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ABSTRACT

CONCEPT GRAPHS: APPLICATIONS TO BIOMEDICAL TEXT
CATEGORIZATION AND CONCEPT EXTRACTION

by
Said Bleik

As science advances, the underlying literature grompidly providing valuable
knowledge mines for researchers and practitionérs. text content that makes up these
knowledge collections is often unstructured andjsthextracting relevant or novel
information could be nontrivial and costly. In atilol, human knowledge and expertise
are being transformed into structured digital infation in the form of vocabulary
databases and ontologies. These knowledge basés shbistantial hierarchical and
semantic relationships of common domain conceptsis€quently, automating learning
tasks could be reinforced with those knowledge $akeough constructing human-like
representations of knowledge. This allows develggilgorithms that simulate the human
reasoning tasks of content perception, conceptiittation, and classification.

This study explores the representation of text demts using concept graphs that
are constructed with the help of a domain ontoldgyparticular, the target data sets are
collections of biomedical text documents, and tloendin ontology is a collection of
predefined biomedical concepts and relationshipsorgm them. The proposed
representation preserves those relationships dodisalusing the structural features of
graphs in text mining and learning algorithms. Thésatures emphasize the significance
of the underlying relationship information that s%i in the text content behind the
interrelated topics and concepts of a text documéne experiments presented in this

study include text categorization and concept ektva applied on biomedical data sets.



The experimental results demonstrate how the osistips extracted from text and
captured in graph structures can be used to imprthee performance of the
aforementioned applications. The discussed tecksiggan be used in creating and
maintaining digital libraries through enhancing erthg, retrieval, and management of
documents as well as in a broad range of domaicHgpeapplications such as drug
discovery, hypothesis generation, and the analysis molecular structures in

chemoinformatics.
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CHAPTER 1

INTRODUCTION

1.1 Introduction
In a document-driven environment, such as digitadaty systems, the basic units of
information vary in size, significance, and locatioText documents can usually be
decomposed into smaller units like phrases, teomany domain specific knowledge that
can be extracted from the content or from a datieatmn as a whole. Whether it is a
full-text document, a webpage, or a smaller chun#étada, the text content embeds a lot
of interrelated topics or concepts buried in a osrprhis embedded information, non-
trivial by nature, is sometimes hard to discoveregtract from the text and requires
nontraditional techniques [1]-[4]. Enhancing thpresentation of documents is therefore
essential for understanding the content and imphimg better information extraction
components in text mining applications and digitadaries. Text mining is an emerging
discipline at the intersection of artificial intgénce, natural language processing,
linguistics, statistical learning, and data minittgnvolves extracting useful knowledge
and hidden patterns in textual data collections;ospassing a set of automation
techniques needed in managing the growing textsiggrees and digital libraries as well
as techniques of knowledge discovery from unstreckutext documents [5]. In an
attempt to bridge the gap between conventional ehtiéng techniques and unstructured
text, the following study explores graph-based eéspntations of text documents through
several applied experiments. Graphs representinkedi entities capture additional
relational information that might be present in thgt content and thus provide a basis

for applying graph mining techniques that utilibe tstructural features embedded in the



representation. In this study a model of represgntext documents using graphs is
presented. A graph is comprised of nodes and etihgesdescribe relationships among
them. The nodes represent concept terms identiifidte text and the edges represent
semantic-based relationships among these concejtsnwa certain domain. The
relationships are defined by human experts in aaiospecific knowledge base. This
external knowledge can be incorporated into the tepresentation forming richer
connected graph structures that preserve additinf@imation often ignored in common
text representation methods, such as the widely usetor space model [6].

This leads to the following research question:

Can graph representations of text, in which relatioships among concepts are
preserved, improve the performance of text mining pplications, when compared to
baseline methods?The concept relationships provide additional infation to the text
representation when compared to standard Bag-aflsvapresentations, in which such
relationships are disregarded, as the text is #ylgicreated as a collection of words or
phrases extracted from the content. The relatigssthiat are considered in this study are
based on human-defined semantic relationshipsekiat among concepts in a certain
domain. These can be incorporated into a text deatimmrepresentation in the form of
links that connect related concepts of the texaexternal related concepts not present
in the text. The former can be considered as imipiiemantic information existing
inherently in the text content. The latter can égarded as external domain knowledge
accumulated through experience, or in other wdrdsjan expertise available in the form

of an ontology that can be incorporated into thailable representation. In both cases,



adding such information allows mining the structafethe text when represented in
graph form.

To answer this question, this study attempts tduaeta the performance of two
common text mining applications: Text Categorizatid@C) and Concept Extraction
(CE), applied on biomedical datasets. The resequastion can thus be broken down
into the following.RQ1: Do concept relationships and external relateatepts, captured
in a graph form, provide a better representatiorclassifiers to discriminate text content
and to make more accurate classification decisumiisg supervised learning methods?
RQ2: Can the structural properties of a graph prowddditional useful attributes for a
text document’s feature set to improve the rankufigkey concepts present in that
document? The precision of a concept extractioniagon is investigated and the
significance of using the graph properties is stddi

The experiments corresponding to those researestigns are presented in
Chapters 3, 4, 5 and 6, including the methodologgtllts, and evaluation.

The methods used in this study involve transfornbignedical text documents
into graphical representations through mapping tities into predefined ontology
concepts and use the graphs and their featurdseiforementioned applications. The
study investigates whether and how graph represeméaand their features improve the
accuracy of the learning algorithms and how theytwa hidden information that might
be ignored in baseline methods. These represemsatéfer a practical and natural
conceptualization of the text and thus could bdiagpnore effectively than traditional

representations such as the common bag-of-wordssemtation, or term co-occurrence



relations that might not be as explicit or spec#tcsemantic relations defined within an
ontology.

The process of building the graphs and applyingnthte classification and
information extraction algorithms is explored intalkin the following chapters through
different experiments and the analysis of evaluatesults.

Graph representations have been gaining a lotteftadn due to their structural
nature and the way they capture links or relatibesveen entities [7], [8]. Graph
modeling borrows similarities from cognitive moadhgliand how humans perceive objects
and relations between them. To illustrate this mersa human expert, with adequate
knowledge in biomedical sciences, reading an excefpan article selected from a
collection of documents aborgnal failure The expert, without prior knowledge of what
the article is about, encounters the concept tdidrsey diabetes andhypertensionn
the text. The expert intuitively recognizes tlizbetesand hypertensionare common
causes othronic kidney diseasand predicts that the article’s topic is mostlike=lated
to renal failure rather thandiabetesor hypertension Figure 1.1 shows a graph
representing a possible mental model of the expertception of the topic discussed in
the article aboutrenal failure. This illustration shows how graphs can be used to
represent the text content. The relationships eaaxtracted from a domain ontology of
biomedical knowledge, as described in the followiclgapters. The nature of the
relationships are not explicitly used in this studsulting in the graphs being undirected.
However, the proposed methods emphasize the staligtoperties of the constructed
graphs, and how they can be quantified and usdédaiming algorithms that can make

predictions in classification and information extian tasks.



Renal Failure
Chronic
Kidney
Disease
Hypertension Diabetes

Figure 1.1 Mental image ofenal failuremade by a human reader.

The structural relations hold additional informatiessential for visualizing and
categorizing objects and hence are useful in utalglsg, learning, and decision making
in domain specific tasks. Graphs also have a sbédretical background in mathematics
and computer science where graph analysis and oiatign algorithms have been
studied extensively [9]. For these reasons, utigizigraphs is promising and could
enhance existing text mining techniques. On thesrottand, the wide availability of
comprehensive ontologies, specifically biomedigabwledge bases, makes it possible to
construct such complex graph structures and explove their features contribute to the

performance of information extraction and othet taiing applications.

1.2 Overview and Motivation
Documents have been commonly represented by vecofomsords, key phrases, or
sentences. Recently, the document structure anty énks within the text have been

successfully incorporated to enrich the represiemaf{10]. In particular, graph



representations have been gaining a lot of atteriitely due to their structural nature
and the way they capture links or relationshipsveen entities [11], [12]. Those
relationships often hold interesting informatiomttitan be mined from the text. In the
biomedical domain for example, a gene interactietwork can be used to infer certain
functions of that gene. Similarly, a semantic netnio a certain biomedical text would
help finding significant terms or a set of concaptshe text by examining how they are
related to other entities. The relationships candedl as similarity measures in structural
pattern matching or can be quantified and usedidgi@nal feature weights for machine
learning algorithms. Although graph mining is beistydied and applied widely in
different domains, there are numerous areas fayré¢tieal development and empirical
studies, especially in machine learning applicaiokpplications that target biomedical
data collections, for example, still cannot matelmhn knowledge and judgment as it
requires extensive and specific domain expertisgrdving the performance of those
applications is thus challenging as much as itesirdble when applied in the real world
as it would thrust further research efforts andliappon development in text mining,
bioinformatics, and other fields of computing scies such as network security, grid
computing, and social networks where graphs camalft be used in modeling.

Whether applied to molecular structures, socialwngts, geographic maps,
sensor networks, or text documents, graphs offentaitive and effective representation
model. A graph, in its generic form, is a set oftiees and edges that connect them. A
vertex, also called a node, represents a domainifgpentity of interest within an
application. It can refer to a certain term or @ptdn a text document, a person within a

social network, or a location on a geographical niagges are connections or links



between the nodes. They represent relations orbeéseen entity nodes. In a social
network, for example, edges could be used to reptesfriendship relation between two
persons. In the World Wide Web, graph edges coeldhyperlinks that connect web
pages. In atext document, they can representrggmmalations between the terms in the
text.

In particular, graph representations of biomeditakt documents, mainly
published articles in scientific journals, are domsted and used in the experiments.
Biomedical literature is growing rapidly as medicgiences, molecular biology, and
genomics evolve. Vast amounts of publications atrdctural data that have been
released are awaiting analysis and further studigoipe for breakthrough discoveries.
Biomedical concepts in a text document are oftamtecdually and semantically related.
Identifying those relationships provides additionhowledge that is useful in
understanding the text content, recognizing pastamd interactions among concepts, and
making predictions in automation tasks such assifleation, summarization, or
knowledge discovery. The relationship between thaceptsKidneyand Creatinine for
example, imply that the topiRenal Failureis most likely relevant to a certain text’s
content. Such relations are sometimes explicit eaudl be identified with the help of
predefined ontologies created by experts. In ottemes, the relations are implicit or
unknown and require more sophisticated tools sgcleaning algorithms to recognize
them. The study starts with describing how textusheents can be transformed to graph
structures and then investigates how graph-basetkiaffect the performance of text

categorization and concept extraction tasks applrediomedical data.



The main contributions of this work are: 1) prowiglia graph construction
method using ontology mapping. 2) Improving textegarization through the use of,
knowledge-based features, graph edge featureggraptt kernels. 3) Improving concept
extraction using graph features for ranking top kewncepts in text documents. Those
methods are evaluated and compared to ones thattdgsse graph structures in addition
to popular baseline methods. Essentially, the sitodystigates how the graph structures

capture additional hidden information that is oftgmored in baseline methods.

1.3 Organization
This dissertation is organized as follows: Cha@es a literature review of the main
concepts and techniques discussed in the studypt€@h@ focuses on building a
knowledge-based graph representation of a textrdentiand applying it in a biomedical
text categorization task using a Naive Bayes dlassCChapter 4 extends the previous
study with an additional experiment, where grapbgesdare weighted and used as the
documents’ features. Chapter 5 studies the useaphgkernels in text categorization.
Two different kernels are defined to compute sintikes between the graphs and used
with k-Nearest Neighbor and Support Vector Maclulassifiers. Chapter 6 discusses the
use of concept graphs and their effect on conceptiaion from biomedical text
documents. Chapter 7 concludes the studies witbvanall summary and highlights of

the contributions, limitations, and future work.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In the following subsections some of the relatedkibat has been done in graph mining
and graph representation of text documents isdotted. The techniques discussed range
from textual information extraction, knowledge baseepresentation of structured data,
and applications in text mining. The challengesiidearning the complex structure of
data and in extracting hidden information that figr critical in improving text mining
algorithms. The proposed attempts highlight theupemity graph mining has gained in
recent years and the broad spectrum of applicatdrese graph mining techniques can
be used. The discussion begins with named entitygr@tion techniques that are used in
some experiments in the early stages of concepitifbation, and then continues to
explain how knowledge bases, mainly biomedical sesircan be used in constructing
graphs by providing external knowledge in the fooh ontologies and controlled
vocabularies. Finally, graph representations amdila linked structures and their
applications in data mining are reviewed. Otheatesl work on text categorization and

concept extraction is reviewed later in the coroesiing chapter.

2.2 Named Entity Recognition
Named Entity Recognition (NER) techniques have besed as basic tools for the
identification of entities of interest in variousrdains. NER techniques are based on
conditional random fields (CRF) which use a probsiic model to segment and identify

sequence data, including text streams [13]. CRAs lba thought of a graphical
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representation of sequential data with statisficaperties that can be analyzed and used
to extract significant entities such as text eletmdrom natural language [14], [15] or
more domain-specific entities as those found inmeadical data collections such as gene
names and proteins [16], [17]. Two popular biomaldMER tools that are available for
public use are ABNER [18] and LingPipe [19]. ABNERbased on conditional random
fields and uses regular expressions and neighbtwkens and extracts orthographic and
contextual features rather than semantic and synteatures. ABNER is trained and
evaluated on the NLPBA corpus, a modified version GENIA [20] and the
BioCreAtlvE corpus [21]. LingPipe is another softeapackage that also offers a
customizable and trainable NER toolkit for genenadl biomedical entity identification.
Named entity recognition can be done simply usifgiahary matching and regular
expressions or through supervised training of &ssitzal model. The LingPipe module
used in the experiments is trained on the GENIAgsrand can recognize most of the
biomedical concept mentions in articles. Namedtyentcognition can be coupled with
concept mapping to a predefined biomedical vocapuld@his ensures a unified
representation and usage of biomedical terms thpea in different formats in text
documents and across different datasets. In thé sestion some background on

dictionary-based systems and ontologies in texingirs provided.

2.3 Knowledge Bases and Ontologies

2.3.1 Introduction
In biomedical text mining and bioinformatics in geal, specific knowledge bases

proved to be essential in building large-scale nmfation systems and in improving
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various information extraction tasks. These includmtrolled vocabulary databases,
thesauri, and ontologies. The teamtologywill be used throughout this study to refer to
a knowledge source used in the experiments sin¢elogmes include a vocabulary
database in addition to thesaural or semantic ioeksthips between the predefined
concept entities. An ontology is thus a richer kiemlge source since it includes
additional predefined information, such as hiersghcategories, and semantic relations.
Moreover, the term ontology is commonly used in themedical domain, which is
where the methods presented are applied.

