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ABSTRACT

ADAPTIVE DATA ACQUISITION FOR COMMUNICATION
NETWORKS

by
Behzad Ahmadi

In an increasing number of communication systems, such as sensor networks or local

area networks within medical, financial or military institutions, nodes communicate

information sources (e.g., video, audio) over multiple hops. Moreover, nodes have,

or can acquire, correlated information sources from the environment, e.g., from data

bases or from measurements. Among the new design problems raised by the outlined

scenarios, two key issues are addressed in this dissertation: 1) How to preserve the

consistency of sensitive information across multiple hops; 2) How to incorporate

the design of actuation in the form of data acquisition and network probing in the

optimization of the communication network. These aspects are investigated by using

information-theoretic (source and channel coding) models, obtaining fundamental

insights that have been corroborated by various illustrative examples. To address

point 1), the problem of cascade source coding with side information is investigated.

The motivating observation is that, in this class of problems, the estimate of the

source obtained at the decoder cannot be generally reproduced at the encoder if

it depends directly on the side information. In some applications, such as the one

mentioned above, this lack of consistency may be undesirable, and a so called Common

Reconstruction (CR) requirement, whereby one imposes that the encoder be able to

agree on the decoder’s estimate, may be instead in order. The rate-distortion region

is here derived for some special cases of the cascade source coding problem and of the

related Heegard-Berger (HB) problem under the CR constraint. As for point 2), the

work is motivated by the fact that, in order to enable, or to facilitate, the exchange

of information, nodes of a communication network routinely take various types of



actions, such as data acquisition or network probing. For instance, sensor nodes

schedule the operation of their sensing devices to measure given physical quantities of

interest, and wireless nodes probe the state of the channel via training. The problem of

optimal data acquisition is studied for a cascade source coding problem, a distributed

source coding problem and a two-way source coding problem assuming that the side

information sequences can be controlled via the selection of cost-constrained actions.

It is shown that a joint design of the description of the source and of the control signals

used to guide the selection of the actions at downstream nodes is generally necessary

for an efficient use of the available communication links. Instead, the problem of

optimal channel probing is studied for a broadcast channel and a point-to-point link

in which the decoder is interested in estimating not only the message, but also the

state sequence. Finally, the problem of embedding information on the actions is

studied for both the source and the channel coding set-ups described above.
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CHAPTER 1

MOTIVATION AND OVERVIEW

In communication systems such as data networks, sensor networks and local area

networks, sensitive data is transferred through multiple hops. Examples are financial,

military and medical. This data often needs to be acquired from the “environment”,

such as from databases or via sensor measurements. Beside data acquisition, nodes

also need to take various type of actions, e.g., to probe the state of the network prior

to transmission.

The aim of this thesis is to address two important questions that arise in the

design of the outlined communication networks: 1) How to preserve the consistency

of sensitive information to be sent over multi-hop networks? 2) How to integrate the

optimization of actuation tasks, such as for data acquisition or network probing, in the

design of communication networks? These issues are addressed from an information-

theoretic point of view. To this end, several source and channel coding systems are

investigated that exemplify various key scenarios of interest.

To address the first issue, one has to guarantee that downstream nodes use the

locally available information in such as way that no inconsistency is created with the

state of knowledge of upstream nodes. This requirement is known in information

theory as the Common Reconstruction (CR) constraint. Under this constraint, this

thesis derives the rate-distortion performance for the so called Heegard-Berger (HB)

problem and for the cascade source coding problem.

The second aforementioned issue is tackled by focusing on two specific actuation

tasks, namely adaptive data acquisition and channel probing. Adaptive data

acquisition addresses the problem of using efficiently the system resources in order

to acquire information to the environment. Applications include sensor networks,

1
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Figure 1.1 Source coding with adaptive data acquisition.
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Figure 1.2 Source coding with adaptive data acquisition.

in which acquiring measurements entails an energy cost, and computer networks,

in which accessing a database server is bandwidth and time consuming. The

recently proposed information-theoretic model of side information “vending machine”

(VM) accounts for such scenarios in which the acquisition and/or measurement of

information sequences can be controlled via the selection of cost-constrained actions

(see Figure 1.1 and Figure 1.2). In thesis, the rate-distortion-cost function is derived
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for a two-way source coding problem, a distributed source coding problem and a

cascade source coding problems in which a side information VM is available and

the intermediate and/or at the end node of the cascade (see Figure 1.3). One of

Enc Dec 1

Data base 
server 

information

Dec 2

Data base 
server 

Data 
acquisition

Data 
acquisition

information

Figure 1.3 Cascade source coding with adaptive data acquisition.

the main conclusions is that a joint design of the description of the source and of

the control signals used to guide the selection of the actions at downstream nodes

is generally necessary for an efficient use of the available communication links. As

for channel probing, the motivating observation is that acquiring information about

the current state of the channel or, more generally, of the network, requires the

exchange of control information, which uses system resources. For instance, wireless

transceivers assess the channel quality via training and/or feedback; routers ascertain

network congestion levels via the transmission of probing packets; and radio terminals

switch among different operating modes, such as transmit, receive or idle (see Figure

1.4). The recently proposed information-theoretic model of action-dependent channels

models such scenarios. In this thesis, the trade-off between capacity and action cost is

studied for a broadcast channel with action-dependent state. Finally, the problem of

embedding information on the actions is studied for both the source and the channel

coding set-ups described above.
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1.1 Organization and Contributions

In this section, the main contributions and organization of the thesis are outlined.

Chapter 2: A very short introduction of the fundamental information theoretic

concepts is provided in this Chapter.

Chapter 3: This Chapter investigates the problems Heegard-Berger(HB) and

cascade source coding with common reconstruction constraint. The HB problem

consists of an encoder broadcasting to two decoders with respective side information.

The cascade source coding problem is characterized by a two-hop system with side

information available at the intermediate and nal nodes. For the HB problem with the

CR constraint, the rate-distortion function is derived under the assumption that the

side information sequences are (stochastically) degraded. The rate-distortion function

is also calculated explicitly for three examples, namely Gaussian source and side

information with quadratic distortion metric, and binary source and side information

with erasure and Hamming distortion metrics. The rate-distortion function is

then characterized for the HB problem with cooperating decoders and (physically)

degraded side information. For the cascade problem with the CR constraint, the

rate-distortion region is obtained under the assumption that side information at the

nal node is physically degraded with respect to that at the intermediate node. For the

latter two cases, it is worth emphasizing that the corresponding problem without the
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CR constraint is still open. Outer and inner bounds on the rate-distortion region are

also obtained for the cascade problem under the assumption that the side information

at the intermediate node is physically degraded with respect to that at the nal node.

For the three examples mentioned above, the bounds are shown to coincide. Finally,

for the HB problem, the rate-distortion function is obtained under the more general

requirement of constrained reconstruction, whereby the decoders estimate must be

recovered at the encoder only within some distortion.

The material in this chapter has been reported in the documents:

• B. Ahmadi, R. Tandon, O. Simeone and H. V. Poor, “Heegard-Berger and

Cascade Source Coding Problems with Common Reconstruction Constraints,”

IEEE Trans. Inform. Theory, vol. 59, no. 3, pp. 1458,1474, Mar. 2013.

• B. Ahmadi, R. Tandon, O. Simeone and H. V. Poor, “On the Heegard-

Berger Problem with Common Reconstruction Constraints,” in Proc. IEEE

International Symposium on Information Theory (ISIT 2012), Cambridge, MA,

USA, July 1-6, 2012.

Chapter 4: In this Chapter, the analysis of the trade-offs between rate,

distortion and cost associated with the control actions is extended from the previously

studied point-to-point set-up to two basic multiterminal models. First, a distributed

source coding model is studied, in which two encoders communicate over rate-limited

links to a decoder, whose side information can be controlled. The control actions

are selected by the decoder based on the messages encoded by both source nodes.

For this set-up, inner bounds are derived on the rate-distortion-cost region for both

cases in which the side information is available causally and non-causally at the

decoder. These bounds are shown to be tight under specic assumptions, including

the scenario in which the sequence observed by one of the nodes is a function of the

source observed by the other and the side information is available causally at the
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decoder. Then, a cascade scenario in which three nodes are connected in a cascade

and the last node has controllable side information, is also investigated. For this

model, the rate-distortion-cost region is derived for general distortion requirements

and under the assumption of causal availability of side information at the last node.

The material in this chapter has been reported in the documents:

• B. Ahmadi and O. Simeone, “Distributed and Cascade Lossy Source Coding

with a Side Information “Vending Machine”,” to appear in IEEE Trans. Inform.

Theory, arXiv:1109.6665.

• B. Ahmadi and O. Simeone, “Distributed and Cascade Lossy Source Coding

with a Side Information “Vending Machine”,” in Proc. IEEE International

Symposium on Information Theory (ISIT 2012), Cambridge, MA, USA, July

1-6, 2012.

Chapter 5:: In this Chapter, a three-node cascade source coding problem

is studied under the assumption that a side information VM is available and the

intermediate and/or at the end node of the cascade. A single-letter characterization

of the achievable trade-off among the transmission rates, the distortions in the

reconstructions at the intermediate and at the end node, and the cost for acquiring

the side information is derived for a number of relevant special cases. It is shown

that a joint design of the description of the source and of the control signals used to

guide the selection of the actions at downstream nodes is generally necessary for an

efcient use of the available communication links. In particular, for all the considered

models, layered coding strategies prove to be optimal, whereby the base layer fullls two

network objectives: determining the actions of downstream nodes and simultaneously

providing a coarse description of the source. Design of the optimal coding strategy

is shown via examples to depend on both the network topology and the action costs.

Examples also illustrate the involved performance trade-offs across the network.
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The material in this chapter has been reported in the documents:

• B. Ahmadi, C. Choudhuri, O. Simeone and U. Mitra, “Cascade source coding

with a side information “vending machine”,” submitted to IEEE Trans. Inform.

Theory, arXiv:1207.2793.

• B. Ahmadi, O. Simeone, C. Choudhuri and U. Mitra, “On Cascade Source

Coding with A Side Information “Vending Machine”,” in Proc. IEEE

Information Theory Workshop (ITW 2012), Lausanne, Switzerland, Sept. 3-7,

2012.

Chapter 6: In this Chapter, a bidirectional link is studied in which two

nodes, Node 1 and Node 2, communicate to fulfill generally conflicting informational

requirements. Node 2 is able to acquire information from the environment, e.g., via

access to a remote database or via sensing. Information acquisition is expensive in

terms of system resources, e.g., time, bandwidth and energy, and thus should be done

efficiently by adapting the acquisition process to the needs of the application. As

a result of the forward communication from Node 1 to Node 2, the latter wishes

to compute some function, such as a suitable average, of the data available at

Node 1 and of the data obtained from the environment. The forward link is also

used by Node 1 to query Node 2 with the aim of retrieving suitable information

from the environment on the backward link. The problem is formulated in the

context of multi-terminal rate-distortion theory and the optimal trade-off between

communication rates, distortions of the information produced at the two nodes and

costs for information acquisition at Node 2 is derived. The issue of robustness to

possible malfunctioning of the data acquisition process at Node 2 is also investigated.

The results are illustrated via an example that demonstrates the different roles played

by the forward communication, namely data exchange, query and control.

The material in this chapter has been reported in the documents:
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• B. Ahmadi and O. Simeone, “Two-way Communication with Adaptive Data

Acquisition,” to appear in Transactions on Emerging Telecommunications

Technologies, arXiv:1209.5978.

• B. Ahmadi and O. Simeone, “Two-Way Communication with Adaptive Data

Acquisition,” in Proc. IEEE International Symposium on Information Theory

(ISIT 2013), Istanbul, Turkey, July 7-12, 2013.

Chapter 7: In this Chapter, two extensions of the original action-dependent

channel are studied. In the first, the decoder is interested in estimating not only

the message, but also the state sequence within an average per-letter distortion.

Under the constraint of common reconstruction (i.e., the decoders estimate of the

state must be recoverable also at the encoder) and assuming non-causal state

knowledge at the encoder in the second phase, a single-letter characterization of

the achievable rate-distortion-cost trade-off is obtained. In the second extension, an

action-dependent degraded broadcast channel is studied. Under the assumption that

the encoder knows the state sequence causally in the second phase, the capacity-cost

region is identified. Various examples, including Gaussian channels and a model with

a ”probing” encoder, are also provided to show the advantage of a proper joint design

of the two communication phases.

The material in this chapter has been reported in the documents:

• B. Ahmadi and O. Simeone, “On Channels with Action-Dependent States,” in

Proc. IEEE Information Theory Workshop (ITW 2012), Lausanne, Switzerland,

Sept. 3-7, 2012.

• B. Ahmadi and O. Simeone, “On channels with action-dependent states,”

arXiv:1202.4438.

Chapter 8: In this Chapter, the problem of embedding information on the

actions is studied for both the source and the channel coding set-ups. In both



9

cases, a decoder is present that observes only a function of the actions taken by

an encoder or a decoder of an action-dependent point-to-point link. For the source

coding model, this decoder wishes to reconstruct a lossy version of the source being

transmitted over the point-to-point link, while for the channel coding problem the

decoder wishes to retrieve a portion of the message conveyed over the link. For

the problem of source coding with actions taken at the decoder, a single letter

characterization of the set of all achievable tuples of rate, distortions at the two

decoders and action cost is derived, under the assumption that the mentioned decoder

observes a function of the actions non-causally, strictly causally or causally. A special

case of the problem in which the actions are taken by the encoder is also solved. A

single-letter characterization of the achievable capacity-cost region is then obtained

for the channel coding set-up with actions. Examples are provided that shed light into

the effect of information embedding on the actions for the action-dependent source

and channel coding problems.

The material in this chapter has been reported in the documents:

• B. Ahmadi, H. Asnani, O. Simeone and H. Permuter, “Information Embedding

on Actions,” in Proc. IEEE International Symposium on Information Theory

(ISIT 2013), Istanbul, Turkey, July 7-12, 2013.

• B. Ahmadi, H. Asnani, O. Simeone and H. Permuter, “Information Embedding

on Actions,” submitted to IEEE Trans. Inform. Theory, arXiv:1207.6084.



CHAPTER 2

PRELIMINARIES

In this chapter, first the notation used is discussed and then, some preliminary

information-theoretic results on related problems in the field of source coding with

side information are studied.

2.1 Notation

For a and b integer with a ≤ b, [a, b] is defined as the interval [a, a+1, ..., b] and xba is

used to denote the sequence (xa, . . . , xb). Also x
b is written for xb1 for simplicity. Upper

case, lower case and calligraphic letters denote random variables, specific values of

random variables and their alphabets, respectively. Given discrete random variables,

or more generally vectors, X and Y , the notation pX(x) or p(x) is used for Pr[X = x],

and pX|Y (x|y) or p(x|y) is used for Pr[X = x|Y = y], where the latter notations

are used when the meaning is clear from the context. Given a set X , an n-fold

Cartesian product of X is denoted by X n. For random variables X and Y , σ2
X|Y is the

(average) conditional variance of X given Y , i.e., E [E[(X − E[X|Y ])2|Y ]] . Function

δ(x) represents the Kronecker delta function, i.e., δ(x) = 1 if x = 0 and δ(x) = 0

otherwise. The notation convention in [1] is adopted, in which δ(ϵ) represents any

function such that δ(ϵ) → 0 as ϵ → 0. Moreover, X—Y—Z form a Markov chain if

p(x, y, z) = p(x)p(y|x)p(z|y), that is, X and Z are conditionally independent of each

other given Y . The binary entropy function is defined as H(p) = −plog2p − (1 −

p)log2(1− p). Finally, α ∗ β = α(1− β) + β(1− α).

2.2 Background

From an information theoretic perspective, the baseline setting for the class of source

coding problems with side information is one in which a memoryless source Xn =

10
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(X1, ..., Xn), where Xi ∈ X has pmf p(x) for i = 1, ..., n, is to be communicated by an

encoder via a message M of rate R bits per source symbol to a decoder. The decoder

has available a correlated sequence Y n, with Yi ∈ Y , that is related to Xn via a

memoryless channel p(y|x) (see Figure 2.1). The optimal trade-off between rate R and

the average distortion D between the source Xn and reconstruction X̂n was obtained

by Wyner and Ziv in [2] for any given distortion metric d(x, x̂) : X ×X̂ → R+∪{∞}.

It was shown that the rate-distortion function is given by

R(D) = min I(X;U |Y ), (2.1)

where the minimum is taken over all pmfs p(u|x), with u ∈ U , and deterministic

function x̂(u, y) such that E[d(X, x̂(U, Y ))] ≤ D.

The optimal performance can be achieved as follows. The sequence Xn is

quantized using a randomly generated codebook of codewords Un using the standard

joint typicality criterion. In order for quantization to be successful 2nI(X;U) codewords

Un are sufficient. Thanks to the side information Y n available at Node 2, the resulting

rate I(X;U) (bits per source symbol) can be further decreased to I(X;U |Y ) using

the technique of binning. The idea is that all the 2nI(X;U) codewords Un are divided

into 2nI(X;U |Y ) bins. An example of a bin is shown in gray in Figure 2.2. The

codewords Un in the same bin are mapped to an identical message M . The bins

contain 2nI(X;U)/2nI(X;U |Y ) = 2nI(U ;Y ) codewords each, and thus, by the channel coding

theorem, the decoder can distinguish among the codewords Un in the bin based on

Y n. This scheme is known as ”Wyner-Ziv” coding in information theory.

Node 1
nX

nY

M
Node 2 nX̂

nX ( | )p y x

Figure 2.1 Source coding with side information.
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nX

Figure 2.2 Illustration of binning. The set of all dots represent the codebook of
codewords Un and the subset in gray is a bin. The picture assumes for simplicity
X = U .

In sensor networks and cloud computing, reliability of all the computing devices

(e.g., sensors or servers) cannot be guaranteed all the time. Therefore, it is appropriate

to design the system so as to be robust to system failures. As shown in Figure 2.3, this

aspect can be modeled by assuming that the decoder, unbeknownst to the encoder,

may not be able to acquire information sequence Y n. This setting is equivalent to

assuming the presence of two decoders, one with the capability to acquire information

about Y n (Node 2) and one without this capability (Node 3). This model is referred to

as the Heegard-Berger problem, where Node 2 and Node 3 of Figure 2.3 are interested

in estimating X̂n
2 and X̂n

3 , respectively. It is emphasized that X̂n
2 and X̂n

3 are two

different description of the source sequence Xn to be reconstructed at Node 2 and

Node 3 with distortion levels D2 and D3, respectively.

It was shown in [3] that the rate-distortion function is given by

R(D2, D3) = min I(X; X̂3) + I(X;U |X̂3, Y ), (2.2)

where the minimum is taken over all pmfs p(u, x̂3|x) and deterministic function

x̂2(u, y) such that E[d(X, X̂3))] ≤ D3 and E[d(X, x̂2(U, Y ))] ≤ D2. The optimal

strategy achieving (2.2) is based on successive refinement and binning. The strategy

is identical to that used below in the context of the model of Figure 2.4 (see Figure

2.5 and discussion below for further details).
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Node 1
n

X

n
Y

M
Node 2

n
X
2

ˆ

Node 3
n

X
3

ˆ

Figure 2.3 Source coding when side information may be absent.

The concept of a side information “vending machine” was introduced in [4] in

order to account for source coding scenarios in which acquiring the side information

at the receiver entails some cost and thus should be done efficiently. In this

class of models, the quality of the side information Y n can be controlled at the

decoder by selecting an action sequence An, with Ai ∈ A, that affects the effective

channel between the source Xn and the side information Y n through a conditional

memoryless distribution pY |X,A(y|x, a). Specifically, given An and Xn, the sequence

Y n is distributed as p(yn|an, xn) =
∏n

i=1 pY |A,X(yi|ai, xi). The cost of the action

sequence is defined by a cost function Λ: A →[0,Λmax] with 0 ≤ Λmax < ∞, as

Λ(an) =
∑n

i=1 Λ(ai). The estimated sequence X̂n with X̂n ∈ X̂ n is then obtained as

a function of M and Y n.

Node 1

nA

ˆ nX

( | , )p y a x

Node 2M

nX

nY

nX

Figure 2.4 Source coding with side information ”vending machine”.

The optimal trade-off between rate R, the average distortion D and the average

action cost Γ was obtained by [4] for any given distortion metric d(x, x̂) and action

cost function Λ(a) is given by

R(D,Γ) = min I(X;A) + I(X;U |Y,A), (2.3)
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where the minimum is taken over all pmfs p(a, u|x) and deterministic function x̂(u, y)

such that E[d(X, x̂(U, Y ))] ≤ D and E[Λ(A)] ≤ Γ.

For later reference, it is useful to describe the optimal strategy as derived in

[3]. The basic idea is that of using a successive refinement (or layered) compression

strategy, in which the coarse layer is used to inform the decoder about the actions

An that are better adapted to the source Xn, and the fine layer provides further

information that enables the decoder to produce the estimate X̂n. Specifically,

as illustrated in Figure 2.5, the sequence Xn is quantized using a codebook of

action sequences An. As discussed, in order for quantization to be successful, this

quantization step requires a rate of I(X;A). Next, a refined description Un of Xn is

also obtained and sent to Node 2. From (3.1), this requires a rate of I(X;U |A, Y )

thanks to binning (a bin is shown in gray in Figure 2.5).
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Figure 2.5 Illustration of the optimal strategy for the set-up of Figure 2.4. The
picture assumes for simplicity that X = A = U .



CHAPTER 3

HEEGARD-BERGER AND CASCADE SOURCE CODING WITH

COMMON RECONSTRUCTION CONSTRAINT

3.1 Introduction

Source coding problems with side information at the decoder(s) model a large number

of scenarios of practical interest, including video streaming [5] and wireless sensor

networks [6]. From an information theoretic perspective, the baseline setting for

this class of problems is one in which a memoryless source Xn = (X1, ..., Xn) is to

be communicated by an encoder at a rate R bits per source symbol to a decoder

that has available a correlated sequence Y n that is related to Xn via a memoryless

channel p(y|x) (see Figure 3.11). Under the requirement of asymptotically lossless

reconstruction X̂n of the source Xn at the decoder, the minimum required rate was

obtained by Slepian andWolf in [7]. Later, the more general optimal trade-off between

rate R and the distortion D between the source Xn and reconstruction X̂n was

obtained by Wyner and Ziv in [2] for any given distortion metric d(x, x̂). As shown

in Chapter 2, the rate-distortion function is given by

RWZ
X|Y (D) = min I(X;U |Y ), (3.1)

where the minimum is taken over all probability mass functions (pmfs) p(u|x) and

deterministic function x̂(u, y) such that E[d(X, x̂(U, Y ))] ≤ D.

3.1.1 Heegard-Berger and Cascade Source Coding Problems

In applications such as the ones discussed above, the point-to-point setting of Figure

3.1 does not fully capture the main features of the source coding problem. For

1The presence of the function ψ at the encoder will be explained later.

15
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Encoder
nX

ψ
nY

R
Decoder nX̂

)( nXψ

Figure 3.1 Point-to-point source coding with common reconstruction [8].

instance, in video streaming, a transmitter typically broadcasts information to a

number of decoders. As another example, in sensor networks, data is typically routed

over multiple hops towards the destination. A model that accounts for the aspect

of broadcasting to multiple decoders is the Heegard-Berger (HB) set-up shown in

Figure 3.2. In this model, the link of rate R bits per source symbol is used to

communicate to two receivers having different side information sequences, Y n
1 and Y n

2 ,

which are related to source Xn via a memoryless channel p(y1, y2|x). The set of all

achievable triples (R,D1, D2) for this model, whereD1 andD2 are the distortion levels

at Decoders 1 and 2, respectively was derived in [3] and [9] under the assumption that

the side information sequences are (stochastically) degraded versions of the sourceXn.

In a variation of this model shown in Figure 3.3, decoder cooperation is enabled by a

limited capacity link from one decoder (Decoder 1) to the other (Decoder 2). Inner

and outer bounds to the rate distortion region for this problem are obtained in [10]

under the assumption that the side information of Decoder 2 is (physically) degraded

with respect to that of Decoder 1.

As for multihopping, a basic model that captures some of the key design issues

is shown in Figure 3.4. In this cascade set-up, an encoder (Node 1) communicates

with rate R1 to a intermediate node (Node 2), which has side information Y n
1 , and in

turns communicates with rate R2 to a final node (Node 3) with side information Y n
2 .

Both Node 2 and Node 3 act as decoders, similar to the HB problem of Figure 3.2, in

the sense that they reconstruct a local estimate of the source Xn. The rate-distortion
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Figure 3.2 Heegard-Berger source coding problem with common reconstruction.
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Figure 3.3 Heegard-Berger source coding problem with common reconstruction and
decoder cooperation.

function for this problem has been derived for various special cases in [11, 12, 13] and

[14] (see Table I in [14] for an overview). Reference [13] derives the set of all achievable

quadruples (R1, R2, D1, D2), i.e., the rate-distortion region, for the case in which Y n
1

is also available at the encoder and Y n
2 is a physically degraded version of Xn with

respect to Y n
1 . Instead, [12] derives the rate-distortion region under the assumptions

that the source and the side information sequences are jointly Gaussian, that the

distortion metric is quadratic, and that the sequence Y n
1 is a physically degraded

version of Xn with respect to Y n
2 . The corresponding result for binary source and

side information and Hamming distortion metric was derived in [14].
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Figure 3.4 Cascade source coding problem with common reconstruction.

3.1.2 Common Reconstruction Constraint

A key aspect of the optimal strategies identified in [2, 3, 9, 12] and [13] is that

the side information sequences are, in general, used in two different ways: (i) as a

means to reduce the rate required for communication between encoder and decoders

via binning; and (ii) as an additional observation that the decoder can leverage,

along with the bits received from the encoder, in order to improve its local estimate.

For instance, for the point-to-point system of Figure 3.1, the Wyner-Ziv result (3.1)

reflects point (i) of the discussion above in the conditioning on side information Y ,

which reduces the rate, and point (ii) in the fact that the reconstruction X̂ is a

function x̂(U, Y ) of the signal U received from the encoder and the side information

Y .

Leveraging the side information as per point (ii), while advantageous in terms of

rate-distortion trade-off, may have unacceptable consequences for some applications.

In fact, this use of side information entails that the reconstruction X̂ of the decoder

cannot be reproduced at the encoder. In other words, encoder and decoder cannot

agree on the specific reconstruction X̂ obtained at the receiver side, but only on the

average distortion level D. In applications such as transmission of sensitive medical,

military or financial data, this may not be desirable. Instead, one may want to add

the constraint that the reconstruction at the decoder be reproducible by the encoder

[8]. This idea, referred to as the Common Reconstruction (CR) constraint, was first
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proposed in [8], where it is shown for the point-to-point setting of Figure 3.12 that

the rate-distortion function under the CR constraint is given by

RCR
X|Y (D) = min I(X; X̂|Y ), (3.2)

where the minimum is taken over all pmfs p(x̂|x) such that E[d(X, X̂)] ≤ D.

Comparing (3.2) with the Wyner-Ziv rate-distortion (3.1), it can be seen that the

additional CR constraint prevents the decoder from using the side information as a

means to improve its estimate X̂ (see point (ii) above).

The original work of [8] has been recently extended in [15], where a relaxed CR

constraint is imposed in which only a distortion constraint is imposed between the

decoder’s reconstruction and its reproduction at the encoder. This setting is referred

to as imposing a Constrained Reconstruction (ConR) requirement.

3.1.3 Main Contributions

In this Chapter, the HB source coding problem (Figure 3.2) and the cascade source

coding problem (Figure 3.4) are studied under the CR requirement. The considered

models are thus relevant for the transmission of sensitive information, which is

constrained by CR, via broadcast or multi-hop links – a common occurrence in, e.g.,

medical, military or financial applications (e.g., for intranets of hospitals or financial

institutions). Specifically, our main contributions are:

• For the HB problem with the CR constraint (Figure 3.2), the rate-distortion

function is derived under the assumption that the side information sequences

are (stochastically) degraded. Also this function is calculated explicitly for

three examples, namely Gaussian source and side information with quadratic

distortion metric, and binary source and erasure side information with erasure

and Hamming distortion metrics (Section 3.2);

2The function ψ at the encoder calculates the estimate of the encoder regarding the decoder’s
reconstruction.
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• For the HB problem with the CR constraint and decoder cooperation (Figure

3.3), the rate-distortion region is derived under the assumption that the side

information sequences are (physically) degraded in either direction (Section

3.3.1 and Section 3.3.2). It is emphasized that the corresponding problem

without the CR constraint is still open as per the discussion above;

• For the cascade problem with the CR constraint (Figure 3.4), the rate-distortion

region is obtained under the assumption that side information Y2 is physically

degraded with respect to Y1 (Section 3.4.2). It is emphasized that the

corresponding problem without the CR constraint is still open as per the

discussion above;

• For the cascade problem with CR constraint (Figure 3.4), outer and inner

bounds on the rate-distortion region are obtained under the assumption that

the side information Y1 is physically degraded with respect to Y2. Moreover,

for the three examples mentioned above in the context of the HB problem, it is

shown that the bounds coincide and the corresponding rate-distortion region is

explicitly evaluated (Section 3.4.3);

• For the HB problem, the rate-distortion function is finally derived under the

more general requirement of ConR (Section 3.5).

3.2 Heegard-Berger Problem with Common Reconstruction

In this section, first the system model for the HB source coding problem in Figure 3.2

with CR is detailed in Section 3.2.1. Next, the characterization of the corresponding

rate-distortion performance is derived under the assumption that one of the two

side information sequences is a stochastically degraded version of the other in the

sense of [3] (see (3.10)). Finally, three specific examples are worked out, namely

Gaussian sources under quadratic distortion (Section 3.2.3), and binary sources with
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side information sequences subject to erasures under Hamming or erasure distortion

(Section 3.2.4).

