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ABSTRACT

NOVEL COLOR AND LOCAL IMAGE DESCRIPTORS
FOR CONTENT-BASED IMAGE SEARCH

by
Sugata Banerji

Content-based image classification, search and retrieval is a rapidly-expanding research

area. With the advent of inexpensive digital cameras, cheap data storage, fast computing

speeds and ever-increasing data transfer rates, millions of images are stored and shared

over the Internet every day. This necessitates the development of systems that can classify

these images into various categories without human intervention and on being presented a

query image, can identify its contents in order to retrieve similar images.

Towards that end, this dissertation focuses on investigating novel image descriptors

based on texture, shape, color, and local information for advancing content-based image

search. Specifically, first, a new color multi-mask Local Binary Patterns (mLBP) descriptor

is presented to improve upon the traditional Local Binary Patterns (LBP) texture descriptor

for better image classification performance. Second, the mLBP descriptors from different

color spaces are fused to form the Color LBP Fusion (CLF) and Color Grayscale LBP Fu-

sion (CGLF) descriptors that further improve image classification performance. Third, a

new HaarHOG descriptor, which integrates the Haar wavelet transform and the Histograms

of Oriented Gradients (HOG), is presented for extracting both shape and local information

for image classification. Next, a novel three Dimensional Local Binary Patterns (3D-LBP)

descriptor is proposed for color images by encoding both color and texture information for

image search. Furthermore, the novel 3DLH and 3DLH-fusion descriptors are proposed,

which combine the HaarHOG and the 3D-LBP descriptors by means of Principal Compo-

nent Analysis (PCA) and are able to improve upon the individual HaarHOG and 3D-LBP

descriptors for image search. Subsequently, the innovative H-descriptor, and the H-fusion

descriptor are presented that improve upon the 3DLH descriptor. Finally, the innovative



Bag of Words-LBP (BoWL) descriptor is introduced that combines the idea of LBP with a

bag-of-words representation to further improve image classification performance.

To assess the feasibility of the proposed new image descriptors, two classification

frameworks are used. In one, the PCA and the Enhanced Fisher Model (EFM) are ap-

plied for feature extraction and the nearest neighbor classification rule for classification.

In the other, a Support Vector Machine (SVM) is used for classification. The classifica-

tion performance is tested on several widely used and publicly available image datasets.

The experimental results show that the proposed new image descriptors achieve an image

classification performance better than or comparable to other popular image descriptors,

such as the Scale Invariant Feature Transform (SIFT), the Pyramid Histograms of visual

Words (PHOW), the Pyramid Histograms of Oriented Gradients (PHOG), the Spatial En-

velope (SE), the Color SIFT four Concentric Circles (C4CC), the Object Bank (OB), the

Hierarchical Matching Pursuit (HMP), the Kernel Spatial Pyramid Matching (KSPM), the

SIFT Sparse-coded Spatial Pyramid Matching (ScSPM), the Kernel Codebook (KC) and

the LBP.
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CHAPTER 1

INTRODUCTION

The area of content-based image classification, search and retrieval is not new. Image

recognition has a wide variety of uses, including but not limited to medical diagnostics,

weather prediction, agriculture, security and surveillance, military applications and robot

vision. The research on this field has expanded greatly in recent years. With the easy

availability of inexpensive digital cameras, cheap data storage, fast processing speeds, ever-

increasing data transfer rates, and the growing popularity of social networking and media

sharing websites, millions of color images are stored and shared over the Internet each

day. According to a report published by the website visualnews.com and summarized in

Figure 1.1, the social networking site Facebook currently holds over 140 billion digital

Figure 1.1 The number of photos taken around the world in 1990, 2000 and
2011. Data taken from: P. Caridad, "Smile for the Cell Phone!– New Pho-
tography Trends", http://www.visualnews.com/2012/06/11/smile-for-the-cell-phone-new-
photography-trends, 2012.
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images, to which an average of over 300 million were added every day in March 2012.

The photo sharing website Instagram, where 60 photos are added every second, had four

billion photos uploaded as of July 2012. An estimated 380 billion images were taken

worldwide in 2011 alone, 99% of which were digital. Figure 1.1 shows this sudden growth

in the number of digital photos acquired around the world. This large volume of digital

images necessitates the development of systems that can classify these images into different

categories without human intervention. Also, there is a growing demand for an image-

based search system that, on being presented a query image, can identify its contents and

retrieve images containing similar elements. Creation of the feature descriptor is one of

the first steps in the image search and classification process and this dissertation introduces

different image descriptors for color images.

The color cue is often applied by the human visual system for object and scene

image classification. Indeed, color images, which contain more discriminative informa-

tion than grayscale images, have been shown to perform better than grayscale images for

image classification tasks (Liu and Mago 2012; Banerji et al. 2011; Liu 2011; Liu and

Yang 2009; Liu 2007, 2004). Image descriptors defined in different color spaces usually

help improve the identification of object, scene and texture image categories (Verma et al.

2010; Banerji et al. 2011). The descriptors derived from different color spaces often ex-

hibit different properties, among which are high discriminative power and relative stability

over the changes in photographic conditions such as varying illumination. Color histogram

and global color features and local invariant features often provide varying degrees of suc-

cess against image variations such as rotation, viewpoint and lighting changes, clutter and

occlusions (Burghouts and Geusebroek 2009; Stokman and Gevers 2007).

Texture, shape, and local information contribute as well to object and scene image

classification. Local Binary Patterns (LBP), for example, has been shown to be promising

for recognition and classification of texture images (Ojala et al. 1994; Zhu et al. 2010;

Crosier and Griffin 2008). The Histograms of Oriented Gradients (HOG) descriptor (Dalal
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and Triggs 2005), which represents an image by histograms of the slopes of the object edges

in an image, stores information about the shapes contained in the image. As a result, HOG

has become a popular descriptor for content based image retrieval. In addition, wavelets,

such as the Haar wavelets have been widely applied for object detection in images (Zhang

et al. 2007c).

This dissertation explores several novel image descriptors based on texture, shape,

color and local features from an image. Specifically, first, a new color multi-mask Local

Binary Patterns (mLBP) descriptor is introduced that represents texture and achieves better

classification performance than traditional LBP descriptors. Second, the mLBP descrip-

tors from different color spaces are fused to form the Color LBP Fusion (CLF) and Color

Grayscale LBP Fusion (CGLF) descriptors that perform better than the descriptors from

individual color spaces. Third, a new HaarHOG feature vector is introduced that extracts

shape as well as local features from an image by combining the Haar wavelet transform

with the Histograms of Oriented Gradients (HOG). Fourth, the concept of LBP is extended

to generate the novel Three Dimensional Local Binary Patterns (3D-LBP) descriptor for

color images that encodes color information along with the texture information from an

image. Next, a Principal Component Analysis (PCA) based fusion technique is applied to

combine the 3D-LBP and HaarHOG descriptors and the 3DLH and 3DLH-fusion descrip-

tors are generated that outperform both 3D-LBP and HaarHOG descriptors in classifying

different types of images. Further, the innovative H-descriptor and the H-fusion descrip-

tor are proposed, the latter of which outperforms the 3DLH-fusion. Finally, a new Bag

of Words LBP (BoWL) image descriptor is introduced which not only outperforms the

traditional LBP by a big margin, but also performs quite well on scene images.

The classification performance of the proposed descriptors are assessed using two

methods. In one, the proposed new image descriptors are subjected to dimensionality re-

duction by PCA and feature extraction using Enhanced Fisher Model (EFM). Then a near-

est neighbor classifier is used to test their performance on several widely used and publicly
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available image datasets. In the other method, a Support Vector Machine (SVM) classifier

is used for classification. In both types of experiments, the proposed descriptors are shown

to achieve a better classification performance than other popular image descriptors, such

as the Scale Invariant Feature Transform (SIFT), the Pyramid Histograms of visual Words

(PHOW), the Pyramid Histograms of Oriented Gradients (PHOG), Spatial Envelope (SE),

Color SIFT four Concentric Circles (C4CC), Object Bank (OB), the Hierarchical Match-

ing Pursuit (HMP), the Kernel Spatial Pyramid Matching (KSPM), the SIFT Sparse-coded

Spatial Pyramid Matching (ScSPM), the Kernel Codebook (KC)as well as LBP and a few

others.

This dissertation is organized in the following manner. Chapter 2 discusses the re-

lated work by other researchers that have been used in this dissertation. Chapter 3 discusses

texture and scene image classification by a new mLBP descriptor. Chapter 4 introduces the

novel HaarHOG descriptor and evaluates its classification performance. Chapter 5 explains

three new descriptors: the 3D-LBP, the 3DLH and the 3DLH-fusion. Chapter 6 introduces

two novel descriptors, the H-descriptor and the H-fusion descriptor, that incorporate color,

shape, texture and local information from an image. Chapter 7 introduces the BoWL de-

scriptor that uses the LBP concept from Chapter 3 but significantly improves classification

performance. Chapters 3, 4, 5, 6 and 7 also include the results of experiments done on

various image datasets. A more detailed discussion of the experimental results has been

included at the end of Chapter 6 to further evaluate the performance of the H-fusion de-

scriptor on different categories of various image datasets. Finally, Chapter 8 summarizes

the contributions of this dissertation and discusses future directions for research.



CHAPTER 2

BACKGROUND

An image is stored digitally as a matrix of values. It can be considered a two-dimensional

function f (x,y) defined over the spatial domain where the value of the function at some

particular x and y gives the image intensity at that point. Each of these discrete intensity

values, i.e. each of these elements of the matrix, is known as a picture element, or "pixel"

in short. Color images contain three such intensity matrices and can reproduce colors by

storing three intensity values for each pixel of an image.

Although color images contain more discriminative information than grayscale im-

ages, the use of full color features as a means to image retrieval (Liu and Mago 2012; Liu

2011; Liu and Yang 2009; Liu 2006) and object, texture and scene search (Verma et al.

2010; Banerji et al. 2011) had not gained popularity until recently. This is because using

the complete color information for feature extraction requires high computing power as

well as more memory since color images contain at least three times the information con-

tained in grayscale images. Discriminative information can be captured from color images

by means of color features such as color invariants, color histogram and color texture. The

early methods for object and scene classification were mainly based on the global descrip-

tors such as the color and texture histograms (Niblack et al. 1993; Pontil and Verri 1998;

Schiele and Crowley 2000). One such representative method is the color indexing system

designed by Swain and Ballard, which used the color histogram for image retrieval from

a large image database (Swain and Ballard 1991). These early methods were sensitive to

viewpoint and lighting changes, clutter and occlusions. For this reason, alongside global

methods, part-based methods were also developed, which became the popular techniques

in the object recognition community. Part-based models combine appearance descriptors

from local features along with their spatial relationship (Fergus et al. 2003; Fischler and

Elschlager 1973). However, learning and inference for spatial relations poses a challenging

5



6

problem in terms of its complexity and computational cost.

More recently, the work of (Verma et al. 2010; Liu and Mago 2012), and (Liu 2008)

on color based image classification propose several new color spaces and methods for face,

object and scene classification. The HSV color space is used for scene category recognition

in (Bosch et al. 2008), and the evaluation of local color invariant descriptors is performed

in (Burghouts and Geusebroek 2009). The discriminating color space has been discussed

in (Liu 2008) and the I1I2I3 color space has been shown to possess certain advantages over

other color spaces in (Shih and Liu 2005). In this dissertation, eight different color spaces

and grayscale have been used for discriminatory feature extraction. These color spaces are

discussed in detail in Section 2.1. Fusion of color models, and region and edge detection

using color has been investigated for representation of color images (Stokman and Gevers

2007). Some important contributions in color, texture, and shape representation for image

retrieval have been discussed in (Datta et al. 2008).

In the last few years, several methods based on Local Binary Patterns (LBP) (Ojala

et al. 1994, 1996) features have been proposed for image representation and classification

(Zhu et al. 2010; Crosier and Griffin 2008). In a 3×3 neighborhood of an image, the basic

LBP operator assigns a binary label 0 or 1 to each surrounding pixel by using the gray value

of the central pixel as a threshold and replacing its value with a decimal number converted

from the 8-bit binary number. Extraction of LBP features from an image is computationally

efficient and with the use of multi-scale filters, partial invariance to rotation and scaling

can be achieved (Zhu et al. 2010). Fusion of different types of LBP features, and fusion

of LBP and other features have been shown to achieve good image retrieval performance

(Crosier and Griffin 2008; Zhang et al. 2007a). Chapter 3 describes scene and texture image

classification using new modified LBP operators.

In addition to texture features like LBP, image descriptors based on shape and local

features have also been shown to perform well for image retrieval (Zhang et al. 2007a).

Several researchers have used the Haar wavelet transform, which represents local features,
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for object detection in images (Oren et al. 1997; Papageorgiou et al. 1998; Viola and Jones

2004). Also, LBP has been combined with Haar-like features for face detection (Zhang

et al. 2007c). The Histograms of Oriented Gradients (HOG) descriptor (Dalal and Triggs

2005) is a very popular descriptor for representing an image by its local shape, which is

captured by the distribution of edge orientations within a region. The Pyramid Histograms

of Oriented Gradients (PHOG) (Bosch et al. 2007b) combines the idea of HOG with the

Spatial Pyramid Matching (SPM) introduced by (Lazebnik et al. 2006) and stores the spatial

distribution of shapes in addition to storing the local shapes. Chapter 4 of this dissertation

describes the Haar wavelet transform and the HOG descriptor with greater detail.

In recent times, a lot of researchers have obtained very promising results with part-

based methods (Fei-Fei and Perona 2005; Csurka et al. 2004). Here the image is described

as a collection of sub-images or regions and the features describe each part and not the

whole image. Finally, similar parts are clustered together and a histogram of the parts,

rather than the raw features, is used to represent the image. This approach is known as a

"bag-of-words model", with each part representing a "visual word" that describes a part of

the whole scene (Yang et al. 2007; Jiang et al. 2007). The bag of words model is explained

in detail in Chapter 7.

Efficient retrieval requires a robust feature extraction method that is able to extract

meaningful low-dimensional patterns from very high dimensional data (Liu 2003). Low-

dimensional representation is also important for achieving efficiency in computation. Prin-

cipal Component analysis (PCA) has been a popular method for performing dimensionality

reduction in image indexing and retrieval systems (Liu and Wechsler 2000). Section 2.2

discusses this technique. The Enhanced Fisher Model (EFM) feature extraction method has

achieved good success for the task of image representation and retrieval (Liu and Wechsler

2000). This dissertation uses two classification frameworks. One performs EFM feature

extraction followed by the Nearest Neighbor (NN) classification method for assigning class

labels to test images. This combination, called the EFM-NN classifier henceforth, is ex-
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plained in Section 2.3. The other uses a Support Vector Machine classifier (Vapnik 1995)

which is discussed in Section 2.4.

2.1 Color Spaces

This section briefly reviews the eight color spaces used to define the proposed descriptors.

Perception of color by the human visual system is made possible by specialized retinal cells

called cone cells that contain pigments with different spectral sensitivities. The presence of

three types of cones in the human eye sensitive to three different spectra results in trichro-

matic color vision. This is why, any system for representing the full visible color spectrum

requires three variables which form a three-dimensional color space. Each color image,

therefore, can be split up into three intensity images that are known as color component

images or color planes.

The RGB color space, whose three component images represent the red, green,

and blue primary colors, is the common tristimulus space for color image representation

on a computer. Other color spaces are usually derived from the RGB color space using

either linear or nonlinear transformations. The rgb color space, for example, is formed by

normalizing the red, green, and blue components in order to reduce the sensitivity of the

RGB images to luminance, surface orientation, and other photographic conditions (Gevers

et al. 2006):

r = R/(R+G+B),

g = G/(R+G+B),

b = B/(R+G+B).

(2.1)

Note that for simplicity, R,G,B represent the red, green, and blue pixel values, respectively.

The I1I2I3 color space is defined by the following linear transformation from the
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Figure 2.1 An RGB color image, its grayscale image, and the color component images in
the RGB, oRGB, rgb, YIQ, HSV, I1I2I3, YCbCr and DCS color spaces, respectively.

RGB color space (Ohta 1985):

I1 = (R+G+B)/3,

I2 = (R−B)/2,

I3 = (2G−R−B)/4.

(2.2)

The HSV (hue, saturation, and value) color space, however, is derived nonlinearly
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from the RGB color space (Smith 1978):

H =


60(G−B

δ ) if MAX = R

60(B−R
δ +2) if MAX = G

60(R−G
δ +4) if MAX = B

S =

 δ/MAX if MAX ̸= 0

0 if MAX = 0

V = MAX

(2.3)

where MAX = max(R,G,B), MIN = min(R,G,B), and δ = MAX −MIN.

The remaining four color spaces used in this dissertation are, again, transformed

from the RGB color space using linear transformations.

