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ABSTRACT 

DEVELOPING CRASH MODIFICATION FACTORS FOR OPERATIONAL 

PARAMETERS ON URBAN FREEWAYS  

 

by 

Eugene Vida Maina   

Studies have shown that, roadway safety has become an intensively investigated topic 

with the objective of improved understanding of the factors that cause crashes to occur.  

However, it has been shown that as traffic volumes continue to increase across the United 

States, 52% of drivers feel less safe on the roads today more than they did five years ago 

and that the American public feels that traffic safety is a serious problem that needs both 

the government and media to pay more attention to this issue. 

In response to these public and driver grievances, State and National 

transportation agencies have been and continue to pursue and understand the causes and 

solutions that would significantly reduce roadway crash frequencies.  At national level, 

through various and rigorous studies, the American Association of State Highway and 

Transportation Officials, AASHTO has published the Highway Safety Manual to 

quantify safety using predictive models and CMFs.  Various efforts have been attempted 

at state level too, for example, Texas DOT has developed an Interim Roadway Safety 

Design Workbook that describes the relationship between various roadway elements and 

each element influences roadway safety.  

  



 

 

 

 

In an effort to contribute towards understanding and resolving the factors that 

influence crash frequencies on roadways, through a thorough literature search.  This 

study realizes that although there has been vast research in this area, no study has 

explicitly explained why there is variation in crash frequencies on roadways segments 

with similar physical/geometric features and annual average daily traffic (AADT).  

Studies suggest that these variations are due to volume changes throughout the day, an 

effect literature shows that can only be addressed by hourly volumes and not AADT.   

Driven by these literature conclusions, this dissertation develops crash 

modification factors (CMFs) for urban freeways by considering level of service (LOS) 

deterioration due to change in hourly traffic volumes.  Here, this study investigates LOS 

when it deteriorated from A to B, B to C, C to D, D to E and E to F using hourly volume 

and hourly crash data collected on urban freeway segments, specifically routes US 1, NJ 

3 and NJ 21 in the State of New Jersey.  Data were collected on 14 miles of urban 

freeway segments and 1344 hours of traffic volume count and crash data were analyzed 

for a period of four years, 2008, 2009, 2010, and 2011. 

Results from this investigation, shows that operational elements have some 

influence on urban freeway safety.  This dissertation shows that as LOS deteriorated from 

A to B, B to C, C to D, D to E and E to F, the estimated CMFs were 0.673, 1.110, 0.865, 

1.452, and 0.370 respectively.  These findings concur with those referred to in this 

dissertation’s literature review findings, which showed that by adding capacity, that is, by 

reducing congestion initially results in safety improvement that diminishes as congestion 

increases.
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To My Father, 
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In life, one has time, youth, and mind.  Time will come and go no matter what, so will 

youth.  One should enjoy these two responsibly - they have consequences.  It gets tough 

as they both pass by - that is why the old days will always be the good old days.  The 

mind is the most powerful of the three; the worst mistake would be to waste it.  Instead, 

the mind should be kept young with time.  How?  Keep it thirsty for knowledge and 

happiness. 

 

It is also a waste of life if these three are natured but not used to improve life for others, 

the environment, the future, and oneself. 

 

 

Words of the late, Andrew Maina Andieri. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Whenever a driver is on the road operating a vehicle, a risk of a crash occurring exists.  

The crash can be associated with human factors, roadway physical/geometrical features, 

weather conditions, environmental factors, operational elements, bad luck or a 

combination of several of these features. 

Characteristically, all roads have some level of risk, but some roadway sites 

(segments or intersections) are contemplated to be more risky than others are.  Some of 

those identified to be more hazardous possess similar physical or geometrical features but 

have varying crash frequencies.  What could be the cause of these variation in crash 

frequencies even though the roadway sites have similar or same physical features?  In the 

past, practitioners have considered geometrical elements and Annual Average Daily 

Traffic (AADT) to measure the absolute crash frequency at a roadway site to proclaim 

whether the site is a safety concern or not.  This approach however tend not to address the 

variation in crash frequencies at these similar or same sites.  

Roadway safety has become an intensively investigated topic with the objective 

of improved understanding of the factors that cause crashes to occur.  If the factors that 

cause crashes are known, practitioners will be able to identify safety improvement 

countermeasures more efficiently and effectively.  Earlier and recent studies have 
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indicated that the relationship between crash frequency and traffic volume is nonlinear 

and depends on several variables. 

Traffic can act exceptionally different depending on the roadway functional class, 

area type, physical features etc.  Therefore, treating all sites the same does not reflect the 

influence operational conditions have on safety.  This dissertation provides an empirical 

and unbiased methodology of measuring safety on urban freeway segments and as 

recommended by the HSM (2010) the measured safety was reported as CMFs. 

 

1.2 Research Need 

Most transportation studies address how geometrical elements influence roadway safety 

and not operational elements.  The few that have, do acknowledge that operational 

elements have some influence on safety, but fail to quantify safety as those for 

geometrical elements have.  For example, Kononov et al.’s, (2008) relationships between 

safety and congestion study indicated that even though practitioners believe that 

additional capacity afforded by additional lanes is associated with more safety, they do 

not specify how much safety and for what period of time the given freeway segment will 

maintain the safety conditions. 

No published study, including the HSM (2010) has quantified safety by 

considering operational elements.  There is need to explicitly understand how much 

safety and for what period of time or condition will a specified operational element affect 

a given urban freeway segment. 
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The reason that has made the use of operational elements data to quantify safety 

unpopular amongst transportation practitioners, is the hesitance by the HSM (2010) to 

use hourly traffic volumes instead of the traditional AADT.  The analytical derivation and 

factors adopted by the HSM (2010) render the exercise also impractical.  However, 

studies have shown that urban freeway segments with the same geometric conditions 

experience varying crash frequencies.  For example, Qin et al. (2006) study on the 

relationship between crash occurrence and hourly traffic volumes shows that the expected 

crash count on two equal segments with the same AADT and physical characteristics 

varies according to the distribution of traffic volume through the time of the day.  

Variation in crash frequencies on similar segments is due to volume changes that affect 

roadway operations throughout the day (Abdel-Aty and Pande, 2007), an effect Hauer et 

al. (1996) states that only hourly volumes can accurately account for.  As a result, this 

study focused on hourly traffic volumes instead of AADT to investigate operational 

influence on safety.   

The HSM (2010) recommends that safety evaluation to be performed before 

implementing any given treatment.  This exercise helps to predict the expected safety 

consequences of the suggested treatment if there are any.  According to the HSM (2010), 

the safety consequence can be measured using either crash prediction models or CMFs or 

both.  In accordance to the HSM (2010), this study developed CMFs to measure the 

safety effect of the suggested operational implementations. The HSM (2010) has 

effective CMFs for various types of treatments.  However, none of the HSM (2010) 

CMFs is developed for roadway operational functions.  It is for this reason that this study 

focuses on this new approach to quantify safety.  The findings of this research will serve 
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as a starting point to convince transportation researchers to further investigate this topic 

and eventually be included in the future version of the HSM. 

No published study directly links the highway capacity manual, HCM (2010) to 

the HSM (2010).  The HCM (2010) and the HSM (2010), two essential manuals referred 

to for concepts, guidelines and computational procedures for estimating operational 

elements and quantifying the safety effects of various engineering treatments proposed 

during roadway planning, design, operations or maintenance respectively are independent 

of each other.  This study establishes a link between these two manuals showing 

dependency on each other when considering operational safety impacts.   

 

1.3 Objectives of Study 

This dissertation’s findings will fill the gap regarding operational elements - specifically 

how they influence safety and eventually contribute towards the inclusion and 

improvement of the future versions of the HSM.  Therefore, the seven main objectives for 

this research are: 

1. Use hourly volumes to investigate the relationship between operational elements 

and safety. 

 

2. Use traffic density and level of service (LOS) to investigate the relationship 

between operational elements and safety 

 

3. Develop SPFs to determine predicted crash frequencies. 

 

4. Develop Empirical Bayesian models to determine expected crashes. 

 

5. Derive CMFs to quantify the impact operational elements have on safety under 

given conditions.  
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6. Use the findings of this study to show that operational elements have some 

influence on roadway safety. 

 

7. Establish a link or relationship between the HCM and HSM. 

 

This study has derived and presented a thorough procedure of developing CMFs 

and as a result, contributed to improving the quality of research and roadway safety 

design.  In addition, a link between the HCM and HSM was established.  Through the 

models developed and presented in this study, a better perception of operational elements 

and their influence on safety were revealed.  The other intent here was also to encourage 

further investigations on this topic and eventual the inclusion in the future versions of 

HSM.  

 The objectives of this study were accomplished by attempting and completing the 

following tasks: 

 

1.3.1 Literature Review 

A detailed literature search on factors that influence roadway safety and development of 

CMFs was conducted.  The objective of the literature search was to unearth information 

of previous findings to assist in obtaining the objectives of this study.  The main sources 

this study used to obtain prior studies on this topic included TRID, NJIT’s Van Houten 

library, NJIT’s National Center for Transportation and Industrial Productivity, Science 

Direct, Dissertation Abstracts Online, NJDOT and SCOPUS.  
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1.3.2 Survey to Select Study Roadways 

To achieve a nearly realistic and unbiased outcome, this dissertation studied roadways 

only classified as urban freeways only.  This is because urban freeways have a high 

chance of experiencing all six LOSs changes in a twenty-four hour day period at a given 

sites and the drivers can be assumed to be local drivers and therefore the adjustment 

factor for presence of occasional or non-familiar drivers can be assumed to be 1. 

A thorough survey was conducted on NJDOT’s “Straight Line Diagram, SLD” 

database to identify roadway segments that were classified as urban freeways.  Routes US 

1, NJ 3 and NJ 21 were selected for investigation.  Other site characteristics such as 

location, street name, speed limit (mi/hr.), number of lanes, median width (ft.), lane width 

(ft.) and shoulder width (ft.) were also collected from this database to assist in model 

development and CMF analysis. 

 

1.3.3 Survey to Select Study Sites 

Using the selected roadways, this study referred to NJDOT’s “Roadway Information and 

Traffic Counts” database to select the study sites.  Five one-mile (half-mile downstream 

and half-mile upstream) study sites were selected on each roadway at locations where 

NJDOT had placed volume count stations.  Twenty-four hour annual average hourly 

traffic volumes for the years 2008, 2009, 2010 and 2011 were collected for analysis. 
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1.3.4 Determining the Level-of-Services, LOS 

To determine the LOS for each of the 1,344 study hours LOSs, this study used the 

procedure given in the HCM (2010) finding the density first and then assigning LOS.  To 

achieve this task, roadway characteristics data given Section 1.3.2 and hourly traffic 

volumes given in Section 1.3.3 were used to compute the density and assigning of the 

LOSs for each study hour. 

 

1.3.5 Crash Data Collection 

NJDOT’s “Crash Records” database was the only source used to find the hourly crash 

frequencies for this study.  This study then merged each hourly crash frequency value 

with its corresponding traffic volume, roadway characteristics, density and LOS and used 

these information to determine the variables included in the development of safety 

performance functions (SPFs). 

 

1.3.6 Developing Safety Performance Functions and Crash Modification Factors 

In accordance to the HSM (2010), the safety consequence was measured using CMFs, a 

function of observed crashes given in Section 1.3.5, predicted crashes determined from 

SPFs and expected crashes determined form Empirical Bayes, EB before-after studies.  

Therefore, the development of CMFs involved selecting roadway physical/geometrical 

and operational elements generally considered to be related to safety. 
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1.4 Definition of Important Acronyms Used 

 

LOS:  Level-of-Service is “a quality measure describing operational conditions  

  within a traffic stream, generally in terms of such service measures as  

  speed and travel time, freedom to maneuver, traffic interruptions, and  

  comfort and convenience.” HCM (2010). 

 

HCM  Highway Capacity Manual “is a publication of the Transportation  

  Research Board of the National Academies of Science in the United  

  States.  It contains concepts, guidelines, and computational procedures for  

  computing the capacity and quality of service of various highway   

  facilities, including freeways, highways, arterial roads, roundabouts,  

  signalized and un-signalized intersections, rural highways, and the effects  

  of mass transit, pedestrians, and bicycles on the performance of these  

  systems.” HCM (2010). 

 

SPF:  Safety Performance Functions are statistical models relating crash  

  frequencies to roadway and driver characteristics.  

 

RTM:  Regression-to-Mean is the tendency for the occurrence of crashes at a  

  given location to fluctuate up and down, and to converge to a long-term  

  average.  Bahar (2010). 
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HSM:  Highway Safety Manual is a “provides practitioners with information  

  and tools to consider safety when making decisions related to design and  

  operation of roadways.  The HSM assists practitioners in selecting   

  countermeasures and prioritizing projects, comparing alternatives, and  

  quantifying and predicting the safety performance of roadway elements  

  considered in planning, design, construction, maintenance, and operation.” 

  AASHTO (2010). 

 

SLD:  Straight Line Diagram is a diagram of a road where the road is shown  

  as a straight line.  Such diagrams are usually produced by a highway 

   department, and display features along the road, including bridges and 

   intersecting roads.  Rows below the diagram show data about the road,  

  usually including speed limit, number of lanes, bridge numbers, and 

   historical data, among other data.  Subway lines also frequently employ 

   straight-line diagrams.  

 

CMF:  Crash Modification Factors is a multiplicative factor used to compute  

  the expected number of crashes after implementing a given   

   countermeasure at a specific roadway site.  HSM (2010). 

AADT:  Average Annual Daily Traffic is the average 24-hour volume at a given  

  location over a full 365/366 day year; the number of vehicles passing a  

  site in a year divided by 365/366.  HCM (2010).  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

This chapter summarizes a review of literature describing existing and proposed studies 

on (1) the methodology approach for estimating the operational performance for a basic 

freeway segment, (2) relationships between roadway geometric and operational elements; 

and safety and (3) methodologies for estimating crash modification factors (CMFs).  This 

chapter is organized in eight Sections: Section 2.1 introduces the chapter.  Section 2.2 

discusses the role of the Highway Capacity Manual (HCM, 2010) and the Highway 

Safety Manual (HSM, 2010) in analyzing existing and proposed roadways in the US. 

Section 2.3 discusses the geometric elements considered by the Highway Safety Manual 

(HSM, 2010) in developing existing crash modification factors (CMFs).  Section 2.4 

discusses roadway operational elements and how they can affect safety. Section 2.5 

discusses the Average Annual Daily Traffic (AADT) and how it affects safety.  Section 

2.6 discusses hourly volumes, how they affect roadway safety and why they may be used 

instead of AADT in developing the CMFs associated with freeway operation 

performance, Section 2.7 discusses the various methodologies used to develop CMFs and 

Section 2.8 summarizes the literature search chapter. 
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2.2 Analysis for a Basic Freeway Segment 

This Section provides a review of the two relevant freeway segment analysis manuals 

used in the US: (1) The Highway Capacity Manual (HCM, 2010) published by 

Transportation Research Board (TRB) for preliminary roadway designs and (2) the 

Highway Safety Manual (HSM, 2010) published by American Association of State 

Highway and Transportation Officials (AASHTO).  Though very effective, these two 

manuals are generally independent to each other.  As demonstrated in Chapter 1 Section 

1.2, this study intends to show that both these manuals can be referred to concurrently to 

develop CMFs to enable practitioners to measure the expected safety for both proposed 

and existing roadways. 

 

2.2.1 Highway Capacity Manual (HCM, 2010) 

This Section provides an overview of the HCM (2010).  This is being provided because it 

will be used to provide the procedures and guidance practitioners follow to estimate the 

operational performance of a basic freeway segment.  This manual provides concepts, 

guidelines and computational procedures for estimating maximum service flow rate 

(capacity) measured as passenger cars per hour per lane (pc/h/ln) and the level of service 

(LOS) for both uninterrupted and interrupted freeway Sections.  The manual also 

incorporates the effects of mass transit, pedestrians and bicycles on the performance of 

roadway systems.  The HCM (2010) also provides the guidelines to calculate the volume 

to capacity ratio (v/c ratio), a ratio of estimated or existing demand flow over the capacity 

of a given facility (Roess et al. 2011).   
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One of the freeway quality measures estimated in the HCM is LOS.  As Section 

2.4.2 of this chapter shows, LOS impacts safety, so does capacity which is the service 

flow rate at LOS “E”.  According to the HCM (2010), LOS is  

“a quality of measure describing operational conditions within traffic 

stream, generally in terms of service measures such as speed and travel 

time, freedom to maneuver, traffic interruptions, and comfort and 

convenience”.  

LOS is measured as a letter between A and F.  A Section rated “A” gives the best 

operational quality and “F” the worst operational quality (HCM, 2010).  The HCM 

(2010) indicates that the LOS of a basic freeway segment is generally determined in three 

steps: (1) Determining the free-flow speed, (2) Determining the demand flow rate under 

base conditions and (3) determining density, speed and LOS.    

