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ABSTRACT 

STRUCTURAL INDICATORS FOR EFFECTIVE QUALITY ASSURANCE OF 

SNOMED CT 

 

by 

Ankur Agrawal 

The Standardized Nomenclature of Medicine - Clinical Terms (SNOMED CT - further 

abbreviated as SCT) has been endorsed as a premier clinical terminology by many 

national and international organizations. The US Government has chosen SCT to play a 

significant role in its initiative to promote Electronic Health Record (EHR) country-wide. 

However, there is evidence suggesting that, at the moment, SCT is not optimally modeled 

for its intended use by healthcare practitioners. There is a need to perform quality 

assurance (QA) of SCT to help expedite its use as a reference terminology for clinical 

purposes as planned for EHR use. 

The central theme of this dissertation is to define a group-based auditing 

methodology to effectively identify concepts of SCT that require QA. As such, similarity 

sets are introduced which are groups of concepts that are lexically identical except for 

one word. Concepts in a similarity set are expected to be modeled in a consistent way. If 

not, the set is considered to be inconsistent and submitted for review by an auditor. Initial 

studies found 38% of such sets to be inconsistent. The effectiveness of these sets is 

further improved through the use of three structural indicators. Using such indicators as 

the number of parents, relationships and role groups, up to 70% of the similarity sets and 

32.6% of the concepts are found to exhibit inconsistencies. 

Furthermore, positional similarity sets, which are similarity sets with the same 

position of the differing word in the concept’s terms, are introduced to improve the 



 

 

 

 

likelihood of finding errors at the concept level. This strictness in the position of the 

differing word increases the lexical similarity between the concepts of a set thereby 

increasing the contrast between lexical similarities and modeling differences. This 

increase in contrast increases the likelihood of finding inconsistencies. The effectiveness 

of positional similarity sets in finding inconsistencies is further improved by using the 

same three structural indicators as discussed above in the generation of these sets. An 

analysis of 50 sample sets with differences in the number of relationships reveal 41.6% of 

the concepts to be inconsistent. 

Moreover, a study is performed to fully automate the process of suggesting 

attributes to enhance the modeling of SCT concepts using positional similarity sets. A 

technique is also used to automatically suggest the corresponding target values. An 

analysis of 50 sample concepts show that, of the 103 suggested attributes, 67 are 

manually confirmed to be correct. 

Finally, a study is conducted to examine the readiness of SCT problem list (PL) to 

support meaningful use of EHR. The results show that the concepts in PL suffer from the 

same issues as general SCT concepts, although to a slightly lesser extent, and do require 

further QA efforts. To support such efforts, structural indicators in the form of the 

number of parents and the number of words are shown to be effective in ferreting out 

potentially problematic concepts in which QA efforts should be focused. A structural 

indicator to find concepts with synonymy problems is also presented by finding pairs of 

SCT concepts that map to the same UMLS concept. 
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CHAPTER 1  

INTRODUCTION 

1.1 Significance of SNOMED CT 

SNOMED CT (SCT) [1] is slated to become an integral part of Health Information 

Technology (HIT) systems. Encoding patients’ problems in Electronic Health Records 

(EHRs) by using concepts from SCT has been proposed as part of the “meaningful use” 

of such systems. The Health Information Technology for Economic and Clinical Health 

Act (HITECH) component of the American Recovery and Reinvestment Act [2] was 

designed to jumpstart the transition of medical providers to use electronic Health 

Information Systems (HISs) [3]. In the proposal for the initial HIT standards [4], SCT is 

to be used to “enable a user to electronically record, modify, and retrieve a patient’s 

problem list for longitudinal care (i.e., over multiple office visits).” To accelerate the 

adoption and meaningful use of EHR by providers, incentives and penalties were defined 

[4, 5]. The use of SCT to encode problem lists of current and active diagnoses for at least 

80% of all unique patients was proposed as one indication of meaningful use. Moreover, 

SCT is slated to become the exclusive coding system for problem lists by 2015. 

1.2 Importance of SNOMED CT in Electronic Health Record 

The past decade has witnessed uproar in the way information technology can be used in 

various sectors for storing and retrieving data. One sector that still lags behind in 

successfully embracing the information technology is the field of health informatics 

which serves hospitals, clinics and other health care facilities. EHRs have several 

significant advantages over the traditional method of using pen and paper to record 
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patient data [6]. One of them is the efficiency in the retrieval of records. Digging through 

the paper files can be bothersome and time consuming. Quick access to records can be 

lifesaving during emergencies. EHRs can be used to quickly retrieve patient information 

without any delay thus facilitating more efficient decision making process. Another 

important advantage of EHRs over paper records is the ease of sharing patient data. 

When a patient goes to a new doctor, he no longer has to worry about filling up forms 

with his medical history. The doctor can easily access the medical history by using the 

patient’s personal identifying information. Furthermore, clinical notes are more legible as 

they are computer formatted instead of handwritten. In short, EHRs can help improve 

healthcare quality in many ways. 

 The benefits of EHRs depend on several factors. An important aspect is the 

reference terminology that it relies on to record patient data in a standard and consistent 

manner. The EHR can only be as good as the quality of the reference terminology being 

used. The reference terminology, as such, plays an important role in determining the large 

scale adoption of EHRs by healthcare providers. Since SCT has been touted as the 

primary reference terminology to be used in EHRs to record patient data, the success in 

the adoption of EHRs rely heavily on the quality of SCT. 

1.3 Current State of SNOMED CT 

SCT is regarded as a comprehensive, high quality terminology which can be used in 

EHRs to record a patient’s clinical data. SCT contains more than 290,000 active concepts 

(July 2012 release) spread over 19 broad hierarchies like the Clinical Finding, Body 

Structure, Specimen, etc. As such, SCT provides a good coverage of clinical concepts. In 

fact, in [7], SCT was found to cover 88.4% of the diagnosis/problem list terms used by 
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clinicians within a computerized physician order entry (CPOE) system. Because of its 

comprehensiveness and good coverage, SCT has been proposed to be used in a variety of 

settings [8]. 

Despite the good coverage of the diagnosis/problem lists, SCT still exhibits 

deficiencies in its structure and modeling that can hamper its use in EHRs. As an example 

of a problem with relationship modeling, the fully-defined concept Acute myocardial 

infarction is not hierarchically linked to the concept Ischemic heart disease. There is also 

no physiological attribute linking it to the associated myocardial ischemic process. A 

physician attempting to encode Acute myocardial infarction in an EHR is likely to search 

for it in an ischemic heart disease subsection. Not being able to locate the desired concept 

is liable to result in frustration according to Rector et al. [74]. In the same paper, Rector 

et al. give several other examples showing various modeling problems in SCT such as 

diabetes being classified as a disease of the abdomen and arteries of the foot being placed 

in pelvis. The authors conclude that without further quality assurance, clinicians may not 

realize the implications of what they are saying; researchers may not realize what their 

queries should retrieve, and post-coordination cannot be expected to be reliable thus 

compromising the interoperability and meaningful use of EHR.  

As for concept modeling, SCT lacks in sufficient synonyms that accompany the 

concepts. Only 36% of SCT concepts have synonyms. Besides, around 77% of SCT’s 

concepts are primitive, i.e., they lack the necessary relationships for full definition. These 

deficiencies of SCT can adversely affect the applications dependent on it.  

HITECH’s meaningful use regulations include provisions for decision support [5] 

to improve performance on high priority health conditions and covers both clinical and 
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patient related aspects. The meaningful use regulations actually call for a context-

sensitive form of decision support. For example, a documentation form is presented for 

patients with diabetes that includes a required section for the diabetic foot exam, where 

the same form would be presented for patients without diabetes and with the diabetic foot 

exam section removed.  Similarly, Certified Electronic Health Record Technology 

(CEHRT) can suggest that a patient with diabetes should be referred to a diabetic foot 

screener. While such decision support can be achieved by simply hardcoding the linkage 

between a diagnosis to a specific form or activity, it is easy to see how hierarchical and 

especially lateral relationships in a controlled terminology might support a dynamic form 

of context-sensitive decision support. The use of controlled terminologies to enable such 

forms of decision support has been described in the past [9-16].  

However, accurate and consistent modeling of hierarchical and attribute 

relationships is critical for dynamic, context sensitive secondary use of clinical controlled 

terminologies. Much of the decision support proposed in meaningful use regulations is 

diagnosis related. Thus, SCT’s major role in encoding problem lists stands to directly 

affect the ability of CEHRT to provide dynamic, context-sensitive decision support. The 

fact that a concept is marked primitive indicates a potential deficiency in its relationship 

structure, which in turn may lead to its incorrect positioning in a hierarchy by a DL 

classifier. Missing or incorrect relationships influence the inheritance of properties. 

CEHRT, which takes advantage of SCT’s inherent structure, can thus be negatively 

impacted. As such, quality assurance of SCT becomes very important. 

An intensive auditing effort is urgently needed to ensure quality assurance in 

SCT. However, an extensive audit of all concepts of SCT requires extensive quality 
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assurance resources and will require a long time. A desired approach in coping with this 

urgent quality assurance need is to develop computational techniques for identifying 

subsets of SCT with higher concentration of errors. This will result in more errors being 

corrected for a given amount of QA effort and resources. 

1.4 Impact of the Study 

The dissertation presents semi-automatic and automatic techniques to identify subsets of 

SCT and problem list concepts that would be more prone to modeling errors. A group 

based auditing technique is presented that creates groups of concepts from SCT that are 

lexically similar but differ in their parameters. In addition, techniques using the number 

of parents and words as indicators of the concept complexity are presented. These 

techniques enable auditors to focus on those concepts that have been identified by the 

algorithm as being more prone to error. 

The work in this document will, thus, allow for rapid discovery of those concepts 

needing improvement in SCT and will help improve the hierarchical and relational 

modeling of those concepts. This will lead to an improvement of the content of SCT and 

problem list and will result in better encoding of problem lists in EHRs. This should 

ultimately result in a quality and affordable healthcare, which is one ultimate goal of the 

current HITECH initiative. 

1.5 Test Bed 

The test bed for the studies performed in this document would be the Procedure 

hierarchy from SCT and the SCT problem lists (Clinical Observations Recording and 

Encoding (CORE) [17] and Veterans Health Administration and Kaiser Permanente 
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(VA/KP) [18]). However, the techniques developed are general enough to be applied to 

other SCT hierarchies. This will allow for the usability of the technique across wide 

range of applications, benefiting different classes of users. 

1.6 Dissertation Overview 

In Chapter 3, it is hypothesized that the lexically similar concepts should have similar 

modeling and if they are not modeled in a similar way, the modeling may contain 

inconsistencies. A study is conducted by partitioning the concepts into groups of lexically 

similar concepts. These concepts are then analyzed for inconsistencies in their modeling 

and the results are presented. The study further introduces the usage of structural 

indicators in grouping similar concepts. The underlying idea is that the introduction of 

such indicators into the generation of similarity sets would help in further exposing the 

inconsistent modeling among similar concepts thus increasing the likelihood of finding 

inconsistent concepts. A preliminary study has already been published in [19]. 

Chapter 4 builds on the work done in Chapter 3 with an aim to increase the 

likelihood of finding inconsistencies among the concepts of the similarity sets. Positional 

similarity sets are introduced and the methodology is further refined by using structural 

indicators such as number of parents, relationships and role groups. Again, a preliminary 

study was published in [20]. 

Chapter 5 introduces a methodology to algorithmically suggest attributes to 

enhance the modeling of SCT concepts. The methodology builds on the positional 

similarity sets introduced in Chapter 4. A technique is also identified to automatically 

suggest the corresponding target values. 
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Chapter 6 presents a study to examine the readiness of SCT problem lists (PL) to 

support meaningful use of EHRs. The study is conducted on two random sample sets of 

SCT concepts. The first consist of concepts strictly from the PL. The second contain 

general SCT concepts distributed proportionally to the PL’s in terms of their hierarchies. 

Each of the two sample sets is analyzed for modeling errors. The result of the analyses is 

presented and two structural indicators are suggested to locate inconsistencies in 

hierarchical relationships with statistical significance. A third structural indicator is 

suggested to identify missing synonyms. A part of the study has been published in [21] 

and another part of the study has been accepted for publication in [22]. 
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CHAPTER 2  

BACKGROUND 

2.1 SNOMED CT Overview 

SCT [1] is a controlled clinical reference terminology with comprehensive coverage of 

clinical findings, diseases, procedures, therapies and outcomes intended for recording 

clinical data [7, 23]. This data can be made available to computer systems for clinical 

decision support [24] and improved patient safety [25-27]. 

SCT started as a pathology-specific nomenclature (SNOP) [28, 29] in 1965 and 

since then has extended into other medical fields. SCT got its current form after the 

merger of College of American Pathologists' (CAP) SNOMED RT (Reference 

Terminology) [30] and the UK National Health Service's (NHS) Clinical Terms Version 

3 (also known as the Read codes) [31]. In 2007, the SCT intellectual property rights were 

transferred from the CAP to the SNOMED SDO in the formal creation of the 

International Health Terminology Standards Development Organization (IHTSDO) [32]. 

SCT can cross map to other international standards such as ICD-9-CM, ICD-10 

and OPCS-4. It supports ANSI, DICOM, HL7, and ISO standards. SCT is currently 

available in American English, British English, Spanish, Danish, and Swedish with other 

translations under way. 

A new version of SCT is released by IHTSDO every six months in January and in 

July. The content of SCT evolves with each release with changes in concepts, 

descriptions, and relationships. A history mechanism keeps track of these changes over 

time. 
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The January 2013 release of SCT consists of more than 310,000 active concepts 

with unique meanings and formal logic-based definitions organized into 19 hierarchies. 

The hierarchies are comprised of parent-child relationships, meaning that broader 

concepts are at the top of the hierarchy (parent) followed by more specific concepts 

(child). An example of a parent-child relationship would be blood test and laboratory test 

in which laboratory test is the parent and blood test is the child because blood test is a 

type of laboratory test. 

There are different structural parameters associated with these concepts such as 

relationships (hierarchical and attribute) and groups. These parameters help in extending 

the meaning of these concepts. With more than 1.4 million relationships, part of SCT's 

power lies in the relationships built into its core clinical concepts. For example, the 

attribute finding site connects acute subglottic laryngitis to subglottis structure, 

conveying the knowledge that an acute subglottic laryngitis involves only that particular 

structure and not any other structure. SCT’s technical documentation [33] outlines well 

defined rules for the domains and ranges of its defining attributes and attribute values. 

Each SCT concept has a collection of descriptions (terms), including one fully 

specified name (FSN), along with a preferred term and possibly a set of synonyms. SCT's 

more than 1.1 million English language descriptions offer flexibility in expressing the 

concepts, thus enabling clinicians to say things in multiple ways and still be understood. 

Each concept is further classified by its status of logical definition: fully-defined 

vs. primitive. A primitive concept is underspecified in the sense that not enough attributes 

are available to distinguish it from its parents (and siblings) and the automated detection 

of its sub-concepts is not allowed. 
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SCT and its precursors, with 50%–70% coverage of concepts of interest [34, 35], 

have consistently outperformed other sources. In [7], SCT was found to cover 88.4% of 

the diagnosis/problem list terms used by clinicians within a computerized physician order 

entry (CPOE) system. In 2004, the VA concluded that SCT has promise as a coding 

system for clinical problems [36]. A survey in 2010 indicated that 68% of users perceived 

SCT’s coverage as satisfactory or better [37, 38]. In [39], SCT was deemed suitable to 

provide standardized representations of information created by two interface 

terminologies, noting that enriching SCT semantics would improve representation of the 

external terms. 

The most commonly perceived use of terminologies such as SCT is the encoding 

of clinical data within electronic medical systems including EHRs and Clinical 

Information systems (CIS). SCT has been utilized or proposed for use in a variety of 

settings. The American Academy of Ophthalmology, for example, has chosen SCT as its 

official clinical terminology [40]. An extensive literature review regarding the use of 

SCT in clinical practice is presented in [8]. In [41], another literature search sought to 

identify SCT applications in critical care. The findings revealed investigations of SCT or 

its actual use in the representation of disorders of newborn infants [42], nursing flow-

sheets [43], allergic diseases and associated problems [44], the representation of common 

patient problems [23], anesthesia patient safety [25], and intensive care [45]. SCT has 

also been used in the automatic grouping of adverse drug reactions terms [46] and in the 

annotation of tissue microarray data [47]. 
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2.2 The Underlying Description Logic Model 

SCT is designed to use Description Logic (DL) as the underlying knowledge 

representation model [48]. As such, operations like concept union, negation, intersection 

and subsumption are supported in SCT. SCT’s DL underpinnings can be used by DL 

classifiers to ensure internal consistency. SCT has two main views: a stated, explicit view 

and the commonly available inferred view which is derived by a DL classifier. The same 

SCT infrastructure also supports semantic reasoners. Inferences derived by reasoners can 

form the basis for sophisticated decision-support tools and applications. However, the 

performance of classifiers and reasoners is directly related to the completeness and 

correctness of the logical formalism on which they rely. 

