the weak classifiers based on MB-LBP are more discriminative than Haar-like 

features and original LBP features. Pan et al. (2013) proposed heterogeneous feature 

descriptors for face detection. A face is represented by the Generalized Haar-like (GH) 

descriptor, Multi-Block Local Binary Patterns (MB-LBP) descriptor and Speeded-Up 

Robust Features (SURF) descriptor. The approach uses Adaboost leaning algorithm for 

classification. 

Another application of LBP is Facial expression analysis. Feng et al. (2004a, 

2004b) introduced a coarse-to-fine classification scheme to recognize facial expressions 

with the LBP histogram as face representation. In the coarse stage, the seven class 

problem is reduced to a two-class one. In the fine classification stage, a K-nearest 

neighbor classifier fulfills final classification. The method is tested on the JAFFE 

database. Feng et al. (2005) proposed an approach to recognize facial expression. The 

LBP are used to represent the facial images. The linear programming (LP) technique is 

adopted to classify seven facial expressions. He et al. (2005) applied LBP on four kinds 

of frequency images decomposed by Gabor wavelets for facial expression recognition. 

Their experiments show that their approach improves the performance of facial 
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expression recognition. Liao et al. (2006) proposed facial expression recognition 

approach based on texture features and global appearance features. The first feature set is 

obtained by using the extended local binary patterns in both intensity and gradient maps 

and computing the Tsallis entropy of the Gabor filtered responses. The second set of 

features is obtained by performing null-space based linear discriminant analysis on the 

training face images. The proposed method is evaluated on the JAFFE database. G. Zhao 

et al. (2007a) proposed an approach for recognizing dynamic textures and its 

simplifications and extensions to facial image analysis. The textures are modeled with 

volume local binary patterns (VLBP), which are an extension of the LBP operator. To 

make the approach computationally simple, LBP-TOP is then considered. A block-based 

method is also proposed to deal with specific dynamic events, such as facial expressions. 

A recognition rate of 96.26% was achieved on the Cohn–Kanade database. Cao and Tong 

(2008) proposed a method to combine LBP and embedded hidden markov model 

(EHMM) for facial expression recognition. Shan et al. (2005a, 2005b, 2005c, 2008 and 

2009) empirically evaluated facial representation using LBP for facial expression 

recognition. Different machine learning methods are systematically examined on several 

databases. The results show that LBP features are efficient for facial expression 

recognition. They further formulated Boosted-LBP to extract the most discriminant LBP 

features, and the best recognition performance is obtained by using SVM classifiers with 

Boosted-LBP features. They investigated LBP features for low-resolution facial 

expression recognition. Their experiments show that LBP features perform stably and 

robustly over a useful range of low resolutions of face images, and yield promising 

performance in compressed low-resolution video sequences captured in real-world 
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environments. Moore and Bowden (2011) investigated the effects of pose on facial 

expression recognition using LBP and some extensions including multi-scale LBP 

(LBP
ms

) and local gabor binary patterns (LGBP) on BU3DFE and multi-pie database. 

Results in their paper show that LGBPs outperform other features. 

In addition to facial image analysis, LBP has been exploited in other applications. 

Banerji et al. (2011, 2013) proposed a new color multi-mask LBP for texture and scene 

classification. They further proposed a novel Three Dimensional Local Binary Patterns 

(3D-LBP) feature for color image. The proposed new LBP features combining with other 

features achieve better classification performance than other popular image descriptors. 

Sinha et al. (2012) proposed novel color Gabor-LBP-PHOG (GLP) descriptors for object 

and scene image classification. X. Nanni and Lumini (2008) presented an approach for 

pedestrian detection. They designed an ensemble of classifiers that employ LBP, 

Laplacian EigenMaps, and Gabor filters feature representation schemes of the pedestrian 

images. X. Wang et al. (2009) propose a human detection approach capable of handling 

partial occlusion by combining Histograms of Oriented Gradients (HOG) and LBP as the 

features. Liao et al. (2009) proposes an approach for texture classification using dominant 

local binary patterns (DLBP). Heikkilä and Pietikäinen (2006) presented a texture-based 

method for modeling the background and detecting moving objects from a video 

sequence. Each pixel is modeled as a group of LBP histograms that are calculated over a 

circular region around the pixel. Turtinen et al. (2006) studied the combined use of LBP 

texture features and the Isomap dimensionality reduction method for analyzing trans-

illuminated paper textures. Oliver (2007) et al. (2007) proposed an approach for false 

positive reduction in the field of mammographic mass detection using LBP. Yuan et al. 
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(2011) proposed an image retrieval system based on bag-of-features (BoF) model by 

integrating scale invariant feature transform (SIFT) and LBP. 

Many extensions of the original LBP have been proposed to improve the 

performance. Jin et al. (2006) argued that the original LBP might not include all the local 

structure information as the central pixel is not considered in the LBP coding. They 

presented an improved LBP (ILBP) for face detection, which compares all the pixels 

including the center pixel in a 3 × 3 neighborhood with the mean of the pixels in the same 

neighborhood. As a result, the ILBP can represent 511 patterns (29-1, as all zeros and all 

ones are the same). The extended local binary pattern (ELBP) (X. Huang, 2006), (D. 

Huang, 2007) is presented to not only compare the central pixel with its neighbors, but 

also encode their gray-value differences (GDs). The ELBP consists of several LBP codes 

at multiple layers. The first layer of ELBP is actually the original LBP code that encodes 

the sign of GD. The following layers of ELBP encode the absolute value of GD. Each 

absolute GD value is first encoded in its binary representation, and then all the binary 

values at a given layer form an additional LBP. Modify Local Binary Pattern (MLBP) 

(Pham-Ngo and Jo, 2006) is introduced for face detection by adding a set of spatial 

templates. Instead of comparing with each pixel of its neighborhood, the central pixel 

compares with two pixels in the neighborhood which are paired according to the spatial 

templates. Eight main spatial templates are defined in MLBP. Each of the spatial 

templates corresponds to one binary digit. If the value of center pixel is greater than the 

values of both pixels in a pair, their corresponding binary digit is assigned to 1, otherwise 

0. A Multi-Block LBP (MB-LBP) is introduced for face recognition (Liao and Li, 2007) 

and face detection (L. Zhang et al, 2007). MB-LBP compares the average intensity of the 
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central sub-region with its neighboring sub-regions. The original LBP can be regarded as 

a special case of the MB-LBP, where the central and neighboring sub-regions contain 

only one pixel. The neighboring pixels in the original LBP are defined on a circle. An 

Elongated LBP (Liao and Chung, 2007) with neighboring pixels lying on an ellipse is 

introduced for face recognition. The experimental results demonstrate that the Elongated 

LBP outperforms the original LBP for face recognition. Fu and Wei (2008) introduced 

the Centralized Binary Patterns (CBP). CBP compares two neighbor pixels at the same 

diameter of the circle, and also compares the central pixel with the mean of all the pixels 

(including the central pixel) in the neighborhood. CBP needs only five binary digits 

which represent the relationships of four pairs of the neighbor pixels on the same 

diameter and the central pixel with the mean of all the pixels. The experiments for facial 

expression recognition show that CBP has better performance than LBP although it 

includes less relationships of local texture. Guo et al. (2010) proposed a complete LBP 

(CLBP) which is similar to ELBP. Unlike the binary bit coding schema used by ELBP, 

CLBP compares the absolute value of GD with the given central pixel again to generate 

an LBP code. B. Zhang and Gao (2010) introduced Local Derivative Pattern (LDP). LDP 

is a general framework to encode directional pattern features based on local derivative 

variations. Murala and Maheshwari (2012) introduced local tetra patterns (LTrP). LTrP 

encodes the relationship between the center pixel and its neighbors, based on the 

directions that are calculated using the first-order derivatives in vertical and horizontal 

directions. 
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2.2 Local Ternary Patterns 

Tan and Triggs (2007, 2010) argued that LBP tends to be sensitive to noise, especially in 

near-uniform image regions. They introduced the three-valued code, LTP to solve the 

problem. In LTP, neighbor pixels are compared with an interval [-r, +r] around the value 

of the center pixel. A neighbor pixel is assigned 1, 0 or -1, if its value is above +r, in the 

interval [-r, +r] or below –r, respectively. LTP has 6561 (3
8)

 possible values which not 

only poses a computational challenge but also leads to sparse histograms. To solve these 

problems, a coding scheme is introduced to split a LTP code into two binary codes, the 

positive one (PLTP) and the negative one (NLTP). Therefore, the total number of 

possible values of two split binary codes is reduced to 512. 

They compared the performance of LBP and LTP on face recognition using 

different image preprocessing methods. Their results show that LTP yields best results 

using their proposed preprocessing method. However, their experiments also shows that 

the LBP archives better results than LTP using some other competing preprocessing 

methods. Gritti et al. (2008) compared the performance of different local texture features, 

including LBP and LTP for facial expression recognition. Their results show that LBP 

archived the best overall performance.  

The performance of LTP depends on r, the radius of the interval around the value 

of the central pixel. It is a challenging task to find a best r. Akhloufi and Bendada (2010) 

proposed the Local Adaptive Ternary Pattern (LATP). LATP computes r using the mean 

and the standard deviation of the local region. The results show LATP performs better 

than LTP in face recognition. Liao et al. (2010) proposed the Scale Invariant Local 

Ternary Pattern (SILTP). In SILTP r is determined by the value of center pixel and is 
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grey scale invariant. The results show that SILTP is effective for handling illumination 

variations. 

2.3 Eye Detection 

Eye detection, an example of facial landmark detection, plays an important role in 

designing an automatic face recognition system. Eyes have some unique geometric and 

photometric characteristics, which provide important and reliable information for their 

localization. Even though a lot of research has been carried out and some progress has 

been reported, eye detection remains a challenging research topic due to the difficult 

factors caused by occlusion, closed eye, illumination variation, eye size and orientations, 

etc. Three major types of approaches for eye detection are template-based, distinctive 

feature-based and photometric appearance-based approaches.  

The template-based method usually constitutes two components: a geometric eye 

model and a similarity measure. The geometric eye models are constructed from either 

the local point features of the eye and face region or from their contours. In template-base 

method, different segments of an input image are compared with those in the template, 

usually using a similarity measure to evaluate the similarity of the counterpart. Yuille et 

al. (1992) proposed a deformable template for face features, where an eye is described by 

a parameterized template. Specifically, an energy function is first defined to link the 

edges, peaks, and valleys in an image to the properties of the template. The template then 

interacts dynamically with the image by altering its parameter values to minimize the 

energy function, and by doing so deforms itself for the best fit. However, this method is 

not only time consuming, but critically relies on the initial position of the template. If the 

initial position of the template is above the eyebrow, for example, the method fails to 
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detect the eye. Lam and Yan (1996) extend Yuille’s method for extracting eye features by 

using corner locations inside the eye windows as initialization points. The detected eye 

corners are used to reduce the number of iterations in the optimization of the deformable 

template. Further improvement of the method by applying some eye features in the 

initialization stage was also reported by Xie et al. (1994), L. Zhang (1996), Kampmann 

and Zhang (1998). 

The common features in the distinctive feature-based approaches include edge, 

intensity of iris, as well as color distribution. Feng and Yuen (1998, 2001) described an 

eye model that consists of six landmarks corresponding to the eye corner points, which 

are located based on a variance projection function or VPF. Zhou and Geng (2004) 

extended the VPF to a generalized projection function (GPF). Their experiments show 

that the hybrid projection function, which is a special case of GPF, is better than VPF, 

while VPF is better than the integral projection function. Kawato et al. (2000, 2002) 

proposed a method that extracts the center point between the two eyes. Based on the 

observation that the between-eye area is dark on its left and right (eyes and eyebrows) 

and bright on the upper side (forehead) and the lower side (nose bridge), they proposed a 

circle-frequency filter to locate the candidate points. Sirohey et al. (2001, 2002) presented 

methods for eye detection using linear and non-linear filters. The linear filter contains the 

Gabor wavelets with four orientations for detecting the edges of an eye’s sclera, and a 

Gaussian filter for detecting the dark circle of the iris. The nonlinear filter is used to 

detect the left and right corners of an eye in a color image. Kawaguchi and Rizon (2003) 

proposed a method for locating the iris of an eye using both intensity and edge 

information. Other methods (Wu and Zhou, 2003), (Han et al. 2002) first extract the 
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intensity valleys as the potential eye-analogue segments. A pair of eye-analogue 

segments is then detected as eyes if its placement is most consistent with the 

anthropological characteristic of human eyes. Khosravi and Safabakhsh (2008) proposed 

an approach that uses a morphological method for extracting an eye strip, where the iris is 

located through template matching by means of an adaptive half circle template. 

 The photometric appearance-based approaches usually collect a large amount of 

training data representing the eyes of different subjects, with different face orientations 

and under different illumination conditions. A classifier or regression model is then 

constructed for eye detection. The Eigen analysis has been applied in eye detection 

(Pentland et al., 1994), (Ryu and Oh, 2001), (W. Huang and Mariani, 2000), (Hillman et 

al., 2003). Pentland et al. (1994) extended the eigenfaces technique to the description and 

coding of facial features, yielding eigeneyes, eigennoses, and eigenmouths. Asteriadis et 

al. (2009) proposed a method for detecting eye and mouth using distance vector field. 

Recently, Chen and Liu (2010 presented an eye detection method using color information 

and wavelet features together with a new efficient Support Vector Machine (eSVM) 
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CHAPTER 3  

FEATURE LOCAL BINARY PATTERNS 

 

The proposed Feature Local Binary Patterns (FLBP) encodes the information of both 

local texture and features. The features are broadly defined by any features which meet 

the requirements of specific applications, such as the edges, the intensity peaks or valleys, 

the Gabor wavelet features, the color features. This chapter first reviews LBP, the 

concepts of the distance transform and distance vector, and then presents FLBP. 

3.1 Local Binary Patterns 

Local binary patterns, or LBP, define a gray-scale invariant texture description by 

comparing a center pixel which is used as a threshold with those pixels in its local 

neighborhood (Ojala et al. 1994, 1996, 2002).  Specifically, for a 3 × 3 neighborhood of a 

pixel p = [x, y]
t, each neighbor is labeled by a number from 0 to 7 as shown in Figure 3.1. 

The neighbors of the pixel p thus may be defined as follows: 

 

 (   )          
                   (3.1) 

 

where i is the number used to label the neighbor. The value of the LBP code of the pixel 

p is calculated as follows: 
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where G(p) and G[N(p, i)] are the gray level of the pixel p and its neighbor N(p, i), 

respectively. S is a threshold function that is defined as follows: 

 

 (     )    {
                                
                                

  (3.3) 

 

  

Figure 3.1 The 3 × 3 neighborhood of a pixel p and the label of its neighbors. 

 

LBP can achieve gray-scale invariance because only the signs of the differences 

between the center pixel and its neighbors rather than their exact values are used to define 

the LBP code. Figure 3.2 shows an example of computing the LBP code. The left 3 × 3 

matrix displays a neighborhood of a center pixel whose gray level is 4. After 

thresholding, the right 3 × 3 matrix reveals the signs of the differences between the center 

pixel and its neighbors. The binary LBP code is 11010011, which corresponds to 211 in 

decimal. 

 

 

Figure 3.2 An example of the LBP computation. 

 



22 

 

 

 

3.2 Distance Transform and Distance Vector 

The features in FLBP are broadly defined. Different features could be used by different 

pattern recognition tasks. For a certain type of features, many feature pixels can be 

extracted from an image. FLBP uses distance transform and distance vector to locate a 

feature pixel for an image pixel.  

 A Feature extracted from an image can be represented by a binary image. In a 

binary image, each pixel assumes one of two discrete values: 0 or 1. While pixels of 

value 0 are called the background pixels, pixels of 1 are called feature pixels. For a given 

metric δ, the distance transform of an image is an assignment to each pixel p of the 

distance between p and the nearest feature pixel q: 

 

 ( )   (   ) (3.4) 

 

         
     

 (   ) (3.5) 

 

 

where F is the set of all feature pixels of the binary image, and the distance map D is 

called the distance transform. Since the Euclidean distance is widely used in many image 

applications, several algorithms with linear time complexity have been developed for the 

fast computation of the Euclidean distance transform (Maurer et al., 2011), (Costa,  

2008). One shortcoming of the distance transform is that it does not contain the exact 

location of the nearest feature pixels. To overcome this shortcoming, a new concept of 

Distance Vector Field (DVF) is presented by assigning to each pixel p of a vector dv 
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which points to its nearest feature point q (Danielson, 1980). Specifically, for a given 

distance metric δ, the DVF of an image may be defined as follows: 

 

  ( )      (3.6) 

 

Figure 3.3 shows an example of a binary image, its Distance Vector Field (DVF), 

and the Euclidean distance transform. Note that the upper left pixel has coordinates (1, 1) 

in a Cartesian coordinate system with a horizontal axis pointing to the right and a vertical 

axis pointing downwards. In particular, the binary image in Figure 3.3(a) has only one 

feature pixel at the location (2, 2). Figure 3.3(b) displays the DVF where the numbers are 

derived using Equation 3.6, and Figure 3.3(c) shows the Euclidean distance transform 

where the numbers are calculated using Equations 3.4 and 3.5. 

 

     
 

                         (a)                                        (b)                                       (c)                  

Figure 3.3 (a) An example of a binary image. (b) The Distance Vector Field (DVF). (c) 

The Euclidean distance transform. 

 

3.3 Feature Local Binary Patterns — the General Form (FLBP) 

In order to define the general form of FLBP, the concepts of True Center (TC) and 

Virtual Center (VC) are introduced as follows: 

Definition 1: True Center (TC) is the center pixel of a given neighborhood. 
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Definition 2: Virtual Center (VC) is a pixel used to replace the center pixel of a given 

neighborhood. 

Let p and q represent a pixel and its nearest feature pixel, respectively. Let dv be 

the distance vector pointing from p to q as defined by Equation 3.6. Note that dv is used 

to replace dv(p) for simplicity. Let Ct(p) and Cv(p) be the TC and VC of p, respectively. 

The TC, which may be any pixel on the path from p to q, is defined as follows: 

 

  ( )           (3.7) 

 

where          is a parameter that controls the location of the TC. When αt = 0, the TC 

is p; when αt = 1, the TC is q; and when 0 < αt < 1, the TC is a pixel on the path between 

p and q. Similarly, the VC, which may be any pixel on the path from p to q as well, is 

defined as follows: 

 

  ( )           (3.8) 

 

where          is a parameter that controls the location of the VC. When αv = 0, the 

VC is p; when αv = 1, the VC is q; and when 0 < αv < 1, the VC is a pixel on the path 

between p and q. 