 Another basic freeway quality measure is service flow rate, the maximum rate of 

flow that can reasonably be expected on a given lane or roadway under prevailing 

conditions while maintaining a particular LOS (HCM, 2010).  The service flow rate at 

LOS “E” is the capacity for a basic freeway segment where capacity is the maximum 

number of vehicles that can be accommodated at the basic freeway segment (HCM, 

2010).  Service flow rate is calculated as follows. 
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��� = ���� × � × �	
 × �� (2.1) 

 

Where: SFi = service flow rate for LOS “i,” veh/h 

 MSFi = maximum service flow rate for LOS ‘i,” pc/h/ln 

 N = number of lanes (in one direction) on the facility 

 fHV = adjustment factor for presence of heavy vehicles as follows 

 

f� = 11 + P��E� − 1� + P��E� − 1� 
(2.2) 

 

Where: PT = proportion of trucks and buses in the traffic stream (given) 

 PR = proportion of RV in the traffic stream  

ET = passenger-car equivalent for trucks and buses 

ER = passenger-car equivalent for RVs 

fP = adjustment factor for presence of occasional or non-familiar users of a facility 

 

2.2.2 Highway Safety Manual (HSM, 2010) 

The HSM (2010) provides factual information and tools for quantifying the safety effects 

of various engineering treatments proposed during roadway planning, design, operations 

or maintenance.  The predictive methodologies of the highway Safety Manual express the 

safety performance of a roadway as the expected number of crashes.  Safety treatments, 

and their impact on the expected number of crashes, are expressed as crash modification 
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factors (CMFs).  To develop CMFs, the HSM considers 33 roadway and traffic variables 

listed in Appendix A. 

A CMF is a ratio between the number of crashes expected after a modification is 

implemented and the number of crashes if the change does not take place (HSM, 2010).  

Bahar (2010) describes a CMF as a multiplicative factor used to compute the expected 

number of crashes after a given countermeasure is implemented at a given roadway 

Section.  Part D of the HSM provides six steps used to generate CMFs.  These steps are a 

result of extensive literature review of published highway safety research studies 

spanning more than fifty years (Bahar, 2010).  Bahar (2010) also states,  

“evidence-based and rigorous review, supported by statistical evidence of 

the accuracy and validity of studies, was applied,” 

 has resulted to adoption of the six steps by the HSM (2010) to determine CMFs.  They 

are:  

1. Determine the safety effect (CMF) of the implemented countermeasure as 

documented in a study publication; 

 

2. Adjust the estimated CMF from step 1 to account for bias from either or both 

regression-to-mean (RTM) and changes in traffic volumes;  

 

3. Determine the ideal standard error of the CMF 

4. Adjust the standard error from step 3 by applying a given method of 

correction factor, MCF;  

 

5. Adjusts the standard error to account for bias from either or both RTM and 

changes in traffic volumes;  

 

6. Standardize or combine CMFs from similar roadway Sections.  
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Operational and safety elements are presently discussed in the HCM (2010) and 

HSM (2010).  Both manuals are very important in analyzing proposed or existing 

roadways.  However, both manuals are generally independent of each other and neither 

manual accounts for the impact operation performance has on safety.  For example, the 

HCM (2010) provides the step to determine capacity, LOS and v/c ratio but does not 

show how each function impacts safety, as Section 2.4 of this dissertation will shows, 

these functions significantly affect safety.  The HSM (2010) measures safety but only 

considers geometrical elements and AADT and not operation performance to generate 

CMFs.  Although Foster et al. (2009) states that CMFs quantify the potential change in 

expected average crash frequency as a result of both geometric and operational 

modifications, the list of the 33 variables in Appendix A of this dissertation indicates that 

the HSM (2010) only considers geometric elements and AADT to develop CMFs.  This 

study considered operational elements to developed CMFs based on the hourly traffic 

volumes on urban freeway segments with the intention that this topic will be further 

investigated by transportation practitioners and also be included in future versions of the 

HSM. 
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2.3 Geometric Elements Considered by the HSM to develop CMFs 

Geometric design of roadways refers to portioning of the physical elements of a given 

roadway according to standards and constraints to provide smooth-flowing, crash-free 

facilities.  As stated earlier, both the HCM and HSM evaluate the performance of a given 

roadway considering geometric elements and AADT.  For safety performance 

assessment, the HSM guidelines take into account the site characteristics and traffic-

volume variables shown in Tables 2.1 and 2.2 for uninterrupted roadway segments and 

interrupted segments respectively.  

 According to the HSM, the major characteristics are: length of roadway segment, 

number of through lanes, lane width, shoulder width, presence of median, median width 

and left turn lanes.  This Section of the literature review discusses these elements and 

how they impact safety individually and if other elements, specifically operational 

elements were considered in the analysis. 
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Table 2.1 Segment Variables used in HSM Predictions 

 

VARIABLES 

Rural Two-

Lane, Two-

Way Roads 

Rural 

Multilane 

Highways 

Urban/Suburban 

Arterials 

Area Type (rural/suburban/urban) X X X 

AADT X X X 

Length of roadway segment X X X 

Number of through lanes X X X 

Lane Width X X   

Shoulder width X X   

Shoulder type X X   

Presence of median (divided/undivided)   X X 

Median width   X   

Presence of concrete median barrier   X   

Presence of passing lane X     

Presence of short four-lane Section X     

Presence of two way left-turn lane X   X 

Driveway density  X     

Number of major commercial driveways     X 

Number of minor commercial driveways     X 

Number of major residential driveways     X 

Number of minor residential driveways     X 

Number of major industrial/institutional driveways     X 

Number of minor industrial/institutional driveways     X 

Number of other driveways X     

Horizontal curve length X     

Horizontal curve radius X     

Horizontal curve super-elevation X     

Presence of spiral transition X     

Grade X     

Roadside hazard rating X     

Roadside slope   X   

Roadside fixed-object density     X 

Roadside fixed-object offset     X 

Percent of length with on-street parking     X 

Type of on-street parking     X 

Presence of lighting     X 
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Table 2.2 Intersection Variables used in HSM Predictions 

 

VARIABLES 

Rural Two-

Lane, Two-Way 

Roads 

Rural Multilane 

Highways 

Urban/Suburban 

Arterials 

Area type (rural/suburban/urban) X X X 

Major-road AADT X X X 

Minor-road AADT X X X 

Number of intersection legs X X X 

Type of intersection traffic control X X X 

Left-turn signal phasing (if signalized)     X 

Presence of right turn on red (if signalized)     X 

Presence of red-light cameras     X 

Presence of median on major road   X   

Presence of major-road left-turn lanes(s) X X X 

Presence of major-road right-turn lane(s) X X X 

Presence of minor-road left-turn lanes(s)   X   

Presence of minor-road right-turn lane(s)   X   

Intersection skew angle X X   

Intersection sight distance X X   

Terrain (flat vs. level or rolling)   X   

Presence of lighting   X X 

 

 

 

2.3.1 Length of Roadway Segment 

Anastasopoulos’ et al. (2008) main objective was to determine the factors that influence 

the frequency and severity of accidents on homogeneous segments of Indiana’s rural 

interstate highways to provide effective safety-related countermeasures, one of the factors 

studied was length of roadway segment.  The study developed negative binomial 

regression models to analyze accident data collected on interstates I-64, I-65, I-70, I-74 

and I-164 over a period of over 5 years.  The accident data consisted of 322 

homogeneous segments.  The study found that crash frequencies increased as the segment 

lengths increased and conversely decreased when the segment length decreased.  The 
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study shows the expected trend when the segment length increases but does not indicate 

the expected crash frequency associated with given segment length values, also operation 

performance elements were not considered.  

 

2.3.2 Shoulder Width 

Strathman et al. (2001) investigated the statistical relationship between crash frequency 

and roadway design attributes on the Oregon state highway system.  The study developed 

CRFs to analyze crash data obtained from ODOT’s crash database and found that number 

of lanes, curve characteristics, vertical grade, surface type, median type, turning lanes, 

lane width and shoulder width were statistically related to crash activities.  For shoulder 

width, the study shows that for every 1 foot of right shoulder width added to a freeway 

segment, the crash frequency decreased by a value of 0.04.    

 

2.3.3 Number of Lanes 

Practitioners generally believe that additional capacity afforded by additional lanes is 

associated with more safety, however, they do not specify how much safety, and for what 

period of time the given freeway segment will maintain the safety conditions are 

generally not considered (Kononov et al. 2008).  A number of studies tend to state similar 

results as shown below. 

Kononov et al. (2008) investigated the relationship between safety and number of 

lanes on urban freeways.  The study developed safety performance functions (SPFs) 

using 5 years’ of accident data from the states of California, Colorado and Texas.  By 
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comparing the slopes of the SPFs, the study showed that increasing the numbers of lanes 

on urban freeways, initially resulted in safety improvement that diminished as congestion 

increased. 

Garber and Ehrhart’s (2000) main objective was to develop mathematical 

relationships that describe the combined influence traffic volume and geometric 

characteristics have on crash occurrences.  The study developed multivariate ratio of 

polynomials models to analyze freeway crash data obtained from Virginia’s DOT data 

base and police accident reports from January 1993 to September 1995.  The study 

concluded that the crash rates tended to increase as the standard deviations of speed 

increased.  On the contrary, in the literature review performed by Garber and Ehrhart 

(2000), Lundy (1965) states that as the number of lanes increases, the crash rates 

decreases. 

Milton and Mannering’s (1998) intent was to develop a statistical model of 

accident frequency that could be used to isolate accident-prone Sections of highway.  The 

study then developed negative binomial regression models and analyzed annual accident 

frequency data from Sections of principal arterials in Washington State for the years 1992 

and 1993. In all, 31306 observations were used in the model.  The study determined that 

more lanes tend to increase accident frequency. 

 These studies by Kononov et al. (2008), Garber and Ehrhart (2000), Milton, and 

Mannering (1998) indicate that as the number of lanes increase, the crash frequency also 

increases, but the severity specifically, fatalities, decrease.  Controversially, Noland and 

Oh (2003) as well as Mussa and Chimba (2006) indicate that not only do the crash 
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frequency increase when the number of lanes are increased on a given roadway, but the 

fatalities also increases. 

Noland and Oh (2003) investigated whether various changes in road network 

infrastructure and geometric design could be associated with changes in road fatalities 

and reported accidents.  The study developed negative binomial models to analyze data 

from the Highway Safety Information System (HSIS) for the State of Illinois and found 

that increases in number of lanes appears to be associated with both increased traffic-

related accidents and fatalities.  

Mussa and Chimba’s (2006) objective was to build crash prediction models that 

would reveal significant variables that influence crash frequencies.  The study involved 

developing Zero-Inflated negative binomial (ZINB) models to analyze crash data from 

Florida State Highway system and showed that non-limited access roadways with 6 or 

more lanes had both higher fatalities and crashes than 4-lane roadways. 

 

 2.3.4 Lane Width 

Gross and Donnell’s (2011) main objective was to compare the case-control and cross-

Sectional methods to estimate measures of safety effectiveness using two independent 

datasets.  The safety effects of various lane and shoulder widths were estimated and 

compared using cross-Sectional and case-control methodologies to estimate CMFs for 

fixed roadway lighting and the allocation of lane and shoulder widths in the States of 

Minnesota and Pennsylvania.  Based on case-control method, the study indicated that the 

CMF for intersections with lighting was 0.886 and the CMF for the cross-sectional study 

was 0.881 for cross-sectional method.  
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2.3.5  Median Width (With Barrier) 

Pande et al.’s (2010) study had two main objectives; (1) to outline some of the functions 

(i.e., geometric design and time of day) associated with crash frequency and (2) propose a 

classification tree based methodology of identifying traffic and highway design 

parameters  are significantly associated with crashes on expressways/freeways.  The 

study developed negative binomial regression models to analyze crash data on US Route 

19 also known as SR 55 in Pasco County Florida and found that as the median width 

increased, the percentage of crashes decreased.  The study investigated 18 ft., 24 ft. and 

28 ft. median widths and found that they were associated with a reduction of 11.36%, 

11.85%, and 9.70% crashes, respectively.  

 

2.3.6 Median Width (No Barrier) 

Bonneson et al.’s (2009) main objective was to investigate the relationship between 

various geometric design components and their corresponding safety effects.  The 

findings of this investigation i.e., accident modification factors (AMFs) were to be 

adopted as safety design guidelines and evaluation tools by TxDOT designers in the 

planning and design stages of project development.  The study used correlations to 

investigate the impact median width (no barriers) had on safety in the state of Texas.  The 

study found that when the median width (no barrier) decreased from 64-ft. to 48-ft. the 

crash frequency increased by 4.1%.  Therefore, it can be concluded that reduction in 

median width (no barrier) results in increased crashes.  The study however did not 

investigate the operation conditions and how they influenced safety. 
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2.3.7 Conclusions 

The studies sited in this Section show how geometric elements influences safety.  

However, with the exception of Strathman et al. (2001) and Gross et al. (2011), none of 

these studies measured the expected number of crashes upon implementing a given 

countermeasure.  Table 2.3 shows the summary of  geometric elements, methodology and 

whether or not operation performance was considered  for each study.  The table 

indicates that none of these studies considered operation performance as a variable in 

their study, a variable this study intends to investigate.  

 

Table 2.3 Geometric Elements Literature Search Summary 

 

AUTHOR(S) 
Geometric 

Element of Study 
Methodology 

Safety 

Quantified 

Anastasopoulos et al. (2007) Segment Length Negative Binomials NO 

Strathman et al. (2001) Shoulder Length CRFs YES 

Kononov et al. (2008) Number of Lanes SFPs (Safety Performance 

Functions) 
NO 

Milton and Mannering (1998) Number of Lanes Poisson Regression NO 

Garber and Ehrhart (2000) Number of Lanes Multivariate Ratio of Polynomials 
NO 

Noland and Oh (2003) Number of Lanes Negative Binomial Regression NO 

Mussa and Chimba (2006) Number of Lanes Zero-Inflated Negative Binomial 

(ZINB) Regression 
NO 

Gross and Donell (2011) Lane Width CMFs 
YES 

Pande et al. (2010) Median Width 

(with Barrier) 

Negative Binomial Regression 
NO 

Bonneson et al. (2009) Median Width (no 

Barrier) 

Correlations 
NO 
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2.4 Operational Elements  

Operation analyses define all traffic parameters, roadway parameters, and control 

conditions for an existing or proposed roadway segment (Roess et al. 2010).  This 

analysis also facilitates the determining of expected LOS, capacity and v/c ratio of a 

given roadway segment.  This Section shows the findings from previous studies on how 

roadway operation performance influences safety. 

 

2.4.1 V/C ratio 

Lord et al.’s (2004) main objective was to establish the relationship between crashes and 

various traffic flow characteristics in Quebec, Canada. The study used predictive models 

(i.e., functional forms) to evaluate 5 years of crash data and determined that although the 

effects of v/c ratios on safety have not been clearly established nor properly modeled, v/c 

ratio, along with other traffic flow characteristics have direct influence on the likelihood 

and severity of a crash.  The study also concluded that crash risk and the number of 

crashes increases with higher vehicle density and v/c ratios.  

2.4.2 Level of Service (LOS) 

Lord et al. (2004) also investigated how LOS influenced roadway safety using the same 

data and predictive models from Section 2.4.1 above.  The discussion of previous work 

prepared by Lord et al. (2004) discusses studies by Frantzeskakis and Iordanis (1987), 

Persaud, and Nguyen (2000).  These studies examined the effects of LOS on safety and 

concluded that both crash frequencies and crash rates increased as the LOS decreased 

from LOS of “A” to LOS of “F.” 
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2.4.3 Capacity 

Kononov et al. (2008) investigated the effect capacity had on safety for urban freeways in 

the states of Colorado, California and Texas.  Safety Performance Functions (SPFS) were 

developed based on crash data and determined that when capacity is increased, the 

number of crashes temporarily reduced but increased with congestion. 

 

2.4.4 Density 

Density is the number of vehicles occupying a given length of a roadway or lane, 

expressed as vehicles per mile or vehicles per mile per lane.  Generally, density is 

difficult to measure due to an elevated vantage point from which the Section under study 

may be observed is required (Roess et al. 2011).  However, density can be expressed in 

terms of speed and flow measurements as shown in this study. 

 Density is an important traffic stream measure because it is directly related to 

traffic demand.  Because (1) Drivers choose speeds according to how close they are to 

other vehicles, the speed and density combine to give the observed rate of flow and (2) it 

also a measure of the nearness of other vehicles; this influences the freedom to maneuver 

and the psychological comfort of drivers. 

 

2.4.5 Conclusions 

The studies mentioned in this Section, show how safety is affected by the operational 

performance measures of a roadway including, v/c ratio, LOS, capacity and density.  

However, none of these studies measured the safety effect each studied function had on 
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the crash frequency.  To be specific, none of these studies has shown the expected 

number of crashes when each function is increased or decreased.   

In order to determine the relationship between operational and safety 

considerations in geometric design improvements, Harwood (1995) states that  

“It would be extremely valuable to know how safety varies with v/c ratio 

and what v/c ratios provide minimum accident rate.  Only limited research 

has been conducted on the variation of safety with v/c [volume–capacity] 

ratio.  More research of this type is needed, over a greater range of v/c 

ratios, to establish valid relationships between safety and traffic 

congestion to provide a basis for maximizing the safety benefits from 

operational improvement projects.”  

As a follow up to Harwood’s (1995) statement above, this study investigates the 

safety effect of v/c ratio and density.  The v/c ratios and densities in this study will be 

developed from hourly volumes and the resultant effects will be reported as CMFs. 

Knowledge of this relationship would help transportation practitioners precisely 

understand the safety implications for both projected traffic growth on existing highways 

and of highway improvements designed to increase capacity (Hall and Pendleton, 1990). 

 

2.5 Average Annual Daily Traffic (AADT) 

According to Section 2.2, AADT is the only operation performance function the HSM 

(2010) uses to measure the safety effect of a given roadway.  The AADT is the average 

24-hour volume at a given roadway segment over a full 365/366 day year; the number of 
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vehicles passing a given site in a year divided by 365/366 days (HCM, 2010).  In simpler 

terms, AADT is the average number of vehicles that pass a given roadway Section each 

day in a given year (Castro-Neto et al. 2009). 