2.3 The HITECH Initiative 

Reaffirming convictions that electronic information systems are essential to improving 

healthcare [49], the HITECH component of the American Recovery and Reinvestment 

Act [2] was designed to jumpstart the transition of medical providers to use electronic 

health information systems (HISs) [3]. In the proposal for the initial HIT standards [4], 

SCT is to be used to “enable a user to electronically record, modify, and retrieve a 

patient’s problem list for longitudinal care (i.e., over multiple office visits).” To 

accelerate the adoption and meaningful use of EHRs by providers, incentives and 

penalties were defined [4, 5]. The encoding of problem lists of current and active 

diagnoses for at least 80% of all unique patients was proposed as one indication of 

meaningful use. Moreover, SCT is slated to become the exclusive coding system for 

problem lists by 2015 [4]. 
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Defining meaningful use of EHRs will involve problem lists encoded with SCT 

[4, 5]. To facilitate adoption, the NLM has posted the UMLS CORE [50]. Among the 

sources in the UMLS, SCT covers the highest percentage (81%) of the concepts. In the e-

prescribing domain, the U S Food and Drug Administration (FDA) has adopted the 

VA/KP Problem List Subset of SCT as the terminology to represent indications in 

electronic labels [18]. In an evaluation of medication indication phrases, SCT, as a whole, 

covered 90.3%, while its Clinical Finding hierarchy covered 79.5%. 

2.4 Problem Lists 

A problem list is a “best practices” subset of clinical terms which is most commonly used 

by clinicians to record patient diagnosis. Problems lists are the essence of problem-

oriented approach to medical records which was first introduced by Dr. Lawrence Weed 

more than 40 years ago [51, 52]. The usefulness and future of such approach was further 

discussed in [53, 54]. Problem lists are considered to be an important element of the EHR 

by several standards organization such as the Institute of Medicine, Joint Commission, 

American Society of Testing and Materials and Health Level Seven [50]. An encoded 

problem list is also considered one of the core objectives of the “meaningful use” 

regulation of EHR [5]. 

SCT is slated to become the standard terminology for EHR encoding of diagnoses 

and problem lists [4] by 2015. To facilitate the meaningful use of EHRs, the National 

Library of Medicine (NLM) has published two SCT problem list subsets, CORE and 

VA/KP to be used in coding patient data for EHR. The CORE subset comprises of 

datasets submitted by seven institutions - Beth Israel Deaconess Medical Center, 

Intermountain Healthcare, Kaiser Permanente, Mayo Clinic, Nebraska University 
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Medical Center, Regenstrief Institute and Hong Kong Hospital Authority [17]. The 

VA/KP subset was created for indexing Structured Product Labeling (SPL) [18] which is 

approved by Health Level Seven (HL7) and adopted by the FDA as a mechanism for 

exchanging medication information. 

There are a total of 5,862 current concepts in the January 2012 version of the 

CORE Problem List Subset of SCT and a total of 16,622 current concepts in the 

September 2009 release of VA/KP problem list of SCT. The two lists have 4,004 

concepts in common. For the purpose of this study, the two problem lists are combined to 

create a combined SCT problem list (PL). The PL consists of 18,472 unique and current 

concepts. The January 2012 release of SCT consists of 295,753 current concepts. As 

such, the PL covers 6.2% of the SCT concepts but over 81% of the most commonly used 

terms by the clinicians during patient diagnosis. 

However, evidence suggests that the two problem lists have substantial quality 

problems and are not ready to serve the anticipated EHR meaningful use needs. In [21], a 

preliminary study of the concepts from both CORE and VA/KP problem lists has shown 

that they suffer from the same problems as SCT concepts in their corresponding 

hierarchies such as high percentage of erroneous and inconsistent relationships and 

substantial percentage of primitive concepts. There have also been some comparative 

studies on the CORE problem list, the VA/KP problem list and problem lists derived 

from other terminologies like ICD-9. A comparative analysis of CORE and VA/KP 

problem lists is presented in [55]. An evaluation of the VA/KP problem list is presented 

in [56]. A comparison between CORE subset and ICD-10-CM/PCS HIPAA code sets is 
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presented in [57]. The coverage and coding efficiency between CORE subset, the subset 

used by Mayo Clinic and a random SCT subset was evaluated in [58]. 

The problem list will play an important role in supporting the effective clinical 

recording of patient data in EHR to improve patient safety, health care quality, and health 

information exchange. Therefore, to gain support among its users, the problem list must 

be of the highest possible quality. 

2.5 Auditing Techniques 

Auditing is an essential part of SCT’s maintenance. SCT is a large and complex clinical 

terminology containing hundreds of thousands of concepts that are linked by millions of 

relationships. As such modeling errors are unavoidable in its design which makes the QA 

of SCT extremely important. The importance of auditing in the design life cycle of a 

terminology along with its application in SCT was presented in [59]. Auditing SCT can 

be challenging due to limited resources. Computational techniques to help identify groups 

of concepts that are more likely to contain errors can lead to an efficient utilization of the 

limited QA resources. 

A review of auditing methods applied to the content of controlled biomedical 

terminologies such as SCT was presented in [60]. The study presents techniques to 

measure quality factors related to different aspects of the terminology such as the 

synonyms and relationship modeling. A guest editorial in the form of a special issue on 

auditing terminologies appeared in the Journal of Biomedical Informatics in 2009 [61]. 

These studies explored different approaches in auditing terminologies such as abstraction 

network based methods, methods based on description logic and ontological principles, 

and natural language processing techniques. 
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The uses of description logic and ontological principles to audit SCT have been 

studied by various researchers such as Bodenreider, Cornet and Ceusters. In [62], seven 

ontological principles were defined and the properties of SCT was examined with respect 

to these principles. A method to use abstraction networks in complement to description 

logic to identify errors in SCT is presented in [63]. Methods for auditing DL-based 

terminologies like SCT through the detection of concepts with equivalent or inconsistent 

definitions are presented in [64-66]. Other ontology based techniques favoring the use of 

strict logical and ontological theories in SCT to help detect different types of errors have 

been presented in [67, 68]. A formal concept analysis (FCA) based model for auditing the 

semantic completeness of SCT was presented in [69] and a lattice based structural 

auditing method was presented in [70]. The use of semantic distance metrics to support 

auditing of SCT was presented in [71]. The use of evolutionary terminology auditing 

technique was applied to SCT in [72]. An assessment of  the systematic use of linguistic 

phenomena to represent the lexical and semantic features in SCT was presented in [73]. 

In [74], Campbell et al. described a lexically suggested logical closure to track the quality 

of a terminology like SCT. Problems related to the use of grammatical conjunctions 

"and" and "or" in SCT was presented by Mendonca et al. [75]. A method to detect under-

specification in SCT using a lexical technique was presented in [76]. 

The research group at NJIT’s Structural Analysis of Biomedical Ontologies 

Center (SABOC), has been formulating automated structural methodologies to detect 

concepts that are likely to contain errors, as part of an effort to make terminology 

auditing more efficient [77]. Such methodologies have been successfully applied to SCT 

[77-79]. During the application of these methodologies, situations have been observed 
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where concepts that were similar in every aspect but were not modeled in the same 

manner. For example, while Insertion of Kantrowitz heart pump has the attribute direct 

device with a value of Cardiac assist implant (January 2010 release), its sibling Removal 

of Kantrowitz heart pump has direct device with a value of Device, a very broad concept. 

Other hierarchical differences were noted as well. 

Most of the existing methods mentioned above have some limitations. Some rely 

on the assumption that concept definitions are non-primitive (i.e. they are regarded as 

providing necessary and sufficient conditions). Some require attribute relationships in 

order to be applicable on a terminology. The analysis in this dissertation focuses on both 

parts of SCT’s definitional structures: hierarchical (i.e., IS-As) and attributes. The latter 

aspect can be further segmented as assignment of attribute and attribute value. The 

comparison between the modeling of lexically similar concepts concentrates on both of 

these aspects. 
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CHAPTER 3  

SIMILARITY SETS 

3.1 Introduction 

SCT is built upon description logic (DL) principles [80], with each concept being defined 

by its hierarchical (IS-A) and lateral (attribute) relationships to other concepts in the 

terminology. From a clinical perspective, particularly from the point of view of human 

clinicians, the presentation format of concepts in the form of terms (e.g., fully-specified 

names and preferred names) is often of primary concern. On the other hand, computer 

programs—particularly those performing some kind of reasoning—are built around the 

concepts’ DL formulations. One would expect that these two perspectives be highly 

consistent. In particular, terms exhibiting a similar word structure should have underlying 

DL modeling that is analogous in structure.  

For algorithms to work reliably, the validity and consistency of the conceptual 

representations within CBTs is crucial. Rector et al [81] clearly demonstrated the issue 

utilizing the Myocardial infarction example. In SCT (January 2010 release), myocardial 

infarction is not classified as a type of ischemic heart disease due to incomplete formal 

logic definitions. As a result, a hypothetical research query that looks to gather all 

Ischemic heart disease patients, relying on SCT coded data, will exclude myocardial 

infarction patients unless the researchers had prior knowledge of the issue or run their 

query using an aggregate of all instances of ischemic heart disease. The example 

crystallizes the implications of incomplete, incorrect, and inconsistent modeling on 

healthcare applications down the road. Such inconsistencies may be perceived to have 

minimal implications regarding clinical coding. However, inconsistencies may 
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significantly affect the performance of reasoners and inference generation (e.g., in the 

context of error detection and decision support) as these explicitly rely on the 

completeness and consistency of formal definitions. Therefore, this study analyzes the 

conceptual representation of sets of concepts similar at the term-level in an attempt to 

characterize the consistency of the modeling across these concepts. Sets of concepts with 

similar terms are gathered through standard lexical techniques. Such an analysis is 

performed on SCT’s Procedure hierarchy. 

The Procedure hierarchy of SCT is the most semantically complex of the 19 

hierarchies of SCT, with 28 potential defining attributes [82] (Table 3.1). For most 

attribute domains, SCT defines one or more ranges from which target values can be 

assigned. For example, the attribute component can be assigned target values from four 

ranges (Table 3.2). Concepts in the Procedure hierarchy have an average of 2.4 unique 

attributes and 1.9 parents per concept (compared with 1.8 and 1.7, respectively, for 

Clinical finding). This makes the Procedure hierarchy a prime target to examine methods 

to explore and detect issues with SCT’s formal definitions. 

Table 3.1 Defining Attributes for Procedure Hierarchy 

access has intent procedure device revision status 

approach has specimen procedure morphology scale type 

component indirect device procedure site time aspect 

direct device indirect morphology procedure site - direct using device 

direct 

morphology 

measurement 

method 

procedure site - 

indirect 

using access 

device 

direct substance method property using energy 

has focus priority recipient category using substances 
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Table 3.2 Ranges for the Component Attribute 

Cell structure (cell structure) 

Observable entity (observable entity) 

Organism (organism) 

Substance (substance) 

 

A lexical methodology is used to identify sets of similar concepts and is applied to 

one of the most attribute-rich hierarchies, Procedure, to create similarity sets which acts 

as control sets. The methodology to generate the similarity sets is then slightly tweaked to 

generate four additional set types with at least one concept in the set having different 

number of parents, different number of relationships, different number of groups and 

different number of all three of the above. A sample of 50 sets from each of these five set 

types are examined in regard to hierarchical, definitional, attribute, attribute/value, and 

role-group aspects. The evaluation revealed that 38 (Control) to 70 percent (Different 

relationships) of similarity sets within the samples exhibited significant inconsistencies. 

3.2 Method 

The core assumption is that concepts whose descriptions are of a similar word structure 

are expected to have similar logical representations. Figure 3.1 displays the snapshot of 

the modeling of the concept death due to radiotherapy toxicity along with that of the 

concept death due to chemotherapy toxicity taken from CliniClue browser. The modeling 

of the concept death due to radiotherapy toxicity, on its own, provides very little help in 

determining anything wrong or missing for this concept. However, comparing it to a 

lexically similar concept death due to chemotherapy toxicity, as shown in Figure 3.1, 

makes the inconsistency pretty obvious. The first concept death due to radiotherapy 



 

 

20 

 

toxicity is missing the relationship due to with target value toxicity due to radiotherapy. 

Furthermore, it is highly likely that this concept is defined as primitive because of this 

missing relationship since the lexically similar concept with such a relationship is 

modeled as fully defined. It can be seen from this example that comparing lexically 

similar concepts with each other makes it easy to find incorrect or missing information 

for the concepts since similarly worded concepts should be modeled in a similar way. 

 

 

Figure 3.1 CliniClue snapshot of the modeling of two lexically similar concepts about 

death due to toxicity. 

Source: The Clinical Information Consultancy Ltd, "CliniClue Xplore", 2009, Available from: 

http://www.cliniclue.com. 

 

The methodology is thus based on the formation of groups of concepts where 

fully specified names (FSNs) are similar in their word structure. In particular, the focus is 

on FSNs that differ from each other by one word. Such groups are referred to as 

similarity sets (simply “sets,” for short). For example, let t1 and t2 be five-word FSNs 

with t1 = “w1 w2 w3 w4 w5” and t2 = “w1 w3 w4 w5 w6”, where each wi is an individual word. 

Then the concepts of t1 and t2 are in a set together because these FSNs differ only by one 

word: w2 versus w6. Standard lexical variations as well as stop-words (like “a,” “an,” 

“the”) are ignored. Based on preliminary results and for practical reasons, the analysis 

was limited to FSNs of five words or more, with the semantic tags included in the word 
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count. An example set of three concepts (with terms of length five) is shown in Table 3.3. 

The hyphenated “Sperm-cervical” is considered one word. 

Table 3.3 Example of a Set containing Three Concepts 

CID FSN 

252940006 

252942003 

252943008 

Sperm-cervical mucus interaction test (procedure) 

Sperm-cervical mucus slide test (procedure)       

Sperm-cervical mucus contact test (procedure) 

 

An inconsistency in a set is defined as any instance where at least one of its 

concepts could unequivocally incorporate conceptual modeling elements from any other 

concept in the set. Figure 3.2 depicts a similarity set of two concepts: Conversion from 

uncemented total knee replacement and Conversion to uncemented total knee 

replacement. Both concepts are somewhat ambiguous (arguably the "from" more than the 

"to" one) since they do not indicate to, or from (respectively), what the conversions 

occur. Both concepts involve a total knee replacement (TKR) procedure and both are 

revisions since their FSNs indicate a transition between different types of TKRs. As both 

concepts are primitives, it cannot be assumed that all the defining information is present. 

Nevertheless, significant modeling discrepancies are evident. Although both concepts 

have a single parent, its type is different. The "from" concept is only linked hierarchically 

to Revision of knee arthroplasty even though logically, it must be some form of TKR. 

The "to" concept, although a revision, is not linked hierarchically to any revision-type 

parent, not even through an attribute. The "to" concept lacks the Revision status attribute 

but has the Procedure site - Indirect and the Direct device attributes with their assigned 

values. As for the assigned attribute values, although both concepts have the attribute 
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Method, their respective assigned values differ: Surgical action for the "from" concept 

and Surgical insertion - action and Repair - action for the "to" concept. Surgical action is 

an ancestor of both Surgical insertion - action and Repair - action. The two possible 

Method values for the "to" concept also highlight that it has two attribute groups whereas 

the "from" concept has only one group. Thus, utilizing a similarity set of minimum size 

(two concepts), four different types of possible inconsistencies are demonstrated: 

hierarchical, attribute assignment, attribute values, and groups. These findings are only 

minimally affected by the vagueness of the concepts or the auditor's subjectivity.  

 

 

Figure 3.2 A two-concept similarity set concerning total knee replacement. 

Source: The Clinical Information Consultancy Ltd, "CliniClue Xplore", 2009, Available from: 

http://www.cliniclue.com. 

 

Based on the observations, the following four hypotheses are formulated: 

Hypothesis 1: Similarity sets whose concepts exhibit different numbers of parents 

are more likely to harbor inconsistencies than randomly selected similarity sets. 

