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ABSTRACT 

 

METAL BASED REACTIVE NANOCOMPOSITES  

PREPARED BY CRYOMILLING 

 

by 

Shasha Zhang 

 

Aluminum is one of the most commonly used metal fuel additives for propellants, 

explosives, and pyrotechnics.  Recent interest has been focused on replacements for 

aluminum as fuel additives to achieve higher combustion temperatures and stronger 

pressure pulses for applications in advanced munitions systems.  Two applications are 

addressed in this work.  In the applications for explosives designed to defeat stockpiles of 

chemical and biological weapons, it is of interest to develop multifunctional materials 

combining the high energy density of metal fuels with the biocidal activity of halogens.  

A challenge of this effort is to design and prepare powder-like Al-I2 materials which can 

be used as drop-in replacements for pure aluminum powders in aluminized energetic 

formulations.   For another application, it is desired to tailor combustion dynamics of 

aluminum in order to fully exploit its high reaction energy by modifying its surface and 

structure.  Hydrocarbons with good volatility and reactivity are selected as additives to 

composite aluminum-based powders to achieve improved combustion dynamics.  

For both applications, mechanical milling offers a scalable and versatile method 

for modifying aluminum.  The mechanical milling-based approach is explored in this  

effort using milling at the liquid nitrogen temperatures, or cryomilling, which enables 

mixing aluminum with materials that are unstable or difficult to process at room 

temperatures.  Two types of composite materials are prepared and characterized: Al-I2 



and Al-hydrocarbon (where wax, low density polyethylene and cyclooctane were used as 

different hydrocarbon components).   

Powders prepared by cryomilling  are  evaluated  using Thermogravimetry 

Analysis (TGA),  Scanning  Electron  Microscopy  (SEM)  and  X-Ray Diffraction  

(XRD).  TGA results suggest that iodine is bound to Al, while hydrocarbon is present as a 

coating on the surface of fine Al grains and composite particles.  Very fine, nano-scale 

particles can be prepared for composites milled at the liquid nitrogen temperature.  

Ignition temperatures are determined at heating rates in the range of 2000 - 35000 

K/s using an electrically heated filament.  Constant volume explosion experiments are 

used to characterize combustion performance of the produced powders.  Materials are fed 

into an oxygen-acetylene flame to observe their burning characteristics and to measure 

the combustion temperature. The burn time and temperature as a function of particle size 

are measured using a single particle combustion measurement.    Al-I2 powders are 

supplied to University of Cincinnati for independent evaluation of the biocidal properties 

of their combustion products. 

Ignition temperatures of the prepared materials are substantially reduced 

compared to Al.  Burn rates for individual particles are comparable or somewhat lower 

than for pure Al.  Combustion temperatures for the prepared composites are close to 

those of pure Al.  Independent tests show that Al-I2 materials added to hydrocarbon flame 

substantially improve inactivation of the aerosolized biologically viable spores.  The 

experiments show that combustion dynamics of the prepared Al-hydrocarbon composites 

is improved compared to pure Al powders. 
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CHAPTER 1  

INTRODUCTION 

 

1.1   Background 

Energetic materials (explosives, propellants and pyrotechnics) are used extensively for 

both civilian and military applications. The most commonly used energetic materials are 

organic compounds with nitro groups including TNT, RDX, and HMX [1-5]. Exothermic 

reactions producing H2O and CO2 as reaction products are rate controlled by chemical 

kinetics [6, 7], which enables fast ignition and combustion rates for practical applications. 

However, the amount of energy that such materials can release is relatively low, and 

combustion temperatures are limited.  

Metals, such as Al, Mg, B, Ti, etc. [3, 8, 9], are used as additives in energetic 

formulations to achieve significant increases in both combustion energy and energy 

density.  Compared to mono-molecular organic compounds, their high gravimetric or 

volumetric combustion enthalpy enables one to achieve significantly high combustion 

temperature.  However, their potential in many practical situations cannot be fully 

exploited due to long ignition delays [10] and relatively low burn rate, which is 

associated with the heterogeneous nature of many relevant reactions.  In other words, 

combustion of metals is commonly accompanied by formation of condensed oxide phases 

 



2 
 

[11-13].  Therefore, the reaction rates become limited by the mass transport of reagents 

through such oxides, which is much slower than respective chemical kinetics.   

Aluminum as a metal additive has been used and studied most widely because of 

its low cost, high abundance and high reaction enthalpy (∆Hr = 31 kJ/g [14]). Recent 

work has been focused on modification of micron-sized aluminum powder that is 

commonly added in both solid propellants and explosives. Of particular interest are 

efforts aimed to achieve reduced ignition delays, greater reaction rates, and specific 

desired reaction products. Such efforts include reducing size of aluminum particles 

[15-18], achieving nanoscale mixing of aluminum and oxidizers [19-22], and producing 

composite particles with nanoscale structures [23-25].  

Replacing mircron-sized aluminum particles with nano-sized [15-18] ones results 

in an accelerated reaction rate due to an increase in the specific surface of the powder.  

Additionally, the time required for the particle temperature to increase to a point for 

self-sustaining combustion is thus reduced. Although the application of nano-aluminum 

has gained substantial attention, there are some significant concerns associated with its 

application.  Aluminum nanoparticles react with oxygen and moisture readily to produce 

a 2-6-nm-thick Al2O3 oxide layer [17, 26]. Due to the high surface to volume ratio of 

nano-particles, the amount of inactive oxide represents a significant fraction of the mass. 

Thus, energy density is dramatically reduced.  In addition, such small particles become 

very cohesive and difficult to handle.  In most recent work, it is also questioned whether 
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the benefit from morphology of nano-particles can be fully employed during combustion. 

It is reported that particles may experience a significant degree of sintering at elevated 

temperatures, and thus particles can no longer retain their nanometer size [27]. 

Another approach to improve reaction rate is to produce nano-thermites, which 

involves nanoscale mixing of aluminum and an oxidizer (MoO3, CuO, and Fe2O3) 

[19-22]. Different types of reactive thermites have been reported. Metastable 

intermolecular composites (MICs) [15, 28, 29] were prepared by physically mixing 

nanoparticles of aluminum and oxidizer by ultra-sonic agitation.  Fully dense 

nanocomposite materials were synthesized by arrested reactive milling (ARM) [30-32]. 

Such materials are micron-sized powders, each particle is fully dense and contains 

reactive components mixed on a scale of ~ 100 nm or less.  It is anticipated that a small 

fraction of active metal is reacted during preparation involving high energy ball milling. 

For all nano-thermites, research has shown that the enhanced contact between fuel and 

oxidizer results in extremely fast ignition and combustion rate.  However, such materials 

have intrinsically reduced energy density compared to metal fuel additives because they 

contain added oxidizer phases.  

Ignition and combustion dynamics of aluminum can also be modified by mixing 

aluminum with other metals or metalloids. Such fine mixing with an aluminum matrix 

and inclusions of other metals was achieved using mechanical milling [33, 34]. The 

formation of intermetallic compounds was carefully avoided. Aluminum-based 



4 
 

mechanically alloyed compositions have reaction enthalpies similar to those of the pure 

aluminum, which is much higher compared to nanocomposite thermites prepared by 

ARM, having similar powder morphology. The oxidation kinetics leading up to ignition 

is controlled by kinetics of various phase transformations [35-37] occurring in metastable 

mechanically milled powders upon their heating.  Examples of such transformations 

include formation of intermetallic phases between Al and such additives as Ti or Mg 

[23-25].  Alternatively, selective oxidation of such additive as Li [36] can also result in 

an enhanced ignition of the Al-based material.  Combustion rate is also improved, which 

can be attributed to the addition of more reactive metals, such as Li, Zr, or Mg, and to 

increase in the surface area of reactive interfaces. In addition, the total energy release can 

be enhanced by adding boron [8, 38], which possesses greater combustion enthalpy 

compared to Al.   

As a continuation of study on mechanically alloyed Al-metal composites, this 

work is focused on combining aluminum with non-metallic, volatile materials to produce 

multi-scale composite structures with customized properties desired for different 

applications.  Mechanical milling, a “top-down” powder processing technique, is 

employed to produce such multi-scale composites. 

In mechanical milling [33, 34], elemental powder mixtures used as starting 

materials are blended together and then ball-milled.  The ball milling typically involves 

high-energy interactions between milling tools, in which the interaction energy is 
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dissipated in the powder being processed.  Powder particles typically experience 

repeated processes of flattening, cold welding, fracturing and rewelding, which are 

caused by the impact force of physical collision between milling media.  In the early 

stage of milling, the particles of the aluminum-based blends are ductile, and tend to weld 

together to form large flakes with new surface. With continued deformation, large flakes 

become fragile and fracture into smaller flaky fragments. After milling for a certain 

length of time, the small fragments tend to be welded into equiaxial agglomerates, while 

large particles tend to fracture.  Consequently, the overall particle size distribution 

eventually stabilizes, while the structure of the particles is steadily refined.  In other 

words, the inter-layer spacing of the produced composite structures decreases and the 

number of layers in a particle increases. The products are fully dense, reactive composites 

powders with a relatively broad particle size distribution, typically in the range of 10-100 

µm [30]. Despite the small external surface, the internal mixing takes place at the 

nanoscale level producing highly developed reactive interfaces between different 

components. Desired powder size and degree of homogenization between components 

can be achieved by optimizing a number of variables including type of mill, milling 

speed, milling time, type and size of the grinding medium, ball-to-powder weight ratio, 

extent of filling the vial, milling atmosphere, process control agent and milling 

temperature [34].  
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This method of preparation of composite powders is readily scalable, and capable 

to process essentially any combination of reactive components. The prepared composites 

are generally less expensive than similar compositions produced using alternative, 

“bottom-up” approaches [39-41].  

Typically, ball milling is performed at room temperature, although forced cooling 

of the milling vials by convection is common in different types of ball mills.  It has been 

established that the milling vial temperature affects significantly the milling dynamics 

and properties of the products.  In particular, lower temperatures result in reduced 

ductility of the aluminum-based powder blends; thus the flake formation occurs over a 

shorter period of time and the structures of the produced composites is altered.  In order 

to exploit the effect of temperature, cryomilling or milling at the temperature of liquid 

nitrogen (77 K) has been investigated for preparation of multiple structural 

aluminum-based alloys [42-44].  The liquid nitrogen temperatures can be achieved 

either by adding liquid nitrogen into the milling vial directly or by using it as a cooling 

agent for the milling vial exterior.  It was shown that cryomilling enables one to obtain a 

higher degree of refinement of both particle and grain sizes [42, 43].  

In this effort, cryomilling is used to prepare nanocomposite powders with 

aluminum as a matrix and inclusions comprising materials which are unstable and 

volatile at room temperature.  Additionally, materials that are mechanically soft and do 

not form composite structures with metals at room temperatures are explored as potential 
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inclusions into aluminum matrix.  It is expected that their mechanical properties are 

sufficiently altered by cryogenic temperatures, so that effective formation of 

nanocomposite structures can be achieved.    

 

1.2   Objectives 

This work consists of two primary projects for different types of applications of reactive 

nanocomposite materials.  The composite materials and their combustion performance 

are tailored based on specific requirements and conditions associated with these two 

applications.   

The first part of this work is aimed to design an energetic material for applications 

in munitions designed to defeat stockpiles of chemical and biological weapons [45-49].  

The main practical objective is to inactivate biological microorganisms that can be 

aerosolized by a blast and thus cause substantial contamination of the surrounding area.  

Developed reactive materials are expected to serve as potential drop-in replacements for 

the Al powder in aluminized explosives.  When pure aluminum is replaced in reactive 

formulations, biocidal combustion products would form while the high temperatures and 

burn rates of aluminized explosive are maintained. Halogens are chosen as target 

additives to aluminum-based powders.  Combustion products containing halogens are 

expected to be biocidal and effective in inactivation aerosolized viable biological 

microorganisms.  However, halogens are unstable and difficult to handle. It is desired to 
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stabilize halogens and prepare powder-like reactive materials that could be handled and 

formulated into energetic compositions using currently accepted practices and protocols. 

Iodine is favored among all the halogens due to its relative stability.  Low temperatures 

further promote stability of iodine.  Thus, one of the objectives of the present study is to 

prepare a stable material combining aluminum with iodine using mechanical milling at 

cryogenic temperatures.   

After materials synthesis, it is important to confirm that material indeed contains 

iodine and quantify the produced composition.  The approach selected for the material 

characterization is based on thermal analysis.  In particular, differential scanning 

calorimetry (DSC) or thermo-gravimetric analysis (TGA) will be used. It is also of 

interest to understand reaction kinetics of iodine release at different temperatures and the 

correlation between iodine release and oxidation behavior. Furthermore, various ignition 

and combustion experiments are designed to characterize ignition temperature, 

combustion rate, combustion temperature, and burn time. It is of utmost importance to 

optimize material to achieve the greatest possible halogen content while maintaining its 

stability and reactive characteristics. In addition, effectiveness of the prepared composite 

material in inactivating spores and bacteria is studied jointly with our collaborators at the 

University of Cincinnati. 

Another objective of this work is to design reactive nanocomposite powders, 

which can serve as gas generators to improve mixing and combustion efficiency in 
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turbulent reactive flows. Hydrocarbons are considered as suitable candidate additives due 

to their volatility and combustibility. Thus, the objective is to prepare Al-hydrocarbon 

composite powders as potential replacements for aluminum powders. Such materials are 

expected to improve ignition and increase the energy release rate despite a small 

reduction in the theoretical combustion enthalpy compared to pure aluminum. 

Cryomilling is also used to prepare desired aluminum-hydrocarbon composites in 

order to solidify the hydrocarbons and enable their embedding into the aluminum matrix. 

The feasibility of incorporation of hydrocarbon in the powder is investigated by DSC and 

TGA. In such composites, the aluminum oxide layer protecting the surface of regular 

aluminum powders is expected to be modified or completely replaced by a new, less 

protective layer.  Therefore, the diffusion resistance to oxidation will be reduced, 

resulting in further accelerating heterogeneous oxidation and combustion.  Combustion 

rate will be tested using constant volume explosion (CVE) experiments with aerosolized 

powders.  Oxidation and ignition of the prepared materials will be evaluated using 

customized laboratory experiments. Combustion dynamics will be studied in different 

oxygenated environments.  



  10  
 

CHAPTER 2  

PREPARATION OF Al-I2 COMPOSITES  

BY MECHANICAL MILLING 

 

2.1  Introduction 

In recent decades, mechanical alloying was used to prepare a wide variety of unique 

compounds for multiple applications [33, 34].  One type of potential application for 

mechanically alloyed materials includes the use as metallic fuel additives for propellants, 

explosives, and pyrotechnics [24, 35, 37, 50-52].  Such materials are being developed to 

tailor the rates of energy release from the burning metal and thus improve performance of 

various energetic formulations.  In applications for explosives designed to defeat 

stockpiles of chemical and biological weapons, it is desirable that in addition to the 

generated temperature and pressure pulses, biocidal combustion products are released.  

It is further desired to combine the capability to produce biocidal compounds with an 

optimized combustion behavior.  Halogens are well known to form a variety of biocidal 

species.  However, from the point of view of energetic ingredients, halogens form either 

stable ionic compounds limiting the energy available for combustion, or compounds that 

are relatively unstable, hard to handle, and subject to rapid aging.  Therefore, directly 

adding halogens to energetic formulations appears to be impractical.  Instead, 

metal-based composites containing elemental (or loosely bound) halogens stabilized at 

room temperature are of interest.  Such fuels are expected to increase the volumetric 

   



11 
 

reaction enthalpy of energetic formulations, as do conventional metal fuel additives; they 

also will help producing biocidal combustion products upon ignition.  This project 

presents an effort to develop such a fuel additive based on aluminum, the most widely 

used metal additive to all types of energetic formulations.  In this work, it is proposed 

that stabilized Al-halogen composites can be prepared by mechanical alloying, so that 

biocidal halogenated combustion products are released upon combustion.  Iodine, which 

is solid at room temperature and is more readily available and simpler to handle than 

other halogens, was selected for this effort.   

The objective of this work is to prepare powder-like Al-I2 composites which can 

be easily handled at normal conditions.  Such materials are expected to burn similar to 

unmodified aluminum and produce iodine-containing biocidal combustion products.  

The capability of such powders to capture and retain iodine until they are heated to high 

temperatures is of critical importance.  In order to produce a material for which 

combustion and biocidal characteristics can be readily determined in laboratory 

experiments, it is desired to produce equiaxial particles in the size range of 10-100 µm.  

Particles that are much coarser, much finer, or flake-shaped could be of interest to 

practical applications, but are difficult to characterize using established laboratory 

ignition and combustion measurement techniques developed for micron-sized metal 

powders.   
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2.2  Experimental 

2.2.1 Materials and Ball Milling Parameters 

The Al-I2 composites were prepared by ball-milling [36] elemental aluminum and iodine 

under various conditions. The initial mixture loaded into the ball mill was a blend of 

aluminum powder and iodine chips. Aluminum powder, -325 mesh size (< 45 µm), 

99.5% pure was provided by Atlantic Equipment Engineers. Iodine chips, 99% pure, were 

provided by Sigma Aldrich.  In one experiment, the starting mixture comprised 

aluminum powder mixed with a powder of aluminum iodide, AlI3, 99.99+% (metals 

basis), obtained from Alfa Aesar.   

Most of the samples were prepared using a model 01HD attritor mill by Union 

Process.  The mill includes a stationary milling vial inside a cooling jacket. The steel 

milling vial is 750 mL in volume.  The balls are agitated by a rotating impeller.  Two 

types of milling vial lids provided by Union Process were used: one designed for 

experiments in controlled gas environments, and the other, designed for milling in liquid 

nitrogen.  In all experiments, the impeller rotation rate was set to 400 rpm. The main 

process variables were the milling environment inside the milling vial and the cooling 

agent circulating through the cooling jacket surrounding the milling vial.   

Powders were loaded at room temperature in air; milling balls were added after 

the starting materials.  Nitrogen was flushed through the charge to prevent oxidation 

during the milling process. 
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Room temperature milling runs used running water in the cooling jacket and 

nitrogen gas fed through the milling vial at a flow rate of about 2 CFM (0.94 L/s).  In 

initial experiments, the flow rate was not closely monitored, but it was noticed that a 

higher nitrogen flow rate results in a lower average amount of iodine retained in the 

mechanically alloyed powders.   

Cryogenic milling runs used two configurations, in both cases the cooling jacket 

was filled with liquid nitrogen.  In one setup, gaseous nitrogen was continuously fed 

through the milling vial, and in the other, the milling vial was also filled with liquid 

nitrogen.  

Hardened steel balls were used as milling media.  The total mass of milling balls 

was fixed at 1.8 kg.  Different aluminum-to-iodine mass ratios were used to prepare 

materials with different compositions.  Milling time, milling ball sizes and 

ball-to-powder mass ratios (BPR) were also varied.   

The bulk of the material was recovered after completion of a milling run.  In 

addition, small samples of materials were recovered from the vial at intermediate milling 

times to observe the particle evolution.  No process control agent was added to the 

material being milled.  In one experiment, the product powder obtained by ball-milling 

under specified conditions was used as a starting material for the second ball-milling run.  

Table 2.1 shows a summary of the milling conditions representing samples 

prepared in the attritor mill. 
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A shaker mill (SPEX Certiprep, 8000 series) with two 50 mL flat-end steel vials 

was also used to prepare Al-I2 composites.  In addition to using elemental Al and I as 

starting materials, in one shaker mill experiment, elemental Al was mixed with AlI3 to 

obtain an equivalent Al/I=90/10 composition.  In the shaker mill the milling vial is 

cooled by a flow of room temperature air.  Milling time for all shaker mill runs was set 

to 10 hours. Powders were loaded in argon gas. Material compositions, ball sizes, and 

ball-to-powder mass ratios were varied, as shown in Table 2.2.   

 

Table 2.1 Samples Prepared in Attritor Mill 

Sample 

ID 

Ball Size, 

inch 

Mass load 

ratio (Al/I) 

BPR Milling 

time, h 

Cooling 

agent 

Milling 

environment 

1-1 3/8 95/5 36 6 Liquid N2 Gas N2 

1-2 3/8 90/10 36 6 Liquid N2 Gas N2 

1-3 3/8 80/20 36 6 Liquid N2 Gas N2 

1-4 3/8 90/10 36 10 Liquid N2 Gas N2 

2-1 3/8 95/5 36 6 Water Gas N2 

2-2 3/8 90/10 36 6 Water Gas N2 

2-3 3/8 80/20 36 6 Water Gas N2 

2-4 3/8 90/10 36 24 Water Gas N2 

3-1 3/16 95/5 18 6 Liquid N2 Gas N2 

3-2 3/16 90/10 36 6 Water Gas N2 

4-1 3/8 95/5 36 6 Liquid N2 Liquid N2 

4-2 3/16 90/10 36 6 Liquid N2 Liquid N2 

5-1* 3/16 90/10 36 3.5 Liquid N2 Liquid N2 

5-2* 3/8 90/10 36 3.5 Liquid N2 Liquid N2 

*Note: Sample 5-1 used sample 3-2 as a starting material; sample 5-2 used sample 1-2 as a starting 

material; 
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Table 2.2 Samples Prepared in Shaker Mill 

Sample 

ID 

Starting 

materials 

Ball size, 

inch 

Mass load ratio 

(Al/I) 

BPR 

s-1 Al, AlI3 3/8 90/10 10 

s-2 Al, I 3/8 90/10 10 

s-3 Al, I 3/8 95/5 10 

s-4 Al, I 3/16 95/5 5 

 

2.2.2 Characterization of Al-I2 Composites 

The powders were characterized using scanning electron microscopy (SEM).  For SEM 

analyses, a Phenom Tabletop Microscope by FEI Technologies Inc. was employed.  

