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ABSTRACT

COMPUTATIONAL OPTIMIZATION METHODS FOR MODELING THE
EFFECT OF MUSCLE FORCES ON BONE STRENGTH ADAPTATION

by
Catherine Siena Florio

An improved understanding of the mechanical influences that alter the strength of a bone
can aid in the refinement of the wide array of currently available techniques to counteract
the losses of bone strength that occur due to age or disuse both on Earth and in Space. To
address this need, computational modeling methods to quantitatively analyze and
compare the effects of mechanical factors on the strength of a targeted bone within a
multibone, multimuscle system are developed and implemented in this work. Through a
more detailed representation of the system in which the bone acts and the creation of a
model that does not require experimentally based parameters, the developed techniques
eliminate many of the difficulties that have often hindered these musculoskeletal
phenomena from being studied with the tools and methods readily employed in the
investigation of their inert mechanical counterparts.

The computational techniques developed couple the determination of the muscle
forces acting within the system studied, the stresses they induce within the bones of the
system, and the ensuing adaptations of the shape of one of these bones, altering its
strength. This is accomplished through the use of gradient based optimization methods,
finite element methods, and gradientless optimization methods, respectively. The
developed gradientless optimization methods in this work progress the bone shape design
toward one with a more uniform state of stress through the relative effects of measures of

the local stress state, the global stress state, and the variation of the local stress state over



the region being optimized. Quantitative measures of the progression towards a
uniformity of the stress state during the optimization process are defined so that relative
changes can be directly compared between the various mechanical factors studied.
Similarly, methods are developed to independently assess the ability of the conditions
studied to induce bone shape alterations that improve the strength of the bone under a
standard set of loading conditions.

The implementation of the model in a parametric study of methods to improve the
resistance of the tibia bone to stress fractures demonstrates its ability to evaluate the
effects of various loading conditions, with forces and stresses studied ranging three
orders of magnitude. From this investigation, loading modes are identified that improve
the bone's strength in the fracture prone region by up to 20%. The developed
computational modeling techniques eliminate the difficulties inherent in the experimental
investigation of mechanically based alterations to bone strength and provide a means for

the improved understanding and, ultimately, better control of these adaptive phenomena.
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CHAPTER 1

INTRODUCTION

1.1 Objective
An improved understanding of the mechanical influences that alter the strength of a bone
can aid in the refinement of the wide array of currently available techniques to counteract
the losses of bone strength that occur due to age or disuse. To address this need, the work
presented focuses on the development and implementation of computational modeling
methods to investigate the effects of mechanical factors on bone strength. These

modeling methods consist of:

1. The ability to determine the forces acting on a bone, including those produced by
individual muscles,

2. The ability to determine the distributions and amounts of local material accretion
or resorption that occur due to biological functional adaptation phenomena in the
bone structure and that result in changes to the bone's overall shape, and

3. The ability to correlate the shape changes to relative measures of the bone's
capacity to resist the loading conditions it typically encounters so that
comparisons among various strength changes can be made.

The first part of this work consists of the development of these modeling methods. Their
application, through parametric studies of a multimuscle, multibone, single leg system in
the second part of this work, demonstrates the capability of these techniques to
quantitatively compare the effects of specific mechanical factors on the strength of a
fracture prone region of a bone that is part of the musculoskeletal system investigated.
Numerical mathematical optimization methods coupled with finite element

structural analysis methods are used in the modeling techniques developed in this work.



Using optimization methods, the forces acting on the bones and the resulting shape
changes are determined. Through finite element methods, the stress and strain fields that
drive these shape changes are found. The results of the finite element structural analysis
are also used to calculate measures of the relative change in the mechanical behavior of
the bone due to the alteration of its shape. These measures quantify the ability of each
studied set of loading parameters to improve the bone's effectiveness at resisting typically
encountered forces and, hence, to improve its strength.

This investigation furthers the understanding of the relationship between
mechanical factors and bone strength adaptation and expands and enhances the currently
available approaches to its study. By developing these computational modeling methods,
means for quantitative, objective comparisons of bone loss mitigation techniques are
introduced. Through their use, insight is gained into the effects of the forces produced by
the musculoskeletal system on the local changes to the shape and strength of its bones.
While applied to one representative system in this investigation, the methods created can
be utilized to study any musculoskeletal system desired. The knowledge gained through
this work and the subsequent employment of the developed modeling techniques can be
useful in the creation of exercise regimens that successfully improve bone strength,

particularly in regions that might be especially susceptible to fracture.

1.2 Motivation For Study
The investigation of the strength adaptations of bone and the application of the resulting
insight learned about these phenomena to the prevention of the detrimental effects of

decreased bone strength has been the focus of much research. A review of the foundation



of this field, with a focus on the areas which currently demonstrate an incomplete

understanding and, thus, served as an impetus for the present work, will be discussed.

1.2.1 Strength Adaptation of Bone

"Nature is ever at work building and pulling down, creating and destroying, keeping
everything whirling and flowing, allowing no rest but in rhythmical motion, chasing
everything in endless song out of one beautiful form into another." - John Muir, Our

National Parks, 1901

1.2.1.1 Functional Adaptations of Living Systems. A living organism, like any
mechanical system, is comprised of numerous subsystems that each performs a specific,
individual, often localized task. Also, as in mechanical systems, these subsystems
interact with each other as well to create the overall function of the entire system within
the global environment. When the environment of an inert mechanical system changes,
either the values of the operating parameters or the design of the system must be altered.
In mechanical systems, this must be done either manually by an engineer or operator or
automatically through a programmed feedback control system to maintain a relatively
constant prescribed level of system performance, which is often related to the system's
efficiency. In contrast to the mechanical systems that require external influences to
modify system function, biological systems have internal control mechanisms, driven by
biological phenomena, to automatically react and adapt to environmental changes.
French physiologist Bernard noted in 1857, "All the vital mechanisms, however varied
they may be, have only one objective, that of preserving constant the condition of the
entire organism." [1]. The resulting changes due to these biological phenomena are

called "functional adaptations".



The concept of the "functional adaptation" of individual subsystems to local or
global environmental changes is related to Lemarck's early theory of evolution developed
in 1809 called "Acquired Inheritance". This theory stated the widely observed
phenomenon of "use and disuse", that "parts of the body used extensively to cope with
the environment become bigger and stronger while those that are not used deteriorate"
[2], could be inherited and lead to evolution of a species. While this inheritance theory
was later disproved and replaced with Darwin's Theory of Natural Selection, the concept
inspired further investigation into the processes of "functional adaptation" in individual
organisms. In the late 1880's a biologist studying the form and function of bones on the
cellular level, Wilhelm Roux, explained that the "functional adaptation" of bones occurs
through a "quantitative self-regulating mechanism" controlled by a "functional stimulus"
[3]. This inspired more investigation into the processes that drive "functional
adaptations".

Use/disuse functional adaptation phenomena have been widely observed in many
systems in both animals and plants. One of the most common examples is the increase in
muscle size due to weight lifting exercises. For example, the muscles of the arm will
grow larger in order to enable the generation of the larger force needed to overcome this
increased resistance exerted by their external environment. Similar processes are seen in
plants. Because plants are fixed in place, their responses to environmental changes are
often related to the patterns of their growth that create the overall structure of the plant
[2] and, therefore, are much more noticeable than many of the adaptations in animals.
Thicker regions are observed on the upwind side of tree trunks to resist bending stresses

induced by wind [4, 5]. Similar phenomena are observed in the curved nature of tree



branches in response to locally high bending stresses created by the weight of the limb
itself [4, 5]. A series of experimental studies based on these observations were performed
in the 1970's where weights were hung on growing trees while variations in trunk
diameter and material properties at different cross sections along the length of the tree
trunks were measured and tracked with time. Correlations made between these
measurements and calculated stress field variations showed thicker diameters and denser
material ("compression wood") in regions of locally high stress [6, 7].

In addition to changes in the external or global environment, functional
adaptations can also occur due to changes within the local environment. Often these
happen when some system components are damaged or change their functional
efficiency. For example, when one lung is removed, the other lung will often grow to fill
the entire chest cavity in order to maintain the total volume of air exchange of the two
normal lungs [8, 9]. Other times, changes in one subsystem trigger alterations in a related
one. For example, as a muscle grows larger due to increases in external environmental
loads, such as during weight lifting, systems that provide nutrients to the muscle must
react to this change, just as more coal, air, and water are needed to accommodate the
increased power needs when a larger sized turbine is added to a coal power plant. In the
biological system, blood vessels provide the nutrients to the muscles. More branches in
the vascular system are formed to bring "fuel" to the increased volume of the larger
muscle. This increased branching leads to a need for an overall greater supply of blood
to the muscle, causing an increased blood flow volume in the vessels leading to the
muscle, thereby increasing the pressure in these vessels. To accommodate the increased

flow volume, as in the lung example above, the inner diameters of the blood vessels



increase. To counter the increased flow pressure inside the vessels, as in the tree trunk
subjected to bending loads, the outer diameters of the blood vessels also increase. In this
way, local changes to the circulatory system allow the overall organism to maintain
overall efficient functional performance despite changes to its environmental

requirements [10-12].

1.2.1.2 Function of Bone and Types of Bone Tissue. Just like the respiratory,
circulatory, and muscular systems of animals and the structure of plants, adaptation of the
skeletal system occurs based on environmental changes. The changes in bones are
related to their two major functions: as a means of structural support and as a reservoir
for mineral storage. In order to appreciate the adaptations that occur in bone, an
understanding of the basic structure and function of bone is required.

The first role of bone is that of structural support. This function is influenced
mainly by the size and the shape of the bone. As in the tree example discussed above, the
size and shape of the bone responds to environmental changes by adding volume
(material accretion) or removing volume (material resorption) at the bone's surfaces. The
hard, dense material that comprises the bone's surface and creates its shape is called
cortical bone tissue (Figure 1.1). Cortical bone tissue is a structure of collagen
strengthened by calcium phosphate crystals [13]. With its high mineral content, cortical
bone has a very low porosity (5-10%) [13-15]. Because of the low porosity, cortical bone
acts mechanically like a near-solid material, such as a ceramic [14]. Collagen fiber
orientation, degree of mineralization, and porosity variations affect the mechanical
properties, and properties can vary with direction, making the material typically

transversely isotropic [14]. The rigid, solid behavior of the cortical bone tissue provides



protection to internal systems, for example in bones such as the ribcage and skull, and
creates a sort of beam system through which movement is created, for example, in the
bones that comprise the extremities like the arms, legs, and fingers. Because a bone
made completely of this solid material would be very heavy, and, therefore, require
significant energy both to initiate and stop motion, the cortical bone tissue that creates a
bone's shape and the majority of its strength is restricted to a relatively thin outer shell
[13] (Figure 1.1). The interior of the bone is often hollow or filled with a much less
dense, more porous, and, therefore, mechanically different material called cancellous

bone tissue (Figure 1.1).

Cortical Bone
Tissue

Figure 1.1 Basic structure and location of the two types of bone tissue.

Source:  "cancellous bone."  [Photograph]. In  Encyclopedia  Britannica. Retrieved from
http://www.britannica.com/EBchecked/media/101316/Longitudinal. Accessed 10/14/13. With permission.

The second role of bone is that of a mineral reserve. This function is mainly the
responsibility of this less dense cancellous bone tissue. Cancellous bone tissue is
comprised of the same material as cortical bone. However, it is highly porous (50-95%)
[15]. In regions that contain both types of bone tissue, the porosity of the bone varies
continuously from cortical to cancellous materials (Figure 1.1) so there are no specific
geometric, mechanical, and densometric boundary distinctions between two types of bone

tissues [14]. Nonetheless, the differences do affect the behavior of the materials.



Mechanically, cancellous bone tissue behaves like an isotropic porous rigid foam-like
material [13]. The highly porous structure of cancellous bone tissue is often filled with
bone marrow, blood vessels and other structures that allow for direct and easy ion
exchange with the mineral crystals that form the cancellous bone tissue structure.
Therefore, the mineral content of the cancellous bone tissue is constantly altered,
allowing it to rapidly address the calcium, phosphorous, and other mineral needs of the
nervous, circulatory, and muscular systems [16]. Alterations in the mineral content affect
the structure, mass, density, and, therefore, overall material strength of the cancellous
bone tissue.

While the two functions of the bone appear to be separated by the two types of
bone material tissues, in fact, both cortical and cancellous bone perform each of these
functions, although on different scales. Because of its very high mineral content, cortical
bone tissue does provide for mineral needs of the body's systems, especially in response
to long term changes. Because of the very large plastic deformation range of cancellous
bone tissue and the soft materials that often fill its pores, it has good energy absorbing
abilities. Energy from the potentially large forces that can be exerted on bones is
attenuated by this porous cancellous material, and its struts act as a truss-like structure to
direct stresses away from the more brittle cortical tissue on the bone's surface [13].
Therefore, alterations to both the structure and mineral content of both types of bone

tissue have an effect on the overall structural and mineral storage functions of a bone.

1.2.1.3 Functional Adaptation of Bone. The control mechanisms that create the
functional adaptations of bone occur through two independent processes to alter the

overall strength of the bone, often referred to as "whole bone strength" to differentiate it



from the strength of the bone tissue material itself. In this work, however, the whole
bone strength is referred to simply as bone strength. As with all other functional
adaptations, a bone's strength modification creates a structure suitable for it to operate
appropriately in its immediate environment. As in mechanical design, an object's
strength can be adjusted through material choice (thereby adjusting its intrinsic
properties) or its shape (hence modifying its extrinsic properties). The example of the
functional adaptation of the tree showed that both the density of the trunk and the size of
its diameter can be altered to withstand increases in environmental load. The same is true
for bone. Changes to bone size or shape can occur by material accretion or resorption on
both the endosteal (inner) or periosteal (outer) surface of cortical bone, locally
strengthening or weakening the bone structure. Changes to mineral can content occur
both in the cortical and the cancellous bone tissue, altering the total mass and, therefore,
density, thereby affecting the intrinsic material properties. Modifications to the
connections within the network of struts creating the porous structure of the cancellous
bone tissue also occur, altering the "stress flow" in the material, thereby affecting its
response to applied loading in an additional manner. Thus, both the size/shape of the
bone and its material properties can be adjusted to alter the bone's ability to resist applied
forces so that a steady level of performance may be maintained while operating
efficiently within the whole body system. Figure 1.2 depicts the material regions of a

typical long bone and their mechanisms for adaptation.
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Figure 1.2 Typical long bone structure and strength adaptation mechanisms.

Ties Between Bone Biology and Mechanical Design

Observations of these adaptation phenomena and the relationships between bone's "form
and function" have been recorded for centuries. In his seventeenth century studies of
human anatomy, Galileo, famous for his interest in mechanical devices, discussed the
"mechanical implications of the shapes of bones" [14]. These observations helped give
rise to more formal scientific investigations into mechanical design in nature. By the
eighteenth century, observations of functional adaptations of individual bones during the
lifetime of a living being were documented and concepts about the processes involved in
these changes began to be developed. In studying cadavers in 1776, pathologist
Alexander Monro described the processes of the adaptive changes of the shape and
structure of bone as the "perpetual waste and renewal of the particles which compose the
solid fibers of the bone" [17]. Additionally, he noted that there are changes in these
processes with time that result in age-related differences in the overall structure of bones.

For example, he described the long bones, such as those of the arms and legs, of older
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people to be "thinner and firmer in their sides" and to have "larger cavities" than their
younger counterparts [17].

In the nineteenth century, as more formal mechanical and material testing
methods began to be developed and improved and engineering theory and analysis
techniques became more prevalent, more thorough investigations of the causes driving
the observed changes to bone's geometric and material properties became possible. A
number of human anatomy books, including those by Bougery and by Bell in the 1830's
discussed the concept that bone may be optimized for maximum strength with minimum
mass [18]. In 1858, a textbook by Humphrey discussed the idea of "absorption and
deposition" of bone as part of a process to control the "shape and lightness" of the bone
both in its interior volume and exterior surfaces [18]. By 1876, the interdependence of
the adaptations to both the bone's material properties and structure and its function was
beginning to form as Rauber suggested that a bone's strength depends on "the material,
the microscopic structure" as well as "the shape of the whole bone" [18]. While to
engineers, this does not seem like a radical concept since it is the basis for the design and
analysis of solid objects, the application of mechanical design principles to biological
tissues and structures was new to biologists, whose research had traditionally viewed
biological materials as unique and who had focused on chemical, cellular, or other innate
drivers to their existence and behavior.

Linking engineering theory and analysis to the study of the relationships between
form, function and adaptation of bone widened extensively near the end of the nineteenth
century. In 1866, a structural engineer regarded for his work on the structural analysis

technique of graphical statics, Culmann, noted how the pattern of struts in the cancellous
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bone tissue region of a femur, documented in drawings by anatomist von Meyer, was
similar to the set of stress trajectories he had recently calculated in a curved bar with a
similar loading pattern to that which was said to be imposed on the femur bone [16].
Upon this comparison, von Meyer suggested that cancellous bone "arranged itself along
principal stress trajectories" [16, 18]. Though bone biologist contemporaries of Culmann
were not well-versed in structural analysis theories themselves, this concept grew
amongst their ranks, and, in 1869, a paper summarizing these ideas was published by a
surgeon named Wolff. In this publication, Wolff declared that there was a "perfect
mathematical correspondence" between the structure of cancellous bone and the bone's
stress trajectories and that this mathematical correspondence is "necessary in the structure
of bones" [16, 18]. Extending this correspondence to the functional adaptation of bone
that he had been studying at the time, biologist Roux defined "pressure or tension" as the
stimulus that invokes the observed changes in bone strength [3]. These publications
escalated the collective excitement of the researchers studying bone biology about a
mathematical "proof" of their centuries worth of observations. The misunderstanding of
engineering stress analysis by Wolff and his colleagues relating to differences between
the basic material properties of Culmann's beam and cancellous bone tissue and to the
nonuniqueness of stress trajectories has since lead engineers to doubt the existence of a
"perfect mathematical correspondence” [3, 14, 16]. However, because of its tidiness, this
theory sparked an era of study into the relationships between the mechanical properties of
bone, its behavior under loading, and the processes behind functional adaptation, with a

focus on cancellous bone tissue.
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Driven by the quest to find the "mathematical correspondence" described by
Wolff and the improved experimental capabilities [18], much of the bone research in the
early to mid-twentieth century focused on the material properties of bone. From this
research, a better sense of the properties of bone and their variations based on "species,
age, sex, diet, state of health...and microscopic structure" [19] lead to theoretical and
experimental work in the mid-twentieth century to explain the biological mechanisms
behind the functional adaptation of bone. In the late twentieth century and into the
twenty-first century, with the increase in computer resource capabilities and numerical
analysis methods, work has focused on the mathematical modeling of this phenomenon in
an attempt to better understand and predict the mechanical influences on bone strength.
Effects of Bone's Functional Adaptations on its Overall Strength
Influenced by the focus on links between cancellous bone structure and calculated stress
trajectories and by the study of the intrinsic material properties of bone tissue, much of
the work on the functional adaptations of bone has moved away from the very early
observations of size and shape changes and towards the internal alterations in cancellous
bone density and composition. Because of the bone's function as a mineral reserve, rapid
and significant modifications to mineral composition can occur, allowing for its relatively
easy study and experimental alteration. Developments in X-ray and other scanning
technologies have readily allowed for the experimental measurement and clinical
monitoring of these density changes without the invasive or postmortem methods often
necessary to study bone's geometric changes. However, because cortical bone tissue is
approximately twenty times stronger and forty times stiffer than cancellous bone tissue

[16, 17], these relatively rapid modifications in the cancellous bone tissue can have little
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effect on the mechanical performance of the bone [17]. While cortical bone tissue has
significantly more calcium content than cancellous bone tissue, its state is less transient,
maintaining relatively stable material properties despite fluctuations of the bone's overall
mineral content [16, 17]. Consequently, the adaptations of bone's intrinsic properties,
while important in its ability to supply minerals for use in the processes of other systems,
might have less importance on the bone's ability to sufficiently withstand applied forces.

Studies of the material properties of both cortical and cancellous bone tissue have
shown relatively little variation with age, species and even many diseases [13, 20].
Greater strength differences of bone structures have been related to bone shape and size,
for instance comparing a rib to a femur to a finger bone. Additionally, strength
differences for the same bone of animals, such as the femur bone, have been found to
vary almost linearly with size [13]. This follows mechanical stress and design theory that
changes in geometry are often more effective at modifying an object's behavior than are
changes in the material properties.

While geometric changes in bone typically occur at a slower rate than
mineral/density changes, bone growth can occur rapidly to significantly alter bone
strength when necessary. For example, temporary structures, called fracture calluses,
form in weakened areas of bone, such as surrounding a fracture, to quickly reduce
stresses at the fracture site while improving overall bone strength during healing [13, 16,
17, 21]. Figure 1.3 shows an example of a fracture callus that formed near a hip fracture,
which has been additionally stabilized by an implanted device. A similar type of
structure is a bone spur, which often grows near an arthritic joint to reduce joint stresses

by increasing the joint contact area [17]. In addition to these "support patches", slower
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changes to overall bone shape can also alter bone strength. Following Monro's
eighteenth century observations of the increased inner diameter of older bones, radial
expansion of both the inner and outer surfaces of long bones has been observed both with
age, disease or paralysis [17, 22]. It is thought that these changes in bone geometry
compensate for concurrently observed decreases in the material properties of the bone
tissues in these conditions. Additionally, some studies have shown that bone size, not
bone density, better predicts an increased risk of stress fractures [23-26]. Based on these
observations, a return to the early focus on overall bone geometry in driving and

controlling bone strength has been suggested [27, 28].