The YCbCr color space is defined as follows (Gonzalez and Woods 2008):


Y

Cb

Cr

=


16

128

128

+


65.481 128.553 24.966

−37.797 −74.203 112.000

112.000 −93.786 −18.214




R

G

B

 (2.4)

The YIQ color space is defined as given below (Shih and Liu 2005):


Y

I

Q

=


0.2990 0.5870 0.1140

0.5957 −0.2745 −0.3213

0.2115 −0.5226 0.3111




R

G

B

 (2.5)

The three component images L, C1, and C2 of the oRGB color space are defined as

follows (Bratkova et al. 2009):


L

C1

C2

=


0.2990 0.5870 0.1140

0.5000 0.5000 −1.0000

0.8660 −0.8660 0.0000




R

G

B

 (2.6)
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The Discriminating Color Space (DCS) (Liu 2008), is derived from the RGB color

space by means of discriminant analysis (Fukunaga 1990). The DCS defines discriminating

component images via a linear transformation WD ∈ R3×3 from the RGB color space


D1

D2

D3

=WD


R

G

B

 (2.7)

where D1, D2, and D3 are the values of the discriminating component images in the DCS

color space. The transformation matrix WD ∈ R3×3 may be derived through a procedure of

discriminant analysis (Fukunaga 1990). Let Sw and Sb be the within-class and the between

class scatter matrices of the 3-D pattern vector X respectively where Sw,Sb ∈ R3x3. The

discriminant analysis procedure derives a projection matrix WD by maximizing the criterion

J1 = tr(S−1
w Sb) (Fukunaga 1990). This criterion is maximized when W t

D consists of the

eigenvectors of the matrix S−1
w Sb (Fukunaga 1990)

S−1
w SbW t

D =W t
D∆ (2.8)

where W t
D, ∆ are the eigenvector and eigenvalue matrices of S−1

w Sb, respectively. Figure 2.1

shows a color image, its grayscale image, and its color component images in the RGB,

oRGB, rgb, YIQ, HSV, I1I2I3, YCbCr and DCS color spaces, respectively. The grayscale

image here is an intensity image generated from the RGB image by forming a weighted

sum of the R, G, and B components:

Gray = 0.2990R+0.5870G+0.1140B (2.9)

Note that these are the same weights used to compute the Y component of the YIQ color

space.
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2.2 Principal Component Analysis (PCA)

Principal component analysis, or PCA, which is the optimal feature extraction method in

the sense of the mean-square-error, derives the most expressive features for signal and

image representation. Specifically, let X ∈ RN be a random vector whose covariance

matrix is defined as follows (Fukunaga 1990):

S = E {[X −E (X )][X −E (X )]t} (2.10)

where E (·) represents expectation and t the transpose operation. The covariance matrix S

is factorized as follows (Fukunaga 1990):

S = ΦΛΦt (2.11)

where Φ = [ϕ1ϕ2 · · ·ϕN ] is an orthogonal eigenvector matrix and Λ = diag{λ1,λ2, . . . ,λN},

a diagonal eigenvalue matrix with diagonal elements in decreasing order.

Decorrelation is an important property of PCA, i.e. the components of the trans-

formed data, X ′ = ΦtX , are decorrelated since the covariance matrix of X ′ is diagonal,

ΣX ′ = Λ, and the diagonal elements are the variances of the corresponding components.

A second important property of PCA is its optimal signal reconstruction with respect to

minimum Mean Square Error (MSE) when just a subset of the principal components is

used to represent the original signal. A popular application of this second property is the

extraction of the most expressive features of X . Towards that end, a new vector Y is

defined: Y = PtX , where P = [ϕ1ϕ2 . . .ϕK], and K < N. The most expressive features of

X thus define the new vector Y ∈ RK , which consists of the most significant principal

components.
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2.3 The Enhanced Fisher Model for Feature Extraction and the Nearest Neighbor

Classification Rule — the EFM-NN Classifier

Object and scene image classification using the new descriptors introduced in this disser-

tation is implemented using the Enhanced Fisher Model (EFM) for feature extraction (Liu

and Wechsler 2000) and the Nearest Neighbor (NN) to the mean classification rule for clas-

sification. This EFM feature extraction and NN classification procedure is referred to as

the EFM-NN classifier throughout this dissertation.

In pattern recognition, a popular method, Fisher’s Linear Discriminant (FLD), ap-

plies first PCA for dimensionality reduction and then discriminant analysis for feature ex-

traction. PCA is discussed in the previous section, and discriminant analysis often opti-

mizes a criterion defined on the within-class and between-class scatter matrices Sw and Sb,

which are defined as follows (Fukunaga 1990):

Sw =
L

∑
i=1

P(ωi)E {(Y −Mi)(Y −Mi)
t |ωi} (2.12)

Sb =
L

∑
i=1

P(ωi)(Mi −M)(Mi −M)t (2.13)

where P(ωi) is a priori probability, ωi represent the classes, and Mi and M are the means

of the classes and the grand mean, respectively. One discriminant analysis criterion is J1:

J1 = tr(S−1
w Sb), and J1 is maximized when Ψ contains the eigenvectors of the matrix S−1

w Sb

(Fukunaga 1990):

S−1
w SbΨ = Ψ∆ (2.14)

where Ψ,∆ are the eigenvector and eigenvalue matrices of S−1
w Sb, respectively. The dis-

criminating features are defined by projecting the pattern vector Y onto the eigenvectors

of Ψ:

Z = ΨtY (2.15)
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Z thus contains the discriminating features for image classification.

The FLD method, however, often leads to overfitting when implemented in an in-

appropriate PCA space. To improve the generalization performance of the FLD method, a

proper balance between two criteria should be maintained: the energy criterion for adequate

image representation and the magnitude criterion for eliminating the small-valued trailing

eigenvalues of the within-class scatter matrix (Liu and Wechsler 2000). As a result, the En-

hanced Fisher Model (EFM) is developed to improve upon the generalization performance

of the FLD method (Liu and Wechsler 2000). Specifically, the EFM method improves the

generalization capability of the FLD method by decomposing the FLD procedure into a

simultaneous diagonalization of the within-class and between-class scatter matrices (Liu

and Wechsler 2000). The simultaneous diagonalization reveals that during whitening the

eigenvalues of the within-class scatter matrix appear in the denominator. Since the small

eigenvalues tend to encode noise (Liu and Wechsler 2000), they cause the whitening step

to fit for misleading variations, and this leads to poor generalization performance. To en-

hance performance, the EFM method preserves a proper balance between the need that the

selected eigenvalues account for most of the spectral energy of the raw data (for representa-

tional adequacy), and the requirement that the eigenvalues of the within-class scatter matrix

(in the reduced PCA space) are not too small (for better generalization performance) (Liu

and Wechsler 2000).

2.4 Support Vector Machine

The Support Vector Machine (SVM) is a particular realization of statistical learning the-

ory. The approach described by SVM, known as structural risk minimization, minimizes

the risk functional in terms of both the empirical risk and the confidence interval (Vap-

nik 1995). SVM is built from two ideas: (i) a nonlinear mapping of the input space to a

high-dimensional feature space, and (ii) designing the optimal hyperplane in terms of the

maximal margin between the patterns of the two classes in the feature space. SVM is very
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popular and has been applied extensively for pattern classification, regression, and density

estimation since it displays a good generalization performance, .

Let (x1,y1),(x2,y2), . . . ,(xk,yk),xi ∈ RN , and yi ∈ {+1,−1} be k training samples

in the input space, where yi indicates the class membership of xi. Let ϕ be a nonlinear

mapping between the input space and the feature space, ϕ : RN → F , i.e., x → ϕ(x). The

optimal hyperplane in the feature space is defined as follows:

w0 ·ϕ(x)+b0 = 0 (2.16)

It can be proven (Vapnik 1995) that the weight vector w0 is a linear combination of

the support vectors, which are the vectors xi that satisfy yi(w0 ·ϕ(xi)+b0) = 1:

w0 = ∑
supportvectors

yiαiϕ(xi) (2.17)

where αi’s are determined by maximizing the following functional:

L(α) =
k

∑
i=1

αi −
1
2

k

∑
i, j=1

αiα jyiy jϕ(xi) ·ϕ(x j) (2.18)

subject to the following constraints:

k

∑
i=1

αiyi = 0,αi ≥ 0, i = 1,2, . . . ,k (2.19)

From Equations 2.16 and 2.17, the linear decision function in the feature space can

be derived

f (x) = sign( ∑
supportvectors

yiαiϕ(xi) ·ϕ(x)+b0) (2.20)

It should be noted that the decision function (see Equation 2.20) is defined by the dot

products in the high dimensional feature space, where computation might be prohibitively

expensive. SVM, however, manages to compute the dot products by means of a kernel
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function (Vapnik 1995)

K(xi,x j) = ϕ(xi) ·ϕ(x j) (2.21)

Three classes of kernel functions widely used in kernel classifiers, neural networks,

and SVMs are polynomial kernels, Gaussian kernels, and sigmoid kernels (Vapnik 1995):

K(xi,x j) = (xi ·x j)
d, (2.22)

K(xi,x j) = exp(
−(∥xi −x j∥)2

2σ2 ), (2.23)

K(xi,x j) = tanh(k(xi ·x j)+ v), (2.24)

where d ∈ N, σ > 0, k > 0, and v < 0.

The SVM implementation used for the experiments presented in this dissertation

is the one that is distributed with the VlFeat package (Vedaldi and Fulkerson 2010). The

parameters of the support vector machine are tuned empirically using only the training data,

and the parameters that yield the best average precision on the training data are used for

classification of the test data. In particular, the cost parameter C has been empirically set to

100 for the best classification performance in the experiments described here.



CHAPTER 3

NOVEL MULTI-MASK LBP (MLBP) IMAGE DESCRIPTORS

This chapter first discusses the traditional Local Binary Patterns (LBP) feature for texture

representation. Then, the multi-mask LBP (mLBP) is introduced. Next, the mLBP de-

scriptors from different color spaces are fused to form the novel Color LBP Fusion (CLF)

and the Color Grayscale LBP Fusion (CGLF) descriptors. Finally, the effectiveness of the

proposed method is demonstrated using two texture image datasets and one scene image

dataset.

3.1 Local Binary Patterns (LBP)

The Local Binary Patterns (LBP) method derives the texture description of a grayscale

i.e. intensity image by comparing a center pixel with its neighbors (Ojala et al. 1994, 1996,

2002). In particular, for a 3×3 neighborhood of a pixel p= [x,y]t , p is the center pixel used

as a threshold. The neighbors of the pixel p are defined as N(p, i) = [xi,yi]
t , i = 0,1, · · · ,7,

where i is the number used to label the neighbor. The value of the LBP code of the center

pixel p is calculated as follows:

LBP(p) =
7

∑
i=0

2iS{G[N(p, i)]−G(p)} (3.1)

where G(p) and G[N(p, i)] are the gray levels of the pixel p and its neighbor N(p, i), re-

spectively. S is a threshold function that is defined below:

S(xi − xc) =

 1, if xi ≥ xc

0, otherwise
(3.2)

LBP tends to achieve grayscale invariance because only the signs of the differences

17
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Figure 3.1 A grayscale image, its LBP image, and the illustration of the computation of
the LBP code for a center pixel with gray level 90.

between the center pixel and its neighbors are used to define the value of the LBP code

as shown in Equation 3.1. Figure 3.1 shows a grayscale image on the left and its LBP

image on the right. The two 3× 3 matrices in the middle illustrate how the LBP code

is computed for the center pixel whose gray level is 90. In particular, the center pixel

functions as a threshold, and after thresholding the right 3× 3 matrix reveals the signs of

the differences between the center pixel and its neighbors. Note that the signs are derived

from Equations 3.1 and 3.2, and the threshold value is 90, as the center pixel is used as the

threshold in the LBP definition. The binary LBP code is 01001101, which corresponds to

77 in decimal.

3.2 A New Color Multi-mask LBP (mLBP)

The traditional LBP descriptor described in the preceding section assigns an intensity value

to each pixel of an image based on the intensity values of just eight pixels adjoining it. The

new mLBP feature discussed here is generated by comparing the value of each pixel to its

eight neighbors in the three neighborhoods shown in the top row of Figure 3.2. In particu-

lar, the first neighborhood generates the traditional LBP image shown in the first column of

the second row in Figure 3.2. The second neighborhood is a square rotated by 45◦ which

produces the image shown in the second column of the second row, and the third neigh-

borhood chooses eight pixels farther away from the center pixel, thus producing the image
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Figure 3.2 The three neighborhood for extracting the multi-mask LBP (mLBP) descriptor,
the three LBP images generated from the three neighborhoods, and the three histograms
generated from these images. The original image is the same as used in Figure 3.1.

shown in the third column of the second row. By choosing these three different neighbor-

hoods, partial invariance to scaling and rotation can be achieved. The histograms from the

three LBP images shown in the bottom row of Figure 3.2 are concatenated and used as a

feature vector which is independent of the image size. The three 256-bin histograms when

concatenated generate a 768 feature vector for a grayscale image.

To encode the variations in intensity and texture present in the different color com-

ponent images, the color mLBP descriptor is derived by individually computing the mLBP

descriptor on each of the three component images in the specific color space. This produces
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Figure 3.3 A schematic diagram showing the generation of the CLF and the CGLF de-
scriptors from a color image taken from the cotton category of the KTH-TIPS2-b dataset.

a 2304 dimensional descriptor that is formed from concatenating the 768 dimensional vec-

tors from the three channels. In particular, the RGB-mLBP, the HSV-mLBP, the YCbCr-

mLBP, the rgb-mLBP and the oRGB-mLBP descriptors are constructed by concatenating

the mLBP descriptors of the three component images in the RGB, HSV, YCbCr, rgb and

oRGB color spaces respectively.

3.3 Fusing the Multi-mask LBP Descriptor in Different Color Spaces

and Grayscale

As will be seen from the experiments in Section 3.4, the color multi-mask LBP descrip-

tor yields different classification rates for different color spaces. This indicates that the

information contained by the different color mLBP descriptors is not the same, and if com-

bined, these descriptors could classify more accurately. Hence, the Color LBP Fusion
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(CLF) descriptor is formed by fusing the RGB-mLBP, the YCbCr-mLBP, the HSV-mLBP,

the oRGB-mLBP, and the rgb-mLBP descriptors. Further, the Color Grayscale LBP Fu-

sion (CGLF) descriptor is obtained by fusing the CLF descriptor and the grayscale-mLBP

descriptor. Indeed, it will be seen in Section 3.4.2 that these two descriptors achieve a

better classification performance than the mLBP descriptors in the individual color spaces.

Figure 3.3 shows the process by which the CLF and the CGLF descriptors are generated.

Specifically, it shows a color image (on the left) being converted to five different color

spaces and grayscale. Each of these converted images then undergo an mLBP process. The

descriptors resulting from the five color spaces are concatenated to form the CLF feature

vector. The CLF is further fused with the grayscale mLBP features to get the CGLF feature

vector. These two feature vectors are represented using blue rectangles with broken-line

borders in the figure. The results of the classification experiments with the different new

descriptors are described and evaluated in the next section.

3.4 Experiments

Three publicly available and fairly challenging image datasets are used to evaluate the pro-

posed descriptors applying the EFM-NN classification method. This section first briefly

describes the three datasets used. Then a comparative assessment of the classification per-

formance of the mLBP descriptor is done in five different color spaces and grayscale. Next

the performance of the two fused descriptors - CLF and CGLF - is evaluated, and the clas-

sification performance is compared with the results of other researchers.

3.4.1 Datasets Used

The three image datasets used for evaluating the mLBP desciptor are briefly introduced in

this section. All of these datasets are widely used for evaluating the performance of texture

and scene image descriptors and classification methods.
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The MIT Scene Dataset

The MIT Scene dataset (also known as OT Scenes) (Oliva and Torralba 2001) has 2,688

images classified as eight categories: 360 coast, 328 forest, 260 highway, 308 inside of

cities, 374 mountain, 410 open country, 292 streets, and 356 tall buildings. All of the

images are in color, in JPEG format, and the size of each image is 256×256 pixels. There

is a large variation in light, content and angles, along with a high intra-class variation. The

sources of the images vary (from commercial databases, websites, and digital cameras)

(Oliva and Torralba 2001). Figure 3.4(a) shows some images from this dataset.

The KTH-TIPS Dataset

The KTH-TIPS (Textures under varying Illumination, Pose and Scale) dataset (Hayman

et al. 2004; Caputo et al. 2005; Kondra and Torre 2008) consists of 10 classes of textures

with 81 images per class. All the images are in color, PNG format and the maximum

image size is 200x200 pixels. All ten textures have been photographed at nine scales and

nine illumination conditions for each scale. Some of the classes have a very similar visual

appearance, like cotton and linen, and brown bread and sponge which makes this dataset

moderately challenging. See Figure 3.4(b) for some sample images from this dataset.

The KTH-TIPS2-b Dataset

The KTH-TIPS2-b dataset (Caputo et al. 2005) is a more challenging extension of the KTH-

TIPS dataset with 11 classes of materials and 4 samples for each material. Each of these

samples has 108 images with 432 images per class and a total of 4752 images. Some of the

images in the classes like wool and cotton are from differently colored samples leading to

very high intra-class variation among samples, while some samples from different classes

like cork and cracker have the same color and general appearance thus lowering the inter-

class variation. See Figure 3.4(c) for some sample images from this dataset.
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(a)

(b)

(c)

Figure 3.4 Some sample images from (a) the MIT Scene dataset, (b) the KTH-TIPS
dataset, and (c) the KTH-TIPS2-b dataset. Please note that all texture categories from
the KTH-TIPS and KTH-TIPS2-b datasets are not shown in the figure.