 The general form of FLBP is defined as follows: 

 

    ( )  ∑        (  ( )  )       ( )   

 

   

 (3.9) 
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where N(Ct(p), i) represents the neighbors of the TC. G[Cv(p)] and G[N(Ct(p), i)] are the 

gray levels of the VC and the neighbors of the TC, respectively. S is a threshold function. 

Equation 3.3 provides one definition of the function. Another definition of the threshold 

function introduces a fixed bias b (Kumar, 2009): 

 

 (     )    {
                         
                              

 (3.10) 

 

To increase flexibility, this dissertation introduces a threshold function using a relative 

bias: 

 

 (     )    {
              (    )   
                            

 (3.11) 

 

where β is a parameter that controls the contribution of xc to the bias.  

 

             
 

                                (a)                     (b)                     (c)                     (d)  

Figure 3.4 (a) A 3 × 3 image. (b) The LBP thresholding result using a fixed bias (b = 4) 

threshold function. (c) The LBP thresholding result using a relative bias (β = 0.1) 

threshold function. (d) The LBP thresholding result using a relative bias (β = 0.3) 

threshold function. 

 

 

 Figure 3.4 shows the different LBP thresholding results when different threshold 

functions are applied. In particular, Figure 3.4(a) displays a 3 × 3 image, and Figure 
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3.4(b), (c), and (d) exhibit the LBP thresholding results using a fixed bias (b = 4) 

threshold function (Equation 3.10), a relative bias (β = 0.1) threshold function (Equation 

3.11), and a relative bias (β = 0.3) threshold function (Equation 3.11), respectively. 

 Next is an example of the computation of FLBP code. Figure 3.5(a) shows a 

grayscale image. The upper left pixel is assumed at location (1, 1) in a Cartesian 

coordinate system with a horizontal axis pointing to the right and a vertical axis pointing 

downwards. As discussed before, the feature pixels in FLBP are broadly defined. In this 

example, for simplicity, the pixel at the coordinates (6, 6) is randomly picked as the only 

feature pixel. The corresponding binary feature image of Figure 3.5(a) is shown in Figure 

3.5(b). Because the pixel at the coordinates (6, 6) in Figure 3.5(a) is the only pixel, the 

pixel becomes the only feature pixel in the binary image shown in Figure 3.5(b). Not 

surprisingly this feature pixel becomes the nearest one for all the pixels in Figure 3.5(a).  

      

                                        (a)                                                         (b) 

Figure 3.5 (a) A grayscale image used in the examples of FLBP computation. (b) The 

binary feature image derived by extracting feature pixel from Figure 5(a). 

 

Figure 3.5(a) shows the computation of the FLBP code of the pixel p at 

coordinates (2, 2). First, the dv pointing from p to its nearest feature pixel q is computed. 

Given p = [2, 2]
t
, and q = [6, 6]

t
, dv = q − p is equal to [4, 4]

t
.  On the path pointed by the 

dv, the locations of TC and VC which are controlled by the parameters αt and αv can be 
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determined. After TC and VC are located, the FLBP code can be computed. Figure 3.6 

shows two examples of the computation of FLBP with different locations of TC and VC. 

In Figure 3.6(a) given αt = 0.75 and αv = 0.25, Ct(p) = p + αtdv is equal to [5, 5]
t
, and 

Cv(p) = p + αvdv is equal to [3, 3]
t
. Therefore, the TC is the pixel at location (5, 5) and 

the VC is the pixel at location (3, 3). According to Equation 3.9, the binary FLBP code: 

FLBP(2, 2) = 10101001 is obtained by replacing the gray level 60 of the TC by the gray 

level 30 of the VC as the new threshed of the neighbors of the TC. Figure 3.6(b) shows 

another example of the FLBP(2, 2) computation when αt = 0.25, and αv = 0.75. Similarly, 

the TC is the pixel at location (3, 3) and the VC is the pixel at location (5, 5). The binary 

FLBP code becomes: FLBP(2, 2) = 00111100.  

 FLBP
 
has the following special cases: 

 LBP is a special case of FLBP.  

When αv = αt = 0, the VC and TC coincide with the center pixel p, and FLBP 

becomes LBP, where no feature pixels are involved. LBP compares the center 

pixel p, with its own neighbors. 

 

 FLBP Form 1 — FLBP1. 

When αv = 0, pixel p becomes the VC, and the TC may be any pixel on the 

distance vector dv. FLBP1 compares the center pixel p which is used as the 

threshold, with the neighbors of the TC. 

 

 FLBP Form 2 — FLBP2. 

When αt = 0, pixel p becomes the TC, and the VC may be any pixel on the 

distance vector dv. FLBP2 compares the VC which is used as the threshold, with 

the neighbors of the center pixel p. 
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(a) 

 

(b) 

Figure 3.6 The computation of FLBP for the pixel at (2, 2). (a) An example when TC (αt 

= 0.75) is at (5, 5) and VC (αv = 0.25) is at (3, 3) (b) An example when TC (αt = 0.25) is 

at (3, 3) and VC (αv = 0.75) is at (5, 5). 

 

3.4 Feature Local Binary Patterns—Form 1 (FLBP1) 

FLBP1, which is a special case of FLBP, when αv = 0, may be defined as follows: 
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 (3.12) 

 

where G(p) and G[N(Ct(p), i)] are the gray levels of the center pixel p and the neighbors 

of the TC, respectively. Equation 3.12 shows that FLBP1 compares the center pixel p 

with the neighbors of the TC, which may be any pixel on the distance vector dv. 

 Figure 3.7 illustrates the computation of FLBP1 using the same grayscale image 

and binary feature image shown in Figure 3.5. Figure 3.7(a) shows an example of FLBP1 

at (2, 2) when αt = 1.  The TC becomes the feature pixel q at (6, 6) when αt = 1. The 

binary FLBP1 code becomes: FLBP1(2, 2) = 10110000. Figure 3.7(b) shows another 

example of FLBP1 at (2, 2) when αt = 0.5. Ct(p) = p + αtdv is equal to [4, 4]
t
. As a result, 

the TC is the pixel at location (4, 4). The binary FLBP1 code becomes: FLBP1(2, 2) = 

01001011. 
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(a) 

 
 

(b) 

 

Figure 3.7 The computation of FLBP1 for the pixel at (2, 2). (a) An example when TC 

(αt = 1) is at (6, 6). (b) An example when TC (αt = 0.5) is at (4, 4). 

 

3.5 Feature Local Binary Patterns—Form 2 (FLBP2) 

FLBP2, which is another special case of FLBP, when αt = 0, may be defined as follows: 
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 (3.13) 

 

where G[Cv(p)] and G[N(p, i)] are the gray levels of the VC and the neighbors of the 

center pixel p, respectively. Equation 3.13 shows that FLBP2 compares the VC, which 

may be any pixel on the distance vector dv, with the neighbors of the center pixel p. 

 Figure 3.8 illustrates the computation of FLBP2 using the same grayscale image 

and binary feature image shown in Figure 3.5. Figure 3.8(a) shows an example of FLBP2 

at (2, 2) when αv = 1. The VC becomes the feature pixel q when αv = 1. The binary 

FLBP2 code becomes: FLBP2(2, 2) = 00100001. Figure 3.8(b) shows another example of 

FLBP2 when αv = 0.5. Cv(p) = p + αvdv is equal to [4, 4]
t
. As a result, the VC is at 

location (4, 4). The binary FLBP2 code becomes: FLBP2(2, 2) = 10100001. 

Figure 3.9 shows an example of the FLBP representation of a face image. The 

traditional LBP representation is also included for comparison. Specifically, Figure 3.9(a) 

and (b) display a face image and its binary feature image derived using the Canny edge 

detector. Figure 3.9(c) shows the LBP representation of the face image of Figure 3.9(a). 

Figure 3.9(d), (e), (f), and (g) exhibit the FLBP1 representations when αt = 0.25, 0.5, 

0.75, 1, respectively. Figure 3.9(h), (i), (j), and (k) show the FLBP2 representations when 

αv = 0.25, 0.5, 0.75, 1, respectively. 

Figure 3.9 shows that LBP has only one face representation, and FLBP can have 

many different face representations using different parameter values.  The feature pixels 

used in the FLBP are broadly defined. Different feature pixels also lead to different FLBP 

representations. Different FLBP representations can serve different purposes for texture 

description and pattern recognition. FLBP encodes much richer information than LBP 
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does. Not only does FLBP encode both local and feature information, but it also enhances 

its representational power and flexibility by incorporating a number of parameters, such 

as the CT parameter αt, the VT parameter αv, as well as the relative bias parameter β. 

 

 

(a) 

 

(b) 

Figure 3.8 The computation of FLBP2 for the pixel at (2, 2) (a) An example when VC 

(αv = 1) is at (6, 6). (b) An example when VC (αv = 0.5) is at (4, 4). 
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                                   (a)                              (b)                               (c) 

           

                (d)                                (e)                               (f)                                (g) 

           

                (h)                                (i)                                (j)                                (k) 

Figure 3.9 (a) A face image. (b) The binary feature image of Figure 9(a) derived using 

the Canny edge detector. (c) The LBP representation of the face image. (d)–(g) The 

FLBP1 representations when αt = 0.25, 0.5, 0.75, 1, respectively. (h)–(k) The FLBP2 

representations when αv = 0.25, 0.5, 0.75, 1, respectively. 
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CHAPTER 4  

LOCAL QUATERNARY PATTERNS AND 

FEATURE LOCAL QUATERNARY PATTERNS 

 

This chapter first reviews LTP, and then introduces the new local texture descriptor, 

Local Quaternary Patterns (LQP) and its extension, Feature Local Quaternary Patterns 

(FLQP). LQP, which encodes four relationships of local texture, includes more 

information of local texture than the Local Binary Patterns (LBP) and Local Ternary 

Patterns (LTP). FLQP which encodes both local and feature information is expected to 

perform better than LQP for texture description and pattern recognition. 

4.1 Local Ternary Pattern 

Tan and Triggs (2010) introduced Local Ternary Pattern or LTP operator. In LTP the 

threshold function is defined as follows: 

 

    (       )   {

                                 

                  |       |        
                               

 (4.1) 

 

where r is the radius of the interval around the grey level of the central pixel. Figure 4.1 

shows an example of the computation of LTP. The grey level of the central pixel is 40 

and r is 5. A neighbor pixel is assigned to 1, 0 or -1, if its grey level is greater than or 

equal to 45, between 44 and 36, or less than or equal to 35, respectively. The total 

number of the possible LTP codes is 6561, which leads to a large size for the feature
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dimension and sparse histograms of the LTP codes. To solve the problem, an LTP code is 

split into two binary codes: the positive and negative halves as shown in Figure 4.1. The 

positive half of LTP (PLTP) is obtained by replacing -1 with 0. The negative half of LTP 

(NLTP) is obtained by first replacing the 1 with 0 and then changing -1 to 1. Thus an 

LTP code can be represent by two binary codes. As a result, the total number of the split 

LTP codes is reduced to 512. 

 

Figure 4.1 Computing the LTP and splitting it to two binary codes, PLTP and NLTP. 

 

4.2 Local Quaternary Patterns 

The new Local Quaternary Patterns (LQP) encodes four relationships of local texture, 

and therefore, it includes more information of local texture than LBP and LTP. The 

threshold function of LQP is defined using two binary digits as follows: 
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(4.2) 

 

where r is the radius of the interval around the value of the central pixel and may be 

defined as follows. 

 

         (4.3) 

 

Where c is a constant and τ is a parameter to control the contribution of gc to r. To reduce 

the total number of codes, an LQP code can be split into two binary codes, the upper and 

lower halves as shown in Figure 4.2. The upper half of LQP (ULQP) is obtained by 

extracting the first digit of LQP code. The lower half of LTP (LLQP) is obtained by 

extracting the second digit of LQP code. Thus the total number of LQP codes is reduced 

to 512.  

 From Equation 4.2 the threshold functions of ULQP and LLQP, Sulqp and Sllqp can 

be derived as follows: 

 

     (     )      (     ) (4.4) 
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The threshold function of ULQP Sulqp is equal to the threshold function of LBP and is not 

depend on the r. The ULQP and LLQP are defined as follows: 

 

    ( )      ( ) (4.6) 

 

    ( )  ∑            (   )   ( )    

 

   

 (4.7) 

 

Note that the ULQP is the same as the LBP which is defined by Equation 3.2. Figure 4.2 

shows an example of the computation of the LQP. The grey level of the central pixel is 

40 and r is 5. The ULQP code is 11110001. For LLQP, a pixel is assigned 1 if it is 

greater than or equal to 45, or it is less than 40 and greater than or equal to 35, otherwise 

is assigned 0. The LLQP code is 11010010. 

 

 

Figure 4.2 Computing the LQP and splitting it to two binary codes ULQP and LLQP. 
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4.3 Feature Local Quaternary Patterns 

LQP can be extended to FLQP using the method of FLBP introduced in chapter 3. To 

reduce the total number of codes, an FLQP code can be split into two binary codes, the 

upper half of FLQP (UFLQP) and the lower half of FLQP (LFLQP) using the threshold 

functions defined in Equations. 4.4 and 4.5, respectively. The UFLQP is equivalent to the 

FLBP which is defined by Equation 3.9. The general form of UFLQP and LFLQP is 

defined below: 

 

     ( )       ( ) (4.8) 

 

     ( )  ∑            (  ( )  )      ( )     

 

   

 (4.9) 

 

 Figure 4.3 shows the FLQP computation of the pixel p at coordinates (2, 2) when 

r = 5. The grayscale image and the feature binary image are the same as those in Figure 

3.5. First, the dv pointing from p to its nearest feature pixel q is computed. Given p = [2, 

2]
t
, and q = [6, 6]

t
, dv = q − p is equal to [4, 4]

t
.  On the path pointed by the dv, the 

locations of TC and VC which are controlled by the parameters αt and αv can be 

determined. In Figure 4.3(a) given αt = 0.75 and αv = 0.25, Ct(p) = p + αtdv is equal to [5, 

5]
t
, and Cv(p) = p + αvdv is equal to [3, 3]

t
. Therefore, the TC is the pixel at location (5, 

5) and the VC is the pixel at location (3, 3). After replacing the grey level 60 of TC by the 

grey level 30 of VC, UFLQP(2, 2) is equal to 10101001 which is equal to FLBP, and 
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LFLQP(2, 2) is equal to 1001110. Figure 4.3(b) shows the FLQP computation of the 

pixel p at (2, 2) when αv = 0.75, and αt = 0.25. Using the same method as the example in 

Figure 4.3(a), UFLQP(2, 2) and LFLQP(2, 2) are obtained as  00111100 and 00110011, 

respectively. 

Figure 4.4 shows an example of the FLQP and LQP representations of a face 

image when r = 10. The face image and the binary feature image derived by Canny edge 

detector are the same as Figure 3.9(a) and Figure 3.9(b). Figure 4.4(a) shows the LLQP 

image. The ULQP image is the same as LBP image in Figure 3.9(c). Figure 4.4(b) - (e) 

show LFLQP images when αt = 0.25, 0.5, 0.75, 1, respectively, and αv = 0. Their 

corresponding UFLQP are the same as Figure 3.9(d) – (g).  Figure 4.4(f) - (i) show 

LFLQP images when αv = 0.25, 0.5, 0.75, 1, respectively, and αt = 0. Their corresponding 

UFLQP are the same as Figure 3.9(h) – (k). 

Figure 4.5 shows another example of the FLQP representations when r = 0.1gc. 

The face image and the binary feature image derived by Canny-Edge detector are the 

same as Figure 3.9(a) and Figure 3.9(b). Figure 4.5(a) shows the LLQP image. The 

ULQP image is the same as LBP image in Figure 3.9(c). Figure 4.5(b) - (e) show LFLQP 

images when αt = 0.25, 0.5, 0.75, 1, respectively, and αv = 0. Their corresponding UFLQP 

are the same as Figure 3.9(d) – (g).  Figure 4.5(f) - (i) show LFLQP images when αv = 

0.25, 0.5, 0.75, 1, respectively, and αt = 0. Their corresponding UFLQP are the same as 

Figure 3.9(h) – (k).  
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 (a) 

 

(b) 

Figure 4.3 The computation of FLQP (a) The TC (αt = 0.75), the VC (αv = 0.25), r = 5, 

and the LFLQP code for the pixel at (2, 2). (b) The TC (αt = 0.25), the VC (αv = 0.75), r = 

5 and the LFLQP code for the pixel at (2, 2). 
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(a) 

           
 

                (b)                                (c)                               (d)                                (e) 

 

           
 

                (f)                                (g)                                (h)                                (i)               

Figure 4.4 The FLQP representations of a face image when r = 10 (a) The LLQP image 

(b) - (e) The LFLQP images when αt = 0.25, 0.5, 0.75, 1, respectively, and αv = 0 (f) - (i) 

The LFLQP images when αv = 0.25, 0.5, 0.75, 1, respectively, and αt = 0. 
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(a) 

           
 

                (b)                               (c)                                (d)                               (e) 

 

            
 

                 (f)                                (g)                               (h)                                (i) 

Figure 4.5 The FLQP representations of a face image when r = 0.1gc (a) The LLQP 

image (b) - (e) The LFLQP images when αt = 0.25, 0.5, 0.75, 1, respectively, and αv = 0 

(f) - (i) The LFLQP images when αv = 0.25, 0.5, 0.75, 1, respectively, and αt = 0
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CHAPTER 5  

APPLICATION OF FLBP AND FLQP TO EYE DETECTION 

 

Eye detection has broad applications in automated facial recognition, where a face can be 

located first by applying, for example, the Bayesian Discriminating Features (BDF) 

method (Liu, 2003, 2004, 2006, 2007, 2008), (Liu and Yang, 2009). After a face is 

located in an image, the eyes on the face can be accurately detected by the application of 

the FLBP and FLQP methods. This chapter first introduces a new feature pixel extraction 

method, the LBP with Relative Bias Thresholding (LRBT) method, and then descripts the 

system architecture of eye detection method and the histogram and similarity 

computation for the eye detection method. 

5.1 A New Feature Pixel Extraction Method 

 — LBP with Relative Bias Thresholding 

As the FLBP and FLQP methods encode both local and feature information, the 

performance of FLBP and FLQP depend on the extraction of the feature pixels. For eye 

detection, the shape of eye constitutes one of the most prominent features. To amplify 

such information around the eye region, this dissertation presents a new feature pixel 

extraction method, the LBP with Relative Bias Thresholding (LRBT) method. In 

particular, the LRBT method first computes the LBP representation using the relative 

bias threshold function of Equation 3.11 with a given β. An LBP image is then defined by 

the LBP representation. The LRBT method converts the LBP image to a binary LRBT 

feature image, whose feature pixels correspond to those whose LBP code is greater than 

0, and the background pixels correspond to the pixels in the LBP image with the LBP 
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code 0. Note that different binary LRBT feature images can be generated with different β 

values. 