Garder (2006) investigated the segment characteristics and severity of head-on 

crashes on two-lane rural highways in the state of Maine.  Probit regression models were 

developed to analyze crash data for the years 2000, 2001 and 2002 obtained from 

Maine’s DOT data base.  The study found that an AADT of less than 2000 veh/day was 

associated with 5.2% crashes and an AADT of more than 2000 veh/day was associated 

with 7.2% crashes.  Contrary to all the previous studies in this Section, this study not only 

showed that crash frequencies increased with AADT, but also the severity increased with 

crash frequency. 

 State Department of Transportation and local transportation agencies have 

collected and predicted AADT for design, planning and administrative purposes (Seaver 

et al. 2000).  However, for most cases, AADT does not represent the correct volume 

conditions at the time of crash (Castro-Neto et al. 2009).  As a result, researchers are 

moving toward microscopic crash analysis which includes analysis of hourly crash data 

(Abdel-Aty and Pande, 2007). 

  Hourly volumes account for the uncertainty in the measurement of AADT values 

and incapability of AADT capturing accurate traffic flow variations (Abdel-Aty and 

Pande, 2007).  Also, unlike AADT, hourly volumes show logical measures of congestion 

represented by v/c ratio and LOS (Frantzeskakis and Iordanis, 1987 and Persaud and 

Nguyen, 1998) along with distributional properties of variation in speed (Abdel-Aty et al. 
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2006).  Based on these reviews, this study will consider hourly volumes and not AADT 

to develop CMFs to measure safety.  

 

2.6 Hourly Volume 

Hourly volume is the volume of traffic that traverses across a segment of a roadway in a 

given hour, expressed as vehicles per hour (veh/h) (Ivan et al. 2000).  Unlike hourly 

volumes, the other measures applied to quantify the chances for crashes, such as AADT, 

VMT and NEV (Number of Entering Vehicles), do not consider the temporal traffic 

variation (Wang and Ivan, 2000). For example, AADT, VMT or NEV cannot accurately 

account for the distribution of weekday to weekend traffic volume that might vary from 

one location to another or from daytime to nighttime.  This effect can be accurately for by 

hourly volumes (Hauer et al. 1996).  As the following studies indicate, crashes at a given 

time should relate closely to the hourly traffic volume. 

 Qin et al. (2006) investigated the relationship between crash occurrence and 

hourly volume counts on rural two-lane highway segments in the States of Michigan and 

Connecticut.  The study used a hierarchical Bayesian framework with Markov Chain 

Monte Carlo (MCMC) algorithms to estimate the posterior distributions for crash 

probabilities as a function of hourly volume and time of day.  The study demonstrated 

that the expected crash count on two equal length segments with the same AADT and 

physical characteristics will vary according to the distribution of traffic volume through 

the time of the day. 
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 Ceder and Livneh (1982) investigated the relationships between measures of 

accidents and traffic flow by considering hourly flow instead of ADT (Average Daily 

Traffic).  The study developed power functions to analyze accident data collected on 

eight four-lane road Sections for a period of 8 years in England.  The study indicated that 

there is a U-shaped relationship between hourly flow rate and the number of crashes. i.e., 

the number of crashes increased during day hours and decreased during night hours.  

 Persuad and Mucsi (1995) studied the relationship between hourly traffic volumes 

and crash frequency on two-lane rural roads in Ontario, Canada. The study developed 

negative binomial regression and empirical Bayesian (EB) models to analyze the crash 

data for different time periods (24 hr., day and night hours) and found that a convex 

relationship existed between hourly traffic volumes and crash frequency. 

 These studies draw conflicting and consistent conclusions, showing that indeed a 

relationship exists between crash frequency and hourly volume even though the trend is 

still unknown. 

 

2.7 Crash Modification Factors (CMFs) 

CMFs quantify or measure the change in expected average crash frequencies or crash 

effects at a given location after implementing a particular treatment (also known as 

countermeasure, or intervention action, or alternative), design modification or change in 

operations (HSM, 2010).  CMFs indicate that a change in either geometry or operation 

conditions could result in either an increase or a decrease in crashes (Mbatti, 2011).  A 

CMF of 1.00 indicates no effect on safety, while a CMF of more than 1.00 shows that the 
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treatment could result in a safety degradation and if the CMF is less than 1.00, a safety 

benefit is expected (Gross et al. 2010). 

 In CMF development, two main fundamental methods can be adopted: (1) Before-

and-after studies and (2) observational cross-Section studies (Bahar, 2010).  As the 

following sub Sections indicate, the availability of crash data to be analyzed determines 

which method to adopt.  In addition, the amount of data determines the accuracy of the 

analysis, the larger the sample, the more reliable the results are (Stroud, 1995).  There are 

other studies, however not commonly used.  They are Case-control studies and Cohort 

Studies. 

 

2.7.1 Before-and-After Study 

Before-and-after studies involve assessing either the number of crashes or some other 

measure of risk before and after a given countermeasure is implemented on either a single 

or several sites (Gross  et al. 2010).  Generally, this analysis involves the comparison of a 

“treatment group” and a “control group”: Sites in the “treatment group” have treatments 

implemented and number of crashes measured before and after the implementation 

occurs.  Sites in the “control group” do not have treatments implemented and numbers of 

crashes are measured for the same before-and-after periods as for the “treatment group.”  

(Lawson, 2011).  

Generally, crash data for three years or more are used in before-and-after study 

evaluations.  However, five years may give a more consistent picture of the long term 

risks at the study site (Lawson, 2011). 
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2.7.2 Cross Sectional Study 

Cross Sectional studies are conducted in the event that a before-and-after study is 

impractical (Gross, 2006).  This method is used when comparing the safety performance 

of a site with certain special features to another site without these special features 

(Connor et al. 2001). For example, this study could be used to measure the safety effect 

of a given countermeasure before it is implemented (Mbatti, 2011). 

The National Cooperative Highway Research Program (NCHRP) Report 617 

(Harkey, 2008), found this method to be appropriate while determining the safety effect 

for traffic engineering and intelligent transportation systems (ITS) improvements. In this 

study, the estimated safety effects of different geometric elements on roadways from 34 

States were used to alter the geometric designs of roadways from all the 50 States.  

HSM (2010) also indicates that the cross Sectional method may be appropriate 

when implementing a countermeasure(s) on a roadway which before crash information is 

missing or cannot be obtained. For example, Zhao et al. (2008) studied the safety effect 

of four-left side off ramps on freeways in Tampa Bay, Florida. In this study, the crash 

records of the four-left off ramps were used to also analyze four-right off ramps based on 

the geometric similarities between the two sets of ramps. 

 

2.7.3 Developing of CMFs 

Given the characteristics associated with crash data, practitioners have proposed 

substantial analysis tools, statistical methods and models for analyzing crash data. 

However, crash data have been known to have issues (Sando and Mohr, 2011) such as (1) 

over dispersion, (2) under-dispersion, (3) time-varying explanatory variables, (4) 
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temporal and spatial correlation, (5) low sample mean and small sample size, (6) injury 

severity and crash type correlation, (7) under reporting, (8) omitted variables bias, (9) 

endogenous variables, (10) functional form and (11) fixed parameters (Lord and 

Mannering, 2010).  Using such data could lead to erroneous results or conclusions if the 

wright statistical tool or method is not used (Lord and Mannering, 2010). 

Several methods have been applied over the years to minimize crash data and 

methodological issues associated with crash frequency.  The most common and recent 

methods are Safety Performance Functions (SPFs), Bayesian Models and the HSM 

(2010) statistical procedure of deriving CMFs. 

 

2.7.4 Safety Performance Functions (SPFs) 

A safety performance function is a mathematical relationship (model) between frequency 

of crashes by severity and the most significant causal factors of crashes for a specific type 

of road (Garber et al. 2010).  The commonly used SPFs are developed using Poisson and 

Negative Binomial regression models (Stamatiadis et al. 2011).  SPFs can be developed 

for either homogeneous or non-homogeneous segments.  For homogeneous segments, 

SPFs use CMFs to estimate the safety effect of any operation or geometric variations 

(Mbatta, 2011).   

Before a model is selected, several tests are conducted to establish its 

acceptability.  These tests assist to verify the underlying distribution assumptions. As 

stated by Vogt and Bared (1997), the three most important tests for an acceptable model 

are: (1) the covariant for each estimated coefficient has to be statistically significant. This 

is so that one should be able to reject the null hypothesis that the coefficient is zero, (2) 
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Engineering and instinctive judgments should be able to confirm the validity and 

practicability of the sign and rough importance of each estimated coefficient and (3) 

Goodness-of-fit measures and statistics such as R-Squared (the determinant coefficient), 

the deviance and Pearson chi-square should indicate that the variables have descriptive 

and predictive power. A value near 0.0 suggests a lack of correlation and a value of 1.0 

suggests that the model estimates are in perfect agreement with the observed data 

(Famoye et al. 2001). 

 

2.7.4.1 Poisson Regression Models 

Because crash frequency data are non-negative integers, most studies have used Poisson 

regression models as a starting point in their safety effect analysis. In this type of model, 

the probability of a site entity (i) such as lane width or number of lanes having yi crashes 

per given time period where yi is a non-negative integer (Lord and Mannering, 2010) is 

given by equation 2.3 as shown below. 

 

����� = ����−��������� !	!  
(2.3) 

Where: Pγi = expected number of crashes per time period 

 λi = Poisson parameter for study site 

 yi = crashes per time period 
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Although Poisson regression has been the starting point for crash data analysis, 

practitioners have found crash data characteristics that make Poisson regression 

problematic. In particular, Poisson Models cannot handle evaluating the crash counts 

from different sets of roads, or from the same set of roads but over different time periods, 

the distribution of the observed counts is often over-dispersed, in that the crash count 

variance is larger than the crash count mean (Lord et al. 2005).  Poisson repression 

models are also adversely affected by low sample means and can produce biased results 

in small samples this is because Poisson models assume that the sample mean is 

equivalent to the sample variance. 

 

2.7.4.2 Negative binomial Regression Models 

Negative binomial models are introduced to overcome the problem of over-dispersion in 

Poisson regression models.  The negative binomial model is derived by rewriting the 

Poisson parameter for each observation i as 

 

�� �� = $Γ & � + 1'( �! Γ &1'( ) ∗ + ',�1 + ',�-
�� ∗ + 11 + ',�-

./
 

(2.4) 

 

Where: Γ = is the gamma function 

 µ = is the negative binomial distribution mean 

 ' = is the dispersion parameter 
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The negative binomial is probably the most used crash frequency modeling 

methodology, however, it has limitations: (1) this model cannot handle under-dispersed 

data and (2) it has estimation problems when the data is characterized by low sample 

mean value and small sample sizes (Mbatti, 2011). 

 

2.7.4.3  Zero Inflated Poisson and Zero Inflated Negative Binomial   

  Models 

One important characteristic about crash data is that some may contain large amounts of 

zeros and a long or heavy tail which results to highly dispersed data (Geedipally at al. 

2011).  This means that at the study site, the “no crashes observed” cases are so large that 

normal Poisson and negative binomial regression models cannot efficiently be used (Lord 

and Geedipally, 2011).  To analyze such data, zero inflated Poisson and zero inflated 

negative binomial models are adopted, because they assume the mean can never be zero 

(Li et al. 2011). 

 

2.7.5 Bayes Model 

Another model used to predict the expected number of crashes at a given site is Empirical 

Bayes (EB).  This model statistically predicts the number of crashes at a given site during 

the after period before treatment has been done (Qin et al. 2006).  The EB before-after 

model is widely used because it has the ability to account for regression-to-mean (RTM) 

and traffic volume changes (Persuade et al. 2001) that are usually associated with crash 
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data.  EB models estimate estimates the expected number of crashes for a given time 

period as  

 

0 = 1.�2� + 13��� (2.5) 

 

Where: m = expected number of crashes 

 w1 = Estimated mean 

 w2 = Estimated variance 

 x = count of crashes for a given period of time 

 P = annual number of crashes 

 Where: 1. = � �4 + 5��6   

  13 = 4 �4 + 5��6  

  4 = �3 789:���;6   

  n = number of time periods being evaluated 

 

2.8 Crash Severity 

Although several studies have been conducted to explore the factors that influence crash 

severity, few studies have explored the relationship between severity and roadway 

operation or level of service; no study has quantified this relationship.  Two of the few 

studies that have addressed the influence of traffic volume and severity are Christoforou 

et al. (2010) and Martin (2002). 



37 

 

 

 

 Christoforou et al. (2010) investigated the influence of speed and traffic volume 

on the injury level sustained by the vehicle occupants involved in road accidents on the 

A4-A86 motorway in Paris, France using Probit regression models.  The study found that 

there is a significant relationship between severity and traffic volume and speed.  

Specifically, for lower traffic volumes, the probability of more severe accidents is 

significantly higher than for higher volumes.  Christoforou et al. (2010) suggested that 

this finding verifies the assumption that under free flow roadway conditions drivers tend 

to travel at higher speeds and, therefore, increases the chance of higher severity levels.  

Christoforou et al.’s (2010) findings are similar to those of Martin (2002). 

 Martin’s (2002) study investigated the relationship between crash severity and 

hourly traffic volumes based on two years of observations made on 2000 kilometers of 

French interurban motorways.  Martin (2002) used regression models and showed that 

severity is greater at night and when hourly traffic is light.   

 

2.9 Summary 

Improving roadway safety is considered to be a very important task that saves both lives 

and available resources. To continue improving roadway safety, States and national 

transportation agencies have been and continue to research on the factors that contribute 

to roadway crashes. 

 As shown in this chapter, there has been vast research and findings on this topic 

and as a result, practitioners now have many resources available to help them understand 

safety improvements and decide which ones to implement.  Among available resources, 
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are CMFs. CMFs are effective in estimating the expected number of crashes after a given 

countermeasure is implemented.  Previous studies mentioned in this chapter; indicate that 

generally only geometric elements and AADT have been considered in CMF 

development.  However, as indicated by other studies, operational elements such as v/c 

ratio, capacity, density, and LOS do affect safety, but the relationships are not yet clear.  

Therefore, there is need to understand how operation performance of a roadway impacts 

safety and a result, this dissertation study will investigate the safety effect of v/c ratios 

and densities developed from hourly volumes. 
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CHAPTER 3 

DATA ACQUISITION AND METHODOLOGY 

 

As stated in Chapter 1, the main objective of this study was to establish the relationship 

between operational elements and safety on urban freeway segments using CMFs.  

Accordingly, the data collection process began by identifying urban freeways in the State 

of New Jersey.  Data were collected on the same or similar segments under different 

operational conditions.  This study focused only on data required for developing CMFs 

using the before-after method as described in the HSM (2010).  The procedure of 

collecting and preparing the data for analysis is discussed in Section 3.1 and the 

methodologies used to analyze the prepared data are discussed in Section.  

 

3.1 Data Collection Procedures 

This study’s first priority was to identify urban freeways because urban freeways are the 

only facilities that provide pure uninterrupted flow (Roess et al. 2011) and are 

characterized with base or ideal conditions that there are  no heavy vehicles in traffic 

stream and the driver population is dominated by regular or familiar users of the facility 

(HCM, 2010).  In addition, the measure of effectiveness used to define levels of service 

(LOS) is density (HCM, 2010).  

 In order to simplify the discussion on data collection procedures, the tasks 

involved were highlighted and presented in Figure 3.1.  Sub-Sections 3.1.1 through 3.1.6 

give details on each of the tasks attempted to prepare the data for analysis.  
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3.1.1 Identifying Urban Freeways 

 

 

 

Figure 3.1 Tasks involved in collecting and preparation of crash data for Analysis 

 

 

As Figure 3.1 shows, the first step of this procedure was to identify and select 

only urban freeways from all the roadways in the State of New Jersey.  To attempt this 

task, NJDOT’s straight-line roadway database was used to obtain information on all the 

roadways in the State. From the database, urban freeways were identified and selected.  

In the database, NJDOT has classified all the roadways by functional class with urban 

freeways are classified as functional class 12.   

Identify Urban Freeways in NJ

Identify Freeways with Count Stations

Identify Study Sites/Locations 

Calculate the Average Traffic Volume 

Counts

Calculate the Average Crash 

Frequencies at Study Sites

Combine the Crash Data for Analysis
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Those roadways not classified as urban freeways were not considered for this 

study.  With this information, the next step was to identify the roadways that had count 

stations as shown in Figure 3.1 and discussed next in Sub-Section 3.1.2. 

 

3.1.2 Identifying Urban Freeways with Traffic Volume Count Stations 

Once all urban freeways were identified, this study referred to NJDOT’s Roadway 

Information and Traffic Counts database to select the roadways that had at least four 

count stations so that this study would have at least four study sites on each roadway.  

Since each station has twenty-four hours of traffic volume, then there would be ninety-six 

total hours of study for each year on a given roadway.  Accordingly, because four years 

of crash data were considered in this study, then the ninety-six hourly volumes for four 

years would result in three hundred and eighty-four hourly volume and hourly crashes for 

each roadway.  The hourly volumes were the same for each year. 

Three urban freeways, US Route 1, NJ Route 3, and NJ Route 21 had count 

stations that met these conditions.  Those roadways that did not have at least four count 

stations were not considered for this study.  The next step was to identify the specific 

study sites or locations as shown in Figure 3.1 and discussed next in Sub-Section 3.1.3. 

 

3.1.3 Identifying the Study Sites 

Still referring on NJDOT’s Roadway Information and Traffic Counts database, the third 

step involved identifying and selecting roadways that had the count stations.  The count 

stations had to be at least one mile apart because each segment of study was one mile 

long, therefore if they had to be less than a mile apart, some crash data would have been 
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analyzed twice hence giving biased analysis results.  Successive count stations had also to 

be not more than three miles away from each other to reduce chances of having 

significant change in traffic volumes and drivers.  At the count stations, NJDOT collected 

hourly traffic volumes for an entire day for two or three days, the average traffic volume 

for each hour was then calculated for analysis.   