Hypothesis 1.1: The inconsistency type is more likely to be hierarchical. 

Hypothesis 2: Similarity sets whose concepts exhibit different numbers of 

attributes are more likely to harbor inconsistencies than randomly selected similarity sets. 



 

 

23 

 

Hypothesis 2.1: The inconsistency type is more likely to be attribute-related. 

Hypothesis 3: Similarity sets whose concepts exhibit different numbers of role 

groups are more likely to harbor inconsistencies than randomly selected similarity sets. 

Hypothesis 3.1: The inconsistency type is more likely to be role-group related. 

Hypothesis 4: Similarity sets whose concepts exhibit different number of parents, 

relationships, and groups are more likely to harbor inconsistencies than randomly 

selected similarity sets. 

Accordingly, and based on the inferred view of the January 2011 release of SCT, 

five samples from SCT's Procedure hierarchy are formulated. The first sample (Control) 

serves as a control sample, composed of concepts that differ from the base concept by 

one word without respect to the number of parents, relationships, or groups. The rest of 

the four samples correspond with hypotheses one through four: Diff-Par sample, Diff-Rel 

sample, Diff-Grp sample, and Diff-All sample. Each sample consists of randomly 

selected, 50 mutually exclusive similarity sets, controlled only for their respective 

parameter. In each similarity set (except Control), at least two concepts differ in the 

number of occurrences of the sample's main criteria.  

The samples are presented (non-blinded, single spreadsheet) to, and evaluated by, 

a single auditor (Dr. Gai Elhanan), a physician with extensive background in controlled 

biomedical terminologies. The auditor was not looking for errors but rather for clear 

inconsistencies between the inferred views of the concepts in a similarity set: 

hierarchical, definitional, attribute assignment, attribute target values, and groups. Within 

each set, the auditor looked for all types of inconsistencies. The default interface setting 

of CliniClue Xplore was used for the presentation of concepts for evaluation. 
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3.3 Results 

The procedure hierarchy in SCT's January 2011 release contains 52,011 concepts. This 

makes it the second largest SCT hierarchy after the Clinical finding hierarchy. Table 3.4 

provides additional information regarding the top five SCT hierarchies by size. For 

instance, the average number of parents per concept for the procedure hierarchy is 1.9, 

the average number of unique relationships per concept is 2.4 and the average number of 

groups per concept is 0.8. Also, 40.5% of the concepts in procedure hierarchy are 

primitive and 67.9% are leaf concepts. 

Table 3.4 Top Five SNOMED Hierarchies by Size 

Hierarchy #Concepts Avg 

#Parents/ 

Concept 

Avg #Unique 

Relationships/ 

Concepts 

Avg 

#Groups/ 

Concept 

%Non-

Primitives 

%Leaf 

Concepts 

Clinical 

Finding 

97538 1.7 1.8 0.5 40.6 68.2 

Procedure 52011 1.9 2.4 0.8 40.5 67.9 

Organism 32225 1.0 0 0 0 78.4 

Body 

Structure 

31142 1.5 0.1 0 2.5 56.2 

Substance 23752 1.2 0 0 0 79.0 

 

After removing stop words and selecting FSNs of five remaining words or more, 

the algorithm utilized 26,980 unique concepts from the hierarchy (51.9%) for similarity 

sets. Overall, 4886 unique concepts were included in the 2111 similarity sets generated 

for the Procedure hierarchy, representing 9.4 percent of all concepts in the hierarchy, and 

18.1 percent of all eligible concepts in the hierarchy. The five samples included 250 sets 

containing 797 unique concepts. Table 3.5 provides general set information for the 

Procedure hierarchy while Table 3.6 summarizes the characteristics of each sample. 
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None of the samples’ similarity sets was excluded due to irrelevant association between 

the concepts. 

Table 3.5 Overall Similarity Sets for the Procedure Hierarchy 

Set type #Sets Avg 

#concepts 

%Concepts 

covered 

Largest 

set 

Median 

All similarity sets in hierarchy 2111 2.9 9.4 61 2 

Different # of parents 573 3.4 3.2 50 2 

Different # of relationships 352 3.5 2.0 61 2 

Different # of groups 224 3.1 1.3 27 2 

Different # of parents, 

relationships and groups 

99 3.3 0.6 20 3 

 

Table 3.6 Sample Characteristics for the Similarity Sets 

Set type #Sets #Cpts %Non

-prim 

%Leaf 

 

Avg 

#par/cpt 

Avg 

#rel/cpt 

Avg 

#grp/cpt 

Control sample  50 128 22.6 79.7 1.3 2.3 0.4 

Diff-Par sample 50 149 29.5 71.8 1.9 2.8 0.5 

Diff-Rel sample 50 222 40.0 64.8 1.6 2.7 0.4 

Diff-Grp sample 50 148 39.2 71.6 1.6 3.1 1.5 

Diff-All sample 50 150 38.0 67.3 1.8 3.1 1.2 

 

Table 3.7 summarizes the findings across the five samples. The Control sample  

exhibited inconsistencies in 38% of the similarity sets. The non-Control samples 

exhibited inconsistency rates of 52 to 70 percent. For Diff-Rel, with 70% of inconsistent 

sets, this was a statistically significant difference compared to Control (Fisher's exact test, 

two-tailed). Thus, these findings strongly confirm the second hypothesis: Concepts in a 

similarity set with different number of relationships have a higher likelihood of 
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inconsistency. The use of a strict statistical test was chosen for this study. In fact, under 

the Chi-square test, the findings in all samples are statistically significant compared to the 

Control sample.  

Table 3.7 Summary of Findings in the Five Similarity Set Samples 

Sample Sets Inconst sets Concepts Inconst cpts P-value (two-

tailed) Fisher's 

exact test  # #  % # # % 

Control  50 19 38 128 27 21.1  

Diff-Par 50 29 58 149 48 32.2 0.07 

Diff-Rel 50 35 70 222 54 24.3 0.002 

Diff-Grp 50 26 52 148 38 25.7 0.2 

Diff-All 50 28 56 150 49 32.6 0.1 

 

The auditing process strictly looked for the five inconsistency types within each 

similarity set, namely, hierarchical, attribute assignment, attribute value, role groups and 

definitional. Table 3.8 breaks down the inconsistency types found within concepts for all 

the five different samples. Set concepts from Diff-Par predominantly exhibited 

hierarchical inconsistencies (95.8% p<0.001), whereas set concepts from Diff-Rel 

predominantly exhibited inconsistencies involving attribute assignments (98.1%, 

p<0.001) thus confirming Hypotheses 1.1 and 2.1, respectively. The results also 

demonstrate a meaningful correlation in the Diff-Par, Diff-Rel, and Diff-All sample 

concepts between hierarchical and attribute assignment issues. 

 

 



 

 

27 

 

Table 3.8 Breakdown of Inconsistency Types within Concepts of Inconsistent Sets 

Sample Inconst 

cpts 

Hierarchical Attrb 

assgn 

Attrb 

value 

Groups Definitional 

# % # % # % # % # % 

Control 27 10 37.0 14 51.8 3 11.1 2 7.4 5 18.5 

Diff-

Par 

48 46 95.8 17 35.4 14 29.2 4 8.3 5 10.4 

Diff-

Rel 

54 24 44.4 53 98.1 7 13 9 16.7 0 0 

Diff-

Grp 

38 24 63.2 6 15.8 10 26.3 21 55.3 4 10.5 

Diff-

All 

49 20 40.8 24 49.0 8 16.3 46 93.9 0 0 

 

The following example illustrates some of the issues summarized above. It 

involves a set containing five concepts, three of which are Primary cemented total ankle 

replacement, Primary cemented total hip replacement, and Primary cemented total knee 

replacement (Figure 3.3). A hierarchical discrepancy can be seen in the fact that although 

the three procedures differ only in the joint involved, each is anchored to a conceptually 

different sub-hierarchy parent(s). The first has the parent Prosthetic cemented total ankle 

replacement, the second has Insertion of hip prosthesis, total, and the third has the two 

parents Arthroplasty of knee and Implantation of joint prosthesis into knee joint. Of the 

four role-groups utilized in the modeling of the three concepts, none comprises the exact 

same set of attributes. While the rationale for the two different role-groups for the knee 

replacement procedure is most likely explained by inheritance from its two parents, none 

of the parents has the identical role- groups, and they are clearly inconsistent with the 

modeling of the hip and ankle procedures. 
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Figure 3.3 Three similar concepts depicting modeling inconsistencies. 

Source: The Clinical Information Consultancy Ltd, "CliniClue Xplore", 2009, Available from: 

http://www.cliniclue.com. 

 

Attribute/ value discrepancies can be seen for the attribute method which has the 

three different target values: Replacement – action, Surgical insertion – action, and 

Repair – action. The using device attribute is present only for the ankle procedure 

although it should apply to all procedures due to their nature. The definitional status of 

the ankle procedure is primitive (underspecified), while the knee and hip procedures are 

fully-defined. It is not clear that the presence of the direct device and procedure site - 

indirect attributes for the knee and hip procedures truly fully defines them. (Note that not 

all inconsistencies present in this example set have been discussed.) 

3.4 Discussion 

Terminologies, such as SCT, emphasize conceptual definitions over textual definitions. 

SCT itself does not contain any textual definitions for its concepts, and fully relies on its 

DL definitions. Thus, it might be surprising to note that in the Procedure hierarchy, one 

of the more semantically complex in SCT, more than 60% of concepts are primitives (i.e., 
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under-defined). This phenomenon, obviously, can be used to justify many of the findings 

of the present study. If concepts are under-defined, there is no guarantee that the 

modeling of similar concepts should even be the same; attributes and role-groups may 

differ. For most basic uses of a terminology, such as concept searches, coding, and subset 

extraction, this phenomenon may seem of small significance. However, when one 

considers that hierarchical aspects also play a part in conceptual definitions and that 

attribute and attribute/value assignments may affect even the most basic terminological 

queries, under-defined concepts may inflict significant practical damage. The ability of 

DL classifiers to operate is directly related to the robustness of the underlying logical 

formulations. Inconsistencies, as described in this work, combined with the fairly 

inexpressive logic underlying SCT, are bound to escape detection [63]. Moreover, the 

ability of reasoners and classifiers to detect other errors, properly classify, or draw other 

inferences is severely limited under such circumstances. 

The study starts with the premise that lexically similar concepts are expected to 

exhibit similar modeling. The control sample validates that many of the similarly worded 

concepts in SCT's Procedure hierarchy, are not modeled in a consistent manner (38% 

overall). Furthermore, the study indicates that concepts in similarity sets with difference 

in attributes are much more likely to be inconsistently modeled (70%). Moreover, the 

findings suggest that algorithmic detection and resolution of inconsistencies is feasible, as 

will be discussed later. 

The results indicate that in the authoring process of SCT, very little attention is 

given to identify similar concepts, with little consideration to the importance of modeling 

them in a consistent manner. While the vast majority of the inconsistencies cannot be 
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considered errors, as each individual concept conforms to SCT's guidelines, they may 

pose significant obstacles to reasoning engines based on SCT's modeling structure. This 

is not a trivial manner as Rector et al [81] so amply demonstrated. Revisiting their 

Myocardial infarction example clearly illustrates how such deficiencies can interfere with 

meaningful utilization of data collected in clinical repositories: research queries may not 

return all relevant cases, decision support opportunities may be missed, analytics may be 

skewed, and clinical care can be affected. Campbell et al discuss similar issues in [74]. 

Although in the current context of HITECH and MU, SCT serves mostly as a 

source for subsets and lists, it is hard to imagine that it was chosen only due to its lexical 

comprehensiveness. Naturally, the next step beyond using SCT’s concept descriptions in 

lists is taking advantage of SCT’s hierarchical structure and formal definitions. The true 

potential of any controlled biomedical terminology is embodied in the knowledge 

captured within its semantic network [9-11, 15, 83]. SCT faces expectations to serve as 

an interface terminology and not only as a reference terminology [37-39, 60, 63]. In its 

current state, SCT cannot serve "as-is" in clinical applications even as a reference for 

limited sets [84, 85]. It is expected that for use within clinical applications vendors will 

use well-curated subsets and that dedicated extensions will be developed. However, not 

all CEHRT vendors can purchase or invest resources to develop such subsets and 

extensions may diverge from each other in a manner that will be counter-productive for 

data interoperability. The IHTSDO invests significant effort in formulating SCT with DL 

for computational purposes. However, incomplete and inconsistent application results in 

a structure that is questionable for use except for the generation of SCT’s inferred view 

from the stated one. 
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Rector et al [81] suggest that a comprehensive auditing effort is urgently needed, 

estimated at up to two years for the CORE subset. However, the CORE subset is just a 

small portion of SCT's Clinical finding hierarchy. A broader auditing effort will require a 

much larger coordinated effort that may be beyond the reach of the IHTSDO. As SCT 

continues to grow, delays will complicate matters further. Therefore, it is essential to 

develop and implement a variety of auditing methodologies that can be incorporated into 

the authoring process or routinely executed after the fact with high yield. As Wei and 

Bodenreider [63] concluded, DL classifiers cannot detect that which is not defined. Other 

methods are needed to complement the classifiers. The analysis in this study is 

independent of SCT’s DL-based infrastructure as it inspects, holistically, modeling 

elements of one concept and compares them to those of similar concepts. Inconsistencies 

of the types described in this study must be evaluated outside the realm of DL since, 

ultimately, SCT’s usefulness from an algorithmic and individual perspective will be 

judged by the consistency and sufficiency of its conceptual definitions [37-39, 60, 63]. 

This study demonstrates that a simple lexical algorithm can very effectively detect 

similar concepts that are inconsistent in their logical modeling utilizing differences in 

attributes as an indicator. Moreover, this methodology can be applied to other 

semantically rich SCT hierarchies such as the Clinical finding (16 attributes) hierarchy 

with similar effectiveness. It is reasonable to expect that other such hierarchies harbor 

similar inconsistencies but that the effectiveness and yield of this method will decline 

with declining semantic complexity. Other algorithms, utilizing different and more 

sophisticated lexical methods and word length selection may improve on the results. 

However, additional methodologies could introduce noise and reduce specificity as 
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discussed by Campbell et al [74] and, with the current yield described throughout this 

study,  an immediate need is not seen to employ such methodologies. 

The present study opens the possibility for algorithmic enhancement of SCT's 

formal definitions utilizing an indicator that was used to identify sets, i.e. different 

attribute assignments in similarly worded concepts. Although more than half of SCT's 

concepts are not fully defined, it can be reliably assumed that the vast majority of them 

are not erroneous. Thus, it is posited that most of the additional attributes and attribute 

target values (when the attribute target value is not directly associated with the specific 

word that differentiates between the similar concepts) can be reasonably assigned to the 

other similarity set member concepts that lack them. 

This work also emphasizes the importance of external auditing of such large 

bodies of knowledge. As SCT’s use expands, the significance and implications of such 

“imperfections” will only increase. Eventually, these are bound to manifest themselves in 

patient care. While the emphasis during the last decade was mostly on expanding content 

coverage, more effort should now be applied to quality assurance. This is too big an 

effort to be solely tasked to the IHTSDO or third-party entities. Only a collaborative, 

open process can ensure, under the umbrella of the IHTSDO, effective results. 

Consider the example in Figure 3.4. For the purpose of this discussion, the 

differences in hierarchical modeling are ignored. The concept on the right lacks the has 

specimen attribute. Adding this attribute with its target value to create the hypothetical 

concept as depicted in Figure 3.5 will be correct, improve the consistency of the 

modeling, and potentially contribute toward qualifying the concept as a fully specified 

concept. Other algorithmic approaches to identify possible missing attributes can be 
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employed. For example, a method can detect that certain FSN words are not represented 

as an attribute target in the formal definition. In this case, "serum" is not present as an 

attribute target value. However, such a method may be less effective in proposing a 

possible resolution.  

 

 

Figure 3.4 A two-concept similarity set from procedure hierarchy of SNOMED with 

differences in the assignment of attributes. 

Source: The Clinical Information Consultancy Ltd, "CliniClue Xplore", 2009, Available from: 

http://www.cliniclue.com. 

 

 

Figure 3.5 A hypothetical enhancement using added attributes marked with an asterisk. 

Source: The Clinical Information Consultancy Ltd, "CliniClue Xplore", 2009, Available from: 

http://www.cliniclue.com. 