An ontology can be defined as a formal specificatiof a shared
conceptualization which provides a common undedstanof a certain phenomenon or
domain [22]. It is used to model knowledge in aaierdomain using a representation of
common concepts and relations or interactions beEtwhem. Ontologies help in
different aspects of building information systefikey allow conceptualizing and better
understanding of the data at hand as well as iocatipg external knowledge into
applications. Consequently, they can be used witbrdnt methods of data analysis and
mining. In biomedical research, the vast numbesosicepts and technical names used in
the literature requires some sort of standardiratiad integration [23]. As a result,
biomedical ontologies have been used extensivelgifierent text mining applications
and techniques that target different topics. Sorfméh@ prominent works that involve
biomedical ontologies include: The Gene OntologyOjGwhich contains detailed
information on gene and protein roles in cells v&ra molecular functions, and other
biological processes [24]; The Molecular Biologyt&lzase Collection provides a public

repository and a number of online services thabwalbccessing various molecular
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biology resources [25]; [26] proposed an integrativzethod to combine GO vocabularies
with other external vocabularies to handle the |gmobof species-specific terms and to
provide a better representation of concepts; [259 described how integrating epitope
data into other biomedical knowledge resources @obklp in organizing the
increasingly growing data on immune epitopes; Thehantic metadatabase project
(SEMEDA) is a semantic integration and federatedluses querying system [28]. It is a
multi-tiered web application that allows queryingegrated databases and provides an
ontology-based semantic metadatabase as well astalogy-based querying interface.
The authors describe the integration process anceguirements and evaluate existing
relevant ontologies; [29] developed an ontologyen system for capturing and
managing protein family data addressing maintenaarodé sustainability issues; The
Unified Medical Language System (UMLS) [30], willebdescribed in detail in the
following section since it is used in the experitseas the main knowledge source of
biomedical concepts.

Other ontology-based approaches related to texhmend the proposed methods

will be referred to later in the subsequent sestion

2.3.2 UMLS

The Unified Medical Language System (UMLS) is onk tlke most widely used
knowledge sources in the biomedical domain [30}].[B1ade available by the National
Library of Medicine, UMLS provides databases, tpalsd services for researches and
practitioners in health sciences, medical scierana$ bioinformatics. The backend of
UMLS comprises comprehensive vocabulary databasbsmedical and health-related

concepts such as diseases, drug names, anatomnigales, biological functions, and
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others. The concepts unify the usage of commonstarirdifferent formats defined in
different sources through unique identifiers. lhestwords, they can be considered as a
higher level representation of the meaning behimel terms, even if they appear in
different forms in the literature. In addition, théMLS database includes a set of
predefined relationships among the concepts, atigwhe construction of ontologies,
concept mapping tools, and graph representatioassef of related biomedical concepts.
The distribution of the UMLS relationship types #éa&fle in the database version
used in this study is shown in Table 2.1. The fesmy values change with time as
UMLS is updated and new relationships are added.r€lationships are of hierarchical
and semantic nature and include synonyms, sinsilalings, parent-child, broad, narrow,
allowable qualifiers, qualified-by, and unlabeledationships. The relationships used in
the experiments are dependent on the conceptdfiddrin the text and on the specific
experiment, as some relationships are excludennibthe size of graphs. For example,
in one experiment, only parent-child relationshgosd synonyms are considered. In
another experiment the relationships used areicestrto those defined in a specific
vocabulary source in UMLS. To illustrate the natwfethe relationships in UMLS,
consider the concepomographyas an examplelomographyis an imaging technique
that produces images of specific sections of theybdrherefore, a parent-child
relationship is defined in UMLS between the consejpbaging and tomography
Similarly, optical coherence tomographg special tomographic technique, is defined as
a child concept otomography It is also worth mentioning that the relationshigre
neither comprehensive nor accurate in all casesheg are collected from different

sources of vocabularies, and require constant upgddtlevertheless, for the purpose of
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the experiments, they provide a good source otstral information that is embedded in
the text and can be represented by graphs.

In addition, UMLS also includes a table of statigtirelations, determined by co-
occurrence frequency information. However, those @ot used in the experiments.
Instead, the available semantic relationships aesl dor constructing the graphs as they
provide a more explicit structural representatidrtext documents whereby semantics
are preserved. The semantic relationships are etbfoy human experts and thus are a
more natural interpretation of the domain knowledgich includes characteristics,

interactions, and classification of the concepts.

Table 2.1Distribution of UMLS Semantic Relationships

Type of Relationship Relative Frequency
Allowed Qualifiel AQ 1.1«
Child CHD 7.74
Paren PAR 7.7¢
Qualifiec-by QB 1.1
Broad Concej RB 2.8
Similar Concef RL 0.12
Narrow Concej RN 2.84
Unlabelet RC 19.3-
Possible Synony RQ 3.37
Sibling SIB 43.8¢
Synonyn SY 9.93
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On top of these databases, UMLS also provides highel tools and services to
leverage application development and researchximtening and bioinformatics. Among
these are a semantic network of all defined coscapt a set of lexical tools used in
natural language processing (NLP) of biomedical. teowever, this study relies only on
the backend databases to build customized moched¢sllow accessing the concepts and
relationships and constructing graph representaidnext as described in detail ahead in
the following sections.

The UMLS sources have been extensively used irowsriesearch projects and
applications in text mining. To start with, somefoels have been made to map
biomedical concepts and vocabularies to and fraanUNLS [32]-[34], in an attempt to
either build ontologies, integrate different kno#lde sources, or improve term
identification and indexing. UMLS also proved effee when coupled with natural
language processing techniques. Several works bhaem presented addressing the
identification and representation of biomedical \iexige in text datasets using NLP
methods [35]-[38]. UMLS has also been used in aatmntext summarization where
terms are mapped to predefined concepts and corgagentences are weighted and
extracted to generate summaries [39]-[41]. In imfation retrieval UMLS has been used
in query expansion [42]-[44], translation and criasgyuage retrieval [45], and in search
results organization [46]. Other applications udg knowledge discovery in medical
sciences [47]-[51], question answering [52], topdentification [53], [54], text

categorization [55], [56], and keyphrase extrac{@si, [57].
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2.4 Graph Representations

2.4.1 Introduction

Complex structures and networks can often be repted using graphs where links,
relationships, or associations could be used inntireng process. These connections
possess additional information that is, in manyesa<ritical when representing and
analyzing the data and later in making predicti@msdecisions in various mining

applications. Graph mining exploits large amourftstouctural data that holds implicit

and explicit entity relationships or links by loogi for interesting patterns or knowledge
within the structure [58]. As most of the traditedrdata mining techniques that target
unstructured data are not suitable for graphs, hgnaming has emerged as a new
research direction within data mining, at the iséetion of algorithmic graph theory, link

analysis, statistical learning, pattern recognitioformation extraction, and other related

fields in data mining.

2.4.2 Representation

Different approaches have been used to represa@htdeuments as graphs using
different text components and features. The commisnand features are selected and
extracted to capture relevant task-specific infdroma Text components such as noun
phrases, keywords, or sentences often posses®imistructural relations in the form of
statistical, syntactic, semantic, or ontologicadbimation. The level of explicitness of
these relations varies where those based on satistformation are considered the least
explicit since they are typically extracted usingadlection of documents and not straight
from the text whereas predefined ontological reladiare considered the most explicit,

being defined by domain experts in external knogéedases.
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Within a document collection, term co-occurrenceof$en used to define
associations or relations between terms. In [38#,do-occurrence frequency of any pair
of terms in the text is used as the edge weightdbanects the respective term nodes.
The node weights are calculated using the commom tiequency and inverse
frequency. The resulting graphs, each comprisetivofvectors, a node weights vector
and an edge weight vector, are then used to fird dimilarity between two text
documents. The edges can also be derived from car@nce within the same sentence
as proposed in [60] where the term associationsnaiependent from a certain corpus
and thus are domain independent as well. Edge w&eiggn also be described as co-
occurrence conditional probabilities that two terapgpear sufficiently close to each
other. A sliding window can be used to measurepituximity threshold for the terms
where edges falling out of the proximity window da@ dropped from the graph [61],
[62]. Another method that has been used is findimg co-occurrence of symmetric
relations in the text using graph edges. A parsfgdech tagger is used and adjacent noun
phrases, that appear in a list or are separatetbbjinctions, are located and a graph

edge is defined to represent the symmetric reld68h

2.4.3 Graphs and Knowledge Sources

Semantic relations, on the other hand, can be ifaehtwith the help of external
knowledge sources. Wikipedia has been successfisigd to incorporate linked web
content as relationship information into graphsaidg co-occurrence of those links can
be used as edge weights. A relation is thus defled/een two Wikipedia concepts
when there is an internal hyperlink between thecepts from one concept page to the

other [64]-[67]. This approach can also be extertdeidclude hierarchical relations by
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mapping the concepts to Wikipedia categories armd dsr document classification and

categorization tasks [68]—-[70]. Similarly, otheudies used WordNet [71], an English

lexical database, to build graphs where terms aygped to sets of predefined synonyms,
referred to as synsets [72], [73]. The edges reptesemantic relations including

synonyms, antonyms, hyponyms, meronyms, and trapeny

In the biomedical domain, Gene Ontology (GO) [2dbgraphs were used to
represent documents where directed edges represeatchicalis_a relations (where a
concept is a type of or form of another higher les@ncept) between predefined GO
terms. This representation was compared to a fiatgraph representation in a text
classification task [74]. Similar GO subgraphs waelescribed in [75] to help in
interactive visualization of relations within bigjical processes. The Systematized
Nomenclature of Medicine--Clinical Terms (SNOMEDRjllection [76] had been used as
well to create graphs representing clinical infaiora The SNOMED collection is
hierarchical and has clinical terms grouped intmoeptual categories with a linked
structure. The relations can be interpretedisa®, part_of made_of and others as
described in [77] where SNOMED graphs were useauitd a formal conceptualization
framework that can be used in relational data mogebr concept mapping into other
formal systems.

The UMLS sources were also used extensively in baioal data representation
and mining as discussed in section 2.3.2. Onehefdarly attempts to use UMLS
resources to build a graphical ontological strietor medical concepts was described in
[35]. The semantic types and relations in UMLS wesed in addition to other more

general time, space, and value relations to buddstom hierarchical structure to be used
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in a more specific medical domain. The resultimgctre is a concept type lattice that
can be used in concept graph formalism and opesatim knowledge representation in
medical knowledge-based systems. In medical infdonaretrieval systems, natural
language queries were transformed to concept gragihg the UMLS semantic network
[78]. The graphs are then used to search collestainmedical literature. In a similar
effort, the thesaural relations and semantic nékwdbtUMLS were used to model an end-
user’s navigation of biomedical concepts into cghagaphs that can convey the user’'s
specific interest in a query [79]. In [80], a coptieal model of three levels is proposed.
UMLS concepts are linked through an intermediavelef views that represent specific
contexts in the medical domain that are identifisthg a higher level semantic network
graph. On top of the resulting concept graph ddtacwire, an object oriented
computational model that access existing developnienls in bioinformatics is
described. This model allows users to translatéesers into graphs that can be used in

information retrieval tasks.

2.4.4 Background
An early attempt to formalize the use of graphsitfprmation systems in different
domains was introduced by Sowa in 1976 [81], [82]e formal notation proposed was
intended to be used as an intermediary betwees asdrthe data. The motivation behind
it was to allow the translation of natural languageeries or questions asked by humans
into graph structures that can be interpreted bypedger algorithms, thus providing a
flexible database access interface.

Following Sowa’s work, concept graphs were desdriimedetail in [83] where a

rigorous mathematical description was presentedh weference to ontologies, graph
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properties, and operations which could be appliedknowledge representation in
different domains. In addition, [84] tried to forllyadefine the notions of concept graphs
and presented a study of different graph operationterms of logical operations and
algorithmic complexity. As for the applied aspedfs graph mining, a considerable
amount of work has been done in graph matching, [8®&] and finding graph patterns,
mainly frequent subgraphs [87], [88]. Patterns wfieiest or frequent subgraphs in
collections of structured data are often desireddfferent applications in indexing and
retrieval [89], [90], web mining [91], bioinformas [92] and prediction of behavior or
interaction in various domains [93], [94].

Link Mining is another closely related topic thaasvstudied extensively [95].
Link Mining explores structural data and linked ises and has emerged from the
traditional link analysis research area [96] ansl I@en applied to graph-like structures in
different domains. The applications of link miniage numerous as these can be applied
to any set of data of interlinked objects. Thedaiing are some of these applications. In
web information retrieval and link-based rankinge talgorithms PageRank [97] and
HITS [98] were proposed. These algorithms rank wsehrch results by importance
measures, also referred to as relevance, authoriggnnectedness, and are derived from
how webpages are linked to each other. In sociafar&ing, the centrality of individuals
is an important property of individual nodes and@culated based on the position of
those individuals and their links to other indivadisl [99]. Other proximity measures
derived from graph properties are also used toigirédks between individuals in social
networks [100]. In citation analysis, link predarti could be used to detect possible

citation links, predict the nature of those citaipand recommend citations for scientific
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publications. [101] applied structured logistic megsion models to the problem of link

prediction in citation graphs.

2.5 Summary
In this chapter an overview of related work in dotges, graph representations and
linked structures and their applications in dataing is presented. The graph mining
approaches show how the rich structure of databmamexploited to improve several
information extraction techniques. In addition, gowf the earlier studies attempt to
formalize the use of graphs within a theoreticadi®aallowing scalability in different

domains and applications.



CHAPTER 3
APPLICATION: NAIVE BAYES TEXT CATEGORIZATION
USING KNOWLEDGE-BASED FEATURES

Graph representations of text offer an intuitivensformation of the text content of a
document into a rich set of concepts and semamdi@tionships that are useful in
capturing the underlying topics of that document. this chapter a method for
constructing graph representations of text docusnest proposed. Using minimal
information extracted from text or from document®ta-data, the graph representations
are constructed and applied in automatic classificaf biomedical articles. The method
makes use of external domain knowledge and gragtires instead of commonly used
textual features and attributes. Experimental tesafla Naive Bayes classifier using two
graph configurations are reported. In the firstfiguration, only the graph nodes are
used, while in the second, the graph edges arededl as well. The method is also
compared to a standard baseline classifier tha asector space model and occurrence
frequency weights. The method could be useful actical applications where the full

content of articles is not available or when actessis limited.

3.1 Introduction
With the progress of biomedical-related fields, exmental reports and articles are being
published extensively and stored in digital repo&s. Archives of old scientific articles
are also being digitized, indexed, and made aMailabdigital libraries. The problem that

arises with the rapid growth of such documents aagement and search within large

22
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databases. Automatic classification of documentddchelp alleviate the overhead of
maintaining and searching through such large didies.

In this chapter a key-concept graph constructiachnigjue is presented. The
technigue can be used in categorizing biomedic&ldecuments using minimal features
extracted from the documents or from their meta&ddthe target documents are
scientific articles published in different journabé medicine and related biomedical
fields. Graphs, representing such articles, arestcocted from a small set of key
concepts that represent the text content or thedayf the documents. The graphs are
generated using minimal information that is eitlesttracted from the text or made
available from other sources such as authors. Titleoeprovided keywords, used to
label the articles, and the articles’ titles ar@sd@n to construct the initial set of key-
concepts. Each representation is used separatelylifierent experiment. Alternatively,
one could use other sources such as article atsstraa small set of keyphrases extracted
using a keyphrase extraction tool [102], [103]. Tdraphs can then be expanded into
higher degrees through mapping external domain ledye. The motivation behind
using a small set of concepts is two-fold. Thetfissreducing the dimensionality of the
feature set used in classification that is oftemyvhigh especially when full-text
documents are considered. The second is allowiograte classification of documents in
situations where the content is incomplete or neailable. The method is thus
independent of the document length, structure,cedrrence frequencies of terms. The
key-concept lists, however, are too small to bedgepresentatives of the documents in a
classification task and thus need to be expandedaimore ‘meaningful’ representation.