3.2.1 System Model

In this section, the system model for the HB problem with CR is detailed. The system

is defined by the pmf pXY1Y2(x, y1, y2) and discrete alphabets X ,Y1,Y2, X̂1, and X̂2 as

follows. The source sequence Xn and side information sequences Y n
1 and Y n

2 , with

Xn ∈ X n, Y n
1 ∈ Yn

1 , and Y
n
2 ∈ Yn

2 are such that the tuples (Xi, Y1i, Y2i) for i ∈ [1, n]

are independent and identically distributed (i.i.d.) with joint pmf pXY1Y2(x, y1, y2).

The encoder measures a sequence Xn and encodes it into a message J of nR bits,

which is delivered to the decoders. Decoders 1 and 2 wish to reconstruct the source

sequence Xn within given distortion requirements, to be discussed below, as X̂n
1 ∈ X̂ n

1

and X̂n
2 ∈ X̂ n

2 , respectively. The estimated sequence X̂n
j is obtained as a function of

the message J and the side information sequence Y n
j for j = 1, 2. The estimates are

constrained to satisfy distortion constraints defined by per-symbol distortion metrics

dj(x, x̂j) : X × X̂j → [0, Dmax] with 0 < Dmax < ∞. Based on the given distortion

metrics, the overall distortion for the estimated sequences x̂n1 and x̂n2 is defined as

dnj (x
n, x̂nj ) =

1

n

n∑
i=1

dj(xi, x̂ji) for j = 1, 2. (3.3)

The reconstructions X̂n
2 and X̂n

2 are also required to satisfy the CR constraints, as

formalized below.

Definition 3.1. An (n,R,D1, D2, ϵ) code for the HB problem with CR consists of

an encoding function

g: X n → [1, 2nR], (3.4)
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which maps the source sequenceXn into a message J ; a decoding function for Decoder

1,

h1: [1, 2
nR]× Yn

1 → X̂ n
1 , (3.5)

which maps the message J and the side information Y n
1 into the estimated sequence

X̂n
1 ; a decoding function for Decoder 2

h2: [1, 2
nR]× Yn

2 → X̂ n
2 (3.6)

which maps message J and the side information Y n
2 into the estimated sequence X̂n

2 ;

and two reconstruction functions

ψ1: X n → X̂ n
1 (3.7a)

and ψ2: X n → X̂ n
2 , (3.7b)

which map the source sequence into the estimated sequences at the encoder, namely

ψ1(X
n) and ψ2(X

n), respectively; such that the distortion constraints are satisfied,

i.e.,

1

n

n∑
i=1

E
[
dj(Xi, X̂ji)

]
≤ Dj for j = 1, 2, (3.8)

and the CR requirements hold, namely,

Pr
[
ψj(X

n) ̸= X̂n
j

]
≤ ϵ, j = 1, 2. (3.9)

Given distortion pairs (D1, D2), a rate pair R is said to be achievable if, for any

ϵ > 0 and sufficiently large n, there exists an (n,R,D1 + ϵ,D2 + ϵ, ϵ) code. The rate-

distortion function R(D1, D2) is defined as R(D1, D2) =inf{R : the triple (R,D1, D2)

is achievable}.



23

3.2.2 Rate-Distortion Function

In this section, a single-letter characterization of the rate-distortion function for the

HB problem with CR is derived, under the assumption that the joint pmf p(x, y1, y2)

is such that there exists a conditional pmf p̃(y1|y2) for which

p(x, y1) =
∑
y2∈Y2

p(x, y2)p̃(y1|y2). (3.10)

In other words, the side information Y1 is a stochastically degraded version of Y2.

Proposition 3.1. If the side information Y1 is stochastically degraded with respect

to Y2, the rate-distortion function for the HB problem with CR is given by

RCR
HB(D1, D2) = min I(X; X̂1|Y1) + I(X; X̂2|Y2X̂1) (3.11)

where the mutual information terms are evaluated with respect to the joint pmf

p(x, y1, y2, x̂1, x̂2) = p(x, y1, y2)p(x̂1, x̂2|x), (3.12)

and minimization is performed with respect to the conditional pmf p(x̂1, x̂2|x) under

the constraints

E[dj(X, X̂j)] ≤ Dj, for j = 1, 2. (3.13)

The proof of the converse can be found in Appendix A. Achievability follows as

a special case of Theorem 3 of [3] and can be easily shown using standard arguments.

In particular, the encoder randomly generates a standard lossy source code X̂n
1 for

the source Xn with rate I(X; X̂1) bits per source symbol. Random binning is used to

reduce the rate to I(X; X̂1|Y1). By the Wyner-Ziv theorem [1, p. 280], this guarantees

that both Decoder 1 and Decoder 2 are able to recover X̂n
1 (since Y1 is a degraded

version of Y2). The encoder then maps the source Xn into the reconstruction sequence

X̂n
2 using a codebook that is generated conditional on X̂n

1 with rate I(X; X̂2|X̂1) bits
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per source symbol. Random binning is again used to reduce the rate to I(X; X̂2|Y2X̂1).

From the Wyner-Ziv theorem, and the fact that Decoder 2 knows the sequence X̂n
1 ,

it follows that Decoder 2 can recover the reconstruction X̂n
2 as well. Note that, since

the reconstruction sequences X̂n
1 and X̂n

2 are generated by the encoder, functions ψ1

and ψ2 that guarantees the CR constraints (3.9) exist by construction.

Remark 3.1. Under the physical degradedness assumption that the Markov chain

condition X—Y2—Y1 holds, equation (3.11) can be rewritten as

R = min I(X; X̂1X̂2|Y2) + I(X̂1;Y2|Y1), (3.14)

with the minimization defined as in (3.11). This expression quantifies by I(X̂1;Y2|Y1)

the additional rate that is required with respect to the ideal case in which both

decoders have the better side information Y2.

Remark 3.2. Without the CR constraint, the rate-distortion function under the

assumption of Proposition 3.1 is given by [3] (see also eq. (2.2))

RHB(D1, D2) = min I(X;U1|Y1) + I(X;U2|Y2U1), (3.15)

where the mutual information terms are evaluated with respect to the joint pmf

p(x, y1, y2, u1, u2, x̂1, x̂2) = p(x, y1, y2)p(u1, u2|x)δ(x̂1 − x̂1(u1, y1))δ(x̂2 − x̂2(u2, y2)),

(3.16)

and minimization is performed with respect to the conditional pmf p(u1, u2|x) and the

deterministic functions x̂j(uj, yj), for j = 1, 2, such that distortion constraints (3.13)

are satisfied. Comparison of (3.11) with (3.15) reveals that, similar to the discussion

around (3.1) and (3.2), the CR constraint permits the use of side information only to

reduce the rate via binning, but not to improve the decoder’s estimates via the use of

the auxiliary codebooks represented by variables U1 and U2, and functions x̂j(uj, yj),

for j = 1, 2, in (3.16).
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Remark 3.3. Consider the case in which the side information sequences are available

in a causal fashion in the sense of [16], that is, the decoding functions (3.5)-(3.6) are

modified as hji: [1, 2
nR]×Y i

j → X̂ji, for i ∈ [1, n] and j = 1, 2, respectively. Following

similar steps as in the proof of Proposition 2 and in [16], it can be concluded that,

under the CR constraint, the rate-distortion function in this case is the same as if the

two side information sequences were not available at the decoders, and is thus given

by (3.11) upon removing the conditioning on the side information. Note that this is

true irrespective of the joint pmf p(x, y1, y2) and hence it holds also for non-degraded

side information. This result can be explained by noting that, as explained in [16],

causal side information prevents the possibility of reducing the rate via binning. Since

the CR constraint also prevents the side information from being used to improve

the decoders’ estimates, it follows that the side information is useless in terms of

rate-distortion performance, if used causally under the CR constraint.

On a similar note, if only side information Y1 is causally available, while Y2 can

still be used in the conventional non-causal fashion, then it can be proved that Y1

can be neglected without loss of optimality. Therefore, the rate-distortion function

follows from (3.11) by removing the conditioning on Y1.

Remark 3.4. In [17], a related model is studied in which the source is given as X =

(Y1, Y2) and each decoder is interested in reconstructing a lossy version of the side

information available at the other decoder. The CR constraint is imposed in a different

way by requiring that each decoder be able to reproduce the estimate reconstructed

at the other decoder.
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3.2.3 Gaussian Sources and Quadratic Distortion

In this section, the result of Proposition 3.1 is highlighted by considering a zero-mean

Gaussian source X ∼ N (0, σ2
x), with side information variables

Y1 = X + Z1 (3.17a)

and Y2 = X + Z2, (3.17b)

where Z1 ∼ N (0, N1 + N2) and Z2 ∼ N (0, N2) are independent of each other and

of Y2 and X. Note that the joint distribution of (X, Y1, Y2) satisfies the stochastic

degradedness condition. Quadratic distortion dj(x, x̂j) = (x − x̂j)
2 for j = 1, 2 is

considered. By leveraging standard arguments that allow us to apply Proposition 3.1

to Gaussian sources under mean-square-error constraint (see [1, pp. 50-51] and [18]),

a characterization of the rate-distortion function is obtained for the given distortion

and metrics.

It is first recalled that for the point-to-point set-up in Figure 3.1 with X ∼

N (0, σ2
x) and side information Y = X + Z, with Z ∼ N (0, N) independent of X, the

rate-distortion function with CR under quadratic distortion is given by [8]

RCR
X|Y (D) =

 RCR
G (D,N)

△
= 1

2
log2

(
σ2
x

σ2
x+N

· D+N
D

)
for D ≤ σ2

x

0 for D > σ2
x,

(3.18)

where an explicit dependence on N of function RCRG (D,N) is made for convenience.

The rate-distortion function (3.18) for D ≤ σ2
x is obtained from (3.2) by choosing the

distribution p(x̂|x) such that X = X̂ +Q where Q ∼ N (0, D) is independent of X̂.
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Figure 3.5 Illustration of the distortion regions in the rate-distortion function (3.19)
for Gaussian sources and quadratic distortion.

Proposition 3.2. The rate-distortion function for the HB problem with CR for

Gaussian sources (3.17) and quadratic distortion is given by

RCR
HB(D1, D2) =



0 if D1 ≥ σ2
x and D2 ≥ σ2

x,

RCR
G (D1, N1 +N2) if D1 ≤ σ2

x and D2 ≥ min(D1, σ
2
x)

RCR
G (D2, N2) if D1≥ σ2

x and D2 ≤ σ2
x

R̃CR
HB(D1, D2) if D2 ≤ D1 ≤ σ2

x

(3.19)

where RCR
G (D,N) is defined in (3.18) and

R̃CR
HB(D1, D2)

△
=

1

2
log2

(
σ2
x

(σ2
x +N1 +N2)

· (D1 +N1 +N2)(D2 +N2)

(D1 +N2)D2

)
. (3.20)

Remark 3.5. The rate-distortion function for the HB problem for Gaussian sources

(3.17) without the CR constraint can be found in [3]. Comparison with (3.19) confirms

the performance loss discussed in Remark 3.2.

Definition of the rate distortion function (3.19) requires different consideration

for the four subregions of the (D1, D2) plane sketched in Figure 3.5. In fact, for
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D1 ≥ σ2
x and D2 ≥ σ2

x, the required rate is zero, since the distortion constraints are

trivially met by setting X̂1 = X̂2 = 0 in the achievable rate (3.11). For the case

D1 ≥ σ2
x and D2 ≤ σ2

x, it is sufficient to cater only to Decoder 2 by setting X̂1 = 0

and X = X̂2 + Q2, with Q2 ∼ N (0, D2) independent of X̂2, in the achievable rate

(3.11). That this rate cannot be improved upon follows from the trivial converse

RCR
HB(D1, D2) ≥ max{RCR

G (D1, N1 +N2), R
CR
G (D2, N2)}, (3.21)

which follows by cut-set arguments. The same converse suffices also for the regime

D1 ≤ σ2
x and D2 ≥ min(D1, σ

2
x). For this case, achievability follows by setting X =

X̂1 + Q1 and X̂1 = X̂2 in (3.11), where Q1 ∼ N (0, D1) is independent of X̂1. In

the remaining case, namely D2 ≤ D1 ≤ σ2
x, the rate-distortion function does not

follow from the point-to-point result (3.18) as for the regimes discussed thus far. The

analysis of this case requires use of entropy-power inequality (EPI) and can be found

in Appendix B.

Figure 3.6 depicts the rate RCR
HB(D1, D2) in (3.19) versus D1 for different values

of D2 with σ2
x = 4, N1 = 2, and N2 = 3. As discussed above, for D2 = 5, which is

larger than σ2
x, R

CR
HB(D1, D2) becomes zero for values of D1 larger than σ2

x = 4, while

this is not the case for values D2 < σ2
x = 4.

3.2.4 Binary Source with Erased Side Information and Hamming or

Erasure Distortion

In this section, a binary source X ∼ Ber(1
2
) with erased side information sequences Y1

and Y2 are considered. The source Y2 is an erased version of the source X with erasure

probability p2 and Y1 is an erased version of X with erasure probability p1 > p2. This

means that Yj = e, where e represents an erasure, with probability pj and Yj = X

with probability 1−pj. Note that, with these assumptions, the side information Y1 is

stochastically degraded with respect to Y2. In fact, consider the factorization (3.10),
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Figure 3.6 The rate-distortion function RCR
HB(D1, D2) in (3.19) versus distortion D1

for different values of distortion D2 and for σ2
x = 4, N1 = 2, and N2 = 3.

where additional distributions p(y2|x) and p̃(y1|y2) are illustrated in Figure 3.7. As

seen in Figure 3.7, the pmf p̃(y1|y2) is characterized by the probability p̃1 that satisfies

the equality p1 = p2+p̃1(1−p2). Hamming and erasure distortions are considered. For

the Hamming distortion, the reconstruction alphabets are binary, X̂1 = X̂2 = {0, 1},

and dj(x, x̂j) = 0 if x = x̂j and dj(x, x̂j) = 1 otherwise for j = 1, 2. Instead, for

the erasure distortion the reconstruction alphabets are X̂1 = X̂2 = {0, 1, e}, and for

j = 1, 2:

dj(x, x̂j) =


0 for x̂j = x

1 for x̂j = e

∞ otherwise

(3.22)
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Figure 3.7 Illustration of the pmfs in the factorization (3.10) of the joint
distribution p(x, y1, y2) for a binary source X and erased side information sequences
(Y1, Y2).

In Appendix C, it is proved that for the point-to-point set-up in Figure 3.1

with X ∼ Ber(1
2
) and erased side information Y, with erasure probability p, the

rate-distortion function with CR under Hamming distortion is given by

RCR
X|Y (D) =

 RCR
B (D, p)

△
= p(1−H(D)) for D ≤ 1/2

0 for D > 1/2,
(3.23)

where an explicit the dependence on p of function RCR
B (D, p) is made for convenience.

The rate-distortion function (3.23) for D ≤ 1/2 is obtained from (3.2) by choosing

the distribution p(x̂|x) such that X = X̂ ⊕ Q where Q ∼ Ber(D) is independent

of X̂. Following the same steps as in Appendix C, it can be also proved that for

the point-to-point set-up in Figure 3.1 with X ∼ Ber(1
2
) and erased side information

Y, with erasure probability p, the rate-distortion function with CR under erasure

distortion is given by

RCR
X|Y (D) = RCR

BE (D, p)
△
= p(1−D). (3.24)

The rate-distortion function (3.24) is obtained from (3.2) by choosing the distribution

p(x̂|x) such that X̂ = X with probability 1−D and X̂ = e with probability D.

Remark 3.6. The rate-distortion function with erased side information and Hamming

distortion without the CR constraint is derived in [19] (see also [20]). Comparison
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with (3.23) shows again the limitation imposed by the CR constraint on the use of

side information (see Remark 3.2).

1D2
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2D

RBCRp2,D2
),(

~
21 DDR CR

HB

RBCRp1,D1

Figure 3.8 Illustration of the distortion regions in the rate-distortion function (3.25)
for a binary source with degraded erased side information and Hamming distortion.

Proposition 3.3. The rate-distortion function for the HB problem with CR for

the binary source with the stochastically degraded erased side information sequences

illustrated in Figure 3.7 under Hamming distortion is given by

RCR
HB(D1, D2) =



0 if D1 ≥ 1/2 and D2 ≥ 1/2,

RCR
B (D1, p1) if D1 ≤ 1/2 and D2 ≥ min(D1, 1/2)

RCR
B (D2, p2) if D1 ≥ 1/2 and D2 ≤ 1/2

R̃CR
HB(D1, D2) if D2 ≤ D1 ≤ 1/2

(3.25)

where RCR
B (D,N) is defined in (3.23) and

R̃CR
HB(D1, D2)

△
= p1(1−H(D1)) + p2(H(D1)−H(D2)). (3.26)

Moreover, for the same source under erasure distortion the rate-distortion function is

given by (3.25) by substituting RCR
B (Dj, pj) with R

CR
BE (Dj, pj) as defined in (3.24) for
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j = 1, 2 and by substituting (3.26) with

R̃CR
HB,E(D1, D2)

△
= p1(1−D1) + p2(D1 −D2). (3.27)

Similar to the Gaussian example, the characterization of the rate distortion

function (3.25) requires different considerations for the four subregions of the (D1, D2)

plane sketched in Figure 3.8. In fact, for D1 ≥ 1/2 and D2 ≥ 1/2, the required rate

is zero, since the distortion constraints are trivially met by setting X̂1 = X̂2 = 0 in

the achievable rate (3.11). For the case D1 ≥ 1/2 and D2 ≤ 1/2, it is sufficient to

cater only to Decoder 2 by setting X̂1 = 0 and X = X̂2 ⊕ Q2, with Q2 ∼ Ber(D2)

independent of X, in the achievable rate (3.11). That this rate cannot be improved

upon is a consequence from the trivial converse

RCR
HB(D1, D2) ≥ max{RCR

B (D1, p1), R
CR
B (D2, p2)}, (3.28)

which follows by cut-set arguments. The same converse suffices also for the regime

D1 ≤ 1/2 and D2 ≥ min(D1, 1/2). For this case, achievability follows by setting

X = X̂1 ⊕ Q1 and X̂1 = X̂2 in (3.11), where Q1 ∼ Ber(D1) is independent of X̂1.

In the remaining case, namely D2 ≤ D1 ≤ 1/2, the rate-distortion function does not

follow from the point-to-point result (3.23) as for the regimes discussed thus far. The

analysis of this case can be found in Appendix D. Similar arguments apply also for

the erasure distortion metric.

The rate-distortion function for the binary source X ∼ Ber(1
2
) is now compared

with erased side information under Hamming distortion for three settings. In the

first setting, known as the Kaspi model [9], the encoder knows the side information,

and thus the position of the erasures. For this case, the rate-distortion function

RKaspi(D1, D2) for the example at hand was calculated in [19]. Note that in the

Kaspi model, the CR constraint does not affect the rate-distortion performance since

the encoder has all the information available at the decoders. The second model
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of interest is the standard HB setting with no CR constraint, whose rate-distortion

function RHB(D1, D2) for the example at hand was derived [14]. The third model is

the HB setup with CR studied here. The inequalities

RKaspi(D1, D2) ≤ RHB(D1, D2) ≤ RCR
HB(D1, D2), (3.29)

hold, where the first inequality in (3.29) accounts for the impact of the availability

of the side information at the encoder, while the second reflects the potential

performance loss due to the CR constraint.

Figure 3.9 shows the aforementioned rate-distortion functions with p1 = 1 and

p2 = 0.35, which corresponds to the case where Decoder 1 has no side information,

for two values of the distortion D2 versus the distortion D1. For D2 ≥ p2
2
= 0.175, the

given settings reduce to one in which the encoder needs to communicate information

only to Decoder 1. Since Decoder 1 has no side information, the Kaspi and HB

settings yield equal performance i.e., RKaspi(D1, D2) = RHB(D1, D2). Moreover,

if D1 is sufficiently smaller than D2, the operation of the encoder is limited by

the distortion requirements of Decoder 1. In this case, Decoder 2 can in fact

reconstruct as X̂1 = X̂2 while still satisfying its distortion constraints. Therefore,

the same performance is obtained in all of the three settings, i.e., RKaspi(D1, D2) =

RHB(D1, D2) = RCR
HB(D1, D2). It is also noted that the general performance loss due

to the CR constraint, unless, as discussed above, distortion D1 is sufficiently smaller

than D2.

3.3 Heegard-Berger Problem with Cooperative Decoders

The system model for the HB problem with CR and decoder cooperation is similar to

the one provided in Section 3.2.1 with the following differences. Here, in addition to

encoding function given in (8.33) which maps the source sequence Xn into a message



34

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D1

R
(D

1
,D

2)

RKaspi

RHB

RHB
CR

D2=0.3

D2=0.05

Figure 3.9 Rate-distortion functions RKaspi(D1, D2) [19], RHB(D1, D2) [14] and
RCR

HB(D1, D2) (3.25) for a binary source under erased side information versus distortion
D1 (p1 = 1, p2 = 0.35, D2 = 0.05 and D2 = 0.3).

J1 of nR1 bits, there is an encoder at Decoder 1 given by

g1: [1, 2
nR1 ]× Yn

1 → [1, 2nR2 ], (3.30)

which maps message J1 and the source sequence Y n
1 into a message J2. Moreover,

instead of the decoding function given in (3.5), the decoding function for Decoder 2

is

h2: [1, 2
nR1 ]× [1, 2nR2 ]× Yn

2 → X̂ n
2 , (3.31)

which maps the messages J1 and J2 and the side information Y n
2 into the estimated

sequence X̂n
2 .



35

3.3.1 Rate-Distortion Region for X − Y1 − Y2

In this section, a single-letter characterization of the rate-distortion region is derived

under the assumption that the joint pmf p(x, y1, y2) is such that the Markov chain

X − Y1 − Y2 holds3.

Proposition 3.4. The rate-distortion region RCR(D1, D2) for the HB source coding

problem with CR and cooperative decoders under the assumption X −Y1−Y2 is given

by the union of all rate pairs (R1, R2) that satisfy the conditions

R1 ≥ I(X; X̂1X̂2|Y1) (3.32a)

and R1 +R2 ≥ I(X; X̂2|Y2) + I(X; X̂1|Y1, X̂2), (3.32b)

where the mutual information terms are evaluated with respect to the joint pmf

p(x, y1, y2, x̂1, x̂2) = p(x, y1)p(y2|y1)p(x̂1, x̂2|x), (3.33)

for some pmf p(x̂1, x̂2|x) such that the constraints (3.13) are satisfied.

The proof of the converse can be easily established following cut-set arguments

for bound (3.32a), while the bound (3.32b) on the sum-rate R1 + R2 can be proved

following the same step as in Appendix A and substituting J with (J1, J2). As for

the achievability, it follows as a straightforward extension of [10, Section III] to the

setup at hand where Decoder 2 has side information as well. It is worth emphasizing

that the reconstruction X̂2 for the Decoder 2, which has degraded side information,

is conveyed by using both the direct link from the Encoder, of rate R1, and the

path Encoder-Decoder 1-Decoder 2. The latter path leverages the the better side

information at Decoder 1 and the cooperative link of rate R2.

3Note that, unlike the conventional HB problem studied in Section 3.2, the rate-distortion
region with cooperative decoders depends on the joint distribution of the variables (Y1, Y2),
and thus stochastic and physical degradedness of the side information sequences lead to
different results.
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Remark 3.7. Without the CR constraint, the problem of determining the rate-

distortion region for the setting of Figure 3.3 under the assumption X − Y1 − Y2

is still open. In [10], inner and outer bounds are obtained to the rate distortion

region, for the case which the side information Y2 is absent. The bounds were shown

to coincide for the case where Decoder 1 wishes to recover X losslessly (i.e., D1 = 0)

and also for certain distortion regimes in the quadratic Gaussian case. Moreover,

the rate distortion tradeoff is completely characterized in [10] for the case in which

the encoder also has access to the side information. It is noted that, as per the

discussion in Section 3.2.4, these latter result immediately carry over to the case with

CR constraint since the encoder is informed about the side information.

Remark 3.8. To understand why imposing the CR constraint simplifies the problem

of obtaining a single-letter characterization of the rate-distortion function, let us

consider the degrees of freedom available at Decoder 1 in Figure 3.3 for the use of

the link of rate R2. In general, Decoder 1 can follow two possible strategies: the first

is forwarding, whereby Decoder 1 simply forwards some of the bits received from the

encoder to Decoder 2; while the second is recompression, whereby the data received

from the encoder is combined with the available side information Y n
1 , compressed

to at most R2 bits per symbol, and then sent to Decoder 2. It is the interplay and

contrast between these two strategies that makes the general problem hard to solve. In

particular, while the strategies of forwarding/recompression and combinations thereof

appear to be natural candidates for the problem, finding a matching converse when

both such degrees of freedom are permissible at the decoder is difficult (see, e.g., [21]).

However, under the CR constraint, the strategy of recompression becomes irrelevant,

since any information about the side information Y n
1 that is not also available at the

encoder cannot be leveraged by Decoder 2 without violating the CR constraint. This

restriction in the set of available strategies for Decoder 1 makes the problem easier

to address under the CR constraint.”
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3.3.2 Rate-Distortion Region for X − Y2 − Y1

In this section, a single-letter characterization of the rate-distortion region is derived

under the assumption that the joint pmf p(x, y1, y2) is such that the Markov chain

relationship X − Y2 − Y1 holds.

Proposition 3.5. The rate-distortion region RCR(D1, D2) for the HB source coding

problem with CR and cooperative decoders under the assumption the Markov chain

relationship X − Y2 − Y1 is given by the union of all rate pairs (R1, R2) that satisfy

the conditions

R1 ≥ I(X; X̂1|Y1) + I(X; X̂2|Y2, X̂1) (3.34a)

and R2 ≥ 0, (3.34b)

where the mutual information terms are evaluated with respect to the joint pmf

p(x, y1, y2, x̂1, x̂2) = p(x, y2)p(y1|y2)p(x̂1, x̂2|x), (3.35)

for some pmf p(x̂1, x̂2|x) such that the constraints (3.13) are satisfied.

The proof of achievability follows immediately by neglecting the link of rate R2

and using rate R1 as per the HB scheme of Proposition 3.1. The converse follows

by considering an enhanced system in which Decoder 2 is provided with the side

information of Decoder 1. In this system, link R2 becomes useless since Decoder

2 possesses all the information available at Decoder 1. It follows that the system

reduces to the HB problem with degraded sources studied in the previous section and

the bound (3.34a) follows immediately from Proposition 3.1.

Remark 3.9. In the case without CR, the rate-distortion function is given similarly to

(3.34), but with the HB rate-distortion function (3.15) in lieu of the rate-distortion

function of the HB problem with CR in (3.34a).
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3.4 Cascade Source Coding with Common Reconstruction

In this section, the system model in Figure 3.4 of cascade source coding with CR is first

detailed. As mentioned in Section 3.1, the motivation for studying this class of models

comes from multi-hop applications. Next, the characterization of the corresponding

rate-distortion performance is presented under the assumption that one of the two

side information sequences is a degraded version of the other. Finally, following the

previous section, three specific examples are worked out, namely Gaussian sources

under quadratic distortion (Section 3.4.3), and binary sources with side information

subject to erasures under Hamming or erasure distortion (Section 3.4.3).

3.4.1 System Model

In this section, the system model for the cascade source coding problem with CR is

detailed similar to Section 3.2.1. The problem is defined by the pmf pXY1Y2(x, y1, y2)

and discrete alphabets X ,Y1,Y2, X̂1, and X̂2 as follows. The source sequence X
n and

side information sequences Y n
1 and Y n

2 , with X
n ∈ X n, Y n

1 ∈ Yn
1 , and Y

n
2 ∈ Yn

2 are

such that the tuples (Xi, Y1i, Y2i) for i ∈ [1, n] are i.i.d. with joint pmf pXY1Y2(x, y1, y2).

Node 1 measures a sequence Xn and encodes it into a message J1 of nR1 bits, which

is delivered to Node 2. Node 2 estimates a sequence X̂n
1 ∈ X̂ n

1 within given distortion

requirements. Node 2 also encodes the message J1 received from Node 1 and the

sequence Y n
1 into a message J2 of nR2 bits, which is delivered to Node 3. Node 3

estimates a sequence X̂n
2 ∈ X̂ n

2 within given distortion requirements. Distortion and

CR requirements are defined as in Section 3.2.1, leading to the following definition.

Definition 3.2. An (n,R1, R2, D1, D2, ϵ) code for the cascade source coding problem

with CR consists an encoding function for Node 1,

g1: X n → [1, 2nR1 ], (3.36)
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which maps the source sequence Xn into a message J1; an encoding function for Node

2,

g2: [1, 2
nR1 ]× Yn

1 → [1, 2nR2 ], (3.37)

which maps the source sequence Y n
1 and message J1 into a message J2; a decoding

function for Node 2

h1: [1, 2
nR1 ]× Yn

1 → X̂ n
1 , (3.38)

which maps message J1 and the side information Y n
1 into the estimated sequence X̂n

1 ;

a decoding function for Node 3

h2: [1, 2
nR2 ]× Yn

2 → X̂ n
2 , (3.39)

which maps message J2 and the side information Y n
2 into the estimated sequence

X̂n
2 ; two encoder reconstruction functions as in (3.7), which map the source sequence

into estimated sequences ψ1(X
n) and ψ2(X

n) at Node 1; such that the distortion

constraints (3.8) and (3.9) are satisfied.

Given a distortion pair (D1, D2), a rate pair (R1, R2) is said to be achievable if,

for any ϵ > 0 and sufficiently large n, there a exists an (n,R1, R2, D1 + ϵ,D2 + ϵ, ϵ)

code. The rate-distortion region R(D1, D2) is defined as the closure of all rate pairs

(R1, R2) that are achievable given the distortion pair (D1, D2).

3.4.2 Rate-Distortion Region for X − Y1 − Y2

In this section, a single-letter characterization of the rate-distortion region is derived

under the assumption that the joint pmf p(x, y1, y2) is such that the Markov chain

relationship X − Y1 − Y2 holds 4.