 

This study was limited due to the use of a non-blinded, single auditor. However, it 

is considered that the nature of the evaluation for inconsistencies is only minimally 

subjective, if at all, due to the definition of an inconsistency. For example, the 
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consideration of a missing attribute, a yes/no type of decision, is algorithmically 

detectable. Furthermore, it is not likely that this study identified missing attributes as 

false positives. It is more likely that the review process included a certain degree of false 

negatives as missed findings. Any bias towards a specific inconsistency type in its 

respective sample would have affected each sample in a similar manner while the auditor 

was instructed to exhaustively document all types of inconsistencies in each and every 

similarity set.  

In light of scarce auditing resources, it is believed that this methodology is 

suitable for use by a single reviewer and can be easily utilized during the authoring 

process. It is proposed that this and other complementary lexical and non-classifier 

methodologies be adopted by the IHTSDO as part of the editing process in conjunction 

with current methodologies as well as for the routine maintenance of the inferred view of 

SCT.  

3.5 Summary 

The Procedure hierarchy of SCT exhibits various significant modeling inconsistencies. 

Based on additional preliminary studies, there is reason to believe that other attribute-rich 

hierarchies may exhibit similar issues. Such inconsistencies cannot be detected strictly by 

DL classifiers and may propagate to affect clinical care. Lexical methods can help detect 

such inconsistencies during the editing process, thus preventing their inclusion in new 

releases. As SCT becomes more prevalent in the clinical care domain, it is time to step up 

the auditing effort.  
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CHAPTER 4   

POSITIONAL SIMILARITY SETS 

4.1 Introduction 

The study in Chapter 3 provided a methodology to improve the correctness and 

consistency of SCT concepts by introducing similarity sets. An analysis of a sample of 

such sets identified inconsistencies in up to 70% of the sets and 32.6% of the concepts. 

This study builds on the notion of having a consistent modeling between lexically similar 

concepts as discussed in Chapter 3 and introduces positional similarity sets which are 

groups of lexically similar concepts that differ from each other by one word of their fully 

specified names and the differing words occupy the same position in their names. 

Applying strictness in the position of differing words results in an increased lexical 

similarity between the concepts in a set thus increasing the contrast between the lexical 

similarities and modeling differences. This increase in contrast increases the likelihood of 

finding inconsistencies.  

The efficiency of the positional similarity sets is further improved by introducing 

the use of three structural indicators in the form of the number of parents, relationships 

and role groups in the formation of such sets. The results show that the use of positional 

similarity sets further improves the likelihood of finding inconsistencies with up to 41.6% 

of the concepts found to have one or more of the following kinds of inconsistencies – 

hierarchical, role group, attribute assignment and attribute value. SCT concepts suffer 

from inconsistent modeling and the positional similarity sets can be an effective way of 

finding such inconsistencies thus improving the correctness and completeness of SCT 

concepts. 
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4.2 Method 

A methodology was defined in Chapter 3 to create similarity sets based on the lexical 

similarity between concepts. Similarity sets are groups of concepts that differ from the 

seed concept by only one word of their fully specified name. The seed concept is the first 

concept that is selected to lexically match with the other concepts to form a set. The 

methodology for generating similarity sets takes each concept of an SCT hierarchy as the 

seed concept and lexically matches it with every other concept in the hierarchy to form 

such sets. Algorithmic precautions are taken to prevent redundancy in the formation of 

such sets, i.e., no two sets consist of exactly the same concepts.  

The situation of similarity sets may get more complex when more than two 

concepts participate in a set. In Chapter 3, a similarity set included all the concepts for 

which there was exactly one word difference from the seed concept that was used to 

generate the sets. So, one concept C2 may differ from the seed concept C1 in the first 

word of the FSN, while another concept C3 may differ from the seed concept C1 in the 

fifth word. However, C2 and C3 which are both in the same similarity set, created with 

the seed concept C1, may not be as mutually similar as they differ from one another in 

two words of the FSN, the first word and the fifth word. Such a situation is illustrated in 

Table 4.1.  

Table 4.1 A Similarity Set containing Three Concepts regarding Ligament Procedure 

179875006 Primary arthroscopic xenograft ligament replacement (procedure) 

179885007 Revision arthroscopic xenograft ligament replacement (procedure) 

179879000 Primary arthroscopic xenograft ligament augmentation (procedure) 

 

As can be seen in Table 4.1, the second concept differs from the seed concept in 

the first position of their FSN in the replacement type involved, primary vs. revision. The 
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third concept differs from the seed concept in the fifth position of their FSN in the type of 

procedure involved, replacement vs. augmentation. However, the second and the third 

concepts are less similar as they differ in two aspects, revision vs. primary procedure and 

replacement vs. augmentation procedure. 

As mentioned earlier, the expectation is that lexically similar concepts will also be 

similar in their modeling. However, there are cases of differences in modeling of the 

concepts in a similarity set. When the modeling of concepts in a similarity set display 

differences, there is a contrast between the similarity of the concepts as expressed in the 

lexical way and the differences expressed in their modeling. This contrast points out to a 

high likelihood of inconsistencies. This tendency was illustrated by a high percentage of 

inconsistencies in a sample of similarity sets in Chapter 3 

With the purpose to enhance the similarity among all the concepts in a set, the 

notion of positional similarity sets is introduced in this study. In a positional similarity 

set, all the concepts in a set mutually differ by one word and at the same position in their 

FSN. To generate such sets, the algorithm picks a seed concept s and a position p of a 

word in it, and the set includes all the concepts with the same number of words which 

differ from the seed concept in one word at the position p. Using this strictness in 

position for the concepts in the set of Table 4.1, two positional similarity sets are created 

as shown in Table 4.2. The seed concept is the same in both these sets. However, in the 

first set, the differing word is in the first position whereas in the second set, the differing 

word is in the fifth position of the concept FSNs. 
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Table 4.2 Two Positional Similarity Sets Generated using Different Positions for the 

Same Seed Concept 

179875006 Primary arthroscopic xenograft ligament replacement (procedure) 

179885007 Revision arthroscopic xenograft ligament replacement (procedure) 

179875006 Primary arthroscopic xenograft ligament replacement (procedure) 

179879000 Primary arthroscopic xenograft ligament augmentation (procedure) 

 

Stop words such as “a”, “an” and “the” are ignored in the creation of the 

positional similarity sets. The methodology considers concepts where FSNs are of length 

five words or more including the semantic tag to form the sets. The number “five” is 

chosen because preliminary studies showed that using concepts, of length less than five 

words, often generated sets where similarity between the concepts was meaningless as a 

result of their short word length. Besides, use of concepts with five words or more also 

helps to keep the average set size to around 2.5. This means that most sets have two or 

three concepts. Such set size makes it easy for the auditor to compare the concepts side 

by side. The FSNs are chosen instead of synonyms or preferred terms as the FSNs best 

describe the meaning of a concept in SCT. 

Strictness in the position of the differing words among all concepts in a set 

enhances the lexical similarity between the concepts in a set as compared to a general 

similarity set which may have differences in more than one word between some pairs of 

concepts in a set. This greater similarity between all the concepts of a positional 

similarity set makes the contrast between the lexical similarity and the modeling 

differences sharper in cases of modeling differences. This contrast points out to a high 

likelihood of inconsistencies. Besides, the strictness in position also results in sets having 

smaller number of concepts on average. For instance, instead of a similarity set of three 

concepts as shown in Table 4.1, there will be two positional similarity sets of two 
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concepts each as shown in Table 4.2. Small sized sets are important from auditing 

efficiency perspective as an auditor is not overwhelmed by the sheer number of concepts 

that needs to be audited at the same time. Instead, s/he can focus each time on a small set 

of concepts for which it is easier and faster to detect an inconsistency. 

The study aims at finding four different kinds of inconsistencies. The first kind is 

hierarchical, i.e., inconsistencies in the number and types of parents. The second type of 

inconsistency is the one in the assignment of attribute, i.e., inconsistencies in the number 

and types of attributes. The third inconsistency type is the one in attribute values, i.e., 

inconsistencies in the targets of the attributes. The fourth inconsistency type is the one 

associated with the role groups, i.e., the number of role groups associated with a concept 

and the number of attributes within a role group.  

Consider the positional similarity set with two concepts differing just in their first 

words of the FSN as shown in the Table 4.3. Both the concepts define the morphology of 

the blood cells and only differ in the type of blood cell involved, red vs. white blood cell. 

Since the concepts are lexically similar, they are expected to be modeled in a similar way. 

If the two similar concepts are not modeled in a similar way, it is assumed, in general, 

that if the modeling of one concept is more comprehensive than the modeling of the other 

concept with regards to the attribute types, the more comprehensive modeling is likely 

the correct one and therefore the additional modeling features can be applied to the other 

concept. Figure 4.1 displays the modeling of these two concepts.  

Table 4.3 A Positional Similarity Set with Two Concepts regarding Cell Morphology 

82461003 Red blood cell morphology (procedure) 

44190001 White blood cell morphology (procedure) 
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Figure 4.1 CliniClue snapshot of the modeling of two lexically similar concepts 

representing blood cell morphology. 

Source: The Clinical Information Consultancy Ltd, "CliniClue Xplore", 2009, Available from: 

http://www.cliniclue.com.  

 

A comparison between the modeling of these two concepts show inconsistencies 

of all four types as mentioned above. First, consider the hierarchical structure of the two 

concepts as shown in Figure 4.1. It can be seen that the red blood cell morphology has 

two parents as compared to one for the white blood cell morphology. The additional 

parent blood cell morphology for the red concept should also be a parent of the white 

concept.  

Now, consider the attribute assignments for the two concepts. It is reasonable to 

assume that these two procedures are conducted using similar methodologies and 

equipment. While the red cells concept has an attribute using device, it is missing in the 

modeling of the white cells concept and could reasonably be added to the modeling of the 

latter.  
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Next, looking at the attribute values of the two concepts, several inconsistencies 

can be seen. The has specimen attribute has different target values for the two concepts 

with different level of specificity. While the value white blood cell sample from the white 

cells concept is more specific, it could be argued that the peripheral blood specimen 

target value may actually be more appropriate. Additionally, one of the component 

attributes of the red cells concept has the target value hematology observable whereas the 

white cells concept’s component attribute has the target value white blood cell 

morphology. Both these target values are observable entities but the latter is a grandchild 

of the former and hence more specific. Accordingly, the red cells concept should also 

have the component attribute with a more specific value which would be red blood cell 

morphology from the observable entities hierarchy. This example also shows that the two 

concepts enrich one another with regards to more accurate modeling of the attribute value 

and not only that the concept with more detailed modeling enriches the other. The method 

attributes of the two concepts also have different target values, inspection-action vs. 

evaluation-action with the former being a grandchild of the latter and hence more 

specific. Hence, the white cells concept should also have the same more refined target.  

In terms of the modeling with respect to role groups, it can be seen that the red 

cells concept has one role group whereas the white cells concept lacks any role group 

which again shows the inconsistent modeling of the two concepts. The presence of the 

additional attribute and group in the red cells concept is due to inheritance from the 

parent blood cell morphology that is missing from the white cells concept. Thus, in this 

case, a hierarchical inconsistency contributes to the missing attribute and group.  
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Apart from the modeling inconsistencies, this contextual comparison of the two 

concepts also highlighted the missing synonym for the white cells concept which was 

added accordingly. Figure 4.2 shows the revised corresponding modeling of these two 

concepts after rectifying the above described inconsistencies. The changes in the 

modeling have been marked with an asterisk. The auditing process also demonstrated the 

ease with which such inconsistencies could be detected using the positional similarity 

sets. 

 

 

Figure 4.2 Proposed corresponding modeling of the two concepts from Figure 4.1. 

Source: The Clinical Information Consultancy Ltd, "CliniClue Xplore", 2009, Available from: 

http://www.cliniclue.com. 

 

The study further focuses on utilizing a technique based on identifying specific 

positional similarity sets for which a higher percentage of inconsistently modeled 

concepts is expected to be found. Once such sets are identified, the auditor reviews them 
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with an expectation for a more effective auditing than for the control positional similarity 

sets, raising the yield of the auditing measure by the percentage of the reviewed concepts 

found modeled inconsistently. The study stresses on the variation between observed 

structural differences, say in the number of parents, versus a decision obtained from an 

auditor that this difference is an unjustified modeling error or inconsistency which should 

be corrected. It is noted that some lexically similar concepts in a positional similarity set 

may have justified structural modeling differences due to the semantic difference implied 

by the differing word. 

To implement this methodology, a positional similarity set is considered for an 

auditor’s review only if some concept within this set has a different number of one of the 

structural parameters in the form of parents, relationships or groups. The reason being 

that with differences in these structural parameters, the contrast between the lexical 

similarity and differences in structural modeling is increased versus the control positional 

similarity sets, thus, tending to increase the likelihood of errors among such concepts. To 

test such observations, the following three hypotheses are formulated. For each of these 

hypotheses, a sub hypothesis is also formulated to characterize the nature of the 

inconsistencies.  

Hypothesis 1: If some concepts within a positional similarity set have different 

number of parents than the other concepts; the concepts of such a set are more likely to 

be inconsistent compared to a control positional similarity set.  

Hypothesis 1.1: The inconsistencies found in positional similarity sets with some 

concepts having different number of parents are most likely to be hierarchical.  
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Hypothesis 2: If some concepts within a positional similarity set have different 

number of attributes than the other concepts; the concepts of such a set are more likely to 

be inconsistent compared to a control positional similarity set.  

Hypotheses 2.1: The inconsistencies found in positional similarity sets with some 

concepts having different number of attributes are most likely to be attribute-related.  

Hypothesis 3: If some concepts within a positional similarity set have different 

number of role groups than the other concepts; the concepts of such a set are more likely 

to be inconsistent compared to a control positional similarity set.  

Hypotheses 3.1: The inconsistencies found in positional similarity sets with some 

concepts having different number of role groups are most likely to be role group-related. 

To test these three hypotheses, appropriate sample sets are created. To create 

positional similarity sets as per the requirements of Hypothesis 1, only those sets that 

have at least one concept with different number of parents from some other concept in the 

set are considered. Such sets were called the Diff-Par sets. Similarly to test Hypothesis 2, 

only those sets that have at least one concept with different number of relationships from 

some other concept in the set are considered. Such sets are called Diff-Rel sets. To test 

Hypothesis 3, only those sets that have at least one concept with different number of role 

groups from some other concept in the set are considered. Such sets are called the Diff-

Grp sets. The sets formed without considering the number of parents, relationships and 

groups are called Control sets. 

For the purpose of testing these hypotheses, there are four different set types 

created for the procedure hierarchy of SCT based on these hypotheses. A group of 

randomly selected 50 sets are taken from each of these four positional similarity set types 
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and provided to an auditor to check if the indicators actually helped in finding more 

inconsistencies. The auditing is blindfolded as the auditor is not informed of the 

methodology being used to generate the sets in order to avoid any kind of bias in the 

results. The sets are audited by Dr. Gai Elhanan. The procedure hierarchy of January 

2011 release of SCT is utilized for the purpose of this study. 

4.3 Results 

Table 4.4 summarizes the results of the auditing of the four sample set types. Each of the 

four sample sets, namely, Control, Diff-Par, Diff-Rel and Diff-Grp have randomly 

selected 50 sets from the procedure hierarchy of SCT. The control sample consists of 102 

unique concepts of which 18.6% are found to be inconsistent. In comparison to the 

control sample, 39.6% of the concepts for Diff-Par sample, 41.6% of the concepts for 

Diff-Rel sample and 33.0% of the concepts for Diff-Grp sample are found to be 

inconsistent supporting Hypotheses 1, 2 and 3. The increase in the number of inconsistent 

concepts for all the three Diff-Par, Diff-Rel and Diff-Grp samples as compared to the 

Control sample is found statistically significant according to the two-tailed Fisher’s test. 

The first two hypotheses are even found highly statistically significant (see Table 4.4). 

