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ABSTRACT

OPTIMIZATION OF PATH BASED SENSOR SPACING ON A FREEWAY
SEGMENT FOR TRAVEL TIME PREDICTION DURING INCIDENTS

by
Patricia Kathleen DiJoseph

Congestion on freeways is increasing and a key source of it is non-recurring incidents.

Accurate vehicle travel time predictions are needed during these incidents in order for

roadway users to make informed trip decisions. Path based sensors are becoming a

leading technology in gathering real-time travel time data. The data is used to make

travel time predictions that are then provided through various means, such as dynamic

message signs, to roadway users. These types of sensor are located at stationary points

along a roadway and collect individual vehicle travel time data from vehicles as they

drive pass the sensors.

The accuracy of the predictions, in terms of representing future travel times, is

dependent on many factors including the sensor spacing along the roadway, the duration

and location of a traffic incident, and the uncongested and congested traffic speeds and

traffic flows. Understanding the relationship between the travel time prediction accuracy

and the different variables is necessary to optimize sensor spacing. In addition, because

incidents occur at different times of the day, have varying durations, occur at different

locations, and cause different capacity reductions depending on the severity of the

incident, the sensor spacing cannot be based on one incident scenario. Instead, multiple

incident scenarios, along with the probability of each occurring, needs to be taken into

account.



Path based sensor spacing during incidents on a freeway segment is optimized in

this dissertation. In addition, the marginal benefit of additional sensors is calculated. A

mathematical model and a solution methodology are developed. The mathematical

model applies macroscopic traffic principles and shock wave theory. It calculates the

travel time prediction error by sensor spacing during an incident on a freeway segment.

The solution algorithm consists of four main steps. First, historical incident data

for the roadway are gathered. Second, the mathematical model is applied to determine

the average travel time prediction error by sensor spacing for each of the historical

incidents. Third, the weighted average travel time prediction error by sensor spacing is

calculated, which considers all the possible incidents and the frequency of each

occurring. Fourth, the optimal spacing is chosen which minimizes the weighted average

error.

The applicability of the model and solution methodology is demonstrated through

a case study of a ten mile freeway segment in Northern New Jersey.
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

Traffic congestion on urban freeways cost Americans over $48 billion in 2011.  This 

included 2.2 billion hours of extra travel time and 1.16 billion gallons of wasted fuel.  In 

addition, congestion diminished travel time reliability, thus drivers had to build buffer 

time into their trips to avoid being late.   In fact, to ensure being on time for an important 

trip that would only take twenty minutes under free flow conditions, drivers had to allot 

an extra forty minutes of travel time (Schrank et al. 2012). 

 About half of all traffic congestion is caused by temporary disruptions that reduce 

the roadway capacity.  These include incidents (25% of congestion), work zones (10% of 

congestion) and weather (15% of congestion) (Cambridge Systematics 2005).  These 

non-recurring events dramatically reduce the reliability of the entire transportation system 

as they occur irregularly and are unexpected by drivers (FHWA 2011).  The sources of 

congestion are shown in Figure 1.1. 

 
Figure 1.1 Sources of congestion. 
Source: http://www.ops.fhwa.dot.gov/aboutus/opstory.htm 
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The Federal Highway Administration lists several strategies to reduce congestion 

and improve travel time reliability. These include the provision of traveler information.  

This can be accomplished through traveler information telephone services and travel time 

message signs.  Also, they cite Section 1201 of the Safe, Accountable, Flexible, Efficient 

Transportation Equity Act: A Legacy for Users (SAFETEA-LU) which calls for the 

establishment of “a real-time system management information program to provide, in all 

States, the capability to monitor, in real-time, the traffic and travel conditions of the 

major highways of the United States and to share that information…” (FHWA 2011). 

There has been an increase in the deployment of intelligent transportation systems 

that form the basis for real-time management of traffic on freeways including real-time 

traffic data collection technologies and dynamic message signs (DMS).  The percentage 

of freeway miles with real-time data collection technologies increased 37% from year 

2000 to year 2010.  Also, the number of DMS deployed increased by 2,400 over the same 

time period.   Figure 1.1 below illustrates these trends with the percentage of freeway 

miles on the left side y-axis and the number of DMS deployed on the right side y-axis 

(Gordon 2011). 
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Figure 1.2 Freeway management deployment indicators. 
 

Source: http://www.itsdeployment.its.dot.gov/FM.aspx 

 

Data collection technologies can be categorized into two groups (Hagemann et al. 

2010).  The first group is point based sensors which historically have been used for 

highway data collection. These include loop detectors, microwave radar, and video image 

processing.  These sensors detect anonymous vehicles’ speeds which are then converted 

to travel time data by assuming the speed is constant for a freeway segment.  Inductive 

loops have been the primary highway data collection devices since their inception in the 

1960s.  However, new technologies are now emerging and are becoming more widely 

used.  Path based sensors were introduced in the mid-1990s as an alternative technology.  

These devices record when a probe vehicle reaches the sensor location and thus the probe 

vehicle’s travel time can be calculated by comparing its time stamps at different 

locations.  These include Bluetooth, automatic vehicle identification (AVI) sensors, toll 

tag readers, and GPS.  Path based sensors’ market share has been increasing; it went from 
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17% in 2004 to 37% in 2010 (RITA 2011).  They are an improvement over point based 

sensors because they require less infrastructure investment and generate more direct 

travel time data (Hagemann et al. 2010). In addition, they are less expensive.  To 

illustrate, the lifecycle cost for a 6 lane highway in 2012 dollars, including capital, 

maintenance, and operations costs, of an inductive loop detection system is $239,995  

whereas it is $133,461 for the the path based sensor system TRANSMIT (Mouskos 

1998).   

 As the use of path based sensor technologies continues to grow there is a need for 

understanding how to best achieve accurate travel time predictions from their data.  This 

includes their optimal sensor spacing.  As non-recurring congestion has a great negative 

impact on travel time reliability and incidents represent the largest portion of non-

recurring congestion, it is very desirable to optimize path based sensor spacing under 

incident conditions. 

1.2 Problem Statement 

Traffic incidents represent the worst case scenario for vehicle travel time prediction 

because roadway conditions transition when the incident occurs and again when the 

incident is cleared (Bertini 2007).  To assist roadway users trying to determine their 

travel times, path based sensors can be deployed on the roadway to collect real-time 

travel information during the incidents.  The real-time travel information is then provided 

to the users as they approach the roadway, by various means such as dynamic message 

signs.  The accuracy of this information in terms of representing future travel times is 

dependent not only on the sensor spacing but also on the roadway characteristics and 

incident characteristics.  Therefore, understanding the relationship between the accuracy 
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and different variables is necessary to optimize the sensor spacing on a freeway segment.    

In addition, because incidents occur at different times of the day, have varying durations, 

occur at different locations, and cause different capacity reductions depending on the 

severity of the incident, the sensor spacing cannot be chosen just based on considering 

one incident scenario.  Instead, multiple incident scenarios, and each of their related 

function of travel time prediction error by sensor spacing, need to be taken into account 

along with the probability of each occurring.   

Although much research has been conducted to determine the optimal sensor 

spacing of point based sensors, the results cannot be applied to path based sensors 

because the sensors operate differently.  One key difference is that point based sensors 

record speeds and path based sensors record travel times.  Also, path based sensors work 

in pairs and point based sensors can produce results independent of each other. 

Furthermore, while point based sensors detect all vehicles on the roadway, path based 

sensors detect only those equipped with in-vehicle sensor technology such as Bluetooth 

devices or toll tags. 

Research that has been conducted on the optimal spacing of path based sensors 

has not considered their performance during incidents.  Instead, they focus on the probe 

sample size achieved, the origin-destination pairs covered by the sensors, or the assumed 

travel time distribution for the roadways. 

It is desirable to develop an analytical model to optimize path based sensor 

spacing for a freeway segment such that the average travel time prediction error during 

incidents is minimized.  Such a model can reliably evaluate various sensor spacing 
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considering different incident characteristics and can determine the optimal sensor 

spacing realizing that the type of incident that affects one freeway segment varies.  

1.3 Objective and Work Scope 

The objective of this research is to optimize path based sensor spacing on a freeway 

segment such that the average travel time prediction error per vehicle during traffic 

incidents is minimized.  To formulate the optimal solution, different incident scenarios 

that occur on the freeway segment are taken into consideration, along with the probability 

of each scenario occurring.   

To reach this objective a set of tasks has been compiled for this research project.  

These are as follows: 

 Set the objective of the study.  

 Conduct a literature review of previous studies regarding travel time 

prediction and traffic incidents.   

 

 Model the travel time prediction error produced by path based sensors 

during transitions in the traffic state of a freeway segment.  The transitions 

include one from an uncongested traffic state to a congested traffic state 

and vice versa.   

 

 Develop an algorithm to optimize path based sensor spacing considering 

the range of possible incident locations, clearance times, and v/c ratios. 

 

 Conduct a numerical analysis of both the model and algorithm.  This 

includes comparing the modeled error with the real-world error, applying 

the algorithm to a case study, calculating the marginal benefit of additional 

sensors, and performing a sensitivity analysis. 

 

 Summarize the findings from the research and suggest future applications 

of it. 

 

Figure 1.3 below illustrates the work scope. 
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Figure 1.3 Work scope. 

1.4 Methodology 

In order to optimize sensor spacing for a freeway segment, a mathematical model and a 

solution algorithm are developed.  First, the relationship between sensor spacing and 

travel time prediction error during an incident is modeled.  Then, a step procedure to 

determine the optimal sensor spacing is determined.  

The mathematical model applies macroscopic traffic principles and shock wave 

theory.  The decision variables of the macroscopic model include the uncongested and 
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congested traffic flows and vehicle speeds and the incident’s location and duration.  Also 

included are the freeway segment length and sensor spacing.  The outputs of the model 

are the relationship between vehicle travel time and vehicle departure time and the 

relationship between predicted travel time and vehicle departure time.  By comparing 

these relationships, the travel time prediction error by departure time is calculated along 

with the average error for the incident study period. 

The solution algorithm consists of four main steps.  First, historical incident data 

is gathered including the frequency of each incident occurring. Second, the mathematical 

model is applied to determine the average travel time prediction error by sensor spacing 

for each of the historical incidents.  Third, the weighted average error by sensor spacing 

is calculated, which considers all the possible incidents and the frequency of each 

occurring.  Fourth, the optimal spacing is chosen which minimizes the weighted average 

error.   

1.5 Dissertation Organization 

This dissertation is organized into six chapters.  Chapter 1 explains the motivation for this 

dissertation along with its objectives and work scope.  Chapter 2 summarizes the efforts 

of previous studies related to various aspects of vehicle travel time prediction and optimal 

sensor spacing.  Chapter 3 models the travel time prediction error by sensor spacing that 

occurs during the passage of shock waves on a freeway segment.  Chapter 4 provides a 

methodology to optimize the sensor spacing.  Chapter 5 numerically analyses the model 

developed in Chapter 3, and the methodology developed in Chapter 4, through a real-

world scenario and a case study.  Finally, Chapter 6 summarizes the finding from the 

dissertation and suggests future applications for it. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Introduction 

The purpose of the literature review is to provide the necessary background information 

to develop the models and the methodology presented in this proposal.  It is divided into 

seven sections.  In the first section macroscopic traffic flow theory is discussed.   The 

second section provides information on different types of sensors for travel time data 

collection.  The third section outlines different types of travel time predictions and their 

benefits.  The fourth section reviews methodologies that have been developed to optimize 

the spacing or allocation of sensors to freeway segments.  The fifth section is on the 

relationship between probe sample size and its effect on travel time prediction.  The sixth 

section summarizes incident duration prediction models.  The last section provides 

guidelines on using traffic microscopic simulation software. 

2.2 Macroscopic Traffic Flow Theory for Transitions in Traffic States 

Traffic stream parameters fall into two broad categories: macroscopic and microscopic.  

Macroscopic parameters describe the traffic stream as a whole and there are three 

principle parameters.  The first is volume, or rate of flow, and it is measured in vehicles 

per hour (vph).  The second is speed and it is measured in miles per hour (mph).  The 

third is density and it is measured in vehicles per mile (vpm).  On the other hand, 

microscopic parameters describe the behavior of individual vehicles or pairs of vehicles 

within the traffic stream.  Examples of microscopic parameters include the speed of 

individual vehicles (mph), headway (i.e., the time interval between successive vehicles as
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 they pass a point) (seconds), and spacing (i.e., the distance between successive vehicles 

in a traffic lane) (ft) (Roess et al. 2004).  

The fundamental hypothesis of macroscopic traffic flow theory states that at any 

point on a road the flow is a function of the density.  It also states that the speed equals 

the flow divided by the density.  Lighthill and Whitham described the traffic flow 

function as a single curve (a parabola) in the flow versus density plane.  Every point 

along the curve represents a possible traffic state the roadway can be in.  The exact values 

of the function are particular to the roadway and can vary by time of day.  However, a 

flow rate of zero vph always occurs at both a density of zero vph and at a very high 

density, called a jam density.  The jam density occurs when there are so many vehicles on 

the roadway that motion stops.  Between these two points, at the vertex of the curve, is 

the critical density where the maximum flow occurs.  The traffic states that are 

represented on points of the curve that fall to the left of the critical density are classified 

as uncongested while traffic states that fall to the right of the critical density are classified 

as congested (Lighthill and Whitham 1955). 

 Newell (1993) expanded on the traffic flow function in Lighthill and Whitham 

(1955) by proposing a simplified, triangular shaped traffic flow function.  In this 

research, the flow-density function was described as linearly increasing from the origin to 

the critical density and then linearly decreasing to the jam density.  Windover and 

Cassidy (2001) empirically verified that this simplification of the function is reasonably 

accurate. 

 Shock wave analysis for transportation facilities was published by Richards 

(1955).  It has been expanded upon in other research including Lighthill and Whitham 
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(1955) and Messer et al. (1973) who used shock wave analysis and the Greenshields’ 

macroscopic traffic flow models to predict individual travel time and trajectories during a 

traffic incident.  Also, Wirasinghe (1978) determined traffic delay from shock waves and 

May (1990) explained traffic flow fundamentals and shock waves. 

According to the rules of macroscopic traffic dynamics, when the traffic state of a 

roadway changes, such as from one point on the flow-density function to another, a clear 

boundary is established in the time-space plane that demarks the old and new traffic 

states.  This boundary is referred to as a shock wave.  For example, when an incident 

occurs that blocks a lane, it reduces the available capacity.  This causes a reduction in the 

traffic flow and an increase in the traffic density.  The change in traffic state is not static.  

Instead, it changes over space and time.  The reduced flow and increased density will not 

only occur at the incident location, but as time progresses will spread upstream of the 

incident location (May 1990).   

 A shock wave’s characteristics include its speed, direction of travel, and whether 

its propagation results in an increase or decrease in the length of roadway that is 

congested.  These characteristics can be visualized with a diagram of the flow-density 

function by a line drawn from the point on the flow-density function that represents the 

old traffic state to the point that represents the new traffic state.  First, the slope of this 

line equals the shock wave speed, and therefore the speed equals the change in flow 

divided by the change in density.  Second, the drawn line can have either a positive slope, 

negative slope, or a slope equal to zero.  A positive slope means the wave will travel 

upstream, in the direction of traffic.  A negative slope means the wave will travel 

downstream, in the direction against traffic.  A slope equal to zero means the wave is 
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stationary.  Third, if the traffic state changes from being uncongested to congested then 

the propagation of the shock wave results in an increase in the congested portion of the 

roadway.  In contrast, if the traffic state changes from being congested to uncongested 

then the propagation of the shock wave results in a decrease in the congested portion of 

the roadway (May 1990).   

 A naming convention for the types of shock waves has been established in the 

literature.  It is based on the waves’ characteristics and is summarized in the table below. 

 

Table 2.1 Shock Wave Naming Convention 

  Wave’s direction of travel 

  Downstream  

(with traffic) 

Upstream  

(against traffic) 

Change in 

the traffic 

state 

Uncongested 

to congested 
forward shock wave 

backward shock 

wave 

Congested to 

uncongested 

forward recovery 

wave 

backward recovery 

wave 

 

Source: (May 1990) 

 

In addition, a frontal stationary shock wave indicates a wave that is at the downstream 

edge of a congested region and remains at the same position in space.  A rear stationary 

shock wave indicates a wave that is at the upstream edge of a congested region and 

remains at the same position in space.  

Nam and Drew (1998) analyzed shock wave methods as a macroscopic tool.  The 

study was carried out by analyzing dynamic mechanisms of traffic under congestion 

based on the principle of conservation of vehicles. Study results indicated that the shock 

wave method was able to estimate both delay and travel time that satisfied the principle 
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of conservation of vehicles.  However, it did so by requiring an assumption of constant 

flows and densities in traffic streams, which is not an adequate representation of reality. 

Lee and Volpatti (2010) developed a methodology to calculate shock wave speed 

from roadway data (i.e., speed, volume, and occupancy) collected by loop detectors.  The 

collected data was averaged on a 1-minute basis to eliminate large fluctuations of the 

values.  It was then used to classify the traffic conditions as either uncongested or 

congested based on whether the roadway density (calculated by dividing the volume data 

by the speed data) was less than or greater than the critical density.  Next, volume and 

density data for a 10 minute time period were plotted.  Finally, the shock wave speed was 

predicted by measuring the slope of a line that best fit to the observed data points.   The 

methodology was applied to data collected by loop detectors placed approximately .31 

miles apart on the Gardiner Expressway in Toronto, Canada.    It was found that a linear 

function could be fit to the data more objectively using least-square linear regression.  

Also, in some cases, although the volume and density did not consistently increase or 

decrease during the entire 10-minute study period, there were two distinct clusters of 

points that were assumed to be two different steady-state traffic states.  The average 

volume and density were calculated for each cluster as a representative point and the 

slope of a line connecting these representative points was measured to determine the 

shock wave speed.  There were some instances where no specific pattern of changes in 

volume and density was noticeable so it was concluded that a shock wave did not exist 

for these instances. 
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2.3  Traffic Sensors 

Real time traffic data is collected with two categories of traffic surveillance technologies.  

The first is point based sensors which are used to measure the speeds of vehicles at the 

locations of the sensors along a roadway.  Travel times are then calculated by assuming 

the speed is representative for the entire roadway segment.  For segments with high 

variances of speed over their length, the error can be significant.  However, a benefit is 

that these technologies do not require any specific vehicle to be sampled more than once 

and the sensors collect data from 100% of the vehicles.  The second is path based sensors 

which record data from vehicles equipped with technology that transmits unique vehicle 

identification numbers such as E-ZPass tags, GPS units, and Bluetooth enabled devices.  

When one of these vehicles is detected by a path based sensor, the sensor records its 

unique identification number as well as the time at which the sensor detects it.  By 

comparing data from an upstream sensor to a downstream sensor, the travel times of the 

vehicles are determined.  Unlike the point based sensors, data is not collected from 100% 

of the vehicles on the roadway (Dowling Associates 1999).    

A survey was conducted in August 2009 of state Department of Transportations’ 

(DOTs) application of point and path based sensors on freeways and signalized arterials.  

A request to complete the survey was e-mailed to twenty-six members (state DOTs) of 

the Federal Highway Administration’s Traffic Management Center Pool-Funded study.  

In addition, although not a member, the Ohio State DOT was included because it deploys 

point based sensors statewide.  The survey had 16 respondents (59% response rate with 

32% coverage of all states).  The majority of the states surveyed, 9 out of 16, do not use 

path based sensors on freeways as of the time this survey was conducted.  None of them 
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used path based sensors on signalized arterials.  The survey also found that 9 out of 16 

state DOTs space their point based sensors every half mile.  However, some noted that a 

greater spacing of 1 to 2 miles may be applied for less congested areas.  Also, 4 of the 

states use a spacing of less than a half mile.  There is no consensus of point based sensor 

spacing on arterials (Chien and Spasovic 2010). 

 Haghani et al. (2010) evaluated blue tooth sensors, a type of path based sensors, 

for travel time estimation.  Each Bluetooth enabled device has a Machine Access Control 

address.  The devices continuously transmit their addresses for the purpose of identifying 

another device with which to communicate.  A Bluetooth traffic monitoring system 

compares the time stamps of matching Bluetooth wireless networks addresses that are 

detected at successive stations.  This data provides a measure of travel time and space 

mean speed.  The maximum error in the estimates resulting from local inaccuracies in 

readings at each sensor is a function of the coverage radius of the sensors, the average 

traffic speed, error in travel time estimates, and the actual travel time between a pair of 

sensors.  By comparing the accuracy of speed estimates obtained through the use of 

Bluetooth sensors and floating car data collected in Maryland and Northern Virginia, it 

was found that the maximum error in speed estimates will be less on longer segments. 

The research concluded that using Bluetooth sensors on freeway segments less than one 

mile long may deteriorate the quality of travel time estimates.  Also, the sensors should 

not be deployed on highway segments that are parallel to arterials or that have both 

express and local lanes, as travel time from the roads will get mixed due to the signal 

radius.  In addition, the average Bluetooth sensors sample between 2 to 3.4% of the 

vehicles in the traffic stream. 
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Mirchandani et al. (2009) described the use of toll tags as path based sensors.  The 

use of automatic toll collection technologies to collect fees on toll roads is increasing.  

Data is collected from vehicles equipped with toll tags as they pass toll tag readers that 

are located either overhead or on the side of the road.  The technologies collect data on 

the travel times from the point when the vehicle is first detected to the point it is next 

detected and can also collect volume.    

Kim et al. (2011) and Liu et al. (2012) evaluated the accuracy of various travel 

time estimation technologies.  These technologies included TRANSMIT readers, 

Bluetooth sensors, and INRIX.  The TRANSMIT system uses transponder readers 

installed at the roadside that detect electronic toll-collection tags inside passing vehicles. 

Bluetooth sensors, also installed at the roadside, collect travel time of vehicles equipped 

with Bluetooth devices.  The INRIX system collects speed information from trucks, 

delivery vans, and other fleet vehicles equipped with GPS devices as well as consumer 

cellular GPS-based devices.  It integrates this data with fixed sensor data.  Data collected 

by these three technologies was compared to data collected by probe vehicles.  The probe 

vehicle data was assumed to be accurate because the drivers were instructed to travel at 

the average speed of the traffic stream by passing as many vehicles as passed them. Only 

two probe vehicles were dispatched per 15-minute study time interval.  The study 

location was a 41-mile corridor of I-287 in central New Jersey and data was collected 

from 7:00 am to 10:00 am over several days.  The study results indicated that the 

accuracy of the speed estimates by Bluetooth and TRANSMIT outperformed that with 

INRIX data.  But, the accuracy of speeds reported by TRANSMIT was slightly worse 

under non-recurring congestion; and, link length did not affect the accuracy. 
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2.4 Travel Time Prediction and its Benefits 

This section presents research on the benefits of travel time prediction.  These benefits 

include travel time savings and improved on-time reliability.  These findings are 

important because they can be used to convert travel time prediction error, which is in 

units of time (hr), into units of cost ($). 

The objective of the study by Toledo and Beinhaker (2006) was to evaluate the 

potential travel time savings from Advanced Traveler Information Services (ATIS) which 

provide drivers with travel time and routing information.  To begin their study, they 

classified different route guidance methods based on two characteristics.  The first 

characteristic is the nature of the data and prediction method used to generate routing 

information.  Based on the first characteristic, they classified route guidance methods into 

four levels of sophistication and computational requirements: static, historic, 

instantaneous, and predictive.   For the first level, static, route guidance is based on static 

information about the network, such as distances, speed limits, and classification of road 

facility types.  For the second level, historic, route guidance is based on travel times 

derived from a historical database that represents past traffic conditions.  For the third 

level, instantaneous, route guidance is based on real-time traffic information collected in 

the field and the data analysis is done in real time.  The information provides a snapshot 

of the current conditions in the network.  For the fourth level, predictive, route guidance 

is based on predictions of future traffic conditions, which are made in real time.  Both 

real time traffic data is required along with models which predict short-term future traffic 

conditions based on current conditions.  The second characteristic to classify the different 

route guidance methods is the timing of when the route guidance information is provided 
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to drivers.  It can either be provided pre trip, once at the beginning of the trip.  Or, it can 

be provided en-route, the information is provided during the trip every time new 

information is available. 

The different route guidance methods were tested with real world traffic data 

collected from inductive loop detectors on the Los Angeles highway network.  The 

network is comprised of 51 nodes and 162 links.  There are three important assumptions 

as part of the methodology to test the methods.  First, the predictive method is assumed to 

provide the actual, shortest route travel time possible.  Second, it was assumed that the 

routes chosen by drivers in response to travel time information did not affect traffic 

conditions due to the small market penetration of ATIS.  Third, the collected traffic data 

is error free.  (This assumption is relaxed in the sensitivity analysis.)   

The results of Toledo and Beinhaker’s study indicated that ATIS offer potential 

travel time savings of up to 14%, compared to drivers only having only static 

information.  The results were also consistent with the hierarchy of the information 

levels.  For example, considering both a.m. and p.m. peak trips, the travel time savings, 

compared to drivers only having only static information, for the historical information 

level, instantaneous provided pre-trip level, instantaneous provided en-route level, and 

predictive level were 1.3%, 5.5%, 9.1%, and 11.8%, respectively.  Also, the savings were 

generally greater for the p.m. peak than the a.m. peak because the p.m. peak was more 

congested.  Another finding was that the various ATIS levels significantly reduce travel 

time variability (in percentage terms compared to the static information).  In fact, the 

impact on travel time variability was greater than that on the average travel time savings.  

As with travel times, the impact of the information increased with the sophistication of 
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the information provided and is larger for the p.m. peak period.  As stated previously, the 

assumption of error free collected data was studied.  To do this, random errors were 

introduced into the travel time information that is used to route drivers. The inaccuracy 

affected travel times in all information levels similarly and on average reduced travel 

time savings by 0.5%.  Furthermore, the error in the information did not have a 

significant impact on variation of travel times.  

Wunderlich et al. (2001) studied the benefits of incorporating ATIS use into a 

traveler’s regular commuting pattern.  The study was motivated by numerous previous 

field experiments and simulation studies which concluded that ATIS users experience 

little or no actual reduction in their in-vehicle travel time.  It was shown that, even though 

over time the users realize only marginally reduced in-vehicle travel time, they do realize 

substantial time management benefits from improved on-time reliability, reduced early 

and late schedule delay (defined as time wasted by arriving too early and total 

accumulated lateness, respectively), and more trip predictability.  Drivers that benefit 

from this include truckers who are delivering time sensitive materials and commuters 

who need to make daycare pickup requirements on their work-to-home trips.  This 

information also reduces commuter stress.  The methodology employed the Heuristic On-

line Web-Linked Arrival Time Estimator process, developed by Mitretek, which utilizes 

the concept of a simulated yoked trial.  A simulated yoked trial consists of two steps; in 

the first, traveler path and time of departure choices are established for a traveler who 

utilizes ATIS and one who does not.  The user relies on the real-time estimates provided 

by the traveler information service and adapts his trip timing and route choice on a daily 

basis.  The non-user is assumed to have estimates of average link travel times during the 
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commute period from prior experience in the network and selects the faster option as the 

habitual route and then budgets in additional time to account for expected day-to-day 

travel time variability to establish a habitual trip start time.  In the second step, travel 

times and on-time performance for each traveler are reconstructed based on the trip 

timing and routes chosen in the first step.  According to the authors, a critical conceptual 

difference between the simulated yoked study and previous ATIS field evaluations is that 

the paired trials are organized around the principle of destination and target time of 

arrival rather than on simultaneous release from trip origin.  The use of target arrival 

times allows for the quantifiable reliability measures to be defined and tracked along with 

in-vehicle travel time.  By applying their methodology to a real-life case study consisting 

of freeway, expressway, and major arterial facilities they drew the following conclusions: 

peak-period commuters who do not use ATIS were three to six times more likely to 

arrive late compared to counterparts who use it; cases where it clearly benefits the user 

outweighed cases where it clearly disadvantages the user by five to one; users in peak 

periods are more frequently on-time than conservative non-users, yet they experience 

only two-thirds as much early schedule delay as non-users.  The late shock, the surprise 

of arriving late, is reduced by 81% through ATIS use. 

The value of travel time delay was provided in the 2011 Urban Mobility Report 

by Schrank et al. (2011).  The value was estimated to be $16 per hour of person travel 

and $88 per hour of truck time.  Another useful statistic included was that the average 

number of persons in each vehicle during peak period travel is 1.25. 
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In conclusion, accurate travel time prediction benefits travelers.  Primarily, it 

reduces hours spent in vehicles and improves on time reliability.  When this time is 

converted into cost, it reduces cost also. 

2.5 Methodologies for Locating Sensors 

Previous research has presented different methodologies for determining the number and 

location of sensors.  The research can be divided into two groups: ones that focus on 

point based sensors and ones that focus on path based sensors.  Point based sensors 

record the speed of all vehicles that pass their location on a roadway while path based 

sensors record the time and identification numbers of vehicles that pass them that are 

equipped with detectable devices (i.e., GPS, toll tags, and Bluetooth).  In this section of 

the literature review, research on point based sensors is presented first followed by 

research on path based sensors.   

 In order to optimize point based sensor density for a network with travel time 

predictions provided to drivers via a route guidance system, Chan and Lam (2002) 

proposed a bi-level programming model.  The objective of the upper level problem was 

to maximize the precision of the travel time information and to minimize the construction 

and social costs of the speed detectors.  Social costs included the installation and 

operations of the detectors.  Many assumptions were made as part of the methodology.  

First, it was assumed that the predicted travel time error dispersion function was a 

function of three things: speed detector density, volume to capacity ratio, and the social 

cost of the speed detectors.  Second, it was also assumed that the variance of the 

predicted travel time error is a nonlinear decreasing function of the speed detector 

density.  Another assumption is that more expensive sensor technology is more accurate.  
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A final assumption was that as the volume to capacity ratio increased, the variation of 

individual actual travel time on a roadway increases.  The methodology was 

demonstrated with an example network of the Tuen Mun road corridor in Hong Kong.  It 

was found that as origin-destination (O-D) demand increased, the point based sensor 

detector density required increased because larger O-D demand resulted in larger 

segment travel time and larger measured travel time error variance. 

Coifman (2002) presented a methodology for estimating link travel time with data 

collected by only one point based sensor.  The sensor can be located at either the 

downstream or upstream end of the link.  The collected data (vehicle headway and speed) 

was used to estimate a vehicle’s trajectory at the sensor location.  In addition, the 

methodology applied macroscopic traffic flow theory including a triangular flow density 

relationship and shock wave theory.  It is assumed that the speeds of shock waves that 

occur during the study time period are known.  The sensor data and shock wave speed 

information were used to estimate vehicles’ trajectories on the link.  A case study was 

presented of an 1800 ft. freeway link that experienced only free flow conditions during 

the study period.  The results showed that the methodology can be applied to estimate 

travel time within 10% of the true travel time, on average.  It was noted that the 

methodology should not be applied under recurring bottlenecks or incident conditions.   

Liu et al. (2006) proposed rules and an iterative procedure for locating a limited 

number of point based sensors for a freeway corridor for which the recurring conditions 

are known.  Travel time estimation performance was compared using different algorithms 

under various sensor location plans.  The following rules for locating a limited number of 

sensors were proposed.  First, if less than 50% of a segment is covered by the queue, then 
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divide the roadway into its free flow part and its congested part.  Second, if more than 

50% of the segment is covered by the queue, then the midpoint of the queue is the 

preferred sensor location.  Third, for the part of the segment under free flow conditions, 

two end sensors will be enough to control estimation accuracy.  Fourth, for segments 

completely covered with a queue, an even sensor spacing is preferable.  Based on these 

rules, the study provided an iterative procedure for locating detectors.  The rules were 

tested to determine the locations for ten sensors on a 20-mile long segment of the major 

commuting corridor of I-70 in Baltimore, Maryland.  When the sensors were located 

according to the rules, the resulting average error was 68 seconds.  In comparison, 

deploying the ten sensors at an even spacing resulted in an average error of 139 seconds 

and deploying sensors every 3000 ft resulted in an average error of 73 seconds. 

Bartin et al. (2006) provided a methodology for determining the number and 

location of point based sensors for a given route with known traffic characteristics.  The 

objective was to minimize travel time estimation error.  The problem of determining the 

optimal number and location of sensors was described as a space discretization problem.  

The idea was to represent space-time trajectory in steps of a small interval instead of as a 

continuous space time trajectory.  The space discretization problem was converted into a 

common clustering problem by assuming a uniform speed trajectory for each vehicle over 

space.  The methodology was demonstrated with a hypothetical 12.5-mile freeway route 

modeled with PARAMICS, a microscopic simulation software.  It was found that the 

relative gain in increasing the number of sensors decreases as the number of sensors 

increases and that after seven sensors there is no more gain. 
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Edara et al. (2008) developed a methodology based on a genetic algorithm.  It 

identified the optimal locations of a finite set of point based sensors on a freeway 

corridor, which minimized predicted travel time error subject to available capital and 

maintenance budget constraints.  Through the application of the methodology to case 

studies in Northern Virginia and Richmond, the following conclusions were drawn: given 

that traffic conditions change over time, detector placement will require periodic 

validation and possibly modification to ensure continued accuracy, detector density needs 

to be higher in congested areas, and detectors are required at merge areas near entrance 

ramps, especially when the acceleration lanes are short. 

Ban et al. (2009) presented a methodology in which the problem of optimizing the 

locations of point based sensors is formulated as a dynamic programming (DP) model by 

first discretizing both time and space.  In the methodology, it is assumed historic ground 

truth measurements are known, including the locations of recurring bottlenecks and the 

locations that experience free flow conditions.  It is also assumed that some vehicle 

trajectories are available and travel times are calculated using aggregated sensor speeds.  