3.4.2 Comparative Assessment of the Multi-mask LBP Descriptor in Different Color

Spaces and Grayscale

The mLBP descriptor is now assessed in grayscale and five different color spaces — the

RGB, oRGB, HSV, YCbCr, and rgb color spaces — for image classification performance

using the three datasets. To derive the mLBP descriptor from each color image, the mLBP
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Figure 3.5 The mean average classification performance of the six descriptors using the
EFM classifier on the MIT scene dataset: the grayscale-mLBP, the rgb-mLBP, the HSV-
mLBP, the RGB-mLBP, the YCbCr-mLBP and the oRGB-mLBP.

descriptor is computed from each color component and concatenated. Each image is trans-

formed in the five color spaces and the same operations are performed to construct the five

different color mLBP descriptors. Each color image is also converted to grayscale and its

mLBP descriptor is extracted. Next PCA is applied to reduce the dimensionality of the

mLBP descriptors to derive the most expressive features, which are further processed by

EFM to obtain the most discriminatory features for classification, and the nearest neighbor

rule is finally used for image classification. The classification task is to assign each test

image to one of a number of categories. The performance is measured using a confusion

matrix, and the overall performance rates are measured by the average value of the diagonal

entries of the confusion matrix.

For the MIT scene dataset, five image sets are randomly selected. Each set consists

of 2000 images for training (250 images per class) and the rest 688 images for testing. The
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first set of experiments assesses the overall classification performance of the six descriptors.

Note that for each category five-fold cross validation is implemented for each descriptor to

derive the average classification performance. As a result, each descriptor yields eight av-

erage classification rates corresponding to the eight image categories. The mean value of

these eight average classification rates is defined as the mean average classification perfor-

mance for the descriptor. Figure 3.5 shows the mean average classification performance

of various mLBP descriptors. Specifically, the vertical axis shows the different descrip-

tors and the horizontal axis shows the mean average classification performance. The best

recognition rate that is obtained is for the oRGB-mLBP which achieves the classification

rate of 84.3%. The YCbCr-mLBP, RGB-mLBP, HSV-mLBP, rgb-mLBP and grayscale-

mLBP yield classification rates of 83.5%, 82.6%, 82.2% 81.2% and 81.7%, respectively.

The second set of experiments assesses the six descriptors using the EFM-NN clas-

sifier on individual image categories. From Table 3.1 it can be seen that for oRGB-mLBP,

the top seven categories achieve a success rate of 80% or more. The Forest category

achieves a success rate of over 94% across all six descriptors. Individual color mLBP de-

scriptors improve upon the grayscale-mLBP on most of the categories. The classification

performance of the fused descriptors CLF and CGLF which are discussed in Section 3.4.3

have also been included in this table for comparison.

For the KTH-TIPS dataset, five random sets of 40 training images per class and

41 test images per class are selected (same numbers as used in (Crosier and Griffin 2008;

Zhang et al. 2007a; Kondra and Torre 2008)). Within each set there is no overlap in the im-

ages selected for training and testing. Since this dataset is moderately challenging, only the

oRGB-mLBP is tested on this dataset which gives a classification performance of 99.1%.

The rest of the detailed experiments are done on the KTH-TIPS2-b dataset which is a more

complex and extended version of this dataset.

For the KTH-TIPS2-b dataset, five random sets of 200 training images per class

and 100 testing images per class are used with no common images between the training
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Table 3.1 Category Wise Descriptor Performance (%) Split-out with the EFM-NN Clas-
sifier on the MIT Scene Dataset. Note that the Categories are Sorted on the CGLF Results

Category CGLF CLF oRGB YCbCr RGB HSV rgb Gray
mLBP mLBP mLBP mLBP mLBP mLBP

Forest 97 97 97 97 95 94 94 94
Highway 90 93 90 87 90 90 90 93
Street 90 86 83 83 82 84 82 81
Coast 88 87 85 88 83 81 82 86
Inside City 87 87 86 83 81 80 79 83
Tall Building 86 86 86 83 84 82 80 79
Mountain 85 84 80 81 80 80 76 77
Open Country 71 71 68 66 65 66 68 61
Mean 86.6 86.4 84.2 83.5 82.6 82.2 81.2 81.7

and test sets. The first set of experiments assesses the overall classification performance

of the six descriptors on the KTH-TIPS2-b dataset. Note that for each category five-fold

cross validation is implemented for each descriptor using the EFM-NN classifier to derive

the average classification performance. Figure 3.6 shows the mean average classification

Figure 3.6 The mean average classification performance of the six descriptors using the
EFM classifier on the KTH-TIPS2-b dataset: the grayscale-mLBP, the RGB-mLBP, the
YCbCr-mLBP, the rgb-mLBP, the HSV-mLBP, and the oRGB-mLBP descriptors.
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Table 3.2 Category Wise Descriptor Performance (%) Split-out with the EFM-NN Classi-
fier on the KTH-TIPS2-b Dataset. Note that the Categories are Sorted on the CGLF Results

Category CGLF CLF oRGB HSV rgb Gray
mLBP mLBP mLBP mLBP

Aluminum Foil 100 100 100 100 100 100
Brown Bread 100 100 100 99 99 94
Corduroy 100 100 100 100 100 93
Cork 100 100 100 98 98 98
Cracker 100 100 96 93 93 90
Lettuce Leaf 100 100 100 100 100 97
Linen 100 100 100 99 99 99
Wood 100 100 100 100 100 100
Wool 100 100 99 100 100 96
White Bread 99 99 99 99 99 97
Cotton 98 97 97 96 96 91
Mean 99.6 99.6 98.7 98.3 98.3 95.9

performance of various descriptors. The best recognition rate that is obtained is 98.7% for

the oRGB-mLBP, followed by the HSV-mLBP, rgb-mLBP, YCbCr-mLBP, RGB-mLBP and

grayscale-mLBP with 98.3%, 98.3%, 98.1%, 98.0% and 95.9% success rates, respectively.

The second set of experiments assesses the three best color mLBP descriptors and

the grayscale-mLBP using the EFM classifier on individual image categories. From Ta-

ble 3.2 it can be seen that for the oRGB-mLBP descriptor, seven out of eleven categories

achieve 100% success rate and all of the categories achieve a success rate of 96% or more.

Aluminum Foil, Corduroy, Lettuce Leaf and Wood achieve 100% success rate across the

best three descriptors. Individual color mLBP descriptors improve upon the grayscale-

mLBP on most of the categories. Here also, the classification performance of the fused

descriptors CLF and CGLF which are discussed in Section 3.4.3 have been included in this

table for comparison.
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Figure 3.7 The mean average classification performance of the six single-color mLBP
descriptors and the two fused-color mLBP descriptors on the MIT scene dataset compared
with the classification performance of the traditional LBP descriptors in the same color
spaces.

3.4.3 Comparative Assessment of the Proposed Descriptors and Some Popular Im-

age Descriptors

In this section, the performance of the proposed CLF and CGLF descriptors are evaluated

on the three datasets described in Section 3.4.1. Then the CLF and CGLF descriptors

are compared with some other popular descriptors for classification performance. The

mLBP descriptors in the individual color spaces and grayscale, as well as the fused mLBP

descriptors (CLF and CGLF) are also compared with the traditional LBP descriptors in the

respective color spaces.

On the MIT Scene dataset, the CLF achieves a classification performance of 86.4%

which is 2.1% more than the best single-color descriptor performance. The CGLF outper-

forms this slightly, yielding a 86.6% success rate. As can be seen from Table 3.1, the CLF

results on each of the eight categories show significant improvement upon the grayscale-

mLBP and the CGLF slightly improves upon the CLF. It should be noted that fusion of the
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Table 3.3 Comparison of the Classification Performance (%) with other Methods on the
MIT Scene Dataset

#train #test Proposed Method LBP PHOG
CLF 86.4

2000 688 CGLF 86.6 82.7 79.1
CLF 80.3

800 1888 CGLF 80.3 77.9 -

color mLBP descriptors (CLF) improves upon the grayscale-mLBP by a significant 4.7%

margin.

Figure 3.7 shows the comparative classification performance of the proposed mLBP

descriptor and the traditional single-mask LBP descriptor. Specifically, it compares the

classification performance achieved by the mLBP descriptor and the LBP descriptor in

the rgb, HSV, RGB, YCbCr, oRGB color spaces and grayscale. It also fuses the LBP

descriptors from different color spaces and grayscale and compares their performance with

CLF and CGLF. The horizontal axis shows the different descriptors and the vertical axis

shows the classification performance as a percentage. As can be seen from the figure, using

three neighborhoods significantly improves classification performance in all color spaces

as well as in grayscale and fusion of color spaces. Table 3.3 compares classification results

obtained using the proposed descriptors with that obtained by using traditional LBP as

described by (Ojala et al. 1994), and also with that obtained by applying the Pyramid of

Histograms of Oriented Gradients (PHOG) as described by (Bosch et al. 2007b) to this

dataset.

It may be noted here that fusing PHOG with CGLF produces a classification perfor-

mance of 89.5% on the MIT Scene dataset with 250 training images per class and 84.3%

with 100 training images per class, results which are higher than (Oliva and Torralba 2001),

and this was further explored in (Banerji et al. 2011). However, that detail is not included

here as PHOG is not an original work proposed in this dissertation and hence this disserta-

tion does not focus on PHOG and its fusion methods.
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Table 3.4 Comparison of the Classification Performance (%) with Other Methods on the
KTH-TIPS Dataset

Methods Performance
Proposed Method:
CGLF 99.6
CLF 99.6
(Crosier and Griffin 2008) 98.5
(Kondra and Torre 2008) 97.7
(Zhang et al. 2007a) 95.5

Classification experiments using the CLF and CGLF descriptors were run on the

KTH-TIPS dataset with the aforementioned training and test image sets. For this dataset,

the CLF and the CGLF descriptors are tied at 99.6%. Table 3.4 shows a comparison of re-

sults from the proposed descriptors with those obtained from other methods in (Crosier and

Griffin 2008; Zhang et al. 2007a; Kondra and Torre 2008). Combined mLBP descriptors

(CLF and CGLF) improve upon the result in (Crosier and Griffin 2008), previously the best

result on this dataset.

For the KTH-TIPS2-b dataset also, the CLF generates a success rate of 99.6% and

CGLF very slightly improves upon the CLF. This, however, does not necessarily indicate

that the grayscale information is redundant since it can be seen from Table 3.2 that almost

all the categories show a success rate of 100% with these two descriptors. It only indicates

that CLF alone contains enough information to correctly classify the texture images in the

case of KTH-TIPS2-b dataset.

3.5 Summary

Three new color descriptors have been proposed in this chapter: the oRGB-mLBP descrip-

tor, the Color LBP Fusion (CLF), and the Color Grayscale LBP Fusion (CGLF) descriptors

for scene image and texture image classification with applications to image search and re-

trieval. Results of the experiments using three popular datasets show that the oRGB-mLBP



31

descriptor’s recognition performance is better than other color mLBP descriptors, and the

CLF and the CGLF descriptors perform better than the single color mLBP descriptors.

The fusion of multiple Color LBP descriptors (CLF) and Color Grayscale LBP descriptor

(CGLF) show improvement in the classification performance, which indicates that various

color mLBP descriptors are not redundant for image classification tasks.



CHAPTER 4

HAARHOG: IMPROVING THE HOG DESCRIPTOR

BY ENHANCING LOCAL FEATURES

Chapter 3 discusses the LBP descriptor and introduces a novel mLBP descriptor to encode

the texture of an image. Apart from texture, shape and high-frequency local information

also contribute heavily to object and scene image recognition, and hence, descriptors based

on such features are frequently used for image classification. The Histograms of Oriented

Gradients (HOG) descriptor (Dalal and Triggs 2005), which represents an image by his-

tograms of the pixel gradients at the object edges in an image, stores information about

the shapes contained in the image. As a result, HOG has become a popular descriptor for

object detection and content based image retrieval. Wavelets are known to selectively en-

hance high frequency local information in selected orientations. That is why wavelets, such

as the Haar wavelets have been widely applied for object detection in images (Zhang et al.

2007c).

This chapter introduces a novel image descriptor based on shape and local high-

frequency features from an image, and then extends it to include the benefits of using

multiple color spaces. Specifically, first, a new HaarHOG feature vector is defined that

extracts shape as well as other local features from a grayscale image by combining the Haar

wavelet transform with the Histograms of Oriented Gradients (HOG). Next, the definition

of the new descriptor is extended for use on color images.

To assess the classification performance of the proposed descriptor, a Support Vec-

tor Machine (SVM) classifier with a linear kernel is used on several widely used and pub-

licly available image datasets. In these experiments, it is shown to achieve a significantly

better classification performance than the conventional HOG descriptor, as well as some

other popular image descriptors, such as Scale Invariant Feature Transform (SIFT) based

methods, Spatial Envelope (SE), Object Bank (OB), as well as Local Binary Patterns (LBP).

32
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4.1 Haar Wavelet Transform

The 2D Haar wavelet transform is defined as the projection of an image onto the 2D Haar

basis functions, which are formed by the tensor product of the one dimensional Haar scaling

and wavelet functions (Burrus et al. 1998; Beylkin et al. 1991). The Haar scaling function

ϕ(x) is defined below (Burrus et al. 1998; Porwik and Lisowska 2004):

ϕ(x) =

 1, 0 ≤ x < 1

0, otherwise
(4.1)

A family of functions can be generated from the basic scaling function by scaling and

translation (Burrus et al. 1998; Porwik and Lisowska 2004):

ϕi, j(x) = 2i/2ϕ(2ix− j) (4.2)

As a result, the scaling functions ϕi, j(x) can span the vector spaces V i, which are nested as

follows: V 0 ⊂V 1 ⊂V 2 ⊂ ·· · (Mallat 1989).

The Haar wavelet function ψ(x) is defined as follows (Burrus et al. 1998; Porwik

Figure 4.1 A grayscale image and its Haar wavelet transform.
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Figure 4.2 A color image taken from the duck category of the Caltech 256 dataset, its
three color component images, their Haar wavelet transformed images, and the color Haar
wavelet transformed image.

and Lisowska 2004):

ψ(x) =


1, 0 ≤ x < 1/2

−1, 1/2 ≤ x < 1

0, otherwise

(4.3)

The Haar wavelets are generated from the mother wavelet by scaling and translation (Bur-

rus et al. 1998; Porwik and Lisowska 2004):

ψi, j(x) = 2i/2ψ(2ix− j) (4.4)

The Haar wavelets ψi, j(x) span the vector space W i, which is the orthogonal complement of

V i in V i+1: V i+1 =V i ⊕W i (Burrus et al. 1998; Porwik and Lisowska 2004). The 2D Haar

basis functions are the tensor product of the one dimensional scaling and wavelet functions

(Beylkin et al. 1991).

Figure 4.1 shows a grayscale image of a Mandarin duck and its Haar wavelet trans-

formed image. The right side of the figure displays an enlargement of the four quadrants of

the Haar wavelet transformed image which shows that different sub-images enhance high-

frequency local features in different orientations. Figure 4.2 shows the generation of the

Haar wavelet transformed image for a color image with three component intensity images.

Specifically, a color image is split into its three component planes and then the Haar wavelet

transformation is applied to each plane separately to get the color Haar transformed image



35

Figure 4.3 A grayscale image and the formation of the HOG descriptor.

with four color sub-images.

4.2 Histogram of Oriented Gradients (HOG)

The idea of Histogram of Oriented Gradients (HOG) rests on the observation that local

features such as object appearance and shape can often be characterized well by the distri-

bution of local intensity gradients in the image (Dalal and Triggs 2005). HOG features are

derived from an image based on a series of normalized local histograms of image gradient

orientations in a dense grid (Dalal and Triggs 2005; Ludwig et al. 2009). In particular, first

the gradient magnitude and direction is calculated at each pixel in the image. The image

window is then divided into blocks and the blocks into small cells. For each cell, a local his-

togram of the gradient directions weighted by the gradient magnitudes is accumulated over

all the pixels of the cell. All the histograms within a block of cells are then normalized to

reduce the effect of illumination variations. The blocks can be overlapped with each other

for performance improvement. The final HOG descriptors are formed by concatenating the

normalized histograms from all the blocks into a single vector.

Figure 4.3 demonstrates the formation of the HOG vector for a grayscale image.
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Figure 4.4 A color image taken from the inside-city category of the MIT Scene dataset,
the gradient magnitude images of its three color components, the orientation gradients of
an example small area from every gradient magnitude image, the three HOG descriptors
for the three color component images, and the concatenated HOG descriptor for the whole
color image.

