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ABSTRACT

AN INNOVATIVE PROTECTIVE JACKET
FOR STRUCTURES SUBJECT TO BLAST LOADS:

A COMPREHENSIVE EXPERIMENTAL AND SIMULATION STUDY

by
Nicholas J. Carlson

As the importance of protective engineering and multi-hazard mitigation design has grown in recent

years, the development of an effective structural protection system that aids in the preservation of life

safety during blast events is an important topic of research in structural engineering. This protection

is especially vital for blast and explosion mitigation, where a vehicle-borne bomb or an improvised

explosive device can readily cause an under-designed structure with insufficient redundancy to un-

dergo progressive collapse due to the removal of its first-floor columns. An especially pressing re-

search need is the consideration of structures that require blast protection, but—due to time or budget

constraints, lack of available space, unusual construction techniques or other externalities—cannot

be sufficiently strengthened by traditional structural hardening techniques such as those described

in the FEMA counterterrorism design primers.

As an alternative, the author proposes the development of an ablative, sacrificial protective

jacket, based on prior research on the use of water as hazard mitigation to protect weapon storage

facilities from accidental munitions detonation. The proposed system consists of a relatively thick

layer of water sandwiched between two thin layers of polyethylene film or a similar polymer mem-

brane, with the entire assembly wrapped around or affixed to the vulnerable structural elements. The

water layer is theorized to reduce the incident and reflected pressure of the blast wave through two

principal modes of attenuation: the reduction of the blast wave’s energy through harnessing the high

enthalpy of fusion and specific heat of water (the “thermodynamic mode”) and the transformation

of the blast pressure into kinetic energy (the “kinetic mode”). The theoretical mitigation pathways

are discussed and analyzed, and the necessary assumptions required for the jacket to mobilize its

protective capacity within the short timescale of a blast event are shown to be valid—namely, that

the initial disruption of the water layer by the blast wave forms an ultra-fine mist of 20 µm to 30 µm

diameter droplets that can evaporate in approximately 1ms.



The investigation of the ablative ability of the proposed, 1.5 in to 6.0 in protective jackets

takes the form of a series of two- and three-dimensional finite element simulations which measure

the protective capacity of various water jacket volumes protecting various structures from both im-

pact and blast. For the blast loads (scaled standoffs from 5 ft/lb1/3 and 1.25 ft/lb1/3) and structural

configuration chosen, the optimum energy reduction occurs when the jacket is approximately 4.5 in

thick. For cases where a thinner jacket is desired, the author used the relative energy dissipation data

to derive an empirical relationship between the thickness of a jacket, the blast load it is subjected to

and its predicted energy dissipation capacity. This relationship can be used by design engineers to

use the proposed design method, employing the integrals of 𝑃 − Δ pushover curves, in order to meet

important performance criteria that ensure life safety during catastrophic events.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Protective engineering has become a paramount concern in recent decades, as engineers

and architects attempt to balance the traditional concerns of aesthetics and functionality

with the need to protect and preserve structures and their contents from catastrophic loss

in the rare event of a disaster, whether natural (for example, seismic events or hurricanes),

unintentional (fires and other accidents), or intentional (terrorist attacks).

An effective protection system, while never an ironclad guarantee of safety, must

also sufficiently defend against multiple possibilities without unnecessarily wasting re-

sources (Mays and Smith 2001). In the case of protection against explosions, especially

those caused by intentional acts of terrorism, guidelines for new construction exist for

good protective engineering design practices (FEMA 2003), but comparatively less work

has been done regarding the retrofitting of existing structures for multi-hazard conditions

(Carlson and Saadeghvaziri 2010b). The strengthening of existing structures is often eco-

nomically or practically infeasible, requiring large labor and material costs, the prolonged

disruption of services provided by the structure, and the time to analyze the existing struc-

ture and design a strengthening system that ties into it. One possible remedy to this problem

is to design a protective system that readily applies to the exterior of a vulnerable structure

which would redirect the energy of a blast load rather than strengthen the structure to endure

it.

1.2 Objectives of This Work

The main objectives of the study are twofold:

Simulating the effects of blast loads on structural members protected by an energy-

dissipating jacket: using the finite element method and commercially-available analysis

1
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software, numerically analyze the response of structural elements subjected to specified

blast loadings with and without protective water-filled jackets intended to dissipate the en-

ergy of the oncoming blast through kinetic and thermodynamic energy absorption means.

Different thicknesses of the protective jacket will be analyzed in order to identify the op-

timal thickness that minimizes the amount of energy transmitted to the structural member

during the blast event.

Developing an empirical relationship for structural designers: using the blast simu-

lations as well as additional impact event simulations, propose an empirical relationship that

predicts the amount of energy dissipation that a water-filled jacket of a specified thickness

will enable for a given design blast intensity, as well as a relationship betwen impact and

blast tests that will allow for the substitution of an laboratory impact test for one needing

live explosives when testing the capacity of a water-filled protective jacket.

1.3 Outline

The remainder of this chapter reviews the initial design process of the proposed protective

jacket, including the required design parameters and a review of the development of the

prototype designs and their manufacture. Chapter 2 reviews the existing literature on the

topics of blast mitigation through ablation and the effects of water on the structural effects

of explosive loading.

Chapter 3 discusses the theoretical modes of energy dissipation relevant to the de-

sign of the protective jacket – a “kinetic mode” consisting of the breakup and acceleration

of the standing water into fast-moving droplets, and a “thermodynamic mode” where the

droplets further break up into a fine mist and absorb the heat necessary to vaporize from the

blast wave. Example calculations demonstrate the high capacity for dissipation of a modest

amount of water in the presence of a blast from a typical improvised explosive device’s

payload.

Chapter 4 is a review of the relevant topics in finite element analysis used to develop
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the numerical models formulated in later chapters. The overview includes discussions of

the various solver methods, typical equations of state encountered in blast simulations, and

a method for closely approximating the effects of an explosive device on a structure without

simulating the surrounding atmosphere.

Chapters 5 and 6 document in more depth the qualitative and quantitative exper-

imental testing and numerical analysis performed by the author that served as the “proof

of concept” of the protective jacket which preceded the parameter study described in later

chapters. The research described in these chapters can be broken down into three categories:

impact and live blast testing in Chapter 5 and finite element analysis in 6.

Chapter 7 begins with a simple two-dimensional finite element analysis of impact on

a protected slab. The discretizationmethods (both traditional mesh andmesh-free), material

models and equations of state are introduced and discussed in Chapter 4.

Chapter 8 extends the analyses from the prior chapter and introduces the finite el-

ement analysis of the jacket subject to a blast load, also taking into account the thermody-

namic properties of the jacket.

Chapter 9 takes the results from the prior chapters and synthesizes them into a gen-

eral, empirical relationship that predicts the energy dissipation capacity of the jacket in the

presence of a given blast load, and further relates that capacity to the performance of a given

structural element, providing an estimation of the expected reduction in peak structural de-

formation.

Chapter 10 summarizes the results from the prior three chapters, and provides rec-

ommendations for further analysis and applying the results to protective engineering design.

1.4 Identification of Parameters

The structural hardening required to protect the vulnerable members in an existing structure

falls into two categories: (1) strengthening retrofitting, where the strength and ductility of

the structural members, and thus their resistance to blast loads, are increased by installing



4

additional structural material that increases their mass and/or strength, and (2) attenuation

retrofitting, where the energy of the blast load is dissipated or redirected, either by the duc-

tility of the members themselves or by sacrificial claddings and protective layers installed

on or around the members to be protected (Mays and Smith 2001).

Though a well-detailed, redundant steel frame with judiciously designed connec-

tions, multiple redundant load paths and reserve strength from meeting servicability limits

will have an high inherent blast resistance (Carter 2011), many times, the purchasing, instal-

lation and maintenance of attenuation systems is more practical if not more economical than

the design, demolition, construction and refinishing required for the strength retrofitting of

structures that do not meet these standards of design.

Five general parameters were considered by the author for the initial design of an

attenuation system:

• The attenuating material ought to be relatively cost-effective, both in terms of acqui-

sition and deployment,

• it should be readily available and not require special handling or manufacturing,

• it should be chemically inert, and not degrade in the presence of typical outdoor con-

ditions or adversely affect the performance of structural materials it comes in contact

with after a blast effect,

• it needs to be non-combustible, and not reduce a structure’s fire-resistance rating (the

amount of time a passive fire protection system can withstand failure), and

• it ought to be durable enough to be left alone with minimal maintenance.

After considering these requirements and performing an initial review of various protective

systems in use in mechanical engineering and military applications, the author chose to

develop a blast attenuation system usingwater as themitigatingmaterial. This configuration
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has the advantage of being suitable for combination with other forms of protection, such as

the confinement wrapping of concrete columns in seismically active areas, or the addition

of fire-retardant layers or filler to provide additional protection against fire.

1.5 Initial Design

The general description of the protective system is a layer of water confined inside a flexi-

ble polyethylene container, which can be affixed to walls or wrapped around columns and

beams, and contained within an architectural façade. This system would lend itself to sce-

narios where protection is needed on short notice without unnecessarily intruding on public

space or adversely diminishing the appearance of the structure, as well as having the ad-

vantage of possibly integrating other forms of structural protection (such as seismic con-

finement or fire suppressant) where needed. An example of one deployment of this system

is shown in Figure 1.1.

The initial designs of the protective shell were simple refinements of the original

“plastic bag filled with water” used in the initial quantitative impact tests. The first re-

finement was the use of “quilting” – using a commercial thermal sealer, the jacket was

subdivided into a mesh of “pockets” with pockets containing an attenuation material and

....Existing column.

Seismic confinement

.Water and fire retardant .

Outer layer
Polymer shell with

stellate cross-section

Figure 1.1 Schematic of protective system, including seismic confinement.
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Figure 1.2 Quilted water-filled jacket. Figure 1.3 Quilted bentonite jacket,
with “checkerboard” fill pattern.

empty pockets arranged in a checkerboard pattern; examples are shown in Figures 1.2 and

1.3. This design is intended to give the attenuation material room to expand laterally, par-

allel to the pressure front, increasing its ability to convert blast pressure into kinetic energy.

Since at short time scales, liquid subjected to an impulse behave as solids, the expansion

channels keep the water from only transmitting the bulk of the energy into the slab.

As will be described in section 2.4, the results of an analysis of the effects of column

cross-sectional geometry on peak blast pressure by Allahverdi (2010) suggested an addi-

tional refinement in the form of a serrated, stellate cross-section (Figure 1.5) would provide

multiple leading edges to reduce the maximum pressure and impulse.

A set of prototype shells (Figure 1.4) featuring both these refinements were manu-

factured by the Center for Manufacturing Systems at NJIT for the author and used in the

preliminary live blast testing. The shells were formed from polyethylene sheets with a vac-

uum forming process, using a mold milled from porous metal (Figure 1.6) to eliminate the

need for venting holes; the shell has a thick, rigid backing which holds its shape easily,

while the pockets for the attenuation material are thinner and more easily ruptured, suitable

for their sacrificial role.

The shells are then filled with water, then thermally and chemically sealed with an

adhesive polyethylene backing sheet. This completes the jacket and produces a prototype

that is suitable for testing; so far, eight of these completed jackets have been used in the

qualitative blast tests described in section 5.3 on page 60.
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Figure 1.4 Schematic of refined jacket prototype, featuring ”quilting” and leading
edges.
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Figure 1.5 Stellate cross-sections with multiple possible leading edges.

Figure 1.6 Porous metal vacuum mold, manufactured by CMS.



CHAPTER 2

LITERATURE REVIEW

2.1 The Mechanics of an Explosion

In general, an explosion is a physical, chemical or nuclear reaction which causes a violent

release of energy accompanied by a rapid increase of volume of the gaseous products. The

sudden volume increase causes a rapidly-traveling pressure differential (Figure 2.1), form-

ing a shock wave which propagates through the surroundings, engulfing and accelerating

whatever obstacles it encounters; behind the peak positive pressure at the shockwave front,

a negative pressure zone is formed, causing a partial vacuum that can carry debris long dis-

tances. The effects on buildings of the compressed air blast wave released by the explosion

are summarized in Figure 2.2. The duration of the blast event is usually on the scale of tens

of milliseconds, as compared to the usual duration of seconds for impact loading, or some

minutes for other dynamic loadings such as wind or seismic events. The blast event affects

the vertical stability of a structure both through the damage or removal of columns and the

direct imposition of distributed loads on floor elements.

Measurements of the pressure and impulse of an explosive device depend on the

..

𝑝

. 𝑡....

Peak overpressure 𝑝+
𝑠

.

Underpressure 𝑝−
𝑠

.

Impulse ∫ 𝑝(𝑡) 𝑑𝑡

Figure 2.1 Typical pressure history of a free-air blast.
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Figure 2.2 Blast pressure effects on a structure (FEMA 2003).

quantity of explosive used and the standoff distance from the center of the blast. However,

it can be shown that for an ideal spherical explosive of radius 𝑟 set a length of 𝑅 away

from a blast pressure measurement device, the maximum pressure generated by the blast

will be constant for all pairs of values of 𝑟 and 𝑅 such that 𝑅/𝑟 is constant. Generally,

however, rather than the radius of the equivalent sphere of explosive, the cube root of the

explosive’s weight 𝑊 is used as the scale factor, a form of scaling called Hopkinson-Cranz

scaling, so that the scaled blast distance is𝑍 = 𝑅𝑊 −1/3 (Zukas andWalters 1998). Selected

values of 𝑍, their corresponding peak pressures and a description of the blasts’ effects on

conventional buildings are shown in Table 2.1 (Department of the Navy 1999).



11

Table 2.1 Damage to Structures vs. Scaled Distance

Scaled
distance

𝑍 = 𝑅/𝑊 1/3

Peak
presssure 𝑝+

𝑠

Description of damage to a
light, unreinforced structure

6 29 psi Complete destruction
9 12 psi Severe structural damage, global collapse

10.5 8.4 psi Major structural damage, local collapse
18 3.6 psi Damage costing 50% of replacement cost
25 2.3 psi Damage costing 20% of replacement cost
30 1.7 psi 10% of replacement cost; 100% glazing broken
40 1.1 psi Minor structural damage; 60% glazing broken
50 0.8 psi Negligible structural damage; 30% glazing broken

Source: Department of the Navy (1999)

2.2 Blast Protection Design

2.2.1 Progressive Collapse

It is absolutely imperative that a building’s occupants remain as safe as possible in the

event of an attack or disaster. As well as the concerns regarding the interruption of impor-

tant building subsystems such as fire suppression, communication systems and evacuation

routes, and the risk of occupant injuries from hazards such as airborne debris and smoke

inhalation (Committee on Feasibility, 1995), the global stability of the damaged structure

is a vital consideration.

If an explosion destroys load-bearing elements but the remaining elements are un-

able to compensate for the change in load path, the rest of the structure is at risk of under-

going a progressive collapse that will cause damage greatly out of proportion to the size

of the instigating blast. For example, the analysis (Ngo et al. 2007) of a typical Australian

cast-in-place concrete high-rise simulating the effects of a nearby ground-level explosion

demonstrates the risk of progressive collapse of a frame when blast loading effectively re-

moves structural members local to the event if the rest of the frame is not capably detailed

to withstand the effects of the failure of some of its supporting members.

The importance of considering progressive collapse is corroborated by events such
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Figure 2.3 Exterior view of Alfred P. Murrah Federal Building after bombing and sub-
sequent progressive collapse (FEMA 2003).

as the partial building collapse caused by an accidental natural gas explosion in the Ro-

nan Point disaster of 1968 (Hadden 2003) or the bombing of the Alfred P. Murrah Federal

Building in Oklahoma City via a vehicle-borne explosive device in 1993 (Sozen et al. 1998,

Pujol and Smith-Pardo 2009, Liu 2010; also see Figure 2.3).

In both cases, the damage caused by the initial explosion (the loss of one precast

concrete wall panel in Ronan Point, the destruction of two columns and the shear failure of

twomore in Oklahoma City) was dwarfed by the destruction caused by progressive collapse

immediately after the explosion event due to the catastrophic inability of the frames in the

locality of the event to even temporarily handle the increased loads redirected through the

remaining, undamaged structural elements, due to a lack of redundancy or interconnectivity

(Nair 2006). Considering these examples and others, if a structure is likely to be unable to

endure a local failure without undergoing progressive collapse, one tactic to reduce the

chance of disproportionate damage is to protect the most vulnerable structural members in
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a manner that blunts the force of an explosion.

2.2.2 Blast Mitigation

While some explosive events are accidental (the ignition of the gas leak that caused the Ro-

nan Point collapse, for example), the typical event a building designer wishes to safeguard

against is the intentional, malicious detonation of an explosive device.