Figure 5.1 shows the LBP images and the corresponding binary LRBT feature 

images of the face image shown in Figure 3.9(a). Specifically, Figure 5.1(a), (b), and (c) 

display the LBP images when β = 0.05, 0.1, 0.2, respectively. Figure 5.1(d), (e), and (f) 

exhibit the binary LRBT feature images when β = 0.05, 0.1, 0.2, respectively.  

 

   
 

                                  (a)                                (b)                               (c) 

 

   
 

                                  (d)                               (e)                                (f) 

 

Figure 5.1 LBP images and the corresponding binary LRBT feature images of a face 

image. (a)–(c) The LBP images when β = 0.05, 0.1, 0.2, respectively. (d)–(f) The binary 

LRBT feature images when β = 0.05, 0.1, 0.2, respectively. 
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Figure 5.2 shows the FLBP1 and FLBP2 representations of the face image that 

applies the binary LRBT feature image shown in Figure 5.1(e) when β = 0.1. Specifically, 

Figure 5.2(a), (b), (c), and (d) display the FLBP1 representations when αt = 0.25, 0.5, 

0.75, 1, respectively. Figure 5.2(e), (f), (g), and (h) exhibit the FLBP2 representations 

when αv = 0.25, 0.5, 0.75, 1, respectively. 

 

             
  

                   (a)                               (b)                              (c)                               (d) 

             
 

                   (e)                               (f)                              (g)                              (h) 

Figure 5.2 The FLBP1 and FLBP2 representations of a face image using the binary 

LRBT feature pixels when β = 0.1. (a)–(d) The FLBP1 images when αt = 0.25, 0.5, 0.75, 

1, respectively. (e)–(h) The FLBP2 images when αv = 0.25, 0.5, 0.75, 1, respectively. 
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5.2 The FLBP-Based Eye Detection Method 

5.2.1 System Architecture of Eye Detection Method 

Figure 5.3 shows the system architecture of our FLBP-based eye detection method that 

consists of three major steps. First, a binary feature image, which contains the feature 

pixels of the grayscale face image, is derived by applying the LBP with Relative Biased 

Threshold (LRBT) method. Second, the FLBP representation of the face image is formed 

based on the grayscale image and a distance vector field or DVF. DVF is obtained by 

computing the distance vector between each pixel and its nearest feature pixel defined in 

the binary image. Finally, for eye detection, an eye template is first constructed from a 

number of training eye samples. The eye template is defined by the mean FLBP 

histograms of the training eye samples. Each eye candidate is compared with the eye 

template based on the FLBP histogram and a similarity measure, whose computation is 

implemented by a fast algorithm. The eye candidate with the largest similarity is selected 

as the detected eye center. 

 

 

Figure 5.3 The system architecture of the FLBP-based eye detection method. 
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5.2.2 Histogram and Similarity Computation 

This section discusses the FLBP histogram and similarity computation for the eye 

detection method. Let the eye template and an eye candidate window be divided into a 

grid of r × c cells. A FLBP histogram of a cell is formed by the FLBP codes of the pixels 

in the cell. The eye template is defined by the r × c mean FLBP histograms of the training 

eye samples. Let T and C represent the eye template and eye candidate windows, 

respectively. The following similarity measure M(C, T) is applied to compare T and C: 

 

 (   )    ∑∑
(           )

 

          

 

   

 

   

 (5.1) 

 

 

where Ci,j represents the j-th bin of the FLBP histogram of the i-th cell of the eye 

candidate window, Ti,j represents the j-th bin of the FLBP histogram of the i-th cell of the 

eye template, g = rc is the total number of cells of the r × c grid, and b is the number of 

bins of a histogram. 

 An exhaustive search of eye location may compare an eye candidate window 

centered at every pixel in a face image with the eye template. The pixel whose eye 

candidate window has the largest similarity value with the eye template is the location of 

the detected eye. Let the spatial resolution of the face image and the eye template be m × 

n and w × h, respectively. The FLBP-based eye detection method includes three steps. 

The time complexity of extracting LRBT feature in the first step, and deriving the DVF 

and computing FLBP in the second step is O(mn).  The complexity of computing the 

FLBP histogram and similarity for an eye candidate window in the third step is O(wh) 
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and O(gb), respectively. As a result, the total time for searching a face image is O(whmn) 

and O(gbmn) for FLBP histogram and similarity computation, respectively. Because 

O(mn) is smaller than O(whmn) and O(gbmn), the time complexity of the FLBP method 

is the larger one of  O(whmn) and O(gbmn). 

 To reduce the computational complexity of FLBP histogram and similarity 

computation a fast method is used for the eye detection. Figure 5.4 shows a search region, 

which contains an eye candidate window with a spatial resolution of w × h, the top left 

pixel at (x1, y1), and the lower right pixel at (xw, yh). For simplicity, an eye candidate 

window is represented by the upper left pixel. Suppose the FLBP histogram and 

similarity for window at (x1, y1) have been computed, and then the eye template is moved 

to the next column to compare the next eye candidate window at (x1 + 1, y1) with the eye 

template. Now the difference between these two eye candidate windows resides in 

column x1 and column xw + 1. If column x1 is removed from and column xw + 1 is added 

to window (x1, y1), the new window is window (x1 + 1, y1). Since the FLBP histogram 

and similarity for window (x1, y1) is already computed, the new results for window (x1 + 

1, y1) can be obtained by examining the difference between columns x1 and xw +1. 

 

 

Figure 5.4 A search region that contains an eye candidate window with a spatial 

resolution of w × h, the top left pixel at (x1, y1), and the lower right pixel at (xw, yh). 



49 

 

 

 

 

The fast computation method works as follows. 

First, assign the FLBP histogram and similarity of window (x1, y1) to window (x1 

+ 1, y1). 

Second, update the FLBP histogram for window (x1 + 1, y1) as follows: (i) for 

each pixel in column x1, reduce 1 from the histogram bin corresponding to its FLBP code; 

and (ii) for each pixel in column x1 + 1, add 1 to the histogram bin corresponding to its 

FLBP code. The time complexity for FLBP histogram computation is now reduced to 

O(h) from O(wh).  

Third, update the similarity for window (x1 + 1, y1) as follows: (i) save the 

similarity values for every histogram bin of window (x1, y1); (ii) for every histogram bin 

that has been updated, subtract the old similarity value, recalculate the similarity value, 

and add the new value to the similarity.  

 The time complexity for similarity computation is now reduced to O(h) from 

O(b), as h, which is the height of the eye candidate window, is much smaller than b, 

which is the number of bins of the histogram. Note that the reduced time complexity is 

independent of b. The significance of the fast method is that it runs equally fast no matter 

it is applied to the three-level texture analysis method with 6561 histogram bins or the 

LBP method with 256 histogram bins.  

 The eye candidate window in Figure 5.4 is not divided into a grid. If the eye 

template and an eye candidate window are divided into a grid of r × c cells, the time 

complexities for FLBP histogram and similarity computation using the fast method are 

both O(ch) which are smaller than O(wh) and O(rcb), the time complexity of FLBP 
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histogram and similarity computation using the exhaustive search, respectively. Using the 

fast method, the total time for searching an m × n face image is O(chmn) for both FLBP 

histogram and similarity computation. Therefore, the time complexity of the FLBP 

method is also O(chmn). 

 This dissertation comparatively assesses the LBP and FLBP on the eye detection. 

The LBP method uses less time than the FLBP method because it does not include the 

computation of LRBT feature extraction and DVF. However, the time complexity of the 

LBP method is determined by the histogram and similarity computation. Because the 

histogram and similarity computation of the LBP method is the same as the computation 

of the FLBP method, the time complexity of the LBP method is the same as the time 

complexity of the FLBP method. 

 Figure 5.4 shows that the eye candidate window moves horizontally to the next 

column. If the eye candidate window moves vertically, the fast method works as well by 

examining the difference between the rows y1 and yh + 1. The time complexity for FLBP 

histogram and similarity computation is O(w), where w is usually not equal to h. If w is 

greater than h, moving the window row by row is faster, otherwise, moving the window 

column by column is faster.  

 Viola and Jones (2004) introduced the integral image to rapidly computer the sum 

of the pixels within arbitrary rectangular regions. The integral image at location (x, y) 

contains the sum of the pixels above and to the left of (x, y). The integral image can be 

computed in one pass over the original image. The sum of the pixels on a rectangular 

region can be computed using the four integral image values at the corners of the 

rectangular region. The integral image has been extended to extract histogram from a 
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rectangular region by building an integral image for each bin of the histogram. The time 

complexity to compute a histogram in a rectangular regions is O(b) which is larger than 

O(h) the time complexity of the method used in FLBP eye detection. However, for an 

object detection task where b is smaller than the h and w the integral image should be 

used. For example, one experiment conducted in this dissertation is to test each method 

by computing the histogram of each 64 x 64 candidate window on a 384 x 286 image 

using MATLAB codes. The average CPU time spent are 7.33, 2.93, 0.21 and 0.17 

seconds by the conventional method, the integral image of 256 bins histogram,  the  

method used in FLBP eye detection  and the integral image of 16 bins histogram, 

respectively. A system with different software and hardware could have different CPU 

time. This experiment is to demonstrate that an appropriate method should be chosen 

based on the number of bins and the dimensions of the candidate window. 

5.3 The FLQP-based Eye Detection Method 

Figure 5.5 shows the system architecture of FLQP-based eye detection method that 

consists of three major steps. The first step is same as the FLBP-based eye detection 

method. A binary feature image is derived from the grayscale face image by applying 

LRBT method. In the Second step, the FLQP code is computed based on the grayscale 

image and a distance vector field or DVF. The FLQP code is then split to two binary 

codes, from which two images, UFLQP and LFLQP images are formed. Finally, each eye 

candidate is compared with the eye template based on the UFLQP and LFLQP 

histograms and similarity measures.  The eye template is defined by UFLQP and LFLQP 

mean histograms of the training eye samples. The similarity measure to compare the 

UFLQP and LFLQP histograms of an eye template and an eye candidate is defined by 
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Equation 5.1. The final similarity measure is the sum of similarity values of the UFLQP 

and LFLQP histograms. The eye candidate with the largest final similarity is selected as 

the detected eye center. 

 

 

Figure 5.5 The system architecture of the FLQP-based eye detection method. 

 

5.4 FLBP Application on Gradient Images 

In addition to apply FLBP on grayscale image, this dissertation also applies FLBP on 

gradient images.  The gradient of a grayscale image I can be derived by convolving with 

a filter as follows: 

                    (5.2) 
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where Gx and Gy are the gradient components in horizontal and vertical directions, 

respectively.  Kx and Ky are the filter kernel in horizontal and vertical directions, 

respectively. * denotes convolution operation. The gradient magnitude image can be 

created as follows:  

 

|  |   √  
     

  ) (5.3) 

 

The gradient direction image can be created as follows: 

 

         
  

  
 (5.4) 

 

One of the common filters is Sobel filter which uses the following kernel: 

 

    [
    
    
    

]      [
      
   
   

] (5.5) 

 

This dissertation designs a new filter which computes the gradient along the two diagonal 

directions and projects to the horizontal and vertical directions. The kernel of the new 

filter is defined as follows: 
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where x’ and y’ represent the two diagonal directions. The experimental results show the 

new filter achieves better performance than the Sobal filter in the FLBP eye detection 

method. 

 The system architecture to detect eye from the gradient images is similar to the 

one shown in Figure 5.3. First the LRBT features are extracted from the grayscale image. 

Second the DVF is obtained using the extracted LRBT features binary image. Two FLBP 

representations of a face image are formed from the gradient magnitude and direction 

images. Finally, each eye candidate is compared with the eye template based on the 

FLBP histograms of the gradient magnitude and direction images. The similarity measure 

is defined by Equation 5.1. The eye candidate with the largest similarity is selected as the 

detected eye center. 
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CHAPTER 6  

EXPERIMENTAL RESULTS OF FLBP-BASED METHOD 

 

The FLBP-based method is assessed using the public BioID and color FERET databases. 

The BioID database contains 1,521 grayscale frontal face images with spatial resolution 

of 384 × 286. The images in the BioID database, which are formed in real world 

conditions, pose challenges to eye detection, such as illumination variations, eye glasses, 

and closed eyes. Figure 6.1 shows some examples of the face images in the BioID 

database. The facial images are cropped and normalized to the size of 132 × 178. 

 

 
Figure 6.1 The examples of the face images in the BioID database. 
 

Source: BioID AG. https://www.bioid.com/ 
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All 1,986 color frontal face images with spatial resolution of 512 × 768 from the 

fa and fb sets of the FERET database are used in our experiments. All color images are 

converted to grayscale images. The facial images are cropped and normalized to the size 

of 132 × 178. Figure 6.2 shows some examples of the face images in the FERET 

database. 

 

 
Figure 6.2 The examples of the face images in the FERET database. 
 

Source: http://www.nist.gov/itl/iad/ig/feret.cfm. 

 

 

To construct the eye template, 70 pairs of eye samples that are not from the BioID 

and FERET databases are collected.  As only the right eye template is constructed due to 

the symmetry between right and left eyes, the 70 left eyes are flipped horizontally to 

double the number of the right eye samples. To detect the left eye, first the face image is 
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flipped horizontally, and then detect eye in the flipped image by comparing it with the 

right eye template. Figure 6.3 shows some right eye samples that are cropped to size of 

37 × 17. 

 

Figure 6.3 The right eye samples that are cropped to 37×17. 

 

Eye detection performance is measured by the relative distance error in two 

forms. The first form measures the performance of each individual eye and is defined as 

follows: 

 

   
  

  
 (6.1) 

 

where d1 is the Euclidean distance between the detected eye center and the ground truth 

eye center, and d2 is the interocular distance — the distance between the two ground truth 

eye centers. The detected eye center is considered inside the eye region, inside the iris, 

and inside the pupil, when γ ≤ 0.25, 0.1, 0.05, respectively. The second form measures 

the performance of a pair of eyes by the worse eye and is defined as follows: 

 

        (     ) (6.2) 

 

where γl and γr  are the γ of the left and right eyes, respectively. The success rate for γ  ≤ 

0.25, 0.1, 0.05, γp ≤ 0.25, 0.1, 0.05 and the average γ and γp are used to assess the 

performance of the eye detection method.  
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6.1 Assessment of Neighborhood Size 

As the FLBP method may apply a neighborhood of different size, first the effect of 

neighborhood size on eye detection performance is assessed on the BioID database. In 

particular, Figures 3.1 and 6.4 show the 3 × 3 and 5 × 5 neighborhood, respectively. Note 

that in the 5 × 5 neighborhood, only the labeled neighbors with numbers from 0 to 7 are 

used to compute the FLBP code. Table 6.1 shows the success rates for γ ≤ 0.25, 0.1, 0.05 

and the average γ of eye detection using the FLBP1, FLBP2, and LBP methods 

corresponding to the 3 × 3 and 5 × 5 neighborhood. Table 6.2 shows the success rates for 

γp ≤ 0.25, 0.1, 0.05 and the average γp of eye detection using the FLBP1, FLBP2, and 

LBP methods corresponding to the 3 × 3 and 5 × 5 neighborhood. The grid size of the eye 

candidate windows and the eye template is 3 × 4 for all the methods. The feature pixels 

for the FLBP1 and FLBP2 methods are from the binary LRBT feature image.  Both Table 

6.1 and Table 6.2 reveal that the eye detection performance corresponding to the 5 × 5 

neighborhood is better than the 3 × 3 neighborhood. Therefore, the 5×5 neighborhood is 

applied for the remaining experiments. 

 

 

Figure 6.4 The 5 × 5 neighborhood of the center pixel and the labels of its neighbors. 
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Table 6.1 The Success Rates for γ ≤ 0.25, 0.1, 0.05 and the Average γ of the FLBP1, 

FLBP2, and LBP Eye Detection Methods using the 3 × 3 and 5 × 5 Neighborhoods 

 

Method Size γ ≤ 0.25 γ  ≤ 0.1 γ  ≤ 0.05 Average γ 

FLBP1 

β = 0.1, αt = 1 
5 × 5 97.86 93.23 85.57 0.0442 

3 × 3 96.35 92.60 79.91 0.0542 

β = 0.2, αt = 0.25 
5 × 5 97.67 93.98 86.52 0.0427 

3 × 3 97.53 94.71 84.78 0.0460 

FLBP2 

β = 0.1, αv = 1 
5 × 5 93.33 89.05 83.10 0.0560 

3 × 3 89.58 84.71 74.75 0.0787 

β = 0.2, αv = 0.25 
5 × 5 98.65 95.23 87.84 0.0385 

3 × 3 96.38 92.41 83.10 0.0543 

LBP 
5 × 5 92.34 90.34 83.14 0.0812 

3 × 3 90.57 87.18 75.48 0.0990 

 

Table 6.2 The Success Rates for γp ≤ 0.25, 0.1, 0.05 and the Average γp of the FLBP1, 

FLBP2, and LBP Eye Detection Methods using the 3 × 3 and 5 × 5 Neighborhoods 

 

Method Size γp ≤ 0.25 γp  ≤ 0.1 γp  ≤ 0.05 Average γp 

FLBP1 

β = 0.1, αt = 1 
5 × 5 96.58 88.95 77.25 0.0605 

3 × 3 94.15 88.30 67.39 0.0755 

β = 0.2, αt = 0.25 
5 × 5 96.25 90.14 78.44 0.0583 

3 × 3 96.25 91.65 75.35 0.0626 

FLBP2 

β = 0.1, αv = 1 
5 × 5 89.09 83.30 74.36 0.0785 

3 × 3 83.69 76.07 61.60 0.1124 

β = 0.2, αv = 0.25 
5 × 5 97.83 92.44 80.14 0.0513 

3 × 3 94.15 87.84 72.72 0.0767 

LBP 
5 × 5 87.44 84.62 73.37 0.1207 

3 × 3 85.73 79.88 61.67 0.1418 
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6.2 Assessment of Grid Size 

The effect of the grid size of the eye candidate window on eye detection performance is 

assessed next on the BioID database. The eye candidate window is divided into three 

different grids which are 3 × 3, 3 × 4, and 4 × 4 grids shown in Figure 6.5.  

 

   
 

                                              (a)                    (b)                   (c) 

Figure 6.5 The eye window grids (a) The 3 × 3 grid. (b) The 3 × 4 grid. (c) The 4 × 4 

grid. 