4As for the HB problem with cooperative decoders studied in Section 3.3, the rate-distortion
region of the cascade source coding problem depends on the joint distribution of the variables
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Proposition 3.6. The rate-distortion region RCR(D1, D2) for the cascade source

coding problem with CR is given by the union of all rate pairs (R1, R2) that satisfy

the conditions

R1 ≥ I(X; X̂1X̂2|Y1) (3.40a)

and R2 ≥ I(X; X̂2|Y2), (3.40b)

where the mutual information terms are evaluated with respect to the joint pmf

p(x, y1, y2, x̂1, x̂2) = p(x, y1)p(y2|y1)p(x̂1, x̂2|x), (3.41)

for some pmf p(x̂1, x̂2|x) such that the constraints (3.13) are satisfied.

The proof of the converse is easily established following cut-set arguments. To

prove achievability, it is sufficient to consider a scheme based on binning at Node 1

and decode and rebin at Node 2 (see [13]). Specifically, Node 1 randomly generates a

standard lossy source code X̂n
1 for the source Xn with rate I(X; X̂1) bits per source

symbol. Random binning is used to reduce the rate to I(X; X̂1|Y1). Node 1 then

maps the source Xn into the reconstruction sequence X̂n
2 using a codebook that is

generated conditional on X̂n
1 with rate I(X; X̂2|X̂1) bits per source symbol. Using

the side information Y n
1 available at Node 2, random binning is again used to reduce

the rate to I(X; X̂2|Y1X̂1). The codebook of X̂n
2 is also randomly binned to the rate

I(X; X̂2|Y2). Node 2, having recovered X̂n
2 , forwards the corresponding bin index

to Node 3. The latter, by choice of the binning rate, is able to obtain X̂n
2 . Note

that, since the reconstruction sequences X̂n
1 and X̂n

2 are generated by the encoder,

functions ψ1 and ψ2 that guarantees the CR constraints (3.9) exist by construction.

Remark 3.10. Without the CR constraint, the problem of determining the rate-

distortion region for the setting of Figure 3.4 under the Markov condition X−Y1−Y2

(Y1, Y2), and thus stochastic and physical degradedness of the side information sequences
lead to different results.
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is still open. In the special case in which Y1 = Y2 the problem has been solved in [12]

for Gaussian sources under quadratic distortion and in [14] for binary sources with

erased side information under Hamming distortion.

Remark 3.11. Following Remark 3.3, if both side information sequences are causal,

it can be shown that they have no impact on the rate-distortion function (3.40).

Therefore, the rate-distortion region follows immediately from the results in (3.40) by

removing both of the side information terms. Note that with causal side information

sequences the rate-distortion function holds for any joint pmf p(x, y1, y2) with no

degradedness requirements. Moreover, if only the side information Y2 is causal, while

Y1 is still observed non-causally, then the side information Y2 can be neglected without

loss of optimality, and the rate-distortion region follows from (3.40) by removing the

conditioning on Y2.

3.4.3 Bounds on the Rate-Distortion Region for X − Y2 − Y1

In this section, outer and inner bounds are derived for the rate-distortion region

under the assumption that the joint pmf p(x, y1, y2) is such that the Markov chain

relationship X − Y2 − Y1 holds. The bounds are then shown to coincide in Section

3.4.3 for Gaussian sources and in Section 3.4.3 for binary sources with erased side

information.

Proposition 3.7. (Outer bound) The rate-distortion region RCR(D1, D2) for the

cascade source coding problem with CR is contained in the region RCR
out (D1, D2), which

is given by the set of all rate pairs (R1, R2) that satisfy the conditions

R1 ≥ RCR
HB(D1, D2) (3.42a)

and R2 ≥ RCR
X|Y2

(D2), (3.42b)
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where RCR
HB(D1, D2) is defined in (3.11) and RCR

X|Y2
(D2) = min I(X; X̂2|Y2), where

the minimization is performed with respect to the conditional pmf p(x̂2|x) under the

distortion constraints (3.13) for j = 2.

Proposition 3.8. (Inner bound) The rate-distortion region RCR(D1, D2) for the

cascade source coding problem with CR contains the region RCR
in (D1, D2), which is

given by the union of all rate pairs (R1, R2) that satisfy the conditions

R1 ≥ I(X; X̂1|Y1) + I(X; X̂2|Y2X̂1) (3.43a)

and R2 ≥ I(X; X̂1|Y2) + I(X; X̂2|X̂1Y2) (3.43b)

= I(X; X̂1X̂2|Y2) (3.43c)

where the mutual information terms are evaluated with respect to the joint pmf

p(x, y1, y2, x̂1, x̂2) = p(x, y2)p(y1|y2)p(x̂1, x̂2|x), (3.44)

for some pmf p(x̂1, x̂2|x1) such that the distortion constraints (3.13) are satisfied.

The outer bound in Proposition 3.7 follows immediately from cut-set arguments

similar to those in [12] and [14]. As for the inner bound of Proposition 19, the strategy

works as follows. Node 1 sends the description X̂n
1 to Node 2 using binning with rate

I(X; X̂1|Y1). It also maps the sequence Xn into the sequence X̂n
2 using a conditional

codebook with respect to X̂n
1 , which is binned in order to leverage the side information

Y n
2 at Node 3 with rate I(X; X̂2|X̂1, Y2). Node 2 recovers X̂

n
1 , whose codebook is then

binned to rate I(X; X̂1|Y2). Then, it forwards the so obtained bin index for X̂n
1 and

the bin index for the codebook of X̂n
2 produced by Node 1 to Node 3. By the choice

of the rates, the latter can recover both X̂n
1 and X̂n

2 . Since both descriptions are

produced by Node 1, the CR constraint is automatically satisfied.
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The inner and outer bounds defined above do not coincide in general. However,

in the next sections, two examples are provided in which they coincide and thus

characterize the rate-distortion region of the corresponding settings.

Remark 3.12. Without the CR constraint, the problem of deriving the rate-distortion

region for the setting at hand under the Markov chain condition X −Y2−Y1 is open.

The problem has been solved in [12] for Gaussian sources under quadratic distortion

and in [14] for binary sources with erased side information under Hamming distortion

for Y1 = Y2.

Gaussian Sources and Quadratic Distortion In this section, Gaussian sources

in (3.17) and the quadratic distortion are assumed as in Sec 3.2.3, and derive the

rate-distortion region for the cascade source coding problem with CR.

Proposition 3.9. The rate-distortion region RCR(D1, D2) for the cascade source

coding problem with CR for the Gaussian sources in (3.17) and quadratic distortion

is given by (3.42) with RCR
HB(D1, D2) in (3.19) and RCR

X|Y2
(D2) = RCR

G (D2, N2) (see

(3.18)).

The proof is given in Appendix E.

Binary Sources with Erased Side Information and Hamming Distortion

In this section, the binary sources in Figure 3.7 and the Hamming distortion are

assumed as in Sec 3.2.4, and derive the rate-distortion region for the cascade source

coding problem with CR.

Proposition 3.10. The rate-distortion region RCR(D1, D2) for the cascade source

coding problem with CR for the binary sources in Figure 3.7 and Hamming distortion

is given by (3.42) with RCR
HB(D1, D2) in (3.25) and RCR

X|Y2
(D2) = RCR

B (D2, p2) (see

(3.23)).

The proof is given in Appendix F.
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3.5 Heegard-Berger Problem with Constrained Reconstruction

In this section, the HB problem is revisited and relax the CR constraint to the ConR

constraint of [13]. This implies that the code as per Definition 1 is still adopted, but

(3.9) is substituted with the less stringent constraint

1

n

n∑
i=1

E
[
de,j(X̂ji, ψji(X

n))
]
≤ De,j for j = 1, 2, (3.45)

where de,j(x̂j, x̂e,j): X̂j × X̂j → [0, De,max] is a per-symbol distortion metric and

ψji(X
n), for j = 1, 2 is used to denote the ith letter of the vector ψj(X

n) =

(ψj1(X
n), ..., ψjn(X

n)).

Definition 3.3. Given a distortion tuple (De,1, De,2, D1, D2), a rate R is said to be

achievable if, for any ϵ > 0 and sufficiently large n, there a exists an (n,R,De,1 +

ϵ,De,2+ ϵ,D1+ ϵ,D2+ ϵ, ϵ) code. The rate-distortion function R(De,1, De,2, D1, D2) is

defined as R(De,1, De,2, D1, D2) = inf{R: the tuple (De,1, De,2, D1, D2) is achievable}.

Note that, by setting De,j = 0 for j = 1, 2, and letting de,j(x̂j, x̂e,j) be the

Hamming distortion metric (i.e., de,j(x̂j, x̂e,j) = 1 if x ̸= x̂j and de,j(x̂j, x̂e,j) = 0

if x = x̂j), a relaxed CR constraint is obtained in which the average per-symbol,

rather than per-block, error probability criterion is adopted.

Remark 3.13. The problem at hand reduces to the one studied in [15] by setting

D1 = Dmax and De,1 = De,max.

Proposition 3.11. If the side information Y1 is stochastically degraded with respect

to Y2, the rate-distortion function for the HB problem with ConR is given by

RConR
HB (De,1, De,2, D1, D2) = min I(X;U1|Y1) + I(X;U2|Y2U1) (3.46a)

= min I(X;U1U2|Y2) + I(U1;Y2|Y1), (3.46b)

where the mutual information terms are evaluated with respect to the joint pmf

p(x, y1, y2, u1, u2) = p(x, y1, y2)p(u1, u2|x), (3.47)
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and minimization is performed with respect to the conditional pmf p(u1, u2|x) and

the deterministic functions x̂j(uj, yj): Uj × Yj → X̂j and x̂e,j(uj, x): Uj ×X → X̂e,j

for j = 1, 2, such that the distortion constraints E[dj(X, x̂j(Uj, Yj))] ≤ Dj for j = 1, 2,

and the ConR requirements

E[de,j(x̂j(Uj, Yj), x̂e,j(Uj, X))] ≤ De,j, for j = 1, 2, (3.48)

are satisfied. Finally, (U1, U2) are auxiliary random variables whose alphabet

cardinalities can be constrained as |U1| ≤ |X |+ 4 and |U2| ≤ (|X |+ 2)2.

The proof is given in Appendix G.

Remark 3.14. Proposition 3.11 reduces to [15, Theorem 2] when setting D1 = Dmax

and De,1 = De,max.

Remark 3.15. Similar to [15, Theorem 2], it can be proved that, by setting De,1 =

De,2 = 0 and letting de,j be the Hamming distortion for j = 1, 2, the rate-distortion

function (3.46), RConR
HB (0, 0, D1, D2), reduces to the rate-distortion function with CR

(3.11).

Remark 3.16. Similar to Remark 3.15, if De,1 = 0 and De,2 = De,max, the rate-

distortion function (3.46) is given by

RCR
HB(0, De,max, D1, D2) = min I(X; X̂1|Y1) + I(X;U2|Y2X̂1), (3.49)

where the mutual information terms are evaluated with respect to the joint pmf

p(x, y1, y2, u2, x̂1) = p(x, y1, y2)p(x̂1, u2|x), (3.50)

and minimization is performed with respect to the conditional pmf p(x̂1, u2|x) and the

deterministic functions x̂2(u2, y2): U2 × Y2 → X̂2 and x̂e,2(u2, x): U2 ×X → X̂e,2, such

that the distortion constraints E[d1(X, X̂1)] ≤ D1 and E[d2(X, x̂2(U2, Y2))] ≤ D2 and

the ConR requirement E[de,2(x̂2(U2, Y2), x̂e,2(U2, X))] ≤ De,2 are satisfied. It can be
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proved that this is also the rate-distortion function under the partial CR requirement

that there exists a function ψ1(X
n) such that (3.9) holds for j = 1 only. Similar

conclusions apply symmetrically to the case where CR and ConR requirements are

imposed only on the reconstruction of Decoder 2.

Remark 3.17. If both side information sequences are causally available at the

decoders, it can be proved that they have no impact on the rate-distortion function

(3.46). In this case, the rate-distortion function follows immediately from the results

in (3.46) by removing conditioning on both side information sequences. Moreover, the

result can be simplified by introducing a single auxiliary random variable. Similarly, if

only side information Y1 is causal, then it can be neglected with no loss of optimality,

and the results follow from (3.46) by removing the conditioning on Y1.

Remark 3.18. It is noted that the ConR formulation studied in this section is more

general than the conventional formulation with distortion constraints for the decoders

only. Therefore, problems that are open with the conventional formulation, such as

HB with cooperative decoders (Section 3.3) and cascade source coding (Section 3.4),

are a fortiori also open in the ConR set-up.

3.6 Concluding Remarks

The Common Reconstruction requirement [8], and its generalization in [15], substan-

tially modify the problem of source coding in the presence of side information at the

decoders. From a practical standpoint, in various applications, such as transmission

of medical records, CR is a design constraint. In these cases, evaluation of the

rate-distortion performance under CR thus reveals the cost, in terms of transmission

resources, associated with this additional requirement. From a theoretical perspective,

adding the CR constraint to standard source coding problems with decoder side

information proves instrumental in concluding about the optimality of various known

strategies in settings in which the more general problem, without the CR constraint,
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is open [8]. This chapter has extended these considerations from a point-to-point

setting to three baseline multiterminal settings, namely the Heegard-Berger problem,

the HB problem with cooperating decoders and the cascade problems. The optimal

rate-distortion trade-off has been derived in a number of cases and explicitly evaluated

in various examples.

A general subject of theoretical interest is identifying those models for which

the CR requirements enables a solution of problems that have otherwise resisted

solutions for decades. Examples include the Heegard-Berger and cascade source

coding problems with no assumptions on side information degradedness and the

one-helper lossy source coding problem.



CHAPTER 4

DISTRIBUTED AND CASCADE SOURCE CODING WITH SIDE

INFORMATION “VENDING MACHINE”

4.1 Introduction

As reviewed in Chapter 2, reference [4] introduced the notion of a side information

“vending machine”. To illustrate the idea, consider the setting in Figure 4.1, as

studied in [4]. Here, as explained in Chapter 2, unlike the conventional Wyner-Ziv

set-up (see, e.g., [1, Chapter 12]), the joint distribution of the side information Y n

available at the decoder (Node 2) and of the source Xn observed at the encoder (Node

1) is not given. Instead, it can be controlled through the selection of an “action”

An, so that, for a given action An and source symbol Xn, the side information Y n

is distributed according to a given conditional distribution p(y|a, x). Action An is

selected by the decoder based on the messageM , of R bits per source symbol, received

from the encoder, and is subject to a cost constraint. The latter limits the “quality”

of the side information that can be collected by the decoder.

The source coding problem with a vending machine provides a useful model

for scenarios in which acquiring data as side information is costly and thus should

be done effectively. Examples include computer networks, in which data must be

obtained from remote data bases, and sensor networks, where data is acquired via

measurements.

The key aspect of this model is that the message M produced by the encoder

plays a double role. In fact, on the one hand, it needs to carry the description of the

source Xn itself, as in, e.g., the standard Wyner-Ziv model. On the other hand, it can

also carry control information aimed at enabling the decoder to make an appropriate

selection of action An. The goal of such a selection is to obtain a side information

48
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Y n that is better suited to provide partial information about the source Xn to the

decoder. This in turn can potentially reduce the rate R necessary for the decoder

to reconstruct source Xn at a given distortion level (or, vice versa, to reduce the

distortion level for a given rate R).

The performance of the system in Figure 4.1 is expressed in terms of the

interplay among three metrics, namely the rate R, the cost budget Γ on the action

An, and the distortion D of the reconstruction X̂ at the decoder. This trade-off is

summarized by the rate-distortion-cost function R(D,Γ). This function characterizes

the infimum of all rates R for which a distortion level D can be achieved under

an action cost budget Γ, by allowing encoding of an arbitrary number n of source

symbols Xn = (X1, ..., Xn). This function is derived in [4] for both cases in which the

side information Y n is available “non-causally” to the decoder, as in the standard

Wyner-Ziv model, or “causally”, as introduced in [16]. In the former case (Figure

4.1-(a)), the estimated sequence X̂n = (X̂1, ..., X̂n) is a function of message M

and of the entire side information sequence Y n = (Y1, ..., Yn), while, in the latter

(Figure 4.1-(b)), each estimated sample X̂i is a function of message M and the side

information as received up to time i, i.e., Y i = (Y1, ..., Yi) for i = 1, ..., n. It is noted

that the model with causal side information is appropriate, for instance, when there

are delay constraints on the reproduction at the decoder or when the decoder operates

by filtering the side information sequence. The reader is referred to [16, Sec I] for an

extensive discussion on these points.

Following reference [4], recent works [22] and [23] generalized the characteri-

zation of the rate-distortion-cost function for the models in Figure 4.1 to a set-up

analogous to the so called Kaspi-Heegard-Berger problem [3][9], in which the side

information vending machine may or may not be available at the decoder. This

entails the presence of two decoders, rather than only one as in Figure 4.1, one with

access to the vending machine and one without any side information. Reference [23]
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Figure 4.1 Source coding with a vending machine at the decoder [4] with: (a)
“non-causal” side information; (b) “causal” side information.

also solved the more general case in which both decoders have access to the same

vending machine, and either the side informations produced by the vending machine

at the two decoders satisfy a degradedness condition, or lossless source reconstructions

are required at the decoders. The papers [24][25] studied the setting of Figure 4.1

but under the additional constraints of common reconstruction, in the sense of [8],

in [24], and of secrecy with respect to an “eavesdropping” node in [25], providing

characterizations of the corresponding achievable performance. The impact of actions

that adapt to the previously measured samples of the side information is studied in

[26]. In [27], a related problem is considered in which the sequence to be compressed is

dependent on the actions taken by a separate encoder. Finally, real-time constraints

are investigated in [28].

4.1.1 Contributions and Overview

In this chapter, two multi-terminal extensions of the set-up in Figure 4.1 are studied,

namely the distributed source coding setting of Figure 4.2, and the cascade model of

Figure 4.3. The analysis of these scenarios is motivated by the observation that they
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constitute key components of computer and sensor networks. In fact, as discussed

above, an important aspect of these networks is the need to effectively acquire side

information data, which can be modeled by including a side information vending

machine. The two extensions and the corresponding main results are evaluated below.

1) Distributed source coding with a side information vending machine (Section

4.2): In the distributed source coding setting of Figure 4.2, two encoders (Node 1 and

Node 2), which measure correlated sources Xn
1 and Xn

2 , respectively, communicate

over rate-limited links, of rates R1 and R2, respectively, to a single decoder (Node 3).

The decoder has side information Y n on sources Xn
1 and Xn

2 , which can be controlled

through an action An. The action sequence is selected by the decoder based on the

messages M1 and M2 received from Node 1 and Node 2, respectively, and needs to

satisfy a cost constraint of Γ. Inner bounds are derived to the rate-distortion-

Node 1
nX1

nA

),,|( 21 xxayp

nY
nX 2 Node 2 2R

1R

Node 3
nX1

ˆ

nX 2
ˆ

nX1
nX 2

Figure 4.2 Distributed source coding with a side information vending machine at
the decoder.

Node 2Node 1
nX1

nA

12R
iX 2

ˆ

),,|( 21 xxayp

iY

Node 323R

nX1
ˆ

nX 2
nX1
nX 2

Figure 4.3 Cascade source coding with a side information vending machine. Side
information is assumed to be available “causally” to the decoder.

cost region R(D1, D2,Γ) under non-causal and causal side information by combining
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the strategies proposed in [4] with the Berger-Tung strategy [29] and its extension

to the Wyner-Ziv set-up [30]. These bounds are shown to be tight under specific

assumptions, including the scenario where the sequence observed by one of the nodes

is a function of the source observed by the other and the side information is available

causally at the decoder.

2) Cascade source coding with a side information vending machine (Section

4.3): In the cascade model of Figure 4.3, Node 1 is connected via a rate-limited link,

of rate R12, to Node 2, which is in turn communicates with Node 3 with rate R23.

Source Xn
1 is measured by Node 1 and the correlated source Xn

2 by both Node 1 and

Node 2. Similarly to the distributed coding setting described above, Node 3 has side

information Y n on sources Xn
1 and Xn

2 , which can be controlled via an action An.

Action An is selected by Node 3 based on the message received from Node 2 and

needs to satisfy a cost constraint of Γ. The set R(D1, D2,Γ) of all achievable rates

(R12, R23) are derived for given distortion constraints (D1, D2) on the reconstructions

X̂n
1 and X̂n

2 at Node 2 and Node 3, respectively, and for cost constraint Γ. This

characterization is obtained under the assumption that the side information Y be

available causally at Node 3. It is mentioned that, following the submission of this

work, the analysis of the case with non-causal side information at Node 3 was carried

out in [31].

4.2 Distributed Source Coding with a Side Information Vending

Machine

In this section, the system model for the problem of distributed source coding with

a side information vending machine is detailed in Section 4.2.1. Then, an achievable

strategy is proposed in Section 4.2.2 for both the cases with non-causal and causal side

information at the decoder. In Section 4.2.3 and Section 4.2.4 scenarios are discussed
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in which the achievable strategies match given outer bounds. A numerical example

is then developed in Section 4.2.5.

4.2.1 System Model

The problem of distributed lossy source coding with a vending machine and non-

causal side information is illustrated in Figure 4.2. It is defined by the probability

mass functions (pmfs) pX1X2(x1, x2) and pY |AX1X2(y|a, x1, x2) and discrete alphabets

X1,X2,Y ,A, X̂1, X̂2 as follows. The source sequences Xn
1 and Xn

2 with Xn
1 ∈ X n

1

and Xn
2 ∈ X n

2 , respectively, are such that the tuples (X1i, X2i) for i ∈ [1, n] are

independent identically distributed (i.i.d.) with joint pmf pX1X2(x1, x2). Node 1

measures sequences Xn
1 and encodes it into message M1 of nR1 bits, while Node 2

measures sequences Xn
2 and encodes it into message M2 of nR2 bits. Node 3 wishes

to reconstruct the two sources within given distortion requirements, to be discussed

below, as X̂n
1 ∈ X̂ n

1 and X̂n
2 ∈ X̂ n

2 .

To this end, Node 3 selects an action sequence An, where An ∈ An, based

on the messages M1 and M2 received from Node 1 and Node 2, respectively. The

side information sequence Y n is then realized as the output of a memoryless channel

with inputs (An, Xn
1 , X

n
2 ). Specifically, given An, Xn

1 and Xn
2 , the sequence Y n is

distributed as

p(yn|an, xn1 , xn2 ) =
n∏

i=1

pY |AX1X2(yi|ai, x1i, x2i). (4.1)

The overall cost of an action sequence an is defined by a per-symbol cost function Λ:

A →[0,Λmax] with 0 ≤ Λmax <∞, as

Λn(an) =
1

n

n∑
i=1

Λ(ai). (4.2)

The estimated sequences X̂n
1 and X̂n

2 are obtained as a function of both messages M1

andM2 and of the side information Y n. The estimates X̂n
1 and X̂n

2 are constrained to
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satisfy distortion constraints defined by two per-symbol distortion measures, namely

dj(x1, x2, y, x̂j): X1×X2×Y×X̂j → [0, Dmax] for j = 1, 2 with 0 ≤ Dmax <∞. Based

on such scalar measures, the overall distortion for the estimated sequences x̂n1 and x̂n2

is defined as

dnj (x
n
1 , x

n
2 , y

n, x̂nj ) =
1

n

n∑
i=1

dj(x1i, x2i, yi, x̂ji) for j = 1, 2. (4.3)

Note that, based on (4.3), the estimate X̂n
j for j = 1, 2 can be required to be a lossy

version of an arbitrary (per-letter) function of both sources Xn
1 and Xn

2 and of the

side information sequence Y n. A formal description of the operations at encoders and

decoder, and of cost and distortion constraints, is presented below for both the cases

in which the side information is available causally or non-causally at the decoder.

Definition 4.1. An (n,R1, R2, D1, D2,Γ) code for the case of non-casual side

information at Node 3 consists of two source encoders

g1: X n
1 → [1, 2nR1 ],

and g2: X n
2 → [1, 2nR2 ], (4.4)

which map the sequences Xn
1 and Xn

2 into messages M1 and M2 at Node 1 and Node

2, respectively; an “action” function

ℓ: [1, 2nR1 ]× [1, 2nR2 ] → An, (4.5)

which maps the message (M1,M2) into an action sequence An at Node 3; and two

decoding functions

h1: [1, 2
nR1 ]× [1, 2nR2 ]× Yn → X̂ n

1 , (4.6)

and h2: [1, 2
nR1 ]× [1, 2nR2 ]× Yn → X n

2 , (4.7)
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which map the messages M1 and M2, and the side information sequence Y n into the

estimated sequences X̂n
1 and X̂n

2 at Node 3; such that the action cost constraint Γ is

satisfied as

1

n

n∑
i=1

E [Λ(Ai)] ≤ Γ, (4.8)

and the distortion constraints D1 and D2 hold, namely

1

n

n∑
i=1

E
[
dj(X1i, X2i, Yi, X̂ji)

]
≤ Dj, for j = 1, 2. (4.9)

Definition 4.2. A (n,R1, R2, D1, D2,Γ) code for the case of causal side information

at Node 3 is as in Definition 4.1 with the only difference that, in lieu of (6)-(7), the

sequence of decoding functions are

h1i: [1, 2
nR1 ]× [1, 2nR2 ]× Y i → X̂1i, (4.10)

and h2i: [1, 2
nR1 ]× [1, 2nR2 ]× Y i → X2i, (4.11)

for i ∈ [1, n], which map the message (M1,M2) and the measured sequence Y i into

the ith estimated symbol X̂ji = hji(M1,M2, Y
i) for j = 1, 2 at Node 3.

Definition 4.3. Given a distortion-cost tuple (D1, D2,Γ), a rate pair (R1, R2) is said

to be achievable for the case with non-causal or causal side information if, for any ϵ > 0

and sufficiently large n, there exists a corresponding (n,R1, R2, D1 + ϵ,D2 + ϵ,Γ+ ϵ)

code.

Definition 4.4. The rate-distortion-cost region RNC(D1, D2,Γ) is defined as the

closure of all rate pairs (R1, R2) that are achievable with non-causal side infor-

mation given the distortion-cost tuple (D1, D2,Γ). The rate-distortion-cost region

RC(D1, D2,Γ) is similarly defined for the case of casual side information.
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4.2.2 Achievable Strategies

In this section, inner bounds to the rate-distortion-cost regions are obtained for the

cases with non-causal and causal side information.

Proposition 4.1. The rate-distortion-cost region with non-causal side information

at Node 3 satisfies the inclusion RNC(D1, D2,Γ) ⊇ Ra
NC(D1, D2,Γ), where the region

Ra
NC(D1, D2,Γ) is given by the union of the set of all of rate tuples (R1, R2) that

satisfy the inequalities

R1 ≥ I(X1;V1|V2, Q) + I(X1;U1|V1, V2, U2, Y,Q) (4.12a)

R2 ≥ I(X2;V2|V1, Q) + I(X2;U2|V1, V2, U1, Y,Q) (4.12b)

and R1 +R2 ≥ I(X1, X2;V1, V2|Q) + I(X1, X2;U1, U2|V1, V2, Y,Q), (4.12c)

for some joint pmfs that factorizes as

p(q, x1, x2, y, v1, v2, u1, u2, a, x̂1, x̂2) =

p(q)p(x1, x2)p(v1, u1|x1, q)p(v2, u2|x2, q)δ(a− a(v1, v2, q))

p(y|a, x1, x2)δ(x̂1 − x̂1(u1, u2, y, q))δ(x̂2 − x̂2(u1, u2, y, q)), (4.13)

with pmfs p(q) and p(v1, u1|x1, q) and p(v2, u2|x2, q) and deterministic functions

a: V1×V2×Q → A, x̂j: U1×U2×Y ×Q→ X̂j for j = 1, 2, such that the action and

the distortion constraints

E [Λ(A)] ≤ Γ (4.14a)

and E
[
dj(X1, X2, Y, X̂j)

]
≤ Dj, for j = 1, 2, (4.14b)

hold. Finally, any extreme point of the region Ra
NC(D1, D2,Γ) can be obtained by

limiting the cardinalities of the random variables (V1, V2, U1, U2) as |Vj| ≤ |Xj| + 6

and |Uj| ≤ |Xj| |Vj|+ 5, for j = 1, 2.
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Remark 4.1. If p(y|a, x1, x2) = p(y|x1, x2), so that the side information is action-

independent, Proposition 4.1 reduces to the extension of the Berger-Tung scheme [29]

to the Wyner-Ziv set-up studied in [30, Theorem 2]. Moreover, in the special case in

which there is only one encoder, the achievable rate coincides with that derived in [4,

Theorem 1].

The proof of Proposition 4.1 follows easily from standard arguments, and thus

it is only briefly discussed here. The proposed scheme combines the Berger-Tung

distributed source coding strategy [29] and the distributed Wyner-Ziv approach

proposed in [30, Theorem II] with the layered two-stage coding scheme that is proved

to be optimal in [4] for the special case of a single encoder. Throughout the discussion,

the time-sharing variable is neglected Q for simplicity. This can be handled in the

standard way (see, e.g., [1, Section 4.5.3]). The encoding scheme at Node 1 and Node

2 multiplexes two descriptions, which are obtained in two encoding stages. In the

first encoding stage, the distributed source coding strategy of [29], conventionally

referred to as the Berger-Tung scheme, is adopted by Node 1 and Node 2 to convey

descriptions V n
1 and V n

2 , respectively, to Node 3. In order for the decoder to be able

to recover these descriptions the rates R
′
1 and R

′
2 allocated by Node 1 and Node 2

have to satisfy the conditions [29][1, Chapter 13]

R
′

1 ≥ I(X1;V1|V2) (4.15a)

R
′

2 ≥ I(X2;V2|V1) (4.15b)

and R
′

1 +R
′

2 ≥ I(X1, X2;V1, V2). (4.15c)

Having decoded the descriptions (V n
1 , V

n
2 ), Node 3 selects the action sequence An as

the per-symbol function Ai = a(V1i, V2i) for i ∈ [1, n]. Node 3 thus measures the

side information sequence Y n. The sequences (Y n, V n
1 , V

n
2 ) can then be regarded as

side information available at the decoder. Therefore, in the second encoding stage,

the distributed Wyner-Ziv scheme proposed in [30, Theorem 2] is used to convey the
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descriptions Un
1 and Un

2 by Node 1 and Node 2, respectively, to Node 3. Note that

the fact that sequences (Y n, V n
1 , V

n
2 ) are not i.i.d. does not affect the achievability

of the rate region derived in [30]. This is because, as shown in [1, Lemma 3.1], the

packing lemma leveraged to ensure the correctness of the decoding process applies

for an arbitrary distribution of the sequences (Y n, V n
1 , V

n
2 ). In order for the decoder

to correctly retrieve the descriptions Un
1 and Un

2 , the rates R
′′
1 and R

′′
2 allocated by

Node 1 and Node 2 must satisfy the inequalities [30]

R
′′

1 ≥ I(X1;U1|V1, V2, U2, Y ) (4.16a)

R
′′

2 ≥ I(X2;U2|V1, V2, U1, Y ) (4.16b)

and R
′′

1 +R
′′

2 ≥ I(X1, X2;U1, U2|V1, V2, Y ). (4.16c)

Node 1 and Node 2 multiplex the source indices obtained in the two phases and

hence the overall rates are R1 = R
′
1 + R

′′
1 and R2 = R

′
2 + R

′′
2 . Using these equalities,

along with (4.15) and (4.16), leads to (4.12). Finally, the decoder j estimates X̂n
j

with j = 1, 2 sample by sample as a function of U1i, U2i and Yi. The proof of the

cardinality bounds follows from standard arguments and is sketched in Appendix H1.