The most dangerous explosive events involve the use of car- or truck-borne explo-

sives, which enable the relatively inconspicuous delivery of large amounts of explosive ma-

terial directly to the target. In this type of attack, the structural members at ground level are

the ones most vulnerable to being damaged or removed by the explosion. However, if the

site surrounding the structure is properly defended by a well-designed security system—all

vehicle approaches to vulnerable areas are inaccessible, physically barricaded or screened

by security personnel (Hadden 2003)—the risk of such a large explosive device being suc-

cessfully deployed is greatly reduced. Thus, in the design of a structure to mitigate blast,

a designer may instead wish to design to safeguard against smaller explosive devices, such

as those which can be carried by hand, hidden under clothing, concealed inside suitcases

and backpacks, or delivered in the mail (FEMA 2003).

Blast mitigation design often conflicts directly with seismic design: generally, heavy

structures resist blast loads well, since the transient event will have passed before the mass

of the structure can respond to the excitation, while light structures are preferable for seis-

mic design to reduce the lateral inertial loads generated by the structure’s acceleration, so a

multi-hazard design that accounts for both risks requires cautious use of engineering judg-

ment and prior experience. However, much of the same structural detailing at joints to

provide ductility and continuity in the event of a seismic event is also beneficial to ensure

the vertical stability of a structure which has suffered the removal of key columns (Carter

2011, Gurley 2008).
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2.2.3 Blast Pressure Prediction

Explosive events can be classified into four broad categories, depending on their proximity

to reflective surfaces—ground burst explosions, where the explosive device is placed on

a relatively unyielding surface; above-ground explosions, where the device is detonated at

low altitude, causing complex blast wave reflections near the ground; free-air blasts away

from any reflecting surfaces; and underground explosions of buried or tunnel-borne devices.

Due to the nature of the explosive devices the proposed protective system aims to guard

against—improvised hand-carried or vehicle-borne devices, as opposed to air-to-ground

bombs or land mines—ground-burst explosions will be the predominant form of blast event

considered in the analysis and design of this protective system.

Many empirical relationships between scaled blast distance and peak overpressure

for various high explosivematerials have been determined since interest in the subject of an-

alytical blast load prediction grew in the post-war era. For example, Mills (1987) proposed

the relationship between peak overpressure 𝑝+
𝑠 and scaled blast distance for a spherical,

free-air blast

𝑝+
𝑠 = 1772

𝑍3 − 114
𝑍2 + 108

𝑍

where 𝑍 is expressed in SI units (i.e. m/kg1/3). Other properties of the blast wave can be

determined analytically; Glasstone (1962) derives the equation for the shock wave velocity

𝑈

𝑈 = 𝑐0฻1 + 𝛾 + 1
2𝛾 ⋅ 𝑝+

𝑠
𝑝𝑎

𝑝+
𝑠 peak overpressure

𝑝𝑎 ambient pressure

𝑐0 sound velocity in atmosphere

𝛾 specific heat ratio (𝛾 = 1.4in air)

Similarly, the peak reflected pressure 𝑝+
𝑜 , caused by above-ground explosions due to the
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interaction of the incident (original) blast front and the reflected front from the ground

plane, is found to be

𝑝+
𝑜 = 2𝑝+

𝑠 +
(𝛾 + 1) ඳ𝑝+

𝑠 ප2

2𝛾𝑝𝑎 + (𝛾 + 1) 𝑝+
𝑠

= 2𝑝+
𝑠 ว

7𝑝𝑎 + 4𝑝+
𝑠

7𝑝𝑎 + 𝑝+
𝑠 ศ

This peak reflected pressure may only be twice the incident pressure for relatively weak

blasts, but may approach up to 8 to 13 times the incident blast pressure as the scaled blast

distance decreases. Additional empirical and analytical relationships for blast events are

discussed further in Section 4.4.3.

2.3 Blast Mitigation Materials

The structural hardening required to protect these vulnerable members falls into two cate-

gories: (1) strengthening retrofitting, where the strength and ductility of the structural mem-

bers, and thus their resistance to blast loads, are increased by installing additional structural

material that increases their mass and/or strength, and (2) attenuation retrofitting, where

the energy of the blast load is dissipated or redirected, either by the ductility of the mem-

bers themselves or by sacrificial claddings and protective layers installed on or around the

members to be protected (Mays and Smith 2001). Most times, purchasing, installing and

maintaining attenuation systems is more economical and practical than the costs incurred,

time required and reduced practicality of the design, demolition, construction and refinish-

ing required for strength retrofitting.

2.3.1 Sandwich Layers as Blast Mitigation Devices

Traditional sacrificial plate methods have been considered for use as protective jackets,

though their performance against impulse loads varies: Xue and Hutchinson (2003) state

that the deflection response of a well-designed sacrificial sandwich plate (i.e. two iden-
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Figure 2.4 Typical sandwich plate with internal tetragonal truss element (Xue and
Hutchinson 2003).

tical plates joined with a truss or honeycomb structure as in Figure 2.4) can outperform

an equivalent-mass solid plate when subjected to impulse with optimum performance at a

relative core density of 𝜌 = 0.08, even though the sandwich plate absorbs twice as much

energy as the solid plate through plastic deformation (Figure 2.5). However, Vaziri et al.

(2006) found that foam-filled honeycombed sandwich plates did not offer any additional re-

sistive advantage to sandwich plates without unfilled cores, and increasing the foam-filled

sandwich thickness may possibly reduce their strength further. Most importantly, from a

practical standpoint, the cost of constructing honeycombed and sandwiched plates would

be prohibitively high for the amount of protective covering required for a typical protective

structural engineering design.

2.3.2 Water as a Blast Mitigation Material

Some recent research, both theoretical and experimental, has been done regarding the use

of water as a sacrificial explosive blast attenuation material (Joachim and Lunderman 1997,

Cheng et al. 2005, Absil and Bryntse 2006, Chong et al. 1999). The first research on the

effects of water on blast intensities (Eriksson 1974) demonstrated that a blast event’s peak
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Figure 2.5 Maximum deflection response of the top face of a sandwich plate with rel-
ative core density 𝜌 subjected to impact, with respect to a solid plate of equal mass (Xue
and Hutchinson 2003).

pressure caused by a weight of explosive of up to 1.1 lb [0.5 kg] could be halved, when the

explosion event occurs directly in contact with and surrounded by a layer of water weighing

about 5 lb.

Further research describes the physical mechanisms by which the explosive pres-

sure is mitigated: Keenan and Wager (1992) state that the protective water will aerosolize

in the presence of an explosion and mix with the heated detonation gases, cooling them

and causing the gas pressure to decrease; Eriksson and Vretblad (1994) state that the water

additionally causes a reduction in the rise in temperature caused by afterburning of the det-

onation products; and Absil and Bryntse (2006) theorize that the water will also transform

the momentum of the shock wave into kinetic energy, further sapping its strength.

A contemporary example of this use of water as a mitigation device was demon-

strated in the tests to evaluate the effect of the mass ratio of water to explosive performed

by Joachim and Lunderman (1997), and corroborated by the numerical analysis by Chong
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et al. (1999), where amass of Composition C-4 plastic explosive was detonated inside a con-

fined container (Figure 2), both with and without a protective layer of water-filled reservoirs

surrounding the explosive. A percent-pressure reduction (defined as unity less the ratio of

the peak overburden pressure with a protective water jacket to the pressure without it) of

approximately 50% was achieved by enveloping explosive charges with protective water

jackets at a 2.5 water-explosive mass ratio. Similarly, the Naval Civil Engineering Labora-

tory blast tests performed by Malvar and Tancreto (1998) showed a reduction in both peak

pressure and total impulse of about 90% when 4.67 lb of TNT was closely surrounded by

twice its weight in water (Figure 2.6).

Prior investigations of water as a blast mitigation material have focused on placing

water on top of live munitions in a confined environment (Absil and Bryntse 2006, Keenan

and Wager 1992, Joachim and Lunderman 1997, Malvar and Tancreto 1998) or sprayed

into closed quarters as a continuous mist (Adiga et al. 2009, Ananth et al. 2008, Schwer and

Kailasanath 2005, Willauer et al. 2009), rather than the current proposal of a water layer

placed on the structures to be protected as a external layer in an unconfined environment

at a distance from the blast event. However, the thermodynamic and kinetic mitigation

modes required for this proposal to be valid are identical to those demonstrated in these

other applications. The theoretical basis for the use of water as a blast mitigation material

is further discussed in chapter 3.
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Figure 2.6 Comparison of of pressure history for explosives detonated with and without
a surrounding layer of water (Malvar and Tancreto 1998).

Figure 2.7 Confined blast chamber used to investigate the effect of surrounding explo-
sives with water, used in experiments by Joachim and Lunderman (1997) and simulated
by Chong et al. (1999).
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2.4 Effect of Cross-Section Geometry on Blast Pressure

As a starting point for the design of the shape of the protective jacket, an analytical in-

vestigation of the effects of a column’s cross-section geometry on the maximum resultant

blast pressure caused by a free air blast was performed by Allahverdi (2010). Three basic

cross-section shapes were considered: circular, square (sides orthogonal with blast) and

“diamond” (square, rotated 45∘ from orthogonal). The circular cross-section has a diameter

of 3.28 ft (1m), while the two square cross-sections are both 3.28 ft × 3.28 ft (1m × 1m).

Using the finite element analysis software AUTODYN (Figure 2.9), each cross section was

subjected to the blast caused by 100 lb (45.4 kg) of TNT at a standoff of 6.56 ft (2.0m),

simulated with the using an Euler mesh (see Section 4.1.3) modeling the atmosphere sur-

rounding the column. Reflected pressures were tracked over time at the gauge points 𝑎

through 𝑒 (Figure 2.8), and the impulses were calculated by taking the time integral of these

pressures.

The shape and orientation of the cross-section has a significant effect on both pres-

sure and impulse, as seen in Figure 2.10: for example, at the gage point 𝑎 at the lead-

ing point of the cross-section, the square cross-section is subjected to an impulse of about

6.3 kPa ⋅ s, while the diamond cross-section undergoes a maximum impulse of approxi-

mately 4.6 kPa ⋅ s, a reduction of about 30%. At gage point 𝑐, the point furthest longitu-

dinally from the standoff line, the diamond cross-section is briefly subjected to a higher

maximum pressure than the square cross-section, but regardless, the total impulse on the

diamond at the point is still less than half the total impulse on the square, an important result

..square .𝑎 .

𝑏

.

𝑐

.

𝑑

.𝑒 .diamond.𝑎 .

𝑏

.

𝑐

.

𝑑

. 𝑒. circle. 𝑎.

𝑏

.

𝑐

.

𝑑

. 𝑒

Figure 2.8 Locations of gauge points on column cross-sections.
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Figure 2.9 AUTODYN simulation in progress of blast on square column, showing the
velocity of explosion products moments after detonation.

since the structural response of a structure is often more sensitive to total subjected impulse

than to maximum transient pressure. The pressure and impulse at gage points 𝑑 and 𝑒 are

negligible compared to those at the front and side of the column (Allahverdi 2010). The

pressure and impulse reductions associated with the modified column geometry suggest

that shaping the protective jacket into one with a leading edge, such as the stellate cross-

section as proposed in Section 1.5 would reduce the pressure and impulse imparted to the

underlying column further than using a jacket with a flat exterior.

These blast simulations, performed using a standard Euler mesh method, are com-

pared to the use of an analytical method introduced in Section 8.1.
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Figure 2.10 Example pressure and impulse histories at selected gage points for the three
considered cross-section shapes.



CHAPTER 3

THEORETICAL ENERGY DISSIPATION MODES

In this chapter, the two theorized blast energy dissipation modes—the kinetic dissipation

mode, where the energy of the blast is turned into the kinetic energy of the water, and the

thermodynamic dissipation mode, where the energy of the blast is absorbed by and used to

vaporize the water—are described. An example deployment of the protective jacket in the

presence of various sizes of explosive devices is theoretically analyzed, demonstrating the

high theoretical dissipative capacity of the protective jacket against typical hand-carried or

vehicle-borne devices.

3.1 1-DOF Approximation of Dynamic Structural Loading

As an initial estimate of the effects of a sudden load on an elastic structural system, the

system can be idealized by approximating it as a single degree-of-freedom (1-DOF) system

consisting of a weight 𝑊 falling from a height ℎ onto a massless spring with stiffness

𝑘 = 𝑊/Δ𝑠𝑡 (where Δ𝑠𝑡 is the deflection of the system under a static load of force 𝑊 ) ,

subject to the following conservative assumptions:

1. The material properties (and thus, the spring stiffness 𝑘) are not significantly different

during static and dynamic loading, a conservative assumption;

2. The system only deforms elastically, such that the displacement is linearly propor-

tional to the applied forces, and local deformation is negligible,

3. The inertia of the structure during the impact event is negligible, and

4. All energy is conserved – the collision is perfectly inelastic and no energy is lost to

friction, air resistance or damping.

When the spring reaches its maximum deflection of Δ𝑚𝑎𝑥 and the instantaneous

velocity of the weight is 𝑣 = 0, the work done by gravity on the weight is equal to the work

23
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Figure 3.1 Schematic diagram of the single degree-of-freedom approximation.

performed to deform the spring, such that

𝑊 ඳℎ + Δ𝑚𝑎𝑥ප = 𝑘Δ2
𝑚𝑎𝑥
2 (3.1)

Since 𝑘 = 𝑊/Δ𝑠𝑡, (3.1) is equivalent to

Δ𝑠𝑡 ඳℎ + Δ𝑚𝑎𝑥ප = 1
2Δ2

𝑚𝑎𝑥

1
2Δ2

𝑚𝑎𝑥 − Δ𝑠𝑡Δ𝑚𝑎𝑥 − ℎΔ𝑠𝑡 = 0 (3.2)

The relevant solution to the quadratic equation is

Δ𝑚𝑎𝑥 = Δ𝑠𝑡 + ෋Δ2
𝑠𝑡 + 2ℎΔ𝑠𝑡

∴ Δ𝑚𝑎𝑥 = Δ𝑠𝑡 ๙
1 + ฻1 + 2ℎ

Δ𝑠𝑡 ๚
= 𝐴Δ𝑠𝑡 (3.3)

The deflection of the structure under an impact load can be considered the static deflection,

magnified by a factor of 𝐴(ℎ, Δ𝑠𝑡) = 1 + √1 + 2ℎ/Δ𝑠𝑡 as found in equation (3.3). For a
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height of ℎ = 0, equivalent to a simple suddenly-applied load, 𝐴 = 2, as expected for a

quasi-static loading.

Since the structure’s deflection is linearly proportional to the applied load, the max-

imum dynamic deflection can be found by calculating the structure’s deflection under the

magnified, dynamic-equivalent static load of 𝑃𝑒𝑞 = 𝐴𝑊 . This is a conservative upper

bound of the dynamic deflection, since the impact is considered to be perfectly inelastic; a

correction factor which accounts for the coefficient of restitution and any frictional forces

could be found later experimentally or via simulation.

As an example, for the experimental setup described in Section 5.1, consisting of a

100 lb hammer falling 5າ6ຳ and striking aW 6 × 15 steel beam of length 9າ0ຳ at mid-span,

the magnification factor is thus

Δ𝑠𝑡 = 𝑊𝐿3

48𝐸𝐼

=
(110lb)(9 ft × 12 in

1 ft )3

48(29 × 106 psi)(29.3in4)
= 0.0034 in

𝐴 = 1 + ฻1 + 2ℎ
Δ𝑠𝑡

= 1 + ฻1 + 66 in)
(0.0034 in)

= 198

Δ𝑚𝑎𝑥 = 𝐴Δ𝑠𝑡 = (198)(0.0034 in) (3.4)

= 0.67 in [17.1mm]

Even for this simple case, the predicted effect of the impact load is a nearly two-hundredfold

magnification of the static deflection, two orders of magnitude more than the doubling of

deflection expected due to a suddenly applied load of equal weight.
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The 1-DOF structure model can be extended to approximate the effects of blasts on

structural elements; now, assuming that the source of the excitation is not a sudden imparting

of energy due to impact, but a forcing described by the function

𝐹(𝑡) =
⎧
⎪
⎨
⎪
⎩

𝐴𝑝+
𝑠 ෷1 − 𝑡

𝑡0 ෸ 0 ≤ 𝑡 ≤ 𝑡0

0 𝑡 < 0, 𝑡 > 𝑡0

(3.5)

𝑝+
𝑠 mean peak overpressure

𝑡𝑎 time of arrival of blast wave

𝐴 surface area exposed to blast

the graph of which is shown in Figure 3.2; from the figure, it is evident that the approximate

impulse delivered by the simplified blast pulse is equal to 𝐼 = 1
2𝐴𝑝+

𝑠 𝑡𝑎.