The image of a duck at the top right is the original grayscale image. The first step is

the calculation of the gradient magnitudes at every pixel. The gradient magnitude image

is shown in the middle figure of the top row. This resembles an edge image as images

usually have high gradient magnitudes near the edges. Next, the image window is divided

into a number of blocks as shown in the last image in the first row of Figure 4.3. In the

original implementation by (Dalal and Triggs 2005), dividing the image into 3×3 blocks as

shown in the figure was found to be optimal for pedestrian detection. For the experiments

presented here, however, the performance was found to be increasing up to 5×5 blocks

and so 5×5 blocks were used for this implementation. Next, the orientation of each pixel

in each block is put in one of 10 orientation bins weighted by its magnitude and thus a

weighted histogram is formed for each block of cells. There is an overlap of half the block

size between consecutive blocks to increase accuracy. Finally, the histograms from the

individual cells are normalized and concatenated to form the HOG vector. This whole

operation of forming histograms and concatenating them is shown in the bottom row of
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Figure 4.5 A color Haar wavelet transformed image, its four quadrant color images, their
HOG descriptors, and their concatenation, the HaarHOG descriptor.

Figure 4.3.

Figure 4.4 shows how the same process is implemented for a color image. In par-

ticular, the color image shown on the left is split into three components and the gradient

magnitudes and directions at each pixel are calculated for each of the three components sep-

arately. The gradient magnitude images for the three components are shown in the second

column of the figure. Then each image window is divided into blocks of cells as described

above and a HOG descriptor is calculated from each component image as shown in the

third and fourth columns of Figure 4.4. Finally, these three HOG vectors are concatenated

to get the color HOG descriptor.

4.3 An Innovative HaarHOG Descriptor

The motivation for the next proposed descriptor, the HaarHOG descriptor, is based on

enhancing useful and important local high-frequency features before extracting shape for

object and scene image classification. Towards that end, the Haar wavelet transform of an

image is first computed. Then the HOG of the Haar wavelet transformed image is derived

for encoding both shape and local features.
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In particular, the Haar wavelet transform is first applied to an image to extract local

information by enhancing local contrast. This process divides the image into four sub-

images. One of these sub-images contains low frequency information and the other three

contain the high frequency information in different orientations. Each of these sub-images

are one-fourth the size of the original image.

To generate the new HaarHOG descriptor, the HOG is next calculated from the

Haar wavelet transformed image, not as a whole but as a collection of four sub-images.

Specifically, four HOG descriptors are computed from the four quadrants of a Haar wavelet

transformed image and then concatenated to get the HaarHOG descriptor..

The process described above is applicable only to grayscale images. Since color

images contain more discriminatory information than grayscale images, this information

can be incorporated into the descriptor by calculating a HaarHOG vector from each color

component image, and then concatenating the three vectors. This method is explained in

Figure 4.5. Specifically, the four quadrants of the color Haar transformed image on the left

of the figure undergo the HOG operation, and their vectors are concatenated to form the

innovative color HaarHOG descriptor. The color image may be converted to the HSV, the

YCbCr, the oRGB or any other color space from the RGB color space to obtain the color

HaarHOG descriptor in the desired color space as the end result.

4.4 Experiments

This section first introduces the datasets used for testing this new image descriptor and

then does a comparative assessment of the classification performance of the HaarHOG

descriptor, the HOG descriptor, and some other popular image descriptors.
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(a)

(b)

(c)

Figure 4.6 Some sample images from (a) the Caltech 256 dataset, (b) the UIUC Sports
Event dataset, and (c) the Fifteen Scene Categories dataset. Please note that only a few
classes from the Caltech 256 dataset are shown here.

4.4.1 Datasets Used

This section briefly introduces the four publicly available and widely used image datasets

used for assessing the classification performance of the proposed descriptor.

The Caltech 256 Dataset

The Caltech 256 dataset (Griffin et al. 2007) holds 30,607 images divided into 256 object

categories and a clutter class. The images have high intra-class variability and high object
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location variability (Griffin et al. 2007). Each category contains a minimum of 80 images

and a maximum of 827 images. The mean number of images per category is 119. The

images represent a diverse set of lighting conditions, poses, backgrounds, and sizes (Griffin

et al. 2007). Images are in color, in JPEG format with only a small percentage in grayscale.

The average size of each image is 351×351 pixels. Some sample images from this dataset

are shown in Figure 4.6(a).

The UIUC Sports Event Dataset

The UIUC Sports Event dataset (Li and Fei-Fei 2007) contains 1,574 images from eight

sports event categories: 250 rowing, 200 badminton, 182 polo, 137 bocce, 190 snowboard-

ing, 236 croquet, 190 sailing, and 194 rock climbing. The mean image size in this dataset

is 966×1156 pixels. These images contain both indoor and outdoor scenes where the fore-

ground contains elements that define the category. The background is often cluttered and

is similar across different categories like rowing and sailing, or croquet and polo. Some

sample images from this dataset are shown in Figure 4.6(b).

The MIT Scene Dataset

The MIT Scene dataset, also known as the OT Scenes dataset (Oliva and Torralba 2001)

has 2,688 images divided into eight categories. A detailed description of this dataset is

provided in Section 3.4.1. Figure 3.4(a) shows some images from this dataset.

The Fifteen Scene Categories Dataset

The Fifteen Scene Categories dataset (Lazebnik et al. 2006) is composed of 15 scene cate-

gories: thirteen were provided by (Fei-Fei and Perona 2005), eight of which were originally

collected by (Oliva and Torralba 2001) as the MIT Scene dataset, and two were collected by

(Lazebnik et al. 2006). Each category has 200 to 400 images, most of which are grayscale.
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Figure 4.7 The mean average classification performance of the HOG and proposed
HaarHOG descriptors in the grayscale, RGB, HSV, oRGB, and YCbCr color spaces us-
ing the SVM classifier on the Caltech 256 dataset.

Figure 4.6(c) shows one image each from the fifteen classes of this dataset.

4.4.2 Comparative Assessment of the HOG and HaarHOG Descriptors on the Dif-

ferent Datasets

In this section, a comparative assessment of the HOG and the proposed HaarHOG descrip-

tors is made in four different color spaces – RGB, HSV, oRGB, and YCbCr color spaces,

as well as in grayscale, using the four datasets described earlier to evaluate classification

performance. Towards that end, first the descriptors are derived from each image in the

different color spaces. Note that the large-scale images are resized in such a way that their

largest dimension does not exceed 400 pixels. Each input image is converted into grayscale

as well as transformed into images in the four color spaces, and the HOG and the HaarHOG

descriptors are then computed from these images. For evaluating the relative classification
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Figure 4.8 The mean average classification performance of the HOG and proposed
HaarHOG descriptors in the grayscale, RGB, HSV, oRGB, and YCbCr color spaces us-
ing the SVM classifier on the UIUC Sports Event dataset.

performances of the HOG and HaarHOG descriptors, a Support Vector Machine (SVM)

classifier with a linear kernel (Vapnik 1995; Vedaldi and Fulkerson 2010) is used.

From the Caltech 256 dataset, 50 images per class are used for training and 25

images per class are used for testing. The experiment is done for five random splits of the

data with no overlap between training and testing sets of the same split. As can be seen

in Figure 4.7, the HaarHOG significantly outperforms the HOG in all four color spaces as

well as in grayscale. The horizontal axis shows the proposed descriptors in four different

color spaces and in grayscale, and the vertical axis denotes the mean average classification

performance, which is the percentage of correctly classified images averaged across all the

256 classes and five runs of experiments.

For the UIUC Sports Event dataset, 70 images are used from each class for training

and 60 from each class for testing. Figure 4.8 shows the mean average classification perfor-

mance obtained over five random splits of the data. Here also, the HaarHOG outperforms
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Figure 4.9 The mean average classification performance of the HOG and proposed
HaarHOG descriptors in the grayscale, RGB, HSV, oRGB, and YCbCr color spaces us-
ing the SVM classifier on the MIT Scene dataset.

the HOG by a big margin that varies from about 3% to over 7%. Indeed, on this dataset

the HaarHOG not only outperforms the HOG, but also provides a decent classification

performance by itself.

From both the MIT Scene dataset and the Fifteen Scene Categories dataset five

random splits of 100 images per class are used for training, and the rest of the images for

testing. Again, the HaarHOG produces decent classification performance on its own apart

from beating the HOG by a fair margin. Figure 4.9 displays these results on the MIT Scene

dataset. Again, the horizontal axis shows the different descriptors in the four color spaces

and in grayscale, and the vertical axis the mean average classification performance. The

highest classification rate for this dataset is as high as 89.3% for the HaarHOG descriptor

in the YCbCr color space which is a very respectable value for a dataset of this size and

complexity. On the Fifteen Scene Categories dataset, experiments are conducted only in

grayscale. The overall success rate for HOG on this dataset is 60.9% and for HaarHOG it
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Figure 4.10 The comparative mean average classification performance of the HOG and
HaarHOG descriptors on the 15 categories of the Fifteen Scene Categories dataset.

is 70.5%. In Figure 4.10 the category wise classification rates of the grayscale HOG and

HaarHOG descriptors for all 15 categories of this dataset are displayed. Here, the horizontal

axis reveals the fifteen scene categories, and the vertical axis displays the mean average

classification performance. The HaarHOG here is shown to better the HOG classification

performance in each scene category.

The classification performance of the proposed HaarHOG descriptor is also com-

pared with some popular image classification techniques used by other researchers. The

detailed comparison is shown in Table 4.1. It should be noted that the results of other

researchers are reported directly from their published work.

4.5 Summary

In this chapter, a new image descriptor based on shape and local features that improves upon

the popular HOG descriptor has been presented for object and scene image classification.

First the new HaarHOG descriptor has been presented for a grayscale image. Then this

definition has been extended for color images.

Also the HaarHOG descriptor has been comparatively assessed in grayscale and

four different color spaces — the RGB, the HSV, the YCbCr, and the oRGB — for image

classification performance. Experimental results using four datasets show that the proposed



45

Table 4.1 Comparison of the Classification Performance (%) of the Proposed HaarHOG
Descriptor with Other Popular Methods on the UIUC Sports Event and MIT Scene Datasets

Descriptor UIUC MIT
Performance (%) Performance (%)

SIFT+GGM (Li and Fei-Fei 2007) 73.4 -
OB (Li et al. 2010) 76.3 -
CA-TM (Niu et al. 2012) 78.0 -
LBP - 77.9
CGLF (Banerji et al. 2011) - 80.0
SE (Oliva and Torralba 2001) - 83.7
CGLF+PHOG (Banerji et al. 2011) - 84.3
C4CC (Bosch et al. 2006) - 86.7
HOG 76.3 85.8
HaarHOG (proposed) 82.2 89.3

new HaarHOG descriptor not only achieves significantly better image classification perfor-

mance than the conventional HOG descriptor, but can also beat other popular descriptors,

such as the Scale Invariant Feature Transform (SIFT), Spatial Envelope, Color SIFT four

Concentric Circles (C4CC), Object Bank (OB), Context Aware Topic Model (CA-TM), as

well as LBP.



CHAPTER 5

THE NEW 3D-LBP, 3DLH AND 3DLH-FUSION DESCRIPTORS

As discussed in Chapter 3, the Local Binary Patterns (LBP) method describes the texture

information of a grayscale image but is not effective in representing color. Considering the

fact that a color image contains much more discriminative information than a grayscale im-

age, and the performance of LBP alone on the MIT Scene dataset leaves scope for improve-

ment, this chapter introduces a novel Three-dimensional Local Binary Patterns (3D-LBP)

descriptor that attempts to encode both color and texture information from a color image.

Further, the HaarHOG descriptor is fused with the 3D-LBP to produce the new 3DLH and

3DLH-fusion vectors that perform well for classification on different scene datasets.

5.1 A New Three-Dimensional Local Binary Patterns (3D-LBP) Descriptor

As discussed in Section 3.1, the Local Binary Patterns (LBP) method describes the texture

information of a grayscale image by comparing each pixel with its neighbors (Ojala et al.

1994, 1996, 2002). LBP, however, does not encode color information, which is an effective

cue for pattern recognition such as object and scene image classification (Banerji et al.

2011; Liu 2008, 2006). The motivation for this new three dimensional LBP descriptor, or

3D-LBP descriptor, rests on the extension of the conventional LBP method to incorporate

the color cue when encoding a color image. Specifically, given a color image, the 3D-LBP

descriptor generates three new color images by applying three perpendicular LBP encoding

schemes. Figure 5.1 shows a color image, the three perpendicular LBP encoding schemes,

and the three encoded color images generated by the proposed 3D-LBP descriptor. The

first LBP encoding scheme applies a 3×3 neighborhood, which is shown in pink color in

the top row of the second column, to encode the red, green, and blue component images,

respectively. The encoded three images then form a new color image that is displayed as

46
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Figure 5.1 A color image taken from the butterfly category of the Caltech 256 dataset, the
three perpendicular LBP encoding schemes, and the three encoded color images generated
by the 3D-LBP descriptor.

the top image in the last column in Figure 5.1. The outer pixels are discarded on all sides

after performing the LBP operation and hence this image is smaller than the original image

by one pixel on all sides. The second LBP encoding scheme utilizes a 3×3 neighborhood

shown in pink color in the middle row of the second column to encode the rows across the

red, green, and blue component images, and the encoded three images form a new color

image that is shown as the middle image in the last column in Figure 5.1. The third LBP

encoding scheme uses a 3×3 neighborhood shown in pink color in the bottom row of the

second column to encode the columns across the red, green, and blue component images,

and the encoded three images form a new color image that is displayed as the bottom image

in the last column in Figure 5.1. Normally, after performing an LBP operation, the outer

pixels are discarded. However, since the number of color planes is just three, here the top

and bottom planes cannot simply be discarded after performing the new LBP operations as
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shown in the second and third rows of Figure 5.1. To solve this problem, the existing planes

are replicated in a manner that puts an extra plane on either side of the three existing planes

without copying a plane next to itself. For example, if the image is RGB, the new five-plane

matrix will be BRGBR. After the 3D-LBP operation is done, these two new planes, i.e. the

first and fifth planes of the five-plane image, are discarded to create a three plane image

again. The 3D-LBP descriptor thus encodes the color and texture information to generate

three new color images as shown in the last column in Figure 5.1. The histograms are taken

from each color plane of these three images and concatenated to form the 3D-LBP feature

vector which is independent of the image size. Hence, for a color image, the size of the

3D-LBP vector is 2304, which is 256×3×3.

5.2 The 3DLH Descriptor

To create a descriptor that encodes color, texture, shape and local features, the new 3D-LBP

descriptor and the HaarHOG feature vector introduced in Chapter 4 are fused. To imple-

ment this, the two feature vectors are subjected to dimensionality reduction by PCA and the

most expressive features thus obtained are concatenated to form the 3DLH feature vector.

In particular, first a color image is subjected to the 3D-LBP operation which produces three

new color images. The histograms of each of the three planes of these three color images

are concatenated to form the 3D-LBP feature vector. Next, each color component image of

the original color image is subjected to Haar transformation to produce three images that

are divided into four quadrants each. Then the HOG feature vector is computed from each

of the four quadrants of each image and concatenated to form the HaarHOG descriptor.

Please note that the HOG operation used in this chapter divides the image into 3×3 blocks

and uses nine histogram bins for the orientations. Finally, the 3D-LBP feature vector and

HaarHOG feature vector are both subjected to dimensionality reduction by PCA and the

results are concatenated to form the 3DLH descriptor. Figure 5.2 shows a color image,

its 3D-LBP images, its 3D-LBP feature vector, its HaarHOG feature vector, and the novel
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Figure 5.2 A color image, its three 3D-LBP color images, its Haar transformed image,
the HaarHOG and 3D-LBP histogram descriptors, the PCA process and the concatenated
3DLH descriptor.

3DLH feature vector. In particular, the top left image of Figure 5.2 shows a color image of

a Mandarin duck and the leftmost column shows the original color image undergoing Haar

wavelet transformation to generate a new color image shown in the second row, from which

the HaarHOG descriptor shown in row 3 is computed. On the right side of the original im-
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Figure 5.3 A schematic diagram showing a color image, and the process of computing its
3DLH-fusion descriptor by concatenating its 3DLH descriptors in six color spaces.

age on the top row, the three new color images formed from the original color image by

the 3D-LBP operation are shown. Each of these three images are used for extracting their

histograms from all color planes and finally these histograms are concatenated to form the

3D-LBP feature vector. This vector is shown on the right side of the third row of the figure.

Finally, the HaarHOG and 3D-LBP descriptors undergo dimensionality reduction by PCA

and concatenation to form the 3DLH vector shown in the last row of the figure.

5.3 A Novel 3DLH-fusion Descriptor

Color contains a significant amount of discriminatory information for object and scene

image classification (Liu and Mago 2012; Liu 2011; Liu and Yang 2009; Liu 2008, 2007,

2006, 2004) and various color spaces have different properties that are useful to encode all

the information present in images. Further, it has been shown by (Verma et al. 2010; Banerji
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et al. 2011) that different color spaces are not fully redundant in their information content.

To further incorporate color information to the proposed 3DLH descriptor, an innovative

3DLH-fusion descriptor is introduced that fuses the 3DLH descriptors in six different color

spaces, where the color spaces are the RGB, oRGB, HSV, YCbCr, I1I2I3 and DCS color

spaces. Detailed descriptions of these color spaces are available in Section 2.1. Specifically,

the original RGB color image is transformed to each of the other five color spaces, and the

3DLH descriptor is computed for each color space as described in Section 5.2. Finally,

the descriptors from all six color spaces are concatenated to form the 3DLH-fusion feature

vector. Figure 5.3 shows a color image, and the formation of the 3DLH-fusion descriptor

from it. In particular, it shows a color image on the left, then its conversion into different

color spaces is shown schematically. Next, the formation of the 3DLH feature vector from

each color space is shown, followed by concatenation and formation of the 3DLH-fusion

descriptor shown in blue on the right.