Back-scattered electrons were used to obtain images showing the phase contrast between 

the materials.  

Particle size distributions (PSD) for the prepared Al-I2 powders were measured 

using a Beckman-Coulter LS230 Particle Counter.  Ethylene glycol was used as 

suspension solvent for small quantities of powders. 

X-ray diffraction (XRD) was used to determine phase composition for each 

sample.  The XRD was performed on a Philips X’pert MRD powder diffractometer 

operated at 45 kV and 40 mA using unfiltered Cu K radiation (=1.5438 Å).  Scan angle 

was in the range of 10-70 degrees.  Two sample holders were used for XRD 

measurements.  The standard sample holder has 20 mm length, 15 mm width and 2 mm 

depth.  It was used for samples available in relatively large quantities.  When only 

small amounts of powders were available, as was the case for samples recovered from 
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intermediate milling times, or for samples pre-heated to and cooled from a specific 

temperature, a smaller quartz sample holder was used with the diameter of the sample 

area of about 8 mm.   

Selected XRD traces were processed for the purpose of quantitative phase 

analysis by whole-pattern refinement using the GSAS software package.  The choice of 

sample holder influenced these results.  The smaller quartz sample holder uses very 

small amounts of material, and therefore systematically underrepresents the diffracted 

intensities at lower diffraction angles.  In most product samples AlI3 was present, 

although only its main peaks at relatively low diffraction angles could be clearly 

distinguished.  This caused the estimated concentration of AlI3 to be systematically 

lower when the quartz sample holder was used compared to when the larger standard 

sample holder was used. 

The amount of iodine captured in the materials and its release upon heating were 

more directly determined from thermogravimetric (TGA) traces in argon.  A TA 

Instruments model Q5000IR thermogravimetric analyzer was used in this project.  For 

initial characterization samples with weight varied from 5 to 35 mg were loaded into an 

alumina crucible, which was put in the platinum pan, according to the recommendations 

of TA Instruments.  In further experiments, materials were placed in alumina pans 

enabling preparation of the samples with greater surface areas for more accurate TGA 
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measurements.  The balance and the furnace were purged with argon at 10 and 25 

ml/min, respectively.  The maximum temperature was limited to 1273 K (1000 ºC).  

Iodine release upon heating was determined in argon with varying heating rate 

from 5 to 200 K/min.  As oxygen is hard to purge away, higher flow rate for argon was 

used in experiments aimed to quantify the kinetics of iodine release.  Argon flow rates 

for balance and the furnace were set at 20 and 50 ml/min, respectively.  The mass of 

material used for iodine release kinetics measurements varied in the range of 1-20 mg.  

Oxidation kinetics of samples was studied in oxygen-argon mixtures and pure 

oxygen with varying heating rate from 5 to 200 K/min.  The balance and the furnace 

were purged with oxygen-argon mixtures or pure oxygen at 10 and 25 ml/min, 

respectively.  The mass of material used for oxidation kinetics measurements varied in 

the range of 0.4-5 mg. 

 

2.3  Materials Preparation 

2.3.1 Results 

2.3.1.1 Particle Shapes and Dimensions.  Characteristic SEM images of the 

materials prepared under different conditions are shown in Figure 2.1.  For 6-hour long 

milling runs, flake-like particles were formed under all milling conditions, except for the 

case when liquid nitrogen was used both inside the milling vial and in the cooling jacket.  

In the latter case, the particles were roughly equiaxial.  In addition, particles with 
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equiaxial shapes were obtained in run 2-4, when milling time was increased to 24 hours.  

As illustrated in Figure 2.1, cryomilling generally produced smaller particles than milling 

at room temperature.  Images shown in Figure 2.1 used backscattered electrons, and 

iodine-rich areas appear brighter.  In Figure 2.1A, at low magnification the scale of 

mixing between aluminum and iodine appears quite coarse.  For samples appearing 

homogeneous, the scale of mixing is below the resolution of the images.  

Particle sizes are observed to decrease with increasing iodine concentration.  In 

general, particle sizes and shapes for powders prepared in the shaker mill were similar to 

those of powders prepared in the attritor mill at room temperature. 
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Figure 2.1  SEM images of samples; magnification is the same for all images.  

Samples have nominal iodine concentrations of 5% on the left and 10 % on the right. 

Samples in the first row were cryomilled in N2 gas, samples in the middle row were 

milled at room temperature in N2 gas, and samples in the bottom row were cryomilled in 

liquid nitrogen. (A: 1-1, B: 1-2, C: 2-1, D: 2-2, E: 4-1, F: 4-2.) 
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2.3.1.2 Iodine Content and its Release upon Heating.  For direct reference, mass 

reduction upon heating for both pure iodine and AlI3 were characterized by TGA; the 

results are shown in Figure 2.2 where a TGA trace for one of the mechanically alloyed 

samples is also shown.  The pure iodine sample evaporates completely before it reaches 

473 K (200 °C). AlI3 starts decomposing from room temperature, the decomposition rate 

increases at around 473 K (200 °C) when AlI3 melts, and most of the decomposition ends 

before the sample reaches 673 K (400 °C).  The TGA trace for the material 

mechanically alloyed in the shaker mill, sample s-3, shows a very small mass loss up 

until the temperature reaches about 733 K (440 °C).  The mass loss occurring at higher 

temperatures accelerates near the aluminum melting point.  As discussed below, this 

behavior was generally observed for all mechanically alloyed samples, except for those 

milled in liquid nitrogen. 

Sets of TGA traces for the materials series 1 and 2 (see Table 2.1) are shown in 

Figure 2.3.  As expected, the overall mass loss at 1273 K (1000 ºC) is greater for greater 

nominal iodine contents of the composite.  This is true for both, samples milled at room 

temperature and at cryogenic temperature.  Further, iodine release occurs in several 

steps, which are more or less clearly distinguished, depending on the sample.   

For all samples the mass loss rate increases around 373 K (100 ºC), and decreases 

again by about 623 K (350 ºC).  Figure 2.3 shows the mass loss for samples milled in N2 

gas.  For samples milled in liquid N2 the overall mass loss was substantially smaller.  
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At temperatures between 373 and 623 K, samples milled in liquid N2 (samples 4-1 and 

4-2 in Table 2.1) behaved similarly to the other materials.  However, almost no mass 

loss was detected for those materials at higher temperatures.  Therefore, the following 

discussion is focused on the materials milled in N2 gas.  

For both, cryomilled and room-temperature milled samples, for compositions with 

less than 10% of iodine, only minor mass loss is observed at temperatures between 373 

and 623 K.  It is noticeable, however, that for this temperature range samples milled at 

room temperature (series 2) lose more mass than respective samples with nominally 

identical compositions milled at cryogenic temperature (series 1).  Starting at about 673 

K (400 ºC), the second broad mass loss step continues up to the melting point of Al. A 

sharp mass loss step is associated with Al melting.  It is followed by additional slight 

and gradual mass loss.   

The pattern observed for the samples nominally containing 20 % iodine is 

qualitatively different and primarily consists of two mass loss steps spread over broad 

temperature ranges.  The first step begins at about 373 K (100 ºC), as for all other 

samples, but is much stronger than for samples with lower nominal iodine content. It is 

followed by a second gradual mass loss step beginning at about 673 K (400 ºC).  For the 

cryomilled sample, the first step ends at about 623 K (350 ºC), while for the sample 

milled at room temperature, the first step effectively overlaps with the second one. This 

second step continues until the sample reaches the aluminum melting point, and it is 
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apparent that nearly all iodine captured in the material is released by that time.  Thus, 

only minor iodine release occurs upon Al melting, while a slow mass loss continues as 

the sample is heated to higher temperatures.   
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Figure 2.2 TGA decomposition traces of pure AlI3, I2 and sample s-3. 
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Figure 2.3 TGA traces of samples 1-1, 1-2, 1-3 and 2-1, 2-2 and 2-3. 
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Figure 2.4 TGA traces and mass loss rates for samples recovered at different milling 

times.   

 

TGA traces for samples recovered at different milling times are shown in Figure 

2.4.  For both, cryomilled and materials milled at room temperature the amount of 

iodine released at high temperatures increases with longer milling times.  It is also noted 

that the total amount of iodine released upon heating to 1273 K (1000 ºC) slowly 

decreases for longer milling times, indicating iodine loss during milling.  This effect is 

stronger for material milled at room temperature.  

Each of the two broad mass reduction steps between 373 and 623 K and between 

673 K and the aluminum melting point consists of sub-steps, as is evident from the dm/dT 

signals.  These sub-steps are better distinguished for the low-temperature (373-623 K) 

mass loss for samples milled at room temperature, for which the mass loss at lower 
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temperatures is greater.  Conversely, for the cryomilled sample a more significant mass 

loss occurs between 673 K (400 ºC) and the aluminum melting point, and the respective 

mass loss sub-steps are distinguished better.   

For all individual dm/dT peaks, except for the sharp peak associated with the 

aluminum melting, the peak positions shift to lower temperatures as the milling time 

increases.  For the sample milled for 24 hours (not shown for brevity), the overall shape 

of the TGA curve does not differ substantially from that shown in Figure 2.4 for the 

sample milled for 6 hours.  However, the strongest peak in the dm/dT trace shifts to 

higher temperatures, nearly coinciding with the sharp peak associated with aluminum 

melting.   

TGA measurements were also performed for the samples prepared in the shaker 

mill.  As illustrated in Figure 2.2 (see also Figure 2.5), these samples decomposed in a 

sequence of steps similar to that described above for the samples milled in the attritor 

mill with water used as a cooling agent.  

The effect of the starting material is illustrated in Figure 2.5.  The shapes of the 

TGA trace for material prepared from Al and I2 is substantially the same as the trace for 

material prepared from Al and AlI3 with the same nominal bulk composition.  This 

suggests that regardless of the starting material, the distribution of the bulk of the iodine 

within the Al matrix is only affected by the milling process.  The most noticeable 

difference is a small but relatively sharp mass loss step around 553 K (280 ºC) for the 
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sample prepared with AlI3 as a starting material.  This step-wise mass loss correlates 

well with the major mass loss step observed for pure AlI3 as shown in Figure 2.2.  This 

step was never observed for mechanically alloyed samples prepared using elemental 

iodine.  The onset of the main mass loss sequence in samples prepared from elemental 

iodine occurs at slightly higher temperatures.  This may indicate the possibility that 

some AlI3 remains unaltered under the milling conditions used here if AlI3 is used as 

starting material. 
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Figure 2.5 TGA traces and respective derivatives for samples s-1 (solid line) and s-2 

(dashed line).   

 

2.3.1.3 Material Structure and Composition.  Characteristic XRD patterns 

collected for different samples with varying milling conditions are shown in Figure 2.6. 

The peak pattern for Al and the strongest peak for AlI3 (between 25 and 26º) were 

recognized for all samples. In some samples, additional AlI3 peaks were identified. The 
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peaks of AlI3 are broad for most samples indicating that AlI3 is not well crystallized. The 

strongest presence of AlI3 occurs in the cryomilled sample 1-2. The XRD traces of series 

1 and 2 show that cryomilled samples have sharper AlI3 peaks, and thus a more ordered 

structure than the room temperature milled powders with the same nominal composition.  

Several peaks observed in the XRD patterns could not be identified.  In 

particular, a peak around 27°, most clearly observed for the samples 1-2 and 2-3 in Figure 

2.6, was found in every pattern.  It may not be clearly seen in some of the traces 

presented in Figure 2.6; however, with whole pattern refinement (using GSAS) assuming 

the presence of Al and AlI3, this peak was identified for all the patterns.  Additional 

unrecognized peaks were observed in samples 1-2, 2-2 (at 11º) and 2-3 (at 23°).  

Finally, XRD was used to examine samples heated to specific temperatures in the 

TGA furnace.  The patterns from sample 1-2 heated to and cooled from 673, 783, and 

873 K, are shown in Figure 2.7.  The pattern for the as-prepared material, shown already 

in Figure 2.6, is repeated in Figure 2.7 for reference.  The quartz sample holder was 

used to characterize the small batches of materials recovered after heating to intermediate 

temperatures.  Upon heating, AlI3 peaks become sharper but hardly decrease in 

intensity.  The AlI3 peaks remain clearly identifiable even for samples heated above the 

reported decomposition temperature of AlI3 (~673 K).   
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Figure 2.6 XRD patterns for mechanically alloyed Al-I2 materials.  A smaller quartz 

sample holder was used to characterize sample 3-2; other samples were placed into the 

standard sample holder. 
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Figure 2.7 XRD patterns of sample 1-2 heated to and cooled from different temperatures.  
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XRD results were analyzed by whole pattern refinement using the GSAS software 

package.  The measured patterns were fitted with calculated patterns assuming the 

composition to include only two components, Al and AlI3.   

Table 2.3 shows that substantial part of iodine incorporated into the mechanically 

alloyed materials, more than half for most samples, is not contained in the AlI3 detectable 

by XRD.  The relative amount of iodine unaccounted for by AlI3 is smallest for the 

samples loaded with 10% of iodine.   

Quantitative X-ray analysis was also used to observe whether the iodine 

distribution within the sample changes upon heating.  Respective results for sample 1-2 

are shown in Table 2.4.  For these measurements, the small sample holder was used 

consistently, and consequently the AlI3 concentration shown for “as-prepared” material in 

Table 2.4 is lower than for the same material (1-2) shown in Table 2.3, for which the 

XRD data from the standard sample holder were used.  Nevertheless, the results shown 

in Table 2.4 can be compared between themselves.  The rate at which the overall weight 

loss is measured by TGA exceeds slightly the relative rate of reduction in the AlI3 

concentration; respectively, the percentage of iodine that remains unaccounted for 

decreases slightly as the temperature to which the sample is heated increases.  This is a 

somewhat unexpected result, considering that AlI3 is reported to boil off at 655 K (382 

ºC) [53] and is observed to decompose nearly completely by 673 K (400 ºC) in the TGA 

measurements shown in Figure 2.2 
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Table 2.3 Iodine Concentrations in the Prepared Materials Estimated from TGA (ITG) and 

from Quantitative X-ray Analysis (IAlI3).  

Sample 

ID 

Wt. fraction of I 

loaded, 

I0, % 

Total TGA 

mass loss, 

ITG, % 

XRD whole pattern 

processing: wt. 

fraction of I in AlI3, 

IAlI3,% 

Iodine balance 

(unaccounted for), 

(ITG-IAlI3,)/ITG·100 % 

1-1 5 4.56 1.59 65.1 

1-2 10 8.01 4.02 49.8 

1-3 20 15.53 3.18 79.5 

2-1 5 4.62 1.60 65.4 

2-2 10 7.53 3.24 57.0 

2-3 20 16.49 4.52 72.6 

5-1 10 8.37 3.75 55.2 

 

Table 2.4  Iodine Weight Fractions Estimated from TGA (ITG) and from Quantitative 

X-ray Analysis (IAlI3) for Sample 1-2 Quenched from Elevated Temperatures.   

 

2.3.1.4 Preparation of Equiaxial Powders with Substantial Iodine Content.  

Examination of the samples prepared at different conditions showed that the most 

efficient particle size reduction and production of equiaxial particles occurs when milling 

is performed with liquid nitrogen as a milling medium.  However, based on the very low 

measured weight loss in the TGA experiments it was also observed that iodine is almost 

not retained in such powders.  Therefore, additional experiments were performed in 

Temperature sample 

heated to, K 
ITG, wt. % IAlI3, wt. % (ITG-IAlI3,)/ITG·100 % 

As prepared 8.01 2.06 74.3 

673 7.05 1.69 76.0 

783 5.41 1.44 73.4 

873 4.19 1.34 68.0 
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which material was initially prepared by room temperature milling and only then 

size-reduced by milling in liquid nitrogen.  Specifically, material 3-2 (see Table 2.1) 

was milled for 3.5 additional hours with liquid nitrogen in both the vial and cooling 

jacket (ID 5-1 in Table 2.1).  Samples were recovered every 30 min from the mill, and 

substantial reduction of particle sizes and formation of equiaxial particles were observed 

after 3.5 hours, at which point the milling was stopped.   

 

 

Figure 2.8 SEM images comparison of sample 3-2 and sample 5-1; magnification is the 

same for both images.  A: sample 3-2, B: sample 5-1. 
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Figure 2.9  TGA traces of samples 3-2 and 5-1. 

 

The SEM images of samples 3-2 and 5-1 are shown in Figure 2.8.  Both, marked 

reduction in particle dimensions and change in the particle shapes are clearly observed.   

The TGA traces for the prepared uniaxial powder (sample 5-1) and its parent 

material (sample 3-2) are shown in Figure 2.9.  The traces are qualitatively similar; 

however, the overall iodine concentration retained in the material after milling in liquid 

nitrogen is reduced compared to the parent material.  It is also noted that compared to 

the parent material, iodine release occurs at somewhat lower temperatures for the 

material milled in liquid nitrogen. 

 

2.3.2 Discussion  

2.3.2.1 Synthesis of Mechanically Alloyed Powders.  Both room temperature and 

cryogenic mechanical milling are suited to encapsulate iodine in aluminum.  In both 

cases, iodine behaves as an effective milling process control agent resulting in flake-like 
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particle shapes preserved for a relatively long time.  Also, similar to the effect of 

conventional milling process control agents, an increase in the load of iodine results in a 

decrease in the product particle dimensions.  The product particle sizes are also reduced 

by milling at liquid nitrogen temperature, presumably due to reduction in the ductility of 

aluminum.  Equiaxial particles are readily obtained by milling in liquid nitrogen as a 

milling medium; however, milling in liquid nitrogen results in a relatively rapid loss of 

iodine from the system.  For milling in nitrogen gas, the loss of iodine is faster at higher 

nitrogen flow rate through the milling container.  It is likely that the loss of iodine is 

directly correlated with the gas flow, which is substantially increased when the container 

is filled with boiling liquid nitrogen. When iodine loss is accelerated by a greater purging 

gas flow, its effect as a process control agent is also reduced, resulting in a more rapid 

formation of the mechanically alloyed composites between aluminum and the remaining 

iodine.  

The difference in iodine release upon heating for the samples milled at different 

temperatures is relatively minor.  At the same time, an improvement in stabilizing 

iodine in Al by cryogenic temperature milling compared to the room temperature milling 

is measurable.  For both, room temperature and cryogenic milling, the amount of iodine 

released at higher temperatures increases with longer milling times.  Comparison of 

samples milled for different times indicates that the 6-hr milling results in a stabilized 

material when the initial iodine concentration is 5 wt. %.  The material is also nearing its 
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stabilized composition for the compositions with 10 wt. % of iodine.  For the 

compositions deemed stabilized, only about 10 % of the iodine retained in the material is 

released upon heating to 673 K (400 ºC).  Using longer milling times does not result in a 

substantial reduction of this relatively low-temperature iodine loss.  Based on this 

assessment, the materials prepared at the liquid nitrogen temperature are closer to their 

stabilized state than similar materials prepared at room temperature.  Further, materials 

with 20 wt. % of initial iodine are far from their stabilized condition.  Comparing their 

respective TGA traces, it appears that a longer milling time would result in a further 

increase of iodine fraction retained in such materials; however, the very long milling 

times may be impractical especially considering the small but steady iodine loss due to 

the purging of the milling container.  It is possible that the milling efficiency can be 

further improved by adjusting the ball sizes and speed of impeller (rpm), so that the times 

required to achieve a stabilized state are somewhat reduced.  However, such 

optimization of the milling parameters was outside the scope of the present effort.   

It is likely that the limit to the iodine concentration that can be retained in 

aluminum at elevated temperatures depends more on the specific milling conditions and 

less on the characteristics of aluminum and iodine themselves.  More than 7 wt. % of 

iodine was observed to be released above 673 K (400 ºC) in this effort for a material 

prepared using elemental Al and I as starting materials in the attritor mill (cf. Figures 2.3, 

2.4); however, this concentration is not the limit for the material system.  For the 
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material prepared in the shaker mill, a greater overall percentage of iodine was captured 

in the material and more than 9 % of iodine was retained upon the material’s heating to 

673 K (400 ºC), as shown in Figure 2.5.   

2.3.2.2 Aluminum-Iodine Compounds.  Only a small portion of iodine contained 

in the mechanically alloyed material is similar to “free iodine” and thus released upon 

heating to 473 K (cf. Figure 2.2).  Most of the retained iodine is either bonded to 

aluminum or at least effectively encapsulated, so that it remains in the material at 

elevated temperatures.  It is also observed that AlI3, the only reported stable aluminum 

iodide, may not be the only or even the primary compound formed.  The formed AlI3 is 

poorly crystalline and is likely embedded in an Al matrix.  The latter assessments are 

based on both TGA and XRD results. Based on TGA measurements, pure AlI3 

decomposes nearly completely upon its heating to about 673 K (400 ºC); however, less 

than 10 % of the entire iodine retained in stabilized mechanically alloyed powders is 

released upon heating to this same temperature (compare Figure 2.2 vs. Figures 2.4, 2.5).  