Assuming that damping is negligible over the short timespan of the simplified blast

effect, but now that the excited mass of the structure is equal to 𝑚, the inhomogeneous

ordinary differential equation of 1-DOFmotion𝑚𝑥̈+𝑘𝑥 = 𝐹(𝑡), where 𝑥 (𝑡) is the deflection

..

𝐹(𝑡)

. 𝑡.
𝑡𝑎

.

𝐴𝑝+
𝑠

.

𝐼 = 1
2𝐴𝑝+

𝑠 𝑡𝑎

Figure 3.2 Simplified blast forcing function.
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at midspan at time 𝑡, can be derived using Duhamel’s convolution integral,

𝑥 (𝑡) = 1
𝑚𝜔𝑛 ඘

𝑡

0
𝐹 (𝜏) sin බ𝜔𝑛 (𝑡 − 𝜏)භ 𝑑𝜏

to produce the piecewise equations for position and velocity of

𝑥 (𝑡) =

⎧⎪
⎪
⎨
⎪
⎪⎩

𝐴𝑝+
𝑠

𝑘 ඳ1 − cos 𝜔𝑛𝑡ප − 𝐴𝑝+
𝑠

𝑘𝑡0 ว𝑡 − sin 𝜔𝑛𝑡
𝜔𝑛 ศ 0 ≤ 𝑡 ≤ 𝑡𝑎

𝐴𝑝+
𝑠

𝑘 ๙
sin 𝜔𝑛𝑡
𝜔𝑛𝑡𝑎

−
sin 𝜔𝑛 ඳ𝑡 − 𝑡𝑎ප

𝜔𝑛𝑡𝑎
− cos 𝜔𝑛𝑡

๚
𝑡 ≥ 𝑡𝑎

(3.6)

𝑥̇ (𝑡) =

⎧⎪
⎪
⎨
⎪
⎪⎩

𝐴𝑝+
𝑠

𝑘 ว𝜔𝑛 sin 𝜔𝑛𝑡 + cos 𝜔𝑛𝑡
𝑡𝑎

− 1
𝑡𝑎 ศ 0 ≤ 𝑡 ≤ 𝑡𝑎

𝐴𝑝+

𝑘 ๙
cos 𝜔𝑛𝑡

𝑡𝑎
−

cos 𝜔𝑛 ඳ𝑡 − 𝑡𝑎ප
𝑡𝑎

+ 𝜔𝑛 sin 𝜔𝑛𝑡
๚

𝑡 ≥ 𝑡𝑎

(3.7)

where 𝜔𝑛 = √𝑘/𝑚 is the natural frequency of the system.

3.2 The “Kinetic Mode” of Dissipation

A number of prior experimental studies (Absil and Bryntse 2006, Eriksson 1974, Eriksson

and Vretblad 1994, Joachim and Lunderman 1997, Keenan and Wager 1992) explored the

ability of a mass of water placed around stored explosive devices to reduce the pressure and

impulse on the surrounding structure during an accidental detonation, such as the investi-

gation by Keenan and Wager (1992) of a “water blanket” which could be spread over or

suspended above pallets of ordnance in storage, to significantly reduce the peak pressure

and impulse generated by an accidental detonation, due to the energy absorption required to

move and break up the water. As the leading edge of the blast wave reaches the boundary of

the water’s container, the disruption caused by the blast wave and the disintegration of the
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container causes the water to be accelerated, breaking it into fast-moving droplets (Ananth

et al. 2008).

3.3 The “Thermodynamic Mode” of Dissipation

Once the water has been accelerated and fragmented by the blast, its capability to dissi-

pate energy via evaporation is greatly enhanced. The enthalpy of vaporization of water is

2.25MJ/kg; that is, one kilogram of liquid water at 100℃ and 1 atm pressure requires the

addition of 2.25MJ of energy to completely transition into the vapor state. In terms of vol-

ume, a 30 cm × 30 cm × 15 cm layer of water (i.e. approximately one square foot of wall,

protected by a 6 inch thick layer) would ideally be able to absorb through phase change

(30 cm)2 (15 cm) ว
1 L

1000 cm3 ศ ว
1 kg
1 L ศ ว

2.25 MJ
1 kg ศ = 30.38 MJ

and assuming that the water was initially at about 70 °F (about 20℃), to reach vaporization

temperature, would absorb an additional energy of

(30 cm)2 (15 cm) ว
1 L

1000 cm3 ศ ว
1000 g

1 L ศ ว4.186 J
g ⋅ Kศ (80 K) = 4.52 MJ,

a total of 34.90MJ.

The droplets initially formed by the kinetic mode’s dispersal process–about 1mm

to 5mm in diameter–are further fragmented via “bag breakup” (Figure 3.3), where individ-

ual droplets are flattened and deformed into a thin, concave semispheroid shell (Pilch and

Erdman 1987, Zhao et al. 2011), the rupture of which forms an ultra-fine mist (UFM) of

droplets approximately 20 µm to 30 µm across (Adiga et al. 2009). Assuming the droplets

are roughly spherical, the total surface area of the ultra-fine mist generated from the dissi-
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Figure 3.3 Droplet undergoing bag breakup (Jalaal and Mehravaran 2012).

pation and breakup of the 6 inch thick layer can be calculated:

𝑉𝑙𝑎𝑦𝑒𝑟 = (30 cm)2 (15 cm)

= 0.0135 m3

𝑉𝑑𝑟𝑜𝑝𝑙𝑒𝑡 = 4
3𝜋 ෷

25 m
2 ෸

3

= 8181 m3 = 8.181 × 10−15 m3

𝐴𝑑𝑟𝑜𝑝𝑙𝑒𝑡 = 4𝜋 (25 m)2

= 1963 m2 = 1.963 × 10−9 m2

𝑉𝑙𝑎𝑦𝑒𝑟
𝑉𝑑𝑟𝑜𝑝𝑙𝑒𝑡

⋅ 𝐴𝑑𝑟𝑜𝑝𝑙𝑒𝑡 = 1.35 × 10−2 m3

8.181 × 10−15 m3 ⋅ 1.963 × 10−9 m2

= 3240 m2 (3.8)
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The surface area available for heat absorption is increased about 3240 m2/ (0.3 m)2 =

36 000 times by the breakup process. While some energy is necessary to aerosolize the

water, the surface energy of water is 0.072 J/m2 at typical atmospheric temperature, so the

energy necessary for the mechanical breakup process is at most ඳ3240 m2ප ඳ0.072 J m−2ප =

0.233 kJ, a very small fraction of the vaporization capacity, so this energy absorption ca-

pacity is negligible compared to evaporation.

Due to the extremely transitory nature of blast events, the question remains ofwhether

these droplets could properly evaporate in the time-scale necessary to maximize their en-

ergy absorption. From Adiga et al. (2009), the time necessary for a single droplet of water

to evaporate can be determined using the equation

𝑡𝑣𝑎𝑝 =
𝑑2

0𝜌
8Γ𝑣𝑎𝑝 ln෷1 + 𝑚𝑣𝑎𝑝

1−𝑚𝑣𝑎𝑝 ෸
. (3.9)

𝑡𝑣𝑎𝑝 evaporation time (s)

𝑑0 initial diameter of the droplet (m)

𝜌 density of liquid water (1000 kg/m3)

Γ𝑣𝑎𝑝 water vapor exchange coefficient (2.6 × 10−5 kg/(m ⋅ s))

𝑚𝑣𝑎𝑝 mass fraction of water vapor at the droplet surface (≈ 0.95)

The calculated time necessary for a range of droplet sizes typically found in an ultra-

fine water mist to evaporate completely is shown in Figure 3.4. The average UFM droplet

will evaporate completely in under one millisecond, well within the typical < 10 ms time

scale of a typical blast event, according to Adiga et al. (2009).
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Figure 3.4 Time necessary for various droplet sizes to evaporate completely, calculated
using equation 3.9 on the previous page.

3.4 Theoretical Capacity of the Protective Layer

Assuming an open-air, ground level explosion in front of a relatively large (practically semi-

infinite) wall with no significant barriers or obstructions nearby (i.e. no increase in over-

pressure caused by confinement or reflected shock waves), the amount of energy per unit

surface area the wall is subject to can be estimated by assuming the energy is evenly dis-

tributed across the entirety of a hemispherical wave front centered on the explosive, and

computing the ratio of the total energy released in the explosion to the area of the hemi-

sphere which makes up the leading pressure wave.

As an example demonstrating the ablative potential of the thermodynamic mode, if

a 5 kg TNT bomb–an average-sized backpack bomb–with an explosive energy of approx-

imately 4.5MJ/kg is placed at ground level 2m from a targeted structure and detonated,

when the leading edge of the blast wave reaches the structure, the total area of the hemi-
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sphere centered on the bomb is

1
2 බ4𝜋(2 m)2භ = 25.1 m2 (3.10)

and the approximate energy per unit area of the leading wave is

0.7 (5 kg) (4.5 MJ/kg)
25.1 m2 = 0.63 MJ

m2 (3.11)

For this example, the blast energy inflicted per unit area of the wall is equivalent to

only about 2% of the ideal capacity of the protective layer to absorb energy via the enthalpy

of vaporization, not including the energy required to disperse the water or heat the water

from ambient temperature to its boiling point. Only a small fraction of the water would

need to be vaporized in this manner to sufficiently blunt the effect of the explosion, even in

a situation where the reflection of shock waves caused up to a thirteen-fold amplification

of the peak pressure (FEMA 2003).

Various combinations of explosive size and standoff are compared to the theoretical

heat of vaporization capacity of a 6 in and a 3 in thick protective layer in Figure 3.5; from

these results, even a modestly-sized layer of water placed over a structural member would

theoretically have the capacity to protect against even relatively large, vehicle-borne-size

explosive devices when considering the combined effect of kinematic dissipation and heat

absorption.
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CHAPTER 4

FINITE ELEMENT SOLVER METHODS AND MATERIAL MODELS

This chapter provides a brief overview of the formulation and motivation behind the fi-

nite element solver methods and material models employed in the following chapters to

numerically analyze the effectiveness of the protective jacket system.

4.1 Finite Element Solver Methods

4.1.1 General Mesh-Based Formulation Motivation

Consider an arbitrary body occupying a known volume 𝑉 bounded by the surface Γ, in a

rectangular coordinate frame with axes 𝑥1, 𝑥2 and 𝑥3, composed of many particles 𝑋1, 𝑋2,

… , 𝑋𝑁 at initial locations 𝐱1⋅0, 𝐱2⋅0, … , 𝐱𝑁⋅0, which is subjected to some combination of

boundary conditions, displacements and external forces over a span of time 𝑡 = [0, 𝑇]. If

one wishes to determine the equilibrium position 𝐱𝑛⋅𝑡 = 𝜒 ඳ𝑋𝑛, 𝑡ප = 𝐱𝑛⋅0 + 𝑢ඳ𝑋𝑛, 𝑡ප of

each particle in the volume at given time increments Δ𝑡, 2Δ𝑡, ..., 𝑇 , two complementary

approaches exist for formulating the analysis:

• Track the movement of each individual element in the body relative to the coordinate

frame such that the body obeys the principle of virtual displacements, the material or

Lagrangian formulation, or

• Track the motion of the material as it passes through fixed control volumes such that

the flow through each control volume obeys the principle of virtual velocities, the

spatial or Eulerian formulation (Bathe 1996).

4.1.2 Lagrange Formulation

In the explicit Lagrangian formulation of finite element analysis, the body is discretized

using a mesh which is attached to the volume; no matter how the body is deformed or dis-

placed, a mesh point tracks the same particle of the material. Because the discretization

34
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tracks the particle motion directly, in the Lagrangian formulation, the velocity and acceler-

ation of each mesh point are

𝐯 ඳ𝑋𝑛, 𝑡ප = 𝜕𝐱𝑛⋅𝑡
𝜕𝑡

𝐚 ඳ𝑋𝑛, 𝑡ප = 𝜕2𝐱𝑛⋅𝑡
𝜕𝑡2

The deformation gradient 𝐅 is the Jacobian matrix of the element coordinates 𝐱𝑛⋅𝑡 with

respect to the original coordinates 𝐱𝑛⋅0, such that in three spatial dimensions (Bathe 1996),

𝐅 = 𝜕(𝑥𝑖)𝑛⋅𝑡
𝜕(𝑥𝑗)𝑛⋅0

=

⎡
⎢
⎢
⎢
⎢
⎣

𝜕(𝑥1)𝑛⋅𝑡
𝜕(𝑥1)𝑛⋅0

𝜕(𝑥1)𝑛⋅𝑡
𝜕(𝑥2)𝑛⋅0

𝜕(𝑥1)𝑛⋅𝑡
𝜕(𝑥3)𝑛⋅0

𝜕(𝑥2)𝑛⋅𝑡
𝜕(𝑥1)𝑛⋅0

𝜕(𝑥2)𝑛⋅𝑡
𝜕(𝑥2)𝑛⋅0

𝜕(𝑥2)𝑛⋅𝑡
𝜕(𝑥3)𝑛⋅0

𝜕(𝑥3)𝑛⋅𝑡
𝜕(𝑥1)𝑛⋅0

𝜕(𝑥3)𝑛⋅𝑡
𝜕(𝑥2)𝑛⋅0

𝜕(𝑥3)𝑛⋅𝑡
𝜕(𝑥3)𝑛⋅0

⎤
⎥
⎥
⎥
⎥
⎦

the determinant of which is equal to the volumetric strain, such that as per the conservation

of mass,

𝜌 det 𝐅 = 𝜌0

and the conservation of momentum can be expressed as

𝜌𝑎𝑖 =
𝜕𝜎𝑖𝑗
𝜕𝑥𝑗

+ 𝜌𝑓𝑖

where 𝝈 is the Cauchy stress tensor and 𝑓𝑖 is the body force on the element along the 𝑖th

axis. Similarly, the internal energy of a given element is given by

𝜌𝜕𝐸
𝜕𝑡 = 𝜎𝑖𝑗

𝜕𝜖𝑖𝑗
𝜕𝑡 + 𝜌𝑓𝑖𝑣𝑖
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4.1.3 Euler Formulation

In the Euler formulation, rather than being used to discretize a body, the Euler mesh is a

fixed mesh which forms a series of control volumes which the body passes through in a

manner which satisfies conservation of mass, momentum and energy. In terms of the Euler

formulation, assuming no exterior sources or sinks of material, the conservation of mass is

𝜕𝜌
𝜕𝑡 = −∇ ⋅ (𝜌𝐯)

conservation of momentum is

𝜕
𝜕𝑡 (𝜌𝐯) + ∇ ⋅ (𝐯 ⊗ 𝜌𝐯) = −∇𝑃,

and conservation of energy is

𝜕
𝜕𝑡 (𝜌𝐸) + ∇ ⋅ [𝐯 (𝜌𝐸 + 𝑃 )] = 0,

where 𝐸 is the total energy in the control volume and 𝑃 is the static pressure in the control

volume (ANSYS Inc. 2011).

4.1.4 Arbitrary Lagrange-Euler Mesh (ALE)

The arbitrary Lagrange-Euler formulation method is a synthesis of the material and spatial

mesh formulations. Lagrange formulations are ideal for modeling the free-surface deforma-

tion of bodies undergoing moderate strain, but are very sensitive to local mesh deformation

and mesh tangling in very high strain regions, and cannot automatically generate new dam-

aged surfaces in bodies which undergo material failure. Conversely, Euler formulations
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have a fixed mesh allows for the automatic generation of failure surfaces but is not sensi-

tive to deformation, requiring that local material response must be found with a very fine

mesh, which can be unduly computationally expensive (ANSYS Inc. 2011).

As a balance between the two formulations, the ALE formulation consists of alter-

nating Lagrange timesteps and “advection steps”, where the mesh is incrementally rezoned

by adjusting the positions of the nodes of distorted elements, and the current material solu-

tion variables are transported to the adjusted mesh (Donea et al. 1982, Hallquist 1998).

4.1.5 Mesh-free Smoothed Particle Hydrodynamics

An alternate approach to the traditional mesh-based finite element methods is the smoothed

particle hydrodynamics (SPH) method. Unlike Euler, Lagrange or ALEmethods, SPH does

not require either a body mesh or a control volumemesh, which eliminates the need for geo-

metric erosion to correct for excessively deformed meshes or the need to model the volume

where material will eventually flow but does not initially exist. Rather, it represents bodies

as a set of particles associated with freely-moving interpolation points, allowing the calcula-

tion of material properties between them through the use of a weighting function averaging

the contribution of all nearby surrounding particles. Because of these advantages, SPH for-

mulations are especially more efficient for problems which involve the large deformations

of fluids and granular materials.