The mileposts for the selected study sites for each freeway were summarized and 

presented in Table 3.1.  This table also shows the study site’s characteristics, that is the 

posted speed (mi/hr.), number of lanes, lane width (ft.), shoulder width (ft.), and median 

width (ft.).  Five sites were selected on US 1 and NJ 21.  Four sites were selected on NJ 

3.  The next step was to calculate the average hourly traffic volume count for each hour 

and year at all the study locations as shown in Figure 3.1 and discussed next in Sub-

Section 3.1.4. 

 

Table 3.1  Selected Study Site Characteristics 

 

Roadway Mile Post Posted 

Spd. (mph) 

Number of 

Lanes  

Lane 

Width (ft.) 

Shoulder 

Width (ft.) 

Median 

Width (ft.) 

US Route 1 46.00 50 3 8 6 8 

47.20 50 2 12 3 8 

48.20 50 2 12 8 4 

50.50 50 2 12 3 4 

52.29 45 2 12 0 4 

NJ Route 3 0.80 55 3 12 12 26 

3.10 55 3 12 12 26 

5.50 55 3 12 12 8 

9.50 50 3 12 15 6 

NJ Route 21 4.40 45 3 11 0 6 

5.00 50 3 12 12 6 

7.10 55 3 12 12 8 

9.70 55 3 12 12 8 

12.40 55 3 12 12 10 
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3.1.4 Calculating the Average Hourly Traffic Volumes 

As earlier stated in Sub-Section 3.1.3, the traffic volumes are counted for about two or 

three days.  In this step, to get the average traffic volume for each hour of the day, the 

total traffic volumes for each hour were divided by the number of days NJDOT collected 

the data.  This exercise was done for all the study sites for each year of study.  Having 

found the average traffic volumes for each hour, the next step as shown in Figure 3.1 was 

to get the total crash frequency for each hour of study. 

 

3.1.5 Getting the Crash Frequency for Each Hour of Study 

The total crash frequencies for each study year were collected from NJDOT’s crash data 

database for all the three roadways of study.  The total number of crashes for each hour 

was then determined.  Thereafter the data shown in Table 3.1and the determined hourly 

crash frequencies were prepared for analysis as explained next in Sub-Section 3.1.6. 

 

3.1.6 Preparing Collected Data for Analysis 

This step involved four tasks: (1) assigning each crash frequency total to the respective 

hourly traffic volume; (2) determining the physical/geometric features; (3) calculating 

density; and (4) finally assigning each observation point or study hour with its respective 

LOS.  Since each site had 96 hours of study and 14 sites were considered, a total of 1344 

hours were analyzed by this study.  The density calculation and assigning of LOS were in 

accordance to the procedures recommended by the HCM (2010).  The final step for this 

task was to combine all the hours of data and results from all study sites with the same 
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LOS.  This allowed the data to be analyzed according to their respective LOS for all the 

study sites using the methodologies explained in Section 3.2, which is discussed next. 

 

3.2 Methodology 

Crash data analysis is generally the most effective and frequently used resource for 

assessing the safety performance of any given freeway (Abdel-Aty and Pande, 2007).  

Crash occurrences can be viewed as a result of the interaction of several variables 

including road geometry, driver characteristics and driver behavior, operation conditions 

like operating speed, volume, and lastly environmental conditions (Christoforou et al. 

2011).  In the past, practitioners have analyzed the relationships between these variables 

and crash frequency to estimate the expected safety performance of a given freeway 

(Garber and Ehrhart, 2000) or to determine the expected severity levels of these crashes.   

  Crash data is analyzed to determine crash frequency or severity levels using 

different modeling techniques, ranging from conventional regression analysis (Garber 

and Ehrhart, 2000) to simulation models (Abdel-Aty and Pande, 2005; Abdelwahab and 

Abdel-Aty, 2002).  In this study, the focus was on establishing the relationship between 

LOSs generated from hourly volumes, and crash frequency using both SPFs and 

Empirical Bayes before-after methodology to generate related CMFs.  The subsequent 

Sub-Sections will outline the two commonly preferred SPFs and the role of Empirical 

Bayesian relationships adopted by this dissertation in an effort to show that operational 

elements have some influence on safety. 
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3.2.1 Safety Performance Functions (SPFs) Modeling 

Crashes are intrinsic as vehicles traverse roadway segments or intersections (Tegge et al. 

2010).  Transportation practitioners rely on SPFs to predict expected crash frequencies 

for various physical, operational, human, or environmental factors.  SPFs, also referred to 

as predictive models (Zhong et al. 2008), are used to show mathematical relationships 

between crash frequency and the most significant casual factor(s) (Garber et al. 2010).  

Therefore, developing germane SPFs is an important task that requires investigating and 

quantitatively identifying the relationships between safety and certain factors with the 

proper statistical models.  So generally, there are two types of data required in developing 

SPFs, crash data and roadway attributes data (Zhong et al. 2008).  These roadway 

attributes are used in SPF development used by the HSM (2010) are indicated in 

Appendix A as discussed in Chapter 2.    

 As discussed, SPFs are statistical models used to relate crash frequencies to given 

roadway attributes.  In this dissertation, crash frequencies are compared using regression 

analysis to determine which attribute(s) produce a significant cause-and-effect 

relationship (Tegge et al. 2010).  Whether or not an attribute is significant, is based on a 

user-identified level-of-significance (α).  The level of significance, measures the 

plausibility of the null hypothesis (Navidi, 2008), and usually ranges from 0.01 to 0.10 

(Hauer, 1996).  A smaller α shows, it is more difficult to declare an attribute significant.  

Crashes are rare but are a serious subject, therefore a larger α is usually adopted to 

include more attributes in the model (Tegge et al. 2010) and as a result the most suitable 

α selected is usually 0.10.   
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The predictor variables used in this research were selected using Pearson’s 

correlation matrices at a correlation coefficient range of -0.03 and +0.03.  This step was 

important because it prevented selecting predictor variables with multicollinearity.  This 

is the situation where two or more predictor variables have strong correlation.  In some 

multiple regression exercises where two or more predictor variables show strong 

correlation, the results may show some inconsistency.  For example, the F-Test may show 

that the data fits well even though none of the predictor variables influences the 

dependent variable significantly (Kutner et al. 2004).  In other words, multicollinearity 

misleadingly inflates the standard errors which in return  makes some variables to be 

statistically insignificant while they actually are  significant and vice versa. 

 A literature search conducted in this dissertation indicates that several methods 

have been used by previous studies to develop SPFs, with “some more accurate than 

others” according to Tegge et.  al (2010).  According to Harwood and Bauer (2000), the 

most accurate and commonly used SPF statistical models are lognormal and loglinear 

regression distributions. 

 

3.2.1.1 Lognormal Regression Models 

Lognormal regression models are usually used when the distribution of data is skewed 

(Tegge et al. 2010) because these models assume that the natural log of crash frequencies 

is normally distributed with the mean, µ and variance, σ².  This model is usually effective 

when the data is naturally non-negative and the mean is relatively large.  This type of 

distribution is preferred when analyzing crash data at signalized intersections with high 
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volumes (Tegge et al. 2010).  The model to estimate predicted crash frequency for the I
th

 

intersection with q parameters, Xi1, Xi2, Xi3 ...  Xiq, takes on the following form: 

 

log�,� = ?@ + ?.��. + ?3��3 +⋯+ ?B��B (3.1) 

 

 Where β0, β1 … βq are constant coefficients that need to be estimated.  The 

assumption here is that the crash frequency is normally distributed and the linear 

regression coefficients are estimated using ordinary least-squared method (Harwood and 

Bauer, 2000).  

 

3.2.1.2 Loglinear Regression Models 

A loglinear regression model is a specific linear model where by the relationship between 

two or more variables is analyzed by taking the logarithm of the dependent variable 

(Tegge et al. 2010).  There are several loglinear regression models but the two most 

accurate and common types are Poisson and negative binomial regression models (Tegge 

et al. 2010).  These two main loglinear regression models are next discussed at length.  

 

Poisson Regression Models 

Poisson distribution is a distinct distribution that expresses the probability of a specific 

number of rare events occurring in a given amount of time, the events occur with a 

known probability and are independent of the previous event (Hogg and Tanis, 2001).  

The Poisson distribution is a limiting case of the binomial distribution because it assumes 
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that the variance is equal or approximately equal to the mean.  The probability of yi 

events occurring at a certain time interval follows the form: 

 

����� = ����−��������� !	!  
(3.2) 

 

Where: Pγi = predicted number of crashes per time period 

 λi = Poisson parameter for study site 

 yi = crashes per time period 

 

 The linear model for the I
th

 roadway segment with q parameters Xi1, Xi2, Xi3 ...  Xiq, 

and regression coefficients β0, β1 … βq takes on the following form: 

 

log�,� = ?@ + ?.��. + ?3��3 +⋯+ ?B��B (3.3) 

 

 The main difference between this model and the lognormal model is that here the 

model assumes a Poisson distribution. 

 

Negative Binomial Regression Models 

Like the Poisson distribution model, the negative binomial model describes the 

occurrence of random and rare events.  The main difference between these two loglinear 

models is that unlike the Poisson distribution where it assumes that the variance is equal 

to the mean, the negative binomial distribution compensates for situations where the 
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variance (, + ,3 '⁄ ) is larger than the mean, also referred to as overdispersion.  The 

negative binomial model utilizes the following distribution function: 

 

�� �� = $Γ & � + 1'( �! Γ &1'( ) ∗ + ',�1 + ',�-
�� ∗ + 11 + ',�-

./
 

(3.4) 

 

Where: Γ = is the gamma function 

 µ = is the negative binomial distribution mean 

 ' = is the dispersion parameter 

 

 Here, as the overdispersion parameter nears zero, that is less variation, the 

distribution also nears a Poisson distribution (Tegge et al. 2010).  The linear model for 

the I
th

 roadway segment with q parameters Xi1, Xi2, Xi3 ...  Xiq, and regression coefficients 

β0, β1 … βq are  takes on the following form: 

 

log�,� = ?@ + ?.��. + ?3��3 +⋯+ ?B��B (3.5) 

 

The expression in equation 3.5 above can be written to follow the form shown in 

equation 3.6 below. 

 

,� = exp	�?@ + ?.��. + ?3��3 +⋯+ ?B��B� (3.6) 
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 The linear model assumes that the crash frequency follows a negative binomial 

distribution with parameters α and k as previously described (Harwood and Bauer, 2000).  

The form shown in equation 3.6 can be used when the traffic volumes are constant or 

varying from the before to the after periods.  In this study, the hourly traffic volume 

varied from the before to the after periods.   

 SPFs are used by most studies and the HSM (2010) to predict the crash frequency 

on a segment or at an intersection of a given roadway.  However, SPFs do not account for 

regression-to-mean effect (RTM) associated with crash data.  RTM is the tendency for 

crash data to regress back to the mean and therefore, a more involved analysis must be 

conducted to account for this effect to determine the actual or expected safety of a given 

location (Tegge et al. 2010).   

To account for RTM, this dissertation adopted Empirical Bayesian relationships 

to compare both the observed crashes and the predicted crash frequencies found by the 

SPFs to estimate the expected crashes.  EB relationships are discussed in the next 

Section. 

 

3.2.2 Empirical Bayesian Relationship 

As stated in the previous Section, SPFs were only part of the overall roadway safety 

evaluation process for this study.  In addition, the observed crashes of a given segment or 

intersection need to be accounted for while determining the safety of a given roadway 

segment or intersection.  However, observed crashes have occasionally been known to be 

misleading due to the regression-to-the-mean, RTM occurrence (Hauer, 2002).  For 

example, a site may have high crashes at a given period and low crashes the next period 
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without any safety implementations.  Alternatively, a high-risk site may experience a 

period of randomly low crashes and therefore overlooked during safety evaluation.  In 

observational studies,  

“two methods, one simpler and one somewhat more complex, are 

preferred to derive a before-after study.  The comparison group method 

being the simpler of the two, while EB method is more complex, but also 

more robust.”  Gross et. al (2010).  

 EB models increase the precision of safety evaluation by estimating a weighted 

combination of the crash frequency expected in the before period without treatment and 

the observed crash frequency.  The weights are determined as follows:   

 

1 = 11 + ' ∑ �HIHJ.  

(3.7) 

 

Where: k = over dispersion parameter  

 Pn = predicted crash frequency for a given roadway in a period time n.   

 

 From the Empirical Bayes procedure, the weight factor is then applied to the 

predicted and observed number of crashes to determine the estimated number of crashes 

which is computed as follows:  

 

�KLMKNOKP,R,S = 1.�MUKP�NOKP,R,S + �1 − 1��VWXKUYKP,R,S (3.8) 

 



52 

 

 

 

Where: Nexpected,T,B =  EB estimate of the expected crash frequency without treatment  

 

 Npredicted,T,B =  predicted crash frequency estimated by the SPF in the before  

   period 

 

 Nobserved,T,B =  observed crash frequency in the before period for the treatment 

   group  

 

Tegge et al. (2010) indicates that for this analysis, the more observations made, 

the smaller the weight factor, which makes the estimated crash frequency weighted more 

towards the observed crash frequency.  This is consistent with the purpose of using 

Empirical Bayesian relationships that is to increase the precision by accounting for RTM.  

In other words as the number of observations increases, the RTM effect is not as severe.  

The RTM effect is illustrated in Figure 3.2.   

 

 

Figure 3.2 Illustration of the RTM effect on SPFs and how they are corrected using 

EB models.  

Source: A Guide to Developing Crash Modification Factors by Gross et al. (2010)  
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Figure 3.2 shows how the SPF predicted crash frequency is weighted with the 

observed crash frequency to estimate Empirical Bayes expected crash frequency which 

fall in-between the observed and SPF predicted crash frequencies.  The expected crash 

frequency found using Empirical Bayes relationships, is then used in the final analysis to 

develop the Crash Modification Factors, CMFs.  The empirical Bayes estimate of the 

expected crash frequency without treatment, Nexpected,T,B is computed as shown in equation 

3.8 

3.2.3  Crash Modification Factors  

The resultant Nexpected,T,B is then adjusted to account for the RTM effect.  The adjusted 

value of the EB estimate Nexpected,T,A, is the number of crashes in the after period without 

treatment and is estimated as follows:  

 

�KLMKNOKP,R,Z = �KLMKNOKP,R,S ∗ [�MUKP�NOKP,R,Z�MUKP�NOKP,R,S\ 

(3.9) 

 

Where: Nexpected,T,A =  unadjusted EB estimate 

 

Npredicted,T,B =  predicted number of crashes estimated by the SPF in the before 

period 

 

Npredicted,T,A =  predicted number of crashes estimated by the SPF in the before 

period 

 

 

The variance of Nexpected,T,A is estimated from the SPF predicted number of crashes 

in the before period as follows:  
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89:��KLMKNOKP,R,Z� = �KLMKNOKP,R,Z ∗ [�MUKP�NOKP,R,Z�MUKP�NOKP,R,S\ ∗ �1 − 1� 
(3.10) 

 

The adjusted value of the EB estimate Nexpected,T,A, is used to derive CMFs using 

the attributes shown in Table 3.1.  CMFs and the variance are estimated as follows:  

]�� = +�VWXKUYKP,R,Z�KLMKNOKP,R,Z-
1 + [ 89:�KLMKNOKP,R,Z3\

 

(3.11) 

89:	�]��� = ]��3 ∗ ^+ 1�VWXKUYKP,R,Z- + [ 89:�KLMKNOKP,R,Z3\_
[1 + 89:�KLMKNOKP,R,Z3\

3  

(3.12) 

 

Where: Nobserved,T,B =  observed crash frequency in the before period for the treatment  

   group. 

 

Nobserved,T,A =  observed crash frequency in the after period for the treatment  

   group. 

 

Npredicted,T,B =  predicted crash frequency (sum of the SPF estimates) in the before  

   period. 

 

Npredicted,T,A =  predicted crash frequency (sum of the SPF estimates) in the after  

  period. 
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Table 3.2 Summary of Notation for EB method 

Time Period Treatment Group 

(Observed 

Crashes) 

SPF Prediction 

Crashes (SPF 

Developed from 

Reference 

Group) 

Before Nobserved,T,B Npredicted,T,B 

After Nobserved,T,A Npredicted,T,B 

 

3.3 Example of the Empirical Bayes Method 

Table 3.3 is similar to Table 3.2, which shows information to support calculations using 

the empirical Bayes method.  This example uses data collected from this study when the 

LOS changed from A to B.  The study found the weight was 0.025.  The calculations of 

Nexpected,T,A and Var(Nexpected,T,A) would be computed for each LOS and for each location 

individually and then summed to use in the estimation of the CMF and its standard error.  

 

Table 3.3 Data for EB Before-After Study Example 

Time Period Treatment Group 

(Observed 

Crashes) 

SPF Prediction 

Crashes (SPF 

Developed from 

Reference 

Group) 

Before (LOS A) 408 
Sum for 14 sites 

= 174.811 

After (LOS B) 297 
Sum for 14 sites 

= 191.368 

 

The empirical Bayes estimate, Nexpected,T,B, is calculated as: 

Nexpected,T,B = 0.025*174.811 + (1-0.025)*408 = 402.193 
 

The ratio of after period SPF estimates to before period SPF estimates is now: 

Npredicted,T,A /Npredicted,T,B = 191.368/174.811 = 1.095 
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The expected number of crashes in the after period in the treatment group that would 

have occurred without treatment (Nexpected,T,A) is: 

Nexpected,T,A = 402.193*1.095 = 440.286  
 

The variance of Nexpected,T,A is estimated as: 

Var (Nexpected,T,A) = 440.286*1.095*(1-0.025) = 470.061 
 

CMF = (297/440.286) / (1+ (470.061/440.286
2
)) = 0.673 

Variance = (0.673
2
((1/297) + (470.061/440.286

2
)) / (1+470.061/440.286

2
)
2
)= 0.003 

 

Taking the square root of the variance, the standard error of the CMF is 0.055. 