XRD also show that AlI3 remains detectable as a stabilized phase in the material upon its 

heating up to 873 K (600 ºC), as shown in Table 2.4, while substantial loss of iodine 

content is observed from the TGA measurements.  

Release of iodine occurring in well-distinguishable steps preceding aluminum 

melting (see Figure 2.4) indicates formation of several Al-I2 compounds.  Identification 

of separate steps suggests that multiple distinct phases may be present in the material, or 
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that some phases undergo transformations as the material is being heated.  Indeed, 

formation of AlI and, possibly, other intermediate compounds was inferred by early work 

studying solubility of Al in AlI3[54].  Mechanical alloying is known to effectively 

generate metastable alloys, similar to rapidly quenched melts[34], so the formation of 

such compounds is not surprising.  XRD was inefficient in resolving the structural 

differences between the formed compounds, indicating that they are either poorly 

crystalline or exist as very fine inclusions.  However, the observation that 

decomposition steps shift to different temperatures (see Figure 2.4) for materials milled 

for different times is consistent with the concept of iodine redistribution among several 

phases induced by mechanical milling.  In the future, high resolution transmission 

electron microscopy studies could be useful in resolving such inclusions and identifying 

their compositions and structures.   

 

2.4  Conclusions 

Mechanical alloying is effective in preparation of Al-I2 compounds in which iodine is 

bonded to aluminum and is not released until the material is brought to high 

temperatures.  Mechanical alloying at liquid nitrogen temperature is more effective in 

preparing stabilized Al-I2 compounds than milling at room temperature.  An increase in 

the flow rate through the milling vial results in a higher rate of iodine loss during milling.  

Milling directly in liquid nitrogen does not allow preparation of the stabilized Al-I2 
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compounds; however, it results in the formation of relatively equiaxial particles as 

opposed to flake-like products obtained under other milling conditions.  Therefore, 

milling directly in liquid nitrogen can be used as an additional milling step following the 

preparation of the stabilized material, when equiaxial and/or smaller particle sizes are 

desired.   

Materials containing as much as 17 wt. % of iodine were prepared.  However, 

for such high iodine concentrations, a substantial fraction of the retained iodine was 

released when the material was heated to less than 673 K (400 ºC).  In fully stabilized 

mechanically alloyed samples, containing more than 8 wt. % of iodine, about 90 % of the 

entire iodine content was released after the material was heated above 673 K.  In 

addition to poorly crystalline AlI3, other iodine compounds were contained in the 

mechanically alloyed powders.  In such compounds, iodine was bonded to aluminum 

stronger than in AlI3, so that their thermal decomposition and respective iodine release 

occur at higher temperatures compared to decomposition and boiling of AlI3.   
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CHAPTER 3  

REACTION KINETICS OF Al-I2 COMPOSITES 

 

3.1   Introduction 

Research is currently active on the development of multifunctional reactive materials.  

In particular, there has been interest in developing reactive compositions with biocidal 

combustion products[45, 47] .  Such materials are needed for munitions aimed to defeat 

stockpiles of biological weapons.  The potentially harmful spores and bacteria should be 

inactivated before they are released to the environment, and various methods of 

increasing the rate of such inactivation are being explored.  Halogenated compounds are 

known to be effective biocides [48]; however, most such materials are unstable and 

difficult to handle.  Therefore, it is of interest to generate such compounds in situ when 

biological agents are expected to be released.  Aluminum powder is a common 

component of energetic formulations[3] and it is added to conventional explosives to 

achieve greater reaction temperatures and to maximize the energy density of the payload 

[24, 35-37, 50-52].  It was shown in Chapter 2 that mechanical milling can be used to 

prepare relatively stable aluminum-iodine (Al-I2) composites.  These materials have a 

high combustion enthalpy, comparable to that of pure Al, and they also release iodine 

upon heating.  Initial experiments from Chapter 2 showed that Al-I2 composites 

prepared by mechanical milling are more stable than conventional Al-I2 compounds, i.e., 
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AlI3.  It was also shown that the properties of the prepared composites are not affected 

strongly by selection of the starting materials (e.g., elemental I or AlI3 mixed with Al) 

used for mechanical alloying.  This Chapter is aimed to further explore the Al-I2 

composites prepared by mechanical milling; in particular, it is of interest to consider the 

kinetics of reactions leading to iodine release at different temperatures.  Furthermore, 

ignition and oxidation behaviors of the prepared materials will be investigated and 

correlations between different reactions will be considered. 

 

3.2  Materials 

Two batches of materials with equiaxial shaped particles (sample 1-4 and 5-2, shown in 

Table 2.1) were used in these experiments.  Sample 1-4 was size classified using a No. 

170 mesh (88 µm opening size) sieve and powder passed through sieve was used.  

Sample A was continuously milled for 10 hours.  The product powder was passed 

through a 170 mesh (88 µm opening size) sieve.  Sample B was milled in two steps.  

The first step included milling for 6 hours as outlined above.  The second step included 

3.5 hour milling with liquid nitrogen fed into both cooling jacket and inside the milling 

vial.  Using liquid nitrogen inside the milling vial helps to reduce the particle sizes of 

the prepared powders, but it also results in a less stable material for which greater iodine 

release occurs at low temperatures. 
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Figure 3.1  Particle size distributions for samples A and B.  Volume mean particle 

sizes are shown for each material.  

 

Sample A Sample B

30 μμμμm

 

Figure 3.2 SEM images of samples A and B; magnification is the same for both images.  

 

In addition to the Al-I2 composites, pure Al powder with nominal particle sizes in 

the range of 1 – 5 µm by Atlantic Equipment Engineers was used for selected oxidation 

experiments as a reference. 
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Figure 3.1 shows the particle size distribution (PSD) and respective volume mean 

particle sizes of samples A and B.  The abrupt drop of the volume fraction of particles 

coarser than about 60 µm for sample A is due to sieving prior to use in this project.  

Both samples consist of micron-sized particles.  The morphology of particles is 

illustrated in SEM images shown in Figure 3.2. Generally, both samples contain particles 

with equiaxial shapes, and particles of sample A are coarser and more rounded compared 

to sample B. As described above, using liquid nitrogen inside the milling vial helps to 

reduce the particle sizes of the prepared powders, but it also results in a less stable 

material for which greater iodine release occurs at low temperatures. 

 

3.3  Experimental 

A TA Instruments model Q5000IR thermogravimetric analyzer (TGA) was used for both 

iodine release and oxidation measurements.  Materials were placed in alumina pans.  

For iodine release measurements, the balance and the furnace were purged with argon at 

20 and 50 ml/min, respectively.  These relatively high flow rates were selected to 

protect the balance from corrosive iodine, and to minimize the contamination of the 

furnace environment with traces of oxygen.  The maximum temperature was limited to 

1273 K (1000 ºC). The heating rates varied from 5 to 200 K/min.  The mass of material 

used for iodine release kinetics measurements varied in the range of 1 – 20 mg.   
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Oxidation of Al-I2 composites was studied in oxygen-argon mixtures and in pure 

oxygen.  The balance and the furnace of Q5000IR were purged with argon at 10 ml/min 

and oxygen (purity 99.8 %) at 25 ml/min, respectively.  Experiments were performed at 

heating rates varied from 5 to 200 K/min.  The mass of material used in oxidation 

experiments varied in the range of 0.4 – 5 mg. 

A heated filament ignition test was used to characterize ignition of the prepared 

materials at heating rates not achievable by the thermo-analytical measurements.  Figure 

3.3 shows a simplified diagram of the filament ignition apparatus.  Details of this 

experimental technique are available elsewhere [31, 51, 55].  A 0.5 mm diameter 4.5 cm 

long Nickel-Chromium alloy wire was used as the electrically heated filament.  The 

filament served as a load in a circuit including a set of DC batteries and an adjustable 

resistor connected in series.  Thus, the heating rate of the filament was adjusted by 

changing the applied DC voltage and resistance.  A small amount of powder was mixed 

with a surfactant and hexane, and this slurry was coated onto the filament to form a thin 

layer with a coated portion of about 1 cm in length.  The coating dried prior to 

experiments.  Ignition was observed using a silicon photodiode (DET110 by Thorlabs, 

Inc.) equipped with an iris aimed at the powder coating from a distance of 4 – 5 cm.  A 

high speed camera (MotionPro 500 by Redlake) was also used to observe the ignition in 

some experiments.  The temperature history of the heated filament was measured using 

a high-speed infrared pyrometer (DP1581 by Omega Engineering, Inc.), which was 
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focused on the uncoated surface of the filament adjacent to the powder coatings.  The 

experiments were performed in air with varied filament heating rates.  From this 

experiment, the ignition temperature was determined as a function of the heating rate. 

 

 

Figure 3.3  Heated filament setup used for powder ignition experiments. 

 

3.4  Results 

3.4.1 Iodine Release 

Mass reduction traces for samples A and B heated in argon at different heating rates are 

shown in Figure 3.4.  Consistent with the second section, there are several main mass 

reduction stages.  Initial iodine release occurs well before Al melting, starting at a 

temperature as low as about 373 K (100 ºC) and continuing to up to about 673 K (400 
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ºC).  This iodine release stage is much stronger for sample B than for sample A.  The 

second subsolidus iodine release stage begins in the vicinity of 873 K (600 ºC).  It 

overlaps with aluminum melting.  The second iodine release stage is substantially 

stronger for sample A, for which the amount of iodine released in the initial stage is very 

small.  Iodine release continues after melting; however, the measurements at elevated 

temperatures are increasingly affected by oxidation with residual oxygen and thus do not 

provide a reliable measure of the iodine release rate.  The iodine release from molten 

aluminum observed in these TGA experiments is also of little significance in terms of its 

effect on or interference with the material ignition (as shown below) and so it will not be 

analyzed.   

To evaluate the kinetics of iodine release, consider Figure 3.5 showing 

temperature derivatives of the TGA traces presented in Figure 3.4.  There are two 

clearly distinguished minima in the temperature range of 373 and 673 K, when the first 

broad iodine release stage occurs.  This iodine release stage is weak for sample A; 

nevertheless the two minima in the dm/dT trace are clearly distinguished in the inset, 

showing fractions of the dm/dT traces at a magnified scale.  Therefore, the first iodine 

release stage is further broken down into two steps.  The temperatures at which the first 

and second steps occur correlate with the respective temperatures at which pure iodine 

and AlI3 were observed to evaporate upon heating.  The second iodine release stage is 

represented by a single minimum in the dm/dT trace.  For sample B, this minimum and 
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the respective iodine release stage are nearly completed before the Al melting point.  

For sample A, the rate of iodine release appears to increase noticeably at the onset of 

aluminum melting, so that the shifts to higher temperatures at increased heating rates are 

smaller for the trailing edges of the respective minima of the dm/dT traces compared to 

those for the leading edges of the same minima.   
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Figure 3.4  Iodine release trace for sample A and B in TGA at different heating rates. 

 

The TGA measurements were processed to calculate the iodine release activation 

energy as a function of the reaction progress, assumed to change between 0 and 1 for the 

as-prepared sample and the sample heated to 1273 K (1000 ºC), respectively.  The data 

processing used a model-free integral isoconversion method proposed by S. Vyazovkin 

[56] accounting for the variation in the activation energy with the extent of conversion.  
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Results of the activation energy as a function of reaction progress are shown in Figure 

3.6.  For the first iodine release stage, the activation energy is generally low for both 

samples A and B.  While less clearly distinguished, it appears that the first step has a 

somewhat lower activation energy (~ 50 kJ/mol) than the second one (~ 70 kJ/mol) for 

both samples.  Specific values of the activation energies corresponding to the low 

temperature decomposition steps for samples A and B are very close to each other.  The 

same activation energy values are also obtained using Kissinger analysis[57], following 

the minimum positions at various heating rates (not shown, for brevity).   
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Figure 3.5  Mass derivatives of iodine release for sample A and B in TGA at low 

temperature range for different heating rates. 
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For the second iodine release stage, (occurring at different reaction progress 

values for samples A and B), the activation energy increases for both materials.  Note 

that the sharp spike in the activation energy immediately before it settles near 300 kJ/mol 

is an artifact due to residual oxidation occurring in the TGA experiments despite 

continuous flushing the furnace with pure argon.  This oxidation is detected by slight 

increase in the sample weight after the completion of the first iodine release stage. Note 

also that the interference of melting with the second iodine release stage for sample A 

results in a rapid increase of the apparent activation energy, as shown in Figure 3.6.  The 

melting point does not depend on the heating rate so that, once again, very high apparent 

oxidation energies observed for sample A at high reaction progress values are not 

physical. 
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Figure 3.6  Activation energy in function of reaction progress for samples A and B 

calculated using Vyazovkin method [56, 58].  Note the logarithmic horizontal scale. 
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3.4.2 Oxidation   

Oxidation of samples A and B was characterized by TGA at different heating rates in 

both an argon-oxygen mixture and pure oxygen; the results are shown in Figure 3.7.  

The mass changes result from the combined effects of iodine release (mass loss) and 

oxidation (mass gain).  For all samples the mass keeps decreasing upon heating to 673 K 

(400 ºC).  In general there are four oxidation steps for both samples spread over broad 

temperature ranges from 673 to 1373 K, which are better observed in the derivatives of 

mass change during oxidation (Figure 3.8).  The first step starts around 673 K (400 ºC) 

with a slight weight gain.  For sample B, the first step is not clearly seen from Figure 3.7 

and Figure 3.8 because the mass loss due to iodine release offsets the mass gain due to 

oxidation.  The second step starts around 873 K (600 ºC) where the sample mass sharply 

increases.  The third step seems to be related to aluminum melting and does not shift 

with heating rates, unlike thermally activated reaction steps.  As the heating rate 

increases, the second step shifts to higher temperatures and merges with the third step 

associated with Al melting.  In the fourth step, oxidation occurs over a broad 

temperature range starting from 1073 K (800 ºC).  For sample B the fourth step ends 

around 1373 K (1100 ºC); for sample A the end point is beyond the measured 

temperature range.  Note that the weight increase is measured only when the weight 

gain from oxidation exceeds the weight loss from iodine release.  Thus, the oxidation 

may be faster than what is directly implied by the measured weight gain.   
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The positions of the dm/dT peaks shifting to higher temperatures at greater 

heating rates were processed using the Kissinger method [57-59] to evaluate activation 

energies for different oxidation steps.  Different oxidation steps were resolved better for 

different samples, respectively, so this processing was somewhat incomplete.  The 

activation energies identified by this processing are shown in Table 3.1. 
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Figure 3.7  Oxidation trace for sample A and B in TGA at different heating rates.  The 

oxidation of sample A was measured in pure oxygen; the oxidation of sample B was 

measured in argon and oxygen mixture. 
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Figure 3.8  Derivative of mass change for oxidation of sample A and B at different 

heating rates.   

 

Table 3.1 Activation Energies, kJ/mol, Determined by Kissinger Processing for Different 

Oxidation Steps for Al-I2 Composites.  

Sample ID A B 

Oxidation step 

1 144 - 

2 289 287 

4 - 506 
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To understand processes occurring during oxidation, XRD patterns were collected 

from powders by quenching sample B heated to 298, 803, 913, 953 and 1473 K.  A 

low-background quartz sample holder was used to characterize small batches of material 

recovered after heating to intermediate temperatures.  Figure 3.9 shows the respective 

XRD patterns and the pattern of as-milled sample as reference.  For this sample, peaks 

of iodine or iodine-containing phase cannot be clearly seen, and no iodine-containing 

phase was detected unambiguously as oxidation went on.  Only aluminum reacting to 

form γ-alumina and α-alumina was observed from the XRD patterns.  
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Figure 3.9  XRD patterns of the powders produced by heating sample B in argon and 

oxygen mixture to and quenching at different temperatures.  
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Figure 3.10  The TGA oxidation traces of Al-I2 composites from which a TGA signal 

measured during heating the same samples in argon are subtracted (top) and TGA traces 

for the pure Al oxidation (bottom). 

 

To directly compare oxidation of Al-I2 composites with that of aluminum, the 

oxidation TGA traces shown in Figure 3.7 were processed by subtracting the iodine 

release TGA traces recorded for the same material at the same heating rate in argon, as 

shown in Figure 3.4.  The final processed oxidation traces for samples A and B are 
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shown in Figure 3.10.  In addition, several oxidation traces directly measured for a pure 

Al powder are shown for comparison.  A slow decrease in the processed TGA signal 

during the temperature ramp up to about 623 K (350 ºC) means that the iodine release at 

these low temperatures was slightly accelerated in the oxygen environment.   

Although weight loss (dominated by the iodine release) was observed around the 

Al melting point for 100 K/min in the original oxidation trace (Figure 3.7), the weight 

gain due to oxidation becomes noticeable after subtraction of the TGA curve measured in 

argon.  Compared to the pure aluminum oxidation, oxidation for the composite materials 

starts at a lower temperature (673 K) and a distinct oxidation event occurs around the 

aluminum melting point.  It is apparent that oxidation for Al-I2 composites is generally 

accelerated compared to pure aluminum. 

 

3.4.3 Ignition  

Figure 3.11 illustrates the ignition temperature measurements and shows a temperature 

trace corresponding to a specific setting of the electric circuit and a photodiode signature 

for Al-I2 sample undergoing ignition.  A photodiode signal for the blank filament 

without powder is also shown by Figure 3.11 as a reference.  The calibrated temperature 

range for the pyrometer is 273 – 1200 K.  For Al-I2 powder, the ignition results in a 

sharp spike in the photodiode signal, which is observed at about 0.329 s in Figure 3.11. 

At this time, the pyrometer output is within the calibrated range, and the ignition 
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temperature is measured directly. For some runs ignition moment is beyond the calibrated 

pyrometer range; in such cases an extrapolation of the filament temperature based on the 

temperature ramp measured in the calibrated range is used.  A linear extrapolation of the 

temperature ramp for the range of temperatures of interest in these experiments was 

supported by a detailed analysis of the heat transfer for the electrically heated filament 

placed in a convective environment[55].    
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Figure 3.11 Photodiode and temperature traces recorded during heated filament ignition 

experiment of Al-I2 composites.  A blank filament without any powder coating was 

heated and the photodiode signal was recorded as a reference. 

 

The filament ignition experiments were performed in air at different heating rates 

varying in the range of 1,000 to 220,000 K/s.  Sample B exhibited clear ignition 

signatures and the time of ignition was readily detected by the photodiode.  For sample 

A, clear ignition signatures were observed at heating rates from 5,000 to 8,000 K/s.  For 
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lower heating rates, (around 2,500 K/s) or higher heating rate (around 12,000 K/s), 

ignition of sample A could not be easily detected by the photodiode.  A high speed 

video camera was used to aid in identifying the ignition moment.  Figure 3.12 shows 

image sequences for the ignition or sample A at low and high heating rates, respectively.  

As the filament is heating up, the coating surface looks darker than the uncoated filament, 

which may be attributed to the temperature gradient (the coated portion of the wire has a 

greater heat capacity, and so it is heated to a lower temperatures compared to the blank 

wire.)  In addition, the emissivity of the coating may be different from that of the clean 

wire surface.  Note that the coated portion of the filament appears darker than the clean 

surface at the high heating rate (right in Figure 3.12) compared to the low heating rate 

(left in Figure 3.12), consistently with an expected stronger temperature gradient at the 

increased heating rates. 

For the heating rate of 2,500 K/s, ignition is identified when a first bright spot is 

detected on the filament (cf. left in Figure 3.12).  As time goes on, multiple bright spots 

appear and ignition propagates over the coating.  When the coated filament is heated at a 

heating rate of 12,000 K/s (right in Figure 3.12), the time of ignition is identified when 

multiple bright particles appear to be lifted off the filament.  This event always begins at 

the edges of the coated section of the wire, where the temperature is expected to be 

higher and closer to that measured by the pyrometer.  It is interesting that a visible 

smoke cloud is observed to be produced just before the ignition, as seen in the image 
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shown on the right in Figure 3.12.  Similar smoke clouds are observed in the 

video-images for the wire ignition experiments performed at heating rates of 8,000 – 

12,000 K/s.  This observation is hypothesized to be associated with iodine release and 

mass-spectrometric identification of the emitted species could be of interest in the future.    
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Figure 3.12 Images recorded by the high speed camera for sample A undergoing ignition 

at 2,500 K/s (left), and at 12,000 K/s (right).  The filament diameter is 0.5mm.  The 

time delay for each frame is noted in the image.   
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Figure 3.13 Ignition temperatures measured for samples A and B at different heating 

rates. 