For that reason the initial sets of key conceptseapanded into concept graphs with the
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help of ontology concepts. On one hand, this remrtagion is an enhanced structure that
contains more information, when compared to thigainset of concepts, with a consistent
domain knowledge incorporated in the graph, inelgdsemantic relationships. On the
other hand, the noise, including less relevant semmd concepts that are often present in
the text, is eliminated as is it is not included thre representation prior to graph
expansion. This technique demonstrates how extémalledge features can replace
commonly used text feature attributes such as oecoe frequencies while still
achieving a relatively high classification accuracy

The features that are considered in this studyeedefined biomedical concepts
available in the form of a controlled vocabularyvasl as relationships that might exist
among them. The descriptors used in the vocabulapyesent specific and general
concepts in medicine, biology, and related fieldshsas: diseases, anatomical structures,
pharmacologic substances, biologic functions, atiters. The relationships are also
predefined and are of semantic nature and inclyd®rgms, parent-child relations,
sibling relations, and other narrow or broad relati defined in the ontology. In
particular, the initial key-concept list, represegta document, is mapped to concepts
defined in the Unified Medical Language System (UBJI30], [31]. After the initial set
of concepts is mapped, a set of related concepteetieved from UMLS to build a more
meaningful representation. The resulting documepteasentation is therefore a graph of
concept nodes where the edges that connect theesespp semantic relations that exist
among the concepts. The process is similar to homams read and perceive the text
content through mapping and relating to accumulatezivledge from past experience.

With enough domain expertise, it is usually possitilat a topic or a higher level
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category be identified without further reading intbe full-text. The details of
constructing the graph will be further discussedeaction 3.2. Figure 3.1 illustrates the

graph construction part.

\\ Authors’ Keywords /

= Articles’ Titles '~
Documents =B “j] = Gr’aphs

TUMLS
Concept

Figure 3.1From documents into graphs.

The documents used in the experiments are sceraificles published in six
medical journals spanning different topics. A deanbicles is collected from each journal
where the journal category is used as a class iallleé categorization process.

As for the classification task, the graphs (botdesand edges) generated from a
training set of documents using different grapluggtare indexed to estimate the prior
probabilities of the classes and the conditionabpbilities of concepts occurring in the
target journals. A Naive Bayes classifier is theedito predict a target class, which in
this case, is the journal that an article is mitsly selected from.

In the experiments section the performance resoftdwo different graph
representations are reported. In the first confiian, the graph nodes from the
constructed graphs are used as the feature d&t ofdssifier. In the second configuration
both nodes and edges are used, in an attempt tsideonthe semantic information
embedded in the text in the classification proc&he. proposed method is also compared
to a standard Naive Bayes classifier that uses cowespace model to represent

documents andF-IDF weighting of the terms in the text.
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The proposed technique could be useful in practieat categorization and
indexing applications where minimal information abthe dataset is known or available.
It could also be useful when the text containstafaoise and the target categories are
of higher abstraction level, since the graph regm&sion would be a filtered projected

view of the text into a common and more-specifimd representation.

3.2 Document Representation
In this section, common document representatiohnigoes used in text mining are
discussed and the process of constructing the peapbgraph representations of text
documents is described. The graph constructionegsostarts with an initial small set of
concepts that is expanded into a rich graph wittlitewhal semantic information. The
discussion also explains the motivation behind @sisuch representations for

classification tasks.

3.2.1 Background

In text categorization and information retrievalsks, documents are commonly
represented as vectors of term or keyphrase weiglhtich is referred to as the vector
space model [6]. The weights are considered ingiisabf how strong the terms or
keyphrases represent the document. The most comwegghting scheme iFF-IDF
[104] which is based on the term frequencies —ighhbw many times a term occurs in a
document - and the inverse document frequenciést-is the number of documents in
which a certain term appears throughout the whakas®t. This representation is also

referred to as the bag-of-words model since eacturdent is transformed into a
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collection of terms or words, without taking theler in which they appear in the text or
the existence of semantic or other relationshipwéen the words into consideration.

Other similar approaches extend this representatimhuse n-grams features to
represent combinations of characters [105] or w{it@8] of a text’'s content and apply it
in classification techniques. The vector space haggghing scheme was also used to
represent sentences in a document, as describedOif{, where documents are
decomposed into sentences and each sentence waser@pd as a weighted vector of
term frequencies and applied in a text summadnapplication.

Other efforts have also been made to utilize thecgire and semantics of the text
and incorporate them into the representation toaecd the used techniques. For
example, [108] incorporated the semantic struchtifgoth sentence and document levels.
Their models combined statistical features and a&ceptual ontological graph
representation that represents the sentence seuuthile maintaining the sentence
semantics in the original document. [109] transfedmdocuments into a space of
conceptual feature structures using an ontologylexidal resources for a higher level
representation and applied it in content-basedchefit10] designed a lexical chain that
holds a set of semantically related words of a dwnt and used it to represent the
semantic content of a portion of the document. [Jdrésented a keywords extraction
algorithm that treats each document as a semaeticork that holds both syntactic and
statistical information. A semantic network modedsadeveloped in which each term is
represented by a node and a relation between twtstby an edge. Additional in-depth
description of the use of the vector space moddlssamantics in capturing meaning of

the text as well as their applications can be faar{d12].
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Graph structures have also been used to represeaiments as they preserve the
structure embedded in the content and allow ushagtgtechniques that have a strong
algorithmic and mathematical foundation in discretath and computer science. For
instance, [113] propose a graph representatiomldoument summarization tasks. They
use a thesaurus and association rules to connggbtkases in the text. [114] also use
graphs to represent documents for summarizatioey Tuse graphs to capture word-
word, word-sentence, and sentence-sentence redhtpmin the text. They then compute
word and sentence saliency scores to rank theinltsesSimilarly, ontology-based
mapping of text into concept graphs have been usdext categorization [115] and
concept extraction [102] applied on biomedical dats where the graph features are
incorporated into the representation.

Term or keyphrase statistics, such as occurreremuéncies extracted from the
text, are usually essential for learning and cfacsgion and have been successfully used
in text categorization and other text mining apgicns. However, in this experiment, the
problem where such information is not availabladslressed. This could perhaps be due
to the absence or limited availability of the ftdikt content, or when the documents are
very large and using an alternative reduced reptagen would be desired. The method
also highlights how domain knowledge can be incafea into the representation and
applied in text categorization. In the followingcgen the method of representing a text
document, starting with a few available key consdhptt characterize the document, is
described. Later in the experiments section thighotk is compared to a baseline

representation that uses the standdrd DF weight vector of document terms.
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3.2.2 Key-Concept Graphs

In the following, key-concept graphs, which aress#ftnodes and edges representing the
text documents, are described. The representasiomitialized using a small set of
concept nodes extracted from a document’s meta-8atarnal concept nodes with the
corresponding relationships (edges) are then atbdedrich the representation.

3.2.2.1 Alternative RepresentationThe proposed representation is constructed using a
small set of document features and expanded intchar representation using domain
concepts and semantic relations. In this representatatistical information obtained
from the text is not considered. This makes theppsed method less dependent on a
document’s content. In addition, using external donknowledge, the representation is
projected into a more domain-specific feature spdstarting with a small set of
keywords representing a document and mapping thtdsepredefined concepts and
relations, each document is represented by a grvelpére nodes represent concepts that
might or might not appear in the text, and edg@sesseent semantic relations that exist
among the concepts in a certain domain.

In a real world scenario, a human reader with cigifit domain expertise is
capable of identifying a high level category of aticle by reading the title or a small
number of keywords (labels) assigned to that documiBased on this intuition, the
process of transforming a text document using saébrmation into a higher level
representation, appropriate for processing andifieegtion, is described in the following
sections.
3.2.2.2 Initial Setup. The dataset used in the experiments is a colleaioarticles

collected from medical journals. In addition, UMLS0], [31] is used as an external
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knowledge base of biomedical concepts. UMLS pravidecomprehensive vocabulary
database and ontology of biomedical concepts daticeships among them.

For each article in the dataset, the author-pralidsywords are extracted. Those
are typically the labels that authors assign tar theticles upon publication. In addition,
the titles of the articles are extracted, and useddifferent experiment.

The author-provided keyword list and the noun pésais the title serve as the
initial representation of each document. Thosetlae@ mapped into predefined UMLS
concepts and referred to as key concepts. In thgpimg process, both a first-besb)(
match and an n-granm@) match are attempted to map a keyphrase into Ubtiiepts.
For instance, if the phrase ‘Atypical antipsychatrags’ is found in the author-provided
keyword list (or extracted from the title), it waulbe mapped to the concept
‘Antipsychotic Drugs’ using first-best matching ee‘Antipsychotic Drugs’ is the first
successful match with a maximum length (humbereofns), even though the whole
initial phrase containing that concept term does$ east in UMLS. Using n-gram
mapping, it would be mapped to all combinationscohcepts that correspond to the
terms in the phrase and exist in UMLS, in this ca%mntipsychotic Drugs’,
‘Antipsychotic’, and ‘Drugs’.

Combinations of the concept mapping modes and shgaiof author keywords
vs. titles are used to generate different instammieshe graphs and are evaluated
separately in different experiments.
3.2.2.3. Concept RelationshipsAfter the author keywords or titles are mapped into
unique UMLS concepts, the obtained list is usethasbase nodes list of a key-concept

graph. The graph is then expanded by adding relatet¢epts queried from UMLS.
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Relationships are available as pairs of relatedcepts and semantic relationships
between them. Examples of related concepts in UBHeS Anxiety — Mental Disorders’
and‘Pathologic Process — Psychological Stresehe semantic relationships are typically
synonymparent-child sibling, broad andnarrow relationships. The related concepts are
added to the graph as new nodes, where the redatmnare represented by edges. Upon
adding new nodes, if a concept is related to astiegi concept in the graph, an edge is
also added to link them together. This procesdsis parameterized, as the number of
levels of related concepts to be added to the grapdiso variable. In the experiments
graphs with up to two levels of related concepts @nstructed. When two levels are
considered, concepts related to the related coscepe also included in the
representation. This is meant to increase the dagfrthe graph representation by adding
more domain knowledge that could be more discritiveawith respect to a document’s
class. Adding more levels of related nodes howewveuld increase the degrees of graphs
exponentially and could add some noisy and irrelee®ncepts to the representation.
Figure 3.2 shows an example of concept nodes andetationship edges that connect
them. Figure 3.3 shows an example of the resugiraghs representing a document taken

from a journal ofpsychology
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3.3 Text Categorization
In this section the Naive Bayes classifier, on Whise proposed method is based, is
described. Although the classification procedurespnted here is applied on biomedical
articles, the techniques, can be easily appliedbtteer domains, including general
domains where an ontology can be built from avélabformation sources such as
Wikipedia and WordNet [116]-[118]. Furthermore, eattclassifiers can also be used
instead of the Naive Bayes as long as they canldyeted to the graph representation. For
example, a k-NN classifier could be applied ongame representation but would require
defining a graph similarity measure, perhaps byagigiraph kernel functions as described

in chapter 5.

3.3.1 Background

Text categorization is the automated process dingpdocuments into classes or groups
based on their content. Text categorization haac#d significant research interest in
information science and machine learning [119]. @pelications of text categorization

include indexing and classifying of scientific pigations, emalil filtering, literature based

discovery, and finding relationships among biomadientities. The success of a text
categorization application is based on the efficyemand accuracy of the underlying

information retrieval and machine learning techegjused.

Several text categorization techniques have bempoged to automate the manual
process of organizing and searching documents. fol@ving techniques have been
successfully used to classify documents based otecbsimilarity. The Naive Bayesian
probabilistic approach was suggested for autonagiexing of documents and is shown

to be straightforward but surprisingly efficient tarms of classification [120]. It is
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assumed that the extracted feature words are indepé and therefore Bayes’ theorem
can be used in the classification algorithm. Thedarest-Neighbor (k-NN) technique
has also been used in text categorization [121] ianpopular due to its simplicity,
nonlinearity, and ability to handle multi-class etts. Support Vector Machines (SVM)
are shown to be very suitable for categorizing duents and perform very well even
with large feature spaces [122]. Decision trees dadision rules offer an intuitive
symbolic way to model the classification procedwtgich is usually based on logical
decisions and predictions and perform fast comptredher learning methods [123]. As
for biomedical literature and digital librariesxteategorization has been widely used to
sort and manage medical and health records. [1&ifded a classification system based
on inductive decision trees that can handle diffetypes of medical records. [125]
showed that using phrases instead of words signfig improves the accuracy of
medical text retrieval. [126] showed that usingiiddal knowledge sources improves
the classifier performance by adding useful infaiorato the feature vector.

Using textual features for categorization is na tnly approach to classifying
documents. Complex structures such as documentbeaapresented as graphs where
nodes represent textual or other document featanes, edges represent relationships
between those features. The addition of relatigngiiges to describe documents can
create a much higher-dimensional feature space, #flowing for more nuanced and
potentially useful embedded knowledge of the domimeGraph matching techniques
have been commonly used to categorize graph-repgesselocuments. [10] proposed a
web document classification technique based on k-MN108], conceptual ontological

graphs were used to represent documents basedtanse structure and on a concept
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statistical analyzer. The graphs are then usednstauct normalized feature vectors for
text categorization. Graph classification is a majoplication in machine learning where
graphs, representing objects, need to be categobased on the entities they represent
and the relationships between them. Supervisechiteris usually applied on graphs
where the similarity between graphs is calculateshgl kernel functions. [70] used a
semantic kernel that incorporates Wikipedia backgd knowledge to enrich the
document representation. They achieved improvedracyg in document classification
when compared to traditional bag-of-words represént. In [127], three different
datasets were used for classification experimeaty diaving its own representation of
relationships between node objects in a graph. @oeas were used to link scientific
publications, actors to link movies, and page hiyples to link Wikipedia documents.
Weighted frequent subgraphs were used in [128btsituct effective feature vectors for
classification and to overcome the computation logad that is associated with graph
structures. [129] uses exact and inexact graphmmagas well as substructure pruning
and ranking to optimize classification and comptreir result to a Naive Bayesian
classifier. [130] attempts to exploit the linguistiyntactic and semantic characteristics of
phrases in text. They encode phrases as graphsuseda substructure and pattern
discovery algorithm for classificationClassification of graphs has other broad
applications in bioinformatics and chemical infotiost where protein sequences and

molecular structures need to be classified accgrairstructure [109].
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3.3.2 The Naive Bayes Classifier

The Naive Bayes (NB) classifier is a simple prolistic classifier based on the Bayes
theorem. It has been widely used in classifying ttocuments in different domains and
is known to perform well despite the fundamentaveaassumption that the document
features used in the model are independent [119D][ [131], [132]. The NB classifier
essentially estimates the probabilftgc|d) of a certain class given a document:

P(c) x P(d|c)

P(cld) = 5

(3.1)

)

where P(c) is the estimated prior probability of a clagsthat is the probability of a
document being in class when the document features are not considerechen t
computationd is a document in the datadet(deD) represented by its feature weights,
which is referred to as. P(d) is constant as it does not depend on the classhasdhe
denominator can be dropped from the calculation.

Assuming a document is represented by a feaeo®x, P(d|c), the likelihood

that a documerd with feature belongs to a class can be calculated as such:
Pdlc) = Hﬁ(xj| 0, (3.2)
J

whereP (x|c), will be estimated according to the features usedeach document
representation as described in the next section.
The maximum a posteriori clasgp ... , that is the class a document most likely

belongs to can therefore be calculated as such:

ewar = argmaree P | [Pyl o) (3.3)
Jj
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3.4 Experiments
In this section the experimental setup, includirige tdataset and the different
configurations and features used in representireg dbcuments, is discussed. The

classification results applied on each represemtatre then reported.

