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ABSTRACT 

CHARACTERIZATION OF NEURAL ION REGULATION DYSFUNCTION 
DURING INSULT AND EVALUATION OF µ-OPIOID RECEPTOR 

ACTIVATION DURING SIMULATED ISCHEMIA IN THE PRE-BÖTZINGER 
COMPLEX 

 
by 

Kyle F. Dobiszewski 
 
The health and vitality of brain tissue is dependent upon the cells’ abilities to maintain 

ionic homeostasis across their plasma membranes.  Even slight alterations in intracellular 

or extracellular can have a devastating effect on excitability and neural vitality.  This 

thesis investigates several concepts related to ion flux. First, it investigates how ion flux 

affects characterization of brain tissue by dielectric spectroscopy and what can be done to 

overcome that effect.  Second, it investigates how ion flux can be used to describe the 

state of health of the tissue.  Finally, it investigates if pharmacological intervention can 

attenuate some of the deleterious ion flux seen in different pathologies. 

 The accumulation of ions in the extracellular fluid affects the use of dielectric 

spectroscopy to analyze the system.  To attenuate this effect, a superfusion system was 

designed and built to provide fresh extracellular solution to the tissue.  Furthermore, 

dielectric spectroscopy was utilized to analyze the change in conductivity of the 

extracellular solution as a result of various simulated pathologies.  The change in 

conductivity was directly related to the severity of the insult.  Finally, the ability of mu-

opioid receptor activation to attenuate some of the damaging accumulation of 

extracellular potassium during simulated ischemia.  The activation of this receptor proved 

to significantly modulate the accumulation of this potassium.   
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CHAPTER 1  

INTRODUCTION 

 

In this introductory chapter, the objectives of the three related projects that comprise this 

dissertation are outlined and a brief review of literature relevant to the topics discussed 

herein is offered.  The second chapter provides a theoretical basis for the two main 

electrophysiology characterization techniques (dielectric spectroscopy (DS) and potassium 

sensitive microelectrodes) utilized in this research.  The third, fourth, and fifth chapters 

provide full accounts of the methodology and relevant results of the three related projects 

that comprise this dissertation.  In addition to brief literature review offered in the present 

chapter, Chapters 3,4, and 5 open with an in-depth introduction and review of relevant 

literature.  The work outline in Chapters 3 and 4 has previously been published (Dobiszewski 

et al., 2012; Dobiszewski et al., 2011). 

1.1 Objectives of Research and Questions to Answer 

The objective of this dissertation is to present three distinct, yet related, projects that 

investigate the flow of ions and other charged particles into or out of brain tissue based on a 

number of different parameters and circumstances.  Specifically, the research contained 

herein examines and answers the following questions: 

1. How does the flows of various ions and other charged particles affect the 
electrochemical characterization of the tissue by dielectric spectroscopy (DS) and 
how can this effect be accounted for? 

2. Can the change in conductivity of the extracellular fluid as a function of neural insult 
severity provide insight into the health of the tissue? 

3. Does pharmacological manipulation of the µ-opioid receptor attenuate the 
accumulation of extracellular potassium during oxygen glucose deprivation (OGD)? 
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1.2 Background Information and Review of Relevant Literature 

The mammalian circulatory system consists of miles upon miles of blood vessels that carry 

blood that has a high concentration of oxygen and nutrients to the cells while carrying the 

byproducts of cellular respiration from the cells.  While at rest, approximately 20% of the 

oxygen within the blood is routed to the brain (Kety, 1957).  When the blood vessels in the 

brain become occluded, thus depriving the neural tissue of this oxygen and nutrients, 

ischemic stroke occurs.  Ischemic stroke is a leading cause of mortality and morbidity; it kills 

approximately 130,000 Americans every year (Kochanek et al., 2012).  These statistics are 

of profound interest to an experimental neuroscientist because they prove that catastrophic 

damage occurs to neural tissue when it is deprived of oxygen and nutrients.   

During in vitro experimentation, the intrinsic ability of the studied organ to provide 

for its own supply of oxygen and nutrients is often compromised by experimental design.  

Therefore, in order to combat the deterioration of tissue with time, supplying oxygen and 

nutrients is appropriate (Hajos and Mody, 2009).  Two related methods are utilized to 

provide oxygen and nutrients to the tissue being studied: superfusion and perfusion.  

Perfusion makes use of an external pump along with the tissue’s own blood vessels to supply 

the cells with a solution rich in dissolved oxygen and nutrients.  Superfusion utilizes an 

external pump and plumbing network to bathe the tissue sample in solution rich in oxygen 

and nutrients.    The importance of perfusion and superfusion cannot be understated.  In fact, 

ischemia can be simulated in vitro by simply discontinuing use of the external pump used to 

supply oxygen and nutrient rich solution to the tissue (Morawietz et al., 1995).  

Several techniques including patch clamping, imaging with voltage-sensitive dyes, 

ion selective electrodes and dielectric/impedance spectroscopy, are currently utilized by 
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researchers to quantify the electrophysiological properties of a system.  Among these 

techniques, dielectric spectroscopy (DS) has emerged as a powerful method for 

characterizing biological systems(Schwan, 1957; Gheorghiu, 1993; Prodan et al., 2004).  In 

fact, DS has been used to investigate a variety of cellular and tissue properties, such as 

membrane potential (Bot and Prodan, 2009), membrane structure and properties (Gheorghiu 

and Gersing, 2002; Di Biasio and Cametti, 2011; Ron et al., 2008), glucose concentration in 

tissue (Caduff et al., 2006), and to distinguish between the different cellular death 

mechanisms (Lee et al., 2009).  Furthermore the dielectric properties of a biological system 

are closely related to the overall health of that system (Gheorghiu, 1996).   

While a number of different custom superfusion apparatus intended for application-

specific measurements of neural function (Yamamoto and McIlwain, 1966; White et al., 

1978; Alger and Nicoll, 1981) have been described, a search of the relevant scientific 

literature revealed no examples of superfusion systems designed for use with DS.  This 

revelation is surprising considering the robust applications of DS in biophysics and 

electrophysiology.  In fact, while the large databases of various dielectric properties for 

nearly every major mammalian organ system (Gabriel et al., 1996; Gabriel, 2007), provides 

a wealth of knowledge, they contain data almost exclusively collected from excised tissue.  

Therefore, observed changes in these data do not necessarily correspond to changes in any 

physiological variables within the system (Foster and Schwan, 1996). 

The classical experiments of Hodgkin and Huxley provide an explanation of how the 

flow of ions results in the bioelectric signaling (Hodgkin and Huxley, 1952).   The ability of 

neural cells to regulate this flow of ions and thus create ionic gradients is paramount for a 

stable cellular membrane potential (Kettenmann et al., 1983; Hodgkin and Keynes, 1955) 
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and the viability of  neurons (Husted and Reed, 1977).  Accordingly, drastic changes in 

membrane potential due to ionic fluctuations can have devastating effects on signaling.  

Therefore, ionic homeostasis dysfunction and resulting electrophysiological changes are 

indicative of a number of different common pathological condition, including 

hypoxia/ischemia (Murai et al., 1997; Müller and Somjen, 2000; Hansen, 1985; Hansen and 

Nedergaard, 1988), traumatic head injury (Takahashi et al., 1981; Santhakumar et al., 2003), 

neurodegeneration (Hartley et al., 1999; Ye et al., 2004), and epilepsy (Fröhlich et al., 2008).  

Ionic homeostasis dysfunction is known to be damaging and ionic efflux from cells precedes 

the cellular death mechanisms of necrosis and apoptosis (Bortner et al., 1997; Warny and 

Kelly, 1998; Remillard and Yuan, 2004). 

Of particular interest to the research contained within this dissertation is the change 

in ion homeostasis dysfunction that accompanies hypoxic and ischemic insults.  This 

dysfunction is characterized by increases in intracellular concentrations of sodium, chloride, 

calcium and increases in the extracellular concentrations of hydrogen and potassium (Haddad 

and Yao, 2004; Jiang et al., 1992; Hansen, 1985; Hansen and Nedergaard, 1988).  This shift 

in ion concentrations is correlated with a sudden depolarization (Müller and Somjen, 2000).  

Of all the ion concentration changes, potassium stands out in that it is the only one that 

occurs in a biphasic manner.  Phase one of extracellular potassium accumulation involves a 

sudden, modest increase, followed several minutes later by phase two, which involves a 

punctuated and profound increase (Hansen and Nedergaard, 1988).  Changes in 

concentration of other ions correspond temporally to phase two (Hansen, 1985). 

Under normal conditions, it is believed that astrocytes are chiefly responsible for   the 

maintenance of extracellular potassium (Walz, 2000).  These glia contain a specific inwardly 
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rectifying potassium channel (Kir4.1) that aids in the buffering of extracellular potassium 

(Higashi et al., 2001; Neusch et al., 2006).  In addition to Kir channels, the Na+/K+ ATPase 

contributes to extracellular potassium regulation. (D’Ambrosio et al., 2001).    Interestingly, 

Kir channels display behavior in that deviates from that predicted by the Hodgkin-Huxley 

kinetics in that they show greater inward flow of potassium than outward flow (Hibino et al., 

2010).  One Kir channel subunit, known as KATP, is gated by intracellular ATP levels (Craig 

et al., 2008), thus directly linking membrane potassium permeability to metabolism. 

Research has been shown that KATP channels confer protection upon neural tissue during 

episodes of hypoxia (Ballanyi, 2004) and epilepsy (Yamada and Inagaki, 2005).  Of note, 

both of these conditions are related to extracellular potassium accumulation. 

It is well documented that the increase in extracellular potassium concentration is 

responsible for cellular death (Yu et al., 1999; Remillard and Yuan, 2004; Liu et al., 2003).  

This statement is particularly relevant in hypoxia/ischemia, where potassium efflux is 

directly related to cellular death (Liu et al., 2003) and potassium channel blockers attenuate 

this death (Wei et al., 2003).  The turtle, which is often environmentally deprived of oxygen, 

has adapted special mechanisms to protect against anoxic damage.  These protective 

mechanisms result in far less extracellular potassium accumulation, compared to mammalian 

tissue (Xia et al., 1992; Sick et al., 1982).  It appears that these protective mechanisms relate 

to the attenuation of excitotoxicity (Pamenter et al., 2008).  It is interesting to note that the 

turtle cortex contains an extremely high density of δ-opioid receptors (DOR) (Xia and 

Haddad, 2001) and their antagonism abolishes the aforementioned protective mechanisms 

(Pamenter and Buck, 2008).   

Opioids are a class of neuropeptides belonging to the G protein-coupled receptor 
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family (Raynor et al., 1994) that have been shown to have modulatory effects on potassium 

(Ikeda et al., 1995), calcium (Su et al., 1998; Toselli et al., 1997), chloride (Kromer, 1993) 

and sodium (Witkowski and Szulczyk, 2006) currents.  The three known opioid receptors 

sub-types are the µ, δ, and κ (MOR, DOR, and KOR, respectively); they have been found to 

be widely distributed throughout the mammalian nervous system (Goodman et al., 1980).  

While these receptors are distinctly different, they have been shown to have common effects 

on several ion channels and currents (Toselli et al., 1997).  Evidence suggests that DOR 

activation during oxygen-glucose deprivation (OGD; simulated ischemia) in the rat cortex 

attenuates the accumulation of extracellular potassium (Chao et al., 2007b; Chao et al., 2012; 

Chao and Xia, 2010) through the inhibition of sodium and calcium influx (Chao et al., 2008; 

Chao et al., 2007a; Chao et al., 2012; Kang et al., 2009), thus protecting neural tissue from 

injury and death (Zhang et al., 2002).  Interestingly, MOR activation did not show the same 

capability to modulate potassium homeostasis dysfunction during OGD in the cortex (Chao 

et al., 2007a). 