The 95% confidence interval is 0.673 ± 1.96*0.0.55 = 0.565 to 0.781. 
 

 

The example in Section 3.3 shows how the Empirical Bayes methodology is used 

to analyze crash data and the development of CMFs when the level of service 

deteriorated from LOS A to B.  Using the same approach discussed in this Chapter, 

negative binomial, and EB models were used to determine the predicted and expected 

crash frequency values when the levels of service deteriorated from B to C, C to D, D to 

E, and E to F respectively.  With all the observed, predicted, and expected crash 

frequencies for each LOS, CMFs were determined as discussed and presented in the 

Chapter 4 next. 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

Using the methodologies and procedures discussed in Chapter 3, the crash data discussed 

in Chapter 2 was analyzed to determine the relationship between crash frequency and 

operational elements, specifically when LOS deteriorated from A to B, B to C, C to D, D 

to E, and E to F.  The main tasks in this Chapter were: (1) to determine variables to be 

used for analysis using; (2) use those variables to determine the predicted crashes, (3) use 

both the observed and predicted crash frequencies to determine expected crash 

frequencies and finally (4) used all observed, predicted and expected crash frequencies to 

determine the CMFs for each change in LOS.  These tasks are further discussed in 

Sections 4.1, 4.2 and 4.3 of this Chapter. 

 

4.1 Determining Predicted Crash Frequencies 

Several statistical studies have shown that roadway variables and crash frequencies have 

a non-linear relationship, and therefore to show how the roadway variables influence 

crash frequency at a given site, SPFs were developed (Tegge et al. 2010).  To determine 

which variables to consider for SPF development, this study used Pearson correlation 

matrices as discussed next in Sub-Section 4.1.1. 
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4.1.1  Determining Possible Models using Correlation Matrices 

In this exercise, Pearson correlation matrices for all levels of service were developed 

using the SPSS 16.0 software.  As discussed earlier, the purpose of this exercise was to 

identify the variables that were significant and uncorrelated and then to use them in the 

same SPF model since their resultant coefficients were unbiased. 

Therefore, Pearson correlation matrices were determined to measure the strength 

of linear dependence between the individual variables.  The Pearson correlation 

coefficient is usually denoted as r and is a value between +1 and -1.  The lowest value 

that r can be is 0, this would show zero correlation or no relationship between the two 

given variables.  The highest value that r can have is 1.00, this would show a perfect 

correlation or strong relationship between the two given variables and that is the two 

variables depend on each other.  The values can either be positive or negative.  A positive 

value indicates that an increase in one variable corresponds to an increase in the other 

variable.  A negative value indicates that an increase in one variable corresponds to a 

decrease in the other variable.  To select a model(s) with the same predictor variables and  

response variable at all levels of service, this study used data from all the levels of service 

in developing the correlation matrices.  The Pearson correlation matrix for this study is 

presented in Table 4.1. 
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Table 4.1 Pearson Correlation Matrix 

 

  
Traffic 

Vol.  

Posted Spd 

(mi/hr.) 

Number of 

Lanes 

Lane 

Width (ft)  

Shoulder 

Width (ft) 

Median 

Width (ft) 

Density 

(veh/mi) 

Traffic Vol. 
1 0.211 0.401 -0.209 0.257 0.362 0.622 

 
0.000 0.000 0.000 0.000 0.000 0.000 

Posted Spd 

(mi/hr.) 

0.211 1 0.484 0.238 0.788 0.559 0.148 

0.000 
 

0.000 0.000 0.000 0.000 0.000 

Number of 

Lanes 

0.401 0.484 1 -0.217 0.642 0.401 0.155 

0.000 0.000 
 

0.000 0.000 0.000 0.000 

Lane Width 

(ft)  

-0.209 0.238 -0.217 1 0.257 0.090 -0.074 

0.000 0.000 0.000 
 

0.000 0.001 0.007 

Shoulder 

Width (ft) 

0.257 0.788 0.642 0.257 1 0.390 0.116 

0.000 0.000 0.000 0.000   0.000 0.000 

Median 

Width (ft) 

0.362 0.559 0.401 0.090 0.390 1 0.250 

0.000 0.000 0.000 0.001 0.000   0.000 

Density 

(veh/mi) 

0.622 0.148 0.155 -0.074 0.116 0.250 1 

0.000 0.000 0.000 0.007 0.000 0.000   

 

 

 

 The Pearson correlation matrix in Table 4.1 was used to select the model(s) to be 

used in SPF analysis.  Model(s) selection followed the criteria that: 

1. The predictor variables had to show no or weak correlation.  The strength of 

relationship is classified by Choudhury (2009), Navidi (2008), and Kiemele et. al 

(2000) as presented in table 4.2. 

Table 4.2 Classification of Correlation Strength 

 

Value of r 
Strength of 

Relationship 

± 0.5 to ± 1.00 Strong 

± 0.3 to ± 0.49 Moderate 

± 0.1 to ± 0.29 weak 

0.0 to ± 0.09 None or Very Weak 
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2. The predictor variables of the selected model(s) had to be statistically significant.  

This study used a 0.1 significance level. 

 

3. The selected model(s) had to have traffic volume and density among the predictor 

variables.   

Using the three criteria discussed, the following three models were selected for SPF 

analysis,: 

 

Model I: Traffic Volume, Posted Speed, Lane Width, Density 

Model II: Traffic Volume, Shoulder Width, Lane Width, Density  

Model III: Traffic Volume, Posted speed, Lane Width, Number of Lanes, Shoulder 

Width, Median width, Density 

 

 SPFs for all the three models were developed and a goodness-of-fit test performed 

on all the models to measure how well each model explained the crash data.  This task is 

discussed further next in Sub-Section 4.1.2. 

 

4.1.2  Measuring Goodness-of-Fit for each Model 

As is the case for all regression models, this study then tested the model(s) to determine 

the goodness-of-fit it was accepted for analysis.  Generally, the goodness-of-fit test is 

performed using small-is-better criteria, the regression model with the smallest values is 

usually adopted over that with larger values.  In this study negative binomial regression 

models were adopted since at all levels of service the data showed overdispersion – the 

dispersion coefficients were all larger than zero.  A goodness-of-fit test was performed 

using deviance, Pearson chi-square and their respective degree of freedom to check how 
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well the data fit the model.  Before discussing the technical background for this criterion, 

it is important to first define deviance and the Pearson  chi-square parameters. 

 Deviance is a measure of degree of fit defined as two times the difference of the 

log-likelihood for the maximum achievable model and the log-likelihood under the fitted 

model.  The Pearson chi-square is a test that establishes whether or not an observed 

frequency distribution differs from a theoretical distribution.  The Pearson chi-square is 

the squared difference between the observed and the predicted values divided by the 

variance of the predicted value summed over all observations in the model.  Both 

Deviance and Pearson Chi-Square are calculated as shown in Equations 4.1 and 

4.2,.respectively. 

 

`ab!95ca =d2� �fgh  � � − � � − ŷ���H
�J.  

(4.1) 

 

�a9:jg5	]ℎ! − �lm9:a = d� � − ŷ��3ŷ�
H
�J.  

(4.2) 

 

Where:  ŷi is the predicted value of yi for both cases. 
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  “The deviance has an approximate chi-square distribution with n-

p degrees of freedom, where n is the number of observations, p is the 

number of predictor variables (including the intercept), and the expected 

value of a chi-square random variable is equal to the degrees of freedom” 

(SPSS 16.0 Brief Guide, 2007).  

 It is then accepted that a model fits the data well, when the ratio of the deviance to 

degree of freedom is approximately about one.  A large ratio value may indicate model 

misspecification or an over-dispersed response variable; a less than one ratio also 

indicates model misspecification or an under-dispersed response variable (SPSS 16.0 

Brief Guide, 2007).  This study’s goodness-of-fit values for each of the three models are 

presented in Tables 4.3a through 4.3c. 

 

Table 4.3a Test for Goodness-of-Fit for Model I 

 

LOS Parameter Value df Value/df 

A 

Deviance 463.367 432 1.07 

Pearson Chi-Square 458.562 432 1.06 

Sig. 0.000 
  

B 

Deviance 268.983 245 1.10 

Pearson Chi-Square 276.635 245 1.13 

Sig. 0.001 
  

C 

Deviance 296.790 261 1.14 

Pearson Chi-Square 259.209 261 0.99 

Sig. 0.000 
  

D 

Deviance 119.684 99 1.21 

Pearson Chi-Square 100.920 99 1.02 

Sig. 0.290     

E 

Deviance 108.707 100 1.09 

Pearson Chi-Square 101.093 100 1.01 

Sig. 0.000     

F 
Deviance 192.481 171 1.13 

Pearson Chi-Square 179.641 171 1.05 

Sig. 0.000 
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Table 4.3a presents the results of the goodness-of-fit test for Model I. At all levels 

of service, the Value/df  is approximately one.  This shows that the crash data fits well in 

this model.  However, Model I was not selected for use as the model was not statistically 

significant for LOS D at significance level of 0.1. 

 

Table 4.3b Test for Goodness-of-Fit for Model II 

 

LOS Parameter Value df Value/df 

A 

Deviance 464.315 432 1.08 

Pearson Chi-Square 463.551 432 1.07 

Sig. 0.000 
  

B 

Deviance 268.058 245 1.09 

Pearson Chi-Square 271.743 245 1.11 

Sig. 0.000 
  

C 

Deviance 296.926 261 1.14 

Pearson Chi-Square 274.251 261 1.05 

Sig. 0.000 
  

D 

Deviance 119.632 99 1.21 

Pearson Chi-Square 100.252 99 1.01 

Sig. 0.137     

E 

Deviance 109.816 100 1.10 

Pearson Chi-Square 108.775 100 1.09 

Sig. 0.000     

F 
Deviance 191.970 171 1.12 

Pearson Chi-Square 178.742 171 1.05 

Sig. 0.000 
  

 

 

Table 4.3b presents the results of the goodness-of-fit test for Model II.  At all 

levels of service, the Value/df  is approximately one.  This shows that the crash data fits 

well in this model.  However, Model II was not selected for use as the model was not 

statistically significant at LOS D at a significance level of 0.1. 
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Table 4.3c  Test for Goodness-of-Fit for Model III 

 

LOS Parameter Value df Value/df 

A 

Deviance 461.895 429 1.08 

Pearson Chi-Square 452.824 429 1.06 

Sig. 0.000 
  

B 

Deviance 269.488 242 1.11 

Pearson Chi-Square 267.477 242 1.11 

Sig. 0.000 
  

C 

Deviance 296.305 258 1.15 

Pearson Chi-Square 260.485 258 1.01 

Sig. 0.000 
  

D 

Deviance 119.791 96 1.25 

Pearson Chi-Square 101.868 96 1.06 

Sig. 0.008     

E 

Deviance 100.927 97 1.04 

Pearson Chi-Square 90.423 97 0.93 

Sig. 0.000     

F 

Deviance 201.211 169 1.19 

Pearson Chi-Square 185.531 169 1.10 

Sig. 0.000 
  

 

 

Table 4.3c presents the results of the goodness-of-fit test for Model III.  At all 

levels of service, the Value/df  is approximately one.  This shows that the crash data fits 

well in this model.  This model was selected for use as the Model was statistically 

significant at a significance level 0.1 at all levels of service. 

 Tables 4.3a through 4.3c present results of the goodness-of-fit tests showing the 

values for the deviance and Pearson chi-square for all three models at all levels of 

services.  According to the results, the value/df  ratios for both deviance the and Pearson 

chi-square range between 0.93 and 1.25 for all models and all levels of services.  Because 

they are close to one, as discussed in this Sub-Section, the model fits the data well for all 



65 

 

 

 

the models.  However, at a significance level of 0.1, only Model III was statistically 

significant at all levels of service and therefore was used in the development of SPFs 

discussed next in Sub-Section 4.1.3.  The output of  Models I, II, and III were determined 

using SPSS 16.0 and are presented in Appendix B of this dissertation.   

 

4.1.3  Development of Safety Performance Functions  

SPFs were used to predict the crash frequency for each LOS using Model III.  The 

variables include in the model were crash frequency, lane width, posted speed limit, 

number of Lanes, shoulder width, median width, and density.  Negative binomial models 

were used for the SPF development and the resultant coefficients for each variable 

presented in Tables 4.4a through 4.4f. 

 

Table 4.4a  Negative Binomial Parameter Estimates for LOS A  

 

Parameter Estimate 
Std. 

Error 
Sig. 

(Intercept) -1.949 2.044 0.014 

Traffic Volume (Hourly) 0.001 0.001 0.058 

Posted Speed Limit (m/h) -0.070 0.030 0.020 

Number of Lanes 0.865 0.301 0.004 

Lane Width (ft.) 0.183 0.081 0.025 

Shoulder Width (ft.) -0.043 0.023 0.065 

Median Width (ft.) 0.018 0.011 0.089 

Density (veh/mi) -0.092 0.121 0.049 

Dispersion (k) 0.224 0.091   
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Table 4.4b  Negative Binomial Parameter Estimates for LOS B 

 

Parameter Estimate 
Std. 

Error 
Sig. 

(Intercept) -5.560 3.141 0.077 

Traffic Volume (Hourly) 0.001 0.001 0.102 

Posted Speed Limit (m/h) 0.061 0.036 0.086 

Number of Lanes -0.082 0.685 0.051 

Lane Width (ft.) 0.225 0.127 0.075 

Shoulder Width (ft.) -0.093 0.029 0.001 

Median Width (ft.) -0.009 0.015 0.548 

Density (veh/mi) -0.147 0.137 0.028 

Dispersion (k) 0.167 0.087   

 

Table 4.4c  Negative Binomial Parameter Estimates for LOS C 

 

Parameter Estimate 
Std. 

Error 
Sig. 

(Intercept) -2.753 3.031 0.047 

Traffic Volume (Hourly) 0.000 0.001 0.097 

Posted Speed Limit (m/h) -0.060 0.030 0.044 

Number of Lanes 0.516 0.960 0.059 

Lane Width (ft.) 0.307 0.106 0.004 

Shoulder Width (ft.) -0.031 0.021 0.014 

Median Width (ft.) -0.011 0.019 0.554 

Density (veh/mi) 0.039 0.107 0.071 

Dispersion (k) 0.204 0.074   

 

Table 4.4d  Negative Binomial Parameter Estimates for LOS D 

 

Parameter Estimate 
Std. 

Error 
Sig. 

(Intercept) 1.528 6.251 0.033 

Traffic Volume (Hourly) 0.001 0.002 0.019 

Posted Speed Limit (m/h) -0.036 0.040 0.037 

Number of Lanes -2.051 2.765 0.058 

Lane Width (ft.) 0.407 0.234 0.082 

Shoulder Width (ft.) -0.009 0.033 0.045 

Median Width (ft.) 0.001 0.018 0.939 

Density (veh/mi) -0.115 0.171 0.053 

Dispersion (k) 0.243 0.111   
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Table 4.4e  Negative Binomial Parameter Estimates for LOS E 

 

Parameter Estimate 
Std. 

Error 
Sig. 

(Intercept) -12.984 6.598 0.034 

Traffic Volume (Hourly) 0.001 0.002 0.051 

Posted Speed Limit (m/h) 0.198 0.048 0.000 

Number of Lanes -2.567 4.290 0.055 

Lane Width (ft.) 0.431 0.192 0.025 

Shoulder Width (ft.) -0.108 0.096 0.025 

Median Width (ft.) -0.049 0.008 0.000 

Density (veh/mi) -0.001 0.156 0.009 

Dispersion (k) 0.293 .   

 

Table 4.4f Negative Binomial Parameter Estimates for LOS F 

 

Parameter Estimate 
Std. 

Error 
Sig. 

(Intercept) -11.922 1.084 0.000 

Traffic Volume (Hourly) 0.000 0.000 0.000 

Posted Speed Limit (m/h) 0.366 0.057 0.000 

Number of Lanes -3.033 0.589 0.000 

Lane Width (ft.) 0.177 0.082 0.032 

Shoulder Width (ft.) 0.000 . . 

Median Width (ft.) -0.043 0.005 0.000 

Density (veh/mi) -0.002 0.001 0.002 

Dispersion (k) 0.099 0.034   

 

 Tables 4.4a through 4.4f show the negative binomial parameter estimates, 

standard errors, and statistical significance of the intercept and the predictor variables for 

each level of service.  Also shown are the dispersion estimates.  The intercepts show the 

estimated number of crashes when all variables are held at zero.   

At a significant level of 0.1, all the variables, except for median width, are 

significant and as a result, median width was not considered in the SPF development in 

this study.  The dispersion coefficients for all LOSs are positive and greater than zero, 
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suggesting over-dispersion and therefore the negative binomial model was appropriate for 

use.   