3.4.1 The Dataset

The dataset used in the experiments is compris&®dtext documents. The documents
are published articles collected from six journsp@nning different topics in medicine.
The journal categories are used as the targeteddesbe predicted for each article. The
different journal categories that the articles weekected from are shown below in Table

3.1

Table 3.1Journal Categories of the Selected Articles

Class| Journal Category

P Psychiatry

G Gastroenterology

N Neurology

M Molecular Immunology
0] Ophthalmology

Py

Respiratory Diseases

For each article, the titles, the author-provideywkords, and the full text are
extracted. The full text is only used by a standaadeline classifier for evaluation and

comparison purposes.
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3.4.2 Graph Configurations

As pointed out in Section 3.1, the graphs reprasgrthe articles in the dataset are
constructed using different parameters. In theofalhg the process of how each
representation is initialized and expanded usinigregl knowledge-based concepts is
explained.

3.4.2.1 Concept Features. As the full-text features are not considered ingheposed
method, the graphs are initialized using eitheratgor-provided keywords or keywords
extracted from the articles’ titles, as the baggegentation of documents. The length of
each keyword list is variable across the datasdtrem all keywords are guaranteed to
have a match in UMLS, which is one limitation oetimethod. However, most of the
keywords can be matched either exactly or partidifgt-best or n-gram matching). The
parameters of the graph expansion process areotieept mapping mode and the level
of related concepts added to the representation.

For each configuration, the concept nodes of tealtiag graphs generated from
the training dataset are indexed with respect wh edass (journal category). Those
concepts are used as the document features wherkedlure vectok is a vector of
relative occurrence frequencies in a certain clBgs|c) is thus estimated as the relative

frequency of conceptindexed under class

a5 Nxc
P(xle) = =5 (3.4)
X

whereN,,. is the number of times a conceqt indexed under clagsandN,, is the total
number of occurrences of conceph the whole dataset.
The prior probabilities?(c) are also estimated for each journal category @s th

relative frequency of documents indexed under tireesponding category (the number
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of documents indexed under classlivided by the total number of documents in the
dataset). A constant = 1 is added to the relative frequencies of concep®&vbid zero
probabilities resulting from the absence of certaincepts indexed under a certain class.

A document’s class can then be predicted usindplle@ving equation:

cuar(@d) = argmaxeec PO | [(@+ Pyl en (35)
J

3.4.2.2 Relationship Features.  The graph edges are also used in calculating the
class likelihood values using the concept relatiguss features. The graph edges that
represent the relationships among the conceptsalaceindexed in a similar fashion,
allowing the calculation of their frequencies witspect to different classes. When those
edges are used as features the vec®used instead of. r is the features weight vector
of the concept relationships which is calculateidgishe relative frequencies of both the
edges and their corresponding connected nodekislisétupP (r|c) is estimated for each

edge in the graph as follows:

= Nyc lec Nxzc
P = —X ,—— 3.6
(rle) = 37 max< o (3.6)

whereN,.. is the number of times a relationshijs indexed undec andN,. is the total
number of timeg is indexed in the dataset. andx; are the concept nodes connected by
the edge corresponding 1 P(r|c)is then similarly used to find the maximum a

posteriori classes:

war = argmazeec P | [+ P0yl ) (3.7)
J
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3.4.3 Results

After running a set of pilot experiments, the cguofation resulting from using a
combination of n-gram mappingd) and adding two levels of related concep®3 {o the
graph achieved the best performance. This configuras used for constructing the
graphs from both the author-provided keywordg)(and from the titlest{) of the
articles. The results corresponding to using nahdg compared to nodes and edged) (
are also reported. The results for the differennlsimations are shown in Table 3.3

(represented bgp-ng-r2, ap-ng-r2-ed, tt-ng-r2-¢d

Table 3.2Classification Performance

Exp | Configuration | Precision | Recall| F; Score

A ap-ng-r2 0.865 0.844 0.854

B ap-ng-r2-ed 0.878 0.868 0.873

C tt-ng-r2-ed 0.753 0.715 0.733

D | NB + TF-IDF 0.847 0.860 0.853

A 10-fold cross-validation on the 563 documentpesformed, applying the NB
classifier described in Section 3.3 using each lg@mfiguration at a time. Experiments
A and B correspond to the representations consiucom the author-provided keyword
lists. Experiments B and C use the relationshipufeaweights calculated from the graph
edge information. Experiment C corresponds to theresentation constructed from
keywords extracted from the articles’ titles ons opposed to the author- provided

keywords used in experiments A and B.
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Experiment D is a standard NB classification basedepresenting a document as
a bag-of-words and using~-IDF weighting of the terms. The results of this exmpemt
are also obtained through 10-fold cross-validatiorthis experiment the full-text content
of each document is used to generate the term weegttor. This classifier provides a
baseline performance comparison to the proposedadetnd highlights how the full text
features and their occurrence weights can be sutestiwith external domain concepts
and their relationships.

The performance results in Table 3.2 are reponteteims of micro-averaged
precision, recall, and the correspondifrg scores. Precision is the proportion of
documents predicted in a certain class that agtumlong to that class. Precision is
defined asTP / (TP+FP) Recall is the proportion of documents that beltmg@ certain
class and were predicted so. It is defined'Bs (TP+FN) TheF; score is a combined
measure defined a& X precision X recall)/(precision + recall). TP is the number
of true positivesTN is the number of true negativésd\ is the number of false negatives,

andFP is the number of false positives.

3.4.4 Discussion
In general, the experiments demonstrated good ifitag®n performance, despite the
small number of key concepts that were used to tagststhe initial corresponding
representations. Achieving such a relatively hidbssification performance, while
ignoring the explicit full-text information in themodel, is promising and underscores the
significance of knowledge-based representatiomsaming.

In the pilot studies, using n-gram mapping of kexdgo showed significant

improvement over first-best mapping of keywords,ewhonly one level of related
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concepts is added to the graph. However, this wathe case when two levels of related
concepts were added into the initial key-conceptsdince the number of concepts added
to each representation was already increased isgmify and that compensated for the
low dimensionality of the initial representationssulting from first-best mapping. In
other words, adding more n-grams to an expande@septation did not provide further
discriminative information to the classifier.

Both representations in experiments A and B yieldetler results than thEF-
IDF representation of experiment D. In experiment fi&orporating the graph edges
information shows around 2% improvement in perfarogover using the concept nodes
alone, which supports the assumption that the seenaelations provide more
information to the classifier. This information’sordribution, however, might be
constrained by the fact that the semantic inforomatvas implicitly included by adding
the related concept nodes (in experiment A), evérenwthe edges were not used
explicitly. Both forms of additional information ed in A and B can be considered
semantic information, the former being implicit, iehthe latter explicit, determined by
the corresponding edges. The use of edges andctireesponding weights is studied in
more detail in the next chapter.

As for experiment C, using the keywords extracteoimf articles’ titles to
initialize the document representation achievedgmected lower performance. This is
due to the fact that the titles contain only a $mamber of relevant terms. The title
terms can also be ambiguous or sometimes misleaeirey for human readers, as they
often include inconsistent terminology and refeemnd¢dowever, achieving @& score of

0.733 is reasonable and shows that the method dmuldseful when titles are the only
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available information, which is a common scenanieome digital libraries and archive
databases.

Overall, having the ability to incorporate exterdaimain-knowledge is desirable
in text categorization tasks, as it allows compgngdor the lack of enough information
about the topics embedded in the text, which ofteshude high level concepts and
semantic relationships within a certain domain.

Although the comparison might not seem fair atalkls, the experiments show
how the full-text features can be ‘guessed’ andegted into the proposed knowledge-
based representations, which give a good concegdtiah of the underlying topics in
the text documents, without using common statistiosh as occurrence frequencies of
terms within the text.

One limitation of the described method is the psscef concept mapping from
keywords extracted from the text to concepts defimethe external knowledge source.
On one hand, matching terms with predefined condegtriptors is not always accurate,
due to the inexact matching involved which introglsica precision/recall tradeoff.
Another problem is the fact that some concepts maoee than one meaning and could
be incorrectly matched, unless advanced word digarabon techniques are used. On
the other hand, the predefined vocabulary sourcesneaither complete nor they are
accurately defined, especially in terms of semameliationships. Such knowledge sources
require constant updating and refining, maintainagcertain level of knowledge
‘quality’, as new domain-specific concepts emergthe literature.

Another issue that should be noted here is thensitr subjectivity in the authors’

choice of keywords and titles. As a result, thdgemance of the proposed method, being



44

dependent on such information in constructing tbeudhent representation, could be
affected. Indeed, in the absence of full-text coptéinding alternative keywords less

susceptible to this subjectivity could be challenpgi

3.5 Conclusion
In this chapter an alternative knowledge-basedesgntation for text documents is
presented and applied in classifying biomedicalcles. The representations are
initialized using a few concepts extracted from #nécles’ meta-data (author keywords
or titles) and expanded into a graph structure Hudtls more domain information in
terms of concepts and semantic relationships. Ad&Bayes classifier is then applied on
the resulting graphs and the journal categoriezsséels), where the articles were selected
from, are predicted.

The results show how the commonly used textualstitzt can be replaced by
domain concepts and relationship features, whilk athieving high classification
accuracy. The proposed method also outperformaraiatd baseline NB classifier that
uses the common vector representation of the text.

In practice, the method could be useful in categogi and indexing documents
where the full-text content is not available ordmplete. A small list of available
keywords can be expanded into a rich domain-sgeipresentation using an external
domain knowledge source. This method could alsp imeteducing the dimensionality of
the documents’ feature space as well as filterimglavant terms from the text,
particularly in situations where the target docuteeare very large and classification is

computationally expensive.
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In reference to research question RQ1 stated ipt€h4, the graphs used in the
experiments show how additional information canrne®rporated into the representation
at hand. The richer representation provides a métiederstanding’ of the text by
incorporating concept relationships. This inforroatiis useful in the process of
classifying documents, as it adds more discrimueasind shared features within a topic

in the dataset, even when the full-text informai®not included in the representation.

3.6 Summary
The experiment presented in this chapter demopstiaiw a Naive Bayes classifier can
be applied to a dataset of biomedical documentsowttusing the original features that
exist within the text content. The method shows hogher-level graph representations
can be built using few key concepts and an extedomhain knowledge base. The
proposed technique is compared to a standard fodadbiat uses the full-text content and

term statistics calculated from the given dataset.



CHAPTER 4
APPLICATION: TEXT CATEGORIZATION
USING WEIGHTED EDGE FEATURES OF GRAPHS
In this chapter an extension to the previous diassion applications is presented. The
proposed method also attempts to explore how tlaghgsstructural features can be
guantified and used in a practical vector-basedesgmtation for text categorization. The
results show great improvement in performance coetpdo the commonTF-IDF

representation.

4.1 Introduction

Motivated by the representation and experimentudised in the previous chapter, this
chapter presents another method of document repetgs, where concept
relationships, extracted from the target dataset,weighted and used as features in a
vector-based representation. Compared to singlestemphrases, or even selected
concepts, existing concept relationships indicaie presence of embedded semantic
information that might express more meaning thandrthe related concepts considered
independently. For example, an article that costawo related concepts such lasin
and cognitive processs more likely to have been selected from an lart@bout
psychologythan from one aboudirain cancer The relation betweebrain andcognitive
processcan be easily identified by a human expert or siereal source of domain
knowledge as explained in the next section.

The proposed method involves identifying a numbkrc@ammonly occurring

relationships in a dataset. Those semantic relships are expressed using graph edges

46
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as described in the previous chapter, where eagbhgepresents a text document. The
text content of biomedical articles is used to ¢ats$ the graphs, where the edges are
assigned weights and used as features in claggfic&eature weights can be calculated
using statistical and structural information exteacfrom the related nodes in a graph. In
particular, the weights are calculated from theresponding nodes’ occurrence
frequencies, their inverse document frequenciesy ttonnectivity value in a graph, and
the size of their containing clusters. These wegmponents are aggregated to form a
single value that is assigned to edges existirggraph. A Naive Bayes classifier is then
applied to the set of graphs, where each grapépisesented by its edges feature vector.
Although the representation used here is basedhervéctor space model described
earlier, the selection of features and their waghihbed implicit and explicit semantic
and structural information that exist in the docuise

The classifier used in this experiment is compdared standard Naive Bayes
classifier that uses thEF-IDF scheme to validate that using the graph edgesnnafioon
improves the classification performance. The tvassifiers used are identical in terms of
learning and predicting. However, the choice otdess and the weighting schemes are

the main point of comparison and argument of thjgeement.

4.2 The Approach
The method presented in this chapter consists ofnbajor components. The first is the
graph construction part which involves mapping l@dioal terms that are extracted from
the text into predefined concepts of a controlledabulary. In addition, the relationships

among the concepts are also identified and addettheorepresentation. The second
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component is the application of a Naive Bayes iflas$o the documents represented by

their weighted edges.

4.2.1 Graph Construction

Transforming a text document into a graph followsrailar procedure as in the previous
chapter. However, in this method, the graphs anstcocted from the original full-text
documents. The first step involves identifying mtlun phrases of the text, from which
biomedical concepts can be extracted. All noun g#saare initially considered in the
concept mapping phase. This is intended to increasal by attempting to match any
noun phrase to a UMLS concept. Although this mettesdlts in a more computationally
expensive procedure and more non-biomedical coscdyging included in the
representation, it ensures that no concepts argenhis the mapping phase. Thus, some
less relevant concept nodes are eventually addéuetgraph, as UMLS includes many
non-biomedical concepts that often appear in tieealiure. However this does not affect
the representation since non-relevant concept nadegiven less weights or dropped
from the feature set as described in the nextaechigure 4.1 shows a sample text and
the corresponding concept graph with the extraotatkes and edges. It is worth noting
here that the specific types of relationships betweoncepts are not explicitly used. An
edge is added to the graph whenever the correspgrdncepts are related, regardless of

what type of relationship exists between them.
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A
... The presentation is provided, concerning the medical history,
clinical examination, conventional radiography, stereo-
rad/ography surface ropography ulrrasounds computer

graphy, an: g r focusing on
the points specific for the pathology of idiopathic scoliosis. Use
of the scoliometer became systematic in the clinical evaluation.
Quality of life questionnaires, including those endorsed by the
Society on Scoliosis Orthopaedic and Rehabilitation Treatment
(SOSORYT), oriented towards scoliotic patients, gain on popularity
and are extremely helpful to objectively evaluate the disability
related to scoliosis. Classical radiography serves as the basic
exam to determine the curve type and magnitude. UI!rasounds
computer tomography and magnetic r g are
indicated in precisely defined clinical situations. Slereo-
radiography and surface topography seem to be the most
promising techniques, however requiring standardisation. Apart
from sophisticated measurements, the experience of a physician
cannot be underestimated. High standard clinical evaluation will
probably continue to serve as a reference for other methods of

® Concept: [C0036439] Scoliosis, unspecified
= Semantic Type

-

@®

Anatomical Abnormality [T190]

Definition

Synonyms (44)

Relations (1104) REL | RELA | RSAB| String | CUI
[:1-10:9)
CHD | | ICD10 | Scoliosis, unspecified | C0036439
CHD | | ICD10CM | Scoliosis, unspecified | C0036439
CHD | | KCD5 | Scoliosis, unspecified | C0036439
CHD | | ICD10AM | Scoliosis, unspecified | C0036439
PAR | | ICD10 | Thoracogenic scoliosis | C0158505
PAR | | KCD5 | Thoracogenic scoliosis | C0158505
QB | | MSH | In Blood | C0005768
QB | | MSH | In Cerebrospinal Fluid | C0007807

UMLS

c
PAR: Parent relation
RN: Narrow Relation
SIB: Sibling Relation

idiopathic
scoliosis
SIB tomography
radiography ‘

Semantic Relationships as defined in UMLS

it of patients with

magnetic
resonance
imaging

idiopathic
scoliosis
imaging
tomography
radiography

Corresponding Concept Graph

magnetic
resonance
imaging

Figure 4.1 Sample text and corresponding graph.