The Pre-Bötzinger Complex (preBötC) is a region of the brainstem within the ventral 

respiratory group (VRG) that is responsible for respiratory rhythm generation (Smith et al., 

1991). The preBötC is also sensitive to acute changes in oxygen concentration in that it acts 

as a hypoxic chemoreceptor for respiratory function (Solomon et al., 2000).  In order for 

neural cells to be characterized as oxygen sensitive, the following criteria must be met 

(Teppema and Dahan, 2010): 

• The hypoxia-induced depolarization must occur independent of synaptic 
transmission, 

• Activation is independent of arterial chemoreceptor input. 
• During normoxic conditions, the sensitivity of these cells should be greater than that 

of other neurons. 
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• During hypoxic conditions, a response, in the form of respiratory modulation, is 
elicited. 

When deprived of oxygen the frequency of the respiratory rhythm generated from the 

preBötC initially increases and then eventually decreases (Ballanyi and Richter, 1995). 
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CHAPTER 2  

THEORY 

 

In Chapter 2, the theoretical basis for the experimental procedures that are presented in this 

dissertation are outlined and reviewed.  Specifically, the electrical properties of tissue are 

examined, with emphasis on how these electrical properties relate to characterization by 

dielectric spectroscopy.  Additionally, the Nernst equation is derived from thermodynamic 

principles and related to the function of potassium selective microelectrodes. 

2.1 Electrical Properties of Brain Tissue 

In 1836, the English physicist Michael Faraday discovered the concept of the electric field 

when he placed a voltage generator in a metal enclosure (Faraday cage).  Faraday observed 

that the resulting electric field lines passed through certain materials that were not carrying 

electricity.  To help describe such materials, Faraday turned to fellow Englishman William 

Whewell, who combined the words “dia” (Greek for through) and “electric” to coin the term 

dielectric.  Dielectric spectroscopy, also known as impedance spectroscopy, is a materials 

characterization technique that investigates the interaction between an external electric field 

and the polarizability of a material by measuring that material’s impedance as a function of 

frequency.  Impedance is defined as a material’s ability to resist the flow of alternating 

current; it is a complex function that can be comprised of resistive, capacitive and inductive 

components.
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Biological cells are defined by the boundaries of their plasma membrane, which 

separates the extracellular fluid from the intracellular cytosol; both the extracellular fluid and 

the intracellular cytosol are highly electrolytic but with different ionic profiles.  The 

approximate ionic composition of these fluids in mammalian neural tissue is presented in 

Table 2.1: 

Table 2.1  Ion Compositions of  Mammalian Intracellular and Extracellular Fluids  
Ion Intracellular  

Concentration 

Extracellular  

Concentration 

 (mM) (mM) 

Sodium  5-15 145 

Chloride 4-30 110 

Calcium 0.0001 1-2 

Potassium 140 5 
Source:  (Purves et al., 2008) 
 

These ions contribute to the resting membrane potential according to the Goldman equation: 

V = !RTzF ln
P! K ! + !P!" Na ! + !P!" Cl !
P! K ! + !P!" Na ! + !P!" Cl !

 

 

(2.1) 

The membrane consists of a phospholipid bilayer that is sprinkled with a plethora of 

transmembrane macromolecules, such as ion channels, pores, and junctions.  The passive 

electrical properties of this heterogeneous system are defined by both its resistive 

(transmembrane macromolecules) and capacitive components (phospholipids).  Due to the 

spatial orientation of these components within the system, a parallel RC configuration most 

accurately describes the equivalent electrical model of the membrane (Varghese, 2000).  

Because this configuration consists of both reactive and elements (Figure 2.1), the 

impedance is described by the following complex function: 
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1
Z = !

1
Z + !!ωC (2.2) 

Through algebraic manipulation and application of a complex conjugate, this relationship 

can be expressed as: 

Z = ! dσ+ iωdε!ε
σ!A+ !ω!ε!!ε!A

 

 

(2.3) 

 

Figure 2.1  Electrically, brain tissue can be modeled as a parallel RC circuit in series with a 
resistor.  The Cm component represents the capacitive properties of the phospholipids while 
the Rm and Rf components represent the resistive properties of the transmembrane proteins 
and the intracellular and extracellular fluid, respectively.  
 

When a resistive component representing the intracellular and extracellular fluids is added in 

series to the parallel RC circuit (As seen in Figure 2.1), the impedance equation becomes: 

Z = !R! + !
dσ+ !ωdε!ε

σ!A+ !ω!ε!!ε!A
 

 

(2.4) 

Due to its intrinsic electrical properties, biological tissue displays a distinctive 
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frequency response, in the form of a number of different dispersions (Figure 2.2).  These 

dispersions are the result of the interaction of the applied electrical field to the various 

components of the tissue.  The α dispersion results from the tangential flow of ions across the 

cell membrane, the β dispersion results from the build-up of charge at the cell membrane, the 

δ dispersion results from rotation of macromolecule side-chain and water molecules, and the 

γ dispersion results from the dipolar rotation of water molecules (Markx and Davey, 1999). 

 
Figure 2.2  The characteristic frequency response of biological tissue in the form of the α, β, 
δ, and γ dispersions.    
 
Source: (Markx and Davey, 1999) 
 

2.2 Potassium Ion Selective Microelectrodes 

The theoretical basis of ion selective electrode function rests in the Nernst equation.  In order 

to be responsive to an individual ion, all ion selective electrodes consist of a membrane layer 



 

 
 

12 

that is far more permeable to that ion over all others in solution.  That ion moves through the 

membrane and along its concentration gradient, thus inducing an electrical potential.  This 

net movement of ions only stop when that electrical potential can equivalently counteract the 

chemical potential of the concentration gradient.  Equilibrium thermodynamics dictates the 

circumstances under which such conditions are met. 

The First Law of Thermodynamics states that dU = dQ + dW while the Second Law 

of Thermodynamics states that dS = dQ/T when a reversible process occurs in a closed 

system.  These laws can be algebraically manipulated to produce the relationship dU= TdS + 

dW.  The work differential (dW) can be considered the summation of all the different 

sources of work that can be done on or by the system.  Among others, these sources include 

the relationship between pressure and volume (dWpV = -pdV), number of molecules and 

chemical potential (dWnµ = µdn), and between charge and electrical potential (dWqE = Edq).   

If only these sources of work are considered, the work differential becomes: 

dW = dWpV + dWnµ + dWqE = -pdV + µdn + Edq (2.5) 

If more than one type of molecule occupies the system, the Wnµ term must be expanded to 

reflect this fact.  Accordingly, for a system containing n different molecules: 

!W!" = ! !!!n!!
!!!  (2.6) 

Thus, the Gibb’s Fundamental Equation is formed from these relationships: 

!U = T!S− p!V+ ! !!!n!!
!!! + E!q (2.6) 

From this relationship, the chemical potential of a molecule is defined, with respect to 

activity (αi), as: 

!! = !!
!!! !,!,!

= !!!! + RT!"α! (2.7) 
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The relationship between concentration (ci) and activity is αi = γici where γi is the 

activity coefficient of the ion in solution.  Debye and Hückel (Debye and Hückel, 1923) 

described the relationship between concentration and the activity function in dilute solutions 

as: 

log !! = −!!!! !! (2.8) 

Where A is a solvent and temperature-dependent constant that is computed using the 

following equation: 

A = !1.8246!x!10
!

εT !/!  
(2.9) 

The charge (q) of a single ion with charge z can be expressed in terms of Faraday’s 

constant (F) and moles (n) as q= znF; the differential of this relationship is     dq = zFdn.  

Again, assuming the system consists of n different ions, this relationship can be expressed as: 

!q = ! !!F!n!
!

!!!
 

(2.10) 

Returning to the Gibb’s Fundamental Equation and taking into account these 

relationships yields: 

!U = T!S− p!V+ !!!n!
!

!!!
+ E! !!F!n!

!

!!!
 

(2.11) 

Combining like terms (dni) results in: 

!U = T!S− p!V+ (!! + !!F)!!n!
!

!!!
 

(2.12) 

The expression in parentheses in the final term of this simplified version of Gibb’s 

Fundamental Equation is the electrochemical potential !!  of the ion.  This electrochemical 
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potential is used in the derivation of the Nernst Equation in that a state of equilibrium exists 

between the electrochemical potentials of an ion separated by a semipermeable membrane on 

each side of that membrane.  In the case of the potassium ion selective electrodes, there are 

potassium (K+) and chloride (Cl-) ions that are dissociated (completely) in solution on each 

side of the semipermeable membrane (valinomycin), as depicted in the Figure 2.3.  

 Figure 2.3  Schematic of the potassium and chloride ion concentrations on both sides of the 
ionophore membrane (yellow).  The valinomycin within the ionophore membrane allows the 
passage of the potassium ions while denying the passage of the chloride ions.  The migration 
of potassium ions from interior to the exterior of the electrode continues until the 
electrochemical potentials are in a state of equilibrium.  This selective movement of ions and 
the resulting potential are the theoretical basis for ion selective electrode function. 

Valinomycin is a cyclic depsipeptide that is derived from the Streptomyces 

fulvissimus microbe that was first described by Brockmann and Schmidt-Kastner 

(Brockmann and Schmidt-Kastner, 1955).  It is a natural ionophore that is highly selective 

for potassium over other ions (Tosteson et al., 1967).   Since valinomycin is permeable to 

potassium, but not chloride, potassium will flow along its concentration gradient, thus 

leading to a disturbance of the electrostatic equilibrium of the system.  Potassium will move 

along its concentration gradient until the potential difference that is created by this 

movement becomes great enough to hinder further diffusion of potassium; at this point, the 

potassium’s electrochemical potentials on each side of the membrane are in a state of 
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equilibrium:!

!!!!" = !!!!!"# (2.13) 

!!!!,!" + RT!" lnα!!!" + zFE!" = !!!!!,!"# + RT!"# lnα!!!"# + zFE!"# 

!

(2.14) 

The charge on a potassium ion is +1, so z=1.  Furthermore, since the temperature is 

rigorously controlled throughout the course of the experiment with little fluctuations, 

Tout=Tin=T and since the experiment is performed at atmospheric pressure throughout, the 

pressure differential is zero and !!!!,!"# = !!!!,!".  Based on this knowledge and these 

assumptions: 

F ∆E = RT(lnα!!!"# − lnα!!!" ) 
(2.15) 

Rearranging this equation and substituting concentration for its relative activity yield the 

familiar Nernst equation for the potassium ion: 

∆E = RT
F ln K! !"#

K! !"
 

(2.16) 

Based on this equation and a two-point calibration over a decade change in 

concentration, an expression can be derived that relates voltage (obtained experimentally) to 

extracellular potassium concentration.  To do this conversion, modify the Nernst equation 

from its natural logarithm form to its logarithm form by multiplying by 2.303.  Also, adjust 

the nomenclature such that K! !" corresponds to some initial known potassium 

concentration ( K! !) and K! !"# corresponds to a second known potassium concentration 

( K! !) such that K! ! = 10 K! ! .   Figure 2.4 shows such the potential change when the 
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potassium concentration of artificial cerebrospinal fluid was increased from 3 mM to 30 

mM: 

 
 
Figure 2.4  In this calibration experiment in which the extracellular concentration of 
potassium was altered from 3 mM to 30 mM, the potassium selective microelectrode 
displayed a reasonable change in voltage based on the Nernst equation.  

 
Since the change in concentration of K+ was tenfold in the above example, the Nernst 

equation becomes: 

∆E = 2.303!RT
F log K! !

K! !
= 2.303!RT

F log 10 K
! !

K! !
= !2.303!RTF  

(2.17) 

Assuming temperature is controlled experimentally at 32º C, this value becomes 0.0605 J/C 

(using the conversion 1 J/C = 1000 mV), ΔE=60.5 mV for this change in concentration.  