 

Figure 3.13 shows the ignition temperatures of Al-I2 composites as a function of 

heating rate.  In general it is observed that the ignition temperatures of the Al-I2 

composites increase with increasing heating rates as is expected for a thermally activated 

ignition mechanism.  The scatter of data might be due to the inconsistency of 

experimental conditions including powder coating, filament diameter and heating 

program.  Ignition temperatures measured for sample B are somewhat lower, and 

ignition can be observed in a wider range of heating rates compared to sample A.  The 

difference in the ignition temperatures measured for samples A and B is relatively small 

and can be caused by a difference in the particle size distributions for the two materials 

(cf. Figure 3.2).  The difference between the particle temperature and the filament 
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temperature may be smaller for finer particles (sample B), explaining a small decrease in 

the measured ignition temperature compared to sample A. 

 

3.5  Discussion 

The results suggest that iodine is retained in the mechanically milled Al-I2 composites in 

at least three different forms.  The correlation of temperatures for two initial iodine 

release steps (the first stage) with the volatilization temperatures of pure iodine and AlI3 

[53, 60] suggest that fractions of the iodine retained in Al can be described as 

representing elemental iodine and AlI3, respectively.  These compounds are only weakly 

bound to aluminum and, similarly to the respective separate phases of I and AlI3, are 

volatilized upon moderate heating.  It is expected that these compounds would result in 

relatively rapid aging and partial deterioration of the prepared composites upon storage 

and handling.  Thus, sample A, releasing less iodine at low temperatures is considered 

to be more suitable for practical formulations.  Iodine retained in the prepared materials 

at elevated temperatures and released just before, during, and after Al melting is strongly 

bound to Al and is expected to survive storage and handling of these materials.  The 

state of this iodine is unknown.  It is possible that iodine is dissolved in the Al crystal 

lattice or present as surface-stabilized nano-inclusions of pure iodine or AlI3 embedded 

into aluminum matrix. 
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The differences in relative fractions of the iodine contained as weakly and 

strongly bound forms between samples A and B represent the major difference between 

these two materials.  Indeed, quantitative differences in the iodine release and oxidation 

behaviors between these two samples can be readily traced to the difference in the weakly 

and strongly bound iodine forms.  At the same time, qualitatively, the samples behave 

similar to each other, including consistency in the apparent activation energies assigned 

to different reactions.   

Increasing the concentration of iodine strongly bound to Al while reducing the 

concentrations of the weakly bound forms behaving as pure iodine and AlI3 are identified 

as objectives of further synthesis efforts aimed at development of practically useful Al-I2 

composites. 

It is interesting to consider whether the detected stages and steps of iodine release 

are correlating with the oxidation steps for the prepared materials.  It is apparent that the 

first iodine release stage occurring at low temperatures does not directly correlate with 

the observed oxidation steps.  Similarly, the initial oxidation step with the onset close to 

673 K (400 ºC) is not associated with any specific iodine release step.  It is worth 

emphasizing that this initial oxidation step occurs earlier than for pure Al (cf. Figure 3.9) 

and so the low-temperature oxidation rate for aluminum is clearly affected by the 

presence of iodine.  Because no crystalline alumina phases are detected for the partially 
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oxidized materials (Figure 3.9), amorphous alumina is the likely product of oxidation at 

these temperatures, as is the case for pure Al [61].    

The second stage of iodine release does appear to correlate with the second 

oxidation step for Al-I2 composites.  In both cases, the reactions start at about 773 – 873 

K and in both cases, the activation energies are found to be close to 300 kJ/mol.  

Aluminum melting also apparently interferes with both iodine release and the oxidation 

processes.  Oxidation at these temperatures produces well-detectable quantities of 

γ-Al2O3.  This product is also consistent with that observed for oxidation of pure Al at 

the same temperatures [62].  Further oxidation results in formation of α-Al2O3, again, 

consistently with the oxidation of pure Al.  Note that pure Al in O2 does not oxidize 

appreciably immediately following its melting, while the oxidation rate increases rapidly 

at elevated temperatures.  Conversely, Al-I2 composite materials oxidize relatively fast 

at the Al melting point.  The oxidation rate increases only slightly (slower than for the 

pure molten Al) as the temperatures increase.  The acceleration in the pure aluminum 

oxidation upon melting has been previously observed in the presence of H2O as an 

oxidizer [63].  It was hypothesized that presence of hydrogen alters properties of the 

protective alumina film resulting in disruption of its continuity when molten Al forms.  

It is possible that the presence of iodine has a similar effect on properties of alumina.  It 

is also possible that iodine bound to crystalline Al is rapidly released upon Al melting; 
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the release of gaseous iodine results in disrupting the alumina shell, which in turn leads to 

an enhanced transport of oxygen to the fresh aluminum surface.   

Finally, it is interesting to consider possible correlations between the ignition 

kinetics and those of the various observed iodine release and oxidation events.  Figure 

3.14 shows ignition temperatures measured at different heating rates presented in the 

same Kissinger plot as the dm/dT minimum and maximum temperatures corresponding to 

individual iodine release and oxidation events, respectively.  The kinetic trends 

following from TGA measurements are extrapolated as straight lines into the range of 

heating rates corresponding to the ignition experiments.  It is apparent that the second 

iodine release step (corresponding to the release of the AlI3-like form of iodine) 

correlates with the ignition data better than any other reactions observed in the TGA 

experiments.  This observation is consistent with the observed “smoke” produced by the 

sample coated onto the heated filament just prior to its ignition (Figure 3.12); the smoke 

may be formed by air moisture reacting with the generated iodine cloud.  The second 

stage of iodine release, not shown in Figure 3.14, but effectively coinciding with step II 

of oxidation is projected to higher temperatures than the experimental ignition 

temperatures determined here.   

Thus, it is suggested that the second iodine release step may accelerate the 

oxidation process and lead to ignition of the materials.  Thus, reducing the weakly 
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bound iodine forms in more stable materials can also alter their ignition behavior, which 

should be addressed in the future efforts.   
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Figure 3.14  Comparison of ignition temperatures measured at different heating rates 

with iodine release and oxidation steps observed in the TGA traces.  Filled symbols 

represent sample A; open symbols represent sample B.  Circles represent oxidation steps, 

triangles represent iodine release steps, and squares show ignition temperatures.  

 

3.6  Conclusions 

Mechanical milling at cryogenic temperatures is successfully applied to prepare Al-I2 

composite powders with iodine concentrations exceeding 10 wt. %.  Detailed TGA 

measurements suggest that iodine is present in the prepared composites in at least three 

different forms.  Two weakly bound forms volatilize similarly to elemental iodine and 
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AlI3. A strongly bound form is retained in aluminum until the material is heated up to 

nearly the Al melting point.  Two different samples prepared in this effort contained 

different fractions of weakly and strongly bound iodine forms; however, the iodine 

release and oxidation behaviors were qualitatively similar for both samples.  Oxidation 

of the prepared materials in O2 occurs in several steps clearly distinguished by TGA.  

The low-temperature oxidation begins sooner than for pure aluminum.  The second 

oxidation step is correlating with the release of strongly-bound form of iodine.  Unlike 

for pure aluminum oxidizing in O2, the second oxidation step is accelerated by Al 

melting.  Ignition of the prepared materials occurs at substantially lower temperatures 

than for pure Al.  It is observed that for the materials prepared in this study, the ignition 

kinetics likely correlates with that of the low-temperature release of iodine.  
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CHAPTER 4  

OXIDATION, IGNITION AND COMBUSTION  

OF Al-I2 COMPOSITE POWDERS 

 

4.1  Introduction 

Recent interest in energetic materials generating biocidal combustion products capable of 

inactivating aerosolized microorganisms prompted research on novel fuels and oxidizers 

containing halogens [47, 64, 65].  It is desired to release maximized quantities of 

halogen-containing combustion products while minimizing any possible negative impact 

of modification of the energetic formulation on its combustion performance.   It is also 

important that the modified ingredients and formulations are convenient to store and 

handle.  In this chapter, continuing Chapter 2 and 3 the focus is on development and 

characterization of Al-I2 composite materials.  Such materials are expected to combine 

attractive combustion characteristics of aluminum powders with a capability to release 

iodine or iodine-containing reaction products.  The Chapters 2 and 3 showed feasibility of 

preparing Al-I2 composite materials by cryomilling [60, 66].  Reactions occurring in such 

materials upon their heating in inert and oxidizing environments were investigated in 

Chapter 2 and 3, where work was restricted to materials containing 10 wt. % of iodine.  In 

this chapter, materials with an expanded range of iodine concentrations are prepared and 

characterized.  In addition to thermo-analytical and ignition measurements, experiments 

directly investigating combustion of the prepared materials as aerosolized clouds and as 
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individual particles are reported.  The goals of this chapter are to better characterize 

ignition kinetics and combustion dynamics of the Al-I2 composite materials prepared by 

cryomilling, and identify materials combining stability, maximized iodine concentration, 

and attractive combustion performance.   

 

4.2  Materials 

Al-I2 composite powders with different iodine concentrations were prepared by 

cryomilling elemental aluminum and iodine using a model 01HD attritor mill by Union 

Process.  Starting materials were aluminum powder, -325 mesh (< 45 µm), 99.5% pure, by 

Atlantic Equipment Engineers and iodine chips, 99% pure, by Sigma Aldrich.  The mean 

size of aluminum powder is 25 µm. 1.8 kg of 10 mm diameter hardened steel balls served 

as milling media.  A 750-ml steel milling vial was continuously flushed with gaseous 

nitrogen.  Liquid nitrogen was flushed through the cooling jacket of the milling vial. In all 

experiments, ball-to-powder mass ratio was 36 and the impeller rotation rate was set to 

400 rpm. Further details describing material preparation are given in Chapter 2 and 3.  

Five different samples were studied in this chapter. Samples A and B (cf. Chapter 

3) had the nominal iodine concentration of 10 wt. %. Sample A was continuously milled 

for 10 hours.  Sample B was prepared by two-step milling, which included milling for 6 

hours with conditions described above, followed by an additional 3.5-hour long milling 
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step with liquid nitrogen fed into the milling vial.  Samples C, D and E were milled 

continuously for 25 hours and contained, respectively, 15, 20 and 30 wt. % of iodine. 

 

Table 4.1 Prepared Al-I2 Composite Powders 

Sample ID Mass ratio 

(Al/I) 

Milling 

time, h 

Milling protocol 

A 90/10 10 Liquid N2 in cooling jacket  

B 90/10 9.5 2-step cryomilling (see text)  

C 85/15 25 Liquid N2 in cooling jacket 

D 80/20 25 Liquid N2 in cooling jacket 

E 70/30 25 Liquid N2 in cooling jacket 

 

Size distributions of the prepared powders were measured using a 

Beckman-Coulter LS230 Particle Counter.  Figure 4.1 shows the particle size 

distribution (PSD) and respective volume mean particle sizes of all the samples.  Note 

that sample A appeared coarse as prepared and therefore it was sieved prior to all 

experiments, which explains an abrupt drop in the volume fraction for particles coarser 

than about 60 µm for that sample.  Sample E included many fine particles and tended to 

agglomerate, causing the bimodal size distribution observed for that sample.  The 

second peak produced by the agglomerated particles was discounted in order to estimate 

the volume mean particle size shown in Figure 4.1.   

All samples consist of generally equiaxial, micron-sized particles.   The 

morphologies of samples C, D and E are illustrated in back-scattered SEM images shown 

in Figure 4.2.  SEM images of samples A and B were presented elsewhere.  Particle 
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shapes are similar for different powders.  With an increase in the iodine concentration, 

the number of fine particles increases.   
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Figure 4.1 Particle size distributions for the prepared composite powders.  Volume 

mean particle sizes are shown for each material. 
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Figure 4.2 SEM images of powders in samples C, D and E. The scale bar is the same for 

all the pictures. 

 

4.3  Experimental 

Iodine release and oxidation were measured by a TA Instruments model Q5000IR 

thermogravimetric analyzer (TGA).  The amount of iodine embedded in composites is 

clearly shown by the total weight loss from TGA results.  Alumina pans were used to 

hold samples for the measurements.  The maximum temperature was limited to 1273 K.  

Experiments were performed at heating rates varied from 5 to 100 K/min.  For iodine 

release and oxidation measurements, the experiment conditions are the same as shown in 

Chapter 3.   

Ignition of the prepared materials was studied in air at heating rates ranging from 

1000 K/s to 22000 K/s using an electrically heated filament [32, 67].  Ignition instant 

was identified from videos recorded at 500 fps using a high speed camera (MotionPro 

500 by Redlake). The temperature at the ignition instant was determined as a function of 

the heating rate.   
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Combustion of the Al-I2 composite powders in air was studied using a constant 

volume explosion (CVE) experiment [68]. A simplified diagram of the experiment setup 

is shown by Figure 4.3.  A nearly spherical, 9.2-liter explosion vessel was initially 

evacuated.  Composites were aerosolized and introduced into the vessel with an air blast 

delivered from a high-pressure reservoir. After a short delay, aerosolized powder was 

ignited by an electrically heated tungsten wire placed in the center of the vessel. The 

pressure trace was recorded by a pressure transducer.  The ratio of the maximum 

pressure over the initial pressure and the maximum rate of pressure rise were used to 

gauge the energy released in each experiment and the rate of combustion, respectively.  

Samples B, C, D and E having comparable particle sizes were tested by this technique 

with a constant powder load (4.65 g), corresponding to fuel-rich conditions for all 

samples.  This mass was selected to be the same as in multiple reference experiments 

with pure Al powders of different particle sizes [68].  Experiments with each material 

were repeated at least three times.  CVE results for similarly sized pure aluminum 

powders were used for reference.   
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Figure 4.3  Schematic diagram of the constant volume explosion apparatus. 

 

 

Figure 4.4 Experimental apparatus and diagnostics for single particle combustion with 

in situ size measurement. 

 

Burning characteristics of individual composite particles were investigated using 

a laser ignition apparatus illustrated in Figure 4.4 [69-72].  Individual particles were fed 

by an air flow into a CO2 laser beam, where they were ignited.  Flow settings were 
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selected so that for all materials the measured average particle velocities were close to 0.7 

m/s.  Before ignition, particles crossed a beam of a 785 nm, 30 mW laser and the 

scattered light pulses were used to measure particle sizes in-situ.  Luminous streaks 

produced by ignited particles were photographed.  Four photomultiplier tubes (PMT, 

Hamamatsu H3164-10) were used to record the light emission from particle burning.   

The photomultiplier tubes were equipped with interference filters (486, 532, 568, and 589 

nm).  Separate measurements using an EPP2000 High Resolution Spectrometer by 

StellarNet Inc were performed to verify that the particle emission did not include a 

parasitic sodium line at 589 nm.  532 and 589 nm filters were used for combustion 

temperature measurement.  Considering that one of the strongest molecular bands of 

AlO emission is at 486 nm, while no substantial AlO emission occurs at 568 nm, the 

strength of the observed AlO emission was evaluated using the following ratio: 

( )

( )
486 568 exp

486 568

/

/
AlO

bb

I I
R

I I
=                          (4.1) 

Where I486 and I568 are the emission intensities measured with 486 and 568 nm filters, 

respectively; (I486/I568)exp is the intensity ratio calculated from experiment; and (I486/I568)bb 

is the ratio calculated for a black body when the black body temperature was equal to the 

measured particle temperature.  The experiments for the Al·I2 composite samples A, B, 

C and D were performed.  Because of agglomeration observed for sample E, it was not 

suitable for the present single particle laser ignition experiments.   
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The overall data processing included the following steps. Individual particle 

pulses were identified from the raw data of the scattered signals and the strongest 

emission signals (568 nm).  The amplitudes of peaks of scattered light pulses were 

converted to particle diameter by matching peak height distribution and particle size 

distribution obtained from Beckman-Coulter LS230.  The time shift between two lasers 

was identified based on the shift between the onset of emission peak and the maximum of 

scatter pulse.  Finally, burn times from emission pulses were correlated to their 

corresponding sizes.  Only the longest emission times measured for each range of 

particle sizes are considered for samples in this chapter.  Shorter emission pulses are 

produced when particles are partially consumed in the laser beam so that these pulses are 

not considered to be representative of burn times of interest [69, 70]. 

 

4.4  Results 

4.4.1 Iodine Release 

Figure 4.5 shows the reduction of mass, m, and derivative of mass over temperature, 

dm/dT, for Al-I2 samples heated in argon. The study in Chapter 3, which focused on 

materials with 10 wt. % of iodine (samples A and B) showed two main iodine release 

stages.  The first one occurred in the temperature range of 373 – 673 K; the second one 

began in the vicinity of 873 K, close to the aluminum melting point.  These iodine 

release stages were also detected for all samples prepared in this project.  Iodine in 
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sample A is well stabilized, and it is mostly released in the second, high temperature 

stage.  Conversely, iodine is not well stabilized in sample B, resulting in a strong initial 

iodine release stage.  For the sample E (30 wt. % of I2) the low-temperature iodine 

release is very strong, relatively comparable to that for sample B.   This may indicate an 

upper limit for the encapsulation of iodine in an aluminum matrix.  Alternatively, longer 

milling times might be necessary to reduce the low-temperature iodine release at higher 

iodine concentrations.  However, longer milling times were considered impractical and 

were not attempted.  At high temperatures (~ 1173K), a slight mass increase for sample 

E was observed that was likely caused by oxidation with residual oxygen.   

For the samples C and D, (with 15 and 20 wt. % of I2, respectively) an additional 

iodine release stage was observed between the two stages mentioned above.   It began 

at 683 K for sample C, and at 653 K for sample D.  

For all samples, except for sample E, the final weight measured after the end of 

heating was close to that expected based on the nominal material composition reduced by 

the entire iodine content for each sample.  The discrepancy in the final weight of sample 

E and that expected based on its nominal starting composition may be associated with an 

incomplete incorporation of iodine into the aluminum matrix.  Longer milling times 

possibly could have increased the efficiency of iodine incorporation into aluminum.  In 

addition, reaction with residual oxygen (an undesired experimental effect) and causing 
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the observed weight increase at high temperatures could have further contributed to the 

discrepancy between the observed and expected final weights for sample E.  
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Figure 4.5  Mass change and derivative traces (shifted along the vertical axis for clarity) 

for iodine release of Al-I2 samples in argon. All the samples were heated at 10 K/min. 

 

Table 4.2  Measure of Stability Defined by Equation (4.2) for Different Samples 

Sample ID A B C D E 

S, % 91.2 57.9 87.9 83.0 57.2 
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Minima in the dm/dT traces shown in Figure 4.5 illustrate further the observed 

iodine release stages.  The intermediate iodine release stage well visible in the TGA 

traces for samples C and D, is represented by a minimum shifting to higher temperatures 

for lower iodine concentrations: it is observed at about 678 K for sample D and at about 

743 K for sample C.  It is possible that this stage merges with the following stage for 

sample B, resulting in the observed feature in its dm/dT trace in the vicinity of 823 K. 

The dm/dT trace of sample C shows that the initial iodine release stage can be split into 

two steps as two minima in the temperature range of 373 – 673 K are visible.  However, 

the first step occurs at a very low temperature and the steps are hard to distinguish for 

most samples, so these features were not analyzed further.   

For all samples, the high temperature iodine release stage overlaps with Al 

melting.  Melting accelerates iodine release for all samples, resulting in a clearly 

distinguished feature in all the dm/dT traces.  

A relative measure of the material stability, S, is introduced comparing the total 

mass of iodine contained in the sample (equal to the total weight loss measured in the 

TGA, Wtotal) with the weight loss at the temperatures exceeding 673 K, WT>673K, i.e., after 

the first major low-temperature iodine release stage:   

%100673 ⋅= >

total

KT

W

W
S                        (4.2) 

The values of S for all samples are shown in Table 4.2. 
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Kinetics of the iodine release stages were studied by tracking the main minima 

positions while heating samples C and D (for which all three stages were observed) at 

different rates from 5 to 100 K/min.  These results are discussed below, in the Reaction 

kinetics section.  Note that kinetics of iodine release for the samples with 10% I2 was 

studied in Chapter 3.   

 

4.4.2 Oxidation 

TGA traces and their derivatives for oxidation of Al-I2 samples are shown in Figure 4.6.  

The mass changes result from the combined effects of iodine release (mass loss) and 

oxidation (mass gain).  All materials are losing weight upon initial heating, and a 

four-step oxidation including a sharp oxidation step coinciding with the Al melting is 

observed at higher temperatures for all materials except for sample E, for which the 

oxidation behavior is masked by strong iodine release.  Consistently with the iodine 

release measurements (Figure 4.5), the initial weight loss is much stronger for sample E 

compared to other materials. The oxidation results in only one clearly distinguished peak 

in the dm/dT trace for that sample.   
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Figure 4.6 Mass change and derivative traces for oxidation of Al-I2 samples in pure 

oxygen at heating rate of 10 K/min. 

 

Comparing the dm/dT traces for samples A, C, and D, for which the first 

oxidation peak is well distinguished, one observes how that peak shifts to lower 

temperatures for higher iodine concentrations.  It is interesting that the weight gains for 

the first oxidation stage for samples C and D (with 15 and 20 wt. % of I2, respectively) 

are more significant than those for samples A and B, both containing 10 wt. % of I2.  
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For sample D, oxidation appears to begin prior to the first iodine release stage, so that the 

minimum in the dm/dT trace is overlapped with the onset of the first oxidation peak, 

resulting in a superficial additional maximum just above 473 K.  For sample C, the first 

oxidation peak shifts to higher temperatures and the additional maximum is no longer 

observed.  There is no obvious effect of iodine concentration on the positions of other 

oxidation steps. 