Let’s consider a similar achievable strategy for the case with causal side information.

Proposition 4.2. The rate-distortion-cost region with causal side information at

Node 3 satisfies the inclusion RC(D1, D2,Γ) ⊇ Ra
C(D1, D2,Γ), where the region

Ra
C(D1, D2,Γ) is given by the union of the set of all of rate tuples (R1, R2) that

satisfy the inequalities

R1 ≥ I(X1;U1|U2, Q) (4.17a)

R2 ≥ I(X2;U2|U1, Q) (4.17b)

and R1 +R2 ≥ I(X1, X2;U1, U2|Q), (4.17c)

1It is noted that, using the approach of [32], it may be possible to improve the cardinality
bounds. This aspect is not further explored here.
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for some joint pmfs that factorizes as

p(q, x1, x2, y, u1, u2, a, x̂1, x̂2) = p(q)p(x1, x2)p(u1|x1, q)p(u2|x2, q)δ(a− a(u1, u2, q))

p(y|a, x1, x2)δ(x̂1 − x̂1(u1, u2, y, q))

δ(x̂2 − x̂2(u1, u2, y, q)), (4.18)

with pmfs p(q), p(u1|x1, q) and p(u2|x2, q) and deterministic functions a: U1×U2×Q →

A and x̂j: U1 ×U2 ×Y ×Q→ X̂j for j = 1, 2, such that the action and the distortion

constraints (4.14a)-(4.14b) hold, respectively. Finally, any extreme point in the region

Ra
C(D1, D2,Γ) can be obtained by constraining the cardinalities of random variables

(U1, U2) as |U1| ≤ |X1|+ 5 and |U2| ≤ |X2|+ 5.

The proof follows by similar arguments as the ones in the proof of Proposition

4.1 with the only difference that only one stage of encoding is sufficient. Specifically,

as in Proposition 4.1, Berger-Tung coding is adopted to convey the descriptions Un
1

and Un
2 to Node 3. Note that, with causal side information, there is no advantage

in having a second encoding stage, since the side information sequence cannot be

leveraged for binning in contrast to the case with non-causal side information [16][1,

Chapter 12]. The cardinality bounds follow from arguments similar to Appendix H.

4.2.3 Degraded Source Sets and Causal Side Information

In this section, a special case in which the sequence observed by Node 2 is a symbol-

by-symbol function of the source observed at Node 1 is considered [33, Section V.]

(see also [34]). In other words, X1i = (X ′
1i, X2i) for i ∈ [1, n], where X

′n
1 is an i.i.d.

sequence independent of Xn
2 . This set-up is referred to as having degraded source sets.

Moreover, it is assumed that the side information Y is available causally at Node 3.

The next proposition proves that the achievable strategy of Proposition 4.2 is optimal

in this case.
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Proposition 4.3. The rate-distortion-cost region RC(D1, D2,Γ) for the set-up

with degraded source sets and with causal side information at Node 3 satisfies

RC(D1, D2,Γ) = Ra
C(D1, D2,Γ).

For the proof of converse, the reader is referred to Appendix I.

Remark 4.2. Proposition 3 generalizes to the case with action-dependent side

information the result in [33, Section V] for the case with no side information.

4.2.4 One-Distortion Criterion and Non-Causal Side Information

In this section, a variation on the set-up of source coding with action-dependent

non-causal side information described in Definition 4.1 is considered. Specifically,

Node 3 selects the action sequence An based only on the message M1 received from

Node 1. In other words, the action function (4.5) is modified to

ℓ: [1, 2nR1 ] → An, (4.19)

which maps the message M1 into an action sequence An at Node 3. This may be the

case in scenarios in which there is a hierarchy between Node 1 and Node 2, e.g., in

a sensor network, and the functionality of remote control of the side information is

assigned solely to Node 1. The next proposition characterizes the rate-distortion-cost

function RNC(D1, 0,Γ) under the mentioned assumption when Hamming distortion

is selected for X̂2. That is, distortion measure d2(x2, x̂2) is chosen as dH(x2, x̂2) =

0 if x2 = x̂2 and dH(x2, x̂2) = 1 otherwise. This implies that the constraint of

vanishingly small per-symbol Hamming distortion between source Xn
2 and estimate

X̂n
2 is imposed, or equivalently the constraint 1

n

n∑
i=1

Pr[X̂2i ̸= X2i] → 0 for n → ∞.

This assumption will be referred to as by saying that source sequence Xn
2 must be

recovered losslessly at the decoder.

Proposition 4.4. If the action function is given by (4.19) and Xn
2 must be recovered

losslessly at Node 3, the rate-distortion-cost region RNC(D1, 0,Γ) is given by union
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of the set of all of rate tuples (R1, R2) that satisfy the inequalities

R1 ≥ I(X1;A|Q) + I(X1;U1|A,X2, Y,Q) (4.20a)

R2 ≥ H(X2|A, Y, U1, Q) (4.20b)

and R1 +R2 ≥ I(X1;A|Q) +H(X2|A, Y,Q) + I(X1;U1|A,X2, Y,Q), (4.20c)

for some joint pmfs that factorizes as

p(q, x1, x2, y, u1, a, x̂1) = p(q)p(x1, x2)p(a, u1|x1, q)p(y|a, x1, x2)δ(x̂1 − x̂1(u1, x2, y, q)),

(4.21)

with pmfs p(q) and p(a, u1|x1, q) and deterministic function x̂1(u1, x2, y, q), such that

the action and the distortion constraints

E [Λ(A)] ≤ Γ (4.22a)

and E
[
d1(X1, X2, Y, X̂1)

]
≤ D1 (4.22b)

hold. Finally, Q and U1 are auxiliary random variables whose alphabet cardinality

can be constrained as |Q| ≤ 6 and |U1| ≤ 6 |X1| |A|+ 3 without loss of optimality.

Remark 4.3. In the case in which there is no side information, Proposition 4.4 reduces

to [35, Theorem 1].

For the proof of converse, the reader is referred to Appendix J. The achievability

follows from Proposition 4.1 by setting V2 = ∅, V1 = A and U2 = X2.

Remark 4.4. Extension of the result in Proposition to an arbitrary number K of

encoders can be found in [36].

4.2.5 A Binary Example

In this section, a specific numerical example is considered in order to illustrate the

result derived in Proposition 4.1 and Proposition 4.4 and the advantage of selecting
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actions at Node 3 based on the message received from one of the nodes. Specifically,

it is assumed that all alphabets are binary and that (X1, X2) is a doubly symmetric

binary source (DSBS) characterized by probability p, with 0 ≤ p ≤ 1/2, so that

p(x1) = p(x2) = 1/2 for x1, x2 ∈ {0, 1} and Pr[X1 ̸= X2] = p. Moreover, Hamming

distortion is adopted for both sources to reconstruct both X1 and X2 losslessly in the

sense discussed above. Note that, this implies that d1(x1, x2, y, x̂1) = dH(x1, x̂1) and

D1 = 0. The side information Yi is such that

Yi =

 f(X1i, X2i) if Ai = 1

1 if Ai = 0
, (4.23)

where f(x1, x2) is a deterministic function to be specified. Therefore, when action

Ai = 1 is selected, then Yi = f(X1i, X2i) is measured at the receiver, while with

Ai = 0 no useful information is collected by the decoder. The action sequence An

must satisfy the cost constraint (4.8), where the cost function is defined as Λ(Ai) = 1

if Ai = 1 and Λ(Ai) = 0 if Ai = 0. It follows that, given (4.23), a cost Γ implies that

the decoder can observe f(X1i, X2i) only for at most nΓ symbols. As for the function

f(x1, x2), two cases are considered, namely f(x1, x2) = x1 ⊕ x2, where ⊕ is the binary

sum and f(x1, x2) = x1 ⊙ x2, where ⊙ is the binary product. It is assumed that the

side information is available non-causally at the decoder.

To start with, observe that the sum-rate is a non-increasing function of the

action cost Γ and hence, the minimum sum-rate is obtained when Γ = 1. With

Γ = 1, it is clearly optimal to set A = 1, irrespective of the value of X1. In this

case, from the Slepian-Wolf theorem, the sum rate equals Rsum(1) = H(X1, X2|Y ).

Specifically, with sum side information

R⊕
sum(1) = 1, (4.24)
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since R⊕
sum(1) = H(X1, X2|X1 ⊕ X2) = H(X1|X1 ⊕ X2) = H(X1) hold, where the

second equality follows from the chain rule and the third from the crypto-lemma [37,

Lemma 2]. Instead, with product side information,

R⊙
sum(1) = H

(
1− p

1 + p
,

p

1 + p
,

p

1 + p

)(
1 + p

2

)
, (4.25)

where the definition H (p1, p2, ..., pk) = −
∑k

i=1 pk log2 pk is used. Equation (4.25)

follows since

R⊙
sum(1) = H(X1, X2|X1 ⊙X2)

= H(X1, X2|X1 ⊙X2 = 0)Pr[X1 ⊙X2 = 0], (4.26)

where the second equality is a consequence of the fact that X1 ⊙ X2 = 1 implies

that X1 = 1 and X2 = 1. Sum-rate (4.25) is then obtained by evaluating (4.26) for

the DSBS at hand. Figure 4.4 shows the sum-rates (4.24) and (4.25), demonstrating
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Figure 4.4 Sum-rates versus p for sum and product side informations (Γ = 1).

that, if p is sufficiently small, namely if p . 0.33, R⊙
sum(1) < R⊕

sum(1) is true and thus
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product side information is more informative than the sum, while for p & 0.33 the

opposite is true (and for p = 1, they are equally informative).
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An(M1)

Greedy Approach

Figure 4.5 Sum-rates versus the action cost Γ for product side information (p =
0.45).

Considering a general cost budget 0 ≤ Γ ≤ 1, in order to emphasize the

role of both data and control information for the system performance, the sum-rate

attainable by imposing that the action A be selected by Node 3 a priori, that is,

without any control from Node 1, is now evaluated. This can be easily seen to be

given by [4]

Rsum, greedy(Γ) = ΓH(X1, X2|Y ) + (1− Γ)H(X1, X2)

= ΓH(X1, X2|Y ) + (1− Γ)(1 +H(p)). (4.27)

This sum-rate will be compared below with the performance of the scheme in

Proposition 4.1, in which the actions are selected based on both messages (M1,M2),
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Figure 4.6 Sum-rates versus the action cost Γ for sum side information (p = 0.1).

and that of Proposition 4.4, in which the actions are selected based only on message

M1.

Figure 4.5 depicts the mentioned sum-rates2 versus the action cost Γ for p = 0.45

and product side information. It can be seen that the greedy approach suffers from

a significant performance loss with respect to the approaches in which actions are

selected based on the messages received from one encoder or both encoders. It can

be also observed that no gains are obtained by selecting the actions based on both

messages. The fact that choosing the action based on the message received from

Node 1 provides performance benefits can be explained as follows. If X1 = 0, the

value of the side information is always Y = X1 ⊙ X2 = 0 irrespective of the value

of X2. Therefore, if X1 = 0, the side information is less informative than if X1 = 1

2The sum-rate from Proposition 4.1 is calculated by assuming binary auxiliary variables V1
and V2 and performing global optimization.
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and hence it may be advantageous to save on the action cost by setting A = 0.

Consequently, choosing actions based on the message received from Node 1 can result

in a lower sum-rate.

The scenario with sum side information is considered in Figure 4.6 for p = 0.1.

A first observation is that, as proved in Appendix K, choosing the action based only

on M1 cannot improve the sum-rate with respect to the greedy case. This contrasts

with the product side information case, and is due to the fact that X1 is independent

of the side information Y . Instead, choosing the actions based on both messages

allows to save on the necessary communication sum-rate.

4.3 Cascade Source Coding with a Side Information Vending Machine

In this section, the system model for the setting of Figure 4.3 of cascade source

coding with a side information vending machine is first described. It is recalled that

side information Y is here assumed to be available causally at the decoder (Node

3). The corresponding model with non-causal side information is studied in [31].

Next, the characterization of the corresponding rate-distortion-cost performance is

presented in Section 4.3.2.

4.3.1 System Model

The problem of cascade lossy computing with causal observation costs at second user,

illustrated in Figure 4.3, is defined by the pmfs pX1X2(x1, x2) and pY |AX1X2(y|a, x1, x2)

and discrete alphabets X1,X2,Y ,A, X̂1, X̂2, as follows. The source sequences Xn
1 and

Xn
2 with Xn

1 ∈ X n
1 and Xn

2 ∈ X n
2 , respectively, are such that the pairs (X1i, X2i) for

i ∈ [1, n] are i.i.d. with joint pmf pX1X2(x1, x2). Node 1 measures sequences Xn
1 and

Xn
2 and encodes them in a message M12 of nR12 bits, which is delivered to Node 2.

Node 2 estimates a sequence X̂n
1 ∈ X̂ n

1 within given distortion requirements to be

discussed below. Moreover, Node 2 encodes the message M12, received from Node
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1, and the locally available sequence Xn
2 in a message M23 of nR23 bits, which is

delivered to node 3. Node 3 wishes to estimate a sequence X̂n
2 ∈ X̂ n

2 within given

distortion requirements to be discussed. To this end, Node 3 receives message M23

and based on this, selects an action sequence An, where An ∈ An. The action sequence

affects the quality of the measurement Y n of sequence Xn
1 and Xn

2 obtained at the

Node 3. Specifically, given An, Xn
1 and Xn

2 , the sequence Y n is distributed as in

(4.1). The cost of the action sequence is defined by a cost function Λ: A →[0,Λmax]

with 0 ≤ Λmax < ∞, as in (4.2). The estimated sequence X̂n
2 with X̂n

2 ∈ X̂ n
2 is then

obtained as a function of M23 and Y n.

Estimated sequences X̂n
j for j = 1, 2 must satisfy distortion constraints defined

by functions dj(x1, x2, y, x̂j): X1 × X2 × Y × X̂j → [0, Dmax] with 0 ≤ Dmax < ∞ for

j = 1, 2, respectively. A formal description of the operations at encoder and decoder

follows.

Definition 4.5. An (n,R12, R23, D1, D2,Γ) code for the set-up of Figure 4.3 consists

of two source encoders, namely

g1: X n
1 ×X n

2 → [1, 2nR12 ], (4.28)

which maps the sequences Xn
1 and Xn

2 into a message M12;

g2: X n
2 × [1, 2nR12 ] → [1, 2nR23 ] (4.29)

which maps the sequence Xn
2 and message M12 into a message M23; an “action”

function

ℓ: [1, 2nR23 ] → An, (4.30)

which maps the message M23 into an action sequence An; a decoding function

h1: [1, 2
nR12 ]×X n

2 → X̂ n
1 , (4.31)
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which maps the message M12 and the measured sequence Xn
2 into the estimated

sequence X̂n
1 ; and a sequence of decoding functions

h2i: [1, 2
nR23 ]× Y i → X̂2, (4.32)

for i ∈ [1, n] which maps the message M23 and the measured sequence Y i into the

ith estimated symbol X̂2i = h2i(M23, Y
i); such that the action cost constraint Γ and

distortion constraints Dj for j = 1, 2 are satisfied, i.e.,

1

n

n∑
i=1

E [Λ(Ai)] ≤ Γ (4.33)

and
1

n

n∑
i=1

E
[
dj(X1i, X2i, Yi, X̂ji)

]
≤ Dj for j = 1, 2, (4.34)

respectively.

Definition 4.6. Given a distortion-cost tuple (D1, D2,Γ), a rate tuple (R12, R23)

is said to be achievable if, for any ϵ > 0, and sufficiently large n, there exists a

(n,R12, R23, D1 + ϵ,D2 + ϵ,Γ + ϵ) code.

Definition 4.7. The rate-distortion-cost region R(D1, D2,Γ) is defined as the closure

of all rate tuples (R12, R23) that are achievable given the distortion-cost tuple

(D1, D2,Γ).

Remark 4.5. For side information Y independent of the action A given X1 and X2,

i.e., for p(y|a, x1, x2) = p(y|x1, x2), the rate-distortion region R(D1, D2,Γ) has been

derived in [38].

4.3.2 Rate-Distortion-Cost Region

The following characterize the rate-distortion-cost region.
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Proposition 4.5. The rate-distortion-cost region R(D1, D2,Γ) for the set-up of

Figure 4.3 is given by the union of all rate pairs (R12, R23) satisfying the inequalities

R12 ≥ I(X1;U,A, X̂1|X2) (4.35a)

and R23 ≥ I(X1, X2;U,A), (4.35b)

for some joint pmf that factorizes as

p(x1, x2, y, a, u, x̂1, x̂2) = p(x1, x2)p(a, u, x̂1|x1, x2)p(y|a, x1, x2)

· δ(x̂2 − x̂2(u, y)), (4.36)

with pmf p(a, u, x̂1|x1, x2) and deterministic function x̂2(u, y), such that the action

and the distortion constraints

E [Λ(A)] ≤ Γ (4.37)

and E[dj(X1, X2, Y, X̂j)] ≤ Dj, for j = 1, 2, (4.38)

respectively, hold. Finally, U is an auxiliary random variable whose alphabet

cardinality can be constrained as |U| ≤ |X1| |X2|+ 4, without loss of optimality.

Remark 4.6. If p(y|a, x1, x2) = p(y|x1, x2), Proposition 4.5 reduces to [38, Theorem

1].

The proof of converse is provided in Appendix L. The coding strategy that

proves achievability is a combination of the techniques proposed in [4] and [38,

Theorem 1]. Here, the main ideas are briefly outlined, since the technical details

follow from standard arguments. In the scheme at hand, Node 1 first maps sequences

Xn
1 and Xn

2 into the action sequence An and an auxiliary codeword Un using the

standard joint typicality criterion. This mapping operation requires a codebook of

rate I(X1, X2;U,A) (see, e.g., [1, Chapter 3]). Then, given the so obtained sequences

An and Un, source sequences Xn
1 and Xn

2 are further mapped into the estimate
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X̂n
1 for Node 2 so that the sequences (Xn

1 , X
n
2 , A

n, Un, X̂n
1 ) are jointly typical. This

requires rate I(X1, X2; X̂1|U,A) [1, Chapter 3]. Leveraging the side information Xn
2

available at Node 2, conveying the codewords An, X̂n
1 and Un to Node 2 requires rate

I(X1, X2;U,A) + I(X1, X2; X̂1|U,A) − I(U,A, X̂1;X2) [1, Chapter 12], which equals

the right-hand side of (4.35a). Node 2 conveys Un and An to Node 3 by simply

forwarding the index received from Node 1 (of rate I(X1, X2;U,A)). Finally, Node 3

estimates X̂n
2 through a symbol-by-symbol function as X̂2i = x̂2(Ui, Yi) for i ∈ [1, n].

4.4 Concluding Remarks

In the setting of source coding with a side information vending machine introduced

in [4], the decoder can control the quality of the side information through a control,

or action, sequence that is selected based on the message encoded by the source

node. Since this message must also carry information directly related to the source

to be reproduced at the decoder, a key aspect of the model is the interplay between

encoding data and control information.

In this chapter, the original work [4] was generalized to two standard multi-

terminal scenarios, namely distributed source coding and cascade source coding. For

the former, inner bounds to the rate-distortion-cost regions are obtained for the cases

with non-causal and causal side information at the decoder. These bounds have been

found to be tight in two special cases. Some numerical examples have also been

provided to shed some light on the advantages of an optimized trade-off between data

and control transmission. As for the cascade source coding problem, a single-letter

characterizations of achievable rate-distortion-cost trade-offs has been derived under

the assumption of causal side information at the decoder.

A number of open problems have been left unsolved by this work, including the

identification of more general conditions under which the inner bounds of Proposition

1 and Proposition 2 are tight. The technical challenges faced in this task are related
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to the well-known issues that arise when identifying auxiliary random variables that

satisfy the desired Markov chain conditions in distributed source coding problems

(see, e.g., [1, Chapter 13]).



CHAPTER 5

CASCADE SOURCE CODING WITH A SIDE INFORMATION

“VENDING MACHINE”

5.1 Introduction

As reviewed in Chapter 4, the concept of a side information “vending machine” (VM)

accounts for source coding scenarios in which acquiring the side information at the

receiver entails some cost and thus should be done efficiently. In this class of models,

the quality of the side information Y can be controlled at the decoder by selecting

an action A that affects the effective channel between the source X and the side

information Y through a conditional distribution pY |X,A(y|x, a). Each action A is

associated with a cost, and the problem is that of characterizing the available trade-

offs between rate, distortion and action cost.

Extending the point-to-point set-up, cascade models provide baseline scenarios

in which to study fundamental aspects of communication in multi-hop networks,

which are central to the operation of, e.g., sensor or computer networks (see

Figure 5.1). Standard information-theoretic models for cascade scenarios assume

the availability of given side information sequences at the nodes (see e.g., [14]-[13]).

In this chapter, instead, it is accounted for the cost of acquiring the side information

by introducing side information VMs at an intermediate node and/ or at the final

destination of a cascade model. As an example of the applications of interest, consider

the computer network of Figure 5.1, where the intermediate and end nodes can obtain

side information from remote data bases, but only at the cost of investing system

resources such as time or bandwidth. Another example is a sensor network in which

acquiring measurements entails an energy cost.

72
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Node 1
Node 2

Node 3

Figure 5.1 A multi-hop computer network in which intermediate and end nodes
can access side information by interrogating remote data bases via cost-constrained
actions.

As shown in Chapter 4 for a distributed system, the optimal operation of a VM

at the decoder requires taking actions that are guided by the message received from

the encoder. This implies the exchange of an explicit control signal embedded in the

message communicated to the decoder that instructs the latter on how to operate the

VM. Generalizing to the cascade models under study, a key issue to be tackled in this

work is the design of communication strategies that strike the right balance between

control signaling and source compression across the two hops.

The problem of characterizing the rate-distortion region for cascade source

coding models, even with conventional side information sequences (i.e., without VMs

as in Figure 5.2) at Node 2 and Node 3, is generally open. [14] and references therein

review the state of the art on the cascade problem and [12] reviews that for the

cascade-broadcast problem.

In this chapter, it is focused on the cascade source coding problem with side

information VMs. The basic cascade source coding model consists of three nodes

arranged so that Node 1 communicates with Node 2 and Node 2 to Node 3 over

finite-rate links, as illustrated for a computer network scenario in Figure 5.1 and

schematically in Figure 5.2-(a). Both Node 2 and Node 3 wish to reconstruct a,

generally lossy, version of source X and have access to different side information
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sequences. An extension of the cascade model is the cascade-broadcast model of

Figure 5.2-(b), in which an additional “broadcast” link of rate Rb exists that is

received by both Node 2 and Node 3.

Node 2Node 1
n

X 1R n
X 2
ˆ

n
Z

Node 3
2R

n
X1
ˆ

n
Y

(a)

Node 2Node 1
n

X

1R

n
X 2
ˆNode 3

n
X1
ˆ

2R
b
R

n
Z

n
Y

(b)

Figure 5.2 (a) Cascade source coding problem and (b) cascade-broadcast source
coding problem.

Two specific instances of the models in Figure 5.2 for which a characterization of

the rate-distortion performance has been found are the settings considered in [13] and

that in [39], which it briefly reviewed here for their relevance to the present work. In

[13], the cascade model in Figure 5.2(a) was considered for the special case in which the

side information Y measured at Node 2 is also available at Node 1 (i.e., X = (X, Y ))

and the Markov chain X − Y − Z holds so that the side information at Node 3 is

degraded with respect to that of Node 2. Instead, in [39], the cascade-broadcast model

in Figure 5.2-(b) was considered for the special case in which either rate Rb or R1 is

zero, and the reconstructions at Node 1 and Node 2 are constrained to be retrievable

also at the encoder in the sense of the Common Reconstruction (CR) introduced in

[8] (see below for a rigorous definition).
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5.1.1 Contributions

In this chapter, the source coding models of Figure 5.2 is investigated by assuming

that some of the side information sequences can be affected by the actions taken by

the corresponding nodes via VMs. The main contributions are as follows.

• Cascade source coding problem with VM at Node 3 (Figure 5.3): In Section

5.2.2, the achievable rate-distortion-cost trade-offs are derived for the set-up in

Figure 5.3, in which a side information VM exists at Node 3, while the side

information Y is known at both Node 1 and Node 2 and satisfies the Markov

chain X—Y—Z. This characterization extends the result of [13] discussed

above to a model with a VM at Node 3. It should be mentioned that in [36], the

rate-distortion-cost characterization for the model in Figure 5.3 was obtained,

but under the assumption that the side information at Node 3 be available in

a causal fashion in the sense of [16];

• Cascade-broadcast source coding problem with VM at Node 2 and Node 3, lossless

compression (Figure 5.4): In Section 5.3.2, the cascade-broadcast model in

Figure 5.4 is studied in which a VM exists at both Node 2 and Node 3. In order

to enable the action to be taken by both Node 2 and Node 3, it is assumed

that the information about which action should be taken by Node 2 and Node

3 is sent by Node 1 on the broadcast link of rate Rb. Under the constraint of

lossless reconstruction at Node 2 and Node 3, a characterization of the rate-cost

performance is obtained. This conclusion generalizes the result in [23] discussed

above to the case in which the rate R1 and/or R2 are non-zero;

• Cascade-broadcast source coding problem with VM at Node 2 and Node 3,

lossy compression with CR constraint (Figure 5.4): In Section 5.3.4, the

problem in Figure 5.4 is tackled but under the more general requirement of

lossy reconstruction. Conclusive results are obtained under the additional
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constraints that the side information at Node 3 is degraded and that the

source reconstructions at Node 2 and Node 3 can be recovered with arbitrarily

small error probability at Node 1. This is referred to as the CR constraint

following [8], and is of relevance in applications in which the data being sent

is of sensitive nature and unknown distortions in the receivers’ reconstructions

are not acceptable (see [8] for further discussion). This characterization extends

the result of [39] mentioned above to the set-up with a side information VM,

and also in that both rates R1 and Rb are allowed to be non-zero;

• Adaptive actions : Finally, the results above are revisited by allowing the

decoders to select their actions in an adaptive way, based not only on the

received messages but also on the previous samples of the side information

extending [26]. Note that the effect of adaptive actions on rate–distortion–cost

region was open even for simple point-to-point communication channel with

decoder side non-causal side information VM until recently, when [26] has

shown that adaptive action does not decrease the rate–distortion–cost region

of point-to-point system. In this chapter, this result is extended to the

multi-terminal framework and it is conclude that, in all of the considered

examples, where applicable, adaptive selection of the actions does not improve

the achievable rate-distortion-cost trade-offs.
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X 2
ˆ

),|( yazp

n
Z
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n
Y

n
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Figure 5.3 Cascade source coding problem with a side information “vending
machine” at Node 3.
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Our results extends to multi-hop scenarios the conclusion in [4] that a joint

representation of data and control messages enables an efficient use of the available

communication links. In particular, layered coding strategies prove to be optimal for

all the considered models, in which, the base layer fulfills two objectives: determining

the actions of downstream nodes and simultaneously providing a coarse description

of the source. Moreover, the examples provided in this chapter demonstrate the

dependence of the optimal coding design on network topology action costs.

5.2 Cascade Source Coding with A Side information Vending Machine

In this section, the system model for the cascade source coding problem with a side

information vending machine of Figure 5.3 is described. Then the characterization of

the corresponding rate-distortion-cost performance is presented in Section 5.2.2.
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nX

1R

nX 2
ˆ

nZ

Node 3

nX1
ˆ

2RbR

nA

),|,( xazyp

nY

nX

nA

Figure 5.4 Cascade source coding problem with a side information “vending
machine” at Node 2 and Node 3.

5.2.1 System Model

The problem of cascade source coding of Figure 5.3, is defined by the proba-

bility mass functions (pmfs) pXY (x, y) and pZ|AY (z|a, y) and discrete alphabets

X ,Y ,Z,A, X̂1, X̂2, as follows. The source sequences Xn and Y n with Xn ∈ X n and

Y n ∈ Yn, respectively, are such that the pairs (Xi, Yi) for i ∈ [1, n] are independent

and identically distributed (i.i.d.) with joint pmf pXY (x, y). Node 1 measures
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sequences Xn and Y n and encodes them in a message M1 of nR1 bits, which is

delivered to Node 2. Node 2 estimates a sequence X̂n
1 ∈ X̂ n

1 within given distortion

requirements to be discussed below. Moreover, Node 2 maps the messageM1 received

from Node 1 and the locally available sequence Y n in a messageM2 of nR2 bits, which

is delivered to Node 3. Node 3 wishes to estimate a sequence X̂n
2 ∈ X̂ n

2 within given

distortion requirements. To this end, Node 3 receives messageM2 and based on this, it

selects an action sequence An, where An ∈ An. The action sequence affects the quality

of the measurement Zn of sequence Y n obtained at the Node 3. Specifically, given

An and Y n, the sequence Zn is distributed as p(zn|an, yn) =
∏n

i=1 pZ|A,Y (zi|yi, ai).