5.4 Experiments

The proposed descriptors are tested for scene image classification using three challenging

datasets, namely the Caltech 25 Scene dataset which is a small subset of the Caltech 256

dataset (Griffin et al. 2007), the UIUC Sports Event dataset (Li and Fei-Fei 2007), and the

MIT Scene dataset (Oliva and Torralba 2001). Specifically, the 3DLH descriptor is first

assessed in six different color spaces, and then the 3DLH-fusion descriptor is compared

with other popular descriptors, such as combinations of Scale Invariant Feature Transform

(SIFT) (Lowe 1999, 2004) with other descriptors (Li and Fei-Fei 2007; Bo et al. 2011), LBP

(Ojala et al. 1994) and Pyramid Histograms of Oriented Gradients (PHOG) (Bosch et al.

2007b) based descriptors (Banerji et al. 2011), Spatial Envelope (Oliva and Torralba 2001),

Color SIFT four Concentric Circles (C4CC) (Bosch et al. 2006), and other approaches

such as Context Aware Topic Model (CA-TM) (Niu et al. 2012), and Object Bank (Li et al.

2010).
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Figure 5.4 Some sample images from the Caltech Scene 25 dataset.

5.4.1 Datasets Used

This section briefly introduces the three publicly available image datasets. Two of these

datasets are quite popular among researchers for evaluating the performance of scene image

descriptors and classification methods. The remaining one is a subset of the very large and

challenging Caltech 256 dataset.

The Caltech 25 Scene Dataset

The Caltech 256 dataset (Griffin et al. 2007) contains 30,607 images distributed among

256 object categories and a clutter class. The images are diverse, with high intra-class vari-

ability and large variations in object location, lighting and camera angles. The complete

dataset is described in greater detail in Section 4.4.1. For testing the 3DLH descriptor, 25

scene image categories are selected from this dataset to form the Caltech 25 Scene dataset.

This subset contains 110 Camel, 104 Canoe, 87 Duck, 83 Eiffel Tower, 101 Elk, 110 Fern,

100 Fireworks, 80 Golden Gate Bridge, 201 Grapes, 93 Hawksbill, 120 Ibis, 108 Iris, 111

Ketch, 91 Killer whale, 190 Leopards, 136 Lightning, 130 Minaret, 202 Mushroom, 103

Palm tree, 102 Rainbow, 95 Skyscraper, 105 Tennis court, 90 Tower Pisa, 95 Waterfall

and 96 Zebra images. The images, while representing a diverse set of lighting conditions,

backgrounds and sizes, are from categories that can be called scenes. As Figure 5.4 shows,
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some classes like Minaret and Tower-Pisa have a very similar foreground, and others like

Lightning and Fireworks have a similar background, making classification very challeng-

ing. Almost all of these images are in color JPEG format with only a few in grayscale.

The UIUC Sports Event Dataset

The UIUC Sports Event dataset (Li and Fei-Fei 2007) contains eight sports event cate-

gories. This dataset has been described in detail in Section 4.4.1. Some sample images are

displayed in Figure 4.6(b).

The MIT Scene Dataset

The MIT Scene dataset (Oliva and Torralba 2001) has 2,688 color jpeg images divided into

eight scene categories. A more elaborate description of this dataset is given in Section 3.4.1.

Some sample images from this dataset are shown in Figure 3.4(a).

5.4.2 Comparative Assessment of the 3DLH Descriptor in Different Color Spaces

Now the 3DLH descriptor is evaluated in six different color spaces — the RGB, oRGB,

HSV, YCbCr, DCS and I1I2I3 color spaces — for content-based image classification perfor-

mance using the three datasets mentioned above. The larger images are resized to reduce

their longer dimension to 400 pixels. To extract the 3DLH descriptor from each image,

the 3D-LBP descriptor is first computed to produce three new color images. Then the

HaarHOG descriptor of the original color image is calculated. The 3DLH feature vector

is computed by taking the most expressive features from both the 3D-LBP and HaarHOG

feature vectors using PCA and then concatenating them. Each image is converted to the six

color spaces and then processed in the same way to construct the six different color 3DLH

descriptors. Next, PCA is applied to reduce the dimensionality of the 3DLH descriptors,

and the features thus extracted are further processed by EFM to obtain the features that
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Figure 5.5 The mean average classification performance of the proposed 3DLH descrip-
tor in the I1I2I3, oRGB, HSV, DCS, RGB, and YCbCr color spaces using the EFM-NN
classifier on the Caltech 25 Scene dataset.

are most discriminatory for classification. Finally a nearest neighbor classifier is used for

image classification.

For the Caltech 25 Scene dataset, experiments are conducted for the 3DLH descrip-

tors from six different color spaces. 50 images from each class are used for training and

25 images for testing. Figure 5.5 shows the detailed performance of the 3DLH descriptor

coupled with the EFM-NN classification technique on this dataset. The horizontal axis indi-

cates the average classification performance, which is the percentage of correctly classified

images averaged across the 25 classes and the five random runs of the experiments, and

the vertical axis shows the six different 3DLH descriptors in the six color spaces. Among

the different 3DLH descriptors, the best recognition rate obtained is 59.7% for the 3DLH

descriptor in the YCbCr color space. The classification rates for the 3DLH descriptor in

the RGB, DCS, HSV, oRGB and I1I2I3 color spaces are 59.0%, 58.9%, 58.6%, 58.2% and

56.6%, respectively.

In the case of the UIUC Sports Event dataset, the protocol defined in (Li and Fei-
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Figure 5.6 The mean average classification performance of the proposed 3DLH descriptor
in the HSV, I1I2I3, oRGB, YCbCr, DCS and RGB color spaces using the EFM-NN classifier
on the UIUC Sports Event dataset.

Fei 2007) is used, which specifies that 70 images from each class are used for training

and 60 images for testing. To reduce variability in performance, these experiments are

repeated five times using random splits of the data, with no overlap between the training

and the testing sets of the same split. Figure 5.6 reveals that the RGB-3DLH is the best

descriptor with 83.3% average classification performance followed in order by the 3DLH

descriptors in the DCS, YCbCr, oRGB, I1I2I3, and HSV color spaces with 82.5%, 81.8%,

81.5%, 80.6% and 80.0% success rates, respectively. Again the horizontal axis indicates

the average classification performance and the vertical axis the 3DLH descriptors in the six

color spaces.

For the MIT Scene dataset, 250 images are used from each class for training and

the rest of the images are used for testing. Here too, all experiments are performed for five

random splits of the data. The bar chart in Figure 5.7 displays that the 3DLH descriptor

in the YCbCr color space performs the best with 88.4% average classification rate. The

3DLH descriptors in the HSV, oRGB, DCS, I1I2I3 and RGB color spaces correctly classify

on an average 88.3%, 88.2%, 87.9%, 85.8% and 85.3% of the images respectively. Here

also, the horizontal axis shows the average classification performance and the vertical axis
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Figure 5.7 The mean average classification performance of the proposed 3DLH descrip-
tor in the RGB, I1I2I3, DCS, oRGB, HSV, and YCbCr color spaces using the EFM-NN
classifier on the MIT Scene dataset.

shows the different 3DLH descriptors.

5.4.3 Comparative Assessment of the 3DLH-fusion Descriptor and Some Popular

State-of-the-art Image Descriptors

In this section the performance of the proposed 3DLH-fusion descriptor on the three datasets

described in Section 5.4.1 is evaluated. First the proposed 3DLH-fusion descriptor is com-

pared with the 3D-LBP-fusion and HaarHOG-fusion descriptors to show the improvement

obtained by combining the descriptors. Then the 3DLH-fusion descriptor is compared with

some other popular state-of-the-art descriptors using the image classification performance

reported in the published papers.

To justify combining the 3D-LBP and the HaarHOG descriptors to form the 3DLH

vector, the 3DLH-fusion descriptor is next compared with the 3D-LBP-fusion and the

HaarHOG-fusion descriptors. The 3D-LBP-fusion descriptor is formed by concatenat-

ing the 3D-LBP descriptors from different color spaces to form one single feature vector.

Similarly, the HaarHOG-fusion feature vector is formed by concatenating the HaarHOG

descriptors from individual color spaces. Both descriptors are subjected to EFM-NN clas-
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Figure 5.8 The comparative mean average classification performance of the 3D-LBP-
fusion, HaarHOG-fusion and 3DLH-fusion descriptors on the Caltech 25 Scene, UIUC
Sports Event and MIT Scene datasets.

sification for a fair comparison with the 3DLH-fusion descriptor.

Figure 5.8 shows that the 3DLH-fusion descriptor has an image classification per-

formance better than both the 3D-LBP-fusion and the HaarHOG-fusion descriptors on all

the three datasets. Note that the horizontal axis of this graph lists the three descriptors

and the three datasets while the vertical axis shows the average classification performance

as a percentage. In particular, on the Caltech 25 Scene dataset, the 3D-LBP-fusion, the

HaarHOG-fusion and the 3DLH-fusion descriptors achieve the average classification rate

of 49.4%, 62.5% and 65.2% respectively. On the UIUC Sports Event dataset, the 3DLH-

fusion yields 85.0% classification rate, compared to the 3D-LBP-fusion descriptor with the

average classification rate of 75.9% and to the HaarHOG-fusion descriptor with the average

classification rate of 83.5%, respectively. On the MIT Scene dataset, the average classifi-

cation rates for the 3D-LBP-fusion, the HaarHOG-fusion and the 3DLH-fusion descriptors

are 83.8%, 89.0% and 89.9% respectively.

Using this UIUC Sports Event dataset, the 3DLH-fusion descriptor is further com-
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Table 5.1 Comparison of the Classification Performance (%) of the 3DLH-fusion De-
scriptor with other Popular Methods on the UIUC Sports Event Dataset

Descriptor Performance (%)
SIFT+GGM (Li and Fei-Fei 2007) 73.4
OB (Li et al. 2010) 76.3
CA-TM (Niu et al. 2012) 78.0
SIFT+SC (Bo et al. 2011) 82.7
3DLH-fusion (proposed) 85.0

pared with some popular state-of-the-art descriptors and methods, such as the Context

Aware Topic Model (CA-TM) (Niu et al. 2012), the Object Bank approach (Li et al.

2010) and variations of the popular Scale Invariant Feature Transform (SIFT) (Lowe 2004)

descriptor (Bo et al. 2011; Li and Fei-Fei 2007). Note that the performance reported

here for the competing methods are from the published papers. Table 5.1 shows that

the 3DLH-fusion descriptor achieves the best classification performance of 85.0% com-

pared to SIFT+SC (Bo et al. 2011) with classification performance of 82.7% , to Context

Aware Topic Model (CA-TM) (Niu et al. 2012) with classification performance of 78.0%,

to Object Bank (OB) (Li et al. 2010) with classification performance of 76.3% and to the

SIFT+GGM (Li and Fei-Fei 2007) method with classification performance of 73.4%.

On the MIT Scene dataset, two sets of experiments are performed with the 3DLH-

fusion descriptor. First 250 images are randomly selected from each class for training and

the rest of the images are used for testing. In this set of experiments, the proposed 3DLH-

fusion descriptor yields an average success rate of 89.9%. In the next set of experiments

100 images per class are used for training and the leftover images for testing. Next, the

proposed descriptor is compared with some popular state-of-the-art descriptors and clas-

sification methods such as the Spatial Envelope (Oliva and Torralba 2001), Color SIFT

four Concentric Circles (C4CC) (Bosch et al. 2006), Color Grayscale LBP Fusion (CGLF)

(Banerji et al. 2011), LBP and Pyramid Histograms of Oriented Gradients (PHOG) (Bosch

et al. 2007b; Banerji et al. 2011). Here also, the results achieved by other researchers are
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Table 5.2 Comparison of the Classification Performance (%) of the 3DLH-fusion De-
scriptor with other Popular Methods on the MIT Scene Dataset

#train = 2000, #test = 688
3DLH-fusion Proposed Descriptor 89.9
CGLF+PHOG (Banerji et al. 2011) 89.5
CGLF (Banerji et al. 2011) 86.6
LBP 82.7
PHOG (Banerji et al. 2011) 79.1

#train = 800, #test = 1888
3DLH-fusion Proposed Descriptor 87.0
C4CC (Bosch et al. 2006) 86.7
CGLF+PHOG (Banerji et al. 2011) 84.3
SE (Oliva and Torralba 2001) 83.7
CGLF (Banerji et al. 2011) 80.0
LBP 77.9

reported directly from their published work. Table 5.2 shows that with 250 training images,

the proposed 3DLH-fusion descriptor shows the best classification performance of 89.9%

as compared to CGLF+PHOG (Banerji et al. 2011) with a classification performance of

89.5%, to CGLF (Banerji et al. 2011) with a classification performance of 86.6%, to LBP

with a classification performance of 82.7% and to PHOG (Bosch et al. 2007b; Banerji et al.

2011) with a classification performance of 79.1%. With 100 training images per class, once

again the 3DLH-fusion descriptor generates the best classification performance of 87.0%,

as compared to Color SIFT four Concentric Circles (C4CC) (Bosch et al. 2006) with a

classification performance of 86.7%, to CGLF+PHOG (Banerji et al. 2011) with a clas-

sification performance of 84.3%, to Spatial Envelope with a classification performance of

83.7%, to CGLF (Banerji et al. 2011) with a classification performance of 80.0% and to

LBP with a classification performance of 77.9%.
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5.5 Summary

This chapter has presented new image descriptors based on color, texture, shape, and

wavelets for scene image classification. In particular, a new LBP-based color and tex-

ture feature extraction method (3D-LBP) has been proposed for images and combined with

Haar wavelet features and HOG features to generate several new descriptors for color scene

images. Results of the experiments using three challenging datasets show that the oRGB-

3DLH, HSV-3DLH, DCS-3DLH and YCbCr-3DLH descriptors improve recognition per-

formance over several other popular descriptors. The fusion of multiple color 3DLH de-

scriptors (3DLH-fusion) shows an increase in the classification performance, which sug-

gests that various color 3DLH descriptors are not completely redundant for image clas-

sification. Also, the fusion of 3D-LBP and HaarHOG descriptors improves classification

performance which indicates that these two descriptors contain non-redundant information

and, if fused more effectively, could yield an even higher classification performance.



CHAPTER 6

THE NOVEL H-DESCRIPTOR AND H-FUSION DESCRIPTOR

This chapter presents new image descriptors that integrate color, texture, shape, and wavelets

for object and scene image classification. First, the three Dimensional Local Binary Pat-

terns (3D-LBP) descriptor is used for encoding the color and texture information of a color

image. Specifically, the 3D-LBP descriptor produces three new color images from the orig-

inal color image. Second, the Haar wavelet transform is applied to the three new 3D-LBP

color images and the original color image. The Histograms of Oriented Gradients (HOG)

of these Haar wavelet transformed images are further calculated for encoding shape and

local features. Third, a novel H-descriptor is proposed, which integrates the 3D-LBP and

the HOG of its wavelet transform, to encode color, texture, shape, and local information for

object and scene image classification. Finally, a new H-fusion descriptor is presented by

fusing the Principal Component Analysis (PCA) features of the H-descriptors in the seven

individual color spaces.

Experimental results using three datasets, the Caltech 256 object categories dataset,

the UIUC Sports Event dataset, and the MIT Scene dataset, show that the proposed new

image descriptors achieve better image classification performance than other popular im-

age descriptors, such as the Scale Invariant Feature Transform (SIFT) (Lowe 1999, 2004),

the Pyramid Histograms of visual Words (PHOW) (Bosch et al. 2007a), the Pyramid His-

tograms of Oriented Gradients (PHOG) (Bosch et al. 2007b; Banerji et al. 2011), Spatial

Envelope (Oliva and Torralba 2001), Color SIFT four Concentric Circles (C4CC) (Bosch

et al. 2006), Object Bank (Li et al. 2010), the Hierarchical Matching Pursuit (Bo et al.

2011), as well as LBP (Ojala et al. 1994).

61
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6.1 A Novel H-Descriptor Based on Color, Texture, Shape, and Wavelets

The 3D-LBP descriptor introduced in Section 5.1 improves upon the conventional LBP

method by means of encoding both color and texture information of a color image. The

HaarHOG descriptor presented in Section 4.3 incorporates additional useful and important

features for object and scene image classification, namely shape and local features. The 3D-

LBP and the HaarHOG were fused in Section 5.2 to form the new 3DLH feature vector that

outperformed both the 3D-LBP and HaarHOG descriptors for scene image classification.

The motivation for the next descriptor, the H-descriptor, arises from the need for a better

technique to integrate the texture, color, shape and local features from an image so that

classification performance can be further improved. Towards that end, the H-descriptor is

created which is the concatenation of the HaarHOG features of the original color image

and the three color images produced by the 3D-LBP operation.