However, as seen in the Figure 2.2, the experimental change in potential is slightly less than 

the expected value from the Nernst equation.  There are several possible explanations for this 

discrepancy.  The most plausible explanation is because concentration was indiscriminately 
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substituted for activity in the above calculations.  If the activity was indeed utilized, the 

expected change in potential would be 57.1 mV, assuming the solvent was cerebrospinal 

fluid with a dielectric constant of 79.47 (Penn and Bell, 1978). Another possible explanation 

for the slightly lower-than-expected change in potential involves the use of AgCl as a 

reference electrode (Mohan and Bates, 1975).  The experimental change in potential for the 

decade change in concentration (ΔV) is then used to convert voltage to concentration.  To do 

so, the voltage signal must be “zeroed” at the lower of the two calibration concentrations 

such that any experimental change in potential is calculated from this “zeroed” point ΔE= 

(Eexperimental – E[K+]1).  The following equation (2.18) can then be used to find an experimental 

potassium concentration: 

K! !"#!$%&!'()* = ! K! ! ∗ 10
∆! !! 

(2.18) 

 
Figure 2.5  The actual voltage response of the potassium selective microelectrodes to 
varying potassium concentrations closely mirrored the expected responses, based on Eq. 
2.18.
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CHAPTER 3  

 
SUPERFUSION SYSTEM FOR DIELECTRIC SPECTROSCOPY 

3.1 Background Information 

The emerging field of electrophysiology encompasses the study of a biological system’s 

intrinsic electrical properties.  One of the primary biological signaling mechanisms is the 

action potential, which is an electrical potential difference generated by the mammalian 

nervous system.  Therefore, the study of mammalian neural systems is intimately contingent 

upon and portrayed by various electrophysiological properties.  Several techniques, including 

patch clamping, imaging with voltage-sensitive dyes, and dielectric/impedance spectroscopy, 

are currently utilized by researchers to quantify the electrophysiological properties of a 

biological system.  Among these techniques, dielectric spectroscopy has emerged as a 

powerful method for characterizing biological systems  (Schwan, 1957; Gheorghiu, 1993; 

Prodan et al., 2004).  Various alterations the electrical properties of a neural systems have 

been implicated in a number of common pathologies, including neurodegeneration (Hartley 

et al., 1999; Ye et al., 2004) and cerebral concussion (Gennarelli, 1986) as well as several 

less common pathologies such as blepharospasm and oromandibular dystonia (Berardelli et 

al., 1985).  

The dielectric properties of a biological system, as obtained by dielectric 

spectroscopy, are closely related to the overall health of that system (Gheorghiu, 1996).  

Citing this relationship, researchers began studying the dielectric properties of excised tissue 

as early as the 1930’s.  While some dielectric spectroscopy measurements have been taken in 

vivo, the majority of tabulated data regarding the dielectric properties of tissue comes from 
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excised tissue far removed from physiological conditions (Foster and Schwan, 1996).  

Gabriel and Gabriel provide a database of various dielectric properties for nearly every major 

mammalian organ system while concurrently offering an excellent overview into 

researchers’ current understanding of the dielectric properties of biological tissue (Gabriel et 

al., 1996; Gabriel, 2007).  While this database provides a wealth of knowledge, it is 

populated almost solely by data collected from excised tissue.  Therefore, as noted by Foster 

and Schwan (1996), changes in the dielectric properties observed in these data do not 

necessarily correspond to direct changes in any physiological variables within the system. 

Therefore, a novel superfusion system was designed to increase the correlation of 

data obtained in vitro from excised neural tissue to the in vivo dielectric properties of 

biological tissue.  The system increases this correlation by continuously providing a single 

slice of cortical tissue with ample nutrients (in this case, glucose) and oxygen for ex vivo 

measurements.  While this superfusion design is applicable to any tissue sample, the authors’ 

desire to investigate the dielectric properties of neural tissue necessitated the use of such a 

system.  The mammalian nervous system is a very metabolically active organ system, with 

the human brain being responsible for approximately 20% of resting oxygen consumption 

(Kety, 1957). 

Henry McIlwain was one of the earliest pioneers in brain slice preparations and 

subsequent efforts to maintain excised tissue viability by superfusion (Collingridge, 1995).  

The earliest superfusion chambers were custom-made apparatus intended for application-

specific measurements of neural function (Yamamoto and McIlwain, 1966; White et al., 

1978; Alger and Nicoll, 1981).  These early systems proved capable of maintaining in vitro 

neural tissue viability for up to twelve hours by use of superfusion (Haas et al., 1979).  These 
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same superfusion systems gave way to commercial apparatus such as the Coleman 

superfusion bath system (Harvard Apparatus; Holliston, Massachusetts).  While a wide 

diversity of superfusion system designs have been described in literature, the authors thus far 

have been unable to discover a system solely intended for use with dielectric spectroscopy. 

The system presented here is similar to previously described apparatuses in that it provides 

oxygen and nutrient-rich extracellular solution to the tissue while providing features similar 

to other systems such as the ability to rapidly change between two experimental solutions.  

However, this apparatus differs from previously described superfusion systems in that it was 

designed such that it could function during dielectric spectroscopy characterization of neural 

tissue slice preparations without adversely affecting the measurement. 

3.2 Methodology Used in Design and Testing 

3.2.1 Design of Electrode System 

The integral component of the superfusion system is the custom designed electrode array as 

shown in Figure 3.1. This general design has previously been shown to measure accurate 

values of the complex dielectric permittivity of a variety of materials (Bot and Prodan, 2009; 

Dobiszewski et al., 2012; Dobiszewski et al., 2011; Prodan and Bot, 2009; Prodan et al., 

2004).  At the core of this parallel plate electrode array are two solid 14-karat white gold 

electrodes of 10.8 mm diameter.  Solid gold was chosen for the electrode material with 

consideration to its low resistivity and to its cathodic nature.  The inert properties of the gold 

minimize reactions with the strong electrolytic solutions as the electrode-solution interface.    

The electrodes are enclosed in a clear polyvinyl chloride (PVC) pipe (ALSCO 

Industrial Products, Inc. Lithia Springs, GA 30122) with inner diameter of 12 mm cut to a 
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length of 76 mm.  The diameter of the upper and lower electrodes was sized approximately 1 

mm smaller than the inner diameter of the PVC tube enclosure.  This sizing reduces error 

caused by stray capacitance at the edge of the electrodes.  Specifically, error was reduced by 

encouraging stray electric field lines to travel through either the PVC tube enclosure or the 

air.  Since the dielectric permittivity of both these materials is much lower than that of the 

electrolytic solution, the contribution of the stray capacitance on the overall measurement is 

minimized. 

The separation distance between the electrodes was precisely controlled by a metric 

micrometer head with non-rotating spindle (Mitutoyo Part # 153-101).  The majority of the 

structural members and couplings of the electrode array (grey parts in Figures 3.1 and 3.2) 

were produced from acylonitrile butadiene styrene (ABS) thermoplastic via the Dimension 

Elite Series three dimensional printer/rapid prototype (Stratasys Inc. Eden Prairie, MN 

55344).  The structural members were linked together and secured by 10-32 acetyl threaded 

rods and associated hardware (McMaster-Carr; Robbinsville, NJ 08691-2343).  

This apparatus was previously proven to measure accurately the dielectric 

permittivity of different liquids with known values from 4 to 78 (Bot and Prodan, 2009; 

Prodan and Bot, 2009; Prodan et al., 2004). 
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Figure 3.1  Image of the custom parallel plate electrode array designed and built by the 
authors.  The grey members in the image are comprised of ABS thermoplastic and were 
produced using the rapid prototyping technology.  The electrode material is 14K white gold 
due to its cathodic (inert) properties as well as its low resistivity.  A metric micrometer head 
precisely controls the separation distance between the electrodes. 

3.2.2 Design of Superfusion System 

The tissue sample lies between the mobile upper electrode assembly and the stationary lower 

electrode.  The volume between the electrodes is the only spatial region within the apparatus 

that must strictly mimic physiological conditions.  The superfusion system was designed to 

provide the maximum volume of nutrient-rich and oxygen-saturated electrolytic fluid to the 

spatial region containing the tissue during characterization.  Therefore, two 3/16 inch 

transverse holes were drilled through the PVC enclosure at 180 degrees of separation at such 

a height that the holes would be flush with the lower electrode.  The directions of the holes 

were parallel to the plane of the electrode.  Two 14 gauge fluorinated ethylene-propylene 

(FEP) intravenous (IV) catheters with female Leur lock connections were cut to a length of 

2.8 mm to correspond to the schedule 40 classification of the PVC pipe. The end of the 

catheter was inserted through the transverse holes such that the end of the catheter was flush 

with the inner wall of the PVC enclosure.   
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As schematically portrayed in Figure 3.2, one catheter serves as the intake port for 

the nutrient/oxygen-rich solution, which is fed to the tissue-containing compartment through 

a gravity-fed design whereby a 60 mL syringe serves as the electrolyte reservoir and semi-

rigid tubing served as the conduit from the reservoir to the intake port.  The reservoir was 

positioned at such a height that the vertical distance between the solution level and the intake 

port was 120 mm. Solution was continuously added to the reservoir to maintain this 120 mm 

height.  The height of the solution coupled with the inner diameter (1.67 mm) and length (80 

mm) of the semi-rigid tubing resulted in an electrolyte flow rate into the chamber of 

approximately 6 mL/minute; this flow rate is considered adequate for tissue survivability 

(Hajos and Mody, 2009).  Oxygenation of the experimental electrolytic solution must occur 

prior to the addition of the solution to the syringe reservoir.  Therefore, in order to ensure 

total oxygen saturation as closely as possible, the top of both the 60 mL reservoir and the 

larger saline storage container in which oxygenation actually occurs is enclosed.  

Oxygenation via air stone bubbling directly in the 60 mL reservoir leads to a variety of noise 

errors associated with the formation of oxygen-filled bubbles between the electrodes.  Since 

the relative dielectric permittivity of oxygen is different from that of neural tissue and 

electrolytic solution, the contribution of the oxygen bubbles are quite apparent, as described 

later in this chapter. 
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Figure 3.2  The key aspects of the novel superfusion system are the custom-designed and 
built gold electrode array, the gravity-fed input component, and the exhaust component, 
which is moderated by a peristaltic pump.  The purpose of the system is to provide nutrient- 
and oxygen-enriched electrolytic solution to the tissue sample while removing metabolite- 
and waste- enriched solution.  This superfusion system is intended to mimic physiological 
conditions as closely as possible in the compartment that houses the tissue sample. 

The catheter opposing the intake port serves as the exhaust port for the 

metabolite/waste-rich solution after contact with the tissue.  This waste fluid is drained from 

the tissue chamber by a variable rate peristaltic pump (VWR 54856-070).  The rate of the 

peristaltic pump was continuously adjusted to match the flow rate of the gravity-fed intake 

such that the solution level in the PVC enclosure remained constant. 

3.2.3 Preparation of Cortical Tissue Samples 

Experiments were performed using a transverse slice preparation of the cerebral cortex of 

mice; the Animal Care and Facilities Committee at Rutgers University approved this animal 

protocol.  CD-1 mice (Charles River Laboratories) aged from postnatal day 8 (P8) to 

postnatal day 16 (P16) with a mean age of 10.75 +/- 3.28 days were anesthetized with 

isoflurane until the absence of a withdrawal reflex from toe pinch.  The mice were 

decapitated and the whole brain dissected in ice cold “slicing” saline solution containing: 7 

mM NaCl, 3 mM KCl, 5 mM HEPES, 30 mM D-glucose, and 276.5 mM sucrose; the pH of 
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this solution was previously adjusted to 7.4.  The excised brain was mounted (with 

cyanoacrylate glue) to an agar block backing with the dorsal side of the brain facing up.  

Progressive sections of 800 µm thickness were made in the rostral to caudal direction using a 

vibrating blade microtome (Leica VT 1200).  The process of dissection and slicing 

constitutes a combined hypoxic, ischemic, thermal, and mechanical trauma to the brain tissue 

(Richerson and Messer, 1995).   In order to minimize injury to the tissue as a result of the 

slicing process, as well as any future injury, the prepared slices were placed in a room 

temperature “slicing” saline bath saturated with 100% O2 until utilized for experimentation. 