A part-of-speech (POS) tagger is used to identlfgamponents of the sentences,
from which all combinations of parts of speech timatke up noun phrases are extracted.
The n-grams of the noun phrases are then lookad UpILS to check whether they are
indexed as biomedical concepts and respectivelgaddd graph nodes if the match is

successful. The concept relationships among theemimodes are also looked up in

UMLS, and a corresponding edge is added wheneradagonship exists.

4.2.2 Features and Weights

All nodes in the graphs are consequently assigoeddifferent weight components that

correspond to their significance in a documentoBek a description of each.
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1. f;4: Concept frequency, which is the number of timesmcept term appears in
a documentd. This value assigns more weight to concept ternth Wwigh
occurrence frequency in a document.

2. idf;: Inverse frequency of documents that contain a epintermi. This value
ensures that common terms in the whole datasegiaea lower weights while
rare terms are favored.

3. cw;: Connectivity weight of a concept noden a graph. This is the calculated as

the magnitude of the vector 6fx idfvalues of related nodes, c;, ..., ¢;:

J
ew; = | Y (fiq x idf;)” (4.1)
kz=1 jd J

This component assigns higher weight values to einoodes that are better
connected in a graph. Nodes that are connectedote modes of higlf x idf
values would be favored.

4. cs;: Cluster size, which is the number of nodes of ¢hester containing the
concept node in a graph. In this experiment clusters are retert@ as all
connected components of the containing graph. Thege the maximally
connected subgraphs of the concept graph, whiclgestiga certain level of
coherence of a certain topic. Therefore, a biggester implies that the contained
nodes might be more significant than others, imgeof their tight relationships
within an underlying topic.

All values are then normalized using min-max nornadion, and the product of the

weight components is calculated for each concegé nim a documend as such:
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nwiq = fiq X idf; X cw; X cs; (4.2)
The related nodes’ weights are aggregated intoglesvalue and assigned to the
corresponding edges. The weight of an eklgethus calculated as the sum of weights of
the nodes andj that it connects in a documet
eWiq = MW;q +NWjq (4.3)
The number of unique edges extracted from the dtatass initially around
60,000. To reduce the dimensionality of the feaspace, edges having weights below a
certain threshold were dropped from the feature Akhough the threshold used was
very low, the number of unique edges was drasyicatiuced to around 10% of the
original number, as most of the extracted edgesatraignificant and not representative
of the documents. The resulting number of edgaifeatused was 5802. The distribution
of the original set of edge weights, shown in Fggdr2, had a mean edge weight of 0.113
and a median of 0.073. All edges having a weigés nan 0.1 were dropped from the
dataset. In an additional classification experimeon-weighted features were also used
for comparison. In that case the values of edgeifes existing in a document were set to

1 and those of the non-existing edges to 0.
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Figure 4.2 Edge weight distribution of original feature set.

4.2.3 Classification

To classify the documents, a standard Naive Balgssifier is used [133], [134]. As
described in the previous chapter, the classifstmates the probability of a certain
documentd belonging to a certain class Using Bayes Theorem that probability can be
written as such:

P(c) x P(d|c)

5 (4.4)

P(cld) =

Since a documert is represented by its features, in this case tye® weight

vectore, and since the Naive Bayes classifier assumeghbdeatures are independent,

the likelihoodP(d|c), can be written as such:

P(d|c) = Hﬁ(ej| o), (4.5)
Jj

The features representing semantic relationshiggtmot be strictly independent

in reality due to possible correlations among thelowever, the ‘naive’ assumption of
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the NB classifier allows estimating the probabiltgd|c) using the product of the edge
probabilities regardless of the actual dependernthetsmight exist.

Each documend is represented by its edges veatowrith weight valuesew as
shown in Table 4.1 below.

Table 4.1Feature Vectors of the Documents

€1 e .. | &
dl eW 1 | eWo1 | ... | EWh1
dz eWio [ EWo 2 | ... | EWh2
dn | €Wim| €Wem| ... | €WAm

P(c), the prior probability for a class can be estimated as the relative frequency of
documents of that clasB(d) is constant since it does not depend on the casbsthus
can be omitted from the calculation.

As for the likelihood of the document features lgeselected from a certain class
¢, the classifier assumes that the values of eagk &shtures; are normally distributed
within that class with meani;. and standard deviatiow;,, and therefore, the
corresponding conditional probabilities can berneated as follows, using the Gaussian

probability density function:

~ 1 —(ew - ,
Pejlc) = —= e " Kje)?/(20jc*) (4.6)

| 2mo;c?
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In the testing phase, the predictions can be mgdehbosing the class with the
highest posterior probability?(c|d) for each document, which is the maximum a

posteriori (MAP) class. This is equivalent to:

ewar(d) = argmazeec B | [ Pg1 0 @7
J

The same Naive Bayes classifier is also used asbé#seline method for
comparison, where the feature values used ardFREDF values of document terms

instead of the edge weight components.

4.3 Experiments

4.3.1 The Dataset

The dataset used is the same as the one desaniltled previous chapter, comprised of
563 full-text articles selected from 6 journalsnoédical sciences. The journal categories
are: Psychiatry GastroenterologyNeurology Molecular ImmunologyOphthalmology
and Respiratory Diseasedn this experiment, only half of the text contesft each
document is used to build the corresponding graphmost of the topics can be inferred
from the abstracts and the introductions of thécleg. This reduction is meant to
eliminate redundancy and to reduce the computdtiom@aplexity of parsing the text,

constructing the graphs, and applying the clagdé&ning and prediction.
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4.3.2 Evaluation

The dataset is divided into ten partitions and dal@ cross validation is performed. In
each iteration one partition is reserved for tgsind the others are used for training the
model. The results are evaluated in terms of pi@gisecall, and=; scores. Precision is
the proportion of documents predicted in a certdémss that actually belong to that class.
Precision is defined aBP / (TP+FP) Recall is the proportion of documents that belong
to a certain class and were predicted so. It i;myddfasTP / (TP+FN) TheF; score is a
combined measure defined @3 X precision X recall)/(precision + recall). TP is

the number true positive$N is the number of true negativéd\ is the number of false
negatives, ané&P is the number of false positives. The precisiesal, and~, scores are
reported in Table 4.2 for both Naive Bayes classsfione using the edge feature values
(non-weighted and weighted values) and the otherguBF-IDF values of document
terms.

Table 4.2Micro-averaged Evaluation Results

Experiment Precision | Recall | F1 Score

NB (Edges) 0.907 | 0.883] 0.895

NB (Weighted Edges) 0.925 0.924| 0.924

NB (TF-IDF) 0.847 | 0.860] 0.853

4.3.3 Discussion
The results show that using the edge featuresfsignily improved the classification
performance, compared to a baseline classifier thsés the TF-IDF vector

representation. Using edge weights showed an addltiperformance gain over that of
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the non-weighted representation. Overall, the pregsiwas improved by 9.2% and the
recall by 7.4%. Clearly the use of edges and theights provided a better representation
of the documents and their content. In the proposethod, each graph edge embeds
information of the corresponding connected conaepdes as well as the semantic
relationship that exists between them. Intuitivedyn existing relationship found in a
document provides additional details of one or migics discussed in a document.
Such information provides a classifier with addiab discriminative capabilities when
making predictions, especially when the data istruotired as is the case for text
documents with many underlying interlinked topi¢sh® same or different categories.
The results presented in this chapter also attéonahswer the research question
RQ1 stated in Chapter 1 by showing how conceptioglships, represented by edges,

can be used to significantly improve a classifi@esformance.

4.4 Summary
This chapter describes an additional experimentvsigohow semantic information can
be quantified in terms of graph edge weights anedus classification. The results
further demonstrate how embedded semantic reldtipsscan improve a classifier's

performance when compared to standard represemgatio



CHAPTER 5
APPLICATION: BIOMEDICAL TEXT CATEGORIZATION
USING GRAPH KERNELS
In order to further study the usefulness of thephraepresentations discussed in the
previous chapters, this chapter introduces grapheke and describes how they can be
used in text classification tasks. Kernels allownpating similarities between graphs
using their structural features, and thus can el sparseness of the graphs. Two
different kernel functions are used: the first isnaar kernel and the second is a set-based
kernel. Both kernels are edge-based and thus cengraphs based on their underlying

structure. This method is also compared to a baselon-graph classification approach.

5.1 Introduction
Kernel functions for structured data, includingmrs, have garnered a particular interest
as they provide elegant ways of handling the cormyl®f the data. In this chapter, two
kernel functions are used to compute the simildogyween graphs that represent text
documents. The first is a set-based kernel fundiased on set matching. It computes the
overall similarity of the graphs based on the sanitiy of their edges. This approach will
evaluate two document graphs as similar if theyhlsstare a large number of concept
relationships that might exist among them. The &efunction used allows dealing with
disconnected graphs and is relatively simple tomam In addition, the results of a
simple linear kernel that computes the cosine saiityl between the edge weight vectors

of a pair of graphs are reported.
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Several approaches to text categorization usinghgrapresentations have been
explored as outlined in Chapter 3. The presentg@doagh provides a consistent method
of representing documents while generating the siaaled edges for each document
graph. While previous works have focused on nodied €ncode specific words or
sentences, the approach described here focusesgber Hevel concept graphs that
encode specific biomedical concepts as nodes ocamdent graph. These concept nodes
and relationship edges are mapped from the textaregular and controlled vocabulary
for describing documents, and thus provide a moresistent representation of the terms
used within different documents. Using such a adlel vocabulary ensures that
matches between concept nodes reliably indicatelasities between documents,
especially when the edge kernels are used.

The presented technique is applied to the samefdBbmedical text documents
collected from different journals of medicine arelated fields. The documents are

categorized by the journal they were published in.

5.2 Related Work

5.2.1 Graph Kernels

Graph kernels have been used for many learningstask both structured and
unstructured data. A kernel function is a mappiegMeen a pair of graphs into a real
number. A common preprocessing used for graph iitzggon is projecting the graph

onto a kernel space using a kernel function. Qussiple kernel function can be defined
as an inner product between two graphs and mustpdstive-semidefinite and

symmetric. Such a function embeds graphs or angr athjects into a Hilbert space, and
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is termed a Mercer kernel from Mercer's theoremrnKk functions can enhance
classification in two ways: first, by mapping vectobjects into higher dimensional
spaces; second, by embedding non-vector objects itmplicitly defined space. The
advantages of mapping objects into a higher dinomasispace, the so called kernel trick,
are apparent in a variety of cases where objeetnar separable by a linear decision
boundary. This implicit embedding is not only uddfr non-linear mappings, but also
serves to decouple the object representation frben gpatial embedding. A kernel
function need only be defined between data objectsder to apply a kernel classifier.
Such a kernel classifier can then be used for ifileestion of graph objects by defining a
kernel function between graphs, without explicdBfining any set of graph features.
Kernel functions for graphs have received muchéta recently. The simplest
kernels are defined in terms of set operations éetwnodes and edges. Some more
sophisticated developments include kernels basemmparing simple structures such as
paths between two graphs such as the shortest [paé), marginalized [137] and
spectrum [138] kernels, as well as cycles [139heDkernels rely on more complicated
structure comparisons such as between subtreepdhdGubgraphs [141]. Some rely on
direct matching of graph substructures [142]. $trikernels were used in text
classification in [143]. The feature space was gaed using all string subsequences and
the kernel measured the similarity of documentsethasn the similarity of those
subsequences of strings. [70] used a semantic lkeha¢ incorporates Wikipedia
background knowledge to enrich the document reptaten. They achieved improved
accuracy in document classification when compared traditional bag-of-words

representation.
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5.3 The Approach

As described in the previous chapter, the presenmtethod consists of two major
components. The first is the graph construction, parwhich the graphs are created in
the same way as described in section 4.2.1. Asgigiie edge weights and the feature
reduction procedures are also done in a simildridasas described in section 4.2.2. The
second component is the application of a graph éiefanction to compute the
similarities between the generated graphs and reeketassifier to discriminate between
the documents given their embedding in the kepats.

Figure 5.1 shows the data flow of the procedureexifacting concepts and
relationships as well as feeding them into a grapimel function for classification. In
brief, the process is as follows: first, a set adniedical articles are selected from
different journals; next, biomedical concepts amtrazted from the documents and
mapped to concepts from the UMLS database; conmedgionships are then extracted
and used to link the concepts, resulting in thecephgraphs; a kernel matrix is prepared
by computing similarities between the graphs; andllfy, the kernel matrix is used for
learning and prediction of the documents’ targeissés. The process of learning the

classifier and making the predictions is descriipetthe next section.
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Figure 5.1 System architecture.

5.3.1 Classifier Learning with Kernels

After transforming the set of articles into a sétgoaphs, a graph kernel function is
applied to compute the similarity between all paifsgraphs, and the resulting kernel
matrix is used for classification. Two different ged kernels were used in the
experiments.

The first is a simple set-based kernel that is usedneasure concept graph
similarity based on the number of shared edgesieldn® a couple properties that make a
set-based kernel function attractive. The firssogais that the set computations used are
easily implemented and understood, leading to adtdunction that is easy to interpret,
which results in a greater confidence in produgelgable measures of graph similarity.
The second reason is that many of the concept graphdisconnected or sparse, with
many more nodes than edges, which can pose probfemsome graph mining

algorithms. By using the edge kernel function tharseness issue is eliminated, as the
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similarity between a pair of graphs will be hightjependent on the connected
components that often represent the core of a destisntopic or key concept sets. This
kernel function is based on the Jaccard coeffici@go sometime referred to as the
Tanimoto kernel) [144], [145]. It computes the darity between two graphsandy as
the ratio of the cardinality of the intersectiontioé edges sets, andE, to the cardinality

of their union:

ExNE
K(x,y) = | |
[EUE,|
The second is a common normalized linear kernetdas the cosine similarity
between the edge weight vectors of a pair of graphe kernel function returns a

normalized inner product of the weighted vectors:

< Wy, Wy >

”Wx””Wy”

wherew, andw, are vectors of edge weights of graptendy.

K(x,y) =

Once a kernel between all graphs is computed, ttéughg’ similarities result in a
kernel matrix. This matrix can then be used in an&kbased classifier to make
predictions on new data. The kernel matrix is inpué support vector machines (SVM)
classifier and a k-nearest neighbor (k-NN) classifo make classification predictions, or

in other words, to predict to which journal a certdocument belongs.
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5.4 Experiments

In addition to the SVM and k-NN classifiers, threemmon text-based classifiers are
used: Naive Bayes (NB), SVM, and k-NN classifiess €omparison and evaluation.
These classifiers use the common vector space meggksentation, where each
document is represented as a vector of TF-IDF weighthe terms in the text [29]. This
allows validating the utility of using graph structs over the vector-based
representation, where concept relationships areconsidered in a classifier's learning
and prediction tasks. The same dataset describedhapter 3 is also used in this

experiment.