The proposed DP model and solution algorithm were illustrated with a case study.  

Vehicle trajectory data was collected from probe vehicles equipped with GPS-enabled 

cellular phones, obtained from the Mobile Century field experiment performed on 5.5 

miles of I-880 in the San Francisco Bay Area, California.  The probe vehicles achieved a 

2% to 5% penetration rate on the highway throughout the day.  The case studies showed 

that optimal sensor placement dictates multiple sensors in bottleneck areas and less in 

free flow areas, where one or two sensors are usually sufficient per free flow area.  Also, 

the decrease in travel time estimation error is monotonic as the number of sensors 
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increases. Specifically, for an objective value of travel time error less than 80 seconds 

(which represents about 13% error since the travel time of the entire route is about ten 

minutes) eighteen sensors for the segment are required.   

Bertini (2007) presented a methodology to optimize point based sensor spacing 

that applied first principles of traffic flow.  Specifically, the methodology considered the 

travel time prediction error that resulted when a shock wave passed from the downstream 

end to the upstream end of a freeway segment.    It was asserted that the passage of a 

shock wave represents the worst case scenario for travel time prediction and, therefore, 

the methodology can be interpreted as a form of robust decision analysis.  In the model, 

sensors are evenly spaced and are placed with the midpoint method (i.e., the sensor is 

located at the middle of the segment).  Also, vehicles receive their predicted travel times 

as they enter the segment, such as via dynamic message sign.  There were two possible 

travel times provided: one that reflected a uniform, uncongested speed and one that 

reflected a uniform, congested speed.   A change from one travel time prediction to the 

other was initiated when the shock wave passed the farthest downstream sensor.  (In the 

case of a backward shock wave, the prediction changed from uncongested to congested 

time.  In the case of a backward recovery wave, the opposite occurred.)  Thus, shorter 

sensor spacing decreased the time from when a shock wave entered the segment until the 

time a change was made in the travel time prediction.  The error index considered the 

magnitude of under and over prediction error in vehicle hours traveled (VHT).  Under 

prediction was considered worse for drivers and thus had a larger weight than over 

prediction.  In the case study, a hypothetical 1-mile freeway segment was assumed, along 

with the values for uncongested and congested traffic flow, speed, and shock wave 
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speeds.  The sensor spacing was enumerated and the error was calculated for each of the 

spacings.  During the passage of a backward shock wave, it was found that a shorter 

sensor spacing reduced the under prediction error but increased the over prediction error.  

This is because the shorter spacing decreased the amount of time until the shock wave 

was detected.  Thus it decreased the amount of time there are uncongested predictions 

and it increased the amount of time there are congested predictions.  In contrast, during 

the passage of a backward recovery wave, it was found that a shorter sensor spacing 

decreased the over prediction error but increased the under prediction error.  This is 

because the shorter spacing decreased the amount of time until the shock wave was 

detected.  Thus it decreased the amount of time there are congested predictions and it 

increased the amount of time there are uncongested predictions.  When the results from 

both waves were taken into account and the errors were weighted, the optimal spacing 

was 0.33 mile.  Future research listed included determining where to optimally place 

sensors, including in relation to known bottlenecks and incident locations, and the use of 

other travel time algorithms besides the midpoint method. 

Bertini and Lovell (2009) expand upon the research of Bertini (2007).  First, the 

same methodology was applied to optimize sensor spacing when a forward recovery 

wave passed from the upstream end to the downstream end of a segment.  The results 

showed that to minimize travel time over prediction, shorter sensor spacing is better.  

However, to minimize under prediction, spacing equal to the segment length is optimal.  

In addition, the effect of locating sensors at the downstream end of a link, instead of at 

the midpoint, was studied.  If a backward shock wave passes through the segment, there 
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is less travel time under prediction but a greater tendency toward over prediction with this 

location. 

The methodologies presented in Bertini (2007) and Bertini and Lovell (2009) 

were improved in Feng et al. (2010).  One way this was accomplished was that travel 

time predictions provided to vehicles were modeled as a function of the sensor density.  

Each time the shock wave reached each sensor on the segment, the travel time prediction 

was recalculated.  With this new prediction methodology, the error results changed for 

the passage of a backward shock wave; both under and over prediction error decreased as 

sensor density increased.  Second, the methodology for travel time estimation presented 

in Coifman (2002) was applied to calculate estimation error during the passage of a 

single, backward shock wave.  The sensor spacing was varied.  The freeway segments’ 

traffic states (e.g., uncongested or congested) and the shock wave were modeled as in the 

previous research.  The results indicated that if sensors are located at the downstream end 

of each link, only under estimation occurred.  If sensors are located at the upstream end 

of each link, there is no estimation error.  If sensors are located at the midpoint of each 

link, there is no overestimated error and underestimated error linearly decreases as sensor 

density increases.  It was noted that these results are not applicable for travel time 

estimation error during the passage of a backward or forward recovery wave.  Third, they 

presented a methodology to optimize sensor spacing so that the total cost of 

prediction/estimation error and sensor construction cost is minimized.  Parameter values 

were assumed for the cost coefficients of under predicted/underestimated and over 

predicted/overestimated total travel time error ($/vehicle hour).  It was noted that the 

values of the cost coefficients vary according to the diversity among trips at different 
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times of day, trip duration, and trip purpose.  Also, a parameter value was assumed for 

the sensor cost per shock wave ($/sensor/shock wave).  It was defined as the construction 

cost and maintenance cost of each sensor in its life cycle divided by number of shock 

waves over this time period.  In addition, the total cost objective function was constrained 

by drivers’ tolerance of relative travel time estimation error.  The results indicated that 

the optimal sensor spacing is independent of link length.  It only depends on two ratios: 

the cost coefficient of overestimated total travel time error to sensor cost per shock wave 

and the cost coefficient of under estimated total travel time error to the cost coefficient of 

overestimated total travel time error.  

Danczyk and Liu (2011) developed a methodology to optimize the allocation of 

point sensors along a one-directional corridor for accurate performance monitoring 

purposes, subject to resource budgetary constraints.  In the methodology, a freeway 

corridor is divided into a number of cells, where each cell is designated as a potential site 

to place a sensor, and the sensors are placed in the middle of the cell. To solve the 

nonlinear program for at which sites to place sensors, they transformed the problem into 

an equivalent mixed-integer linear model.  Then, a customized Branch-and-Bound 

technique was proposed to solve the resource constrained shortest path problem.  A case 

study was conducted on a 7.2-mile strip of I-94 in Minneapolis, Minnesota with real data 

captured during the PM peak period.  Seven sensors were needed to achieve a relative 

travel time error of less than 0.5%.  Also, the proposed model allocated sensors more 

accurately than a uniform-spacing configuration.  A budgetary constraint was not 

considered in the case study.   
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 More recently, researchers have been developing methodologies to determine 

optimal spacing of path based sensors.  The following research summarizes many 

important findings. 

Sherali et al. (2006) developed an algorithm for optimally locating path based 

sensors by maximizing the benefit that would accrue from measuring travel times on a 

transportation network, subject to budgetary constraints.  The problem is formulated as a 

quadratic 0-1 optimization problem where the objective function parameters represent 

benefit factors that capture the relevance of measuring travel times as reflected by the 

demand and travel time variability along specified trips.   It is assumed that the benefit 

factor of providing the travel times for each link is known.  Also, in the methodology, it 

is assumed that the potential sensor locations are predetermined.  The algorithm was 

applied to determine the sensor locations for a 20-mile freeway in San Antonio, Texas.  It 

was found that the benefit of optimal sensor locations on a link had a positive relationship 

with the volume of demand and the variability of the link travel time.  The results showed 

that the relationship between the number of sensors and the total benefit exhibits an S-

curve behavior.  It first increased at an increasing rate and then displayed diminishing 

marginal returns.  For this study network, with just six optimally placed readers, the 

entire travel time variability in the network was nearly captured.   

Mirchandani and He (2008) applied two objective functions for path based sensor 

location optimization on a network.  The first objective was to locate a given number of 

sensors to maximize the total number of vehicle miles monitored.  Therefore, routes with 

higher flows and longer distances were favored.  The second objective was to maximize 

the utility of deploying sensors by placing them on routes with the greatest variance in 
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travel times and thus use the sensors to predict travel times.  The variances for each link 

were assumed to be already known and also constant for the study period.  It was also 

assumed that 10% of the network traffic flow acted as probe vehicles.  A key difference 

in the two objectives is that only one sensor per route is needed for the first but two 

sensors per route are needed for the second so that the path based travel times can be 

found.  A case study was provided to demonstrate the model for a network in Harris 

County, Texas which already had 27 tag readers installed on the sensor network.  The 

travel time variance on each link on the network was estimated assuming it was 

proportional to the travel time on that link.  The optimal locations for additional tag 

readers were solved for and the percent reduction in the total variance of the mean route 

travel times were calculated.  With an additional five, ten, and fifteen tag readers, the 

variance was reduced by 60%, 72%, and 79%, respectively. 

Mirchandani et al. (2009) expand upon Mirchandani and He (2008) by 

considering larger transportation networks for which optimization models are NP-hard 

and thus exact optimal solutions cannot be achieved in reasonable computation time.  To 

be able to approximately solve the problems in a reasonable amount of time, the 

methodology developed a two-stage heuristic.  In the first phase, a greedy construction 

heuristic was used to determine an initial solution.  Then, in the second phase, an 

exchange procedure was developed that improved the value of the objective function.  

The models were applied to a portion of the Harris County, Texas network to evaluate the 

performance of the heuristic approach and to compare it to the non-heuristic approach.  It 

was found that the difference between the optimal (found with CPLEX solver software) 

and the heuristic solution values were always small, showing that the heuristic was 
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efficient.  In addition, it was also found that when the number of links in the network was 

small, CPLEX was faster but as the number increased the heuristic was faster.  For 

example, for a scenario with 120 routes, the CPLEX computational time was 2.4 seconds 

while the heuristic computational time was 31 seconds.  But, for a scenario with 300 

routes, the CPLEX computational time was 14,360 seconds while the heuristic 

computational time was 988 seconds.   

Mazare et al. (2012) optimized both point based and path based sensor spacing for 

travel time estimation.  The accuracies of the estimates from the two types of sensors 

were compared.  The work was a case study that used experimental probe data obtained 

from the Mobile Century field experiment.  Study data was collected on one day on a 

stretch of the I-880 freeway.  Traffic conditions on that day included periods of 

uncongested conditions, recurring congestion, and non-recurring congestion (a traffic 

accident).  The experiment site was also covered with seventeen inductive loop detector 

stations.   The data collected by the sensors was combined with a mathematical traffic 

model in a highway traffic estimation algorithm using a data assimilation technique 

called ensemble Kalman filtering.  The results of the algorithm were compared against 

the true travel times experienced by drivers, obtained through license plate re-

identification.  A number of scenarios were created that considered various volumes of 

probe vehicles as well as different numbers of inductive loop detectors.  Three limitations 

of the methodology were noted.  First, due to privacy reasons, it was not possible to track 

probe vehicles and thus no continuous GPS records from probes were available for the 

estimation algorithm.  Second, the estimation algorithm did not directly estimate travel 

times.  Instead travel times are computed from the estimated velocity field assuming that 
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a vehicle travels at the mean speed reported in each cell (approximately 300m long).  

Third, the flow model required some historical flow information for calibration. The 

following four key results were found from the study.  First, dynamic travel time 

estimates can be achieved with less than 10% error when using a flow model with data 

assimilation, by using either inductive loop detector data, probe data, or a mixture of both 

inductive loop detector data and probe data.  Second, using data from more than eight 

inductive loop detector stations (average spacing 0.83 mi) did not improve the travel time 

estimation.  The error remained constant between 6-13% depending on the time of day, 

regardless of the added loop detectors.  Next, when sampling probe vehicles at a rate of 

127.5 vph with more than 2.54 path based sensors per mile, increasing the number of 

probe measurements with the addition of more probe vehicles or additional sensors 

caused only small travel time accuracy improvement.  Last, when combining loop 

detector data with probe vehicle data, better estimations were obtained, especially at low 

probe vehicle penetration rates. 

2.6 Probe Sample Size  

Path based sensors record data from probe vehicles.  Probe vehicles are equipped with 

detectable devices such as GPS, toll tags, and Bluetooth that communicate with the path 

based sensors.  The following section contains studies whose objective were to answer 

the question how many is enough probe vehicles. 

Turner and Holdener (1995) studied the required minimum number of probe 

vehicles that are necessary to report real-time travel speeds and times for a desired 

statistical accuracy.  They calculated the sample size with a regression equation where the 

dependent variables were the travel time coefficient of variation (mean travel 
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time/standard deviation), the desired confidence level, and the permitted relative error.  

The case study data came from three corridors near Houston on which path based sensors 

were already located at 1.8 to 5.1 mile spacing.  The corridors consisted of freeways that 

have high occupancy vehicle (HOV) lanes.  Data was collected during the peak congested 

periods on weekdays.  The summary and analysis of the travel time data considered two 

separate time periods: 5 minute and 15 minute periods to represent the real life periods 

over which travel times from probe vehicles are averaged and then reported to drivers.   

The results showed that the HOV lanes have a lower average number of probe vehicles 

due to their low volume.  Therefore, more probe vehicles are needed.  In addition,  it was 

found that for a 5 minute period with a 95% confidence level and a 10% relative error, 

the sample sizes range from 1 probe vehicle every 5 minutes for free-flow conditions 

(HOV lane segments) to 6 probe vehicles every 5 minutes for severely congested 

conditions.  Also, sample sizes are slightly lower for a 90% confidence level and 10% 

relative error.  It was concluded that the sample size results confirm the intuitive notion 

that congested freeways required greater number of probe vehicles than uncongested 

freeways.  In addition, path based sensors were recommended to be installed every 2 to 3 

miles on congested segments and every 3 to 4 miles on uncongested segments. 

Srinivasan and Jovanis (1996) studied the number of probe vehicles required to 

estimate link travel times for a network during a peak period.  Both travel time reliability 

and network coverage adequacy requirements were considered.  A general heuristic 

algorithm was developed.  It explicitly considered the time period for travel time 

estimation (e.g., 5, 10, or 15 minutes), the number of replications of travel time desired 

for each link during each measurement period, the proportion of links to be covered, and 
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the length of the peak period.  The algorithm was implemented by using a simulation of 

the Sacramento, California network (170 mi
2
) for the morning peak period.  It was found 

that a substantial number of probe vehicles are required to estimate link travel times if all 

the classes of links, including minor arterials and local and collector streets, are to be 

covered adequately.  However, the heavily traveled high-speed routes, such as the major 

arterials and freeways, require a much smaller fraction of probe vehicles.  Specifically, 

the case study considered the probe sample size required for a 10-minute measurement 

period with an adequacy requirement of 80 percent of major arterials and freeway links 

reliably covered with a minimum of three probe vehicles in each link during each 

measurement period.  It was found that about 3,500 probe vehicles were required for a 2-

hour peak period.  This number of probe vehicles constituted less than 5 percent of the 

total peak period volume.    

Sen et al. (1997) studied the sample size of probes needed to obtain reliable link 

travel time estimates.  The correlation of vehicles’ travel times was studied.  Data was 

analyzed from two signalized arterials that consisted of twelve links in a suburban area of 

Chicago.  The data was collected by probe vehicles that represented 1-2% of the vehicle 

population.  The research showed that most often, highly used links have high 

correlations between travel times of vehicles.  Therefore, under situations of high 

congestion the sample sizes required would be smaller.  In addition, under high-

congestion levels, because volumes would be higher, even low deployment rates would 

usually achieve reasonable probe frequencies.  There were two other important 

conclusions that were drawn.  First, the variance of mean link travel time remains quite 
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far from zero no matter how many probes use the link.  Second, after a certain number of 

probes per unit time, additional probes do not decrease the variance very much. 

Chen and Chien (2000) developed a heuristic to determine the minimum number 

of probe vehicles needed for reliable link travel time estimation.  The methodology took 

into account that vehicle travel time on some links is not normally distributed.  A 

preliminary understanding of the impact of traffic volume on the minimum required 

number of probe vehicles was established.  For the case study, 8 miles of I-80 in New 

Jersey were modeled with CORSIM, a microscopic simulation model software.  

Specifically, in the case study, demand was varied to 5 levels that had best-case V/C 

ratios of 0.26, 0.45, 0.53, 0.63, and 0.61 and corresponding worst-case V/C ratios of 0.41, 

0.68, 0.82, 0.99, and 0.99.  The minimum percentage of probe vehicles that corresponded 

to these levels were 7, 3, 3, 10, and 12, respectively, for the desired statistical accuracy 

(with 5 percent maximum relative error and 5 percent sample error limit) over a 5-minute 

time interval.  It was noted that although the actual percentage number in this example is 

network specific, the general pattern of the relationship between traffic volume and 

minimum probe vehicle percentage is most likely generic. 

Cheu et al. (2002) studied the relationship between probe vehicle sample size and 

travel time estimation accuracy for an arterial link.  The methodology assumed a 

vehicle’s position and time stamp were recorded at every intersection.  A microscopic 

simulation tool, Version 2.0 of INTEGRATION model, was employed to microscopically 

model traffic flow and simulate probe vehicles on a network of major and secondary 

arterials in a town area of Singapore.  Results showed that the improvement in the 

accuracy of link speed estimation diminishes when the probe vehicle population in the 
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network has reached 15%.  Also, to achieve an absolute error in the estimated average 

link speed of less than 3.1 mi/hr at least 95% of the time, there should be at least 4% to 

5% active probes in the total network traffic volume, or at least ten probes that have 

traversed a link.   

Li et al. (2002) provided a methodology to determine the minimum probe vehicle 

sample size required for speed estimation.  An equation was developed that is dependent 

on four variables.  The first is the standard deviation of the collected data for the study 

segment.  The second is the Z-value of the standard normal distribution of the data.  It 

was noted this should be used instead of the t-value.  Also, a user-selected allowable error 

in the estimate of the mean speed is included.  Finally, a sample size adjustment factor for 

which the value is determined by the confidence interval is needed.  The methodology 

required that data is collected with a minimum of 3 initial test runs.  A case study was 

included for a 2-mile route with signals on IN-26 in Indiana.  It was found that 5 to 10 

probe vehicles can generate reliable results for travel time and delay studies.  Also, the 

minimum sample size decreased as the length of the study route increased.  This is 

because the dispersion of the travel speed decreased and the travel speed because more 

stable.  

2.7 Incident Duration Prediction Models 

The duration of an incident is comprised of three different phases – detection , response, 

and clearance phases – while some studies include a fourth phase – the recovery phase.  

The detection phase is the period of time between when the incident occurs and when it is 

detected by responders or traffic managers.  The response phase is the period of time 

between when the incident is detected and when emergency responders arrive.  The 
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clearance phase is between when responders arrive and when capacity is restored at the 

incident location.  The final phase is between when capacity is restored and traffic flow 

on the freeway segment returns to normal conditions.    

Incident duration has a positive relationship with congestion during an incident.  

In order to accurately predict travel times during an incident, reliable incident duration 

predictions are necessary.  Much research has been conducted in order to produce models 

that predict the incident duration with available data during an incident.  Incident and 

roadway characteristics that affect the duration have been studied although a consensus 

on which are most important has not been formed. 

Garib et al. (1997) developed a regression model for predicting incident duration.  

Data from a 7.3-mile segment of I-880 in Oakland, CA was used for the model.  It was 

collected during the morning and evening peak periods.  Thus, the models’ parameters 

were dependent on the input data.  The incident duration model predicted 81% of the 

incident duration in a natural logarithmic format as a function of six independent 

variables.  These variables were number of lanes affected, number of vehicles involved, 

whether trucks were involved in the incident, time of day, police response time, and 

weather conditions.  No other variables tested either individually or jointly were found to 

be significant.  Truck involvement, time of day, and weather conditions all only had 

values of zero or one.  The truck involvement variable had a value of zero if none were 

involved and a value of one if they were involved.  The time of day variable had a value 

of zero for the morning peak time and a value of one for the afternoon peak time.  The 

weather conditions variable equaled zero if no rain and one otherwise.  Note that snow 

would not be present in Oakland, CA.   The values of the independent variables 
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coefficients were all positive except for the time of day and the weather condition 

coefficients.  This indicated that the duration of an incident in expected to be less in rainy 

weather conditions than in dry weather conditions.  Also, incident duration is less in the 

afternoon peak than in the morning peak.  The authors suggest that traffic conditions are 

negatively correlated with incident duration because there is more urgency to clearing 

incidents during peak hours because of the congestion they cause.  The model results also 

indicate that police response time is a highly significant factor in predicting the incident 

duration followed by weather condition, time of day, truck involvement, and finally the 

joint effect of the number of vehicles involved and the number of lanes affected.  In 

addition, a lognormal distribution was used to describe incident duration where a shift to 

the left shows a larger proportion of short-duration incidents. 

Wu et al. (1998) validated the incident duration estimation model of Wide Area 

Incident Management Support System (WAIMSS).  The model predicts incident duration 

based on an estimation tree.  The model was calibrated with incident data collected on 

freeways in Northern Virginia.  It was found that the average error of the model was 

14.2%.  In addition, the data set strongly supported a non-normal duration distribution 

assumption.  Although the incident duration had a shape similar to a lognormal 

distribution, it was rejected by several statistical significance tests.  However, if the set of 

incidents is divided into subsets of incidents that have the same type and similar severity 

a normal distribution of duration was found.  The global maximum for incident duration 

appeared to be around 30 minutes, which corresponded to the average duration for minor 

incidents, and a secondary local maximum appeared around 60 minutes, which 

corresponded to the average duration for moderate incidents.  Also, it was found that 
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while most incidents last less than one hour, the spread of the incident duration is much 

wider than one hour.  Furthermore, the authors suggested future studies that included the 

effect of congestion on incident duration.  They found that congestion lengthens the 

incident duration mainly by affecting the travel time of response vehicles, and in some 

cases, affecting operations at the incident scene.  In particular, response times to incidents 

on bridges are substantially extended, and efficiency of incident removal operations on 

bridges and ramps are reduced by limited space.   

Smith and Smith (2001) tested three different models for predicting accident 

clearance time.  They were a stochastic model, a nonparametric regression model, and a 

classification tree model.  Data from 6,828 accidents on Virginia freeways was used to 

test the models.  The independent variables considered for the forecasting models were as 

follows with their possible values shown in parentheses: time of day (peak or off-peak), 

day of the week (weekday or weekend), weather (normal or adverse), response agencies 

(EMS, Fire, etc), number of vehicles (one, two, or three or more), truck involvement (yes 

or no) and passenger bus involvement (yes or no).    Statistical significance tests on the 

independent variables using analysis of variance (ANOVA) were performed.  The 

ANOVA analysis showed that all of the independent variables are significant except for 

weather and FIRT (a response agency) response.   The first forecasting model developed 

for the study was a stochastic model.  This model attempts to describe the randomness of 

the events.  One was to do so is through a probability density function which is an 

equation to describe continuous random variables for a specific distribution.  The study 

concluded that the stochastic model could not be applied to forecasting future accident 

clearance times due to the lack of a probabilistic distribution that fit the clearance time 
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data.  In particular, even though a histogram plot of the data showed a definite left-shifted 

tendency towards accidents with smaller clearance times, a chi-square test determined 

that neither a Weibull nor lognormal distribution adequately described the data.  Even 

after dividing the accident clearance time data into different sets by accident severity (i.e., 

number of vehicles involved) and then trying to fit a probabilistic distribution to each set 

of data, a chi-square test again determined that neither a Weibull nor lognormal 

distribution adequately described the data.  The same method was tried with dividing the 

data into different sets by time of day (i.e., peak period weekday, off-peak period 

weekday, and weekend) but still with the same results.  The second forecasting model 

developed for the study was a nonparametric regression model.  This model attempts to 

emulate a deterministic relationship between the accident characteristics and the 

clearance time.  However, the results were not encouraging and the authors rejected this 

model.  They found that the model had a very large average error that in most cases was 

larger than the model prediction value.  For example, only 18% of the test accidents had a 

prediction error less than five minutes.  The last forecasting model that was developed for 

the study was a classification tree model.  For this type of model, the clearance time 

forecasts are assigned instead of mathematically calculated.  The authors concluded that 

this model also cannot be applied as it was only correct in predicting accident clearance 

time 58% of the time.  In summary, the authors found that none of the models were 

applicable.  However, they stated this could be due to shortcomings in the accident 

characteristics available.  For future studies, they recommended including the following 

accident information: number of lanes blocked due to the accident, the number of 

personal injuries, and the number of vehicles responding from each agency. 
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Ozbay and Noyan (2006) modeled incident clearance durations using Bayesian 

Networks (BN).  BNs can be used to create dynamic incident duration estimation trees 

that can be extracted in the presence of a real incident for which data might only be 

partially available.  The BN represents the associations of variables to the incident 

clearance time as a joint probability distribution over a set of random variables.   The 

purpose of the BN approach is to draw inference, and then determine patterns and 

relationships among all the predictors as well as the target variable, which in this case is 

the incident clearance time.  The variables or predictors applied were the type of incident, 

number of police vehicles, number of ambulances, number of fire engines, number of 

injuries, number of trucks involved, number of cars involved, total number of lanes, and 

type of roadway.  To test the model, incident data from Northern Virginia was applied.  

The model was able to predict incident clearance times with 80% accuracy.  In addition, 

it showed that most incidents last less than one hour. 

Li and Cheng (2011) also applied Bayesian Networks for incident duration 

prediction.  In particular, they developed a continuous probability distribution of duration 

model based on lateen Gaussian naïve Bayesian (LGNB) classifier, assuming duration 

fits a lognormal distribution.   The purpose of LGNB is to classify incidents according to 

the fitted continuous probability distribution, but not the length of duration.  They applied 

the model to data from 1,470 incidents in the Atlanta, Georgia metropolitan area.  The 

following information was known for each incident: weekday or weekend, day or night, 

incident type, detection type, location type (freeway, ramp, intersection, arterial, other), 

lane type (lane, off road, shoulder, core area, none), number of lanes affected, fire 

presence, hazmat presence, injury count, fatality count, need police flag, need HERO 
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flag, need truck wreck flag, signal damage, guardrail damage, type and number of 

vehicles involved in incident, and duration (less than 30 minutes, 30 to 60 minutes, 60 to 

90 minutes, 90 to 120 minutes, or over 120 minutes). Based on the incidents’ 

characteristics, each incident was classified into one of four classes, with each class 

having its own probability distribution.  A distribution fit test was performed on each 

distribution to determine that all four classes approximately fit the Gaussian distribution.  

A sensitivity analysis was performed to determine which incident variables affect the 

class (and duration probability distribution) to which an incident is assigned.  It was 

found that only half the variables affect the class variables significantly.  These include 

incident type, detection type, location type, lane type, signal damage, guardrail damage, 

and type and number of vehicles involved in incident.  The type of incident was the major 

factor and the location type was also an important factor.  The authors concluded that 

four classes of incidents classified by LGNB can be interpreted with different levels of 

severity and complexity.  Note that time of day or weekday or weekend was not 

considered an important variable for determining incident duration. 

Khattak et al. (2011) analyzed traffic incidents and presented an online tool (iMiT 

– Incident Management Integration Tool) that dynamically predicted incident durations, 

secondary incident occurrence, and associated incident delays.  Incident duration 

prediction and secondary incident occurrence was based on statistical regression.  An 

incident database covering 110 freeway miles of the Hampton Roads metropolitan area of 

Virginia was used.  Analyses of the data showed that the average incident duration is 

fourteen minutes, 9.5% of incidents result in lane closures, 35% of incidents occur during 

the peak period, and 10% occur during bad weather.  Ordinary least squares regression 
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models were developed which used the following variables to predict incident duration: 

time of day (either peak or off-peak), weather (bad or not), freeway corridor (categorical 

variable), average annual daily traffic (per 1000 vehicles), incident detection source, 

number of vehicles involved in incident, incident type (categorical variable), traffic lane 

closure (yes or no), emergency medical service response (yes or no), right shoulder 

affected (yes or no), ramp affected by incident (yes or no), and left shoulder affected by 

incident (yes or no).  The key factors associated with longer incident durations were 

found to be crashes (as opposed to other types of incidents), freeway facility damage, 

more vehicles involved in incident, severe injuries, when incident affects the left shoulder 

or ramp, and longer lane closer times.   A theoretically-based deterministic queuing 

model was applied to estimate delay.  The main inputs were the incident severity which is 

directly related to incident reduced capacity, incident duration, traffic demand, and road 

geometry information such as number of lanes.  The study empirically validated the 

incident duration model by comparing observed and predicted values.  The Root Mean 

Square Error( RMSE) for predicted incident duration was 16.4% which was reasonable 

and indicated that the models could provide realistic predictions for most incidents.  Also, 

it was found that the duration model did not predict extreme values very well because 

statistical models are based on capturing the central tendency in the data, rather than 

outliers. 

A methodology to estimate incident impacts in real-time was developed by Hadi 

et al. (2011).  A number of measures were used to quantify incident impacts including 

percentage lane blockage, incident duration, average incident delay, queue length, and the 

potential for secondary incidents.  The percentage lane blockage has to be observed by 
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CCTV image operators or by incident responders.  Models were developed to estimate 

incident durations, mobility impacts of incidents, and the potentials for secondary 

incidents based on various incident and traffic conditions.  These models were developed 

based on archived incident and traffic detector data from the I-95 corridor in Broward 

Country, FL, which is managed by FDOT District 4.  The incident data includes incident 

timestamps (detection, notification, responses, arrivals, and departures) and event details.  

For the models, the incident durations were predicted in two phases in real-time 

applications because incident information is generally known sequentially.  During Phase 

1, a simple approach is used based on historical data using the mean and 95% confidence 

interval of incidents of similar types to the current incident at the incident location.  In 

Phase 2, more detailed information is known.  Also, the model estimates incident 

response and lane clearance durations separately because the two different durations are 

influenced by different factors.  Incident response duration is the time from the 

occurrence of the incident to the arrival of the first responder.  It was predicted based on 

cross-classification considering the factors of night vs. day, weekdays vs. weekends, and 

the injury levels of the incidents.  Lane clearance duration is the time between first 

responder arrival and the reopening of all travel lanes.  It was predicted based on a model 

that utilizes the M5P tree algorithm.  Overall, the M5P model shows that the significant 

factors in predicting lane clearance duration are the number of blocked lanes, number of 

responded service patrol vehicles, injury presence, number and type of vehicles involved, 

time of day (AM, PM, Midday, Night, Weekend), TMC verification and response time, 

incident type, number of lanes blocked, presence of CCTV cameras, and the presence of 

the Severe Incident Response Vehicle.  To predict incident mobility impacts in real-time 
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including delays and queues, the authors provided the following methods that can be 

applied: queuing theory, shock wave analysis, or simulation analyses.  The authors chose 

deterministic queuing analysis and left the other methods for future studies.  To apply the 

queuing theory, the parameters required for the calculation include incident duration, 

traffic demands, and capacity with and without incidents.  The authors note that traffic 

demands during incident conditions can be estimated based on the average historical 

values based on traffic detector data at the incident location and can be updated in real-

time.  The capacities during incident and non-incident conditions could be estimated 

based on the values presented in the Highway Capacity manual, although the capacity 

during incident conditions can also be estimated based on detector data.                   

Chien and Ozbay (2012) analyzed New Jersey incident data to determine New 

Jersey specific incident rates, response times, and clearance times.   They found that 

crash response times are shorter than disablement incidents response times.  Also, the 

response times varied by the type of incident management or detection.  The average 

crash response time ranged by type of incident management from 8.4 minutes to 20 

minutes and the average disablement incident response time ranged from 9.5 minutes to 

25 minutes.  The clearance times were affected by whether the incident occurred in the 

shoulder or lane and by the incident type.  The average clearance time considering all 

incident types was 19 minutes for in-lane locations and 17 minutes for shoulder locations.  

For the study, the authors also conducted an analysis of the effect of time of day on 

response and clearance times.  Regarding crash response time, there was no significant 

fluctuation with respect to time of day.  For crash clearance times, there is no significant 

pattern for average duration or standard deviation values.  In addition, from their 
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literature review, they concluded that, in general, the factors affecting total incident 

duration are open to discussion for their influence, especially on response time.  Even for 

factors which are determined to affect response time, such as time of day, there is no 

general consensus about its real effect.  They included a summary of previous studies’ 

findings on factors that influence incident response and clearance times.   These are 

incident/disablement type, severity, lane closure, number /type of vehicles involved, 

number/type of response agencies, and time of day, incident location (route, in-

lane/shoulder), traffic conditions, seasonal /weekday variation, weather/environmental 

conditions, alcohol involvement, pavement operations, freeway damage/debris, response 

timing, and existence of insurance.  In addition, they included a summary of previous 

studies’ findings on average incident response times and clearance times.  The ranges of 

times provided by the studies were from 7.5 to 33.0 minutes and 4.94 to 136.8 minutes, 

respectively, with the average times amongst the studies of 15 minutes and 30.75 

minutes, respectively.   

2.8 Traffic Microscopic Simulation 

The Austroads Project NS1229 (Tudge et al. 2007) aimed to promote consistency in the 

application of micro simulation traffic models including AIMSUNG NG, Quadstone 

Paramics, and VISSIM.  It summarized the values of parameters, such as the period of 

simulation and number of runs, currently employed by Austroads Project Group 

members; these values are recommended for use.  For the period of simulation, one to 

two hours was recommended.    It was noted that this period varies depending on demand 

data and network complexities.  For the number of runs, five to six were recommended.  