Figure 1.3 Bone callus formed near a fracture of the femoral neck in the hip. (a) fracture
(b) callus formation.

Because it is changes in the bone's mechanical environment and bone's role in
structural support that often results in adjustments to the way the bone behaves under
applied loading, it has been theorized that mechanical factors outweigh any genetic or
chemical factors driving modifications to the bone's strength [20, 29]. Accordingly, it is
possible for the analysis of the functional adaptations of bone to follow the methods used

in the engineering analysis and design of inert mechanical components.
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1.2.2 Loss of Bone Strength

The functional adaptations of bone strength create a structure with suitable strength to
operate appropriately under the immediate loading conditions that it typically encounters.
However, sometimes these adaptations create a bone structure too weak to withstand
everyday loads, resulting in an increased risk of fracture. These negative effects of
functional adaptation arise for a variety of reasons under various conditions. Because of
the potentially detrimental effects, significant research into the causes of this weakening

has been carried out.

1.2.2.1 Age and Disease Related Losses. The most common reasons for decreased bone
strength are related to age. Age related changes in bone strength have been ascribed to
the two main phenomena resulting from changes in bone material quality and the
intensity of loading on bone structures. Bone typically has processes to repair damaged
areas as a means to prevent the propagation of damage that could eventually lead to
fractures and, ultimately, failure of the bone structure. These normal processes remove
small sections of bone and replace them with new material over time. On average 5% of
cortical bone and 25% of cancellous bone is replaced by these processes per year [14].
During these repair activities, cavities are created where old or damaged bone is
removed. The complete replacement of the bone to fill these cavities can take up to six
months [17]. With age, the time to complete this repair process increases, leaving more
cavities over a longer period of time, and leading to a more porous material at any given
time [17]. Additionally, the slower repair rates with age have been found to lead to
longer periods of mineralization of the bone structure before removal and replacement.

This causes an overall stiffer, though more porous material, increasing the bone material's
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brittleness and susceptibility to fracture [30]. Mechanical measurements of bone strength
have found a 4-7% decrease in ultimate strain and a 30% reduction in ultimate tensile
strength of cortical bone from age 30 to age 80 [17]. Therefore, with age, the bone
material becomes, stiffer, more brittle and more likely to fracture under smaller stresses.
The increased stiffness with age was what Monro qualitatively noted in his eighteenth
century description of the "firmer" quality of older bones. Hence, age can deplete the
quality of the bone material itself.  Interestingly, similar changes have been observed
even in younger people due to diseases that change these bone repair phenomena or the
metabolic rates of mineral usage [22]. Figure 1.4 shows the change in bone density near a

hip joint with age.

36 Year Old: 73 Year Old:
Bone Mineral Content Bone Mineral Content
Per Area: 0.8 g/cm”2 Per Area: 0.4 g/cm”2
(a) (b)

Figure 1.4 Comparison of bone density distribution in the proximal femur (near the hip
joint) of a (a) 36-year-old and an (b) 73-year-old bone.

The second phenomenon that can decrease bone strength with age is related to the
loads applied to whole bone structure. Muscles have been shown to create larger forces
on bones than any associated with gravity, body weight, or impact [13, 14, 20, 31-33].

Muscles are attached to bones near the joints, allowing a large angular rotation to be
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generated by small muscle contractions, allowing for efficient motion of the body system.
This configuration, however, is opposite to that which would benefit efficient resistance
to external forces. It can be thought of in terms of the design of a lever, where the joint is
the fulcrum, the weight applied to the end of the bone is the load to be moved, and the
muscle applies the necessary force to move this weight. Thus, the closer the force to
oppose the weight is to the fulcrum, as is the case with the attachment location of the
muscles, the larger its required magnitude to move the weight at the end of the bone.
More simply, as noted by seventeenth century mathematician and physiologist Giovanni
Borelli, strong muscle forces are required to carry even light weights [14]. These large
muscle force magnitudes often create large stresses on the bones to which they are
attached and can, therefore, stimulate local functional adaptations in bones. In fact, a
strong correlation between muscle strength and bone strength has been observed. As a
result, decreases in muscle strength can lead to decreases in bone strength.

A reduction in muscle strength has been noted with age due to a combination of
decreased activity and physiological changes. In fact, as much as a 50% reduction in
muscle strength can occur by age 75 [32]. This age related decrease in muscle strength
alters the mechanical environment of the bones to which the muscles are attached and can
directly lead to subsequent age related decreases in bone strength. Similar changes have
been observed with other causes of decreased muscle strength such as paralysis, long

term immobilization, or significant alterations in exercise activity [34].

1.2.2.2 Losses in Microgravity. In addition to the local changes that result from muscle
forces, bone strength can also be altered due to changes in global environmental

conditions, for example changes in gravity. Because of the reduced magnitudes of body
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forces in microgravity, functional adaptations are initiated upon arrival in the new
"weightless" environment to alter the performance of all physiological systems so that the
whole body system can operate efficiently within the new global environment. In these
cases, the adaptive responses create a weaker bone that may be sufficient for this new
environment with typically smaller magnitude loads.  However, should larger
environmental forces resume, such as return to Earth or arrival on another planet, the
potential for fracture of these weaker bones can increase. Therefore, significant research
has been performed to understand the effects of microgravity on bone strength.
Measurements of changes in bone density (or mass) have been performed on
practically every US and Soviet space mission starting with Gemini and Soyuz [35-39].
Gemini and Apollo missions had X-ray equipment on board to measure hand and foot
bone densities. In the Gemini missions, which each lasted no more than two weeks, 3-
23% losses in bone density were reported. Apollo missions included calcium balance
studies using blood and urine sampling and found significant decreases in calcium
balance due to increased calcium excretion over these two-week missions, leading to the
conclusion that bone density changes were directly related to systemic calcium losses.
The Skylab missions of the early 1970's focused extensively on life science studies.
During these one to three month missions, bone resorption markers and calcium excretion
were found to increase. However, significant variation in bone density changes were
noted between astronauts, ranging from 0-7% decreases from pre-flight measurements
[36]. Longer Soviet flights on Soyuz and Mir missions, ranging from two to six months,
also showed a wide variety in the amounts of bone loss measured, from no losses at any

site to up to a 20% loss in density at the heel [36, 38]. Recent increases in measurement,
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medical, and space technologies have lead to more sophisticated studies on the joint
Russian, American, and international missions using the Space Shuttle and the
International Space Station. Average monthly losses in bone density were determined to
correspond to average monthly calcium ion losses [36, 40], and correlations between
these losses and muscle atrophy measurements have been made [40, 41].

While significant variations in quantitative measures have been reported, general
trends in the musculoskeletal adaptations to microgravity have emerged. Muscle mass,
force and power as well as bone mineral density and systemic calcium ion levels all have
been found to reduce with time spent in microgravity. Muscle atrophy has been shown to
occur much faster than bone strength reductions, with significant muscle loss after only
eight weightless days [40] while cancellous bone density changes were not noticeable
until almost a month and cortical density decreases after two months [39, 42] in space.
Muscle and bone losses were found to be most significant in distal regions, at the ends of
the limbs far from the center of the body, [39, 43, 44] with up to a 20% reduction in
muscle size in the lower leg muscles that control ankle movement [40] and up to a 20%
loss in heel bone density [36, 38]. Corresponding measurements of the strength of
muscles that control hip motion diminished less than those of the ankle, ranging only
from 10% to 15% of their initial, pre-flight, abilities [40]. The changes in hip muscle
strength correlated with the up to 10% decrease in the bone density in the vertebrae of the
lower back that has been reported due to weightlessness, near where these muscles act
[45]. In addition to the faster rate of losses, the amount of cancellous bone density losses

have been measured to be as much as twice those in the cortical bone [39].
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Changes in bone and muscle strength have been found to be linear with time in
microgravity. Rapid losses in both muscle size and bone density, especially in the
cancellous tissue, have been observed upon initial entry into space, followed by slower
and more controlled losses that became constant with time [40]. After nine months of
one mission, muscle mass approached 70% of the pre-flight value [41].

In addition to a better understanding of the mechanisms of muscle and bone
weakening due to microgravity, the recovery due to increased global environmental
gravitational conditions has also been monitored. As with measured losses, a significant
variation in the amounts and rates of recovery has been reported. However, notable
trends have been uncovered. Muscle recovery occurs faster than bone recovery [46],
with muscle volume increasing exponentially with time [40]. The rate of bone formation
was found to increase upon return from space, while the bone resorption (decay) rates
continued to increase, though at slower rates, for some time after return [47].
Additionally, cortical bone mass appears to reach its preflight value faster than the
cancellous bone tissue [39]. With time, however, pre-flight strengths returned, indicating
the alterations are reversible. It should be noted that while bone density measurements in
microgravity changed significantly from pre-flight values during these studies, they were
still within clinically normal limits. Therefore, no space-induced osteopenia or
osteoporosis has been observed [37] and no osteoporotic fractures have resulted upon
reambulation [48].

The potential negative effects of functional adaptations of the musculoskeletal
system and the knowledge gained from their study, especially as a result of space travel,

has lead researchers to develop ways to artificially invoke or control these phenomena to
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modify bone strength even when internal or external environmental conditions would
drive changes differently. Such forced, controlled, alterations to the natural bone strength
adaptation phenomena target both the intrinsic (material) and extrinsic (shape) bone
property changes. Therefore, regardless of the cause, whether it be related to age, disuse,
disease or environmental conditions, the levels of bone strength reduction can be lessened
and the strength may even be increased by modifying the rates and amounts of bone

shape and density changes through the use of various interventions and countermeasures.

1.2.3 Current Countermeasures

Currently, two main methods to artificially alter the functional adaptation of a bone's
strength have been developed. Each one targets a different strength modification
mechanism to focus on maintaining or improving bone strength through adjustments to

both the intrinsic and extrinsic properties of bone's mineral content and shape.

1.2.3.1 Pharmaceutical Based Countermeasures. Pharmaceutical ~ based
countermeasures, from nutritional supplements to prescription drugs, target changes to
the intrinsic mechanical properties of bone through alterations in the amount or rate of
change in bone density by directly controlling its mineral content and porosity.
Implementation of this type of countermeasure is often straightforward by administering
consistent quantities of certain chemicals that affect the biological bone adaptation
processes over time or supplement the minerals that are stored in bones. Because they
target the amount and distribution of minerals in the bones, which can be easily measured
clinically, their effectiveness can be easily quantified and tracked with time.

Many pharmaceutical based countermeasures specifically target changes in bone

density through direct alteration of biochemical processes in the bone tissues and cells.
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Specifically, they artificially change the rates of release of minerals, mainly from the
cancellous bone tissue, where the quantity of minerals in bone naturally fluctuates
significantly. This is accomplished by slowing the repair processes in the bone tissue,
thus reducing the release of minerals from the bone tissue and the resulting material
porosity that occurs during these repairs [14, 36]. This leaves a denser, and, therefore,
stronger material. However, there have been some concerns of potentially unwanted side
effects of these pharmaceutical agents, like bisphosphonates, alendronates, and
ibandronates, the most significant of which is the potential for increased risk of fracture.

Bone fractures usually begin in the cortical rather than the cancellous region of
the bone [28]. The reasons for this are twofold. First, cortical bone tissue is on the outer
surface of a bone and is, therefore, subjected to higher stresses simply due to geometry.
Second, the dense, nonhomogenous nature of the cortical bone material and the
interspersed pores make it more susceptible to the development and propagation of
cracks.

In a nonhomogeneous material, cracks form when local variations in a region
result in stresses beyond the material's yield strength. They propagate when the strain
energy stored in the material due to the deformation caused by the application of an
external load is sufficient enough to break the bonds of atoms in the material surrounding
the crack [49]. As occurs in inert materials, the relatively large and sparse pores that
occur in cortical bone tissue usually dissipate the strain energy, stopping crack
propagation. However, if the pores are close enough and numerous enough, and the

strain energy stored in the material from the applied load is large enough, cracks can
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propagate far enough to span the distance between neighboring pores, resulting in long
continuous discontinuities that can potentially result in the structural failure of the object.

In bone, the material in a region with a small localized crack is usually removed
and replaced under normal repair processes that occur at a regular rate. However, when
the rate of the replacement and repair processes is reduced through the use of
pharmaceuticals, a large network of small cracks may result. Under sufficient loading
and, therefore, energy input, this network of cracks is prone to combining through the
process described above. The resulting larger structural defect can lead to a significant
reduction in the bone strength, and with enough crack growth, can result in the structural
failure of the bone [14, 20, 28, 50, 51]. By slowing the rate of the natural repair
processes, the use of these pharmaceutical agents also results in greater mineralization of
the cortical bone tissue. This is believed to create a stiffer, more crystalline, and
therefore, more brittle material [30]. Such a brittle material is more susceptible to crack
growth and fracture since less internally stored strain energy from the applied forces is
dissipated through local plastic deformation and more energy is, therefore, available for
crack propagation [49].

Despite the risks, pharmaceutical based methods, which use biochemical means to
slow the loss of bone strength, can contribute to a reduced potential for fracture under
typically activities for those individuals with significant weakening of their bone
structures. However, while these types of countermeasures can successfully limit loss of
bone strength, they do not stimulate bone formation [50]. Additionally, because they
work systemically, their function cannot be restricted only to specific locations that are

weakened and even locations with little or no noted strength reductions are affected [50,
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52]. Finally, by targeting the loss of bone minerals, they cause the greatest changes to
the cancellous bone tissue rather than the cortical tissue where most fractures initiate
[28]. Therefore, alternative or supplemental methods may be necessary to address these

limitations. One such method is the mechanical based countermeasures.

1.2.3.2 Mechanical Based Countermeasures. Mechanical based countermeasures, such
as exercises, work to improve bone strength by stimulating increased formation of
material on the surfaces of the bone [50] despite the reduction in bone material or density
that might be naturally occurring in the interior volume in response to internal or external
environmental conditions. They target the cortical regions of bone, where fractures most
likely occur [28], to change the shape of the whole bone structure as explained in
Subsection 1.2.1.3. These shape changes, though usually more subtle than the bone
density changes, can often have a greater impact on bone strength [18, 20] and, therefore,
might contribute more significantly to the mitigation of losses in bone strength than other
countermeasures with the benefit of few potentially adverse side effects.

While external mechanical devices can aid in this means of controlling and
altering the bone strength adaptation mechanisms that are related to bone's function as a
structural support [10], mechanical countermeasures often act through the dependencies
between bone strength and muscle strength that were described in Subsection 1.2.2.2.
While nonmechanical factors, like hormones and metabolic and biochemical factors,
which are the targets of pharmaceutical countermeasures, do contribute to bone strength,
the relationships between changes in muscle strength and changes in bone strength have
been shown to be quite pronounced [31]. Additionally, mechanical countermeasures, like

exercise, can target specific regions of weakened bone and can have beneficial effects on
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other physiological systems that are not possible with biochemical agents that target
specific cellular processes consistently throughout the whole skeletal system. A study
that directly compared the effects of mechanical and pharmaceutical countermeasures on
bone and muscle loss and recovery showed that both intervention methods resulted in a
reduction in bone loss over no use of countermeasures. However, those that partook in
exercise interventions also showed a reduced amount of muscle loss that was not seen
with the pharmaceutical countermeasures, allowing for a quicker recovery to normal
function.  Therefore, the use of mechanical countermeasures may be beneficial by
mitigating the loss of bone strength and concurrently mitigating the negative aspects of
the functional adaptations that may also occur in other physiological systems due to the
environmental changes.

Despite its potential benefits, quantifying the effectiveness of mechanical based
countermeasures is more difficult than it is for pharmaceutical based ones. The reasons
for this difficulty are varied and related to the wide variety of available exercise
regimens, individual capabilities, the inability to provide specific controlled dosages of
exercise as can be done with pharmaceutical methods, and the less direct correlations
between clinical measurements of bone geometry and bone strength than have been
established for bone density measurements. The effects of mechanical loading and
exercise countermeasures on changes in bone strength have, therefore, been the subject of

significant research.

1.2.4 Experimental Studies of Mechanical Countermeasures
Although mechanical countermeasures have the potential to maintain and improve bone

strength with few adverse effects, the types of mechanical countermeasures are more
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diverse than pharmaceutical methods. Additionally, the mechanisms behind their
function and the resulting effects are less understood. Therefore, research has been
undertaken to examine the relationships between loading magnitude and type of load on
changes in bone strength. The study of the functional adaptation of bone can be carried

out either by applying or by removing loads that directly interact with the studied bone.

1.2.4.1 Effect of Reduced Load. Studies of decreases in environmental forces can be
readily performed and easily controlled. Through investigations of immobilized subjects,
trends in the functional adaptations of bone that lead to a loss of bone strength can be
examined. The effects of immobilization on bone strength can be observed in the
paralyzed, those subjected to long hospital stays, or even in those who have to wear a cast
due to a fracture. Therefore, experimental methods for studying the ways bone adapts to
immobilization typically mimic these three conditions. Animals have been subjected to
severed nerves, tendons, spinal cords. They have had their limbs plastered in casts,
wrapped in bandages and even suspended. Humans have also been subjected to casting
and periods of time of restricted activity while confined to a bed. In fact, human bed rest
studies began as early as the 1940's [53] where plaster casts immobilized subjects from
waist down while they lay in hospital beds.

From these studies [16, 54, 55], a number of trends in bone density and mineral
content have emerged. The initial response to immobilization has been found to occur in
the highly changeable cancellous bone tissue region through increased resorption of bone
material and increased levels of minerals, especially calcium, in blood and urine. The net
amount of loss becomes constant with time of immobilization, when losses temporarily

stop. A brief increase in strength is usually then noted, sometimes returning to pre-



28

immobilization levels. Then, the decrease in strength occurs again, at a slower rate than
initially upon immobilization, until a new steady state strength level is achieved, which is
lower than that prior to immobilization. Cortical bone tissue has been observed to follow
the same trends although the response is slower and less dramatic. The change in bone
density has been shown to be fully reversible upon remobilization. These trends in bone
density due to immobilization follow those observed due to microgravity described
above. In addition, comparison of the results of bed rest studies with observations of the
losses incurred by astronauts and cosmonauts in space show analogous amounts of
mineral changes [56].

While fewer investigations have examined the geometric changes of cortical bone
due to reduced environmental forces, a series of canine studies in the late 1970's
examining the changes in the geometry of the cortical regions of long bones over time
due to cast immobilization [54, 55] provided insight into significant trends. These studies
found that the decreases in bone size were greater the more distal the location on the
immobilized limb so that the bones in the toes had a greater response than those near the
shoulder. Changes were found in both in the porosity of the cortical bone tissue and its
overall shape. While the changes in the porosity were initially rapid and transient, even
returning to pre-immobilization levels despite being immobilized, changes to geometry
were slower in response and longer in duration. Losses of bone material were noted on
both the inner and outer surfaces of the cortical bone. These trends in cortical bone
geometry changes with location and time were consistent with those observed in other

studies for bone density due to immobilization and spaceflight.
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1.2.4.2 Effect of Increased Load. While immobilization has proven to be a good model
for loss of bone strength, the experimental study of the response of bone to increased
loading has been more challenging. Experiments have been performed on many different
animals, often involving the surgical implantation of load application fixtures and strain
measurement devices. Through X-rays, changes in bone density and shape with time are
typically tracked as a result of specified loading protocols. Additionally, at the
completion of the study, animals are often sacrificed to obtain histological data such as
bone mineral content and types and distributions of bone cells present.

Similar to the studies of the effects of loading on trees where specified weights
were hung and changes in trunk geometry were noted [7], these animal studies often
involve the external application of specified loads to individual bones so that changes in
bone structure can be observed with time. One of the first of these studies was a series of
experiments using rabbits [57, 58]. Ferrous wires were surgically inserted through the
tibia bone of rabbits and bending loads were repeatedly induced by alternating the
direction of a magnetic field surrounding the ends of these wires induced by an
electromagnet. After a number of weeks of repeated load application, measurements
taken from X-rays of the loaded bones were compared to those from initial X-rays. New
growth was found to occur at both the inner and outer cortical surfaces in the regions
perpendicular to the bending axis where large bending stresses are expected. A similar
study was later performed on turkeys [59]. While the loading mechanism was different
(bending loads were induced through mechanically loading a pin inserted through a
turkey's leg), the resulting growth in the turkey's bone subjected to the bending load

corresponded well to the observations seen in the rabbit experiment. Differences in the
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amounts of growth observed due to the variations of the magnitudes and durations of the
applied forces in these studies indicated to these researchers that there is a strong
relationship between the load magnitude and the amount of bone strength adaptation.
Instead of inducing a specified external load on an animal's bone, artificial
manipulation of the internal environment of a sheep's leg has also provided insight into
relationships between applied forces and functional adaptation of bone [60]. The front
leg of a sheep is comparable to the arm of a human, where the lower part contains two
parallel bones: a radius and an ulna. In this study, one bone, the ulna, was removed.
Changes in the density and measured surface strains of the remaining bone, the radius,
were examined. Similar to the study of adaptation in the lungs explained in Subsection
1.2.1.1, over time, new bone volume was added to the side of the radius where the ulna
was such that it eventually replaced almost the entire volume that was removed. Under
normal walking loads, the measured strains on the outer surface of the radius initially
increased significantly upon removal of the ulna. = With the added bone volume,
however, these strains returned to values similar to those before the ulna was removed.
These early experimental studies provided measurable evidence of the existence
of a direct relationship between applied forces and alterations in bone shape. Based on
these results, researchers began to investigate how to actively control the strength

adaptations of bone through prescribed loading modes and activities.