The results show that at all levels of service the lane width is positive.  The posted 

speed is positive at LOS B, E, and F and negative at LOS A, C, and D.  The number of 

lanes is positive at all LOS except at LOS C and A.  The shoulder width has a negative 

influence on crash frequency, however as the results show at LOS F, the shoulder width 

was set to zero because the parameter is redundant meaning at this LOS it is highly 

correlated with one of the predictor variables at this particular LOS.  Density is negative 

at all LOS except at LOS C.  A positive sign indicates that as these positive variables 

increase, the crash frequency also increases, consequently, a negative sign is an 

indication that as the variables increase, the crash frequency decreases.  The individual 

SPSS output results are presented in Appendix B of this dissertation. 

The coefficients found in Model III were substituted in equation 3.6 in Chapter 3 

of this dissertation to determine the predicted crash frequency.  However, as explained in 

Chapter 3, a more rigorous analysis was conducted to determine the safety of each LOS.  

To achieve this, both the predicted crash frequency found by the SPFs and the observed 

crash frequencies were combined using Empirical Bayesian relationships to find the 

expected crash frequencies.  Empirical Bayes model was used to,  

“More precisely estimate the number of crashes (denoted as Nexpected,T,A in 

the comparison group method) that would have occurred at an individual 

treated site in the after period had a treatment not been implemented.  

Similar to the comparison group method, the effect of the safety treatment 

is estimated by comparing the sum of the estimates of Nexpected,T,A for all 
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treated sites with the number of crashes actually recorded after 

treatment.”  Gross et al. (2010). 

The treatment in this case was the degrading of level of service from one level of 

service to the next level of service, i.e. from LOS A to LOS B.  Specifically, the EB 

before-after model was used to account for the regression-to-mean (RTM) effect usually 

associated with the crash data.  The procedure for calculating the expected crash 

frequencies is next discussed in Section 4.2.   

 

4.2 Determining Expected Crash Frequencies 

As stated in Section 4.1, SPFs are only part of the overall safety evaluation process in this 

study and the observed crashes need to be accounted for in determining safety.  In this 

Section, the expected crash frequencies are determined using Empirical Bayesian method 

to increase the precision of safety estimation by accounting for the RTM bias.  

Substituting in equation 3.7, the weight factors were calculated using the overdispersion 

coefficients found in SPF modeling.  The weight factors were then used to calculate the 

expected crash frequencies presented in Table 4.5. 
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Table 4.5 Expected Crash Frequency Estimates  

 

LOS 
Actual 

Crashes 

Predicted 

Crashes 

Weight  Expected 

Crashes 

A 408 174.811 0.025 402.193 

B 297 191.368 0.030 293.795 

C 434 253.915 0.019 430.589 

D 212 144.177 0.028 210.118 

E 267 125.582 0.026 263.258 

F 938 352.362 0.028 921.680 

 

 

 

 Table 4.5 presents the sum of all observed and predicted crash frequencies at all 

levels of service.  The observed crash frequencies are the sum of the actual crashes 

observed at each hour for each LOS.  Predicted crash frequencies are also the sum the 

SPF generated crash frequencies using equation 3.6.  The weight factor was calculated 

using equation 3.7 and the expected crash frequencies, Nexpected,T,B was calculated using 

equation 3.8. 

 Having found the expected crash frequencies for each level of service using the 

Empirical Bayes  before-after models, the next procedure involved developing the CMFs 

for each deterioration in LOS as discussed next in Section 4.3. 

 

4.3 Developing Crash Modification Factors  

The final step in this study’s data analysis involved estimating the CMF when the LOS 

deteriorated from A to B, B to C, C to D, D to E and E to F using the procedures outlined 

in Chapter 3 of this dissertation.  Using the weight factor all the observed, predicted and 

expected crash frequencies found, CMFs were estimated and presented in Table 4.6. 
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Table 4.6  Crash Modification Factors 

 

Parameter  
LOS A to 

LOS B 

LOS B to 

LOS C 

LOS C to 

LOS D 

LOS D to 

LOS E 

LOS E to 

LOS F 

 Nexpected,T,B = 402.193 293.795 430.589 210.118 263.258 

Npredicted,T,A / Npredicted,T,B = 1.095 1.327 0.568 0.871 1.053 

Nexpected,T,A =  440.288 389.818 244.496 183.018 277.282 

Var (Nexpected,T,A) =  469.989 501.531 136.199 154.989 284.326 

CMF = 0.673 1.110 0.865 1.452 3.370 

Expected Effect on Safety = - 33% 11% -13% 45% 237% 

 

 

 

 Table 4.6 shows the results of the four steps described in Chapter 3 and presented 

in Sub-Section 3.3 to determine the CMFs when the LOS deteriorated on urban freeways.  

The four steps are finding the:  (1) ratio of the predicted number of crashes during the 

after period to the predicted number of crashes during the before period (Npredicted,T,A / 

Npredicted,T,B); (2) expected number of crashes in the after period in the treatment group that 

would have occurred without treatment (Nexpected,T,A), (3) the variance of Nexpected,T,A and 

(4) finally estimation of the CMF. 

The results in Table 4.6 can be interpreted as follows: When the LOS changed 

from A to B, the CMF was 0.67, a safety benefit of 33% or an expected reduction in 

crashes of thirty-three percent.  When the LOS changed from B to C, the CMF was 1.11, 

a safety degradation of 11% or an expected increase in crashes of eleven percent.  When 

the LOS changed from C to D, the CMF was 0.865, a safety benefit of 13% or an 

expected thirteen percent reduction in crashes.  When the LOS changed from D to E, the 

CMF was 1.452, a safety degradation of 45% or an expected forty-five percent increase 

in crashes.  Finally, when the LOS changed from E to F, the CMF was 3.37, a safety 
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degradation of 237% or an expected increase in crashes of two hundred and thirty-seven 

percent.   

Therefore, the largest reduction in crash frequency would be between LOS A and 

LOS B where the CMF is 0.673 with an expected reduction in crashes of thirty-three 

percent.  The most hazardous change in LOS would be between LOS E to F where the 

CMF is 3.37 with an expected two hundred and thirty-even percent increase in crashes.   

As the crash frequency increase when the LOS changed from E to F was 

significantly large, three individual study sites that experienced both levels of services of 

E and F were randomly selected to find out if the expected increase in crashes determined 

by the CMF was similar  with the observed crash frequencies.  The results of this task are 

tabled in Table 4.7. 

 

Table 4.7 Observed Crash Averages for each LOS at Selected Study Sites  

 

 
 ROUTE 1 ROUTE 3 

Change in 

LOS 

CMF 

Findings 

(%) 

MP 46 

(%) 

MP 52.29 

(%) 

MP 9.50 

(%) 

A to B -33 -40.00 -42.11 -70.00 

B to C 11 150.00 400.00 185.71 

C to D -13 -25.00 -40.63 -61.54 

D to E 45 533.33 -53.85 -50.00 

E to F 237 231.25 242.86 150.00 

 

 The results for when the level of service changes from E to F presented in Table 

4.7 show that on the average, at this LOS degradation, the number of crash frequencies 

tend to increase by 200%.  This is similar to the findings in Table 4.6, which presents the 

expected number of crashes, CMFs and the percentage of expected effect on safety.  

However, the findings of B to C and D to E are different. 
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4.4 Severity Analysis 

 A similar investigation was conducted on crash severity to determine the CMFs 

for combined fatalities and injuries when LOS degraded from LOS A to LOS F.  The first 

task involved determining the possible SPF models using Pearson’s Correlation Matrices 

as discussed next in Sub-Section 4.4.1. 

4.4.1 Determining the Possible Models 

Table 4.8 Pearson’s Correlation Matrix Table 

 

  
Traffic 

Volume 

Posted 

Speed 

Number 

of Lanes 

Lane 

Width 

Shoulder 

Width 

Median 

Width 
Density 

Traffic 

Volume 

1 0.219 0.407 -0.206 0.263 0.361 0.621 

 
0 0 0 0 0 0 

Posted 

Speed 

0.219 1 0.484 0.238 0.788 0.559 0.151 

0 
 

0 0 0 0 0 

Number 

of Lanes 

0.407 0.484 1 -0.217 0.642 0.401 0.157 

0 0   0 0 0 0 

Lane 

Width 

-0.206 0.238 -0.217 1 0.257 0.09 -0.074 

0 0 0   0 0.001 0.007 

Shoulder 

Width 

0.263 0.788 0.642 0.257 1 0.39 0.118 

0 0 0 0   0 0 

Median 

Width 

0.361 0.559 0.401 0.09 0.39 1 0.25 

0 0 0 0.001 0   0 

Density 
0.621 0.151 0.157 -0.074 0.118 0.25 1 

0 0 0 0.007 0 0   

 

Referring to Table 4.8, the model with the best fit was selected using the discussed 

criteria that the predictor variables in the selected model were both uncorrelated and had 

a correlation coefficient that was within the range of -0.03 and +0.03.  Two models were 

selected, they were: 

Model I: Traffic Volume, Posted Speed, Lane Width, Density 

Model II: Traffic Volume, Shoulder Width, Lane Width, Density  
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4.4.2 Measuring Goodness-of-Fit for each Model 

Table 4.9a, shows the goodness-of-fit results for Model I.  The Value/df for Deviance at 

LOS E, is much greater than one and therefore Model I was not selected as it is not fit for 

analysis.  Crash frequency of fatalities and injuries for LOSs E and F were combined 

since they both have similar characteristics and both had very low frequencies.  After 

combining LOSs E and F, the Value/df for Deviance reduced to approximately l.  This 

indicates that at all LOSs A, B, C, D, and E & F, the data fits the model well.    

 

Table 4.9a  Goodness-of-Fit for Model I 

 
LOS Parameter Value df Value/df 

A 

Deviance 291.094 426 0.683 

Pearson Chi-Square 443.919 426 1.042 

Sig 0.001 
  

B 

Deviance 199.079 249 0.8 

Pearson Chi-Square 267.09 249 1.073 

Sig 0.127 
  

C 

Deviance 223.261 263 0.849 

Pearson Chi-Square 262.051 263 0.996 

Sig 0.18     

D 

Deviance 87.987 99 0.889 

Pearson Chi-Square 117.037 99 1.182 

Sig 0.539     

E 

Deviance 10326.96 89 116.033 

Pearson Chi-Square 4.45E+33 89 5.00E+31 

Sig 0     

F 

Deviance 203.206 182 1.117 

Pearson Chi-Square 195.712 182 1.075 

Sig 0     

E & F 

Deviance 283.616 277 1.024 

Pearson Chi-Square 317.108 277 1.145 

Sig 0     
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Table 4.9b, shows the goodness-of-fit results for Model II.  The Value/df for Deviance at 

LOS E, is much greater than one and therefore this model was not included as fit for 

analysis.  Fatalities and injuries for LOSs E and F were combined since they both have 

similar characteristics and both had very low severity counts.  After combining fatalities 

and injuries for LOSs E and F, the Value/df for Deviance reduced to approximately l.  

The Value/df for Pearson Chi-Square at LOS E & F was 1.203.  As a result, Model II was 

not considered for severities SPF analysis.    

 

Table 4.9b  Goodness-of-Fit for Model II 

 

LOS Parameter Value df Value/df 

A 

Deviance 291.174 426 0.684 

Pearson Chi-Square 448.923 426 1.054 

Sig 0.001 
  

B 

Deviance 199.199 249 0.8 

Pearson Chi-Square 264.002 249 1.06 

Sig 0.122 
  

C 

Deviance 223.54 263 0.85 

Pearson Chi-Square 261.656 263 0.995 

Sig 0.192     

D 

Deviance 87.535 99 0.884 

Pearson Chi-Square 102.783 99 1.038 

Sig 0.048     

E 

Deviance 11570.142 89 130.002 

Pearson Chi-Square 2.43E+37 89 2.73E+35 

Sig 0.002     

F 

Deviance 203.132 182 1.116 

Pearson Chi-Square 203.01 182 1.115 

Sig 0     

E & F 

Deviance 281.946 277 1.018 

Pearson Chi-Square 3.33E+02 277 1.203 

Sig 0     
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Even though the P-Values for  both Models I and II are more than 0.1,  Model I 

was used based on the goodness-of-fit test results.  The SPF analysis for Model I is 

presented next.  The original SPSS outputs are presented in Appendix C of this 

dissertation.  The next task-involved development of SFPs as discussed in Sub-Section 

4.4.3 next. 

 

4.4.3  Development of Safety Performance Functions  

SPFs were used to predict the crash frequency by severity for each LOS based on the 

goodness-of-fit test, Model I was selected for the development of SPFs.  This model’s 

variables were crash frequency by severity, which is the dependent variable, traffic 

volumes, lane width, posted speed limit, and density.  Negative binomial models were 

used for the SPF development and the resultant coefficients for each variable presented in 

Tables 4.10a through 4.10e. 

 

Table 4.10a Crash Frequency of Fatalities and Injuries Parameter Estimates for LOS A  

 

Parameter B 
Std. 

Error 
Sig. 

(Intercept) 5.317 1.9006 0.005 

Traffic Volume (Hourly) 0.002 0.0007 0.002 

Posted Speed Limit (m/h) -0.088 0.0354 0.013 

Lane Width (ft.) -0.083 0.121 0.495 

Density (veh/mi) -0.433 0.1248 0.001 

Dispersion (k) 2.964 0.492   

 

 

Table 4.10a shows the negative binomial parameter estimates, standard errors, 

and statistical significance of the intercept and the predictor variables for LOS A.  Also 
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shown are the dispersion estimates.  The intercept in Table 4.10a shows the negative 

binomial regression estimated coefficients when all variables are held at zero.   

At a significance level of 0.1, all the variables except for lane width are 

significant and as a result, lane width was not considered in the SPF development for 

LOS A.  The dispersion coefficient is positive and greater than zero, suggesting over-

dispersion and therefore the negative binomial model was appropriate.   

 

Table 4.10b Crash Frequency of Fatalities and Injuries Parameter Estimates for LOS B  

 

Parameter B 
Std. 

Error 
Sig. 

(Intercept) 4.193 2.4619 0.089 

Traffic Volume (Hourly) 0 0.0003 0.447 

Posted Speed Limit (m/h) -0.003 0.0416 0.937 

Lane Width (ft.) -0.266 0.1542 0.084 

Density (veh/mi) -0.137 0.0844 0.106 

Dispersion (k) 1.948 0.4358   

 

 

 

Table 4.10b shows the negative binomial parameter estimates, standard errors, 

and statistical significance of the intercept and the predictor variables for LOS B.  Also 

shown are the dispersion estimates.  The intercept in Table 4.10b shows the negative 

binomial regression estimated coefficients when all variables are held at zero.   

At a significance level of 0.1, all the variables except for traffic volume and 

posted speed are significant and as a result, were not considered in the SPF development 

for LOS B.  The dispersion coefficient is positive and greater than zero, suggesting over-

dispersion and therefore the negative binomial model was appropriate.   
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Table 4.10c Crash Frequency of Fatalities and Injuries Parameter Estimates for LOS C  

 

Parameter B 
Std. 

Error 
Sig. 

(Intercept) 0.751 2.2226 0.735 

Traffic Volume (Hourly) 0 0.0002 0.219 

Posted Speed Limit (m/h) -0.08 0.0332 0.016 

Lane Width (ft.) 0.26 0.1776 0.143 

Density (veh/mi) -0.055 0.0612 0.373 

Dispersion (k) 1.543 0.3642   

 

 

 

Table 4.10c shows the negative binomial parameter estimates, standard errors, 

and statistical significance of the intercept and the predictor variables for LOS C.  Also 

shown are the dispersion estimates.  The intercept in Table 4.10c shows the negative 

binomial regression estimated coefficients when all variables are held at zero.   

At a significance level of 0.1, all the variables except for traffic volume and 

density are significant and as a result, were not considered in the SPF development for 

LOS C.  The dispersion coefficient is positive and greater than zero, suggesting over-

dispersion and therefore the negative binomial model was appropriate.   

 

 

Table 4.10d Crash Frequency of Fatalities and Injuries Parameter Estimates for LOS D  

 

Parameter B 
Std. 

Error 
Sig. 

(Intercept) -1.18 4.374 0.787 

Traffic Volume (Hourly) 0 0.0003 0.176 

Posted Speed Limit (m/h) -0.096 0.0589 0.101 

Lane Width (ft.) 0.394 0.3982 0.322 

Density (veh/mi) -0.033 0.0796 0.676 

Dispersion (k) 1.53 0.5369   
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Table 4.10d shows the negative binomial parameter estimates, standard errors, 

and statistical significance of the intercept and the predictor variables for LOS D.  Also 

shown are the dispersion estimates.  The intercept in Table 4.10d shows the negative 

binomial regression estimated coefficients when all variables are held at zero.   

At a significance level of 0.1, all the variables except for lane width and density 

are significant and as a result, were not considered in the SPF development for LOS D.  

The dispersion coefficient is positive and greater than zero, suggesting over-dispersion 

and therefore the negative binomial model was appropriate.   

 

Table 4.10e Crash Frequency of Fatalities and Injuries Parameter Estimates for LOS E & F  

 

Parameter B 
Std. 

Error 
Sig. 

(Intercept) -4.341 1.5927 0 

Traffic Volume (Hourly) 0 0.0001 0 

Posted Speed Limit (m/h) 0.048 0.0401 0.229 

Lane Width (ft.) 0.396 0.0866 0 

Density (veh/mi) -0.002 0.0011 0.081 

Dispersion (k) 0.786 0.1614   

 

 

Table 4.10e shows the negative binomial parameter estimates, standard errors, 

and statistical significance of the intercept and the predictor variables for LOS E & F.  

Also shown are the dispersion estimates.  The intercept in Table 4.10e shows the negative 

binomial regression estimated coefficients when all variables are held at zero.   