 

4.4.3 Ignition  

Figure 4.7 shows the ignition temperatures of Al-I2 composites as a function of heating 

rate.  Each point represents an individual filament ignition experiment.  Ignition instant 

is identified using recorded videos when a first bright spot is detected on the powder 

coating.  Despite significant scatter of the data points, a general trend is noticed showing 

that the ignition temperatures of the Al-I2 composites increase slightly with increasing 

heating rates as is expected for a thermally activated ignition mechanism.  The lowest 

ignition temperatures are observed for sample D, (20 wt. % of iodine).  It is also noted 

that the scatter in the measured data is decreasing from sample C to E. 
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Figure 4.7  Ignition temperatures for samples C, D, and E measured at different heating 

rates 

 

4.4.4 Reaction Kinetics 

TGA results as well as ignition results were processed using the Kissinger method [57]. 

Figures 4.8 and 4.9 show plots of ln(β/T
2), where β is the heating rate, versus the 

reciprocal temperature for both, ignition temperatures and TGA dm/dT peak temperatures 

for iodine release and oxidation.  Plots for samples C and D are shown separately.  

Similar Kissinger plots for samples A and B were presented in Chapter 2.  Sample E 

was excluded from these comparisons because most of iodine was lost from that sample 

at low temperatures.   
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The first two iodine release stages are clearly separated and do not appear to 

correlate with the initial oxidation stage for both samples C and D.  Conversely, the 

high-temperature stage of oxidation coincides with the high-temperature stage of iodine 

release, also for both samples C and D.  

Kinetic trends implied by TGA measurements can be extrapolated as straight lines 

into the range of heating rates corresponding to the ignition experiments. For samples A 

and B, such extrapolation described in Chapter 2 suggested possible correlations between 

ignition and either first stage of iodine release or initial oxidation stage.  Figure 4.9 

suggests a correlation between ignition and the first oxidation step observed in TGA for 

sample D.  It is also apparent that in some experiments, ignition occurred at the Al 

melting point, at which time both iodine release and oxidation were noticeably 

accelerated as well.  Figure 4.8 indicates possible correlations between either of the two 

observed oxidation steps and ignition for sample C.  It is interesting that for both 

samples C and D, ignition does not appear to correlate with either of the first two iodine 

release stages.     
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Figure 4.8  Kissinger plot showing ignition temperatures measured at different heating 

rates (squares) together with peak positions for iodine release (open circles) and oxidation 

steps (filled circles) observed in the TGA traces for sample C.   
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Figure 4.9  Kissinger plot showing ignition temperatures measured at different heating 

rates (squares) together with peak positions for iodine release (open circles) and oxidation 

steps (filled circles) observed in the TGA traces for sample D.   
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4.4.5 Aerosol Combustion 

Four Al-I2 materials (samples B, C, D, and E) and three reference aluminum powders 

with comparable particle sizes were tested in CVE experiment.  Sample A was excluded 

because of its substantially coarser particle sizes compared to other materials.  

Aluminum powders used had nominal sizes of 1-5 µm, 6.5 µm, and 10-14 µm.  All 

tested samples ignited readily.  Results from CVE experiments for Al-I2 composites and 

aluminum powders are summarized in Figure 4.10.  Results are presented in terms of the 

ratios of maximum explosion pressure, Pmax, over the initial pressure in the vessel, Pini, 

i.e., pressure ratios, and the maximum rates of pressure rise, (dP/dt)max.  Following 

earlier work, e.g., [31, 68], Pmax/Pini and (dP/dt)max are assumed to be proportional to 

flame temperature and combustion rate, respectively.  In order to account for the effect 

of particle sizes for other powders, the values of Pmax/Pini and (dP/dt)max are plotted as a 

function of the volumetric mean particle size for each tested sample. The error bars 

indicate standard deviations from the mean values obtained from the repeated CVE 

experiments.  For pure aluminum powder, both Pmax/Pini and (dP/dt)max increase as 

particle sizes decrease.  Sample B showed lower values of Pmax/Pini and (dP/dt)max 

compared to pure Al with the same mean particle size.  Conversely, samples C and D 

produced higher Pmax/Pini and (dP/dt)max, indicating a higher flame temperature and 

combustion rate compared to the similarly sized pure aluminum powders.  Sample E 
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showed lower Pmax/Pini and higher (dP/dt)max and a greater standard deviation compared 

to the pure Al. 
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Figure 4.10  Maximum pressures and rates of pressure rise measured in constant 

volume explosion tests with different materials.  Results are shown as a function of the 

volumetric mean particle size for each powder.  

 

4.4.6 Laser Ignited Particle Combustion 

A photograph of laser-ignited and burning particles is shown by Figure 4.11; each streak 

represents a particle passed through the laser beam.  The camera shutter was open for 

250 ms to capture emission from a sequence of passing particles.  For all particles, 

pronounced oscillation patterns were observed. Most particles are observed to experience 

fragmentation by the end of combustion.  The overall emission intensity appears to 

increase while the particles are burning and peak just before particles fragment.  For 

most particles, sharp turns in their trajectories are observed.  
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Figure 4.12 shows characteristic traces for emission, temperature, and RAlO for 

samples B, C, and D.  All traces in Figure 4.12 represent particles with measured 

diameters close to 5 µm.  The overall burn time for sample B is very close to that 

reported for pure Al particles [69, 70].  The burn times for other samples are somewhat 

longer.  The emission intensity traces are shown in the logarithmic scale to better 

resolve changes accompanying ignition and extinction of the burning particles.  The 

oscillatory patterns in the emission signals are stronger, more regular, and occur over 

longer periods of time compared to similar signals for pure, micron-sized Al particles 

[69, 70].  For all traces, prior to quenching the emission intensity decreases and then 

exhibits a short plateau, probably associated with burning particle fragments.  

Combustion temperatures are fairly low for sample B and do not exceed 2000 K.  For 

samples C and D, the combustion temperatures are higher and approach 2800 – 3000 K.   

Values of RAlO are the highest for sample B, which burns at the lowest 

temperature.  RAlO, defined by Equation (4.1) is normalized to the intensity ratio 

expected for a black body emitter at the particle temperature and thus accounts for the 

effect of temperature on the black body spectrum shift.  Therefore the high values of 

RAlO for sample B indicate substantial vapor phase reactions of the Al-I2 composites even 

at such low temperatures.  Indeed, the values of RAlO are substantially greater than 1 for 

all samples, indicating significant vapor phase reactions.     
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Following the data processing methodology of ref. [70], an average temperature 

was calculated for each trace for the period of time when the emission signal varied 

within 50 and 100 % of its peak value.  These average temperatures and their respective 

standard deviations are shown in Figure 4.13 for different Al-I2 samples.  Interestingly, 

for the range of particle sizes studied, no effect of particle size on the average combustion 

temperature was observed.   

Laser ignition experiments were also performed for sample A; however, because 

that sample consisted of mostly coarse particles, the results cannot be directly compared 

to the data presented in Figures 4.12 and 4.13.  The minimum particle size, for which 

combustion traces were recorded for sample A was close to 10 µm.  The oscillatory 

emission patterns for that material were weaker than for other samples.  The combustion 

temperatures measured for sample A were quite high, in excess of 3500 K.    

 

 

Figure 4.11 Photograph of streaks of Al-I2 particles (sample C) ignited while crossing the 

CO2 laser beam.  
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Figure 4.12 Characteristic traces of emission intensity (logarithmic scale), temperature, 

and RAlO for ~5 µm particles of samples B, C and D burning in air.  
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4.5  Discussion 

4.5.1 Ignition  

Previous analyses of the Al-I2 composite powders with 10 wt. % of iodine prepared by 

cryomilling showed that iodine is retained in the Al matrix in at least three different 

forms, corresponding to three stages of iodine release upon heating.  The first, low 

temperature iodine release stage included two steps, roughly correlating with 

characteristic temperatures of evaporation of I2 and dissociation of AlI3.  For samples 

considered to be stable (high values of S, see Table 4.2), the iodine release during this 

first stage was minimized.  At higher temperatures, release of iodine “weakly bound” 

and “strongly bound” to aluminum (see Chapter 3) occurred.  Oxidation of the Al-I2 

composite powders was observed to be markedly different from that of the pure Al.  The 

first oxidation step in TGA experiments was observed to occur at a much lower 

temperature compared to the pure Al.  This oxidation step occurred after the initial 

iodine release.  Comparisons of ignition temperature measurements with TGA results 

for samples A and B described in Chapter 3 indicated that ignition could be best 

correlated with the release of iodine present in a AlI3-like form in the prepared composite 

materials, while correlation between ignition and the first oxidation step could not be 

ruled out.  In the present experiments, considering Al-I2 composite powders with a 

wider range of iodine concentrations, it is observed that the first oxidation step occurs at 

lower temperatures for materials with greater iodine concentrations.  For samples C and 
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D, this first oxidation step is also much stronger than for samples with lower iodine 

concentration (cf. Figure 4.6) and, based on Figures 4.8 and 4.9, it is well correlated with 

ignition events occurring at higher heating rates.  It generally appears that the ignition of 

Al-I2 composite powders depends on both overall iodine concentration and its stability 

within Al.  Less stable samples (see Table 4.2), e.g., samples B (10% I2) and E (30% I2), 

for which the low-temperature iodine release processes are more significant, ignite at 

lower temperatures compared to the more stable samples, A(10% I2) and C(15% I2).  

Sample D(20% I2), which is more stable than sample E(30% I2)  and less stable than 

sample C(15% I2), ignites at the lowest temperature.   

Figures 4.8 and 4.9 indicate that the first oxidation step for samples C and D has a 

noticeably lower activation energy compared to the iodine release steps (lower slopes of 

the experimental trends in the Kissinger plots shown).  Extrapolation of the observed 

trends to higher heating rates indicates that the first oxidation step may occur at a lower 

temperature than the second iodine release step, changing the order of events observed in 

the TGA experiments.  Thus, while the present results support previous hypothesis of 

the importance of early iodine release steps as triggering ignition, they also suggest a 

more complex relationship between early iodine release and oxidation steps as affecting 

ignition of the rapidly heated Al-I2 composites.    

 



88 
 

4.5.2 Combustion 

Presence of oscillatory emission patterns suggests heterogeneity of the burning particle 

surface.  More specifically, it is suggested that oxide caps are formed early on at the 

surfaces of the Al-I2 composite particles generating asymmetric flames and associated 

oscillatory emission patterns.  Formation of condensed Al2O3 inclusions is favored 

because of somewhat reduced combustion temperatures compared to pure Al.  On the 

other hand, strong periodic oscillations as well as relatively high values of RAlO indicate a 

substantial vapor phase reaction.   

It is interesting that the combustion temperatures correlate with the relative 

stability of the prepared composite powders, as gauged by parameter S shown in Table 

4.2.  The most stable sample A, for which early release of I2-like and AlI3-like iodine is 

the smallest, burns at the highest temperature.  The next most stable sample C, exhibits 

the next highest flame temperature, as seen in Figures 4.12 and 4.13.  On the other hand, 

unstable sample B with low iodine concentration burns at a very low temperature.   

The above-mentioned, extended duration oscillatory burn patterns and correlation 

between iodine stability and combustion temperature are somewhat surprising 

considering that the iodine release might be expected to occur before or at the Al melting 

point, i.e., at the temperatures much lower than the observed combustion temperatures.  

If that were the case, combustion of iodine-free particles would proceed in a very similar 

fashion to that of pure Al.  However, differences in the combustion temperatures, 
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emission traces, and AlO emission observed for the Al-I2 composite particles and pure Al 

indicate that iodine remains present in the burning particles and affects their combustion.  

This could be explained by finite kinetics of iodine release and by effects of rapid 

aluminum oxidation impeding its release.   

 

4.5.3 Selection of Useful Al-I2 Compositions 

Al-I2 composite materials are being developed as a potential replacement for the Al 

powder in energetic formulations, which would enable release of biocidal 

iodine-containing products while maintaining high temperatures and burn rates of 

aluminized energetic materials.   Thus, a practically useful material would burn as well 

as or better than aluminum and would release the maximum possible amount of 

iodine-containing products.  Constant volume explosion experiments appear to be the 

most representative of practical combustion conditions and enable the most 

straightforward selection of an attractive practical composition.  Based on the results 

shown in Figure 4.10, the composition D with 20% I2 appears to be the most attractive.  

It exhibits an improvement over comparable size pure Al powder in both rate of pressure 

rise and the total pressure produced in the experiment.  Composition D is also attractive 

based on the ignition experiments presented in Figure 4.7.  Furthermore, particles 

prepared from composition D burn at relatively high combustion temperatures, as shown 

in Figure 4.13.   Finally, this material is relatively stable, as follows from data shown in 
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Figures 4.5 and 4.6 and Table 4.2, and thus can be readily handled and mixed with other 

ingredients of the energetic materials.   

 

4.6  Conclusions 

Increased iodine concentrations in the Al-I2 composite powders prepared by cryomilling 

shift their first oxidation step to lower temperatures.  These materials ignite at much 

lower temperatures than the pure Al.  Both overall iodine concentration and its stability 

in the Al matrix are observed to affect ignition and combustion characteristics of the Al-I2 

composite powders.  Qualitatively, lower iodine stability results in a lower ignition 

temperatures and lower combustion temperatures.  Greater iodine concentrations also 

lower ignition temperatures but do not affect the combustion temperatures substantially.  

Burn times of individual Al-I2 composite particles are slightly longer and their 

combustion temperatures are somewhat lower compared to the pure Al.  However, 

improvements in both rate of pressure rise and maximum pressure were observed in 

constant volume explosion tests with powders containing 15 and 20 wt. % of I2.  

Preparation of materials with greater iodine concentrations may be feasible but is 

impractical using the currently available milling equipment.  
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CHAPTER 5  

AL-SOLID HYDROCARBON COMPOSITES 

 

5.1  Introduction 

Aluminum powder is the most commonly used metal fuel additive for propellants, 

explosives, and pyrotechnics [9].  Its main advantages are a high combustion enthalpy, 

high flame temperature, and a relatively low cost.  However, in many aluminized 

energetic formulations performance is not optimized because of relatively long ignition 

delays and difficulties in controlling the rate of combustion.  Recent advances in 

materials manufacturing enable one to design Al-based reactive materials with 

customized combustion characteristics.  Of specific interest are reduced ignition delays 

and ability to adjust the burn rate, e.g., by producing gaseous reaction products enhancing 

mixing and combustion efficiency in complex reactive flows.  Materials with different 

burn rates are of interest for different applications; e.g., higher burn rates are desired for 

pressure generation and impulse, and reduced burn rates (while still complete reaction) 

are desired for enhanced heat distribution necessary for effective inactivation of 

aerosolized spores and bacteria.  Finally, adjusted flame temperature and emission are 

often desired for pyrotechnic formulations. 

This study is aimed to prepare and characterize novel Al-based alloys and 

composite materials using mechanical milling: a versatile technique enabling one to 
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combine aluminum with many different components and achieve unprecedented control 

over the particle structure and morphology.  Often materials that can be made by 

mechanical milling cannot be prepared otherwise.  This project builds on our previous 

work dealing with Al-based alloys, nanocomposite thermite materials, and Al-I2 

composites [3, 60, 73].  In this effort, aluminum is being combined with volatile 

hydrocarbons producing metastable composite powders.  Specifically, paraffin wax and 

polyethylene are used to create unique composite structures with an aluminum metal 

matrix.  It was initially anticipated that the volatile gaseous fuel may cause 

fragmentation of the prepared particles during combustion, leading to generation of very 

finely divided Al, which may enhance combustion dynamics.  Such materials were also 

expected to have reduced ignition temperatures compared to pure Al.  It is of interest 

whether the materials “remember” their metastable nature and structure after their 

ignition and after melting of their metal matrix.  The paper describes preparation and 

characterization of these materials.   

 

5.2  Materials 

Reactive composite powders were prepared by ball-milling aluminum and a hydrocarbon 

additive using a model 01HD attritor mill by Union Process.  Aluminum powder, -325 

mesh (< 45 µm), 99.5%, was provided by Atlantic Equipment Engineers. The additives 

were paraffin wax, mp: 70-80 °C, provided by Sigma Aldrich, and polyethylene powder, 
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low density, 500 µm, provided by Alfa Aesar.  1.8 kg of 10-mm diameter hardened steel 

balls served as milling media.  Liquid nitrogen was flushed through the cooling jacket of 

the mill and gaseous nitrogen was fed into a 750-ml steel milling vial.  In all 

experiments, the ball-to-powder mass ratio was 36 and the impeller rotation rate was set 

to 400 rpm.  Al-wax and Al-polyethylene (Al-PE) sample were milled for 19 hours each 

with a nominal hydrocarbon load of 10 wt. %.   Milling at room temperature was found 

to result in strong caking, which prevented further refinement of the material.   

The powders were characterized by X-ray diffraction using a Philips X’pert MRD 

powder diffractometer and scanning electron microscopy (SEM) using a Phenom tabletop 

microscope by FEI Technologies Inc.  The morphologies of Al-wax and Al-PE samples 

are illustrated in back-scattered SEM images shown in Figure 5.1.  Both samples consist 

of micron-sized, mostly equiaxial particles.  Al-wax composite powders are somewhat 

finer than Al-PE. A close examination of the Al-hydrocarbon particles shows that they 

are comprised of compacted aluminum flakes; individual flakes or flake-like 

agglomerates are also observed, the latter are especially abundant in the Al-PE 

composites.  The smallest flake dimension appears to be on the scale of 10-100 nm.  It 

is expected that such flakes adhere to one another with wax or PE coated interfaces; 

however the aluminum surfaces in such interfaces are formed by shear and deformation 

of the starting Al particles and are not expected to be coated by protective alumina.  
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Size distributions of the prepared powders were measured using a 

Beckman-Coulter LS230 Particle Size Analyzer.  Figure 5.2 shows the particle size 

distribution and respective volume mean particle sizes of both samples.  The shape of 

the size distribution is complex for Al-PE including more flake-like particles, causing 

possible errors in this light-scattering based measurement designed for spherical powders.     

X-ray diffraction patterns showed only peaks of Al and the respective 

hydrocarbons.  Paraffin wax showed peaks at 21-22° and 23.5-24.5° 2Θ, consistent with 

JCPDS 3-0259.  Amorphous or poorly crystalline polyethylene caused a raised 

background in the range of 18-22° 2Θ, where the strongest peaks for crystalline 

polyethylene are expected.   

 

 

Figure 5.1 SEM images of Al-wax and Al-PE composites. The scale bar is the same for 

both pictures. 
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Figure 5.2 Particle size distributions for Al-wax and Al-PE composites.  Volume mean 

particle sizes are shown for both samples. 

 

5.3  Experimental 

Release of volatile species upon heating and oxidation of the prepared materials were 

measured by a TA Instruments model Q5000IR thermogravimetric analyzer (TGA).  

Alumina pans were used to hold samples for the measurements.  The maximum 

temperature was limited to 1273 K.  Experiments addressing release of volatile species 

in inert environment were performed at the heating rate of 10 K/min in argon.  The 

balance and the furnace were purged with argon at 20 and 50 ml/min, respectively.  For 

oxidation measurements, experiments were performed at heating rates varied from 5 to 

100 K/min to investigate the reaction kinetics.  The balance and the furnace of Q5000IR 

were purged with argon at 10 ml/min and oxygen (purity 99.8 %) at 25 ml/min, 

respectively.  The TGA traces were baseline-corrected. 
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Ignition of the prepared materials was studied at the heating rates ranging from 

2000 to 23000 K/s in air using an electrically heated filament [55]. Ignition was observed 

using both a high-speed video camera.  The ignition temperatures were recovered from a 

high-speed infrared pyrometer for various heating rates.   

Burning characteristics of individual composite particles in air were investigated 

using a laser ignition apparatus, described in detail by [69-71].  In this experiment, some 

of the particles crossing the CO2 laser beam may not have ignited; some others could 

have ignited and partially burned while still in the laser beam.  In both cases, emission 

signatures should be discarded from the data analysis, focusing instead on particles 

ignited in the laser beam and burning after exiting from it.  In this chapter, a different 

data processing step was employed for Al-hydrocarbon samples.  Selection of the 

emission pulses of interest, produced by particles that were ignited, but not partially 

consumed in the CO2 beam was done considering the amplitude of the emission pulse at 

the instant the particles left the CO2 beam.  When this amplitude was comparable to the 

maximum emission signal, the particles were discarded.  Conversely, emission pulses 

were analyzed when the signal increased substantially after the particle left the CO2 

beam.  Specifically, particles were analyzed when the emission signal at the instant the 

particles left the CO2 beam reached 10 % (Al-wax) or 5 % (Al-PE) of the maximum 

emission level for the same particle.  