3.2.4 Impedance Analysis 

The signal analyzer used in this experimental setup, which has been previously described by 

Prodan et al. (2004), provides a sinusoidal voltage at its signal output. The voltage at 

channels 1 and 2 are digitized, the ratio of these two voltages as function of frequency was 

calculated and the real and imaginary parts of this ratio recorded.  The bottom electrode is 

held at a relative ground potential through the negative input of the amplifier A2. The output 

voltage from the signal analyzer was applied to the upper electrode, through resistor R1.  As 

a result, the current, I, that flows through the sample produces a voltage V1, which is 

calculated by Ohm’s Law and equates to the product of the current (I) and the impedance (Z) 

of the sample. The voltage V2 is also calculated by Ohm’s Law and equates to minus the 

product of the current (I) and resistance (R2).  Therefore, the transfer function, T, is related to 

the tissue impedance by: T=R2/Z.  R2 is held at a constant 100Ω in these experiments. If the 

impedance is not contaminated by the polarization effect, then the complex dielectric 

function ε*= ε+ σ/jω of the sample can be calculated from: 
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!" ! = ! !"
σ!A+ !ω!ε!!ε!A

 
(3.1) 

!" ! = ! !"!!!
σ!A+ !ω!ε!!ε!A

 

(3.2) 

3.3 Results of Testing 

As aforementioned, superfusion of the tissue is very important and should be done 

continuously to ensure it is not deteriorating. However this process generates air bubbles, 

which introduced error during the measurements.  

 
Figure 3.3  The effect of electrolyte oxygenation in the 60 mL reservoir is apparent in that 
the oxygen bubbles create large amounts of noise in the spectra.  This error is avoided by 
oxygenating the solution prior to placement in the 60 mL syringe. 

Figure 3.3 represents avoidable noise attributed to bubbling the 100% oxygen directly 

into the 60 mL reservoir. Each sharp deviation represents a bubble between the electrodes, 

which clearly induces error in the measurements. Therefore, in order to avoid this error, the 
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solution was oxygenated in a 100 mL beaker and incrementally added to the 60 mL syringe 

at the approximate rate of consumption (6 mL/min) in order to avoid deoxygenating of the 

solution.  This procedure produced dielectric permittivity spectra with minimal noise, as 

depicted in Figure 3.6. 

 
Figure 3.4  Time series of conductivity versus frequency for a slice of tissue without any 
superfusion. As time increases so does the conductivity of the sample. 

If tissue is not superfused and oxygenated, it deteriorates with the passing of time 

(Hajos and Mody, 2009).  This deterioration is seen in the dielectric measurements as an 

increase in conductivity due to ions released in the solution.  Figure 3.4 represents the 

conductivity versus frequency for a slice of tissue prepared and measured as described earlier 

but without any superfusion.  Here, the tissue is kept in between the electrodes for 2h in the 

same solution; it can be observed that the conductivity increases in time.  Figure 3.5 

represents the conductivity data from Figure 3.4 plotted at a single frequency of 1000Hz.  
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Within 15 minutes, there is a large increase in the conductivity of the solution and tissue of 

0.6 mS/m.  As time increases, so does conductivity and after 2 hours there is an increase of 

1.5 mS/m.  

 

 

Figure 3.5  Conductivities from Figure 3.4 plotted at a single frequency of 1000Hz. One can 
see the dramatic change in conductivity as the time increases. 

 

Figure 3.6 represents measurements of tissue in solution prepared as described above. The 

blue curve represents measurements with the superfusion while for the red one the 

superfusion system was inactivated.  For the same slice of tissue, the measurements were 

done with perfusion on and off and the data recorded.  The error bars for both curves are for 

n=4 experiments.   
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Figure 3.6  The relative dielectric permittivity spectrums with and without the superfusion 
system engaged.  The significant overlap of the spectra in several different frequency ranges 
suggests that the engagement of the superfusion system has no negative effects on the ability 
to probe the dielectric properties of the tissue.   
 

When the relative dielectric permittivity spectrum with superfusion time series is 

compared to the spectrum without superfusion, significant overlap is found in several 

frequency regions of the spectrum.  Therefore, we conclude that the superfusion system has 

no adverse effects on our ability to probe the dielectric properties of the tissue.  In fact, 

qualitatively analyzing the standard deviation error bars suggests that the superfusion system 

may result in an increase in trail precision and repeatability because the standard deviations 

are significantly reduced for the superfusion data. The small differences may be due to the 

fact that the conductivity for no superfusion already started to increase by a little which, as 

expected, pushes the curve toward right in the alpha dispersion. 
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3.4 Discussion of Results and Conclusion 

This chapter presents a superfusion method to be used during dielectric spectroscopy 

measurements to maintain the viability of in vitro tissue slices.  To keep the tissue healthy 

during recordings, it has to be continuously oxygenated and provided key nutrients.  This 

process should not interfere with the experiment by creating noise. We investigated here 

several possibilities of oxygenation and found that it should be done in the syringe while the 

flow is kept running. It was concluded that a slow flow does not interfere with the 

measurement by creating errors.  It was found that a larger flow compromises the mechanical 

stability of tissue in the chamber and should not be used.  If the tissue is not superfused, the 

conductivity of the solution changes dramatically in time, as shown above. This implies that 

ions are released in the solution, which should dramatically change the dielectric response, 

covering the real response of the tissue. 

Another problem with the change in the ion concentration is the electrode 

polarization error.  It is already determined (Bordi et al., 2001; Prodan and Bot, 2009) that 

even a small increase in the ion concentration increases dramatically the polarization error. 

The superfusion system presented here does not remove the polarization error but it keeps it 

constantly in time since the ions are continuously washed away. This way, the response of 

the tissue only to different insults can be calculated.  The superfusion system could 

potentially be used as a way to deliver pharmaceutical compounds to the tissue. Therefore, 

the tissue is continuously bathed in a known concentration of the given compound. This set 

up is similar to the one used in pharmaceutical testing at the cellular level by patch clamping. 

Dielectric spectroscopy is a noninvasive technique to monitor in a rapid matter the 

electric properties of cells and tissues.  While patch clamping remains the “golden standard” 
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to monitor such activities, it is slow and can be done only one cell at the time.  Thus, if the 

dielectric response of a tissue slice is understood, one can imagine real time recording from 

the whole slice. Dielectric properties of cells have been studied and modeled for a long time. 

It is known that the alpha response, the low frequency dispersion curve, is strongly 

influenced by the membrane potential and by the activity on the ion distribution on the outer 

part of the membrane (Bot and Prodan, 2009).  The beta response influenced by the 

properties of the membrane and of the cytoplasm while gamma is dominated by the 

individual molecules. To obtain such information, the real behavior of the dielectric response 

of the tissue has to be recorded.  This implies that the tissue has to be kept healthy even 

during long time measurements and this can be done by bathing (Haas et al., 1979).  Also the 

polarization errors should be removed by existing methods (Bordi et al., 2001; Kaatze and 

Feldman, 2006; Prodan and Bot, 2009).  To conclude, this chapter presents a superfusion 

method that could be used with dielectric spectroscopy set up. It allows the bathing in a 

continuously fresh solution of nutrients and oxygen, which is known to keep the tissue 

steady. This allows measurements in the range of several hours on a healthy tissue.
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CHAPTER 4  

 
CORRELATING EXTRACELLULAR FLUID CONDUCTIVITY CHANGE 

WITH INSULT SEVERITY USING DIELECTRIC SPECTROSCOPY 

4.1 Background Information 

The maintenance of transmembrane ionic gradients is fundamental for a stable cellular 

membrane potential (Kettenmann et al., 1983; Hodgkin and Keynes, 1955) and for the 

viability of neurons (Husted and Reed, 1977).  The cellular death mechanisms of necrosis 

and apoptosis are often preceded by a net efflux of ions from cells (Bortner et al., 1997; 

Warny and Kelly, 1998; Remillard and Yuan, 2004).  Ionic homeostasis dysfunction may 

result from, or be exacerbated by, a number of pathological conditions, including cocaine 

abuse (Du et al., 2006), hypoxia (Murai et al., 1997; Müller and Somjen, 2000), and 

traumatic head injury (Takahashi et al., 1981; Santhakumar et al., 2003). 

Dielectric spectroscopy (DS), a technique that characterizes a medium’s impedance 

as a function of frequency, has been used to investigate a variety of cellular and tissue 

properties, such as membrane potential (Bot and Prodan, 2009), membrane structure and 

properties (Gheorghiu and Gersing, 2002; Cametti et al., 2011; Ron et al., 2008), glucose 

concentration in tissue (Caduff et al., 2006), and to distinguish between the different cellular 

death mechanisms (Lee et al., 2009).  DS has also been used to investigate pathology-

induced biophysical changes in tissue (Gersing, 1998; Egot-Lemaire et al., 2009; O'Rourke 

et al., 2007; Schaefer et al., 2002).  While DS has been used to determine the conductivity of 

brain tissue (Schmid et al., 2003) and the dielectric properties of aqueous ionic solutions 

(Chen and Hefter, 2003; Cametti et al., 2011), no previous investigations have assessed 

whether a correlation exists between the conductivity of the extracellular fluid surrounding a 
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brain slice and the health of brain tissue. 

In this chapter, a bio-sensing method to assess, in a relatively noninvasive way, the 

health of a tissue by measuring the conductivity of electrolytic solutions in which cortical 

brain tissue slices from CD-1 mice were bathed is described.  Several insults such as 

hyperkalemia, hypokalemia, and oxygen-glucose depravation were imparted on the tissue, 

using tissue from two age groups of mice: weanling and neonatal. It appears that these 

treatments lead to significant changes in conductivity of the bathing solution surrounding the 

brains slices, suggesting that dielectric spectroscopy may be used to measure the viability of 

brain tissue. 

4.2 Methodology 

4.2.1 Experimental Solutions 

Solutions, with varying concentrations of several key constituents (as detailed in Table 1), 

served as the bathing media for the cortical tissue slices.  These solutions were intended to 

mimic pathological conditions such as hypokalemia, hyperkalemia, and oxygen-glucose 

deprivation.  They were buffered with 5 mM HEPES, and their pH values were adjusted to 

7.4 using 1N NaOH or 1M HCl.  Osmolarity was adjusted to a measured value of 310 mOsm 

(using a Wescor Vapro 5600 vapor pressure osmometer) by adding an appropriate 

concentration of sucrose.  All solutions were saturated via an air stone with 100% oxygen, 

except for the oxygen-glucose deprivation (OGD) solution, which was saturated with 100% 

nitrogen. 

To better observe ion flux, the ionic concentrations of the solutions were maintained 

low, thus minimizing the initial conductivity of the solution.  Thus, we utilized a total of 10 
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mM of monovalent cations (K+ and Na+) and 10 mM of a monovalent anion (Cl-).  To vary 

the extracellular K+ concentrations, an increase in K+ concentration was matched by an 

equimolar decrease in Na+ concentration.  While the concentration of sodium in the 

cerebrospinal fluid (CSF) is approximately 147 mM (Morrison, 2008), the majority of 

transmembrane sodium channels are usually closed at the resting membrane potential, so this 

low extracellular Na+ level has little influence on membrane potential (van Mil et al., 2003)  

and, therefore, should not damage the neural tissue. 

Table 4.1  Ion Compositions of Experimental Solutions  
Solution [KCl] [NaCl] [D-Glucose] 

 (mM) (mM) (mM) 

Control  3 7 15 

Severe Hypokalemia 0 10 15 

Moderate Hypokalemia 1 9 15 

Hyperkalemia 10 0 15 

Oxygen-Glucose Deprivation 3 7 15 

4.2.2 Preparation of Cortical Tissue Samples 

Experiments were performed using a slice preparation of the cerebral cortex of CD-1 mice; 

the Animal Care and Facilities Committee at Rutgers approved this protocol, which is also in 

accordance with EU directive 86/609/EEC.  CD-1 mice were either obtained directly from 

Charles River Laboratory (Wilmington, MA) or bred from Charles River Laboratory stock.  