At a significance level of 0.1, all the variables except for posted speed are 

significant and as a result, was not considered in the SPF development for LOS E & F.  
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The dispersion coefficient is positive and greater than zero, suggesting over-dispersion 

and therefore the negative binomial model was appropriate.   

The coefficients found in Model I were used for calculating the crash frequency 

of fatalities and injuries.  However, as explained in Chapter 3, to account for the RTM 

effect, a more rigorous analysis was conducted to determine the expected number of 

crashes by severity of each LOS.  To achieve this, both the predicted severities found 

using the SPFs in Sub-Section 4.4.3 and the observed severities were combined using 

Empirical Bayesian relationships to find the expected severities.  Empirical Bayes model 

was used to, estimate the number of fatalities and injuries that would have occurred had 

at the study site in the after period had a treatment not been implemented (Gross et al., 

2010).  The treatment in this case was the progressive degrading of levels of services 

from LOS A to LOS E &F.  Specifically, the EB before-after model was used to account 

for the regression-to-mean (RTM) effect usually associated with the crash data.  The 

procedure for calculating the expected crash frequencies is next discussed in Sub-Section 

4.4.4.   

 

4.4.4 Determining Expected Crash Frequencies 

As stated in Section 4.1, SPFs are only part of the overall safety evaluation process in this 

study and the observed severities need to be accounted for in determining expected 

severity.  In this Sub-Section, the expected number of crashes by severity was determined 

using Empirical Bayesian method to increase the precision of safety estimation by 

accounting for the RTM bias.  Using the overdispersion coefficients found during SPF 
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modeling, the expected number of crashes by severity was estimated and presented in 

Table 4.11. 

 

Table 4.11 Estimates of Expected Crash Frequency by Severity  

 

LOS 

Actual 

Fatalities 

& Injuries 

Predicted 

Fatalities 

& Injuries 

Weight 

Factor 

 Expected 

Fatalities 

& Injuries 

A 266 246.667 2.964 208.697 

B 167 106.003 1.948 48.177 

C 180 103.535 1.543 62.014 

D 75 32.519 1.530 10.004 

E & F 389 311.847 0.786 328.358 

 

 Table 4.11 presents the sum of all observed and predicted fatalities and injuries at 

all levels of services.  The observed crash frequency by severity is the sum of the actual 

fatalities and injuries observed at each hour for each LOS.  Predicted fatalities and 

injuries are the sum the SPF generated crash frequency by severity using equation 3.6.  

The weight factor was calculated using equation 3.7 and the expected crash frequency by 

severity was calculated using equation 3.8. 

 Having found the expected number of fatalities and injuries for each level of 

service using the Empirical Bayes before-after models, the next procedure involved 

developing the CMFs for each deterioration in LOS as discussed next in Section 4.4.5. 

 

4.4.5 Developing Crash Modification Factors  

The final step in data analysis involved estimating the CMF when the LOS deteriorated 

from A to B, B to C, C to D, and D to E & F using the procedures outlined in Chapter 3 
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of this dissertation.  Using the weight factor all the observed, predicted, and expected 

crash frequency by severity found, CMFs were estimated and presented in Table 4.12. 

 

Table 4.12 Crash Frequency by Severity Crash Modification Factors 

 

Parameter  
LOS A to 

LOS B 

LOS B to 

LOS C 

LOS C to 

LOS D 

LOS D to 

LOS E  F 

 Nexpected,T,B = 208.697 48.177 62.014 10.004 

Npredicted,T,A / Npredicted,T,B = 0.430 0.977 0.314 9.590 

Nexpected,T,A =  89.685 47.056 19.478 95.934 

Var (Nexpected,T,A) =  -75.695 -43.570 -3.322 -487.589 

CMF = 1.880 3.902 3.885 4.282 

Expected Effect on Severity = 88% 290% 288% 328% 

 

 

 

 Table 4.12 shows the results of the four steps described in Chapter 3 and 

presented in Sub-Section 3.3 to determine the CMFs when the LOS deteriorated on urban 

freeways.  The results presented in Table 4.12 can be interpreted as follows: When the 

LOS changed from A to B, the CMF was 1.88, a severity degradation of 88% or an 

increase in the number of fatalities and injuries by severity eighty-eight percent.  When 

the LOS changed from B to C, the CMF was 3.90, a severity degradation of 290% or an  

increase in the number of fatalities and injuries by two hundred and ninety percent.  

When the LOS changed from C to D, the CMF was 3.89, a severity degradation of 288% 

or an increase in the number of fatalities and injuries by two hundred and eighty-eight 

percent increase in severity, finally, when the LOS changed from D to E 7 F, the CMF 

was 4.28, a severity degradation of 328% or an increase in the number of fatalities and 

injuries by three hundred and twenty-eight percent increase in severity.     
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The results from the severity analysis suggest that as the LOS degraded from LOS 

A to B, B to C, C to D and D to E & F, severity degraded too.  These findings are not 

similar to those of Christoforou et al. (2010) and Martin (2002) discussed in the literature 

review of this dissertation.  According to Christoforou et al. (2010) and Martin (2002), 

the number of severities should decrease as the traffic volumes increase and speed 

reduces.   

 

4.5 Conclusions 

This Chapter applied the crash data collected on the selected urban freeways to the 

methodology developed.  The first task involved determining the predicted crash 

frequencies and severities using SPF analysis.  Here, three models were determined using 

Pearson’s correlation matrices and the model(s) that fitted the data well was/were 

selected by applying the goodness-of-fit tests.  To be specific, model III and model I were 

selected for crash frequency and severity respectively.     

As discussed in Chapter 2, of all crash affecting variables, traffic volume has the 

most influence and was accounted for during SPF analysis, especially if it is not constant.  

However, SPFs fail to account for the regression-to-mean (RTM) effect on the predicted 

crash frequencies and therefore, using a weight factor and Empirical Bayes the RTM 

effect was corrected and the Expected crash frequencies and severities calculated.  

Finally, the CMFs for each LOS deterioration, beginning from LOS A to LOS F was 

calculated, presented, and discussed.  Further interpretations, recommendations, and 

conclusions of this results and research were then presented in Chapter 5 next. 
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CHAPTER 5 

INTERPRETATIONS, CONCLUSIONS and RECOMMENDATIONS 

 

5.1 Interpretations 

5.1.1 Crash Frequencies 

The main objective of this study was to show whether freeway operational elements 

influenced crash frequencies.  If so, then this study would recommend that operational 

elements, specifically level of service to be considered in the future versions of the 

Highway Safety Manuals.  The effect on safety findings in Table 4.6 in Chapter 4 were 

graphically presented in Figure 5.1 to show the expected percentage trend in crash 

frequencies when the LOS deteriorated.  

 
 

Figure 5.1 Crash frequency trend as the levels of services deteriorated.   
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Figure 5.1 shows that there is a relationship between operational elements and 

crash frequencies.  The curve in the figure indicates that on urban freeways, as the level 

of services deteriorate from A to B, B to C, C to D, D to E and E to F, the influence is 

almost sinusoidal.  That is as the LOS degrades from A to B the crash frequency 

percentages reduces, the crash percentages then increase as the LOS degrades from B to 

C and then decreases when the LOS degrades from C to D.  The crash frequency 

percentages then reduces as LOS changes from D to E and increases significantly when 

LOS changes from E to F.   

The findings of this study seem to concur with the few other studies that have 

acknowledged that operational elements have some influence on safety.  For example, (1) 

Kononov et al.’s, (2008) relationships between safety.  Kononov et al. states that  

“Relating safety to the degree of congestion suggests that safety 

deteriorates with the degradation in the quality of service expressed 

through the level of service.  Practitioners generally believe that 

additional capacity afforded by additional lanes is associated with more 

safety.  How much safety and for what time period are generally not 

considered.  Comparison of SPFs of multilane freeways suggests that 

adding lanes may initially result in a temporary safety improvement that 

disappears as congestion increases.” 

And (2) in his discussion of previous work, Lord et al. (2004) discusses studies by 

Frantzeskakis and Iordanis (1987), Persaud, and Nguyen (2000) and concluded that crash 

frequencies increased as the LOS decreased from LOS of “A” to LOS of “F.”  However, 
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this study is unique in that it uses CMFs as directed by the HSM (2010) to quantify safety 

when the operational conditions deteriorate on urban freeways.   

 

5.1.2 Crash Severities 

This study also investigates whether operational elements influenced the number of 

fatalities and injuries specifically when the LOS deteriorated from A to B, B to C, C to D, 

and D to E & F.  If so, then this study would recommend that operational elements, 

specifically level of service to be considered in the future versions of the Highway Safety 

Manuals.  The effect on safety findings in Table 4.12 in Chapter 4 are graphically 

presented in Figure 5.2 to show the expected percentage change in fatalities and injuries 

when the LOS deteriorated. 

 

 

Figure 5.2 Crash severity trend as the levels of services deteriorated. 
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Figure 5.2 shows that there is a relationship between operational elements and 

crash severities.  The curve in the figure indicates that on urban freeways, as the level of 

services deteriorate from A to B, B to C, C to D, and D to E & F, the number of fatalities 

and injuries is expected to increase.  That is as the LOS degrades from A to B the fatal 

and injury percentages increases, the crash percentages continue to increase as the LOS 

degrades from B to C and then decreases when the LOS degrades from C to D.  The 

percentage change in fatalities and injuries then increases as LOS changes from D to E & 

F.    

 

5.2 Conclusions 

The main objective of this research was to determine if operational elements, specifically 

if levels of service influenced crash frequencies on urban freeways.  If a relationship is 

established, it is recommended that AASHTO include these findings in the future 

versions of the Highway Safety Manual.  The results presented in Table 4.6 and Figure 

5.1 show that indeed due to changes in Level of Service, operational elements have some 

influence on crash frequencies.   

This study used hourly volumes in the investigation to calculate the density and 

assigning of levels of service for each hour.  This research used the Highway Capacity 

Manual (HCM, 2010) in both calculating density and assigning the level of service.  

Thereafter, the CMFs due to change in level of service were estimated using the 

procedures recommended by the Highway Safety Manual (HCM, 2010).  The reference 
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to these manuals in this study, showed that both manuals can be used together in 

designing and construction of both existing and proposed urban freeways. 

 As indicated in the literature review of this study, studies by Frantzeskakis and 

Iordanis (1987), Persaud, and Nguyen (2000) which  examined the effects of LOS on 

safety and concluded that both crash frequencies and crash rates increased as the LOS 

degraded from LOS of “A” through LOS of “F.”  However, this was not exactly the same 

as the findings of this study.  Explanation and recommendations on the results are 

discussed next in Section 5.3. 

 

5.3 Recommendations 

The main objective of transportation practitioners is to design and maintain roadways that 

are safe as possible.  Using the results found by this study, to meet these condition on 

urban freeways, the levels of service should be maintained between levels of service A 

through C.  The level of service change between B and C being more safer of the two.  

This could be due to the higher speeds and the free flow conditions associated with LOS 

A and B.   

 Levels of service between A and B on urban freeways were also found to be safe 

however due to congestion and reduced speeds, the travels conditions are not free and 

therefore not recommended.  This condition avoided by directing traffic to other 

roadways and increasing the number of lanes.  According to the results found by this 

study, the most hazardous level of service on urban freeways is between LOS D and E.  
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Not only do the crash frequencies increase, the operational conditions deteriorated as 

well.  

 The results in this study are not conclusive however, should provide a basis to be 

used to influence more research on this topic so that there is through and better 

understanding on how operational elements precisely influence crash frequencies.  

Thereafter, more constraints should be included to the variables such as by crash type, 

road surface type, and surface condition.  Not only should the constraints be included, but 

also different methodology approach should be encourage to reduce the errors associated 

with crash data to find a more accurate solution as possible. 
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APPENDIX A: VARIABLES USED IN HSM (2010) SAFETY PREDICTIONS  

1. Area Type (rural/suburban/urban) 

2. AADT 

3. Length of roadway segment 

4. Number of through lanes 

5. Lane Width 

6. Shoulder width 

7. Shoulder type 

8. Presence of median (divided/undivided) 

9. Median width 

10. Presence of concrete median barrier 

11. Presence of passing lane 

12. Presence of short four-lane Section 

13. Presence of two way left-turn lane 

14. Driveway density  

15. Number of major commercial driveways 

16. Number of minor commercial driveways 

17. Number of major residential driveways 

18. Number of minor residential driveways 

19. Number of major industrial/institutional driveways 

20. Number of minor industrial/institutional driveways 

21. Number of other driveways 

22. Horizontal curve length
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23. Horizontal curve radius 

24. Horizontal curve super-elevation 

25. Presence of spiral transition 

26. Grade 

27. Roadside hazard rating 

28. Roadside slope 

29. Roadside fixed-object density 

30. Roadside fixed-object offset 

31. Percent of length with on-street parking 

32. Type of on-street parking 

33. Presence of lighting 
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APPENDIX B 

Crash Frequency Negative Binomial SPSS 16.0 Output Estimates 

 

 MODEL I 

LOS A Parameter Estimates 

   

95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B 
Std. 

Error 
Lower Upper 

Wald 

Chi-

Square 

df Sig. 

(Intercept) 3.138 1.0049 1.168 5.107 9.751 1 0.002 

vol 0.002 0.0003 0.001 0.00 32.433 1 0.000 

psd -0.082 0.0183 -0.117 -0.046 19.773 1 0.000 

LW 0.089 0.072 -0.052 0.23 1.526 1 0.217 

D -0.364 0.0638 -0.489 -0.239 32.61 1 0.000 

(Neg. Bin.) 0.276 0.0972 0.138 0.55 
   

Dependent Variable: crash 

Model: (Intercept), vol, psd, LW, D 

 

 

 

LOS B Parameter Estimates 

   

95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B 
Std. 

Error 
Lower Upper 

Wald 

Chi-

Square 

df Sig. 

(Intercept) -0.841 1.3695 -3.525 1.843 0.377 1 0.539 

vol 0.001 0.0002 0 0.001 13.17 1 0 

psd -0.024 0.0226 -0.068 0.02 1.144 1 0.285 

LW 0.106 0.1079 -0.106 0.317 0.958 1 0.328 

D -0.051 0.0496 -0.148 0.047 1.038 1 0.308 

(Neg. Bin.) 0.222 0.0946 0.096 0.512 
   

Dependent Variable: crash 

Model: (Intercept), vol, psd, LW, D 
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LOS C Parameter Estimates 

   

95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B 
Std. 

Error 
Lower Upper 

Wald 

Chi-

Square 

df Sig. 

(Intercept) 1.358 1.1677 -0.93 3.647 1.353 1 0.245 

vol 0 0.0001 6.95E-05 0 6.801 1 0.009 

psd -0.093 0.0176 -0.127 -0.058 27.619 1 0.000 

LW 0.236 0.0902 0.059 0.413 6.845 1 0 

D -0.003 0.03 -0.062 0.056 0.012 1 0.913 

(Neg. Bin.) 0.211 0.0747 0.105 0.422 
   

Dependent Variable: crash 

Model: (Intercept), vol, psd, LW, D 

 

 

LOS D Parameter Estimates 

   

95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B 
Std. 

Error 
Lower Upper 

Wald 

Chi-

Square 

df Sig. 

(Intercept) -2.697 2.3159 -7.236 1.842 1.356 1 0.244 

vol 7.37E-05 0.0001 0 0 0.255 1 0.613 

psd -0.035 0.0297 -0.093 0.023 1.375 1 0.241 

LW 0.375 0.1955 -0.008 0.758 3.684 1 0.055 

D 0.012 0.0376 -0.061 0.086 0.106 1 0.745 

(Neg. Bin.) 0.248 0.1117 0.103 0.6 
   

Dependent Variable: crash 

Model: (Intercept), vol, psd, LW, D 

 

 

LOS E Parameter Estimates 

   

95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B 
Std. 

Error 
Lower Upper 

Wald 

Chi-

Square 

df Sig. 

(Intercept) -11.776 1.8344 -15.371 -8.18 41.209 1 0.000 

vol 0 0.0002 0 7.66E-05 2.579 1 0.108 

psd 0.124 0.0453 0.035 0.213 7.476 1 0.006 

LW 0.243 0.0934 0.06 0.427 6.79 1 0.009 

D 0.133 0.0266 0.081 0.185 24.902 1 0.000 

(Neg. Bin.) 0.131 0.0681 0.047 0.363 
   

Dependent Variable: crash 

Model: (Intercept), vol, psd, LW, D 
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LOS F Parameter Estimates 

   

95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B 
Std. 

Error 
Lower Upper 

Wald 

Chi-

Square 

df Sig. 

(Intercept) -8.431 1.1351 -10.655 -6.206 55.166 1 0.000 

vol 0 0.0001 8.80E-05 0 8.032 1 0.005 

psd 0.049 0.0349 -0.019 0.117 1.976 1 0.160 

LW 0.458 0.0656 0.33 0.587 48.761 1 0.000 

D -0.001 0.0007 -0.002 0 2.088 1 0.148 

(Neg. Bin.) 0.303 0.0582 0.208 0.442 
   

Dependent Variable: crash 

Model: (Intercept), vol, psd, LW, D 
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Negative Binomial SPSS 16.0 Output Estimates for MODEL II 

LOS A Parameter Estimates 

   

95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B 
Std. 

Error 
Lower Upper 

Wald 

Chi-

Square 

df Sig. 

(Intercept) -0.831 0.8654 -2.527 0.865 0.922 1 0.337 

vol 0.002 0.0004 0.002 0.003 32.871 1 0 

SW -0.062 0.015 -0.091 -0.032 16.827 1 0 

LW 0.111 0.0757 -0.038 0.259 2.133 1 0.144 

D -0.429 0.0748 -0.576 -0.282 32.854 1 0 

(Neg. Bin.) 0.282 0.098 0.142 0.557 
   

Dependent Variable: crash 

Model: (Intercept), vol, SW, LW, D 

 

 

LOS B Parameter Estimates 

   

95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B 
Std. 