The value of the generic material property 𝐴 at location 𝐱 in a body represented by

SPH particles, where 𝑛 particles are within a distance of 2ℎ of 𝐱, is found with the sum

𝐴(𝐱) =
𝑛

𝑗්=1
𝑚𝑗

𝐴𝑗
𝜌𝑗

⋅ 𝑊 ඳහ𝐱 − 𝐱𝑗හ , ℎප
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...𝐱.2ℎ . 2ℎ

Figure 4.1 Representation of interpolation smoothing radius.

𝑚𝑗 mass associated with particle 𝑗

𝐴𝑗 material property of particle 𝑗

𝜌𝑗 density associated with particle 𝑗

𝑊 kernel function

𝐱𝑗 location of particle 𝑗

ℎ smoothing radius over which the property is averaged

AUTODYN’s formulation of SPH uses for its kernel function the cubic spline

𝑊 (𝑑) = 2
3ℎ ⋅

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

1 − 3
2𝑑2 + 3

4𝑑3 0 ≤ 𝑞 ≤ 1

1
4 (2 − 𝑑)3 1 ≤ 𝑑 ≤ 2

0 𝑑 > 2

where d is the normalized distance හ𝐱 − 𝐱𝑗හ /ℎ . This kernel function, graphically repre-

sented in Figures 4.1 and 4.2, will only include particles within a radius of 2ℎ in its inter-

polation, with a higher weight placed on particles nearer the location 𝐱.
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Figure 4.2 Cubic kernel function 𝑊(𝑑) used in smoothed-particle hydrodynamics mate-
rial properties interpolation.

4.2 Equations of State

4.2.1 Ideal Gas Equation of State

The ideal gas equation of state is one of the most basic constitutive material models, derived

from the three basic ideal gas laws as 𝑝𝑉 = 𝑛𝑅𝑇 , or, in terms of the ratio of specific heats

𝛾 = 𝑐𝑃
𝑐𝑉
, specific volume 𝑣 and bulk internal energy 𝐸, 𝑝𝑣 = (𝛾 − 1) 𝐸. From Zukas and

Walters (1998), if the isentropic condition

෷
𝜕𝐸
𝜕𝑣 ෸𝑆

= −𝑝

is applied to the ideal gas equation of state, then

𝑝 = − 𝑣
𝛾 − 1 ⋅ d𝑝

d𝑣 + 𝑝
𝛾 − 1

which, when integrated, gives
𝑝
𝑝0

= ෷
𝑣0
𝑣 ෸

𝛾
.
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Applied to the Gibbs equation

𝑇 d𝑆 = 𝐶𝑣 d𝑇 + 𝑇 ว
𝜕𝑝
𝜕𝑇 ศ𝑣

d𝑣

the entropy change in an ideal gas is found to be

Δ𝑆 = 𝑅 ln 𝑣
𝑣0 ว

𝑇
𝑇0 ศ

1/Γ

The ideal gas equation of state assumes that gas particles are infinitesimally small,

making it only a good approximation for locations in a gas where the particles are very far

apart compared to their molecular radii. While this is not a valid assumption for the dense

gas at high pressure near the center of an explosion, the ideal gas equation of state can be

used in lieu of a more intricate model once the gas has reached a large expansion ratio of

about 10 times its original volume (Century Dynamics 2005).

4.2.2 Polynomial Equation of State

The polynomial equation of state, based on the Mie-Gruneisen equation of state describ-

ing the relationship between pressure and volume of a shock-compressed solid, models the

pressure-volume relationship as two empirically-determined polynomials, one cubic poly-

nomial for compression and one quadratic polynomial for tension:

⎧
⎪
⎨
⎪
⎩

𝑝 = 𝐴1𝜇 + 𝐴2𝜇2 + 𝐴3𝜇3 + ඳ𝐵0 + 𝐵1𝜇ප 𝜌0𝑒 𝜇 ≥ 1

𝑝 = 𝑇1𝜇 + 𝑇2𝜇2 + 𝐵0𝜌0𝑒 𝜇 ≤ 1
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𝜇 compression ratio 𝜌
𝜌0

𝜌0 density at zero pressure

𝐴1, 𝐴2, 𝐴3, 𝐵0, 𝐵1, 𝑇1, 𝑇2 empirical material constants

4.2.3 Two-Phase Equation of State

The two-phase equation of state is a formulation that describes the thermodynamic behavior

of water when it solely exists in the liquid or gas phase as well as when the two phases co-

exist in the form of steam (Morgan 1984). While this equation of state only represents the

behavior of water at densities lower than 1.0 g/mL (i.e., when the water is expanding), this

equation of state can be paired with a second EOS, like the polynomial equation of state or

one based on the Rankine-Hugionot shock relations (ANSYS Inc. 2011).

The Hugionot, the saturation curve and the phase boundaries in the 𝑃–𝑣 plane define

three regions of interest—single-phase regions for liquid and vapor water above the satura-

tion curve, and the two-phase region below it (figure 4.3). In the single-phase regions, the

water’s behavior is calculated using a typical Gruneisen EOS equation,

𝑃 = 𝑝𝑟(𝑣) + Γ(𝑣)
𝑣 ඳ𝑒 − 𝑒𝑟(𝑣)ප

..

𝑃

. 𝑣..

Critical point

..

Saturation curve

..

Hugionot

.

Single phase
liquid region

.

Single phase
vapor region

.

Two-phase
liquid-vapor region

Figure 4.3 Regions of interest for two-phase EOS.
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where the functions 𝑝𝑟(𝑣), 𝑒𝑟(𝑣) and Γ(𝑣) are calculated by interpolating between provided

tabular data from the original paper byMorgan (1984). In the two phase region, the specific

volume and internal energy of the phase mixture is defined in terms of the mass fraction of

vapor 𝛼 and the individual known phase properties 𝑣𝑔, 𝑣𝑙, 𝑒𝑔 and 𝑒𝑙 taken from the saturation

curve as

𝑣 = 𝛼𝑣𝑔 + (1 − 𝛼)𝑣𝑙

𝑒 = 𝛼𝑒𝑔 + (1 − 𝛼)𝑒𝑙

which may be rewritten implicitly without 𝛼 as

𝑣 − 𝑣𝑔
𝑣𝑔 − 𝑣𝑙

=
𝑒 − 𝑒𝑔
𝑒𝑔 − 𝑒𝑙

4.2.4 Jones-Wilkins-Lee Equation of State

The Jones-Wilkins-Lee (JWL) equation of state is used to simulate the behavior of high

explosives–substances which may undergo a chemical change over a very short timescale

that releases a large amount of energy. This chemical change can be idealized as a dis-

continuity traveling through the high explosive, where the unreacted material detonates

instantaneously as the shock wave passes through it, releasing its energy and transforming

into the products of detonation.

Using the Rankine-Hugionot relations to quantitatively describe the conservation of

mass, energy and momentum across the discontinuity, the detonation velocity 𝐷 of the high

explosive (the speed at which the discontinuity travels through the material), the particle
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velocity 𝑢 and the change in specific internal energy 𝐸 − 𝐸𝑜 are found to be

𝐷 = ฻𝑣2 ⋅ ว
𝑝 − 𝑝𝑜
𝑣𝑜 − 𝑣ศ (4.1)

𝑢 = √(𝑝 − 𝑝𝑜)(𝑣𝑜 − 𝑣)

𝐸 − 𝐸𝑜 = 𝑄 + 1
2(𝑝 + 𝑝𝑜)(𝑣𝑜 − 𝑣) (4.2)

𝑣 specific volume of the detonation products

𝑣𝑜 specific volume of the unreacted high explosive

𝑝 pressure of the detonation products

𝑝𝑜 pressure of the unreacted high explosive

𝐸 specific internal energy of the detonation products

𝐸𝑜 specific internal energy of the unreacted high explosive

𝑄 exothermic energy released by the detonation

For a set of initial pressure and specific volume conditions and a given detonation

velocity, equation (4.1) provides the Rayleigh line, the linear relationship between all the

possible states of pressure and volume which conserve mass and momentum and are con-

sistent with the detonation velocity. Equation (4.2) describes the Hugoniot curve, the set

of all pressure and velocity conditions which the detonation products may achieve from the

undetonated high explosive at its initial pressure and velocity.

The Chapman-Jouget point (𝑝1, 𝑣1), the point at the intersection of the Hugoniot

curve and the Rayleigh line which uniquely determines the detonation velocity, can be found
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by minimizing the derivative 𝑑𝑝1/𝑑𝑣1 over the Hugoniot curve, producing the relationships

𝑣1 = 𝑣𝑜 ⋅ 𝛾
𝛾+1

𝑝1 = 𝐷2
𝑣𝑜(𝛾+1) = (𝛾 + 1) 𝜌𝑜𝑢2

1

𝐸1 = 𝑄 + 𝐸𝑜 + ෷
𝐷

𝛾+1෸
2

𝛾 = ෺− 𝜕 ln 𝑝1
𝜕 ln 𝑣1 ෻𝑆

𝛾 adiabatic exponent at the Chapman-Jouguet point

𝐸1 specific internal energy at the Chapman-Jouguet point

Using the Chapman-Jouguet (CJ) point to determine the behavior of the 𝑝–𝑣 re-

lationship near (𝑝1, 𝑣1), as well as providing correction terms that empirically model the

experimentally-measured expansion of the detonation products at certain critical pressures,

the combined adiabats which govern the Jones-Wilkins-Lee equation of state (Lee and

Hornig 1968) are of the form

𝑝 = 𝐴 ว1 − 𝑣0𝜔
𝑣𝑅1 ศ 𝑒−𝑅1𝑣𝑜/𝑣 + 𝐵 ว1 − 𝑣𝑜𝜔

𝑣𝑅2 ศ 𝑒−𝑅2𝑣𝑜/𝑣 + 𝜔
𝑣 𝑒 (4.3)

𝐴, 𝐵, 𝑅1, 𝑅2, 𝜔 empirical constants for a given explosive

This equation of state is valid for pressures higher than 0.1MPa and lower than

“significantly above the CJ value” (ANSYS Inc. 2011); for standard TNT, the Chapman-

Jouget pressure is 𝑝1 = 18 700 MPa (Coleburn 1964). This range covers the expected

behavior of typical explosive devices well; the peak pressures in blast simulations in later

chapters are in the range of 0.75MPa to 29MPa, and below the lower limit of 0.1MPa, the

mix of product gases and atmosphere can be represented instead by the ideal gas equation

of state.
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Figure 4.4 Contribution of various terms in the JWL equation to the total adiabatic
pressure (ANSYS Inc. 2011).

4.2.5 Modified 𝑃 − 𝛼 Equation of State

The modified 𝑃 − 𝛼 equation of state is an augmentation of other equations of state used

to model the behavior of porous materials undergoing compaction; the model is driven

by the assumption that the specific internal energy of the porous material is constant for

all densities; the porosity coefficient 𝛼 = 𝑣/𝑣𝑠 is the ratio of the current specific volume

to the specific volume of the completely compacted material. For a porous material with

an equation of state defined as a function of specific volume and energy, such that 𝑝 =

𝑓 (𝑣, 𝑒), the modified 𝑃 − 𝛼 form of the equation of state will be 𝑝 = 𝑓 ⋆ ඳ 𝑣
𝛼 , 𝑒ප. The

modified 𝑃 − 𝛼 equation of state is equivalent to the standard EOS when 𝛼 = 1; that is,

when the material is fully compacted and all pores have been crushed. The porosity is

further defined as a function of pressure, the form of which depends on the specific material

under consideration.
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4.3 Strength Models

4.3.1 RHT Concrete Strength and Failure

The Riedel-Hiermaier-Thoma (RHT) model is a constitutive model which accounts for the

increased shear strength under compression, strain hardening and strain rate hardening, and

the third invariant dependence relationship between compression and tension behavior char-

acteristic of brittle materials, while also tracking the effects of shear damage on material

strength and the local failure that occurs over the course of a numerical analysis.

The general form of the limiting failure surface is

𝑓 ඳ𝑃, 𝜎𝑒𝑞, 𝜃, ̇𝜀ප = 𝜎𝑒𝑞 − 𝑌𝑇𝑋𝐶 (𝑃 ) ⋅ 𝐹𝑐𝑎𝑝 (𝑃 ) ⋅ 𝑅3 (𝜃) ⋅ 𝐹𝑟𝑎𝑡𝑒 ( ̇𝜀)

𝑃 normalized pressure, as a ratio of actual pressure to cylinder strength 𝑓 າ
𝑐

𝜎𝑒𝑞 deviatoric stress tensor

𝜃 Lode angle of the yield surface, where sin3𝜃 = −3√3
2

𝐽3
𝐽 3/2

2

𝐽2, 𝐽3 second and third invariants of the deviatoric stress

̇𝜀 strain rate tensor

𝑌𝑇𝑋𝐶 fracture surface relationship

𝐹𝑐𝑎𝑝 porosity effect coefficient

𝑅3 Willam-Warnke third invariant dependence surface relationship

𝐹𝑟𝑎𝑡𝑒 strain hardening relationship

Three failure surfaces are used by the RHT model to describe the behavior of a brittle

material: the compressive strength relationship 𝑌𝑇𝑋𝐶 (𝑃 ), the rate factor 𝐹𝑟𝑎𝑡𝑒 ( ̇𝜀) and the

invariant-dependent tension-compression relationship 𝑅3 (𝜃). The failure surface is then

modified by a coefficient to represent the reduction in strength during porous compaction.

The RHT model is linear elastic until it reaches the plastic state, where strain dam-

age begins to accumulate; the Johnson–Holmquist damage accumulation coefficient 𝐷 is
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the ratio of the sum of all previously experienced strains to the experimentally determined

failure strain 𝜀𝑓⋅𝑝, such that 𝐷 = 0 represents undamaged, unstrained material, and 𝐷 = 1

represents complete material failure. The accumulated damage reduces the fracture surface

from 𝑌𝑇𝑋𝐶 to (1 − 𝐷) 𝑌𝑇𝑋𝐶 + 𝐷𝑌𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙, where 𝑌𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 is the remaining strength of com-

pletely damaged material (Borrvall and Riedel 2011, Brannon and Leelavanichkul 2009,

ANSYS Inc. 2011).

4.4 Boundary Conditions

4.4.1 Lagrange Transmit Boundary

The Transmit boundary in AUTODYN (also known as the impedance boundary condition in

other finite element packages) allows for shock waves to be transmitted across the boundary

of a body without reflecting at the material discontinuity. The shock wave behaves as if it

continues to travel into a region of identical material on the opposite side of the boundary.

This enables the approximate but more efficient simulation of shock waves in large bodies,

by modeling the small region around the immediate area subject to shock and applying

transmit boundaries along the cut planes.

4.4.2 Euler Flow Out Boundary

By default, the exterior surface of a Euler grid is modeled as a rigid, non-slip and imperme-

able boundary. Applying the Flow Out boundary to a region of the surface allows material

within the Euler grid to travel into dummy elements outside the grid, removing the material

from the actual Euler region; this is useful for reducing the size of the Euler region and

reducing the time spent simulating material that has traveled out of the area of interest of

the simulation.

4.4.3 Analytical Blast Boundary

A feature added to version 14 of ANSYSAUTODYN, the Analytical Blast boundary condi-

tion allows for the simulation of blast pressure loads on three-dimensional volume elements
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caused by high explosive detonations, using the methods presented in the U.S. Army Tech-

nical Manual Fundamentals of Protective Design (Department of the Army 1986). The

analytically-determined blast pressures and times of arrival, the same as those calculated

by the blast analysis software package CONWEP, correspond well to those calculated by

explicit finite element methods (Schwer et al. 2008). Using this boundary condition, the

surfaces of a structure subject to blast can be “painted” with the Analytical Blast boundary

condition and analyzed without needing to separately calculate the atmospheric pressures

around the structure or set up a Lagrange-Euler interaction between the solid and the sur-

rounding atmosphere.

The pressure applied to a given face depends on its scaled distance 𝑍 = 𝑅𝑊 −1/3

from the blast center and the angle of incidence 𝜃 of the face (the angle between the face’s

surface normal vector and the vector connecting the center of the face to the blast center).