 

The FLBP1, FLBP2 and LBP methods are implemented using these three 

different grids for eye detection. The feature pixels for the FLBP1 and FLBP2 methods 

are from the binary LRBT feature image. Table 6.3 shows the success rates for γ ≤ 0.25, 

0.1, 0.05 and the average γ of eye detection of the FLBP1, FLBP2, and LBP methods 

using the 3 × 3, 3 × 4, and 4 × 4 grids. Table 6.4 shows the success rates for γp ≤ 0.25, 

0.1, 0.05 and the average γp of eye detection of the FLBP1, FLBP2, and LBP methods 

using the 3 × 3, 3 × 4, and 4 × 4 grids. The results show that the 3 × 4 grid yields the best 

overall eye detection performance. Therefore, the 3 × 4 grid is applied for the remaining 

experiments.  
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Table 6.3 The Success Rates for γ ≤ 0.25, 0.1, 0.05 and the Average γ of the FLBP1, 

FLBP2, and LBP Eye Detection Methods using the 3 × 3, 3 × 4, and 4 × 4 Grids 

 

Method Grid γ ≤ 0.25 γ  ≤ 0.1 γ  ≤ 0.05 Average γ 

FLBP1 

β = 0.1, αt = 1 

3×3 97.70 89.71 74.52 0.0516 

3×4 97.86 93.23 85.57 0.0442 

4×4 96.88 92.44 84.35 0.0478 

β = 0.2, αt = 0.25 

3×3 97.53 89.94 74.19 0.0522 

3×4 97.67 93.98 86.52 0.0427 

4×4 97.57 93.75 85.54 0.0444 

FLBP2 

β = 0.1, αv = 1 

3×3 93.69 85.80 70.97 0.0684 

3×4 93.33 89.05 83.10 0.0560 

4×4 91.85 87.38 80.80 0.0634 

β = 0.2, αv = 0.25 

3×3 98.19 90.53 75.51 0.0494 

3×4 98.65 95.23 87.84 0.0385 

4×4 98.46 94.74 86.26 0.0402 

LBP 

3×3 91.35 85.96 70.02 0.0952 

3×4 92.34 90.34 83.14 0.0812 

4×4 91.91 89.71 81.95 0.0835 
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Table 6.4 The Success Rates for γp ≤ 0.25, 0.1, 0.05 and the Average γp of the FLBP1, 

FLBP2, and LBP Eye Detection Methods using the 3 × 3, 3 × 4, and 4 × 4 Grids 

 

Method Grid γp ≤ 0.25 γp  ≤ 0.1 γ  ≤ 0.05 Average γp  

FLBP1 

β = 0.1, αt = 1 

3×3 96.25 83.50 61.87 0.0699 

3×4 96.58 88.95 77.25 0.0605 

4×4 94.94 87.84 75.61 0.0652 

β = 0.2, αt = 0.25 

3×3 96.12 84.68 62.00 0.0698 

3×4 96.25 90.14 78.44 0.0583 

4×4 96.06 89.81 76.86 0.0607 

FLBP2 

β = 0.1, αv = 1 

3×3 89.88 78.11 56.54 0.0947 

3×4 89.09 83.30 74.36 0.0785 

4×4 86.79 81.13 71.07 0.0889 

β = 0.2, αv = 0.25 

3×3 97.11 84.75 61.87 0.0669 

3×4 97.83 92.44 80.14 0.0513 

4×4 97.44 91.26 77.45 0.0541 

LBP 

3×3 85.73 77.65 55.36 0.1415 

3×4 87.44 84.62 73.37 0.1207 

4×4 86.85 83.76 71.47 0.1240 

 

6.3 Comparative Assessment of FLBP and LBP 

After determining the best neighborhood size and grid size, the eye detection 

performance of FLBP and LBP methods are comparatively assessed on the BioID 

database. Many face images on the BioID database wear eyeglasses or close eyes. The 

performance of FLBP and LBP methods is assessed using the controlled and uncontrolled 

face image sets. The uncontrolled set includes all face images. The controlled set includes 

only the face images which are eye opening and without eyeglasses. 
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6.3.1 Using the Uncontrolled Face Image Set 

The uncontrolled face image set includes all 1521 face images in the BioID database. 

Tables 6.5 and 6.6 show the success rates of the FLBP1, FLBP2, and LBP eye detection 

methods for γ ≤ 0.25, 0.1, 0.05 and γp ≤ 0.25, 0.1, 0.05 using the uncontrolled face image 

set, respectively. The feature pixels for the FLBP1 and FLBP2 methods are from the 

binary LRBT feature image. Three FLBP1 and FLBP2 experiments are selected to 

compare with the LBP method. Each of the FLBP1 or FLBP2 experiments has either one 

of the highest success rates for γ or γp ≤ 0.25, 0.1, 0.05 or one of the top three highest 

success rate for γ or γp ≤ 0.05. 

In particular, Table 6.5 reveals that the success rates of both FLBP1 and FLBP2 

when γ ≤ 0.25, 0.1 and 0.05 are around 98%, 95% and 87%, respectively.  In comparison, 

the success rates of LBP are about 92%, 90% and 84% which are lower than the success 

rates achieved by either FLBP1 or FLBP2. Table 6.6 also shows that the success rates or 

γp ≤ 0.25, 0.1, 0.05 of both FLBP1 and FLBP2 are higher than the success rates of the 

LBP method. Therefore, the experimental results show that FLBP achieves better eye 

detection performance than LBP.  

Figures 6.6 and 6.7 are the graphs of the success rates of the FLBP and LBP for γ 

and γp from 0.05 to 0.5, respectively. The FLBP shown in the graph is the FLBP2 when β 

= 0.2, αv = 0.25 which has the highest success rates among all methods in table 6.5 and 

6.6.  Figures 6.6 and 6.7 show that the success rates of the FLBP method reach 100% as 

the γ and γp increase, while the success rates of the LBP method are lower than 95% and 

90% for γ and γp, respectively. The gap between the two curves increases when the γ and 
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γp increase. This indicates that the success rate of FLBP increases faster than the success 

rate of LBP when the γ and γp increase. 

Table 6.5 The Success Rates for γ ≤ 0.25, 0.1, 0.05 of the FLBP1, FLBP2, and LBP Eye 

Detection Methods using the Uncontrolled Face Image Set 

 

Method γ ≤ 0.25 γ  ≤ 0.1 γ  ≤ 0.05 

FLBP1 

LRBT, β = 0.2, αt = 0.12 97.86 95.10 87.41 

LRBT, β = 0.1, αt = 0.25 98.03 94.74 87.21 

LRBT, β = 0.15, αt = 0.25 98.13 93.75 86.00 

FLBP2 

LRBT, β = 0.2, αv = 0.25 98.65 95.23 87.84 

LRBT, β = 0.15, αv =0.25 98.55 95.04 87.51 

LRBT, β = 0.25, αv = 0.25 98.62 94.44 87.08 

LBP 92.34 90.34 83.14 

 

Table 6.6 The Success Rates for γp ≤ 0.25, 0.1, 0.05 of the FLBP1, FLBP2, and LBP Eye 

Detection Methods using the Uncontrolled Face Image Set 

 

Method γp ≤ 0.25 γp  ≤ 0.1 γp  ≤ 0.05 

FLBP1 

LRBT, β = 0.2, αt = 0.12 96.52 92.31 80.00 

LRBT, β = 0.1, αt = 0.25 96.78 91.91 79.88 

LRBT, β = 0.15, αt = 0.25 96.97 89.94 77.78 

FLBP2 

LRBT, β = 0.2, αv = 0.25 97.83 92.44 80.14 

LRBT, β = 0.15, αv =0.25 97.57 91.65 80.01 

LRBT, β = 0.25, αv = 0.25 97.70 90.92 79.22 

LBP 87.44 84.62 73.37 
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Figure 6.6 The success rate of the FLBP (LRBT, β = 0.2, αt = 0, αv = 0.25) and LBP 

method for various γ using the uncontrolled face image set. 

 

 

Figure 6.7 The success rate of the FLBP (LRBT, β = 0.2, αt = 0, αv = 0.25) and LBP 

method for various γp using the uncontrolled face image set. 
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 Table 6.7 shows the average γ and γp of the FLBP1, FLBP2 and LBP methods. 

The feature pixels for FLBP1 and FLBP2 are derived by the LRBT method. The three 

FLBP1 and FLBP2 methods with lowest average γ and γp are selected to compare with 

the LBP method. Table 6.7 reveals that the average γ of FLBP1 and FLBP2 are less than 

0.04, which means that the average detected eye center is inside the pupil. In comparison, 

the average γ of LBP is 0.081, which means that the average detected eye center is 

outside the pupil. Table 6.7 also shows that the average γp of FLBP1 and FLBP2 are 

around 0.05, which means that the average detected worse eye center is close to the pupil. 

In comparison, the average γp of LBP is larger than 0.1, which means that the average 

detected worse eye center is outside the iris. As a result, the experimental results lead to 

the finding that FLBP locates the eye center more accurately than LBP method. 

Table 6.7 The Average γ and γp of Eye Detection of the FLBP1, FLBP2, and LBP 

Methods using the Uncontrolled Face Image Set 

 

Method Average γ Average γp 

FLBP1 

LRBT, β = 0.1, αt = 0.25 0.0416 0.0555 

LRBT, β = 0.15, αt = 0.25 0.0422 0.0570 

LRBT, β = 0.15, αt = 0.12 0.0424 0.0569 

FLBP2 

LRBT, β = 0.2, αv = 0.25 0.0385 0.0513 

LRBT, β = 0.15, αv = 0.25 0.0392 0.0526 

LRBT, β = 0.25, αv = 0.25 0.0397 0.0534 

LBP 0.0812 0.1207 

 

The relative distance error γp measures the performance using the worse eye. If the 

right and left eyes of a person are identical, the success rate for γp should be the same as 

the success rate for γ. The physical difference between the right and left eyes of a person 

is usually small. The appearance of the right and left eyes on an image could have large 
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difference due to the illumination and pose variations. Therefore, the success rate for γp is 

lower than the success rate for γ.  Table 6.8 shows the difference between success rate for 

γ and success rate for γp and the percentage of average γp increased from average γ. The 

FLBP1 and FLBP2 methods with lowest average γ are selected to compare with LBP 

method. Table 6.8 shows that the success rates for γp of the FLBP1 and FLBP2 methods 

drop less than the success rates for γp of the LBP method, and the average γp of the 

FLBP1 and FLBP2 methods increase less than the average γp of the LBP method. This 

finding indicates that FLBP method is less sensitive to the appearance change which 

might be caused by the illumination and pose variations than the LBP method. 

Table 6.8 The Difference between Success Rate for γ and Success Rate for γp and the 

Percentage of Average γp Increased from Average γ of the FLBP1, FLBP2, and LBP 

Methods using the Uncontrolled Face Image Set 

 

Method 
success rate for γ - success rate for γp (γp- γ)/ γ 

(Average)   ≤ 0.25  ≤ 0.1  ≤ 0.05 

FLBP1, LRBT, β = 0.1, αt = 0.25 1.25 2.83 7.33 33.41 

FLBP2, LRBT, β = 0.2, αv = 0.25 0.82 2.79 7.70 33.25 

LBP 4.9 5.72 9.77 48.65 

 

6.3.2 Using the Controlled Face Image Set 

The controlled face image set excludes 512 face images which are either wear eyeglasses 

or close eyes. Therefore, there are total 1009 face images in the set. Tables 6.9 and 6.10 

show the success rates of the FLBP1, FLBP2, and LBP eye detection methods for γ ≤ 

0.25, 0.1, 0.05 and γp ≤ 0.25, 0.1, 0.05 using the controlled face image set, respectively. 

The feature pixels for the FLBP1 and FLBP2 methods are from the binary LRBT feature 

image. Three FLBP1 and FLBP2 methods are selected to compare with the LBP method. 
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Each of the FLBP1 or FLBP2 method has either one of the highest success rates for γ or 

γp ≤ 0.25, 0.1, 0.05 or one of the top three highest success rate for γ or γp ≤ 0.05. 

Table 6.9 The Success Rates for γ ≤ 0.25, 0.1, 0.05 of the FLBP1, FLBP2, and LBP Eye 

Detection Methods using the Controlled Face Image Set 

 

Method γ ≤ 0.25 γ  ≤ 0.1 γ  ≤ 0.05 

FLBP1 

LRBT, β = 0.25, αt = 0.25 99.41 98.22 93.61 

LRBT, β = 0.2, αt = 0.25 99.45 98.46 93.51 

LRBT, β = 0.15, αt = 0.25 99.50 98.22 93.06 

FLBP2 

LRBT, β = 0.2, αv = 0.25 99.70 98.36 93.76 

LRBT, β = 0.25, αv =0.25 99.70 98.12 93.61 

LRBT, β = 0.15, αv = 0.25 99.55 98.12 93.71 

LBP 95.59 94.75 89.94 

 

Table 6.10 The Success Rates for γp ≤ 0.25, 0.1, 0.05 of the FLBP1, FLBP2, and LBP 

Eye Detection Methods using the Controlled Face Image Set 

 

Method γp ≤ 0.25 γp  ≤ 0.1 γp  ≤ 0.05 

FLBP1 

LRBT, β = 0.25, αt = 0.25 98.91 96.63 89.20 

LRBT, β = 0.1, αt = 0.25 99.11 96.93 89.10 

LRBT, β = 0.2, αt = 1 98.12 97.42 87.71 

FLBP2 

LRBT, β = 0.15, αv = 0.25 99.11 96.53 89.79 

LRBT, β = 0.2, αv =0.25 99.41 97.03 89.10 

LRBT, β = 0.25, αv = 0.25 99.41 96.53 88.60 

LBP 92.57 91.18 83.55 

 

Table 6.9 shows that the success rates of both FLBP1 and FLBP2 when γ ≤ 0.25, 

0.1 and 0.05 are around 99%, 98% and 93%, respectively.  The success rates of LBP are 

around 95%, 94% and 90% which are lower than the success rates achieved by either 
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FLBP1 or FLBP2. Table 6.10 shows that the success rates of both FLBP1 and FLBP2 

when γp ≤ 0.25, 0.1 and 0.05 are around 99%, 97% and 89%, respectively.  The success 

rates of LBP are around 92%, 91% and 83% which are lower than the success rates 

achieved by either FLBP1 or FLBP2. The experimental results show that FLBP achieves 

better eye detection performance than LBP using the controlled face image set. 

Figures 6.8 and 6.9 are the graphs of the success rates of the FLBP and LBP for γ 

and γp from 0.05 to 0.5 using the controlled face image set. The FLBP shown in the graph 

is the FLBP2 when β = 0.2, αv = 0.25. Figures 6.8 and 6.9 show that the success rates of 

the FLBP method reach 100% as the γ and γp increase, while the success rates of the LBP 

method reaches to around 96% and 93% for γ and γp, respectively. 

 

 

Figure 6.8 The success rate of the FLBP (LRBT, β = 0.2, αt = 0, αv = 0.25) and LBP 

method for various γ using the controlled face image set.  
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Figure 6.9 The success rate of the FLBP (LRBT, β = 0.2, αt = 0, αv = 0.25) and LBP 

method for various γp using the controlled face image set. 

 

 

Tables 6.11 and 6.12 show the average γ and γp of the FLBP1, FLBP2 and LBP 

methods using the controlled face image set, respectively. The three FLBP1 and FLBP2 

methods with lowest average γ and γp are selected to compare with the LBP method. 

Table 6.11 reveals that the average γ of FLBP1 and FLBP2 are around 0.03, which means 

that the average detected eye center is inside the pupil, and the average γ of LBP is more 

than 0.05, which means that the average detected eye center is outside the pupil. Table 

6.12 shows that the average γp of FLBP1 and FLBP2 are around 0.04, which means that 

the average detected worse eye center is inside the pupil, and the average γp of LBP is 

0.0856, which means that the average detected worse eye center is outside the pupil. The 

experimental results show that FLBP locates the eye center more accurately than LBP 

method using the controlled face image set. 
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Table 6.11 The Average γ of Eye Detection of the FLBP1, FLBP2, and LBP Methods 

using the Controlled Face Image Set 

 

Method Average γ 

FLBP1 

LRBT, β = 0.2, αt = 0.25 0.0298 

LRBT, β = 0.25, αt = 0.25 0.0300 

LRBT, β = 0.15, αt = 0.25 0.0308 

FLBP2 

LRBT, β = 0.25, αv = 0.25 0.0294 

LRBT, β = 0.2, αv = 0.25 0.0297 

LRBT, β = 0.15, αv = 0.25 0.0306 

LBP 0.0579 

 

Table 6.12 The Average γp of Eye Detection of the FLBP1, FLBP2, and LBP Methods 

using the Controlled Face Image Set 

 

Method Average γp 

FLBP1 

LRBT, β = 0.2, αt = 0.25 0.0395 

LRBT, β = 0.25, αt = 0.25 0.0399 

LRBT, β = 0.15, αt = 0.25 0.0405 

FLBP2 

LRBT, β = 0.25, αv = 0.25 0.0388 

LRBT, β = 0.2, αv = 0.25 0.0390 

LRBT, β = 0.15, αv = 0.25 0.0403 

LBP 0.0856 

 

Table 6.13 shows the difference between success rate for γ and success rate for γp 

and the percentage of average γp increased from average γ using controlled face image 

set. The FLBP1 and FLBP2 methods with lowest average γ are selected to compare with 

LBP method. Table 6.13 shows that the success rates for γp of the FLBP1 and FLBP2 

methods drop less than the success rates for γp of the LBP method, and the average γp of 

the FLBP1 and FLBP2 methods increase less than the average γp of the LBP method. 
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This finding agrees with the results using uncontrolled face set that FLBP method is less 

sensitive to the appearance change which might be caused by the illumination and pose 

variations than the LBP method. 

Table 6.13 The Difference between Success Rate for γ and Success Rate for γp and the 

Percentage of Average γp Increased from Average γ of the FLBP1, FLBP2, and LBP 

Methods using the Controlled Face Image Set 

 

Method 
success rate for γ - success rate for γp (γp- γ)/ γ 

(Average)   ≤ 0.25  ≤ 0.1  ≤ 0.05 

FLBP1, LRBT, β = 0.2, αt = 0.25 0.44 1.33 4.91 32.55 

FLBP2, LRBT, β = 0.2, αv = 0.25 0.29 1.33 4.66 31.31 

LBP 3.02 3.57 6.39 47.84 

 

6.4 Flexibility of the FLBP Method 

Compared to LBP, the FLBP method is more flexible due to the introduction of feature 

pixels as well as its parameters. Next the flexibility of the FLBP method in terms of 

feature pixels and parameters is assessed on the BioID database. 