The cost of the action sequence is defined by a cost function Λ: A →[0,Λmax] with

0 ≤ Λmax <∞, as Λ(an) =
∑n

i=1 Λ(ai). The estimated sequence X̂n
2 with X̂n

2 ∈ X̂ n
2 is

then obtained as a function of M2 and Zn. The estimated sequences X̂n
j for j = 1, 2

must satisfy distortion constraints defined by functions dj(x, x̂j): X ×X̂j → [0, Dmax]

with 0 ≤ Dmax <∞ for j = 1, 2, respectively. A formal description of the operations

at the encoder and the decoder follows.

Node 2Node 1
nX

nA
1R

nX 2
ˆ

),|( xayp

nY

Node 3

nX1
ˆ

2RbR

nX

Figure 5.5 Cascade-broadcast source coding problem with a side information
“vending machine” at Node 2.

Definition 5.1. An (n,R1, R2, D1, D2,Γ, ϵ) code for the set-up of Figure 5.3 consists

of two source encoders, namely

g1: X n × Yn → [1, 2nR1 ], (5.1)
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which maps the sequences Xn and Y n into a message M1;

g2: Yn × [1, 2nR1 ] → [1, 2nR2 ], (5.2)

which maps the sequence Y n and messageM1 into a messageM2; an “action” function

ℓ: [1, 2nR2 ] → An, (5.3)

which maps the message M2 into an action sequence An; two decoders, namely

h1: [1, 2
nR1 ]× Yn → X̂ n

1 , (5.4)

which maps the message M1 and the measured sequence Y n into the estimated

sequence X̂n
1 ;

h2: [1, 2
nR2 ]×Zn → X̂ n

2 , (5.5)

which maps the message M2 and the measured sequence Zn into the the estimated

sequence X̂n
2 ; such that the action cost constraint Γ and distortion constraints Dj for

j = 1, 2 are satisfied, i.e.,

1

n

n∑
i=1

E [Λ(Ai)] ≤ Γ (5.6)

and
1

n

n∑
i=1

E [dj(Xji, hji)] ≤ Dj for j = 1, 2, (5.7)

where h1i and h2i are the ith symbol of the function h1(M1, Y
n) and h2(M2, Z

n),

respectively.

Definition 5.2. Given a distortion-cost tuple (D1, D2,Γ), a rate tuple (R1, R2) is said

to be achievable if, for any ϵ > 0, and sufficiently large n, there exists a (n,R1, R2, D1+

ϵ,D2 + ϵ,Γ + ϵ) code.
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Definition 5.3. The rate-distortion-cost region R(D1, D2,Γ) is defined as the

closure of all rate tuples (R1, R2) that are achievable given the distortion-cost tuple

(D1, D2,Γ).

Remark 5.1. For side information Z available causally at Node 3, i.e., with decoding

function (8.4) at Node 3 modified so that X̂i is a function of M2 and Zi only, the

rate-distortion region R(D1, D2,Γ) has been derived in [36].

5.2.2 Rate-Distortion-Cost Region

In this section, a single-letter characterization of the rate-distortion-cost region is

derived.

Proposition 5.1. The rate-distortion-cost region R(D1, D2,Γ) for the cascade source

coding problem illustrated in Figure 5.3 is given by the union of all rate pairs (R1, R2)

that satisfy the conditions

R1 ≥ I(X; X̂1, A, U |Y ) (5.8a)

and R2 ≥ I(X,Y ;A) + I(X, Y ;U |A,Z), (5.8b)

where the mutual information terms are evaluated with respect to the joint pmf

p(x, y, z, a, x̂1, u) = p(x, y)p(x̂1, a, u|x, y)p(z|y, a), (5.9)

for some pmf p(x̂1, a, u|x, y) such that the inequalities

E[d1(X, X̂1)] ≤ D1, (5.10a)

E[d2(X, f(U,Z))] ≤ D2, (5.10b)

and E[Λ(A)] ≤ Γ, (5.10c)
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are satisfied for some function f: U × Z → X̂2. Finally, U is an auxiliary random

variable whose alphabet cardinality can be constrained as |U| ≤ |X ||Y||A|+3, without

loss of optimality.

Remark 5.2. For side information Z independent of the action A given Y , i.e., for

p(z|a, y) = p(z|y), the rate-distortion region R(D1, D2,Γ) in Proposition 5.1 reduces

to that derived in [13].

The proof of the converse is provided in Appendix M for a more general case of

adaptive action to be defined in Sec 5.4. The achievability follows as a combination

of the techniques proposed in [4] and [13, Theorem 1]. Here, the main ideas are

briefly outlined, since the technical details follow from standard arguments. For the

scheme at hand, Node 1 first maps sequences Xn and Y n into the action sequence

An using the standard joint typicality criterion. This mapping requires a codebook

of rate I(X, Y ;A) (see, e.g., [1, pp. 62-63]). Given the sequence An, the sequences

Xn and Y n are further mapped into a sequence Un. This requires a codebook of size

I(X, Y ;U |A) for each action sequence An from standard rate-distortion considerations

[1, pp. 62-63]. Similarly, given the sequences An and Un, the sequences Xn and

Y n are further mapped into the estimate X̂n
1 for Node 2 using a codebook of rate

I(X, Y ; X̂1|U,A) for each codeword pair (Un, An). The thus obtained codewords

are then communicated to Node 2 and Node 3 as follows. By leveraging the side

information Y n available at Node 2, conveying the codewords An, Un and X̂n
1 to Node

2 requires rate I(X,Y ;U,A) + I(X, Y ; X̂1|U,A) − I(U,A, X̂1;Y ) by the Wyner-Ziv

theorem [1, p. 280], which equals the right-hand side of (8.39a). Then, sequences An

and Un are sent by Node 2 to Node 3, which requires a rate equal to the right-hand

side of (6.9b). This follows from the rates of the used codebooks and from the Wyner-

Ziv theorem, due to the side information Zn available at Node 3 upon application

of the action sequence An. Finally, Node 3 produces X̂n
2 that leverages through a

symbol-by-symbol function as X̂2i = f(Ui, Zi) for i ∈ [1, n].



82

5.2.3 Lossless Compression

Suppose that the source sequence Xn needs to be communicated losslessly at both

Node 2 and Node 3, in the sense that dj(x, x̂j) is the Hamming distortion measure

for j = 1, 2 (dj(x, x̂j) = 0 if x = x̂j and dj(x, x̂j) = 1 if x ̸= x̂j) and D1 = D2 = 0.

The following immediate consequence of Proposition 5.1 is established.

Corollary 5.1. The rate-distortion-cost region R(0, 0,Γ) for the cascade source

coding problem illustrated in Figure 5.3 with Hamming distortion metrics is given

by the union of all rate pairs (R1, R2) that satisfy the conditions

R1 ≥ I(X;A|Y ) +H(X|A, Y ) (5.11a)

and R2 ≥ I(X, Y ;A) +H(X|A,Z), (5.11b)

where the mutual information terms are evaluated with respect to the joint pmf

p(x, y, z, a) = p(x, y)p(a|x, y)p(z|y, a), (5.12)

for some pmf p(a|x, y) such that E[Λ(A)] ≤ Γ.

5.3 Cascade-Broadcast Source Coding with A Side Information Vending

Machine

In this section, the cascade-broadcast source coding problem with a side information

vending machine illustrated in Figure 5.4 is studied. At first, the rate-cost

performance is characterized for the special case in which the reproductions at Node

2 and Node 3 are constrained to be lossless. Then, the lossy version of the problem is

considered in Section 5.3.4, with an additional common reconstruction requirement

in the sense of [8] and assuming degradedness of the side information sequences.
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5.3.1 System Model

In this section, the general system model for the cascade-broadcast source coding

problem with a side information vending machine is described. It is emphasized that,

unlike the setup of Figure 5.3, here, the vending machine is at both Node 2 and Node

3. Moreover, it is assumed that an additional broadcast link of rate Rb is available

that is received by Node 2 and 3 to enable both Node 2 and Node 3 so as to take

concerted actions in order to affect the side information sequences. It is also assumed

the action sequence taken by Node 2 and Node 3 to be a function of only the broadcast

message Mb sent over the broadcast link of rate Rb.

The problem is defined by the pmfs pX(x), pY Z|AX(y, z|a, x) and discrete

alphabets X ,Y ,Z,A, X̂1, X̂2, as follows. The source sequence Xn with Xn ∈ X n is

i.i.d. with pmf pX(x). Node 1 measures sequence Xn and encodes it into messagesM1

and Mb of nR1 and nRb bits, respectively, which are delivered to Node 2. Moreover,

message Mb is broadcast also to Node 3. Node 2 estimates a sequence X̂n
1 ∈ X̂ n

1 and

Node 3 estimates a sequence X̂n
2 ∈ X̂ n

2 . To this end, Node 2 receives messages M1

andMb and, based only on the latter message, it selects an action sequence An, where

An ∈ An. Node 2 maps messages M1 and Mb, received from Node 1, and the locally

available sequence Y n in a message M2 of nR2 bits, which is delivered to Node 3.

Node 3 receives messages M2 and Mb and based only on the latter message, it selects

an action sequence An, where An ∈ An. Given An and Xn, the sequences Y n and Zn

are distributed as p(yn, zn|an, xn) =
∏n

i=1 pY Z|A,X(yi, zi|ai, xi). The cost of the action

sequence is defined as in previous section. A formal description of the operations at

encoder and decoder follows.

Definition 5.4. An (n,R1, R2, Rb, D1, D2,Γ, ϵ) code for the set-up of Figure 5.5

consists of two source encoders, namely

g1: X n → [1, 2nR1 ]× [1, 2nRb ], (5.13)
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which maps the sequence Xn into messages M1 and Mb, respectively;

g2: [1, 2
nR1 ]× [1, 2nRb ]× Yn → [1, 2nR2 ] (5.14)

which maps the sequence Y n and messages (M1,Mb) into a message M2; an “action”

function

ℓ: [1, 2nRb ] → An, (5.15)

which maps the message Mb into an action sequence An; two decoders, namely

h1: [1, 2nR1 ]× [1, 2nRb ]× Yn → X̂ n
1 , (5.16)

which maps messages M1 and Mb and the measured sequence Y n into the estimated

sequence X̂n
1 ; and

h2: [1, 2
nR2 ]× [1, 2nRb ]×Zn → X̂ n

2 , (5.17)

which maps the messages M2 and Mb into the the estimated sequence X̂n
2 ; such that

the action cost constraint (8.5) and distortion constraint (8.6) are satisfied.

Achievable rates (R1, R2, Rb) and rate-distortion-cost region are defined analo-

gously to Definitions 8.2 and 8.3.

The rate–distortion–cost region for the system model described above is open

even for the case without VM at Node 2 and Node 3 (see [12]). Hence, in the following

subsections, the rate region is characterized for a few special cases. As in the previous

section, subscripts are dropped from the pmf for simplicity of notation.

5.3.2 Lossless Compression

In this section, a single-letter characterization of the rate-cost region R(0, 0,Γ) is

derived for the special case in which the distortion metrics are assumed to be Hamming

and the distortion constraints are D1 = 0 and D2 = 0.
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Proposition 5.2. The rate-cost region R(0, 0,Γ) for the cascade-broadcast source

coding problem illustrated in Figure 5.4 with Hamming distortion metrics is given by

the union of all rate triples (R1, R2, Rb) that satisfy the conditions

Rb ≥ I(X;A) (5.18a)

R1 +Rb ≥ I(X;A) +H(X|A, Y ) (5.18b)

and R2 +Rb ≥ I(X;A) +H(X|A,Z) (5.18c)

where the mutual information terms are evaluated with respect to the joint pmf

p(x, y, z, a) = p(x, a)p(y, z|a, x), (5.19)

for some pmf p(a|x) such that E[Λ(A)] ≤ Γ.

Remark 5.3. If R1 = 0 and R2 = 0, the rate-cost region R(Γ) of Proposition 5.2

reduces to the one derived in [23, Theorem 1].

Remark 5.4. The rate region (5.18) also describes the rate-distortion region under the

more restrictive requirement of lossless reconstruction in the sense of the probabilities

of error Pr[Xn ̸= X̂n
j ] ≤ ϵ for j = 1, 2, as it follows from standard arguments (see [1,

Section 3.6.4]). A similar conclusion applies for Corollary 5.1.

The converse proof for bound (5.18a) follows immediately since An is selected

only as a function of message Mb. As for the other two bounds, namely (5.18b)-

(5.18c), the proof of the converse can be established following cut-set arguments and

using the point-to-point result of [4]. For achievability, the code structure proposed in

[4] is used along with rate splitting. Specifically, Node 1 first maps sequence Xn into

the action sequence An. This mapping requires a codebook of rate I(X;A). This rate

has to be conveyed over link Rb by the definition of the problem and is thus received

by both Node 2 and Node 3. Given the so obtained sequence An, communicating X

losslessly to Node 2 requires rate H(X|A, Y ). This rate is split into two rates r1b and
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r1d, such that the message corresponding to the first rate is carried over the broadcast

link of rate Rb and the second on the direct link of rate R1. Note that Node 2 can

thus recover sequence X losslessly. The rate H(X|A,Z) which is required to send X

losslessly to Node 3, is then split into two parts, of rates r2b and r2d. The message

corresponding to the rate r2b is sent to Node 3 on the broadcast link of the rate Rb by

Node 1, while the message of rate r2d is sent by Node 2 to Node 3. This way, Node

1 and Node 2 cooperate to transmit X to Node 3. As per the discussion above, the

following inequalities have to be satisfied

r2b + r2d + r1b ≥ H(X|A,Z),

r1b + r1d ≥ H(X|A, Y ),

R1 ≥ r1d,

R2 ≥ r2d,

and Rb ≥ r1b + r2b + I(X;A),

Applying Fourier-Motzkin elimination [1, Appendix C] to the inequalities above, the

inequalities in (5.18) are obtained.

5.3.3 Example: Switching-Dependent Side Information

In this section, a special case of the model in Figure 5.4 is considered in which the

actions A ∈ A = {0, 1, 2, 3} acts a switch that decides whether Node 2, Node 3 or

either node gets to observe a side information W . The side information W is jointly

distributed with source X according to the joint pmf p(x,w). Moreover, defining as

e an “erasure” symbol, the conditional pmf p(y, z|x, a) is as follows: Y = Z = e for

A = 0 (neither Node 2 nor Node 3 observes the side information W ); Y = W and

Z = e for A = 1 (only Node 2 observes the side information W ); Y = e and Z = W

for A = 2 (only Node 3 observes the side information W ); and Y = Z = W for A = 3
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(both nodes observe the side informationW )1. The cost function is selected such that

Λ(j) = λj for j ∈ A. When R1 = R2 = 0, this model reduces to the ones studied in

[23, Section III]. The following is a consequence of Proposition 2.

Corollary 5.2. For the setting of switching-dependent side information described

above, the rate-cost region (5.18) is given by

Rb ≥ I(X;A) (5.20a)

R1 +Rb ≥ H(X)− p1I(X;W |A = 1)− p3I(X;W |A = 3) (5.20b)

and R2 +Rb ≥ H(X)− p2I(X;W |A = 2)− p3I(X;W |A = 3) (5.20c)

where the mutual information terms are evaluated with respect to the joint pmf

p(x, y, z, a) = p(x, a)p(y, z|a, x), (5.21)

for some pmf p(a|x) such that
∑3

j=0 pjλj ≤ Γ, where pj = Pr[A = j] for j ∈ A.

Proof. The region (5.20) is obtained from the rate-cost region (5.18) by noting that

in (5.18b), I(X;A)+H(X|A, Y ) = H(X)−I(X;Y |A) holds and similarly for (5.18c).

In the following, two specific instances of the switching-dependent side infor-

mation example are evaluated.

Binary Symmetric Channel (BSC) between X and W : Let (X,W ) be binary

and symmetric so that p(x) = p(w) = 1/2 for x,w ∈ {0, 1} and Pr[X ̸= W ] = δ for

δ ∈ [0, 1]. Moreover, let λj = ∞ for j = 0, 3 and λj = 1 otherwise. The action cost

constraint is set to Γ = 1. Note that, given this definition of Λ(a), at each time, Node

1 can choose whether to provide the side information W to Node 2 or to Node 3 with

no further constraints. By symmetry, the pmf p(a|x) with x ∈ {0, 1} and a ∈ {1, 2} is

1This implies that p(y, z|x, a) =
∑
w
p(w|x)δ(y −w)δ(z − e) for a = 1 and similarly for other

values of a.
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set to be a BSC with transition probability q. This implies that p1 = Pr[A = 1] = q

and p2 = Pr[A = 2] = 1 − q. Let’s now evaluate the inequality (5.20a) as Rb ≥ 0;

inequality (5.20b) as R1 + Rb ≥ 1 − p1I(X;W |A = 1) = 1 − qH(δ); and similarly

inequality (5.18c) as R2 + Rb ≥ 1 − (1 − q)H(δ). From these inequalities, it can be

seen that, in order to trace the boundary of the rate-cost region, in general, one

needs to consider all values of q in the interval [0, 1]. This corresponds to appropriate

0

1

0

1

δ
1

δ−1

X W

Figure 5.6 The side information S-channel p(w|x) used in the example of Section
5.3.3.

time-sharing between providing side information to Node 2 (for a fraction of time

q) and Node 3 (for the remaining fraction of time). Note that, as shown in [23,

Section III], if R1 = R2 = 0, it is optimal to set q = 1
2
, and thus equally share the

side information between Node 2 and Node 3, in order to minimize the rate Rb. This

difference is due to the fact that in the cascade model at hand, it can be advantageous

to provide more side information to one of the two encoders depending on the desired

trade-off between the rates R1 and R2 in the achievable rate-cost region.

S-Channel between X and W : Let’s now consider the special case of Corollary

5.2 in which (X,W ) are jointly distributed so that p(x) = 1/2 and p(w|x) is the

S-channel characterized by p(0|0) = 1− δ and p(1|1) = 1 (see Figure 5.6). Moreover,

let λ1 = 1, λ2 = 0, λ0 = λ3 = ∞ as above, while the cost constraint is set to

Γ ≤ 1. As discussed in [23, Section III] for this example with R1 = R2 = 0, providing

side information to Node 2 is more costly and thus should be done efficiently. In

particular, given Figure 5.6, it is expected that biasing the choice A = 2 when X = 1

(i.e., providing side information to Node 2) may lead to some gain (see [23]). Here it
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is shown that in the cascade model, this gain depends on the relative importance of

rates R1 and R2.

To this end, p(a|x) is set as p(1|0) = α and p(1|1) = β for α, β ∈ [0, 1]. Now,

the inequality (5.20a) is evaluated as Rb ≥ 0; inequality (5.20b) as

R1 +Rb ≥ 1−
(α + β

2

)(
H
((1− δ)α

α + β

)
−H(1− δ)

α

α + β

)
; (5.22)

and inequality (5.20c) as

R2 +Rb ≥ 1−
(2− α− β

2

)(
H
((1− δ)(1− α)

2− α− β

)
−H(1− δ)

1− α

2− α− β

)
,(5.23)
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Figure 5.7 Difference between the weighted sum-rate R1 + ηR2 obtained with the
greedy and with the optimal strategy as per Corollary 5.2 (Rb = 0.4, δ = 0.6).

Now the minimum weighted sum-rate R1 + ηR2 obtained from (5.22)-(5.23) is

evaluated for Rb = 0.4, δ = 0.6 and both Γ = 0.1 and Γ = 0.9. Parameter η ≥ 0

rules on the relative importance of the two rates. For comparison, the performance
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attainable by imposing that the action A be selected independent of X, referred to as

the greedy approach [4], is computed. Figure 5.7 plots the difference between the two

weighted sum-rates R1+ηR2 . It can be seen that, as η decreases and thus minimizing

rate R1 to Node 2 becomes more important, one can achieve larger gains by choosing

the action A to be dependent on X. Moreover, this gain is more significant when the

action cost budget Γ allows Node 2 to collect a larger fraction of the side information

samples.

5.3.4 Lossy Compression with Common Reconstruction Constraint

In this section, the problem of characterizing the rate-distortion-cost region R(D1, D2

,Γ) for D1, D2 > 0 is considered. In order to make the problem tractable 2, the

degradedness condition X − (A, Y ) − Z (as in [23]) is imposed, which implies the

factorization

p(y, z|a, x) = p(y|a, x)p(z|y, a); (5.24)

and that the reconstructions at Nodes 2 and 3 be reproducible by Node 1. As

discussed, this latter condition is referred to as the CR constraint [8]. Note that

this constraint is automatically satisfied in the lossless case. To be more specific, an

(n,R1, R2, Rb, D1, D2,Γ, ϵ) code is defined per Definition 5.4 with the difference that

there are two additional functions for the encoder, namely

ψ1: X n → X̂ n
1 (5.25a)

and ψ2: X n → X̂ n
2 , (5.25b)

2As noted earlier, the problem is open even in the case with no VM [12].
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which map the source sequence into the estimated sequences at the encoder, namely

ψ1(X
n) and ψ2(X

n), respectively; and the CR requirements are imposed, i.e.,

Pr [ψ1(X
n) ̸= h1(M1,Mb, Y

n)] ≤ ϵ (5.26a)

and Pr [ψ2(X
n) ̸= h2(M2,Mb, Z

n)] ≤ ϵ, (5.26b)

so that the encoder’s estimates ψ1(·) and ψ2(·) are equal to the decoders’ estimates

(cf. (5.16)-(5.17)) with high probability.

Proposition 5.3. The rate-distortion region R(D1, D2,Γ) for the cascade-broadcast

source coding problem illustrated in Figure 5.4 under the CR constraint and the

degradedness condition (7.24) is given by the union of all rate triples (R1, R2, Rb)

that satisfy the conditions

Rb ≥ I(X;A) (5.27a)

R1 +Rb ≥ I(X;A) + I(X; X̂1, X̂2|A, Y ) (5.27b)

R2 +Rb ≥ I(X;A) + I(X; X̂2|A,Z) (5.27c)

and R1 +R2 +Rb ≥ I(X;A) + I(X; X̂2|A,Z) + I(X; X̂1|A, Y, X̂2), (5.27d)

where the mutual information terms are evaluated with respect to the joint pmf

p(x, y, z, a, x̂1, x̂2) = p(x)p(a|x)p(y|x, a)p(z|a, y)p(x̂1, x̂2|x, a), (5.28)

such that the inequalities

E[dj(X, X̂j)] ≤ Dj, for j = 1, 2, (5.29a)

and E[Λ(A)] ≤ Γ, (5.29b)

are satisfied.
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Remark 5.5. If either R1 = 0 or Rb = 0 and the side information Y is independent of

the action A given X, i.e., p(y|a, x) = p(y|x), the rate-distortion region R(D1, D2,Γ)

of Proposition 5.3 reduces to the one derived in [39, Proposition 10].

The proof of the converse is provided in Appendix N. The achievability follows

similar to Proposition 5.2. Specifically, Node 1 first maps sequence Xn into the action

sequence An. This mapping requires a codebook of rate I(X;A). This rate has to be

conveyed over link Rb by the definition of the problem and is thus received by both

Node 2 and Node 3. The source sequence Xn is mapped into the estimate X̂n
2 for

Node 3 using a codebook of rate I(X; X̂2|A) for each sequence An. Communicating

X̂n
2 to Node 2 requires rate I(X; X̂2|A, Y ) by the Wyner-Ziv theorem. This rate is

split into two rates r2b and r2d, such that the message corresponding to the first rate

is carried over the broadcast link of rate Rb and the second on the direct link of rate

R1. Note that Node 2 can thus recover sequence X̂n
2 . Communicating X̂n

2 to Node

3 requires rate I(X; X̂2|A,Z) by the Wyner-Ziv theorem. This rate is split into two

rates r0b and r0d. The message corresponding to the rate r0b is send to Node 3 on

the broadcast link of the rate Rb by Node 1, while the message of rate r0d is sent by

Node 2 to Node 3. This way, Node 1 and Node 2 cooperate to transmit X̂2 to Node

3. Finally, the source sequence Xn is mapped by Node 1 into the estimate X̂n
1 for

Node 2 using a codebook of rate I(X; X̂1|A, X̂2) for each pair of sequences (An, X̂n
2 ).

Using the Wyner-Ziv coding, this rate is reduced to I(X; X̂1|A, Y, X̂2) and split into

two rates r1b and r1d, which are sent through links Rb and R1, respectively. As per

discussion above, the following inequalities have to be satisfied

r0b + r0d + r2b ≥ I(X; X̂2|A,Z),

r2b + r2d ≥ I(X; X̂2|A, Y ),
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r1b + r1d ≥ I(X; X̂1|A, Y, X̂2),

R1 ≥ r1d + r2d,

R2 ≥ r0d,

and Rb ≥ r1b + r2b + r0b + I(X;A),

Applying Fourier-Motzkin elimination [1, Appendix C] to the inequalities above, the

inequalities in (5.27) are obtained.

5.4 Adaptive Actions

In this section, it is assume that actions taken by the nodes are not only a function

of the message M2 for the model of Figure 5.3 or Mb for the models of Figure 5.4

and Figure 5.5, respectively, but also a function of the past observed side information

samples. Following [26], this case is referred to as the one with adaptive actions. Note

that for the cascade-broadcast problem, the model in Figure 5.5 is considered, which

differs from the one in Figure 5.4 considered thus far in that the side information

Z is not available at Node 3. At this time, it appears to be problematic to define

adaptive actions in the presence of two nodes that observe different side information

sequences. For the cascade model in Figure 5.3, a (n,R1, R2, D1, D2,Γ) code is defined

per Definition 8.1 with the difference that the action encoder (8.2) is modified to be

ℓ: [1, 2nR2 ]×Z i−1 → A, (5.30)

which maps the message M2 and the past observed decoder side information

sequence Zi−1 into the ith symbol of the action sequence Ai. Moreover, for the

cascade-broadcast model of Figure 5.5, the “action” function (5.15) in Definition 5.4

is modified as

ℓ: [1, 2nRb ]× Y i−1 → A, (5.31)
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which maps the messageMb and the past observed decoder side information sequence

Y i−1 into the ith symbol of the action sequence Ai.

Proposition 5.4. The rate-distortion-cost region R(D1, D2,Γ) for the cascade

source coding problem illustrated in Figure 5.3 with adaptive action-dependent side

information is given by the rate region described in Proposition 5.1.

Proposition 5.5. The rate-distortion-cost region R(D1, D2,Γ) for the cascade-

broadcast source coding problem under the CR illustrated in Figure 5.5 with adaptive

action-dependent side information is given by the region described in Proposition 5.3

by setting Z = ∅.

Remark 5.6. The results above show that enabling adaptive actions does not increase

the achievable rate-distortion-cost region. These results generalize the observations

in [26] for the point-to-point setting, wherein a similar conclusion is drawn.

To establish the propositions above, it is sufficient to prove the converse. The

proofs for Proposition 5.4 and Proposition 5.5 are given in Appendix M and N,

respectively.

5.5 Concluding Remarks

In an increasing number of applications, communication networks are expected to be

able to convey not only data, but also information about control for actuation over

multiple hops. In this chapter, a baseline communication model with three nodes

connected in a cascade with the possible presence of an additional broadcast link is

evaluated. The optimal trade-off between rate, distortion and cost is characterized

for actuation in a number of relevant cases of interest. In general, the results point

to the advantages of leveraging a joint representation of data and control information

in order to utilize in the most efficient way the available communication links.

Specifically, in all the considered models, a layered coding strategy, possibly coupled
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with rate splitting, has been proved to be optimal. This strategy is such that the

base layer has the double role of guiding the actions of the downstream nodes and of

providing a coarse description of the source, similar to [4]. Moreover, it is shown that

this base compression layer should be designed in a way that depends on the network

topology and on the relative cost of activating the different links.



CHAPTER 6

TWO-WAY COMMUNICATION WITH ADAPTIVE DATA

ACQUISITION

6.1 Introduction

In computer networks and machine-to-machine links, communication is often inter-

active and serves a number of integrated functions, such as data exchange, query and

control. As an illustrative example, consider the set-up in Figure 6.1 in which the

terminals labeled Node 1 and Node 2 communicate on bidirectional links. Node 2

has access to a database or, more generally, is able to acquire information from the

environment, e.g., through sensors. As a result of the communication on the forward

link (Figure 6.1-(a)), Node 2 wishes to compute some functions X̂n
2 , e.g., a suitable

average, of the data Xn available at Node 1 and of the information it can retrieve from

the environment1. The latter is measured as Y n by Node 2 (Fig 6.1-(b)). The forward

link (Fig 6.1-(a)) is also used by Node 1 to query Node 2 with the aim of retrieving

some information X̂n
1 about Y n from the environment through the backward link (Fig

6.1-(c)).

As reviewed in Chapter 4 and Chapter 5, information acquisition from the

environment at Node 2 is generally expensive in terms of system resources, e.g., time,

bandwidth or energy. For instance, accessing a remote database as in Fig 6.1-(b)

requires interfacing with a server by following the appropriate protocol, and activating

sensors entails some energy expenditure. Therefore, data acquisition by Node 2 should

be performed efficiently by adapting to the informational requirements of Node 1 and

Node 2 , i.e., to the requirements on the calculation of X̂n
1 and X̂n

2 , respectively.

1Integer n represents the dimension of the data.

96
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Figure 6.1 Two-way communication with adaptive data acquisition.

To summarize the discussion above, in the system of Figure 6.1 the forward

communication from Node 1 to Node 2 serves three integrated purposes: i) Data

exchange: Node 1 provides Node 2 with the information necessary about data Xn for

the latter to compute the desired quantity ; ii) Query : Node 1 informs Node 2 about

its own informational requirements with regard to X̂n
1 , to be met via the backward

link; iii) Control : Node 1 instructs Node 2 on the most effective way to perform data

acquisition (i.e., acquisition of Y n) from the environment in order to satisfy Node 1’s

query and to allow Node 2 to perform the desired computation (of X̂n
2 ).