Table 4.4 Summary of the Auditing of Four Positional Similarity Set Types 

Sample  

Type 

Unique 

concepts 

Inconsistent 

concepts 

p-value two-

tailed Fisher's test 

Comments 

# # % 

Control 102 19 18.6   

Diff-Par 111 44 39.6 0.0009 Highly statistically significant 

Diff-Rel 125 52 41.6 0.0003 Highly statistically significant 

Diff-Grp 115 38 33.0 0.0202 Statistically significant 
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Table 4.5 displays the breakdown of the inconsistency types for each of the four 

samples. For the Diff-Par sample, 84.1% (37 out of 44) of the inconsistent concepts were 

found to have hierarchical problems. This value was regarded as statistically significant 

by Fisher’s exact test as compared to the combined data for the other three samples for 

the hierarchical inconsistencies (62 out of 109) thus confirming Hypothesis 1.1. For the 

Diff-Rel sample, 86.5% (45 out of 52) of the inconsistent concepts had problems with the 

assignment of attributes. Fisher’s exact test gave a statistically significant result when 

compared with the combined data of the other three samples for the same inconsistency 

type (41 out of 101) thus confirming Hypothesis 2.1. For the Diff-Grp sample, 60.5% (23 

out of 38) of the inconsistent concepts exhibited problems with their role groups. Again, a 

statistically significant result was obtained when compared with the combined data of the 

other three sample types for inconsistencies in role groups (20 out of 115) thus 

confirming Hypothesis 3.1.  

Table 4.5 Breakdown of Inconsistency Types among the Four Positional Set Types 

Sample  

Type 

Unique 

cpts 

Inconst 

cpts Hierarchical 

Attrb 

assgn 

Attrb 

value Groups 

# # % # % # % # % # % 

Control 102 19 18.6 12 63.2 11 57.9 2 10.5 4 21.1 

Diff-Par 111 44 39.6 37 84.1 20 45.5 9 20.5 4 9.1 

Diff-Rel 125 52 41.6 25 48.1 45 86.5 7 13.5 12 23.1 

Diff-Grp 115 38 33.0 25 65.8 10 26.3 14 36.8 23 60.5 

4.4 Discussion 

SCT was formed as a result of the merger between SNOMED Reference Terminology 

and United Kingdom’s Clinical Terms Version 3 (CTV3). This merge is likely one of the 

factors resulting in an incomplete and inconsistent modeling of SCT. Ideally, such 
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inconsistencies could and should have been detected in the merging process, where the 

modeling could have been made consistent for similar concepts. SCT is also constantly 

evolving with a new version released every six months by IHTSDO which makes it 

further difficult to keep SCT concepts free from inconsistencies. The methodology 

described offers an opportunity to improve the consistency of the modeling of SCT 

concepts using the ease and efficiency of comparing lexically similar concepts to identify 

the inconsistencies in modeling. 

This study provided a contextual auditing of SCT concepts based on their lexical 

similarity with other concepts of SCT. A positional similarity set provides a context so 

that the modeling of similarly worded concepts can be compared. Similarly worded 

concepts are typically expected to be modeled in a similar way. The assumption of the 

study was that the positional similarity sets can help identify inconsistencies in SCT 

concepts with ease as they offer the display of the contrast between the lexical similarities 

and modeling differences. The results of the study supported this assumption as the 

auditor was able to detect inconsistencies in SCT concepts using such sets which would 

otherwise likely go unnoticed. The auditor found 18.6% of the concepts as being 

inconsistent using the positional similarity sets as shown in Table 4.4.  

The study further presented techniques to increase the likelihood of finding 

inconsistent concepts using three structural indicators in the form of the number of 

parents, relationships and groups in the formation of positional similarity sets. Grouping 

together lexically similar concepts, some of which differ in the number of their parents, 

relationships or groups, increases the contrast between the lexical similarity and the 

structural differences which makes the inconsistencies much more obvious. The Diff-Par 
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sample and the Diff-Rel sample, consisting of positional similarity sets in which some 

concepts have different number of parents or relationships, contained 39.6% and 41.6% 

inconsistent concepts respectively. The Diff-Grp sample, consisting of positional 

similarity sets in which some concepts have different number of role groups, contained 

33.0% inconsistent concepts which is a lower yield as compared to the Diff-Par and the 

Diff-Rel sample. The increase in the number of inconsistent concepts was found to be 

statistically significant as compared to the Control sample for all three indicators. 

The results of this study have also shown support for the three refined hypotheses 

regarding the inconsistency types that can be found using the positional similarity set 

types with different structural indicators. As a result of this finding, a methodology to 

automatically detect inconsistencies of a particular type has emerged. If, for example, one 

is interested in inconsistencies in the relationships of the concepts, positional similarity 

sets with some concepts differing in the number of relationships should be selected.  

Future work will involve enhancing the algorithm that generates positional 

similarity sets. It would be interesting to study the effect of the definition of the concepts 

(primitive vs. fully defined), the downward hierarchical level of the concepts (leaf 

concepts vs. non-leaf concepts) and the sibling relationships between the concepts in a 

set. Another goal would be to incorporate methods to correct inconsistencies 

algorithmically. For example, studies will be performed to effectively identify a missing 

relationship such as the one shown in Figures 4.1 and 4.2 algorithmically without the 

need of a manual review. Further studies will also involve incorporating other concept 

descriptors besides the FSN such as the preferred terms and synonyms in the generation 
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of similarity sets especially when the concept FSNs are not similar but the lexically 

similarity can be captured with these alternate descriptors. 

Future work will also involve generating a web interface which can display the 

modeling of similar concepts side-by-side so that the auditor can easily compare the 

concepts to one another. Such a system will also be able to suggest changes to the 

modeling of these concepts to make the concept more consistent with other similar 

concepts. The reviewer will just need to check if such suggestions are valid. 

4.5 Summary 

The study presented the notion of a positional similarity set which is a group of concepts 

that are similar with respect to the word structure of their FSNs except for one word in a 

specific position to support quality assurance technique to effectively identify 

inconsistencies in SCT. The contextual auditing of lexically similar concepts was shown 

to be effective in identifying inconsistencies which would otherwise go unnoticed. The 

use of the three structural indicators in the form of the number of parents, relationships 

and groups along with the positional similarity sets was shown to be effective in 

increasing the likelihood of identifying inconsistencies. Quality assurance techniques 

such as this can be used to complement the efforts of IHTSDO to improve the quality of 

SCT thus making it a more viable product to be used in EHRs and other medical 

applications.  
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CHAPTER 5  

ALGORITHMIC SUGGESTION OF ATTRIBUTES TO ENHANCE THE 

MODELING OF SNOMED CONCEPTS 

5.1 Introduction 

SNOMED CT (SCT) has gained widespread acceptance as a clinical terminology, 

supported by the HITECH Act of 2009. Increased usage brought with it increased 

scrutiny of SCT’s content.  Although regarded as the most comprehensive clinical 

terminology available, SCT has also been found to suffer from spotty coverage, errors 

and inconsistencies in the modeling of the concepts, possibly due to lack of sufficient 

quality assurance. In Chapters 3 and 4, a lexical technique was presented to check for 

inconsistencies in the modeling of SCT concepts by grouping similar concepts together. 

The studies were based on the premise that lexically similar concepts should be modeled 

in a similar way. This study builds on those previous studies and presents an algorithmic 

technique that can automatically suggest attributes and their target values for SCT 

concepts. A sample of 50 concepts, each with one or more algorithmically suggested 

attributes and target values, is audited for correctness by an experienced auditor. The 

results are analyzed and presented in this study. 

5.2 Method 

A methodology is devised based on the notion that lexically similar concepts should also 

be modeled in a similar way. The methodology starts with first creating groups of 

lexically similar concepts known as positional similarity sets as described in Chapter 4. 

Two concepts C1 and C2 appear together in a positional similarity set if: 
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 Both concepts C1 and C2 have the same number of words in their fully specified 

names (FSNs) 

 The number of words in their FSN is five or more without considering the stop 

words 

 There is only one differing word in both the concepts 

 The differing word is at the same position in their FSN 

Table 5.1 displays an example of a positional similarity set. The two concepts in 

the set are lexically similar and only differ in the substance involved, urobilinogen vs. 

blood. The differing word is also in the same position, i.e., the first position of their FSN. 

All such possible positional similarity sets are generated for the procedure hierarchy of 

SCT. For each such set, a list of unique attributes for every concept in the set is recorded. 

Each concept in the set is then checked to see if it has all those attributes. If it doesn’t, the 

attribute is suggested to be added to the concept. This study does not take into 

consideration the notion of groups when trying to find new attributes to enhance the 

modeling of the concepts. Instead all the unique attributes from all groups are collected 

into a single list to suggest attributes to be added to similar concepts. 

Table 5.1 A Positional Similarity Set with Two Concepts regarding Test Strip 

Measurement 

250416001 Urobilinogen concentration, test strip measurement (procedure) 

250414003 Blood concentration, test strip measurement (procedure) 

 

The algorithm automatically analyzes the attributes of the two concepts of Table 

5.1 and found that while the urobilinogen concept had three attributes, the blood concept 

had none. A CliniClue snapshot of the modeling of these two concepts is shown in Figure 

5.1. 
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Figure 5.1 A CliniClue snapshot of the modeling of two similar concepts regarding test 

strip measurement. 

Source: The Clinical Information Consultancy Ltd, "CliniClue Xplore", 2009, Available from: 

http://www.cliniclue.com. 
 

The algorithm then automatically suggests the three attributes as possible addition 

to the blood concept, namely, component, method and measurement method. Besides 

suggesting attributes, the algorithm can also automatically suggest the corresponding 

target value for the attributes. The target value comes from the concept from which the 

attribute was picked and recorded. A refined modeling of the pre-operative concept along 

with that of the post-operative concept is shown in Figure 5.2. 

 

 

Figure 5.2 Modeling of two procedures regarding test strip measurement after the 

addition of suggested attributes (marked with an asterisk). 

Source: The Clinical Information Consultancy Ltd, "CliniClue Xplore", 2009, Available from: 

http://www.cliniclue.com. 
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In some cases, the algorithm changes the wording of the target value to better suit 

the current concept for which the attribute is being suggested. For instance, while 

suggesting component as an attribute for the blood concept, the suggested target value 

was changed to blood from urobilinogen to better suit the modeling of the current 

concept. 

If the modeling of a concept has a more refined version of an attribute that comes 

from a similar concept, the attribute is not suggested for addition. For instance, if the 

concept has an attribute procedure site – direct, then procedure site which may be 

present in a similar concept is not suggested for addition. Consider the modeling of two 

similar concepts trapping of intracranial aneurysm (procedure) and ligation of 

intracranial aneurysm (procedure) as shown in Figure 5.3.  

 

 

Figure 5.3 Modeling of two concepts related to intracranial aneurysm. 

Source: The Clinical Information Consultancy Ltd, "CliniClue Xplore", 2009, Available from: 

http://www.cliniclue.com. 
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The algorithm suggested direct morphology to be added to the trapping concept as 

it is more refined version of procedure morphology. The algorithm also suggested 

procedure site – indirect to be added to the trapping concept. On the other hand, for the 

ligation concept, procedure morphology was not suggested for addition as it already has a 

more refined attribute in the form of direct morphology. Similarly, procedure site was 

also not suggested since a more refined attribute (procedure site - indirect) is already 

present in its modeling. The only attribute suggested for the ligation concept was 

procedure site – direct. The new modeling of these two concepts with the new suggested 

attributes (marked with an asterisk) is shown in Figure 5.4. This example will be further 

discussed in the Discussion section. 

 

 

Figure 5.4 Modeling of two concepts related to intracranial aneurysm after the addition 

of suggested attributes (marked with an asterisk). 

Source: The Clinical Information Consultancy Ltd, "CliniClue Xplore", 2009, Available from: 

http://www.cliniclue.com. 
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All concepts along with their suggested attributes and target values are recorded. 

Also recorded is the set from which this concept originated. A randomly selected sample 

of 50 such concepts along with their originating sets and suggested attributes are then 

analyzed by an experienced auditor (Dr. Gai Elhanan) to check for correctness and 

accuracy of the suggested attributes and their targets. The January 2013 release of SCT is 

used for the purpose of this study. The CliniClue browser is used by the auditor for 

reference purpose to check the concept modeling. 

5.3 Results 

Table 5.2 displays some general data for the procedure hierarchy from the January 2013 

release of SCT. The hierarchy consists of 53147 current concepts with an average number 

of 2.4 unique attributes per concept. 

Table 5.2 Summary of Data for Procedure Hierarchy from January 2013 Release of 

SNOMED  

Current concepts in procedure hierarchy 53147 

%Primitives 59 

%Leaf concepts 68 

Average #parents 1.8 

Average #unique attributes 2.4 

Average #groups 0.8 

 

Table 5.3 displays data related to the concepts in the procedure hierarchy for 

which possible additional attributes were identified by the methodology. A total of 10451 

positional similarity sets were generated for the hierarchy. Of these, 2624 sets were 

identified as having one or more concepts with suggested attributes. A total of 5518 

concepts were suggested one or more attributes of which 5056 were unique concepts. A 

total of 28 unique attributes were suggested for these concepts.  
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Table 5.3 Summary of Concepts with Suggested Attributes for Procedure Hierarchy 

#Sets 10451 

#Sets with concepts for which attributes are suggested 2624 

#Unique concepts for which attributes are suggested 5056 

#Total concepts for which attributes are suggested 5518 

#Total attributes suggested 8686 

#Average attributes per concept suggested  1.57 

#Unique attributes suggested 28 

 

Table 5.4 displays some statistics related to the target values of the suggested 

attributes. For the suggested 8686 attributes for the procedure hierarchy, the wording of a 

total of 4458 target values were changed of which 71.4% were found to be present in 

SCT as concepts whereas 28.6% were suggested as new concepts. In terms of unique 

target values, 48.7% of them were found to be present in SCT as concept whereas 51.3% 

of them were suggested as new concepts. 

Table 5.4 Summary of Target Value Data for Procedure Hierarchy 

 

 

 

 

 

Table 5.5 displays the characteristics of the 50 concepts that were randomly 

selected for evaluation. The data is, in general, comparable to that of the entire procedure 

hierarchy as shown in Table 5.2. Of the 50 concepts, 54% are primitive and 44% are leaf 

nodes. The average number of parents is 1.88, the average number of attributes is 2.16 

and the average number of groups is 0.84. 

 # % 

#Total target values suggested 8686  

#Target values changed before suggestion 4458 51.3 

#Target values in SCT as a concept 3182 71.4 

#Target values not in SCT as a concept 1276 28.6 

#Unique target values changed before suggestion 1364  

#Unique target values in SCT as a concept 665 48.7 

#Unique target values not in SCT as a concept 699 51.3 
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Table 5.5 Characteristics of the 50 Sample Concepts 

#Concepts 50 

%Primitives 54 

%Leaf 44 

Average #parents 1.88 

Average #attributes 2.16 

Average #groups 0.84 

 

Table 5.6 lists the statistics for the suggested attributes for the sample concepts. 

There were 31 concepts (out of 50) for which all the suggested attributes were found to 

be correct. A total of 103 attributes were suggested for the 50 concepts with an average of 

2.06 attributes per concept. Of these 103 attributes, 67 were found by the auditor to be 

correctly suggested which gives a yield of 65%. 

Table 5.6 Summary of Suggested Attribute Data for the Sample of 50 Concepts 

 # % 

Concepts for which all the suggested attributes were correct 31 62 

Suggested unique attributes  18  

Suggested total attributes 103  

Suggested average attributes per concept  2.06  

Suggested attributes found to be correct by an auditor 67 65 

 

The algorithm was designed in a way such that if a more refined attribute was 

already present in the modeling of a concept, a more general attribute was not suggested. 

For instance, the concept revision to open reduction of fracture and locked reamed 

intramedullary nail fixation has the attribute procedure site - direct. A similar concept 

revision to closed reduction of fracture and locked reamed intramedullary nail fixation 

has the more general attribute procedure site. In this case, the algorithm does not suggest 

procedure site as an attribute to be added to the modeling of open reduction of fracture 

and locked reamed intramedullary nail fixation since a more refined attribute procedure 
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site – direct is already present in its modeling. Table 5.7 displays the four general 

attributes along with their more refined versions that are used in procedure hierarchy. 

Table 5.7 List of Attributes and their Refined Versions used in Procedure Hierarchy 

General attribute Refined attribute 

Procedure site (attribute) Procedure site - Indirect (attribute) 

Procedure site - Direct (attribute) 

Procedure device (attribute) Using device (attribute) 

Direct device (attribute) 

Indirect device (attribute) 

Using device (attribute) Using access device (attribute) 

Procedure morphology (attribute) Direct morphology (attribute) 

Indirect morphology (attribute) 

 

There were seven instances where a sibling attribute of the one already present in 

the modeling of the concept was suggested. Four of such instances involved the 

suggestion of procedure site – indirect when procedure site – direct was already present 

in the modeling and three instances involved the suggestion of procedure site – direct 

when procedure site – indirect was already present in the modeling. 