Error 
Lower Upper 

Wald 

Chi-

Square 

df Sig. 

(Intercept) -3.254 1.4852 -6.165 -0.343 4.801 1 0.028 

vol 0.001 0.0002 0.001 0.001 21.696 1 0 

SW -0.057 0.0187 -0.094 -0.021 9.425 1 0.002 

LW 0.249 0.1266 0.001 0.497 3.881 1 0.049 

D -0.119 0.0544 -0.225 -0.012 4.745 1 0.029 

(Neg. Bin.) 0.188 0.0895 0.074 0.478 
   

Dependent Variable: crash 

Model: (Intercept), vol, SW, LW, D 

 

 

LOS C Parameter Estimates 

   

95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B 
Std. 

Error 
Lower Upper 

Wald 

Chi-

Square 

df Sig. 

(Intercept) -3.671 1.341 -6.299 -1.042 7.493 1 0.006 

vol 0 0.0001 0 0.001 9.515 1 0.002 

SW -0.067 0.0144 -0.095 -0.039 21.581 1 0 

LW 0.299 0.1029 0.097 0.501 8.448 1 0.004 

D -0.016 0.0316 -0.078 0.046 0.268 1 0.604 

(Neg. Bin.) 0.23 0.077 0.119 0.443 
   

Dependent Variable: crash 
     

Model: (Intercept), vol, SW, LW, D 
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LOS D Parameter Estimates 

   

95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B 
Std. 

Error 
Lower Upper 

Wald 

Chi-

Square 

df Sig. 

(Intercept) -4.369 3.0338 -10.315 1.577 2.074 1 0.15 

vol 9.80E-05 0.0002 0 0 0.232 1 0.63 

SW -0.022 0.0287 -0.079 0.034 0.615 1 0.433 

LW 0.384 0.2279 -0.063 0.831 2.838 1 0.092 

D 0.008 0.0397 -0.07 0.086 0.041 1 0.84 

(Neg. Bin.) 0.255 0.1127 0.107 0.607 
   

Dependent Variable: crash 

Model: (Intercept), vol, SW, LW, D 

 

 

LOS E Parameter Estimates 

   

95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B 
Std. 

Error 
Lower Upper 

Wald 

Chi-

Square 

df Sig. 

(Intercept) -13.336 2.6758 -18.58 -8.091 24.838 1 0 

vol 0.001 0.0005 0 0.002 5.281 1 0.022 

SW -0.194 0.0929 -0.376 -0.012 4.373 1 0.037 

LW 0.682 0.1648 0.36 1.005 17.157 1 0 

D 0.019 0.047 -0.073 0.111 0.168 1 0.682 

(Neg. Bin.) 0.142 0.0707 0.054 0.377 
   

Dependent Variable: crash 

Model: (Intercept), vol, SW, LW, D 

 

 

LOS F Parameter Estimates 

   

95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B 
Std. 

Error 
Lower Upper 

Wald 

Chi-

Square 

df Sig. 

(Intercept) -8.998 1.0841 -11.123 -6.873 68.891 1 0 

vol 0.001 9.58E-05 0 0.001 35.05 1 0 

SW -0.064 0.0275 -0.118 -0.01 5.424 1 0.02 

LW 0.614 0.067 0.482 0.745 83.775 1 0 

D -0.002 0.0007 -0.004 0 11.446 1 0.001 

(Neg. Bin.) 0.024 0.057 0.201 0.43 
   

Dependent Variable: crash 

Model: (Intercept), vol, SW, LW, D 
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Negative Binomial SPSS 16.0 Output Estimates for MODEL III 

 

LOS A Parameter Estimates 

   

95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B 
Std. 

Error 
Lower Upper 

Wald 

Chi-Sq. 
df Sig. 

(Intercept) -1.949 2.0437 -4.893 1.621 0.134 1 0.014 

vol 0.001 0.0007 0 0.002 0.551 1 0.058 

psd -0.07 0.03 -0.129 -0.011 5.396 1 0.02 

N 0.865 0.3008 0.276 1.455 8.278 1 0.004 

LW 0.183 0.0814 0.023 0.342 5.035 1 0.025 

SW -0.043 0.0233 -0.089 0.003 3.413 1 0.065 

MW 0.018 0.0106 -0.003 0.039 2.895 1 0.089 

D -0.092 0.1214 -0.33 0.146 0.574 1 0.049 

(Neg. Bi.) 0.224 0.0908 0.101 0.496 
   

Dependent Variable: crash 
     

Model: (Intercept), vol, psd, N, LW, SW, MW, D 
    

 

 

LOS B Parameter Estimates 

   

95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B 
Std. 

Error 
Lower Upper 

Wald 

Chi-Sq. 
df Sig. 

(Intercept) -5.56 3.1408 -11.716 0.596 3.134 1 0.077 

vol 0.001 0.0007 0 0.003 2.667 1 0.102 

psd 0.061 0.0358 -0.009 0.131 2.942 1 0.086 

N -0.082 0.6846 -1.424 1.26 0.014 1 0.051 

LW 0.225 0.1265 -0.023 0.473 3.161 1 0.075 

SW -0.093 0.0289 -0.149 -0.036 10.301 1 0.001 

MW -0.009 0.0146 -0.037 0.02 0.361 1 0.548 

D -0.147 0.137 -0.416 0.121 1.156 1 0.028 

(Neg. Bi.) 0.167 0.0869 0.061 0.463 
   

Dependent Variable: crash 
     

Model: (Intercept), vol, psd, N, LW, SW, MW, D 
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LOS C Parameter Estimates 

   

95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B 
Std. 

Error 
Lower Upper 

Wald 

Chi-Sq. 
df Sig. 

(Intercept) -2.753 3.0305 -6.539 1.033 0.505 1 0.047 

vol 2.58E-05 0.0007 -0.001 0.001 0.001 1 0.097 

psd -0.06 0.0297 -0.118 -0.002 4.057 1 0.044 

N 0.516 0.9603 -1.366 2.398 0.289 1 0.059 

LW 0.307 0.1064 0.098 0.515 8.318 1 0.004 

SW -0.031 0.021 -0.072 0.01 2.147 1 0.014 

MW -0.011 0.0189 -0.048 0.026 0.351 1 0.554 

D 0.039 0.1065 -0.17 0.248 0.135 1 0.071 

(Neg. Bi.) 0.204 0.0737 0.1 0.414 
   

Dependent Variable: crash 
     

Model: (Intercept), vol, psd, N, LW, SW, MW, D 
    

 

 

LOS D Parameter Estimates 

   

95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B 
Std. 

Error 
Lower Upper 

Wald 

Chi-Sq. 
df Sig. 

(Intercept) 1.528 6.2511 -9.196 12.252 0.007 1 0.033 

vol 0.001 0.0016 -0.002 0.004 0.652 1 0.019 

psd -0.036 0.0401 -0.114 0.043 0.788 1 0.037 

N -2.051 2.7645 -7.469 3.367 0.55 1 0.058 

LW 0.407 0.2337 -0.052 0.865 3.025 1 0.082 

SW -0.009 0.0331 -0.073 0.056 0.068 1 0.045 

MW 0.001 0.0182 -0.034 0.037 0.006 1 0.939 

D -0.115 0.171 -0.45 0.221 0.449 1 0.053 

(Neg. Bi.) 0.243 0.1109 0.099 0.594 
   

Dependent Variable: crash 
     

Model: (Intercept), vol, psd, N, LW, SW, MW, D 
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LOS E Parameter Estimates 

   

95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B 
Std. 

Error 
Lower Upper 

Wald 

Chi-Sq. 
df Sig. 

(Intercept) -12.984 6.5978 -25.916 -0.053 4.492 1 0.034 

vol 0.001 0.0021 -0.003 0.006 0.434 1 0.051 

psd 0.198 0.0478 0.105 0.292 17.216 1 0 

N -2.567 4.2896 -10.975 5.84 0.358 1 0.055 

LW 0.431 0.192 0.054 0.807 5.031 1 0.025 

SW -0.108 0.0955 -0.295 0.079 1.274 1 0.025 

MW -0.049 0.008 -0.064 -0.033 37.38 1 0 

D -0.001 0.1563 -0.308 0.305 0 1 0.009 

(Neg. Bi.) 0.293 . . . 
   

Dependent Variable: crash 
     

Model: (Intercept), vol, psd, N, LW, SW, MW, D 
    

 

 

LOS F Parameter Estimates 

   

95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B 
Std. 

Error 
Lower Upper 

Wald 

Chi-Sq. 
df Sig. 

(Intercept) -11.922 1.0838 -14.047 -9.798 146.574 1 0 

vol 0 8.11E-05 0 0.001 19.929 1 0 

psd 0.366 0.057 0.254 0.477 41.115 1 0 

N -3.033 0.5887 -4.187 -1.879 26.539 1 0 

LW 0.177 0.0823 0.015 0.338 4.612 1 0.032 

SW 0 . . . . . . 

MW -0.043 0.0052 -0.053 -0.033 68.85 1 0 

D -0.002 0.0006 -0.003 0 9.592 1 0.002 

(Neg. Bi.) 0.099 0.0339 0.05 0.194 
   

Dependent Variable: crash 
     

Model: (Intercept), vol, psd, N, LW, SW, MW, D 
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APPENDIX C: 

 

Crash Frequency of Fatalities and Injuries SPSS 16.0 Output Estimates  

 

 MODEL I 

LOS A Parameter Estimates 

      
95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B Std. Error Lower Upper 
Wald Chi-

Square 
df Sig. 

(Intercept) 5.317 1.9006 1.592 9.042 7.827 1 0.005 

vol 0.002 0.0007 0.001 0.003 9.511 1 0.002 

psd -0.088 0.0354 -0.158 -0.019 6.229 1 0.013 

lw -0.083 0.121 -0.32 0.154 0.466 1 0.495 

D -0.433 0.1248 -0.677 -0.188 12.039 1 0.001 

Dispersion 2.964 0.492 2.141 4.104 
   

 

LOS B Parameter Estimates 

      
95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B Std. Error Lower Upper 
Wald Chi-

Square 
df Sig. 

(Intercept) 4.193 2.4619 -0.632 9.018 2.901 1 0.089 

vol 0 0.0003 0 0.001 0.579 1 0.447 

psd -0.003 0.0416 -0.085 0.078 0.006 1 0.937 

lw -0.266 0.1542 -0.568 0.036 2.981 1 0.084 

D -0.137 0.0844 -0.302 0.029 2.613 1 0.106 

Dispersion 1.948 0.4358 1.256 3.02 
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LOS C Parameter Estimates 

      
95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B Std. Error Lower Upper 
Wald Chi-

Square 
df Sig. 

(Intercept) 0.751 2.2226 -3.605 5.108 0.114 1 0.735 

vol 0 0.0002 0 0.001 1.51 1 0.219 

psd -0.08 0.0332 -0.145 -0.015 5.845 1 0.016 

lw 0.26 0.1776 -0.088 0.608 2.147 1 0.143 

D -0.055 0.0612 -0.174 0.065 0.793 1 0.373 

Dispersion 1.543 0.3642 0.971 2.45 
   

 

 

LOS D Parameter Estimates 

      
95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B Std. Error Lower Upper 
Wald Chi-

Square 
df Sig. 

(Intercept) -1.18 4.374 -9.753 7.393 0.073 1 0.787 

vol 0 0.0003 0 0.001 1.829 1 0.176 

psd -0.096 0.0589 -0.212 0.019 2.684 1 0.101 

lw 0.394 0.3982 -0.386 1.175 0.981 1 0.322 

D -0.033 0.0796 -0.189 0.123 0.175 1 0.676 

Dispersion 1.53 0.5369 0.769 3.043 
   

 

 

LOS E Parameter Estimates 

      
95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B Std. Error Lower Upper 
Wald Chi-

Square 
df Sig. 

(Intercept) -84.21 5.4439 -94.879 -73.54 239.277 1 0 

vol 0 0.0006 -0.002 0 2.443 1 0.118 

psd 0.269 0.1174 0.039 0.499 5.254 1 0.022 

lw 0 . . . . . 0 

D 0.079 0.0753 -0.069 0.226 1.095 1 0.295 

Dispersion 1.624 0.5605 0.826 3.194 
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LOS F Parameter Estimates 

      
95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B Std. Error Lower Upper 
Wald Chi-

Square 
df Sig. 

(Intercept) -9.157 1.7462 -12.58 -5.735 27.501 1 0 

vol 0 0.0001 7.61E-05 0.001 6.318 1 0.012 

psd 0.063 0.0497 -0.034 0.161 1.627 1 0.202 

lw 0.326 0.0931 0.143 0.508 12.24 1 0 

D -0.002 0.0011 -0.004 0 3.002 1 0.083 

Dispersion 0.541 0.1413 0.324 0.903 
   

 

LOS's E & F Parameter Estimates 

   

95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B Std. Error Lower Upper 
Wald Chi-

Square 
df Sig. 

(Intercept) -4.341 1.5927 -12.873 -6.63 37.486 1 0 

vol 0 0.0001 0 0.001 15.647 1 0 

psd 0.048 0.0401 -0.03 0.127 1.446 1 0.229 

lw 0.396 0.0866 0.226 0.566 20.921 1 0 

D -0.002 0.0011 -0.004 0 3.044 1 0.081 

Dispersion 0.786 0.1614 0.525 1.175 
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Negative Binomial SPSS 16.0 Output Estimates for MODEL II 

 

LOS A Parameter Estimates 

      
95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B Std. Error Lower Upper 
Wald Chi-

Square 
df Sig. 

(Intercept) 0.946 1.4232 -1.843 3.736 0.442 1 0.506 

vol 0.003 0.0008 0.001 0.004 10.886 1 0.001 

sw -0.075 0.0293 -0.132 -0.017 6.528 1 0.011 

lw -0.049 0.1246 -0.293 0.195 0.155 1 0.693 

D -0.518 0.1433 -0.799 -0.237 13.085 1 0 

Dispersion 2.954 0.4907 2.134 4.091 

 

LOS B Parameter Estimates 

      
95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B Std. Error Lower Upper 
Wald Chi-

Square 
df Sig. 

(Intercept) 4.229 2.037 0.237 8.222 4.311 1 0.038 

vol 0 0.0004 0 0.001 0.155 1 0.694 

sw 0.011 0.0342 -0.056 0.078 0.097 1 0.756 

lw -0.295 0.1632 -0.615 0.025 3.266 1 0.071 

D -0.116 0.0955 -0.304 0.071 1.485 1 0.223 

Dispersion 1.943 0.4353 1.252 3.014 

 

LOS C Parameter Estimates 

      
95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B Std. Error Lower Upper 
Wald Chi-

Square 
df Sig. 

(Intercept) -3.79 2.5268 -8.742 1.163 2.249 1 0.134 

vol 0 0.0002 -7.19E-05 0.001 2.791 1 0.095 

sw -0.063 0.0265 -0.115 -0.011 5.594 1 0.018 

lw 0.334 0.1986 -0.055 0.723 2.826 1 0.093 

D -0.076 0.0636 -0.2 0.049 1.416 1 0.234 

Dispersion 1.541 0.3648 0.969 2.451 
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LOS D Parameter Estimates 

      
95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B Std. Error Lower Upper 
Wald Chi-

Square 
df Sig. 

(Intercept) -26.315 19.227 -63.999 11.37 1.873 1 0.171 

vol 0.002 0.0008 -8.59E-05 0.003 3.446 1 0.063 

sw -0.237 0.1259 -0.484 0.01 3.545 1 0.06 

lw 2.087 1.6089 -1.066 5.241 1.683 1 0.194 

D -0.149 0.1217 -0.387 0.09 1.494 1 0.222 

Dispersion 1.28 0.4815 0.613 2.676 

 

 

      
95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B Std. Error Lower Upper 
Wald Chi-

Square 
df Sig. 

(Intercept) -82.688 2.9782 -88.525 -76.851 770.868 1 0 

vol 0.002 0.0014 -0.001 0.004 1.495 1 0.221 

sw -0.286 0.2544 -0.784 0.213 1.262 1 0.261 

lw 0 . . . . . 0 

D -0.126 0.1457 -0.411 0.16 0.744 1 0.388 

Dispersion 1.834 0.6137 0.952 3.534 

 

 

LOS F Parameter Estimates 

      
95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B Std. Error Lower Upper 
Wald Chi-

Square 
df Sig. 

(Intercept) -8.682 1.5087 -11.639 -5.725 33.112 1 0 

vol 0.001 0.0001 0 0.001 18.705 1 0 

sw -0.048 0.0394 -0.125 0.03 1.467 1 0.226 

lw 0.477 0.0954 0.29 0.663 24.971 1 0 

D -0.003 0.0011 -0.005 0 7.533 1 0.006 

Dispersion 0.543 0.142 0.326 0.907 
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LOS E &F Parameter Estimates 

      
95% Wald Confidence 

Interval 
Hypothesis Test 

Parameter B Std. Error Lower Upper 
Wald Chi-

Square 
df Sig. 

(Intercept) -9.739 1.2849 -12.257 -7.22 57.443 1 0 

vol 0.001 0.0001 0 0.001 35.23 1 0 

sw -0.066 0.0321 -0.129 -0.003 4.245 1 0.039 

lw 0.56 0.0893 0.385 0.735 39.292 1 0 

D -0.003 0.0012 -0.006 -0.001 8.44 1 0.004 

Dispersion 0.778 0.1601 0.52 1.164 
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