This chapter sets out to analyze the setting in Figure 6.1 from a fundamental

theoretical standpoint via information theory. Specifically, the problem is formulated

within the context of network rate-distortion theory, and the optimal communication

strategy, involving the elements of data exchange, query and control, is identified.

Examples are worked out to illustrate the relevance of the developed theory. Finally,

the issue of robustness is tackled by assuming that, unbeknownst to Node 1, Node
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2 may be unable to acquire information from the environment, due to, e.g., energy

shortages or malfunctioning. The optimal robust strategy is derived and the examples

are extended to account for this generalized model. It should be mentioned that

the problem of characterizing the rate-distortion region for a two-way source coding

models, with conventional action-independent side information sequences at Node 2

has been addressed in [40, 41, 42] and references therein.

6.1.1 Contributions and Organization of the Chapter

This chapter studies the model in Figure 6.1, which is detailed in terms of a block

diagram in Figure 6.2. The system model is introduced in Section 6.2. The optimal

trade-off between the rates of the bidirectional communication, the distortions of

the reconstructions of the desired quantities at the two nodes, and the budget

for information acquisition at Node 2 is derived in Section 6.3. An example that

illustrates the application of the developed theory is discussed in Section 6.4. Finally,

in Section 6.5, the results are extended to the scenario in Figure 6.5 in which,

unbeknownst to Node 1, Node 2 may be unable to perform information acquisition.

Node 1

nX

nA

2X̂

( | , )p y a x

nY

Node 2

1M

nX

2M
1X̂

Figure 6.2 Two-way source coding with a side information vending machine at
Node 2.

6.2 System Model

The two-way source coding problem of interest, sketched in Figure 3.1, is formally

defined by the probability mass functions (pmfs) pX(x) and pY |A,X(y|a, x), and by

the discrete alphabets X ,Y ,A, X̂1, X̂2, along with distortion and cost metrics to



99

be discussed below. The source sequence Xn = (X1, ..., Xn) ∈ X n consists of n

independent and identically distributed (i.i.d.) entries Xi for i ∈ [1, n] with pmf

pX(x). Node 1 measures sequence Xn and encodes it in a message M1 of nR1 bits,

which is delivered to Node 2. Node 2 wishes to estimate a sequence X̂n
2 ∈ X̂ n

2 within

given distortion requirements. To this end, Node 2 receives message M1 and based

on this, it selects an action sequence An, where An ∈ An.

The action sequence affects the quality of the measurement Y n of sequence Xn

obtained at Node 2. Specifically, given An and Xn, the sequence Y n is distributed

as p(yn|an, xn) =
∏n

i=1 pY |A,X(yi|ai, xi). The cost of the action sequence is defined

by a cost function Λ: A →[0,Λmax] with 0 ≤ Λmax < ∞, as Λ(an) =
∑n

i=1 Λ(ai).

The estimated sequence X̂n
2 with X̂n

2 ∈ X̂ n
2 is then obtained as a function of M1 and

Y n. Upon reception on the forward link, Node 2 maps the message M1 received from

Node 1 and the locally available sequence Y n in a message M2 of nR2 bits, which is

delivered back to Node 1. Node 1 estimates a sequence X̂n
1 ∈ X̂ n

1 as a function of M2

and Xn within given distortion requirements.

The quality of the estimated sequence X̂n
j is assessed in terms of the distortion

metrics dj(x, y, x̂j): X × Y × X̂j → R+ ∪ {∞} for j = 1, 2, respectively. Note

that this implies that X̂n
j is allowed to be a lossy version of any function of the

source and side information sequences. A more general model is studied in Section

6.3.1. It is assumed that the distortion accrued in the absence of measurements and

communication is finite, i.e.,

Dj,max= min
x̂j∈X̂j

E[d(X, Y, X̂j)] <∞ for j = 1, 2. (6.1)

A formal description of the operations at encoder and decoder follows.

Definition 6.1. An (n,R1, R2, D1, D2,Γ, ϵ) code for the set-up of Figure 3.1 consists

of a source encoder for Node 1

g1: X n → [1, 2nR1 ], (6.2)
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which maps the sequence Xn into a message M1; an “action” function

ℓ: [1, 2nR1 ]× Y i−1 → A, (6.3)

which maps the messageM1 and the previously observed measurements into an action

sequence An; a source encoder for Node 2

g2: Yn × [1, 2nR1 ] → [1, 2nR2 ], (6.4)

which maps the sequence Y n and message M1 into a message M2; two decoders,

namely

h1: [1, 2
nR2 ]×X n → X̂ n

1 , (6.5)

which maps the message M2 and the sequence Xn into the estimated sequence X̂n
1 ;

h2: [1, 2
nR1 ]× Yn → X̂ n

2 , (6.6)

which maps the message M1 and the sequence Y n into the estimated sequence X̂n
2 ;

such that the action cost constraint Γ and distortion constraints Dj for j = 1, 2 are

satisfied, i.e.,

1

n

n∑
i=1

E [Λ(Ai)] ≤ Γ (6.7)

and
1

n

n∑
i=1

E
[
dj(Xi, Yi, X̂ji)

]
≤ Dj for j = 1, 2. (6.8)

Definition 6.2. Given a distortion-cost tuple (D1, D2,Γ), a rate tuple (R1, R2) is said

to be achievable if, for any ϵ > 0, and sufficiently large n, there exists a (n,R1, R2, D1+

ϵ,D2 + ϵ,Γ + ϵ) code.

Definition 6.3. The rate-distortion-cost region R(D1, D2,Γ) is defined as the

closure of all rate tuples (R1, R2) that are achievable given the distortion-cost tuple

(D1, D2,Γ).
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Remark 6.1. For the special case in which the side information Y is independent of the

action A given X, i.e., for p(y|a, x) = p(y|x), the rate-distortion region R(D1, D2,Γ)

has been derived in [40]. Instead, if D1 = D1,max, the set of all achievable rates R1

was characterized in [4].

Remark 6.2. The definition (8.2) of an action encoder allows for adaptation of the

actions to the previously observed values of the side information Y . This possibility

was studied in [26] for the point-to-point one-way model, which is obtained by setting

R2 = 0 in the setting of Figure 3.1.

6.3 Rate-Distortion-Cost Region

In this section, a single-letter characterization of the rate-distortion-cost region is

derived.

Proposition 6.1. The rate-distortion-cost region R(D1, D2,Γ) for the two-way

source coding problem illustrated in Figure 3.1 is given by the union of all rate pairs

(R1, R2) that satisfy the conditions

R1 ≥ I(X;A) + I(X;U |A, Y ) (6.9a)

and R2 ≥ I(Y ;V |A,X,U), (6.9b)

where the mutual information terms are evaluated with respect to the joint pmf

p(x, y, a, u, v) = p(x)p(a, u|x)p(y|a, x)p(v|a, u, y), (6.10)

for some pmfs p(a, u|x) and p(v|a, u, y) such that the inequalities

E[d1(X,Y, f1(V,X))] ≤ D1, (6.11a)

E[d2(X,Y, f2(U,Y))] ≤ D2, (6.11b)

and E[Λ(A)] ≤ Γ, (6.11c)
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are satisfied for some function f1: V × X → X̂1 and f2: U × Y → X̂2. Finally, U

and V are auxiliary random variables whose alphabet cardinality can be constrained

as |U| ≤ |X ||A|+ 4 and |V| ≤ |U||Y||A|+ 1 without loss of optimality.

Remark 6.3. For the special case in which the side information Y is independent of the

action A given X, i.e., for p(y|a, x) = p(y|x), the rate-distortion region R(D1, D2,Γ)

in Proposition 6.1 reduces to that derived in [40, 41]. Instead, if D1 = D1,max, the

result reduces to that in [4].

The proof of the converse is provided in Appendix O. The achievability follows

as a combination of the techniques proposed in [4] and [40], and requires the forward

link to be used, in an integrated manner, for data exchange, query and control.

Specifically, for the forward link, similar to [4] (see Chapter 2 and Figure 2.5), Node

1 uses a successive refinement codebook. Accordingly, the base layer is used by Node

1 to instruct Node 2 on which actions are best tailored to fulfill the informational

requirements of both Node 1 and Node 2. This base layer thus represents control

information that also serves the purpose of querying Node 2 in view of the backward

communication. Node 1 selects this base layer as a function of the source Xn,

thus allowing Node 2 to adapt its actions for information acquisition to the current

realization of the source Xn. The refinement layer of the code used by Node 1 is

leveraged, instead, to provide additional information to Node 2 in order to meet

Node 2’s distortion requirement. Node 2 then employs standard Wyner-Ziv coding

(i.e., binning) [1] for the backward link to satisfy Node 1’s distortion requirement.

The main technical aspects of the achievability proof is briefly outlined

here, since the details follow from standard arguments and do not require further

elaboration here. To be more precise and with reference to Figure 2.5, Node 1 first

maps sequence Xn into the action sequence An using the standard joint typicality

criterion. This mapping requires a codebook of rate I(X;A) (see, e.g., [1, pp. 62-63]).

Given the sequence An, the description of sequence Xn is further refined through
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mapping to a sequence Un. This requires a codebook of size I(X;U |A, Y ) for each

action sequence An using Wyner-Ziv binning with respect to side information Y n [1,

pp. 62-63]. In the reverse link, Node 2 employs Wyner-Ziv coding for the sequence

Y n by leveraging the side information Xn available at Node 1 and conditioned on the

sequences Un and An, which are known to both Node 1 and Node 2 as a result of

the communication on the forward link. This requires a rate equal to the right-hand

side of (6.9b). Finally, Node 1 and Node 2 produce the estimates X̂n
1 and X̂n

2 as

the symbol-by-symbol functions X̂1i = f1(Vi, Xi) and X̂2i = f2(Ui, Yi) for i ∈ [1, n],

respectively.

Remark 6.4. The achievability scheme discussed above uses actions that do not adapt

to the previous values of the side information Y . The fact that this scheme attains the

optimal performance characterized in Proposition 6.1 shows that, as demonstrated

in [26] for the one-way model with R2 = 0, adaptive actions do not improve the

rate-distortion performance.

6.3.1 Indirect Rate-Distortion-Cost Region

In this section, a more general model in which Node 1 observes only a noisy version

of the source Xn, as depicted in Figure 6.3 is considered. Following [43], this setting

is referred to as posing an indirect source coding problem. The example studied in

Section 6.4 illustrates the relevance of this generalization. The system model is as

defined in Section 6.2 with the following differences. The source encoder for Node 1

g1: Zn → [1, 2nR1 ], (6.12)

maps the sequence Zn into a message M1; the decoder for Node 1

h1: [1, 2
nR2 ]×Zn → X̂ n

1 , (6.13)
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maps the message M2 and the sequence Zn into the estimated sequence X̂n
1 ;

given (Xn, An, Zn), the side information Y n is distributed as p(yn|an, xn, zn) =∏n
i=1 pY |A,X,Z(yi|ai, xi, zi) and the distortion constraints are given as

1

n

n∑
i=1

E
[
dj(Xi, Yi, Zi, X̂ji)

]
≤ Dj for j = 1, 2, (6.14)

for some distortion metrics dj(x, y, z, x̂j) : X ×Y ×Z ×X̂j → R+ ∪{∞}, for j = 1, 2.

The next proposition derives a single-letter characterization of the rate-distortion-cost

region.

Node 1

n
X

n
A

n
X 2
ˆ

( | , , )p y a x z

n
Y

Node 2

n
X1
ˆ

n
X

n
Z

( | )p z x

nZ

2M

1M

Figure 6.3 Indirect two-way source coding with a side information vending machine
at Node 2.

Proposition 6.2. The rate-distortion-cost region R(D1, D2,Γ) for the indirect two-

way source coding problem illustrated in Figure 6.3 is given by the union of all rate

pairs (R1, R2) that satisfy the conditions

R1 ≥ I(Z;A) + I(Z;U |A, Y ) (6.15a)

and R2 ≥ I(Y ;V |A,Z, U), (6.15b)

where the mutual information terms are evaluated with respect to the joint pmf

p(x, y, z, a, u, v)=p(x, z)p(a,u|z)p(y|a,x,z)p(v|a,u,y), (6.16)
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for some pmfs p(a, u|x) and p(v|a, u, y) such that the inequalities

E[d1(X,Y,Z, f1(V,Z))] ≤ D1, (6.17a)

E[d2(X,Y,Z, f2(U,Y))] ≤ D2, (6.17b)

and E[Λ(A)] ≤ Γ, (6.17c)

are satisfied for some function f1: V × Z → X̂1 and f2: U × Y → X̂2. Finally, U

and V are auxiliary random variables whose alphabet cardinality can be constrained

as |U| ≤ |Z||A|+ 3 and |V| ≤ |U||Y||A|+ 1 without loss of optimality.

The proof of the achievability and converse follows with slight modifications

from that of Proposition 6.1. Specifically, in the achievability the sequence Xn is

replaced by its noisy version, i.e., the sequence Zn, and the rest of the proof remains

essentially unchanged. The proof of the converse is provided in Appendix O.

6.4 Case Study and Numerical Results

In this section, an example is considered for the set-up in Figure 6.3 in order to

illustrate the main aspects of the problem and the relevance of the theoretical results

derived above. Consider a sensor network consisting of two sensors deployed to

monitor a given phenomenon of interest (i.e., the concentration of a given chemical).

Assume that the state of the observed phenomenon is described by a random source

X ∼ Bern(0.5) (e.g., X = 0 indicates a low concentration of the chemical and X = 1

a high concentration). Due to malfunctioning or environmental causes, at each time

i, Node 1 measures Xi with probability 1− ϵ, and reports instead an unusual event e

(referred to as ”erasure”) with probability ϵ. This implies that Zi = e with probability

ϵ, and Zi = Xi with probability 1− ϵ, for i ∈ [1, n].

Node 2 has the double purpose of monitoring the operation of Node 1 and of

assisting Node 1 in case of measurement failures (erasures). To this end, if necessary,

Node 2 can measure the phenomenon Xi by investing a unit of energy. This is
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modelled by assuming that the vending machine at Node 2 operates as follows:

Y =

 X for A = 1

ϕ for A = 0
, (6.18)

with cost constraint Λ(a) = a, for a ∈ {0, 1}, where ϕ is a dummy symbol representing

the case in which no useful information is acquired by Node 2. This model implies

that a cost budget of Γ limits the average number of samples of the sequence Y that

can be measured by Node 2 to around nΓ given the constraint (8.5).

Node 1 wishes to reconstruct the source Xn, while Node 2 is interested in

recovering Zn in order to monitor the operation of Node 1. The distortion functions

are the Hamming metrics d1(x, x̂1) = 1{x ̸=x̂1} and d2(z, x̂2) = 1{z ̸=x̂2}. Therefore,

the maximum distortions (6.1) are easily seen to be given by D1,max = 0.5 and

D2,max = 1−max{ϵ, (1− ϵ)/2}.

To obtain analytical insight into the rate-distortion-cost region, in the following

on a number of special cases are considered.

6.4.1 D1 = D1,max and D2 = 0

Consider the distortion requirements D1 = D1,max and D2 = 0. As a result, Node 1

requires no backward communication from Node 2, while Node 2 wishes to recover Zn

losslessly. In the context of the example, here the only functionality of the network

is the monitoring of the operation of Node 1 by Node 2. For the given distortions,

the rate-cost region in Proposition 6.2 can be evaluated as

R1 ≥ H2(ϵ) + (1− ϵ− Γ)+ (6.19a)

and R2 ≥ 0, (6.19b)

for any cost budget Γ ≥ 0, where H2(α) = −αlog2α− (1−α)log2(1−α) is the binary

entropy function.
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A formal proof of this result can be found in Appendix P. The rate region (6.19)

shows that, as the cost budget Γ for information acquisition increases, the required

rate R1 decreases down to the rate H2(ϵ) that is required to describe only the erasures

process En with Ei = 1{Zi=e}, i = 1, ..., n, losslessly to Node 2. This can be explained

by noting that the time-sharing strategy discussed next achieves region (6.19) and is

thus optimal.

In the time-sharing strategy, Node 1 describes the process En losslessly to

Node 2 with H2(ϵ) bits per symbol. In addition to En, in order to obtain a lossless

reconstruction of Zn, Node 2 needs to be informed about Zi = Xi for all i in which

Ei = 0. Note that, there are around n(1 − ϵ) such samples of Zi. Node 1 describes

Zi = Xi for n(1 − ϵ − Γ)+ of these samples, while the remaining nmin(Γ, 1 − ϵ) are

measured by Node 2 through the vending machine. Note that, in the strategy just

described, sequence En can be interpreted as control data that is used by Node 2 to

adapt its information acquisition process. An alternative strategy based directly on

Proposition 6.2 can be found in Appendix P.

Figure 6.4 illustrates the rate R1 in (6.19a) versus the cost budget Γ for ϵ = 0.2

(line with circles). The first observation is that for Γ = 0, since there is no side

information available at Node 2, R1 = H2(ϵ)+1− ϵ = 1.52, which is the rate required

to transmit the sequence Zn losslessly to Node 2. Moreover, as mentioned, as the

cost budget Γ increases, the rate R decreases down to the value H2(ϵ) = 0.72 needed

to describe only the sequence En. Finally, it is observed that if Γ ≥ 1 − ϵ = 0.8

no further improvement of the rate is possible since Node 2 only needs to measure a

fraction (1− ϵ) of values of Xn in order to recover Zn losslessly.

6.4.2 D1 = 0 and D2 = D2,max

Here, the dual case is considered in which Node 1 wishes to reconstruct sequence

Xn losslessly (D1 = 0), while Node 2 does not have any distortion requirements
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(D2 = D2,max). In the context of the example, the network thus operates with the

aim of allowing Node 1 to measure the phenomenon of interest Xn reliably. As shown

in Appendix P, if Γ ≥ ϵ, the rate-cost region is given by the union of all rate pairs

(R1, R2) such that

R1 ≥ H2(ϵ)− ΓH
( ϵ
Γ

)
(6.20a)

and R2 ≥ ϵ. (6.20b)

Moreover, for Γ < ϵ, the region is empty as the lossless reconstruction of X at Node

1 is not feasible.

A proof of this result based on Proposition 6.2 can be found in Appendix P. In

the following, it is argued that a natural time-sharing strategy, akin to that used for

the case D1 = D1,max, D2 = 0 above, would be suboptimal, implying that the optimal

strategy requires a more sophisticated approach based on the successive refinement

code presented in Section 6.3.

A natural time-sharing strategy would be the following. Node 1 describes nη

samples of the erasure process En, for some 0 ≤ η ≤ 1, losslessly to Node 2, using

rate R1 = ηH2(ϵ). This information is used by Node 1 to query Node 2 about the

desired information. Specifically, Node 2 sets Ai = 1 if Ei = 1, thus observing around

nηϵ samples Yi = Xi from the vending machine. These samples are needed to fulfill

the distortion requirements of Node 1. For all the remaining n(1 − η) samples, for

which Node 2 does not have control information from Node 1, Node 2 sets Ai = 1,

thus acquiring all the side information samples. Again, this is necessary given Node

1’s requirements. Node 2 conveys losslessly the nηϵ samples Yi = Xi obtained when

Ei = 1, which requires ηϵ bits per sample, along with the n(1 − η) samples Yi in

the second set, which amount instead to (1− η)H(X|Z) bits per sample. Note that

the rate is H(X|Z) by the Slepian-Wolf theorem [1, Chapter 10], since Node 1 has
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side information Zi for the second set of samples. Overall, R2 = ηϵ + (1 − η)ϵ = ϵ

bits/source symbol. This entails a cost budget of Γ = ηϵ+1− η, and thus η = (1−Γ)
(1−ϵ)

.

Figure 6.4 compares the rate R1 as in (6.20a) (line with squared markers) with

the corresponding rate obtained via time-sharing (dashed line), for ϵ = 0.2. As seen,

in this second case the time-sharing strategy is strictly suboptimal (except for the two

extreme case of Γ = 0 and Γ = 1). Moreover, as discussed above, achieving D1 = 0

is impossible for Γ ≤ ϵ, since Node 2 must obtain the fraction ϵ of samples of Xn

that Node 1 fails to measure in order to guarantee lossless reconstruction at Node 1.

Finally, for Γ = 1, there is no need for Node 1 to send any information to Node 2, as

Node 2 is able to acquire the sequence Xn and send back to Node 1 on the backward

link (using rate R2 = ϵ by the Slepian-Wolf theorem).
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Figure 6.4 Rate R1 versus cost Γ for the examples in Section 6.4 with ϵ = 0.2.
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6.4.3 D1 = D2 = 0

The case in which both nodes wish to achieve lossless reconstruction, i.e.,D1 = D2 = 0

is considered. In this case, in the context of the example, both measurement of Node

1 and monitoring at Node 2 are required to operate correctly. As seen in the previous

case, achieving D1 = 0 is not possible if Γ < ϵ and thus this is a fortiori true for

D1 = D2 = 0. For Γ ≥ ϵ, the rate-cost region is given by

R1 ≥ H2(ϵ) + (1− Γ) (6.21a)

and R2 ≥ ϵ, (6.21b)

as shown in Appendix P.

A time-sharing strategy that achieves (6.21) is as follows. Node 1 describes

the process En losslessly to Node 2 with H2(ϵ) bits per symbol. This information

serves the functions of query and control for Node 2. In order to satisfy its distortion

requirement, Node 2 now needs to be informed about Zi = Xi for all i in which

Ei = 0. Note that there are n(1 − ϵ) such samples of Zi. Node 1 describes Zi = Xi

for n(1− Γ) ≤ n(1− ϵ) of these samples, while the remaining n(Γ− ϵ) are measured

by Node 2 through the vending machine. Node 2 compresses losslessly the sequence

of around nϵ samples of Xi with i such that Ei = 1 which requires R2 = ϵ bits per

sample.

Figure 6.4 illustrates the rate R1 in (6.21a) versus the cost budget Γ for ϵ = 0.2

(line with triangular markers). As discussed above, achieving D1 = 0 is impossible

for Γ ≤ ϵ. Moreover, for Γ = 1 the performance of system is identical to that with

D1 = D1,max and D2 = 0, since in this case the informational requirements of both

Node 1 and Node 2 are satisfied if Node 1 conveys the locations of the erasures to

Node 2 (which requires rate R1 = H2(ϵ) = 0.72).
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6.5 When the Side Information May Be Absent

In this section, the results of the previous section are generalized to the scenario

in Figure 6.5 in which, unbeknownst to Node 1, Node 2 may be unable to perform

information acquisition due, e.g., to energy shortage or malfunctioning. The setup of

the general model is illustrated in Figure 6.5.

6.5.1 System Model

The formal description of an (n,R1, R2, D1, D2, D3,Γ, ϵ) code for the set-up of Figure

6.5 is given as in Section 6.3.1 (which generalizes the model in Section 6.2) with the

addition of Node 3. This added node, which has no access to side information, models

the case in which the receiver is not able to acquire the side information due to, e.g.,

malfunctioning. Note that the same message M1 from Node 1 is received by both

Node 2 and Node 3. This captures the fact that the information about whether or

not the recipient is able to access the side information is not available to Node 1. The

model in Figure 6.5 is a generalization of the so called Heegard-Berger problem [3, 9].

Formally, Node 3 is defined by the decoding function

h3: [1, 2
nR1 ] → X̂ n

3 , (6.22)

which maps the message M1 into the estimated sequence X̂n
3 ; and the additional

distortion constraint

1

n

n∑
i=1

E
[
d3(Xi, Yi, Zi, X̂3i)

]
≤ D3. (6.23)

It is remarked that adding a link between Node 3 and Node 1 cannot improve

the system performance because Node 3 does not have access to any additional

information. Therefore, there is no advantage in having a backward link from Node 3

to Node 1 because the information available at Node 3 is a subset of the information

available at Node 1. Therefore, this link is not included in the model.
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Figure 6.5 Indirect two-way source coding when the side information vending
machine may be absent at the recipient of the message from Node 1.

6.5.2 Rate-Distortion-Cost Region

In this section, a single-letter characterization of the rate-distortion-cost region is

derived for the set-up in Figure 6.5.

Proposition 6.3. The rate-distortion-cost region R(D1, D2, D3,Γ) for the two-way

source coding problem illustrated in Figure 6.5 is given by the union of all rate pairs

(R1, R2) that satisfy the conditions

R1 ≥ I(Z;A) + I(Z; X̂3|A) + I(Z;U |A, Y, X̂3) (6.24a)

and R2 ≥ I(Y ;V |A,Z, U, X̂3), (6.24b)

where the mutual information terms are evaluated with respect to the joint pmf

p(x, y, z, a, u, v) = p(x, z)p(a, u, x̂3|z)p(y|a, x, z)p(v|a, u, y, x̂3), (6.25)

for some pmfs p(a, u, x̂3|z) and p(v|a, u, y) such that the inequalities

E[d1(X, Y, Z, f1(V, Z))] ≤ D1, (6.26a)

E[d2(X, Y, Z, f2(U, Y ))] ≤ D2, (6.26b)

E[d3(X,Y, Z, X̂3)] ≤ D3, (6.26c)

and E[Λ(A)] ≤ Γ, (6.26d)
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are satisfied for some function f1: V × Z → X̂1 and f2: U × Y → X̂2. Finally, U

and V are auxiliary random variables whose alphabet cardinality can be constrained

as |U| ≤ |Z||A|+ 3 and |V| ≤ |U||Y||A|+ 1 without loss of optimality.

The proof of the converse is provided in Appendix Q. The achievable rate

(6.24a) can be interpreted as follows. Node 1 uses a successive refinement code with

three layers. The first layer is defined as for Section 6.3 and carries query and control

information. The second and third layers are designed as in the optimal Heegard-

Berger scheme [3]. Specifically, the second layer is destined to both Node 2 and Node

3, while the third layer targets only Node 2, which has enhanced decoding capabilities

due to the availability of side information.

To provide further details, as for Proposition 6.1, the encoder first maps

the input sequence Zn into an action sequence An so that the two sequences are

jointly typical, which requires I(Z;A) bits/source sample. Then, it maps Zn into

the estimate X̂n
3 for Node 3 using a conditional codebook with rate I(Z; X̂3|A).

Finally, it maps Zn into another sequence Un using the fact that Node 2 has the

action sequence An, the estimate X̂n
3 and the measurement Y n. Using conditional

codebooks (with respect to X̂n
3 and An) and from the Wyner-Ziv theorem, this

requires I(Z;U |A, Y, X̂3) bit/source sample (see Chapter 2 and Figure 2.5). As for

the rate (6.24b), Node 2 employs Wyner-Ziv coding for the sequence Y n by leveraging

the side information Zn available at Node 1 and conditioned on the sequences Un,

An and X̂n
3 , which are known to both Node 1 and Node 2 as a result of the forward

communication. This requires a rate equal to the right-hand side of (6.24b) (see

Chapter 2 and Figure 2.5). Finally, Node 1 and Node 2 produce the estimates X̂n
1

and X̂n
2 as the symbol-by-symbol functions X̂1i = f1(Vi, Zi) and X̂2i = f2(Ui, Yi) for

i ∈ [1, n], respectively.
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0 1 *

0 0 1

1 0 1

E
3X̂

∞
∞

Table 6.1 Erasure Distortion for Reconstruction at Node 3.

6.5.3 Case Study and Numerical Results

In this section, the binary example of Section 6.4 is extended to the set-up in Figure

6.5. Specifically, the same setting as in Section 6.4 is considered, with the addition

of Node 3. For the latter, a ternary reconstruction alphabet X̂3 = {0, 1, ∗} and

the distortion metric d3(x, z, x̂3) = d3(1{Z=e}, x̂3) in Table 6.1 are assumed, where

Ei = 1{Zi=e} is the erasure process2. Accordingly, Node 3 is interested in recovering

the erasure process En under an erasure distortion metric (see, e.g., [20]) , where “*”

represents the “don’t care” or erasure reproduction symbol

It is first observed that for cases 1) and 3) in Section 6.4 the distortion

requirements of Node 3 do not change the rate-distortion function. This is because,

as discussed in Section 6.4, the requirement that D2 be equal to zero entails that

the erasure process En be communicated losslessly to Node 2 without leveraging

the side information from the vending machine (which cannot provide information

about the erasure process). It follows that one can achieve D3 = 0 at no additional

rate cost. Therefore, let’s focus on the case 2) in Section 6.4, namely D1 = 0 and

D2 = D2,max = 1−max{ϵ, (1− ϵ)/2}.

In the case at hand, Node 1 wishes to recover Xn losslessly, Node 2 has no

distortion requirements and Node 3 wants to recover En with distortion D3. As

explained in Section 6.4.2, in order to reconstruct Xn losslessly at Node 1 Γ ≥ ϵ and

Pr(A = 1|Z = e) = 1 have to be satisfied. Moreover, due to symmetry of the problem

2Infinity in Table 1 means that the corresponding reconstruction is unacceptable at the
decoder and is thus measured to be infinity. This is a standard approach to account for
errors that are not allowed by design.
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with respect to Z = 0 and Z = 1, one can set Pr(A = 1|Z = 0) = Pr(A = 1|Z =

1) = γ−ϵ
1−ϵ

, for some 0 ≤ γ ≤ Γ. To evaluate the rate-distortion-cost region (6.24),

let’s define Pr(X̂3 = ∗|A = 1, Z = e)
△
= p1, Pr(X̂3 = ∗|A = 0, Z = 0)

△
= p2 and

Pr(X̂3 = ∗|A = 1, Z = 0)
△
= p3. Thus, the rate-distortion-cost region is given by

R1 ≥ H2(ϵ) + 1− ϵ− (1− Γ)(1− p2)− (Γ− ϵ)

(1− p3)− (1− Γ)p2 −
(
ϵp1 + (Γ− ϵ)p3

)
(
H2(

ϵp1
ϵp1 + (Γ− ϵ)p3

) +
(Γ− ϵ)p3

ϵp1 + (Γ− ϵ)p3

)
(6.27a)

and R2 ≥ ϵ, (6.27b)

where parameters p1, p2, p3 ∈ [0, 1] must be selected so as to satisfy the distortion

constraint of Node 3, namely D3 ≥ ϵp1 + (1− Γ)p2 + (Γ− ϵ)p3.