From 𝑍 and 𝜃, the peak incident pressure 𝑃𝐼 , total head-on reflected impulse 𝐼𝑅 and to-

tal incident impulse 𝐼𝐼 are computed using the standard Kingery-Bulmash polynomial fit

equations for open-air TNT blasts shown in Figure 4.6. The peak reflected pressure is found

using the angle of incidence peak reflected pressure coefficient 𝐶𝑟𝜃 relations in Figure 4.6,

while the reflected impulse for oblique faces is found in terms of the incident impulse 𝐼𝐼

and the reflected impulse 𝐼𝑅 with the equation

𝐼 = 𝐼𝐼 ඳ1 + cos 𝜃 − 2 cos2 𝜃ප + 𝐼𝑅 cos2 𝜃

The applied blast pressure function 𝑃 (𝑡) is then calculated to be

𝑃 (𝑡) = 𝐶𝜃𝑟𝑃𝑠𝑜 ว1 − 𝑡 − 𝑡𝑎
𝑡𝑜 ศ ⋅ 𝑒𝜆𝑅ඳ𝑡−𝑡𝑎ප/𝑡𝑜 (4.4)
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𝑡𝑐

.
𝑡𝑜𝑐 = 2𝐼𝐼 /𝑃𝑠𝑜

.

𝑃𝑠𝑜 + 1
2𝜌𝑈 2

.

𝑃𝑅

. Time.

Pressure

Figure 4.5 Fictitious pressure vs. time curve used to calculate the reduced impulse due
to clearing effects.

𝑃 applied blast load at time 𝑡

𝐶𝜃𝑟 peak reflected pressure coefficient

𝑃𝑠𝑜 peak incident pressure

𝑡𝑎 time of arrival

𝑡𝑜 duration of overpressure phase

𝜆𝑅 decay parameter, chosen to set ∫𝑡𝑎+𝑡𝑜
𝑡𝑎

𝑃 (𝑡) d𝑡 = 𝐼

If it is enabled in the boundary condition settings, the applied blast boundary can be

set to correct for the effects of clearing near the structure’s edges, the reduction in reflected

pressure caused by part of the blast wave propagating around and past the edges (Razaqpur

et al. 2007). The clearing time 𝑡𝑐 = 3𝐿/𝑈 , where 𝐿 is the distance to the nearest valid

edge at which clearing can occur and 𝑈 is the calculated Kingery-Bulmash shock front

velocity; this clearing time is used to construct a fictitious pressure-time curve (Figure 4.5),

the integral of which is the clearing-modified impulse 𝐼𝑐 . The modified impulse is used to

calculate 𝜆𝑅 in Equation 4.4.
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Figure 4.6 Kingery-Bulmash equations for blast parameters for a spherical TNT explo-
sion in free air at standard atmospheric pressure, adapted from Figure 2-7 in UFC 3-340-
02 (Dalton et al. 2008).



51

...

..

0

.

10

.

20

.

30

.

40

.

50

.

60

.

70

.

80

.

90

.

0

.1 .

2

.

3

.

4

.

5

.

6

.

7

.

8

.

9

.

10

.

11

.

12

.

13

.

𝑃
𝑠 𝑜 = 5000 psi

.

𝑃𝑠 𝑜 = 3000 psi

.

𝑃𝑠 𝑜 = 2000 psi

.

𝑃𝑠 𝑜 = 1000 psi

.

𝑃𝑠 𝑜 = 500 psi

.

𝑃𝑠𝑜 = 400 psi

.

𝑃𝑠𝑜 = 300 psi

.

𝑃𝑠𝑜 = 200 psi

.

𝑃𝑠𝑜 = 150 psi

.

𝑃𝑠𝑜 = 100 psi

.

𝑃𝑠𝑜 = 70 psi

.

𝑃𝑠𝑜 = 50 psi

.

𝑃𝑠𝑜 = 30 psi

.

𝑃𝑠𝑜 = 20 psi

.

𝑃𝑠𝑜 = 10 psi

.

𝑃𝑠𝑜 = 1 psi

.

Angle of incidence [degrees]

.

Pe
ak

re
fle
ct
ed

pr
es
su
re
co
ef
fic
ie
nt

𝐶 𝜃
𝑟

Figure 4.7 Reflected scaled peak pressure versus angle of incidence of blast, adapted
from Figure 2-193 from UFC 3-340-02 (Dalton et al. 2008).



CHAPTER 5

INITIAL LABORATORY EXPERIMENTS

In this chapter, the laboratory experiments which provided the groundwork for the current

research are recounted and discussed. Of note are the kinetic energy dissipation tests per-

formed at NJIT, which measured the reduction in deflection of a protected beam subjected

to an impact load at midspan, and the qualitative blast tests at Picatinny Arsenal which pro-

vided a limited but illustrative demonstration of the protective jacket’s capacity to protect

fragile structural elements from live blasts.

5.1 Qualitative Kinetic Energy Dissipation Tests

5.1.1 Initial Proof-of-Concept Tests

As a rough proof-of-concept experiment to explore the kinetic dissipation mode, the first

laboratory tests, performed in December 2007 in the construction engineering technology

laboratory at NJIT, qualitatively evaluated the effects of an impact from a falling drop-

hammer (Figure 5.1a) on a stack of clay tiles protected by a commercial plastic storage bag

filled with water (Figure 5.1b).

The stack of tiles without the protective water layer exhibited severe fragmentation

(Figure 5.1c), while the protected stack fractured into relatively few pieces (Figure 5.1d),

exhibiting less damage than the unprotected stack. This promising result led to the need to

study the jacket’s effect in a more rigorous manner.

5.1.2 Impact Testing Setup

The testing rig used for the following quantitative impact tests, which took place in the

structural engineering laboratory at NJIT, consisted of a W 6 × 15 structural steel beam

that was installed on a pair of floor-mounted supports set 9 ft apart (Figure 5.2), one uncon-

strained laterally to produce the “pinned-roller” end conditions required to make the beam

52
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(a) Hammer with sample in place (b) Protective layer on clay tiles

(c) Unprotected tiles after impact (d) Protected tiles after impact

Figure 5.1 Proof-of-concept test setup and results.

structurally determinate. A 100 lb (45 kg) drop hammer mounted on vertical rails was in-

stalled above the beam’s midpoint; thanks to a modification to the length of its uprights

since the initial proof-of-concept tests, the weight could be raised 5.5 ft (1.67m) above the

beam’s top flange.

The beam was fitted with a set of four strain gages and one direct-current linear dis-

placement transducer (DC LVDT); the strains and displacements are measured by a Vishay

Micro-Measurements System 6100 data acquisition system at a rate of 10 000measurements

per second per sensor. The System 6100 is operated using Vishay StrainSmart data acqui-

sition and analysis software installed on a connected Windows PC (Figure 5.3). Initially,

the System 6100 was set up to save the recorded data 0.5 s before and 1.0 s after the strain

at the midpoint exceeds the expected static strain the beam would undergo if the hammer
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......

W 6 × 15 beam

.

LVDT

.

Drop hammer

Figure 5.2 Completed impact testing setup.

W 6×15 beam

Drop hammer

LVDT 
displacement 

transducer

Strain 
gages

System 6000 data 
acquisition system

ComputerJacket

Stadia rod

Figure 5.3 Schematic of impact testing setup (not to scale).

weight were placed statically on the beam. Through trial and error, this trigger condition

was found to be sufficient to record the behavior of the beam during the impact event.

5.1.3 Initial Qualitative Beam Impact Tests

To test the beam after it was mounted but before the System 6100 arrived, a set of basic

qualitative tests were performed using the beam impact rig. Three ½” jackets, composed

of thermally sealed polyethylene bags containing the filler materials then under considera-
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(a) Control rebound: 4.5 in (b) Water rebound: 1 in

(c) Vermiculite rebound: 6 in (d) Bentonite rebound: 3.5 in

Figure 5.4 Maximum hammer rebound for various jacket filler materials.

tion (water, bentonite powder and vermiculite granules), were tested. A hand-held digital

camera was used to capture video of each impact event, and the video was analyzed to

obtain an estimate of the maximum rebound height of the hammer (an approximation of

the energy remaining in the beam-hammer system). The approximate rebound heights and

corresponding video frames are shown in Figure 5.4.

From these initial results, it was decided that since neither the vermiculite nor the

bentonite was able to reduce the rebound of the hammer as well as the water did, future

experimentation would focus solely on water as the attenuation material.
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5.2 Quantitative Kinetic Energy Dissipation Tests

5.2.1 First Beam Impact Tests

Once the instrumentation had been installed on the impact testing rig, the first set of tests

were performed in March 2009. Six 8 in × 8 in (20.3 cm × 20.3 cm) protective jackets with

a thickness of 3/8 in (1 cm) were assembled by pouring 13.5 oz (400ml) of water into a

8 in × 10 in (20.3 cm × 25.4 cm) polyethylene bag, then partially sealing the top opening

with a thermo-sealing device and leaving a small gap through which the excess air was

mechanically expelled before completing the seal. Each of these jackets was then tested on

the impact testing rig, and the maximum deflection of the beam LVDT during each impact

event was recorded. Six control tests without a protective jacket, numbered C1 through C6,

were also performed.

Of the six trials on the jackets, only four could be used; test E1 did not correctly

trigger the System 6000’s automatic data collection, and a second test was fouled when the

hammer snagged on the guide cable on the way down, bursting the jacket but not hitting it at

the same velocity as in the other tests. The maximum deflection recorded by the LVDT for

both sets of trials are shown in Table 5.1, and example deflection records for two selected

trials are shown in Figure 5.5. In the presence of the water-filled jacket, the beam deflection

at the LVDT is about 18% smaller than without it.
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Table 5.1 Maximum Recorded Deflection at LVDT for First Impact Tests

Test 𝚫𝐋𝐕𝐃𝐓⋅𝐦𝐚𝐱 [mm] Test 𝚫𝐋𝐕𝐃𝐓⋅𝐦𝐚𝐱 [mm]

C1 5.59 E1 No measurement
C2 4.80 E2 No measurement
C3 5.55 E3 4.37
C4 4.74 E4 4.50
C5 5.91 E5 4.29
C6 4.95 E6 4.32

Mean 5.27 Mean 4.37
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Figure 5.5 Comparison of measured deflection for selected unprotected and protected
cases in first impact tests.
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5.2.2 Second Beam Impact Tests

The second set of tests, performed in September 2009, added a video camera and a sur-

veyor’s stadia alongside the hammer to the instrumentation on the beam, to measure the

maximum rebound height of the hammer as well as the beam deflection, with both taken

together as a measure of the total energy remaining in the system that was not dissipated

by the jacket. Eighteen impact tests were performed and recorded on video—three impacts

each on the beam protected by jackets with volumes of 200mL, 400mL, 600mL, 800mL

and 1000mL, as well as three control impacts on the unprotected beam—with the tests oth-

erwise being performed as they were in the first series of impact tests. The beam deflections

and hammer rebound heights are summarized in Tables 5.2 and 5.3, and Figures 5.7 and 5.8.

Figure 5.6 Frame from video taken during beam impact tests of hammer rebounding
from beam protected by 1000ml jacket.
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Table 5.2 Maximum Recorded Deflection at LVDT for Second Impact Tests

Deflection
Volume [mL] Run 1 [mm] Run 2 [mm] Run 3 [mm] Avg. deflection [mm]

0ml 5.39 5.62 5.48 5.50
200ml a 4.56 4.41 4.49
400ml 4.29 4.22 4.24 4.25
600ml 4.17 3.88 4.01 4.02
800ml 3.88 3.79 3.75 3.81
1000ml 3.68 3.39 3.68 3.58

a No clear maximum deflection was measured for this run

Table 5.3 Maximum Recorded Hammer Rebound for Second Impact Tests

Rebound
Volume [mL] Run 1 [mm] Run 2 [mm] Run 3 [mm] Avg. rebound [mm]

0ml 201 174 195 190
200ml 128 143 140 137
400ml 119 91 98 103
600ml 107 85 98 97
800ml 85 73 82 80
1000ml 76 70 82 76
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Figure 5.7 Average maximum deflection
at LVDT vs. volume for second impact
tests.
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5.3 Live Blast Tests

5.3.1 Quantitative Peak Pressure and Time-of-Arrival Tests

Obtaining accurate measurements of explosive blast pressures is important for the develop-

ment of realistic computer simulations that can be used to perform design refinement and

testing. CONWEP, a conventional weapon effect calculation tool provided by the US Army

Corps of Engineers Protective Design Center (2012), calculates blast pressures and times

of arrival (the time elapsed between detonation and the arrival of the leading blast wave)

for a given mass of explosive and standoff distance, but for this project, it was desired to

compare these published CONWEP values with pressures measured in the field.

Blast pressuremeasurements were taken inDecember 2008 at the blast testing cham-

ber located at the Armament Research, Development and Engineering Center (ARDEC) at

Picatinny Arsenal. Piezoelectric pressure gages were mounted in the chamber’s instrumen-

tation ports; 1 lb (0.45 kg) spheres of Composition 4 (C-4) plastic explosive (figure 5.9)

were then suspended at set standoffs from the ports, from 2 ft to 8 ft in 1 ft increments (fig-

ure 5.10), and detonated. The peak pressure and time of arrival could then be read directly

from the time history recording from the piezoelectric pressure gages.

The results of the three runs are summarized in tables 5.4 and 5.5. While the times

of arrival computed from the run 3 time histories correspond well with the values calculated

by CONWEP, the measured peak pressures are much higher than the predicted theoretical

value. Additionally, the measurements for standoffs of 3 ft or less may be unreliable, given

the conditions of the testing chamber and the capabilities of the piezoelectric pressure gages.

Additional work would be necessary to either confirm or dismiss the differences between

the measured and theoretical values, or to determine the sources of the discrepancy.
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Figure 5.9 1 lb C-4 spheres. Figure 5.10 Blast test setup for quanti-
tative blast tests; gage ports visible behind
frame.

Table 5.4 Measured Peak Pressures of Quantitative Blast Tests

Standoff Run 1 (psi) Run 2 (psi) Run 3 (psi) CONWEP (psi)

2 ft a 3041.4 8744 4915 1736
3 ft a 2118.9 2543 b 555.6
4 ft 799.5 c 628.0 236.1
5 ft 421.6 c 358.5 121.8
6 ft 206.9 c 209.6 72.16
7 ft 137.34 c 139.2 47.27
8 ft 80.93 c 91.2 33.37

a Sensor readings may not be reliable at this standoff
b No clear peak pressure could be determined from the test results
c No test performed at this standoff distance for this run
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Figure 5.11 Proposed blast testing setup.

5.3.2 Qualitative Protective Capability Blast Tests

To obtain a rough estimate of the protective capability of the prototype jackets (discussed

in Section 1.5 on page 5), the ARDEC Picatinny blast chamber was used again in a sim-

ilar configuration. The proposed test setup (Figure Proposed blast testing setup.), due

to material constraints and limitations of the testing chamber, was modified into the de-

ployed setup (Figure Qualitative Protective Capability Blast Tests) where for each test, a

1 lb sphere of C-4 was suspended at a fixed distance above a pair of 12 in × 12 in × 2 in

(30.5 cm × 30.5 cm × 5.1 cm) concrete paver blocks, then detonated. One of the two blocks

was placed on a steel support so that it would react principally in compression, while the

other block spanned between two steel supports with a free span of 10 in (25.4 cm) so as to

act principally in flexure.

The pairs of blocks were subjected to blast loads at increasing standoff distances

until the damage sustained by the blocks was judged to be just at the point of rupture, then

water-filled prototype jackets would be fixed mechanically to a new pair of blocks and

subjected to a detonation at the same standoff, to observe whether the shell prevented the

block from surpassing its rupture strength. The piezoelectric pressure sensors were not

installed for these tests; the chamber operator did not want to subject the sensors to flying

debris from the paver blocks or to excess water released by the rupture of the jackets.

The results of the tests are depicted in Figure 5.12. An unprotected block (block #8,
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Table 5.5 Leading Wave Time of Arrival of Quantitative Blast Test, Run 3

Standoff Run 3 (ms) CONWEP (ms)

2 ft 0.234 95 0.2492
3 ft a 0.526
4 ft 0.852 22 0.905
5 ft 1.370 58 1.373
6 ft 1.899 95 1.916
7 ft 2.572 27 2.523
8 ft 3.278 12 3.182

a No clear time of arrival could be determined from the test results

(a) Unprotected blocks 8 and 9, before (b) Blocks 8 and 9, after

(c) Protected blocks 10 and 11, before (d) Blocks 10 and 11, after

Figure 5.12 Qualitative protective capacity blast test setup and results.
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Figure 5.12a) reacting in compression was found to just fracture when subjected to a blast

at a standoff of 2.5 ft (Figure 5.12b); when covered by a jacket, another block (block #10,

Figure 5.12c) successfully survived an equivalent blast without sustaining damage (Figure

5.12d).

However, both the protected (block #9) and unprotected (block #11) cases subjected

to flexure sustained similar amounts of damage. This is likely due to the very low flexural

strength of the concrete blocks: the pressure required for the block to fail in flexure is 20 psi

(138 kPa), while the theoretical incidental and reflected pressures calculated by CONWEP

for this blast condition are 165 psi (1.1MPa) and 941 psi (6.5MPa), respectively. The pres-

sure required to fracture the brick in this set-up is likely too low to realistically expect the

jacket to provide the required level of reduction.