5.4.1 Model Evaluation
The training and test datasets were obtained flfwrkérnel matrix and the documents’
class labels using 10-fold cross-validation. Inhegalidation trial one set was reserved
for testing and the other nine were used for trgnirhe evaluated models include those
of the kernel-based SVM and k-NN classifiers asl welthose of the text-based NB,
SVM, and k-NN classifiers that use a vector spapeasentation of the text documents.
For each classifier the micro-averaged accuraagigion, recall andF; scores
over all documents in the test dataset are repofteel results are averaged over the ten
cross-validation trials. Accuracy)(is defined as = (TP + TN) / SwhereTP stands for
number of true positivesIN stands for number of true negatives #has the total
number of testing samples. Precisig) i& defined as the ratio of true positives to the
total number of positives predicted by the classifp = TP / (TP + FP)whereFP is the
number of false positives. Recall) (is defined as the ratio of the number of true

positives to the total number of positives preserhe test dataset:= TP / (TP + FN)
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whereFN is the number of false negatives. Thescore is defined as the inverse of the
arithmetic mean of the reciprocal values of precisand recallF;=2pr/(p +r). The

performance results are shown in Table 5.2 below.

Table 5.1Classification Performance

Classifier | Accuracy | Precision | Recall | F; Score

sk-SVM' 0.933 0.937 0.937 0.935

sk-kKNN 0.926 0.927 0.924 0.926

lk-SVM® 0.913 0.930 0.90¢ 0.919

Ik-kNN* 0.901 0.906 0.901 0.903

t-NB> 0.849 0.847 0.860 0.853
t-SVM° 0.849 0.864 0.841 0.852
t-kKNN’ 0.830 0.826 0.817 0.821]

1.Set-based-kernel SVM classifier
2.Set-based-kernel k-NN classifier
3.Linear-kernel SVM classifier
4.Linear-kernel k-NN classifier
5.Text-based NB classifier
6.Text-based SVM classifier
7.Text-based k-NN classifier

5.4.2 Analysis of the Results

It is clear, as in any classification task, tha tioice of features is a critical factor that
significantly affects a classifier's performanceonipared to text features used in
conventional classifiers, the proposed graph remtesion preserves significant
structural information that is often embedded ineat document. This information,

represented by graph edges, captures a signifeagitof a document’'s semantic concept
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relationships, and thus, provides a classifier aithetter feature set that can help in the
classification task. In practice, such featuresadten used by human domain experts for
a better understanding of the topics embedded éntétxt and allow making better
decisions and predictions in learning tasks.

The results show that using simpler models, noy @mbvides a more elegant
solution to the classification problem, but alssulés in considerable performance gain in
terms of classification predictions. On one haind $et-based edge kernel performed
better than more complex kernel classifiers atteshjh prior pilot experiments. On the
other hand, it also outperformed the weighted linkkarnel which also requires the
additional overhead of computing the feature weight

Overall, all kernel-based classifiers outperforntbd standard text-based ones,
whether using SVM or k-NN. SVM performed slighthetter than k-NN using both

kernels.

5.5 Conclusion
In this chapter, an additional graph-based apprdactext categorization is presented.
Using the graph kernels, the underlying structdréhe text documents, whereby concept
relationships are preserved, is explicitly incogied into the representation used by the
classifiers.
Two graph kernel functions are defined to comptie similarity between the

graphs using both a set-based comparison of edggsaacosine similarity measure
between edge weight vectors. An SVM classifier andNN classifier using both kernel

functions are applied on a set of documents catefom different medical journals and



66

the classification performance is reported. Theultesshow that the rich graph
representation of documents improves the classicgperformance significantly, when
compared to other commdi-IDF text-based classifiers.

In addition to the results of the previous chaptts experiment also attempts to
answer the research question RQ1 by showing howgthph structure can be used

effectively in making classification decisions.

5.6 Summary
In this chapter a graph mining approach to the lpralof text categorization is
presented. The process of building concept graptistee classification algorithm are
described through a number of experiments. Expeiaheatasets, the model
construction, evaluation, and the analysis of #sailts are presented, supporting the
argument that using the graph structure improveg#rformance of the classification

algorithm.



CHAPTER 6
APPLICATION: BIOMEDICAL CONCEPT EXTRACTION
USING CONCEPT GRAPHS

To further study the effectiveness of concept gsaphconcept extraction method that
uses graph representations of published articlevasuated in this chapter. Extracting
key concepts from text documents not only involvésntifying key terms but also
requires understanding the content through thasestddentifying relations between the
terms in the text provides a better understandftgpw the concepts behind those terms
are contextually and inherently linked to each otel to the main topic in an article. In
this chapter a graph representation of a docunseptaposed, where graph features are
used to improve the ranking of concepts extraatewh fa text document.

Scientific publications are often associated witlsed of keywords to describe
their content. Automating the process of keywortrastion and assignment could be
useful in indexing electronic documents and buddigital libraries. In this study a new
approach to biomedical concept extraction, usimgasgic features of concept graphs, is
proposed. Full-text documents are represented bphgr and biomedical terms are
mapped into predefined ontology concepts. Conagptionship weights are included in
the representations to improve the ranking proagsgotential key concepts. Both
objective and human-based subjective evaluatiomparformed. The results show that
using the relation weights significantly improvée tperformance of concept extraction.
The results also highlight the subjectivity of tbencept extraction procedure and its

evaluation.

68
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6.1 Introduction
Digital collections are witnessing rapid growth various domains. In the process of
building digital libraries, labeling or assigningat of keywords to text documents could
be very expensive as it requires great effort ame s well as domain expertise. As a
result, automating this process is of interestriganisations that maintain huge archives
of digital content.

Authors usually provide a set of keywords or lalielsepresent their articles and
describe the content briefly. The keywords are useaksociate documents with different
topics or concepts that would later help in clasaifon and searching tasks within large
collections. Nowadays, digital libraries requirattfauthors provide a set of keywords
together with their article before being indexed anblished. In some cases, this process
is automated where documents are labeled witheéhedf controlled vocabulary sources
using domain knowledge or publishing informationowéver, much of the digital
content especially from old un-indexed archives a@s unlabeled [146]. As a result,
merging those un-indexed documents into existimgtali libraries could be very costly
and in some cases infeasible without any automation

Automatic keyword or concept extraction technigboage been proposed over the
past decades to help label text documents andbee used in various applications. The
applications include: text classification prografig7], browsing applications [146],
indexing and searching documents in large collastidhus improving retrieval
performance [148], document summarization [1494 abstract generation [150]. Many

techniqgues have shown satisfactory performancenbtitclose enough to the manual
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human labeling. However, the available tools offeod keywords suggestions that can
be used by humans for different labeling purposes.

In this study, a biomedical concept extractionexysts presented. The system can
be applied to documents in the biomedical litemtdihe main goal of the technique is to
extract key concepts that represent biomedicatlestiin a way similar to how authors
assign keywords to articles. In the context of temhing, concepts can be defined as
ideas or meanings behind specific terms in a teduchent. Usually, most of the
concepts in the text are represented explicithybmmedical terms. Some examples of
biomedical concepts are protein names, gene nalisesses, or therapy types. Concepts
can also be of higher level and not explicitly niemed in the text. These are sometimes
referred to as semantic types. For example the epirtdeart Failure is a specific
instance oHeart Diseasavhich is considered as a concept itself.

Manual extraction of concepts representing papers ilarge collection is a
daunting and costly task. The difficulty lies iretfact that keywords extracted from the
document refer to concepts of different semanti@alostraction levels and range from
very specific to very general. In addition, there ao strict rules or methods of assigning
keywords to an article. In most cases authors menghe freedom to provide a number
of concepts they think are the most representatitke whole text. The task is somehow
subjective as different experts might give a déferset of concepts to the same paper.

The presented approach is based on concept grapbee whe relationships
between concepts are used to calculate concepthiseigr ranking and extracting key
concepts that are considered the most important raptesentative of a biomedical

article. Each article is represented by a grapicsire where the nodes correspond to the
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biomedical concepts of the text and the edges spored to the relationships among
them. The proposed technique is applied to a sgtubfished biomedical papers and
compared to a simpler version that does not talkioaships into account. The method
is also compared to KEA, a well-known keyphraserastion software [103]. Both
unsupervised and supervised methods are used kotlmancandidate concepts of the
graphs. The evaluation measure used is the nunfbmatwhes achieved by comparing
the extracted concepts to author provided keywfraia the text. In addition, two author
involved experiments are conducted and the resgertsults are compared to KEA and
to the author provided list of keywords, from thatheors’ point of view. The
experiments’ contribution is as follows. 1) A noweeincept extraction technique based on
concept graphs built using biomedical ontology niagpThe system uses additional
semantic relationships of the graphs in weightind eecommends key concepts similar
to author provided keywords in biomedical publioat. 2) The results show that using
the semantic concept relations in addition to omnae frequency weights significantly
improves the concept extraction process. 3) Thelteeslso show that on average,
authors prefer the extracted concepts of the pexpasethod to KEA’'s extracted
keyphrases. 4) The subjective experiments provitbtianal insight in the evaluation
process of concept extraction. The results showttieimportance of concepts cannot
always be captured by simple comparison to the kegsvused by authors for labeling

their articles.
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6.2 Related Work

6.2.1 Keyword Extraction

There are various approaches to handle the keyvextiaction problem. Many of them
are based on probabilistic approaches and staliseatures such as word counting,
inverse document frequencyDfF) and so forth. In [151], the authors identifiece th
keywords of a document by using the inverse docunfisguency for finding the
important nouns and their connectivity with otheuns and verbs. Similarly, [152] used
term frequency to emphasize keyphrases in targairdents based on the occurrence of
words. They also made use of the HTML structuremeb pages to evaluate term
importance in the web page in an attempt to idgmé@neral concepts. Mei et al. [153]
proposed a probabilistic approach to label multimbmword distributions with
meaningful phrases and cast the labeling problemsnasptimization problem involving
minimizing the Kullback-Leibler divergence betwesard distributions and maximizing
the mutual information between a label and a topadel. Their experimental results
show that this approach is effective and robustnwéugplied on different genres of text
collections to label topics generated using vargtasistical topic models.

KEA is a widely used algorithm for extracting keysds from text documents. It
is usually evaluated by comparison to the keywopdsvided by the authors. For
instance, based on a large test corpus, KEA's pedoce was assessed by comparing
the extracted keyphrases to the ones chosen bgatiements’ authors, when a fixed
number of keywords are extracted [103]. Arguingt taadocument’s author-specified
keyphrases might not be its best possible set pivéeds and might not be exhaustive

and appropriate for the purposes of summarizafithy] described a human evaluation
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of KEA. Their results show that KEA is also ableetdract good keywords, as measured
by human subjects. However, KEA was primarily usedextract keywords and was
evaluated based on its capability of extractingwkayls. Little work has been done to
explore its ability of identifying key concepts fnotexts in biomedical domain. In this
study, KEA'’s ability to extract key concepts, based both objective assessment and

human judgment, is evaluated.

6.2.2 Biomedical Concept Extraction

One of the most widely used concept extractionesystin the biomedical domain is

MetaMap [57] which maps biomedical terms to consaptthe UMLS Metathesaurus

[30]. It uses a knowledge intensive approach basedsymbolic, natural language

processing and computational linguistic technigteesdentify all biomedical concepts

from textual input. [148] evaluated the performantd/etaMap using a selected subset
of curriculum documents and found out that MetaNtigntified key medical concepts

with a recall of 81% and a precision of 89%. A studported by [155] compares the
performance of MetaMap against that of six peopkeir results indicated that MetaMap
was able to identify most concepts that were regesi in the UMLS and also many
other concepts that people did not.

In reference [156], the authors used a domain babetibnary look-up for
recognizing known terms and a rule engine that lmareasily modified to identify a
different class of entities for discovering newntsr Their results indicated that the
combination of dictionary look up and rules wasedol achieve a precision of 87% and a
recall of 94% on the GENIA [20] 1.1 corpus for exfing general biological terms based

on an approximate matching criterion. Similarly5T] developed a biomedical concept
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extraction system called POSTDOC which also used §Mletathesaurus to recognize
relevant main concepts terms. They evaluated POSI®@bility to identify UMLS
Metathesaurus biomedical concepts in medical schemture outlines and found the
precision and recall varied over a wide range. Aaptdictionary-based biomedical
concepts extraction approach was developed by [188fad of capturing all words of a
concept, their approach, referred toapproximate dictionary lookugaptured only the
significant words. Using UMLS as the dictionary asaipared to basic exact dictionary
lookup their system was able to increase the réaatt 26% to 58% when evaluated on
the GENIA corpus.

Heuristic approaches were also applied to biomédamacept extraction. In [114],
the authors proposed a graph model to simultang@xstact keywords and summaries
from a single document based on an iterative retefoent method. In [159], a modified
Markov heuristic is proposed to identify the reletvaoncepts in the biomedical domain.
Their idea is to automate the retagging of centairbs as adjectives when in the vicinity
of other parts of a noun phrase by incorporatingteyg sets of curated phrases into the

training process.

6.2.3 Semantic Features in Text

Semantic approaches are also widely used to igeimtiportant terms that describe the

topic of a document. In [108] the authors exploité semantic structure at both

sentence and document levels. Their models combsiatistical features and the

conceptual ontological graph representation thateseents the sentence structure while
maintaining the sentence semantics in the origo@tument. Similarly, linguistic

knowledge such as syntactic features is often adojt the keywords extraction task.
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[160] observed the performance of keyword extractising simple statistical measures
as well as syntactic information. The experimentasults indicated a dramatic
improvement of the keyword extraction performandeem syntactic information was
added to the terms as additional features. In §64imilar technique that uses semantic
hyperlinks that exist in Wikipedia to connect nodes concept graph is proposed. The
concepts are ranked based on frequency and limdnsgl scores. In [161] an ontology-
based conceptual representation of biomedical obiigeproposed. The authors exploit
semantic relationships to enhance scientific doreaarch experience.

In [162] a news video retrieval technique thatizei$ extracted concepts from
video shots is described. The semantic relationwdsn concepts are used to build a
graph and the interactions between the conceptsisae as features for classification.
Huang et al. [111] presented a keywords extraciigorithm that treats each document
as a semantic network that holds both syntactic statistical information. A semantic
network model developed treats each term as a aode relation between two terms as
an edge. Their supervised system was able to praadoverall precision of 80%. In
[163] the authors present KEA++ which improves adtc keywords extraction by
using semantic information on terms and phraseangl@ from a domain-specific
thesaurus. Their approach to keyphrase indexing asmachine learning technique and
semantic information about terms encoded in a stred controlled vocabulary.
Knowing that a keyword of a text should be semailfificelated with the words of the
text, [110] designed a lexical chain that holdseaaf semantically related words of a
document and used it to represent the semantieibof a portion of the document.

They presented a keywords extraction method thed tle features based on the lexical
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chains in the selection of keywords for a documbmnf164] semantic relationships were
used to derive concept hierarchies from documesiisgusubsumption, a type of co-
occurrence among concepts. The resulting hieraresgmbles a directed acyclic graph,
mainly showing parent-child relationships betweepa& of topics extracted from the
text. They used subsumption as a means to assoelated terms, by checking whether
the documents in which the child term occurs aselzset of the documents in which the

parent term occurs.

6.3 The Approach
In this section the proposed approach is preseritied. details of graph construction,
concept mapping, and concept ranking are explaiféglire 6.1 shows the system
diagram. Step 1 is the named entity recognitionRINErocess. Step 2 is mapping the
recognized entities to concepts from a controlledabulary database. Step 3 is the
process of connecting related concepts. Step dniking the concepts by their weights
and Step 5 is merging similar concepts into onellabhe detailed description follows in

the next section.
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Figure 6.1 Graph construction and concept extraction.