Three additional recommendations were made in regards to the number of runs.    First, 
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more runs are recommended for complex models.  Second, a set of fixed random number 

seeds should be used for each scenario to ensure repeatability.  Third, when analyzing the 

data from the runs, the median value should be used instead of the average and hence an 

odd number of runs (i.e.,e five, seven, or nine) make it easy to identify median values.  
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CHAPTER 3  

MODEL OF TRAVEL TIME PREDICTION ERROR 

 

Path based sensors provide travel time data in real time that is used for vehicle travel time 

prediction.  Travel time predictions can be communicated to vehicles approaching a 

freeway segment via dynamic message signs (DMS).  The accuracy of the predicted 

travel times directly affects vehicle occupants’ ability to schedule their activities, plan 

their routes, and gain or maintain confidence in information technology systems.  

Therefore, it is essential that predicted travel times are as accurate as possible.  Travel 

time predictions are most useful to drivers during transitions in the traffic state.  An 

example of when a transition affects a freeway segment is when an accident occurs.  The 

accidents result in a change from an uncongested traffic state to a congested traffic state.  

The change, which occurs over space and time, is represented with a shock wave.   

During a transition, vehicles’ travel times vary by vehicle departure time as the segment 

becomes either more or less congested.  Neither the posted speed limit or knowledge of 

the average, usual speed for the time of day (i.e., peak period) are applicable for 

predicting the travel time during a transition.   

Transitions that affect a freeway segment include those which originate within the 

segment, such as at an incident or bottleneck location, and those that originate outside of 

the segment. For example, backward moving transitions (that move in the direction 

against vehicle travel) can occur downstream from (i.e., in front of) a segment and can 

eventually reach and pass through the segment.  In addition, forward moving transitions 

(that move in the direction of vehicle travel) can occur upstream from (i.e., behind)
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segment and can also eventually reach and pass through the segment.  There are two 

types of transitions, recurring transitions, such as those that occur when the traffic 

demand changes from peak to off peak, and non-recurring transitions, which occur during 

an incident.  Transitions are modeled with shock waves. 

This dissertation develops a mathematical model that compares the travel times 

predicted for vehicles to traverse a freeway segment to the vehicles’ actual travel times. 

The difference between the predicted and actual travel times is the travel time prediction 

error.  The sum of the absolute value of the error for all vehicles in a study period is the 

total error, measured in vehicle hours of travel (VHT).  Predicted travel times are 

calculated from path based sensor data where the sensors are located at a given spacing 

along a freeway segment.  The error during a transition or transitions in the freeway 

segment’s traffic state during a study period is considered.  Six different study periods are 

included; three have a single transition in the study period and three have two transitions 

in the study period.  The study period for the model starts at the departure time of the first 

vehicle affected by the transition or transitions. The study period ends at the departure 

time of the first vehicle unaffected by the transition or transitions.   

There are four parts to the model.  The first part classifies the study period into 

one of six Scenarios.  The second part models vehicles’ actual travel times on the freeway 

segment during the study period.  The third part models vehicles’ predicted travel times 

during the study period, which are the travel times expected by the vehicles’ occupants.  

The fourth part models the travel time prediction error.  Error indices include the total 

error and average error for the study period.  The error is found by comparing the first 
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two models.  The relationship amongst these four steps is illustrated in the flow chart 

below.  The model inputs are explained in more detail in the assumptions section. 

 

Develop the function of vehicle 

travel time by departure time.

Develop the function of predicted 

travel time by departure time.

Calculate the travel time prediction error.

Start

End

Define the study scenario.

Gather the model inputs.

 

Figure 3.1  Overview of the travel time prediction error model.   
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Table 3.1 Variables Used in the Model and their Symbols and Descriptions 

Sym

-bol 

Description Unit 

At 
The actual travel time of a vehicle that enters the freeway segment at 

time t where t = ta, tb, ta,s, ta,r, tb,s, tb,r, etc. 

hr 

D Freeway segment length mi 

E The total travel time prediction error during a study period VHT 

e The average travel time prediction error during a study period hr 

Et The travel time prediction error for a vehicle that departs at time t hr 

f(t) Function of vehicle travel time by departure time - 

g(t) Function of predicted travel time by departure time - 

gn(t) 
Function of predicted travel time by departure time for the link 

located between sensors n-1 and n 

- 

N Number of sensors sensor 

n Index of sensors - 

pn,t 
The predicted travel time from mile xn-1 to mile xn at time t where t = 

ta,n, tb,n, ta,s,n, ta,r,n, tb,s,n, tb,r,n, etc. 

hr 

Pt The predicted travel time for the freeway segment at time t hr 

qc Congested traffic flow vph 

qu Uncongested traffic flow vph 

S Sensor spacing mi 

t The departure time of a vehicle hr 

ta The departure time of the first vehicle to encounter the shock wave  hr 

ta,n 
The time at which a link’s downstream sensor detects the first vehicle 

that encountered the shock wave within the link 

hr 

ta,r 
The departure time of the first vehicle to encounter the backward 

recovery wave  

hr 

ta,r,n 
The time at which a link’s downstream sensor detects the first vehicle 

that encountered the backward recovery wave within the link 

hr 

ta,s 
The departure time of the first vehicle to encounter the backward 

shock wave  

hr 

ta,s,n 
The time at which a link’s downstream sensor detects the first vehicle 

that encountered the backward shock wave within the link 

hr 

tb The departure time of the last vehicle to encounter the shock wave  hr 

tb,n 
The time at which a link’s downstream sensor detects the last vehicle 

that encountered the shock wave within the link 

hr 

tb,r 
The departure time of the last vehicle to encounter the backward 

recovery wave  

hr 

tb,r,n 
The time at which a link’s downstream sensor detects the last vehicle 

that encountered the backward recovery wave within the link 

hr 

tb,s 
The departure time of the last vehicle to encounter the backward 

shock wave  

hr 

tb,s,n 
The time at which a link’s downstream sensor detects the last vehicle 

that encountered the backward shock wave within the link 

hr 
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Table 3.1 Variables Used in the Model and their Symbols and Descriptions (continued) 

 

Sym-

bol 

Description Unit 

tF The  first departure time of the study period  hr 

tI 
The time at which a backward shock wave and backward recovery 

wave intersect 

hr 

tL The  last departure time of the study period  hr 

tw The time at which a shock wave originates in the freeway segment hr 

tw,r 
The time at which a backward recovery wave originates in the 

freeway segment 

hr 

tw,s 
The time at which a backward shock wave originates in the freeway 

segment 

hr 

vc Congested vehicle speed mph 

vu Uncongested vehicle speed mph 

vw Shock wave speed mph 

vw,r Backward recovery wave speed mph 

vw,s Backward shock wave speed mph 

xI 
The location at which a backward shock wave and backward 

recovery wave intersect 

mi 

xn The location of sensor n mi 

xw 
The location at which a shock wave originates in the freeway 

segment 

mi 
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3.1 System Assumptions 

The proposed mathematical model is developed based on the fundamental macroscopic 

traffic flow theory.  According to this theory, a freeway segment is in one of three states:  

an uncongested traffic state with average traffic speed vu (mph) and flow qu (vph), a 

congested traffic state with average traffic speed vc (mph) and flow qc (vph), or in a 

transition between the states.  The traffic state can also transition more than once during 

the study period, from an uncongested state to a congested state then back to the 

uncongested state.  An example of this is when an incident occurs (which causes a 

transition from the uncongested to congested state) and the subsequent clearance of the 

incident from the roadway (which causes a return to the uncongested state). 

A transition is modeled as a shock wave where the shock wave travels at a 

constant velocity vw (mph) through the freeway segment.  The model considers that a 

transition can originate within the study segment or on another segment of the freeway.  

 To formulate the model, the following five assumptions are made: 

1. The characteristics of the traffic state of a freeway segment during the study 

period are known, including the uncongested and congested speeds, flows, and 

densities.  Also, the characteristics of the shock wave or waves that occur during 

the study period are known, including the type, direction, and velocity of a shock 

wave.  The velocity of a shock wave equals the change in flow divided by the 

change in density.  The traffic state, and thus the entering traffic flow, during the 

study period is either uncongested or congested. 

 

2. All vehicles receive travel time predictions as they enter the freeway segment at 

mile zero, via DMS. 

 

3. Vehicle travel time is modeled as a continuous function of vehicle departure time 

where departure time is defined as the time a vehicle enters the segment. 

 

4. Sensors are modeled to report travel times continuously and instantaneously.  

Also, a 100% probe sample rate is assumed.  Problems in the functioning of the 

sensors, such as detecting vehicles or transmitting data, are not considered.  Thus, 
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vehicle predicted travel time is modeled as a continuous function of vehicle 

departure time. 

 

5. The part of a freeway segment downstream, i.e., ahead of a transition location is 

unaffected by the transition and is in the uncongested traffic state.  

 

The traffic state of a freeway segment undergoing a transition over time is 

determined by three characteristics of the transition.  The first is whether the segment 

transitions from an uncongested traffic state to a congested traffic state or from a 

congested traffic state to an uncongested one.  The second is at what location and at what 

time the transition begins to affect the segment.  The third is at what location and at what 

time the transition terminates within the segment or exits the segment.  This third 

characteristic is dependent on whether the change in the traffic state propagates upstream 

(i.e., in the direction against traffic) or downstream (i.e., in the direction with traffic) 

from the initial site of the transition and is also dependent on the speed at which the 

transition propagates through the segment.  Based on this information, the traffic state of 

a freeway segment during a study period is determined. The boundary between the 

uncongested and congested traffic state on the freeway segment during the study period is 

represented with a shock wave. 

3.2 Shock Wave Transition Scenarios 

Six different transition scenarios are considered in this dissertation.  Each transition is 

represented by a shock wave.  In the first three scenarios, one transition affects the 

freeway segment during the study period.  In contrast, in the next three scenarios, two 

transitions affect the freeway segment during the study period.  The table below 

summarizes the characteristics of all the Scenarios. 
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Table 3.2 Characteristics of the Study Scenarios  

 Scenarios 

 One Two Three Four Five Six 

Type of 

wave(s) in 

study 

period 

backward 

shock 

backward 

recovery 

forward 

recovery 

backward 

shock and 

backward 

recovery 

backward 

shock and 

backward 

recovery 

backward 

shock and 

backward 

recovery 

Maximum 

number of 

waves a 

single 

vehicle can 

intersect 

one one one one two two 

Location 

waves 

intersect 

n/a* n/a* n/a* 

Upstream 

from the 

segment 

Upstream 

from the 

segment 

Within 

the 

segment 

* Only one wave is present in these scenarios 

The characteristics of the transitions for Scenarios One, Two, and Three are discussed in 

detail in Section 3.2.2.1 and the characteristics of Scenarios Four, Five, and Six are 

discussed in detail afterward in Section 3.2.2.2. 

3.2.1 Scenarios One, Two, and Three 

In Scenarios One, Two, and Three, one transition, represented with a shock wave, affects 

the freeway segment during the study period.  The characteristics of the transitions are 

described below.  

 Scenario One 

o The freeway segment transitions from an uncongested traffic state to a 

congested traffic state during the study period. 

 

o The initial site of the transition is either downstream from the study segment 

(i.e., it originates in another freeway segment) or within the study segment. 
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o The length of segment under congestion increases over time in the direction 

against traffic (i.e., towards upstream). 

 

o Therefore, the transition is represented with a backward shock wave. 

o The transition terminates upstream from the segment (i.e it does not terminate 

within the segment). 

 

The characteristics of Scenarios One are illustrated in Figure 3.2.   

 

Figure 3.2 Freeway segment with a backward shock wave.   
where tb ≤ t* ≤ tL  

 

 

In the figure, the x-axis represents time and the y-axis represents distance.  The 

length of the segment equals D (mi).  Mile zero is the upstream end of the freeway 

segment and mile D is the downstream end of the freeway segment.  The trajectory of the 

backward shock wave is shown in red.  The location at which the shock wave originates 
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within the freeway segment, such as an incident or bottleneck location, is denoted by xw 

(mi).  For study periods in which the wave initiates in a downstream segment past mile D, 

then xw equals D.  Also, the time at which the shock wave begins to affect the freeway 

segment is denoted by tw (hr).  The area in the time-space plane to the left of the 

backward shock wave is uncongested as it is shown with no shading. The area in the 

time-space plane to the right of the shock wave is congested and is represented by light 

gray shading.  The figures also show the trajectories of vehicles over the freeway 

segment.  Vehicles are modeled to enter at the upstream end of the freeway segment and 

exit at the downstream end of the segment as illustrated with the directional arrows.  

Vehicles’ trajectories have two different slopes. The steeper one represents travel in the 

uncongested traffic state and the less steep one represents travel in the congested traffic 

state because a steeper trajectory means the vehicle travels farther in a shorter amount of 

time. 

 Scenario Two 

o The freeway segment transitions from a congested traffic state to an 

uncongested traffic state. 

 

o The initial site of the transition is either downstream from the segment or 

within the segment. 

 

o The length of segment under congestion decreases over time in the direction 

against traffic (i.e., towards upstream). 

 

o Therefore, the transition is represented with a backward recovery wave. 

o The transition terminates upstream from the segment. 

The characteristics of Scenarios Two are illustrated in Figure 3.3.   
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Figure 3.3 Freeway segment with a backward recovery wave.   

where tb ≤ t* ≤ tL  

 

The description of this figure is the same as for Scenario One with two exceptions.  First, 

in this figure, the trajectory of a backward recovery wave is shown in red.  Second, the 

time-space plane to the left of the wave is congested and is represented with light gray 

shading and the time-space plane to its right is uncongested.   

 Scenario Three 

o The freeway segment transitions from a congested traffic state to an 

uncongested traffic state. 

 

o The initial site of the transition is either upstream from the segment or within 

the segment. 
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o The length of segment under congestion decreases over time in the direction 

with traffic (i.e., towards mile D). 

o Therefore, the transition is represented with a forward recovery wave. 

o The transition terminates downstream from the segment. 

The characteristics of Scenario Three are illustrated in Figure 3.4.   

 

 

Figure 3.4  Freeway segment with a forward recovery wave.   
where tb ≤ t* ≤ tL  

 

 

In the figure, the red line represents the trajectory of the forward recovery wave.  

The directional arrows show that the wave moves in the same direction as the vehicles on 

the segment.  The time at which the shock wave originates in the freeway segment is 

denoted by tw and the location at which the shock wave originates in the freeway segment 
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is denoted by xw.  If the wave initiates in an upstream segment prior to mile zero, then xw 

equals zero.  Similar to the backward recovery wave, the time-space plane to the left of 

the wave is congested and is represented with light gray shading and the time-space plane 

to its right is uncongested.   

The differences in the characteristics of the transitions among the Scenarios are 

apparent in the figures.  For example, in Scenario One, the length of the freeway segment 

under congestion increases over time.  The congestion spreads from the initial site of the 

congestion towards the upstream end (i.e., mile zero) of the freeway segment.  In 

Scenario Two, the length of the freeway segment under congestion decreases over time.  

The transition begins at a point toward the downstream end of the segment and continues 

towards the upstream end of the freeway segment.  In Scenario Three, the length of the 

freeway segment under congestion also decreases over time.  In contrast to Scenario 

Two, the transition begins at a point toward the upstream end of the segment and 

continues towards the downstream end (i.e., mile D) of the freeway segment.   

Note that a single transition from an uncongested traffic state to a congested 

traffic state that travels upstream through the segment toward mile D, which is 

represented by a forward shock wave, is not included because it results in a period of no 

vehicle detection by path based sensors.  However, the model can be modified in future 

studies to take this into account.  

3.2.2 Scenarios Four, Five, and Six 

The characteristics of Scenarios Four, Five, and Six are described next.  In these 

Scenarios two transitions, each represented by its own shock wave, occur in the study 

period.  The first is a transition from an uncongested traffic state to a congested traffic 
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state that moves upstream in the direction against the traffic flow.  This transition is 

represented with a backward shock wave.  The second is a transition from the congested 

traffic state back to the uncongested traffic state that also moves upstream through the 

segment.  This transition is represented with a backward recovery wave.  The backward 

shock wave and backward recovery wave are included within the same study period, 

instead of in two separate study periods like in Scenarios One and Two.  This is done 

because the predicted travel times provided to vehicles that intersect the backward 

recovery wave are calculated based on data from vehicles which intersected the backward 

shock wave.  An example of when the passage of a backward shock wave is followed by 

the passage of a backward recovery wave is during a traffic accident.  A decrease in 

roadway capacity occurs at the accident location.  This results in a backward shock wave.  

The subsequent clearance of the accident restores the capacity.  This results in a 

backward recovery wave.  The characteristics of Scenarios Four, Five, and Six are 

summarized below.   

 Scenarios Four, Five, and Six 

o The freeway segment transitions from an uncongested traffic state to a 

congested traffic state and then returns to the uncongested state. 

 

o The transitions are represented with a backward shock wave and backward 

recovery wave. 

 

o The initial site of the transition is either downstream from the segment or 

within the segment. 

 

o The shock waves travel in the upstream direction. 

The Scenarios are differentiated by considering two characteristics that affect the 

formation of the travel time prediction error model.  If they are ignored, the model is not 
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applicable for studying all possible backward shock wave speeds, recovery wave speeds, 

and vehicle speeds on the freeway segment.  The first characteristic is the maximum 

number of shock waves a vehicle can intersect while on the freeway segment.  A vehicle 

may encounter none, one or both of the waves. The second characteristic is the location 

the waves intersect and thus terminate; the location can be either within the segment or 

upstream from the segment.  If the waves intersect within the segment, then the part of 

the segment located upstream from the site of intersection remains in the uncongested 

traffic state for the entire study period.  The characteristics for Scenarios Four, Five, and 

Six were provided previously in Table 3.2.  In addition, the equations to calculate 

whether the shock waves are included within the same study period and the equations to 

determine if the study period is Scenario Four, Five, or Six are provided in detail in 

Section 3.4.2. 

To illustrate Scenarios Four, Five, and Six, Figure 3.5 depicts a freeway corridor 

that experiences two transitions in its traffic state over time.  The freeway corridor is 

comprised of three freeway segments all of which experience the transitions.  The first 

transition is from an uncongested to a congested traffic state and it is represented with a 

backward shock wave.  The second transition is from a congested to an uncongested 

traffic state and it is represented with a backward recovery wave.  The trajectory of the 

backward shock wave is shown in red while the trajectory of the backward recovery wave 

is shown in black.  The times at which the waves originate are denoted by tw,s and tw,r, 

where the s and r subscripts stand for shock and recovery, respectively.  The location the 

waves begin is denoted by xw.  A congested traffic state, which occurs in the time-space 

plane located between the trajectories of the shock waves, is represented with light gray 
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shading.  The uncongested traffic state is represented with no shading.  Vehicles are 

modeled to enter at the upstream end of the freeway segment and exit at the downstream 

end of the segment as illustrated with the directional arrows.   

 
Figure 3.5  Freeway segments with backward shock and recovery waves.   

 

The three freeway segments that comprise the corridor in Figure 3.5 experience 

either a Scenario Four, Five, or Six transition.  The differences amongst the three 

Scenarios are described.  First, the transition that affects the farthest downstream segment 

is classified as Scenario Four because vehicles intersect at most one shock wave within 

the segment. For example, the vehicle that departs at time t1 only encounters the 

backward shock wave.  In addition, the vehicle that departs at time t2 is the first vehicle to 

encounter the backward recovery wave within the segment but it encounters the 
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backward shock wave in the previous, upstream segment.  Another reason the transition 

is classified as Scenario Four is because the waves intersect upstream from the segment.  

Second, the transition in the middle segment is classified as Scenario Five.  The change 

in classification from one freeway segment to the next occurs because over time, the 

waves’ trajectories have less distance between them.  Vehicles can encounter both shock 

waves within the middle segment, such as the vehicle that departs at time t3.  Note that 

not all vehicles encounter both shock waves within the segment, such as the vehicle that 

departs at time t2.  Another reason this is Scenario Five is because the waves intersect 

upstream from this segment also.  Third, the transition is classified as Scenario Six in the 

farthest upstream segment.  Vehicles can intersect both shock waves within the segment, 

such as the vehicle that departs at time t4.  Furthermore, the waves intersect within the 

segment.  Therefore, the congestion also ends within this segment. 

The characteristics of the different transition Scenarios have been provided.  

These include the number and type of shock waves that occur in the segment.  Also, for 

Scenarios in which two transitions occur, the characteristics include whether the shock 

waves terminate within the segment and if vehicles intersect both of the shock waves 

within the segment.  The categorization is necessary in order to model the relationships 

between actual travel time, predicted travel time, and departure time.  

3.3 Vehicle Travel Time 

The relationship between vehicle travel time and departure time over a study period is 

modeled.  The relationship can be positive (travel times increase as departure times 

increase), negative (travel time decrease as departure times decrease), or constant (travel 

times are the same for all departure times).  The type of relationship changes throughout 
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the study period.  Specifically, it changes at the departure times of the first and last 

vehicles affected by the transition in the traffic state (i.e., the first and last vehicle to 

encounter the shock wave).  Therefore, the relationship is determined using the following 

four steps for each Scenario.  First, the departure times of the first and last vehicles to 

encounter the shock wave(s) are identified.  Second, the travel times of these vehicles are 

calculated.  Third, based on the calculations from the first two steps, the beginning and 

end of the study period are determined.  Fourth, the information is used to develop 

equations that express the relationship between vehicle travel time and departure time for 

all other departure times within the study period.  These steps are applied first to the 

Scenarios that consider one shock wave, Scenarios One, Two, and Three.  The steps are 

then applied to the Scenarios that consider two shock waves, Scenarios Four, Five, and 

Six. 

3.3.1 Scenarios One, Two, and Three 

To begin, the departure times of the first and last vehicles to encounter the shock waves 

in Scenarios One, Two, and Three are determined. These times are denoted ta and tb, 

respectively.  The departure times and trajectories of the first and last vehicles to 

encounter the shock wave are illustrated in Figures 3.2 through 3.4.  The trajectory of the 

first vehicle that encounters the shock wave is illustrated in orange and the trajectory of 

the last vehicle that encounters the shock wave is illustrated in purple.   

The first vehicle to encounter the shock wave does so at the instant and location 

the shock wave enters the segment (if the shock wave initializes outside of the segment) 

or at the instant and location the shock wave forms within the segment (if the shock wave 

initializes within the segment).  This holds true because vehicle departure times are 
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assumed to be continuous.  The departure time of the first vehicle to encounter a 

backward shock wave or a forward recovery wave is calculated with Eq. 3.1, and the 

departure time of the first vehicle to encounter a backward recovery wave is calculated 

with Eq. 3.2.  

 Scenarios One and Three 

      
  
  

 (3.1) 

 Scenario Two 

      
  
  

 (3.2) 

 

As seen in Eqs. 3.1 and 3.2, the departure time is dependent on when and where the 

shock wave enters the segment and on the amount of time it takes a vehicle to reach this 

location.   

Also, the last vehicle to encounter the shock wave does so at the instant and 

location the shock wave departs from the segment. The location is the upstream end of 

the segment if the shock wave is a backward moving wave or the location is the 

downstream end of the segment if the shock wave is a forward moving wave.   The 

departure time of the last vehicle to encounter a backward shock wave or a backward 

recovery wave is calculated with Eq. 3.3 because both of these waves exit the segment at 

the upstream end.  In the equation, subtraction is used instead of addition, because a 

backward moving wave has a negative velocity.  The departure time of the last vehicle to 

encounter a forward recovery wave is calculated with Eq. 3.4 because this wave exits the 

segment at the downstream end.   
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 Scenarios One and Two 

      
  
  

 (3.3) 

 Scenarios Three 

      
    
  

 
 

  
 (3.4) 

 

Next, the travel times for the first and last vehicles to encounter the shock waves 

in Scenarios One, Two, and Three are calculated.  The travel times are calculated with 

one of the following four equations.  The first equation is used to calculate the travel time 

of a vehicle that travels the entire length of the segment at the uncongested speed. An 

example of such a vehicle is the first vehicle to encounter the backward shock wave in 

Figure 3.2.  The travel time is calculated by dividing the segment length by the speed of 

the uncongested traffic state.  The travel time is denoted At (hr) and is calculated with Eq. 

3.5.   

 

   
 

  
 (3.5) 

     

The second equation is used to calculate the travel time of a vehicle that travels the entire 

length of the segment at the congested speed. It is calculated by dividing the segment 

length by the speed of the congested traffic state as shown in Eq. 3.6. 

 

   
 

  
 (3.6) 
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The third equation is applied for a vehicle that travels from the beginning of the segment 

to the incident location at the uncongested speed and then continues to the end of the 

segment at the congested speed.  This can occur when a shock wave originates within the 

segment.  An example is the vehicle that departs at time ta in Figure 3.4.  The travel time 

is calculated with Eq. 3.7. 

 

   
  
  
 
    
  

 (3.7) 

 

In contrast to the third equation, the last equation is applied to a vehicle that travels from 

the beginning of the segment to the incident location at the congested speed and then 

continues to the end of the segment at the uncongested speed.  This can also occur when a 

shock wave originates within the segment.  An example is the vehicle that departs at time 

tb in Figure 3.2.  The travel time is calculated with Eq. 3.8. 

 

   
  
  
 
    
  

 (3.8) 

 

The specific application of the above equations for the first and last vehicles to 

encounter a shock wave in each Scenario is discussed.  The equations used for Scenario 

One are discussed first.  The travel time of the first vehicle to encounter the backward 

shock wave in Scenario One is calculated with Eq. 3.5 because the vehicle travels from 

the beginning to the end of the segment at the uncongested speed.  The last vehicle to 
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encounter the wave travels at the congested speed from the beginning of the segment to 

the location the wave initiates.  If the wave enters the segment at the downstream end, 

such that xw = D, the travel time is calculated with Eq. 3.6 because the entire segment is in 

the congested traffic state once the wave passes through it.  Otherwise, if the location is 

within the segment, such that 0 < xw < D and as illustrated in Figure 3.1, the vehicle then 

travels at the uncongested speed from this location to the end of the segment.  Therefore, 

its travel time is calculated with Eq. 3.8.   

Next, the travel times of the first and last vehicles to encounter a backward 

recovery wave are discussed.  The first vehicle to encounter the wave travels at the 

congested speed from the beginning of the segment to the location the wave initiates.  If 

the location is downstream from the segment, the travel time is calculated with Eq. 3.6 

because the entire segment is in the congested traffic state before the wave passes through 

it.  Otherwise, if the location is within the segment such as illustrated in Figure 3.3, the 

vehicle then travels at the uncongested speed from this location to the end of the segment.  

Therefore, its travel time is calculated with Eq. 3.8.  The travel time of the last vehicle to 

encounter the wave is calculated with Eq. 3.5 because the vehicle travels from the 

beginning to the end of the segment at the uncongested speed since the entire segment is 

in the uncongested traffic state once the wave passes through it.   

Finally, the travel times of the first and last vehicles to encounter a forward 

recovery wave are discussed.  If the wave initiates upstream from the segment, the travel 

time is calculated with Eq. 3.6 because the entire segment is in the congested traffic state 

before the wave passes through it.   However, if the wave initiates within the segment 

such as illustrated in Figure 3.4, the first vehicle to encounter it travels at the uncongested 
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speed from the beginning of the segment to the location the wave initiates.  It then travels 

at the congested speed from this location to the end of the segment.  Therefore, its travel 

time is calculated with Eq. 3.7.   The travel time of the last vehicle to encounter the wave 

is calculated with Eq. 3.5 because the vehicle travels from the beginning to the end of the 

segment at the uncongested speed since the entire segment is in the uncongested traffic 

state once the wave passes through it.   

The next step is to determine the study periods for Scenarios One, Two, and 

Three.  As defined previously, the study period starts at the departure time of the first 

vehicle affected by the shock wave and ends at the departure time of the last vehicle 

affected by the shock wave.  The first and last departure times of the study period are 

denoted tF and tL, respectively.  The study period therefore begins at ta.  Thus, 

 

      (3.9) 

 

The equations to use for calculating ta for each scenario were discussed previously and 

are summarized in Table 3.3.  Vehicles are no longer affected by the shock wave once the 

last vehicle to encounter it exits the segment.  Therefore, the study period ends when the 

vehicle that departs at tb exits the segment.  The value for tL is calculated as follows 

 

          (3.10) 

 

The equations to calculate tb and Atb
 were discussed previously and are summarized in 

Tables 3.4 and 3.6, respectively.   
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Finally, the relationship between vehicle travel time and departure time is 

determined for the entire study period.  In the previous steps, three unique departure 

times were determined, the time the study period begins which is the departure time of 

the first vehicle affected by the transition in the traffic state - ta, the departure time of the 

last vehicle affected by the transition - tb, and the time the study period ends - tL.  These 

three departure times divide the study period into two sub periods as follows: 

1. The departure time of the first vehicle to encounter the backward shock wave (which 

is also the beginning of the study period) and the departure time of the last vehicle to 

encounter the backward shock wave. 

 

2. The departure time of the last vehicle to encounter the backward shock wave and the 

time the study period ends. 

 

Equations to calculate the travel times of vehicles within each of these two sub periods 

are developed.   

Based on the departure times and travel times of the first and last vehicles to 

encounter a shock wave, an equation is developed to calculate the travel time of a vehicle 

that departs between ta and tb.  This equation is developed based on two observations.  

First, the relationship between vehicle travel time and departure time over the study 

period is continuous.  As stated in the assumptions, the function is continuous because 

vehicle departure times are assumed to be continuous.  Second, the relationship between 

vehicle travel time and departure time is linear between ta and tb.  Specifically, travel 

times increase at a constant rate from departure time ta to time tb in Scenario One. Also, 

travel times decrease at a constant rate from departure time ta to time tb in Scenarios Two 

and Three.  The linearity is a result of two characteristics of the model.  The first 

characteristic is that the traffic state changes at a constant rate.  The second characteristic 
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is that vehicles’ speeds are constant within each traffic state.  Because the relationship is 

continuous and linear, a linear equation is used to describe a vehicle’s travel time by its 

departure time.  The rate of change in the equation (the slope) is found using the 

departure times and travel times of the first and last vehicles to encounter the shock wave.  

It equals the difference in their travel times divided by the difference in their departure 

times.  The travel time of a vehicle that departs at time t, where t is between ta and tb, is 

found with Eq. 3.11. 

 

   
       
     

(    )      (3.11) 

 

In the equation, Ata
 is the travel time of the first vehicle to encounter the shock wave and 

Atb
 is the travel time of the last vehicle to encounter the shock wave.  The equations to 

determine the values of travel times and departure times were discussed previously and 

are summarized in Tables 3.3 through 3.6.   

The travel times for vehicles that depart after time tb until the end of the study 

period are also determined.  These vehicles have the same travel time as the vehicle that 

departs at tb because the traffic state is static after the shock wave exits the segment.  The 

equations to calculate this travel time have been discussed previously.  

Based on the above information, a function of vehicle travel time by departure 

time is produced for Scenarios One through Three.  The function, denoted f, assigns to 

each departure time t, where tF ≤ t ≤ tL, an actual travel time.  It is a piecewise defined 

function because it is defined by different formulas in different parts of its domain (i.e., 

[tF, tL].   
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 (3.12) 

 

Figures 3.2 through 3.4 display the function of vehicle travel time by departure 

time on the secondary y-axis with a blue line for Scenarios One, Two, and Three, 

respectively.  For each Scenario, the function begins at the departure time of the first 

vehicle to encounter the shock wave, time tF  = ta, and ends at the exit time of the last 

vehicle to encounter the shock wave, time tL.  For study periods in which the wave is a 

backward shock wave, the function linearly increases from ta to tb because the length of 

the segment that vehicles travel under congestion increases at a constant rate as the shock 

wave passes through the segment.  On the other hand, if the wave is a backward recovery 

wave or forward recovery wave, the function linearly decreases from ta to tb since the 

length of the segment that vehicles travel under congestion decreases at a constant rate as 

the shock wave passes through the segment.  Then, from the departure time of the last 

vehicle to encounter the wave until the end of the study period, the function is constant 

because the traffic state is no longer changing. 

3.3.2 Scenarios Four, Five, and Six 

In addition to addressing scenarios that include the passage of a single shock wave on a 

freeway segment, scenarios are developed in which the passage of a backward shock 

wave is followed by the passage of a backward recovery wave within the same study 

period.  These include Scenarios Four, Five, and Six.  Both waves begin at the same 

location, a site that has a decrease in capacity followed by a restoration of capacity, 

which can be caused by an incident.  The decrease in capacity causes the backward shock 
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wave to form and the restoration of capacity causes the backward recovery wave to form.  

Over distance and time, the traffic state is uncongested to the left of the backward shock 

wave and to the right of the backward recovery wave but the traffic state is congested 

between the waves.   

The waves are included within the same study period if at least one of the vehicles 

that intersects the backward shock wave travels on the freeway segment while at least one 

of the vehicles that intersects the backward recovery wave also does (i.e., the time at 

which the last vehicle to encounter the backward shock wave exits the segment is later 

than the departure time of the first vehicle to encounter the backward recovery wave).  

One can tell that a case study satisfies this condition if the inequality in Eq. 3.13 holds 

true.   