Figure 6.6 illustrates the rate R1 in (6.27a), minimized over p1, p2 and p3 under

the constraints mentioned above versus the cost budget Γ for ϵ = 0.2 and different

values of D3, namely D3 = 0.4, 0.6, 0.8 and D3 = D3,max = 1. Note that for

D3 = D3,max = 1 the rate in (6.20a) is obtained. As it can be seen, for Γ ≤ D3, the

rate decreases with increasing cost Γ, but for Γ ≥D3 the rate remains constant while

increasing Γ. The reason is that for the latter region, i.e., Γ ≥ D3, the performance of

the system is dominated by the distortion requirement of Node 3 and thus increasing

the cost budget Γ does not improve the rate. Instead, for Γ ≤ D3, it is sufficient to

cater only to Node 2, and Node 3 is able to recover E with distortion D3 = Γ at no

additional rate cost.

6.6 Concluding Remarks

For applications such as complex communication networks for cloud computing

or machine-to-machine communication, the bits exchanged by two parties serve a

number of integrated functions, including data transmission, control and query.
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Figure 6.6 Rate R1 versus cost Γ for the examples in Section 6.5.3 with ϵ = 0.2,
D1 = 0 and D2 = D2,max.

In this chapter, a baseline two-way communication scenario that captures some of

these aspects have been considered. The problem is addressed from a fundamental

theoretical standpoint using an information theoretic formulation. The analysis

reveals the structure of optimal communication strategies and can be applied to

elaborate on specific examples, as illustrated in this chapter. This work opens a

number of possible avenues for future research, including the analysis of scenarios

in which more than one round of interactive communication is possible, set-ups in

which there are multiple sources communicating to a single receiver in an interactive

fashion, or, dually, multiple receivers, each connected to its own vending machine.



CHAPTER 7

ON CHANNELS WITH ACTION-DEPENDENT STATES

7.1 Introduction

In [44], the framework of action-dependent channels was introduced as a means to

model scenarios in which transmission takes place in two successive phases. In the first

phase, the encoder selects an “action” sequence, with the twofold aim of conveying

information to the receiver and of affecting in a desired way the state of the channel

to be used in the second phase. In the second phase, communication takes place in

the presence the mentioned action-dependent state. With a cost constraint on the

actions in the first phase and on the channel input in the second phase, reference

[44] derived the capacity-cost-trade-off under the assumption that the channel state

is available either causally or non-causally at the encoder in the second phase.

A number of applications and extensions of the results in [44] have been reported

since then. In [45], the result in [44] is leveraged to study a model in which encoder

and decoder can “probe” the channel state to obtain partial state information during

the first communication phase. In [46], unlike [44] the decoder is required to decode

both the transmitted message and channel input reliably. Finally, in [47], the decoder

is interested in estimating not only the message but also the state sequence, and the

latter is available strictly causally at the encoder in the second transmission phase.

In this chapter, two further extensions of the original action-dependent channel

are studied. In the first, similar to [47], the decoder is interested in estimating not

only the message but also the state sequence within given average per-letter distortion

constraints (see Figure 7.1). Unlike [47], it is assumed non-causal state knowledge

in the second phase, and, under the constraint of common reconstruction (CR) (i.e.,

the decoder’s estimate of the state must be recoverable also at the encoder with high

117
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probability [8]), a single-letter characterization of the achievable rate-distortion-cost

trade-off is obtained. It is remarked that, for conventional state-dependent states

without actions, the problem of joint estimation of message and state with non-causal

state information at the encoder without the CR constraint is open (see, e.g., [48]),

while with the CR constraint the problem has been solved in [8]. In the second

extension, illustrated in Figure 7.2, an action-dependent degraded broadcast channel

is studied. Under the assumption that the encoder knows the state sequence causally

in the second phase, the capacity-cost region is identified.1 The corresponding result

for action-independent states was derived in [51] (see also [52]), while it is recalled that

with non-causal state information the problem is open (see [53]). Various examples,

including Gaussian channels and a model with a ”probing” encoder, are also provided

throughout to show the advantage of a proper joint design of the two communication

phases.

Channel 
Encoder

nX
nSM ˆ,ˆ

Decoder

Action 
Encoder

M nA )|( asp

),,|( asxyp

nS

nY

ψ )( nSψ
.

Figure 7.1 Channel with action-dependent state in which the decoder estimates
both message and state, and there is a a common reconstruction (CR) constraint on
the state reconstruction. The state is known non-causally at the channel encoder.

7.2 Transmission of Data and Action-Dependent State with Common

Reconstruction Constraint

In this section, the setting illustrated in Figure 7.1 of a channel with action-dependent

state is studied in which the decoder estimates both message and state. First, the

1After submitting [49], the authors are informed of the reference [50], where the problem
illustrated in Figure 7.2 has also been solved.
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system model is detailed in Section 8.4.1. Next, the characterization of the trade-off

between the achievable data rate and state reconstruction distortion is derived in

Section 8.4.2. Finally, a Gaussian example is given in Section 7.2.3.
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Figure 7.2 Broadcast channel with action-dependent states known causally to the
encoder (i.e., the ith transmitted symbol Xi is a function of messages M1, M2 and
the state symbols up to time i, Si).

7.2.1 System Model

In this section, the system model is detailed. The system is defined by the

probability mass functions (pmfs) p(x), p(y|x, s, a), p(s|a) and discrete alphabets

X ,A, S, Ŝ, and Y as follows. Given the message M , selected randomly from the set

M = [1, 2nR], an action sequence An ∈ An is selected. As a result of this selection,

the state sequence Sn ∈ Sn is generated as the output of a memoryless channel p(s|a)

so that p(sn|an) =
∏n

i=1 p(si|ai) holds for an action sequence An = an. The input

sequence Xn ∈ X n is selected based on both message M and state sequence Sn. The

action sequence An and the inputXn have to satisfy an average cost constraint defined

by a function γ : A×X → [0,∞), so that the cost for the input sequences an and xn

is given by γ(an, xn) = 1
n

∑n
i=1 γ(ai, xi). Given Xn = xn, Sn = sn and An = an, the

received signal is distributed as p(yn|xn, sn, an) =
∏n

i=1 p(yi|xi, si, ai). The decoder,

based on the received signal Y n, estimates the messageM and the sequences Sn ∈ Sn.

The estimate Ŝn ∈ Ŝn is constrained to satisfy a distortion criterion defined by a

per-symbol distortion metric d(s, ŝ) : S × Ŝ → [0, Dmax] with 0 < Dmax < ∞.

Based on the given distortion metric, the overall distortion for the estimated state



120

sequences ŝn is defined as dn(sn, ŝn) = 1
n

∑n
i=1 d(si, ŝi). The reconstructions Ŝ

n is also

required to satisfy the CR constraint, which imposes that the state estimate be also

reproducible at the encoder with high probability, as formalized below.

Definition 7.1. An (n,R,D,Γ, ϵ) code for the model in Figure 7.1 consists of an

action encoder

g1: M → An, (7.1)

which maps message M into an action sequence An; a channel encoder

g2: M×Sn → X n, (7.2)

which maps messageM and the state sequence Sn into the sequenceXn; two decoding

functions,

h1: Yn → M, (7.3)

and h2: Yn → Ŝn, (7.4)

which map the sequence Y n
1 into the estimated message M̂ and into the estimated

sequence Ŝn, respectively; and a reconstruction function

ψ: Sn → Ŝn, (7.5)

which maps the state sequence into the estimated state sequence at the encoder; such

that the probability of error in decoding the message M is small

Pr[M̂ ̸=M ] ≤ ϵ, (7.6)
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the distortion and cost constraints are satisfied, i.e.,

1

n

n∑
i=1

E [d(Si, h2i(Y
n))] ≤ D + ϵ (7.7)

and
1

n

n∑
i=1

E [γ(Ai, Xi)] ≤ Γ + ϵ, (7.8)

where h2i(Y
n) ∈ Ŝ is the ith symbol of the sequence h2(Y

n), and the CR requirement

is verified, namely,

Pr [ψ(Sn) ̸= h2(Y
n)] ≤ ϵ. (7.9)

It is noted that, given the definition above, the pmf of the random variables (M,An, Sn

, Xn, Y n) factorizes as

p(m, an, sn, xn, yn) =
1

2nR
δ[an − g1(m)]

{
n∏

i=1

p(si|ai)

}
δ[xn − g2(m, s

n)]

·

{
n∏

i=1

p(yi|xi, si, ai)

}
, (7.10)

where δ[·] is the Kronecker delta function (i.e., δ[x] = 1 if x = 0 and δ[x] = 0

otherwise) and the arguments of the pmf range in the alphabets of the corresponding

random variables.

Given a cost-distortion pair (D,Γ), a rate R is said to be achievable if, for

any ϵ > 0 and sufficiently large n, there a exists a (n,R,D,Γ, ϵ) code. The goal is

to characterize the capacity-distortion-cost trade-off function C(D,Γ) =inf{R : the

triple (R,D,Γ) is achievable}.

7.2.2 Capacity-Distortion-Cost Function

In this section, a single-letter characterization of the capacity-distortion-cost function

is derived.
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Proposition 7.1. The capacity-distortion-cost function for the system in Figure 7.1

is given by

C(D,Γ) = max I(U ;Y )− I(U ;S|A) (7.11)

where the mutual informations are evaluated with respect to the joint pmf

p(a, u, s, x, y) = p(a)p(s|a)p(u|s, a)p(x|u, s)p(y|x, s, a), (7.12)

and minimization is done with respect to the pmfs p(a), p(u|s, a) and p(x|u, s) under

the constraint that there exists a deterministic function ϕ : U → Ŝ such that the

inequalities

E[d(S, ϕ(U))] ≤ D (7.13a)

and E[γ(A,X)] ≤ Γ (7.13b)

are satisfied. Finally, U is an auxiliary random variable whose alphabet cardinality

can be bounded as |U| ≤ |A||S||X |+ 2.

Remark 7.1. If D ≥ Dmax, the result above recovers Theorem 1 of [44]. If instead,

p(s|a) = p(s), so that the channel is not action-dependent, Theorem 1 in [8] is

recovered.

The proof of achievability follows using the same arguments as in [44] with the

difference that here U is also used to estimate the state S via a function ϕ(U). The

proof of the converse can be found in Appendix R.

7.2.3 A Gaussian Example

In this section, a continous-alphabet version of the model of Figure 7.1 is considered

in which the actions and the channel input are subject to the cost constraints

1/n
∑n

i=1 E[A
2] ≤ PA and 1

n

∑n
i=1 E [X2

i ] ≤ PX , respectively; the action channel is
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given by

S = A+W, (7.14)

where W ∼ N (0, σ2
W ) and the transmission channel is given by

Y = X + S + Z, (7.15)

where Z ∼ N (0, σ2
Z) is independent of W . The rate I(U ;Y ) − I(U ;S|A) in (7.11)

is evaluated by assuming the variables (A, S, U,X, Y ) to be jointly Gaussian without

claiming the optimality of this choice. Specifically, similar to [44, Section VI], let’s

choose A ∼ N (0, PA),

X = αA+ γW +G (7.16a)

and U = δX + A+ βW, (7.16b)

with G ∼ N (0, PX − (α2PA + γ2σ2
W )), where the constraint PX ≥ (α2PA + γ2σ2

W ) is

enforced, and the variables (A,W,G,Z) are all independent of each other. Then the

rate I(U ;Y )−I(U ;S|A) as in [44] is evaluated, with the additional constraint (7.7) on

the state estimate Ŝ. Assuming the quadratic distortion metric d(s, ŝ) = (s− ŝ)2, Ŝ

is chosen to be the MMSE estimate of S given U and A.2 This leads to the constraint

D ≥ E[(S − Ŝ)2] = var(S|U,A) = σ2
W − (E[W (U − A)])2

E[(U − A)2]
, (7.17)

where E[W (U − A)] = (δγ + β)σ2
W and E[(U − A)2] = δ2PG + (δγ + β)2σ2

W . The

rate I(U ;Y )− I(U ;S|A) optimized over parameters (α, β, δ, γ) under the constraint

(7.17) for different values of the distortion D for PA = PX = σ2
W = σ2

Z = 1 in Figure

(7.3). Moreover for reference, Figure 7.3 shows also the rate achievable if distribution

(8.8) is designed to be optimal for message transmission only as in [44, eq. (95)],

2Note that U in the characterization of Proposition 2 can be always redefined to include
also A without loss of performance, and hence Ŝ can be made to be a function of U and A.
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and the rate achievable, if A is selected to be independent of the message, namely,

max I(U ;Y |A)− I(U ;S|A), where the mutual information terms are evaluated with

respect to the joint Gaussian distribution given above in (7.16) under the constraint

(7.17). The performance gains attainable by designing the transmission strategy

jointly in the two phases and by accounting for the constraint (7.17) are apparent.
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Figure 7.3 Achievable rates (constrained to a Gaussian joint distribution, see
(7.16)) for the Gaussian model (7.14)-(7.15) versus distortion D for PA = PX =
σ2
W = σ2

Z = 1.

7.3 Degraded Broadcast Channels with Action-Dependent States

In this section, the problem illustrated in Figure 7.2 of a broadcast channel with

action-dependent states known causally to the encoder is studied. First, the system

model is detailed in Section 7.3.1. Next, the characterization of the capacity region

for physically degraded broadcast channels is given in Section 7.3.2. In Section 7.3.4,
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the special case of a broadcast channel with a probing encoder in the sense of [45] is

studied.

7.3.1 System Model

In this section, the system model is detailed. The system is defined by the pmfs p(x),

p(y1, y2|x, s, a), p(s|a) and discrete alphabets X , A, S, and Y as follows. Given the

messages M1 and M2, selected randomly from the sets M1 = [1, 2nR1 ] and M2 =

[1, 2nR2 ], respectively, an action sequence An ∈ An is selected. As a result of this

selection, the state sequence Sn ∈ Sn is generated as in the previous section. The

action sequence An and the input Xn have to satisfy the average cost constraint

(8.38). Given the transmitted signal Xn = xn, the state sequence Sn = sn, and the

action sequence An = an, the received signals are distributed as p(yn1 , y
n
2 |xn, sn, an) =∏n

i=1 p(y1i, y2i|xi, si, ai). The decoders, based on the received signals Y n
1 and Y n

2 ,

estimate the messages M1 and M2, respectively.

Definition 7.2. An (n,R1, R2,Γ, ϵ) code for the model in Figure 7.2 consists of an

action encoder

g1: M1 ×M2 → An, (7.18)

which maps messages M1 and M2 into an action sequence An; a sequence of channel

encoders

g2i: M1 ×M2 × S i → X , (7.19)

for i ∈ [1, n] which map messages M1 and M2 and the first i samples of the state

sequence Si into the ith symbol Xi; two decoding functions,

h1: Yn
1 → M1, (7.20)

and h2: Yn
2 → M2, (7.21)
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which map the received sequences Y n
1 and Y n

2 into the estimated messages M̂1 and

M̂2, respectively; such that the probability of error in decoding the messages M1 and

M2 is small

Pr[M̂j ̸=Mj] ≤ ϵ for j = 1, 2, (7.22)

and the cost constraint (8.38) is satisfied.

It is noted that, given the definitions above, the distribution of the random

variables (M1,M2, A
n, Sn, Xn, Y n

1 , Y
n
2 ) factorizes as

p(m1,m2, a
n, sn, xn, yn1 , y

n
2 ) =

1

2n(R1+R2)
δ[an − g1(m1,m2)] ·

{
n∏

i=1

p(si|ai)δ[xi − g2i(m1,m2, s
i)]p(y1i, y2i|xi, si, ai)

}
,

(7.23)

where the arguments of the pmf range in the alphabets of the corresponding random

variables.

Given a cost Γ, a rate pair (R1, R2) is said to be achievable if, for any ϵ > 0 and

sufficiently large n, there a exists a (n,R1, R2,Γ, ϵ) code. The capacity region C(Γ) is

defined as the closure of all rate pairs (R1, R2) that are achievable given the cost Γ.

7.3.2 Capacity-Cost Region

In this section, a single-letter characterization of the capacity region is derived for

the special case in which the channel is physically degraded in the sense that the

condition below is satisfied

p(y1, y2|x, s, a) = p(y1|x, s, a)p(y2|y1), (7.24)

or equivalently, the Markov chain (Xi, Si, Ai)− Y1i − Y2i holds for all i ∈ [1, n].
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Proposition 7.2. The capacity region of the system in Figure 7.2 under the

degradedness condition (7.24) is given by the union of the rate pairs (R1, R2) satisfying

R1 ≤ I(U1;Y1|U2) (7.25a)

and R2 ≤ I(U2;Y2), (7.25b)

where the mutual informations are evaluated with respect to the joint pmf

p(a, u1, u2, s, x, y1, y2) = p(u1, u2)

· δ[a− fa(u1, u2)]p(s|a)δ[x− fx(u1, u2, s)]p(y1|x, s, a)p(y2|y1), (7.26)

for some pmfs p(u1, u2) and deterministic functions fa: U1 × U2 → A and fx: U1 ×

U2 × S → X such that the inequality E[γ(A,X)] ≤ Γ is satisfied. Auxiliary random

variables U1 and U2 have finite alphabets.

The proof of achievability can be sketched as follows. The codewords

un2 (m2), encoding message m2 ∈ [1, 2nR2 ], are generated independently and i.i.d.

according to the pmf p(u2). Then, superimposed on each codeword un2 (m2), 2
nR1

codewords un1 (m1,m2) are generated independently according to the distribution∏n
i=1 p(u1i|u2i(m2)). To encode messages (M1,M2), the action sequence An is

obtained as a deterministic function of u1i(M1,M2) and u2i(M2) such that Ai =

fa(u1i(M1,M2), u2i(M2)) for all i ∈ [1, n]. The transmitted symbol Xi is obtained

instead as a function of u1i(M1,M2), u2i(M2), and of the ith state symbol Si

as Xi = fx(u1i(M1,M2), u2i(M2), Si). Decoder 2 decodes the codeword un2 (m2),

while decoder 1 decodes both codewords un2 (m2) and un1 (m1,m2). Using standard

arguments, the rates (7.25) are easily shown to be achievable. The proof of the

converse can be found in Appendix S.

Remark 7.2. If p(s|a) = p(s) so that the channel is not action-dependent, Proposition

6 recovers Proposition 4 of [51] (see also [52]).



128

7.3.3 A Binary Example

In this section, let’s consider a special case of the model in Figure 7.2 in which the

action channel p(s|a) is binary and given by

S = A⊕B, (7.27)

where the action A is binary, B ∼ Ber(b) and the transmission channels are given by

Y1 = X ⊕ S ⊕ Z1, (7.28a)

and Y2 = Y1 ⊕ Z̃2, (7.28b)

where Z1 ∼ Ber(N1) and Z̃2 ∼ Ber(Ñ2) are independent of each other and of B. The

cost metric is selected as γ(a, x) = x. Moreover, N2 = N1 ∗ Ñ2 = N1(1− Ñ2)+ Ñ2(1−

N1).

As a first remark, consider the ideal system with b = 0 (i.e., no interference)

and no cost constraint (i.e., Γ = 1/2). The system reduces to a standard physical

degraded binary symmetric broadcast channel, and thus the capacity region is given

by the union over α ∈ [0, 0.5] of the rate pairs satisfying the inequalities [1, p. 115]

R1 ≤ H(α ∗N1)−H(N1) (7.29a)

and R2 ≤ 1−H(α ∗N2). (7.29b)

It is observed that, by construction, this rate region sets an outer bound on the

rate achievable in the system at hand. The outer bound above is in fact achievable by

setting X = B, U2 ∼ Ber(1/2), U1 = U2⊕ Ũ1 with Ũ1 ∼ Ber(α), and A = U1 in (7.25),

where U2 and Ũ1 are independent. This entails that, by leveraging the actions, the

interference-free capacity region (7.29) is obtained for all cost constraints Γ ≥ b. It

can be instead seen that, if one is forced to set A to be constant, achieving the rate

region (7.29) requires a cost Γ = 1/2, since X needs to be distributed Ber(1/2). This
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example illustrates the advantage of being able to affect the state via actions selected

as a function of the messages.

7.3.4 Probing Capacity of Degraded Broadcast Channels

In this section, the setting of probing capacity introduced in [45] is applied to the

degraded broadcast channel. Following [45], the state sequence Sn is thus assumed

to be generated i.i.d. according to a pmf p(s). Moreover, based on the messages

(M1,M2), the encoder selects an action sequence as in (7.18). However, here, through

the choice of actions, the encoder affects the state information available at the encoder

and the decoders, and not the state sequence Sn. Specifically, the encoder obtains

partial state information Se,i = be(Si, Ai), and the decoders obtain partial state

informations Sd1,i = bd1(Si, Ai) and Sd2,i = bd2(Sd1,i), respectively, where i ∈ [1, n], and

be : S×A → Se, bd1 : S×A → Sd1 and bd2 : Sd1 → Sd2 are deterministic functions for

given alphabets Se, Sd1 and Sd2 . Note that the state information available at decoder

2 is degraded with respect to that of decoder 1 (i.e., it is a function of the latter). As

in [45], it is assumed that the state information at the encoder is characterized as

Se,i = be(Si, Ai) =


Si if Ai = 1

∗ if Ai = 0

, (7.30)

where ∗ represents the absence of channel state information at the encoder. Moreover,

the state information Se,i is assumed to be available causally at the encoder so that

the encoding function is g2i: M1 ×M2 × S i
e → X (cf. (7.19)). The rest of the code

definition is similar to Definition 7.2 with the caveat that the decoder 1 and 2 have

available also the information sequences Sn
d1

and Sn
d2
, respectively.
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It is noted that, given the definitions above, the distribution of the random

variables (M1,M2, A
n, Sn, Xn, Y n

1 , Y
n
2 ) factorizes as

p(m1,m2, a
n, sn, sne , s

n
d1
, snd2 , x

n, yn1 , y
n
2 ) =

1

2n(R1+R2)
δ[an − g1(m1,m2)]

·

{
n∏

i=1

p(si)δ[se,i − be(si, ai)]δ[sd1,i − bd1(si, ai)]δ[xi − g2(m1,m2, s
i
e)

}

·

{
n∏

i=1

δ[sd2,i − bd2(sd1,i)]p(y1i, y2i|xi, si, ai)

}
(7.31)

where the arguments of the pmf range in the alphabets of the corresponding random

variables.

As discussed below, the setting at hand, which is referred to as having a probing

encoder, is a special case of the one studied in Section 8.4.1. Therefore, one can

leverage Proposition 7.2 to obtain the following result.

Proposition 7.3. The capacity region of the system in Figure 7.2 under the

degradedness condition (7.24) and with a probing encoder is given by the union of

the rate pairs (R1, R2) satisfying

R1 ≤ I(U1;Y1, Sd1 |U2) (7.32a)

and R2 ≤ I(U2;Y2, Sd2) (7.32b)

where the mutual informations are evaluated with respect to the joint pmf

p(a, u1, u2, s, se, sd1 , sd2 , x, y1, y2) = p(s)p(u1, u2)

δ[a− fa(u1, u2)]δ[se − be(s, a)] · δ[sd1 − bd1(s, a)]

δ[sd2 − bd2(sd1)] · δ[x− fx(u1, u2, se)]p(y1|x, s, a)p(y2|y1), (7.33)

for some pmf p(u1, u2) and deterministic functions fa: U1 × U2 → A and fx: U1 ×

U2 × Se → X such that the inequality E [γ(A,X)] ≤ Γ is satisfied.
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Proof. The result is obtained by noticing that the setting described above is a special

case of the one described in Section 7.3.1 by making the following substitutions

S → Se (7.34a)

and Yj → (Yj, Sdj) for j = 1, 2. (7.34b)

To see this, it will be shown that the pmf (7.31) reduces to (7.23) under the given

substitutions. Specifically, by marginalizing (7.31) over Sn it is true that

1

2n(R1+R2)
δ[an − g1(m1,m2)]

{
n∏

i=1

δ[xi − g2(m1,m2, s
i
e)]δ[sd2,i − bd2(sd1,i)]p(y2i|y1i)

}
n∏

i=1

∑
si∈S

{
p(si)δ[se,i − be(si, ai)]δ[sd1,i − bd1(si, ai)]p(y1i|xi, si, ai)

}
.(7.35)

The terms outside the summation in (7.35) are equal to the corresponding terms in

(7.23) under the substitutions (7.34). For the remaining terms, it is observed that,

for ai = 0, Se,i = ∗, and thus p(se,i|ai) = δ[se,i − ∗] and

p(y1i, sd1i|xi, se,i, ai) =
∑
si∈S

p(si)δ[sd1,i − bd1(si, ai)]p(y1i|xi, si, ai);

instead, for ai = 1, Se,i = Si, and thus p(se,i|ai) = Pr[Si = se,i] and

p(y1i, sd1i|xi, se,i, ai) = δ[sd1,i − bd1(se,i, ai)]p(y1i|xi, se,i, ai),

which completes the proof.

7.4 Concluding Remarks

Action-dependent channels are useful abstractions of two-phase communication

scenarios. This chapter has reported on two variations on this theme, namely the

problem of message and state transmission in an action-dependent channel and

the degraded action-dependent broadcast channel. Under given assumptions, the

information-theoretic performance of these systems is characterized. The analytical



132

results, and specific examples, emphasize the importance of jointly designing the

transmission strategy across the two communication phases.



CHAPTER 8

INFORMATION EMBEDDING ON ACTIONS

8.1 Introduction

As reviewed in Chapter 4, the recent works [4, 44] study the problem of optimal

actuation for source and channel coding for resource-constrained systems. Specifically,

in [4], an extension of the Wyner-Ziv source coding problem is considered in which the

decoder or the encoder can take actions that affect the quality of the side information

available at the decoder’s side. When the actions are taken by the decoder, the latter

operates in two stages. In the first stage, based on the message received from the

encoder, the decoder selects cost-constrained actions A that affect the measurement

of the side information Y . This effect is modeled by a channel pY |X,A(y|x, a), where

X represents the source available at the encoder. In the second stage, the decoder

produces an estimate of source X based on the side information Y as in the standard

Wyner-Ziv problem (see, e.g., [1]). A similar formulation also applies when the actions

are taken at the encoder’s side. This model can account, as an example, for computer

networks in which the acquisition of side information from remote data bases is costly

in terms of system resources and thus should be done efficiently. This class of problems

are referred to as having actions for side information acquisition.

As discussed in Chapter 7, in [44], a related channel coding problem is studied in

which the encoder in a point-to-point channel can take actions to affect the state of a

channel. The encoder operates in two stages. In the first stage, based on the message

to be conveyed to the decoder, cost-constrained actions A are selected by the encoder

that affect the channel state S of the channel pY |X,S(y|x, s) used for communication

to the decoder in the second stage. In the second stage, the channel pY |X,S(y|x, s) is

used in a standard way based on the available information about the state S (which

133
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can be non-causal or causal, see, e.g., [1]). This problem is referred to as having

actions for channel state control. As shown in [45], this model can be used to account

for an encoder that in the first stage probes the channel to acquire state information.

8.1.1 Information Embedding on Actions

As discussed above, optimal actuation for channel and source coding, as proposed

in [4, 44], prescribes the selection of the actions A towards the goal of improving

the performance of the resource-constrained communication link between encoder

and decoder. This can be done by acquiring side information in an efficient way for

source coding problems, and by controlling or probing effectively the channel state

for channel coding problems.

This work starts from the observations that the actions A often entail the use of

physical resources for communication within the system encompassing the link under

study. For instance, acquiring information from a data base requires the receiver

to exchange control signals with a server, and probing the congestion state of a

network (modelled as a channel) requires transmission of training packets to the

closest router. In all these cases, the “recipient” of the actions, e.g., the server or a

router in the examples above, may request to obtain partial information about the

source or message being communicated on the link. To illustrate this point, the server

in the data base application might need to acquire some explicit information about the

file being transmitted in the link before granting access to the server. Similarly, the

router might need to obtain the header of the packet (message) that the transmitter

intends to deliver to the end receiver.

In the scenarios discussed above, the action A thus serves a double purpose: on

the one hand, it should be designed to improve the performance of the communication

link at hand as in [4, 44, 45], and, on the other, it should provide explicit information

about source or message for a separate decoder (the server or router in the examples
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above). A relevant question thus is: How much information can be embedded in the

actions A without affecting the performance of the link? Or, to turn the question

around, what is the performance loss for the link as a function of the amount of

information that is encoded in the actions A? This work aims at answering these

questions for both the source and channel coding scenarios discussed above (see Figure

8.1, Figure 8.2, Figure 8.3 and Section 8.1.3).
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Figure 8.1 Source coding with decoder-side actions for information acquisition
and with information embedding on actions. A function of the actions f(An) =
(f(A1), ..., f(An)) is observed in full (“non-causally”) by Decoder 2 before decoding.
See Figure 8.4 and Figure 8.5 for the corresponding models with strictly causal and
causal observation of the actions at Decoder 2, respectively.

8.1.2 Related Work

The interplay between communication and actuation, or control, is recognized to

arise at different levels. As mentioned, the main theme in the papers [4, 44, 45] is

“control for communication”: As reviewed in Chapter 4, Chapter 5 and Chapter 6,in

[4, 44, 45], actuation is instrumental in improving the performance of a resource-

constrained communication system. Extensions of this research direction include

models with additional design constraints [24, 28], with adaptive actions [26], with

multiple terminals [23], [54] (see Chapter 4) and [55] (see Chapter 5) and with memory

[56, 28]. Somewhat related, but distinct, is the line of work including [57]-[58], in

which control-theoretic tools are leveraged to design effective communication schemes.

An altogether different theme is instead central in work such as [59, 60] that can be
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referred to as “communication for control”. In fact, in a reversed way, in [59, 60]

(and references therein), communication is instrumental in carrying out control tasks

such as stabilization of a plant. For instance, [60] shows that an implicit message

communicated between two controllers can greatly improve the performance of the

control task.
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Figure 8.2 Source coding with encoder-side actions for information acquisition and
with information embedding on actions.
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Figure 8.3 Channel coding with actions for channel state control and with
information embedding on actions.