1.2.4.3 Effect of Exercise Mode. The first step in the study of controlled bone strength
adaptation was the understanding of the effects of currently performed exercises.
Because increases in applied loads have been shown to increase bone size and density

and because the changes in bone mass have been shown to lag behind, but parallel, the
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changes in muscle mass, the effects of different exercises on bone strength have been
extensively studied both in animals and in humans in order to identify loading patterns
that trigger the greatest increases in bone strength. Both prospective clinical
investigations, comparing prescribed exercise regimens to carefully controlled groups
whose exercise activities were limited, and retrospective studies, examining the bone
geometry and density of bones from athletes of various sports, have been performed.
Additionally, significant work has been conducted to develop exercise routines for
astronauts that help maintain bone and muscle strength while accommodating both the
time and space limitations typical to a space station environment.

Animal studies of the effects of exercise on geometric changes, and, therefore,
likely strength changes, of bones have been numerous. The exercise studies eliminate the
need for the complex fixtures, invasive surgeries to attach load applying mechanisms to
the bones, and the artificial loading patterns of the earlier experiments reviewed above.
Additionally, because actual motions and activities are used, their results have more
direct clinical implications. These animal studies usually compare the effects of activities
on measures of bone strength such as geometric dimensions or density. Non-exercising
groups that just went about normal activities are often used as a reference. An early
study of this type done in the 1970's [61] examined the timing as well as the amounts of
change in cortical bone geometry of adult hamsters that were allowed access to an
exercise wheel. Both initiation and termination of increased rates of bone growth were
found to lag behind initiation and termination of exercise. This showed that the benefits

of exercise exceed the time spent performing the activity.
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Treadmills have often been used as a means of controlling increases in
environmental loading for these animal studies. Such studies have successfully verified
trends in loading intensity on bone mass increases by comparing conditions in animals
that are immobilized, normally ambulating, and subjected to increased activity through
controlled "exercise" speeds using these treadmills [62]. Under such activities, the
beneficial increases in extrinsic (geometric) properties were found to be greater than
those for intrinsic (material) properties of cortical bone tissue [63]. Additionally, these
controlled speed treadmill investigations have been able to show the importance of
atypical loading modes of the same intensity as typical modes on the changes in bone
strength, such as swimming versus walking at the same rate for a land mammal [64].

Based on the results of these animal studies, human clinical investigations into the
effects of various exercise types on bone strength adaptation have been undertaken.
Because of the difficulties in controlling the behavior of humans as exactly as can be
done with animal experiments, more varied conclusions have resulted. Some studies
have shown that exercise in adults produces only a slight impact on skeletal geometry and
a moderate impact on bone density [65]. Others have concluded that exercise does not
add new bone material, but only acts to prevent bone loss [27, 65, 66]. Still others have
shown significant impact of exercise on both bone size and density [67].

The variation in the conclusions drawn by these studies is related to the
difficulties in quantifying changes in both environmental loading and bone strength.
Many studies have only measured reaction forces between the whole body and the
ground [26] or whole body accelerations [68] to estimate the magnitude of bone loading.

In these investigations, measures of bone strength changes were often limited to bone
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mass [65, 66]. While both of these types of measurements are easy to obtain, they do not
accurately depict the complete mechanical conditions or adaptive responses.

Additional complications to these studies of the effects of exercise regimens in
humans are related to the study protocols themselves as well as to the subject's
compliance to these protocols. Mixed loading modes are often used, with combinations
of high and low intensity activities, such as running, jumping, and isometric exercise,
allowing no means to isolate effects of the type of activity on observed strength changes.
Compounding all of these issues are significant difficulties in accounting for activities
outside the study time and the small amount people who actually complete the full study
from start to finish [66, 68].

Retrospective studies comparing the properties of bones of different athletes have
provided means for more control in the identification of loading parameters, since the
athletes studied often partake in the specialized activities over longer periods of time in
more repeatable patterns than the non-athlete subjects enrolled in short-term exercise
programs. Such studies have resulted in similar conclusions as those drawn from the
animal experiments. For example, activities, like squash or soccer, that provided "novel
strains" most different from those of typical activities, have been found to induce the
greatest changes in bone strength regardless of the intensity of the activity [69]. Unlike
the animal studies where the local mechanical environment was usually measured
through the use of strain gages, in these human investigations typical or atypical loads
were classified based on measurements of whole body reaction forces. In this manner,
the variations in the local mechanical environment that may have induced the changes

was not identified in these studies.
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Effect of Exercise Mode in Microgravity

Like the studies in space that have helped to better understand bone loss mechanisms,
studies of the effects of exercise on bone strength gains are more controlled in
microgravity with better compliance than Earth-bound investigations. Such studies are
valuable in applying the knowledge gained from animal and clinical experiments of
adaptation mechanisms to the implementation of practical and efficient exercise
regimens. While early space missions by the US and Soviets used mainly treadmill and
stationary bikes [44, 52], these activities have since proven to be better suited for
reducing the cardiovascular deconditioning "functional adaptations" that also occur in
microgravity rather than attenuating the musculoskeletal losses [33, 70]. Bungee cord
harnesses in combination with a treadmill were found to be better at reducing losses in
bone density in space through simulating an increased gravitational force, but they did
not fully eliminate the losses caused by living in microgravity [71]. These results led to a
focus on methods to increase the whole body loads. Weight systems, flywheels and
friction ramps have all been studied with limited success [33, 36, 38, 52, 71]. Because
increased bone formation in addition to reduced bone resorption has been observed in bed
rest studies where resistance exercises were incorporated [71], such exercises became the
prominent loading mode in many studies. Of the different types of resistance exercises,
isometric loading methods have shown a great benefit in reducing losses to muscle
strength during global reductions in environmental mechanical forces [70] and in
improving bone strength during recovery upon return to "normal" conditions [46].
Isometric exercises are those where a constant force is supported in a constant position,

such as when holding up a weight or attempting to move a fixed object. Based on this
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information, resistance exercises have dominated bone and muscle loss mitigation
exercise protocols for space flight programs.

Resistance bands have been on every US space flight since Skylab, even the early
Soviet missions, and are still currently available on the International Space Station [44].
However, the bands have had persistent problems including the inability to generate
sufficient force intensities to induce bone formation and the breakage of the bands due to
overuse [72, 73]. In 2009, a more complex resistance force exercise mechanism was
installed on the International Space Station. Through the use of vacuum cylinders, a
flywheel mechanism to simulate movement of free-weights, and a cable pulley
mechanism to control the stroke of each exercise, this machine could provide twice the
resistance of the bands. The software interface of the system could provided feedback on
the magnitude and direction of the resulting force generated so that user-customized goals
could be created and performance could be analyzed. The astronauts currently using this
equipment are required to perform heel raises, squats and deadlifts to target the muscles
controlling ankle, knee, and hip [72, 74-76] for thirty to sixty minutes a day, three to six
days a week [77, 78]. Early results have shown that, although some post-flight losses
were still noted, the use of this equipment improved the attenuation of bone loss, during a
six to eight month timeframe, over previously used exercise devices [78, 79]. Through
the more controlled studies performed in the development of efficient exercise regimes
for those spending long times in space, resistance exercises have emerged as the
prominent means of maintaining musculoskeletal fitness in microgravity. However, as

evidenced by the lengthy bone loss mitigation exercise regimens currently required on the
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International Space Station, the most economical and efficient routines that also minimize
both exercise time and complexity of exercise equipment have yet to be developed.
Experiments on animals and humans both on Earth and in Space have provided
significant insight into the effects of various types of loading modes on bone strength
adaptation responses and have directed researchers towards the basic types of exercise
countermeasures to losses of bone strength with the most potential for benefit. However,
a wide range of approaches to mechanical means of maintaining bone strength is still
being used which has lead to an equally wide range of reported effectiveness. Therefore,
before mechanical based countermeasures can be efficiently and effectively implemented
both on Earth and in Space, further investigation is necessary. Strength loss mitigation
methods that target regions of bone with the most the significant consequences of or
susceptibility to weakening must be identified. Additionally, methods to quantify the
changes in bone strength for a more scientific comparison must be developed.
Computational analysis methods and simulations often have been used to help understand
physical systems that are difficult to study experimentally. Therefore, they may be

beneficial in the investigation of exercise countermeasures to losses of bone strength.

1.3 Computational Modeling of Bone Strength
Studies of living subjects have been able to show basic correlations between the applied
forces and bone strength adaptation, demonstrating the relative effects of loading modes
and intensities. In animal experiments, due to variations in animal ages, species, sizes,
and types of bone studied as well as duration of study and methods used to quantify
strength changes, absolute correlations and trends have been difficult to identify [55, 57,

63]. In addition to the inter-subject variations, significant problems in study design,
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patient compliance and uncontrolled external influences have limited the successful
isolation of loading parameters on bone strength adaptation in human exercise studies
[80]. The quantification of strength changes in these experimental and clinical studies
has often focused on the easily measured bone mineral density, considering only the
intrinsic material property changes and ignoring the extrinsic geometric changes that may
better correlate with bone strength [27]. Because computational models are often used in
mechanical analyses to gain insight into phenomena that are difficult to measure, isolate,
or see through experimental means, they are well suited to examine the relative effects of
specific parameters that have the potential to induce the greatest bone strength
adaptations without the variability in study subject and restrictions in measurements that
have limited experimental and clinical investigations. A review of this use of

computation modeling methods follows.

1.3.1 Application of Computational Modeling to Study Bone Strength Adaptation

Computational modeling methods have been used to complement physical experiments.
For example, to quantify the effects of bone loss countermeasures that were studied
experimentally, finite element analyses have been employed [78, 81]. In such work,
imaging scans of actual bones are made before treatment and at regular intervals. The
scanned images are analyzed, the material properties and geometric boundaries are
deduced, and finite element models are generated. The response of the whole bone
structure to various sets of boundary conditions can then be predicted to determine the
effects of the combined changes in density or geometry that resulted from the
experimental alterations in the bone's mechanical environment. Such studies can reveal

the interactions or the effects of treatments on material property and geometric variations



38

within a bone as well as the relative effects of these changes on bone strength in ways
that cannot be achieved through standard experimental measurements alone.

Modeling methods can also be used independently of physical studies to simulate
the bone strength adaptation phenomena. Because changes to both intrinsic and extrinsic
properties occur under mechanical loading simultaneously, experimental and clinical
researchers are unable to separate the two types of adaptive responses of bone strength.
Computational modeling and simulation techniques, however, can be developed to isolate
each adaptive response and systematically alter input loading parameters so that specific
trends and relationships can be revealed and quantified.

Following the physical experiments, previous computational studies have often
focused on material property changes. The predictions of these models are often based
on images of density distributions of strut configurations in cancellous bone tissue
regions from experimental or clinical studies. However, because geometric changes are
not as easily examined experimentally, even though they are thought to significantly
affect bone strength, the computational study of shape changes of bone may be quite

beneficial in understanding and controlling bone strength adaptation phenomena.

1.3.2 Bone Shape Adaptation Modeling Methods and Current Limitations

Despite the many different computational models that have been developed to simulate
bone shape adaptation, all follow the same basic iterative optimization procedure. They
start with the numerical solution of the structural analysis of the bone being optimized
under the given loading conditions. The response of the bone to this loading that drives
the shape adaptations can be represented through various measures of the mechanical

state, such as deformation, strain, stress, strain energy density, or even components or
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gradients of these measures, that are calculated at discrete points along the bone's
surfaces from the numerical structural analysis. Based on the distribution of the local
mechanical state of the bone, local material accretion or resorption is determined using
numerical models that represent the effects of the bone's strength adaptation phenomena,
moving the local mechanical response measures toward a specified optimization goal.
The shape changes of the bone are simulated by moving the locations of the discrete
points on the boundary surfaces, typically either nodes or shape control points, where the
local mechanical state was calculated.

Using such methods, the governing conservation equations are usually solved
quasi-statically, and the shape optimization progresses iteratively, so that the total mass
of the system remains constant for each structural analysis. The same boundary
conditions are typically applied to the new shape at each iteration, though variations in
loading regimes can be incorporated as well. The simulations are run until a specific goal
or a physical size limit is reached. Alternatively, iterations may represent physical
quantities of time, such as days, and simulations may be run over a specified time period.
While finite element methods are most common, because only the surface profiles are
changed in these models, boundary element methods have also been employed [82-84].

While this basic modeling method has been followed since the computational
modeling of bone strength adaptation began in the 1970's, significant research has
focused on three major areas to improve the model predictions. The first area relates to
the specific mathematical model simulating the effects of the bone's strength adaptation

phenomena. The second area relates to the selection of mathematical optimization
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method and convergence criteria. The final area relates to the representation of the

physical system and boundary conditions. Each area will be discussed in detail.

1.3.2.1 Model Drivers and Parameters. Many different types of measures have been
proposed as the "functional stimulus" (measure of the local mechanical state and
threshold values to trigger bone loss or growth) cited by early researchers as the driver
and controller of bone's functional strength adaptations. The review of models presented
here is representative of the majority of previously proposed models. Early studies
focused on strain tensor components as the "functional stimulus" driving the geometric
changes in bone, indicating that there may be a different response for each tensor
component [85-89]. Later studies used more averaged effects like strain energy density
[90-93] or von Mises stress [94, 95]. Other studies have driven the strength changes by
principal stresses and strains [96-98], strain rates [99-101], and spatial gradients of strain
or strain energy density [100, 102-105]. Some studies have compared experimental
results of bone shape adaptation to computational models, either simulating the
adaptation process itself or just representing the mechanical response to the applied load,
to compare trends in bone growth or decay with trends in various mechanical measures to
determine which measure may be the most appropriate growth driver [96, 99, 100, 103,
104]. Despite these numerous and diverse studies, no mechanical measure has been
conclusively found to be directly proportional to observed changes in bone shape. In fact,
some studies have even indicated that different measures may control accretion and
resorption [85, 102].

Because the modeling methods of bone strength adaptation follow a basic

feedback control system, threshold values of the mechanical measure are required to
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trigger the cellular activities causing strength adaptation and to define the amounts of
change at each surface location. Similar to the determination of the mechanical measure
that acts as this functional stimulus, many researchers have attempted to determine these
threshold values. The growth and decay thresholds have been the same value [87, 91] or
different values [85, 93, 106] and even varied by location [107]. The use of different
threshold values for accretion or resorption results in a range of mechanical responses to
external loading that trigger no strength adaptations to the bone often, called the "lazy
zone" [29, 59, 106]. Researchers using the lazy zone believe that there is a range of
typically encountered mechanical states over which nonmechanical factors control the
slight amount of adaptation that occurs [103]. Despite the many studies, ranging from the
application of strain gages on actual bones in living subjects to finite element modeling,
like the functional stimulus, no definitive conclusions have been made about the number
of thresholds, their values or even the actual existence of any such parameter [108].

In addition to the mechanical measure driving the model and the threshold values
triggering adaptation phenomena, the rates of material accretion or resorption are often
specified within the developed computational model. Like the threshold values, these
rates can be constant or based on location, such as the outer (periosteal) or inner
(endosteal) surfaces, and may even vary based on whether accretion and removal occurs
[91, 92]. It has even been proposed that the rate is different for different model measures,
such as each strain tensor component in a strain tensor driven model [89].

The parameters discussed in this section, especially the rates and threshold values,
are often specified for the particular conditions studies. Most parameters are typically

selected that correlate experimental observations with the model prediction [89, 92, 109-
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112]. Yet, the selection of model parameters in this manner may limit the application of
the model to systems and conditions similar to the experiments on which the parameter
selections were based. Therefore, alternative means of determining the parameters or

formulating the numerical model are necessary.

1.3.2.2 Optimization Methods and Stopping Criteria. The second area of significant
research in the development of bone strength adaptation models is the selection of the
mathematical optimization method and convergence or stopping criteria. Because the
shape strength changes of the bone are thought to be a response to an external trigger or
"functional stimulus", the adaptations are believed to be moving the bone's strength
towards a particular goal. The use of computational modeling methods to simulate the
strength adaptation phenomena in bone and to predict the resulting changes to the bone's
shape requires the understanding and specification of this optimization goal.
Conceptually, the goal of the functional strength adaptation of bone is to create a
structure suitable to withstand the forces likely to be imposed on it. Similar to the design
of mechanical components, this implies that certain strength requirements are necessary.
For example, the failure stress of the bone structure must be greater than stresses caused
by applied loads. Observations of bone strength adaptations have noted that growth
occurs in regions of high stress/strain and decay occurs in regions of low stress/strain.
The growth and decay threshold values used in many of these computational models
actually function as optimization goals, causing greater amounts of growth or decay in
regions with greater variances from the threshold values. By driving the local surface
stresses or strains towards the threshold values, the variation over the surface is reduced.

The threshold values (or optimization goals) can easily be arbitrarily selected in
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computational models. For example, they can be a specific design criterion, such as a
maximum or minimum stress during the function of an inert mechanical part. However,
the global designation of a singular absolute stress or strain value that bone cells use to
drive adaptation in all circumstances seems unlikely. Rather, a relative measure of
variation is more probable. Nonetheless, the simplicity of this type of model has lead to
its widespread selection of threshold values often only to match an experimental result.
Models that are driven by selected "threshold values" that trigger growth or decay

usually follow the form:

Local Growth = Rate * (Local Value - Threshold Value) (1.1)

Xpew = Xoid + Local Growth (1.2)

where X is the location of a point on the surface and the optimization goal is
minimization of (Local Value - Threshold Value). The calculation of the growth at each
discrete point on the surface is repeated iteratively as the measure of the local mechanical
state changes with each iterative change to the boundary surfaces. Such a routine is often
called a gradientless or zero™order optimization scheme because the gradient of the
optimization function is not used in the search for the optimal solution [113]. Because
only the optimization function itself is used, as in Equation 1.1, gradientless optimization
methods are less mathematically rigorous than traditional gradient based methods. These
gradientless optimization methods do not achieve a unique solution and do not find
global optima. Instead, the identification of specific, somewhat arbitrarily selected,
convergence criteria to define when the model has reached its "optimal state" is required.

Nonetheless, when systems start close to their optimal state, as in bone shape
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optimization where the amount of shape changes are limited, or when a precise optimum
is not necessary, such methods can be efficiently employed [113, 114].

Some models have been developed that take advantage of the mathematical
simplicity of the gradientless optimization methods without the burden of selecting model
convergence criteria by attempting to choose a rate (Equation 1.1) that represents actual
progress with time [93]. Models are then run until a specific length of time is reached
rather than until a specific convergence criterion is met. These rates are often arbitrarily
selected to create shapes that correspond to a validation case of a specific experimental
set of conditions and, therefore, may not be applicable to other situations. While these
might allow simulations to more closely replicate experimental results, difficulties can
arise when trying to compare effects of different loading or boundary conditions using
these same model parameters.

The need for the selection of specific threshold values, growth rates, and
convergence criteria can be eliminated through the use of gradient-based methods. In
such cases, an optimization goal, such as minimizing the variation of stress or strain over
the surface, is written in the form of a function, the gradient of which leads the search for
unique local, and sometimes global, optimization solutions. Because these methods
require the determination of the gradient of the optimization function with respect to each
design parameter (here discrete points on the boundary surfaces of the bone), the number
of gradient calculations required and their subsequent application can be computationally
prohibitive, especially for complex, three dimensional shapes [115]. Thus, while they are
more mathematically rigorous and more apt to result in unique optima, gradient-based

mathematical optimization techniques are more difficult to execute and require more
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computational resources than gradientless method, limiting their applicability to the
simulation of bone strength adaptation.

Despite the significant number of computational models of bone strength
adaptation that simulate the shape changes of bone, there has been no consensus on the
most appropriate optimization methods, growth driver measures and modeling parameters
(thresholds, rates, etc.). Many models are based on correlations to specific experimental
studies and few use specific convergence or stopping criteria. Therefore, the ability to
use such computational models to quantitatively compare the effects of a wide range of

loading and geometric conditions is currently limited.

1.3.2.3 Representation of Physical System. Many of the current computational models
that predict adaptive shape changes of bone simplify the bone geometry, the boundary
conditions, or both. As in any numerical model of a physical system, such
simplifications are used to reduce the computational resources and the total study time
required. Research has been undertaken to understand the effects of the simplifications
on the ability of the models to appropriately simulate the strength adaptations.

The first area of simplification studied is the geometry. In general, the more
complete the representation of the shape of an object, the more accurate its resulting
structural analysis. However, because modeling of bone shape changes in response to
external loading conditions is computationally intensive, geometric simplifications are
often employed. The most basic of these is the study of a two-dimensional cross-section
of the midshaft of a long bone, simplified as a thick circular or oval annulus [85, 86, 92,
93]. While the relative trends in load-based strength adaptations are properly reflected in

these models, the simplifications ignore the effects of axial variations and may, therefore,
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limit the accuracy of the actual shape predictions. Three dimensional geometries [116],
and models that account for regions of both cortical and cancellous bone tissues have
been shown to give a better representation of the mechanical state of the bone [112].
The use of multibone, multisegment systems [117, 118] and the inclusion of
supplemental structures such as cartilage, tendons, and ligaments [119] can provide even
more accurate predictions.