Two experimental age ranges were used: “neonatal” mice ranged from postnatal day 0 (P0) 

to postnatal day 2 (P2) and “weanling” mice ranged from postnatal day 14 (P14) to postnatal 

day 16 (P16).  Mice were anesthetized with isoflurane until the absence of a withdrawal 

reflex from toe pinch.  The mice were decapitated and the whole brain dissected in ice-cold 

slicing solution containing: 7 mM NaCl, 3 mM KCl, 5 mM HEPES, and 15 mM D-glucose.  
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The pH was adjusted to 7.4 with 1N NaOH or 1M HCl and the osmolarity was adjusted to 

310 mOsm with sucrose.  The excised brain was mounted (with cyanoacrylate glue) to an 

agar block backing with the dorsal side of the brain facing up.  Progressive sections in the 

coronal plane were made in the rostral-to-caudal direction using a vibrating blade microtome 

(Leica VT 1200).  The brain slices were then incubated for a period of at least 15 minutes in 

room temperature saline saturated with 100% O2. 

4.2.3 Exposure of Brain Tissue to Experimental Solutions 

In order to supply brain tissue slices with the appropriate gaseous mixture, incubation 

chambers were constructed from 1.5 mL microcentrifuge tubes.  Attempts to oxygenate the 

tissue via direct flow of gaseous oxygen into the bathing solution resulted in the formation of 

large bubbles that caused the mechanical disintegration of the tissue slices.  Therefore an 

interface between the oxygen and the bathing solution was required (Figure 4.1).  A 

composite of poly(dimethylsiloxane) (PDMS) (Silgard 184; Dow Corning, Midland MI 

USA) and 1 mm soda glass beads was utilized as this interface.  PDMS was chosen as the 

membrane material because of its excellent oxygen permeability (Hitoshi et al., 2005) and 

the reinforcing beads were utilized to support the gas conduit and the PDMS membrane.  Gas 

flow was supplied to the solution through a 30 G subcutaneous syringe, which was inserted 

through the side of the microcentrifuge tube such that the tip of the syringe came to rest 

immediately below the surface of the PDMS.  To further increase the oxygen saturation of 

the bathing solution, oxygen was also supplied via a small gauge syringe integrated in the 

cap of the microcentrifuge tube into the airspace just above the bathing solution.  A small 

hole in the cap of the tube enabled the equalization of pressure. 
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Figure 4.1  A custom incubation chamber consisting of a 1.5 mL microcentrifuge tube 
was used to bathe 600 µm thick cortical brain tissue slices in experimental solutions that 
mimic various pathological conditions.  A novel composite material, consisting of 1.0 
mm-diameter soda glass beads embedded in a polydimethylsiloxane matrix, allowed for 
adequate supply of experimentally-dictated gas (oxygen or nitrogen) to the tissue slice 
without causing mechanical trauma to the tissue slice due to its interaction with large gas 
bubbles. 

All experiments were performed at room temperature (23° C).  Prior to the exposure 

of the brain slices to each experimental solution they were washed to rid them of any 

remnant of the slicing solution.  Each slice was transferred to a microcentrifuge tube 

followed by the removal of all solution via micropipette.  The slice was then immediately 

washed with 0.2 mL of the experimental solution, which was then removed after 60 seconds.  

This step was subsequently repeated.  Subsequently, the tissue was transferred to one of the 

previously described modified incubation tubes.  Pure oxygen, or nitrogen in the case of 

oxygen-glucose deprivation (OGD), was supplied at this point.  325 µL of the desired 
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experimental solution (control, hyperkalemia, OGD, etc.) was transferred into the modified 

incubation tube.  Concurrently, a 325 µL sample of the experimental solution was collected 

without exposure to tissue and preserved in order to act as a basis for conductivity change 

comparison.  The tissue was bathed in the experimental solution for 20 minutes, at which 

point it was removed from the tissue.  The extracellular bathing solution was removed for 

later analysis while the tissue sample was discarded at this point.  Consequently, only the 

conductivity of the bathing solution was analyzed.  The exposed solution and non-exposed 

solutions were stored at -20° C until analysis by DS occurred. 

4.2.4 Conductivity Measurements and Analysis 

DS, which has previously been shown to successfully probe the conductivity of 

polyelectrolyte solutions(Bordi et al., 2004), was utilized to measure the complex 

conductivity of each solution sample.  The electrode system has been previously described 

(Dobiszewski et al., 2011) and shown to successfully measure conductivity.  Briefly, the 

electrode system consisted of two 14 karat gold electrodes held parallel to one another at a 

precise distance apart.  Prior to measurement of each solution, the distance between the 

electrodes was calibrated using Milli-Q water. 

The impedance analyzer (Solartron 1260; Solartron Analytical Hampshire, UK) and 

electrical circuit (custom) have been previously described by (Prodan et al., 2004) and (Bot 

and Prodan, 2009).  The complex conductivity function σ=σ’+iωε0ε of the sample can be 

calculated from the expression for the impedance (Z): 

! = ! !" + !"#$!!
!!! + !!!!!!!!!

 
(4.1) 
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The obtained conductivity spectra were calculated from the experimental (impedance) data 

by a custom Matlab program utilizing the relationship: 

! ! = !" 1
!(!)

!
!!!  (4.2) 

 

Dielectric spectroscopy measurements were made on each solution from 100 Hz to 1 

MHz at a probing voltage of 50 mV.  Here we present our analysis of conductivity at 100 Hz, 

which is within the range used by others (Akhtari et al., 2006).  The conductivity of each 

solution was calculated via a custom Matlab program.  The change in conductivity was 

defined as the difference between two solutions: a test solution exposed to the tissue slice 

and a control solution that was not. 

4.2.5 Statistical Analysis 

Statistical analyses were performed using SigmaPlot v. 11.0 (Systat Software, San Jose, CA). 

A two-way ANOVA, with experimental condition (control, severe and moderate 

hypokalemia, hyperkalemia, oxygen-glucose deprivation) and age (neonate vs. weanling) as 

factors, was performed.  Where significant main effects of age, experimental condition, or an 

interaction between the two were found, pair-wise post hoc tests (Holm-Sidak method) were 

performed for comparison. If a significant interaction was found, main effects were 

discarded. For all tests, a p value of < 0.05 was considered significant.  Reported values are 

expresses as mean ± SEM. 

4.3 Results of Conductivity Studies 

In order to provide proof that our measurement system was capable of measuring the strong 

electrolytes likely to be encountered in the extracellular solutions of the brain, we first 
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assessed the molar conductivity of a prototypical strong electrolyte (KCl) with respect to 

molar concentration; the results are presented in Figure 4.2.  Notice that the result presented 

in this figure follows the power law relationship described by Kohlrasuch’s Law (Coury, 

1999).  Therefore, it is deduced that the system can accurately measure the conductivity of 

strong electrolytes. 

 
Figure 4.2  The molar conductivity of a strong electrolyte solution (KCl) with respect to 
molar concentration is presented as the solid line.  Kohlrausch’s law theoretically defines 
the relationship between molar conductivity (Λ) and molar concentration as a power law 
regression for all strong electrolytes.   
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Figure 4.3 Conductivity with respect to frequency from 100 Hz to 1 MHz for three 
different extracellular potassium concentrations (severe hypokalemia, control, and 
hyperkalemia).  In all the graphs, the solid line ( ) represents the solution that never 
came in contact with the tissue slice, the dotted line ( ) represents the conductivity of 
the solution after exposure to the tissue slices from weanling-aged (P15-P17) mice, and 
the dashed line ( ) represents the conductivity of the solution after exposure to tissue 
slices from neonatal-aged (P0-P2) mice.   
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The focus of this study was the analysis of the change in conductivity of extracellular 

solutions subsequent to bath exposure with live cortical tissue. Furthermore, because the 

neural response to pathologic conditions can change as a function of age, two distinct age 

ranges were tested: neonatal and weanling. 

 
Figure 4.4  Changes in conductivity at 100 Hz of the various experimental solutions 
(control, severe and moderate hypokalemia, hyperkalemia, and oxygen-glucose 
deprivation) in which cortical tissue slices were bathed.  Significant changes (denoted 
‘*’; p>0.05, n= 6-15) in conductivity with respect to the control condition (3 mM [KCl]O) 
are seen in all experimental conditions over both age ranges tested (weanling and 
neonate).  Additionally, significant changes (p>0.05) between different pairings of 
pathological conditions are denoted by ‘^’, ‘X’, ‘#’, ‘~’, and ‘+’. 

Figure 4.3 represents the conductivity versus frequency corresponding to “severe 

hypokalemia” (0 mM [KCl]O; top), control (3 mM [KCl]O; middle), and “hyperkalemia” (10 

mM [KCl]O; bottom).   As one can see, for “severe hypokalemia”, the spectrum for the 

weanling was greater than the spectrum for the neonatal at low frequencies.  However, at 

higher frequencies (above approximately 10 kHz), the spectra for both ages converged and 

eventually overlapped.  For the “hyperkalemia” condition, this trend was reversed; the 
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spectrum corresponding to the neonates was greater than that of the weanlings at low 

frequencies.  At higher frequencies, the spectra for both age ranges converged and eventually 

overlapped.  The middle graph represents control conditions (3 mM [KCl]O) and was 

characterized by overlapping spectra for neonates and weanlings at all frequencies.  

Figure 4.4 shows the change in extracellular conductivity of the various experimental 

solutions after exposure to brain slices.  In tissue from weanlings, all three experimental 

extracellular K+ concentrations produced statistically significant increases in conductivity 

compared with the control solution (3 mM KCl).  The largest change in conductivity was in 

response to severe (0 mM [KCl]O) hypokalemia. The increase in conductivity, resulting from 

moderate (1 mM [KCl]O) hypokalemia was less than the increase in severe hypokalemia.  

Furthermore, the increase in conductivity was lower in response to hyperkalemia (10 mM 

[KCl]O) compared to moderate and severe hypokalemia.  Therefore, in weanlings as the 

extracellular potassium concentration was varied there were graded increases in conductivity, 

with severe hypokalemia leading to the greatest change and hyperkalemia leading to the least 

change.  In response to OGD, there was a greater increase in conductivity compared with the 

control solution in weanlings.  This increase was significantly different from those observed 

after exposure to moderate hypokalemia and hyperkalemia (Figure 4.4).   

In the neonates, all experimental conditions produced statistically significant changes 

when compared to the control solution (3 mM KCl).  However, unlike the weanling data, 

there was no significant difference between exposures to moderate hypokalemia and severe 

hypokalemia.  Furthermore, in neonates the increase in conductivity was significantly greater 

in hyperkalemic solution compared to moderate hypokalemic solution.  This is different from 

the response observed in weanlings, in which the increase in conductivity was significantly 



 

 
 

43 

smaller in hyperkalemic solution compared to moderate and hypokalemic solutions.  In 

response to OGD, there was a greater increase in conductivity than that observed with the 

control solution.  Unlike the weanling data, in which the response to OGD was greater than 

that to moderate hypokalemia and hyperkalemia, in the neonate, there were no significant 

differences between the response to OGD and the responses to the three experimental 

potassium concentrations.  

 
Figure 4.5  Change in conductivity (at 100 Hz) of solution due to exposure to tissue slice 
as a function of the mouse age.  Significance (P>0.05) between age groups within the 
same experimental condition is denoted by ‘+’ above each bar. 

In Figure 4.5, the data corresponding to the change in conductivity was plotted to 

facilitate the comparison of the changes caused by each experimental solution between the 
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two age ranges.  Both severe hypokalemia and OGD produced significantly greater changes 

in weanlings compared to neonates.  In contrast, the hyperkalemic solution produced a 

significantly greater increase in conductivity in neonates compared to weanlings. 