97 
 

Combustion of the prepared composite materials was studied using a constant 

volume explosion (CVE) experiment.  Detailed description of this experiment is 

available in Chapter 4.  Samples were tested in air with a constant powder load of 4.65 

g.  This mass was selected to be the same as in multiple reference experiments with pure 

Al powders of different particle [68, 74].  For pure Al and Al-hydrocarbon in air, this 

mass corresponds to the equivalence ratio of 1.6 and 2.1, respectively, and was observed 

to be readily and reproducibly ignited in the present CVE apparatus.   

The combustion products were embedded in epoxy and cross-sectioned for SEM 

examination.  A LEO 1530 Field Emission Scanning Electron Microscope operated at 

10 kV and equipped with energy-dispersive x-ray spectrum (EDX) detector was 

employed to analyze combustion products. 

 

5.4  Results 

5.4.1 Release of Volatile Species in Inert Environment  

The TGA traces for Al-wax and Al-PE composites heated at 10 K/min in Ar are shown in 

Figures 5.3 and 5.4, respectively.  The mass loss traces for the starting hydrocarbons 

(wax and PE, respectively) are shown for reference.  The gasification of pure paraffin 

wax starts at 430 K, and ends before the temperature reaches 740 K.  The decomposition 

of pure PE starts at a somewhat higher temperature, ca. 580 K and ends by about 750 K.  

For both composite materials, the mass loss begins at lower temperatures compared to the 
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starting hydrocarbons.  This may be due to distribution of the hydrocarbons in very thin 

layers with developed surface areas in the composite materials, or to partial breakdown of 

the hydrocarbons into lighter compounds during the milling process.  For wax, the 

decomposition of the composite and the mass loss of the starting material are rather 

similar to each other.  For PE, the low-temperature mass loss is significantly stronger for 

the composite material.  Furthermore, the second, stronger decomposition step occurs 

for the composite material noticeably earlier than for pure PE.  The differences in 

decomposition of the initial PE vs. PE contained in the composite material can be due to 

a modification of PE by milling.   
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Figure 5.3 TGA traces of pure paraffin wax and Al-wax composite heated at 10 K/min in 

argon. 
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Figure 5.4 TGA traces of pure PE and Al-PE composite heated at 10 K/min in argon. 

 

5.4.2 Oxidation 

TGA traces for oxidation of Al-wax and Al-PE composites at a heating rate of 5 K/min 

are shown in Figure 5.5; the trace for the pure spherical aluminum with volumetric mean 

particle size of 9.4 µm is shown for reference.  The mass changes result from the 

combined effects of release of volatile additives (mass loss) and oxidation (mass gain).  

There are two oxidation stages for pure Al in the temperature range from 273 K to 1273 

K, which are associated with a phase transformation of amorphous alumina to crystalline 

γ-Al2O3 and with ensuing thermally activated growth of γ-Al2O3 [61, 62]. 

For both, Al-wax and Al-PE composites, the oxidation traces are very similar to 

each other.  A strong weight loss begins at about 450 K, at nearly the same temperature 

for both materials.  The same onset of weight loss observed for both materials in an 

oxidizing environment is a bit surprising considering that in inert environment, rapid 

gasification of Al-PE composite occurs at a somewhat higher temperature than that for 
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Al-wax (cf. Figures 5.3 and 5.4).    The weight loss trend reverses at about 560 K, and 

a strong oxidation stage occurs in the range of temperatures from 750 to 850 K.  This 

oxidation stage is substantially stronger than the first oxidation stage for Al, it also occurs 

at a lower temperature than for Al.  The oxidation rate decreases significantly before Al 

melts.  Well after aluminum melting, at about 1070 K, another oxidation stage occurs, 

correlating well with the second oxidation stage observed at this same temperature range 

for pure Al.  However, for the composite materials this second oxidation stage is much 

weaker than it is for the pure Al.   

Kinetics of oxidation is studied by tracking the main maxima positions of dm/dT 

while heating Al-wax and Al-PE at different rates from 5 to 100 K/min.  The data for 

two strong oxidation steps occurring at around 823 K and 1070K are further processed 

and discussed below, in the reaction kinetics section.   
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Figure 5.5 TGA oxidation traces and dm/dT derivatives of Al-wax, Al-PE and reference 

Al (9.6 µm volumetric mean particle diameter) heated at 5 K/min in argon/oxygen flow.  

 

5.4.3 Ignition 

Figure 5.6 shows ignition temperatures of Al-wax, Al-PE composites and reference Al as 

a function of the heating rate. Each point represents an individual filament ignition 

experiment.  Ignition instant is identified using recorded videos when the surface (or 

part of it) of the powder coating becomes brighter than the filament surface.  

Al-hydrocarbon composites can be easily ignited, and ignition is observed at relatively 

low heating rates, at which pure aluminum cannot be ignited. Ignition temperatures of 

Al-hydrocarbon composites fall in the range of 900 – 1200 K, which are much lower than 

that for pure aluminum.  Generally, ignition temperatures increase slightly with 
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increasing heating rates as is expected for a thermally activated ignition mechanism, 

although the observed effect is relatively weak.   
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Figure 5.6 Ignition temperatures for Al-wax, Al-PE and reference Al (9.6 µm volumetric 

mean particle diameter) measured using an electrically heated filament at different 

heating rates in air.   

 

5.4.4 Reaction Kinetics 

TGA results as well as ignition results were processed using the Kissinger method, e.g. 

[57, 58] , as shown in Figures 5.7 and 5.8.  For processing, ln(T2
/β), where β is the 

heating rate, is plotted versus the reciprocal temperature for the following characteristic 

points identified from the TGA traces: onset of the weight loss upon heating in oxidizing 

environment and two maxima in the rate of oxidation, determined respectively as the first 

minimum and two maximum points in the dm/dT traces for oxidation experiments (cf. 
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Figure 5.5).  Experimental ignition data from Figure 5.6 are directly transferred into 

Kissinger coordinates in Figures 5.7 and 5.8, showing the results for Al-wax and Al-PE, 

respectively.  Kinetic trends implied by the oxidation experiments (TGA) can be 

extrapolated as straight lines (shown as dashed lines) into the range of higher heating 

rates corresponding to the ignition experiments. It appears that ignition of both 

composites occurs at somewhat lower temperature compared to that predicted by the 

extrapolation of the two oxidation stages observed in TGA measurements.  The 

extrapolation of the weight loss step points to temperatures slightly lower than the 

ignition temperatures.  Considering that the direct extrapolation of kinetic trends 

observed in TGA traces into ignition experiments is only suitable for qualitative 

assessment of the reaction mechanisms, it is reasonable to suggest that both weight loss 

and oxidation contribute to processes leading to ignition of the prepared materials.  

Specifically, it is likely that the weight loss destroys a protective layer formed during 

milling and including hydrocarbon species.  Removal of this protective layer accelerates 

oxidation and leads to powder ignition.    
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Figure 5.7 Kissinger plot showing ignition temperatures measured at different heating 

rates (open squares) together with peak positions for oxidation stages (open triangles and 

circles) and the onset of weight loss (filled triangles) observed in the TGA traces for 

Al-wax. 
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Figure 5.8 Kissinger plot showing ignition temperatures measured at different heating 

rates (open squares) together with peak positions for oxidation stages (open triangles and 

circles) and the onset of weight loss (filled triangles) observed in the TGA traces for 

Al-PE. 
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5.4.5 Single Particle Combustion 

Photographs of laser-ignited and burning particles of Al-wax and Al-PE composites are 

shown in Figure 5.9; each streak represents a particle after passing through the laser 

beam.  The camera shutter was open for 250 ms so that more than one streak could be 

captured in each image.  In general, streaks of Al-wax and Al-PE are similar to each 

other.  In both pictures, the streaks widen and become brighter soon after particles exit 

the CO2 laser beam. The broad streaks with blurry boundaries are likely indicators of 

intensive vapor-phase reactions.  The high overall emission intensities last relatively 

long, and the particles extinguish quickly after the peak emission intensity is achieved.  

It is also noted that Al-wax produces higher emission intensity than Al-PE.   

Figure 5.10 shows characteristic traces for emission, temperature, and RAlO (cf. 

Equation (4.1)) for both Al-wax and Al-PE.  The two composites exhibit similar 

combustion characteristics. The overall burn time is somewhat longer than that reported 

for pure Al particles.  The oscillatory patterns in the emission signals for both samples 

are much stronger, and occur over longer periods of time compared to similar signals for 

pure Al particles.  The temperature traces are well correlated with the intensities of AlO 

emission, which is different from the dynamics observed for pure Al and Al-I2, for which 

the temperature continued to increase after the peak in the AlO emission in Chapter 4.  

The combustion temperature and RAlO peak after the initial increase, followed by a 

gradual decay throughout the rest of combustion.  The combustion temperatures remain 
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stable at around 2400 – 2800 K after pre-heating despite the strong emission oscillations.  

The values of RAlO are substantially greater than 1 throughout combustion, indicative of 

substantial vapor-phase reactions.   

Figure 5.11 shows the measured emission (burn) time as a function of the particle 

diameter for Al-wax, Al-PE and pure Al as a reference, taken from [71].  A strong 

scatter in the data for Al-hydrocarbons is due to errors in measuring particle sizes and the 

irregularity of the particles. The volumetric average sizes of Al used for this experiment 

was 15.1 µm.  Particle size distributions for composite materials include more fines 

compared to Al; respectively, more small particles for Al-wax and Al-PE are detected in 

combustion experiments compared to Al.  In general, despite the scatter, Al-based 

composites appear to burn appreciably longer than similarly sized pure Al particles.   

All emission traces were processed to determine the average flame temperature 

and average RAlO corresponding to the relatively strong emission signal (exceeding 50% 

of its peak value).  Average flame temperature and RAlO for Al-wax, Al-PE and 

reference Al are shown in Figure 5.12 and Figure 5.13, respectively.  The flame 

temperatures for small-sized particles for Al-wax and Al-PE fall into the similar 

temperature range as for Al.  The trend for larger-sized particles is difficult to see 

because of a small number of data points available.  Larger scatter and lower value of 

RAlO is observed for both composites compared to Al particles.  
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Figure 5.9 Photographs of burning particle streaks for Al-wax (a) and Al-PE (b).  The 

scale bar is the same for both pictures. 
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Figure 5.10 Characteristic traces of emission intensity, temperature, and RAlO for Al-wax 

and Al-PE in air.  The axes for PMT signals plotted in a.u. are not shown.  
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Figure 5.11 Burn time for Al-wax, Al-PE, and reference Al burning in air.   
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Figure 5.12 Mean combustion temperatures for Al-wax, Al-PE, and reference Al burning 

in air.  
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Figure 5.13 AlO ratios for Al-wax, Al-PE, and reference Al burning in air. 

 

5.4.6 Aerosol Combustion 

Figure 5.14 shows the pressure traces from CVE experiments for Al-wax, Al-PE 

composites and reference aluminum.  The values of the maximum pressure and the rate 

of pressure rise from CVE tests are indicative of the flame temperature and combustion 

rate, respectively.  The pressure traces for Al-wax and Al-PE are observed to fit between 

those shown for Al powders with average sizes 10.9 and 15.1 µm, as is expected 

considering their average particle sizes.  Results for the measured values of maximum 

pressure and rate of pressure rise, respectively, Pmax and dP/dtmax, are summarized in 

Figure 5.15.  The error bars for Al data indicate standard deviations from the mean 

values obtained from the repeated CVE experiments.  Because of relatively low 

pressures observed, experiments for Al-wax and Al-PE composites were not repeated.  

For pure aluminum powder, both the maximum pressure and the rate of pressure rise 
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increase as particle sizes decrease. Al-wax and Al-PE composites produce similar values 

of Pmax and dP/dtmax, indicating comparable combustion temperatures and combustion 

rates compared to pure Al powder. 
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Figure 5.14 Pressure traces from aerosol combustion experiments for Al-wax, Al-PE and 

reference Al.  Dashed/dotted lines are for Al, solid lines are for composite materials.  

Labels show volumetric mean particle sizes for spherical Al powders.   
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Figure 5.15 Maximum pressure and maximum rate of pressure rise for Al-wax, Al-PE 

and reference Al measured in CVE experiments.   

 

5.4.7 Combustion Products 

Cross-sections of combustion products from CVE experiments were examined by SEM.  

It is found that combustion products of Al consist of oxide particles, unreacted aluminum 

with oxide inclusions, and hollow structures, possibly caused by the release of gasified 

suboxides or boiling of Al.  Strong agglomeration is observed in the products of both 

Al-wax and Al-PE composites, which appeared generally similar to each other.  Many 

of the burned and partially burned particles are much coarser than the starting particles of 

these Al-hydrocarbon composites.  Figure 5.16 shows back-scattered SEM images of 

combustion products of Al-wax composites.  For brevity, additional images including 

those of combustion products of Al-PE composites were omitted.  The image on the left 

of Figure 5.16 shows an example of a large particle formed as a result of agglomeration.  
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The particle consists of two main parts: the lighter phase (top, right) is less oxidized than 

the darker phase (bottom left).  The image on the right zooms in the more oxidized 

portion of this particle.  It shows a distinct compositional contrast produced by two 

phases that were likely separated during solidification.  EDX spectra of the light and 

bright phases marked in the right image in Figure 5.16 are shown in Figure 5.17.  Figure 

5.17 shows the presence of Al, O, and C, with the C and O balance substantially different 

in the light and dark phases. The darker phase (right image in Figure 5.16) contains less 

oxygen and more carbon compared to the lighter phase.  The quantitative analysis of the 

phase composition of the combustion products was difficult because of substantial 

heterogeneity of the sample, effect of carbon coating applied to prevent charging during 

SEM analyses, and lack of the appropriate calibration of EDX spectra.  However, EDX 

results for different particles and different materials could be qualitatively compared to 

one another.  Carbon was consistently detected in the products of both Al-wax and 

Al-PE composites.  The carbon concentration varied among different particles.  

Typically, more carbon was detected in the less oxidized portions of the reacted particles.   

Combustion products of Al-wax and Al-PE were also characterized by X-ray 

diffraction analysis.  X-ray diffraction shows only aluminum and alumina phases in the 

combustion products. 
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Figure 5.16 SEM images of cross-sectioned combustion products of Al-wax composites.  

The image on the right is a magnified view of the rectangular area selected in the left 

image.   
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Figure 5.17 EDX spectra for lighter and darker phases detected in the combustion 

products of Al-wax composites.  The areas for which the EDX spectra were taken are 

marked in the right image in Figure 5.16. 

 

5.5  Discussion 

Cryomilling offers a unique approach enabling one to combine aluminum with an 

unstable or difficult to process additive.  Chapters 2-4 showed that iodine is chemically 

bound and stabilized in the Al-I2 composites prepared by cryomilling.  Conversely, no 
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such stabilization is observed for either wax or polyethylene. Indeed, comparing the 

weight loss observed upon heating with the initial amount of hydrocarbon added to the 

powder (cf. Figures 5.3, 5.4), it is concluded that only 10-20 wt. % of the hydrocarbon 

might be retained in the powder after the hydrocarbon volatilization temperatures are 

exceeded. This retention can be explained by formation of carbides; however, the bulk of 

the hydrocarbon additive is readily volatilized.  Therefore, for both wax and 

polyethylene addressed in this work, cryomilling mostly enables their very homogeneous 

mixing with Al so that very fine Al flakes are covered by thin hydrocarbon layers; such 

covered flakes are packed to produce micron-sized particles.  It appears that 

hydrocarbons (wax or polyethylene) behave as milling process control agents 

(lubricants), which do not react with Al, unlike iodine.  Thus, the lubricant remains 

active during the entire milling time resulting in production of finer final particles 

compared to Al-I2 composites, in which iodine is typically absorbed before the end of the 

milling run. 

The unusual particle morphology for the Al-hydrocarbon composites, in which 

agglomerated primary particles are flake-like with the smallest dimension on the 

nanoscale, and for which aluminum surface is coated with hydrocarbon while there is no 

underlying oxide layer, is likely responsible for their unusual oxidation behavior.  

Indeed, a strong oxidation step following weight loss caused by volatilization of the 

hydrocarbon occurs at a significantly lower temperature compared to both pure Al and 
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Al-I2 composites made by cryomilling [60, 66, 73], both of which are coated by a 

naturally grown amorphous alumina.  The oxidation step is likely occurring at the 

relatively large exposed metal surface, produced when the hydrocarbon surface coating is 

volatilized from agglomerated flakes.  

Ignition temperatures for all composite materials are substantially lower than for 

the pure Al.  Kissinger processing of ignition and oxidation data suggests that the 

earliest oxidation processes are likely responsible for ignition of the prepared composite 

materials.  It is also speculated that volatilization and ignition of the hydrocarbon 

additives may aid ignition of aluminum. 

In the single particle combustion experiments, substantial differences were 

detected in the measured emission intensity, temperature, and AlO emission traces for the 

prepared composite particles as compared to pure aluminum [71].  These differences are 

surprising.  Indeed, for all materials combustion occurs at very high temperatures 

compared to the temperatures at which the volatile additives are expected to evaporate 

and aluminum is expected to melt.  Thus, one might have expected that combustion 

would occur in a similar fashion for the pure Al and materials that are expected to consist 

of pure Al following the loss of readily volatile components.  However, recorded optical 

signatures of the burning particles suggest that the additives remain in the burning 

material affecting aluminum combustion well after the particle ignites and melts, similar 

to what is observed for Al-I2.  This conclusion is further supported by SEM/EDX 
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analyses of the combustion products, in which carbon is found in the partially oxidized 

particles.  It is suggested that the product analysis is directly relevant to the above 

observations even though the products were collected from CVE rather than single 

particle combustion experiments.  It is proposed that the evaporating hydrocarbon 

species change the environment around burning particles.  In particular, volatile 

hydrocarbons may be consuming oxygen leaving the particle surface to react with 

products of their combustion.   

Presence of oscillatory emission patterns for single particles of composite 

materials suggests heterogeneity of the burning particle surface.  More specifically, it is 

suggested that oxide caps are formed early on at the surfaces of the composite particles 

generating asymmetric flames and associated oscillatory emission patterns.  Strong 

periodic oscillations as well as bright trajectory, high combustion temperature and 

relatively high values of RAlO indicate non-negligible vapor phase reactions.  As stated 

above, is very likely that for Al-hydrocarbon composites burning in air, evaporated 

aluminum reacts in an atmosphere with carbon oxides and water, which are not present in 

similar experiments with pure Al particles.  It is suggested that the presence of carbon 

and hydrogen reaction products in the gas composition in the immediate particle vicinity 

results in wider and brighter streaks, longer burn time and lower value of RAlO.  Because 

combustion temperatures for the composite materials and for pure Al are close to each 
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other, longer combustion time observed for the composite powders may suggest that such 

powder particles release more heat and thus burn more completely than pure Al particles. 

CVE experiments suggest a similar combustion behavior for Al-hydrocarbon 

composites as for Al, which is consistent with the combustion temperature measurement 

from single particle measurements. The reason for the unattractive performance in CVE 

tests comes from analysis of the collected combustion products for Al-hydrocarbon 

composites.  Specifically, formation of large numbers of very coarse agglomerates in the 

fuel-rich aerosols may give rise to premature quenching and low reaction completeness, 

causing relatively low and slowly rising pressures.  It is unclear what promotes 

agglomeration in the aerosolized Al-hydrocarbon combustion products, but it is clear that 

preventing such agglomeration could substantially improve their combustion 

performance.   

 

5.6  Conclusions 

New aluminum-based materials are prepared by cryomilling comprised of an aluminum 

matrix and hydrocarbon inclusions. Hydrocarbons are not altered chemically; 

Al-hydrocarbon composites consist of fine Al flakes coated with thin hydrocarbon layers 

(without intermediate alumina layers), and packed together into micron-sized particles.  

For both Al-wax and Al-PE prepared materials, their ignition temperatures are reduced 

substantially compared to pure aluminum.  Al-hydrocarbon materials oxidize at 
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substantially lower temperatures and noticeably faster compared to pure Al powders.  

Individual particle burn times are longer, the combustion temperatures are similar and 

values of AlO emission are lower for Al-hydrocarbon particles compared to Al.  It is 

observed that in combustion experiments, hydrocarbon additives do not completely 

escape before or soon after particle ignition; instead their traces remain in the burning 

particles changing significantly the resulting burn rate and combustion temperature.  For 

aerosolized powder clouds, burn rates for the Al-wax or Al-PE composite are comparable 

to that of pure Al.  It is speculated that the combustion performance is reduced by the 

agglomeration observed for the partially burned particles of Al-hydrocarbon composites 

in the CVE configuration.  
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CHAPTER 6  

NEARLY PURE ALUMINUM POWDERS  

WITH IMPROVED COMBUSTION PERFORMANCE 

 

6.1  Introduction 

Aluminum powder is an attractive additive for energetic formulations [3, 9] because of its 

high specific combustion enthalpy, which is greater compared to organic energetic 

compounds, such as TNT, RDX and HMX.  However, utilization of the aluminum 

combustion energy is limited by its relatively low reaction rates and long ignition delays, 

which are associated with heterogeneous reactions leading to ignition.  Such reactions 

are rate limited by relatively slow diffusion of reagents through a protective natural 

alumina layer that is always present on the aluminum surface [27, 62, 75-79].  Different 

approaches were described in the literature to modify aluminum surface and improve its 

ignition.  Most efforts focused on nanoscale aluminum due to its greater surface to 

volume ratio and thus most prominent role of the surface reactions in its ignition and 

combustion mechanisms.   It was reported that organic compounds, such as oleic acid 

[80] and epoxides [17], were used as capping agents on the surface of nano-aluminum.  