Specifically, first three new color images are generated from a color image using

the 3D-LBP operation. Next, the Haar wavelet transform of the original color image and

its new 3D-LBP color images are computed. Then, four HOG descriptors are computed

from the four quadrants of a Haar wavelet transformed image and then concatenated to get

the HOG descriptor of a Haar wavelet transformed image. Finally the HOG descriptors

from the Haar wavelet transform of the component images of the color image and its 3D-

LBP color images are integrated to form the H-descriptor, which encodes color, texture,

shape, and local information for object and scene image classification. Please note that the

HOG operation used in this chapter also divides the image into 3×3 blocks and uses nine

histogram bins for the orientations.

In particular, for a color image, the 3D-LBP descriptor first generates three new

color images. The Haar wavelet transform then produces twelve wavelet transformed im-

ages from the twelve color component images of the color image and its three 3D-LBP

color images. The HOG process further generates four HOG descriptors corresponding to

each of the Haar wavelet transformed images. The HOG descriptors from all the Haar
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Figure 6.1 A color image taken from the duck category of the Caltech 256 dataset, its 3D-
LBP color images, the Haar wavelet transforms of these color images, and the H-descriptor
formed by the concatenation of the HOG descriptors of these Haar transform images.

wavelet transformed images are finally concatenated to form a new descriptor, the H-

descriptor. The dimensionality of this descriptor is 3888 which is the product of the size of

the grayscale HOG vector and the total number of quadrants from all the twelve component

images of the four Haar transformed color images (81× 4× 12). The time taken to com-

pute the H-descriptor from an image is empirically seen to be directly proportional to the

number of pixels in the image. For experiments done with a large number of images, the

average feature extraction time is found to be 5.5 seconds per image on an Intel® Core™

i3-2120 3.30GHz CPU with 8 GB RAM. Figure 6.1 shows a color image, its 3D-LBP color

images, the Haar wavelet transformed color images, and the H-descriptor derived from the
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Figure 6.2 A color image taken from the inside-city category of the MIT Scene dataset,
its corresponding color images in the seven color spaces, the H-descriptors of the color
images, the PCA process, the concatenation process, and the H-fusion descriptor.

concatenation of the HOG descriptors of the Haar wavelet transformed color images.

6.1.1 An Innovative H-fusion Descriptor

Color provides a very important cue for pattern recognition in general and for object and

scene image classification in particular (Liu and Mago 2012; Banerji et al. 2011; Liu 2011;

Verma et al. 2010; Liu and Yang 2009; Liu 2008, 2007, 2006, 2004). To further incorpo-

rate color information, an H-fusion descriptor is introduced that fuses the most expressive

features of the H-descriptors in seven different color spaces, where the most expressive

features are extracted by means of principal component analysis (PCA) and the seven color

spaces are the RGB, oRGB, HSV, YIQ, YCbCr, I1I2I3, and DCS color spaces (Liu 2008).

These color spaces have been described in detail in Section 2.1. PCA has been discussed

in Section 2.2.

The proposed H-fusion descriptor is derived by first computing the H-descriptors
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in the seven color spaces, namely RGB, oRGB, HSV, YIQ, YCbCr, I1I2I3, and DCS, and

then extracting the most expressive features of the H-descriptors using PCA, and finally

concatenating these most expressive features from the seven color spaces. Figure 6.2 shows

a color image, its corresponding color images in the seven color spaces, the H-descriptors of

the color images, the PCA process, the concatenation process, and the H-fusion descriptor.

6.2 Experiments

The proposed descriptors are tested for object and scene image classification using three

popular datasets, namely the Caltech 256 dataset (Griffin et al. 2007), the UIUC Sports

Event dataset (Li and Fei-Fei 2007), and the MIT Scene dataset (Oliva and Torralba 2001).

Specifically, the H-descriptor is first assessed in seven different color spaces, and then the

H-fusion descriptor is compared with other popular descriptors, such as combinations of

Scale Invariant Feature Transform (SIFT) (Lowe 1999, 2004) with other descriptors (Li

and Fei-Fei 2007; Bo et al. 2011), the Pyramid Histograms of visual Words (PHOW) de-

scriptor (Bosch et al. 2007a), LBP (Ojala et al. 1994) and Pyramid Histograms of Oriented

Gradients (PHOG) (Bosch et al. 2007b) based descriptors (Banerji et al. 2011), Spatial

Envelope (Oliva and Torralba 2001), Color SIFT four Concentric Circles (C4CC) (Bosch

et al. 2006), and other approaches such as Object Bank (Li et al. 2010) and Hierarchical

Matching Pursuit (Bo et al. 2011).

6.2.1 Datasets Used

This section briefly describes the three publicly available and fairly challenging image

datasets. All of these datasets are widely used for evaluating the performance of object

and scene image descriptors and classification methods.
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The Caltech 256 Dataset

The Caltech 256 dataset (Griffin et al. 2007) holds 30,607 images divided into 256 object

categories and a clutter class. This dataset has been described in detail in Section 4.4.1.

Some sample images from this dataset are shown in Figure 4.6(a), which reveals that while

some classes like bear and teddy-bear have similar foreground objects, elements like the

American flag and people are present in the background of many categories and hence their

inter-class variability is low.

The UIUC Sports Event Dataset

The UIUC Sports Event dataset (Li and Fei-Fei 2007) contains eight sports event cate-

gories. This dataset has been described in detail in Section 4.4.1. Some sample images are

displayed in Figure 4.6(b).

The MIT Scene Dataset

The MIT Scene dataset, also known as the OT Scenes dataset (Oliva and Torralba 2001)

has 2,688 images divided into eight categories. A detailed description of this dataset is

provided in Section 3.4.1. Figure 3.4(a) shows a few sample images from this dataset.

6.2.2 Comparative Assessment of the H-descriptor in Seven Different Color Spaces

Now the H-descriptor is assessed in seven different color spaces — the RGB, oRGB, HSV,

YIQ, YCbCr, I1I2I3, and DCS color spaces — for image classification performance using

the three datasets. Note that some large scale images are resized so that the larger dimen-

sion is reduced to 400 pixels. To derive the H-descriptor from each image, the 3D-LBP

descriptor is first computed to produce three new color images. Then the Haar wavelet

transform of the 3D-LBP color images and the original color image is calculated. The

HOG descriptors are further computed from the Haar wavelet transform of the component
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Figure 6.3 The average classification performance of the proposed H-descriptor in the
I1I2I3, HSV, RGB, oRGB, DCS, YIQ, and YCbCr color spaces using the EFM-NN classi-
fier on the Caltech 256 dataset.

images of the color image and its 3D-LBP color images. Finally, the H-descriptor is de-

rived by concatenating the HOG descriptors of the Haar wavelet transformed color images.

Each image is transformed in the seven color spaces and the same operations are performed

to construct the seven different color H-descriptors. Next, PCA is applied to reduce the di-

mensionality of the H-descriptors to derive the most expressive features, which are further

processed by EFM to obtain the most discriminatory features for classification, and finally

the nearest neighbor rule is used for image classification.

For the Caltech 256 dataset, a protocol defined in (Griffin et al. 2007) is used. On

this dataset, experiments are conducted for the H-descriptors from seven different color

spaces. For each class, 50 images are used for training and 25 images for testing. The

data splits are the ones that are provided on the Caltech website (Griffin et al. 2007). Fig-

ure 6.3 shows the detailed performance of the H-descriptors using the EFM-NN classifier
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Figure 6.4 The average classification performance of the proposed H-descriptor in the
I1I2I3, HSV, DCS, YCbCr, oRGB, RGB, and YIQ color spaces using the EFM-NN classi-
fier on the UIUC Sports Event dataset.

on the Caltech 256 dataset. The horizontal axis indicates the average classification per-

formance, which is the percentage of correctly classified images averaged across the 256

classes and the five runs of the experiments, and the vertical axis shows the seven differ-

ent H-descriptors in the seven color spaces. Among the different H-descriptors, the H-

descriptor in the YCbCr color space achieves the best average classification performance

of 29.7%, followed by the H-descriptors in the YIQ, DCS, oRGB, RGB, HSV and I1I2I3

color spaces with the average classification performance of 29.4%, 29.1%, 29.0%, 28.9%,

27.9%, and 27.3%, respectively.

For the UIUC Sports Event dataset, a protocol defined in (Li and Fei-Fei 2007) is

used, which specifies that for each class in this dataset, 70 images are used for training and

60 images for testing. To achieve more reliable performance, the experiments are repeated

five times using random splits of the data, and no overlapping occurs between the training
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Figure 6.5 The average classification performance of the proposed H-descriptor in the
I1I2I3, HSV, YIQ, RGB, oRGB, DCS, and YCbCr color spaces using the EFM-NN classi-
fier on the MIT Scene dataset.

and the testing sets of the same split. Figure 6.4 shows that the H-descriptor in the YIQ

color space is the best descriptor with 82.5% average classification performance followed

in order by the H-descriptors in the RGB, oRGB, YCbCr, DCS, HSV and I1I2I3 color

spaces with 82.3%, 81.8%, 81.7%, 81.6%, 81.6% and 80.7% success rates, respectively.

Again the horizontal axis indicates the average classification performance and the vertical

axis the H-descriptors in the seven color spaces.

For the MIT Scene dataset, 250 images are used from each class for training and

the rest of the images for testing. All experiments are performed for five random splits of

the data. Figure 6.5 reveals that the H-descriptor in the YCbCr color space performs the

best with 88.7% average classification rate. The H-descriptors in the DCS, oRGB, RGB,

YIQ, HSV and I1I2I3 color spaces correctly classify on an average 88.3%, 88.2%, 88.1%,

88.0%, 87.5% and 87.1% of the images respectively. Again the horizontal axis shows the
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Figure 6.6 The color component images of the image from Figure 2.1 in the four random
color spaces, namely RCS1, RCS2, RCS3 and RCS4 color spaces, respectively.

average classification performance and the vertical axis the H-descriptors.

6.2.3 Random Color Spaces and Performance of the H-descriptor in These Color

Spaces

To further establish the robustness of the proposed H-descriptor for object and scene image

classification, four random color spaces are generated and the classification performance

is assessed using the descriptor in these color spaces. To generate a random color space, a

3×3 transformation matrix is created with randomly chosen elements.


R1

R2

R3

=


W11 W12 W13

W21 W22 W23

W31 W32 W33




R

G

B

 (6.1)

where R1, R2 and R3 are the three color components in the new random color space, and

Wi j ∈ (−1,1) are pseudorandom numbers. The three color components in the new color
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Figure 6.7 A comparison of the average classification performances of the H-descriptor
in the RGB color space and the four random color spaces RCS1, RCS2, RCS3, and RCS4
on the three image datasets. Note that all the five descriptors apply the EFM-NN classifier.

space are thus given by

R1 =W11R+W12G+W13B

R2 =W21R+W22G+W23B

R3 =W31R+W32G+W33B

(6.2)

The classification performance of the proposed H-descriptor is next assessed in

four random color spaces. In particular, four such random transformation matrices are

generated and the resulting color spaces are named random color spaces 1, 2, 3 and 4

(RCS1, RCS2, RCS3 and RCS4). The original images from each of the three datasets

mentioned above are transformed into each of these color spaces and subsequently the H-

descriptor is generated, the same training and testing framework is used as for the other

seven color spaces. Figure 6.6 shows the component images of the color image shown
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before in Figure 2.1 in the four random color spaces used for these experiments. It should

be noted that the images shown here are just four instances of what the components of a

random color space could look like.

The results of the classification experiments are shown in Figure 6.7 with the per-

formance in the RGB color space for reference. Here, the horizontal axis shows the H-

descriptors in different color spaces, and the different datasets while the vertical axis shows

the average classification performance. The performance of the H-descriptor in RCS1,

RCS2, RCS3 and RCS4 remains, in all cases except one, within 2% of the performance

of the H-descriptor in the RGB color space. First, these results show that the performance

is random and unpredictable. In some cases it is more than the RGB H-descriptor perfor-

mance and in other cases it is less. This indicates that simply transforming the color space

does not increase the performance — the exact nature of the transformation is also im-

portant. Second, the results demonstrate that for the H-descriptors in RCS1, RCS2, RCS3

and RCS4 color spaces, the classification success rates stay reasonably close to the classi-

fication rate of the H-descriptor in the RGB color space. This indicates that the proposed

descriptor is robust enough to yield stable performance under unpredictable changes in the

color component values.

6.2.4 Comparative Assessment of the Grayscale H-descriptor, the Color H-descriptors

and the H-fusion Descriptor

In this section, an attempt is made to investigate the importance of using color informa-

tion for classification, and then to justify the fusion of H-descriptors in the seven different

color spaces to form the H-fusion descriptor. Towards that end, a grayscale H-descriptor

is generated and its classification performance is comparatively evaluated with the RGB

H-descriptor and H-fusion descriptor.

The 3D-LBP operation, which is the first step of generating the H-descriptor, is only

defined for a color image, i.e. an image with three component planes. This is because the
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Figure 6.8 A comparison of the average classification performances of the H-descriptor in
grayscale, in the RGB color space and the H-fusion descriptor on the three image datasets.
Note that all the three descriptors apply the EFM-NN classifier.

3D-LBP captures the variations in pixel intensities across the color planes thus encoding

image color information. To generate the H-descriptor for a grayscale image, it first needs

to be converted to a three-plane image. In particular, for this experiment each color image

with three planes is taken and converted to a grayscale image with just one plane by forming

a weighted sum of the R, G, and B components as defined by Equation 2.9. Then that

single plane is replicated twice to form a three-plane image again. The H-descriptor is

subsequently generated from this image and classification performed using the EFM-NN

classifier.

To create the H-fusion descriptor, the H-descriptor is computed from each image

in each of the seven well-defined color spaces as described in Section 6.2.2. Then, after

reducing the dimensionality of each of these seven feature vectors to min(2000,rank− 1)

PCA features, they are concatenated and form the H-fusion descriptor. Subsequently, the
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dimensionality is further reduced using PCA and the most discriminatory features extracted

using EFM. Here also, the final number of features before classification is one less than the

number of categories.

Figure 6.8 compares the classification performance of the grayscale H-descriptor,

the RGB H-descriptor and the H-fusion descriptor. Specifically, for the Caltech 256 dataset,

the grayscale H-descriptor yields a success rate of 24.2%. Simply including RGB color in-

formation takes the correct classification rate up to 28.9% and the fusion of color spaces

increases this by a further 4.7% to correctly classify 33.6% of the images. On the UIUC

Sports Event dataset, the grayscale H-descriptor, the RGB H-descriptor and the H-fusion

descriptor show classification rates of 77.4%, 82.3% and 86.2% respectively, thus demon-

strating a significant advantage of using color. For the MIT Scene dataset, the classification

rates obtained for the grayscale H-descriptor, the RGB H-descriptor and the H-fusion de-

scriptor are 83.7%, 88.1%, and 90.8% respectively. Thus the H-fusion descriptor increases

classification performance by over 7% from the grayscale H-descriptor, which is a quite

high improvement for a dataset of this size and complexity. It should be noted that for the

MIT Scene dataset, 250 images from each class are used for training in these experiments.

On comparing Figure 6.8 with Figure 6.3, Figure 6.4, Figure 6.5, and Figure 6.7, it

is found that the classification performance of the grayscale H-descriptor is not only less

than the RGB H-descriptor, but it is also less than the classification performance of the H-

descriptor in any other color space as well. This is in accordance with the principle behind

the 3D-LBP operation which is the first step of generating the H-descriptor. The 3D-LBP

operation has been designed specifically to extract color information from the difference

in pixel values in the three color component images, and since this difference is zero in a

grayscale image, the H-descriptor does not perform as well for grayscale images as it does

for color images. Also, the H-fusion descriptor performs better than the H-descriptor in

any of the individual color spaces which justifies the fusion of H-descriptors from different

color spaces.
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Figure 6.9 A comparison of the average classification performances of the color-PHOW
descriptor, the grayscale-PHOW descriptor, and the proposed H-fusion descriptor on the
three image datasets. Note that all the three descriptors apply the EFM-NN classifier.

6.2.5 Comparative Assessment of the H-fusion Descriptor and Some Popular State-

of-the-art Image Descriptors

In this section the performance of the proposed H-fusion descriptor on the three datasets

described in Section 6.2.1 is evaluated. First the proposed H-fusion descriptor is compared

with the popular and robust SIFT-based Pyramid Histograms of visual Words (PHOW) de-

scriptor (Bosch et al. 2007a). For fair comparison, both descriptors apply the EFM-NN

classifier for image classification. Then the H-fusion descriptor is compared with some

other popular state-of-the-art descriptors using the image classification performance re-

ported in the published papers.

To make a comparative assessment of the H-fusion descriptor with a popular SIFT-

based descriptor, the Pyramid Histograms of visual Words (PHOW) feature vector (Bosch

et al. 2007a) is generated using the software package VLFeat (Vedaldi and Fulkerson 2010).
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Here feature extraction is a three-step process. First SIFT features are extracted from im-

ages using a fast SIFT process. In this algorithm, SIFT descriptors are computed at points

on a dense regular grid instead of the SIFT-generated interest points (Lazebnik et al. 2006;

Bosch et al. 2007a). Next, the SIFT features are subjected to K-means clustering with

K=1000 to form a visual vocabulary. Finally, the images are spatially tiled into 2×2 parts

and the histograms of visual words are computed for the SIFT features from each part.