CHAPTER 6

INITIAL FINITE ELEMENT SIMULATIONS

As an extension of the laboratory tests, simulations of the various cases from the above set

of tests were performed. A nonlinear explicit finite-element model of the laboratory simula-

tion was implemented and refined using ANSYS Workbench to build and mesh the model

and ANSYS AUTODYN to perform the simulation. The explicit finite element method

implemented in AUTODYN has been shown to lend itself well to realistic modeling the

results of blast and impact loads (Chapman 1995, Malvar and Tancreto 1998), in particular

in evaluating the total blast impulse energy inflicted upon a structure and producing results

near to those predicted by the CONWEP blast effects calculator (Schwer et al. 2008).

6.1 Preliminary Simulation of Impact Tests

The first formulation of an AUTODYNmodel (Figure 6.1) reproduces the laboratory setup

from Section 5.1 as closely as possible, though unlike the laboratory test, the water layer

is unconstrained by a flexible container, because of the difficulty of successfully modeling

the interaction of the thin shell elements with the hammer, water and beam elements. It

is assumed that since the container is intended to be sacrificial, fails almost immediately

upon the hammer’s impact, and would contribute additional energy dissipation through heat

absorption and melting, the effect of omitting it on the total energy absorption should be

slightly conservative. The far edges of the lower flanges are constrained by a boundary

condition that only permits movement parallel to the span, which creates a roller-roller end

condition that is similar but not identical to the experimental setup’s pinned-roller condition.

Three simulations were created: the control test, without a water layer, and two ex-

perimental tests, with water layer volumes previously tested in the laboratory experiments

of 400mL and 800mL. A gauge point at the quarter-point of the beam, 2.25 ft (68.9 cm)

from the support, records the vertical deflection of the beam over the duration of the simu-

65
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Figure 6.1 Preliminary ANSYS AUTODYN model of the impact testing equipment.

lations, similar to the role of the LVDT in the laboratory experiment. Deflection histories

for each of the three simulations are shown in Figure 6.2.

The 400mL jacket reduces the simulated deflection from 9.43mm to 8.34mm; an

additional 400mL of water reduces it further to 7.19mm. The absolute deflections in the

simulation are much greater than the recorded experimental deflections. This is likely due

to a pair of reasons: first, the simulation assumes no damping and a frictionless, perfectly

rigid roller condition at the ends, both of which will increase the deflection response of

the beam; second, the water is less well represented by a Lagrange mesh than by other

possible methods, and the water layer in the simulation exhibits some artificial stiffness,

such that it does not disperse and travel as dramatically as in the laboratory experiments,

demonstrating a lower transfer of kinetic energy from the hammer to the jacket. However,

the relative reduction between the control test and the beam protected with 400 mL of water

is similar, as shown in Table 6.1.
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Figure 6.2 Comparison of measured deflection for unprotected and protected cases.

Table 6.1 Comparison of Absolute and Relative Deflection Reduction for Second Im-
pact Tests and Finite Element Simulations

Volume Experimental
𝚫𝐋𝐕𝐃𝐓⋅𝐦𝐚𝐱 [mm]

% reduction Simulation
𝚫𝐠𝐚𝐠𝐞𝟒⋅𝐦𝐚𝐱 [mm]

% reduction

No jacket 5.50 — 9.43 —

400mL 4.25 22.7% 8.43 18.2%
800mL 3.81 30.7% 7.19 40.7%
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6.2 Meshless Simulation of Water

The formulation of the finite element model was modified to better reflect the real behav-

ior of water – the steel beam and hammer are still modeled using swept hex Lagrangian

elements and the shock equation of state, but now the water is modeled using a smoothed-

particle hydrodynamics (SPH) meshless Lagrangian method; SPH models, which simulate

the behavior of fluids by dividing them into discrete, unconnected particles, do not suffer

from “mesh tangling” caused by excessive displacement like traditional meshed Lagrange

models, which makes them suitable for modeling the complex, free-surface behavior and

large deformation expected of the water jacket (Carlson and Saadeghvaziri 2010a). The

revised models are shown in Figure 6.3.

The simulations predict an energy absorption by the jacket of about 12% solely due

to the kinetic dissipation mode. Assuming that the beam behaves elastically as a 1-DOF

dynamic system, the energy absorbed by the jacket is directly proportional to the square

of the reduction in deflection, corresponding to an approximately 35% reduction in beam

deflection, a closer fit to the experimental data than the original Lagrange mesh jacket.

Repeating this simulation with a wider range of jacket thicknesses and hammer velocities

on a structural member less subject to local deformation is the objective of Chapter 7.

(a) Isometric view. (b) Section at midspan.

Figure 6.3 Second ANSYS AUTODYN model of the impact test equipment; the SPH
model of water is visible in 6.3b.
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Figure 6.4 Simulation results, showing predicted energy absorption of 800 mL jacket.

6.3 Finite Element Simulation of Blast Tests: General Blast Modeling

To complement the live explosives testing discussed in Section 5.3, a finite element model

analysis of blast events was performed with the software packages LS-DYNA and ANSYS

AUTODYN and compared to the theoretical values calculated by CONWEP.

Themodels simulate the effects of a free-air blast of a known amount of an unshaped

explosive device occurring in an infinite volume of ideal gas, and record the transient pres-

sures at various standoffs from the blast center. These simulation results were then com-

pared with the calculated CONWEP values for maximum blast pressure, time of arrival and

impulse (the time integral of incident pressure) for the same initial conditions. The results

from LS-DYNA corresponded poorly with the CONWEP values, while the AUTODYN

results matched well in terms of time of arrival and maximum incident pressure, but not

total impulse.

The relationship between pressure and time from a typical AUTODYN simulation,
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Figure 6.5 Example ANSYS AUTODYN model of a one-dimensional “wedge” of a
free-air blast in progress.

Figure 6.6 Example graph of pres-
sure vs. time for an AUTODYN blast
simulation.
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such as the one-dimensional simulation in Figure Example ANSYS AUTODYN model of

1D “wedge” of a free-air blast, is shown in Figure 6.6; CONWEP’s basic theoretical blast

pressure curve shown in Figure 6.7, the Friedlander equation, is a simple exponential curve

of the form (Chun 2004)

𝑝(𝑡) = 𝑝+
𝑠 ว1 − 𝑡 − 𝑡𝑎

𝑡0 ศ 𝑒෷−𝛼 𝑡−𝑡𝑎)
𝑡0 ෸ (6.1)

𝑝+
𝑠 peak overpressure

𝑡𝑎 time of arrival of blast wave

𝑡0 duration of overpressure phase

𝛼 decay coefficient

The small “bump” in the AUTODYN pressure graph near 0.05ms may be occurring for one

of two reasons:

1. The modeled interface between the explosion product material and the ideal gas ma-

terial acts as a barrier off of which the pressure waves behind the blast front reflect;

the pressure wave then reflects again from the starting point of the blast, creating a

lagging secondary peak, or

2. The simulation takes into account that the pressure differential between the leading

edge of the blast and the evacuated area inside the blast front is so high, that there

is a transient motion of the explosion product back towards the center of the blast to

bring the local pressure behind the leading edge towards equilibrium.

While this difference in the simulation does not affect the time of arrival or the maximum

pressure, it does cause a difference in total impulse between the AUTODYN simulation and

the CONWEP calculated value.



CHAPTER 7

FINITE ELEMENT ANALYSIS OF IMPACT LOADING

In this chapter, the performance of the protective layer against impact loads is studied nu-

merically using finite element analysis. When used to mitigate the impact of a steel hammer

on a concrete slab, the jacket significantly reduces the damage and stress in the protected

structural elements. The total kinetic energy in each part—the impact hammer, the struc-

tural member and the water layer—is alsomeasured and plotted, demonstrating the effective

transfer of energy from the hammer to the layer.

7.1 Two-dimensional Analysis of Impact on a Concrete Slab

To make an initial estimate of the kinetic energy dissipation capacity of the water layer, a

set of two-dimensional, axially symmetric finite element simulations of blunt hammers of

varying speeds impacting a concrete slab was developed for analysis with the AUTODYN

explicit finite element solver. While not a common building material, unreinforced bulk

concrete was chosen as the target material because of its relative brittleness and suscept-

ability to shock loading, and thus its suitability as a material which would benefit from an

ablative protection mechanism, and the ready availability of sophisticated material models

for brittle materials, such as the Riedel-Hiermaier-Thoma (RHT) constitutive model and

Johnson-Holmquist (JH) damage model (described in Appendix 4.3.1).

The initial configuration and conditions of the protected slab are shown in Figure

7.1, depicting the moment just before the hammer, at its slowest speed traveling at 10m/s

and thus having a kinetic energy of 1
2𝑚𝑣2 = 4.37 kJ, impacts the protective layer (if present)

and the slab underneath it. Assuming that the damage to the slab will be local compared

to the size of the slab and radially distributed through the slab about the perpendicular axis

passing through the impact point, the components have been modeled in a finite element

analysis package as a two-dimensional axisymmetric mesh.

72
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...

10–30m/s

..

Concrete slab (𝑓𝑐 = 5000 psi)
12” thick
Simply supported on edges

.

∅12” x 6” steel hammer
Mass: 87.4 kg

.

Water layer (if present)
0–6 in, ∅24”

Figure 7.1 General model of impact on concrete slab.

Using ANSYS Workbench to manage the interconnections between components,

the solid components were sketched in ANSYS DesignModeler, then imported into AN-

SYS Explicit Dynamics to generate a suitable tetragonal mesh and establish the boundary

conditions to ensure axisymmetry and the initial velocity condition of the hammer. The

meshed model was replicated once for each different jacket thickness to be analyzed, and

each duplicate was sent to ANSYS AUTODYN for analysis, where the material models

were applied. For the control simulation of the unprotected slab, the solid components

were simulated as-is, while for the test simulations where the jacket is present, an Euler

multi-material mesh was added between the hammer and slab and filled with water to the

desired thickness in the region where the jacket is initially present. For each hammer ve-

locity from 10m/s to 30m/s in increments of 5m/s, five simulations were created from the

Explicit Dynamics geometry and meshes—one control case with an unprotected slab, then

four slabs protected by water jackets up to 6 in (152.4mm) thick, in increments of 1.5 in

(38.1mm). The maximum speed of 30m/s was chosen because at this velocity, the slab

damage is so severe that the tributary area below the impact surface is knocked free from

the rest of the slab.
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The aforementioned RHTmaterial model and JH damage model were used to model

the behavior of the concrete slab; to model the behavior of water, the Rankine-Hugoniot

shock equation of state and the hydrodynamic 𝑃𝑚𝑖𝑛 tensile failure model were employed.

Since the hammer is only important in that it is used to deliver a shock to the concrete slab,

making the detailed internal behavior of the hammer during the impact event relatively

unimportant, its material behavior is represented with a simple linear elastic equation of

state to simplify calculations. For all materials, the material coefficients and parameters

provided by the AUTODYN material library were used, as per the recommendations from

Birnbaum et al. (1998), Cheng et al. (2005), Hayhurst et al. (1996)

While the simulation of the impact on the unprotected slab is a straightforward case

of solid element interactions, the addition of the water layer complicates the components’

interactions. Since the solid elements are best represented as amaterial-centered Lagrangian

mesh and the fluid is more suited to an spatial Eulerian representation, the interaction be-

tween the three components is handled by Euler-Lagrange coupling, where the overlap of

the Lagrange element and the Euler reference mesh create a dynamic boundary that modi-

fies the volumes of the Euler cells on the interaction boundary, which causes a stress field

on the Euler cells and traction forces on the exterior of the Lagrange mesh. Since Lagrange

elements often require a smaller time step to accurately model than Euler parts due to the in-

verse relationship between sound speed and maximum timestep, AUTODYN automatically

couples the two reference frames’ timesteps, allowing the Lagrange parts to take multiple

time steps concurrent with a single Euler time step, then exchanging coupling information

at the end of the Euler time step.

For this simulation, an Euler multi-material mesh large enough for the water layer’s

expected large deformation is placed overlapping the Lagrange elements representing the

hammer and slab. The initial configuration of the three elements’ meshes are shown in

Figure 7.2. Figure 7.3 depicts the partial three-dimensional representation of the initial

conditions, produced by revolving the mesh 90∘ about the axis of symmetry.
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......

Concrete slab (Lagrange)

.

Water/void (Euler)

.

Hammer (Lagrange)

Figure 7.2 Euler-Lagrange mesh coupling in overlapping elements’ meshes.

Figure 7.3 Initial conditions of simulation of impact on concrete slab. Two-dimensional
mesh is rotated 90∘ about the axisymmetric axis for clarity.
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7.2 Qualitative Analysis: Bulk Damage

AUTODYN uses the Johnson-Holmquist to model the reduction in material strength of brit-

tle materials weakened by plastic deformation. The strength and material strain depend dy-

namically on the Johnson-Holmquist damage parameter 𝐷, the normalized ratio of current

plastic strain to the pressure-dependent fracture strain, such that 𝐷 = 0 for intact concrete

within the elastic limit; 𝐷 = 1 at fractures within the slab, and 0 < 𝐷 < 1 for varying states

of strain-induced brittle weakening in between. Using the AUTODYN visualization tools,

a contour plot of 𝐷 over the cross-section of the slab provides a straightforward depiction

of the location and extent of cracks within the slab at any time in the impact simulation.

The simulations of the 10m/s hammer impacting the unprotected slab and the slab

protected by the 6 in jackets were chosen first for an initial qualitative comparison. The

unprotected slab (Figure 7.4) exhibits the typical damage expected in a sudden impulse

event: a large volume of crushing failure directly below the impact site, diagonal shear

cracking along the boundaries of the stress discontinunity propagating through the slab,

and spalling at the base of the slab due to the tensile stresses caused by the reflection of

the stress wave at the material boundary. The damage to the slab around the impact area is

critical, significantly reducing its effective strength.

The slab protected by the 6 in jacket (Figure 7.5), in comparison, suffers much less

damage. Only a very small superficial area near the center of the impact area is damaged

completely, with some small regions of mild plastic strain induced weakening underneath

the impact area; none of the shear cracks or spalling inflicted on the unprotected slab are

present in the protected slab. The post-event strength of the protected slab is, by visual

inspection of the damage patterns, much closer to its original strength than that of the un-

protected slab.
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Figure 7.4 Three-dimensional representation of damage in slab caused by 10m/s ham-
mer impact without water layer present. Lighter-colored regions sustained more damage
than darker-colored regions.

Figure 7.5 Three-dimensional representation of damage in slab caused by 10m/s ham-
mer impact with 6 in thick water layer present.
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After the comparison of the first pair of simulations, the qualitative analysis was ex-

tended to hammer speeds from 10m/s to 30m/s and jacket thicknesses from 1.5 in to 6 in,

with 25 simulations performed in all. The cross-sections through the slab at the moment

the hammer is either arrested or rebounding, showing a contour plot of relative Johnson-

Holmquist damage, are shown side-by-side in Figures 7.6 to 7.10. For example, the com-

parisons of damage in the slabs struck by the 30m/s hammer in Figure 7.10 show how the

jackets effectively reduce the catastrophic punching shear and large deflections suffered by

the unprotected slab to milder shear cracking which does not penetrate the slab and could

temporarily hold its shape and transfer loads across it long enough to satisfy the life-safety

evacuation requirements of a building’s performance criteria.

Relative damage No jacket 1.5 in jacket 3 in jacket

Figure 7.6 Comparison of damage in slab caused by 10m/s hammer to unprotected and
protected concrete slabs. The hammer impact point is at the bottom right corner of the
cross-section.
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No jacket 1.5 in jacket 3 in jacket 4.5 in jacket 6 in jacket

Figure 7.7 Comparison of damage in slab caused by 15m/s hammer to unprotected and
protected concrete slabs.

No jacket 1.5 in jacket 3 in jacket 4.5 in jacket 6 in jacket

Figure 7.8 Comparison of damage in slab caused by 20m/s hammer to unprotected and
protected concrete slabs.
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No jacket 1.5 in jacket 3 in jacket 4.5 in jacket 6 in jacket

Figure 7.9 Comparison of damage in slab caused by 25m/s hammer to unprotected and
protected concrete slabs.