Fluorinated compounds are of specific interest to alter reaction chemistry [16, 81].   

Nickel coatings [67, 82-84] were widely studied due to its exothermic reaction with 

aluminum upon heating.  Cryolite [85] was used as an activating agent on the surface of 

nano-aluminum to influence oxidation.  It was also reported that nano-aluminum with 
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aluminum carbide coating may lead to a decreased amount of the condensed phase in the 

combustion products [86].  In all previous work, natural alumina layers were replaced 

by new phases; however, such phases were relatively thick, reducing energy density of 

the prepared materials.   

In this work, a mechanically milled micron-sized aluminum powder with highly 

developed grain boundaries and surface defects is used instead of nano-aluminum; its 

surface is protected by a very small amount of a hydrocarbon-based modifier to maintain 

high energy density of aluminum.  Mechanical milling [3, 30] used to prepare this novel 

Al-based material enables one to achieve unprecedented control over the particle 

structure and morphology.  Al-solid hydrocarbon composites were prepared to replace 

Al in energetic formulations in Chapter 5.  Specifically, paraffin wax and polyethylene 

were used to create unique metal-hydrocarbon composite structures.  However, the 

addition of a substantial amount of hydrocarbon reduces both the combustion temperature 

and energy compared to pure Al.  The present approach is to only add enough of a 

hydrocarbon to modify the surface of the prepared powder, while retaining its nearly pure 

Al composition.  When an aluminum powder is ball milled, its original surface coated 

with alumina is destroyed and a new surface is produced. For milling performed in an 

inert environment, this new surface is not oxidized.  When a hydrocarbon is added as a 

second soft solid phase, it coats the freshly generated aluminum surface, producing a 

layer that can protect it from oxidation upon exposure to the atmosphere.  During 
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milling, the hydrocarbon coating is formed at the multiple grain boundaries, while 

individual grains are pressed together forming final particles.  In this work, cyclooctane, 

a hydrocarbon liquid at room temperature but solid at the liquid nitrogen temperature was 

used to form a thin protective layer at the surface of the mechanically milled aluminum 

powder.  Excess of cyclooctane is expected to be liquid upon the end of cryomilling and 

readily removed from the prepared material.   

 

6.2  Material Preparation and Characterization 

A model 01HD attritor mill by Union Process was used to prepare reactive composites 

with surface modification.  Starting materials were aluminum powder, -325 mesh (< 45 

µm), 99.5% pure, by Atlantic Equipment Engineers, and cyclooctane, melting point: 

10-13 °C, ≥99% pure, by Sigma-Aldrich.  45 g of Al was mixed with 5 g of cyclooctane 

and milled for 24 hours in a 750 ml steel milling vial.  10-mm diameter hardened steel 

balls were used; the ball-to-powder mass ratio was 36 (1.8 kg of milling balls).  

Cryogenic temperature was achieved by flushing liquid nitrogen through the cooling 

jacket of the mill.  The milling vial was continuously flushed with nitrogen gas.  The 

impeller rotation rate was set to 400 rpm.  Solid powders were recovered after milling.  

Further details describing materials preparation by mechanical milling are given 

elsewhere [60, 66, 73]. 
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A scanning electron microscope (SEM), a Phenom Tabletop Microscope by FEI 

Technologies Inc, was used to characterize the prepared powders.  Figure 6.1 shows a 

back-scattered SEM image of a sample.  Powders consist of micron-sized, roughly 

equiaxial particles.  Note that the morphology of the prepared materials is different from 

that of the starting Al powder which comprises smooth, spherical particles.  

 

 

Figure 6.1 SEM image of the prepared Al-cyclooctane composite powder. 

 

A TA Instruments model Q5000IR thermogravimetric analyzer (TGA) was 

employed to observe removal of the hydrocarbon retained in the prepared material upon 

its heating.  Alumina pans were used to hold samples for the measurements. 30 mg of 

as-prepared materials were heated to 773 K at 10 K/min.  The balance and furnace were 



123 
 

purged with argon at 20 and 50 ml/min, respectively.   Figure 6.2 shows that 

approximately 2 wt. % of a volatile phase is released from the sample.  It appears that 

the excess of cyclooctane is removed from system by flushing nitrogen gas during or 

after milling. There are two main mass reduction stages.  The first one occurs from 320 

to 430 K, which is likely associated with evaporation and boiling of remaining 

cyclooctane.  The second, stronger mass loss occurs at temperatures above the boiling 

point of cyclooctane (422 K), which indicates that a different, less volatile phase was 

formed during the milling.  No further weight loss was observed when materials were 

heated above 773K. 

 Size distributions of the prepared powders were measured using a 

Beckman-Coulter LS230 Particle Counter.  Powders were suspended in deionized water.  

A surfactant, Micro-90, provided by Cole-Parmer, was used as a wetting agent to 

stabilize particles in the system.  Figure 6.3 shows a bimodal size distribution. 

Volumetric mean particle size is 11.9 µm.   

The surface area of the prepared composite particles was measured using a 

Quantachrome Monosorb BET Surface Area Analyzer.  The measurements were 

performed with both as-prepared powder and with the powder subjected to a controlled 

heating imitating that achieved in TGA experiments but yielding enough material for the 

BET analysis. About 1 g of the prepared sample was heated at 5 K/min in air using an 

Omegalux LMF-3550 furnace.  The maximum temperature was 733 K.  As discussed 
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below, no substantial oxidation was observed for the prepared powder in this temperature 

range.  The measured surface areas were 9.4 and 12.8 m2/g for the as-prepared and 

heated samples, respectively.  For reference, the BET surface area measured for a 

similarly sized spherical aluminum powder was smaller than 1 m2/g.   

X-ray diffraction measurements using a Philips X’pert MRD powder 

diffractometer showed only peaks of crystalline Al.   
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Figure 6.2 Weight change of the Al-cyclooctane composite powder heated in argon at 10 

K/min. 
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Figure 6.3 Particle size distribution of the prepared Al-cyclooctane powder.   

 

6.3  Experimental 

Oxidation was studied by heating powders in the furnace of the Q5000IR TGA analyzer 

under an oxygen/argon gas flow.  Experiments were performed at heating rates varied 

from 5 to 100 K/min.  The maximum temperature was limited to 1273 K.  Both the 

balance and furnace were purged with argon at 10 ml/min and oxygen (purity 99.8 %) at 

25 ml/min.  The mass of material used in the oxidation experiments varied in the range 

of 0.4 – 4 mg.   

Ignition of the prepared materials in air was studied at a range of heating rates 

from 3000 to 22000 K/s using an electrically heated filament, as described in Chapter 3 

[31]. A small amount of hexane-powder slurry was coated onto a nickel-chromium 

filament and dried prior to the test.  The filament heating rate was controlled by 

changing the DC voltage and adjustable resistor connected in series with the filament.  

Ignition was recorded using a high speed camera (MotionPro 500 by Redlake).  The 
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temperature history of the heated filament was measured using a high-speed infrared 

pyrometer (detector model OS1581 and the monitor model DP1581 by Omega 

Engineering, Inc.)   

Combustion of aerosolized powders was studied using a constant volume 

explosion (CVE) experiment [68].  A constant powder load (4.65 g) was introduced into 

the vessel and aerosolized with an air blast delivered from a high-pressure reservoir.  

Prepared powders and reference aluminum powders with different particle sizes were 

tested by this technique.  Pressure traces recorded by a pressure transducer were 

analyzed to evaluate the combustion temperature and combustion rate.  Experiments 

with each material were repeated at least three times.  

Burning characteristics of individual composite particles in air were investigated 

using a laser ignition apparatus [69, 71, 87].  Powder particles were fed by an air flow 

and crossed two laser beams.  First, they crossed a beam produced by a 785 nm 

wavelength, 30-mW laser, and then a second beam of a 125-W CO2 laser.  The 

amplitudes of 785-nm scattered light pulses were measured to determine particle sizes.  

Four photomultiplier tubes (PMT, Hamamatsu H3164-10), equipped with interference 

filters (486, 532, 568, and 589 nm), were used to record the light emission from particles 

ignited by the CO2 laser.  Burn times were detected and correlated to the corresponding 

particle sizes.  Color temperature was calculated using emissions at 532 and 589 nm.  
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The observed AlO emission intensity was evaluated using the ratio of the measured 

intensity signals calculated by Equation (4.1). 

Combustion of individual composite particles in an air-acetylene flame was 

studied using a modified Bunsen burner [88].  An air-acetylene mixture was fed 

vertically up through a 5.25-mm diameter nozzle and ignited in room air.  The flow 

rates of air and acetylene were 4719 and 425 mL/min, respectively.  The burner 

included a 2.4-mm diameter stainless steel tube placed coaxially, at the center of the 

nozzle, and used to inject aerosolized powder particles at the center of the flame.  The 

powder was carried by a nitrogen flow at 944 mL/min.  The aerosolized particles were 

supplied using a custom-designed screw feeder.  The feed rate was adjusted to be 

sufficiently low, so that most of the individual particle emission pulses could be resolved.   

Infrared emission of particle combustion were measured by three PMT’s (two 

R3896-03 and one R636-10 by Hamamatsu) equipped with interference filters (700, 800 

and 900 nm).  Emission pulse durations were determined as burn times for individual 

particles.  The statistical distribution of the measured burn times was correlated with the 

powder particle size distribution to obtain the particle burn times as a function of their 

diameters.  Two color temperatures were calculated using emission ratios at 900/700 nm 

and 800/700 nm. 
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6.4  Results 

6.4.1 Oxidation 

Figure 6.4 shows the oxidation weight gains and mass derivative for the prepared 

composite powder and, for comparison, for a pure aluminum powder with a volumetric 

mean particle size of 7.2 µm.   In the measured temperature range from 273 K to 1273 

K, two main oxidation stages are observed for both materials.  The two stages in 

oxidation of Al are known to be respectively associated with a phase transformation of 

amorphous alumina to its crystalline γ-Al2O3 polymorph, and with ensuing thermally 

activated oxidation of γ-Al2O3 [61].  Al-cyclooctane composite starts gaining weight 

from a temperature between 600 and 700 K, which is much lower than the temperature 

for the detected oxidation onset for the pure aluminum powder with the comparable (even 

finer) average particle size.  Surprisingly, the weight gain for the first oxidation stage is 

approximately 49% of the initial weight, which is substantially greater than that for pure 

Al.  A strong peak, corresponding to the first oxidation stage, is also observed on dm/dT 

trace, indicating a greater oxidation rate compared to Al.  The oxidation rate decreases 

significantly before Al melts.  Well after aluminum melting, at about 1000 K, another 

oxidation stage occurs with a lower, almost constant rate, correlating with the second 

oxidation stage observed at this same temperature range for pure Al.  The second 

oxidation stage for composites is much weaker compared to Al.  



129 
 

Oxidation results at varied heating rates from 5 to 100 K/min were used to 

determine oxidation kinetics for prepared powder.  Results are described in the 

oxidation kinetics section.   
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Figure 6.4 Oxidation weight gains (TGA results) and mass derivative for the prepared 

Al-cyclooctane composite powder and reference pure Al powder (volumetric mean 

particle size 7.2 µm) heated at 5 K/min. 

 

6.4.2 Ignition 

Both the Al-cyclooctane composite powder and reference pure aluminum powder 

(volumetric mean particle size 7.2 µm) were tested.  Ignition temperatures as a function 

of the heating rate are shown in Figure 6.5; each point represents an individual filament 

ignition experiment.  Ignition moment is defined when a first bright spot is detected on 

the powder coating in the video recorded at 500 fps.  The prepared composite powder 
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ignited readily with a strong light emission, and at fairly reproducible ignition 

temperatures at heating rates ranging from 3000 to 23000 K/s.  Reference aluminum 

could not be ignited at heating rates lower than 7000 K/s.  Ignition temperatures for the 

composite powder fall into the range of 950 - 1200 K, which are significantly lower than 

that for pure aluminum.  A trend is clearly noticed that the ignition temperatures 

increase with increasing heating rates as is expected for a thermally activated ignition 

mechanism.   
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Figure 6.5 Ignition temperatures for the prepared Al-cyclooctane composite powder and 

for reference pure Al powder (volumetric mean particle size 7.2 µm) measured using an 

electrically heated filament at different heating rates in air. 

 

6.4.3 Oxidation Kinetics 

Ignition results are correlated with oxidation steps observed in TGA by Kissinger method 

[89].  For TGA data, the onset temperatures of the two distinct oxidation steps are 

recovered for the heating rates, β, of 5, 10, 20, 50 and 100 K/min. A plot of ln(T2
/β) 
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versus the reciprocal temperature 1/T for two oxidation stages is shown in Figure 6.6.  

Results of ignition temperature measurements at higher heating rates are presented in the 

same coordinates.  Straight lines linearly fitting each group of oxidation data points are 

extrapolated into the range of high heating rates corresponding to the ignition 

measurements.  Figure 6.6 shows that when heating rates typical of ignition experiments 

are approached, the second oxidation stage is expected to occur at much higher 

temperatures, and the first oxidation stage is extrapolated to slightly higher temperatures, 

as compared to the observed ignition temperatures.  The activation energy of the first 

oxidation step is also greater than that implied by a very small slope of the ignition data 

points.  It is likely, therefore, that the release of volatile hydrocarbon occurring at 

temperatures lower than the first oxidation step (see Figure 6.2) and not very well 

resolved in the oxidation traces (cf. Figure 6.4) can be correlated with the observed 

ignition behavior.   
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Figure 6.6 Kissinger plot showing ignition temperatures measured at different heating 

rates (squares) together with peak positions for oxidation stages (triangles and circles) 

observed in the TGA traces for Al-cyclooctane. 

 

6.4.4 Aerosol Combustion 

Three CVE aerosol combustion experiments were performed for Al-cyclooctane and 

three aluminum powders with different particle sizes.   Pressure traces were normalized 

over initial pressure prior to ignition.  A representative result is shown for each 

aluminum powder, while three traces are presented for Al-cyclooctane in Figure 6.7.  

For this experiment, the ratio of the maximum explosion pressure, Pmax, over the initial 

pressure, P0, is roughly proportional to the combustion temperature, while the maximum 

rate of pressure rise, dP/dtmax, is an indicator of the combustion rate. A NASA CEA code 

[90] was used to interpret the CVE experiment and calculate adiabatic pressures 

corresponding to the experimental conditions, which were 12.58 and 12.56 atm for Al 
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and Al-cyclooctane, respectively.  Combustion efficiencies were calculated by 

comparing the experimental and calculated pressures.  Average values for Pmax/P0, 

dP/dtmax and combustion efficiency are summarized in Table 6.1.    

For the pure aluminum particles, when particle size decreases both the maximum 

pressure and rate of pressure rise increase, while the time delay of ignition is reduced.  

Based on its mean particle size, the combustion performance for Al-cyclooctane was 

expected to fit between those shown for Al powders with average sizes 10.9 and 15.1 µm.  

However, Al-cyclooctane powder is readily ignited, and produces higher maximum 

pressure and rate of pressure rise compared to similarly sized pure Al powders, which 

indicates a higher flame temperature and combustion rate compared to aluminum.  The 

combustion efficiency is also appreciably improved and is close to that of the finest 

aluminum powder.  
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Figure 6.7 Pressure traces for Al-cyclooctane compared with similar-sized Al powders in 

CVE experiments. 

 

Table 6.1 Statistical Results for Samples and References in CVE Experiments 

 Al Al-cyclooctane 

Mean size, µm 9.4 10.9 15.1 11.9 

Pmax/P0 9.1 8.5 6.8 9.1 

dP/dtmax, atm/s 380 212 60 537 

Efficiency, % 72.3 67.6 54.1 72.8 

 

6.4.5 Seeded Flame Combustion 

Figure 6.8 shows a characteristic trace of emission intensity and color temperature from 

the emission intensity ratio for 900 and 700 nm for an Al-cyclooctane particle burning in 

the combustion products of a laminar air-acetylene flame.  Combustion temperatures 

calculated using the emission intensity ratio for 800 and 700 nm were found to be similar 

to those obtained using the emission signals at 900 and 700 nm.  A fraction of the 
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temperature trace, corresponding to the emission signal exceeding half of its maximum 

value is plotted as a thicker line. The color temperatures obtained using this stronger 

portion of the signal are more reliable and were used to calculate the average temperature 

for each particle.  In general, strong oscillatory pattern in the emission signals is 

observed during combustion.  Despite the oscillation of emission intensity, temperature 

is relatively stable. Unlike combustion in air, for which emission intensity peaks quickly, 

emission intensity of particles in the hydrocarbon flame achieves its maximum value in 

the middle of combustion.  
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Figure 6.8 Characteristic traces of emission intensity and temperature for Al-cyclooctane 

particle burning in an air-acetylene flame.  The axis for the PMT signal plotted in a.u. is 

not shown.  
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Figure 6.9 Cumulative distributions illustrating correlation of particle sizes and burn 

times.  (a) Cumulative percentage of particle number vs. particle diameter; (b) 

Cumulative percentage of particle number vs. burn time. 
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Figure 6.10 Burn times in flame versus particle size.   

 

The distribution of the measured burn times was correlated with the particle size 

distribution as shown in Figure 6.9.  The burn times for about 2000 particles were 

quantified from emission traces, and broken in 30 bins.  Cumulative particle number 

distribution as a function of time bin is shown in Figure 6.9 (b).   The volume-based 
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differential particle size distributions shown in Figure 6.3 were transferred into 

number-based integral distributions as shown by the open squares in Figure 6.9 (a).  To 

recover particle sizes corresponding to burn times, cumulative particle number density 

was initially obtained for each time bin.  For the obtained cumulative particle densities, 

respective particle sizes were determined using interpolation between individual points 

represented by the solid line in Figure 6.9 (a).   

The resulting burn times versus particle size are shown in Figure 6.10.  An 

equation of t=a·D
b, where t is burn time, and D is particle size, was used to fit the results, 

as shown by the trend-line in Figure 6.10.  The exponent value is found to be b=0.5, 

which is roughly consistent with empirical exponents reported for pure aluminum 

burning in the N2/O2 gas mixtures [71].  The multiplier a=3.79 for the burn times 

expressed in ms and particle diameter in µm.  For comparison, data and a trend line 

from [88] are also shown for pure Al powder burning in the same, laminar air-acetylene 

flame.  The burn times for both materials are close to each other.  For pure Al, the burn 

times are slightly longer and the effect of particle size on the burn time for pure Al is a bit 

weaker.    

Combustion temperatures measured in this experiment were found to be 

independent of burn times (and particle sizes, respectively).  The mean combustion 

temperature at 900/700 nm of Al-cyclooctane particles burning in the combustion 
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products of a hydrocarbon flame was 2414±61 K.  The mean combustion temperature at 

800/700 nm was 2371±67 K.   

6.4.6 Single Particle Combustion 

Figure 6.11 shows a photograph of Al-cyclooctane particles ignited by a CO2 laser and 

burning in air.  Particles are injected vertically up from the bottom of the image.  Each 

streak represents a particle that crossed the laser beam and ignited.  The camera shutter 

was open for 250 ms while individual particle burn times are only a few ms each, so 

several subsequently occurring streaks were captured in the image.  In the picture, the 

streaks become brighter, and reach the strongest light emission level soon after particles 

exit the CO2 laser beam.  After the peak intensity, prominent luminous oscillations 

begin and last until a second peak of the emission intensity is reached.  It is also noted 

that characteristic spear points are formed before particles completely extinguish. 

 

 

Figure 6.11  Emission streaks produced by Al-cyclooctane particles ignited by a CO2 

laser and burning in air.   
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Figure 6.12 Characteristic traces of emission intensity, temperature, and RAlO for Al and 

Al-cyclooctane particles burning in air.  The axes for PMT signals plotted in a.u. are not 

shown.  
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Figure 6.13 Burn times for Al-cyclooctane and reference Al particles in air.   
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Figure 6.14 Combustion temperature for Al-cyclooctane, and reference Al particles 

burning in air.  
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Figure 6.15 Ratio RAlO (see Equation 4.1) for Al-cyclooctane and reference Al particles 

burning in air.   

 

Characteristic traces for emission intensity, temperature, and RAlO (cf. Equation 

(4.1)) for burning Al-cyclooctane and pure Al particles are shown in Figure 6.12.  

Generally, Al-cyclooctane particles burn longer, show stronger oscillatory patterns in 
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their emission signals, and their combustion temperatures and RAlO values are lower 

compared to pure Al.  While not as strong as for pure Al, vapor phase reactions are 

significant for the composite powder, as demonstrated by the value of RAlO >1.   Unlike 

aluminum particles, for which the temperature continues to increase after the peak value 

of the AlO emission is observed, the temperature for Al-cyclooctane increases 

simultaneously with AlO emission and black-body optical emission.  Both temperature 

and AlO emission are decreasing during combustion, indicating an increasing role of 

surface reactions compared to the vapor-phase combustion.   