 

     
  
    

 
   
  

 
    
  

      (3.13) 

 

In the above equation, the times at which the backward shock wave and backward 

recovery wave enter the freeway segment are denoted by tw,s and tw,r.  The location at 

which they enter the freeway segment is denoted by xw.  The velocity of the backward 

shock wave and the velocity of the backward recovery wave are denoted by vw,s and vw,r, 

respectively.  However, if the inequality is not satisfied, the waves are separated into two 

study periods; the backward shock wave is classified as Scenario One and the backward 

recovery wave is classified as Scenario Two. 

The three scenarios in which the passage of a backward shock wave is followed 

by the passage of a backward recovery wave, Scenarios Four, Five, and Six, are 
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differentiated.  In Scenario Four, no vehicles intersect both shock waves.  In Scenario 

Five and Six, at least one vehicle intersects more than one wave. Whether vehicles 

intersect at most one or both shock waves is dependent on the trajectories of the shock 

waves and on the congested vehicle speed.   If the inequality in Eq. 3.14 is true, no 

vehicles intersect both waves and the study period is classified as Scenario Four.   

 

  
  
 
  
    

           (3.14) 

 

In the above inequality, the left side represents the amount of time it takes for the 

backward shock wave to reach the beginning of the segment and a vehicle to pass 

through the entire congested area.  The right side of the inequality represents the incident 

duration.  Therefore, the inequality represents whether the backward shock wave reaches 

the beginning of the segment and a vehicle can pass through the entire congested area 

before the incident is cleared.   

In both Scenario Five and Scenario Six the inequality in Eq. 3.11 is not satisfied.  

Therefore, a vehicle can intersect both shock waves while traversing the segment.  

However, Scenario Five and Scenario Six differ in the location at which the backward 

shock wave and the backward recovery wave intersect each other.  In Scenario Five, the 

shock waves intersect upstream from the segment. However, in Scenario Six, the shock 

waves intersect within or at the upstream end of the segment.  Whether or not shock 

waves intersect depends on the amount of time between their occurrences and on their 

speeds.  The location at which two waves intersect, denoted xI, is found with Eq. 3.15.  
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This equation is applicable if the speed of the backward recovery wave is faster than the 

speed of the backward shock wave. 

 

   
    (            )      (            )

         
 (3.15) 

 

If xI is less than zero, then the waves intersect upstream from the segment and the study 

period is classified as Scenario Five.  If xI is greater than zero, then the waves intersect 

within the segment.  If xI equals zero, the waves intersect at the upstream end of the 

segment, which is mile zero.  For either result, the study period is classified as Scenario 

Six.  Scenario Six was illustrated in Figure 3.5.  In the figure, the location of xI is denoted 

on the y-axis.  The flow chart below illustrates the process of determining the 

classification of the Scenarios for study periods with both a backward shock wave and 

backward recovery wave. 
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 Figure 3.6  Flow chart of classification of Scenarios with two shock waves.   

 

After distinguishing Scenarios Four, Five, and Six, the steps to determine 

vehicles’ travel times are now applied.  The first and second steps are discussed together.  

These steps are used to determine the departure times and travel times of the first and last 

vehicles to encounter the backward shock wave as well as the first and last vehicles to 

encounter the backward recovery wave.  The departure times and trajectories of these 

vehicles are illustrated in Figures 3.7 through 3.9.  The departure times of the first and 

last vehicles to encounter the backward shock wave are denoted ta,s and tb,s.  The 

trajectories of these vehicles are illustrated in orange and purple, respectively.  The 
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departure times of the first and last vehicles to encounter the backward recovery wave are 

denoted ta,r and tb,r.  The trajectories of these vehicles are illustrated in green and pink, 

respectively.   

Figure 3.7  Freeway segment undergoing transition Scenario Four.   
where  t* = ta,s and tb,r  ≤  t* ≤ tL , tb,s ≤  t** ≤ ta,r 
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Figure 3.8  Freeway segment undergoing transition Scenario Five.   
where t* = ta,s and tb,r  ≤  t* ≤ tL  
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Figure 3.9  Freeway segment undergoing transition Scenario Six.   
where t* = ta,s and tb  ≤  t* ≤ tL  

 

In Scenario Four, the first and last vehicles to encounter the shock waves do not 

encounter any other waves within the segment.  This was also the case in Scenario One 

and Two, which considered the passage of a backward shock wave and backward 

recovery wave, respectively.  Therefore, the travel times of the first and last vehicles to 

encounter the backward shock wave are calculated as explained for Scenario One.  Also, 

the departure times and travel times of the first and last vehicles to encounter the 

backward recovery wave are calculated as explained for Scenario Two.   
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In Scenario Five, the first vehicle to encounter the backward shock wave and the 

last vehicle to encounter the backward recovery wave do not encounter any other waves 

within the segment.  Therefore, the departure time and travel time of the first vehicle to 

encounter the backward shock wave is calculated as explained for Scenario One.  Also, 

the departure time and travel time of the last vehicle to encounter the backward recovery 

wave is calculated as explained for Scenario Two.  However, the last vehicle to encounter 

the backward shock wave encounters the backward recovery wave within the segment.  

While its departure time can be calculated as in Scenario One, its travel time cannot.  

Instead, its travel time, denoted Atb,s
 , is calculated with Eq. 3.16. 

 

      (
                   

       
     ) (  

  
  
)  

 

  
 (3.16) 

 

In the equation, the first term on the right side represents the time at which the vehicle 

intercepts the backward recovery wave.  The value inside the parenthesis therefore equals 

the travel time at the congested speed.  The vehicle’s departure time, tb,s, is applied in the 

equation. 

The first vehicle to encounter the backward recovery wave in Scenario Five 

encounters the backward shock wave within the segment.  Its departure time is calculated 

with Eq. 3.17. 
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In the equation, the first term on the right side represents the time at which the vehicle 

intercepts the backward shock wave.  The vehicle’s travel time is found with Eq. 3.18.   

 

                
    
  

 (3.18) 

 

In the equation, the first two terms on the right side represent the travel time from when 

the vehicle departs until it reaches the location the waves initiate.  The second term on the 

right side represents the travel time from the location the waves initiate to the end of the 

segment. 

In Scenario Six, the first vehicle to encounter the backward shock wave does not 

encounter any other waves within the segment.  Therefore, its departure time and travel 

time are calculated as explained for Scenario One.  The first vehicle to encounter the 

backward recovery wave encounters the backward shock wave within the segment.  

Therefore, its departure time and travel time are calculated as explained in Scenario Five 

for the first vehicle to encounter the backward recovery wave.  Because the backward 

shock wave and backward recovery wave intersect within the segment, there is one 

vehicle that is the last to intersect both the backward shock wave and the backward 

recovery wave.  To calculate its departure time, first the time at which the waves intersect 

is calculated.  The time they intersect, denoted tI, is found with Eq. 3.19   

 

        
     
    

 (3.19) 
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where xI is found with Eq. 3.15.  Then, the vehicle’s departure time is calculated with Eq. 

3.20. 

      
  
  

 (3.20) 

 

This vehicle travels the entire segment at the uncongested speed because the traffic state 

is uncongested in the time-space plane outside of the boundaries determined by the shock 

waves’ trajectories.  The travel time of the vehicle is therefore calculated with Eq. 3.5. 

The next step is to determine the study periods for Scenarios Four, Five, and Six.  

The study period begins at the departure time of the first vehicle affected by the 

backward shock wave.  The departure time of this vehicle was defined previously to be 

ta,s.  Thus, 

        (3.21) 

 

where the equations to calculate ta,s for each Scenario were provided previously.  

Vehicles are no longer affected by the shock waves once the last vehicle to encounter the 

backward recovery wave exits the segment.  Therefore, for Scenarios Four and Five, the 

study period ends when the vehicle that departs at tb,r exits the segment.  The value for tL, 

the last departure time in the study period, is calculated as follows 

 

                (3.22) 
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where the equations to calculated tb,r and Atb,r
 were provided previously.  For Scenario 

Six, Eq. 3.10 is applied because the departure time of the last vehicle to encounter the 

shock wave in Scenario Six is denoted tb. 

Finally, the relationship between vehicle travel time and departure time is 

determined for the entire study period.  The relationship is illustrated in Figures 3.7, 3.8, 

and 3.9 where the function of travel time by departure time is shown with a blue line on 

the secondary y-axis.  Each Scenario is discussed separately.   

The forth step is first applied to Scenario Four.  The relationship between vehicle 

travel time and departure time is constant between the departure times corresponding to 

the following events: 

1. The beginning of the study period (time tF found with Eq. 3.21), which is also the 

departure time of the first vehicle to encounter the backward shock wave, and the 

departure time of the last vehicle to encounter the backward shock wave. 

 

2. The departure time of the last vehicle to encounter the backward shock wave and the 

departure time of the first vehicle to encounter the backward recovery wave. 

 

3. The departure time of the first vehicle to encounter the backward recovery wave and 

the departure time of the last vehicle to encounter the backward recovery wave. 

 

4. The departure time of the last vehicle to encounter the backward recovery wave and 

the end of the study period (time tL found with Eq. 3.22). 

 

The first sub period is between the departure times of the first and last vehicles to 

encounter the backward shock wave, ta,s and tb,s. During this sub period, travel times 

increase at a constant rate.  The reasoning is the same as explained for Scenario One for 

the sub period between ta and tb. The travel time equation is derived in the same way as in 

Scenario One where the rate of change in the equation is found using the departure times 

and travel times of the first and last vehicles to encounter the backward shock wave.  The 
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travel time of a vehicle that departs at time t, where t is between ta,s and tb,s, is found with 

Eq. 3.23 which is a generalized form of Eq. 3.11. 

 

   
     

   
(   )     (3.23) 

 

In the equation, ta,s is represented by x and tb,s is represented by y.  Thus, Ax, equals the 

travel time for the vehicle that departs at ta,s and Ay equals the travel time for the vehicle 

that departs at tb,s.   

During the second sub period, between the departure times of the last vehicle to 

encounter the backward shock wave and the first vehicle to encounter the backward 

recovery wave, vehicle travel times are constant; the vehicles that depart during this time 

period do not encounter any waves.  The travel times for these vehicles therefore equal 

the travel times of the vehicles that depart at tb,s and ta,r.     

Vehicles that depart during the third sub period encounter the backward recovery 

wave.  Like in Scenario Two for departure times between ta and tb, the departure times 

decrease at a constant rate.  The travel time equation for this sub period is derived the 

same way as in Scenario Two where the rate of change in the equation is found using the 

departure times and travel times of the first and last vehicles to encounter the backward 

recovery wave.  The travel time of a vehicle that departs at time t, where t is between ta,r 

and tb,r, is found with Eq. 3.23 where ta,r is represented by x and tb,r is represented by y.  

Thus, Ax equals the travel time of the first vehicle to encounter the backward recovery 

wave and Ay equals the travel time of the last vehicle to encounter the backward recovery 

wave.   
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The last sub period is from the departure time of the last vehicle to encounter the 

backward recovery wave until the end of the study period.  Vehicles that depart during 

this time have the same travel time as the vehicle that departs at tb,r because the traffic 

state is static after the shock wave exits the segment.   

Based on the above information, a function of vehicle travel time by departure 

time is produced for Scenario Four.  The function, denoted f, assigns to each departure 

time t, where tF ≤ t ≤ tL, an actual travel time.  Like the function for Scenarios One 

through Three, it is a piecewise defined function.   
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 (3.24) 

 

The function is illustrated in Figure 3.7.  The function is depicted with a blue line on the 

secondary y-axis.  As described by the piecewise function, the slope of the function 

changes at the departure times of the first and last vehicles to encounter the backward 

shock wave and the departure times of the first and last vehicles to encounter the 

backward recovery wave.  

The forth step is next applied to Scenario Five.  The relationship between vehicle 

travel time and departure time is constant between the departure times corresponding to 

the following events: 



 

 

87 

 

1. The beginning of the study period and the departure time of the first vehicle to 

encounter the backward recovery wave. 

 

2. The departure time of the first vehicle to encounter the backward recovery wave and 

the departure time of the last vehicle to encounter the backward shock wave. 

 

3. The departure time of the last vehicle to encounter the backward shock wave and the 

departure time of the last vehicle to encounter the backward recovery wave. 

 

4. The departure time of the last vehicle to encounter the backward recovery wave and 

the end of the study period. 

 

In Scenario Five, the first sub period is between the departures time of the first 

vehicles to encounter the backward shock wave and the backward recovery wave.  

During this period, the travel times linearly increase because the length of the segment 

under congestion linearly increases as the backward shock wave passes through the 

segment.  The travel time of a vehicle that departs at time t, where t is between ta,s and 

ta,r, is found with Eq. 3.23 where ta,s is represented by x and ta,r is represented by y.   

The second sub period is between the departure time of the first vehicle to 

encounter the backward recovery wave and the last vehicle to encounter the backward 

shock wave.  During this time period, the backward recovery wave passes through the 

segment and the length of the roadway in congested conditions linearly decreases.  As a 

result, travel times during this period linearly decrease.  The travel time of a vehicle that 

departs at time t, where t is between ta,r and tb,s, is found with Eq. 3.23 where tar is 

represented by x and tb,s is represented by y.   

The third sub period is between the departure time of the last vehicle to encounter 

the backward shock wave and the last vehicle to encounter the backward recovery wave.  

The travel times continue to decrease linearly, however at a faster rate than in the second 

sub period.  This is because the length of the segment in congested conditions now is 
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only affected by the trajectory of the backward recovery wave and not the trajectory of 

the backward shock wave.  The travel time of a vehicle that departs at time t, where t is 

between tb,s and tb,r, is found with Eq. 3.23 where tb,s is represented by x and tb,r is 

represented by y.   

The last sub period is from the departure time of the last vehicle to encounter the 

backward recovery wave until the end of the study period.  Vehicles that depart during 

this time have the same travel time as the vehicle that departs at tb,r because the traffic 

state is static after the shock wave exits the segment.   

Based on the above information, a function of vehicle travel time by departure 

time is produced for Scenario Five.  The function, denoted f, assigns to each departure 

time t, where tF ≤ t ≤ tL, an actual travel time.     
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 (3.25) 

 

The function is depicted in Figure 3.8 with a blue line on the secondary y-axis.  As 

described by the piecewise function, the slope of the function changes at the departure 

times of the first and last vehicles to encounter the backward shock wave and the 

departure times of the first and last vehicles to encounter the backward recovery wave.    
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The maximum value is achieved at the departure time of the first vehicle to encounter the 

backward recovery wave while a local maximum is achieved at the departure time of the 

last vehicle to encounter the backward shock wave. 

Last, the forth step is applied to Scenario Six.  The relationship between vehicle 

travel time and departure time is constant between the departure times corresponding to 

the following events: 

1. The beginning of the study period and the departure time of the first vehicle to 

encounter the backward recovery wave. 

 

2. The departure times of the first vehicle to encounter the backward recovery wave and 

the last vehicle to encounter the shockwaves. 

 

3. The departure time of the last vehicle to encounter the shock waves and the end of the 

study period.  

 

In Scenario Six the first sub period is the same as for Scenario Five.  Therefore, 

the equation developed in Scenario Five is applied.  The second sub period is also the 

same for both Scenarios.  The equations developed in Scenario Five are again applied 

with the exception that the variable tb is used in the place of tb,s. The last sub period is 

from the departure time of the last vehicle to encounter the waves until the end of the 

study period.  Vehicles that depart during this time have the same travel time as the 

vehicle that departs at tb because the traffic state is uncongested after the shock waves 

terminate.   

Based on the above information, a function of vehicle travel time by departure 

time is produced for Scenario Six.  The function, denoted f, assigns to each departure 

time t, where tF ≤ t ≤ tL, an actual travel time.  Unlike the functions for Scenarios Four 

and Five, it only has three pieces because the waves intercept within the segment.     
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The function is depicted in Figure 3.9 with a blue line on the secondary y-axis.  The 

maximum value is achieved at the departure time of the first vehicle to encounter the 

backward recovery wave. 

In summary, a model of vehicle travel time by departure time has been produced 

for Scenarios One through Six.  The model was formed by first determining the departure 

times of the first and last vehicles to encounter the shock waves.  Second, the travel times 

of these vehicles were calculated.  Third, the study period was found to begin at the 

departure time of the first vehicle to encounter a shock wave and end at the time the last 

vehicle to encounter a shock wave exited the segment.  Fourth, sub periods of the study 

period were determined for which the relationship (i.e., slope of the function) between 

vehicle travel time and departure time is constant and then the travel times for each sub 

period were calculated by applying the departure time and travel times of the first and last 

vehicles within each sub period.   

Tables 3.3 through 3.7 summarize equations used to model vehicle travel time by 

departure time for each Scenario.  Table 3.3 and Table 3.4 provide the equations to 

calculate the departure time of the first vehicle and the last vehicle to encounter each 

wave by Scenario.  Table 3.5 and Table 3.6 provide the equations to calculate the travel 



 

 

91 

 

time of the first vehicle and the last vehicle to encounter each wave by Scenario.  Table 

3.7 provides the equations to determine the first and last departure time for each Scenario. 

 

Table 3.3 Departure Time of the First Vehicle to Encounter a Wave by Scenario 

 
Scenario 

 1 2 3 4 5 6 

W
a
v
e 

Backward 

shock 
3.1 n/a n/a 3.1 3.1 3.1 

Backward 

recovery 
n/a 3.2 n/a 3.2 3.17 3.17 

Forward 

recovery 
n/a n/a 3.1 n/a n/a n/a 

n/a means non-applicable for the Scenario 

 

Table 3.4 Departure Time of the Last Vehicle to Encounter a Wave by Scenario 

 
Scenario 

 1 2 3 4 5 6 

W
a
v
e 

Backward 

shock 
3.3 n/a n/a 3.3 3.3 3.19 

Backward 

recovery 
n/a 3.3 n/a 3.3 3.3 3.19 

Forward 

recovery 
n/a n/a 3.4 n/a n/a n/a 

n/a means non-applicable for the Scenario 
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Table 3.5 Travel Time of the First Vehicle to Encounter a Wave by Scenario 

 
Scenario 

 1 2 3 4 5 6 

W
a
v
e 

Backward 

shock 
3.5 n/a n/a 3.5 3.5 3.5 

Backward 

recovery 
n/a 

3.6 or 

3.8 
n/a 

3.6 or 

3.8 
3.18 3.18 

Forward 

recovery 
n/a n/a 

3.6 or 

3.7 
n/a n/a n/a 

n/a means non-applicable for the Scenario 

 

Table 3.6 Travel Time of the Last Vehicle to Encounter a Wave by Scenario 

 
Scenario 

 1 2 3 4 5 6 

W
a
v
e 

Backward 

shock 

3.6 or 

3.8 
n/a n/a 

3.6 or 

3.8 
3.16 3.20 

Backward 

recovery 
n/a 3.5 n/a 3.5 3.5 3.20 

Forward 

recovery 
n/a n/a 3.5 n/a n/a n/a 

n/a means non-applicable for the Scenario 

Table 3.7 First and Last Departure Times of a Study Period by Scenario 

 
Scenario 

 1 2 3 4 5 6 

W
a
v
e 

First 

vehicle 
3.9 3.9 3.9 3.21 3.21 3.21 

Last 

vehicle 
3.10 3.10 3.10 3.22 3.22 3.22 
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3.4 Predicted Vehicle Travel Time 

In the previous section, 3.2.3, a model of the relationship between vehicle travel time and 

departure time was produced.    Six different Scenarios were considered in which either 

one or two transitions in the traffic state of a freeway segment were considered.  In this 

section, a model of the relationship between predicted travel time and departure time is 

developed considering the same Scenarios.  First, the assumptions pertaining to modeling 

the predicted travel times are discussed.  Then, the relationship between predicted travel 

times and departure time for each Scenario are modeled. 

In order to formulate the model, system assumptions are made.  The first 

assumption is that the sensors are evenly spaced along the freeway segment.  The 

locations of path based sensors are as follows.  Given a number of sensors, denoted N, 

one sensor is placed at the upstream end of the segment, which is mile zero, and one is 

placed at the downstream end of the segment, which is mile D.  The remaining N-2 

sensors are evenly spaced along the segment.  The sensor spacing, denoted S (mi), is 

calculated with Eq. 3.27. 

 

  
 

   
 (3.27) 

 

The location of sensor n (n = 1 to N) is mile xn along the segment, where xn is calculated 

with Eq. 3.28. 

   (   )  (3.28) 

                                                     where 1 ≤ n ≤ N  
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The section of the freeway segment between two neighboring sensors, n-1 and n, is 

referred to as a link.  The link is from location xn-1 to location xn.   

A freeway segment with N evenly spaced sensors can be seen in Figure 3.10.  The 

sensors’ locations are denoted on the y-axis. The locations are constant over time as 

shown with thick gray lines.  The sensors divide the segment into N-1 links.  The freeway 

segment is undergoing a transition from an uncongested to a congested traffic state that is 

represented with a backward shock wave.  The backward shock wave originates in the 

link between sensor n-1 and sensor n.  The study period is classified as Scenario One. 

 
Figure 3.10  Freeway segment with backward shock wave and N sensors.   
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 The data collected by two neighboring sensors, n-1 and n, is used to predict 

vehicles’ travel times for the link defined by the two sensors.  Each sensor collects data 

from passing vehicles equipped with traceable devices, such as Bluetooth devices.  The 

data collected from a vehicle includes a unique identification number and the time at 

which it passes the sensor’s location.  By comparing the time at which a vehicle passes 

sensor n-1 to the time at which it passes sensor n, the vehicle’s travel time on a link is 

determined.  The latest vehicle detected by sensor n provides the most recent travel time 

for mile xn-1 to mile xn, and thus this travel time is used as the current predicted travel 

time for this link.  The predicted travel time derived from a vehicle that is detected by 

sensor n at time t is denoted pn,t.   

The concept of predicted travel time is illustrated in Figure 3.10.  In particular, the 

predicted travel time for the vehicle that departs at time tb is demonstrated.  The 

prediction is derived from the vehicles detected by the sensors at time tb.  The trajectory 

of the vehicles detected by sensors N, n, and n-1 at time tb are depicted with a pink line, 

orange line, and blue line, respectively.  The travel time from sensor n to sensor N of the 

vehicle whose trajectory is indicated with the pink line is denoted as pN,tb in the figure.   It 

has this denotation because it is the predicted travel time derived at time tb from the 

vehicle that is detected by sensor N.  Likewise, the travel time from sensor n-1 to sensor n 

of the vehicle whose trajectory is indicated with the orange line is denoted pn,tb and the 

travel time from sensor 1 to sensor n-1 of the vehicle whose trajectory is indicated with 

the blue line is denoted pn-1,tb.    

As it is assumed that predicted travel times are calculated instantaneously, the 

predicted travel time provided to a vehicle entering the segment at time t is derived from 
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the vehicles that are detected by the sensors at time t. As vehicles enter the freeway 

segment they receive a prediction of the amount of time it will take to travel from mile 

zero to mile D, the entire length of the segment.  The prediction for a vehicle that departs 

at time t equals the sum of the most recent travel times calculated at time t by each pair of 

consecutive sensors (i.e., sensors n-1 and n for n=2 to N) as shown in Eq. 3.29. 

 

   ∑    

 

   

 (3.29) 

 

This concept is illustrated in Figure 3.10.  The predicted trajectory for departure time tb is 

shown with a purple line.  (Note that the line is straight and therefore conveys a constant 

vehicle speed over the length of the segment.  This reflects that vehicles’ occupants 

assume the traffic state of the freeway segment is constant; the vehicles’ occupants have 

no knowledge of where a transition in the traffic state occurs.  Thus, the occupants 

assume the vehicle’s speed will be constant for the entire length of the segment.)   The 

predicted travel time of the vehicle, denoted Ptb
 in the figure, equals the sum of the 

predictions from each link of the segment. 

Predicted travel times can vary for the different links of a freeway segment during 

the same study period.  The predicted travel times are affected by the number of waves 

that affect the link, whether or not the wave begins and/or ends with the link, and by the 

number of waves vehicle encounter while in the link.  For example, if a link is located 

downstream from a backward moving wave’s origin point or upstream from its 

termination point, then the predicted travel times for the link only reflect the uncongested 
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traffic state.  Nine different link types are developed that consider these different 

characteristics.  A freeway segment’s links are categorized as fitting one of the nine link 

types to facilitate the calculation of the predicted travel times on each link.  The table 

below summarizes links’ characteristics for each link type.  The characteristics are 

discussed in detail afterward. 
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Table 3.8 Characteristics of Link Types 

 
Link Type 

Characteristics of 

the Link 

I II III IV V VI VII VIII IX 

Number of waves 

that affect the link 

zero one one two two two two two two 

Waves originate 

within the link 

n/a yes no yes yes yes no no no 

Waves terminate 

within the link 

n/a no no no no yes no no yes 

Vehicles can 

encounter both waves 

within the link 

n/a n/a n/a no yes yes no yes yes 

Scenarios 

During 

Which a 

Link Type 

Can Exist 

One 
yes yes yes no no no no no no 

Two 
yes yes yes no no no no no no 

Three 
yes yes yes no no no no no no 

Four 
yes no no yes no no yes no no 

Five 
yes no no yes yes no yes yes no 

Six 
yes no no yes yes yes yes yes yes 

n/a means non-applicable for the situation 
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The first link type, Type I, is not affected by a transition in the traffic state.  This 

type of link may be present during any of the Scenarios.  In Scenarios One, Two, Four, 

Five, and Six, a link receives this classification if the wave originates upstream of the 

freeway link (i.e., xw ≤ xn-1).  A link can also receive this classification in Scenario Six if 

the backward shock wave and backward recovery wave intersect downstream of the link 

(i.e., xn ≤ xI  where xI is found with Eq. 3.15).  In Scenario Three, a link receives this 

classification if the wave originates downstream of the freeway section (i.e., xw ≥ xn).   

The next two link types only apply to links during Scenarios with one shock 

wave, i.e., Scenarios One, Two, and Three.  Links are classified as Type II if the shock 

wave originates within it (i.e., xn-1 < xw < xn for Scenarios One, Two, and Three).  In 

contrast, links are classified as Type III if the shock wave passes through the entire link 

(i.e., xw ≥ xn for Scenarios One and Two and xw ≤ xn-1 for Scenario Three).   

The classifications of the links for a Scenario Three study period are illustrated in 

Figure 3.11.  The freeway segment is undergoing a transition from a congested to an 

uncongested traffic state that is represented with a forward recovery wave.  The freeway 

segment is comprised of N-1 links.  The upstream link, located between sensors 1 and n, 

is classified as a Type II link because the forward recovery wave originates within this 

link.  The downstream link, located between sensors n and N, is classified as a Type III 

link because the forward recovery wave passes through the entire link.  The link types are 

indicated on the secondary y-axis of the figure.   
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Figure 3.11  Freeway with links classified as Type II and Type III. 

 

The last six link types only apply to links during Scenarios with two shock waves, 
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waves while traversing the link.  Each one of the combinations of these characteristics is 

covered by one of the link types.  The combinations take into account weather the waves 

end within a link, and then at least some of the vehicles encounter both waves while 

traversing the link.  However, vehicles can encounter both waves even if the waves do 

not meet within a link.   
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The three characteristics considered for Categories IV through IX are provided in 

detail.  First, the waves originate within a link if xn-1 < xw < xn. If this is true, the link is 

classified as Type IV, V, or VI.  On the other hand, if the wave originates downstream 

from the link, the link is classified as Type VII, VIII, or IX.  Second, the waves terminate 

within a link only during Scenario Six and if xn-1 ≤ xI  < xn.  For this case, the link is 

classified as either Type VI or IX.  Third, vehicles can encounter both waves while 

traversing the link only during Scenarios Five and Six and if the inequality in Eq. 3.30 

holds true.  If it is true, then the link is classified as Type V, VI, VIII, or IX.  If it is not 

true, then the link is classified as Type IV or VII. 

 

     
       
    

 
 

  
      

     
    

 (3.30) 

 

In the above inequality, the left side represents the amount of time it takes for the 

backward shock wave to reach the beginning of the link (mile xn-1) and a vehicle to pass 

through the link while it is congested.  The right side of the inequality represents the 

amount of time it takes the backward recovery wave to reach the link (mile xn).  

Therefore, the inequality represents whether the backward shock wave can reach the 

beginning of the link and a vehicle can pass through the entire congested link before the 

backward recovery wave enters the link.   

Figure 3.12 illustrates a freeway segment with N sensors and N-1 links.  A 

backward shock wave and backward recovery wave originate within the downstream 

link, located between sensors n and N.   Vehicles traveling within this link encounter at 

most one of the shock waves.  Therefore, the link is classified as Type IV.  The waves 
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pass through the entire upstream link located between sensors 1 and n.  In addition, 

vehicles encounter at most one shock wave within the link.   Therefore, the link is 

classified as Type VII.  Although no vehicles encounter both waves within a single link, 

some vehicles do encounter the backward shock wave on the upstream link and then 

encounter the backward recovery wave on the downstream link.  Therefore, in the figure 

a Scenario Five study period is depicted. 

Figure 3.12  Freeway with links classified as Type IV and Type VII. 
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Based on the aforementioned assumptions, the relationship between predicted 

travel time and vehicle departure time is modeled for each Scenario.  This relationship is 

developed by applying the following four steps which are listed below and illustrated in 

the flow chart in Figure 3.13.   

1. Calculate the location of each of the N sensors. 

 

2. Classify the link type located between each pair of consecutively located 

sensors. 

 

3. For the link located between sensors n-1 and n (n=2 to N), calculate the 

function of predicted travel time by departure time, denoted gn(t). 

 

4. Sum all the links’ functions to determine the relationship between predicted 

travel time and departure time for the entire segment length (i.e., mile 0 to 

mile D), denoted g(t). 
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Figure 3.13 The steps to develop the function of predicted travel time by 

departure time.   

 

The relationship between predicted travel time and departure time is constant for 

the duration of the study period for freeway links that are unaffected by the shock waves, 

such as Type I links.  The traffic state of these links remains uncongested for the entire 
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study period.  Therefore, the predicted travel time is calculated by dividing the link 

length, S, by the speed of the uncongested traffic state as shown in Eq. 3.31.   

 

     
 

  
 (3.31) 

 

The function of predicted travel time by departure time for a link n, denoted gn(t), is 

therefore constant for Type I links and is represented with Eq 3.32 below.   

 

  ( )  
 

  
 (3.32) 

                                           where          

 

For links affected by the shock waves, such as Type II-IX links, the relationship 

between predicted travel time and departure time changes over the study period. The 

predicted travel times are determined by applying the following three steps.  First, the 

times at which the relationship changes are found.  Second, the predicted travel times at 

these points are calculated.  Third, this information is used to develop equations that 

express the relationship between predicted travel time and departure time for all other 

departure times within the study period.  These steps are explained in detail as follows.  

The Scenarios that consider one shock wave, Scenarios One, Two, and Three are first 

considered.  Then, the steps are applied to the Scenarios that consider two shock waves, 

Scenarios Four, Five, and Six.   
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3.4.1 Scenarios One, Two, and Three 

In the first step to determine predicted travel times, the departure times at which the 

predicted travel times begin to increase or decrease are found along with the times they 

cease to increase or decrease.  In Scenarios One through Three, these are the times at 

which a link’s downstream sensor, i.e., sensor n, detects the first and last vehicles that 

encountered the shock wave within the link.  These detection times are denoted ta,n and 

tb,n, respectively.  During the passage of a backward shock wave, ta,n represents when 

predicted travel times begin to increase and tb,n represents when predicted travel times 

cease to increase and instead become constant.   In contrast, during the passage of a 

recovery wave, ta,n represents when predicted travel times begin to decrease and tb,n 

represents when predicted travel times cease to decrease and instead become constant.    

The detection times and trajectories of the first and last vehicles to encounter a 

forward recovery wave within a link are illustrated in Figure 3.11 provided previously.  

Within each link, the trajectory of the first vehicle that encounters the recovery wave is 

illustrated in orange and the trajectory of the last vehicle that encounters the shock wave 

is illustrated in blue.  The times the vehicles are detected by the downstream sensor of 

each link are also denoted.  At these times, the relationship between predicted travel time 

and departure time changes. 

The time at which a link’s downstream sensor detects the first vehicle which 

encountered the shock wave within the link is calculated.  Scenarios One, Two, and 

Three are considered.  There are two considerations for the calculation.  The first is 

determining where and when the vehicle encounters the shock wave within the link.  The 

second is determining the vehicle’s travel time from this location to mile xn. For a Type II 
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link, the first vehicle to encounter the wave does so at the instant and location the wave 

forms within the link.  For a Type III link, the first vehicle to encounter the wave does so 

the instant the wave enters the link; the wave enters the link at mile xn if the wave is a 

backward shock wave or backward recovery wave, or it enters at mile xn-1 if the wave is a 

forward recovery wave.  Therefore, the time the vehicle is detected by sensor n is 

calculated with the following equations, listed by Scenario and link type: 

 Scenarios One and Two 

o Type II link 

        
     
  

 (3.33) 

      where xn-1 < xw < xn  

 

o Type III link 

        
     
  

 (3.34) 

                                  where xw ≥ xn   

 

 Scenario Three 

o Type II link 

        
     
  

 (3.35) 

                                   where xn-1 < xw < xn  

 

o Type III link 
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 (3.36) 

                            where xw ≤ xn-1  

 

As can be seen in Eqs. 3.33 and 3.35, for a link in which either a backward shock wave, 

backward recovery wave, or forward recovery wave initiates, the detection time is 

dependent on when and where the shock wave initiates within the link and on the amount 

of time it takes a vehicle to travel from this location to sensor n’s location at mile xn.  For 

example, in Figure 3.11, the first vehicle to encounter the forward recovery wave in the 

link between sensors 1 and n travels at the uncongested speed from mile 0 to mile xw and 

then from mile xw to mile xn at the congested speed.  In Eq. 3.34, for a link in which a 

backward moving wave initiates downstream from it, the detection time equals the time 

at which the backward moving wave reaches sensor n.  In Eq. 3.36, S is found with Eq. 