No jacket 1.5 in jacket 3 in jacket 4.5 in jacket 6 in jacket

Figure 7.10 Comparison of damage in slab caused by 30m/s hammer to unprotected
and protected concrete slabs.
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7.3 Quantitative Analysis: Energy Transmitted to Slab

While the visual inspection of the damage patterns in the slabs are a valuable qualitative

measurement of the protective capacity of the jackets in the kinetic dissipation mode, it is

necessary to analyze the quantitative material properties of the slab to calculate the amount

of energy dissipated by the jacket and the commensurate reduction in the structural response

of the slab. The measure chosen to quantify the protective capacity of the water jackets was

the amount of total energy (both kinetic and strain) present in the slab after the hammer had

either rebounded from or come to rest on the slab’s surface.

The total kinetic and internal energy in each part in the prior impact simulations were

tracked over time; additional simulations with a jacket thickness of 0.75 in was added for

each hammer velocity to investigate the energy transmission of very thin jackets. Figures

7.11 through 7.15 show the significant effect of the kinetic dissipation mode of the water

jacket for impact; for every combination of jacket thickness and hammer velocity, the water

dissipates at least 65% of the energy—and in many cases, nearly all of the energy—of

the hammer by transforming it to kinetic energy. For each hammer velocity, the energy

dissipation peaks at a jacket thickness of approximately 3 inwith rapidly diminishing returns

for larger amounts of water.

Because of the excellent performance of the protective jacket under an impact load,

the simulations were modified and updated to simulate the capacity of the jackets under

blast loading conditions and measure the underlying structural members’ response; these

simulations and their results are presented in the following chapter.
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Figure 7.11 Energy transmitted to slab during impact event, 10m/s hammer with
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Table 7.1 Peak Energy Transmission to Slab During Impact Event

Transmitted energy through jacket
Jacket

thickness 10m/s 15m/s 20m/s 25m/s 30m/s

No jacket 4.36 kJ 9.81 kJ 17.34 kJ 24.65 kJ 35.26 kJ
0.75 in 0.50 kJ 1.47 kJ 3.46 kJ 7.78 kJ 13.19 kJ
1.5 in 0.30 kJ 0.85 kJ 1.72 kJ 4.55 kJ 8.03 kJ
3.0 in 0.11 kJ 0.33 kJ 1.09 kJ 2.06 kJ 3.79 kJ
4.5 in 0.08 kJ 0.37 kJ 1.00 kJ 1.90 kJ 3.83 kJ
6.0 in 0.07 kJ 0.39 kJ 0.88 kJ 1.79 kJ 3.18 kJ
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CHAPTER 8

FINITE ELEMENT ANALYSIS OF BLAST LOADING

In this chapter, the simulations performed in the previous chapter are adapted to predict the

structural response to given blast loads and measure the analytical blast damage reduction

capacity of the protective layer. The Analytical Blast boundary condition for Lagrange

volumes is described and its applied pressure and impulse are found to compare well to

those of a traditionally-modeled free air blast in an Euler volume. The Analytical Blast

boundary is then used in simulations of blast loading on protected and unprotected structural

elements, demonstrating both qualitatively and quantitatively the ablative properties of the

protective jacket.

8.1 Comparison of Analytical Blast Boundary to Euler Blast Simulation

Traditionally, to model a blast event, a two-dimensional Euler mesh with a multi-material

processor is used to model the volume of a theoretical semi-infinite atmosphere centered

on an explosive device at a given setback from a rigid wall; the boundary conditions set

the floor and wall of the chamber and the boundary of the rigid wall to be adiabatic and

rigid with no outflow, while the other sides allow outflow. A typical configuration of the

modeled area is shown in Figure 8.1. Often, to increase the accuracy of the simulation, a

high-resolution one-dimensional spherical-symmetric Euler simulation of a blast was for-

mulated and simulated up until the point where the leading edge of the blast wave would

reach a reflecting surface, then remapped into a two-dimensional axisymmetric plane or a

three-dimensional volume using the finite element software’s preprocessing fill remapping

functions; one example of this method follows the procedure laid out by Century Dynam-

ics (2006) in their AUTODYN tutorial on two-dimensional blast simulation. This avoids

the need to perform complicated preparation like inserting higher-resolution subgrids or

repeatedly dezoning the mesh as the blast propagates through the Euler volume.

86
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Figure 8.1 Typical configuration of Euler mesh for blast simulation.

However, as described in Chapter 4, the Analytical Blast boundary condition allows

for the simulation of blast pressure loads on three-dimensional volume elements caused by

high explosive detonations using the numerical methods presented in the U.S. Army Tech-

nical Manual Fundamentals of Protective Design (Department of the Army 1986), rather

than the explicit finite element simulation of an Euler volume. This significantly reduces the

amount of numerical computation required to simulate the effects of a structure subject to

a blast, since it is no longer necessary to simulate and couple the Euler mesh containing the

surrounding atmosphere. The analytically-determined blast pressures and times of arrival,

the same as those calculated by the blast analysis software package CONWEP, correspond

well to those calculated by explicit finite element methods (Schwer et al. 2008). Additional

information about the Analytical Blast boundary can be found in Section 4.4.3.
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Figure 8.2 Example reflected blast pressure generated by the Analytical Blast boundary
condition for a 45 kg TNT bomb at a 2.5m standoff from a wall perpendicular to the blast
wave trajectory.

Using this boundary condition, the surfaces of a structure subject to blast can be

“painted” with the Analytical Blast boundary condition and analyzed without needing to

separately calculate the atmospheric pressures around the structure or set up a Lagrange-

Euler interaction between the solid and the surrounding atmosphere. An example plot of

the generated blast pressure applied at the Analytical Blast boundary condition is shown in

Figure 8.2; compare to Figures 6.6 and 6.7.

To test the results of the Analytical Blast boundary condition as compared to a tra-

ditional remapped Euler blast simulation, a continuation of the work done by Allahverdi

(2010) (previously discussed in Section 2.4) onmeasuring the effect of cross-sectional shape

on the peak reflected pressures on the boundaries of columns was performed, using the An-

alytical Blast boundary condition along the exterior of a Lagrange column rather than the

original remapped Euler mesh simulation of an open-air blast.

The column shapes and dimensions and explosive weights and standoffs are the

same as those used in the simulations in Allahverdi (2010)—the square columns have a

cross-section of 1000mm × 1000mm, where the orthogonal square column is oriented with

its windward side perpendicular to the blast trajectory and the rotated square column is
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rotated 45∘ about its center so a corner is at themost windward point, and the circular column

has a diameter of 1000mm. The simulated blast is caused by a detonation of 45.4 kg of TNT

equivalent at a standoff of 2500mm from the centerline of the column, a scaled distance of

𝑍 = 0.56m/kg1/3 ඳ1.41 lb/ft1/3ප.

A one-element thick slice from the center of the column is modeled, due to the

requirement that the Analytical Blast condition be placed on a 3D volume element, rather

than the 2D area elements used in the original Euler simulation. Gauges are placed at each

element on the exterior of the column and set up to record the blast pressures at each timestep

of the simulation. Figure 8.4 shows the variation in reflected pressures along the windward

side of the columns’ exteriors ; the gauge at 0∘ is placed at the windward point of the column

nearest the blast, receiving the maximum reflected pressure, while the gauge at 90∘ is placed

at the lateral side of the column, where it is only subject to the incident pressure. Figure

8.5 compares the open-air simulation results to the analytical blast approximations for each

column configuration. The boundary condition is set to consider the effects of clearing near

geometric discontinuities and reduce the peak reflected pressures and impulses accordingly,

following the fictitious-pressure method described in Section 4.4.3 of Chapter 4.

According to the simulation using the Analytical Blast boundary, the rotated square

column is subjected to a peak pressure of 19.3MPa at its windward point, a reduction of

about 15% compared to the peak pressure of 22.5MPa in the same location on the orthog-
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Figure 8.4 Peak reflected pressures at points along the circumferences of various col-
umn cross-section shapes subjected to a detonation of 45.4 kg of TNT equivalent at a
standoff of 2500mm (scaled distance 𝑍 = 0.56m/kg1/3).

onal square column. This is a lesser reduction compared to the open-air simulation, where

rotating the column reduces the peak pressure at the windward point of the square column

by about 30%. The difference in the measured reflected pressures at the windward point

and the smaller effect of column rotation on the maximum pressure are due to the open-air

model’s ability to directly model the flow-field interactions around the column, including

the expansion fans that form at geometric discontinuities which cause commensurate re-

ductions in reflected pressure. The analytical blast model does not take these flow interac-

tions into consideration, causing it to generate a more conservative estimate of the reflected

pressures closer to the windward side of the column; however, away from the geometric

discontinuity at the windward edge, the effects of the expansion fans is less important, and

the two models come into very close agreement.
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8.2 Qualitative Analysis of Blast on a Concrete Slab

As a precursor to the quantitative analyses performed in the following section (Section 8.3),

a set of qualitative simulations were run to observe the severity and location of damage in

a concrete slab, simply supported on its edges and spanning 3m, subject to a given blast

loading. The setup is similar to the bulk damage simulations in Section 7.2, as shown in

Figure 8.6; the concrete’s failure behavior is simulated with the Johnson-Holmquist accu-

mulated damage model, with the relative damage parameter 𝐷 used to measure the severity

of damage in each element, the water is again modeled with the Rankine-Hugoniot shock

equation of state and the hydrodynamic 𝑃𝑚𝑖𝑛 tensile failure model, and the Analytical Blast

boundary condition is used to apply the blast loads to the slab and jacket.

Cross-sections of each slab approximately 1.3ms after the blast event showing the

accumulated damage in each element are shown in Figure 8.7. The jackets effectively re-

duce the damage and deflection demand in the slab, preventing the punching failure and

reducing the large deformations caused in the unprotected case.

Figure 8.6 Configuration of qualitative analysis simulation.
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(a) No jacket: major bulk failure and large deflections.

(b) 3 in jacket: major shear failure, but less deflection demand than the unprotected case

(c) 6 in jacket: minor surface damage and shear failure.

Figure 8.7 Damage and deflection along centerline of slab caused by 20 kg TNT at
1.0m standoff, equivalent to 𝑍 = 0.37m/kg1/3 scaled standoff. (Lighter-colored regions
sustained more damage than darker-colored regions.)
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8.3 Quantitative Analysis of Blast on a Concrete Slab

8.3.1 Implementation and Formulation

A series of models similar to those analyzed in section 7.1, consisting of a three-dimensional

bulk concrete slab subject to varying analytically-determined blast pressures on its wind-

ward face and completely supported on its leeward face, with blast loading either directly

applied to the surface of the concrete or through protective water layers of various thick-

nesses, were created, meshed and analyzed in ANSYS AUTODYN to measure the pressure

and impulse imparted to the top face of the concrete slab.

Because of limitations with how the Analytical Blast boundary condition can be

applied, the slab and water layer needed to be modeled as 3D planar Lagrange-formulation

planar-symmetric bodies, rather than the interacting 2D axisymmetric Lagrange and Euler

meshes used for the impact simulations. The water is modeled with the meshfree Lagrange

smooth particle hydrodynamics method previously seen in section 6.2, while the concrete

...

Blast

.

Concrete slab (𝑓𝑐 = 5000 psi)
12” thick
Fixed support on leeward face

.

Analytical air blast
TNT varies with scaled standoff 𝑍
10 ft standoff

.

Water layer (if present)
Thickness varies

Figure 8.8 General model of analytical blast on concrete slab.
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Table 8.1 Explosive Weights and Standoffs Equivalent to Simulated Blast Loadings

Scaled distance
𝑍 = 𝑅/𝑊 1/3

බft/lb1/3 ඳm/kg1/3පභ

Equiv. TNT
weight

@ 5 ft standoff
[lb (kg)]

Equiv. TNT
weight

@ 10 ft standoff
[lb (kg)]

Equiv. TNT
weight

@ 20 ft standoff
[lb (kg)]

1.25 ft/lb1/3 ඳ0.5m/kg1/3ප 64.0 lb (25.4 kg) 512 lb (203 kg) 4100 lb (1625 kg)
2.5 ft/lb1/3 ඳ1m/kg1/3ප 8.00 lb (3.63 kg) 64.0 lb (29.0 kg) 512 lb (232 kg)
5 ft/lb1/3 ඳ2m/kg1/3ප 2.37 lb (1.08 kg) 8.00 lb (3.63 kg) 64.0 lb (29.0 kg)

slab remains a typical Lagrange mesh.

A new element, a polyurethane sheet modeled using shell elements placed over atop

the water, serves the dual roles of more accurately modeling the confinement of the water

in a typical deployment of the protective jacket and providing a surface onto which the

Analytical Blast condition can be applied, since it cannot be applied directly to the meshfree

elements making up the water. When subject to large blast loads, the polyurethane sheet

undergoes very large deformations, so to reduce the effects of large mesh deformations and

mesh tangling on the model’s energy error, AUTODYN is set to erode away (remove from

the simulation) those elements which have a geometric strain of 1.5 or more; that is, they

have been stretched to 150% their original length in the course of the simulation, under

the assumption that they have either torn or melted under the force of the blast. While this

is not strictly physically accurate, it is preferable to the errors introduced when Lagrange

elements are subject to high shear deformations and the reduction in the maximum timestep

that the solver can iterate over..

In these simulations, scaled standoff distances of 𝑍 = 1.25 ft/lb1/3, 2.5 ft/lb1/3 and

5 ft/lb1/3 (0.5m/kg1/3, 1m/kg1/3 and 2m/kg1/3) have been chosen, representing scaled blast

pressures corresponding with varying levels of structural damage to unreinforced buildings

(Department of the Navy 1999). Choosing a standoff distance of 10 ft to be used in the

simulations, these scaled distances correspond to actual explosive weights of 512 lb, 64.0 lb
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Figure 8.9 Boundary definition settings for the analytical blast condition, representing a
blast with a scaled standoff distance of 𝑍 = (3.048 m) (1.08 kg)−1/3 = 3 m/kg1/3 = 7.5 ft/lb1/3.
The blast start time is set to −5.6ms since the time of arrival is approximately 5.7 ms,
preventing the unnecessary simulation of the slab’s state for the long period before the
shock wave’s arrival.

and 8.00 lb of TNT (Table 8.1). These chosen scaled distances, while only requiring the

simulation of three different blast cases, represent a broad assortment of typical blast events

a designer may wish to consider in designing a protective system – from small hand-carried

or backpack-sized concealed explosive devices placed near the targeted structure, to larger

vehicle-borne ones weighing in the tons parked along a curb or behind security bollards.

8.3.2 Analysis of Results

In total, 15 simulations were performed, covering every combination of jacket thicknesses

(0 in, 1.5 in, 3 in, 4.5 in and 6 in) and scaled blast distances (1.25 ft/lb1/3, 2.5 ft/lb1/3 and

5 ft/lb1/3). The range of blast intensities creates a variety of structural responses in the
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Figure 8.10 ANSYS AUTODYN model of analytical blast on a 12 in thick concrete
slab with 3 in protective jacket. Model is symmetric about the 𝑋𝑍 and 𝑌𝑍 planes. Gauge
points are placed on face exposed to blast.

Figure 8.11 AUTODYN analytical blast model shortly after arrival of blast wave corre-
sponding to 𝑍 = 2.5 ft/lb3; polyurethane shell eroding at geometric strains exceeding 150%
to simulate the burning/tearing of the jacket’s outer sheet.
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unprotected concrete slab. At 𝑍 = 5 ft/lb3 the slab predominantly deforms elastically; at

𝑍 = 2.5 ft/lb3 spalling occurs at the leeward face of the slab, and at 𝑍 = 1.25 ft/lb3, bulk

crushing and shear failures are predominant.

The ablative effects of the protective jackets of the tested thicknesses are shown

in the mean gauge pressure vs. time graphs in Figures 8.13, 8.14 and 8.15, and the peak

pressures for each case are summarized in Table 8.3 and Figure 8.16. Similarly, the total

impulse imparted to the slab, taken as the numerical integral of the mean gauge pressure

vs. time curves, are shown in Figures 8.17, 8.18 and 8.19, with the total impulses sum-

marized in Table 8.4 and Figure 8.20. The pressure at selected elements around the point

of arrival of the blast wave on the windward face of the slab were taken and averaged to

produce a representative windward pressure and impulse.

The summarized pressure and impulse results show that for this configuration, the

pressure reduction/magnification effect is generally more prounounced for less powerful

(longer scaled standoff) blasts. The smallest jacket often provides no additional protection

and can even magnify the pressure and impact imparted on the slab for the blasts with larger

scaled distances.

For the blast loads chosen, there is an optimum jacket thickness around 4.5 in at

which both the transmitted pressure and impulse are minimized, but at thicknesses beyond

the optimum, the jacket’s ablative capacity diminishes rapidly. Note that the relationship

between jacket thickness is unlike the strictly-increasing energy dissipation effect that oc-

cured in the impact test simulations in Section 7.3, demonstrating that for the thickness of

jackets studied, the behavior of the jacket under blast loading will not be well-represented

by laboratory impact testing.