Like geometry, the effect of the representation of the boundary conditions has
been extensively studied. Because muscles often produce the major forces on bones, the
way these forces are included in the computational model can significantly affect the
structural analysis. Studies have shown that simplifications of the distribution of the
forces on the bone's surface [120, 121] can cause significant variations in predicted
mechanical behavior. The appropriate distribution of the muscle loads considers both the
inclusion of individual muscles, as compared to grouping the effects of muscles with
similar functions [122], and the accurate representation of the connection of the muscle to
the bone, both in size of contact area and amount of contact rigidity [119-121, 123].

An investigation of the extent of model complexity necessary to appropriately
simulate the behavior of a femur bone under loading at the hip has been performed [123].
In this study comparisons were made between the deflection predicted by a model with
varying levels of geometric and boundary condition accuracy and those measured
experimentally. While the most complete model produced results most similar to the
experimental measures, the study found that the simplifications made to the boundary
conditions had a much greater impact on the model results than did the geometric

simplifications.
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1.3.2.4 Current Bone Shape Adaptation Models. Despite the realized need, most
current bone shape adaptation models are still limited in their incorporation of more
realistic geometries or boundary conditions. This is, in part, due to the computational
intensity required to alter the bone shape while maintaining the integrity of the
discretization, which increases with increased model complexity. The lack of significant
advancement of bone shape adaptation modeling methods is also related to the historic
and ongoing experimental focus on material property adaptations to alter bone strength.
While many of the numerical bone strength adaptation models have focused on changes
in bone density, insight into the effects of various modeling features can also be applied
to bone shape adaptation simulations.

Computational models of the adaptation of material properties of bone have
shown the effects of the model complexity on the predicted adaptive changes. Models
with more complete representations of the muscle activity have resulted in more
conservative changes in bone density because the grouping of muscles imparts larger
localized forces, resulting in regions of high stresses that drive greater adaptive responses
[122]. Studies have shown that even small changes in the load distributions on the bone
can result in significant differences in the resulting changes in density distributions [120,
121]. Some models have included both shape and material property adaptations, showing
a better prediction of the mechanical state of the bone and resulting density distributions
with the more accurate depictions of the cortical and cancellous tissue [124].

Despite these recommendations, many of strength adaptation models still have
significant simplifications. Because many studies have focused on the adaptations of the

upper (proximal) part of the femur bone, the geometry modeled is often limited only to
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this region [122, 124]. The artificial, fixed boundary constraints placed on the cut surface
in such truncated models can significantly affect the stress distributions and, therefore,
adaptation predictions [123]. Other models have used more complete geometries but
have reduced the boundary conditions either by applying only resultant forces instead of
individual muscle forces [44] or by reducing the attachment of a muscle to the bone to a
single node [112]. Each of these simplifications results in higher stress values near the
regions of force applications than if more realistic boundary conditions were applied.

As shown, the ability of current bone strength adaptation models to accurately
represent the system studied is currently limited, restricting the reliability of the
predictions made. While more complex to develop and more computationally intensive
to execute, numerical models including more complete physical systems, such as multiple
bones and individual muscles, can reduce the need for artificially imposed boundary
conditions, improving the predicted stress state and the ability to accurately simulate
bone strength adaptations. Additionally, computational models that are not dependent
upon the arbitrary selection of parameters that control the initiation, execution, and
termination of the model can lead to more equitable quantitative comparisons between
varied bone loss mitigation methods. Models that include both of these aspects may
significantly improve the current capabilities in the development of effective

countermeasures to reductions in bone strength.
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1.4 Scope
This work addresses the limitations of current bone shape adaptation models, particularly
the difficulties in their widespread use for comparative studies of the effects of loading
conditions on local changes in bone strength. The developed modeling method directly
couples the determination of the activity of individual muscles in a multisegment leg
system with the structural analysis of the bones to which they attached and the prediction
of the resulting changes in bone strength, allowing for a more complete representation of
the physical system. Numerical optimization and finite element methods are employed in
the first part of this work (Chapter 2 through Chapter 4) to create a shape adaptation
model that is independent of experimentally matched or arbitrarily selected parameters,
allowing for the ability to directly compare widely varied conditions. The capabilities of
the validated model are revealed in the second part of this work (Chapter 5) when the
developed model is used to identify combinations of hip, knee and ankle joint angles and
net forces generated by the leg acting on a fixed surface that achieve the greatest
improvements in the strength at a specified location within the bone system. Through this
work, the developed modeling method is shown to enhance the current capabilities to
predict bone shape adaptation, allowing for more exacting analyses of these phenomena.
More importantly, the development and application of the method presented here
demonstrates its potential for improving the effectiveness of mechanical countermeasures
to losses of bone strength, specifically those that can target regions which may be

especially prone to fracture.



CHAPTER 2

PROBLEM FORMULATION

To achieve the research goals of this work, the development and application of a
modeling method that can be used to compare the bone shape adaptations in a
musculoskeletal system under various conditions, the problem investigated must be well
defined. It was desired that the model could accurately predict both the individual
muscle activities and the resulting bone shape strength adaptations under various
conditions in a detailed representation of a musculoskeletal system independently of
experimentally or arbitrarily selected parameters. The motivation behind this work was
to develop means to assess the effectiveness of mechanical countermeasures to bone loss
and to determine combinations of bone joint configurations and loading conditions that
may be most beneficial to improving bone strength in critical locations in a
musculoskeletal system. This chapter discusses the details of the development of the
modeling technique, the system modeled, including modeling assumptions, and the

process for the application of the developed method.

2.1 System Modeled
The leg was selected as the focus of studies performed to illustrate the effectiveness of
the modeling method developed in this work, although the modeling methods can be
applied to any musculoskeletal system. The leg muscles, which are typically the largest
and strongest of the whole body, can generate forces spanning a number of orders of
magnitude, resulting in significant variations in the stress and strain distributions in the

bones to which they are attached. Because bone strength adaptations, which are driven
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by these distributions, are thought to be closely associated with changes in muscle forces,
applying the developed bone shape adaptation model to such a system verifies its
function under a broad domain of loading conditions.

The weakening of the bones in the leg may result in a reduced functional
mobility, potentially leading to a loss of independence or even serious injury.
Consequently, a focus on methods to counteract these losses may be of importance for
conditions both on Earth and in long term space travel. As reviewed in Chapter 1,
experimental and clinical studies have shown that the majority of disuse related bone loss
occurs in the lower extremity, with increasing amounts of loss the more distal the
location (further towards the foot) [36, 54, 125]. Therefore, this distal leg region (Figure
2.1b) may most benefit from bone strengthening methods.

The function of the entire leg musculoskeletal system, from pelvis to foot, was
modeled in this study, and strength adaptations were simulated for the tibia bone. A local
region of this bone was targeted for strengthening because of its susceptibility to fractures

that may result in impaired mobility. Figure 2.1 illustrates the system investigated.
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Figure 2.1 Full leg musculoskeletal system studied. (a) Included bone segments from
pelvis to foot (b) Included muscles and joints (¢) Distal portion of the leg from knee to
foot: location of potential significant bone loss selected for strength adaptation
investigation.

Figure 2.1a and 2.1b Source: 'patella."[Art]. In Encyclopedia Britannica. Retrieved from

http://www.britannica.com/EBchecked/media/47969/Skeletal-and-. Accessed on 10/14/13. Copyright 2005
by Encyclopedia Britannica, Inc. With permission.

Figure 2.1c Source: '"clam: muscles." [Art]. In Encyclopedia Britannica. Retrieved from
http://www.britannica.com/EBchecked/media/2567/Rigid-skeletons-. Accessed 10/14/13 Copyright 1994 by
Encyclopedia Britannica, Inc. With permission.
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2.1.1 Anatomical Model of the Leg

The function of the modeled leg was limited to that which occurs in the two-dimensional
plane depicted in Figure 2.la, a sagittal plane in which forces are directed either
anteriorly (towards the front), posteriorly (towards the back), superiorly (up towards the
head) or inferiorly (down towards the foot). Any forces out of this plane were assumed
to be negligible and, therefore, were not included. As a result, some modifications to
actual anatomical geometry of the leg system components were made are noted as
necessary.

The model included four bony segments and ten muscles. The muscles selected
were those that cause flexion and extension of the hip, knee, and ankle joints. The
selection of the included muscles was verified through comparison to muscle sets used in
experimental investigations of muscle activity for similar leg functions [126, 127]. The
bony segments included were selected based on the attachment locations of the included
muscles. In this way, the complete function of each muscle was internal to the system
studied, limiting the artificial boundary conditions applied to the system modeled.

The ten major leg muscles included in this model are listed in Table 2.1. The
bones to which they are attached, whether they are located on the front (anterior) or back
(posterior) of the leg, and their main functions are also listed in this table. Because only
two-dimensional forces in the sagittal plane were simulated in this study, the locations of
muscle attachment on all bony segments were projected onto a sagittal plane through the
midline of the long bones (femur and tibia).

Based on the locations of attachment of the included muscles, four bony

segments, the pelvis, femur, tibia and foot, were chosen for inclusion in the system
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modeled. The geometry of the pelvis was projected onto the same sagittal plane through
the midline of the long bones as the muscle force vectors. Because of the two-
dimensional simplification of the muscle forces in this model, the offset geometry of the
femoral neck was not included. Because the fibula neither carries weight bearing loads
nor shows significant changes with age or exercise [128-130] it was excluded from this
model and the lower leg segment consisted only of the tibia. The foot segment was

represented as a solid structure, without the representation of individual bones.

Table 2.1 Muscles Included in the System Studied

Muscle Location From To Function
Sartorius Anterior Pelvis Tibia Hip Flex10n/
Knee Extension
Rectus Femoris Anterior Pelvis Tibia Hip Flex10n/
Knee Extension
Iliacus (Ipsoas) Anterior Pelvis Femur Hip Flexion
Gluteus Maximus Posterior Pelvis Femur Hip Extension

Hip Extension/

Long Head Biceps Femoris Posterior Pelvis Tibia Knee Flexion
Tibialis Anterior Anterior Tibia Foot Ankle Flexion
Soleus Posterior Tibia Heel Ankle Extension
Gastrocnemius Posterior Femur Heel Ankle Exten§ ion/
Knee Flexion
Vastii (Vastus Lateralis) Anterior Femur Tibia Knee Extension
Short Head Biceps Femoris Posterior Femur Tibia Knee Flexion

The basic representation of the musculoskeletal system of the leg is described
above. As with any mechanical model, assumptions were made in order to create a well
defined system to investigate. These assumptions allowed the model to be analyzed
using mathematical approximations of system behavior with acceptable efficiency and

accuracy and will be described in the next section.
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2.1.2 Model Definitions and Assumptions

A number of assumptions were employed in the definition of this model to clarify the
system components included, simplify the system representation, and specify the range of
conditions over which the model is valid. Specifically, assumptions were made regarding
the representation of the geometry and function of the bone and muscle components, and

the types of activities that could be simulated using the developed model.

2.1.2.1 Representation of the Bone Segments and Interfaces. As described in
Subsection 2.1.1, the model contained four bone segments: the pelvis, the femur, the
tibia, and the foot. Because the muscle forces were limited to two-dimensions, as
described above, the bone geometry, while three-dimensional, was simplified. The femur
and the tibia were approximated as circular cylinders along their entire lengths, except at
the joint ends. The pelvis and the foot were approximated as linear extrusions of
appropriate cross-sections, each with a unique, uniform thickness.

The overall geometry of the bones in the model was based on one published
source and represented an average healthy adult male, based on a height of 1.77m and
mass of 66.5kg [131]. In the reference study used, major bony landmarks were measured
for a number of cadaveric and skeletal specimens and then scaled to the average size.
These locations were reported based on four local coordinate systems, one on each bone
segment: the right anterior superior iliac spine (ASIS) for the pelvis, the greater
trochanter for the femur, the tibial tuberosity for the tibia, and the calcaneus, or heel, for
the foot, with the pelvis coordinate system also used as the global coordinate system.
The locations of the bony landmarks, relative to each segment's local coordinate system

found in the literature [131, 132], were used to guide the development of their
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representative geometries. Figure 2.2 depicts the bone segments and coordinate systems

used for this model.
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Figure 2.2 Bone segments and reference coordinate systems used.

Femur and Tibia

The overall shapes of the femur and tibia bones were created as initially circular cylinders
with concave/convex joint ends (see Figure 2.3). The length of the femur, 0.435m, was
taken as the distance from the center of the hip joint to the bottom of the femoral
condyles [131]. The length of the tibia, 0.386m, was determined to be the distance
between the knee and ankle joint centers [131]. The greater trochanter was used to
approximate the location of the hip joint center [133]. Figure 2.3a shows an anterior
view of the bones near the hip joint and the approximation used in this model and Figure
2.3b, the sagittal view. The locations of the knee and ankle joint centers within the

defined local coordinate systems were taken directly from the published reference [131].
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Figure 2.3 Skeletal system near hip joint and simplified model used in this study
(a) anterior view (b) sagittal view.

Figure 2.3a: Source: "pelvic girdle". [Art]. In Encyclopedia Britannica. Retrieved from
http://www.britannica.com/EBchecked/media/47813/Anterior. Accessed on 10/14/13. Copyright 2007 by
Encyclopedia Britannica, Inc. With permission.

Figure  2.3b:  Source: "patella."[Art]. In  Encyclopedia  Britannica.  Retrieved  from
http://www.britannica.com/EBchecked/media/47969/Skeletal-and-. Accessed 10/14/13. Copyright 2005 by
Encyclopedia Britannica, Inc. With permission.

The dimensions of the widths, or outer diameters, of the femur and tibia used in
this model were selected based on a survey of measurements of cadaveric bones from the
literature. Because the human femur and tibia do not have uniform or circular cross-
sections, like in the simplified geometry used in this study, much variety in reported
measurements of the dimensions of these bones was found depending on the location
along the shaft and the orientation of the measuring device with respect to the bone's
planes (eg. frontal, or z-y in Figure 2.2, and sagittal, or x-y in Figure 2.2). While the
dimensions vary significantly at the end regions of the bones near the joints, the midshatft,
or diaphyseal region, has been reported as fairly uniform and nearly even in the frontal

and sagittal planes. For the average human adult male the femoral shaft diameter has
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been reported as 29mm with less than 10% difference between frontal and sagittal
dimensions [134, 135], and the tibial width has been reported as 28mm [136]. Because
the width of the tibia has been reported to be similar to that of the femur, and for
simplicity in the model approximation, the outer diameters of both the tibia and the femur
were 30mm in this study. This value has been used previously in published
computational models of the long bones of the leg [93, 95].

Because the midshaft of the diaphyseal region of the long bones, such as the
femur and the tibia, is hollow, the thickness of this cortical shell must be properly
represented.  The cortical wall thickness in the shafts of long bones is often assumed to
be uniform [86, 87]. An outer radius twice that of the cortical shell thickness in the long
bone shafts has been consistently measured for humans as well as many other land
mammals [13, 14, 134, 137-140]. If both the tibia and femur bones are represented as
simple hollow circular cylinders with a 30mm outer diameter, then this ratio gives a
cortical wall thickness of 7.5mm and an inner diameter of 15mm. These dimensions fall

within the range of published measurements of actual human adult bones [135].

At the ends of the femur and tibia bones, near the hip, knee, and ankle joints, the
hollow cortical shell is filled with cancellous bone. The necessity of simulating this
tissue configuration was the subject of a preliminary study. Models were created
depicting the femur and tibia as either solid structure made of cortical bone tissue, a
hollow structure made of cortical bone tissue, or a composite structure with a hollow
cortical shell and cancellous bone tissue-filled end regions each comprising 12% of the
total length of the bone [140]. For simplicity, the material composition of the pelvis and

foot followed the same options: either completely made of cortical bone tissue,
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completely hollow, or completely filled with cancellous bone tissue. A single static load
was applied to the foot, and the bottom surface of the pelvis was constrained in all
degrees of freedom. These preliminary studies were carried out using ANSYS v.12.1

[141], the commercial finite element code that was used throughout the work presented.
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Figure 2.4 Comparison of von Mises stress distributions for same loading and boundary
conditions and geometry for (a) hollow cortical shell (b) cortical shell with cancellous
where appropriate (c) solid cortical geometries.

The comparison of the stress and displacement distributions in models
representing the femur and tibia as solid cortical components, hollow cortical shells, or
hollow cortical shells with cancellous bone tissue at the ends showed that, while the solid

cortical model was the most rigid and the hollow the most flexible, nearly identical stress
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distributions resulted for all cases except at the locations of highest displacement and at
the locations of the joint interfaces (Figure 2.4). On average, the inclusion of the
cancellous bone tissue showed a 13% reduction in the deflection over the completely
hollow case but a 20% increase in deflection over a completely solid case. Similarly, the
stresses in the model with cancellous bone tissue at the ends of the long bones showed
approximately a 5% decrease in maximum stress values over the completely hollow case
and about a 5% increase in the maximum stress values of the completely solid case. The
inclusion of the cancellous bone reduced the stress concentrations at the joint interfaces
compared to the completely solid geometry while also decreasing the maximum stresses
due to the large deflections of the completely hollow geometry. Therefore, the inclusion
of the cancellous bone tissue at the ends of the femur and tibia and in the interior regions
of the foot and pelvis was justified. In all the bony volumes, the two regions of different
bone tissue material were modeled as independent volumes in perfect contact with each
other through the use of shared nodes at the interfaces [16, 17, 119]. Figure 2.5 depicts
the simplified geometry and the actual bone geometry for the femur (Figure 2.5a) and the

tibia (Figure 2.5b).
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Figure 2.5 Model representations of the (a) femur (sagittal view) (b) tibia (anterior view)
used in this investigation. Insets show image of actual bone.

Figure 2.5a inset: Source: 'patella." [Art]. In Encyclopedia Britannica. Retrieved from
http://www.britannica.com/EBchecked/media/47969/Skeletal-and-muscular. Accessed 10/14/13. Copyright
2005 by Encyclopedia Britannica, Inc. With permission.

Figure 2.5b inset: Source: Adapted from "radius: radius, ulna, fibula, and tibia." [Art]. In Encyclopedia
Britannica. Retrieved from http://www.britannica.com/EBchecked/media/47235/The-radius.  Accessed
10/14/13. Copyright 2007 by Encyclopedia Britannica, Inc. With permission.

Pelvis

The pelvis geometry was modeled as a two-dimensional, sagittal view of the adult human
pelvis, extruded by a uniform thickness. The profile geometry was created from a series
of thirty-five points taken from a three-dimensional mapping of the human pelvis of a
medium sized male (1.74m tall, 76kg mass) [132]. This published study mapped 123

bony landmarks from a number of skeletal pelvises and then averaged these mappings for
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six size groups for both male and female human adults. The thirty-five points selected
for the creation of the pelvis profile used in this work were those that created a cross
section slice of the pelvis at a location that aligns with the midplane of the femur bone.
Care was taken to ensure that all points of attachment of the muscles used in this study to
the model of the pelvis developed for this work were accommodated for in the creation of
this cross-sectional profile either directly or as a projection onto this plane. Verification
of this placement of the muscle attachment points was made through comparisons to
published drawings of the sagittal view of the entire human leg [142]. Similarly, the
profile of the pelvis developed here was verified through visual comparison to

publications of the human skeleton [143, 144].

As described above, the developed two-dimensional profile became a three-
dimensional bone segment through a linear extrusion of uniform depth, which was twice
the diameter of the femoral bone, or 60mm. This value was selected to reduce artificial
numerical effects that might result at the hip joint interface between the simplified pelvis
and femur bone geometries.

The pelvis was modeled as a cortical shell with the entire inner volume filled with
cancellous bone tissue [17]. (See Figure 2.6.) For simplicity, the cortical wall thickness
of the pelvic bone segment in this model was approximately the same as that used for the
femur and tibia bones. However, to accommodate the profile shape, a 7.2mm shell

thickness was used.
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Figure 2.6 Model representation of the pelvis used in this investigation. Inset shows
actual bone.

Inset  Source: "chimpanzee: pelvis." [Art]. In Encyclopedia Britannica. Retrieved from
http://www.britannica.com/EBchecked/media/45433/Comparison-of-the-pelvis. Accessed  10/14/13.
Copyright 2005 by Encyclopedia Britannica, Inc. With permission.

Foot

As with other bone segments, the foot geometry was modeled based on published
measurements of the locations of boundary-defining bony landmarks for an averaged
sized adult male [131, 145]. Similar to the pelvis, the foot boundary was based on a slice
through the midplane of the adjoining long bone, here, the tibia. The locations of the
ends of the heel and the long toe (or second toe) were used to define the overall length of
the foot, 252mm. The length of the calcaneous, or heel bone, measured 57mm from the
end of the heel to the approximate center of ankle joint. The profile was verified through
comparisons to published anatomical drawings of the foot [146]. The simplified foot

generated for this model had a uniform depth defined as the distance from the first to the
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fifth metatarsal (toe bones) and measuring 60mm [131]. Because the forefoot is
comprised of many small bones, it was assumed to be a solid volume of cortical bone
tissue. Cancellous bone tissue was included only in the hind foot region, from the heel to
the navicular tubercle [131, 146]. In this region, a uniform cortical shell 7.5mm in
thickness was assumed, following the cortical thickness used for the femur, tibia, and

pelvis bone segments. (See Figure 2.7.)