3.27.  Also, in Eq. 3.36, for a link that has a forward recovery wave initiate upstream 

from it, the detection time equals the time at which the wave reaches sensor n-1 plus the 

amount of time it takes for a vehicle to travel from sensor n-1 to sensor n at the congested 

speed.   For example, for the first vehicle to encounter the forward recovery wave in the 

link between sensors n and N in Figure 3.11, the vehicle encounters the wave at mile xn 

and then travels at the congested speed until mile xN.   

Next, the time at which a link’s downstream sensor detects the last vehicle which 

encountered the shock wave within the link is calculated.  The last vehicle to encounter 

the shock wave does so at the instant and location the shock wave departs from the link. 

This location is mile xn-1 if the shock wave is a backward moving wave or this location is 

mile xn if the shock wave is a forward moving wave.  If the location is mile xn-1, the then 
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vehicle’s travel time from this location to mile xn needs to be calculated.  Therefore, the 

time the vehicle is detected by sensor n is calculated with one of the following equations, 

listed by Scenario and link type: 

 Scenario One 

o Type II link 

          
       

  
 
       

  
 (3.37) 

                    where xn-1 < xw < xn  

 

o Type III link 

        
       

  
 
 

  
 (3.38) 

                            where xw ≥ xn  

 

 Scenario Two 

o Type II or III link 

        
       

  
 
 

  
 (3.39) 

 

 Scenario Three 

o Type II or III link 

        
     
  

 (3.40) 
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The equations for a backward recovery wave, Eq. 3.37 and Eq. 3.38, take into account 

whether part of the link remains in uncongested conditions or if the entire link is in 

congested conditions after the wave passes through, respectively.  The detection time by 

sensor n of the last vehicle to encounter a backward recovery wave for both Categories II 

and III is calculated with the same equation, Eq. 3.39, because in both instances the 

vehicle travels from mile xn-1 to mile xn at the uncongested speed.  Also, the detection 

time by sensor n of the last vehicle to encounter a forward recovery wave for both 

Categories II and III is calculated with the same equation, Eq. 3.40, because in both 

instances the vehicle is detected at the time the wave exits the link.  For example, in 

Figure 3.11, both tb,n and tb,N occur when the forward recovery wave reaches the 

downstream end of each link. 

The predicted travel times derived from the first and last vehicles to encounter the 

shock waves within a link are calculated.  As a reminder, Scenarios One, Two, and Three 

are still being considered.   

The predicted travel time derived from a vehicle that travels the entire link at the 

uncongested speed is first discussed.  The entirety of a link is in uncongested conditions 

before a backward shock wave enters it and after a recovery wave departs from it. 

Therefore, the travel times of the following vehicles are calculated with this equation: 

 The first vehicle to encounter the backward shock wave for a Type II or III link 

during Scenario One 

 

 The last vehicle to encounter the backward recovery wave for a Type II or III link 

during Scenario Two 

 

 The last vehicle to encounter the forward recovery wave for a Type II or III link 

during Scenario Three 
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The predicted travel time is calculated by dividing the link length, S, by the speed of the 

uncongested traffic state as in Eq. 3.31 provided previously.  This equation is illustrated 

in Figure 3.11 with the predicted travel time derived from the vehicle detected at time 

tb,N.  The vehicle’s travel time from mile xn to mile xN is denoted in the figure as pN,tb,N 
. 

Next, the predicted travel time derived from a vehicle that travels the entire link at 

the congested speed is determined.  The entirety of a link is in congested conditions after 

a backward shock wave exits it and before a recovery wave enters it. Therefore, the 

following vehicles’ travel times are calculated with this equation: 

 The last vehicle to encounter the backward shock wave for a Type III link during 

Scenario One 

 

 The first vehicle to encounter the backward recovery wave for a Type III link during 

Scenario Two 

 

 The first vehicle to encounter the forward recovery wave for a Type III link during 

Scenario Three 

 

 

The predicted travel time is calculated by dividing the link length, S, by the speed of the 

congested traffic state as in Eq. 3.41.   

 

     
 

  
 (3.41) 

 

This equation is also illustrated in Figure 3.11 with the predicted travel time derived from 

the vehicle detected at time ta,N.  The vehicle travels from mile xn to mile xN at the 

congested speed; the travel time from the one location to the other is denoted in the figure 

as pN,ta,N 
. 
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Third, travel time is predicted when a forward recovery wave originates within the 

link.  This particular equation, Eq. 3.42, is used to calculate the predicted travel time 

derived from a vehicle that travels from the beginning of the link to the location the shock 

wave originates at the uncongested speed, and then continues to the end of the link at the 

congested speed.  Therefore, the following vehicle’s travel times is calculated with this 

equation: 

 The first vehicle to encounter the forward recovery wave for a Type II link during 

Scenario Three 

The predicted travel time is calculated with Eq. 3.42. 

     
       

  
 
     
  

 (3.42) 

                                      where xn-1 < xw < xn  

 

The first term on the right hand side of the equations represents the travel time at the 

uncongested speed and the second term represents the travel time at the congested speed.  

In Figure 3.11, the predicted travel time derived from the first vehicle to encounter the 

forward recovery wave within the link between sensors 1 and n, denoted pn,ta,n
 , is 

calculated with this equation. 

In contrast to Eq. 3.42, Eq. 3.43 is applicable when a backward shock wave or a 

backward recovery wave originates within the link.  It is applied to calculate the 

predicted travel time derived from a vehicle that travels from the beginning of the link to 

the location the shock wave originates at the congested speed and then continues to the 

end of the link at the uncongested speed.  Therefore, the following vehicles’ travel times 

are calculated with this equation: 
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 The last vehicle to encounter the backward shock wave for a Type II link during 

Scenario One 

 

 The first vehicle to encounter the backward recovery wave for a Type II link during 

Scenario Two 

The predicted travel time is calculated with Eq. 3.43. 

 

     
       

  
 
     
  

 (3.43) 

                                       where xn-1 < xw < xn  

 

The first term on the right hand side of the equations represents the travel time at the 

congested speed and the second term represents the travel time at the uncongested speed. 

In the final step to develop the function of predicted travel time by departure time, 

the predicted travel times for the remaining departure times are determined.  These 

departure times are grouped into three sets.  The first set includes the departure times 

from the beginning of the study period until the detection time of the first vehicle to 

encounter the wave.  The second set includes the departure times in between the detection 

times of the first and last vehicles to encounter the wave.  The last set includes the 

departure times from the detection time of the last vehicle to encounter the wave until the 

end of the study period. 

From the beginning of the study period of a Scenario, which is departure time tF 

found with Eq. 3.9, until the detection time of the first vehicle to encounter the shock 

wave, which is time ta,n, the predicted travel times are constant.  The predicted travel 

times during this period are constant because the traffic state is static before the shock 
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wave enters the link. Therefore, the predicted travel times are calculated with the 

equation used to find the predicted travel time for departure time ta,n.  

Next, the relationship is constant from the detection time of the first vehicle to 

encounter the shock wave until the detection time of the last vehicle to encounter the 

shock wave, which is departure time tb,n.  Specifically, in Scenario One, predicted travel 

times linearly increase because, during this period, the backward shock wave passes 

through the link.  Also, in Scenarios Two and Three, predicted travel times linearly 

decrease, because, during this period, the recovery wave passes through the link.  A linear 

equation is developed to calculate the predicted travel time for link n for a vehicle that 

departs during this period.  The independent variables of the equation include the 

departure times ta,n and tb,n and their associated predicted travel times pn,ta,n
 and  pn,tb,n

 .  

The predicted travel time on a link n for a vehicle that departs at time t, where t is 

between ta,n and tb,n, is found with Eq. 3.44. 

 

     
               
         

(      )          (3.44) 

                              where ta,n  ≤  t  ≤ tb,n   

 

The equation is of the form y = mx + b where the slope represents the change in 

predicted travel time over the change in departure time. 

For the remainder of the study period, from the detection time of the last vehicle 

to encounter the shock wave until the end of the study period, time tL found with Eq. 

3.10, the predicted travel times are constant.  This is because the traffic state is static after 

the shock wave exits the link.  The predicted travel times during this period are the same 
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as the predicted travel time derived from the vehicle that is detected at time tb,n. The 

equation to calculate pn,tb,n
 has been discussed previously.  

The predicted travel times by departure time are summarized with the following 

function shown with Eq. 3.45.  The function, denoted gn, assigns to each departure time t, 

where tF ≤ t ≤ tL, a predicted travel time for a link that is located between sensors n-1 and 

n and is classified as either Type II or III.     

 

  ( )  

{
  
 

  
 
                                                                                          

               
         

(      )                     

                                                                      

 (3.45) 

 

The relationship between predicted travel time and departure time for the case study with 

a forward recovery wave illustrated in Figure 3.11 is shown in Figure 3.14.  For each 

link, the function is constant until the first vehicle to encounter the forward recovery 

wave is detected by the downstream sensor.  This is time ta,n for the upstream link of the 

segment and time ta,N for the downstream link of the segment.  Then, the function 

decreases as the predicted travel times are derived from vehicles that encounter the 

forward recovery wave within each link.  The function is again constant when the first 

vehicle to travel the entire link at the uncongested speed is detected by the downstream 

sensor on the link.  This is time tb,n for the upstream link of the segment and time tb,N for 

the downstream link of the segment.  The maximum predicted travel time for the link 

between sensors n and N is greater than the maximum for the link between sensors 1 and 

n because part of the link between sensors 1 and n always remains uncongested. 
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Figure 3.14  Predicted travel times for study period illustrated in Figure 3.11. 

 

The predicted travel times for a link for the duration of a study period for 

Scenarios One, Two, and Three has been modeled.  The detection times of the first and 

last vehicles to encounter the shock wave were calculated along with these vehicles’ 

travel times on the link.  From this information, the predicted travel times for the entire 

duration of the study period were found.  

3.4.2 Scenarios Four, Five, and Six 

Next, the relationship between predicted travel time and departure time is determined for 

Scenarios Four, Five and Six.  There is both a backward shock wave and backward 

recovery wave in each of these Scenarios.  In the first step, the departure times at which 

the predicted travel times begin to increase or decrease are found along with the times 

they cease to increase or decrease.  The relationship between predicted travel time and 
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departure time changes when a link’s downstream sensor, i.e., sensor n, detects the first 

and last vehicles that encountered the backward shock wave within the link.  These times 

are denoted ta,s,n and tb,s,n, respectively.  In addition, the relationship changes when a 

link’s downstream sensor detects the first and last vehicles that encounter the backward 

recovery wave within the link.  These times are denoted ta,r,n and tb,r,n, respectively.   

The detection times and trajectories of the first and last vehicles to encounter a 

backward shock wave and backward recovery wave within a link are illustrated in Figure 

3.12.  The trajectory of the first vehicle that encounters the backward shock wave is 

illustrated in orange and the trajectory of the last vehicle that encounters the backward 

shock wave is illustrated in purple.  In addition, the trajectory of the first vehicle that 

encounters the backward recovery wave is illustrated in green and the trajectory of the 

last vehicle that encounters the backward recovery wave is illustrated in pink.   

The time at which a link’s downstream sensor detects the first vehicle which 

encountered the backward shock wave within the link is calculated.  For a link classified 

as Type IV, V, or VI, the first vehicle to encounter the backward shock wave does so at 

the instant and location the wave forms within the link, time tw,s and mile xw.  For a link 

classified as Type VII, VIII, or IX, the first vehicle to encounter the wave does so the 

instant the wave enters the link at mile xn.  The detection time by sensor n of the first 

vehicle to encounter a backward shock wave is calculated with one of the following 

equations: 

 Scenarios Four, Five and Six 

o Type IV link or a Type VI link 
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 (3.46) 

                                where xn-1 < xw < xn  

 

 Scenarios Four, Five, and Six 

o Type VII link or a Type VIII link  

            
     
    

 (3.47) 

                                where xw ≥ xn  

 

As can be seen in Eq. 3.46, for links in which the backward shock wave initiates, the 

detection time is dependent on when and where the backward shock wave initiates within 

the link and on the amount of time it takes a vehicle to travel from this location to sensor 

n’s location at mile xn.  For example, in Figure 3.12, the first vehicle to encounter the 

backward shock wave in the link located between sensors n and N travels at the 

uncongested speed from mile xw to mile D.  Also, as can be seen in Eq. 3.47, for links in 

which the backward shock wave initiates downstream, the detection time equals the time 

at which the backward shock wave reaches sensor n.  This is apparent in Figure 3.12 for 

the link located between sensors 1 and n. 

Next, the time at which a link’s downstream sensor detects the last vehicle which 

encountered the backward shock wave within the link is calculated.   For Scenarios Four 

and Five, the vehicle encounters the wave at the instant and location the shock wave 

departs from the link.  This location is mile xn-1.  For Scenario Six, the vehicle encounters 

the wave at the instant and location the shock wave terminates within the link. This 
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location is mile xI.   The detection time by sensor n of the last vehicle to encounter a 

backward shock wave is calculated with one of the following equations, provided by link 

type: 

 Scenarios Four, Five, and Six 

o Type IV link 

            
       
    

 
       

  
 
     
  

 
(3.48) 

                     where  xn-1 < xw < xn 

 

o Type V or VIII link 
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 where xw > xn-1  (3.49) 

 

o Type VII link 

            
       
    

 
 

  
 (3.50) 

                          where xw ≥ xn    

 

o Type VI or IX link 

        
     
  

 (3.51) 

                               where xn-1 < xw < xn  
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In Eq. 3.48, for links in which the backward shock wave initiates and no vehicles 

encounter both shock waves, the detection time equals the time at which the backward 

shock wave exits the link plus the travel time of the vehicle that enters the link at this 

time.  As can be seen in Figure 3.12 for the link between sensors n and N, this vehicle 

travels at the congested speed from the location of sensor n-1 to the location the wave 

initiates and then at the uncongested speed for the remainder of the link.  For links in 

which the vehicles encounter both waves but the waves do not terminate within the link, 

Eq. 3.49 takes into account that the vehicle from which the predicted travel time is 

derived encounters the backward recovery wave within the link. This vehicle travels at 

the congested speed from the location of sensor n-1 to the location it encounters the 

backward recovery wave and then travels at the uncongested speed for the remainder of 

the link.   In Eq. 3.50, for links in which the backward shock wave initiates downstream 

and no vehicles encounter both shock waves, the detection time equals the time at which 

the backward shock wave exits the link plus the amount of time it takes a vehicle to travel 

from the location of sensor n-1 to the location of sensor n at the congested speed.  For 

example, in Figure 3.12, the vehicle with detection time tb,s,n encounters the backward 

shock wave at mile zero and then travels at the congested speed until mile xn.  In Eq. 

3.51, for links in which the waves terminate, the time and location the backward shock 

wave and backward recovery wave intersect, tI and xI, are applied to determine when the 

vehicle that is at mile xI at time tI then reaches sensor n.  In this equation, the detection 

time is denoted tb,n to represent that one vehicle is the last to encounter both the backward 

shock wave and backward recovery wave. 
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Next, the time at which a link’s downstream sensor detects the first vehicle which 

encountered the backward recovery wave within the link is calculated.  For a link 

classified as Type IV, V, or VI, the first vehicle to encounter the wave does so at the 

instant and location the wave forms within the link.  For a link classified as Type VII, 

VIII, or IX, the first vehicle to encounter the wave does so the instant the wave enters the 

link at mile xn.  The detection time by sensor n of the first vehicle to encounter a 

backward recovery wave during Scenarios Four, Five, or Six is calculated with one of the 

following equations: 

 Scenarios Four, Five, and Six 

o Type IV link, V link, or a Type VI link 

 

            
     
  

 (3.52) 

                                             where xn-1 < xw < xn 

 

o Type VII link, Type VIII link, or a Type IX link 

            
     
    

 (3.53) 

                                where xw ≥ xn  

 

As can be seen in Eq. 3.52, for links in which the backward recovery wave initiates, the 

detection time is dependent on when and where the backward recovery wave initiates 

within the link and on the amount of time it takes a vehicle to travel from this location to 

sensor n’s location at mile xn.  For example, in Figure 3.12, the first vehicle to encounter 
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the backward recovery wave in the link located between sensors n and N travels at the 

uncongested speed from mile xw to mile D.  Also, as can be seen in Eq. 3.53, for links in 

which the backward recovery wave initiates downstream, the detection time equals the 

time at which the backward recovery wave reaches sensor n.  This is illustrated in Figure 

3.12.  The time at which the first vehicle to encounter the backward recovery wave in the 

link between sensors one and n is detected, time ta,r,n, occurs when the backward recovery 

wave reaches mile xn.   

Last, the time at which a link’s downstream sensor detects the last vehicle which 

encountered the backward recovery wave within the link is calculated.  The detection 

time of the last vehicle to encounter the backward recovery wave is calculated.  For 

Scenarios Four and Five, the last vehicle to encounter the backward recovery wave does 

so at the instant and location the shock wave departs from the link.  This location is mile 

xn-1.  The detection time by sensor n of the last vehicle to encounter the backward 

recovery wave is calculated with the following equation: 

 Eq. 3.54 for a Type IV or VII link during Scenario Four or Five and a Type V or VIII 

link during Scenario Five 

            
       
    

 
 

  
 (3.54) 

 

In Eq. 3.54, the detection time equals the time at which the backward recovery wave exits 

the link plus the amount of time it takes a vehicle to travel from the location of sensor n-1 

to the location of sensor n at the uncongested speed.  In Figure 3.12, one can see in both 

links that the last vehicle to encounter the backward recovery wave travels the entire link 

length at the uncongested speed.  In Scenario Six, there is one vehicle that is the last to 
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encounter both the backward shock wave and backward recovery wave.  This vehicle’s 

detection time was previously calculated with Eq. 3.51.   

The predicted travel times derived from the first and last vehicles to encounter the 

backward shock wave and backward recovery wave within the link are calculated.  First, 

the predicted travel time derived from a vehicle that travels the entire link at the 

uncongested speed is discussed.  A link is in uncongested conditions before a backward 

shock wave enters it and after a recovery wave departs from it. Therefore, the following 

vehicles’ travel times are calculated with this equation: 

 The first vehicle to encounter the backward shock wave for link Categories IV-IX in 

Scenarios Four, Five, and Six 

 

 The last vehicle to encounter the backward recovery wave for link Categories IV, V 

VII, and VIII in Scenarios Four, Five, and Six 

 

 The last vehicle to encounter both waves for link Categories VI and IX in Scenario 

Six 

 

The predicted travel time is calculated by dividing the link length, S, by the speed of the 

uncongested traffic state as shown previously with Eq. 3.31.  This equation is illustrated 

in Figure 3.12 with the predicted travel time derived from the vehicles detected at times 

ta,s,N, ta,s,n, tb,r,N, and tb,r,n.  The vehicles’ travel times on the links are denoted on the x-axis 

with dotted blue lines. 

Next, the predicted travel time derived from a vehicle that travels the entire link at 

the congested speed is calculated.  The shock waves must initiate outside of the link in 

order for the entire link to be in the congested state.  In addition, a vehicle can travel the 

entire link at the congested speed only if it departs after the backward shock wave exits 

the link and the vehicle reaches mile xn before the backward recovery wave enters the 
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link.  These conditions are only possible for a link classified as Type VII.  Therefore, the 

following vehicles’ travel times are calculated with this equation: 

 The last vehicle to encounter the backward shock wave for a Type VII link during 

Scenarios Four, Five, and Six 

 

 The first vehicle to encounter the backward recovery wave for a Type VII link during 

Scenarios Four, Five, and Six 

 

The predicted travel time is calculated by dividing the link length, S, by the speed of the 

congested traffic state as was shown previously with Eq. 3.41.  This equation is 

illustrated in Figure 3.12 with the predicted travel time derived from the vehicles detected 

at times tb,s,n, and ta,r,n.  Both of these vehicles travel between sensors 1 and n at the 

congested speed. 

The next calculation is applicable when the shock waves initiate within the link. It 

determines the predicted travel time derived from a vehicle that travels from the 

beginning of the link to the location the shock wave originates at the congested speed and 

then continues to the end of the link at the uncongested speed.  Therefore, the following 

vehicles’ travel times are calculated with this equation: 

 The last vehicle to encounter the backward shock wave for a Type IV link during 

Scenarios Four, Five, and Six. 

 

 The first vehicle to encounter the backward recovery wave for a Type IV link during 

Scenarios Four, Five, and Six. 

 

The predicted travel time is calculated as was shown previously with Eq. 3.43.  In Figure 

3.12, the predicted travel times pN,tb,s,N
 and pN,ta,r,N

 derived from the vehicles detected at 

times tb,s,N and ta,r,N , respectively, are calculated as such. 
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 The next equation, Eq. 3.55, is used to calculate the predicted travel time derived 

from a vehicle that departs at the time the backward shock wave exits the link and 

encounters the backward recovery within the link.  It is therefore the predicted travel time 

derived from the following vehicle: 

 The last vehicle to encounter the backward shock wave for a Type V or VIII link 

during Scenarios Four, Five, and Six. 

The equation to calculate the predicted travel time, Eq. 3.55, employs the detection time 

of the vehicle, tb,s,n, already found with Eq. 3.49.   

                 (     
       
    

) (3.55) 

                    where xw > xn-1    

 

In Eq. 3.55, the predicted travel time is found by subtracting the vehicle’s departure time 

into the link, which is the time the backward shock wave exits the link, from the time the 

vehicle exits the link, tb,s,n. 

 Next, Eq. 3.56 is used to calculate the predicted travel time derived from a vehicle 

that is the first to encounter the backward recovery wave within a link classified as Type 

V or VI.  The equation to calculate the predicted travel time of this vehicle needs to take 

into account that the waves initiate within the link and the vehicle encounters the 

backward shock wave within the link.  The following vehicles’ travel times are calculated 

with this equation: 

 The first vehicle to encounter the backward recovery wave for a Type V or VI link 

during Scenarios Five and Six. 

The equation to calculate the predicted travel time, Eq. 3.56, employs the detection time 

of the vehicle, ta,r,n, already found with Eq. 3.52.   
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] 
(3.56) 

   where xn-1 < xw < xn 

 

In Eq. 3.56, the first term on the right hand side is the time the vehicle exits the link.  The 

term within the brackets is the time the vehicle enters the link.  This term takes into 

account that the vehicle encounters the backward shock wave within the link. The 

predicted travel time is therefore found by subtracting the vehicle’s departure time into 

the link from its exit time from the link. 

Whereas Eq. 3.56 is used to calculate the predicted travel time derived from a 

vehicle that is the first to encounter the backward recovery wave within a link classified 

as Type V or VI, Eq. 3.57 is used for a link classified as Type VIII or IX.  Therefore, the 

equation needs to take into account that the waves initiate downstream from the link and 

the vehicle encounters the backward shock wave within the link.  The following vehicles’ 

travel times are calculated with this equation: 

 The first vehicle to encounter the backward recovery wave for a Type VIII or IX link 

during Scenarios Five and Six. 

 

The equation to calculate the predicted travel time, Eq. 3.57, employs the detection time 

of the first vehicles to encounter the backward shock wave and backward recovery wave 

within the link because they represent the times at which the shock waves enter the link. 

These variables ta,s,n and ta,r,n, were previously calculated with Eqs. 3.47 and 3.53, 

respectively.   
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     where xw ≥ xn  (3.57) 

 

The equation is similar to Eq. 3.56 in that the predicted travel time is found by 

subtracting the vehicle’s departure time into the link from its exit time from the link. 

Next, the last step to develop the function of predicted travel time by departure 

time is applied.  The relationship between predicted travel time and departure time 

changes at the detection times by sensor n of the first and last vehicles to encounter the 

shock waves.  Therefore, the function is constant in between these detection times.  The 

equation that expresses the function is developed.  The chronological order of the 

detection times of the first and last vehicles to encounter the shock waves are the same 

for link Categories IV and VII, for Categories V and VIII, and for Categories VI and IX 

and so the development of the function is discussed for each of these Condition groups.   

The third step is first applied to link Categories IV and VII.  The relationship 

between predicted travel time and departure time is constant between the departure times 

corresponding to the following events: 

1. The beginning of the study period (time tF found with Eq. 3.21) and the detection time 

of the first vehicle to encounter the backward shock wave. 

  

2. The detection times of the first and last vehicles to encounter the backward shock 

wave. 

 

3. The detection times of the last vehicle to encounter the backward shock wave and the 

first vehicle to encounter the backward recovery wave. 

 

4. The detection times of the first and last vehicles to encounter the backward recovery 

wave. 
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5. The detection time of the last vehicle to encounter the backward recovery wave and 

the end of the study period (time tL found with Eq. 3.22). 

 

The predicted travel times between the first set of departure times, tF and ta,s,n, are 

constant because the traffic state is static before the backward shock wave enters the link. 

Therefore, the predicted travel times are calculated with the equation used to find the 

predicted travel time for departure time ta,s,n, which is Eq. 3.46 in link Type IV and Eq. 

3.47 in link Type VII.  

Next, predicted travel times linearly increase between the second set of departure 

times, ta,s,n and tb,s,n, as a result of the backward shock wave passing through the link.  

The predicted travel time on a link n for a vehicle that departs at time t, where t is 

between ta,s,n and tb,s,n, is found with Eq. 3.58, which is a generalized form of Eq. 3.44. 

 

     
           
     

(    )        (3.58) 

                                  where ta,n  ≤  t  ≤ tb,n    

 

In the equation, ta,s,n is represented by tx and tb,s,n is represented by ty.  Thus, pn,tx
 equals 

pn,ta,s,n 
, the predicted travel time derived from the first vehicle to encounter the backward 

shock wave and pn,ty
 equals pn,tb,s,n 

, the predicted travel time derived from the last vehicle 

to encounter the backward shock wave.   

Between the third set of departure times, tb,s,n and ta,r,n, the predicted travel times 

are constant.  The predicted travel times during this period are constant because the 

traffic state is static after the backward shock wave exits the link but before the backward 
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recovery wave enters the link. Therefore, the predicted travel times are calculated with 

the equation used to find the predicted travel time for detection time tb,s,n, which is Eq. 

3.48 in link Type IV and Eq. 3.50 in link Type VII.  

For the departure times that fall between ta,r,n and tb,r,n, which are the detection 

times of the first and last vehicles to encounter the backward recovery wave and the 

fourth set of departure times, predicted travel times linearly decrease.  An equation 

previously developed, Eq. 3.58, is applied to determine the predicted travel time on a link 

n for a vehicle that departs at time t, where t is between ta,r,n and tb,r,n.  In the equation, 

ta,r,n is represented by tx and tb,r,n is represented by ty.  Thus, pn,tx 
equals pn,ta,r,n 

, the 

predicted travel time derived from the first vehicle to encounter the backward recovery 

wave and pn,ty
 equals pn,tb,r,n 

, the predicted travel time derived from the last vehicle to 

encounter the backward recovery wave.   

For the remainder of the study period, from the detection time of the last vehicle 

to encounter the backward recovery wave until the end of the study period, the predicted 

travel times are constant.  This is because the traffic state is static after the backward 

recovery wave exits the link.  Therefore, the predicted travel times are calculated with the 

equation used to find the predicted travel time for departure time tb,r,n, which is Eq. 3.31.  

The predicted travel times for the study period are summarized with the below 

function.  The function, denoted gn, assigns to each departure time t, where tF ≤ t ≤ tL, a 

predicted travel time for a link that is located between sensors n-1 and n and is classified 

as either Type IV or VII.     
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  (3.59) 

 

The relationship between predicted travel time and departure time for the case study 

illustrated in Figure 3.12 with links classified as Type IV and VII is shown in Figure 

3.15.  There are three lines.  The light gray line depicts the function for the link located 

between sensors 1 and n; this link is classified as Type VII.  The dark gray line depicts 

the function for the link location between sensors n and N; this link is classified as Type 

IV.  The thick black line is the sum of the first two lines; it is the predicted travel time 

vehicles are provided as they enter the segment.  For each link, the function is constant 

until the detection time of the first vehicle to encounter the backward shock wave.  Then, 

it increases between the detection times of the first and last vehicles to encounter the 

backward shock wave.  Next, the function is again constant between the detection times 

of the last vehicle to encounter the backward shock wave and the first vehicle to 

encounter the backward recovery wave.  After the detection time of the first vehicle to 

encounter the backward recovery wave, the function decreases until the detection time of 

the last vehicle to encounter the backward recovery wave.  Finally, the function is 

constant until the end of the study period.  The maximum predicted travel time for the 
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link between sensors 1 and n is greater than the maximum for the link between sensors n 

and N because part of the link between sensors n and N always remains uncongested. 

 
Figure 3.15  Predicted travel times for freeway segment shown in Figure 3.12. 

 

The third step is next applied to link Categories V and VIII.  The relationship 

between predicted travel time and departure time is constant between the departure times 

corresponding to the following events: 

1. The beginning of the study period and the detection time of the first vehicle to 

encounter the backward shock wave. 

  

2. The detection times of the first vehicle to encounter the backward shock wave and the 

first vehicle to encounter the backward recovery wave. 

 

3. The detection times of the first vehicle to encounter the backward recovery wave and 

the last vehicle to encounter the backward shock wave. 

 

4. The detection times of the last vehicle to encounter the backward shock wave and the 

last vehicle to encounter the backward recovery wave. 
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5. The detection time of the last vehicle to encounter the backward recovery wave and 

the end of the study period. 

 

Because the first and fifth sets of departure times are the same as for Type IV and VII 

links, they will not be discussed again. 

Between the second set of departure times, ta,s,n and ta,r,n, predicted travel times 

linearly increase as a result of the backward shock wave passing through the link. An 

equation previously developed, Eq. 3.58, is applied to determine the predicted travel time 

on a link n for a vehicle that departs at time t, where t is between ta,s,n and ta,r,n.  In the 

equation, ta,s,n is represented by tx and ta,r,n is represented by ty.  Thus, pn,tx 
equals pn,ta,s,n 

, 

the predicted travel time derived from the first vehicle to encounter the backward shock 

wave and pn,ty
 equals pn,ta,r,n 

, the predicted travel time derived from the first vehicle to 

encounter the backward recovery wave.   

Between the third set of departure times, ta,r,n and tb,s,n, predicted travel times 

linearly decrease as a result of the backward recovery wave entering the link.  Equation 

3.58 is again applied.  It is used to determine the predicted travel time on a link n for a 

vehicle that departs at time t, where t is between ta,r,n and tb,s,n.  In the equation, ta,r,n is 

represented by tx and tb,s,n is represented by ty.  Thus, pn,tx
 equals pn,ta,r,n 

, the predicted 

travel time derived from the first vehicle to encounter the backward recovery wave and 

pn,ty
 equals pn,tb,s,n 

, the predicted travel time derived from the last vehicle to encounter the 

backward shock wave.   

Predicted travel times linearly decrease at a faster rate between the fourth set of 

departure times, tb,s,n, and tb,r,n, then between the third set of departure times.  This is a 

result of only the backward recovery wave being present in the link.  Once again Eq. 3.58 
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is applied to describe the relationship between predicted travel time and departure time.  

In the equation, tb,s,n is represented by tx and tb,r,n is represented by ty.  Thus, pn,tx
 equals 

pn,tb,s,n 
, the predicted travel time derived from the last vehicle to encounter the backward 

shock wave and pn,ty
 equals pn,tb,r,n 

, the predicted travel time derived from the last vehicle 

to encounter the backward recovery wave.   

The predicted travel times for the study period are summarized with the function 

below.  The function, denoted gn, assigns to each departure time t, where tF ≤ t ≤ tL, a 

predicted travel time for a link that is located between sensors n-1 and n and is classified 

as either Type V or VIII.     
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  (3.60) 

 

Last, the third step is applied to link Categories VI and IX.  For these links, one 

vehicle is the last to encounter both the backward shock wave and backward recovery 

wave.  Therefore, there are only four groups of departure times.  The relationship 

between predicted travel time and departure time is constant between the departure times 

corresponding to the following events: 
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1. The beginning of the study period and the detection time of the first vehicle to 

encounter the backward shock wave.  

 

2. The detection times of the first vehicle to encounter the backward shock wave and the 

first vehicle to encounter the backward recovery wave. 

 

3. The detection times of the first vehicle to encounter the backward recovery wave and 

the last vehicle to encounter the shock waves. 

 

4. The detection time of the last vehicle to encounter the shock waves and the end of the 

study period.  

 

Because the first set of departure times is the same as for Type IV and VII links and the 

second set of departure times is the same as for Type V and VIII links, they will not be 

discussed again.      

Between the third set of departure times, tar,n and tb,n, predicted travel times 

linearly decrease as a result of the backward recovery wave entering the link.  Equation 

3.58 is again applied.  It is used to determine the predicted travel time on a link n for a 

vehicle that departs at time t, where t is between tar,n and tb,n.  In the equation, tar,n is 

represented by tx and tb,n is represented by ty.  Thus, pn,tx
 equals pn,ta,r,n

 the predicted travel 

time derived from the first vehicle to encounter the backward recovery wave and pn,ty
 

equals pn,tb,n
, the predicted travel time derived from the last vehicle to encounter the 

waves.   

For the remainder of the study period, from the detection time of the last vehicle 

to encounter the waves until the end of the study period, the predicted travel times are 

constant.  This is because the traffic state is uncongested after the waves terminate.  