4.4 Discussion of Conductivity Studies 

In this chapter, the extracellular concentration of the potassium ion (K+) in solutions in which 

cortical brain slices were bathed was altered (0 mM [KCl]O, 1 mM [KCl]O, 10 mM [KCl]O) 

with respect to its normal physiological value.  Under physiological conditions, the 

intracellular concentration of K+ is many times greater than the extracellular cerebrospinal 

fluid (CSF), which has a K+ concentration that varies between 2.7 and 3.5 mM (Somjen, 

2002).  Deviation from this range leads to biophysical changes to the cells that impair neural 

function.  Low extracellular K+ concentrations lead to hyperpolarization (Kuwabara et al., 

2002), increased intracellular Na+ concentration (Korff et al., 1984), and the induction of 

apoptosis (D'Mello et al., 1993).  Elevation of extracellular K+ concentration has 

pathological consequences and is so lethal that a large exogenous dose of K+ is used for 

capital punishment (Wong, 2006).  Under pathological conditions, such as epilepsy and 

stroke, the uppermost concentration limit of extracellular K+ in the brain is approximately 12 

mM (Heinemann and Lux, 1977).  During instances of head injury, the cortical extracellular 

potassium concentration can reach as high as 50 mM (Takahashi et al., 1981). 

In the current chapter, a graded response to changes in the extracellular K+ 

concentration was observed in cortical tissue from weanling mice.  Severe hypokalemia led 

to significantly greater increases in extracellular conductivity compared to moderate 

hypokalemia or hyperkalemia.  In contrast, there was no difference between the response to 

moderate and severe hypokalemia in neonates.  Additionally, the response to hyperkalemia 
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was significantly greater in neonates compared to weanlings. These results are consistent 

with the notion that compared to older mice, neonates have a limited ability to regulate the 

K+ concentration in the cerebrospinal fluid (Jones and Keep, 1987). 

In order for cells in the brain to maintain a constant extracellular concentration of 

potassium, the input of metabolic energy is essential.  While the brain accounts for only a 

small percentage of total body weight, it accounts for nearly 20% of the body’s total oxygen 

consumption; 70% of which is used to provide energy for the Na+/K+ ATPase (Edvinsson 

and Krause, 2001), an enzyme that helps to maintain ionic concentration gradients across the 

plasma membranes of cells (Rossier et al., 1987).  Accordingly, the dysfunction of the 

Na+/K+ ATPase in brain cells leads to cellular death (Magyar et al., 1994).  Deprivation of 

cellular oxygen and glucose input leads to a reduction in intracellular ATP and an indirect 

shutdown of the Na+/K+ ATPase (Hertz, 2008), potentially resulting in ionic hemostasis 

dysfunction (Thompson et al., 2006) and necrotic cell death (Miyamoto and Auer, 2000). 

Based on this information, it is logical to hypothesize that a large increase in 

conductivity would occur during OGD.  Interestingly, the increase in conductivity following 

OGD was significantly smaller in neonates compared to weanlings (Figure 4.5).  This 

difference likely corresponds to the observation that neonates possess a greater ability to 

withstand the OGD compared to older animals (Haddad and Donnelly, 1990).  Also of 

interest, the increases in extracellular conductivity in the severe hypokalemic and OGD 

groups were similar within each respective age group (Figure 4.4).  This observation may be 

due to the effect that both conditions have on the Na+/K+ ATPase.  As the concentration of 

extracellular potassium diminishes, the efficacy of the ATPase is markedly decreased 

(Heidlage and Jones, 1981).  Similarly, as the amount of available ATP decreases during 
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OGD, inhibition of Na+/K+ ATPase activity occurs (de Souza Wyse et al., 2000).  Therefore, 

it is possible that the state of dysfunction and poor cellular health in both cases is similar. 

Since these measurements were conducted at low frequencies, it is quite likely that 

the electrical double layer effect dominates the measurements.  The effect of this double 

layer impedance, which has been described by numerous researchers for decades, varies 

dramatically with both ionic concentration and frequency.  Instead of viewing this double 

layer as a hindrance to collecting useful information, it was actually used it to the advantage 

of the researchers.  Painstaking measures were taken, such as precisely maintaining the ionic 

concentrations presented in Table 4.1, to ensure that the initial conductivities of baseline 

solutions were identical prior to the addition of the tissue.  To ensure proper ionic 

concentrations in our solutions, a conductivity meter and osmometer were both utilized.  

Furthermore, instead of trying to remove the effect of the double layer impedance, the focus 

of the researchers was evaluating the conductivity differences from these precise baseline 

solutions in order to use DS as a sensor.  Thus, any variation from the initial conductivity of 

the solution represents the response of the tissue to the insult. 

While the change in extracellular solution conductivity is clearly frequency-

dependent, it is likely that the change is also time-dependent.  In pathological conditions 

such as ischemia (OGD), there is a rapid and punctuated rise in extracellular potassium 

concentration within minutes of the OGD onset (Hansen, 1985).  Subsequently, the 

extracellular potassium concentration plateaus around 50 mM for the remainder of the 

ischemic insult.  Given that our exposure duration was 20 minutes, it is possible that a large 

flux of potassium ions could have contributed to the extracellular solution conductivity. 
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4.5 Conclusions 

Since both necrotic and apoptotic cellular death mechanisms involve a net efflux of ions 

from the dying cell, evaluation of the extracellular ion profile may provide useful insight into 

the health and vitality of neural tissue.  While methods such as ion-selective microelectrodes 

measure changes in the concentration of a single ionic species, they lack the ability to 

simultaneously assess the contribution of several different ionic species.  In this chapter, 

dielectric spectroscopy, which allows for the measurement of the net change in number of all 

charged particles in solution (i.e., a solution’s conductivity), was utilized.  This data has 

shown that dielectric spectroscopy allows for measurements of extracellular conductivity that 

are sensitive enough to distinguish between the ionic effluxes from brain slices under 

conditions that mimic different pathological states.  Thus, measuring the conductivity of the 

extracellular bathing solution of neural tissue may be an alternative method for monitoring 

the health of a tissue specimen.  Furthermore, since we are measuring just the conductivity of 

extracellular fluid and not the fluid and tissue combination, extrapolation of this technique to 

a clinical setting is more plausible. 
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CHAPTER 5  

 
MODULATON OF POTASSIUM HOMEOSTASIS BY µ-OPIOID RECEPTOR 

ACTIVATION DURING SIMULATED ISCHEMIA 
 

5.1 Background Information 

While the mammalian brain constitutes only a small percentage of total body area, it 

consumes approximately 20% of consumed oxygen (Kety, 1957).  When brain tissue is 

subjected to hypoxic/ischemic insult, a cascade of events, including an increased in 

glutamate concentration (Kulik et al., 2000; Young et al., 1993) a profound shift in both 

intra- and extracellular ion concentrations (Haddad and Yao, 2004; Hansen, 1985; Chao and 

Xia, 2010), and depolarization (Haddad and Donnelly, 1990), soon occurs.  The shift in ion 

concentrations is characterized by a net efflux of potassium coupled with a nearly 

simultaneous net influx of calcium, chloride and sodium (Hansen, 1985; Haddad and Yao, 

2004; Jiang et al., 1992).   

During periods of hypoxia/ischemia, intracellular potassium is expelled and 

accumulates extracellularly in a biphasic manner, characterized by an immediate yet modest 

increase, followed several minutes later by a rapid and profound increase (Hansen and 

Nedergaard, 1988).  The mechanism of this accumulation is complicated but it is believed 

that a variety of mechanisms contribute to this accumulation.  Regardless of the mechanism 

of this accumulation, it is well documented that the increase in extracellular potassium 

concentration is responsible for cellular death (Yu et al., 1999; Remillard and Yuan, 2004; 

Liu et al., 2003).  Accordingly, K+ channel blockers have been shown to attenuate cell death 

following ischemic insult (Wei et al., 2003).  Furthermore, in animals that display resistance 
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to anoxic injury, such as the turtle, extracellular potassium accumulation occurs much more 

gradually and with lower magnitude than in mammalian tissue (Xia et al., 1992).  Taken 

together, these observations suggest that mechanisms that decrease extracellular potassium 

accumulation may be neuroprotective during periods of hypoxia/ischemia. 

Opioids are a class of neuropeptides belonging to the G protein-coupled receptor 

family (Raynor et al., 1994) that can be characterized into three distinct receptor sub-types: 

the µ-opioid receptor (MOR), the  δ-opioid receptor (DOR), and the κ-opioid receptor 

(KOR).  These receptors are widely distributed throughout the mammalian nervous system 

(Goodman et al., 1980).   Opioids are modulators of ionic homeostasis because of their effect 

on a variety of different ion channels and currents, including potassium (Ikeda et al., 1995), 

calcium (Su et al., 1998; Toselli et al., 1997), chloride (Kromer, 1993) and sodium 

(Witkowski and Szulczyk, 2006).  Due to this modulatory effect on different ionic currents 

and the correlation of ionic homeostasis dysfunction with hypoxic/ischemic insult, several 

groups have investigated the effect of opioid receptor activation during hypoxia/ischemia. 

Evidence suggests that DOR activation during oxygen-glucose deprivation (OGD; 

simulated ischemia) in the rat cortex attenuates the accumulation of extracellular potassium 

(Chao et al., 2007b; Chao et al., 2012; Chao and Xia, 2010) through the inhibition of sodium 

and calcium influx (Chao et al., 2008; Chao et al., 2007a; Chao et al., 2012; Kang et al., 

2009), thus protecting neural tissue from injury and death (Zhang et al., 2002).  Interestingly, 

while MOR and DOR share similar modulatory effects on some ion channels (North et al., 

1987), MOR activation did not show the same capability to modulate potassium homeostasis 

dysfunction in the cortex (Chao et al., 2007a).  This observation may be due to the fact that 

the cortex contains a higher density of DOR than other parts of the brain (Xia and Haddad, 
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1991).  Indeed, receptor density may play a pivotal role in potassium homeostasis 

modulation; in turtles, which display remarkably less potassium homeostasis dysfunction 

during hypoxia than rats (Xia et al., 1992), the cortical DOR density is significantly higher in 

turtles compared to rats (Xia and Haddad, 2001).  Therefore, it is not unreasonable to 

hypothesize that MOR activation during OGD and/or hypoxia in a region of high MOR 

density may have a similar effect as DOR activation in the cortex. 

The Pre-Bötzinger Complex (preBötC) is a region of the brainstem that is responsible 

for respiratory rhythm generation (Smith et al., 1991).  It is also a region that contains a high 

density of MOR (Gray et al., 1999).  Accordingly, clinical administration of opioid agonists 

is related to respiratory depression due to effects on preBötC, as well as other brain regions 

(Boom et al., 2012).  Furthermore, the preBötC is sensitive to hypoxia/ischemia in that it acts 

as a hypoxic chemoreceptor for respiratory function (Solomon et al., 2000) and is 

intrinsically sensitive to changing ATP concentration (Lorier et al., 2007).  These 

sensitivities manifest as alternations to eupneic respiratory frequency (Solomon, 2002).  

Because of this high density of MOR and its innate sensitivity to changing oxygen and ATP 

concentrations, the preBötC is an ideal brain region to investigate MOR activation on 

potassium homeostasis during periods of hypoxic and ischemic stress. 

5.2 Methodology 

5.2.1 Experimental Saline and Drug Preparations 

All constituents of the experimental saline solutions were purchased from Fischer Scientific 

(Waltham, MA), unless otherwise noted.  The “normal” saline consisted of artificial 

cerebrospinal fluid (aCSF) with the following composition (in mM): 118 NaCl, 3 KCl, 25 
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NaHCO3, 1 NaH2PO4, 1 MgCl2 x 6 H2O, 1.5 CaCl2, 30 D-glucose; the pH was adjusted to 

7.4 at 32° C by the addition of a gaseous mixture of carbogen (95% O2/5% CO2).  The 

“OGD” saline consisted of aCSF with a similar composition as outlined above but with 30 

mM sucrose replacing the 30 mM D-glucose; the pH was adjusted to 7.4 at 32° C by the 

addition of a gaseous mixture of 95% N2/5% CO2. 

The potent and selective µ-opioid agonist DAMGO was utilized to investigate MOR 

activation while the non-selective opioid antagonist naloxone hydrochloride was used to 

abolish DAMGO’s effect at the MOR.  Both drugs were purchased from Sigma-Aldrich (St. 