Ankle

Joint
/ Surface

FOOT_LCSYS_CALCI
z e -

Cancellous Cortical
Bone Bone
Tissue Tissue

Figure 2.7 Model representation of foot used in this investigation. Inset: X-ray of actual
human foot for comparison.

Inset Source: "X-ray: X-ray of a human foot." [Photograph]. In Encyclopedia Britannica. Retrieved from
http://www.britannica.com/EBchecked/media/136119/X-ray-of-a-human-foot. ~ Accessed 10/14/13. With
permission.

Joints

Based on the studies reviewed in Subsection 1.2.4.3, static, isometric loading may lead to
the best improvement in bone strength. The joint interfaces in the models developed in
this work were created to simulate the function of the hip, knee, and ankle joints under
this kind of activity, which maintains constant joint angles. Under these kinds of static
loading conditions, the proper transfer of forces from one bone segment to the next is of

importance. Therefore, ensuring the appropriate simulation of the joint function over a
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large range of motion was not necessary. As such, the mating geometries at the joints

were simplified considerably.

Contacting geometries at the hip joint were modeled as a concave hemisphere in
the inferior (bottom) region of the pelvis and a convex hemisphere at the superior (top)
end of the femur bone (Figure 2.8a). For the ankle joint, matching concave and convex
linearly extruded curves were used (Figure 2.8c). The knee joint geometry was the most
complex of the three joints included in this model (Figure 2.8b). The basic shape was
approximated using published anatomical drawings of the mating ends of the femur and
the tibia [143, 144, 146]. The femoral condyles on the distal end of the femur bone were
included, but only roughly approximated. The geometry was further modified to prevent
interference between the femur and the tibia as the knee joint was rotated through 90° of
flexion. The joint geometry was verified through a comparison of the distance between
the tibial tuberosity, which is the location of the origin of the tibia's local coordinate

system, and the knee joint surface on the superior (top) end of the tibia in this model to

the approximately 32mm reported in published literature [147].

Pelvic Side

Femoral Side

(a)
Figure 2.8 Joint interfaces used in this model for (a) hip (b) knee (c) ankle.



66

Femoral Side

_—
s

Tibial Side

(b)

Tibial Side

Foot Side

©
Figure 2.8 Joint interfaces used in this model for (a) hip (b) knee (c¢) ankle. (Continued)

The mating joint surfaces of the four bone segments in this model were in direct
contact and remained so during loading and unloading of the bones. The soft tissues at
the joints, cartilage and ligaments, were not modeled directly. Instead a joint contact
model that simulated compliance between mating surfaces was employed to simulate the
function of these soft tissues under the fixed limb conditions investigated. The joint
contact model allowed mating nodes, elements and surfaces to remain independent for
each bone volume but simulated the interactions of these components during load
application. A series of preliminary studies was performed to determine the appropriate

joint contact modeling parameters.
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In simulating the cartilage-on-cartilage mating surfaces, frictionless joint contact
was assumed and an augmented Lagrange multiplier contact algorithm with flexible-
flexible contact pairs was used [148, 149]. ANSYS's built in contact module, which uses
this method, was employed. ANSYS provides five standard contact models to simulate
such an interaction. Each has a series of accompanying parameters that allow the contact
algorithm to be adjusted for the particular conditions simulated. —During these
preliminary joint surface interaction studies, each of these contact models and their
associated parameter settings were compared to a reference case in which the joints of the
leg were modeled as rigidly united mating volumes with shared nodes and, therefore,
included no joint compliance.

The contact models and parameters investigated varied in the type and the amount
of relative motion allowed between mating surfaces and how the pairs of mating nodes
were identified. The three main joint interaction (contact) models available in the
software used were evaluated. These models selected mating (contacting) nodes by
directly comparing the nodal coordinates from the contacting pair of surfaces. The first
model ties the contacting nodes to prevent motion both tangential to (sliding) and motion
normal to (separation) the contacting surfaces. The second model allows for tangential
but not normal motion (sliding but not separation). The third model allows for both
normal and tangential motion (sliding and separation) of contacting nodes. Two
additional models were studied that were slight modifications of the first two described.
These used tolerance bands, rather than exact positions, to determine nodal contact status

for the tied node and no separation, sliding only, surface interactions, respectively. The
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range of the tolerance band used in these contact models was a percentage of the
thickness of the element directly adjacent to the contacting surface.

Modeling parameters related to how much motion between mating nodes (or
compliance) is allowed for each of the five motion model types considered were studied.
Compliance at the joint interface was simulated in the contact models through the use of
a contact spring stiffness. The contact stiffness value was a percentage of the elastic
modulus of the contacting materials. Comparisons were made for contact stiffness values
equaling 1%, 10% and 100% of the cortical bone elastic modulus. Because the contact
model is solved iteratively, the contact stiffness value can either be adjusted by the
contact algorithm based on the values calculated at each iteration or held constant for the
entire solution. Both methods were compared in this preliminary study. The five contact
models and their additional parameters were evaluated for solution stability and run time.
The maximum von Mises stress and maximum deflection within the entire model and
locally at each joint were compared. Based on the results of the preliminary investigation,
the joint contact model parameters used for the remainder of the study were chosen.

The five main types of contact models were first examined. When compared to
the model that allows for no separation or sliding through tied contacting nodes, it was
found that models that allowed for sliding or both sliding and separation resulted in a two
and four fold increase in runtimes, respectively, and the same order of magnitude
decrease in measures of solution stability. The sliding or sliding and separating models
also resulted in 80% and 60% higher contact stresses, respectively, compared to the tied
node models. The models that allowed for separation and sliding had slightly lower

contact stresses than the model that allowed only for sliding due to the ability for gaps or
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openings to form between the contacting surfaces, thus releasing the contacting node
couples from the calculations. These separation and sliding models also allowed for
nearly twice the overall model maximum deflection than the tied node models because
more motion at the joint was allowed. This increased motion lead to decreased stresses at
locations far from the joints and significantly increased stresses locations near the joints,
for example, at locations where impingement between mating volumes occurred due to
the reduced restriction on the motion at the joints. Such models that allow for freer
motion may be most appropriate when large alterations in joint angles due to the applied
loads are expected, which was not the case for the desired modeling conditions.

When compared to the rigidly fixed model, the tied node model had the most
similar overall von Mises stress distributions, with a slight (5-10%) increase in overall
deflection and significantly decreased stresses near the joints due to the greater joint
compliance. Hence, even though relative motion (sliding and separation) between
contacting surfaces was restricted by the tied node model, the compliance added by the
contact model improved the representation of the loading response at the joints without
affecting the overall prediction of the bone stresses due to applied loads. Therefore, this
type of restriction might be most appropriate for modeling a static loading condition for a
fixed limb configuration where no changes in joint angles are expected.

The inclusion of a tolerance band to determine the contact status of node pairs
improved the solution stability by as much as 80%. The tolerance band used in this study
was 5% of the thickness of the model element underlying the contact element. Therefore,
the element size in the joint region can affect the amount of stability improvement. To

investigate this effect, the mesh near the joint contact surfaces was varied up to 50%.
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While no changes in overall stress magnitudes or distributions were found far from the
joints, significant differences were noted in the contact stresses and in the von Mises
stresses in regions surrounding the contacting surfaces. Thus, the mesh size near the
joints in models that include a tolerance band based selection of contacting pairs should
be selected to ensure stability of the contact model solution while limiting the stress
concentration effects of boundary condition discontinuities at the contacting surfaces.

As the value of the contact stiffness parameter increased, the overall maximum
model deflection and the maximum von Mises stress near the joints decreased. However,
the relationships between the stiffness parameter and these results were not linear. The
greatest differences with variation in the contact stiffness, 40% in deflection and 60% in
stress, occurred between joint contact stiffness values of 1% and 10% of the elastic
modulus of cortical bone, while only a 10% decrease in deflection and a 1% decrease in
stress occurred between joint contact stiffness values of 10% and 100% of the elastic
modulus of cortical bone. The run times varied only slightly due to these differences in
joint compliance. A 15% overall decrease in run time with similar nonlinear trends was
found over the range of contact stiffness values studied. In contrast to using a constant
value of contact stiffness, when this parameter is allowed to vary during the solution of
the contact model, the run time increased eightfold and the maximum stress varied as
much as 150%. Based on this study, a contact stiffness of 10% of the elastic modulus of
the underlying cortical bone showed the most significant beneficial effect on local and
contact stresses without adverse effects on the solution stability or the overall stress

distributions. This value correlates, in order of magnitude comparison when considering
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the element size of the mesh used in this study [150], to the modulus of the actual
cartilage that comprises the actual joint interfaces [151].

Based on this study of the available joint contact models and related parameters,
the model selected for use in this work included tied nodes to prevent relative motion of
contacting surfaces, but allowed for a 90% reduction in material compliance at the joints
(10% contact stiffness). It was desired that the stiffness value remained constant during
the solution of the contact model and that a tolerance band of 5% of the underlying
element thickness was used to determine the contact status of selected tied nodes. With
the representation of the bones and their interfaces established, the representation of the

muscles within the model was next determined.

2.1.2.2 Representation of Included Muscles. Of the almost fifty muscles/muscle
segments in the human leg [152], ten muscles which are known to contribute most to the
production of sagittal plane forces were selected for inclusion in this model (See Table
2.1). While other muscles may contribute to the activities studied, their major function is
out of the plane considered here, and, so, their effect is assumed to be negligible [153-
156].

As described in Subsection 1.3.2.3, an accurate representation of the boundary
conditions, especially the muscle forces, is important in predicting realistic responses of
musculoskeletal systems to applied loads. As such, care was taken when selecting
modeling parameters related to the muscle forces, particularly the bone attachment areas
over which the muscle forces were applied, the lines of action of the muscle forces within
the system studied, and the cross sectional areas of the muscles, which were used in the

determination of the muscle force magnitudes.
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The first consideration in the representation of the muscles in the model
developed for this work was related to the way in which the forces functioned in the
model. Physically, muscles attach to bones via connective tissue called tendons, which
have much smaller cross-sectional areas than do the muscles. As described in Subsection
1.2.3.1, previously published studies have shown that stress concentrations can develop if
a muscle force is represented through only a single node. Therefore, in this model, the
muscle forces acted on bones over areas representing the average cross sectional diameter
of human tendons, regions 9mm in size [13, 157-159].

The next modeling area to be defined is the representation of forces generated by
the muscles. Muscles were not modeled physically. Instead, the geometric model
developed contained only the bones of the musculoskeletal system analyzed, and the
muscles were represented as forces acting upon these bones. Accordingly, the locations
and areas of the force application and the directions of the muscle force vectors had to be
defined. Because a multi-bone system was considered in this work, muscles acted
completely within the system analyzed so equal muscle force magnitudes were applied at
both locations of attachment. (See Figure 2.12 for a definition of these points.) These
locations were determined from the literature [131]. The muscles were assumed to act as
straight lines between these origin and insertion points [160]. When necessary, such as
when this straight line passed through the bone geometry, intermediate points were used
to better define the muscle force path [156]. (See Figure 2.9.) Additional forces were not
applied at these intermediate points. They were only used to change the direction of the
force vector around a joint, such as around the knee. These lines of action of each muscle

force were dependent on the relative orientation of the bony segments.



73

Direct
Paths

Crossing ¥~_Adjusted Paths
Bone From Origin

m Intermediate
¥~ Point
Insertion Sk nee

Point Adjusted Paths
To Insertion

Figure 2.9 Example of use of intermediate point in muscle force line of action about the
knee joint.

By defining the joints crossed by each muscle and where they act on each bone in
the system, the effects of each muscle on the motion or stability of each joint can be
better understood. Table 2.2 defines the joints crossed by each muscle included in the
model used in this work. It also lists whether the muscle acts on the front (anterior) or
the back (posterior) of the leg system modeled, giving an indication of whether it
increases the angle of the joint it crosses (called extension) or decreases it (called
flexion). Figure 2.10 shows the overall physical model of the musculoskeletal system of
the leg used in this work. The included bony segments, joints, and the lines of action of
the muscles for a straight leg configuration are shown. In this figure, an illustration of an

average sized adult male is placed alongside the developed model for reference.
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Table 2.2 Joints Crossed By Each Muscle

MUSCLE Location HIP KNEE ANKLE
S(gr:;?}l)s Anterior v v
Rectu(sR l;e)moris Anterior v v
Iliacuzlg)soas) Anterior v
Gleutezlcsﬂl\\/[/[)aXimUS Posterior v
Long Hea(dL]Iii](;;;;s Femoris Posterior v v
Tibial?r ﬁilterior Anterior v
?ggﬁ; Posterior v
Gas(téolzg?rr;lius Posterior v v
(\\llzsstl"ll“) Anterior v
Short Hea(dS 31];;1))5 Femoris Posterior v

< — — — — Pelvis
GM /4[ SART
L
N
> N
RF Hip
LHBF
€ — — — — Femur
VAST
SHBF
< — — Knee
GAST |1l < ———— Tibia
SO
TA
| A Ankle
<— — — Foot

Figure 2.10 Full musculoskeletal model of the leg system used in this study with same-
scaled image of average adult male, indicating appropriate assembly height of model.
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A geometric parameter not included in the physical model, but important in the
determination of individual magnitudes of muscle forces as described in Chapter 3 is the
physiological cross sectional area of the muscle (PCSA). The PCSA is widely used as a
measure of the overall size of the muscle and is an indicator of the relative muscle
strength [161]. The PCSA is calculated as the ratio of the volume of the muscle to its
length. Both of these physical parameters are usually measured from cadaveric or MRI
studies. While their values can vary significantly between individuals for a given muscle
or even between different states of muscle activation for the same activity performed, the
relative sizes of the muscles within a system and, therefore, their relative force producing
capabilities and strengths are similar between different individuals.

Because the PCSA is often used to determine the individual muscles forces, the
effect of the variability of the values of the PCSA used in these models has been the
subject of much study. While the values of the muscle PCSA used to predict muscle
forces have been shown to significantly affect the muscle force magnitudes, the trends in
the relative muscle forces in a given musculoskeletal system are repeatedly predicted,
regardless of the PCSA values used [162, 163]. This is important because these trends
can be directly compared to trends in experimental measurements of the electrical activity
produced by active muscles. Interestingly, resultant forces made from the sum of
individual muscle forces, have been shown to be less sensitive to the values of PCSA
used, as the sum acts to "balance out" the differences [163].

The physiological cross sectional areas of the ten muscles used in this study were
defined as the average of the measurements reported in eight published studies [163-171].

Because of the wide range of values reported for many of the muscles, the average was
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taken excluding the extreme reported values. Table 2.3 shows the average and extreme
PCSA measurements from the literature surveyed for the muscles included in this model.
In order to understand the effects of these exclusions, the differences between the average
including and excluding the extremes are reported. Refer to Table 2.2 for key to muscle

name abbreviations.

Table 2.3 Average Physiological Cross Sectional Areas (PCSA) Reported in the
Literature for the Muscles Used in this Study (cm?)

Difference
Average (;:fAlV e:;‘ g¢
Muscle | Average Max Min Excluding xeluding
Extremes to Aver.age
Including
Extremes
SART 3.9 5.9 2.7 3.6 -8%
RF 33.9 54.1 9.2 36.5 8%
IL 21.7 31.0 8.8 23.0 6%
GM 49.4 60.8 32.3 51.0 3%
LHBF 30.2 48.0 9.1 31.6 5%
TA 18.0 39.5 8.5 18.1 1%
SOL 118.0 230.0 38.0 97.8 -17%
GAST 44.6 68.0 17.0 40.9 -8%
VAST 79.1 147.8 16.5 90.0 14%
SHBF 9.3 19.4 4.7 9.9 6%

Note: Data averaged from values reported in [163-171].

The musculoskeletal model described above, while developed to sufficiently
represent all of the basic functional components of the musculoskeletal system studied,
does contain significant simplifying assumptions. Therefore, the use of this model, as is
the case for any model, whether numerically or experimentally based, is valid only under
the circumstances specified. The valid system conditions selected in this work were

based on those that have experimentally produced the most significant effects on overall
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bone shape, and, therefore, bone strength adaptations, as reported in Chapter 1. The

specific system conditions studied will be explained next.

2.1.3 System Configurations Studied

The assumptions used in the generation of the models of the bone geometry and muscle
placement and in the models of the interfaces of the bony segments at the joints described
in Subsection 2.1.2 limited the types of activities that could be simulated using the
developed system representation. The limitations restricted the types of forces generated
by the system investigated. The model of leg musculoskeletal system studied used in
this work, from pelvis to foot, while three-dimensional in geometry, was symmetric at the
midplane and considered only forces in the sagittal plane. Therefore, the actions studied
using this model were limited to this plane and included flexion or extension of the hip,
knee or ankle joints. Torsion about the long axis of the leg and out-of-plane forces or
motions, such as abduction or adduction, were considered negligible. As follows,
muscles whose main actions were these kinds of out-of-plane forces were excluded from
the model. Such an assumption simplified the process for the determination of the
individual muscle forces by limiting the size of the set of unknowns, and this approach
has been widely used [153-156].

The joint contact model chosen for this work, described in Subsection 2.1.2.1,
restricted the relative motion at the hip, knee, and ankle joints. Therefore, the model was
limited to the study of static activities or dynamic activities simulated through iterative,
quasi-static approximations. The current study did not consider any dynamic loads and
focused only on static, isometric exercises. Isometric exercises are those where the joint

angles do not change due to muscle activity, such as when applying a resultant force
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against an immovable object or when holding a weight at a particular location for a given

period of time.

2.1.3.1 Specific Limb Configurations Studied and System Parameters Used. The
study of isometric loading of the leg using the developed model was applied to three
different limb configurations. While all other aspects of the musculoskeletal model and
finite element mesh were identical for each configuration studied, by varying the hip,
knee, and ankle joint angles, the joint interfaces and muscle force vectors varied.
Therefore, the effects of a range of loading conditions could be compared as is discussed
in Chapter 5. Figure 2.11 shows the three configurations studied, including the lines of
action for each included muscle. The global coordinate systems and the local coordinate
systems for each bony segment are shown as are the boundary constraints. The top of the
pelvis was fixed in all degrees of freedom, representing the mass of the upper body. The
toe, through which the resultant load was applied to a fixed surface in the parametric
loading studies conducted in the second phase of this research, was also constrained in all
degrees of freedom. The three limb configurations are named for the angle created
between the longitudinal axis of the tibia bone and the global y-axis so that the 0°
configuration is that shown in Figure 2.11a, the 45° configuration is that shown in Figure

2.11b, and the 90° configuration is that shown in Figure 2.11c.
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Figure 2.11 Bone segments, lines of action of muscle forces, local and global coordinate
systems, and boundary constraints for (a) 0° (b) 45° (¢) 90° limb configurations studied.
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The geometry was created using three-dimensional solid CAD modeling
techniques and then discretized. This process is now explained in detail. Because a joint
contact model was used in analyzing this leg system, each bony segment, the pelvis, the
femur, the tibia, and the foot, remained an independent volume. The geometries for each
volume were created separately using the three-dimensional CAD modeling software
Pro/Engineer Wildfire 4.0 [172]. The local coordinate systems for each bone volume
defined in Subsection 2.1.2.1 were created. From these local coordinate systems, each set
of muscle origin and insertion points defined in [131] were marked. The bone volumes
were then assembled using this same CAD software to create the configurations shown in
Figure 2.11. The assembly global coordinate system coincided with the local coordinate
system of the pelvis. Lines, which denoted the muscle force vectors, were drawn
connecting the origin and insertion points for each muscle in each assembly.

A number of geometric measurements were taken from this model, using the
CAD software's built-in tools for use in determining the individual muscle forces, bone
stresses and relative orientation of the bone segments in each configuration studied.
Translation and rotation measurements were taken between the global assembly system
and the local coordinate system for each segment in each limb configuration assembly for
the cases shown in Figure 2.11. These measurements were used in the finite element and
the bone shape adaptation models to transform the nodal positions from the global to the
local coordinate systems or to move bone segments to the desired study configurations.

Table 2.4 lists the coordinate system transformation parameters.
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Table 2.4 Coordinate Transformations from Global to Local for Each Bony Segment

Pelvis
LCSYS Femur Tibia
Configuration Coordinate (Anterior LCSYS LCSYS Foot LCSYS
Name Superior (Greater (Tibial (Calcaneous)
Iliac Trochanter) | Tuberosity)
Spine)
X (m) 0.0000 -0.0560 -0.0560 -0.1120
0° Y (m) 0.0000 -0.0894 -0.5393 -0.9521
Theta Z (deg) 0.0 0.0 0.0 0.0
X (m) 0.0000 -0.0560 0.2000 -0.1116
45° Y (m) 0.0000 -0.0894 -0.4274 -0.6598
Theta Z (deg) 0.0 45.0 -45.0 -45.0
X (m) 0.0000 -0.0560 -0.1139 -0.4987
90° Y (m) 0.0000 -0.0894 -0.5094 -0.4534
Theta Z (deg) 0.0 0.0 -90.0 -90.0

Additionally, the directions of each of the muscle vectors were defined for the

three limb configuration cases in Figure 2.11 as the angle between the "muscle lines of

action" and the global y-coordinate (see Figure 2.12). The directions of each muscle

force (Figure 2.11) acting on each bone segment as defined in Figure 2.12 are provided in

Tables 2.5 through 2.7. Note that the "origin bone" is the bone connected to the muscle

that is located most proximal (closest to whole body center), while the "insertion bone" is

the bone connected to the muscle that is located most distal (furthest away from whole

body center).
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Figure 2.12 Definition of angle, o, used to define the direction of the muscle force on
each bone segment. All angles are defined with respect to the global Y-coordinate, with
counterclockwise as positive.