Besides, there were seven instances where two sibling attributes were suggested 

for a concept based on other similar concepts. The sample had one case of direct 

morphology/ indirect morphology, one case of direct device/ using device and five cases 

of procedure site – direct/ procedure site – indirect. In five of the seven instances, one or 

both of the attributes in the suggested sibling pair was incorrect. 

Additionally there were two instances where attribute pair with parent-child 

relationship was suggested as possible addition to the modeling of a concept. One of the 

instance involved suggesting both procedure site and procedure site – indirect and the 



 

 

59 

 

other case involved suggesting both using device and using access device. One of these 

two instances was found to be incorrectly suggested. 

In terms of target values, of the suggested 103 target values, five were found to be 

irrelevant to the corresponding concept. For instance, the concept cementoplasty using 

fluoroscopic guidance was suggested the attribute using device with target value 

angioscope. However, angioscope is a cardiovascular endoscope whereas cementoplasty 

is related to bones thus making the attribute value irrelevant for this concept. The 

suggestion was because of the fact that similar concept angioscopy using fluoroscopic 

guidance has that attribute and target value. 

Table 5.8 lists the statistics with regards to the target values of the suggested 

attributes of the 50 sample concepts. Of the 103 suggested target values, the wording in 

the names of 21 target values were changed to make it relevant to the corresponding 

concept. Of these 21 target values, two were present in SCT as concepts whereas 19 were 

suggested as new concepts. The two suggested target values that were present as valid 

SCT concepts are structure of male bladder neck and blood.  

Table 5.8 Summary of Target Value Data for the Sample of 50 Concepts 

 # % 

Suggested target values 103  

Suggested target values found relevant 98 95.1 

Target values with changed wording 21 20.4 

Target values not in SCT as a concept 19 90.5 

Unique target values with changed wording 18  

Unique target values not in SCT as a concept 16 88.9 

 

In terms of unique values, 16 of the 18 suggested unique target values were not a 

concept in SCT. Of these 16 unique target values that were created as new concepts, two 
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were found to be inappropriate. The first one was the concept thorax which was 

suggested as a target value of the attributes indirect morphology and direct morphology 

for the concept incision and drainage of thorax. The second one was the concept excision 

– value which was suggested as a target value of the attribute revision status for the 

concept excision of mastectomy scar. 

Of the 50 sample concepts, there were three instances where attributes were 

suggested based on lexically similar children concepts. For instance, the algorithm 

suggested adding the attribute using device with the target value of angiography catheter 

for the concept fluoroscopic angiography of splenic artery. This was suggested as a result 

of a lexically similar child concept fluoroscopic angioplasty of splenic artery having the 

attribute using device with the target value angioplasty catheter. In each of the three 

instances, one attribute was suggested based on the lexically similar child concept. Two 

of them were found to be correctly suggested. 

Besides, there were 46 attributes borrowed from sibling concepts of which 33 

were found to be correct (72%). On the other hand, 56 attributes were borrowed from 

non-sibling concepts of which 34 were found to be correct (61%). For instance, the 

concept excision of mastectomy scar was suggested the attribute revision status with the 

target value excision - value which was found to be incorrect. This attribute was 

suggested because it was present in the modeling of a lexically similar non-sibling 

concept revision of mastectomy scar. 

5.4 Discussion 

The study used a lexical technique to automatically suggest attributes and target values 

for concepts in SCT. The methodology was based on the premise that lexically similar 
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concepts are modeled in a similar way as discussed in Chapter 4 (Positional Similarity 

Sets). A technique was used to change the wording of the target value to suit the 

requirements of the corresponding concept for which the attribute was being suggested. 

For 62% (31 of the 50) of the sample concepts, all the attributes that were suggested for 

them were correct. Overall, 65% (67 out of 103) of the suggested attributes were found to 

be correct. 

This was a preliminary study aimed at introducing a methodology to 

algorithmically identify attributes with minimal human intervention, analyze and assess 

the results of the study and identify further rules to improve the algorithm. One of the 

observations made was with regards to sibling attributes. The current algorithm suggested 

attributes for a concept which already had a sibling attribute in its modeling. Consider the 

modeling of the two similar concepts trapping of intracranial aneurysm (procedure) and 

ligation of intracranial aneurysm (procedure) as shown in Figure 5.3. The algorithm 

suggested the attribute procedure site – indirect for the trapping concept. But, the 

trapping concept already has the attribute procedure site – direct which is a sibling of 

procedure site – indirect. The current algorithm cannot distinguish between which one of 

such sibling attributes is the correct one. In fact, on many occasions, it is even tough for a 

human auditor to make a decision between the sibling attributes such as procedure site – 

direct and procedure site - indirect. There were seven such cases in the sample as 

discussed in the Results section. 

Besides, in sets of three or more concepts, there are cases where two sibling 

attributes may be suggested for a concept. Consider the positional similarity set in Table 

5.9. The set consists of 8 concepts of which five have the attribute procedure site – direct 
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whereas two of them have the attribute procedure site – indirect. The eighth concept 

evaluation of gastrointestinal tract (procedure) has the attribute procedure site which is 

the parent of the attributes procedure site – direct and procedure site – indirect.  

Table 5.9 A Positional Similarity Set with Eight Concepts regarding Gastrointestinal 

Tract Procedure 

 Procedure 

site - indirect 

Procedure 

site - direct 

intubation of gastrointestinal tract (procedure) yes  

imaging of gastrointestinal tract (procedure)  yes 

extubatoin of gastrointestinal tract (procedure) yes  

biopsy of gastrointestinal tract (procedure)  yes 

Radiography of gastrointestinal tract (procedure)  yes 

Ultrasound of gastrointestinal tract (procedure)  yes 

Fluoroscopy of gastrointestinal tract (procedure)  yes 

evaluation of gastrointestinal tract (procedure)   

 

The current algorithm suggested both the attributes procedure site – direct and 

procedure site – indirect for this eighth concept as possible additions since these are more 

refined form of the attribute procedure site. There were seven such instances in the 

sample where two sibling attributes were suggested as possible additions as mentioned in 

the Results section. In such cases, a way can be identified to only suggest one of the 

sibling attributes. For instance, only the more frequently used attribute among similar 

concepts can be suggested. In the example of Table 5.9, that would be the attribute 

procedure site – direct as it appears five times in the set. In case of a tie, both the sibling 

attributes can be suggested. The situation can, however get tricky when the modeling of a 

concept has two or more groups. In such cases, the sibling attributes can be present in the 

modeling of the same concept but in different groups. 
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Apart from suggesting attributes, suggesting appropriate target value also forms 

an integral part of this study. The algorithm changes the wording of the target value as 

described in the Methods section to make it relevant to the corresponding concept. Of the 

21 suggested target values where the wording was changed, two were found to be present 

in SCT as concepts. One of them was shown in Figure 5.2 where the target value for 

method attribute was changed to blood to make it relevant to the corresponding concept 

blood concentration, test strip measurement (procedure). However, in 19 of the cases, the 

suggested target values were not found to be a concept in SCT. For instance, consider the 

modeling of two similar concepts as shown in Figure 5.5. 

  

 

Figure 5.5 A CliniClue snapshot of the modeling of two similar concepts regarding 

induction of labor procedure. 

Source: The Clinical Information Consultancy Ltd, "CliniClue Xplore", 2009, Available from: 

http://www.cliniclue.com. 
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The algorithm automatically suggested three attributes for the drip concept of 

Figure 5.5, namely, method, direct substance and procedure site – direct based on the 

similar injection concept. However, while suggesting the attribute method for the drip 

concept, the suggested target value was changed to drip – action from injection - action 

to better suit the modeling of the current concept. But the target concept drip – action or a 

similar concept is not present in SCT although the concept injection – action is present in 

SCT. Of the 16 unique target values that were created as new concepts, 14 (87.5%) were 

found to be relevant. Considering the relevance of the new target concepts, the method 

can also act as an effective technique to identify missing concepts in SCT. 

In this study, the algorithm first created the positional similarity sets and then 

went through all the concepts of each set to suggest attributes by comparing it to the 

similar concepts of the sets. However, a concept can be in multiple sets as shown in Table 

5.10 which can lead to a concept being presented with suggested attributes multiple 

times. Future studies will take each concept, find all concepts similar to that concept, 

aggregate all the attributes that are identified as suggestions and present them all together 

for the concept thus avoiding repetition.  

Table 5.10 An Example of a Case where the Same Concept Appears in Two Different 

Positional Similarity Sets  

Percutaneous insertion of pulmonary valve using fluoroscopic guidance (procedure) 

Percutaneous replacement of pulmonary valve using fluoroscopic guidance 

(procedure) 

Percutaneous insertion of pulmonary valve using fluoroscopic guidance (procedure) 

Percutaneous insertion of aortic valve using fluoroscopic guidance (procedure) 

 

Further studies will involve auditing larger samples and by multiple auditors in a 

blinded manner. This study will be used to further assess the cases that were discussed 
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above. This will include studying the effect of suggesting attributes based on lexically 

similar sibling concepts and lexically similar descendent concepts. The effect of 

suggesting sibling attributes and attributes with parent-child relationship will also be 

further studied to identify a way such that only the more appropriate attribute may be 

suggested. The current study does not consider role groups while suggesting attributes as 

discussed in the Methods section. Future studies will involve identifying ways to take 

into account these role groups while suggesting attributes. Besides, further studies will 

also involve improving the effectiveness of the positional similarity sets which provides 

the basis to algorithmically detect attributes to enhance the modeling of concepts. 

Towards this end, the effect of the hierarchical attributes and sibling attributes between 

the concepts in a set, and the effect of the concepts being primitive or non-primitive and 

leaf or non-leaf will be studied as improved sets will result in improved suggestion for 

attributes. 

5.5 Summary 

The study provided a technique to algorithmically suggest attributes to enhance the 

modeling of SCT concepts. An experiment was performed to validate the effectiveness of 

the method and the results showed 65% of the suggested attributes being identified 

correctly. With limited availability of resources, automatic techniques such as the one 

presented in this study will help in achieving consistency and correctness in the modeling 

of SCT concepts, thus leading towards the goal of an improved terminological content 

and consequently better health care delivery.  
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CHAPTER 6  

PROBLEM LISTS 

6.1 Introduction 

By 2015, SCT will become the standard terminology for EHR encoding of diagnoses and 

problem lists in the USA [4]. To facilitate encoding of problem lists, the National Library 

of Medicine has extracted a collection of UMLS concepts dealing specifically with health 

problems [50]. As it happens, SCT was found to be the UMLS source offering the best 

coverage of this so-called UMLS clinical observations recording and encoding (CORE) 

problem list. The SCT portion (amounting to 81% coverage) was posted on-line in July 

2011 as the “SCT CORE” problem list [17], comprising 5,862 active concepts. It was 

accompanied by the alternative “Veterans Health Administration and Kaiser Permanente 

(VA/KP)” problem list [18], consisting of 16,622 active SCT concepts. The two lists have 

4,004 concepts in common.  

While PL encoding is SCT’s primary and immediate contribution toward 

meaningful use of EHRs, the use of SCT, due to its inherent structure, stands to support 

patient education and advanced clinical data repository queries which are amongst the 

meaningful use objectives. Such intended use of clinical terminologies had been 

suggested previously in numerous studies [9-16]. However, there are indications that at 

the moment, SCT as a clinical terminology is not optimally structured for such use [81]. 

Also, on the IHTSDO Special Interest Group discussion board [86] in 2010, there was a 

general agreement that “as is,” SCT is not suitable for use in patient-facing applications. 

Such issues are barriers to its successful deployment. 
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This study aims to look at the proposed problem lists with an eye toward their 

readiness for use in EHRs. The focus is on the combination (union) of SCT CORE 

Problem List and Veteran Administration and Kaiser Permanente (VA/KP) Problem List 

(collectively as the “PL”) containing a total of 18,480 SCT concepts. A study is 

performed to examine the quality of the PL. In particular, the study aims to determine if 

the modeling of the PL’s concepts has reached a stable and correct state due to frequent 

use and increased scrutiny on them—or whether the PL requires further quality-assurance 

(QA) efforts. Equally sized random samples of concepts are extracted from two different 

concept populations for analysis: the first consists of concepts strictly from the PL and 

the second contains general SCT concepts distributed proportionally to the PL’s in terms 

of their hierarchies. 

The results of the analysis show that PL concepts suffer from the same issues as 

general SCT concepts, although to a slightly lesser extent, and thus indeed require further 

QA. This additional QA is especially warranted in view of the intended role of PL 

concepts for the meaningful use of EHRs. Towards this end, two structural indicators in 

the form of the number of parents and words are analyzed as an effective way to ferret 

out concepts with a high probability of error. A third structural indicator to identify errors 

in synonyms is also investigated. 

6.2 Method 

6.2.1 Comparative Analysis of PL and SNOMED Concepts 

A study is conducted to assess various qualities and properties of the PL and determine 

how well its concepts are currently modeled in comparison with the rest of SCT. Two 
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samples, the PL sample and the proportional sample, are used to evaluate the correctness 

of the modeling of the concepts. The second sample serves as a control sample. Each 

concept is evaluated based on the following properties: (a) IS-A structure, (b) 

descriptions, i.e., FSN, PT, and synonyms (if they exist), (c) conceptual modeling, i.e., 

relationships, relationship targets, and relationship groups. The CliniClue browser is used 

to visualize the concepts and navigate SCT for the review. Findings are recorded 

according to a four-point scale of presumed significance: none, mild, moderate, and 

severe. Specifically, “severe” is assigned in cases of obvious errors in the hierarchy or 

relationship targets. “Moderate” is used for correct but overly broad or redundant parents 

that could be removed or replaced by more specific values. An assignment of “mild” 

denotes relationship targets of too general a nature, where more specific ones could 

readily be used. It is to be noted that these levels are not based on clinical significance but 

rather the degree of deviation from appropriate modeling compared to other SCT 

concepts. 

6.2.2 Analysis of Concept Synonyms 

An important characteristic of PL concepts that is examined in this study is the concept 

synonyms. Three random samples of 50 concepts each are examined. The first sample 

consists of concepts strictly from the PL. The second is composed of non-PL SCT 

concepts, but these are chosen directly in proportion to the distribution of concepts in the 

PL sample across hierarchies. That is, if 5% of the PL sample is from the Procedure 

hierarchy, then 5% of this second, so-called “proportional,” sample is randomly chosen 

from that hierarchy. The third sample comprises concepts chosen from the population of 

SCT concepts at large, without any consideration of the PL. The need for the proportional 
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sample arises in the case where the results of the PL sample differ from those for the third 

sample (of the entire SCT). It helps to determine whether the difference stems from them 

being PL concepts or is due to the properties of their hierarchies (mainly, Clinical 

Finding), which may differ from those of the whole SCT. 

For each one of the three samples, a count of the number of concepts with 

synonyms, and the average numbers of synonyms is presented. For comparison purposes, 

the count of the number of concepts with UMLS synonyms as well as the average 

number of UMLS synonyms per concept is also presented. All synonyms of the PL 

sample’s concepts are reviewed manually. Additionally, a potential structural indicator of 

concepts having erroneous synonyms is examined by looking for two or more SCT 

concepts mapped to the same UMLS concept. For example, the two PL concepts 

Dermatitis and Eczema are both mapped to the UMLS concept Dermatitis. Indeed, the 

SCT concept Dermatitis has erroneous synonym “Eczema,” since Eczema is a child of 

Dermatitis. This is a case where two related PL concepts of different granularity are 

erroneously modeled as synonyms in SCT. In another example, the siblings Simple goiter 

and Endemic goiter (each a PL concept) both map to the UMLS concept Endemic goiter. 

On closer examination, it can be seen that Endemic goiter has the term “simple goiter” as 

a (erroneous) synonym. The integration of SCT into the UMLS helps to unearth such 

erroneous SCT synonyms. It was found that 569 concept pairs from the PL exhibited a 

duplicate mapping to a UMLS concept. Furthermore, there are 2,056 pairs of such SCT 

concepts where only one is in the PL. A manual review is done to check for erroneous 

synonyms in a random sample of 50 such pairs from the 569 pairs. 
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6.2.3 Analysis of Number of Parents of a Concept 

A theme that was discovered in previous research on the auditing of SCT is that 

“complex” concepts typically have higher likelihood of errors than “regular” concepts. 

One example of a type of complex concept for which studies confirmed such a tendency 

is a concept residing in a region of strict inheritance (of relationships) [87], defined in the 

context of an abstraction network for an SCT hierarchy [77]. Another example is 

overlapping concepts, defined with respect to elements of another kind of SCT 

abstraction network [88, 89].  