These four histograms are concatenated to generate the final PHOW feature vector. For a

color image, the same process is repeated for the three color component images and the

feature vectors are concatenated. The grayscale PHOW and the color PHOW feature vec-

tors are coupled with the EFM-NN classifier to compare the classification performance.

Please note that the SIFT process applied here is an optimized C code that is 30 to 70 times

faster than the conventional SIFT method (Vedaldi and Fulkerson 2010). In comparison,

the H-descriptor is implemented using the MATLAB code that is not optimized in terms

of computational efficiency. However, the vector generation time for the color PHOW is

slightly longer than that for the color H-descriptor. For both PHOW and H-fusion descrip-

tors, PCA is applied for dimensionality reduction and EFM-NN is applied for classification

in order to make a fair comparison.

Figure 6.9 shows that the proposed H-fusion descriptor has an image classification

performance better than both the grayscale and the color PHOW descriptors on the Caltech

256 dataset. Note that the horizontal axis of this graph lists the three descriptors and the

three datasets while the vertical axis shows the average classification performance as a

percentage. In particular, the H-fusion descriptor achieves the average classification rate

of 33.6%, compared to the color-PHOW descriptor with the average classification rate of

29.9% and to the grayscale-PHOW descriptor with the average classification rate of 25.9%,

respectively. Please note that the classification performance for the Caltech 256 dataset is

quite low, because this dataset has a very high intra-class variability and in several cases

the object occupies a small portion of the full image.
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Table 6.1 Comparison of the Classification Performance (%) of the H-fusion Descriptor
with other Popular Methods on the UIUC Sports Event Dataset

#train = 560, #test = 480
H-fusion Proposed Descriptor 86.2
HMP (Bo et al. 2011) 85.7
SIFT+SC (Bo et al. 2011) 82.7
OB (Li et al. 2010) 76.3
SIFT+GGM (Li and Fei-Fei 2007) 73.4

Figure 6.9 also displays the image classification performance on the UIUC Sports

Event dataset. Specifically, the H-fusion descriptor correctly classifies 86.2% of the images

and performs better than both the grayscale and the color PHOW descriptors, which achieve

the average classification performance of 76.4% and 79.0%, respectively. Using this UIUC

Sports Event dataset, the H-fusion descriptor is further compared, with some popular state-

of-the-art descriptors and methods, such as the Hierarchical Matching Pursuit (Bo et al.

2011), Object Bank approach (Li et al. 2010) and variations of the popular Scale Invariant

Feature Transform (SIFT) (Lowe 2004) descriptor (Bo et al. 2011; Li and Fei-Fei 2007).

Note that the performance reported here for the competing methods are from the published

papers. Table 6.1 shows that the H-fusion descriptor achieves the best classification per-

formance of 86.2% compared to HMP (Bo et al. 2011) with classification performance of

85.7%, to SIFT+SC(Bo et al. 2011) with classification performance of 82.7% , to Object

Bank (Li et al. 2010) with classification performance of 76.3% and to the SIFT+GGM (Li

and Fei-Fei 2007) method with classification performance of 73.4%.

On the MIT Scene dataset, two sets of experiments are performed with the H-fusion

descriptor. First 250 images from each class are used for training and the rest of the images

for testing. In this set of experiments, the proposed H-fusion descriptor yields an average

success rate of 90.8% and exceeds the performance achieved by the PHOW descriptors.

Figure 6.9 shows the image classification performance on this dataset as well. Specifi-

cally, the H-fusion descriptor correctly classifies 90.8% of the images and performs better
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Table 6.2 Comparison of the Classification Performance (%) of the H-fusion Descriptor
with other Popular Methods on the MIT Scene Dataset

#train = 2000, #test = 688
H-fusion Proposed Descriptor 90.8
CGLF+PHOG (Banerji et al. 2011) 89.5
CGLF (Banerji et al. 2011) 86.6
PHOG (Banerji et al. 2011) 79.1

#train = 800, #test = 1888
H-fusion Proposed Descriptor 87.7
C4CC (Bosch et al. 2006) 86.7
CGLF+PHOG (Banerji et al. 2011) 84.3
SE (Oliva and Torralba 2001) 83.7
CGLF (Banerji et al. 2011) 80.0

than both the grayscale and the color PHOW descriptors, which achieve the average clas-

sification performance of 86.2% and 89.3%, respectively. In the next set of experiments

100 images are used from each class for training and the remaining images for testing.

The proposed descriptor is further compared with some widely used state-of-the-art de-

scriptors and classification approaches such as the Spatial Envelope (Oliva and Torralba

2001), Color SIFT four Concentric Circles (C4CC) (Bosch et al. 2006), Color Grayscale

LBP Fusion (CGLF) (Banerji et al. 2011) and Pyramid Histograms of Oriented Gradients

(PHOG) (Bosch et al. 2007b; Banerji et al. 2011). Here also, the results achieved by other

researchers are reported directly from their published work. Table 6.2 shows that with 250

training images, the proposed H-fusion descriptor achieves the best classification perfor-

mance of 90.8% as compared to CGLF+PHOG (Banerji et al. 2011) with a classification

performance of 89.5%, to CGLF (Banerji et al. 2011) with a classification performance of

86.6% and to PHOG (Bosch et al. 2007b; Banerji et al. 2011) with a classification per-

formance of 79.1%. With 100 training images per class, the H-fusion descriptor again

yields the best classification performance of 87.7%, as compared to Color SIFT four Con-

centric Circles (C4CC) (Bosch et al. 2006) with a classification performance of 86.7%, to

CGLF+PHOG (Banerji et al. 2011) with a classification performance of 84.3%, to Spatial
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Envelope with a classification performance of 83.7%, and to CGLF (Banerji et al. 2011)

with a classification performance of 80.0%.

6.3 Discussion

The descriptors proposed in this chapter have been thoroughly tested for classification per-

formance on several datasets. They are very different in their image properties. While

the KTH-TIPS and KTH-TIPS2-b datasets used in Chapter 3 have been created by pho-

tographing textures in a lab under controlled lighting conditions, the three datasets used in

this chapter, namely the Caltech 256 dataset, the MIT Scene dataset, and the UIUC Sports

Event dataset, are composed of images collected from the Internet. Among these, the MIT

Scene dataset images are all color photographs that have been standardized to a 256×256

pixel size. The UIUC Sports Event dataset images, on the other hand, are highly variable

in size and the mean image length is over 1000 pixels which necessitates resizing before

feature extraction. This dataset also contains a few grayscale images. The Caltech 256

dataset is the most complex dataset used, with both color and grayscale images, and even

non-photographic images. This section tries to take a look at some of these datasets and

further analyze the experimental results to better understand the performance, beyond the

numbers.

(a) (b)

Figure 6.10 The category mean images from the (a) MIT Scene dataset and (b) UIUC
Sports Event dataset.
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(a) (b)

Figure 6.11 The confusion matrices for classification by the H-fusion descriptor and the
EFM-NN classifier for the (a) MIT Scene dataset and (b) UIUC Sports Event dataset.

The mean image of a category in an image dataset is one measure of intra-class

image variability. Figure 6.10 shows the mean images from all categories of the MIT

Scene dataset and the UIUC Sports Event dataset in attempt to demonstrate the relative

intra-class variability of the various categories. In particular, Figure 6.10(a) shows that

some categories from the MIT Scene dataset like coast, open country and street have a

discernible structure in their mean image while means of categories like forest and highway

have distinctive colors. The inside city class has the most blurred mean. The fact that the

proposed H-fusion descriptor classifies almost all the classes equally well demonstrates the

robustness of this image descriptor. From Figure 6.10(b), it can be seen that the mean of the

categories in the UIUC Sports Event dataset are also largely blurred although some amount

of structure is visible in snowboarding, sailing, polo and croquet classes. The presence of

similar backgrounds in different categories makes this dataset so challenging.

Next, an analysis is done of the category-wise classification rates on the MIT Scene

and the UIUC Sports Event Dataset. The success rates given in this section are based on

the H-fusion descriptor. Figure 6.11(a) shows a confusion matrix for classification using

the H-fusion descriptor on the MIT Scene dataset with the categories in alphabetical order.



81

Figure 6.11(b) shows a similar confusion matrix for the UIUC Sports Event dataset. In each

confusion matrix, the rows show assigned classes while the columns show actual classes.

For instance, a high value at row 1, column 6 signifies that a lot of images from class 6

(open country) get assigned the class label 1 (coast). In the experiments for the MIT Scene

dataset, 250 images from each class were used for training and the remaining for testing.

For the UIUC Sports Event dataset, 70 images from each class were used for training and

60 for testing.

It can be seen from Figure 6.11(a) that the best classified categories are forest and

coast with success rates of 97% and 94% respectively. This is in accordance with the fact

that the means of these categories are easy to identify. However, although the mean of

the category open country seems to have an identifiable structure, it is the most difficult

category to classify. As the confusion matrix shows, some of the open country scenes are

classified as coast, some as forest and some as mountain scenes. This is because the class

open country has been defined with a lot of overlap with other classes. Parts (a), (b) and

(c) of Figure 6.12 show some of the particularly confusing images from the open country

category that get misclassified as coast, forest and mountain respectively. The other three

Figure 6.12 Some ambiguous images from the MIT Scene dataset. Parts (a), (b) and (c)
show some images from the open country category that get misclassified as coast, forest
and mountain respectively. Parts (d), (e) and (f) show ambiguous images from the inside
city, tall building and street categories respectively that contain similar features.



82

Figure 6.13 Some images from the UIUC Sports Event dataset showing the high intra-
class and low inter-class variance. Part (a) shows some images from the bocce class which
has the lowest classification rate and part (b) shows images from the croquet, rock climbing,
badminton, sailing and polo classes. These are the classes where most of the wrongly
classified images from the bocce class are classified.

categories that are confused with each other are inside city, street and tall buildings. Parts

(d), (e) and (f) of Figure 6.12 show two images each from the inside city, tall building and

street categories respectively that contain similar elements and hence cause misclassifica-

tion. These results are similar to those reported by (Oliva and Torralba 2001) which would

indicate that the confusion is due to an inherent ambiguity in the manual annotation of these

particular dataset categories themselves.

Figure 6.11(b) shows the category-wise classification performance on the UIUC

Sports Event dataset. From this confusion matrix, it can be seen that the worst classifi-

cation performance here occurs with the bocce class which has the maximum intra-class

variation. Figure 6.13(a) shows some images from the bocce class and Figure 6.13(b)

shows similar images from the classes where the wrongly classified bocce images have

been mostly placed. Note the diversity of the background in the bocce images.

The Caltech 256 dataset is much more complex and varied in its composition of

categories and hence it is difficult to explain the classification performance on this dataset

using one-to-one category misclassifications. The top row of Figure 6.14 shows the cate-
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Figure 6.14 The category mean images from the eight most successful categories (upper
row) and the eight least successful categories (lower row) from the Caltech 256 dataset.

gory means of the eight classes from this dataset which show the best classification perfor-

mance. The bottom row of the same figure shows the means of the eight classes that are

most difficult to classify. Almost all the images in the bottom row are uniformly blurred

while for those in the top row, the categories are distinguishable from their means.

One significant characteristic of the Caltech 256 dataset is that many of the classes

in this dataset are made based on semantic concepts rather than image characteristics. For

Figure 6.15 Some images from the drinking-straw category of the Caltech 256 image
dataset showing the intra-class variability. Several classes in this dataset are based on
semantic concepts rather than image characteristics.
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Figure 6.16 Some images from the Caltech 256 image dataset. None of the images are
from the people class although all contain human figures. The categories each image be-
longs to is indicated below the image.

instance, Figure 6.15 shows a few images from the drinking straw category of this dataset.

The images are vastly different from each other and in some cases, contain other elements

that are occupy a more significant area of the image. Such classes show poor classification

performance and bring down the overall classification average. Apart from high intra-class

variation, low inter-class variation is also another problem with this dataset. Figure 6.16

shows some images from different classes that contain human figures. The point to be noted

here is that although the human figures occupy a significant part of all of these images,

none of them belong to the people class. In general, similar situations can be found in most

classes where images of one class contain objects of another class. One possible course of

action for future works could be a fuzzy class membership for each image where typically

an image is assigned multiple class labels in order of probability. That way, a man holding

a gun would be classified both as a man and a gun which would be a more logical way to

classify the images in this dataset.
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6.4 Summary

This chapter has presented new image descriptors based on color, texture, shape, and

wavelets for object and scene image classification. In particular, it has first presented a

novel H-descriptor, which integrates the 3D-LBP and the HOG of its Haar wavelet trans-

form, to encode color, texture, shape, and local information. It has also comparatively

assessed the H-descriptor in seven different color spaces — the RGB, the HSV, the YCbCr,

the oRGB, the I1I2I3, the YIQ, and the DCS color spaces — for image classification perfor-

mance. Finally a new H-fusion descriptor has been presented by fusing the PCA features of

the H-descriptors in the seven color spaces. Experimental results using three datasets show

that the proposed new H-fusion descriptor achieves better image classification performance

than other popular descriptors, such as the Scale Invariant Feature Transform (SIFT), the

Pyramid Histograms of visual Words (PHOW), the Pyramid Histograms of Oriented Gradi-

ents (PHOG), Spatial Envelope, Color SIFT four Concentric Circles (C4CC), Object Bank,

the Hierarchical Matching Pursuit, as well as LBP. Finally, a detailed discussion of the ex-

perimental results has been included to show the category wise classification performance

of the H-Fusion descriptor on the different datasets, and to highlight some characteristics

of these three image datasets.



CHAPTER 7

BOWL: A NEW APPROACH TO USING LOCAL BINARY PATTERNS

In Chapter 3, the LBP descriptor was introduced and a novel mLBP descriptor was pro-

posed to encode the texture of an image. The experiments with the KTH-TIPS, KTH-

TIPS2-b and the MIT Scene datasets demonstrated the proposed descriptor to be good for

scene and texture image classification. The mLBP descriptor uses three LBP neighbor-

hoods to create a histogram of pixel patterns present throughout the image.

In recent times, however, a lot of researchers have obtained very promising results

with part-based methods (Fei-Fei and Perona 2005; Csurka et al. 2004). Here the image is

considered as a collection of sub-images or patches and the feature describes each part and

not the whole image. Finally, similar parts are clustered together and a histogram of the

parts, rather than the raw features, is used to represent the image. This approach is known

as a "bag-of-words model", with each part representing a "visual word" that describes a

part of the whole scene (Yang et al. 2007; Jiang et al. 2007).

This chapter explores a new bag-of-words based image descriptor that makes use

of the multi-mask LBP concepts introduced in Chapter 3, but significantly improves the

classification rate. Bag-of-words models work well with spatial pyramid representations

and Support Vector Machine (SVM) classifiers (Zhang et al. 2010) and so both concepts

have been used for the experiments. Experiments with three publicly available datasets,

namely the MIT Scene dataset, the Fifteen Scenes dataset and the UIUC Sports Event

dataset, show that the proposed Bag-of-words LBP (BoWL) descriptor not only improves

classification performance over LBP and mLBP, but can also yield better results than other

popular descriptors.

86
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Figure 7.1 For the bag-of-words representation, a grayscale image is broken down into
small image patches using a regular grid. This is called dense sampling. Overlapping
patches are used for more accuracy.

7.1 An Innovative Bag of Words Local Binary Patterns Descriptor for Image

Classification

This section explains in detail the various steps involved in computing the proposed BoWL

descriptor from a grayscale image. These steps involve breaking down the image into

small sub images, then extracting the features from these parts, and finally quantizing and

forming the BoWL histogram for classification.

7.1.1 Formation of a Bag of Features from an Image

The first step in generating the new BoWL descriptor is the selection of small image

patches. This process is known as sampling. Some image descriptors like SIFT (Lowe

2004) use multiscale keypoint detectors such as Laplacian of Gaussian or Harris-affine to

select regions of interest within the image. While this sampling method is suitable for

object recognition, it has been shown that dense or even random sampling often outper-

forms the keypoint-based sampling methods (Nowak et al. 2006). This is particularly true

of scene images if the image has large uniform regions such as the sky, since no interest
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Figure 7.2 (a) Shows the traditional LBP histogram of a 10×10 pixel image patch. The
vector is sparse and features are mostly similar. (b) shows the 128-component modified
multi-neighborhood LBP vector of the same image patch obtained using the neighborhoods
shown in Figure 7.3.

points are selected from those regions. The method proposed here uses dense feature ex-

traction, which means the image is divided into a large number of equal sized blocks using a

uniform grid and each block is used as a separate region for feature extraction. To increase

classification performance, overlapping image patches are used. This process is explained

in Figure 7.1. The image shown on the left is divided into uniform image patches by the

regular grid displayed overlaid on the image, to form the image patches shown on the right.

Such patches are created from all training images before the feature extraction is done.

7.1.2 A DCT-smoothed multi-mask LBP for Small Image Blocks

The original LBP image descriptor (Ojala et al. 2002) works by thresholding each pixel

value based on the pixel values in its immediate neighborhood. Different researchers have

experimented with styles of selecting the neighborhood, leading to different forms of the
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Figure 7.3 The eight neighborhoods for computing the modified LBP descriptors for small
image patches. Please note that these neighborhoods are at different distances from the
center pixel.