6.3.1 Graph Construction

As previously mentioned, each full-text documentapresented by a graph of concept
nodes and relationship edges. For each text doduatiethe concepts are identified and
added to the graph as nodes. To extract the cantrept the text, LingPipe’s [19] NER
package (trained on the Genia corpus [20]) is tieedentify biomedical named entities.
The extracted named entities are biomedical kegasran the text like5 and 10 IM
parthenolide”, “endoscopy, or “myocardial infarction”. To ensure that the identified
named entities correspond to a controlled set chbolary, the phrases are mapped to
concepts from the UMLS database (Step 2). Mappegrtamed entities into UMLS
concepts involves comparing all potential subsginfithe keyphrases extracted by NER

since those keyphrases are sometimes longer tlaoadticepts in UMLS and contain

additional adjectives or terms. In case multimaecepts can be mapped from one named
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entity string, all corresponding concept nodesaded to the graph and the ones with
higher weights will be favored in the final conceptraction process as described in the
next section. For example, the phrdseute renal failure” can be mapped to the
concepts‘acute renal failure” and “renal failure” from UMLS and thus both concepts
are added to the graph. The mapping process catome through exact and inexact
matching of strings between the text and UMLS. @lthh inexact matching would
increase recall, it would decrease the precisiormiaypping irrelevant concepts. Exact
string matching is used in this experiment, sinoe number of identified concepts is
large enough for the purpose of the proposed meflimiind 128 concepts per full text
document). Also, UMLS contains millions of recorttgat span most of the known
biomedical concepts and are available in diffecembmon written formats.

The graph nodes hold the string descriptions ofheaoncept and the
corresponding concept unique identifiers (CUIs).céncept in UMLS has only one
unique identifier and a set of corresponding stdegcriptions. A concept string might
refer to multiple concepts with different meaningkereas a CUI refers to only one
concept associated with one or more string descgpiConcept names might slightly
vary because of the different vocabulary sourceggetein UMLS. The multiple CUIs
are implicitly disambiguated by possible relatidghat might be added to the graph. For
example, the terrbanglionmight refer to 2 different concepts in the bioncatidomain.

In UMLS, the first (CUI=C0017067) i® cluster of nervous tissuand the second
(CUI=C1258666) isa tumor-like lesion.If concepts likeNerve Synapse and Basal
Nucleusare present in the same text@anglion then the first meaning is implicitly

suggested and that will be emphasized later imikighting process.
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Mapping the biomedical entities into predefined azpts also allows looking for
possible relationships among them within the orgpldfter adding all concept nodes to
the graph, the related concepts using UMLS candbatified. Relations in UMLS are
based on the CUI as a reference key. For eachopaiodes, if a semantic relationship
between them exists in UMLS it is added as an dumgeeen the corresponding nodes
(Step 3). As in previous chapters, the relatiorslape of semantic nature and include

synonym, similar, narrow, broad, qualified-by, patrechild,andsibling, relationships.

6.3.2 Concept Weights
Three weight components are used for ranking theomcepts to be extracted (Step 4).
1. cf: The concept occurrence frequency in the text ohacu.

2.idfw: The inverse document frequency weight of a concep

log(idm)

= (6.1)

idfw; = 1—(

whereidf; is the number of documents teinoccurs in, andN is the total nhumber of
documents indexed. This weight is similar to tlagiional inverse document frequency
(IDF) measure [165] except that the index is built befand only once using a fixed
dataset of over 20,000 Pubmed documents spanrffiegedit topics. This weight ensures
common biomedical concepts are given lower weighis to their lower discriminatory
value.idfw is a value between 0 and 1 where lower valuesatdithat a concept term is
a very common one in the biomedical domain.

3. cw: The connectivity weight of a concept node. Thaght quantifies the importance
of a concept in terms of its relationships to ottmmcepts in the text. In other words, it is

a measure of the node connectivity within the grapto versions of this weight are used
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in the experiments. The firstya) is simply the number of edges of a concept ndtie.

second §wy) is the magnitude of the relations weights vetoia concept:

Wy =Mn;, Cw, = /271‘ cfi?; (6.2)

wheren is the number of concepts related to conceypidcf; is the frequency of a related
concepti. The value oftw, not only captures how much a concept is relatedther
concepts but also how much it is related to impdrtancepts of high frequencies in a
document. Later in Section 6.4, the results dematesthat usingw, yields better results
than usingcw;.

The first two components are combined iofalf, a weight similar to the well-
known TF-IDF measure that is widely used in information re@e\165]. This measure
ensures that concepts of high intra-document atet-document significance are given
higher scorecfidf is further normalized using min-max normalizatias, shown below,

before it is combined with thew weight:

. (cf . idfw) - min_cfidf
cfidf = max_cfidf - min_cfidf

(6.3)

where min_cfidf and max_cfidf are the minimum and maximurcfidf values in a
document.

The connectivity weight is also normalized as such:

cWw - min_cw
cw = (6.4)

max_cw - min_cw

wheremin_cwandmax_cware the minimum and maximum connectivity weighuea

in a document.
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The overall weight of a concept is the producthef 2 normalized weights:

w = cfidf . cw’ (6.5)

6.3.3 Merging Similar Concepts

Before the top ranked concepts are extracted, airodncepts are merged and given one
label to avoid redundant results and to achieveebetnking (Step 5 in Figure 6.1). For
example, the conceptganglion, ganglion cell,and retinal ganglion celilefined as
different concepts in UMLS, are merged and laba&'danglion / ganglion cell / retinal
ganglion cell! Concepts are merged if either their stem wordigas are the same or if
one is a substring of the other and the stringadis is below a certain threshold. The
average of both the edit distance and the Jacdatande [166] are used. Based on the
weighting scheme described earlier, the top terceptis are extracted from the ranked
list of concepts.

It is worth mentioning here that in an earlier p#tudy clustering was applied to
the list of top concepts in order to extract thp toncepts from each cluster. The idea
behind this was to span all different key topicsthe document and avoid extracting
redundant concepts with similar meanings. This dase in order to incorporate the
semantic similarities in addition to the string Bamties described above. k-medoids, a
variant of the k-means algorithm, was used, whieeedistances between the nodes of a
graph were calculated using string and node reliship distances. Compared to the
author provided list, this approach performed dlighworse than the one described
earlier. For this reason this technique was notl uiséhe final experiments as it did not
show significant improvement over the proposed wethAlso the merging procedure

described above took care of much of the concepispgng. One interpretation of the
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fact that clustering did not show significant impement is that in many cases authors
choose similar keywords that are not necessaridyindit enough to be in different

clusters. After all, most of the key concepts happe be related somehow within a
document and although the publication authoritieghinrecommend that the author

keywords be distinct, generally it is not a strefjuirement.

6.3.4 SVM Ranking

The method discussed above is unsupervised and thekconcepts by the composite
weight described in Section 6.3.2. In addition, thro semi-supervised version of
ranking is presented in another experiment wheameodel is built using the same graph
node weights as features. In particular, the Supgector Machine ranking algorithm
SVM™@* [167] is used. Using the model built from the niag data, the SVR™
classifier predicts the ranking of the candidatecepts, where the ones ranked towards
the top have a higher probability of being key @pts representing an article. More
usage details are discussed in the experimentose&VM™ is based on Vapnik's
Support Vector Machines [168], [169] and aims talesra new set of objects as
accurately as possible by learning a function fromeference examples. In SV a
model can be learned to select a ranking functromfa family of ranking functions
which generalize well beyond the training data. $¥fvhas been applied to document
retrieval [170], where click-through data was usedleduce pair-wise training data for

learning ranking models.
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6.4 Experiments and Evaluation
To evaluate the performance of the proposed tedenigur different sets of experiments
were conducted. The first two experiments provide objective comparison of the
approach to KEA. The other two are subject-basatuations where the articles’ authors
were involved in the evaluation. The results ofreaxperiment show a different aspect
of the usefulness and effectiveness of the propegem in addition to the subjectivity

of the labeling process.

6.4.1 KEA

KEA is an automatic keyphrase extraction algorittheweloped by members of the New
Zealand Digital Library Project. It uses the NaBa&yes machine learning algorithm for
training and keyphrase extraction. KEA builds adpron model using training
documents with known keyphrases, and then the mededed to identify keyphrases in
new documents. The implementation of KEA used i éxperiments is available for
public [171]. KEA was trained using 450 biomedidatuments to tune its parameters of
the extraction algorithm and learn a model that wsed to extract keyphrases from the
test documents. Every phrase that occurs in thardent is thus a potential keyphrase of
the document. Using KEA, ten keywords from each desument are extracted and the

precision results are compared against the propostaod.

6.4.2 Objective Comparison
In this section, the two experiments performedual#ate the proposed method against
KEA are presented. The first is based on unsupsgvianking of concepts while the

second uses a semi-supervised ranking algorithedb@s support vector machines.
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6.4.2.1 Unsupervised Ranking. In this experiment, the performance of the proposed
technique is compared to that of KEA, first usihg ¢fidf weights only and then using
the compound weighw = cfidf . cwthat incorporates the connectivity weight. The two
versions of the connectivity weight described earéire used; the first is the number of
edges or relationships of a concept node; ) and the second is the magnitude of the
frequencies vector of related conceptssf. 100 Pubmed articles of different topics were
used in this experiment. The chosen articles corta author provided (AP) keywords
in the text. In total there were 651 keywords asged with the 100 documents (on
average, 6.51 keywords per document). To determhether the output concept strings
match with the original AP strings, the similarityeasure described below is used. A
match occurs if any of the following is true:

1. Exact match: both strings are exactly the same.

2. Stem match: stem words of both strings are the same

3. Substring match: AP string is a substring of output

4. Relation match: a relation exists in UMLS betwearA® keyword and output.

5. String distance: the string distance is below aa&@erthreshold (average of Edit and

Jaccard distance).

Note that this is not intended to be an exact matetiuation since it would fail to
match many relevant results. Although the relatimich is somehow weak compared to
the other criteria, it is used here as a means\Valuating output that can be regarded as
semantically close to an author’s keyword. Pralificthe related concepts could serve as
synonyms or other related alternatives to the oaigAP keywords. This match check is

applied to the proposed algorithm (CE) and to KEé&Usput and thus is used as a relative
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measure to compare the two methods. The relatipasine determined using the same
method described earlier in the graph constructéution.

The experiment shows that the proposed methodnparable to KEA which is a
leading keyphrase extraction software based onparegised learning technique. The

number of matches for the top 3, 5, and 10 extdactacepts are reported in Table 6.1.

Table 6.1Number of matches for both CE and KEA

Top 3 Top 5 Top 10

Matches' | Avg® | Matches | Avg | Matches | Avg

KEA 214 2.14 331 3.31 610 6.10

CE 205 2.05 300 3.00 480 4.80

CE* 213 2.13 311 3.11 526 5.26

CE**> 218 2.18 331 3.31 556 5.56

1. Matches: total number of matches out of the ABlkeywords.

2. Avg: the average number AP keywords matchegaper.

3. CE: is the concept extraction technique uslivegoccurrence frequenciesly.

4. CE*: is the concept extraction technique usihg occurrence frequencieand the additional
connectivity weight cw

5. CE**:. is the concept extraction technique usitig occurrence frequencieand the additional
connectivity weight cw

The results show that when the semantic relatipsshre used in ranking the
concepts, the number of matches increases sigmifica&%, 10%, and 16% in the case
of 3, 5, and 10 extracted concepts, respectivebmndJthe weights of related concepts
also shows an improvement over using only the nurobeelated concepts\i, vs. cw).

This further confirms that capturing additional drhation from the relationships
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enhances the ranking procedure. Compared to KEAp&korms slightly better in the
top 3 extracted concepts list, whereas KEA’s pengoice is better for the top 10 list.
6.4.2.2 Semi-Supervised RankingFor this experiment, the training set used consikts
137 documents and the test set consists of 100nuats (673 AP keywords). Each
concept in a graph is considered as a sample im tb@hing and test sets. The feature
weights used in this experiment are the occurrércpiencycf.idfw and the connectivity
weightcw, described in section 6.3.2. The target value usede training process is set
to 0 when the concept does not match an authoiged\keyword and is set to 1 when it
is an exact match, stem word match, or substringgim&elationship matches (where a
concept from the paper is semantically relatedntdAR keyword) were not used in the
training. However they were included in the testadat for evaluation purposes (The
target value for the relationship matches wasa#8t3). It is worth noting here that using
the relationship matches during the training phaseduced an expected precision/recall
tradeoff. Although the classifier ranked more rethtconcepts towards the top, the
number of exact matches significantly dropped. Hwat reason, those relationship
matches were not included in the training procesthe final experiments. In practice,
this tradeoff can be optimized according to theliapppon and user requirements. For
example, the target value can have more specifiesan the range 0 to 1 depending on
the type of relation between a concept and an AR&ed. Also, some relations that exist
in UMLS might be considered irrelevant and thus barexcluded from both the target
value calculation and the connectivity weight cition. A sample of the test set input

used in SVMM™¥is shown below (similar format is used for thertireg set except that the
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target values can only be 0 or 1). The columnsedsgely, are: the target value, the
document ID, feature weights, and descriptiondhiefdocument and concept.

1.0 qid:1 1:3.55828061479804 2:3.7816397559878D&@39#Werner syndrome#
0.0 gid:1 1:2.22097590495905 2:1.92872837015092308639#aging#
0.5 qid:1 1:15.90921796570065 2:5.2682944437482898639#recombination#

The results of this experiment are shown in Tab®b@low. Using both the occurrence
frequencies and the connectivity weight resultedhi@ best performance in terms of
number of total matches. Figure 6.3 shows the numbexact matches compared to the
number of relation matches using KEA and CE (witid avithout the connectivity

weights). CE outperforms KEA when the top 3 consept extracted in both exact and
relation matches. As the number of extracted cdsceprrease (to 5 and 10) KEA
extracts more exact matches but CE achieves higloall as it extracts significantly

more related concepts.

Table 6.2Number of Matches using SVRI

Top 3 Top 5 Top 10

Matches | Avg® | Matches | Avg | Matches | Avg

KEA 169 1.69 259 2.59 461 4.61

CE 163 1.63 239 2.39 363 3.63

CE** 202 2.02 307 3.07 511 5.11

1. Matches: total number of matches out of the SPXkeywords.
2. Avg: the average number AP keywords matchegaper.
3. CE: is the concept extraction technique usiegattcurrence frequencies only.

4. CE*: is the concept extraction technique ushegdccurrence frequencies and the additional caiwitgc
weight cw.
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Figure 6.2Number of extracted concepts: exact vs. related.