Table 2.5 Angular Direction, o, of Muscle Force Application on each Bone Segment for
the 0° Configuration (degrees)

Muscle Origin Bone Origin a Insertion Bone | Insertion o
SART Pelvis 177.044 Tibia -2.956
RF Pelvis 177.321 Tibia -2.679
IL Pelvis 164.173 Femur -15.827
GM Pelvis -161.278 Femur 18.722
LHBF Pelvis -177.568 Tibia 2432
TA Tibia -166.182 Foot 13.818
SOL Tibia 173.370 Foot -6.629
GAST Femur 175.145 Foot -4.855
VAST Femur 180.000 Tibia 0.000
SHBF Femur 180.000 Tibia 0.000
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Table 2.6 Angular Direction, o, of Muscle Force Application on each Bone Segment for
the 45° Configuration (degrees)

Muscle Origin Bone Origin a Insertion Bone | Insertion o
SART Pelvis -144.008 Tibia -45.000
RF Pelvis -141.915 Tibia -45.000
IL Pelvis 177.440 Femur -2.560
GM Pelvis -156.614 Femur 48.676
LHBF Pelvis -138.266 Tibia 41.723
TA Tibia 148.818 Foot -31.182
SOL Tibia 128.371 Foot -51.629
GAST Femur 132.857 Foot -47.143
VAST Femur -135.000 Tibia -45.000
SHBF Femur -143.1585 Tibia -31.183

Table 2.7 Angular Direction, o, of Muscle Force Application on each Bone Segment for
the 90° Configuration (degrees)

Muscle Origin Bone Origin o Insertion Bone | Insertion o
SART Pelvis 176.720 Tibia -90.000
RF Pelvis 177.039 Tibia -90.000
IL Pelvis 164.173 Femur -15.827
GM Pelvis 161.278 Femur 18.722
LHBF Pelvis 178.405 Tibia -1.594
TA Tibia 103.818 Foot -76.182
SOL Tibia 83.370 Foot -96.629
GAST Femur 87.857 Foot -92.143
VAST Femur -180.000 Tibia -90.000
SHBF Femur 171.841 Tibia -8.159

With the locations of the muscle force application and force directions defined,

the moments arms that each muscle created about each joint it spanned were determined

from the CAD model assemblies for each of the 0°, 45° and 90° configurations defined in

Figure 2.11. (Refer to Table 2.2 for identification of the joints crossed by each muscle in

this model.) The muscle force moment arms were also measured from the assembled

geometric models using the software's built-in tools. To calculate the moment arms, an

imaginary cut was made in the leg system studied just above (proximal to) each joint

working from the foot towards the pelvis. The muscles force lines that were severed with
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this cut were identified. Lines perpendicular to the severed muscle force lines (or
projections of these lines) were drawn and extended to the joint centers. The lengths of
these lengths were the measured joint moment arms. Figure 2.13 shows an example of

how the joint moment arms were calculated for the 45° configuration.
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Figure 2.13 Determination of muscle force moment arms about each joint in the system
studied. Representative case: 45° configuration for (a) ankle (b) knee and (c) hip joints.
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Figure 2.13 Determination of muscle force moment arms about each joint in the system
studied. Representative case: 45° configuration for (a) ankle (b) knee and (c) hip joints.
(Continued)

The muscle moment arm values used in this model for each configuration studied
are listed in Table 2.8. The sign of the muscle force moment arm in the "direction" of the
moment arm length was determined based on the direction of the moment created by the
severed muscle force. For example, if the muscle created a counterclockwise (positive)
moment about the joint, the moment arm of the muscle about this joint was positive. If

the muscle created a clockwise (negative) moment about the joint, the moment arm of the

muscle about the joint was negative. (Refer to Figure 2.13.)



Table 2.8 Moment arms of Muscles Forces about Joints (m)

Hip Muscles
Muscle 0° 45° o0°
Configuration | Configuration | Configuration
SART 0.039857 0.081664 0.039402
RF 0.037319 0.066296 0.037032
IL 0.023704 0.035214 0.023704
GM -0.038279 -0.019778 -0.038279
LHBF -0.034780 -0.023170 -0.035110
Knee Muscles
Muscle 0° 45° o0°
Configuration | Configuration | Configuration
SHBF -0.015000 -0.480569 -0.048057
LHBF -0.016955 -0.047179 -0.046797
GAST -0.018331 -0.039411 -0.039411
VAST 0.015000 0.015000 0.015000
RF 0.017690 0.015728 0.015339
SART 0.018198 0.015903 0.015393
Ankle Muscles
Muscle 0° 45° o0°
Configuration | Configuration | Configuration
TA 0.074938 0.074938 0.074938
GAST -0.052330 -0.054429 -0.054429
SOL -0.050894 -0.050874 -0.050894

Note: Direction indicates the creation of a CCW (+) or CW (-) moment.
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The identification of the locations of the joint centers was necessary in order to

measure these moment arms. (Refer to Figure 2.13 for illustration of each joint center).

Some deviations from the locations listed in the reference used [131] were made to

accommodate the bone volume geometries created for this model. Because the muscle

forces were assumed to act only in a two dimensional plane, and because the end

geometries of the long bones in this model ignored the widening as the joints were

approached, the location of the greater trochanter listed in [131], which is also the

location of the femur's local coordinate system, was used as the center of rotation of the

hip [133].

The center of the arc on the distal geometry of the femur was used at the
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center of rotation of the knee. The center point of contact between the tibia and foot
geometries was taken as the center of rotation of the ankle joint. Despite the deviations
from the locations of the joint centers reported in [131], the position of these landmarks
in this model with respect to each local coordinate systems correlate well with those
reported in the literature.

It should be noted that many different methods have been developed in the
published literature to determine muscle moment arms [163, 170, 173-175]. These
methods often rely on complex curve fits to experimental measurements of muscle
lengths and joint centers over a range of joint angles in a functioning system. The
methods described here were based on straight line connections between measurements
of bony location markers which were averaged over a wide range of subjects and, hence,
are approximations of the actual distances which may be measured in a singular
functioning musculoskeletal system. However, the current method is repeatable, not
reliant upon curve fit approximations, and, therefore, suitable for the purposes of the
comparative studies in this work.

Because static isometric conditions were studied in this work, the net force by the
leg system was constant, acting at a fixed region between the toe and an immovable
surface (Figure 2.11). Therefore, to solve the conservation of angular momentum
equations for each static set of loading conditions in this, the moment that was generated
by the reaction force from the fixed surface about each joint was required. The distances
between the joint centers and toe region over which the force acts, with respect to the

global coordinate system, were measured in CAD model assemblies for each
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configuration (set of joint angles) studied using the same built in software tools used to

measure the muscle force moment arms and are listed in Table 2.9.

Table 2.9 Resultant/Reaction Force Moment Arms About Joints (m)

Moment Arm
C(:)meponent 0° . 45° . o0° .
(Global CSYS) Configuration | Configuration | Configuration
HIP
X 0.195000 0.105597 -0.465663
Y -0.0639824 -0.764144 -0.615000
Z 0.0 0.0 0.0
KNEE
X 0.195000 -0.191388 -0.195000
Y -0.465663 -0.467159 -0.465663
Z 0.0 0.0 0.0
ANKLE
X 0.195000 0.0926434 -0.195000
Y -0.0639824 -0.183128 -0.639824
Z 0.0 0.0 0.0

With the geometry and the boundary conditions defined, the model was next
prepared for the structural analyses under the varied loading conditions studied. This
analysis was performed through the use of finite element modeling methods. Therefore,
the CAD model bone volumes were discretized into a finite element mesh. Each bony
segment volume was only meshed once. The parameters in Table 2.4 were used to

transform the meshed volumes into each of the three configurations in Figure 2.11.

2.1.4 Discretization of the Geometry

The preprocessing for the finite element analysis of the bone volume geometries created
to represent the pelvis, femur, tibia, and foot was performed using the commercial finite
element software package ANSYS/Mechanical APDL [141]. The geometry developed in

the CAD software (Pro/Engineer Wildfire 4.0 [172]) was imported into the finite element
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software through the use of neutral IGES files. Each bone volume was imported
separately and assembled within the finite element software using the global coordinate
system defined in Subsection 2.1.3. The interior volumes for the cancellous regions were
created in the ANSY'S pre-processor as well. Following the preliminary contact material
model studies in Subsection 2.1.2.1, common surfaces between the cancellous and
cortical bone regions were shared so that no relative motion at the material interfaces
occurred. Additionally, regions where loads were applied or constraints were induced
were separated from the rest of the bone surfaces. However, common lines were shared
at the interfaces. These load/constraint regions were appropriately labeled for ease of
subsequent selection. Finally, the local coordinate systems of each bone segment used in
the development of the geometry and its transformations were added to the finite element
model for each of the three configurations shown in Figure 2.11. The bone volumes were
next discretized to create the finite element mesh used in the analysis (Figure 2.14).

A combination of 20-node tetrahedral elements and 8-node hexahedral elements
were used. In general, hexahedral elements were used for regular geometry, such as the
cylindrical regions of the femur and tibia, allowing element sizes to be directly
controlled. As described in Chapter 4, hexahedral elements with no mid-side nodes were
used so that the shape adaptations could be simulated through customized subroutines in
ANSYS. The tetrahedral elements were used for interior volumes or exterior volumes
with irregular geometry, such as the pelvis, foot, and the regions of the femur and tibia
near the hip, knee and ankle joints as well as the central core in each cylindrical region.
Figure 2.14 shows the designations of element types for each region of the model. A

transition layer of pyramidally shaped elements was used at interfaces between the
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hexahedral and tetrahedral element types. At the contacting surfaces of the joints, special
surface elements necessary for the execution of the joint contact analysis were placed on
top of the tetrahedral elements at the mesh at the end regions of each bone segment

volume. Figure 2.15 shows the meshed contacting surfaces used.
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Figure 2.14 Locations of types of elements used (a) pelvis (b) near hip joint (c) near
knee joint (d) near ankle joint (e) foot.
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Figure 2.15 Meshed contacting surfaces for (a) hip (b) knee (c) ankle joints.

The development of the mesh for the leg bone system studied was constrained by
two factors. The first factor is related to the approximation of the porous bone material
as a continuum. Both cortical and cancellous bone are porous materials made of
structural units called osteons. Therefore, they are not uniform homogeneous continua as
assumed in the finite element analysis methods used in this work. In order for the
continuum assumption to be valid, the element size of the model's finite element mesh
must be at least an order of magnitude greater than the characteristic size of the material
modeled [176]. Because the focus of this study was on cortical bone strength, the
element size for the entire model was limited by the characteristic size of the cortical

bone tissue material. Since the cortical bone tissue is much less porous than cancellous
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bone tissue, [13, 15, 17], its characteristic size was assumed to be that of an osteon,
which ranges in size from 100-300um [16]. As a result, the minimum element size for
the mesh created in this model was one millimeter. The second factor that limited the
mesh developed in this work is related to the maximum model node limit of 256,000
nodes imposed by the available software license.

The cylindrical regions of the femur and the tibia meshed with hexahedral
elements were divided into a number of volumes in order to control the element size and
to create a mapped mesh. (Refer to Figure 2.16 during this discussion of the mapped
mesh). The mesh in the cortical region in these bone volumes had a radial spacing of
1.875mm. The mesh in the corresponding cancellous region had a radial spacing of
2mm, graded by a ratio of 0.5 so that the element size started out the same as the
adjoining cortical elements, and got smaller as the radial coordinate decreased. In the
theta direction, around the circumference of the cylindrical regions, element sizes were
also graded to be smaller in the anterior and posterior regions, where the muscle forces
were applied, and larger 90° from these regions. Because the sagittal (symmetry) plane
was closest to the region of applied muscle forces, the smallest elements were placed in
this region. The angular size of the elements was 4.3° for the first +£17.2°. It increased
to 6.4° until £36.4° when the element size increased again to 10.72° until the +90°
location. In the axial direction, the mesh was varied so that the smallest element sizes
were in locations of muscle force or constraint application. The mesh gradually
transitioned to larger elements away from these regions. The cancellous regions, with
hexahedral elements, had identical mapping to the corresponding cortical regions in the

angular and axial directions in regions where both types of tissue were present.
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In regions with tetrahedral elements, meshes were automatically created using
ANSYS's built in meshing algorithms. Various levels of refinement, using the built in
refinement tools, were applied so that the tetrahedral elements were visually similar in
size to the mapped, hexahedral element region. Further refinement was applied to the
regions of muscle force application. The mesh at the contacting surfaces was based on
preliminary study of the effect of element size on contact model results discussed above.

Each muscle force was applied over a region the size of an average tendon, as
explained in Subsection 2.1.2.2. If the muscle force occurred in where tetrahedral
elements were used, this region was circular. If it occurred where a hexahedral mesh was
used, the region was square. The force application area was divided into two zones to
allow for a stepped transition from a central core of highest magnitude forces to a region
with a moderately lower magnitude located next to the surrounding nonloaded elements.
The nodes in the central one-third of the total muscle force application area incur twice
the load applied to nodes in the surrounding 2/3 of the total application area. Because of
the mapped hexahedral mesh in the femur and tibia regions, the muscle force attachment
areas were assigned a constant element size in both these inner and outer zones for all
muscle force areas. In the pelvis and foot regions with the tetrahedral mesh, however, the
number of nodes in each region and at each muscle force area varied because the mesh
could not be directly controlled. This variation in the node count in the muscle force
application area was accounted for in the assignment of the nodal muscle force values.

Preliminary mesh sensitivity studies were performed for the effect of mesh on
both the von Mises stress distributions and on the resulting shape changes to the bone's

surface geometry. Refinement of the mesh was limited, however, due to the limits on the
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maximum allowable number of nodes within an analyzed model. The selected mesh
created the least alterations in results with node distribution variation while meeting the
node limit criteria. The final finite element model contained a total 184,067 elements and
242,066 nodes. Figure 2.16 shows the final mesh used arranged in the 0° configuration.
With use of the coordinate system transformations described in Subsection 2.1.3.1, this

mesh was the same for each limb configuration studied.
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Figure 2.16 Final mesh used for all studies in this work.

2.2 Material Models
The appropriate modeling of the behavior of a material is crucial to its analysis.
Therefore, a significant amount of research has been published on the material properties

of cortical and cancellous bone tissue. As a living structure, these material properties can
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vary. This is due to a wide number of factors including density, which is related to
porosity and amount of mineralization, age, species, previous load history, location
within the body or position within an individual bone, loading orientation, type of load,
and even genetic factors. Hence, unlike many manmade materials, the material
properties of bone tissue, even of "healthy" individuals, can have a wide range of
reported values [13, 177-180].

Because of this variation, significant research has been undertaken to develop
empirical models, through both experimental and computational means, relating the
factors listed above and the material properties so these models can be used to predict
bone behavior [13, 31, 178, 179, 181, 182]. Most models contain correction factors and
other constants that fit the mathematical model to a particular set of experimental data.
Therefore, such models may be limited in their universal application. Nonetheless, some
generalized descriptions of bone material behavior can be made.

Bone tissue, both cortical and cancellous, behaves elastically, and sometimes
viscoelastically. It is generally agreed that bone tissue is an anisotropic, composite
material that can behave nonlinearly at increased strain rates. However, depending on the
model's application, the specific system conditions, the scale of the system considered
(cellular vs. tissue level vs. whole bone level), and even the type of bone studied,
simplifications can be made that significantly reduce the computational complexity.
Such simplifications include assumptions of linear elasticity and transverse or full
isotropy [14]. Of the physical parameters that affect the mechanical properties of cortical

and cancellous bone tissue, density and orientation are most influential [14].
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Because the intent of this work is a comparative study of the relative effects of
various loading regimens on the cortical bone strength adaptation, a detailed, highly
accurate model of the material behavior of cortical and cancellous bone is not necessary.

The selection of the material properties used in this model is explained below.

2.2.1 Properties of Cortical Bone Tissue

Many of the material properties of cortical bone tissue are affected by load magnitudes
and rates of loading [14, 90, 178, 182]. Therefore, simplifications to the material models
can be achieved by limiting the range of applied loads. The loads considered in this study
were selected so that developed stresses remained in the elastic range, justifying the use
of elastic material models in this work.

The yield strength of cortical bone material has been reported to range from 80-
150 MPa under tensile loads, 100-160 MPa under compressive loads, and 160-180 MPa
under bending loads [178]. While cortical bone tissue is viscoelastic with the stiffness,
strength, and brittleness all increasing with increased strain rate [14], the viscous effects
have a negligible effect on the bone's response under a wide range of loading frequencies
[178]. Because only static loading is considered in this work, viscoelastic effects were
assumed to have a negligible effect.

The strength of cortical bone varies linearly with porosity and with
mineralization, and, hence, linearly with density. However, because only shape changes
are considered in the strength adaptations simulated in this investigation, the density of
cortical bone is assumed to be uniform throughout the bone volumes and constant with

time. Therefore, the strength of the cortical bone was considered a constant in this work.
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For reference purposes in this study, an average value of those listed above, 150 MPa,
was considered to be the yield strength of cortical bone tissue.

The elastic modulus of cortical bone is reported to vary exponentially with
porosity and also exponentially with mineralization. However, because the density of the
bone is assumed to be constant with location and time in this study, a constant modulus
was used in this work. Cortical bone tissue, especially in the long bones like the femur
and tibia, is typically considered to be transversely isotropic, with the properties in the
transverse plane about half those in the longitudinal plane, or along the longitudinal axis
[16]. Nonetheless, cortical bone tissue has often been modeled as an isotropic material
[183, 184]. Because of the complex loading in the bone system studied in this work, the
transversely isotropic material model for the cortical regions of the long bones (femur
and tibia) was warranted. Because there is no dominant loading direction in these foot
and pelvis regions, fully isotropy was assumed in these regions. Table 2.10 summarizes
the material properties used in this model. Note that the directions x and z describe the
local transverse plane while direction y describes the local axial direction of the long
bone as in Figure 2.11. Because the Poisson's ratio of cortical bone ranges from 0.28 to

0.48, a mid-range value was used in this work.

Table 2.10 Cortical Bone Tissue Material Properties (GPa except v)

For Femur and Tibia from [185] For Pelvis and Foot
Material Property Value Material Property Value
Ex 9.55
Ey 9.55
Ez 16.61 E from [183]
Gxy 3.28 16.35
Gyz 4.74
Gxz 4.74
\Y 0.37 v from [184] 0.34




98

2.2.2 Properties of Cancellous Bone Tissue

Cancellous bone tissue is significantly more porous than cortical bone tissue (Figure 1.1),
with its porosity ranging from 50-95%. This porosity varies significantly with location
and time, causing the measurement of cancellous bone properties to be appreciably more
difficult than that of cortical bone tissue. Because of its considerable porosity, empirical
and analytical relations developed for engineering foams are often used to determine the
mechanical properties of cancellous bone tissue [13]. In addition, because of its very
porous nature, the material properties of cancellous bone tissue are affected not only by
the density, but also by the orientation of the struts that create the porous structure of the
material [14].

While the yield strain of the cancellous bone tissue is a constant that is equal to
the slope of the yield stress versus stiffness curve, this material does not reach an ultimate
stress and fail after yielding [14]. Instead, the stress remains fairly constant or increases
slightly with strain as the pores collapse upon each other as a result of buckling, not a
bending failure of their struts [14]. As a result, the cancellous bone tissue has significant
plastic deformation after yielding and, therefore, energy absorption ability [13].

Because of the wide range of reported values of the material properties of
cancellous bone tissue and the transient nature of the strut orientation and material
density, it is often modeled as an isotropic material [16]. This simplification is
acceptable in the current work because of the focus on the cortical bone tissue and
strength of the whole bone structure. Because the Poisson's ratio of cancellous bone
tissue is difficult to measure due to its porosity, a value of 0.3 is often used in the

published literature [16] and was used in this study.



929

The modulus of elastic of cancellous bone tissue is, on average, 70-80% of that of
cortical bone tissue and is widely reported to range from 8-14 GPa [16]. However, to
determine the most appropriate value of the elastic modulus of the cancellous bone tissue
for use in this work, a preliminary study was performed to compare the effects of three
different values of an isotropic elastic modulus of cancellous bone tissue: 8 GPa, 11 GPa,
and 14 GPa. In these studies, the cortical bone tissue of all bone components was
modeled as an isotropic material (modulus of 16.35 GPa, Poisson's ratio of 0.34). A
number of loading conditions with these different cancellous bone material properties
were compared in order to ensure the effect was due to choice of the material property
and not that of the boundary conditions. The geometry of the model was as described in
the preliminary study of the effect of the inclusion of cancellous bone tissue in
Subsection 2.1.2.1 and Figure 2.4. Over the three modulus values considered, the
variation in the maximum model deflection was slight (<5%) and decreased linearly with
increasing stiffness. There was little difference (<0.5%) in the maximum model von
Mises stress. Because of the small effect of the cancellous bone elastic modulus on the
overall behavior of the system modeled, a mean value of the reported range of the
cancellous bone elastic modulus, 11 GPa, was chosen for use in this work.

With the geometric and material models of the system studied fully established
and the boundary conditions and loading parameters identified, the system is fully
described and can be analyzed. The analysis is achieved through mathematical modeling
methods which use equations that govern the behavior of the system in terms of the
response due to the material properties and the response due to the system configuration.