The number of parents of a concept can also be taken as a parameter of 

complexity in the sense that a concept with multiple parents is a specialization of each 

and inherits their properties, making it a build-up of knowledge coming from multiple 

paths. Such a concept reflects multiple identities, being “a kind of this and a kind of that.” 

Such an observation leads to a thought if multiple parents are an indicator of problems. 

That is, do concepts with multiple parents in the PL tend to have more problems than 

those with one parent? A study is conducted to analyze any errors found in the above 

mentioned review for the PL sample and the proportional sample with respect to the 

number of parents to see if multiple parents are indeed an indicator. The following two 

hypotheses are formulated: 

Hypothesis 1: PL concepts with multiple parents are more likely to be in error 

than concepts with one parent. 

Hypothesis 2: The likelihood of errors in PL concepts increases with the number 

of the parents. 
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Figure 6.1 lists the distribution of the PL concepts according to their numbers of 

parents. For example, 7,823 concepts (42.3%) in the PL have exactly one parent. There 

are 53 concepts with 8-15 parents. There is one PL concept, Granuloma inguinale 

(disorder), with 15 parents, and another, Menkes kinky-hair syndrome (disorder), with 

12. The average number of parents for a PL concept is 1.90. 

 

 

Figure 6.1 Distribution of concepts in problem list according to the number of parents. 

 

To test the two hypotheses, eight samples of PL concepts are randomly generated 

according to their numbers of parents as shown in Figure 6.2. For the first six samples, 

for a given n (1 ≤ n ≤ 6), sample n has 50 concepts, each having n parents. There are only 

47 concepts with seven parents in the PL, so all those are audited in a seventh sample. 

The eighth sample consists of all concepts with eight or more parents, the number of 

which is 53. In order to assess Hypothesis 1, an additional random sample of 250 PL 

concepts with only one parent each is also studied. 
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Figure 6.2 Distribution of concepts in sample sets according to the number of parents. 

6.2.4 Analysis of Concept Net Word Length 

The net word length of a concept is defined as the length of the fully specified name of a 

concept excluding the insignificant words also known as the stop words. A concept with 

more number of net words will possibly be highlighting multiple dimensions of the 

concept relating to multiple attributes which may result in the concept being more 

complex than concepts with less number of net words. From here on, “net words” will 

simply be referred to as “words.” Based on the notion that more complex concepts are 

more likely to contain errors, the following two hypotheses are formed.  

Hypothesis 3: Error concentration among concepts increases with the increase in 

the number of words in the concept fully specified name. 

Hypothesis 4: Concepts with large word length and large number of parents tend 

to be more complex resulting in greater error concentration. 

In order to investigate these hypotheses, a study is conducted on a random sample 

of the PL. The January 2012 release of SCT is used which brings down the total number 

of current PL concepts to 18,472 as compared to 18,480 concepts in the above studies 

which used the Jul 2011 release of SCT. The concepts of the PL are classified based on 
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the word length of the concept. The list of stop words used in this research work is as 

recommended in the SCT Developer Toolkit Guide 2012 [90] and has been clubbed 

together with some other frequently occurring words used by PubMed [91] and by 

members of UMLS MetaMap [92] to form a list of 157 stop words. Figure 6.3 displays 

the distribution of the PL concepts arranged by the word count. The concept word length 

in PL is in the range of 2 to 20 with approximately 90% of the concepts being in the 

range of 2-6 words.  

 

 

Figure 6.3 Distribution of concepts in problem list according to the number of words. 

 

Moreover, a two-dimensional distribution of the PL concepts is displayed in Table 

6.1. The rows denote the number of words which ranges from 2 to 20. The columns 

represent the number of parents ranging from 1 to 14. Each cell represents the number of 

concepts in PL with certain word length indicated by the row header and the number of 

parents which is indicated by the column header. For e.g., there are 569 concepts with 

two words and one parent whereas there is only one concept with 12 words and four 

parents. The last row and column in the table displays the total number of concepts with a 
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certain number of parents and certain word length respectively. For example, there are 

7821 concepts with one parent and 1088 concepts with two words and in the entire PL. 

Table 6.1 Word Length vs. Number of Parents for the Entire Problem List 

Words/Parents 1 2 3 4 5 6 7 >7 Total 

2 569 332 122 45 15 1 3 1 1088 

3 2182 1781 673 268 86 33 11 13 5047 

4 2181 1895 712 222 83 38 8 15 5154 

5 1346 1337 460 127 32 14 7 4 3327 

6 702 713 303 87 27 7 6 2 1847 

7 374 344 137 51 18 5 3 3 935 

8 197 192 53 17 6 1 1  467 

9 92 112 70 5 4    283 

10 48 32 17 2 1 2   102 

11 39 18 4      61 

12 15 16  1     32 

13 10 4 2   2   18 

14 46 7 2      55 

>14 20 32 2 1 1    56 

Total 7821 6815 2557 826 273 103 39 25 18472 

 

For experimental analysis, a sample of concepts is randomly selected from the PL 

with a sizeable number of concepts from different word length category. For every word 

length that has more than 50 concepts, 50 randomly selected concepts are taken and for 

every word length that has less than or equal to 50 concepts, all of those concepts are 

taken to form the sample concept set. Figure 6.4 displays the distribution of the 656 

concepts in this sample set.  

 



 

 

75 

 

 

Figure 6.4 Distribution of concepts in sample sets according to the number of words. 

 

The review of the samples for Sections 6.2.1 and 6.2.2 was done by Dr. Gai 

Elhanan whereas that of the samples for Sections 6.2.3 and 6.2.4 was done by Dr. Yan 

Chen. Both the auditors are trained in medicine and terminologies and have vast 

experience in auditing terminologies. The auditors were given the sample to audit without 

any information on the methodology used and the hypotheses being tested. 

6.3 Results 

6.3.1 Modeling Errors 

Table 6.2 displays the results of the auditing of the modeling correctness of the PL and 

proportional samples. In total, 17 problems were found for each of the two samples. 

There were no severe problems found for the PL sample. Eleven concepts displayed 

moderate issues, and six exhibited mild ones for the PL sample. From the proportional 

sample, four concepts displayed severe problems, six exhibited moderate issues, and 

seven displayed mild issues.  

An example of a “moderate” finding is exhibited by the concept Benign neoplasm 

of skin of umbilicus (disorder), from the PL sample, having three parents. Two of the 
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parents are Benign neoplasm of skin of trunk, excluding scrotum and Benign neoplasm of 

skin of abdomen. Considering that the focus of the concept is the umbilicus, the trunk is 

not an appropriate parent, especially since Umbilical structure is considered a Structure 

of central region of abdomen in SCT. 

Table 6.2 Results of Auditing PL and Proportional Samples’ Concepts 

 Problem  

 Mild Moderate Severe Total 

PL 6 11 – 17 

Proportional Sample 7 6 4 17 

 

Another PL sample concept with moderate finding is Lumbosacral spondylosis 

without myelopathy. The concept has four parents: Lumbosacral spondylosis, Disorder of 

trunk, Degenerative disorder, and Spondylosis without myelopathy. Some of these are 

clearly related, while other seems to be defined at the wrong level. For example, why is 

Disorder of trunk a parent at this refined level? Should it not be defined at a higher level 

as parent of Lumbosacral spondylosis? The same can be said of Degenerative disorder as 

a parent of the grandparent Spondylosis. See Figure 6.5 for the modeling of the parents of 

Lumbosacral spondylosis without myelopathy, before and after QA. 

A “mild” finding can be seen for the PL sample concept Complication of 

reimplant (disorder). The concept has the relationship associated with that targets the 

Surgical procedure. However, Surgical procedure is an overly broad concept, really a 

container class for all types of procedures, reimplants, and whatnot. On the other hand, 

Reimplantation (procedure) does exist in SCT as a child of Surgical procedure and is a 

much more appropriately refined target. 
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Figure 6.5 Parents of Lumbosacral spondylosis without myelopathy before and after QA. 

 

An example of severe problems from the proportional sample can be found with 

Cystic adventitial disease of popliteal artery (disorder), which has the following parents: 

Vascular disease of abdomen and Systemic arterial finding. However, the popliteal artery 

is not an abdominal artery, and this is not a systemic finding. Thus, these two parents 

were considered inappropriate. Additionally, the concept has the relationship associated 

morphology with the target Cystic medial necrosis. But cystic adventitial disease, a rare 

disorder, is not characterized by cystic medial necrosis but rather by mucinous cysts in 

the outer media or adventitia that progressively compromises the arterial lumen. Thus, 

this target value was also considered inappropriate. Altogether, these findings resulted in 

a “severe” rating. It is noted that in SCT such concepts are not generally associated with a 

laterality attribute. However, from a clinical perspective (and aside from the clinical 

knowledge used in this review or that of a presumed clinical user), the SCT content does 

not provide any clues to the fact that this concept should be associated with “left,” 

“right,” or “bilateral” modifiers. From this perspective, it should be considered as a 

Degenerative 

disorder 

Lumbosacral spondylosis 

without myelopathy 

Spondylosis 

without 

myelopathy 

Disorder 

of trunk 
Lumbosacral 

spondylosis 

Spondylosis  

Lumbosacral 

spondylosis 

Disorder 

of trunk 

Spondylosis 

without 

myelopathy 

Degenerative 

disorder 

Lumbosacral spondylosis 

without myelopathy 



 

 

78 

 

“moderate” issue as it applies to the clinical usefulness and the possibility of 

disseminating accurately coded information. 

6.3.2 Synonym Errors 

Table 6.3 shows various measures for the three samples. The SCT’s July 2011 release 

was used for this study. The first two samples are similar with regard to the number of 

primitive concepts, about 60%, which is high, but lower than for the third sample. With 

regards to synonyms, the PL sample is clearly better than the other two, both in the 

number of concepts with synonyms and in the average number of synonyms per concept. 

But the numbers are still low when compared to the UMLS synonyms for these concepts. 

The extremely high number of UMLS synonyms for the PL sample (12.80 per concept, 

on average) is due to the popular concepts’ occurrences in many UMLS sources, each 

with its own set of synonyms.  

Table 6.3 Properties for Three Random Samples of Concepts 

Property type PL Sample Proportional 

Sample 

SCT Sample 

# Primitive concepts 29 (58%) 31 (62%) 42 (84%) 

# Concepts with SCT synonyms 27 (54%) 17 (34%) 17 (34%) 

# Concepts with UMLS synonyms 45 (90%) 44 (88%) 45 (90%) 

Average # SCT synonyms 1.16 0.46 0.40 

Average # synonyms for concepts 

with SCT synonyms 
2.15 1.36 1.17 

Average # UMLS synonyms 12.80 2.60 2.84 

Average # parents 2.02 1.84 1.52 

Average # words in preferred term 4.58 5.00 5.32 

 

The next two properties, the number of parents and the number of words in the 

preferred term are related to the complexity of the concepts rather than the quality of their 

modeling. For those two properties, there is no significant difference between the PL 
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sample and the proportional sample. Thus, this preliminary study indicates that probably 

due to their frequent use, the PL concepts are to some extent better in their properties 

than other concepts in their respective hierarchies. They are still far from satisfying the 

expected needs of coding diagnoses and problem lists for longitudinal care in EHRs due 

to their low synonym coverage and the high percentage of primitive concepts. 

From the review of all synonyms of the PL sample’s 50 concepts, only two 

erroneous synonyms were found and both were for the same concept. Specifically, 

Premenopausal menorrhagia has a total of four synonyms: two correct (preclimacteric 

menorrhagia, excessive bleeding at onset of menopause) and two erroneous ones 

(climacteric menorrhagia, menopausal menorrhagia). Note that this low error rate is at 

least partially due to the low average number of synonyms for the PL sample and SCT in 

general. Looking only at the 12 PL sample concepts with multiple synonyms, the two 

erroneous synonyms constitute 5% of the 43 synonyms. Looking only at the five PL 

concepts with at least four synonyms, the two erroneous synonyms constitute 7% of their 

27 synonyms. In a similar trend, reviewing the UMLS synonyms for the PL sample 

concepts (where the average is high with 12.8 synonyms per concept), eight of them were 

found to have erroneous synonyms. 

While it is seen that the number of erroneous synonyms for PL concepts is, in 

general, low, the situation is much different for the 569 pairs of PL concepts where both 

pair members were mapped as duplicates to a UMLS concept. From the random sample 

of 50 such pairs of PL concepts, 26 pairs (52%) were found to have a synonym error. 

Hence, by auditing such pairs, which can be identified automatically, it is possible to 

further lower the percentage of erroneous synonyms for PL concepts with a relatively 
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small effort. For example, in the PL, Endemic cretinism and its parent Congenital iodine 

deficiency syndrome are both mapped to the UMLS concept Endemic cretinism (CUI 

C0342200). However, endemic cretinism is just one type of cretinism and is not 

necessarily synonymous with it. Nevertheless, both SCT concepts have the term 

“cretinism” as a synonym, which may have contributed to the confusion. Hence, 

“cretinism” should be removed as a synonym from SCT’s Endemic cretinism. 

6.3.3 Number of Parents as an Indicator of Errors 

Tables 6.4 and 6.5 display the distribution of errors in the PL sample and the proportional 

sample with regard to number of parents. The moderate and severe errors are combined 

into one category; the mild errors are in a separate category to facilitate a comparison 

with the proportional sample. For example, in the PL sample, there are 24 concepts with 

exactly two parents. Five of them had mild errors, while another five had moderate or 

severe errors. In total, 41.7% of such concepts exhibited errors. For the 35 concepts with 

multiple parents, there are a total of 15 (42.9%) in error versus just two (13.3%) among 

the 15 concepts with one parent. There are five erroneous concepts (45.4%) for those 

with at least three parents. Interestingly, all these errors were moderate; none were mild. 

These results are in line with Hypothesis 1. Another interesting observation is that three 

out of four concepts with at least four parents have moderate errors (75% error rate). 

However, this sample is too small for the evaluation of Hypothesis 2. 

For the proportional sample, the findings are, in general, similar to those for the 

PL sample (with the exception of some errors being severe) with a 21.7% error-rate for 

concepts with one parent, 44.4% for concepts with two or more parents, and 70% for 

concepts with at least three parents as shown in Table 6.5. The error-rate for concepts 
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with four or more parents is 50%, with one of the two concepts exhibiting a severe error 

level and the other exhibiting a moderate error level. This distribution also supports 

Hypothesis 1. But, again, there is not enough data for the evaluation of Hypothesis 2. 

Table 6.4 Errors in the PL Sample of 50 Concepts 

#Parents #Concepts Mild errors Moderate + severe errors #Errors %Errors 

1 15 1 1 2 13.3 

2 24 5 5 10 41.7 

3 7 – 2 2 28.6 

4 3 – 2 2 66.7 

5 1 – 1 1 100.0 

 

Table 6.5 Errors in the Proportional Sample of 50 Concepts 

#Parents #Concepts Mild errors Moderate + 

severe errors 

#Errors %Errors 

1 23 3 2 5 21.7 

2 17 1 4 5 29.4 

3 6 3 2 5 83.3 

4 3 – 1 1 33.3 

5 1 – 1 1 100.0 

 

Table 6.6 presents the results of auditing the six samples of 50 random concepts 

of the PL derived based on the number of parents n (1 ≤ n ≤ 6), the collection of 47 

concepts having seven parents, and the collection of 53 concepts with eight or more 

parents. For example, among the 50 concepts with one parent examined, four were found 

to be in error. Moreover, a total of six errors were discovered in these four concepts, 

yielding a rate of 1.50 errors per erroneous concept. Similarly, for the 53 concepts with 

eight or more parents, 27 were found to be erroneous. Besides, these 27 concepts were 

found to have a total of 62 errors, yielding a rate of 2.29 errors per erroneous concept. 
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Table 6.6 Error Concentration in Concepts with Different Number of Parents 

#Parents 

(n) 

#Concepts #Erroneous 

concepts 

%Erroneous 

concepts 

#Errors Avg #errors per 

erroneous concept 

1 50 4 8.0 6 1.50 

2 50 3 6.0 3 1.00 

3 50 4 8.0 9 2.25 

4 50 9 18.0 15 1.66 

5 50 24 48.0 46 1.91 

6 50 28 56.0 75 2.67 

7 47 15 31.9 23 1.53 

≥ 8 53 27 50.9 62 2.29 

 

In addition, a random sample of 250 PL concepts with only one parent was also 

audited. Table 6.7 compares the results of this auditing to those for the sample of 250 PL 

concepts obtained by aggregating the results of Samples 2-6 from Table 6. The purpose 

of this comparison is to further test Hypothesis 1. The results in Table 7 support this 

hypothesis in two ways. First, there is a much higher percentage of erroneous concepts in 

the case of multiple parents versus one parent: 27.2% and 8%, respectively. Second, the 

multi-parent concepts display about 50% more errors per erroneous concept on average 

than do single-parent concepts. The difference is statistically significant according to the 

Chi Square test (with p < 0.0001). 