Therefore, the predicted travel times are calculated with the equation used to find the 

predicted travel time for departure time tb,n, which is Eq. 3.31.  
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The predicted travel times for the study period are summarized with the function 

below labeled as Eq. 3.61.  The function, denoted gn, assigns to each departure time t, 

where tF ≤ t ≤ tL, a predicted travel time for a link that is located between sensors n-1 and 

n and is classified as either Type VI or IX.    The function is comprised of four pieces. 
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  (3.61) 

 

The function of predicted travel time by departure time was modeled for each link 

of the freeway segment.  The detection times of the first and last vehicles to encounter the 

shock waves were calculated along with these vehicles’ travel times on the link.  From 

this information, the predicted travel times for the entire duration of the study period 

were found for a link.  For a freeway segment, a total of N-1 of these functions is 

produced.  The functions are summed to determine the predicted travel time for the entire 

length of the segment, denoted g(t), as shown in Eq. 3.62 below.   
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This function expresses the predicted travel times provided to vehicles’ occupants as their 

vehicle enters the freeway segment at mile zero. 

3.5 Travel Time Prediction Error 

In this section, the travel time prediction error for the study period of each Scenario is 

measured.  Scenarios One through Six are discussed together.  Prediction error is the 

difference between the actual travel time, modeled in section 3.2.3, and the predicted 

travel time, modeled in section 3.2.4.  First, the error for a given departure time, t, is 

calculated.  Then, the total error for a study period is determined.  Finally, the average 

error for the study period is found.  Both the total error and average error take into 

account the traffic flow during the study period.   

 The travel time prediction error for a given departure time is calculated.  The 

difference in actual travel time and predicted travel time for departure time t is the travel 

time prediction error, denoted Et (hr).  It is calculated as shown in Eq. 3.63. 

 

         (3.63) 

 

For example, in Figure 3.10, the predicted travel time for the vehicle that departs at time 

tb is denoted Ptb
 and is shown with a purple dotted line.  Also, the actual travel time for 

the vehicle that departs at time tb is denoted Atb
 and is shown with a dotted green line.  

The difference is these times, the prediction error, is illustrated with a dotted red line and 

is denoted Etb
. 
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Prediction error can be either positive or negative.  A positive error value 

represents over prediction and a negative value represents under prediction.  Over 

prediction occurs when travel times decrease during a study period.  Therefore, there is 

over prediction during Scenarios Two or Three.  For example, Figure 3.16 below displays 

the prediction error for the study period first illustrated in Figure 3.11.   The study period 

consisted of a freeway segment undergoing a transition from a congested to an 

uncongested state represented with a forward recovery wave.  In the figure, the light gray 

line depicts vehicles’ travel times, the thick black line depicts vehicles’ predicted travel 

times, and the dark gray line depicts the prediction error throughout the study period.  

The thick black line is the same as that shown in Figure 3.14.  Throughout the study 

period, the predicted travel time function is above the actual travel time function (i.e., the 

thick black line is higher than the light gray line) which indicates over prediction. 

 

 
Figure 3.16  Prediction error for the study period illustrated in Figure 3.11. 
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Under prediction occurs when travel times increase during a study period.  

Therefore, there is under prediction during Scenario One.  For study periods during 

which travel times initially increase and then later decrease, such as during Scenarios 

Four, Five, and Six, travel times are under predicted during the beginning of the study 

period but are over predicted later on in the study period.  For example, Figure 3.17 

below displays the prediction error for the study period first illustrated in Figure 3.12.   

The study period consisted of a freeway segment undergoing a transition from an 

uncongested to a congested state, represented with a backward shock wave, and then 

undergoing a transition to return to the uncongested state, represented with a backward 

recovery wave.  In the figure, the light gray line depicts vehicles’ travel times, the thick 

black line depicts vehicles’ predicted travel times, and the dark gray line depicts the 

prediction error throughout the study period.  The thick black line is the same as that 

shown in Figure 3.15.  At the beginning of the study period, the predicted travel time 

function is lower than the actual travel time (i.e., the thick black line is below the light 

gray line) which indicates under prediction.  However, between the departure time of the 

last vehicle to encounter the backward shock wave and the detection time by sensor n of 

this vehicle, the error function crosses the actual travel time function.  The error function 

remains above the actual travel time function until time tb,r,n.  Thus, there is over 

prediction during this period.  Then, between time tb,r,n and the end of the study period, 

time tL, the functions are the same which indicates zero error.   



 

 

139 

 

 

Figure 3.17  Prediction error for study period illustrated in Figure 3.12. 

 

 In order to calculate the total error and the average error of a study period, the 

traffic flow during the study period needs to be determined.  The traffic flow for a given 

departure time reflects the traffic state at mile zero, the upstream end, of the freeway 

segment at that time.  For example, if the beginning of the segment (i.e., mile zero) is 

uncongested, then the uncongested traffic flow is applied.  In contrast, if the beginning of 

the segment is congested, then the congested traffic flow is applied.  The traffic flow may 

change during a study period if a shock wave reaches mile zero of the segment.  For 

example, in Scenario One depicted in Figure 3.2, an uncongested traffic flow is used for 

departure times before the backward shock wave reaches mile zero, from time tF to time 

tb, and a congested traffic flow is used after, from time tb to time tL.  In contrast, in 

Scenario Two depicted in Figure 3.3, a congested traffic flow is used for departure times 

before the backward recovery wave reaches mile zero, from time tF to time tb, and an 
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uncongested traffic flow is used after, from time tb to time tL.  Similarly, if a forward 

recovery wave originates upstream from the segment, then the traffic flow is congested 

from the beginning of the study period until the wave enters the segment, which occurs at 

time tw, and is uncongested after the wave enters the segment until the end of the study 

period.  However, if a forward recovery wave originates within the segment, such as in 

Figure 3.4, then the uncongested flow is used for the entire study period. 

For study periods in which two waves reach mile zero, such as in Scenarios Four 

and Five shown in Figures 3.7 and 3.8, the traffic flow changes from uncongested to 

congested and then returns to uncongested.  First, the traffic flow is uncongested from the 

beginning of the study period, time tF, until the backward shock wave reaches mile zero 

at time tb,s. Then, the traffic flow is congested from time tb,s until the time at which 

backward recovery wave reaches the upstream end, time tb,r.  Finally, the traffic flow is 

uncongested from time tb,r until the end of the study period, time tL.  However, if a shock 

wave never reaches mile zero during the study period, such as during Scenario Six shown 

in Figure 3.9, the traffic flow is assumed to be uncongested for the entire study period.  

 Next, the total error for a study period, denoted E, is determined.  The functions 

of actual travel time by departure time, f(t), and travel time by departure time, g(t), are 

applied.  These functions were found for each Scenario previously in sections 3.2.2 and 

3.2.3.  The absolute value of the area between the two functions represents the difference 

in the actual hours traveled by vehicles and the predicted hours traveled by vehicles for a 

study period.  The area is calculated as shown in Eq. 3.64 below.  The absolute value of 

the error is used so that the positive and negative errors of the study period do not cancel 

each other out. 
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| ( )   ( )|  {
 ( )   ( )  ( )   ( )

 ( )   ( )  ( )   ( )
 (3.64) 

 

The area has a unit of (hours of travel – hour) because the travel times are formally called 

hours of travel and the study period is measured in hours.  This area is then multiplied by 

the traffic flow (veh/hr) to determine the total error for the study period.  The unit of total 

error is therefore vehicle hours of travel or VHT.  The equations to calculate the total 

error are provided below for each Scenario: 

 Scenario One 

    ∫ | ( )   ( )|  
  

  

   ∫ | ( )   ( )|  
  

  

 (3.65) 

 

 Scenario Two 

    ∫ | ( )   ( )|  
  

  

   ∫ | ( )   ( )|  
  

  

 (3.66) 

 

 Scenario Three if xw ≤ xn-1 

    ∫ | ( )   ( )|  
  

  

   ∫ | ( )   ( )|  
  

  

 (3.67) 

 

 Scenario Three if xw > xn-1  and Scenario Six 

    ∫ | ( )   ( )|  
  

  

 (3.68) 
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 Scenario Four and Scenario Five 

    ∫ | ( )   ( )|  
    

  

   ∫ | ( )   ( )|  
    

    

   ∫ | ( )   ( )|  
  

    

 
(3.69) 

 

As can be seen in Eq. 3.65, 3.66, 3.67, and 3.69, for study periods during which there are 

two traffic flows, both an uncongested and congested traffic flow, the function is 

separated into sub periods during which the flow is constant.  Then, the area of each sub 

period is found and multiplied by its traffic flow.  In addition, as can be seen in Eqs. 3.65 

through 3.69, the total error has a positive value because the absolute value of the 

difference in the functions is used.  The values for the independent variables in each 

equation are calculated according to the given Scenario. 

 Last, the average error during a study period, denoted e, is calculated.  The 

average error has a unit of hours of travel, or more simply, hour.  It equals the total error 

divided by the number of vehicles that depart during the study period.  The equations to 

calculate the total error are provided below for each Scenario: 

 Scenario One 

  
 

  (     )    (     )
 (3.70) 

 

 Scenario Two 

  
 

  (     )    (     )
 (3.71) 
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 Scenario Three if xw ≤ xn-1 

  
 

  (     )    (     )
 (3.72) 

 

 Scenario Three if xw > xn-1  and Scenario Six 

  
 

  (     )
 (3.73) 

 

 Scenario Four and Scenario Five 

  
 

  (             )    (         )
 (3.74) 

 

The values for the independent variables in each equation are calculated according to the 

given Scenario.  The average error has a positive value because the terms used to 

calculate it are positive. 

 In conclusion, three error indices were provided.  These are the error per 

departure time, total error per study period, and average error per study period.  The study 

period includes all vehicles affected by the shock wave or waves.  In order to calculate 

their values, both the actual travel times calculated in Section 3.2.2 and the predicted 

travel times calculated in Section 3.2.3 are applied.  In addition, the equations and the 

independent variables used in the equations are Scenario specific. 
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3.6 Summary 

In summary, this chapter presents a methodology to determine vehicles’ travel times and 

predicted travel times on a freeway segment undergoing a transition in its traffic state.  

Six different study period scenarios are considered, including three with a single 

transition in the traffic state of a freeway segment, represented by the passage of a shock 

wave through the freeway segment, and three with two transitions in the traffic state, 

represented by the passage of two shock waves through the freeway segment.  The inputs 

to the models are the segment’s characteristics and the characteristics of the transitions, 

and the shock waves which represent them.  In particular, the following segment’s 

characteristics are considered: 

 The segment length 

 The number of sensors on the segment 

 The uncongested traffic state with its associated speed and traffic flow 

Also, the following incident characteristics are considered: 

 The congested traffic state with its associated speed and traffic flow 

 The speed of the shock waves 

 The location at which the shock waves originate 

 The amount of time between the shock waves, referred to as the incident duration  

As a reminder, the uncongested traffic state is the condition that is present before the 

backward shock wave passes and after the backward recovery wave passes and the 

congested traffic state is the condition that is present after a backward shock wave passes 

or before a recovery wave passes.   
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 From these two models and their associated inputs, the total and average travel 

time prediction error for each study period scenario is produced.  The difference in the 

actual and predicted travel times is the error.  In Chapter 4, these models are applied to 

optimize the number of sensors on a freeway segment such that the travel time prediction 

error can be minimized. 
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CHAPTER 4  

METHODOLOGY  

 

The objective function, weighted average travel time prediction error for a freeway 

segment under incident conditions, is formulated in this chapter.  The travel time 

prediction error during an incident is decided by various factors such as the path based 

sensor spacing on the segment and the incident’s duration, location, and volume to 

capacity (v/c) ratio.  The v/c ratio represents the relationship between the average 

uncongested traffic flow during the incident and the maximum traffic flow possible at the 

incident location.  It has a direct impact on the congested traffic flow and speed and on 

the backward shock wave speed and the backward recovery wave speed.  The model 

developed in Chapter 3 is applied to calculate the average travel time prediction error 

during an incident.   

The optimal solution is obtained by considering that the incidents that affect a 

freeway segment have different durations, v/c ratios, and locations and that the optimal 

solution for each incident may differ.  For example, the optimal spacing for an incident 

that occurs during the off-peak period may not be the same as the optimal spacing for an 

incident that occurs during the peak period.  The different incidents that can occur on the 

freeway segment are included in the objective function.  This is achieved by determining 

the error by sensor spacing for each of the incidents and then also determining the 

probability of that incident occurring.  The weighted average error by sensor spacing is 

then calculated.  The objective function is minimized with an optimal spacing of sensors.  
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Chapter 4 is organized as follows.  First, a set of system assumptions is made to 

formulate the research problem.  Second, the model is formulated.  Third, constraints on 

the optimal solution are developed.  Fourth, solution methods are discussed.  Last, the 

chapter is summarized. 

 

Table 4.1 Variables Used in the Methodology and Their Symbols and Descriptions 

Symbol Description Unit 

B Yearly sensor budget $/year 

b Yearly cost per sensor $/sensor/year 

d Minimum distance required between sensors mi/sensor 

 Weighted average prediction error  min 

i Index of incident duration classes - 

j Index of v/c ratio classes - 

k Index of incident locations - 

L Total number of incident locations location 

N* Optimal number of sensors sensor 

Nmax Maximum number of sensors sensor 

Nmin Minimum number of sensors sensor 

S* Optimal sensor spacing mi 

xwk
 Incident location k mi 

Y Total number of duration classes range 

yi incident duration that represents all durations within range i hr 

Z Total number of v/c ratio classes range 

zj v/c ratio that represents all v/c ratios within range j - 

 

4.1 System Assumptions 

The formulated model is designed to optimize the sensor spacing on a freeway segment 

such that the prediction error that occurs during an incident is minimized.  The 

methodology is developed for incidents that cause a capacity reduction at the incident 

site, such as an accident blocking a lane, and then has a capacity restoration, such as 

when the accident is cleared. The reduction and restoration of the capacity each result in a 

transition in the traffic state of the freeway segment.  The first transition is from an 
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uncongested traffic state to a congested traffic state and the second transition is from a 

congested traffic state back to the uncongested traffic state.  A backward shock wave 

occurs as a result of the first transition and a backward recovery wave occurs as a result 

of the second transition, as discussed in Chapter 3.  Both waves initiate at the incident 

location and travel in the upstream direction against traffic.  Thus, study periods that 

satisfy the following scenarios described in Chapter 3 are considered: an incident with a 

backward shock wave and backward recovery wave represented by Scenarios One and 

Two, respectively, or by Scenarios Four, Five, or Six.  The suitable scenario for the 

incident is determined by its duration and v/c ratio.  Study periods that involve other 

types of waves, such as Scenario Three which contains a forward recovery wave, are not 

discussed in the methodology, but can be included with slight modifications.   

To formulate the research problem, a system assumption is made about the 

availability of historical incident data.  It is assumed that a database of historic incidents 

is available which includes the incidents’ durations and v/c ratios. From the database, one 

can see that the previous incidents on the freeway segment had different durations and 

different v/c ratios.  Also, it is assumed that the future incidents on the freeway segment 

will have different durations and v/c ratios and that these characteristics for the future 

incidents are the same as those in the past.   

Therefore, the set of possible future incidents contains one incident per every 

combination of each possible duration, v/c ratio, and incident location.  These 

assumptions are in addition to those presented previously in Chapter 3. 
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4.2 Model Formulation 

The travel time prediction error for each of the possible future incidents that can occur on 

the freeway segment is calculated for the optimization model.  As stated in the system 

assumptions, the set of possible future incidents contains one incident per every 

combination of each possible duration, v/c ratio, and incident location.  A set of discrete 

incident locations are chosen.  These can be the sites of past incidents or bottlenecks.  Or, 

if the entire length of the segment is a potential site, then discrete points are chosen, such 

as every mile or half mile.  The total number of incident locations is denoted L and the 

locations are indexed on k where xwk
 represents incident location k. In addition, to 

decrease the number of possible incidents to consider for the optimization model, a 

smaller set of incident durations are chosen to represent all the possible incident durations 

from the database and a smaller set of v/c ratios are chosen to represent all the possible 

v/c ratios from the database.  To choose the durations to include in the smaller set, the 

following two steps are taken.  First, a frequency distribution of the incident durations 

from the historical database is developed. The durations are grouped into Y mutually 

exclusive classes with equal class width (e.g, 0-1hr, 1-2hr, >3hr).  An exception can be 

made to allow for unequal class intervals to avoid a large number of empty classes (e.g., 

the last class is for all durations greater than 3 hours).  Second, a discrete duration from 

within each class (e.g. the average incident duration in the class) is chosen to represent all 

durations within the class.  Therefore, if there are Y total incident duration classes, where 

the classes are indexed on i, let yi be the incident duration that represents all the durations 

within class i.   
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Likewise, to choose the v/c ratios to include in the smaller set, the following two 

steps are taken.  First, a frequency distribution of the v/c ratios from the historical 

database is developed.  The durations are grouped into Z mutually exclusive classes with 

equal class width, allowing for the exception for an unequal class interval (e.g, 0-.5, .5-1, 

>1).  Second, a discrete v/c ratio from within each class is chosen to represent all v/c 

ratios within the class.  Therefore, if there are Z total v/c ratio classes, where the classes 

are indexed on j, let zj be the v/c ratio that represents all the v/c ratios within class j.   

It is acceptable to form the classes and choose one value to represent all the 

values within a range because incidents of similar durations or incidents of similar v/c 

ratios will have comparable relationships between the travel time prediction error and 

sensor spacing.  The set of possible future incidents is thus reduced to one incident per 

every combination of a duration that represents a range (i.e., yi) with a v/c ratio that 

represents a range (i.e. zj) with an incident location (i.e. xwk
).  For example, if there are Y 

classes of durations, Z classes of v/c ratios, and L incident locations, the set of possible 

future incidents thus includes a total of Y, multiplied by Z, multiplied by L, incidents.      

The probability of each incident occurring is dependent on the frequency of its 

duration and the frequency of its v/c ratio in the historic database and on the likelihood of 

an incident occurring at the location under consideration.  The probability for incident 

duration yi is denoted P(yi) and equals the frequency of duration class i.  For instance, if 

thirty percent of historic incidents had durations within class i, then P(yi) equals 0.3.  

Similarly, the probability for v/c ratio zj is denoted P(zj) and equals the frequency of v/c 

ratio class j.  The probability for incident location xwk
 is denoted P(xwk

) and equals the 

likelihood of an incident occurring there.  If incident locations are continuously 
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distributed, than the probability for each location is equal.  For the durations, v/c ratios, 

and locations, the sum of the probabilities for all incident conditions equals one, as 

illustrated in Eq. 4.1. 
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 (   )    (4.1) 

 

Therefore, the probability of an incident occurring with a duration of yi, a v/c ratio of zj, 

and at location xwk
 equals the product of P(yi), P(zi), and P(xwk

). 

 The travel time prediction error for each incident is dependent on its duration, v/c 

ratio, location, and sensor spacing.  This relationship is found with the model provided in 

Chapter 3.  To optimize the spacing, the travel time prediction error for each incident 

needs to be taken into account.  To do so, the weighted average error of all incidents is 

calculated.  The weighted average error equals the sum of each incident’s average 

prediction error multiplied by the probability of that incident occurring.  The weighted 

average travel time prediction error for a freeway segment with N sensors, denoted N 

(hr), can therefore be formulated as follows 

 

     ∑∑∑ (  ) (  ) (   )        

 

   

 

   

 

   

     (4.2) 

 

where ei,j,k,N is the average error of an incident with the following characteristics: the 

incident is located at mile xwk
, the incident duration (i.e., the elapsed time between tw,r, 
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and tw,r) equals yi, and the uncongested and congested traffic states correspond to v/c ratio 

zj where the shock wave speeds correspond to these traffic states’ flows and speeds. Also, 

the freeway segment has N evenly spaced sensors.  The model in Chapter 3 is applied to 

calculate the average error per incident.  The error equation is multiplied by sixty to 

convert from the unit of hour to minutes. 

4.3 Constraints 

The constraints considered in this study include the maximum and minimum number of 

sensors per freeway segment, denoted Nmax and Nmin, respectively.  For the first 

constraint, the maximum number of sensors can be restricted both by budgetary and 

technology limits.  For a yearly budget of B ($) for purchase, installation, and 

maintenance costs, and a yearly cost per sensor of b ($), the maximum number of sensors 

due to budgetary limits is found with the top equation in Eq. 4.3.  In addition, if the 

sensor technology requires that the sensors be a minimum of d miles apart to minimize 

interference between sensor signals, then the maximum number of sensors due to 

technology constraints is found with the bottom equation in Eq.  4.3. 
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 (4.3) 

 

Note that in Eq. 4.3, the negative sign indicates to round down to the nearest integer to 

ensure that the constraint is not violated.  Also, if only one of the maximum constraints is 

applicable, then only it should be considered.  Next, the second constraint ensures that 
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path based travels times can be calculated for the freeway segment.  Therefore, a 

minimum of two sensors per freeway segment is required.  Thus, Nmin = 2.  The 

constraints can be expressed in terms of sensor spacing, instead of number of sensors, by 

calculating the equivalent spacing for the given number of sensors and segment length.  

Eq. 3.27 from Chapter 3 is applied. 

4.4 Optimization Model 

Based on the discussion in Sections 4.1 through 4.3, the studied model of the number of 

sensors that minimizes the weighted average total travel time prediction error on a 

freeway segment during incidents, subject to the budgetary and technical constraints, is 

formulated as follows: 

Minimize 

     ∑∑∑ (  ) (  ) (   )        

 

   

 

   

 

   

    

(4.4) 

Subject to  

             

 

4.5 Solution Method 

The objective of this study is to develop a model to optimize the sensor spacing on a 

freeway segment.  The optimal number of sensors minimizes the weighted average travel 

time prediction error during incidents.  Therefore, the decision variable is the sensor 
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spacing.  The steps to determine the optimal spacing are described below and are shown 

in Figure 4.1. 

1. Obtain model input data including the freeway segment length (D), the minimum 

amount of space needed between sensors (d) and their budget and costs (B and b).  

Also, collect historical incident data including the incidents’ durations and v/c 

ratios. 

2. From the data found in Step 1, calculate the constraints (Nmin and Nmax) and 

analyze the historic incident duration distribution and v/c ratio distribution to 

choose the Y incident duration classes and the Z v/c ratio classes.  Also, determine 

the L incident locations. 

3. For each incident duration class, determine a discrete duration (yi) to represent it.  

Also, calculate P(yi), the probability of an incident with duration yi occurring.  For 

each v/c ratio class, determine a discrete ratio to represent it (zj) and its associated 

traffic states’ and shock waves’ characteristics.  Also, calculate P(zj), the 

probability of an incident with v/c ratio zj occurring.  For each incident location 

(xwk
) calculate P(xwk

), the probability of an incident occurring there. 

4. Calculate the travel time prediction error for every possible future incident (i.e. 

every combination of yi, zj, and xwk
 for all i, j, and k) when there are N sensors on 

the segment.  Iterate through each possible number of sensors, (Nmin ≤ N ≤ Nmax).  

The model developed in Chapter 3 is applied to calculate the error.   

5. For each possible number of sensors, calculate the weighted average of the total 

prediction error with Eq. 4.2. 
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6. Choose the number of sensors which results in the smallest weighted average 

prediction error, denoted N*. 

7. Covert N* to the optimal sensor spacing, denoted S*, with Eq. 3.27. 

More details for Steps 1, 3, and 4 are discussed in Sections 4.5.1, 4.5.2, and 4.5.3, 

respectively. 
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Start
- Determine D, d, B, and b

- Collect historic incident data

Calculate Nmin and Nmax

For all i (i=1 to Y),

   - Determine yi

   - Calculate P(yi)

 For all j (j=1 to Z),

   - Determine zj and its associated 

transition scenario charactersitcs

   - Calculate P(zj)

Determine the Y classes of incident 

durations, the Z classes of v/c ratios, and 

the L incident locations

Set N=Nmin, i=1, j=1, k=1

Calculate ei,j,k,N

j<Z ?

Set  i=i+1, j=1, k=1 i<Y?

N<Nmax?Set N=N+1, i=1, j=1, k=1 

For N=Nmin to Nmax, Calculate N

Determine optimal number of sensors N* that minimizes N

End

yes

Calculate optimal sensor spacing S*

For all k (k=1 to L),

   - Calculate P(xw  )

k<L?

Set   j=j+1, k=1

Set k=k+1

no

no

no

no

yes

yes

yes

    k

 

The notations are listed in Tables 3.1 and 4.1. 

Figure 4.1  Solution algorithm for the optimal number of sensors. 
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4.5.1 Input Data 

According to Step 1 of the Solution Method, input data is needed.  The input data, which 

are the freeway and incident characteristics, can be obtained from multiple sources.  One 

source is historical data that is found in incident logs or that was collected through 

sensors, the floating car technique, videos, etc.  Another source is the Highway Capacity 

Manual as it can be referenced to calculate traffic flow.   

4.5.2 Incident Case Studies 

Step 3 instructs that for each v/c ratio range j, determine an incident case study whose v/c 

ratio falls within range j.  Specifically, determine the incident’s uncongested and 

congested vehicle speed and flows and the speeds of the backward shock wave and 

backward recovery wave as these are the inputs to the travel time prediction model.  One 

way to determine this information is through the application of microscopic simulation 

software.  

4.5.3 Computer Code for the Travel Time Prediction Model  

For Step 4, the travel time prediction error is calculated with the model provided in 

Chapter 3.  The model is therefore applied a number of times equal to the product of L, N, 

Y, and Z.  In order to facilitate the calculations for average travel time prediction error, an 

application was developed in Java to automate the model’s calculations and step 

procedures described in Chapter 3.  The application calculates the average travel time 

prediction error for a study period with a backward shock wave and backward recovery 

wave. Inputs to the model include the segment characteristics, the different incident 

scenarios, durations, and locations to consider, and the different numbers of sensors to 
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test. The calculations for 300 incident scenarios, considering forty different possible 

numbers of sensors for each scenario, were computed in less than two seconds.  The code 

is provided in Appendix A.   

4.6 Summary 

In this chapter, the objective weighted average travel time prediction error function was 

formulated.  The error during the entirety of an incident was considered including the 

error from the passage of the backward shock wave and the error from the passage of the 

backward recovery wave.  The waves are consequences of the capacity reduction and the 

subsequent capacity restoration at the incident site.  The objective function is formulated 

so that it considers that incidents with different durations, v/c ratios, and locations affect 

the study freeway segment.  The error per incident is weighted by the probability of an 

incident occurring with its duration and v/c ratio and at its location.  To determine the 

error per incident, the model developed in Chapter 3 is applied.  

The decision variable is the sensor spacing.  The optimization model can be 

solved by applying the steps listed in Section 4.5.  The methodology is demonstrated in 

Chapter 5 with a case study. 
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CHAPTER 5  

NUMERICAL EXAMPLE 

 

This chapter demonstrates the applicability of the travel time prediction model developed 

in Chapter 3 and the optimization algorithm presented in Chapter 4.  In Section 5.1, the 

macroscopic principles and assumptions used in the mathematical model are evaluated by 

comparing the model’s results to a microscopic travel time prediction model which 

represents a “real-world” scenario.    In Section 5.2, a case study is presented.  Finally, in 

Section 5.3, a sensitivity analysis was performed to determine how the class size used for 

both the incident duration frequency distribution and the v/c ratio frequency distribution 

affected the optimal sensor spacing. 

5.1 Validity of the Mathematical Model 

The purpose of this section is to explore the validity of the mathematical model presented 

in Chapter 3, especially its use of macroscopic principles and assumptions.  The 

macroscopic traffic principles applied in the model included the use of an average vehicle 

speed and average traffic flow and the use of shock waves to represent transitions.  The 

model’s assumptions included continuous vehicle departure times and continuous sensor 

detection of vehicles.  The model also assumed that predicted travel times are calculated 

instantaneously and are then continuously updated.  The validity of the model was 

explored by comparing its results to the “real-world” travel time prediction error during a 

traffic incident.  In the real-world scenario, microscopic travel time data was analyzed, 

such as individual vehicles’ departure times, travel times, and predicted travel times.  
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Also, the predicted travel times were calculated and updated every minute instead of 

instantaneously.  In comparison to the mathematical model, with this real-world scenario, 

the macroscopic nature and assumptions were relaxed.   

 The “real-world” travel time prediction error by sensor spacing was calculated 

with microscopic travel time data collected during an incident.  In particular, Paramics 

microscopic software was utilized to simulate an incident.  A ten mile, three lane segment 

in Northern New Jersey was developed with a capacity estimated to be 8,250 vph.  The 

input demand was 4,950 vph.  The simulation period was two hours and an incident was 

programmed to occur after fifteen minutes that blocked one lane (the outside lane) at the 

midpoint of the segment for twenty minutes.  The simulation was repeated five different 

times, each with a different seed value that was randomly generated.   

Individual vehicle data was collected during the simulation period.  This was 

achieved by placing sensors on the segment at one twelfth mile spacing.  Each sensor 

recorded the time at which each vehicle passed it along with the unique identification 

number of the vehicle.  Paramics outputted the information from each of the sensors into 

its own file for a total of 120 separate comma separated value (CSV) files per run.  The 

information was then manipulated and combined into one file.  A macro, written in 

Visual Basic, was developed to semi-automate the conversion of the files so that the data 

can be analyzed.  The macro converted the files from CSV to Excel (xlsx), changed the 

order of the columns so that the vehicle identification number is the first column, which 

is needed for the VLOOKUP function in Microsoft Excel, and changed the number 

format of the time stamps so that they could be analyzed.  In their original state, time 

stamps from the second hour of a simulation period could not be distinguished from the 
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time stamps from the first hour of the simulation period if they were not first converted 

into the number format.  (This macro is included in Appendix B.)  By comparing 

vehicles’ time stamps from one sensor to the next, individual vehicles’ trajectories along 

the segment were calculated.  This included each vehicle’s departure time, actual travel 

time, and travel time between each pair of sensors.  Based on the sensor spacing being 

tested, such as one fourth mile, one third mile, etc., the appropriate pairs of sensors were 

determined from which to compute predicted travel times.  Predicted travel times were 

computed as one minute averages. The predicted travel time for vehicles departing each 

minute equaled the sum of the previous minute’s average travel times between each 

sensor pair. 

As a concrete example of the prediction calculation, suppose the sensor spacing 

was five miles on the ten mile segment.  The prediction provided to vehicles departing 

from minute t to minute t+1 was calculated as follows.  First, there was a set of vehicles 

detected by the sensor at mile five from minute t-1 to minute t.  These vehicles’ travel 

times from mile zero to mile five were calculated by comparing their time stamps at the 

mile zero and mile five sensors.  Then, the average travel time of these vehicles on the 

link was calculated.  Concurrently, during the same one minute time period, vehicles 

were detected by the sensor at mile ten.  These vehicles’ travel times from mile five to 

mile ten were calculated and the average travel time on that link during the time period 

was recorded.  Next, the two average travel times, the one from mile zero to mile five and 

the one from mile five to mile ten, were summed to find the travel time for the segment.  

Finally, this travel time was used as the predicted travel time for minute t to minute t+1.     
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From the simulation data and its analysis, the relationship between actual travel 

time and vehicle departure time and the relationship between predicted travel time and 

departure time were determined for various sensor spacing.  For each possible spacing, 

the two functions were then compared to calculate the travel time prediction error.  This 

process was repeated with the output data from each of the five seeds’ runs.  The 

resulting average travel time prediction error by sensor spacing for vehicles affected by 

the incident is displayed in Figure 5.1.  How to determine the length of a study period 

was previously discussed in Chapter 3. 

 
Figure 5.1 Travel time prediction error versus sensor spacing for the mathematical model 

and the micro simulation model. 

 

One can see from Figure 5.1 that, in general, the average error decreased as the sensor 

spacing increased.  As explained in more detail later in Section 5.2.4, this is a result of 

the short incident duration.  
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The travel time prediction error by sensor spacing for the real-world incident was 

also calculated using the mathematical model so that the two methods could be 

compared.  The macroscopic input values for the model were determined by analyzing 

the Paramics output data which included the data mentioned above and another set of 

output files that contained each link’s vehicle flow per minute.  A link was a 0.25 mile 

section of the segment.  The following incident characteristics were determined by 

analyzing the simulation output data: the average uncongested vehicle speed and average 

uncongested vehicle flow, the average congested vehicle speed and the average congested 

vehicle flow, the backward shock wave speed, the backward recovery wave speed, and 

the volume-to-capacity (v/c) ratio.  Also, the volume “v” to capacity “c” ratio was 

calculated as follows.  First, the volume equaled the uncongested traffic flow.  Second, 

the incident capacity equaled the segment capacity (8,250 vph) multiplied by the 

percentage of freeway capacity that was available at the incident location when one of the 

three lanes was blocked, which is 49% (PB Farradyne 2000).   

The values for the incident characteristics are summarized in Table 5.1.  Note 

they are the average value from the results from the five different runs.  In addition, the 

incident characteristics for three other Paramics input demands, 1,650 vph, 3,300 vph, 

and 6,600 vph, which were also run in the simulation with five different seed values each, 

are also provided.    The negative shock wave speeds denote that the waves travel 

upstream, in the direction against the flow of traffic. 
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Table 5.1 Incident Characteristics Determined from Paramics Micro Simulation 

Case Study Incidents 

Paramics 

Input 
Calculated Outputs 

Demand qu qc vu vc vw,s vw,r v/c 

ratio (vph) (vph) (vph) (mph) (mph) (mph) (mph) 

1650 1664 1545 70.6 70.6 n/a* n/a* 0.41 

3300 3075 2396 66.8 7.9 -2.6 -17.0 0.76 

4950 5121 2434 64.7 7.5 -8.0 -14.8 1.27 

6600 6449 2646 62.9 7.0 -13.8 -14.1 1.60 

* No shock waves were detected due to the low v/c ratio. 