Louis, MO).  Stock solutions of DAMGO (60 µM and 500 µM) and naloxone (10 mM) were 

produced and then stored in aliquots according to manufacturer suggested conditions until 

used. 

5.2.2 Animals 

The CD-1 mice used in all experiments were bred from a group of founders purchased from 

Charles River Laboratories (Wilmington, MA).  Special care was taken to only mate males 

and females with an uncommon lineage, thereby increasing the genetic variability of the 

offspring.  All experimental protocols were developed such that both the number of animals 

used and their suffering was minimized.  These protocols comply with European Union 

Directive 86/609/EEC and were approved by the Animal Care and Facilities Committee at 

Rutgers, the State University of New Jersey.  For DAMGO dose-response experiments, 

nineteen mice from 5 distinct litters and ranging in age from postnatal days 6 to 9 (P6-P9) 

were utilized.  For potassium homeostasis experiments, 26 mice (15 Male, 11 Female) from 

11 unique litters and aged postnatal days 7 to 11 (P7-P11) were used. 
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5.2.3 Medullary Slice Preparation 

Experiments were performed using a transverse brainstem slice taken from the medulla of 

young mice (Ramirez et al., 1996).  Mice within the appropriate age range were deeply 

anesthetized with isoflurane until the absence of withdrawal reflex during toe pinch and 

rapidly decapitated.  The brainstem and a short segment of spinal cord were dissected in ice-

cold aCSF as efficiently as possible.  During dissection, the temperature of the aCSF bathing 

the tissue was maintained artificially low by the constant addition of aCSF ice chips.  

Immediately upon completion of the dissection process, the brainstem and spinal cord 

preparation was mounted (caudal end up and ventral side out) to an agar block with 

cyanoacrylate glue.  A vibratome (Leica VT 1200; Leica Microsystems, Wetzlar, Germany) 

was used to cut serial (100 µm) sections in the caudal-to rostral direction until the principle 

loop of inferior olive was visualized.  This anatomical marker corresponded to the 

appropriate rostro-caudal level at which a 500 micron tissue slice containing the preBötC 

(Ruangkittisakul et al., 2011) was produced. 

The dissection and slicing process imparts a variety of stressors upon the tissue 

(Richerson and Messer, 1995).  Therefore, in order to promote vitality, the slice was 

incubated for twenty minutes in oxygenated aCSF; the temperature of the reservoir was 

gradually increased to 32° C from room temperature over the course of the incubation 

period. 

5.2.4 Potassium Selective Microelectrodes 

Liquid membrane ion sensitive electrode (ISE) technology was utilized to produce 

microelectrodes capable of accurately measuring extracellular potassium concentrations.  

Unfilamented electrode glass (0.86 mm inner diameter) (World Precision Instruments Inc.; 
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Sarasota, FL) was cleansed in 99.9% methanol (Sigma-Aldrich; St. Louis, MO) and then 

dried on a hot plate at 100° C.  Patch pipettes with tip resistance of approximately 9 MΩ 

were pulled (Sutter Instrument Company P-97; Novato, CA) and the tips then etched and 

broken to produce a low resistance (2.02 MΩ mean resistance, n=27) straight tip.  The inner 

surface of the electrode was made hydrophobic by the injection of a small volume (50 µL) of 

liquid dichlorodimethylsilane (99%) (Sigma-Aldrich; St. Louis, MO) into the electrode; the 

electrodes were subsequently heated at 100° C for approximately two hours.  The electrodes 

were then allowed to cool to room temperature. 

The tips of the microelectrodes were carefully filled by capillary action with 

Potassium Ionophore I- Cocktail B (Sigma-Aldrich; St. Louis, MO) containing 5% 

valinomycin.  Valinomycin is a natural ionophore that is highly selective for potassium over 

other ions (Tosteson et al., 1967).  Care was taken to ensure that no air bubbles were present 

in the ionophore column and when an adequate volume of ionophore occupied the tip, the 

electrode was backfilled with 500 mM KCl solution using a microfill pipette.  Again, care 

was taken to ensure a “clean” junction, i.e. no air bubbles or other obstructions, between the 

ionophore column and the backfill solution.  Because the response time of the electrode is 

dependent on the length of the ionophore column, effort was made to consistently produce 

columns of similar length.  In instances where the column length was too great, gentle 

pressure was applied to the end of the electrode, thus causing the ionophore to gradually 

escape the tip.  Pressure was applied until the ionophore column length was approximately 

100-200 µm. 



 

 
 

54 

 
Figure 5.1  Microelectrodes produced from unfilamented capillary glass with a tip 
resistance of approximately 2 MΩ.  The tips of these microelectrodes were filled with a 
100-200 μm column of valinomycin “cocktail”.  The rest of the microelectrode was filled 
with 500 mM KCl solution.  These microelectrodes displayed predictable responses to 
changing potassium concentrations. 

Reference electrodes were produced from filamented electrode glass (0.86 mm inner 

diameter)(World Precision Instruments Inc.; Sarasota, FL) by pulling electrodes with a low 

resistance (5-7 MΩ) tip and filling with 3 M KCl solution.  A reference electrode was paired 

with a potassium sensitive microelectrode and the pair was calibrated at room temperature by 

detecting the voltage response generated by a decade (3 to 30 mM) change in extracellular 

potassium concentration.  This value was then adjusted to account for the fact that 

experiments would be conducted at 32° C.  After temperature adjustment, the average slope 

per log 10 unit increase in potassium concentration was 55.32 +/ 3.64 mV (n=26).  After 

calibration, the electrodes were stored suspended with tips immersed in distilled water until 

use. 
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5.2.5 Electrophysiology Experiments 

After the 20 incubation perioid following slicing, the 500 µm slice containing the preBötC on 

the caudal surface was transferred to the superfusion chamber (RC-29, Warner Instruments; 

Hamden, CT) and prepared for electrophysiology recordings.  To ensure adequate gas 

exchange, the slice was positioned and supported such that aCSF from the bath reservoir 

could freely flow both above and below the slice at a flow rate of approximately 10 mL/min; 

the volume of aCSF in the superfusion chamber at any given point was approximately 2.5 

mL.  The temperature of the bath solution was continuously monitored and maintained 

through a feedback loop at 32° C.  A Syringe Warmer Power Controller (SW-707) and 

Syringe Heaters (SW-60) were used to heat aCSF in the bathing reservoirs.  A Temperature 

Controller (TC-344B), platform heater (PM-6D), and inline heater (SH-27B) were used to 

heat the aCSF both while en route to and while in the superfusion chamber.  All heaters and 

control units were manufactured by Warner Instruments (Hamden, CT). 

5.2.5.1 DAMGO Dose-Response Experiments. Bursts of rhythmic extracellular 

neuronal population activity were recorded by placing a saline-filled pipette on the caudal in 

the region of the preBötC.  The extracellular signal was amplified using a 100-fold gain 

differential preamplifier (JFIE 1626; James Franck Institute Electronics Laboratory, 

University of Chicago, IL) in series with a variable gain amplifier (Model 410; Brownlee 

Precision Instruments, Santa Clara, CA).  The raw analog signal was then band-pass filtered 

(100 Hz to 1 kHz), rectified and integrated with analog circuitry using a time constant of 50 

ms (JFIE 1620A Dual Channel Integrator; James Franck Institute Electronics Laboratory, 

University of Chicago), digitized (Digidata 1440A; Molecular Devices, Sunnyvale, CA), and 

stored to hard disk for later analysis. 
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In order to stimulate rhythmic population bursting in the preBötC, the extracellular 

concentration of potassium was increased to 8 mM (Tryba et al., 2003).  After electrode 

placement on the caudal surface of the slice in the location of preBötC and observation of 

rhythmic bursting activity, experimental recording was initiated and the rhythm was allowed 

to stabilize for 30 minutes.  After this stabilization period, the slice was exposed to varying 

DAMGO concentration (1, 50, 150, 250 nM, n=3 each) by changing the superfusate bath 

reservoir to one containing the prescribed concentration of DAMGO; in a subset of 

experiments (n=2), no DAMGO was added after the stabilization period (control).  After 30 

minutes of bath exposure to DAMGO, the superfusate bath reservoir was switched to one 

containing DAMGO-free aCSF.  In order to stimulate complete removal of the drug, the 

tissue slice was washed with 100 mL of fresh aCSF containing no DAMGO.!

To analyze the effect and dose-response relationship of the DAMGO application, the 

rectified and integrated voltage signal, which shows a positive deflection corresponding to 

extracellular population bursts (Figure 5.2), was digitally filtered with a 2nd order 

Butterworth low pass filter (1.5 Hz cut-off frequency) and then inputted into a custom 

MATLAB program for further analysis.  The burst frequency was calculated based on the 

occurrence of all fictive burst regardless of waveform shape.  A sequence of mean burst 

frequency values was calculated by averaging data from 120-second periods throughout the 

experiment duration.  The burst frequencies during DAMGO application was normalized by 

dividing each 120-second period during DAMGO application by the 120-second period 

immediately prior to DAMGO application. The normalized burst frequency for the 120-

second period immediately subsequent to the removal of DAMGO and initiation of wash 

was utilized from each experiment to produce a dose-response curve. 
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Figure 5.2  Extracellular population bursting activity was recorded using suction 
electrodes in the area of the Pre-Bötzinger Complex.  Each burst in the raw extracellular 
signal (top) corresponds to a positive deflection in the integrated and rectified waveform. 

 
5.2.5.2 Potassium Measurements During Hypoxia and OGD. Measurements of 

extracellular potassium concentration were made using the previously described potassium 

selective microelectrodes and an Axon Multiclamp 700-B amplifier (Molecular Devices; 

Sunnyvale, CA) in current clamp mode coupled to a Digidata 1440A digitizer (Molecular 

Devices; Sunnyvale, CA).  The spatial orientation of the potassium selective microelectrode 

was controlled and precisely manipulated by a Burleigh PCS-6000 micromanipulator 

(Thorlabs; Newton, NJ). 



 

 
 

58 

In order to confirm the location of the preBötC, the extracellular concentration of 

potassium in the superfusate was raised to 8 mM (Tryba et al., 2003) and rhythmic 

population bursting was observed using the suction electrode method already previously 

described.  After five minutes of observing rhythmic bursting activity, the potassium 

concentration in the superfusate bath was lowered to 3 mM and the tissue was allowed to 

acclimate at this new potassium concentration for 15 minutes.  As a result of the lower 

extracellular potassium concentration, rhythmic bursting activity ceased but extracellular 

tonic activity was still observable.  After this 15-minute acclimation period, a potassium 

selective microelectrode was carefully immersed in tissue in a region of the slice away from 

the preBötC and allowed to equilibrate in tissue for a 20-minute period.  The electrode was 

then moved to the preBötC and again immersed to a depth of 100 microns.  Placement in 

preBötC was confirmed by immersing the potassium selective microelectrode immediately 

adjacent to the electrode that had previously been used to record population burst activity.   

The experimental procedure underlying the measurement of potassium concentrations 

during OGD and the effect of DAMGO application during OGD called for several distinct 

periods during experimentation.  After immersion of the electrode in the preBötC, baseline 

potassium levels and tonic activity levels were recorded for 30 minutes before experimental 

manipulation of oxygen and/or glucose; this period was referred to as the “baseline” period.  

In order to compare the accumulation of extracellular potassium between hypoxia and OGD, 

hypoxia only (n=4) or OGD (n=6) was initiated for a 30-minute period by switching the 

superfusate to one containing normal aCSF but saturated with 95% N2/5% CO2 (hypoxia 

only) or to one containing “OGD acSF” containing 0 mM D-glucose and saturated with 95% 

N2/5% CO2 (OGD).   These OGD experiments would also serve as a control group for the 
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later evaluation of the effect of MOR activation by DAMGO during OGD.  This period of 

varying oxygen and/or glucose concentrations was referred to as the “manipulation” period.  