The governing equations and the solution methods used in this work are now described.
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2.3 Governing Equations and General Modeling Techniques
Just as with any mechanical system, the musculoskeletal system studied in this work must
satisfy basic governing and constitutive equations. The behavior of the materials within
the system can be described by material model constitutive equations. The operation of
the defined musculoskeletal system itself is described by the basic laws of conservation
of momentum, mass, and energy. The additional observed behavior of biological systems,
like the bone strength adaptation studied in this work, that occur due to physiological
processes can also be described mathematically with the development of relations that
express the results of these processes in terms of the parameters that control the
processes. The explanation of the mathematical modeling of the behavior of the bone
tissue and the governing equations related to the conservation of system mass,
momentum and energy that are implemented in this work are discussed in detail as are
methods for their solution. Basic methods used in this work to predict the individual
muscle activity and bone strength adaptation, the focus of Chapters 3 and 4, respectively,

are introduced.

2.3.1 Constitutive Equations of the Cortical and Cancellous Bone Material

The bulk (also called tissue level or apparent level) properties of bone tissue under the
loads imparted by everyday activities are usually represented using continuous,
homogeneous, linear, elastic, isotropic or transversely isotropic models [16]. Therefore,
the bone is considered to be a Hookean material, and there is a linear relationship
between stress and strain in the bone materials studied in this work. The constitutive

equations for a Hookean, isotropic and transversely isotropic material are presented in the
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Lagrangian coordinate system using tensor notation unless otherwise noted. The

descriptions, relations, equations and derivations written here are based on [16, 186].

The relationships between strain and displacement are called the kinematic

relations and are written in Voigt (engineering) form as (from [186]):

o,
"o,

where i=1,2,3 0rx,y, z

for normal strains depicting the change in length and as

Ou, +%

1

Vi :gj Ox.
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, 1#]

wherei,j=1,2,30rx,y, z

for shear strains depicting the change in angle.

The expressions for strain can be written in tensor form as (from [186]):

1 Ou, Ou,
g =—| —+—L
72 0x; oy

where 1,j=1,2,30rx,y, z

@.1)

2.2)

(2.3)

Normal strains are indicated by i=j and shear strains are indicated by i#j. The strain

tensor is symmetric. It should be noted that shear strains written in engineering or Voigt

form (yj;, i#)) are twice those written in the strain tensor form (g, i#) [186] so that the

values of the engineering shear strain components (y;, 1#j) are twice the tensor shear

strain component values:

&ij =V2Yij, 17

(2.4)
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For a given body (in this work, the bone) to remain homogeneous and continuous

during the deformation due to an applied load, thus ensuring that no voids open within

the material, a piecewise continuous strain and displacement field must be maintained

[186]. This means that the strain tensor at a point (gj, 1,j=1, 2, 3 or X, y, z) must be a

continuous function of displacement (u;, i=1, 2, 3, or X, y, z). In other words, the strain

tensor in Equation 2.3 must be twice differentiable in x;. This requirement leads to six

compatibility (or continuity equations) [186, 187].
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(2.5b)

(2.5¢)

(2.5d)

(2.5¢)

(2.5f)

Directions 1, 2, and 3 are any orthogonal set of directions, typically Cartesian x, y, and z.
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Because cortical bone is modeled as a linearly elastic material for the small strains
considered in this work, the constitutive equation describing this Hookean material is

simply (from [16]):

O, = Cz_‘jkl Eu

.. (2.6)
where 1,j,k,1=1,2,3 0orx,y, z

Cjiu results in a 6x6 matrix of the elastic constants called the elastic constant matrix (or
stiffness matrix).

Taking the inverse of Equation 2.6 leads to [16]:

&y = K0, 2.7)
where 1,j,k,1=1,2,3 0orx,y, z ’

Kuij 1s the inverse of Cy, 1s also a 6x6 matrix, and is referred to as the elastic compliance
matrix.

The thirty-six unique components of the elastic constant matrix, Cjy, describe the
elastic behavior of the material. With thirty-six unique components, there are no
relationships between the material orientation and behavior, and the material is
anisotropic. The number of unique components in the elastic constant matrix (and,
therefore, its inverse, the elastic compliance matrix) can be reduced if the material
displays some degree of symmetry with respect to the three orthogonal directions (1, 2, 3
or X, y, z). Such orthotropic materials have planes of symmetry where material
properties are independent of direction within the plane.

Orthotropic materials exhibit orthotropic symmetry, meaning they have three

mutually perpendicular planes of mirror symmetry [16]. In such materials, there are three
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main planes in which the material properties do not depend on direction. These planes are
mutually orthogonal and their normals define three orthogonal directions. This reduces
the number of unique constants in the elastic matrix in Equation 2.6 to nine [186].
Specifically, the elastic constant matrix of an orthotropic material is composed of
relationships between three Young’s moduli (£)) that are used to describe the dependency
of normal stress on normal strain,

0; = Ez'gz'i

2.8
where i =1,2,3 28

three shear moduli (or moduli of rigidity) (Gj) that describe the dependency of shear

stress and shear strain,

7, =Gy, or o,=2G¢; 1#] -
where i,j = 1,2,3 (2.9)

and three unique Poisson’s ratios (v;) that describe the lateral contractions of the volume

that result from axial strains.

g (2.10)
where i,j = 1,2,3

For orthotropic elastic materials, the elastic compliance matrix is symmetric,

shown in engineering form as:



105

I 1 v, vy 0 0 0 |
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where

Vi - V% V% = V% and V% = V%
Al Yk X E = JE, 2.12)

The relationships listed in Equation 2.12 ensure that work cannot be extracted from the
closed system process of elastically deforming the material so that the changes to the
material system satisfy the Second Law of Thermodynamics [186].

Transversely isotropic materials, where two of the three orthogonal planes exhibit
the same uniform properties, further reduce the number of unique elastic constants to
five. In addition to the three orthogonal planes of symmetry, there is a plane of isotropy
(constant properties). The five unique elastic constants are created by imposing these

additional restrictions on the orthotropic material model:

El

E=E, Vi2= Va1 V31= V32 G23=G3 G,=—"——
5 5 12
’ ’ 2(1+v,,)

(2.13)
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Finally, an isotropic material displays full isotropic symmetry where all planes are
planes of mirror symmetry and planes of isotropy and where material properties are the
same in all directions. This reduces the elastic compliance matrix to depend on only two
unique elastic constants, representing a common Young’s modulus (E) and a common

Poisson’s Ratio (v), with the restrictions that:

E=E,=Es=E, V12= V21=V31= V32=V3= V3=V,
- (2.14)
G23=G13=G =G =
2(1+v)

The elastic constant matrix (stiffness matrix) is found by taking the inverse of the
elastic compliance matrix, so that the constitutive equation of an orthotropic material, in

engineering form, becomes (from [16]) :

1= VasVss - Vi tValVs Vis ViV 0 0 0 |
(o, ] AE,E, AE\E, AEE, e, ]
o, Vi tVaVe 1w v v 1 0 0 0 || e,
AEE, AE E, AEE,
ZB =V tVly Vit 1=y, 0 0 0 ;i;
B AEE, AEE, AE,E, »
o 0 0 0 Gy 0 24 (2.15)
L1z ] 0 0 0 0 G, 21
i 0 0 0 0 0 G,
where
A= 1= ViV =VasVsy =VaVis =2V ViV

El E2 E3

For transversely isotropic and isotropic materials, the simplifying restrictions in

Equations 2.13 and 2.14 can be substituted into the Equation 2.15, respectively. For fully
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isotropic materials, the two unique constants have special names, the Lamé constants, A
and G, and the constitutive equation in engineering (Voigt) form in Equation 2.15 can be

written in terms of the Lamé constants as (from [186]):

o, | [A+2G 2 A 0 0 0]lg,
oy A A+2G A 0 0 0]le,
oyl | 4 A A+2G 0 0 0] &;
o 0 0 0 G 0 0] 2&y,
o 0 0 0 0 G 0] 2¢ 216
lo,| L O 0 0 0 0 GJ2¢, ]
Ev E

where the constants are defined as A =

— = and G= .
(1+v)(1-2v) 2(1+v)

Cortical bone tissue is typically modeled as a transversely isotropic material in the
long bones, with the radial and circumferential directions having the same properties and
the longitudinal (or axial in the long bone) having different properties [13, 17, 178]. It
has also commonly been represented as a fully isotropic material [184]. In this work, the
transversely isotropic material models were applied to the cortical bone in the femur and
tibia while fully isotropic cortical bone models were applied to the pelvis and the foot as
explained in the previous section.

Cancellous bone tissue is typically described as anisotropic due to its extreme
porosity and its very labile (or constantly changing) nature [16]. However, unless the
behavior of cancellous bone is the focus of the study, its material properties are most
frequently approximated using isotropic material in models [16] and will be done so in

this study as explained previously.
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2.3.2 Governing Equations

With the material properties of the bone defined, the governing equations were applied to
ensure that mass, energy and momentum are conserved within the musculoskeletal
system studied. This section reviews the mathematical descriptions of these "balance
principles" used in this work. The equations presented here are general for any continua
[188]. In this section, the system will be explained and its governing equations,

especially as applied to the developed models, will be discussed.

2.3.2.1 Conservation of Mass. In the model used in this research, both the cortical and
the cancellous bone tissue materials were assumed to be a uniform continuum and their
properties constant with time. All intrinsic material properties in this model were,

therefore, homogenous. Hence,

Grad(p(x,t)) =0 2.17)

for all times ¢ during the analysis and all locations x in the model. In Equation 2.17 pis
the density.

While the material properties remain constant with time in the bone strength
shape adaptation model in this work, the overall volume changed as the bone's shape
iteratively adapted to the applied loads. Because the density is assumed to be constant,
this volume change results from an addition or removal of bone material, or mass, over
time. However, because the developed model simulates the effects of the shape strength
adaptation and not the actual biological processes, the analysis is performed in such a

way that the incremental mass changes are not considered.  Specifically, the
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shape/strength adaptation phenomena investigated in this work are separated into two
distinct phases, the load application phase and the shape adaptation phase.

In the first phase, the bone volume, in its current state, is loaded by a set of
external forces. Under the load application, the shape changes have yet to occur, and so
the total system mass remains constant. This phase determines the measures of the
system's response to the load that are used to drive the adaptation of the bone's shape
towards a more uniform stress/strain distribution. In this way, this stress analysis is
performed for a closed mass system each time the load was applied. This can be

represented mathematically by:

m= J.p(x, t)dv = const >0 (2.18)
Q

for all times ¢ during the load application phase of the iterative analysis and for each bone
segment volume v defined by the region, (2, of the bone system geometry with a mass of
m.

In the second phase of the modeled phenomena, the results of the first phase are
used to simulate the strength adaptation of the cortical bone region. While the model did
not directly simulate the biological adaptation processes themselves, it predicted the
resulting effects on the bone's shape. Because the shape is changed in this second phase
of the analysis, the mass of the entire system does change with iteration (representing
time). Therefore, in the second phase of the analysis, the adaptation model indirectly
accounted for the changes to the system mass through the prediction of the shape changes
to the whole bone surface, or boundary, profile. The shape change is assumed to occur

instantaneously directly after the load was applied.
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By separating the model in two distinct phases, the analysis of the response to the
applied mechanical load in the first phase occurs for a closed mass system. Because the
analysis is repeated iteratively with "time", the boundary of the closed mass system
changes between analysis iterations. The total mass of the closed system at each iterative
cycle of the load application and adaptive response to the load (m;) is equal to sum of the
mass at the end of the previous iteration and the instantaneous, incremental change in
mass that resulted from the alterations of the profiles of the bone's boundary surfaces in
response to the applied loading at the completion of the adaptation prediction phase of the
current iteration. Therefore, while the total mass of the bone may vary from one iteration
to the next, during the performance of the mechanical (finite element stress) analysis, the
system mass remains constant. This conservation of mass during subsequent mechanical

analyses after shape adaption is summarized in Equations 2.19 through 2.21.

m, = p '[ dv = const, >0 during iteration 1 (2.19)
Qi/e/’utian:l

m,=p I dv = const, >0  during iteration 2 (2.20)

Q!zemnnu:Z

m,=p '[ dv = const, >0 during iteration n

gli/emn‘un:n (2~2 1 )

mEm, £, Em,



111

2.3.2.2 Conservation of Energy. In addition to the changes in the physical system
controlled by the conservation of mass, the energy within the system studied must be
preserved. The application of this balance principal to the models developed in this work
is discussed.

First Law of Thermodynamics

The First Law of Thermodynamics, or the conservation of energy in a closed system, can

be represented over a particular time interval as (from [189]):

AEsystem = Qnet — Whet (222)

where E is the total energy, Q is the amount of energy input to the closed system and W
is the work done by the closed system. Like the conservation of mass, the First Law
(conservation of energy) was not considered directly in this model. Instead, an
explanation of the energy transfer of the studied system is presented here. The system
boundaries are the bone surfaces, and only the set of bones, not the muscles, are included.
Therefore, a closed system was considered. The muscles are considered force generators
to supply energy to the bone system examined. This energy is assumed to trigger the
bone's adaptive response. The energy applied to the bone system from the muscles is
used to deform the bone material. Because the bone is assumed to be perfectly elastic,
when the load was released, the energy is fully released from the system. However, the
deformation of the bone structure during the load application is assumed to trigger
cellular processes that result in the removal or addition of material to the bone's surface
through energy sources in addition to the strain energy created by the mechanical

deformation of the bone under the external load. This cellular energy is not directly
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considered in this work, but its effects are modeled as the changes to the bone's surface
geometry.
Second Law of Thermodynamics
The Second Law of Thermodynamics states that entropy production must be nonnegative
for any material system. The Second Law of Thermodynamics is satisfied in the
modeling techniques employed in the current research through the use of a compliant set
of constitutive equations describing the material behavior. These constitutive equations
established the relationships between the material property parameters: the Young’s
moduli (E), the shear moduli (G) and the Poisson’s ratios (v). Based on the material
symmetry, these properties may vary with direction as discussed in the previous section.
To comply with the Second Law of Thermodynamics, the work done on a
perfectly elastic material, such as the one in this model, to deform it must be nonnegative.
Strain energy per unit volume is a measure commonly used to quantify this energy
transferred to a material during deformation. Therefore, by the First Law of
Thermodynamics, this strain energy is equal to the work done on a perfectly elastic
material to deform the material, since there are no losses due to heat and no other means
of energy dissipation are considered [16, 186, 188]. Thus, the strain energy per unit
volume (or strain energy density) of the deformed perfectly elastic material can be

expressed as:
1 1
A /volume = Etr(ca) = 5(0'”5” + 04,8y + 03385, ) + 05,6y, + 01365 + 0, (2.23)

where A is the strain energy and oj; and g;; are the stress and strain tensors components in

Voigt notation.
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This Law imposes additional restrictions on the elastic constants for orthotropic
materials, where properties varied only along three orthogonal planes. For such a

material, compliance to the Second Law of Thermodynamics requires the following:

Ei>0, E»>0, Es>0, G23>0, Gi3>0, Gi2>0,
1-v23v3,>0, 1-vi3v31>0, 1-vi2v21>0,

1- ViosVar = Va3V =V Vi3 — 2V21V32V13 >0: (2-24)
Vi / _Va Vis/ _Vy Vas/ _ Vi
El Ez ’ E1 E3 ’ Ez E3

The relations in Equation 2.24 can be reduced for transversely isotropic and isotropic
materials using the simplifications in Equations 2.13 and 2.14. The isotropic material,
the simplest form of these material property restrictions is:

E>0, G>0,

(2.25)
1-v>0, 1-3v2 —21°>0

2.3.2.3 Conservation of Momentum. The final balance principle that must be satisfied
in the system's governing equations is the conservation of momentum. The model
studied in the proposed work was statically or quasi-statically loaded. Thus, there is no
net linear or angular momentum changes in the system at each analysis iteration. As
such, the sum of the forces acting on the system and the sum of the moments acting on
the system were both zero. [188]

Because the system studied is the set of bones only, surface forces, or tractions,
are applied to the surfaces of the bone to account for externally applied forces including

the muscles forces, the weight of the soft tissues surrounding the bones of the body
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segment (for example the upper leg on the femur), and other externally imposed forces.
The body forces acting on the bones are related to the gravitational forces, or the weight
of the bones. For the conservation of momentum analysis of these multibone systems,
contact forces are assumed to be internal to the system. Under these static conditions,

the conservation of linear momentum (balance of forces) can be expressed as:
0= I tds + Ibdv (2 26)
oQ Q )

where t is the surface traction, ds is the incremental surface area, b is the body force per
unit volume, dv is the incremental volume, € is the surface boundary and Q volume
studied. Because isometric loading conditions where joint angles remained constant, the
conservation of angular momentum with r as the force moment arms is expressed as:

0= Irxtds+jr><bdv
Q

o (2.27)

In this study, the momentum due to the weight of the bones and soft tissues is
assumed to be small compared to that due to the muscle forces and externally applied
forces. Therefore, no body forces are included in these models, and the surface tractions
do not include the weight of the tissues surrounding the bones. Conservation of linear
momentum is achieved through balancing these surface tractions. Conservation of
angular momentum is achieved by balancing the moments created by these surface
traction forces about the system joints (hip, knee, ankle, etc.). The methods used to
solve these balance equations are reviewed in Subsection 2.3.4 and discussed in detail in

Chapter 3.
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2.3.3 Finite Element Approximations

The constitutive and governing equations described in Section 2.3.1 were used to find the
stresses and strains within the bone that drive its strength adaptations modeled in this
work. Because of the complex geometry, loading conditions, and material models used
in the multi-bone system studied in this work, finite element methods were employed to
determine the local variations of the "shape adaptation drivers" so that they may be used
in subsequent shape adaption prediction models. The specific finite element methods
used in this work and applied to the bone system modeled are described following [190].

The basic steps of any finite element analysis can be described as applied to the
bone system in this work. The geometry of the bone is discretized into distinct elements.
The elements are defined by a set of distinct points, or nodes. The external forces applied
to the bones are distributed over each element through the application of the forces onto
these discrete nodes. The constitutive and governing equations are applied to each
element. Continuity between elements is ensured at each node. Finally, based on the
governing equations, displacements, stresses, and strains are calculated at each node to
describe the bone system's response to the applied surface loads and boundary
constraints.

The loads applied to the surfaces of the system studied (surface tractions) are
found using the momentum balances Equations 2.26 and 2.27. The specific solution
methods used for the musculoskeletal system studied in this work will be discussed
further in the next section. Through the application of the constitutive equations, the

principles of minimum total potential energy and virtual work are utilized at each element
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to create the expressions required to find the nodal displacements that resulted from these
external loads.

The cancellous and cortical bone materials that comprised the system modeled are
assumed to be perfectly elastic so that the potential energy of each element, I1, as
described by the application of the First Law of Thermodynamics (Equation 2.22) to this
system, is simply defined as the difference between the internal strain energy, A, stored in
the element and the work, W, done by the external forces, F, acting on the element [186]

(remembering that the body forces were considered negligible in this model):

I=A-W (2.28)

The work done on the element is simply the product of the forces, F, and the nodal

displacements that they cause, U.

N
[

FU (2.29)

The internal strain energy stored in each element A is written as the integral of the strain
energy density (strain energy per unit volume of the element) defined in Equation 2.23

over the elemental volume v so that;
A= 1 J. 6’ gdv
2] (2.30)

where Q is the elemental volume and o and € are the stress and strain tensors.
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The strain energy of the perfectly elastic material element is written in terms of
strain only using the constitutive equation for a linearly elastic material (Equation. 2.11).

In matrix form, this is expressed as:
c=Ce (2.31)

where C is the symmetric elastic constant matrix described in Equation 2.15.
Substituting Equation 2.31 into Equation 2.30 resulted in an expression for the strain

energy in terms of strain only:
A=t [&" Cedv
2] (2.32)

In finite element analysis modeling, the calculations above are performed at each
of the elements and the solutions are stored only at the nodes. The spatial variation of
any calculated parameter (such as the displacement) throughout an element is, therefore,
determined by the use of a type of interpolation within the element using a shape
function. The shape function, S, defines the variation of the displacement within the
entire element in terms of the displacement at each of the nodes associated with the
element. The number of shape functions used to describe this spatial variation over an
element is equal to the number of nodes in the element. The form and complexity of
these shape functions are based on the number of nodes in the element and the node
positioning within the element and are unique for each element type. The displacement
at any point can then be found through the sum of the products of the shape functions S

and displacements U at each node. For example, for the 8-node hexahedral elements
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used in this model, the displacements u, v, and w in the local x, y, and z directions are

described as the sums below where i represents the nodes of the element:

v=2.8U, (2.33)

With the displacements defined, the strain-displacement relations in Equation 2.3 can be
used to describe the strain as the derivative of the displacements in Equation 2.33.
Because the nodal displacements are constant values at a given solution iteration, the
nodal strain and displacement are related through the derivatives of the shape functions
and can be written in the matrix form presented in Equation 2.34, where B is a matrix of
the derivatives of each of the shape functions with respect to the coordinate directions

(for example x, y and z).
¢=BU (2.34)

Substituting Equation 2.34 into the expression for the strain energy, Equation 2.32,

yields:

1 Tl



119

Substituting Equations 2.35 and 2.29 into the expression for the potential energy of each

element in Equation 2.28 results in:

_l Tl _
M= 2(le B’CBUdv - FU (2.36)

To find the minimum potential energy, which is required for the stability of the perfectly
elastic element, the derivative of Equation 2.36 with respect to displacement U must be
equal to zero. So that:

o (1 Tyl 0
%(EV(U B CBU))—%(FUFO @37)

or VYB"CBU-F =0 (2.38)

where V is the element volume, a scalar.