LBP descriptor. The neighborhood may even be selected using nearby features instead

of geometric proximity to the pixel (Gu and Liu 2013). Figure 3.2 shows the three 8-

pixel neighborhoods used for generating the mLBP descriptor introduced in Chapter 3.

The LBP process assigns one out of 28 possible intensity values to each pixel. Thus the

histogram produced in the subsequent step has 256 bins. However, if this technique is

applied to a small image patch with ∼256 pixels the histogram becomes sparse, with many

bins having identical values. Figure 7.2(a) shows such a histogram for an image patch

10× 10 pixels in size. To solve this problem, eight smaller neighborhoods of four pixels

each are used. These eight neighborhoods produce a more dense 16-bin histogram, and

eight such histograms from eight different neighborhoods are concatenated to generate the

128-dimensional feature vector describing each image patch. Figure 7.3 shows the 8 four-

neighborhood LBP masks for generating the feature vector from each image patch. Please

note that these neighborhoods are at different distances from the target pixel. Figure 7.2(b)

shows the feature vector obtained by the modified LBP operation on the same image patch.

The Discrete Cosine Transform (DCT) can be used to transform an image from the

spatial domain to the frequency domain, where an image is decomposed into a combination

of various uncorrelated frequency components. Specifically, the DCT of an image with

the spatial resolution of M ×N, f (x,y), where x = 0,1, · · · , M − 1 and y = 0,1, · · · , N −
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Figure 7.4 DCT can be used for smoothing out the image. The original image is trans-
formed to the frequency domain and the lowest 1/16, 1/4 and 9/16 parts are used for re-
generating the image, respectively, resulting in three output images with various degrees of
smoothing.

1, transforms the image from the spatial domain to the frequency domain (Gonzalez and

Woods 2008):

F(u,v) = α(u)α(v)
M−1

∑
x=0

N−1

∑
y=0

f (x,y)cos
[
(2x+1)uπ

2M

]
cos

[
(2y+1)vπ

2N

]
(7.1)

where α(u) =
√

1/M for u = 0, α(u) =
√

2/M for u = 1,2, · · · , M−1, and α(v) =
√

1/N

for v = 0, α(v) =
√

2/N for v = 1,2, · · · , N −1. DCT is thus able to extract the features in

the frequency domain to encode different image details that are not directly accessible in the

spatial domain. Due to these specific properties, DCT has been successfully applied to face

recognition (Liu and Liu 2008; Chen et al. 2006; Hafed and Levine 2001). In the proposed

method, DCT is used to eliminate higher frequencies from an image, resulting in a form

of smoothing. Specifically, the original image is transformed to the frequency domain and
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Figure 7.5 The features are computed from a large number of image patches from all
training images and form a bag of features from which a visual vocabulary can be created.

the lowest 6.25%, 25% and 56.25% frequencies are used, respectively, for conversion back

to the spatial domain to form three new images. This process is explained in Figure 7.4.

The original image and the three images thus formed undergo the same process of dense

sampling and eight-mask LBP. This means, effectively, the number of features extracted

from an image is increased fourfold. All these features together form a bag of features, as

shown in Figure 7.5, that needs to be clustered into distinct visual words to form a visual

vocabulary.

7.1.3 Quantization, Pyramid Representation and Classification

As demonstrated in Figure 7.6, the bag of features extracted from the training images is

next quantized into a visual vocabulary with discrete visual words. The popular k-means

clustering method is used for this step. There is no consensus as to the proper size of a

visual-word vocabulary. The vocabulary size used by other researchers varies from a few

hundreds (Lazebnik et al. 2006; Zhang et al. 2007b), to several thousands and tens of thou-

sands (Sivic and Zisserman 2003; Zhao et al. 2006). Their results are not directly compara-
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Figure 7.6 The features representing the small image patches are quantized into a num-
ber of visual words using a popular clustering method such as k-means to form a visual
vocabulary.

ble due to different classification frameworks. To determine the right range of vocabulary

size appropriate for the BoWL features, experiments were performed with vocabularies of

sizes varying from 100 to 5,000. For the experiments presented in this dissertation, a 1000-

word vocabulary was found to be optimum. After the formation of the visual vocabulary,

each image patch from each training and test image is mapped to one specific word in the

vocabulary. An image, therefore, can be represented by a histogram of visual words. This

is explained in Figure 7.7(a).

Using the image pyramid representation of (Lazebnik et al. 2006), a descriptor is

able to represent local image features and their spatial layout. In this method, an image is

tiled into successively smaller blocks at each level and descriptors are computed for each

block. The features from each level are weighted separately and all the features are finally

concatenated to form a pyramid histogram. This technique is explained in Figure 7.7(b). It

should be noted that the histograms shown in Figure 7.7 are for illustration purposes only.

For this work, only the second level of this pyramid has been used to keep the computational

complexity low. This creates a 4000 dimensional BoWL feature vector for each image.

After all training and test images have been processed and the feature vectors have
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Figure 7.7 (a) All images are converted to histograms of visual words using the visual
vocabulary created from the training images. (b) For the spatial pyramid representation, a
full image is broken down into multiple spatial tiles. Then histograms of visual words are
computed from each tile and concatenated.

been generated, an SVM classifier is used for classification. It is a known fact in texture and

other image classification that for comparing histograms, using χ2 or Hellinger distance

measures usually yields better results than Euclidean distance (Arandjelović and Zisserman

2012) . The use of the Hellinger kernel has been shown to benefit SIFT (Arandjelović and

Zisserman 2012). Since the proposed BoWL descriptor is also a histogram, intuitively

it seems that it should yield better classification results with the Hellinger kernel and it

is empirically seen that using the Hellinger kernel does indeed improve the classification
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results greatly.

If x and y are n-vectors with unit Euclidean norm (∥x∥2 = 1), then the Euclidean

distance dE(x,y) between them is related to their similarity (kernel) SE(x,y) as

dE(x,y)2 = ∥xy∥2
2 = ∥x∥2

2 +∥y∥2
2 −2xty = 2−2SE(x,y) (7.2)

where SE(x,y) = xty, and the last step follow from ∥x∥2
2 = ∥y∥2

2 = 1. The Euclidean

similarity/kernel here needs to be replaced by the Hellinger kernel.

The Hellinger kernel, which is also known as the Bhattacharyya’s coefficient, is

defined for two L1 normalized histograms, x and y (i.e.
n
∑

i=1
xi = 1 and xi ≥ 0) as:

H(x,y) =
n

∑
i=1

√
xiyi (7.3)

Arandjelović et al. suggest a simple algebraic manipulation to compare SIFT vec-

tors by a Hellinger kernel (Arandjelović and Zisserman 2012). Since BoWL vectors are

also based on histograms of words, the same technique can be applied to the BoWL vec-

tors as well. This can be done in two steps: (i) L1 normalize the BoWL vector (originally

it has unit L2 norm); (ii) square root each element. It then follows that SE(
√

x,
√

y) =
√

xt√y = H(x,y), and the resulting vectors are L2 normalized since SE(
√

x,
√

y) =
n
∑

i=1
= 1

(Arandjelović and Zisserman 2012).

The key point is that comparing the square roots of the BoWL descriptors using Eu-

clidean distance is equivalent to using the Hellinger kernel to compare the original BoWL

vectors:

dE(
√

x,
√

y)2 = 2−2H(x,y) (7.4)

For the classification process, an SVM is trained independently for each class (one-

vs-all classification). This is repeated for each category separately and the precision rates

from all the iterations gives the average precision which is the mean classification accuracy.

A similar configuration has been successfully used by other researchers like (Sanchez et al.
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2012) in recent works. The SVM implementation used here is the one that is distributed

with the VlFeat package (Vedaldi and Fulkerson 2010).

7.2 Experiments

This section first briefly introduces the three datasets used for testing the new BoWL image

descriptor and then does a comparative assessment of the classification performance of the

LBP, the mLBP and the BoWL descriptors. Finally the classification performance of the

BoWL descriptor is compared with some other popular image descriptors used by other

researchers.

7.2.1 Datasets Used

This section contains a brief overview of the three publicly available and widely used image

datasets used for assessing the classification performance of the proposed descriptor.

The UIUC Sports Event Dataset

The UIUC Sports Event dataset (Li and Fei-Fei 2007) contains eight sports event cate-

gories. This dataset has been described in detail in Section 4.4.1.

The MIT Scene Dataset

The MIT Scene dataset, also known as the OT Scenes dataset (Oliva and Torralba 2001)

has 2,688 images divided into eight categories. A detailed description of this dataset is

provided in Section 3.4.1.



96

Figure 7.8 The mean average classification performance of the LBP, the mLBP and the
proposed BoWL descriptors using an SVM classifier with a Hellinger kernel on the three
datasets.

The Fifteen Scene Categories Dataset

The Fifteen Scene Categories dataset (Lazebnik et al. 2006) is composed of 15 scene cate-

gories. A detailed description of this dataset is provided in Section 4.4.1.

7.2.2 Comparative Assessment of the LBP, mLBP and BoWL Descriptors on the

Different Datasets

In this section, a comparative assessment of the LBP, the mLBP and the proposed BoWL

descriptor is made in grayscale, using the three datasets described earlier to evaluate clas-

sification performance. To compute the BoWL, first each training image is converted to

grayscale and divided into overlapping image patches. Note that the large-scale images

are resized in such a way that their largest dimension does not exceed 400 pixels. Each of
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Figure 7.9 The comparative mean average classification performance of the LBP, mLBP
and BoWL descriptors on the 15 categories of the Fifteen Scene Categories dataset.

these patches undergo the DCT-LBP process described in Section 7.1.2 to generate a bag

of features. This bag of features is quantized using the k-means algorithm to form a visual

vocabulary with 1000 words. Next each training and test image is represented as a pyramid

histogram of these visual words. For evaluating the relative classification performances of

the LBP, the mLBP and the BoWL descriptors, a Support Vector Machine (SVM) classi-

fier with a Hellinger kernel (Vapnik 1995; Vedaldi and Fulkerson 2010; Arandjelović and

Zisserman 2012) is used.

For the UIUC Sports Event dataset, 70 images are used from each class for training

and 60 from each class for testing of the three descriptors. The results are obtained over

five random splits of the data. As shown in Figure 7.8, the BoWL outperforms the LBP

by a big margin of nearly 15%. BoWL also outperforms mLBP by over 13%. In fact, on

this dataset the BoWL not only outperforms the LBP and mLBP, but also provides a decent

classification performance on its own. Please note that the horizontal axis shows the differ-

ent descriptors and the three datasets, and the vertical axis the mean average classification

performance.

From both the MIT Scene dataset and the Fifteen Scene Categories dataset five

random splits of 100 images per class are used for training, and the rest of the images are

used for testing. Again, the BoWL produces decent classification performance on its own
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Table 7.1 Comparison of the Classification Performance (%) of the Proposed Grayscale
BoWL Descriptor with Other Popular Methods on the UIUC Sports Event, MIT Scene 8
and the 15 Scenes Datasets

Method UIUC Scene 8 15 Scenes
SIFT+GGM (Li and Fei-Fei 2007) 73.4 - -
OB (Li et al. 2010) 76.3 - -
KSPM (Yang et al. 2009) - - 76.7
KC (Van Gemert et al. 2010) - - 76.7
CA-TM (Niu et al. 2012) 78.0 - -
ScSPM (Yang et al. 2009) - - 80.3
SIFT+SC (Bo et al. 2011) 82.7 - -
SE (Oliva and Torralba 2001) - 83.7 -
HMP (Bo et al. 2011) 85.7 - -
C4CC (Bosch et al. 2006) - 86.7 -
Grayscale BoWL 87.7 91.6 80.7

apart from beating the LBP and mLBP by a fair margin. Figure 7.8 displays these results

on the MIT Scene dataset and Fifteen Scene Categories dataset. The highest classification

rate for the MIT Scene dataset is as high as 91.6% for the BoWL descriptor which is

a very good result for this dataset. The classification performance of BoWL beats that

of LBP and mLBP both by a margin of over 17%. Please note that even without using

color information, BoWL also beats the classification performance of the CLF and CGLF

descriptors.

On the Fifteen Scene Categories dataset, the overall success rate for BoWL is 81.3%

which is over 14% higher than LBP and over 6% higher than mLBP. This is also shown

Figure 7.8. In Figure 7.9 the category wise classification rates of the grayscale LBP, the

grayscale mLBP and the grayscale BoWL descriptors for all 15 categories of this dataset

are shown. Here, the horizontal axis reveals the fifteen scene categories, and the vertical

axis displays the mean average classification performance. The BoWL here is shown to

better the LBP classification performance in 12 of the 15 scene categories and classify over

90% images correctly in four of the categories.

The classification performance of the proposed BoWL descriptor is also compared
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with some popular image descriptors and classification techniques used by other researchers.

The detailed comparison is shown in Table 7.1. It should be noted that the results of other

researchers are reported directly from their published work.

7.3 Summary

In this chapter, a variation of the mLBP descriptor introduced in Chapter 3 is used with a

DCT and bag-of-words based representation to form the novel Bag of Words-LBP (BoWL)

image descriptor. This descriptor is used in conjunction with a spatial pyramid image

representation and SVM classifier to test the classification performance. The experimental

results on three popular datasets show that the BoWL descriptor significantly improves

image classification performance over the LBP and the mLBP, and also yields classification

performance at par with or better than several recent methods used by other researchers,

such as the popular nonlinear Kernel Spatial Pyramid Matching (KSPM), SIFT Sparse-

coded Spatial Pyramid Matching (ScSPM) and the Kernel Codebook (KC).



CHAPTER 8

CONCLUSIONS AND FUTURE WORK

This dissertation focuses on feature extraction from color and grayscale images by intro-

ducing several novel image descriptors based on texture, color, shape and local features.

The main contributions of this dissertation are as listed below:

• A new color multi-mask Local Binary Patterns (mLBP) descriptor, which improves

upon the traditional grayscale LBP, is introduced to represent texture information

contained in an image for scene and texture image classification. Further, the multi-

mask LBP descriptors from various color spaces and grayscale are combined to pro-

pose the new Color LBP Fusion (CLF) and the Color Grayscale LBP Fusion (CGLF)

descriptors that perform well on texture and scene image datasets.

• An innovative HaarHOG descriptor is proposed for enhancing the HOG descriptor

for encoding the shape and local features from an image. This was combined with

an SVM classifier on four challenging datasets to show that the HaarHOG descrip-

tor improves recognition performance over the HOG descriptor, as well as yields

performance comparable to or better than several other popular descriptors on some

datasets.

• Inspired by the LBP method, a novel Three Dimensional Local Binary Patterns (3D-

LBP) descriptor is proposed, which uses the three color components to extract not

only the texture but also the color feature from an image. Further, the 3D-LBP de-

scriptor is combined with the HaarHOG descriptor to generate two new descriptors

for color scene images — the 3DLH descriptor and the 3DLH-fusion descriptor. Re-

sults of the experiments using three challenging datasets show that the 3DLH-fusion

descriptor improves recognition performance over several other popular descriptors.

The fusion of multiple color 3DLH descriptors (3DLH-fusion) also shows an in-

100
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crease in the classification performance, which suggests that various color 3DLH

descriptors are not completely redundant for image classification.

• A novel H-descriptor is presented which integrates the 3D-LBP and the HOG of its

Haar wavelet transform, to encode color, texture, shape, and local information from

an image. Also the H-descriptor is comparatively assessed in seven different color

spaces — the RGB, the HSV, the YCbCr, the oRGB, the I1I2I3, the YIQ, and the DCS

color spaces — for image classification performance. Further, the H-descriptor has

been assessed in four randomly generated color spaces and grayscale to understand

the role of specific color transformations and justify using color. Finally, a new H-

fusion descriptor has been presented by fusing the PCA features of the H-descriptors

in the seven color spaces. Experimental results using three datasets show that the pro-

posed new H-fusion descriptor achieves better image classification performance than

other popular descriptors, such as the Scale Invariant Feature Transform (SIFT), the

Pyramid Histograms of visual Words (PHOW), the Pyramid Histograms of Oriented

Gradients (PHOG), Spatial Envelope, Color SIFT four Concentric Circles (C4CC),

Object Bank, the Hierarchical Matching Pursuit, as well as LBP, among others.

• Extending the mLBP method, a novel Bag of Words LBP (BoWL) descriptor is pro-

posed, which combines DCT, mLBP and the bag-of-words representation techniques

to drastically improve performance over the traditional LBP and mLBP. Results of

the experiments using three challenging datasets show that the BoWL descriptor per-

forms much better than the LBP and mLBP, and also performs at par with or better

than several other popular descriptors.

Future work lies in the following directions:

• The proposed BoWL descriptor has only been tested on grayscale images. It can be

extended to color images by splitting a color image into its color component images
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and calculating the BoWL descriptor for each component. The BoWL descriptor

needs to be tested on color images for a complete evaluation of its performance.

• All the descriptors proposed in this dissertation give equal weight to all regions of

an image. Segmentation techniques exist that can detect objects within an image

and give more weight to regions containing objects. It remains to be seen whether

the descriptors presented here can further improve the classification performance in

combination with such techniques.
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