6.4.1 Feature Pixels 

The performance of FLBP depends on the extraction of the feature pixels. Table 6.14 

shows the success rates for γ ≤ 0.25, 0.1, 0.05 and the average γ of the FLBP1 and FLBP2 

eye detection methods using different feature pixels. Table 6.15 shows the success rates 

for γp ≤ 0.25, 0.1, 0.05 and the average γp of the FLBP1 and FLBP2 eye detection 

methods using different feature pixels. The feature pixels shown in the tables are derived 

by the LRBT method, the Canny edge detector, and the LBP with Fixed Biased 

Threshold (LFBT) method which is similar to LRBT method but using the fixed bias 
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threshold function defined by Equation 3.10. The experiments with the lowest average γ 

and γp in each feature extraction method are selected to make the comparison. The results 

in Tables 6.14 and 6.15 show that the FLBP method using LRBT feature achieves the 

best eye detection performance, and the FLBP method using Canny Edge Pixels has the 

worst performance. 

Table 6.14 The Eye Detection Success Rates for γ ≤ 0.25, 0.1, 0.05 and the Average γ of 

the FLBP1, FLBP2 Methods using Different Feature Pixels 

 

Method γ ≤ 0.25 γ  ≤ 0.1 γ  ≤ 0.05 Average γ 

FLBP1 

LRBT, β = 0.1, αt = 0.25 98.03 94.74 87.21 0.0416 

LFBT, b = 15, αt = 0.25 98.22 94.28 86.36 0.0419 

Canny Edge Pixels, αt = 0.12 97.80 94.67 86.65 0.0438 

FLBP2 

LRBT, β = 0.2, αv = 0.25 98.65 95.23 87.84 0.0385 

LFBT, b = 20, αv =0.25 98.52 94.94 86.88 0.0396 

Canny Edge Pixels, αv = 0.25 97.63 94.41 86.16 0.0431 

 

Table 6.15 The Eye Detection Success Rates for γp ≤ 0.25, 0.1, 0.05 and the Average γp 

of the FLBP1, FLBP2 Methods using Different Feature Pixels 

 

Method γp ≤ 0.25 γp  ≤ 0.1 γp  ≤ 0.05 Average γp 

FLBP1 

LRBT, β = 0.1, αt = 0.25 96.78 91.91 79.88 0.0555 

LFBT, b = 15, αt = 0.25 97.17 90.73 78.24 0.0563 

Canny Edge Pixels, αt = 0.12 96.52 91.52 78.57 0.0596 

FLBP2 

LRBT, β = 0.2, αv = 0.25 97.83 92.44 80.14 0.0513 

LFBT, b = 20, αv =0.25 97.70 91.52 79.09 0.0524 

Canny Edge Pixels, αv = 0.25 95.99 90.73 77.91 0.0590 
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6.4.2 Parameters 

Tables 6.16 and 6.17 show the eye detection success rate for γ ≤ 0.25, 0.1, 0.05 and 

average γ of the FLBP1 and FLBP2 methods, respectively. Tables 6.18 and 6.19 show the 

eye detection success rate for γp ≤ 0.25, 0.1, 0.05 and average γp of the FLBP1 and 

FLBP2 methods, respectively. The ranks in the tables are derived by sorting the average γ 

or γp in ascending order. The feature pixels are derived by the LRBT method. The LRBT 

method applies five β values: 0.05, 0.1, 0.15, 0.2 and 0.25. The FLBP parameters αt and 

αv in the experiments are from the following set: {0.12, 0.25, 0.5, and 1}. 

 The relative bias parameter β in the LRBT method should assume an appropriate 

value that is neither too small nor too large. If β is too small, more noise pixels will be 

included as feature pixels, which is detrimental to either feature pixel extraction or FLBP 

code derivation. If β is too large, more meaningful feature pixels will be filtered out, 

whose effect is also harmful for feature pixel extraction and FLBP code generation. Our 

experimental results show that the empirical values of 0.1, 0.15 and 0.2 for β help most 

methods achieve good eye detection performance. The results also reveal that when β = 

0.05, good eye detection performance is achieved for large values of αt or αv. 

 The locations of the true center and the virtual center are controlled by the 

parameter αt and αv, respectively. The larger value the parameters assume, the closer the 

true center or virtual center gets to the nearest feature pixel. When comparing the average 

γ in Tables 6.16 and 6.17, one can see that both FLBP1 and FLBP2 obtain the smallest 

error when αt or αv = 0.25, except for LRBT with β = 0.05 (this situation will be 

discussed in the next paragraph). When αt (or αv) gets smaller or larger than 0.25, the 

results become worse. As the FLBP method encodes the information from both the local 
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texture and the feature pixels, a proper balance should be kept in order to reach the best 

performance. When αt (or αv) is smaller than 0.25, FLBP contains more information from 

the local texture than the feature pixels. When αt (or αv) is larger than 0.25, FLBP 

encodes more information from the feature pixels than from the local texture. When αt (or 

αv) = 0.25, FLBP optimally encodes the information from both the local texture and the 

feature pixels, and the FLBP method achieves the best eye detection performance. 

 For LRBT with β = 0.05, Tables 6.16 – 6.19 show that both FLBP1 and FLBP2 

obtain the smallest average relative distance error γ and γp when αt = 1 for FLBP1 and αv 

= 1 for FLBP2. When αt (or αv) gets smaller, the results become worse. Note that when β 

= 0.05, which is the smallest among the four β values in our experiments, more feature 

pixels are extracted. As a result, the distance vectors to the nearest feature pixel are 

smaller than those corresponding to a larger β value. In order to achieve the balanced 

information encoding from both the local texture and the feature pixels, αt (or αv) should 

be large according to Equations. 3.7 and 3.8 
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Table 6.16 The Eye Detection Success Rates for γ ≤ 0.25, 0.1, 0.05 and the Average γ of 

the FLBP1 Methods using Different Parameter Values 

 

Method FLBP1 

β αt γ ≤ 0.25 γ  ≤ 0.1 γ  ≤ 0.05 Average γ Rank 

0.05 

0.12 94.38 92.14 84.42 0.0665 19 

0.25 97.01 94.05 86.00 0.0491 14 

0.5 97.30 93.95 85.67 0.0463 12 

1 97.76 94.18 85.70 0.0440 9 

0.1 

0.12 97.63 94.64 86.59 0.0450 11 

0.25 98.03 94.74 87.21 0.0416 1 

0.5 97.70 93.82 85.73 0.0432 8 

1 97.86 93.23 85.57 0.0442 10 

0.15 

0.12 98.03 95.00 87.15 0.0424 3 

0.25 98.13 93.75 86.00 0.0422 2 

0.5 96.81 91.88 84.45 0.0480 13 

1 96.32 89.12 82.02 0.0544 16 

0.2 

0.12 97.86 95.10 87.41 0.0428 6 

0.25 97.67 93.98 86.52 0.0427 5 

0.5 96.29 90.01 82.58 0.0534 15 

1 95.36 86.92 79.29 0.0622 18 

0.25 

0.12 97.99 94.84 87.28 0.0429 7 

0.25 98.09 93.85 85.83 0.0426 4 

0.5 95.73 88.66 81.66 0.0562 17 

1 92.44 83.43 75.21 0.0785 20 
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Table 6.17 The Eye Detection Success Rates for γ ≤ 0.25, 0.1, 0.05 and the Average γ of 

the FLBP2 Methods using Different Parameter Values 

 

Method FLBP2 

β αv γ ≤ 0.25 γ  ≤ 0.1 γ  ≤ 0.05 Average γ Rank 

0.05 

0.12 93.79 91.62 84.19 0.0705 17 

0.25 95.63 93.13 85.47 0.0577 15 

0.5 95.89 92.04 85.77 0.0538 12 

1 96.91 93.43 86.49 0.0447 8 

0.1 

0.12 97.30 94.31 86.26 0.0473 10 

0.25 97.90 94.67 86.88 0.0426 7 

0.5 96.81 92.83 86.49 0.0451 9 

1 93.33 89.05 83.10 0.0560 14 

0.15 

0.12 97.93 94.97 86.62 0.0425 6 

0.25 98.55 95.04 87.51 0.0392 2 

0.5 95.92 92.37 86.19 0.0474 11 

1 88.89 83.07 76.33 0.0748 18 

0.2 

0.12 98.16 95.04 86.72 0.0414 5 

0.25 98.65 95.23 87.84 0.0385 1 

0.5 94.61 89.58 84.22 0.0542 13 

1 84.45 77.84 70.74 0.0931 19 

0.25 

0.12 98.16 94.84 86.65 0.0412 4 

0.25 98.62 94.44 87.08 0.0397 3 

0.5 93.23 87.77 82.18 0.0626 16 

1 80.14 73.64 67.49 0.1108 20 
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Table 6.18 The Eye Detection Success Rates for γp ≤ 0.25, 0.1, 0.05 and the Average γp 

of the FLBP1 Methods using Different Parameter Values 

 

Method FLBP1 

β αt γp ≤ 0.25 γp  ≤ 0.1 γp  ≤ 0.05 Average γp Rank 

0.05 

0.12 90.47 87.25 75.48 0.0989 19 

0.25 94.94 90.47 77.51 0.0690 14 

0.5 95.66 89.94 76.53 0.0644 12 

1 96.32 90.47 76.73 0.0600 9 

0.1 

0.12 96.32 91.52 78.37 0.0607 11 

0.25 96.78 91.91 79.88 0.0555 1 

0.5 96.25 90.20 77.25 0.0588 8 

1 96.58 88.95 77.25 0.0605 10 

0.15 

0.12 96.84 92.18 79.22 0.0569 2 

0.25 96.97 89.94 77.78 0.0570 3 

0.5 94.61 87.31 76.99 0.0659 13 

1 93.82 83.89 74.16 0.0737 15 

0.2 

0.12 96.52 92.31 80.00 0.0581 4 

0.25 96.25 90.14 78.44 0.0583 5 

0.5 93.62 85.14 73.90 0.0741 16 

1 94.39 82.58 70.94 0.0827 18 

0.25 

0.12 96.84 91.78 79.42 0.0585 6 

0.25 96.58 90.27 77.84 0.0585 6 

0.5 92.83 83.17 73.31 0.0775 17 

1 87.97 77.91 65.68 0.1071 20 
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Table 6.19 The Eye Detection Success Rates for γp ≤ 0.25, 0.1, 0.05 and the Average γp 

of the FLBP2 Methods using Different Parameter Values 

 

Method FLBP2 

β αv γp ≤ 0.25 γp  ≤ 0.1 γ  ≤ 0.05 Average γp  Rank 

0.05 

0.12 89.48 86.32 75.02 0.1057 18 

0.25 92.90 89.28 77.25 0.0819 15 

0.5 93.16 87.7 77.71 0.0776 13 

1 95.00 88.89 78.17 0.0623 8 

0.1 

0.12 95.73 90.99 78.04 0.0644 10 

0.25 96.65 91.58 78.83 0.0576 6 

0.5 94.61 88.17 78.70 0.0631 9 

1 89.09 83.30 74.36 0.0785 14 

0.15 

0.12 96.52 91.98 78.30 0.0579 7 

0.25 97.57 91.65 80.01 0.0526 2 

0.5 93.29 87.90 78.90 0.0664 11 

1 83.50 76.07 65.81 0.1022 17 

0.2 

0.12 96.98 92.11 78.57 0.0557 5 

0.25 97.83 92.44 80.14 0.0513 1 

0.5 90.86 84.16 76.27 0.0769 12 

1 77.19 69.23 59.57 0.1281 19 

0.25 

0.12 96.98 91.58 78.63 0.0556 4 

0.25 97.70 90.92 79.22 0.0534 3 

0.5 88.82 82.51 74.36 0.0876 16 

1 71.14 65.02 56.34 0.1510 20 
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6.5 Comparison FLBP with Other Local Feature Descriptors 

This dissertation compares FLBP with the Histograms of Oriented Gradient (HOG) 

descriptor (Dalal and Triggs, 2005) and two LBP variants, Local Derivative Pattern 

(LDP) (B. Zhang and Gao, 2010) and Local Quantized Patterns (Hussain and Triggs, 

2012) on eye detection in the BioID database. Tables 6.16 – 6.19 show that the FLBP 

experiment when αv = 0.25, αt = 0 and β = 0.2, archives the lowest average γ and γp 

among all FLBP experiments, therefore, the FLBP method with these parameter values is 

chosen to compare with the methods using other local feature descriptors. 

6.5.1 FLBP vs. HOG 

The idea behind the Histogram of Oriented Gradient descriptors (HOG) is that local 

object appearance and shape within an image can be described by the distribution of 

intensity gradients or edge directions. The implementation of HOG is achieved by 

dividing the image into small connected regions, called cells, and for each cell compiling 

a histogram of gradient directions or edge orientations for the pixels within the cell. The 

combination of these histograms then represents the descriptor. For improved accuracy, 

the local histograms can be contrast-normalized by calculating a measure of the intensity 

across a larger region of the image, called a block, and then using this value to normalize 

all cells within the block. This normalization results in better invariance to changes in 

illumination or shadowing. 

Tables 6.20 and 6.21 show the success rates for γ and γp ≤ 0.25, 0.1, 0.05 and the 

average γ and γp of eye detection using the FLBP and HOG methods, respectively. The 

numbers of orientation bins of HOG in the table are 9 and 18. The results show that the 

FLBP method achieves better performance than HOG method. 
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Table 6.20 The Eye Detection Success Rates for γ ≤ 0.25, 0.1, 0.05 and the Average γ of 

the FLBP and HOG Methods 

 

Method γ ≤ 0.25 γ  ≤ 0.1 γ  ≤ 0.05 Average γ 

HOG 
9 orientation bins 91.72 87.51 77.81 0.0737 

18 orientation bins 92.31 87.87 76.43 0.0690 

FLBP, LRBT, β = 0.2, αt = 0, αv = 0.25 98.65 95.23 87.84 0.0385 

 

Table 6.21 The Eye Detection Success Rates for γp ≤ 0.25, 0.1, 0.05 and the Average γp 

of the FLBP and HOG Methods 

 

Method γp ≤ 0.25 γp  ≤ 0.1 γp  ≤ 0.05 Average γp 

HOG 
9 orientation bins 86.46 80.60 66.47 0.1092 

18 orientation bins 87.38 81.46 65.22 0.0991 

FLBP, LRBT, β = 0.2, αt = 0, αv = 0.25 97.83 92.44 80.14 0.0513 

 

6.5.2 FLBP vs.  LDP 

LDP is a general framework to encode directional pattern features based on local 

derivative variations. For a given an image, LDP first computer the N
th

- Order derivatives 

along 0
o
, 45

o
, 90

o
 and 135

o
 directions to generate four N

th
- Order derivatives images. The 

four 8-bit directional N
th

- Order LDPs can be computed using the threshold function 

defined as follows: 

 (     )    {
                        
                              

   (6.3) 

Finally, the N
th

- Order LDP is defined as the concatenation of the four 8-bit directional 

LDPs. 

The 2nd-order and 3rd-order LDP are used in the experiments. LDP is also 

extended to the Feature LDP (FLDP) using the same approach that extends LBP to 
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FLBP. The parameters of LDP used in the experiment are the same as those used by the 

FLBP method. Tables 6.22 and 6.23 show the success rates for γ and γp ≤ 0.25, 0.1, 0.05 

and the average γ and γp of eye detection using the FLBP, LDP and FLDP methods, 

respectively. The experimental results in these tables lead to the following findings. 

 The FLBP method has the best performance among all methods. 

 The 2nd-order LDP methods perform better than 3rd-order LDP methods 

 The FLDP methods perform better their corresponding LDP methods. 

 

Table 6.22 The Eye Detection Success Rates for γ ≤ 0.25, 0.1, 0.05 and the Average γ of 

the FLBP, LDP and FLDP Methods 

 

Method γ ≤ 0.25 γ  ≤ 0.1 γ  ≤ 0.05 Average γ 

LDP
2 88.89 82.22 69.13 0.1060 

FLDP
2
, β = 0.2, αt = 0, αv =0.25 93.23 85.86 73.18 0.0736 

LDP
3 63.48 50.36 36.26 0.2865 

FLDP
3
, β = 0.2, αt = 0, αv =0.25 72.62 58.61 43.16 0.2218 

FLBP, β = 0.2, αt = 0, αv = 0.25 98.65 95.23 87.84 0.0385 

 

Table 6.23 The Eye Detection Success Rates for γp ≤ 0.25, 0.1, 0.05 and the Average γp 

of the FLBP, LDP and FLDP Methods 

 

Method γp ≤ 0.25 γp  ≤ 0.1 γp  ≤ 0.05 Average γp 

LDP
2 84.48 73.77 55.62 0.1437 

FLDP
2
, β = 0.2, αt = 0, αv =0.25 89.81 78.24 59.63 0.1107 

LDP
3 51.28 37.21 22.16 0.3771 

FLDP
3
, β = 0.2, αt = 0, αv =0.25 62.59 46.81 29.85 0.2909 

FLBP, β = 0.2, αt = 0, αv = 0.25 97.83 92.44 80.14 0.0513 
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6.5.3 FLBP vs. LQtP 

LQtP is a generalized form of local patterns that uses many different neighborhood 

geometries. The binary coding LQtP with the H7, V7, HV7 and DA7 neighborhood shapes 

which are shown in Figure 6.10 are used in our experiments. LQtP is extended to the 

Feature LQtP (FLQtP) using the same approach that extends LBP to FLBP. The 

parameters of LDP used in the experiment are the same as those used by the FLBP 

method. 

 

Figure 6.10 The local pattern neighborhoods (a) Horizontal (H7), (b) Vertical (V7), (c) 

Horizontal-Vertical (HV7), and (d) Diagonal-Antidiagonal (DA7). 
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Tables 6.24 and 6.25 show the success rates for γ and γp ≤ 0.25, 0.1, 0.05 and the 

average γ and γp of eye detection using the FLBP, LQtP and FLQtP methods, 

respectively. The experimental results in these tables lead to the following findings. 

 The FLBP method has the best performance among all methods. 

 The FLQtP methods perform better their corresponding LQtP methods. 

 LQtP-HV7 and LQtP-DA7 have the better results than LQtP-H7 and LQtP-V7. 

However, the dimensions of LQtP-HV7 and LQtP-DA7 (2
12

) are higher than the 

dimensions of LQtP-H7 and LQtP-V7 (2
6
) and FLBP (2

10
). 