Simulations of the 2.5 ft/lb1/3 blast on thicker jackets confirm the performance con-

tinues to degrade past the optimum; at 7.5 in, for example, the peak pressure on the slab is

5.23MPa, only an 8% reduction in the peak reflected pressure on the jacket. Jackets larger

than the optimum thickness appear to be more resistant to the break-up process, causing
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them to behave as a rigid body that collides with the underlying structural element, trans-

mitting the blast energy directly to the element with little mitigation occurring, rather than

break up in front of it.
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Figure 8.12 Reflected pressure histories of simulated blasts corresponding to
𝑍 =1.25 ft/lb1/3, 2.5 ft/lb1/3 and 5 ft/lb1/3 at 10 ft standoff.

Table 8.2 Selected Parameters for Simulated Blasts at 10 ft Standoff

Scaled distance
𝑍 = 𝑅/𝑊 1/3

[ft /lb 1/3]
TNT mass

බkgභ

Time of
arrival

[ms]

Peak reflected
pressure

[MPa]

Positive
impulse

බkN ⋅ s/m2භ

1.25 ft /lb 1/3 203 kg 0.909 ms 29.00 MPa 8.390 kN ⋅ s/m2

2.5 ft /lb 1/3 29.0 kg 1.485 ms 5.69 MPa 1.828 kN ⋅ s/m2

5 ft /lb 1/3 3.63 kg 1.694 ms 0.75 MPa 0.392 kN ⋅ s/m2
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Table 8.3 Peak Pressures at Top Face of Unprotected and Protected Slabs

Jacket thickness
𝑍 None 1.5 in 3 in 4.5 in 6 in

5.0 ft/lb1/3 0.750MPa 0.925MPa 0.152MPa 0.017MPa 0.568MPa
2.5 ft/lb1/3 5.69MPa 4.34MPa 2.86MPa 1.18MPa 1.90MPa

1.25 ft/lb1/3 29.0MPa 22.4MPa 17.5MPa 7.07MPa 27.4MPa
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Figure 8.16 Relative peak pressure reduction at top face of protected and unprotected
slabs for varying jacket thicknesses and scaled blast standoffs.
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Table 8.4 Total Impulse per Unit Area On Top Face of Unprotected and Protected Slabs

Jacket thickness
𝑍 None 1.5 in 3 in 4.5 in 6 in

5.0 ft/lb1/3 393N ⋅ s/m2 194N ⋅ s/m2 17.6N ⋅ s/m2 2.3N ⋅ s/m2 119N ⋅ s/m2

2.5 ft/lb1/3 1830N ⋅ s/m2 1965N ⋅ s/m2 595N ⋅ s/m2 375N ⋅ s/m2 955N ⋅ s/m2

1.25 ft/lb1/3 8320N ⋅ s/m2 3610N ⋅ s/m2 3745N ⋅ s/m2 2360N ⋅ s/m2 7750N ⋅ s/m2
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Figure 8.20 Relative impulse reduction at top face of protected and unprotected slabs
for varying jacket thicknesses and scaled blast standoffs.



CHAPTER 9

EMPIRICAL MODEL FORMULATION

This chapter takes the results from the prior two chapters and develops them into an em-

pirical model suitable for design engineers to employ for calculating the predicted relative

pressure reduction of a given protective jacket at a design scaled standoff. Additionally, a

suggested method on how to apply the empirical model to blast mitigation design is pro-

vided.

9.1 Proposed Empirical Energy Dissipation Model

For use in engineering design, a relationship between the required relative energy dissipa-

tion 𝜓 , the scaled blast standoff chosen for design𝑍 and the corresponding jacket thickness

𝑇𝑗 is desired, so a designer can empirically choose an appropriate protection system for a

given situation. As a proposed model, a multivariate fit to the simulation data was per-

formed, using the Curve Fitting Toolbox in MATLAB 2012a to fit a polynomial surface to

the relative impulse reductions measured in Section 8.3 and summarized in Table 9.1.

The chosen surface fit is linear in 𝑍 and cubic in 𝑇𝑗 and the boundary conditions of

the surface are defined so that 𝜓(𝑍, 0) ≡ 0. The equation for the surface is

𝜓ඳ𝑍, 𝑇𝑗ප = 0.187𝑇𝑗 + 0.0272𝑇 2
𝑗 − 0.0097𝑇 3

𝑗 + 0.0237𝑇𝑗𝑍, 0 ≤ 𝜓 ≤ 0.95 (9.1)

Table 9.1 Relative Impulse Reduction by Simulated Jacket Thicknesses

Relative impulse reduction at blast arrival point
𝑍 None 1.5 in 3 in 4.5 in 6 in

5.0 ft/lb1/3 0.00 0.51 0.96 0.99 0.70
2.5 ft/lb1/3 0.00 −0.07 0.67 0.80 0.48
1.25 ft/lb1/3 0.00 0.57 0.55 0.72 0.07
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Figure 9.1 Empirical relationship for the relative pressure reduction of a protective
jacket at a given scaled standoff and jacket thickness, from Equation 9.1.

This surface has an 𝑅-square goodness-of-fit value of 𝑅2 = 0.873 and a root-mean square

error of RMSE = 0.1527. This empirical equation is valid over the range of the simulated

cases, 1.25 ≤ 𝑍 ≤ 5 and 0 < 𝑇𝑗 ≤ 6; 𝑇𝑗 is a length in inches and𝑍 is a scaled blast standoff

in units of ft/lb1/3. The value of 𝜓 is capped at 0.95 because at the extremes of the graph,

the predicted impulse reduction can exceed unity. The relationship is shown graphically

over the valid range in Figure 9.1.

9.2 Suggested Method for Applying the Empirical Model to Design

1. Choose a set of blast performance objectives and corresponding scaled blast stand-

offs based on the probability and intensity of blast events the building is at risk of

sustaining. For example, the National Earthquake Hazards Reductions Program’s

performance guidelines define the structural performance levels of Collapse, Col-

lapse Prevention, Life Safety, Immediate Occupancy and Operational (Figure 9.2),
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Figure 9.2 Graphical representation of post-disaster building performance meeting the
NEHRP structural performance levels (Federal Emergency Management Agency 2004).

with corresponding qualitative descriptions of the building’s resilience and quanti-

tative structural and nonstructural component acceptance criteria; depending on the

structure’s importance factor, historical threat data, stochastic predictions of future

threats, and the availability of passive protection systems and active security on site,

probable blast loadings which correspond to each scenario can be chosen for analysis.

2. Use nonlinear analysis methods, such as those in the Departmen of Defense’s Unified

Facilities Criteria (Dalton et al. 2008) or the FEMA design handbooks (FEMA 2003),

to determine the deflection and ductility demands of the structure, and calculate the

total amount of energy dissipated through plastic deformation of critical members

using the area under the element’s pushover (𝑃 − Δ) curve.

3. For each critical member that fails to meet its structural performance level’s accep-

tance criteria, calculate the volumetric energy dissipation to the point where the crit-

ical performance criterion governs, and use that to find the ratio of external energy

dissipation required to bring it into compliance.

4. Using the scaled blast standoff and the required energy dissipation ratio, calculate the

minimum thickness of the protective jacket, and apply a safety factor if required.
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Figure 9.3 Suggested graphical method for finding required energy dissipation ratio
using the area underneath the pushover curve.

5. Considering the historical threat data, the structure’s importance, and the accessibility

and strength of the critical members that require extra ablative dissipation, decide if

the protective jackets should be deployed full-time or only during periods of elevated

risk of blast events exceeding those corresponding to an Immediate Occupancy class

of performance level.

6. If the required energy dissipation is not possible with any jacket thickness, other blast

mitigation methods will need to be used either in lieu of or in concert with the pro-

tective jacket.

As a basic illustrative example, consider a column with the simple pushover curve shown in

Figure 9.3, subject to a chosen design blast with scaled standoff distance𝑍𝑑 . The deflection

demand Δ𝑑 placed on the column exceeds the critical performance criterion Δ𝑐𝑟, so it is a

critical element that requires additional energy ablation. The required energy dissipation

ratio is equal to

𝜓𝑟𝑒𝑞 = 1 −
∫Δ𝑐𝑟

0 𝑃 𝑑Δ

∫Δ𝑑
0 𝑃 𝑑Δ

(9.2)

and would be provided by a jacket of thickness 𝑇𝑗𝑑 that satisfies the equation 𝜓𝑟𝑒𝑞 =

𝜓 ඳ𝑇𝑗𝑑 , 𝑍𝑑ප. If an additional safety factor Ω is required of the energy dissipation, then

a jacket thickness that satisfies Ω𝜓𝑟𝑒𝑞 = 𝜓 ඳ𝑇𝑗𝑑 , 𝑍𝑑ප would suffice.



CHAPTER 10

CONCLUSIONS AND RECOMMENDATIONS

This final chapter summarizes the findings and observations recorded over the course of this

study, as well as suggesting directions for further research based on the ablative protective

jacket concept.

10.1 Summary

The thesis begins by discussing the objectives behind developing a temporary blast pro-

tection system, and briefly summarizes the prior research on the use of water as a blast

mitigation material and the reasons behind the choices that led to the design of the jacket

prototype. The importance of preventing progressive collapse in existing structures via pro-

tecting vulnerable structural elements that, for whatever reason, cannot be strengthened is

the main motivation behind the design of the jacket.

The theoretical reasoning behind the kinetic and thermodynamic energy dissipa-

tion modes is laid out, with example calculations to demonstrate the theoretical capacity

of a layer of water to absorb a significant amount of energy through droplet formation and

evaporation. The mitigation capacity of the water layer during a blast event is estimated,

and drawing on the existing research literature to show that the assumptions of enthalpy

capacity, mist formation and evaporation time required to mobilize the mitigation potential

of the water are valid, the jacket is found to have a significant capacity for energy ablation.

The initial investigations on the water-filled jackets demonstrated that the hypothetical use

of the jackets to dissipate dynamic loading had practical merit.

The foundations of the finite element method and the equations of state and mate-

rial models used to discretize and analyze the capacity of the jackets are laid out briefly,

including the important topics of smoothed particle hydrodynamics, the Johnson-Holmquist

damage parameter and the AUTODYN Analytical Blast boundary condition, all of which
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were important components of the following simulations. The first attempts at producing

finite element simulations of the protective effects of the jacket are discussed.

The simulations of impact loading validate the theorized kinetic dissipation mode,

demonstrating a significant ablative effect at even very small thicknesses of water, and the

ability to effectively redirect a dynamic loading that would otherwise cause catastrophic

damage to a structural element.

The discussion of blast loading simulations begins by comparing the empirical Ana-

lytical Blast boundary condition to a prior set of simulations performed with the traditional

Euler remapping method of simulating blast loading, and the results from the Analytical

Blast simulations are found to be slightly conservative but to largely agree with the more

computationally complex method. The Analytical Blast boundary and the smoothed par-

ticle hydrodynamics meshless model are then used to modify the previous chapters’ sim-

ulations to study the effects of blast loading, where the jackets are again found to have a

significant capacity for energy absorption and structural protection. However, unlike the

impact tests, the jackets are found to have an optimal thickness near 4.5 in for the selected

blast loads and structural configuration, meaning that the results of impact testing would

not correspond well to the capacity of the jackets under blast load.

An empirical model for calculating the energy reduction provided by a jacket of

given thickness for a design blast load is then presented, along with a proposed method for

applying the protective jackets in a situation where the performance demands of a building

are greater than the required performance criteria.

10.2 Conclusions

From this research, the following conclusions can be made:

• The use of water as an integral part of a blast or impact mitigation system is effective

at dissipating energy and preventing damage to the underlying structural members.

• For water to be able to mitigate the effect of blast loads through phase change, the
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water would need to be broken up into an ultra-fine mist with a very high surface

area for the evaporation to take place; a review of the literature confirms that the mist

forms and evaporates in milliseconds, within the typical time scale of a blast event.

• Modifying a structural element’s cross section so that the windward face of the col-

umn is curved or has a leading edge reduces the peak pressure and total impulse

imparted to the element during a blast event. This shape modification could be built

into the protective jackets.

• Over the simulated jacket thicknesses evaluated, the optimum thickness of the water

layer that minimizes both the peak reflected pressure and total impulse of a blast event

on the underlying structural member is approximately 4.5 in.

• However, in the case of impact loading, no optimum thickness for energy dissipa-

tion is evident. While it is qualitatively effective at dissipating energy in both cases,

unfortunately, a given jacket’s behavior and response during impact is not a good

predictor of its quantitative behavior during a blast event.

• TheAnalytical Blast condition, compared to the traditionalmethod of remapped Euler

simulations, produces simulation results that are conservative near geometric discon-

tinuities where flow-field interactions cause pressure reductions through the genera-

tion of expansion fans, but are in close agreement otherwise. Additionally, they are

much less computationally intensive, allowing for more rapid simulations and lending

its use to design iteration.

• The empirical model chosen to represent the relationship between jacket thickness

𝑇𝑗 ∈ [0 in, 6 in], scaled blast distance 𝑍 ∈ බ1.25 ft/lb−1/3, 5 ft/lb−1/3භ and energy

dissipation relative to the unprotected case 𝜓 is Equation 9.1,

𝜓ඳ𝑍, 𝑇𝑗ප = 0.187𝑇𝑗 + 0.0272𝑇 2
𝑗 − 0.0097𝑇 3

𝑗 + 0.0237𝑇𝑗𝑍, 0 ≤ 𝜓 ≤ 0.95
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• Designers can calculate the required layer thickness of the protective jacket required

for a member to meet a given structural performance criterion during a blast event

with scaled standoff 𝑍𝑑 by using the member’s pushover curve to calculate the ratio

of the energy absorbed by the unprotected member during the blast event to the al-

lowable energy absorption that brings the member to the specified ductility demand,

then finding the value of 𝑇𝑗𝑑 that satisfies 𝜓 ඳ𝑍𝑑 , 𝑇𝑗𝑑ප = 𝜓𝑟𝑒𝑞.

10.3 Recommendations for Future Research

The following are some possible directions for research to expand on this investigation.

Many of the recommendations involve topics that would benefit from interdisciplinary in-

vestigation.

10.3.1 Extension and Verification of the Empirical Models

Additional simulations in the vein of those performed in Chapters 7 and 8, performed with

a wider variety of scaled blast standoffs, jacket thicknesses and configurations, and types of

structural members, can be performed to extend and verify the proposed empirical model for

determining the energy dissipation properties of the protective jacket systems. Additional

thermodynamicmodeling of the water jacket, performedwith computational fluid dynamics

packages or multiscale methods, could be performed to study the micro- and mesoscale

behavior of the water droplets during the blast event.

10.3.2 Experimental Blast Testing

The most straightforward direction for future research on this topic is to perform blast test-

ing on the protective jackets with live explosives, in cooperation with a research institu-

tion equipped to handle the requirements and regulations inherent to live blast tests, and

quantitatively and qualitatively measure the performance of the jackets as compared to the

simulation predictions from Chapter 8.

Another research possibility is to perform controlled simulated blast testing to as-
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Figure 10.1 Blast load simulator at the Engineering Research and Development Center
in Vicksburg, MS.

certain the mitigating effects of the protective jackets and relate these results to the finite

element simulations; a blast load simulator that creates repeatable, controlled blast con-

ditions such as the one at the Vicksburg Engineering Research and Development Center

(Figure 10.1) would be the ideal way of performing these tests. However, depending on

the capabilities of the blast load simulator, the simulated blast wave may or may not be of

a comparable temperature to a blast created by live explosives, so the tests may be limited

to examining the kinetic attenuation mode.

10.3.3 Design Refinement and Material Choice

In cooperation with chemists, polymer scientists and manufacturing engineers, interdisci-

plinary research can be performed to optimize the design and fabrication of the protective

jacket: for example, finding the optimal polymer material and thickness, testing the effects

of additives and solutes in the water (for example, surfactants to reduce the surface ten-

sion of the water and increase its dissipation speed, antifreeze for increasing the exterior

temperature exposure servicability range or fire suppressant to increase the fire rating of

a structure), optimizing the exterior shape of the jacket and investigating the effect of the

stellate and “quilted” water distributions described in Section 1.5, or developing an auto-

mated manufacturing process that does not require filling the jackets by hand and sealing
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them with chemical adhesives.

10.3.4 Architectural Finishing and Mounting

The methods for mounting, installing and maintaining the protective jackets, as well as

the aesthetics and exterior finish of the jackets, could be studied in tandem with architects,

construction technicians and urban designers, to increase the speed and ease with which the

jackets are mounted without adversely affecting the occupancy, function or architectural

appearance of the structure they are protecting.
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