For each particle, its size is correlated with the measured emission time using data 

processing described in detail elsewhere [71].  The emission time as a function of 

particle size is plotted in Figure 6.13(a).  A substantial scatter in the data for composites 

is likely due to errors in measuring particle sizes caused by the irregular particle shapes. 

The t~D
b fits for each material are also shown, where b≈0.3 for both cases.  

Al-cyclooctane composites appear to burn appreciably longer than similarly sized pure Al 

particles; the observed effect of particle size on the burn time for each material is very 

weak.   

The measured burn times were also processed neglecting the particle size 

measurements and simply correlating the statistical distribution of the burn times with 

particle size distribution, as described above and illustrated in Figure 6.9.  The burn 

times for about 330 and 120 particles were used for Al-cyclooctane and Al, respectively; 
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12 burn time bins were used.  Particle sizes were determined for these burn time bins by 

matching cumulative distribution between particle size and burn time; results are plotted 

in Figure 6.13(b).  In general, the trends in Figure 6.13 (a) and (b) are similar to each 

other; however, the effect of particle size on the burn time appears to be stronger, 

especially for finer particles, in Figure 6.13 (b).  An equation of t=a·D
b, was used to fit 

the data (neglecting the least reliable first and last points corresponding to the finest and 

coarsest size bins).  The exponent values are found to be b=0.63 and 0.47 for 

Al-cyclooctane and Al, respectively. 

Average flame temperature and average RAlO values were determined using the 

fractions of the emission signals exceeding 50% of their respective peak values.  Figures 

6.14 and 6.15 show average flame temperature and RAlO, respectively, for both 

Al-cyclooctane and Al.  The flame temperatures for Al-cyclooctane fall into a similar 

temperature range as for Al, while RAlO is substantially lower indicating a weaker 

molecular AlO emission compared to Al.  Both the flame temperature and RAlO are 

nearly independent of particle size for both materials. The mean flame temperature for 

Al-cylcooctane is close to 2680 K, similar to that of the pure Al.   
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6.5  Discussion 

The prepared powder, similar to the recently prepared composite powders of Al-wax and 

Al-polyethylene [91], consists of tightly packed small flakes of aluminum [34, 60].  The 

prepared composites possess large active surface despite its relatively large mean 

volume-based particle size of 11.9 µm.  The flake surface is likely to be coated with a 

layer reacted with cyclooctane, replacing natural alumina present for pure Al powders.  

This layer likely forms during the cryo-milling, when cyclooctane exists as a soft solid 

interacting with harder but still ductile aluminum particles flattened into flakes by the 

milling balls.  Most of cyclooctane retained in the prepared ball-milled powder is 

removed upon heating.  The weight loss (cf. Figure 6.2) occurring above the boiling 

point of cyclooctane is indicative of the formation of a surface-stabilized Al-cyclooctane 

compound.  These new phases could not be detected from XRD, suggesting that they 

either are poorly crystalline, or exist in very thin layers.  It is interesting that the loss of 

this compound upon heating occurs immediately prior to the first oxidation step in the 

prepared materials.  The amplitude of the first oxidation step is rather large, indicating a 

large surface involved in the reaction.  This can be understood assuming that when the 

protective cyclooctane layer is removed from the surface of aluminum flakes, including 

the surfaces between consolidated flakes, oxidation can occur at a much larger surface 

area than the external surface of consolidated particles visible in Figure 6.1.  This 

hypothesis was supported by a BET-measured increase in the surface area of the heated 
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composite particles.  The combined effects of removal of the protective surface layer 

followed by a strong first oxidation step are suggested to be responsible for the 

low-temperature ignition of the prepared materials.  The lack of direct correlation 

between kinetic trends for the first oxidation step and ignition in Figure 6.6 is probably 

explained by an inter-dependency between the processes of cyclooctane release and 

oxidation, which both alter the surface properties of the prepared powders.   

The results of single particle combustion experiments are generally consistent 

with recent experiments with powder particles in the same size range [70-73, 87, 92].  

The effect of particle size on the burn time is relatively weak and the particle combustion 

temperatures are the same as those for pure Al.  However, the results of experiments 

using air-acetylene flame are in an apparent conflict with the experiments using particles 

ignited by CO2 laser and burning in air.  The burn times in Figure 6.10 are longer than 

those shown in Figure 6.13 for both Al and Al-cyclooctane powders. This observation 

can be interpreted considering that the oxidizing environment was substantially different 

in the two combustion experiments described.  Calculation from CEA code shows that 

CO2 and water are the main combustion products for air-acetylene flame under 

experimental conditions.  Further, the effect of oxidizer may also need to be considered 

to explain why pure Al particles burn faster than the prepared composite particles in air 

(Figure 6.13) but somewhat slower in the air-acetylene flame (Figure 6.10).   It is 

possible that the released cyclooctane generates a boundary layer surrounding a burning 
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particle and including products of cyclooctane decomposition, which are expected to be 

similar to the combustion products forming in the air-acetylene flame.  The presence of 

such a layer in air would reduce accessibility of the particle surface to oxygen.  

However, in air-acetylene flame this layer may not be affecting the transport of oxidizing 

species to the particle surface.  Therefore, effects of particle surface morphology on its 

burn rate may dominate, and the surface increased due to the release of cyclooctane may 

accelerate not only ignition but also combustion of the prepared powders, compared to 

spherical aluminum.    

It is also interesting to note that despite a somewhat longer burn times observed 

for the composite particles in air, in CVE experiments both maximum pressure and rate 

of pressure rise were improved.  This can be qualitatively explained considering the 

following two points: 

1. The flame propagation in CVE experiment is defined by both ignition and burn 

rate of the ignited particles.  A strong reduction in the ignition temperature, as 

illustrated in Figure 6.5, can lead to a more readily established flame propagation 

in the vessel and thus increase in both Pmax and dP/dtmax.   

2. Combustion in the vessel occurs in a fuel-rich environment and particles may be 

competing for oxidizer, unlike the single, laser-ignited particle experiment, where 

oxidizer is plentiful.  Mixing of the oxidizer may be noticeably enhanced by 

release of the cyclooctane from the particle surfaces which does not happen for 
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the case of pure Al.   

 

6.6  Conclusions 

Nearly pure aluminum particles with a modified surface were prepared by cryomilling 

aluminum and cyclooctane (a liquid at room temperature but solid at the liquid nitrogen 

temperature used during milling).  Despite a small quantity of hydrocarbon (~2 wt. %) 

added to the metal, not only oxidation and ignition but also combustion characteristics of 

the prepared powder are significantly different from those of pure aluminum.  The 

differences appear to be attributed to the unique morphology of the prepared powders.  

Al-cyclooctane powder oxidizes at a substantially lower temperature; its first oxidation 

step is much stronger and faster compared to that observed for a pure Al powder with the 

same particle sizes.   Ignition temperatures are also substantially reduced compared to 

Al.  It is suggested that the combined and inter-dependent effects of release of the 

volatile hydrocarbon additive and oxidation of the generated unpassivated surface lead to 

an improved ignition for the prepared material.  For aerosolized powder clouds, ignition 

delay is shortened, and both combustion temperature and burn rate are improved 

compared to pure Al.  For the individual composite particle combustion in air, burn time 

is longer, combustion temperature is comparable, and AlO emission is lower compared to 

Al.  This is interpreted by suggesting a stronger role of surface reaction processes for the 

prepared composite particles.  For composite particles burning in a hydrocarbon flame, 
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burn times are shorter compared to the pure Al, most likely due to the surface area 

increased as a result of release of a volatile hydrocarbon coating and available for the 

reaction.  The effect of particle size on burn time in the latter case is approximately 

described by a d1/2 law.  
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

 

7.1  Conclusions 

Cryomilling has been successfully applied to prepare new aluminum-based materials 

comprising an aluminum matrix with iodine and hydrocarbon inclusions. The prepared 

Al-I2 composite powders are effective in neutralizing spores or bacteria based on the 

results of biological experiments from University of Cincinnati.  The prepared 

Al-hydrocarbon composites were found to have strong potential in replacing pure 

aluminum as fuel additive  

As presented in Chapter 2, micron-sized, stable Al-I2 composite powders were 

prepared using mechanical milling.  In such compounds, iodine is chemically bound to 

Al and is stabilized to higher temperatures compared to elemental iodine and AlI3. In 

addition to poorly crystalline AlI3, other iodine compounds were contained in the 

mechanically alloyed powders.  Milling conditions are adjusted to in order to obtain 

desired composites with different iodine concentrations, and to observe the effects of 

milling parameters on material properties. Milling at liquid nitrogen temperature is more 

effective in preparing stabilized Al-I2 compounds than milling at room temperature. 

Milling directly in liquid nitrogen is more effective in producing equiaxial and/or smaller 

particle size; however the iodine is not well stabilized in the powders prepared in the 
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liquid nitrogen bath.  In fully stabilized mechanically alloyed samples, most of iodine 

was incorporated into Al matrix as a stable phase which is released after the material was 

heated above 673 K (400 ºC).   

A detailed study of iodine release and oxidation kinetics is reported in Chapter 3. 

The TGA measurements suggest that iodine is present in the prepared composites in at 

least three different forms.  Two weakly bound forms volatilize similarly to elemental 

iodine and AlI3. A strongly bound form is retained in aluminum until the material is 

heated up to nearly the Al melting point.  Two different samples prepared in this effort 

contained different fractions of weakly and strongly bound iodine forms; however, the 

iodine release and oxidation behaviors were qualitatively similar for both samples.  

Oxidation of the prepared materials in TGA shows that the low-temperature oxidation 

begins sooner than for pure aluminum, and the second oxidation step is accelerated by Al 

melting unlike for pure aluminum oxidizing in O2. Study of reaction kinetics indicates 

that the second oxidation step likely correlates with the release of strongly-bound form of 

iodine, and the ignition kinetics correlates well with that of the low-temperature release 

of iodine.  Ignition of the prepared composites occurs at substantially lower 

temperatures than for pure Al.   

A study of oxidation, ignition and combustion behaviors of Al-I2 composites is 

presented in Chapter 4. Material prepared with increased iodine concentrations shift their 

first oxidation step to lower temperatures.  Both overall iodine concentration and its 



150 
 

stability in the Al matrix are observed to affect ignition and combustion characteristics of 

the Al-I2 composite powders.  Qualitatively, greater iodine concentrations lower ignition 

temperatures but do not affect the combustion temperatures substantially.  Burn times of 

individual Al-I2 composite particles are slightly longer and their combustion temperatures 

are somewhat lower compared to the pure Al.  However, improvements in both rate of 

pressure rise and maximum pressure were observed in constant volume explosion tests 

with powders containing 15 and 20 wt. % of I2.  The composite with 20 wt. % of I2 with 

fairly good stability and fast oxidation and combustion rates is considered as the 

optimized drop-in replacement for pure aluminum powder in aluminized explosives 

expected to provide biocidal effects.  

Preparation of Al-solid hydrocarbon composites, their characterization and study 

of their oxidation, ignition and combustion behaviors are discussed in Chapter 5. Unlike 

iodine, hydrocarbons are not altered chemically while being embedded in aluminum 

matrix.  Upon heating, they volatilize at their characteristic volatilization temperatures.  

For both Al-wax and Al-polyethylene (PE) prepared materials, their ignition temperatures 

are reduced substantially compared to pure aluminum.  Al-hydrocarbon materials 

oxidize at substantially lower temperatures and noticeably faster compared to pure Al 

powders.  Individual particle burn times are longer, the combustion temperatures are 

similar, and values of AlO emission are lower for Al-hydrocarbon particles compared to 

Al.  For aerosolized powder clouds, burn rates for the Al-wax or Al-PE composite are 
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comparable to that of pure Al.  It is speculated that the combustion performance is 

reduced by the agglomeration observed for the partially burned particles of 

Al-hydrocarbon composites in the CVE configuration.   

In order to improve overall energy density and combustion rate for aerosolized 

powders, liquid cyclooctane was used to prepare composites in Chapter 6. Nearly pure 

aluminum particles with a modified surface were prepared by cryomilling aluminum with 

cyclooctane. Despite a small quantity of hydrocarbon (~2 wt. %) added to the metal, not 

only oxidation and ignition but also combustion characteristics of the prepared powder 

are significantly different from those of pure aluminum. Al-cyclooctane powder oxidizes 

at a substantially lower temperature; its first oxidation step is much stronger and faster 

compared to that observed for a pure Al powder with the same particle sizes.   Ignition 

temperatures are also substantially reduced compared to Al.  For aerosolized powder 

clouds, ignition delay is shortened, and both combustion temperature and burn rate are 

improved compared to pure Al.   

 

7.2  Future Work 

X-ray diffraction is used to analyze the phase in Al-I2 and Al-hydrocarbon composites.  

For Al-I2 materials, only Al and AlI3 phases were observed.  For Al-hydrocarbon, only 

Al phase is observed.  It appears that XRD is ineffective to understand other possible 

phases, which may exist as thin layer on the surface of particles or lie between grain 
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boundaries of aluminum.  Other analytical techniques such as TEM or XPS can be used 

to characterize the phase composition in these composite materials.  

Al-I2 composites are observed to perform well in neutralization of viable 

aerosolized microorganisms.  It appears that the maximum iodine content for a practical, 

stable composition is about 20 wt. %.  Preparation of a stable composition with higher 

iodine content may be possible with different starting materials.  Moreover, the 

mechanism how the iodine release will affect the inactivation should be better 

understood.  Thus, materials can be further optimized to obtain better biocidal effects.  

Al-cyclooctane appears to be nearly pure aluminum with good ignition and 

combustion performance.  Results show that the improved ignition behavior may be due 

to an increase in surface area upon heating.  Further investigation can be performed to 

observe whether cyclooctane has chemically altered the aluminum surface.  In addition, 

it is of interest to optimize the material by milling Al with different hydrocarbons to 

reduce the milling time.   

In the single particle combustion experiment, it appears that all the composites 

burn longer than aluminum.  It is not clear whether they burn slower or more completely 

than aluminum.  However, this question can be answered by collecting and analyzing 

the combustion products from single particle experiments.  Furthermore, the burn times 

of these particles can be compared to Beckstead’s results [93]. 
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APPENDIX A 

Al-Mg COMPOSITES WITH IMPROVED COMBUSTION RATE 

 

In this appendix, the characterization results of Al-Mg composites are presented.  Such 

materials were synthesized using cyclooctane as a process control agent.  Milling 

parameters are the same as used in Chapter 6 except the starting materials and milling 

time.  

 

Table A.1 Al-Mg Samples Prepared in Attritor Mill 

Sample ID Mass load, g  Milling 

time, h Al  Mg hydrocarbon 

Al-cyclooctane 45 - 5 19 

Al-Mg 36 9 5 18 

 

 

Figure A.1 SEM image of Al-Mg composite. 
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Figure A.2 Oxidation traces of Al-Mg and reference Al at 5 K/min in TGA.  
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Figure A.3 Pressure traces for Al-Mg composite powder and reference Al measured in 

CVE experiments. The experimental conditions are described in Chapter 6.  
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Figure A.4  Maximum pressure and maximum rate of pressure rise for Al-Mg 

composites and reference Al measured in CVE experiments.  The experimental 

conditions are described in Chapter 6.  
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APPENDIX B 

MASS SPECTRUM OF I2 AND Al-I2 COMPOSITES 

 

Mass spectrometer (MS) was used to characterize products for both iodine and Al-I2 

composites upon heating.  Elemental iodine was heated up to 353 K (80 ºC) by a plate 

heater. It was exposed to ambient air during the MS measurement.  Al-I2 composites 

were heated in a Netzsch DSC STA409PC furnace using a heating rate of 20K/min. Mass 

spectrometer was connected to the outlet of furnace to analyze the products.  

It was observed that solid iodine tends to absorb moisture and turns into a liquid 

phase quickly.  It is very likely that iodine reacts with water to produce HI and HIO 

according to the chemistry.  However, MS results of elemental I2 showed only I and HI 

fragments.  Similarly, only I and HI fragments were observed for Al-I2 composites. 
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Figure B.1 Characteristic peaks in mass spectrum.  The x-axis is mass to charge ratio, 

and the y-axis represents the intensity.  126.8 and 127.8 are the peaks for singly charged 

I and HI fragments, respectively; 63.4 is the peak for doubly charged I.
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APPENDIX C 

ADDITIONAL DATA FOR SINGLE PARTICLE EXPERIMENTS 

 

Additional results of single particle experiment were presented for Al-I2 samples 

investigated in Chapter 4.  Particle size distributions, which are shown in Figure 4.1 are 

used to compare with that implied from the amplitudes of the scattered light pulses 

measured in this experiment.  In the processing, the value of particle refraction 

coefficient was adjusted to achieve the best match between the two size distributions. 

Considering coarse particles are not well represented in the current combustion 

experiment, the best match was not based on that for the whole range of particle size, but 

actually based on that for the fine particles. Figure C.1 show the best matches chosen for 

different sample A, B, C and D.  The match is not perfect for the whole range of particle 

size for each material, but salient features of the powder size distributions are represented 

well for sample A, B and D. 

The measured emission time as a function of the particle diameter is shown in 

Figure C.2 for samples B, C and D; data points of sample A are not enough to make such 

result plot. Filled symbols in Figure C.2 represent particles with longest emission times.  

These longest times are selected following a consistent data processing routine [69, 70].  

Thus, data represented by open symbols in Figure C.2 are removed from further analysis.  
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All emission traces selected as shown by filled symbols in Figure C.2 (including, 

in addition, traces for sample A) were processed to determine the average flame 

temperature and RAlO.  Results of flame temperature and RAlO are plotted as a function of 

particle size in Figure C.3 and Figure C.4, respectively. 
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Figure C.1  Particle size distribution measured in the commercial device (Coulter 

LS230) and the scattered-light measurement for Al-I2 samples (cf. Chapter 4). 
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Figure C.2 Burn times as a function of particle size for sample B, C and D (cf. Chapter 4) 

in air.  
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Figure C.3 Measured flame temperatures for different Al-I2 composites.  
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Figure C.4 Measured AlO ratio for different Al-I2 composites.  
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APPENDIX D 

FLAME TEMPERATURE MEASUREMENT 

 

Al-wax powders were seeded into an air-acetylene flame in a modified Bunsen burner 

[94]. Emission spectrum was measured at different heights of combustion flame. Flame 

temperature was determined by analyzing the emission spectrum.  

 

 

Figure D.1 Rotated photograph of air-acetylene flame with seeded Al-wax powders. 

Flame conditions were the same as for Al-cyclooctane in Chapter 6. 
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Figure D.2 An example of measured spectrum and the fitting line for the obtained flame 

temperature. Note that three characteristic atomic lines appear in the spectrum. 
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Figure D.3 Flame temperatures at different flame heights.
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APPENDIX E 

HEAT LOSS FROM SINGLE PARTICLE COMBUSTION 

 

The objective is to assess heat loss from individual particle during combustion assuming 

that there is no vapor flame surrounding the particle.  The inputs for the calculation are 

temperature profile, burn time and particle size obtained from single particle experiment 

[66, 71].  In this assessment, the measured temperature was considered to be particle 

surface temperature.  The heat loss was calculated considering the variation of both 

particle size and temperature during combustion. 

Particle size evolution was calculated assuming that reduction of particle size 

follow the d0.2 law, which is consistent with the result observed for Al-I2 materials.  The 

mass and heat transfer were considered to occur in a transition regime. The convection 

and radiation heat loss were evaluated according to ref. [95].  Emissivity was 0.8.  The 

reaction enthalpies for Al and I2 are 837,850 J/mole and 18,8361 J/mol, respectively.  

The total energy was obtained by assuming Al and iodine are fully oxidized. 

Results showed that magnitude of convection is generally 1-2 orders larger than 

that of radiation.  The ratio of heat loss over theoretical heat is plotted as a function of 

particle size for Al-I2 samples (see Figure E.1) and Al particles (see Figure E.2).  There is 

a significant fraction of small particles presented in Al-I2 samples having the ratio larger 

than 1, which means that the heat loss was over estimated for these particles.  
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Figure E.1 The ratio of heat loss over theoretical heat as a function of particle size for 

Al-I2 materials. 
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Figure E.2 The ratio of heat loss over theoretical heat as a function of particle size for Al 

particles in different burning environment. 
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APPENDIX F 

INACTIVATION OF AEROSOLIZED BIOLOGICAL SPORES 

 

The prepared Al-I2 composites were fed into a hydrocarbon flame in a modified Bunsen 

burner to evaluate their biocidal effect on Bacillus atrophaeus (BG) spores. The detailed 

results are available in ref. [94].  The inactivation of BG spores is studied with different 

composite materials, and the main results are shown in Figure F.1. A strong inactivation 

potential is observed for Al-I2 composites. The experimental apparatus was designed at 

NJIT in collaboration with Prof. Grinshpun’s group at University of Cincinnati.  The 

experiments were conducted at University of Cincinnati.   

 

 
Figure F.1 The inactivation of aerosolized Bacillus atrophaeus (BG) spores by 

combustion of different materials.  
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