 

Table 6.24 The Eye Detection Success Rates for γ ≤ 0.25, 0.1, 0.05 and the Average γ of 

the FLBP, LQtP and FLQtP Methods 

 

Method γ ≤ 0.25 γ  ≤ 0.1 γ  ≤ 0.05 Average γ 

LQtP-H7
 61.05 50.46 37.80 0.2813 

FLQtP-H7, β = 0.2, αt = 0, αv =0.25 87.31 75.74 64.07 0.1195 

LQtP-V7
 69.17 49.34 35.63 0.2291 

FLQtP-V7, β = 0.2, αt = 0, αv =0.25 92.37 74.03 60.19 0.0941 

LQtP-DA7
 92.44 88.43 81.43 0.0762 

FLQtP-DA7, β = 0.2, αt = 0, αv =0.25 96.19 90.86 84.16 0.0485 

LQtP-HV7
 94.64 89.91 80.80 0.0634 

FLQtP-HV7, β = 0.2, αt = 0, αv =0.25 97.53 91.22 85.14 0.0466 

FLBP, β = 0.2, αt = 0, αv = 0.25 98.65 95.23 87.84 0.0385 
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Table 6.25 The Eye Detection Success Rates for γp ≤ 0.25, 0.1, 0.05 and the Average γp 

of the FLBP, LQtP and FLQtP Methods 

 

Method γp ≤ 0.25 γp  ≤ 0.1 γp  ≤ 0.05 Average γp 

LQtP-H7
 45.30 35.04 20.78 0.3855 

FLQtP-H7, β = 0.2, αt = 0, αv =0.25 80.80 66.86 50.82 0.1655 

LQtP-V7
 54.70 32.61 19.72 0.3189 

FLQtP-V7, β = 0.2, αt = 0, αv =0.25 87.31 62.98 44.84 0.1331 

LQtP-DA7
 87.51 82.12 71.53 0.1129 

FLQtP-DA7, β = 0.2, αt = 0, αv =0.25 93.36 85.67 76.20 0.0686 

LQtP-HV7
 90.53 84.22 70.35 0.0940 

FLQtP-HV7, β = 0.2, αt = 0, αv =0.25 96.06 86.98 77.32 0.0635 

FLBP, β = 0.2, αt = 0, αv = 0.25 97.83 92.44 80.14 0.0513 

 

6.6 Fusion of FLBP on Grayscale and Gradient Images 

The fusion of the FLBP methods on grayscale and gradient images for eye detection is 

explored in this dissertation. The similarity measures are fused at decision level by the 

simple sum rule. Sobel kernel defined by Equation 5.5 and the kernel defined by 

Equation 5.6 are used to compute the gradient. The experimental results show the FLBP 

method when αv = 0.25, αt = 0 and β = 0.2, archives the best performance on grayscale, 

therefore, the FLBP method with these parameter values is chose for on gradient images. 

Tables 6.26 and 6.27 show the success rates for γ and γp ≤ 0.25, 0.1, 0.05 and the 

average γ and γp of the LBP and FLBP eye detection methods on gradient (Sobel kernel) 

and grayscale images, respectively. Tables 6.28 and 6.29 show the success rates for γ and 

γp ≤ 0.25, 0.1, 0.05 and the average γ and γp of the LBP and FLBP eye detection  methods 

on gradient (kernel defined by Equation 5.6) and grayscale images, respectively. The 
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method names, GD, GM and GS in tables represent the FLBP methods on gradient 

direction, gradient magnitude and grayscale images, respectively. The + sign denotes the 

fusion of the FLBP on different images.  The results show that the method fusing the 

grayscale, gradient magnitude and direction images improves eye detection performance 

and the kernel defined by Equation 5.6 performs better than Sobel kenel. 

 

Table 6.26 The Eye Detection Success Rates for γ ≤ 0.25, 0.1, 0.05 and the Average γ of 

the LBP and FLBP Methods Applied on Gradient Images (Sobel Kernel), Grayscale 

Images and the Fusion of Gradient and Grayscale Image 

 

Method γ ≤ 0.25 γ  ≤ 0.1 γ  ≤ 0.05 Average γ 

GD 
LBP 77.41 70.38 52.24 0.1868 

FLBP 88.30 79.55 39.58 0.1180 

GM 
LBP 91.16 88.53 77.84 0.0896 

FLBP 94.97 90.14 77.45 0.0590 

GD+GM 
LBP 92.77 90.70 79.19 0.0816 

FLBP 96.75 93.49 80.21 0.0514 

GS 
LBP 92.34 90.34 83.14 0.0812 

FLBP 98.65 95.23 87.84 0.0385 

GD+GM+GS 
LBP 96.06 95.50 88.69 0.0532 

FLBP 98.75 97.53 90.27 0.0333 
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Table 6.27 The Eye Detection Success Rates for γp ≤ 0.25, 0.1, 0.05 and the Average γp 

of the LBP and FLBP Methods Applied on Gradient Images (Sobel Kernel), Grayscale 

Images and the Fusion of Gradient and Grayscale Images 

 

Method γp ≤ 0.25 γp  ≤ 0.1 γp  ≤ 0.05 Average γp 

GD 
LBP 67.13 58.25 35.77 0.2666 

FLBP 81.92 69.10 39.58 0.1723 

GM 
LBP 85.67 81.99 66.60 0.1357 

FLBP 91.91 85.08 65.22 0.0835 

GD+GM 
LBP 88.76 85.80 68.64 0.1189 

FLBP 94.54 89.35 68.57 0.0738 

GS 
LBP 87.44 84.62 73.37 0.1207 

FLBP 97.83 92.44 80.14 0.0513 

GD+GM+GS 
LBP 93.75 92.97 82.25 0.0748 

FLBP 98.09 96.06 83.96 0.0438 

 

 

Table 6.28 The Eye Detection Success Rates for γ ≤ 0.25, 0.1, 0.05 and the Average γ of 

the LBP and FLBP Methods Applied on Gradient Images (the New Kernel), Grayscale 

Images and the Fusion of Gradient and Grayscale Images 

 

Method γ ≤ 0.25 γ  ≤ 0.1 γ  ≤ 0.05 Average γ 

GD 
LBP 71.96 67.00 51.02 0.2155 

FLBP 82.35 76.43 59.24 0.1570 

GM 
LBP 91.78 89.05 78.01 0.0849 

FLBP 95.10 90.34 77.78 0.0573 

GD+GM 
LBP 92.21 90.37 79.98 0.0829 

FLBP 96.09 93.33 82.51 0.0542 

GS 
LBP 92.34 90.34 83.14 0.0812 

FLBP 98.65 95.23 87.84 0.0385 

GD+GM+GS 
LBP 95.92 95.23 89.84 0.0537 

FLBP 98.65 97.73 91.29 0.0328 

 



88 
 

 

 

Table 6.29 The Eye Detection Success Rates for γp ≤ 0.25, 0.1, 0.05 and the Average γp 

of the LBP and FLBP Methods Applied on Gradient Images (the New Kernel), Grayscale 

Images and the Fusion of Gradient and Grayscale Images 

 

Method γp ≤ 0.25 γp  ≤ 0.1 γp  ≤ 0.05 Average γp 

GD 
LBP 59.57 53.58 33.07 0.3122 

FLBP 73.90 66.01 42.54 0.2260 

GM 
LBP 86.72 82.84 66.60 0.1290 

FLBP 91.72 85.14 65.75 0.0817 

GD+GM 
LBP 87.38 84.75 68.64 0.1259 

FLBP 93.49 89.35 71.93 0.0791 

GS 
LBP 87.44 84.62 73.37 0.1207 

FLBP 97.83 92.44 80.14 0.0513 

GD+GM+GS 
LBP 93.43 92.31 83.76 0.0779 

FLBP 97.96 96.32 85.34 0.0436 

 

6.7 The Enhanced Eye Detection Method 

To further improve the performance, two enhancements are implemented to the eye 

detection methods. In tables 6.26 - 6.29, all methods use the same parameter values for 

the FLBP on grayscale image and gradient images. The first enhancement is to use the 

different parameter values between the grayscale image and the gradient images. The 

experimental results indicate the performance can be improved if different parameter 

values are chosen appropriately.  

The second enhancement is based on the fact that the iris is the darkest area in the 

eye region and the eye center is also the center of an iris. After a pixel p is initially 

detected as the eye center by the similarity measure, M defined by Equation 5.1, the eye 

center is adjusted in the 3 × 3 neighbor of p. First for each pixel in the 3 × 3 neighbor of 
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p, the sum of the intensity values of all pixels inside a 10 × 10 window around the pixel is 

calculated, and then the sum is multiplied by M, the similarity measure of the pixel. The 

pixel with the smallest product will be selected as the new eye center.  

The enhanced method is tested on both the BioID and FERET database. Table 

6.30 shows the success rates and average γ of an enhanced GD+GM+GS method on the 

BioID and FERET databases. The values of αv, αt and β for GS are 0.25, 0, 0.2, 

respectively. The values of αv, αt and β for GM and GD are 0, 0.12 and 0.1, respectively. 

The results on the BioID database show the enhanced FLBP method archives the best 

performance among all FLBP methods introduced in the dissertation. Especially, the 

success rate for γ and γp ≤ 0.05 are significantly increased and average γ and γp are 

significantly decreased. The enhanced method on the FERET database also shows the 

good results. The graphs in Figures 6.11 and 6.12 show the success rates of the enhanced 

FLBP method for various γ and γp on the BioID and FERET databases, respectively.   

 

Table 6.30 The Eye Detection Success Rates for γ ≤ 0.25, 0.1, 0.05 and the Average γ of 

the Enhanced GD+GM+GS Method on the BioID and FERET Databases 

 

Database γ ≤ 0.25 γ  ≤ 0.1 γ  ≤ 0.05 Average γ 

BioID 98.82 97.93 94.38 0.0281 

FERET 99.27 98.87 94.11 0.0275 
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Figure 6.11 The eye detection success rates of the enhanced FLBP method for various γ 

on the BioID and FERET database. 

 

Table 6.31 The Eye Detection Success Rates for γp ≤ 0.25, 0.1, 0.05 and the Average γp 

of the Enhanced GD+GM+GS Method on the BioID and FERET Databases 

 

Database γp ≤ 0.25 γp  ≤ 0.1 γp  ≤ 0.05 Average γp 

BioID 98.16 96.65 90.99 0.0381 

FERET 98.69 97.94 90.48 0.0363 
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Figure 6.12 The eye detection success rates of the enhanced FLBP method for various γp 

on the BioID and FERET database. 

 

6.8 The Stability of FLBP to Change of Eye Template 

The eye template in the previous sections is constructed by well controlled samples. In 

the controlled samples, all eyes are open, about the same size, and do not wear eye 

glasses. Eye detection performance depends on the eye template. This section compares 

the eye detection performance of the LBP, FLBP methods using different eye templates. 

The new templates are constructed by the eye samples from the face images of the BioID 

and FERET databases. The samples from the BioID and FERET databases are 

uncontrolled due to closed eyes, eye glasses and variation in eye size. The BioID and 

FERET databases are equally divided to ten groups. Each group is used to construct an 

eye template. For each method two sets of experiments are conducted on the BioID 

database. Each set includes ten experiments. One set uses the ten eye templates from the 
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samples of the BioID database, and the other one uses the ten eye templates from the 

samples of the FERET database. When an experiment using the eye templates from the 

samples of the BioID database, the face images used to construct the eye template are 

excluded from eye the experiments. The results of each experimental set are reported as 

the means and standard deviations of the results of the ten experiments in each set. 

 Table 6.32 shows eye detection success rates for γ ≤ 0.25, 0.1, 0.05 and the 

average γ of the LBP, FLBP and the enhanced FLBP methods on the BioID databases 

using different eye templates. The FLBP and enhanced FLBP methods are the same as 

the GS method in table 6.26 and the enhanced method in Table 6.30, respectively. The 

results of the methods using the eye templates from the samples of the BioID and FERET 

databases are shown as mean ± standard deviation. As expected the results show that a 

method achieves better performance using the template from the controlled samples than 

using the templates from the samples of the BioID and FERET databases.  Table 6.32 

shows when using the templates from the uncontrolled samples of the BioID and FERET 

databases, the performance of the FLBP and enhanced FLBP methods drops less than the 

performance of the LBP method, and the FLBP and enhanced FLBP methods have the 

smaller standard deviations than the LBP method. These results indicate that the FLBP 

and enhanced FLBP methods are less sensitive and more stable to the change of eye 

template than the LBP method.  

 

 

 

 

 

 

 

 



93 
 

 

 

 

Table 6.32 The Eye Detection Success Rates and the Average γ of the LBP, FLBP and 

the Enhanced FLBP Methods using Different Eye Templates 

 

Method Sample γ ≤ 0.25 γ  ≤ 0.1 γ  ≤ 0.05 Average γ 

LBP 

Controlled 92.34 90.34 83.14 0.0812 

BioID 86.06 ± 5.19 79.15 ± 6.24 63.48 ± 7.42 0.1256 ± 0.0307 

FERET 75.11 ± 6.66 68.49 ± 7.28 54.48 ± 6.81 0.1994 ± 0.0409 

FLBP 

Controlled 98.65 95.23 87.84 0.0385 

BioID 94.77 ± 2.64 87.93 ± 3.74 72.13 ± 7.48 0.0684 ± 0.0142 

FERET 92.71 ± 1.73 84.80 ± 2.76 68.61 ± 3.19 0.0842 ± 0.0104 

Enhanced 

FLBP 

Controlled 98.82 97.96 94.48 0.0280 

BioID 96.39 ± 1.88 92.85 ± 2.64 81.33 ± 3.89 0.0482 ± 0.0119 

FERET 95.16 ± 1.30 90.77 ± 2.07 77.60 ± 3.45 0.0585 ± 0.0086 

 

6.9 Comparison with the Other Eye Detection Methods 

The FLBP method is compared with other state of the art eye detection methods on the 

BioID and FERET databases. The FLBP method which is selected to compare with other 

methods is the enhanced GD+GM+GS method shown in Table 6.31.  

 Table 6.33 shows the eye detection success rates of the FLBP method and other 

methods on the BioID database. The results show the FLBP method achieves the highest 

success rates for γp ≤ 0.1 and 0.05. The success rate for γp ≤ 0.05 measures the accuracy 

of eye center localization. In comparison with the other methods, the FLBP method 

significantly improves the accuracy of eye center localization on the BioID database. 

 Table 6.34 shows the eye detection success rates of the FLBP method and 

Campadelli’s [51] method on the FERET database. The face images used in two methods 

are different. Our method uses the entire fa and fb set which include 1986 face images. 
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Campadelli’s method selected 1175 images of which 400 from fa set, 575 from fb set and 

200 from ba set. Table 10 shows the FLBP method achieves the higher success rates for 

γp ≤ 0.1 and 0.05. The results indicate the FLBP method also significantly improves the 

accuracy of eye center localization on the FERET database. 

 

Table 6.33 The Eye Detection Success Rates of the FLBP and other Methods on the 

BioID Database 

 

Method γp ≤ 0.25 γp ≤ 0.1 γp  ≤ 0.05 

Asterialdis (2009) 96.00 89.41 -
 

Valenti (2008) 98.49 90.85 84.10 

Campadelli (2009) 99.30 93.20 80.70 

FLBP 98.16 96.65 90.99 

 

 

Table 6.34 The Eye Detection Success Rates of the FLBP and other Methods on the 

FERET Database 

 

Method γp ≤ 0.25 γp ≤ 0.1 γp  ≤ 0.05 

Campadelli (2009) 99.70 97.30 67.70 

FLBP 98.69 97.94 90.48 
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CHAPTER 7  

   

EXPERIMENTAL RESULTS OF LQP-BASED AND FLQP-BASED METHODS 

7.1 Comparative Assessment of FLQP and LQP 

The experiments  of  the FLBP-based method show that 5 × 5 neighborhood size is better 

than 3 × 3 neighborhood size,  and 3 × 4 grid of an eye window yields the best overall 

results among 3 × 3, 3 × 4, and 4 × 4 grid size. Therefore, the 5 × 5 neighborhood size 

and the 3 × 4 grid are applied to the LQP-based and FLQP-based eye detection methods. 

The features for FLQP-based eye detection are derived using the LRBT method with β = 

0.2.  The parameters αv and αt are set to 0.25 and 0, respectively. The parameter r of the 

threshold function in the experiments is set to either a constant value (r = c) or a relative 

value (r = τgc). The LQP-based and FLQP-based methods are assessed using the BioID 

databases. The facial images are cropped and normalized to the size of 132 × 178. The 

success rate for γ ≤ 0.25, 0.1, 0.05, γp ≤ 0.25, 0.1, 0.05 and the average γ and γp are used 

to assess the performance of the eye detection methods.  

Tables 7.1 and 7.2 show the results of the eye detection success rate for γ and γp ≤ 

0.25, 0.1, 0.05, the average γ and γp of the LQP-based and FLQP-based eye detection 

methods, respectively. The ranks in the tables are derived by sorting the average γ or γp in 

ascending order. The results show that all the FLQP-based methods have lower average γ 

than any LQP-based method, and all the FLQP-based methods except when r = 8 have 

lower average γp than any LQP-based method.  For the FLQP-based eye detection 

methods, a relative r achieves better eye detection performance than a constant r. For the 

LQP-based eye detection methods, a relative r and constant r have the similar result
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Table 7.1 The Eye Detection Success Rates for γ ≤ 0.25, 0.1, 0.05 and the Average γ of 

the FLQP-based and LQP-based Eye Detection Methods 

 

Method γ ≤ 0.25 γ ≤ 0.1 γ ≤ 0.05 Average γ 
Rank 

Average γ 

FLQP 

r = τgc 

τ = 0.17 98.59 96.09 89.74 0.0363 2 

τ = 0.18 98.75 96.19 89.71 0.0360 1 

τ = 0.19 98.75 96.12 89.38 0.0363 2 

FLQP 

r = c 

c = 7 98.59 94.81 88.59 0.0376 4 

c = 8 98.59 94.71 88.61 0.0377 5 

c = 9 98.62 94.94 88.42 0.0379 6 

LQP 

r = τgc 

τ = 0.06 98.13 95.36 88.95 0.0394 12 

τ = 0.07 98.39 95.63 89.38 0.0382 8 

τ = 0.08 98.19 94.43 89.48 0.0392 10 

LQP 

r = c 

c = 6 98.39 95.36 88.72 0.0385 9 

c = 7 98.55 95.40 88.10 0.0381 7 

c = 8 98.32 95.46 88.56 0.0391 10 
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Table 7.2 The Eye Detection Success Rates for γp ≤ 0.25, 0.1, 0.05 and the Average γp of 

the FLQP-based and LQP-based Eye Detection Methods 

 

Method γp ≤ 0.25 γp ≤ 0.1 γp ≤ 0.05 Average γp 
Rank 

Average γp 

FLQP 

r = τgc 

τ = 0.17 97.63 93.56 83.63 0.0480 2 

τ = 0.18 97.90 93.75 83.43 0.0476 1 

τ = 0.19 97.90 93.56 82.77 0.0482 3 

FLQP 

r = c 

c = 7 97.63 91.12 81.72 0.0508 4 

c = 8 97.57 90.80 81.66 0.0512 7 

c = 9 97.70 91.58 81.79 0.0508 4 

LQP 

r = τgc 

τ = 0.06 96.91 92.50 82.38 0.0531 11 

τ = 0.07 97.37 92.97 82.97 0.0513 8 

τ = 0.08 97.17 92.83 83.04 0.0528 10 

LQP 

r = c 

c = 6 97.37 92.44 81.85 0.0515 9 

c = 7 97.70 92.37 81.07 0.0510 6 

c = 8 97.30 92.44 81.33 0.0531 11 

 

7.2 Comparative Assessment of FLTP and LTP 

The LTP and FLTP are implemented in the eye detection as well for comparison. The 5 × 

5 neighborhood size and the 3 × 4 grid are applied to the LTP-based and FLTP-based eye 

detection methods. The features of FLTP-based eye detection are derived using the 

LRBT method with β = 0.2.  The parameters αv and αt are set to 0.25 and 0, respectively. 