 The mathematical model developed in Chapter 3 was run with the incident 

characteristics found for the incident that had a demand of 4,950 vph.  As stated before, 

the incident duration was twenty minutes and the segment length was ten miles.  Figure 

5.1 displays the results from the micro simulation model and the mathematical model.  

One can see that the results are exciting for two reasons.  First, the relationship between 

prediction error and sensor spacing follows the same shape for both models.  Second, the 

average difference between the two models is only 23 seconds.  The maximum error 

between the two models is forty four seconds and the minimum error is seven seconds.  It 

is noted that the mathematical model under predicts the error and also that the 

mathematical model performs better for shorter sensor spacing than for longer sensor 

spacing.  Based on these results, the author is confident in the mathematical model.   

5.2 Case Study  

A case study was developed to demonstrate the travel time prediction error model 

developed in Chapter 3 and the methodology presented in Chapter 4.  In the case study, 

path based sensor spacing was optimized for a ten mile, three lane freeway segment in 
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Northern New Jersey.  The optimal spacing minimized the weighted average travel time 

prediction error during incidents on the segment.  The possible future incidents on the 

segment, along with the probability of each occurring, were determined by analyzing a 

database of historical incidents, as described in Section 5.2.1.  In addition, characteristics 

of the traffic state of the freeway segment for different incident v/c ratios, such as the 

uncongested and congested vehicle speeds, the uncongested and congested traffic flows, 

and the shock wave speeds, were found through microscopic modeling, as described in 

Section 5.2.2.  The average error per each incident was calculated with the model 

developed in Chapter 3 and the weighted average travel time prediction error was 

calculated with the methodology described in Chapter 4.  The optimization results are 

provided in Section 5.2.3.  The results were then analyzed in Section 5.2.4. 

5.2.1 Historical Incident Database 

From a historical incident database, the frequency distributions of incident durations and 

v/c ratios were determined.  The historical incident database developed for the NJDOT 

report “Development of New Jersey Rates for the NJCMS Incident Delay Model” (Chien 

and Spasovic, 2012) was employed for this study.  It included information on 57 

incidents that occurred on three lane freeway segments in New Jersey from August 2008 

to May 2009 that met the following requirements: the freeway segment was three lanes, 

the closure type was blockage of either the median, one, or two lanes, or the closure type 

was a shoulder disablement or shoulder accident, and the incident duration or v/c ratio 

was not an outlier.  The following incident characteristics were included in the database:  

 route 

 roadway type  

 number of lanes 
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 free flow speed 

 hourly volume 

 percentage of trucks in the traffic flow 

 incident duration  

 incident start time  

 incident end time 

 closure type 

 number of lanes closed. 

 

Note that the roadway capacity was not included and neither was the incident v/c ratio.  

However, both of these values were calculated from the provided information using 

current traffic engineering practices.  The volume was calculated as the average hourly 

volume during the time period the incident occurred and the incident capacity equaled the 

roadway capacity multiplied by the percentage of freeway capacity available under 

incident conditions.  This factor is shown in Table 5.2 below for different lane closure 

types.  

 

Table 5.2 Percentage of Freeway Capacity Available Under Incident Conditions 

Number of 

Lanes per 

Direction 

Shoulder 

Disablement 

Shoulder 

Accident 

Lanes Blocked 

One Two Three 

2 0.95 0.81 0.35 0.00 N/A 

3 0.99 0.83 0.49 0.17 0.00 

4 0.99 0.85 0.58 0.25 0.13 

5 0.99 0.87 0.65 0.40 0.20 

6 0.99 0.89 0.71 0.50 0.25 

7 0.99 0.91 0.75 0.57 0.36 

8 0.99 0.93 0.78 0.63 0.41 
   Source: PB Farradyne. “Traffic Incident Management Handbook.” Federal Highway Administration 

Office of Travel Management, 2000. 

 

Note that median closure was not included in the table so the capacity reduction factor for 

shoulder disablement was used for it. 
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 The durations of the incidents in the database are shown in Figure 5.2 below.  One 

can see that the shape resembles a log normal curve which is consistent with the literature 

on the spread of incident durations. 

 
Figure 5.2 The incident durations on New Jersey’s three lane freeways. 

 

The frequency distribution of incident durations to use as part of the solution 

algorithm was determined with the following steps.  First, incident durations greater than 
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than 57, the number of incidents in the database).  Next, the class width was found by 
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was the value of yi.   The value of yi, along with the probability of it occurring, denoted 

P(yi), are shown in Table 5.3. 

 

Table 5.3 Incident Duration Ranges 

Range 

Index 

Incident Durations 

within Range  
yi P(yi)  

 (min) (min) (%) 

1 0 to 50 33 12.3 

2 50 to 100 72 17.5 

3 100 to 150 129 26.3 

4 150 to 200 173 22.8 

5 200 to 250 220 8.8 

6 250 to 300 273 12.3 

 

Also, the frequency distribution of the incident v/c ratios was determined and is 

shown in Figure 5.3 below.   

 

Figure 5.3 The v/c ratios on New Jersey’s three lane freeways. 
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The maximum v/c ratio was 2.0.  The six classes, as six was chosen as explained 

for the incident duration, were determined as follows.  For v/c ratios less than 0.5, 

congestion is minimal and shock waves are not detectable.  Therefore, v/c ratios less than 

0.5 were grouped into one class.  Also, v/c ratios between 1.5 and 2 were grouped into 

one class because not many incidents fall into this range.  For the remaining v/c ratios 

between 0.5 and 1.5, four classes of width of 0.25 were made.  Therefore, there were a 

total of six classes (Z=6) and they are shown in Table 5.4.  For each class, its average v/c 

ratio was chosen to represent it and thus was the value of zj.   The value of zj, along with 

the probability of it occurring, denoted P(zj), are shown in Table 5.4. 

 

Table 5.4 Incident v/c Ratio Ranges 

Range 

Index 

Incident v/c Ratios 

within Range 

zj P(zj)  

 (%) 

1 0.0 to 0.5 0.3 40.3 

2 0.5 to 0.75 0.6 28.1 

3 .75 to 1.0 0.9 12.3 

4 1.0 to 1.25 1.0 3.5 

5 1.25 to 1.5 1.3 7.0 

6 1.5 to 2.0 1.8 8.8 

 

In summary, the historical incident database was analyzed to determine the 

durations and v/c ratios of the future incidents that may occur on the study segment.  

Because there are six possible incident durations and six possible v/c ratios, there are a 

total of 36 different incident scenarios to include in the optimization model. Also, 

incidents were assumed to occur at all locations within the segment with an equal 

possibility.  The following locations were chosen to represent the locations: every mile 

from mile one through mile ten (i.e., mile 1, 2, 3, etc.) for a total of ten incident locations.  
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Therefore, a total of 360 incidents were included in the case study, these are the 36 

different incident scenarios each at every one of the ten possible incident locations. 

5.2.2 Incident Characteristics by v/c Ratio 

From the previous section it was found that there are six possible v/c ratios to 

include in the optimization model.  However, based on the literature review and micro 

simulation testing, if the incident v/c ratio is less than 0.5 shock waves do not occur.  

Based on the principles of the model developed in Chapter 3, if there are no shock waves, 

there will be no travel time prediction error.  Thus, for the incident scenarios with a v/c 

ratio less than 0.5, the value for the average travel time prediction error equals zero. 

For the remaining five v/c ratio classes, the incident characteristics were 

determined by using Paramics micro simulation software.  As v/c ratio is not an input into 

the software, instead four different demands scenarios were run in Paramics and their v/c 

ratios were then calculated.  These incident scenarios were presented previously in Table 

5.1.   Because their v/c ratios were not exact matches for the v/c ratios from the incident 

database, the value for their characteristics were applied and interpolated to determine the 

incident characteristics for the case study’s v/c ratios.  Their values are provided in Table 

5.5 below.    
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Table 5.5 Incident Characteristics by v/c Ratio 

v/c 

ratio 
qu qc vu vc vw,s vw,r 

(vph) (vph) (mph) (mph) (mph) (mph) 

0.3 n/a* n/a* n/a* n/a* n/a* n/a* 

0.6 3075 2396 66.8 7.9 -2.6 -17.0 

0.9 3480 2404 66.4 7.8 -3.6 -16.6 

1.0 4216 2417 65.6 7.7 -5.6 -15.8 

1.3 5121 2434 64.7 7.5 -8.0 -14.8 

1.8 6449 2646 62.9 7.0 -13.8 -14.1 

* Prediction error was modeled to be zero for this v/c ratio and thus the incident 

characteristics were not calculated.  

 

 

One can see from the data that there is a positive relationship between v/c ratio and 

uncongested traffic flow, congested traffic flow, and backward shock wave speed.  Also, 

there is a negative relationship between v/c ratio and uncongested traffic speed, 

congested traffic speed, and backward recovery wave speed. 

5.2.3 Optimization Results 

The weighted average travel time prediction error was calculated for the case 

study.  To do so, first, the function of average travel time prediction error by sensor 

spacing was calculated for the 360 incidents described in Section 5.2.2 by applying the 

model from Chapter 3.  The number of sensors tested was two through 41, increased in 

increments of one (e.g., 2, 3, etc.) for a total of forty possible number of sensors to deploy 

on the segment.  This translates to a maximum sensor spacing of ten miles or the length 

of the segment, and a minimum sensor spacing of a quarter mile.  Then, the function of 

weighted average travel time by sensor spacing was calculated by applying the 

methodology from Chapter 4. 
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The function of travel time prediction error by sensor spacing for different 

incident scenarios are displayed in Figures 5.4, 5.5, and 5.6 below.  Figure 5.4 displays 

the function when the incident duration is 33 minutes and the incident location is five 

miles, Figure 5.5 displays the function when the incident duration is 72 minutes and the 

incident location is five miles, and Figure 5.6 displays the function when the incident 

duration is 220 minutes and the incident location is also five miles.  In each of the figures 

the function is displayed by v/c ratio.  Note that the graphs reflect that for v/c ratios less 

than 0.5 the travel time prediction error is considered to be zero. 

 

 
Figure 5.4 Travel time prediction error for a 33 minute incident located at 5 miles. 
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Figure 5.5 Travel time prediction error for a 72 minute incident located at 5 miles. 

 

 

 
Figure 5.6 Travel time prediction error for a 220 minute incident located at 5 miles. 
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After determining the average travel time prediction error for each incident in the 

case study, the function of weighted average travel time prediction error by sensor 

spacing was calculated.  For each sensor spacing, the weighted average error equaled the 

sum of the average travel time prediction error for each of the 360 incidents multiplied by 

the probability of that specific incident occurring.  The function is shown in Figure 5.7 

below.   

 
Figure 5.7 Weighted average travel time prediction error by sensor spacing. 
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Figure 5.8 Weighted average travel time prediction error by number of sensors. 

 

 The marginal benefit of increasing the number of sensors was calculated.  The 

marginal benefit equaled the change in the weighted average error that arose from an 

additional sensor on the freeway segment.  It is graphed for number of sensors from 3 to 

41 in Figure 5.9.  The marginal benefit is negative because additional sensors decrease 

the weighted average error. 

 
Figures 5.9 Marginal benefit by number of sensors. 
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Three observations were made from Figure 5.9.  First, the marginal benefit is 

significant when comparing the average error for a small number of sensors.  For 

example, the marginal benefit of increasing from two to three sensors is almost a minute 

improvement in the average travel time prediction error.  Second, after eight sensors, 

which is equivalent to a senor spacing of 1.43 miles, the marginal benefit is less than 0.1 

minutes and approaches zero with additional sensors.  In fact, it is less than 0.01 minutes 

after 23 sensors, which is equivalent to a sensor spacing of 0.45 miles.  Third, there 

seems to be a “bump” at eleven sensors which is equivalent to a sensor spacing of one 

mile.  When there were less than eleven sensors, the spacing was greater than one mile.   

With eleven sensors, a sensor was located directly at every milepost so no matter which 

incident location was considered, there was a sensor located directly at the incident 

location.  Also, when the number of sensors was greater than eleven, the spacing was less 

than one mile.  In support of this reasoning, there are also “bumps” at 21 and 31 sensors, 

both of which also result in a sensor always being located directly at the incident location. 

In conclusion, increasing the number of sensors, which means decreasing the sensor 

spacing, improved the average error.  However, the improvement in the error diminishes 

with each additional sensor. 

5.2.4 Relationship between Incident Characteristics, Sensor Spacing, and Error 

In the case study, the travel time prediction error varied not only by the sensor spacing 

but also by the incident duration, v/c ratio, and location.  This is because both the v/c 

ratio and the incident duration affect the spread of congestion.  With higher v/c ratios, the 

backward shock wave speed is faster and thus the congestion spreads more quickly.  

Also, with longer incident durations, the return to uncongested conditions occurs at a 
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later time.  So, a small v/c ratio and short duration resulted in less congested conditions 

over space and time than a large v/c ratio and long duration.  In addition, the incident 

location impacts how much of the segment is affected by congestion as well as the 

distance between the incident location and the nearest sensors.  The following five 

observations were made regarding the relationship between travel time prediction error 

and sensor spacing, incident duration, v/c ratio, and location.  Note they are general 

observations and further analysis will be partaken in future studies to verify the causes of 

the relationships. 

First, the travel time prediction error varies by sensor spacing, incident duration, 

v/c ratio, and location.  Therefore, when optimizing sensor spacing for a freeway 

segment, it is important to consider the range of possible incidents that may occur on the 

segment.   

 Second, holding the sensor spacing and incident duration constant, the average 

error increased as the v/c ratio increased.  As the v/c ratio increased the backward shock 

wave speed significantly increased.  Compared to a slower shock wave speed, a faster 

shock wave speed results in a faster rate of change between vehicle departure time and 

travel time.  Thus, there is a greater difference between the predicted travel times 

provided to the departing vehicles and their actual travel times.   

Third, holding the sensor spacing and v/c ratio constant, the average error 

increased as the incident duration increased.  With short durations, the congestion does 

not affect much of the roadway and therefore the congested travel times are not much 

greater than the uncongested travel times.  Note that this observation does not always 

hold true such as when comparing long durations against each other (e.g., 72 minutes 
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versus 220 minutes for a10 mile sensor spacing and a v/c ratio of 1.8).  In these instances, 

the long duration results in a period of fully congested conditions and thus stable travel 

times which lead to accurate travel time predictions. 

Fourth, the difference in the prediction error between applying different sensor 

spacing was greater when the duration and v/c ratio increased.  For example, when the 

incident duration was 72 minutes and the v/c ratio was 0.6, the difference in the travel 

time prediction error between applying 0.25 mile sensor spacing and ten mile sensor 

spacing was about one minute.  However, when the incident duration was 72 minutes and 

v/c ratio was 1.8, the difference was about eight minutes.   

Fifth, decreasing the sensor spacing on a freeway segment did not always improve 

the accuracy of travel time predictions and in some instances even made the predictions 

less accurate.  This was observed for all the v/c ratios when the incident duration was 33 

minutes and for the smaller v/c ratios of 0.6 and 0.9 when the duration was 72 minutes.  

Appendix C provides an example to illustrate why this occurs.   

5.3 Sensitivity Analysis 

A sensitivity analysis was performed to determine how the class size used for both the 

incident duration frequency distribution and the v/c ratio frequency distribution affected 

the optimal sensor spacing.  The incident characteristics found through micro simulation, 

described previously and shown in Table 5.1, were applied and a ten mile freeway 

segment with incident locations at each mile (i.e., mile 1, 2, 3, etc.) was modeled like in 

the case study. 

Originally, in the case study, the class size was six.  For the sensitivity analysis 

class sizes of two, three, four, and eight were also applied.  For each of the possible class 
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sizes for the incident duration distribution, the characteristics for each of its classes (i = 1 

to Y) are provided in Table 5.6 below.  These characteristics are the range of the durations 

represented by each class, the average duration within each class (denoted yi), and the 

probability of an incident within range i occurring (denoted P(yi)).  Also, for each of the 

possible class sizes for the v/c ratio distribution, the characteristics for each of its classes 

(j = 1 to Z) are provided in Table 5.7, including the range of the v/c ratios represented by 

each class, the average v/c ratio within each class (denoted zj), and the probability of an 

incident within range j occurring (denoted P(zj)).   

 

Table 5.6 Incident Durations by Class Size 

 

Number of Incident Duration Classes (Y) 

 

2 3 4 8 

i 

range yi P(yi) range yi P(yi) range yi P(yi) range yi P(yi) 

(min) (min) (%) (min) (min) (%) (min) (min) (%) (min) (min) (%) 

1 
0- 

150 
90 56 

0- 

100 
56 30 0- 75 47 23 0- 38 19 5 

2 
150- 

300 
210 44 

100- 

200 
149 49 

75- 

150 
120 33 

38-    

75 
55 18 

3 
      

200- 

300 
251 21 

150- 

225 
184 30 

75-   

113 
95 12 

4 
            

225- 

300 
267 14 

113- 

150 
135 21 

5 
                  

150- 

188 
169 19 

6 
                  

188- 

225 
211 11 

7 
                  

225- 

263 
249 7 

8 
                  

263- 

300 
286 7 
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Table 5.7 Incident v/c Ratios by Class Size 

 

Number of v/c Ratio Classes 

 

2 3 4 8 

j 

range zj P(zj) range zj P(zj) range zj P(zj) range zj P(zj) 

  
(%) 

  
(%) 

  
(%) 

  
(%) 

1 0- 1 0.5 81 0- .5 0.4 61 0- .5 0.3 40 0- .25 0.2 7 

2 1- 2 1.5 19 .5- 1 0.9 28 .5- 1 0.7 40 .25- .5 0.4 33 

3       1- 1.5 1.7 11 1- 1.5 1.2 11 .5- .75 0.6 28 

4             1.5- 2 1.8 9 .75- 1 0.9 12 

5                   1- 1.25 1.0 4 

6                   1.25- 1.5 1.3 7 

7                   1.5- 1.75 1.6 5 

8                   1.75- 2 2.0 4 

 

Changing the class size changed the model of the prediction error as shown in 

Figure 5.10 below.  When the class size was small, such as for two or three classes, the 

results indicated that the average error by spacing was as little as 1.25 and 2 minutes, 

respectively.  However, when the class size was increased, so that the range of durations 

and range of v/c ratios included within each class was smaller, the results indicated the 

average error was greater.   This is because the class size dictated what incident 

characteristic values (i.e., the durations and v/c ratios to test) were included in the travel 

time prediction model.  For example, when the class size was two, 81% of the incidents 

were categorized into the first class of v/c ratios, which ranged from zero to one, and the 

average v/c ratio for incidents within that class was 0.5.  Therefore, the model assumed 

that 81% of incidents had zero travel time prediction error and thus the weighted average 

error reflected this.  However, in reality, only 40% of incidents have v/c ratios less than 

0.5.  
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Another observation is that the difference between four, six, and eight classes by 

sensor spacing was less than eight seconds.  This indicates that continuously increasing 

the class size, which means increasing the number of times the prediction model from 

Chapter 3needs to be run, does not make a significant difference. 

 

 

Figure 5.10 Modeled error by number of classes and number of sensors. 

5.4 Summary 

This chapter demonstrated the validity of the mathematical model developed in Chapter 3 

by comparing it to a real-world incident scenario and it demonstrated the feasibility of 

applying the solution algorithm developed in Chapter 4 through a case study.  Also, 

through the case study and sensitivity analyses the following important conclusions were 

drawn regarding optimal sensor spacing: 

 The travel time prediction error by sensor spacing and the optimal sensor spacing 

are dependent on the incident duration, v/c ratio, and location. 
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 The distance between the incident location and the nearest sensor affects the 

travel time prediction error.   

 

 Long sensor spacing is preferable when the spread of congestion over space and 

time is insignificant, such as for incidents with low v/c ratios and short durations. 

 

 Short sensor spacing is preferable when the spread of congestion is large, such as 

for incidents with high v/c ratios and long durations. 

 

 The marginal benefit of sensors decreases towards zero as the number of sensors 

increases. 

 

 The class size chosen for the incident duration frequency distribution and the v/c 

ratio distribution affects the outputs obtained from the solution algorithm.  

Applying a class size of six for the case study, and thus adhering to the “2 to the 

k” rule was appropriate as a smaller class size would have underestimated the 

average prediction error and a larger class size would have produced similar 

results as to the class size of six but would have increased the number of incidents 

to include in the model. 
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CHAPTER 6  

CONCLUSIONS AND FUTURE RESEARCH 

 

This dissertation contributes to the field of Transportation and Intelligent Transportation 

Systems by providing the optimal path based sensor spacing on freeway segments.  

Congestion on freeways is increasing and a key source of it is non-recurring incidents.  

Accurate vehicle travel time predictions are needed during these incidents in order to aid 

roadway users and allow them to make informed trip decisions.  Path based sensors are 

becoming a leading technology in gathering travel time data.  These types of sensors are 

located along a roadway and collect individual vehicle travel time data by communicating 

with technology located inside the vehicles that drive pass the sensors.  This dissertation 

provided the relationship between path based sensor spacing and travel time prediction 

error during all incidents that affect a freeway segment.  This included the marginal 

benefit of additional sensors.  From this contribution, Departments of Transportation and 

other policy makers can determine the optimal sensor spacing on their freeways so that 

the overall average travel time prediction error during incidents is minimized. 

A model was provided to determine the travel time prediction error by path based 

sensor spacing during the passage of shock waves on a freeway segment.  A shock wave 

occurs when the traffic state of a roadway transitions from being uncongested to 

congested or vice versa.  The type of shock waves considered were a backward shock 

wave, backward recovery wave, and forward recovery wave; in addition, study periods 

that included both a backward shock wave and backward recovery wave were included.  

Model inputs included the uncongested and congested vehicle speeds and traffic flows,
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the speed of the shock wave or waves, the location the shock waves originated, the 

amount of time between when shock waves occurred on the segment, the segment length, 

and the sensor spacing.   

In addition, a methodology to optimize the sensor spacing was developed.  An 

objective weighted average travel time prediction error function was formulated and 

considered that incidents with different durations, v/c ratios, and locations affect the 

study freeway segment.  In the weighted average error function, the error per incident 

was weighted by the probability of an incident occurring with its duration and v/c ratio 

and at its location.  To determine the error per incident, the mathematical model 

developed in Chapter 3 was applied.  

 A real world example of a freeway segment in northern New Jersey was 

introduced to demonstrate the applicability of the developed model and solution 

algorithm to optimize the studied problem.  A historical incident database provided the 

distribution of incident durations and volume to capacity ratios.   Also, the marginal 

benefit of increasing the number of sensors on the freeway segment was calculated.  A 

sensitivity analysis was conducted for investigating the relationship between model 

parameters and the optimal sensor spacing.  

6.1 Conclusions 

The optimal path based sensor spacing for a freeway segment can be found by applying 

the presented methodology.  The major findings and conclusions were as follows: 

 The travel time prediction error varied by the sensor spacing, incident 

duration, v/c ratio, and location.  Therefore, sensor spacing cannot be 

optimized by only considering one historic incident for the segment.  
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 Holding the sensor spacing and incident duration constant, the average error 

increased as the v/c ratio increased.  As the v/c ratio increased the backward 

shock wave speed significantly increased.  Compared to a slower shock wave 

speed, a faster shock wave speed meant the travel times by departure times 

were changing more rapidly.  Thus, there is a greater difference between the 

predicted travel times provided to the departing vehicles and their actual travel 

times.   

  

 Long sensor spacing is preferable when the spread of congestion over space 

and time is insignificant, such as for incidents with low v/c ratios and short 

durations.  Short sensor spacing is preferable when the spread of congestion is 

large, such as for incidents with high v/c ratios and long durations. 

 

 The marginal benefit decreases as the number of sensors increases.  The 

benefit is significant when comparing the average error for a small number of 

sensors.  However, the improvement in the error diminishes towards zero with 

each additional sensor.  Therefore, increasing the number of sensors, which 

meant decreasing the sensor spacing, improved the average error.  This was 

illustrated for the case study in Figure 5.9. 

 

 The number of classes chosen for the incident duration frequency distribution 

and the v/c ratio distribution affects the outputs obtained from the solution 

algorithm.  Too few classes can underestimate the average prediction error but 

too many classes can increase the amount of time to apply the methodology 

while not significantly improve the estimation.  Therefore, the number of 

classes should be chosen carefully when applying the methodology. 

 

6.2 Future Research 

Future research areas related to the optimal sensor spacing problem are listed below: 

 The model can be enhanced to consider the prove vehicle sample size on 

the freeway segment and also to include incident scenarios that have 

intermediate traffic demand fluxes and/or partial capacity restoration prior 

to full capacity restoration.  

 

 The model can also be improved upon by including as an input variable 

the amount of time between when travel time predictions are updated for 

roadway users, such as on a DMS. 
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 The developed methodology can be improved by considering more than 

one origin-destination for which travel time predictions are provided to 

drivers.  This can be achieved by modeling shock wave behavior across 

multiple freeway segments and also optimizing the sensor spacing 

considering the demand matrix. 

 

 As the incident location affects the accuracy of the travel time predictions 

by sensor spacing, activating or deactivating some of the sensors on the 

segment during an incident can improve the travel time predictions.  In 

addition, if an incident lasts for more than one time period, the optimal 

spacing may change.  Guidelines can be developed to determine when and 

how to choose which sensors should and should not be active during an 

incident. 

 

 The model, methodology, and results can contribute to and be extended, 

but not limited to, several applications of the USDOT’s Intelligent 

Network Flow Optimization research (i.e., Queue Warning, Dynamic 

Speed Harmonization, and Cooperative Adaptive Cruise Control). The 

objectives of these projects are to maximize roadway system productivity, 

enhance roadway safety and capacity, and reduce overall fuel consumption 

(Mahmassani et al. 2012). 
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APPENDIX A

JAVA APPLICATION

In this Appendix, a code is provided. It is for an application that was developed in Java

that automates the mathematical model’s calculations and step procedures provided in

Chapter 3. The application calculates the average travel time prediction error for a study

period with a backward shock wave and backward recovery wave. Inputs to the model

include the segment characteristics, the different incident scenarios, durations, and

locations to consider, and the different numbers of sensors to test.
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public class TTPEModelPDiJoseph {
public static void main(String[] args)
{

//arrays runs many v/c ratios iteratively; this is designed
for 8 v/c ratios, change number accordingly

//variables currentVC through current QC all go with one
v/c ratio

//each array number goes for one v/c ratio, for ex, all
that have [0] go with 1 v/c ratio, all that have [1] go with another
v/c ratio, etc

double[] currentVC = new double[8]; //veh congested speed
double[] currentVU1 = new double[8]; //veh uncongested

speed
double[] currentVWbs = new double[8]; //backward shock

wave speed
double[] currentVWbr = new double[8]; //backward recovery

wave speed
double[] currentQU = new double[8]; //veh uncongested

traffic flow
double[] currentQC = new double[8]; //veh congested

traffic flow
//end of arrays set up and starting below is the first

v/c ratio info
currentVC[0] = 7.90;
currentVU1[0] = 66.80;
currentVWbs[0] = -2.60;
currentVWbr[0] = -17.00;
currentQU[0] = 3075.00;
currentQC[0] = 2396.00;
//second v/c ratio info
currentVC[1] = 7.80;
currentVU1[1] = 66.40;
currentVWbs[1] = -3.60;
currentVWbr[1] = -16.60;
currentQU[1] = 3480.00;
currentQC[1] = 2404.00;
//third v/c ratio info
currentVC[2] = 7.70;
currentVU1[2] = 65.60;
currentVWbs[2] = -5.60;
currentVWbr[2] = -15.80;
currentQU[2] = 4216.00;
currentQC[2] = 2417.00;
//fourth v/c ratio info
currentVC[3] = 7.50;
currentVU1[3] = 64.70;
currentVWbs[3] = -8.00;
currentVWbr[3] = -14.80;
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currentQU[3] = 5121.00;
currentQC[3] = 2434.00;
// fifth v/c ratio info
currentVC[4] = 7.00;
currentVU1[4] = 62.90;
currentVWbs[4] = -13.80;
currentVWbr[4] = -14.10;
currentQU[4] = 6449.00;
currentQC[4] = 2646.00;
// sixth v/c ratio info
currentVC[5] = 0;
currentVU1[5] = 0;
currentVWbs[5] = 0;
currentVWbr[5] = 0;
currentQU[5] = 0;
currentQC[5] = 0;
// seventh v/c ratio
currentVC[6] = 0;
currentVU1[6] = 0;
currentVWbs[6] = 0;
currentVWbr[6] = 0;
currentQU[6] = 0;
currentQC[6] = 0;
// eighth v/c ratio
currentVC[7] = 0;
currentVU1[7] = 0;
currentVWbs[7] = 0;
currentVWbr[7] = 0;
currentQU[7] = 0;
currentQC[7] = 0; //end of different v/c ratios that will

be tested
double[] currentDur = new double[8]; // runs many incident

durations iteratively// different durations that will be tested
currentDur[0]=0.32;
currentDur[1]=0.92;
currentDur[2]=1.59;
currentDur[3]=2.25;
currentDur[4]=2.81;
currentDur[5]=3.52;
currentDur[6]=4.15;
currentDur[7]=4.76; // end of different durations that

will be tested
// end of 8 classes */

double[] currentXW = new double[10]; // runs many incident
locations iteratively// different locations that will be tested

currentXW[0]=1.00;
currentXW[1]=2.00;
currentXW[2]=3.00;
currentXW[3]=4.00;
currentXW[4]=5.00;
currentXW[5]=6.00;
currentXW[6]=7.00;
currentXW[7]=8.00;
currentXW[8]=9.00;
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currentXW[9]=10.00; // end of different incident locations
that will be tested

int[] number = new int[40]; // runs many numbers of
sensors iteratively

number[0]=2;
number[1]=3;
number[2]=4;
number[3]=5;
number[4]=6;
number[5]=7;
number[6]=8;
number[7]=9;
number[8]=10;
number[9]=11;
number[10]=12;
number[11]=13;
number[12]=14;
number[13]=15;
number[14]=16;
number[15]=17;
number[16]=18;
number[17]=19;
number[18]=20;
number[19]=21;
number[20]=22;
number[21]=23;
number[22]=24;
number[23]=25;
number[24]=26;
number[25]=27;
number[26]=28;
number[27]=29;
number[28]=30;
number[29]=31;
number[30]=32;
number[31]=33;
number[32]=34;
number[33]=35;
number[34]=36;
number[35]=37;
number[36]=38;
number[37]=39;
number[38]=40;
number[39]=41;

int p; // counter for number of sensors
int pp; // counter for incident duration
int v; //counter for v/c ratio
int xx; // counter for incident location
for (v =0; v<=4; v++ ) // loop on v/c ratio
{

System.out.println("V/C RATIO GROUP = "+v);
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for (xx =0; xx<=9; xx++ ) // loop on incident
LOCATION

{
System.out.println("INCIDENT LOCATION =

"+currentXW[xx]);
for (pp =0; pp<=7; pp++ ) // loop on incident

duration
{

System.out.println("INCIDENT DURATION =
"+currentDur[pp]);

for (p =0; p<=39; p++ ) // loop on number
of sensors

{
double L=10.00; // length of segment (mi)
double vC=currentVC[v]; // average vehicle speed under

congested conditions (mi/hr)
double vU1=currentVU1[v]; // average vehicle speed under

normal (uncongested conditions) (mi/hr)
double vU2=vU1; // must = vU2 otherwise, fix programming.

some eqs have already been corrected avg veh speed under normal
(uncongested conditions) after recovery wave (mi/hr)

double vWbs=currentVWbs[v]; // shock wave speed for
backward shock wave; (mi/hr)

double tWbs=1.00; // time backward shock wave initiates in
the freeway segment (hrs after time 0)

double xWbs=currentXW[xx]; // location waves initiate,
equals L if waves initiate downstream of the segment (mi)

double vWbr=currentVWbr[v]; // shock wave speed for
backward recovery wave; (mi/hr)

double incidentDuration=currentDur[pp]; // incident
duration in hrs

double tWbr=tWbs+incidentDuration; // time backward
recovery wave initiates in the freeway segment (hrs after time 0)

double qU = currentQU[v]; // uncongested traffic flow
(veh/hr)

double qC = currentQC[v]; // congested traffic flow
(veh/hr)

double VHT; // total travel time error in VHT
double xWbr=xWbs; // location of BRW at time tWbr (mi)
int N; // number of important vehicles affected by a shock

wave
int actN; // number of important vehicles b/c of their

actual travel time
int estN; // number of important vehicles b/c of their

estimated travel time
int S = number[p]; // number of sensors
double[] xS = new double[S]; // location of sensors
int i,j,k,both; // indexes, both is calculated further

down, equals 0 if no vehicles will encounter both shock waves, equals 1
if at least one does

double s =L/(S-1); // sensor spacing
double A, Abs, AtC, AdC, AtU1, C; // starting departure

time for vehs that hit both shock waves and variables used for
intermediate calculations

double tVbs; // time when veh hits bsw (hrs after 0)
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double xVbs; // location where veh hits bsw (miles into
segment)

double tVbr; // time when veh hits brw (hrs after 0)
double xVbr; // location where veh hits brw (miles into

segment)
double tW; // time waves intersect each other
double xW; // location at which waves intersect each other
double xWin; // waves meet within segment if yes, value =1,

else = 0
double[] eWin = new double[S-1]; // if waves meet within

segment
double tDeptE; // used in calculating Ec[j]
double xDeptE; // used in calculating Ec[j]
double negArea = 0.00; // used to find total amount of

negative error
double posArea = 0.00; // used to find total amt of pos

error, if waves meet within the segment then all q entering segment is
qu

double startQc=tWbs+xWbs/-vWbs; // beginning of time period
when Q is qc used in total error calcs

double endQc=tWbr+xWbr/-vWbr; // end of time period when Q
is qc

double posAreaQu = 0.00; // to find total amt of pos error
with q = qu

double posAreaQc = 0.00; // to find total amt of pos error
with q = qc

double negAreaQu = 0.00; // to find total amt of pos error
with q = qu

double negAreaQc = 0.00; // to find total amt of pos error
with q = qc

double avgNeg;
double avgPos;
double avgNegQu;
double avgNegQc;
double avgPosQu;
double avgPosQc;
double avgErrAbs;
double durAvgNeg;
double durAvgPos;
double durNegQu;
double durNegQc;
double durPosQu;
double durPosQc;
double vhtNeg;
double vhtPos;
double vhtNegQu;
double vhtNegQc;
double vhtPosQu;
double vhtPosQc;
double vhtAbs;
double end; //end of study period
double pdNoError = 0; // 1 if have a pd of 0 error
double ptNoError = 0; // 1 if just have 1 pt of 0 error
double endPdNoError = 0.00;
double noErrorAreaQu = 0.00;
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double noErrorAreaQc = 0.00;
double durNoErrorQc=0.00;
double durNoErrorQu=0.00;

double noFakeIntercept=0;