Table 6.7 Error Concentration in Concepts with One vs. 2-6 Parents 

#Parents #Concepts #Errns cpts %Errns cpts #Errors 
Avg #errors 

per errns cpt 

1 250 20 8.0 29 1.45 

2–6 250 68 27.2 148 2.17 

 

Even though, as seen in Table 6.6, there is a trend of increasing errors with the 

number of parents, it is not strictly monotonic. For example, the sample of two-parent 

concepts shows three erroneous concepts as compared to four for the sample of single-
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parent concepts. Similarly, the sample of 47 concepts with seven parents exhibits 15 

erroneous concepts as compared to the 28 for the sample of 50 concepts with six parents. 

To capture this general trend, the results of Table 6.6 are aggregated as shown in Table 

6.8.  

Table 6.8 Error Concentration for Aggregate Concepts 

#Parents #Concepts #Errns cpts %Errns cpts #Errors 
Avg #errors 

per errns cpt 

1–3 150 11 7 18 1.64 

4–6 150 61 40 136 2.23 

7–15 100 42 42 85 2.02 

 

The samples of concepts with 1-3 parents are combined in the first row, those 

with 4-6 parents are in the second row, and 7-15 are at the bottom in Table 6.8. It can be 

seen that the percentages of erroneous concepts for the second group (4-6 parents) and 

the third group (7-15 parents) are much higher than for first group (1-3 parents). As a 

matter of fact, the number of erroneous concepts for the 150 concepts of the “4-6 parent” 

sample is statistically significantly higher than for the 150 concepts of the “1-3 parent” 

sample according to the Chi Square test (with p < 0.0001). Furthermore, the average 

number of errors per erroneous concept in the former sample is larger, with a ratio 

between the two of 1.36 (= 2.23/1.64). Similarly, the number of erroneous concepts for 

the “7-15 parents” sample is statistically significantly higher than for the “1-3 parents” 

sample (Chi Square test with p < 0.001). Again, the average number of errors per 

erroneous concept in the former sample is larger, with a ratio of 1.23 (= 2.02/1.64). 

Hence, Hypothesis 2 is confirmed as a low granularity measure (but not as a high 

granularity measure). Also, the high percentage of errors does not continue to grow for 

the extremely high number of parents. 
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6.3.4 Number of Words as an Indicator of Errors 

Figure 6.6 shows the distribution of error among the concepts with different word length 

from the 656 sample concepts that were randomly picked for auditing. As shown, 8% and 

4% of the concepts with word lengths 2 and 3, respectively are erroneous. For concepts 

with word length 4 or more, the error percentage increases to double digits with the 

exception of the concepts with word length 14 where the error rate stands at 8%. For 

concepts with more than 14 words, the error percentage increases to 41.1%. This 

distribution of error is in line with Hypothesis 3. 

 

Figure 6.6 Distribution of error percentage among sample concepts with different word 

length. 

 

In Figure 6.7, the 656 sample concepts have been aggregated into three groups 

based on their word length. Concepts with 2-3 words are the small length concepts, 

concepts with 4-14 words are the mid length concepts and concepts with 15 or more 

words are the large length concepts. As can be seen in Figure 6.7, small length concepts 

have the least percentage of error which is 6%. As compared to this, mid length concepts 

were found to have a 16% error rate. On the other hand, large length concepts exhibited a 
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41% error rate. This again demonstrates that the error rate increases with the increase in 

word length of the concepts which supports Hypothesis 3.  

 

 

Figure 6.7 Distribution of error percentage among aggregated sample concepts with 

different word length. 

 

Fisher’s exact test is used to calculate the two-tailed P value to determine if the 

association between the three groups is statistically significant. The association between 

the small length and mid length groups was found to be statistically significant (p = 

0.0075). Furthermore, the association between the mid length and large length groups and 

between the small length and large length groups were found to be extremely significant 

(p < 0.0001). 

Table 6.9 presents the two-dimensional view of error percentage found in the 

sample of 656 concepts distributed by their number of words and number of parents. For 

instance, 8% of the concepts, that are of length two and have one parent, exhibit error 

whereas 100% of concepts of length five and having seven parents are found to be 

erroneous. A general trend that is observed here is that the percentage of concept error 

6 

16 

41.1 

0

5

10

15

20

25

30

35

40

45

Small length Mid length Large length

P
e

rc
e

n
ta

ge
 o

f 
Er

ro
n

e
o

u
s 

C
o

n
ce

p
ts

 

Concept Length 



 

 

86 

 

tends to increase with the increase in the number of parents as well as with an increase in 

the number of net words. This error distribution is in line with Hypothesis 4. 

Table 6.9 Two Dimensional Distribution of Error Percentage among Concepts 

Words/Parents 1 2 3 4 5 6 7 

2 8 7.2 0 25    

3 18.2 0 0 0 0 0  

4 23.6 20 33.4 20 50 0  

5 6.7 13.1 0 33.4 50  100 

6 0 14.3 11.2 0 100 100  

7 30 11.8 0 16.7 50   

8 20 0 40 100    

9 5.3 23.6 20 0 50   

10 8 7.7 11.2 50 100   

11 6.7 18.8 25     

12 26.7 18.8  100    

13 10 0 100   100  

14 0 66.7 0     

>14 90 9.4 50 0 100   

 

In order to give a compact view of the general trend of error being exhibited by 

the concepts with different number of words and parents, the concepts are aggregated into 

three groups with respect to word length and into two groups with respect to the number 

of parents. Based on the word length, the concepts have been divided into the three 

groups as discussed above: groups with words length of 2-3, 4-14 and >14. Based on the 

number of parents, the concepts have been divided into two groups: group with small 

number of parents (1-3) and group with large number of parents (>3).  
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Table 6.10 presents the percentage error among the aggregate concept groups and 

shows a general trend of increasing error percentage from top to bottom and left to right. 

Only 6.4% of the concepts with 2-3 words and 1-3 parents are erroneous as compared to 

50% of the concepts with more than 14 words and 4-7 parents. These findings support 

Hypothesis 4. 

Table 6.10 Distribution of Error Percentage for Aggregate Concepts 

Words/Parents 1-3 4-7 

2-3 6.4 4.8 

4-14 13.3 42.6 

>14 40.8 50 

6.4 Discussion 

This study investigated whether and to what extent the concepts of the PL, the problem 

lists derived from SCT, suffer from the deficiencies that SCT in general is known to 

suffer from, regarding its support for primary and secondary meaningful use of EHRs. Of 

particular interest was whether due to frequent use and increased scrutiny, the concepts of 

PL are of better quality. According to the results of this study, the PL concepts show 

better synonym coverage and less severe modeling errors than those concepts in the 

proportional sample, derived with an eye toward the major hierarchies covered in the PL. 

This may be due to more attention paid in their initial modeling or improvement resulting 

from users’ feedback. 

However, even with higher synonym coverage and better modeling, the PL 

concepts still suffer from the same problems as those in the general SCT population, just 

to a slightly lesser extent. As was shown, the synonym coverage of PL concepts is still 
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poor and definitely falls short of the level required for proper support in the primary 

meaningful use of EHRs, namely, problem-list encoding of 80% of patients—as an 

incentive for practitioners. A concerted effort to increase synonym coverage at least for 

the PL concepts is needed to fulfill the requirement of the HITECH initiative. Also, 

extensive efforts to improve the relationship modeling need to be made. Such efforts are 

complex and are expected to demand more editorial resources than the efforts to increase 

synonym coverage. Note that progress in accurate relationship modeling is also expected 

to manifest itself in a decrease in the number of primitive PL concepts, currently 

amounting to approximately 60% of its overall content.  

As partial remedies for the findings of this study, three structural indicators are 

presented that can help to optimize the effectiveness of QA work on the PL concepts. The 

first, dealing with synonym problems, targets pairs of concepts when there is a duplicate 

mapping to a UMLS concept. Erroneous synonyms may result in the reporting of 

incorrect concepts from the problem lists in EHRs. The results of auditing the 50 sample 

pairs, out of the 569 total pairs, show a 52% error rate. Extrapolating to the 569 pairs, one 

can expect to find quite a few (i.e., 296) erroneous synonyms. 

With regards to synonyms, a deeper study into the UMLS synonyms for the 

sample concepts will be needed. It is, however, observed that many of the UMLS atoms 

are simple lexical permutations. For example, Diabetic Nephropathy has 36 synonyms, 

including “Diabetic Nephropathies,” “Diabetic nephropathies,” and “Nephropathy - 

diabetic.” These duplicates should be filtered out when comparing with the SCT 

synonyms. There should also be a focus on synonyms that are truly different phrases and 

not just lexical variations. Such a comparison will give a more realistic target for the 
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desired amount of synonyms for the PL concepts. With regard to the 2,056 PL-

concept/non-PL-concept pairs with duplicate UMLS mappings, further studies are needed 

to determine their synonym error percentages (specifically for the PL-concept member). 

The second indicator, namely, the simple measure of the number of parents, deals 

with general modeling problems. Note that according to a recent study of SCT users [38], 

about 85% found “severe” errors (i.e., obvious errors in the hierarchy or relationship 

targets) to be somewhat bothersome. Out of these, 60% were very much bothered about 

incorrect parents. This second indicator can guide the ordering of the QA efforts starting 

with concepts having extremely high numbers of parents and working downward from 

there.  

In the auditing of a sample of 400 concepts with various numbers of parents, 

summarized in Table 6.8, 103 erroneous concepts out of the 250 concepts (41.2%) were 

found with at least four parents. There were just 11 erroneous concepts out of the 150 

concepts (7.3%) with less than four parents. The ratio of errors per erroneous concept for 

those concepts with at least four parents was 2.15 (= 221/103) versus a ratio of 1.64 (= 

18/11) for those with less than four parents. 

Based on the percentages of erroneous concepts and error ratios reported in Table 

6.6, one can calculate a weighted estimate of the expected findings for the entire set of 

1,302 PL concepts with at least four parents (see Figure 6.1). Using these data, one can 

calculate the estimate as follows: 

809  0.180 + 291  0.480 + 102  0.560 + 47  0.319 + 53  0.509 = 146 + 140 + 57 

+ 15 + 27 = 385 
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Therefore, one can expect 29.6% (= 385/1302) of the concepts with four or more 

parents to be in error. The weighted estimate of the number of errors for these expected 

385 erroneous concepts can be calculated from the above formula and the data in the last 

column of Table 6.6 as: 

146  1.66 + 140  1.91 + 57  2.67 + 15  1.53 + 27  2.29 = 746 

Hence, their expected error ratio is 1.94 (= 746/385). This estimate emphasizes 

the power of this indicator to deliver a high yield of severe errors for a moderate amount 

of auditing effort. 

In contrast, if one were to audit all 17,178 PL concepts with less than four parents, 

the weighted estimate of the number of erroneous concepts is just 1,237 (7.2%), with 

only 1,805 total errors and an error ratio of 1.46. Considering the extensive efforts 

required for such a large audit, this expected yield would likely not warrant it. 

On the other hand, one can limit the audit to the 493 concepts with at least five 

parents. The weighted expected number of erroneous concepts in this case is 239 

(48.5%). The corresponding number of errors is 504, with an error ratio of 2.11. 

A third structural indicator in the form of word length is also shown to help 

isolate groups of concepts with high likelihood of error. The combination of word length 

and number of parents is also shown to be an effective structural indicator to ferret out 

the problematic concepts. By focusing on such concepts, a more limited effort can 

provide a relatively high yield in terms of the number of errors though the total number of 

errors is smaller. 

The method described in this study has a trade-off between the extent of the QA 

efforts and the results obtained. It is aimed towards making use of the limited resources in 
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an efficient way. In this study, a single auditor reviewed individual concepts one at a time 

using the CliniClue Browser and using the knowledge of related concepts such as parents, 

children and siblings. Future work will include more than one auditor to improve the 

authenticity of the auditor’s report. It has been shown in past studies [19, 93] that group 

auditing can be a more efficient way to expose errors which otherwise may be difficult to 

find. Future work will involve identifying and applying such appropriate group-based 

auditing along with the methods used in this study to come up with more evolved QA 

methods. The study showed a way to combine two structural indicators to ferret out the 

more vulnerable concepts from the rest of the SCT. Future work will involve combining 

more of such indicators to get a more sophisticated method that can help in the QA 

efforts. 

6.5 Summary 

A study is performed to examine the readiness of the concepts in the problem lists for 

their intended meaningful use in EHRs. It is found that these concepts tend to suffer from 

the same problems as the concepts found throughout the general SNOMED CT content, 

just to a slightly lesser degree. Such problems include a high percentage of primitive 

concepts (likely to be missing relationships), and deficient and inconsistent modeling of 

relationships. The conclusion is that further QA efforts are needed for the problem lists’ 

concepts. Leaving the problems unaddressed will have deleterious effects on secondary 

meaningful use of EHRs, a hallmark of the HITECH initiative. To help guide such QA 

efforts, three straightforward structural indicators that can be used to ferret out concepts 

with potential errors are examined. One was shown to be good in dealing with synonym 

problems, and the other two with hierarchical and attribute relationship problems.  
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CHAPTER 7  

CONCLUSION 

The usage of large standard terminologies like SCT is highly influenced by quality 

assurance issues. Past studies have identified instances of inconsistent modeling in SCT 

which could act as a barrier for the successful use of SCT in EHRs. An intensive auditing 

effort is needed to improve the quality of SCT concepts. However, an audit of all 

concepts of SCT requires extensive quality assurance resources and will require a long 

time. A desired approach in coping with this urgent quality assurance need is to develop 

techniques for identifying subsets of SCT with expected higher concentration of errors. 

This dissertation presents one such approach which analyzed the conceptual 

representation of sets of concepts that are lexically similar at the term-level in an attempt 

to characterize the consistency of the modeling across these concepts. Similarity sets 

were introduced and a sample of 60 such sets was audited by an experienced auditor. As 

many as 30% of the sample sets were found with inconsistent modeling of concepts. The 

dissertation then presented a way to utilize three structural indicators to improve the 

efficiency of the similarity sets. These structural indicators included the number of 

parents, relationships and groups between the concepts of a similarity set. The method 

was proven to be effective with up to 70% of the audited sample sets found to be 

inconsistent. 

Since the idea of group auditing is to present the auditor with a small set of 

concepts with high likelihood of inconsistencies, it is important to improve the likelihood 

of finding inconsistent concepts in similarity sets. A study was conducted along this line 

and positional similarity sets, which are similarity sets with strictness imposed on the 
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location of the differing word in concept FSN, were introduced. The use of such sets 

improved the likelihood of finding inconsistent concepts to approximately 22% as 

compared to 13% with general similarity sets. Moreover, the efficiency of positional 

similarity sets was enhanced by introducing the same three structural indicators as above. 

The use of such indicators increased the likelihood of finding inconsistent concepts to 

42%.  

Furthermore, a study was conducted to algorithmically suggest attributes to 

enhance the modeling of SCT concepts without an auditor having to manually identify 

them. The technique was based on the framework of the positional similarity sets. The 

results showed the method to be effective with one or more suggestions attributes to be 

valid for 45 out of a sample of 50 concepts. The methodology suggested 103 attributes 

for these 50 concepts of which 67 were found to be correctly suggested.  

The dissertation also presented a study conducted on SCT problem list concepts to 

examine their readiness for their intended meaningful use in EHRs. It was found that 

these concepts tend to suffer from the same problems as the concepts found throughout 

the general SNOMED CT content, just to a slightly lesser degree. Such problems include 

a high percentage of primitive concepts (likely to be missing relationships), and deficient 

and inconsistent modeling of relationships. The conclusion is that further QA efforts are 

needed for the problem lists’ concepts. To support such efforts, two straightforward 

structural indicators in the form of the number of parents and words were shown to 

effectively ferret out concepts with high likelihood of inconsistencies. A structural 

indicator was also presented to deal with the synonymy problems by identifying pairs of 

concepts in SCT that map to the same UMLS concept.  
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