The parameter r of the threshold function is set to either a constant value (r = c) or a 

relative value (r = τgc). The LTP-based and FLTP-based methods are access on the BioID 

databases. The success rate for γ ≤ 0.25, 0.1, 0.05, γp ≤ 0.25, 0.1, 0.05 and the average γ 

and γp are used to assess the performance of the eye detection method.  
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Tables 7.3 and 7.4 show the results of the eye detection success rate for γ and γp ≤ 

0.25, 0.1, 0.05 and the average γ and γp of the LTP-based and FLTP-based eye detection 

methods, respectively. The ranks in the tables are derived by sorting the average γ or γp in 

ascending order. The results show that all the FLTP-based methods except when r = 

0.04gc have lower or equal average γ than any LQP-based method, and all the FLTP-

based methods have lower average γp than any LQP-based method except when r = 4. For 

both the FLTP-based and LTP-based eye detection methods a constant r achieves lower 

average γ and γp than a relative r. 

Table 7.3 The Eye Detection Success Rates for γ ≤ 0.25, 0.1, 0.05 and the Average γ of 

the FLTP-based and LTP-based Eye Detection Methods 

 

Method γ ≤ 0.25 γ ≤ 0.1 γ ≤ 0.05 Average γ 
Rank 

Average γ 

FLTP 

r = τgc 

τ = 0.02 98.46 94.81 88.63 0.0395 5 

τ = 0.03 98.32 95.00 89.02 0.0388 2 

τ = 0.04 98.06 95.00 89.02 0.0396 7 

FLTP 

r = c 

c = 2 98.52 95.04 88.46 0.0389 3 

c = 3 98.29 95.17 89.12 0.0387 1 

c = 4 98.16 95.17 88.89 0.0390 4 

LTP 

r = τgc 

τ = 0.02 97.53 94.87 87.34 0.0438 11 

τ = 0.03 97.44 94.74 87.87 0.0438 11 

τ = 0.04 97.30 94.48 87.84 0.0436 10 

LTP 

r = c 

c = 3 97.63 95.07 87.67 0.0429 9 

c = 4 98.03 95.50 88.95 0.0395 5 

c = 5 97.80 95.07 88.46 0.0401 8 
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Table 7.4 The Eye Detection Success Rates for γp ≤ 0.25, 0.1, 0.05 and the Average γp of 

the FLTP-based and LTP-based Eye Detection Methods 

 

Method γp ≤ 0.25 γp ≤ 0.1 γp ≤ 0.05 Average γp 

Rank 

Average γp 

FLTP 

r = τgc 

τ = 0.02 97.44 91.45 81.72 0.0533 7 

τ = 0.03 97.17 91.72 82.38 0.0525 3 

τ = 0.04 96.91 91.91 82.64 0.0531 6 

FLTP 

r = c 

c = 2 97.50 91.64 81.07 0.0525 3 

c = 3 97.24 91.85 82.58 0.0522 1 

c = 4 96.91 92.76 82.12 0.0529 5 

LTP 

r = τgc 

τ = 0.02 96.25 92.04 80.08 0.0581 10 

τ = 0.03 95.99 91.58 80.60 0.0585 12 

τ = 0.04 95.79 91.45 80.47 0.0584 11 

LTP 

r = c 

c = 3 96.19 92.04 80.34 0.0579 9 

c = 4 96.78 92.70 82.64 0.0524 2 

c = 5 96.38 91.91 81.59 0.0537 8 

 

7.3 Comparison of FLQP, LQP, FLTP, LTP, FLBP and LBP 

Tables 7.5 and 7.6 compare the performance of the FLQP-based, the LQP-based, the 

FLTP-based, the LTP-based, the FLBP-based, and the LBP-based eye detection methods. 

The experiments with smallest average γ and γp are selected from each method for the 

comparison. Tables 7.5 and 7.6 rank the average γ and γp of eye detection and show the 

percentages increased from the average γ and γp of the FLQP method, respectively. 
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Table 7.5 The Average γ and Rank of the FLQP-based, the LQP-based, the FLTP-based, 

the LTP-based, the FLBP-based and the LBP-based Eye Detection Methods 

 

Method Average γ 
% Higher than 

the FLQP Method 
Rank 

FLQP, r = 0.18gc 0.0360 0 1 

LQP, r = 7 0.0381 5.83 2 

FLTP, r = 3 0.0387 7.50 4 

LTP, r = 4 0.0395 9.72 5 

FLBP 0.0385 6.94 3 

LBP 0.0812 125.56 6 

 

 

Table 7.6 The Average γp and Rank of the FLQP-based, the LQP-based, the FLTP-based, 

the LTP-based, the FLBP-based and the LBP-based Eye Detection Methods 

 

 

Method Average γp 

% Increased from 

the FLQP Method 
Rank 

FLQP, r = 0.18gc 0.0476 0 1 

LQP, r = 7 0.0510 7.14 2 

FLTP, r = 3 0.0522 9.66 4 

LTP, r = 4 0.0524 10.08 5 

FLBP 0.0513 7.77 3 

LBP 0.1207 153.57 6 

 

The results in these tables lead to the following findings. 

 FLQP achieves the best eye detection performance. Specifically. The FLQP-based 

method has the smallest average γ and γp.  The average γ of the LQP, FLTP, LTP, 

FLBP, and LBP-based eye detection methods are 5.83%, 7.50%, 9.72%, 6.94%, 

and 125.56% higher than the average γ of the FLQP-based method, respectively. 

The average γp of the LQP, FLTP, LTP, FLBP, and LBP-based eye detection 

methods are 7.14%, 9.66%, 10.08%, 7.77%, and 153.57% higher than the average 

γp of the FLQP-based method, respectively. 
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 LQP performs better than LTP and LBP, and FLQP performs better than FLTP 

and FLBP for eye detection in terms of average γ and γp. These results 

demonstrate that the proposed LQP and FLQP, which encode four relationships of 

local texture, are more effective than the LTP, FLTP, LBP, and FLBP for texture 

description and pattern recognition, such as eye detection. 

 FLQP performs better than LQP, FLTP performs better than LQP, and FLBP 

performs better than LBP in terms of average γ and γp. The results illustrate that 

the feature local methods (FLQP, FLTP, and FLBP), which encode both local and 

feature information, perform better than the local methods (LQP, LTP, and LBP) 

that do not encode feature information. 

  The LTP method improves upon the LBP method. However, the average γ and γp 

of the FLBP method is smaller than the FLTP method. The FLTP method does 

not outperform the FLBP method. This results are consistent with the 

experimental results reported by Tan and Triggs (2007, 2010) and Gritti et al. 

(2008) which showed that LTP and LBP achieved similar results for face and 

facial expression recognition, although LTP has a higher computational cost than 

LBP. 
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CHAPTER 8  

FUTURE WORK AND CONCLUSION  

8.1 Future Work 

This dissertation introduces FLBP, LQP and FLQP and applies these new local texture 

descriptors to eye detection.  The future work will be the application of FLBP, LQP and 

FLQP to face detection and contented-based image classification. Some preliminary 

experiments have been conducted and show promising results. To further improve the 

performance will be the focus of the future work. 

8.1.1 FLBP Application to Face Detection 

The FLBP and LBP face detection methods are tested on the BioID database. The system 

architecture of face detection is similar to the one shown on Figure 5.3 for eye detection. 

The face template is constructed from 85 face samples that are not from the BioID 

database. All face samples are aligned by their eye centers and normalized to the size of 

40 × 36. The face samples are divided to a grid of 4 × 4. To find the faces in different 

scales, the test images are scaled to different size. In each searching route the scale of a 

test image is selected by the bisection method. The success rate for γp ≤ 0.25, 0.1, 0.05, 

and the average γp is used to assess the performance of face detection. For face detection, 

a candidate face is considered to be successfully detected if γp ≤ 0.25. Table 8.1 shows 

face detection success rates and average γp of the FLBP and LBP methods, where the 

feature pixels for FLBP are derived by the LRBT method. The results show that both 

methods have a high success rate for γp ≤ 0.25, and the FLBP method achieves better 
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performance than the LBP method. To increase the success rates for γp ≤ 0.1, 0.05, and 

decrease the average γp will be our future tasks. 

Table 8.1 The Face Detection Success Rates and Average γp of the FLBP and LBP 

Methods 

 

Method γp ≤ 0.25 γp ≤ 0.1 γp  ≤ 0.05 Average γp 

FLBP 

LRBT, β = 0.4, αt = 0, αv = 0.25 
96.19 37.48 5.06 0.1369 

LBP 94.15 32.35 3.94 0.1557 

 

8.1.2 FLBP Application to Content-Based Image Classification 

The content-based image classification using FLBP and LBP is tested on the MIT Scene 

database. The MIT Scene database has 2,688 color images in eight categories. All color 

images are converted to grayscale images in the experiments. The features used in FLBP 

and LBP methods are 256 bins FLBP and LBP histograms of an image, respectively. 

Principal Component Analysis (PCA) is first applied to reduce the dimensions of the 

FLBP and LBP histograms, and then Fisher Linear Discriminant (FLD) is further applied 

to extract the most discriminatory features. The performance of FLBP and LBP method is 

assessed using four-fold cross-validations. The database is equally divided to four groups. 

In each round of cross-validation three groups are used for training and one group is used 

for testing. For classification, a testing image compares to the sample means of each 

category and is assigned to the category which has the shortest distance to the image. The 

performance of classification is measured by the mean of the classification rates of all 

rounds of cross-validation. Table 8.2 is the classification rate of the FLBP and LBP 

method on MIT Scene database. The results show the FLBP method has the higher 
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classification rate than the LBP method. The future work will be focused on improving 

the performance. 

Table 8.2 The Content-Based Image Classification Rates the FLBP and LBP Methods 

 

Method Classification Rate 

FLBP 

LRBT, β = 0.1, αt = 0, αv = 0.5 
81.23 

LBP 77.91 

 

8.2 Conclusion 

LBP only compares a pixel with the pixels in its own neighborhood and encodes a little 

information about the relationship of local texture with the features. To solve the 

problems of FLBP, this dissertation introduces Feature Local Binary Patterns (FLBP) that 

compares a pixel with the pixels in its own neighborhood as well as in other 

neighborhoods, and encodes the information of both local texture and features. The 

features encoded in FLBP are broadly defined by any features which meet the 

requirements of specific applications. FLBP generalizes LBP which can be considered as 

a special case of FLBP. The FLBP method displays superior representational power and 

flexibility to the LBP method due to the introduction of feature pixels as well as its 

parameters. The FLBP method is assessed on eye detection using the BioID and FERET 

databases. The experimental results show that the FLBP method significantly improves 

upon the LBP method in terms of both eye detection rate and eye center localization 

accuracy. The FLBP method is less sensitive to the appearance change caused by the 

illumination and pose variations than the LBP method. A new feature pixel extraction 

method, the LBP with Relative Biased Threshold (LRBT) method is presented in the 
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dissertation. The experimental results show that the new LRBT feature pixel extraction 

method helps improve the FLBP eye detection performance when compared with the 

other feature extraction methods. This dissertation further introduces an enhanced FLBP 

eye detection method to improve the performance. In comparison with the state of the art 

eye detection methods, the enhanced FLBP method significantly improves the accuracy 

of eye center localization. 

Local Ternary Patterns (LTP) was introduced to solve the problem that the LBP is 

sensitive to noise. However, LTP achieved similar results as LBP in some experiments, 

although LTP has a higher computational cost than LBP. To improve the performance of 

LTP, this dissertation introduces Local Quaternary Patterns (LQP). LQP which encodes 

four relationships of the local texture includes more information of the local texture than 

LBP and LTP. The LQP is further extended to FLQP which encodes both local and 

feature information. To reduce the feature dimension of LQP and FLQP, a new coding 

scheme is proposed to split an LQP code into two binary codes: the Upper LQP (ULQP) 

and the Lower LQP (LLQP), and an FLQP code into two binary codes: the Upper FLQP 

(UFLQP) and the Lower FLQP (LFLQP). The experiments of eye detection using the 

BioID database show the following results: 

 FLQP achieves the best eye detection performance.  

 LQP performs better than LTP and LBP, and FLQP perform better than FLTP and 

FLBP. These results demonstrate that the proposed LQP and FLQP, which encode 

four relationships of local texture, are more effective than the LTP, FLTP, LBP, 

and FLBP for texture description and pattern recognition, such as eye detection. 

 FLQP performs better than LQP, FLTP performs better than LQP, and FLBP 

performs better than LBP in terms of average γ and γp. The results illustrate that 

the feature local methods (FLQP, FLTP, and FLBP), which encode both local and 

feature information, perform better than the local methods (LQP, LTP, and LBP) 

that do not encode feature information. 

 



 

 

106 

 

REFERENCES 

Ahonen, T., Hadid, A., & Pietikäinen, M. (2004). Face Recognition with Local Binary 

Patterns. in Proceedings of Eighth European Conf. on Computer Vision, pp. 469-

481. 

Ahonen, T., Hadid, A., & Pietikäinen, M. (2006). Face Description with Local Binary 

Patterns: Application to Face Recognition. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 28(12), pp. 2037-2041. 

Akhloufi, M., & Bendada, A. (2010). A new fusion framework for multispectral face 

recognition in the texture space. in Proceedings of 10th International Conference 

on Quantitative Infrared Thermograph. 

Asteriadis, S., Nikolaidis, N., & Pitas, I. (2009). Facial feature detection using distance 

vector fields. Pattern Recognition, 42(7), pp. 1388-1398. 

Banerji, S., Verma, A., & Liu, C. (2011). Novel Color LBP Descriptors for Scene and 

Image Texture Classification. in Proceedings of 15th International Conference on 

Image Processing, Computer Vision, and Pattern Recognition, pp. 537-543. 

Banerji, S., Sinha, A., & Liu, C. (2013). New Image Descriptors Based on Color, 

Texture, Shape, and Wavelets for Object and Scene Image Classification. 

Neurocomputing, 117, pp. 173-185. 

Campadelli, P., Lanzarotti, R., & Lipori, G. (2009). Precise eye and mouth localization, 

International Journal of Pattern Recognition and Artificial Intelligencece. 23(3), 

pp. 359-377. 

Cao, J., & Tong, C. (2008). Facial expression recognition based on LBP-EHMM. in 

Proceedings of Congr. Image Signal Process. 

Chen, S., & Liu, C. (2010). Eye detection using color information and a new efficient 

SVM. in Proceedings of Fourth IEEE International Conference on Biometrics 

Theory, Applications and Systems. 

Chan, C., Kittler, J., & Messer, K. (2007). Multi-scale local binary pattern histograms for 

face recognition. in Proceedings of the 2nd International Conference of 

Biometrics (ICB), pp. 809-818. 

Costa, L. (2008). 2D Euclidean distance transforms - a comparative survey. ACM 

Computing Surveys, 40(1), pp. 2:1-2:44. 

Dalal, N. & Triggs, B. (2005). Histograms of oriented gradients for human detection. in 

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition 

(CVPR) 2005, 1, pp. 886-893. 

Danielson, P. (1980). Euclidean distance mapping. Computer Graphics and Image 

Processing, 14(3), pp. 227-248. 

Feng G., & Yuen, P. (1998). Variance projection function and its application to eye 

detection for human face recognition. Pattern Recognition Letters. 19(9), pp. 899-

906.



107 
 

 

 

 

 

Feng G., & Yuen, P. (2001). Multi-cues eye detection on gray intensity image. Pattern 

Recognition. 34(5), pp. 1033-1046. 

Feng, X., Hadid, A., Pietikäinen, M. (2004a). A coarse-to-fine classification scheme for 

facial expression recognition. in Proceedings of Int. Conf. Image Analysis and 

Recognition (ICIAR) pp. 668-675 

Feng, X. (2004b). Facial expression recognition based on local binary patterns and 

coarse-to-fine classification. in Proceedings of Int. Conf. Computer Inform. 

Technol., pp. 178-183. 

Feng, X., Pietikäinen, M., Hadid, A. (2005). Facial expression recognition with local 

binary patterns and linear programming. Pattern Recognition and Image Analysis, 

15(2), pp. 546-548. 

Fu, X., & Wei, W. (2008) Centralized binary patterns embedded with image Euclidean 

distance for facial expression recognition. in Proceedings of Int, Conf Neural 

Computation (ICNC), pp. 115-119. 

Gong, P., Marceau, D., & Howarth, P. (1992). A comparison of spatial feature extraction 

algorithms for land-use classification with SPOT HRV data, remote sensing of 

environment. Remote Sensing of Environment, 40(2), pp. 137-151. 

Guo, Z., Zhang, L., & Zhang, D. (2010). A completed modeling of local binary pattern 

operator for texture classification.  IEEE Trans. Image Process., 19(6), pp. 1657-

1663. 

Gritti, T., Shan, C., Jeanne, V., & Braspenning, R. (2008). Local features based facial 

expression recognition with face registration errors. in Proceedings of IEEE Int. 

Conf. Automatic Face and Gesture Recognition (FG). 