In this finite element formulation, each element can be seen as a spring so that the
nodal displacements of an element U are linear functions of the forces applied to the
nodes of a particular element, F, and the proportionality constant is called the equivalent
element stiffness or K*/“. Thus, the spring-like behavior of the element can be described

through the relation:

F=K“U (2.39)

Therefore, substituting Equation 2.39 in Equation 2.38, the equivalent elemental stiffness
K" can be expressed in terms of the element shape functions and the material

constitutive properties as:
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K =VB'CB (2.40)

In summary, at each element, the external forces applied to the nodes, the volume
of the element, the initial locations of the nodes, the constitutive and strain-displacement
relations, and the shape functions are used in the relations in Equations 2.39 to find the
nodal displacements of the element as a result of the applied nodal forces. In turn, the
nodal displacements are used with the strain displacement relations Equation 2.34 to find
the nodal strains. Finally, the constitutive equations of the material being modeled, as in
Equation 2.31, can be used to find the nodal stresses. Force balances are applied from
one element to the next to ensure continuity of the solution and to determine the nodal
displacement, strain and stress throughout the body studied. The distribution of these
nodal values describes the overall response of the solid body to the applied loads and can
then be used in further studies such as failure analyses or bone strength adaptations.

The constitutive and governing equations and the finite element methods
presented here were the basis for the means to analyze the response of the system
described in Sections 2.1 and 2.2 under various loading conditions. Two additional
model components were required in order to complete the development of the methods
used to simulate bone shape adaptation in the work. The first component is the
determination of the magnitudes of the muscle forces imposed on the bones which is
necessary to specify the bone's mechanical environment. The second component is the
determination of the bone shape adaption which is necessary to convert the response of
the bone to the loading, as determined by the finite element methods described in this

section, to the changes to the surface profile that ultimately alter the bone's strength. A
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brief description of the methods used to develop these modeling components is now
explained. More details on the muscle force model and the shape adaptation model are

provided in Chapters 3 and 4, respectively.

2.3.4 Muscle Force Model

Because the number of muscles in a musculoskeletal system typically far exceeds the
number required satisfy the momentum balance equations (Equations 2.26 and 2.27), the
system is indeterminate. As a result, it cannot be solved using standard systems of
equations means, and a number of methods have been suggested to find the magnitudes
of the muscle forces. Both methods developed in the field of engineering mechanics as
well as applications assumptions about the system based on its anatomy or physiology
have been employed. Early solution methods developed by researchers applied
simplifying assumptions so muscle with common functions were grouped and others
were eliminated to make the system determinate [191]. More recently, mathematical
optimization methods have been employed [192]. A detailed review of the methods that
have been applied to a muscle system is given in Chapter 3. However, a general
overview of optimization based solution methods, criteria used to design the specific
methods applied to the current work, and the associated modeling assumptions relevant to
the system studied, is now presented.

Mathematical optimization methods find the optimal (minimum or maximum)
solution to a problem given a specified goal. Usually, a series of constraints over which
the solution must be valid are also imposed. The goal and constraints are often a function
of the design variables, which are the set of unknowns for which the solution is required.

Mathematical optimization methods can be as simple as taking the derivative of a
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function and finding the values of the independent variables that make the derivative
equal to zero. These methods can also be quite complex, iteratively finding a set of
values that satisfy the given criteria through a series of numerical calculations that
attempt to progress towards a stated goal and adjusting the direction of this progression
whenever it moves away from this goal. Mathematical optimization methods are often
used in many different engineering design problems including the modification of
physical features, such as the values of an object's critical dimensions to meet weight or
strength criteria, the modification of system functional parameters, such as flow rates, to
meet thermal criteria, and the adjustment of system inputs values, such as temperature
and chemical quantities, to meet power efficiency criteria.

In applying the same kinds of optimization methods to determine the muscle force
magnitudes in a musculoskeletal system, it is assumed that, while many different
combinations of muscles can produce the same results, a given group of muscles
functions in a repeatable manner. Furthermore, there is a particular combination of
muscle forces that make the set of muscles operate most efficiently to perform a given
function. The optimization goal, therefore, is a mathematical definition of the efficient
operation of a muscle set.

The selected goal of the optimization of the muscle force activity has varied
significantly among the models developed in the published literature, ranging from
minimizing the sum of individual muscle forces [127], to minimizing muscle stresses
[193], to minimizing muscle fatigue [192]. The muscle forces used in these optimization
goals are usually weighted to reflect the relative force-generating ability in each muscle

[127,194]. The weighting factor can be a reference force [192] or a physical measure of
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the muscle such as size [193] or the anatomical makeup of the muscles themselves [195].
The mathematical terms in the optimization goals comprised of the unknown muscle
forces can be linear [191] or nonlinear [127]. Despite the wide variety of optimization
goals that have been used in previous investigations, published comparative studies
showed no significant differences in the resulting muscle forces [194, 196-199] given an
adequate level of complexity of the physical representation of the system.

As with the optimization goal, the particular mathematical optimization method
used has also been the subject of much study. Both linear and nonlinear optimization
goals using both analytical and numerical solution methods producing both global and
local solutions have been suggested [127, 163, 193, 196, 198]. A number of methods
were compared in this work and will be discussed in Chapter 3. Based on this
comparison, one method was selected for its suitability to both the specific system and
boundary conditions studied as well as its ability to be incorporated into the methods for
the prediction of the adaptations of bone strength developed in this work. Because the
developed model was intended to be used to compare the effects of various activities on
bone strength adaptations, the ability of the model to be applied to many different loading
cases with no changes to the programming code was important.

As with any mathematical model of a physical system, the validity of the muscle
force optimization technique is contingent upon a series of limiting assumptions. In the
development of a model to determine the individual muscle forces in this work, the
following assumptions were used. Muscle forces can only produce tensile forces [127].
This assumption was represented by the set of constraints in the mathematical

optimization model. The musculoskeletal system studied was assumed to undergo



124

isometric loading only such that joint angles remained constant, and there was no net
angular momentum about each joint in the system. This assumption became the second
set of constraints in the mathematical optimization model, which ensured the balance of
moments created by the fixed-joint angle musculoskeletal leg system.

Other assumptions limiting the operation of the muscle force magnitude model
were related to the physiological function of the muscles themselves. Typically, the
magnitude of the force generated by a muscle is influenced by changes in the muscle
length and the rate of these changes. However, because joint angles were assumed to
remain constant in the activities studied in this work, the effects of these force-velocity
relationships were assumed to be negligible [155] and, so, not included in the developed
model. The magnitude of the force generated by a muscle is also affected by the
instantaneous length of a muscle during the activity studied in relation to a reference
length in the "resting" position of the particular limb containing the muscle. Because the
joint angles were not at the extremes of their ranges of motion for the activities studied in
this work, the instantaneous and resting lengths were not significantly different.
Therefore, the effect of the force-length relationships was assumed to be negligible [156]
and was not included in the developed methods.

The developed optimization method used in this work was based on previously
developed methods from the literature. Modifications were made to improve its function
and stability for the particular application examined in this study. The function of the
specific muscle force magnitude optimization model created for this work was validated

through quantitative comparisons to published numerical and experimental studies of the
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individual muscle force activity for a given isometric exercise. The development and
validation of this model is presented in Chapter 3.

As with the determination of individual muscle force magnitudes that create a
particular function of a musculoskeletal system, predicting the changes in strength of a
bone due to variations in these muscle forces can also be thought of as an optimization
problem. The goal of the resulting modifications to the bone's shape is defined in relation
to the desired behavior of the bone with respect to these forces. Therefore, mathematical
optimization methods were also applied to the simulation of bone shape strength
adaptations in the developed computational model. A brief description is next presented.

Details are provided in Chapter 4.

2.3.5 Bone Shape Adaptation Model

While experimental and clinical studies of shape adaptations to bone strength have been
performed for centuries, the numerical simulation of these phenomena has only been
investigated for about fifty years. It was during this time that computational capabilities
and resources became sufficient to simulate and analyze the complex geometry and
behavior of systems such as bones. Early theoretical and analytical mathematical models
[87, 106] were soon followed by numerical simulations of these theoretical models [88,
91]. As the field of computational engineering modeling and analysis grew, methods to
address the numerical difficulties specifically related to simulating bone shape alterations
were found and more extensive numerical studies were possible. A brief summary of the
basic concepts of these types of modeling methods and their application to the current

work is now presented. A more detailed review of the published work that lead to the
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development of the final model in this work is found in Chapter 4 as is a thorough
description of the currently developed model.

Most of the computational models simulating the shape alterations that result in
the strength adaptation of cortical bone follow some basic modeling assumptions. As
noted previously, the computational model of bone strength/shape adaptation developed
in this work did not directly simulate the actual biological processes that contribute to the
initiation, propagation, and termination of the shape strength adaptations. The simulation
simply linked the changes in the loading environment with the changes in bone surface
profile in a way that was representative of known biological phenomena. Therefore, the
energy input required to grow new bone material and the energy release when bone
material is removed was not directly modeled (see Subsection 2.3.2.2) [87, 200]. In
many of these kinds of studies, the nodes of the finite element generated during the
discretization of the geometry for the finite element analyses represent the bone cells that
collect and relay the signals of changes in mechanical conditions as well as produce the
resulting structural changes to the bone surface [201, 202]. Applying this assumption to
the developed model, the locations of the surface nodes are moved as a result of measures
of the local (nodal) stress state. In this work, only the shape adaptations in skeletally
mature adults were considered. Therefore, material accretion or resoption did not occur
in the longitudinal, or axial, direction, and the bone shape was only modified normal to
the "cylindrical" surfaces as represented in Figure 1.2 [16, 17]. Finally, the current model
assumed that the direction of the loading (tensile vs. compressive or clockwise or

counterclockwise torsion and moments) had no effect on the predicted adaptations [57].
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As described in Chapter 1, the alterations in the shape and, therefore, strength of
the cortical bone tissue region of long bones function to reduce the locally high stresses
or to increase the locally low stresses, resulting in a more uniform distribution of surface
stresses. As a result, the prediction of the surface profile changes due to variations in its
mechanical stress state can be thought of as a type of optimization problem with the goal
of creating uniformity in the surface stresses, or more generally, in the state of stress of
the bone's surface. Like the optimization methods used to determine the muscle force
magnitudes discussed in the previous section, many different numerical models have
been developed to predict the shape and strength changes of cortical bone. The methods
vary both in the particular measure used to describe the stress state at the bone's surface,
often referred to as the "mechanical stimulus", and in the mathematical method used to
solve the optimization problem.

A large amount of both numerical and experimental research has been devoted to
determining the local mechanical measure that drives the shape changes. Average,
equivalent, and principal stresses and strains, individual components of the stress and
strain tensors, energy measures such as strain energy density have all been suggested as
the mechanical stimulus behind bone strength adaptations, as have gradients of these
values with time and space [87, 96, 100, 106]. Preliminary studies in this work examined
the effects of using different measures of the mechanical state of the bone as the part of
the optimization goal and are more thoroughly discussed in Chapter 4.

An equally large number of studies in the literature have examined the specific
mathematical optimization methods used to predict these shape changes. Gradient-based

methods, such as the ones used in the model to determine the muscle force magnitudes,
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and less mathematically rigorous ones, such as gradientless optimization methods, that
find both local and global optima have been employed [203-208].

The techniques that have been developed to simulate bone's shape and strength
adaptations are similar to the shape optimization methods created to design inert
mechanical components based on size and strength criteria. In these shape optimization
methods, the set of unknown "design variables" is typically the locations of the points
defining the surface profile. In this work surface node positions are used, but shape
control points that describe geometries, like those used in the b-splines and Bezier curves
to approximate surfaces can also be used as the design variables [209]. However,
because of the geometric complexity of the typical bone surface, even with significant
simplifications, the number of unknown design variables in these shape optimization
problems is often very large, even when using line or surface control points rather than
finite element nodes. The optimization methods selected for this work were required to
function relatively efficiently to calculate the changes to the locations of surface nodes on
a three-dimensional mesh.

The optimization usually proceeds iteratively. The local mechanical stress state
of the bone is typically determined through finite or boundary element methods based on
a prescribed set of boundary conditions (loads or constraints). To obtain loading
conditions on bone due to the muscles, the magnitudes of the independent muscle forces
must be found. The local growth or decay of the bone at discrete points along the surface
is simulated through a mathematical relation that converts the value of the measure of
local mechanical stress state of the bone to the amount of change of the local positions of

points (nodes) describing of the bone's surface. The boundary conditions are applied
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again, the distribution of the local mechanical state determined, and the new surface
profile formed. The process is repeated until a prescribed stopping criterion is achieved.

The mathematical equation used in many of these models is:

Growth, (1) = a(Measure, (I)— Measure,,, .., ) (2.41a)

Xi1(D) = Xi(D) + Growthy(]) (2.41b)

where / is the /th node or control point, a is a constant (but can also be a function of
system variables), "Measure" is the selected measure of the local mechanical state of the
bone, such as von Mises stress, strain, or strain energy density and "threshold" is a
reference value of this measure against which each local measure is compared. The nodal
position Xy(/) is changed at each optimization iteration to X+i(/) by the amount
calculated by the "Growth" relation. This process is applied to each surface node or
control point after the solution of structural analysis, which is usually performed using
finite element or boundary element methods, to determine the new position of each
surface point. Values of local measures below the threshold value trigger resorption, and
values above the threshold trigger material accretion. This threshold value may be a
constant value determined by experimental measures [210] or a failure limit of the
material, such a maximum allowable stress [211, 212]. It can vary with location [89],
magnitude of applied load [91] or even iteration, such as an average measure calculated
from the current mechanical state of the bone [213]. The threshold may also include a
range of values over which no material shape changes occur [214]. The a value scales
the amount of growth or decay and is sometimes taken as the rate of adaptation or step

size of the optimization process.
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Because the value/values of the mechanical state measure's threshold, the rate of
shape change, a, and the growth relation itself (i.e. changing from linear to nonlinear)
can all alter the local nodal positions and the overall predicted bone shape, much research
has been undertaken to determine the values of these parameters that can properly predict
experimental observations. However, because, in many of these models, the parameters
are chosen to match experimental measurements of accretion or decay of the cortical
bone surface at a particular time or a particular load, this often results in models that are
applicable only to the conditions of the experimental study used to determine the model
parameters. Therefore, despite the significant amount of different bone strength and
shape adaptation models in the published literature, their universal application is often
limited. Because the intent of the current work was to develop modeling techniques to
compare the effectiveness of various loading conditions on improving local bone
strength, a model with results independent from the arbitrary selection and adjustment of
parameters driving the predictions was required. Extensive effort to develop a
computational bone shape adaptation model that meets these more universal application
criteria was put forth in this work and is described in detail in Chapter 4.

In addition to adaptation modeling methods, stopping or convergence criteria
must also be defined. Many bone shape adaptation models simply choose o to be a rate
and run the simulation over a specific period of time [88, 90, 93, 112]. By stopping the
model this way, no indication of the level of approach to the optimization goal of
lowering peak stress and improving uniformity of the stress distribution in the bone is
calculated. While, as with the selection of modeling parameters, this may be suitable

when comparing the numerical predictions to experimental observations, difficulties arise
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when trying to compare the effects of different loading modes or conditions different than
in the particular experiment from which the model was generated. Therefore, significant
work was performed as part of this study to develop such model convergence criteria, and
this work is discussed in Chapter 4.

A model that is universally applicable to many different loading conditions must
be able to appropriately predict the mechanical response and the resulting shape adaption
over the entire bone surface and then compare the resulting change in the behavior of the
bone that has developed for the different loading conditions. Progress towards methods

for such a comparison is subject of the final phase of the model development.

2.4 Method for Comparison of Effectiveness of Strength Adaptation Techniques
The modeling methods developed in this work not only must accommodate the numerical
determination of the alterations to the surface profile of the bone resulting from changes
to the boundary conditions and loading environment of the bone, but also must permit
the tracking of the resulting variations in stress and strain distributions at discrete
locations within the bones studied. By complying with these conditions, the methods of
this work are capable of quantitatively comparing measures of the effectiveness in
improving bone strength of the shape change that result from each set of loading

conditions studied. The development of such a comparative measure is described.

2.4.1 Typical Geometric Measures of Bone Strength
Since the early clinical observations and experimental models, a direct correlation
between bone size and strength has been noted. Many experimental models simply

tracked the amount of bone growth either by changes in a particular linear dimension,
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such as a radius or bone thickness measured at a discrete point, or changes in more
regionalized dimensions, such as the area of a cross-section, as the quantitative measure
of the improvement in bone strength under a particular load [57, 59, 60, 63, 69]. If these
dimensional measurements increased, the bone was said to be strengthened and the
loading conditions mitigated bone losses. If the values of these measurements decreased,
the bone was said to be weakened and the loading conditions were not conducive to bone
strengthening. These dimensional measurements are simple to repeatedly track with time
using a series of X-rays.

As medical imaging technology became more sophisticated, more complex
measures of bone geometry could be compared between living subjects. Area moments
of inertia about particular axes and polar moments of inertia could be automatically
calculated using the software supplied in CT or similar imaging devices. The ability of
the bone to resist bending or torsional loads could be directly compared [100, 130, 215].

With the increased use of computational models to analyze medical imaging scans
or even to simulate bone shape changes as a result of loading conditions, more specific
and numerous quantitative measures of the changes to a bone's geometry became
available. Geometric measures such as the perimeter [25, 130] of the endosteal (inner)
and periosteal (outer) surfaces, measures of circularity [130], section modulus, [130],
radius of gyration, center of gravity, and principal axes of the principal moments of
inertia [216] have all been reported in addition to the radii [93], area (both of the entire
cross-section and just the cortical region) [95, 112, 130], moments of inertia [112, 130,

217], and cortical thicknesses [64, 218-221] previously used.
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All of these measures can be correlated to an object's strength. However, the
universality of the conclusions drawn based on each of these measures is often limited to
changes in the ability of the bone to resist a particular mode of loading. For example,
cross-sectional areas are related to compressive loads; area moments of inertia are related
to bending loads about particular axes; polar moments of inertia are related to torsional
loads; section moduli combine bending and torsional loading as do measures of
eccentricity like centers of gravity and circularity. However, bones are subjected to
combinations of numerous modes of loading. It has been shown that measures of
combined loading strength, such as section moduli, correlate better with measures of
bone density [130], which are often used as an indicator of whole bone strength.

There are limitations to the use of such geometric measures to indicate strength
changes. First, these measures are often taken at one particular location and, therefore,
indicate a local strength, not the overall strength of the whole bone studied. Some
attempt at addressing this concern has been made by performing these calculations at
multiple cross-sections over the length of the bone and considering the changes in the
extreme values of these measurements [217]. In doing so, however, the understanding of
relative changes at particular locations is lost. Second, because these measures are often
indicators of one particular mode of loading, changes that increase the resistance to one
particular loading mode may make the bone weaker in another. Finally, attempts to
create quantitative values that are combinations of these geometric measurements that
address strength resistance to a number of loading modes, such as through the use of
dimensionless parameters, are often not possible. This is because dimensional analysis

methods assume that the relative shapes remain the same and only size changes. Bone
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shape adaptation, like shape optimization in mechanical design, is not a simple scaling of
the geometry, but a complete alteration of the surface profile.

While geometric measures can give a rough idea of strength changes, if a more
precise quantitative comparison of strength resistance is desired, alternative methods are
needed. Because bone strength adaptation through alterations in shape is similar to
structural shape optimization in the design of inert mechanical components, research in

that field was examined to determine an effective means of comparison in this work.

2.4.2 Measures of Strength Changes in Shape Optimization
The general mechanisms for the strength adaptations of bone and the shape optimization
in mechanical component design are similar. Both involve the accretion or removal of
material on the surfaces of the object. Likewise, their goals are related to the reduction in
the overall variation of the stress distribution on the object's surface or a reduction of the
overall maximum stress within the object [203]. Often the goal of structural shape
optimization is a reduction in the maximum stress in the component due to a particular
load set to a value below the yield strength. This load set is usually the most extreme
load typically encountered by the device studied. Thus, the inert mechanical component
is designed such that its weakest location will not fail under this specific condition.
Similarly, the adaptive changes to bone alter its strength to reduce extreme stress at
locally weaker locations in response to the typical mechanical environment.

Such a concept is applicable to the determination of comparison criteria for
various bone strengthening loading schemes. While the different exercises or loading
sets usually produce improvements in bone strength under the particular applied load or

the exercise, the strength improvements may not result in the ability of the newly shaped
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bone to resist a different set of loads than those applied to create this new geometry.
Therefore, a beneficial means of comparison would be to subject the newly shaped bones
that are created by the different loading conditions studied to a common set of loads and
calculate the strength measures under this one loading condition using the newly adapted
(optimized) bone shapes. As the design of mechanical components employs shape
optimization to improve strength for an extreme loading condition, the choice of the
comparison load set for bone strengthening analysis should represent an extreme
typically encountered load. Improvements in the ability of the newly shaped bone to
resist this common comparison load would represent a measure of effectiveness of the

exercise on improving the bone's strength.

2.4.3 Selection of the Co