KEA™: The number of exact matches using KEA

KEAZ The number of relation matches using KEA

CE“ The number of exact matches using CE withoutiorlaveights
CE?% The number of relation matches using CE withelstion weights
CE™: The number of exact matches using CE with retatieights
CE?: The number of relation matches using CE withtreteweights

6.4.3 Author-Involved Experiments
In most cases the author keywords list serves ggod representation of the paper in
terms of key concepts. However, the author's chomght be affected by personal or
external factors. For instance, the keyword lisghmibe limited to certain number of
keywords or the author might provide a list thatr@ases the likelihood of publication of
the paper [172]. Moreover, the list is not alwagshprehensive enough to cover all ideas
or topics of a paper. For such reasons comparirtgeriginal list of keywords might
not be sufficient and thus in the next set of expents the authors’ feedback is
considered to further evaluate the capabilitiethefproposed concept extraction system.
The author-involved experiments are divided into wfferent sets. The first is

used to compare author provided (AP) keywords tacept candidates selected by the
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proposed concept extraction (CE) algorithm. Thipegxnent is intended to validate the
effectiveness of the concept ranking algorithm a&odustify the importance of the
authors’ feedback in such evaluation context. Téesd set was used to compare the
performance of the CE technique to that of KEA'mg$uman subjective judgment.
6.4.3.1 CE vs. AP. The first dataset comprises 32 scientific papers vafious
biomedical topics chosen from several Elsevier l@dical-related journals. 18 authors of
those papers were contacted and asked for thgrrihdghe evaluation. The authors are
either medical doctors or researchers in biologscances. For each paper, the original
AP keywords in the text were extracted and the gsed CE algorithm was applied to
the text to extract the top ten candidate key cptsceA list combining both the CE
results and the original AP keywords was then fatni2uplicates or merged concepts
(for example, ganglion cell’ and ‘ganglion cell / retinal ganglion ce)l'are only
displayed once. The shuffled list of concepts agygllords was then sent as an electronic
survey form and the authors were instructed to rtteglones they think are key concepts
of the paper. No limit on the number of items torbarked was specified. The authors
were allowed to mark as many concepts as they titoae relevant key concepts.
Moreover, the authors were not asked to provideatiagy feedback in this study. On
average, each author was asked to evaluate tweewfdwn papers, and every paper was
evaluated by only one of its authors.

From the results shown in Table 6.3, it can becedtithat the authors have
chosen 85% of the AP keywords that were originadlied in the paper. Interestingly,
they left out 15% which they did not choose as ¢é@ycepts. As for the CE concepts, out

of the 10 concepts extracted for each paper, th&g schosen on average 4.6 as relevant
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key concepts (3.5 of them are additional conceptspart of the AP list). On average,
more than 8.4 concepts are picked per paper whéredseywords section contains only
5.56. This shows that the AP keywords list might alavays cover all key concepts in a
paper. The precision of CE is 0.56 whereas thaf®fis 0.61. The author-provided
keywords are expected to give better performamsdtse However the precision of CE is
not far off, and thus the extracted concepts canegarded as good candidates for the
documents’ keyword lists. Another interesting resliiserved in this experiment is that a
substantial proportion of concepts (35%) extracksdthe CE algorithm were not
originally present in the keywords list but werdested by the evaluators as key

concepts.

Table 6.3 Author-evaluated Results: AP vs. CE

AP keywords | Checked | Total | Precisiorf

Mean 4.72 (85%)| 5.56 | 61%

CE concepts | Checked | Total | Precisiort

Mean 4.62 (46%)| 10 56%

1. The number of AP keywords selected by authorglasant key concepts (including overlaps with CE)

2. The proportion of checked AP keywords out otladl checked concepts for a paper.

3. The number of CE keywords selected by authorslasant key concepts (including overlaps with AP)

4. The proportion of checked CE keywords out ofthé checked concepts for a paper. Note that CE
Precision + AP Precision > 1, that's because thezesome overlapping terms.

In addition, most CE candidate concepts that wa@sen by the authors were
ranked among the top 5 in the list. Figure 6.3 shélre number of relevant concepts
grouped by their rank. The figure shows the coasmst of the proposed technique in

terms of ranking concepts.
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Selected Key Concepts

Figure 6.3CE ranking vs. frequency of selected key concepts.

6.4.3.2 CE vs. KEA. In this section the results of the second authweolired experiment
are presented. This experiment compares the prdpes@nique to KEA. The dataset
used in this experiment is composed of 25 biomédexhnical papers, collected from
the Elsevier’s electronic archive as well. Thergevgl authors who participated in this
evaluation. The procedure is similar to the presione. In this experiment the top ten
results from each of CE and KEA'’s output for eaapgr are shuffled and combined into
one list. Again, duplicate items are only listecten

Table 6.4 below shows the results for the 25 papenseach technique (CE and
KEA), the precision is calculated as the proporibdritems selected as key concepts out
of the total number of key concepts chosen by thkeas.

Note that in Section 6.4.1, CE and KEA'’s performesmwere analyzed based on
the AP keywords list using string and relation rhatg. In this experiment, the

assessment is based on the authors’ preferences.
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Table 6.4CE vs. KEA Under Human Evaluation

CE KEA

Selected | P> | Selected P

AVG 3.64 0.60 2.76 0.4G

Stdev 1.75 0.22 2.03 0.272

1. Average number of selected key concepts
2. Precision

The mean precision of CE is 0.6, compared to 04KBA. A t-test was
performed on the mean value and the result vakd#tat the mean value of CE’s
precision is significantly larger than that of KER-Value=0.0536). The results show

that the authors prefer CE’s extracted concepkdEd’s keyphrases.

6.5 Discussion
The results of the objective comparison show thatgroposed system is comparable to
KEA in terms of keyword suggestions. As the numbieextracted concepts increases,
KEA performed better in exact matching of keywomdsile the proposed technique
provided more related matches (higher recall), @aflg in the semi-supervised version
discussed in section 6.3.4. This is an expectedigioa/recall tradeoff that arises when
semantic relations are considered. One componantcdn be further improved is the
mapping process of terms in the text into UMLS @&pts. This is a non-trivial task and
may require advanced natural language processtighitpies since not all forms of

biomedical terms are present as concepts in UMLS.
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Based on the author-involved subjective evaluattbe, following points were
observed. First, a significant number of conceptsich were chosen by authors as key
concepts, were not originally present in the keysolist of the paper. Second, some
original AP keywords of a number of papers were selected by the authors as key
concepts of those papers. This suggests that tweoke list is not exhaustive and does
not represent all the concepts contained in a padso, as mentioned in [172], some
keywords might be listed for other purposes whbeeskeyword list may not necessarily
be a precise representative of a certain articlethEBrmore, the authors who participated
in the evaluation are all coauthors of their pagars thus their opinions on whether the
terms are key concepts or not may conflict. Itfiero not uncommon that even experts
might have biases or disagreements on the choitesrok [156].

In the subjective evaluation of CE vs. KEA, theufes confidently support that
CE outperforms KEA and provides more desirable ¢@mycepts. Also, Figure 6.4 shows
that most of the selected key concepts are ranigidih the list of concept candidates.
This shows that the proposed technique is quitece¥ie in terms of weighting and
ranking. The results also validate the assumpti@t the author-involved subjective
experiment is necessary to supplement the objecti@eriment. Compared to the
automatic string matching evaluation, human judgnamd reasoning allow authors to

pick as many or as few concepts from the candidsttas they see fit.
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6.6 Conclusion
Extracting concepts from full-text biomedical doamts is an important but challenging
task. In this chapter a new approach to conceptein is presented, where concept
graphs and their semantic features are used faghtveg and ranking concepts in an
article. Predefined ontology concept relationshgps used, in addition to traditional
occurrence frequency weights, to rank the top gotscextracted from a text document.
The proposed technique yields promising resultsnwbealuated against the author-
provided keywords and against KEA. Referring toeeesh question RQ2, this
experiment shows how the structural features ofplgga that represent concept
relationships in the text, enhance the ranking gsecin concept extraction tasks,
especially in terms of recall. This is emphasitsdthe high number of non-exact
matches that could be ignored in other baselinenodst The developed automatic
concept extraction technique can help authorsheliiag their scientific publications by
recommending keywords. The technique can also bd irs document summarization
applications and indexing algorithms of digitarébes.

Exploiting additional features of concept graphaldofurther improve the
ranking procedure. Concept extraction techniquesatso be applied to other domains
such as the general Web and educational documdiectgans. In addition, concept
extraction can be incorporated into text categtiomaapplications where the extracted
concepts serve as a reduced feature set of fulldi@suments, as pointed out in Chapter

3.
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6.7 Summary
In this chapter a concept extraction technique tis#s graph representations of text
documents is presented. The process of construgiaghs from text documents,
demonstrating how they can be used in ranking kecepts, is described. The results
show that using graph structural features imprakiesranking of key concepts extracted

from text, especially in terms of recall.



CHAPTER 7

SUMMARY AND FUTURE WORK

7.1 Conclusions
In this work a number of experiments have beeniatutb explore how text documents
can be represented by graph structures that aliptudng the semantic relationships of
the content and how this additional information t@&nused in learning algorithms. The
results attempt to answer the following researatstjan:Can graph representations of
text, in which relationships among concepts are pseerved, improve the
performance of text mining applications, when compeed to baseline methodsThis
qguestion is divided into two parts, each studietbugh a set of experiments and
evaluations. Chapters 3, 4, and 5 present diffeapproaches to the problem of text
categorization and attempt to investigate how cphoelationships and external related
concepts, captured in graph form, provide a betégresentation for classifiers to
discriminate text content and to make more accucddssification decisions using
supervised learning methods. Chapter 6 presentgthooh of concept extraction and
attempts to investigate how the structural propsrtf a graph provide additional useful
attributes for a text document’s feature set torowup the ranking of key concepts present
in that document.

In Chapter 3 the first method of representing tdetuments by graphs is
presented. The graphs are constructed using a kdgedbased approach that is less
dependent on the text content. The representatéonbe constructed from minimal
information extracted from the target documentss Tepresentation encodes concepts

and their relationships in the form of graph nodesl edges by mapping them into

95
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ontology-based concepts and relationships. Thih\edeshows how a knowledge-based
representation can be used as an alternative gabtpresentation in the absence of full-
text content. A Naive Bayes classifier is appli@daoset of biomedical documents using
the aforementioned representation. The results shatwthe proposed representation can
match the performance of a standard Naive Bayessifilx that uses statistical
information from the full text and can outperfortowihen edge-information is used in
calculating class probabilities.

In Chapter 4 the previous experiment is extendedding weighted graph edges
as document features. The edge weights are quehtidi reflect the significance of the
corresponding concept terms and their relationsimphe text and are used as feature
vectors of the documents. A Naive Bayes classifiesipplied using the edge features
representation. The results show a substantiabpeance increase when compared to a
baselineTF-IDF Naive Bayes classifier.

In Chapter 5 graph kernels are introduced and egpdi the graph representations
of text documents. The kernels are edge-based amgpare the graphs based on their
underlying structure. Two different kernel funcitoare used to classify the graphs using
a k-NN and an SVM classifiers. The results outpenféhe baseline text-based methods
and further show how the concept relationshipsadea used as an effective feature set
in document categorization.

In Chapter 6 a method of concept extraction froxt tlbocuments using graph
representations is described. Graph structuralifeatare used to enhance the ranking of
key concepts of a document and to extract a se¢mksentative concepts that can be

used as labels or tags for that document. A sekpé&riments is presented demonstrating
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unsupervised and semi-supervised ranking approadftes method is compared to a
common key-phrase extraction tool. The proposetinigaes demonstrate a practical
method of assigning keywords to documents and saosignificant improvement in

terms of precision and recall.

7.2 Contributions
The main research contributions of this study te field of text mining are listed as
follows:

 The work presents a practical graph representdteomework for several text
mining applications, through experiments and euvalna of text categorization
and concept extraction techniques. The work iscoostrained to those specific
applications, as graph representations can be emppb similar text mining
applications such as document summarization, dostime concept clustering,
and topic identification.

* The proposed methods emphasize the importance ppésentation, semantic
features, and structural properties and their impecthe underlying learning
algorithms. The motivation behind using those el@més to embed additional
information that could be useful in making decisiam predictions in text mining
applications.

« The methods can be applied in literature-basedodesy applications, where
insights and hidden relationships could be mineainfrlarge collections of

knowledge buried in text documents within certaiomains. Improving the
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representation, classification, and ranking of telments is key in finding

associations between topics in a dataset.

7.3 Limitations
The discussed methods rely on domain knowledge odnstoucting the graph
representations of documents. This could introcutienitation in implementation when
such knowledge is not available or when the dai@dses not represent a specific domain.
One could overcome this limitation by using genetaimain ontologies or controlled
vocabularies such as WordNet or Wikipedia to mapcept terms from the text and
extract their corresponding semantic relationshipternatively, natural language
processing methods can be applied to the contesittact relevant semantic knowledge
from the language structure and the syntax. Inasdos where external knowledge
cannot be incorporated into the representationwti@e dataset could be mined for links
that represent semantic relationships or interastioetween the entities present in the
text, perhaps using statistical learning methodsamoccurrence information, clustering,
or classification to predict unknown relationships.

Another consequent limitation present in the meshiees in the concept mapping
process. Concept terms present in the text mightaiveays be found in the domain
ontology used. Inexact matching can alleviate fseeé of not finding exact matches but
could introduce a precision/recall tradeoff as same-relevant concepts can be mapped
to the concept terms. A domain ontology should jpeéated regularly to ensure integrity

and information quality as new concepts are addedpoated in the data source. In
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addition, building representations using differerapping techniques could also be tested
to find an optimal representation for a certainlaggion.

As far as computation and scalability are conadrpeocessing graphs can be
problematic as the size and number of document®ase in the target dataset. The
complex nature of graphs often poses limitations computation and algorithm
development. In this case, parallel or distribut@sironments could be used to alleviate
the computational complexity and to allow efficigmbcessing of large graphs, such as

those representing books or documents collected fhe web.

7.4 Future Work
The methods presented in this study can be extend#ifferent directions of research in
text and graph mining. Additional structural feawirof graphs can be explored to
emphasize concept significance and centrality imloeument. This could help in
formulating new weighting techniques for documesatéires. Methods of network theory
and link analysis can be borrowed to allow findbegjter associations between pairs of
concepts, to improve the ranking of concepts, andaliculate centrality measures of
concept nodes. In addition, graph kernels can kbduexplored to find better ways of
computing similarity measures between graphs wipghiedd to document classification
tasks. Paths within a graph can also be studiéddaelative distances between nodes or
subgraphs where those distance measures can berusearning algorithms. Graph
indexing, frequent subgraphs, and graph matchicgniques can be applied to text

documents to enhance indexing, retrieval, and ifieatson of those documents.
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Additional representations of text documents carekglored and compared in
different application contexts. Existing featurdeston and extraction techniques can
also be applied to graphs, where a set of candfdatares could be identified and used
in algorithms such as ranking and classificationadldition different representations can
be constructed in a manner that allows extractimguchent features efficiently,
exploiting certain structural features of graphs.

Another direction that could be investigated iplging the proposed techniques
to non-biomedical datasets. Further experimentsldvaive better insight on the
scalability and efficiency of those techniques wiagplied to different domains. Such
techniques would also involve constructing domagec#ic ontologies and evaluating
their impact on learning algorithms, such as cfecsdion or clustering.

Finally, additional experiments can be conductethgussignificantly larger
datasets to test the scalability of the methodah world scenarios. When the number
and size of documents are considerably large,exieprocessing and graph construction
components might be extremely expensive in termsoofiputational costs. However,
one could take advantage of the recent developmentdistributed computing and
analytics for ‘big data’, such as the MapReduceagigm [173]. By using such a
framework, the computationally expensive modulasjuiding graph generation, kernel
matrix computation, and cross validation, can bdopmed in parallel on distributed
clusters of computers and the results can be cadbafterwards, reducing the overall

complexity significantly.
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7.5 Summary
This chapter concludes the dissertation by suminarithe results of each experiment
within the context of the main research questiorbrigf overview of the contributions
and limitations of the current work is given andtgrgial future work directions are

highlighted.
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