After this “manipulation” perioid, the superfusate was switched to one containing “normal” 

aCSF saturated with 95% O2/5 % CO2, thus entering the “recovery” period.  Potassium 

measurements and extracellular population activity recordings were maintained throughout 

all periods.   

In order to assess the effect of MOR activation by DAMGO during OGD, either 60 

(n=6) or 250 nM (n=6) of DAMGO was bath-applied to the slice 10 minutes prior to the 

initiation of OGD (20 minutes into the “baseline” period).  The former concentration 

represents the EC50 for DAMGO-induced depression of respiratory rhythm bursting, while 

the latter represents a concentration that completely abolishes respiratory rhythm bursting.  

Following 10 minutes of exposure to DAMGO, the “manipulation” period was initiated and 

the DAMGO exposure was continued at the same level as during the “baseline” period.  

After the “manipulation” period, the “recovery” period was initiated; DAMGO was removed 

from the superfusate at this point. 

Potassium recordings collected throughout the experiments were converted from mV 

to mM as described in Section 2.2.  Two main parameters were used to describe the 

experimental potassium dynamics: maximum concentration change and latency.  The 

maximum concentration change describes the highest potassium concentration reached 

during the “manipulation” period, relative to the potassium concentration immediately prior 

to the initiation of the “manipulation” period.  It is appropriate to consider a change relative 

to baseline, as opposed to the maximum potassium concentration reached, because the 

baseline concentration of potassium in the preBötC fluctuates between 3 and 5 mM (Richter 
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et al., 1978).  The latency refers to the time necessary for this maximum concentration 

change to be realized after the initiation of the “manipulation” period.  

5.3 Results 

5.3.1 Dose-Response Relationship of DAMGO Application to Frequency 

Application of DAMGO (1-250 nM) resulted in a dose-dependent decrease in normalized 

burst frequency (Figure 5.3), which is consistent with earlier findings (Gray et al., 1999). 

In order to quantify this decrease of frequency as a function of dose, the mean normalized 

burst frequencies for each DAMGO concentration were plotted on a semi-logarithmic graph 

and fitted with a logarithmic function.  Based on that function, the concentration of DAMGO 

that exhibited a 50% decrease in mean normalized burst frequency was 60 nM (Figure 5.4) 

with a Hill coefficient of 1.80. 

 
Figure 5.3  Application of the potent MOR agonist DAMGO to the preBötC resulted in a 
dose-dependent decrease in population burst frequency until complete cessation of 
bursting occurs (250 nM) 
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Figure 5.4  The dose-response curve relating decrease in the normalized burst frequency 
to DAMGO dose reveals the EC50 value for DAMGO is 60 nM with a Hill coefficient of 
1.80. 

5.3.2 Correlation of Extracellular Population Activity with Potassium Measurements 

As previously mentioned, extracellular population  (tonic) activity was recorded concurrently 

with potassium measurements (Figure 5.5).  

 
Figure 5.5  Increases in tonic activity (top trace) clearly correlated to increased 
extracellular potassium concentration (bottom trace).  The biphasic extracellular 
potassium response to OGD, which has previously been described in literature, is clearly 
evident. 
 
A biphasic accumulation of extracellular potassium during OGD has been previously 

described in literature (Hansen and Nedergaard, 1988).  The potassium responses to OGD 
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presented in this chapter all followed this biphasic pattern.  Phase 1 was initiated shortly after 

the onset of OGD and corresponded to a slight increase in extracellular population activity.  

Phase 2 correlated temporally to a large increase in extracellular population activity with the 

most rapid rise in extracellular potassium concentration occurring immediately subsequent to 

that increased activity. 

5.3.3 Comparison in Potassium Accumulation Between Hypoxia and OGD 

Biphasic increases in extracellular potassium concentration were observed both during 

hypoxia and OGD (Figure 5.6) 

�
Figure 5.6  An increase in extracellular potassium concentration accompanied both 
hypoxia and OGD.  However, the maximum change in extracellular concentration was 
greatly reduced in hypoxia, as compared to OGD.  The time required to reach that 
maximum change in concentration was also increased significantly by hypoxia. 
 

The maximum extracellular potassium concentration change was 4.18 +/ 0.44 mM (mean +/ 

S.D.) with a latency of 26.23 +/ 5.27 minutes for hypoxia, while the maximum extracellular 

potassium concentration change was 10.97 +/ 1.64 mM with a latency of 12.64 +/ 1.46 
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minutes for OGD.  Therefore, both maximum concentration change and latency statistically 

differed between hypoxia and OGD (p<0.05). 

5.3.4 Effect of DAMGO During OGD 

In order to assess the effect of MOR activation during episodes of OGD, two concentrations 

of DAMGO were applied ten minutes prior to and during exposure to OGD.  Both 

concentrations of DAMGO proved to have a statistically significant effect on maximum 

change in concentration and latency (Figures 5.7, 5.8). 

 
Figure 5.7  (A) The application of 60 nM DAMGO (middle trace) and 250 nM DAMGO 
(bottom trace) prior to and during episodes of OGD significantly modulated the 
accumulation of extracellular potassium compared with control (top trace). (B) There is a 
statistically significant difference (signified by ‘X’) in the maximum extracellular 
concentration reached during OGD between control trials and both concentrations of 
DAMGO.  (C) There is a statistically significant difference (signified by ‘X’) in the time 
required to reach the maximum extracellular potassium concentration between control 
trials and both concentrations of DAMGO. 
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The maximum extracellular potassium concentration changes for 60 and 250 nM of 

DAMGO was 6.45 +/ 1.08 mM and 5.89 +/ 1.45 mM, respectively.  The corresponding 

latencies were 17.65 +/ 1.99 minutes and 19.42 +/ 3.01 minutes, respectively.  In control 

experiments, the maximum extracellular potassium concentration change was 10.97 +/ 1.63 

mM with a latency of 12.64 +/ 1.46 minutes.  Application of both concentrations of DAMGO 

produced a statistically significant change in maximum extracellular potassium concentration 

change and latency compared to control but there was no statistical significance between the 

DAMGO concentrations. 

 

5.4 Discussion of Results 

This research investigated the parameters of extracellular potassium accumulation in the pre-

Bötzinger complex of the brainstem during periods of hypoxic and ischemic insult.  The 

parameters used were the maximum extracellular potassium concentration reached during 

insult ([K+]max) and the time required to reach that potassium concentration following the 

onset of insult.  To investigate whether these parameters were reasonable predictors of insult 

severity, they were assessed during periods of hypoxia and OGD.  Compared to OGD, there 

was a significant decrease in [K+]max and a significant increase in the time required to reach 

that concentration.  These results may be due to the fact that glycolysis continues during 

hypoxia (but not OGD), thus inhibiting the release of glutamate (Kulik et al., 2000). 

It is well established that glutamate is a modulator or excitotoxicity-induced cellular 

death during episodes of OGD (Won et al., 2002).  The occurrence of OGD leads to a 

breakdown in sodium ion homeostasis (Rose et al., 1998), which leads to an increase in 
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extracellular glutamate accumulation (Lipton and Rosenberg, 1994).  Accordingly, sodium 

channel blockers have been shown to attenuate glutamate accumulation and neuronal death 

(Tsuchida et al., 1996; Taylor et al., 1995). 

The research contained within this dissertation shows that MOR activation within the 

preBötC during periods of OGD significantly attenuates potassium ion homeostasis 

dysfunction.  These results are similar to those previously published that show DOR 

activation in the cerebral cortex during OGD significantly modulates extracellular potassium 

accumulation (Chao et al., 2007a; Chao et al., 2007b; Chao and Xia, 2010).  While Chao and 

colleagues suggest several possible mechanisms may contribute to the observed DOR-

mediated neuroprotection, they showed conclusively that one of the mechanisms involved 

impaired sodium influx (Chao et al., 2008) through a protein kinase C-dependent mechanism 

(Chao et al., 2012). 

While the mechanisms underlying MOR-mediated modulation of potassium 

homeostasis dysfunction are likely quite complex, it is interesting to note that MOR 

activation inhibits sodium currents by some of the same mechanisms as previously described 

by Chao and colleagues.  And while Chao’s group specifically concluded that MOR 

activation had no effect on neurons of the cortex during OGD (Chao et al., 2007a), it is 

important to note that the cortex contain a higher density of DOR than other parts of the 

brain (Xia and Haddad, 1991).  It is possible that this disproportionately high concentration 

of DOR may contribute to the neuroprotective effects of DOR activation during OGD in the 

cortex. 

The correlation between opioid receptor density and neuroprotection has been 

previously investigated in the sea turtle.  Compared to the mammalian brain, it is well 
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documented that the turtle brain displays remarkably diminished potassium homeostasis 

dysfunction when exposed to hypoxic stress (Xia et al., 1992), thus conveying a tremendous 

capacity to resist anoxic damage (Jackson, 2000).  The density of DOR in the cortex of the 

turtle is significantly higher than the cortex of the rat (Xia and Haddad, 2001), thus lending 

credence to the notion that the degree of DOR-mediated neuroprotection is directly 

dependent upon the DOR density.  Having previously shown that MOR and DOR have 

similar effects on a variety of ion channels pertinent to ischemia-induced cellular death, it is 

reasonable to assume that MOR activation in an area of the brain with high MOR density has 

similar effects as DOR activation in the cerebral cortex during OGD. 

The preBötC is a region of the brainstem that contains a high concentration of MOR 

(Gray et al., 1999), and thus the conjecture that receptor density is implicated the 

neuroprotective effects of exogenous opioid application during OGD is indeed supported by 

the research in this chapter.  While this research has shown that MOR activation in the 

preBötC during OGD significantly attenuates the accumulation of extracellular potassium, 

the mechanism of this protective action remains a mystery.  It is indeed possible that MOR 

activation during OGD in the MOR-dense preBötC has a similar protective action as DOR 

activation during OGD in the DOR-dense cerebral cortex, as show by Chao and colleagues.  

However, for this link to become anything more than speculation, additional experimentation 

must be performed. 
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CHAPTER 6  

OVERVIEW AND CONCLUDING REMARKS 

 

 
The subject matter contained within this dissertation revolves around the flow of ions into 

and out of neural cells and the effect that flow has on the system.  Specifically, this subject 

matter is investigated in the context of the following questions:  

1.   How does the flows of various ions and other charged particles affect the 
electrochemical characterization of the tissue by dielectric spectroscopy (DS) and 
how can this effect be accounted for? 

2. Can the change in conductivity of the extracellular fluid as a function of neural insult 
severity provide insight into the health of the tissue? 

3. Does pharmacological manipulation of the µ-opioid receptor attenuate the 
accumulation of extracellular potassium during oxygen glucose deprivation (OGD)? 

Chapter by chapter, these questions were systemically investigated and answered. 

The accumulation of extracellular ions accompanying diminished cellular health has 

drastic implications on the ability to characterize the tissue by DS.  Not only does this 

accumulation affect the conductivity and dielectric permittivity of the tissue, it substantially 

contributes to the electrode polarization error.  By implementing a novel superfusion system 

to constantly provide new, oxygenated extracellular solution, the health of the tissue is 

increased and the electrode polarization error is constant, thus increasing the ability to 

compare data from various trials. 

As the health of neural cells diminish, their ability to maintain precise ionic gradients 

is diminished, which eventually leads to an accumulation of extracellular ions.  The 

magnitude of this accumulation is directly proportional to the severity of the insult imparted 

upon the tissue.  This extracellular ion accumulation is quantified by measuring the 

conductivity of the extracellular bathing fluid using dielectric spectroscopy. 
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The preBötC is a region of the brainstem that is responsible for respiratory rhythm 

genesis and sensitive to changes in oxygen and glucose concentration.  When cells of the 

preBötC are deprived of oxygen and glucose, they respond by rapidly losing their ability to 

regulate potassium homeostasis.  The resulting accumulation of extracellular potassium is 

directly related to the health of the tissue.  Bath application of the potent MOR agonist 

DAMGO to the preBötC significantly attenuated the extracellular accumulation of 

potassium.
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