Hadid, A., Pietikäinen, M., & Ahonen, T. (2004) A discriminative feature space for 

detecting and recognizing faces. in Proceedings of Int. Conf. Computer Vision 

and Pattern Recognition (CVPR) pp. 797-804 

Hadid, A., Pietikäinen, M., & Li, S.Z. (2006a). Boosting spatio-temporal LBP patterns 

for face recognition from video. in Proceedings of Asia-Pacific Workshop on 

Visual Information Processing, pp. 75-80. 

Hadid, A., Pietikäinen, M. (2006b). A hybrid approach to face detection under 

unconstrained environments. in Proceedings of  Int. Conf. Pattern Recog., pp. I: 

227-230. 

Hadid, A., Pietikäinen, M., & Li, S.Z. (2007) Learning personal specific facial dynamics 

for face recognition from videos. in Proceedings of Anal.Model. Faces Gestures, 

pp. 1-15. 

Hadid, A. (2008). The local binary pattern approach and its applications to face analysis. 

Image Processing Theory, Tools and Applications, 2008. IPTA 2008. First 

Workshops on, pp. 1-9. 



108 
 

 

 

 

Han, C., Liao, H., Yu, G., & Chen, L. (2002). Fast face detection via morphology-based 

pre-processing. Pattern Recognition, 33(10), pp. 1701-1712. 

He, L., Zou, C., Zhao, L., & Hu, D. (2005). An enhanced LBP feature based on facial 

expression recognition. in Proceedings of Ann. Int. Conf. Eng. Med. Biol. Soc., 

pp. 3300-3303. 

Heikkilä, M., & Pietikäinen, M. (2006). A texture-based method for modeling the 

background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. 

Intell., 28(4), pp. 657-662. 

Hillman, P., Hannah, J., & Grant, P. (2003). Global fitting of a facial model to facial 

features for model-based video coding. in Proceedings of the 3rd International 

Symposium on Image and Signal Processing and Analysis 2003, pp. 359-364. 

Huang, D., Wang, Y., & Wang, Y. (2007). A robust method for near infrared face 

recognition based on extended local binary pattern. in Proceedings of Int. Symp. 

Vis. Comput., pp. 437-446. 

Huang, W., & Mariani, R. (2000). Face detection and precise eyes location. Proceedings 

of the International Conference on Pattern Recognition ICPR ’00, pp. 4722. 

Huang, X., Li, S., & Wang, Y. (2006) Shape localization based on statistical method 

using extended local binary pattern. in Proceedings of Third Int Conf on Image 

and Graphics, pp.184-187. 

Huang, Y., Wang, Y., & Tan, T. (2006). Combining statistics of geometrical and 

correlative features for 3D face recognition. in Proceedings of Brit. Mach. Vis. 

Conf., pp. III: 879-888. 

Hussain, S. & Triggs, B. (2012). Visual Recognition using Local Quantized Patterns. in 

Proceedings of 12th European Conference on Computer Vision (ECCV), pp. 716-

729. 

Jin, H., Liu, Q., Lu, H., & Tong, X. (2006) Face detection using improved LBP under 

Bayesian framework. in Proceedings of Third Int Conf on Image and Graphics, 

pp. 306-309. 

Kampmann, M., & Zhang, L. (1998). Estimation of eye, eyebrow and nose features in 

videophone sequences. in Proceedings of International Workshop on Very Low 

Bitrate Video Coding (VLBV 98). 

Kawaguchi, T., & Rizon, M. (2003). Iris detection using intensity and edge information. 

Pattern Recognition, 36(2), pp. 549-562. 

Kawato, S., & Ohya, J. (2000). Real-time detection of nodding and headshaking by 

directly detecting and tracking the between-eyes. in Proceedings of the Fourth 

IEEE International Conference on Automatic Face and Gesture Recognition, pp. 

40-45. 

Kawato, S., & Tetsutani, N. (2002). Real-time detection of between-the-eyes with a circle 

frequency filter. in Proceedings of Fifth Asian Conference on Computer Vision, 

pp. 442-447. 



109 
 

 

 

 

Khosravi, M., & Safabakhsh, R. (2008). Human eye sclera detection and tracking using a 

modified time-adaptive self-organizing map. Pattern Recognition, 41(8), pp. 

2571-2593. 

Kumar, V., Rao, N., & Rao, A. (2009). Reduced texture spectrum with lag value based 

image retrieval for medical images. International Journal of Future Generation 

Communication and Networking, 2(4), pp. 39-48. 

Lam, K. & Yan, H. (1996). Locating and extracting the eye in human face images. 

Pattern Recognition, 29(5), pp. 771-779. 

Lei, Z., Liao, S., He, R., Pietikäinen, M., & Li, S. Z. (2008). Gabor volume based local 

binary pattern for face representation and recognition. in Proceedings of IEEE Int. 

Conf. Autom. Face Gesture Recog., pp. 1-6. 

Li, S. Z., Zhao, C., Ao, M., & Lei, Z. (2005). Learning to fuse 3D+2D based face 

recognition at both feature and decision levels. in Proceedings of International 

Workshop Anal. Model. Faces Gestures, pp. 44-54. 

Li, S. Z., Chu, R., Ao, M., Zhang, L., & He, R. (2006) Highly accurate and fast face 

recognition using near infrared images. in Proceedings of Int. Conf. Adv. 

Biometrics., pp. 151-158. 

Li, S. Z., Chu, R., Liao, S., & Zhang, L. (2007). Illumination invariant face recognition 

using near-infrared images. IEEE Trans. Pattern Anal. Mach. Intell., 29(4), pp. 

627-639. 

Liao, S., Fan, W., Chung, A.C.S., & Yeung, D.Y. (2006). Facial expression recognition 

using advanced local binary patterns, tsallis entropies and global appearance 

features. in Proceedings of IEEE Int Conf Image Processing (ICIP),  pp. 665-668. 

Liao, S., & Chung,  A.C.S. (2007). Face recognition by using elongated local binary 

patterns with average maximum distance gradient magnitude. in Proceedings of 

Asian Conf Computer Vision (ACCV), pp. 672-679. 

Liao, S., & Li, S.Z. (2007). Learning multi-scale block local binary patterns for face 

recognition. in Proceedings of Int Conf Biometrics (ICB), pp. 828-837. 

Liao, S., Law, M., & Chung, A. (2009). Dominant Local Binary Patterns for Texture 

Classification. IEEE Transactions on Image Processing, 18(5) pp. 107-118. 

Liao, S., Zhao, G., Kellokumpu, V. Pietikäinen, M., & Li, S. Z. (2010). Modeling pixel 

process with scale invariant local patterns for background subtraction in complex 

scenes. in Proceedings of IEEE Conf on Computer Vision and Pattern 

Recognition (CVPR), pp. 1301-1306. 

Liu, C., & Wechsler, H. (2002). Gabor feature based classification using the enhanced 

Fisher linear discriminant model for face recognition. IEEE Transactions on 

Image Processing, 11(4), pp. 467-476. 

Liu, C. (2003). A Bayesian discriminating features method for face detection. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 25(6), pp. 725-740. 



110 
 

 

 

 

Liu, C. (2004). Gabor-based kernel PCA with fractional power polynomial models for 

face recognition. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 26(5), pp. 572-581. 

Liu, C. (2006). Capitalize on dimensionality increasing techniques for improving face 

recognition grand challenge performance. IEEE Transactions on Pattern Analysis 

and Machine Intelligence, 28(5), pp. 725-737. 

Liu, C. (2007).The Bayes decision rule induced similarity measures. IEEE Transactions 

on Pattern Analysis and Machine Intelligence, 29(6), pp. 1086-1090. 

Liu, C. (2008). Learning the uncorrelated, independent, and discriminating color spaces 

for face recognition. IEEE Transactions on Information Forensics and Security, 

3(2) , pp. 213-222. 

Liu, C., & Yang, J. (2009). ICA color space for pattern recognition. IEEE Transactions 

on Neural Networks, 20(2), pp. 248-257. 

Liu, Z., & Liu, C. (2008a).Fusion of the complementary discrete cosine features in the 

YIQ color space for face recognition. Computer Vision and Image Understanding, 

111(3), pp. 249-262. 

Liu, Z., & Liu, C. (2008b). A hybrid color and frequency features method for face 

recognition. IEEE Transactions on Image Processing, 17(10), pp. 1975-1980. 

Liu, Z., & Liu, C. (2010). Fusion of color, local spatial and global frequency information 

for face recognition. Pattern Recognition, 43(8), pp. 2882-2890. 

Maurer, C., Qi, R., & Raghavan, V. (2003). A linear time algorithm for computing exact 

Euclidean distance transforms of binary images in arbitrary dimensions. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 25(2), pp. 265-270. 

Moore, S. &, Bowden, R. (2011). Local binary patterns for multi-view facial expression 

recognition. Computer Vision and Image Understanding, 115, pp. 541-558. 

Murala, S., & Maheshwari, R. P. (2012). Local Tetra Patterns: A New Feature Descriptor 

for Content-Based Image Retrieval. IEEE Transactions On Image Processing, 

21(5), pp. 2874-2886. 

Nanni, L., & Lumini, A. (2007). RegionBoost learning for 2D+3D based face 

recognition. Pattern Recog. Lett., 28(15), pp. 2063-2070. 

Nanni, L., & Lumini, A. (2008). Ensemble of multiple pedestrian representations. IEEE 

Trans. Intell. Transp. Syst., 9(2), pp. 365-369. 

Ojala, T., Pietikainen, M., & Harwood, D. (1994). Performance evaluation of texture 

measures with classification based on kullback discrimination of distributions. in 

Proceedings of the 12th IAPR International Conference on Pattern Recognition, 

pp. 582-585. 

Ojala, T., Pietikainen, M., & Harwood, D. (1996). A comparative study of texture 

measures with classification based on feature distributions. Pattern Recognition, 

29(1), pp. 51-59. 



111 
 

 

 

 

Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation 

invariant texture classification with local binary patterns. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 24(7), pp. 971-987. 

Oliver, A., Llado, X., Freixenet, J., & Marti, J. (2007). False positive reduction in 

mammographic mass detection using local binary patterns. in Proceedings of 

Med. Image Comput. Comput.-Assisted Intervention Conf., pp. 286-293. 

Pan, H., Zhu, Y., & Xia, L. (2013). Efficient and accurate face detection using 

heterogeneous feature descriptors and feature selection. Computer Vision and 

Image Understanding, 117(1), pp. 12-28. 

Pentland, A., Moghaddam, B. & Starner, T. (1994).View-based and modular eigenspaces 

for face recognition. in Proceedings of 1994 IEEE Conf. on Computer Vision and 

Pattern Recognition, pp. 84-91. 

Pham-Ngo, P.T., & Jo,  K.H. (2006). Multi-face detection system in video sequence. 

Proceedings of Int Forum on Strategic Technology (IFOST), pp. 146-150. 

Ryu, Y. & Oh, S. (2001). Automatic extraction of eye and mouth fields from a face 

image using eigenfeatures and multilayer perceptrons. Pattern Recognition, 

34(12), pp. 2459-2466. 

Shan, C., Gong, S., & McOwan, P. W. (2005a). Robust facial expression recognition 

using local binary patterns. in Proceedings of IEEE Int. Conf. Image Process, pp. 

II: 370-373. 

Shan, C., Gong, S., & McOwan, P. W. (2005b). Recognizing facial expressions at low 

resolution. in Proceedings of IEEE Conf. Adv. Video Signal Based Surveillance, 

pp. 330-335. 

Shan, C., Gong, S., & McOwan, P. W. (2005c). Appearance manifold of facial 

expression. in Proceedings of ICCV Workshop Human Comput. Interac., pp. 221-

230. 

Shan, C., & Gritti, T. (2008). Learning discriminative LBP-histogram bins for facial 

expression recognition.  in Proceedings of Brit. Mach. Vis. Conf. 

Shan, C., Gong, S., & McOwan, P. W. (2009). Facial expression recognition based on 

local binary patterns: a comprehensive study. Image and Vision Computing, 27, 

pp. 803-816. 

Sinha, A., Banerji, S., & Liu, C. (2012). Novel Color Gabor-LBP-PHOG (GLP) 

Descriptors for Object and Scene Image Classification.  in Proceedings of the 

Eighth Indian Conference on Vision, Graphics and Image Processing. 

Sirohey, S., & Rosenfeld, A. (2001). Eye detection in a face image using linear and 

nonlinear filters. Pattern Recognition, 34(7), pp. 1367-1391. 

Sirohey, S., Rosenfeld, A., & Duric, Z. (2002). A method of detecting and tracking irises 

and eyelids in video. Pattern Recognition, 35(6), pp. 1389-1401. 



112 
 

 

 

 

Tan, X., & Trigg, B. (2007). Enhanced local texture feature sets for face recognition 

under difficult lighting conditions. in Proceedings of IEEE International 

Workshop on Analysis and Modeling of Faces and Gestures (AMFG). pp. 68-182. 

Tan, X., & Trigg, B. (2010). Enhanced local texture feature sets for face recognition 

under difficult lighting conditions. IEEE Transactions on Image Processing, 

19(6), pp. 1635-1650. 

Turtinen, M., Pietikainen, M., & Silven, O. (2006). Visual characterization of paper using 

Isomap and local binary patterns. IEICE Trans. Inform. Syst., vol. E89-D(7), pp. 

2076-2083. 

Valenti, R., & Gevers, T. (2008). Accurate eye center location and tracking using 

isophote curvature. in Proceedings of IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR). 

Viola, P., & Jones, M. (2004). Robust real-time face detection. International Journal of 

Computer Vision, 57(2), pp. 137-154. 

Wang, L., & He, D. (1990). Texture classification using texture spectrum. Pattern 

Recognition, 23(8), pp. 905-910. 

Wang, X., Han, T. X., & Yan, S. (2009). An HOG-LBP Human Detector with Partial 

Occlusion Handling. in Proceedings of IEEE 12th International Conference on 

Computer Vision, pp. 32-39. 

Wu, J., & Zhou, Z. (2003). Efficient face candidates selector for face detection. Pattern 

Recognition, 36(5), pp. 1175-1186. 

Xie, X., Sudhakar, R., & Zhuang, H. (1994). On improving eye feature extraction using 

deformable templates. Pattern Recognition, 27(6), pp. 791-799. 

Yang, H. & Wang, Y. (2007). A LBP-based face recognition method with Hamming 

distance constraint. in Proceedings of Int. Conf. Image Graph., pp. 645-649. 

Yang, J., & Liu, C. (2007). Horizontal and vertical 2DPCA-based discriminant analysis 

for face verification on a large-scale database. IEEE Transactions on Information 

Forensics and Security, 2(4), pp. 781-792. 

Yang, J., & Liu, C. (2008). Color image discriminant models and algorithms for face 

recognition. IEEE Transactions on Neural Networks, 19(12), pp. 2088-2098. 

Yao, B., Al, H., Ijiri, Y., & Lao, S. (2007) Domain-partitioning rankboost for face 

recognition. in Proceedings of IEEE International Conference of Image 

Processing, pp. 129-132. 

Yuan, X., Yu, J., Qin, Z., & Wan, T, (2011), A SIFT-LBP image retrieval model based 

on bag of features. in Proceedings of 18th IEEE International Conference on 

Image Processing (ICIP 2011), pp. 1061-1064. 

Yuille, A., Hallinan, P., & Cohen, D. (1992). Feature extraction from faces using 

deformable templates. Int. J. Computer Vision, 8(2), pp. 99-111. 



113 
 

 

 

 

Zhang, B. & Gao, Y.  (2010). Local Derivative Pattern Versus Local Binary Pattern: Face 

Recognition With High-Order Local Pattern Descriptor. IEEE Transactions on 

Image Processing, 19(2) pp. 533-544. 

Zhang, G., Huang, X., Li, S. Z., Wang, Y., & Wu, X. (2004). Boosting local binary 

pattern (LBP)-based face recognition.  Advances in Biometric Person 

Authentication Lecture Notes in Computer Science, 3338, pp. 179-186. 

Zhang, H., & Zhao, D. (2004). Spatial histogram features for face detection in color 

images. in Proceedings of Advances in Multimedia Information Processing: 5th 

Pacific Rim Conference on Mul-timedia, pp. I:377-384. 

Zhang, L. (1996). Estimation of eye and mouth corner point positions in a knowledge-

based coding system. in Proceedings of SPIE, 2952,  pp. 21-18. 

Zhang, L., Chu, R., Xiang, S., & Li, S. Z. (2007). Face detection based on Multi-Block 

LBP representation. in Proceedings of Int. Conf. Biometrics (ICB), pp. 11-18. 

Zhang, W., Shan, S., Gao, W., Chen, X., & Zhang, H. (2005a). Local Gabor binary 

pattern histogram sequence (LGBPHS): A novel non-statistical model for face 

representation and recognition. in Proceedings of the Tenth IEEE International 

Conference on Computer Vision (ICCV05), 1, pp. 786-791. 

Zhang, W., Shan, S., Zhang, H., Gao, W., & Chen, X. (2005b).  Multi-resolution 

Histograms of Local Variation Patterns (MHLVP) for robust face recognition. in 

Proceedings of Audio- and Video-based Biometric Person Authentication 

(AVBPA), pp. 937-944. 

Zhang, W., Shan, S., Qing, L., Chen, X., & Gao, W. (2008). Are Gabor phases really 

useless for face recognition? Pattern Anal. Appl., 12(3), pp. 301-307. 

Zhao, G., & Pietikainen, M. (2007a).  Dynamic texture recognition using local binary 

patterns with an application to facial expressions. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 29(6), pp. 915-928. 

Zhao, G., & Pietikainen, M. (2007b) Experiments with facial expression recognition 

using spatiotemporal local binary patterns. in Proceedings of Int. Conf. 

Multimedia and Expo (ICME), pp. 1091-1094. 

Zhao, J., Wang, H., Ren, H., & Kee, S. C. (2005). LBP discriminant analysis for face 

verification. in Proceedings of IEEE conference on Computer Vision and Pattern 

Recognition – Workshops, pp. 167. 

Zhou, Z. & Geng, X. (2004). Projection functions for eye detection. Pattern Recognition, 

37(5), pp. 1049-1056. 

 

 


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)

	List of Tables (1 of 4)
	List of Tables (2 of 4)
	List of Tables (3 of 4)
	List of Tables (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Background
	Chapter 3: Feature Local Binary Patterns
	Chapter 4: Local Quaternary Patterns and Feature Local Quaternary Patterns
	Chapter 5: Application of FLBP and FLQP to Eye Detection
	Chapter 6: Experimental Results of FLBP-Based Method
	Chapter 7: Experimental Results of LQP-Based and FLQP-Based Methods
	Chapter 8: Future Work and Conclusion
	References

	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)