//notations for vehicles that first encounter a backward
shock and then backward recovery

double tU1; // actual veh tt for a veh affected by a bsw,
tt till hits first wave // tf1

double dU1; // distance vehicle travels in uncongested 1
conditions (hr)

double tC; // amount of time vehicle travels in congested
conditions (hr)

double dC; // distance vehicle travels in congested
conditions (mi)

double tU2; // amt of time veh travels in uncongested 2
conditions (hr)

double dU2; // distance vehicle travels in uncongested 2
conditions (hr)

double B = tWbs - xWbs/vU1;
double D = tWbr + xWbr/(-vWbr);

double[] eA = new double[S-1];
double[] eB = new double[S-1];
double[] eC = new double[S-1];
double[] eD = new double[S-1];
double[] eBoth = new double[S-1]; // veh hit both shock

waves together in segment
double[] tUS = new double[S-1]; // amt of time a veh

travels in uncongested conditions from an incident location downstream
to sensor j, applies when eWin[j] = 2 or -1

int count = 0;
int counter = 0;
int change=0;
double intercept=0; // 0 value to initiate, value

calculated at the end
int M=0;

for (j=0; j<=S-1; j++)
{

xS[j]=L-j*s;
}

// if bsw won't meet brw then need to change below
tW = (xWbr-vWbr*tWbr-xWbs+vWbs*tWbs)/(vWbs-vWbr); // time

bsw meets brw so assumes they will meet :-)
xW = vWbs*tW+xWbs-vWbs*tWbs; // location bsw meets brw,

will be negative if outside segment :-)
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if (xW>=0) // if the waves meet within the roadway segment do
the following calculations

{
xWin =1; // denotes the waves meet within the roadway

segment
actN=3; // number of important times to do act t.t.

calculations for: first to hit BSW, first to hit BRW, veh hits where
waves meet

// end = tW+(L-xW)/vU1; // time veh that hits where waves meet
reaches downstream end

for (j=0; j<=S-2; j++) // sensor j = 0 farthest downstream
{

if((xWbs<(S-1-j)*s)&&(xWbs>(S-2-j)*s)&&(xW<(S-1-
j)*s)&&(xW>=(S-2-j)*s)) // shock waves initiate in the spacing between
sensor j and sensor j+1

// and shock waves meet within sensors j and j+1
{

eWin[j]=-1;
tUS[j]=(xS[j]-xWbs)/vU1;

}
else if((xWbs<(S-1-j)*s)&&(xWbs>(S-2-j)*s)) // shock waves

initiate in the spacing between sensor j and sensor j+1
{

eWin[j]=2;
tUS[j]=(xS[j]-xWbs)/vU1;

}
else if (xWbs<=(S-2-j)*s) // shock waves initiate upstream

of the spacing between sensor j and sensor j+1
{

eWin[j]=3;
count = count+1;

}
else if (xW>=(S-1-j)*s) // shock waves never hit sensor j

bc they meet downstream of sensor j
{

eWin[j]=3;
count = count+1;

}
else if ((xW<(S-1-j)*s)&&(xW>=(S-2-j)*s)) // shock wave

meeting pt within sensor j and j+1
{

eWin[j]=1;
}

else // shock waves meet below sensor j and j+1
{

eWin[j]=0;
}

}

estN=4*(S-1-count)-1; // number of important times to do
est. t.t. calculations for
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}

else
{

xWin =0; // denotes the waves meet not in the roadway
segment

actN=4; // number of important times to do act t.t.
calculations for

for (j=0; j<=S-2; j++) // sensor j = 0 farthest downstream
{

if((xWbs<(S-1-j)*s)&&(xWbs>(S-2-j)*s)) // shock waves
initiate in the spacing between sensor j and sensor j+1

{
eWin[j]=2;
tUS[j]=(xS[j]-xWbs)/vU1;

}
else if (xWbs<=(S-2-j)*s) // shock waves initiate upstream

of the spacing between sensor j and sensor j+1
{

eWin[j]=3;
count = count+1;

}
else if (xW>=(S-1-j)*s) // shock waves never hit sensor j

bc they meet downstream of sensor j **
{

eWin[j]=3;
count = count+1;

}
else // shock waves meet below sensor j and j+1
{

eWin[j]=0;
}
}
estN=4*(S-1-count); // number of important times to do

est. t.t. calculations for

}

N = actN + estN;

// notations for vehicles for estimation calculation
double[][] Te= new double[N][S-1]; // est travel

time for vehicles to calculate their actual travel time
double[] tArr = new double[N]; // time vehicle i is

at sensor j
double[] TTe = new double[N]; // total travel time

estimate for veh
double[] error = new double[N]; // error for each

point
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double[] relError = new double[N]; // relative error
for each point (error)/act travel time

double errorAvg = 0; // average error over the
incident duration

double[] xDept = new double[N]; // dept location for
vehs to calculate their actual travel time

double[] tDept = new double[N]; // dept location for
vehs to calculate their actual travel time

double[] Ta= new double[N]; // actual travel time
for vehicles to calculate their actual travel time

// dept time of first vehicle to encounter both waves
if (tWbr-xWbr/vC>=tWbs+xWbs/(-vWbs))
{

both=0; // no vehicles will encounter both shock
waves

A = tWbs + xWbs/(-vWbs);
C = tWbr - xWbr/vC;

}
else
{

both=1;
if (xWin<1)
{
C = tWbs + xWbs/(-vWbs);
}
else
{
C = tW - xW/vU2;
}
Abs=(xWbr-tWbr*vC-xWbs+vWbs*tWbs)/(vWbs-vC);
AtC=tWbr-Abs;
AdC=AtC*vC;
AtU1=(xWbr-AdC)/vU1;
A = tWbr-AtC-AtU1;

}

for (j=0; j<=S-2; j++)
{

if (eWin[j]==0)
{

if(tWbr+(xWbr-(L-s*j))/(-vWbr)-
s/vC>=tWbs+(xWbs-(L-(j+1)*s))/(-vWbs))

{
eBoth[j]=0;

}
else
{

eBoth[j]=1;
}

}
if (eWin[j]==2)
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{
if(tWbr-(xWbr-(L-s*(j+1)))/vC>=tWbs+(xWbs-(L-

(j+1)*s))/(-vWbs))
{

eBoth[j]=0;
}
else
{

eBoth[j]=1;
}

}
if (eWin[j]==1||eWin[j]==-1)
{

eBoth[j]=1;
}

}

double[] U = new double[N]; //unsorted important veh dept
times

U[0]=tWbs-xWbs/vU1; // dept time of first veh to encounter
bsw

tVbs=(xWbs-tWbr*vC-xWbs+vWbs*tWbs)/(vWbs-vC); //
calculations for U[1]

tC=tWbr-tVbs; // calculations for U[1]
dC=tC*vC; // calculations for U[1]
tU1=(xWbs-dC)/vU1; // calculations for U[1]

if (xW>=0) // waves meet in segment
{

U[1]=tWbr-(tC+tU1);
U[2]=tW-xW/vU1;
counter = 3;

}

else // important dept times (for actual) when shock
waves don't meet in segment

{
if (both==1) // waves don't meet in segment but vehs

still hit both
{

U[1]=tWbr-(tC+tU1);
U[2]=tWbs+xWbs/-vWbs; // first veh to dept

that doesn't encounter bsw
U[3]=tWbr+xWbr/-vWbr; // first veh to dept

that doesn't enounter brw (or bsw)
counter = 4;

}
else // if both ==0 so no vehs encounter both shock waves
{

U[1]= tWbs+xWbs/-vWbs; // first veh in all congested
U[2]=tWbr-xWbr/vC; // last veh in all

congested
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U[3]=tWbr+xWbr/-vWbr; // first veh to dept
that doesn't enounter brw (or bsw)

counter = 4;
}
}
for (j=0; j<=S-2; j++)
{

if (eWin[j]==0) // shock waves travel through, but
meet below, sensors j and j+1

{

eB[j]= tWbs + (xWbs-(L-j*s))/(-vWbs);
U[counter]=eB[j];
counter = counter + 1;

eD[j]= tWbr + (xWbr-(L-(j+1)*s))/(-vWbr) +
s/vU2;

U[counter]=eD[j];
counter = counter + 1;

if (eBoth[j]<1) // vehs won't hit both waves
in segment

{
eA[j]= tWbs + (xWbs-(L-(j+1)*s))/(-

vWbs)+s/vC;
U[counter]=eA[j];
counter = counter + 1;

eC[j]= tWbr + (xWbr-(L-s*j))/(-vWbr);
U[counter]=eC[j];
counter = counter + 1;

}

else
{

eA[j]= tWbr + (xWbr-(L-s*j))/(-vWbr);
U[counter]=eA[j];
counter = counter + 1;

tDeptE=tWbs+(xWbs-(L-(j+1)*s))/(-vWbs);
xDeptE=L-(j+1)*s;
tC=(xWbr-tWbr*vWbr-xDeptE+tDeptE*vC)/(vC-

vWbr)-tDeptE;
dC= vC*tC;
dU2=s-dC;
tU2=dU2/vU2;
eC[j]=tDeptE+tC+tU2;
U[counter]=eC[j];
counter = counter + 1;

}

}

if (eWin[j]==1) // waves originate downstream of, but
meet between, sensors j and j+1
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{
eB[j]= tWbs + (xWbs-(L-s*j))/(-vWbs);
U[counter]=eB[j];
counter = counter + 1;

eA[j]= tWbr + (xWbr-(L-s*j))/(-vWbr);
U[counter]=eA[j];
counter = counter + 1;

eC[j]=tW + (L-s*j-xW)/vU1;
U[counter]=eC[j];
counter = counter + 1;

}

if (eWin[j]==-1) //waves originate, and meet,
between sensors j and j+1

{
eB[j]= tWbs + (L-s*j-xWbs)/vU1;
U[counter]=eB[j];
counter = counter + 1;

eA[j]= tWbr + (L-s*j-xWbr)/vU1;
U[counter]=eA[j];
counter = counter + 1;

eC[j]=tW + (L-s*j-xW)/vU1;
U[counter]=eC[j];
counter = counter + 1;

}

if (eWin[j]==2) // shock waves initiate within
sensors j and j+1

{
eB[j]= tWbs + ((L-j*s)-xWbs)/(vU1);
U[counter]=eB[j];
counter = counter + 1;
eD[j]= tWbr + (xWbr-(L-(j+1)*s))/(-vWbr) +

s/vU2;
U[counter]=eD[j];
counter = counter + 1;

if (eBoth[j]<1) // vehs won't hit both waves
in segment

{
eA[j]= tWbs + (xWbs-(L-(j+1)*s))/(-

vWbs)+(xWbs-(L-(j+1)*s))/vC + (L-j*s-xWbs)/vU1;
U[counter]=eA[j];
counter = counter + 1;

eC[j]= tWbr + ((L-s*j)-xWbr)/vU1;
U[counter]=eC[j];
counter = counter + 1;

}
else // some vehs do hit both waves in segment
{
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eA[j]= tWbr + ((L-s*j)-xWbr)/vU1;
U[counter]=eA[j];
counter = counter + 1;
tDeptE=tWbs+(xWbs-(L-(j+1)*s))/(-vWbs);
xDeptE=L-(j+1)*s;
tC=(xWbr-tWbr*vWbr-xDeptE+tDeptE*vC)/(vC-

vWbr)-tDeptE;
dC= vC*tC;
dU2=s-dC;
tU2=dU2/vU2;
eC[j]=tDeptE+tC+tU2;
U[counter]=eC[j];
counter = counter + 1;

}
}

}

for (i=0; i<= counter-2; i++) // start of section to omit
duplicated U[]'s

{
for (j=i+1; j<=counter-1; j++)
{

if (U[i]==U[j])
{

for (k=i; k<=counter-2;k++)
{

U[k]=U[k+1];
}
counter=counter-1;
j=counter;
i=i-1;
N=N-1;

}
}

} // end of section to omit duplicated U[]'s

for (i=0; i<=counter-1; i++) //puts dept times in order
from smallest to largest

{
tDept[i]=10000.00;

}
for (i=0; i<=counter-1; i++)
{

for (j=0; j<=counter-1; j++)
{

if (U[j]<=tDept[i])
{

tDept[i]=U[j];
}

}
for (j=0; j<=counter-1; j++)
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{
if (U[j]==tDept[i])
{

U[j]=10000+j;
}

}
} //ends puts dept times in order from smallest to

largest
for (i=0; i<=counter-1; i++)
{

// System.out.println("tDp["+ tDept[i]); // prints out
departure time for each important veh
// System.out.println(tDept[i]);

}

end=tDept[counter-1]; // end of pd to study error?

for (i=0; i<=N-1; i++)
{
tArr[i]=tDept[i];
}

//actual travel time calculations
for (i=0; i<=N-1; i++)
{

// TT for vehs only traveling in vU1
if (tDept[i]<=B)
{

Ta[i]=L/vU1;
}

//travel time for vehs encountering only a bsw
else if (tDept[i]<=A)
{

tU1=(xWbs-tWbs*vWbs-
xDept[i]+tDept[i]*vU1)/(vU1-vWbs)-tDept[i];

dU1= vU1*tU1;
dC=xWbs-dU1;
tC=dC/vC;
Ta[i]=tU1+tC+(L-xWbs)/vU1;

}

// travel time for vehs encountering bsw & brw
else if((tDept[i]<C)&&(both > 0))
{

tVbs=(xWbs-tWbs*vWbs-
xDept[i]+tDept[i]*vU1)/(vU1-vWbs);

tU1= tVbs-tDept[i];
dU1= vU1*tU1;
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tVbr=(xWbr-tWbr*vWbr-xDept[i]-dU1+tVbs*vC)/(vC-
vWbr);

tC=tVbr-tVbs;
dC= vC*tC;
dU2=L-dU1-dC;
tU2= dU2/vU2;
Ta[i]=tU1+tC+tU2;
}

else if((tDept[i]<C)&&(both < 1))
{

Ta[i]=xWbs/vC+(L-xWbs)/vU1;
}

//travel time for vehs encountering a brw
else if (tDept[i]<D && xWin<1) //correct symbols
{

tC=(xWbr-tWbr*vWbr-xDept[i]+tDept[i]*vC)/(vC-
vWbr)-tDept[i];

dC= vC*tC;
dU2=L-dC;
tU2=dU2/vU2;
Ta[i]=tC+tU2;
}

else
{

Ta[i]=L/vU1;
}

// System.out.println("Ta["+i+"] = "+Ta[i]); // prints out
actual travel time for each important veh

}// end of actual travel time calculations

//begining of estimated travel time section
for (i=0; i<=N-1; i++)
{

for (j=0; j<=S-2; j++)
{

if (eWin[j]==3)
{

Te[i][j]=s/vU1;
}

else if (tArr[i]<=eB[j])
{

Te[i][j]=s/vU1;
}

else if (tArr[i]<=eA[j]) // hit BSW
{

if(eWin[j]==0||eWin[j]==1) // "||"
should mean "or"

{
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tVbs=(xS[j]-tArr[i]*vC-
xWbs+vWbs*tWbs)/(vWbs-vC);

tC=tArr[i]-tVbs;
dC=tC*vC;
tU1=(s-dC)/vU1;
Te[i][j]=tC+tU1;
}

else // for eWin[j]== -1 or 2
{

tVbs=(xWbs-(tArr[i]-tUS[j])*vC-
xWbs+vWbs*tWbs)/(vWbs-vC);

tC=(tArr[i]-tUS[j])-tVbs;
dC=tC*vC;
tU1=(xWbs-dC-xS[j+1])/vU1;
Te[i][j]=tC+tU1+tUS[j];

}
}

// travel time for vehs encountering bsw & brw
else if((tArr[i]<eC[j])&&(eBoth[j] > 0))
{

if(eWin[j]==0||eWin[j]==1)
{

tVbr=(xWbr-tWbr*vWbr-
xS[j]+tArr[i]*vU2)/(vU2-vWbr);

tU2=tArr[i]-tVbr;
dU2=tU2*vU2;
xVbr=xS[j]-dU2;
tVbs=(xVbr-vC*tVbr-

xWbs+vWbs*tWbs)/(vWbs-vC);
tC=tVbr-tVbs;
dC= vC*tC;
dU1=s-dU2-dC;
tU1=dU1/vU1;

// Te[i][j]=tU1+tC+tU2;
Te[i][j]=tC+(s-dC)/vU1;

}
else
{

tVbr=(xWbr-tWbr*vWbr-xWbr+(tArr[i]-
tUS[j])*vU2)/(vU2-vWbr);

tU2=(tArr[i]-tUS[j])-tVbr;
dU2=tU2*vU2;
xVbr=xWbs-dU2;
tVbs=(xVbr-vC*tVbr-

xWbs+vWbs*tWbs)/(vWbs-vC);
tC=tVbr-tVbs;
dC= vC*tC;
dU1=xWbs-dU2-dC; //here is wrong!!
tU1=dU1/vU1;

// Te[i][j]=tU1+tC+tU2+tUS[j];
Te[i][j]=tC+(s-dC)/vU1;

}
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}

// travel time for vehs traveling in all
congested

else if((tArr[i]<eC[j])&&(eBoth[j] < 1))
//wrong!!

{
if(eWin[j]==0||eWin[j]==1)
{

Te[i][j]=s/vC;
}
else
{

Te[i][j]=tUS[j]+(xWbs-xS[j+1])/vC;
}

}

//travel time for vehs encountering a brw
else if ((tArr[i]<eD[j]) &&

(eWin[j]==0||eWin[j]==2))
{

if(eWin[j]==0)
{

tVbr=(xWbr-tWbr*vWbr-
xS[j]+tArr[i]*vU2)/(vU2-vWbr);

tU2=tArr[i]-tVbr;
dU2=tU2*vU2;
tC=(s-dU2)/vC;
Te[i][j]=tU2+tC;

}
else // eWin[j]==2 here:)
{

tVbr=(xWbr-tWbr*vWbr-xWbr+(tArr[i]-
tUS[j])*vU2)/(vU2-vWbr);

tU2=(tArr[i]-tUS[j])-tVbr;
dU2=tU2*vU2;
tC=(xWbs-dU2-xS[j+1])/vC;
Te[i][j]=tU2+tC+tUS[j];

}
}

else // *:-)*for vehs that travel after waves
are done, shock wave theory suggests to use VU1 NEED TO FIX STILL

{
Te[i][j]=s/vU1;

}
TTe[i]=TTe[i]+Te[i][j]; // sums the

t.t.e. provided by all the sensors at time tArr[i]
}

}
//end of estimating travel time section
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for (i=0; i<=N-1; i++)
{

// System.out.println("TTe["+i+"]="+TTe[i]); // prints out
travel time estimates for each important veh

}

for (i=0; i<=counter-1; i++)
{

error[i]=TTe[i]-Ta[i]; // use for reg error
// error[i]=(TTe[i]-Ta[i])/Ta[i]; // use for relative

error
if((error[i]<=.000001) && (error[i]>=0))
{

error[i]=0.00;
}
else if ((error[i]>=-.000001) && (error[i]<=0))
{

error[i]=0.00;
}
else
{
}

// System.out.println("error["+i+"] = "+error[i]); //
prints out travel time error for each important veh

}

int shape = 0;

for (i=1; i<=counter-2; i++)
{

if(Math.abs(error[i])==0.00)
{

intercept=tDept[i];
noFakeIntercept=noFakeIntercept+1;
shape=counter-1;
if(Math.abs(error[i+1])==0.00)
{

pdNoError = pdNoError+1;
for (j=i+1; j<=counter-2; j++)
{

if (Math.abs(error[j])==0.00)
{

endPdNoError=tDept[j];
}
else
{

j=counter-1;
i=counter-1;

}
}

}
else
{

ptNoError=ptNoError+1;
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i=counter-1;
}

}
else
{
}

}
if (noFakeIntercept<1) // so do no have any periods of 0

error
{

for (i=0; i<=counter-2; i++)
{

if (error[i]*error[i+1]<0)
{

intercept = -error[i]/((error[i+1]-
error[i])/(tDept[i+1]-tDept[i]))+tDept[i]; // point where changes from
neg error to pos error

i=counter-1;
shape=counter;

}
}

}
else
{

}

if(xWin==1)// Qc never occurs because the waves intersect
within the segment

{
startQc=end;
endQc=end;

}
double[] area = new double[shape];

if (noFakeIntercept>0) //so have period of 0 error
{

for (i=0; i<=counter -2; i++)
{

area[i]=.5*(tDept[i+1]-
tDept[i])*(error[i+1]+error[i]);

if
((tDept[i]>=intercept)&&(tDept[i+1]<=endPdNoError))

{
if(tDept[i+1]<=startQc)
{

System.out.println("fix code, there
is a pd of no error Qu");

}
else
{
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noErrorAreaQc=noErrorAreaQc+Math.abs(area[i]);
}

}
else if(tDept[i+1]<=intercept)
{

if(tDept[i+1]<=startQc)
{

negAreaQu=negAreaQu+Math.abs(area[i]);
}
else
{

negAreaQc=negAreaQc+Math.abs(area[i]);
}

}

else if(tDept[i+1]<=startQc) //so also greater
than intercept

{
posAreaQu=posAreaQu+area[i];

}
else if(tDept[i+1]<=endQc)
{

posAreaQc=posAreaQc+area[i];
}
else
{

posAreaQu=posAreaQu+area[i];
}

}
}
else
{
for (i=0; i<=counter -1; i++)
{

if (error[i-M]*error[i+1-M]>=0) // if don't cross
y=0 to go from one point to the next

{
area[i]=.5*(tDept[i+1-M]-tDept[i-M])*(error[i+1-

M]+error[i-M]);

if(tDept[i+1-M]<=intercept)
{

if(tDept[i+1-M]<=startQc)
{

negAreaQu=negAreaQu+Math.abs(area[i]);
}
else
{

negAreaQc=negAreaQc+Math.abs(area[i]);
}
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}

else if(tDept[i+1-M]<=startQc) //so also
greater than intercept

{
posAreaQu=posAreaQu+area[i];

}
else if(tDept[i+1-M]<=endQc)
{

posAreaQc=posAreaQc+area[i];
}
else
{

posAreaQu=posAreaQu+area[i];
}

}
else // if do cross y=0 so then have to add in the

point (intercept,0)
{

area[i]=.5*error[i-M]*(intercept-tDept[i-M]);
if(tDept[i+1-M]<=startQc)
{

negAreaQu=negAreaQu+Math.abs(area[i]);
}
else
{

negAreaQc=negAreaQc+Math.abs(area[i]);
}

i=i+1;
area[i]=.5*error[i-M]*(tDept[i-M]-intercept);

if(tDept[i+1-M]<=startQc) //so also
greater than intercept

{
posAreaQu=posAreaQu+area[i];

}
else if(tDept[i+1-M]<=endQc)
{

posAreaQc=posAreaQc+area[i];
}
else
{

posAreaQu=posAreaQu+area[i];
}

M=M+1; // so the index of the areas is okay with
the index of the points

}
}
}

if (noFakeIntercept>0) //so have period of 0 error
{
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if(startQc<=intercept)
{

durNegQu=startQc-B;
durNegQc=intercept-startQc;
if (pdNoError>0)
{

durNoErrorQc=endPdNoError-intercept;
durPosQc=endQc-endPdNoError;

}
else
{

durPosQc=endQc-(tWbr-xWbr/vC);
}
durPosQu=end-endQc;

}
else
{

durNegQu=intercept-B;
durNegQc=0;
durPosQc=endQc-(tWbr-xWbr/vC);
durPosQu=end-endQc;

}
}
else
{

if(intercept<=startQc)
{

durNegQu=intercept-B;
durPosQu=startQc-intercept+(end-endQc);
durPosQc=endQc-startQc;
durNegQc=0;

}
else
{

durNegQu=startQc-B;
durNegQc=intercept-startQc;
durPosQc=endQc-intercept;
durPosQu=end-endQc;

// System.out.println("fake intercept and it
occurs after startQc");

// System.out.println("DDD");
}

}
if (s<L) // adds pd of 0 error at end for sensor spacing

shorter than s=L
{

if (xW<0) // waves meet outside of segment
{

durNoErrorQu = tWbr + xWbr/-vWbr + L/vU1 - end;
}
else // waves meet inside segment
{

durNoErrorQu = tW + (L-xW)/vU1 - end;
}
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}
else
{
} // do nothing

double durNeg=durNegQu+durNegQc;
double durPos=durPosQu+durPosQc;
vhtNeg=negAreaQu*qU+negAreaQc*qC;
vhtPos=posAreaQu*qU+posAreaQc*qC;
double vhtNoError=qC*noErrorAreaQc;
vhtAbs=vhtNeg+vhtPos+vhtNoError;
avgNegQu=negAreaQu/durNegQu;
avgNegQc=negAreaQc/durNegQc;
avgNeg=vhtNeg/(durNegQu*qU+durNegQc*qC);
avgPosQu=posAreaQu/durPosQu;
avgPosQc=posAreaQc/durPosQc;
double avgPosDenom=durPosQu*qU+durPosQc*qC;
avgPos=vhtPos/avgPosDenom;
if (xWin>=1) // waves meet within segment, no period of Qc
{
avgErrAbs=vhtAbs/(qU*(tW+(L-xW)/vU1-tDept[0]));
}
else if ((tWbs-(xWbs/vWbs)+(xWbs/vC)+(L-xWbs)/vU1)<tWbr-

(xWbr/vC)) // have mid period of 0 error because duration makes it 2
separate study periods

{
avgErrAbs=vhtAbs/(qU*((L/vU1)+tWbs-(xWbs/vWbs)-

tDept[0])+qC*(tWbr-(xWbr/vWbr)-(tWbs-(xWbs/vWbs)))-qC*(tWbr-(xWbr/vC)-
(tWbs-(xWbs/vWbs)+(xWbs/vC)+(L-xWbs)/vU1)));

}
else
{

avgErrAbs=vhtAbs/(qU*((L/vU1)+tWbs-(xWbs/vWbs)-
tDept[0])+qC*(tWbr-(xWbr/vWbr)-(tWbs-(xWbs/vWbs))));

}

System.out.println(avgErrAbs);

} // p closing bracket
}//pp closing bracket
} //xx closing bracket

} // v closing bracket

}// void main bracket
}//opening bracket
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APPENDIX B

MACRO FOR PARAMICS FILES

A macro, written in Visual Basic, was developed to semi-automate the conversion of

Paramics output files so that the data can be analyzed. The output files contained

individual vehicle data that was collected during the simulation period. This was

achieved by placing sensors on the segment at one twelfth mile spacing. Each sensor

recorded the time at which each vehicle passed it along with the unique identification

number of the vehicle. Paramics outputted the information from each of the sensors into

its own file for a total of 120 separate comma separated value (CSV) files per run. The

macro converts the files from CSV to Excel (xlsx), changed the order of the columns so

that the vehicle identification number is the first column, which is needed for the

VLOOKUP function in Microsoft Excel, and changed the number format of the time

stamps so that they could be analyzed. The information was then manipulated and

combined into one file.
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Sub ConvertCSVtoXLS()
Dim strCSVFile As String
Dim strXLSFile As String

'Change Input and Output folders to relevant location
Const strInputFolder As String = "C:\Temp\CSV\"
Const strOutputFolder As String = "C:\Temp\XLS\"

strCSVFile = Dir(strInputFolder & "*.csv")

Do While strCSVFile <> ""
strXLSFile = Left(strCSVFile, InStrRev(strCSVFile, ".")) &

"xlsx"
Workbooks.Open strInputFolder & strCSVFile
' vehicleIdandTimeFormat Macro

' Moves the Vehicle ID column into the first column position and
changes the time format to number

Columns("D:D").Select
Selection.Cut
Columns("A:A").Select
Selection.Insert Shift:=xlToRight
Columns("B:B").Select
Selection.NumberFormat = "0.00"

' end formatting columns

ActiveWorkbook.SaveAs strOutputFolder & strXLSFile, _
FileFormat:=xlOpenXMLWorkbook, CreateBackup:=False
ActiveWorkbook.Close False
strCSVFile = Dir

Loop

End Sub
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APPENDIX C

ILLUSTRATIVE EXAMPLE OF PREDICTION ERROR

The purpose of this section is to demonstrate that longer sensor spacing may result in less

travel time prediction error than shorter spacing for some incidents. This is illustrated

with an example. In particular, the travel time prediction error is examined for an

incident with a v/c ratio of 0.76 and duration of .67 hours on a ten mile three lane freeway

segment. The incident’s characteristics were provided previously in Table 5.1 in Chapter

5. The function of travel time prediction error by sensor spacing for this incident is

shown in Figure C.1.

Figure C.1 Travel time prediction error for a 40-minute incident located at 5 miles.
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As can be seen in Figure C.1, a sensor spacing of five miles (i.e., three sensors on

the ten mile segment) resulted in less travel time prediction error than a sensor spacing of

three and one third miles (i.e., four sensors on the ten mile segment). To study why the

error was worse for the shorter spacing, three functions were calculated: actual travel

time by departure time, predicted travel time by departure time for a five mile sensor

spacing, and predicted travel time by departure time for a three and one third mile sensor

spacing. These functions can be seen in Figure C.2 below.

Figure C.2 Predicted travel time and actual travel time by departure time.
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The departure time ta,r,3 was chosen and it is denoted in the figure. This departure time

corresponds to the detection time of the first vehicle (hence index a) that encountered the

backward recovery wave (hence index r) by the third sensor (hence index 3) when the

spacing was three and a third miles. This detection time, as it is related to this

occurrence, can be seen in Figure C.4.

The departure time ta,r,3 was chosen to be further analyzed for three reasons which

are illustrated in Figure C.2. First, the travel time prediction error for this departure time

was worse for the shorter sensor spacing than for the longer spacing. Second, this

departure time had the largest predicted travel time for the sensor spacing of three and

one third miles. Third, the predicted travel time was greater than the largest actual travel

time of any vehicle.

The travel time prediction for the vehicle that departed at time ta,r,3 was derived

from the travel time of the vehicles detected at time ta,r,3 by sensors n = 2 to N on the

segment. Therefore, when there was five mile sensor spacing, and thus N equaled three,

the predicted travel time was derived from the vehicles detected by the second and third

sensors as illustrated in Figure C.3. Also, when there was three and a third mile sensor

spacing, and thus N equaled four, the predicted travel time was derived from the vehicles

detected by the second, third, and fourth sensors as illustrated in Figure C.4. The

derivations of the predicted travel times are illustrated in Figures C.3 and Figure C.4 for

the spacing of five miles and the spacing of three and a third mile, respectively. The

sensors’ locations are denoted on the y-axis and are shown to be constant over time with

thin gray lines. The trajectories of the vehicles detected by the sensors at time ta,r,3, from

which the travel time predictions are calculated, are shown in blue. The portion of the
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trajectory between sensors n-1 and n is highlighted as it is used in the prediction. The

trajectory of the vehicle that departed at time ta,r,3, and therefore received the travel time

prediction, is shown with a green line.

Figure C.3 Derivation of the predicted travel time for five mile spacing.
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Figure C.4 Derivation of the predicted travel time for three and one third mile spacing.
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not travel the farthest possible distance in the congested conditions. The prediction from

the other vehicle, detected by sensor three, only reflected uncongested conditions.

The vehicle’s actual travel time was compared to the predicted travel time from

the five mile spacing and from the three and one third mile spacing. The comparison is

shown in Figure C.5. In the figure, three vehicle trajectories are shown. The first, shown

with a green line, is the actual trajectory of the vehicle that departs at time ta,r,3. The two

other trajectories, shown with a pink line and a purple line, are the predicted trajectories

for departure time ta,r,3. The pink line represents the trajectory predicted with the use of

five mile sensor spacing. This corresponds to the prediction in Figure C.3. The purple

line represents the trajectory predicted with the use of three and a third mile sensor

spacing. This corresponds to the prediction in Figure C.4. The predicted trajectories are

depicted with a constant speed to reflect that a DMS displays a predicted travel time for

the entire length of the segment. The prediction is not broken down for different sections

of the segment.
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Figure C.5 Actual versus predicted vehicle trajectories.
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