The idea of embedding information in the actions is related to the classical

problem of information hiding (see, e.g., [61] and references therein). In information

hiding, a message is embedded in a host data under distortion constraints. The

message is then retrieved by a decoder that observes the host signal through a noisy

channel. Note that the (host) signal onto which the message is embedded is a given

process. Instead, in the set-up of information embedding on actions considered here,
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the (action) signal on which information is embedded is designed to optimize the

given communication task.

The set-up at hand is also related to the source coding model of [62], in which

an encoder communicates to two decoders and one of the decoders is able to observe

the source estimate produced by the other. For its duality with the classical channel

coding model studied in [63], the operation of the first decoder was referred to in

[62] as cribbing. Although the problem of interest here (in the source coding part) is

significantly different, in that the recipient of the embedded information is a decoder

“cribbing” the actions and not the estimates of another decoder, the solutions of the

two problems turn out to be related, as it will be discussed.

8.1.3 Contributions and Chapter Organization

The main contributions of this chapter are as follows.

• Decoder-side actions for side information acquisition: First, the model

in Figure 8.1 is considered, in which the problem of source coding with actions

taken at the decoder (Decoder 1) [4] is generalized by including an additional

decoder (Decoder 2). Decoder 2 is the recipient of a function of the action

sequence and is interested in reconstructing a lossy version of the source

measured at the encoder. A single-letter characterization of the set of all

achievable tuples of rate, distortions at the two decoders and action cost is

derived in Section 8.2 under the assumption that Decoder 2 observes a function

of the actions non-causally (Section 8.2.2), strictly causally (Section 8.2.3) or

causally (Section 8.2.4). An example is provided to shed light into the effect of

information embedding on actions in Section 8.2.5;

• Encoder-side actions for side information acquisition: Next, the set-up

in Figure 8.2 is considered, in which an additional decoder observing the actions

is added to the problem of source coding with actions taken at the encoder [4].
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Section 8.3 derives the achievable rate-distortion-cost region in the special case

in which the channel pY |X,A(y|x, a) with source and action (X,A) as inputs and

side information Y as output is such that Y is a deterministic function of A;

• Actions for channel control and probing: Finally, the impact of infor-

mation embedding on actions for channel control is considered by studying the

set-up in Figure 8.3, which generalizes [44]. Specifically, a decoder (Decoder 1)

is added to the model in [44], that observes a function of the actions taken by

the encoder and wishes to decode part of the message that is intended for the

channel decoder (Decoder 2). A single-letter characterization of the achievable

capacity-cost region is obtained in Section 8.4. Finally, the special case of

actions for channel probing [45] is elaborated on with an example in Section

8.4.3.

8.2 Decoder-Side Actions for Side Information Acquisition

In this section, first, the system model is described for the set-up illustrated in Figure

8.1, Figure 8.4 and Figure 8.5 of source coding with decoder-side actions. Then, a

single letter characterization of the set of all achievable tuples of rate, distortions at

the two decoders and action cost is derived under the assumption that Decoder 2

observes the actions fully (non-causally) in Section 8.2.2, strictly causally in Section

8.2.3 and causally in Section 8.2.4. An example is provided in Section 8.2.5.

8.2.1 System Model

Here the problem corresponding to full observation of a function of the actions

is presented as per Figure 8.1. This model is referred to as having non-causal

action observation. The changes necessary to account for causal or strictly causal as

illustrated in Figure 8.4 and Figure 8.5 will be discussed in the appropriate sections

later. It is remarked that this definition does not entail any non-causal operation,
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but only a larger estimation delay for Decoder 2 as compared to the causal cases in

Figure 8.4 and Figure 8.5. The model is defined by the probability mass functions

(pmfs) pX(x) and pY |AX(y|a, x), by the function f: A → B, and by discrete alphabets

X ,Y ,A,B, X̂1, X̂2, as follows. The source sequence Xn is such that Xi ∈ X for

i ∈ [1, n] is independent and identically distributed (i.i.d.) with pmf pX(x). The

Encoder measures sequence Xn and encodes it in a message M of nR bits, which is

delivered to Decoder 1. Decoder 1 receives messageM and selects an action sequence

An, where An ∈ An. The action sequence affects the quality of the measurement Y n

of sequence Xn obtained at the Decoder 1. Specifically, given An = an and Xn = xn,

the sequence Y n is distributed as p(yn|an, xn) =
∏n

i=1 pY |A,X(yi|ai, xi). The cost of the

action sequence is defined by a cost function Λ: A →[0,Λmax] with 0 ≤ Λmax < ∞,

as Λ(an) =
∑n

i=1 Λ(ai). The estimated sequence X̂n
1 ∈ X̂ n

1 is then obtained as a

function of M and Y n. Decoder 2 observes a function of the action sequence An,

thus obtaining f(An) = (f(A1), ..., f(An)) ∈ Bn. Based on f(An), Decoder 2 obtains

an estimate X̂n
2 ∈ X̂ n

2 within given distortion requirements. The estimated sequences

X̂n
j for j = 1, 2 must satisfy distortion constraints defined by functions dj(x, x̂j):

X × X̂j → [0, Dj,max] with 0 ≤ Dj,max < ∞ for j = 1, 2, respectively. A formal

description of the operations at encoder and decoder follows.

Definition 8.1. An (n,R,D1, D2,Γ) code for the set-up of Figure 8.1 consists of a

source encoder

h(e): X n → [1, 2nR], (8.1)

which maps the sequence Xn into a message M ; an “action” function

h(a): [1, 2nR] → An, (8.2)

which maps the message M into an action sequence An; two decoders, namely

h
(d)
1 : [1, 2nR]× Yn → X̂ n

1 , (8.3)
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which maps the message M and the measured sequence Y n into the estimated

sequence X̂n
1 ;

h
(d)
2 : Bn → X̂ n

2 , (8.4)

which maps the observed sequence f(An) into the the estimated sequence X̂n
2 ; such

that the action cost constraint Γ and distortion constraintsDj for j = 1, 2 are satisfied,

i.e.,

1

n

n∑
i=1

E [Λ(Ai)] ≤ Γ (8.5)

and
1

n

n∑
i=1

E
[
dj(Xi, X̂ji)

]
≤ Dj for j = 1, 2. (8.6)

Definition 8.2. Given a distortion-cost tuple (D1, D2,Γ), a rate R is said to be

achievable if, for any ϵ > 0, and sufficiently large n, there exists a (n,R,D1 + ϵ,D2 +

ϵ,Γ + ϵ) code.

Definition 8.3. The rate-distortion-cost function R(D1, D2,Γ) is defined asR(D1, D2,Γ) =

inf{R : the tuple (R,D1, D2,Γ)is achievable}.

8.2.2 Non-Causal Action Observation

In this section, a single-letter characterization of the rate-distortion region is derived

for the set-up in Figure 8.1 in which Decoder 1 observes the entire sequence fn(An)

prior to decoding.

Proposition 8.1. The rate-distortion-cost function R(D1, D2,Γ) for the source

coding problem with decoder-side actions and non-causal observation of the actions at

Decoder 2 illustrated in Figure 8.1 is given by

R(D1, D2,Γ) = min
p(x̂2,a,u|x), g(U,Y )

I(X; X̂2, A) + I(X;U |X̂2, A, Y ), (8.7)



141

where the mutual information is evaluated with respect to the joint pmf

p(x, y, a, x̂2, u) = p(x)p(x̂2, a, u|x)p(y|x, a), (8.8)

for some pmf p(x̂2, a, u|x) such that the inequalities

E[dj(X, X̂j)] ≤ Dj, for j = 1, 2, (8.9a)

E[Λ(A)] ≤ Γ, (8.9b)

and I(X; X̂2, f(A)) ≤ H(f(A)) (8.9c)

are satisfied for X̂1 = g(U, Y ) for some function g: U × Y → X̂1. Finally, U is

an auxiliary random variable whose alphabet cardinality can be constrained as |U| ≤

|X ||X̂2||A|+ 1 without loss of optimality.

At an intuitive level, in (8.7), the term I(X; X̂2, A) accounts for the rate needed

to instruct Decoder 1 about the actions A to be taken for the acquisition of the

side information Y , which are selected on the basis of the source X, and, at the

same time, to communicate the reconstruction X̂2 to Decoder 2. The additional rate

I(X;U |X̂2, A, Y ) is instead required to refine the description of the source X provided

via (X̂2, A) using an auxiliary codebook U for Decoder 1. Note that this rate is

conditioned on the side information Y , thanks to the rate saving obtained through

Wyner-Ziv binning. The condition (8.9c) ensures that, based on the observation of

f(A), Decoder 2 is able to reconstruct X̂2. The details of achievability follow as a

combination of the techniques proposed in [4] and [64, 62]. Below, the main ideas

are briefly outlined, since the technical details follow from standard arguments. The

proof of the converse is provided in Appendix T.

Sketch of the achievability proof : Fix a pmf (8.8) and define a random variable

B = f(A). The joint pmf p(x, y, a, x̂2, u, b) of variables (X, Y,A, X̂2, U,B) is obtained

by multiplying the right-hand side of (8.8) by the term1 1{b=f(a)}. In the scheme at

1The notation 1{S} is used for the indicator function of the event S.
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hand, the Encoder first maps sequence Xn into a sequence X̂n
2 ∈ X̂ n

2 using the joint

typicality criterion with respect to the joint pmf p(x, x̂2). This mapping requires a

codebook of rate I(X; X̂2) (see, e.g., [1, pp. 62-63]). Given the sequence X̂n
2 , the

sequence Xn is further mapped into a sequence Bn ∈ Bn using the joint typicality

criterion with respect to the joint pmf p(x, b|x̂2) where B = f(A), which requires a

codebook of rate I(X; f(A)|X̂2) for each sequence X̂n
2 . For later reference, every such

codebook is referred to as a bin in the following. Note that there exists one bin for

every sequence X̂n
2 . For each pair (X̂n

2 , B
n), the sequence Xn is mapped into an action

sequence An using joint typicality with respect to the joint pmf p(x, a|x̂2, b), which

requires a codebook of rate I(X;A|X̂2, f(A)). Note that, by construction, Bn = f(An)

for each generated An. Finally, the source sequence Xn is mapped into a sequence Un

using the joint typicality criterion with respect to the joint pmf p(x, u|x̂2, a), which

requires a codebook of rate I(X;U |X̂2, A) for each pair (X̂n
2 , A

n).

The indices of codewords X̂n
2 , B

n and An are sent to Decoder 1, along with

the index for the codeword Un. For the latter, by leveraging the side information Y n

available at Decoder 1, the rate can be reduced to I(X;U |X̂2, A, Y ) by the Wyner-

Ziv theorem [1, p. 280]. Decoder 2 estimates the sequence X̂n
2 from the observed

sequence f(An) as follows: if there is only one bin containing the observed sequence

f(An), then X̂n
2 equals the sequence corresponding to such bin (recall that each bin

corresponds to one sequence X̂n
2 ). Otherwise, an error is decoded. To obtain a

vanishing probability of error, the sequence fn(An) should thus not lie within more

than one bin with high probability. The probability of the latter event can be upper

bounded by 2n(I(X;X̂2,f(A))−H(f(A)) since each sequence Bn is generated with probability

approximately 2−nH(f(A)) and there are 2nI(X;X̂2,f(A)) sequences Bn [62]. Therefore,

as long as I(X; X̂2, f(A)) ≤ H(f(A)), Decoder 1 is able to infer the conveyed bin

index with high probability. Finally, Decoder 1 produces the estimate X̂n
1 through a

symbol-by-symbol function as X̂1i = g(Ui, Yi) for i ∈ [1, n]. �
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Remark 8.1. Assume that the action Ai is allowed to be a function, not only of

the message M as per (8.2), but also of the previous values of the side information

Y i−1, which is referred to as adaptive actions. Then, the rate-distortion-cost function

derived in Proposition 8.2 can generally be improved. This can be seen by considering

the case in which R = 0. In this case, if the actions were selected as per (8.2), then

the distortion at Decoder 2 would be forced to be maximal, i.e., D2 = D2,max, since

the actions A cannot depend in any way on the source X. Instead, by selecting A

as a function of the previously observed values of Y , Decoder 1 can provide Decoder

2 with information about X, thus decreasing the distortion D2. It is noted that the

usefulness of adaptive actions in this setting contrasts with the known fact that, in the

absence of Decoder 2, adaptive actions do not decrease the rate-distortion function

[26].

8.2.3 Strictly Causal Action Observation

The system model for the set-up in Figure 8.4, is similar to the one described in

Section 8.2.1 with the only difference the decoding function for Decoder 2 a time i is

given as

h
(d)
2i : Bi−1 → X̂2, (8.10)

which maps the strictly causally observed sequence f(Ai−1) = (f(A1), ..., f(Ai−1)) into

the ith estimated symbol X̂2i.

Proposition 8.2. The rate-distortion-cost function R(D1, D2,Γ) for the source

coding problem with decoder-side actions and strictly causal observation of the actions

at Decoder 1 as illustrated in Figure 8.4 is given by

R(D1, D2,Γ) = min
p(x̂2,a,u|x), g(U,Y )

I(X; X̂2, A) + I(X;U |X̂2, A, Y ), (8.11)
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Figure 8.4 Source coding with decoder-side actions for information acquisition
and with information embedding on actions. At time i, Decoder 2 has available the
samples f(Ai−1) = (f(A1), ..., f(Ai−1)) in a strictly causal fashion.

where the mutual information is evaluated with respect to the joint pmf

p(x, y, a, x̂2, u) = p(x)p(x̂2, a, u|x)p(y|x, a), (8.12)

for some pmf p(x̂2, a, u|x) such that the inequalities

E[dj(X, X̂j)] ≤ Dj, for j = 1, 2, (8.13a)

E[Λ(A)] ≤ Γ, (8.13b)

and I(X; X̂2, f(A)) ≤ H(f(A)|X̂2) (8.13c)

are satisfied for X̂1 = g(U, Y ) for some function g: U × Y → X̂1. Finally, U is

an auxiliary random variable whose alphabet cardinality can be constrained as |U| ≤

|X ||X̂2||A|+ 1 without loss of optimality.

The only difference between the rate-distortion-cost function of Proposition 8.1

with non-causal action observation with respect to the case with strictly causal action

observation of Proposition 8.2 is the constraint (8.13c). Recall that the latter is needed

to ensure that Decoder 2 is able to recover the reconstruction X̂2. As detailed below,

the strict causality of the observation of the action at Decoder 2 calls for a block-

based encoding in which the actions carries information about the source sequence

as observed in two different blocks, namely the current block for Decoder 1 and the
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future block for Decoder 2. This additional requirement causes the conditioning on

X̂2 in (8.13c), which generally increases the rate (8.11) with respect to the counterpart

(8.20) achievable with non-causal action observation. A sketch of the achievability

proof is provided below and is based on the techniques proposed in [64, 62] (see also

[65]). The proof of the converse is provided in Appendix U.

Sketch of the achievability proof : Fix a pmf (8.12) and define a random variable

B = f(A). The joint pmf p(x, y, a, x̂2, u, b) of variables (X,Y,A, X̂2, U,B) is obtained

by multiplying the right-hand side of (8.12) by the term 1{b=f(a)}. The “Forward

Encoding” and “Block Markov Decoding” strategy of [64, 62] (see also [65]) along

with the coding scheme of [4] is used. The scheme operates over multiple blocks

and Xn(l) is the portion of the source sequence encoded in block l. The sequence

f(An(l)) observed during block l is used in block l + 1 by Decoder 2 due to the strict

causality constraint. To this end, the action sequence f(An(l)) produced in block l

must carry information about the source sequence Xn(l + 1) corresponding to the

next block l + 1. Note that this is possible since encoder knows the entire sequence

Xn. At the same time, sequence An(l) should also perform well as an action sequence

to be used by Decoder 1 to estimate sequence Xn(l) for the current block. This is

accomplished as follows; In each block l, 2nI(X;X̂2) codewords X̂n
2 ∈ X̂ n

2 are generated

according to the pmf p(x̂2). Next, 2nI(X;X̂2) bins are assigned to each codeword X̂n
2 ,

where each bin contains 2nI(X;f(A)|X̂2) codewords Bn ∈ Bn, generated according to pmf

p(b|x̂2). For each pair (X̂n
2 , B

n), a codebook of 2nI(X;A|X̂2,f(A)) codewords An ∈ An is

generated according to the joint pmf p(x, a|x̂2, b). Finally, a codebook of 2nI(X;U |X̂2,A)

codewords Un ∈ Un is generated according to the joint pmf p(x, u|x̂2, a). The latter

codebook is further binned into a codebook of rate I(X;U |X̂2, A, Y ) to leverage the

side information Y n available at Decoder 1 via the Wyner-Ziv theorem [1, p. 280].

For encoding, in each block l, a sequence X̂n
2 is selected from the X̂2−codebook

of block l to be jointly typical with the source sequence Xn(l) in the current block.
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Instead, the bin index describes a X̂n
2 sequence in the X̂2−codebook of block (l+1)th

that is jointly typical with the source sequence Xn(l + 1) of the (l + 1)th block.

Moreover, given X̂n
2 and the bin index, a sequence An is chosen such that (An, Xn(l))

are jointly typical. Similarly, a sequence Un is selected for block l to be jointly typical

with the sequence of Xn(l) of block l.

Thanks to the observation of the actions, at block l + 1 Decoder 2 knows the

functions f(An(l)), and aims to find the bin index in which the corresponding codeword

Bn lies. As shown in [62], this is possible with vanishing probability of error, if

I(X; X̂2, f(A)) ≤ H(f(A)|X̂2). Note that the conditioning in the right-hand side is

due to the fact that the sequences Bn are generated conditioned on the sequence X̂n
2

representing a compressed version of the source for the current block l. The latter

does not bring any information regarding the desired sequence Xn(l + 1). �

Remark 8.2. From the proof of the converse in Appendix U, it follows, similarly to

[26], that, adaptive actions (see Remark 8.1) do not increase the rate-distortion-cost

function derived in Proposition 8.2.

8.2.4 Causal Action Observation
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Figure 8.5 Source coding with decoder-side actions for information acquisition
and with information embedding on actions. At time i, Decoder 2 has available the
samples f(Ai) = (f(A1), ..., f(Ai)) in a causal fashion.
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The system model for the set-up in Figure 8.5, is similar to the one described

in Section 8.2.1 with the only difference the decoding function for Decoder 2 is

h
(d)
2i : Bi → X̂2, (8.14)

which maps the causally observed sequence f(Ai) = (f(A1), ..., f(Ai)) into the ith

estimated symbol X̂2i.

Proposition 8.3. The rate-distortion-cost function R(D1, D2,Γ) for the source

coding problem with decoder-side actions and causal observation of the actions

illustrated in Figure 8.5 is given by

R(D1, D2,Γ) = min
p(v,a,u|x), g1(U,Y ), g2(V,f(A))

I(X;V,A) + I(X;U |V,A, Y ), (8.15)

where the mutual information is evaluated with respect to the joint pmf

p(x, y, a, u, v) = p(x)p(v, a, u|x)p(y|x, a), (8.16)

for some pmf p(v, a, u|x) such that the inequalities

E[dj(X, X̂j)] ≤ Dj, for j = 1, 2, (8.17a)

E[Λ(A)] ≤ Γ, (8.17b)

and I(X;V, f(A)) ≤ H(f(A)|V ) (8.17c)

are satisfied for X̂1 = g1(U, Y ) and X̂2 = g2(V, f(A)) with some functions g1: U ×

Y → X̂1 and g2: V × B → X̂2, respectively. Finally, U and V are auxiliary random

variables whose alphabet cardinalities can be constrained as |U| ≤ |X ||V||A| + 1 and

|V| ≤ |X |+ 3, respectively, without loss of optimality.

The difference between the rate-distortion-cost function above with causal

and strictly causal action observation is given by the fact that, with causal action
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observation, Decoder 2 can use the current value of the function f(A) for the estimate

of X̂2. This is captured by the fact that the Encoder provides Decoder 2 with an

auxiliary source description V , which is then combined with f(A) via a function

X̂2 = g2(V, f(A)) to obtain X̂2. The rate (8.15) and the constraint (8.17c) are changed

accordingly. The proof of the converse is given in Appendix U.

Remark 8.3. As seen in Appendix U, with adaptive actions, the rate-distortion-cost

function derived in Proposition 8.3 remains unchanged.

8.2.5 Binary Example

In this section, an example is provided to illustrate the effect of the communication

requirements of the additional decoder (Decoder 2) that observes a function of the

actions on the system performance. Binary alphabets as X = A = Y = {0, 1}

and a source distribution X ∼ Bern(1
2
) are assumed. The distortion metrics are

assumed to be Hamming, i.e., dj(x, x̂j) = 0 if x = x̂j and dj(x, x̂j) = 1 otherwise

for j = 1, 2. Moreover, as shown in Figure 8.6, the side information Y at Decoder

1 is observed through a Z-channel for A = 0 or an S-channel for A = 1. No cost

constraint on the actions is assumed taken by Decoder 1 (which can be enforced by

choosing Λ(A) = A and Γ = 1), and f(A) = A. The example extends that of [4,

Section II-D] to a set-up with the additional Decoder 2. Under the requirement of

lossless reconstruction at Decoder 1, i.e., D1 = 0, the rate-distortion-cost function

R(0, D2,Γ = 1) with non-causal action observation is obtained from Proposition 8.1

by setting U = X̂1 = X, obtaining

R(0, D2, 1) = min
p(x̂2,a|x)

I(X; X̂2, A) +H(X|X̂2, A, Y ), (8.18)

where the minimization is done under the constraints E[d2(X, X̂2)] ≤ D2 and

I(X; X̂2, A) ≤ H(A).
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Figure 8.6 The side information channel p(y|x, a) used in the example of Section
8.2.5.

The minimization in (8.18) can be done over the parameters p(a = 1, x̂2 = 0|x =

0)
△
= α1, p(a = 1, x̂2 = 1|x = 0)

△
= α2 and p(a = 0, x̂2 = 1|x = 0)

△
= α3 with

3∑
i=1

αi ≤ 1

and αi ≥ 0 for i = 1, 2, 3, since by symmetry, one can set p(a = 0, x̂2 = 1|x = 1) = α1,

p(a = 0, x̂2 = 0|x = 1) = α2 and p(a = 1, x̂2 = 0|x = 1) = α3 without loss

of optimality. Explicit expressions can be easily found and have been optimized

numerically.

Figure 8.7 depicts the rate-distortion function versus the distortion D2 of

Decoder 2 for values of δ = 0.2, δ = 0.5 and δ = 0.8. It can be seen that if the

distortion D2 tolerated by Decoder 2 is sufficiently large (e.g., D2 ≥ 0.4 for δ = 0.5),

then the communication requirements of Decoder 2 do not increase the required

rate. This can be observed by comparing the rate R(0, D2,Γ) with rate R(0, 0.5,Γ)

corresponding to a distortion level D2 = 0.5, which requires no communication to

Decoder 2. The smallest distortion D2 that does not affect the rate can be found as

D2 = α2,opt + α3,opt, where α2,opt and α3,opt are the optimal values for problem (8.18)

with D2 = 0.5 that minimizes α2 + α3.

Now, the performance between non-causal action observation, as considered

above, and strictly causal action observation are compared. The performance in the

latter case can be obtained from Proposition 8.2 and leads to (8.18) with the more

restrictive constraint (8.13c). Figure 8.8 plots the difference between rate-distortion



150

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.4

0.5

0.6

0.7

0.8

0.9

1

Distortion D2

R

 

 
δ=0.2

δ=0.5
δ=0.8

Figure 8.7 Rate-distortion function R(0, D2, 1) in (8.18) versus distortion D2 with
the side information channel in Figure 8.6 (non-causal side information).
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Figure 8.8 Difference between the rate-distortion function (8.18) with non-causal
(NC) and strictly causal (SC) action observation versus δ for values of distortion
D2 = 0.1, 0.2 and 0.3.

function (8.18) for the case of non-causal and strictly causal action observation versus

δ for three values of distortion, namely D2 = 0.1, 0.2, 0.3. As shown, irrespective of the
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value of distortion D2, for values of δ = 0 and δ = 1, the performance with non-causal

action observation is equal to that with strictly causal observation. This is due to the

facts that: i) for δ = 0, the side information Y is a noiseless measure of the source

sequence X for both A = 0 and A = 1 and thus there is no gain in making the actions

at Decoder 1 to be dependent of X, and thus X̂2; ii) for δ = 1, the side information

Y is independent of the source sequence X given both A = 0 and A = 1, and thus

it is without loss of optimality to choose actions at Decoder 1 to be independent of

X and X̂2. It is can be concluded that for both δ = 0 and δ = 1, causal action

observation, and in fact even selecting A to be independent of X, does not entail

any performance loss. Instead, for values 0 < δ < 1, it is generally advantageous for

Decoder 1 to select actions correlated with the source X, and hence some performance

loss is observed with strictly causal action observation owing to the more restrictive

constraint (8.13c). This reflects the need to cater to both Decoder 1 and Decoder 2

when selecting actions A, which requires description of two different source blocks.

Following similar arguments, it is also noted that, as the communication requirements

for Decoder 2 become more pronounced, i.e., as D2 decreases, the difference between

the rate-distortion function with non-causal and strictly-causal action observation

increases. The performance with causal action observation is intermediate between

full and strictly causal observation, and it is not shown here.

8.3 Encoder-Side Actions for Side Information Acquisition

In the previous section, the actions controlling the quality and availability of the

side information were taken by the decoder. In this section, following [4, Section

III], instead scenarios are considered in which the encoder takes the actions affecting

the side information of Decoder 1, as shown in Figure 8.2. Specifically, the encoder

takes actions An ∈ An, thus influencing the side information available to the Decoder

1 through a discrete memoryless channel p(y|x, a). Decoder 2 observes the action
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sequence to obtain the deterministic function f(An) = (f(A1), ..., f(An)), or the

corresponding causal and strictly causal function, which is used to estimate the source

sequence subject to a distortion constraint.

An (n,R,D1, D2,Γ) code is defined similar to the previous sections with the

difference that the action encoder (8.2) maps directly the source sequence Xn into

the action sequence An, i.e.,

h(a): X n → An. (8.19)

As discussed in [4], even in the absence of Decoder 2, the problem at hand is

challenging. Therefore, focus is on certain special cases, first the special case in

which the side information channel p(y|x, a) is such that Y is a deterministic function

of A, i.e., Y = fY (A), and f(A) = A. This is solved in Proposition 8.4, and

generalized by the following remark to the case of all deterministic function f for

which H(fY (A)|f(A)) = 0. Following Proposition 8.4 is Proposition 8.5, where the

case H(f(Y )|fY (A)) = 0 is solved.

Proposition 8.4. The rate-distortion-cost function R(D1, D2,Γ) for the source

coding problem with encoder-side actions, non-causal, causal or strictly causal

observation of the actions illustrated in Figure 8.2 with f(A) = A and Y = fY (A)

is given by

R(D1, D2,Γ) = min
p(u|x), p(x̂1|u,x), p(x̂2|u,x), p(a)

{I(X; X̂1, U)−H(fY (A))}+, (8.20)

where the information measures are evaluated with respect to the joint pmf

p(x, u, x̂1, x̂2, a) = p(x)p(u|x)p(x̂1|u, x)p(x̂2|u, x)p(a), (8.21)
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for some pmfs p(u|x), p(x̂1|u, x), p(x̂2|u, x) and p(a) such that the inequalities

E[dj(X, X̂j)] ≤ Dj, for j = 1, 2, (8.22a)

E[Λ(A)] ≤ Γ, (8.22b)

I(X;U) ≤ H(fY (A)) (8.22c)

and I(X; X̂2|U) ≤ H(A|fY (A)) (8.22d)

are satisfied. Finally, U is an auxiliary random variable whose alphabet cardinality

can be constrained as |U| ≤ |X ||X̂1||X̂2|+ 3 without loss of optimality.

Remark 8.4. The results above generalizes a number of known single-letter charac-

terizations. Notably, if D2 = D2,max, so that the distortion requirements of Decoder

2 are immaterial to the system performance, the result reduces to [4, Theorem 7].

Moreover, in the special case in which A = (A0, A2), Y = A0, R = R1, |A0| = 2R0 ,

|A2| = 2R2 , the model coincides with the lossy Gray-Wyner problem [66]2.

As detailed in the proof below, Proposition 8.4 establishes the optimality

of separate source-channel coding for the set-up in Figure 8.2 under the stated

conditions. In particular, the encoder compresses using a standard successive

refinement source code in which U represents the coarse description and X̂1, X̂2

two independent refinements. The indices of the coarse description U and of the

refined description X̂2 are sent on the degraded (deterministic) broadcast channel with

input A and outputs (A, t(A)) using superposition coding. Reliable compression and

communication is guaranteed by the two bounds (8.22c)-(8.22d). A further refined

description X̂1 is produced for Decoder 1, and the corresponding index is sent partly

over the mentioned broadcast channel and partly over the link of rate R, leading to

the rate (8.20). Details of the achievability proof can be found below, while the proof

of the converse is given in Appendix V.

2Note that here 2R0 and 2R2 are constrained to be integers.
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Remark 8.5. Following the discussion above, specializing Proposition 8.4 to the

case R = 0 shows the optimality of source-channel coding separation for the lossy

transmission of a source over a deterministic degraded broadcast channel (see [1,

Chapter 14] for a review of scenarios in which the optimality of separation holds for

lossless transmission over a broadcast channel).

Sketch of the achievability proof : As anticipated above, achievability uses the

ideas of a source-channel coding separation, successive refinement and superposition

coding. Only the outline is described, as the rigorous details can be derived based

on standard techniques [1]. Starting with the case of non-causal action observation

at Decoder 2, note that the deterministic channel with input A and outputs A (to

Decoder 2) and fY (A) (to Decoder 1) is not only deterministic but also degraded [1,

Chapter 5]. This channel is used to send a common source description of rate R̃1

to both the decoders and a refined description of rate R̃2 to Decoder 2 only. To

elaborate, fix the pmfs p(u|x), p(x̂1|u, x), p(x̂2|u, x) and p(a). Generate a codebook

of 2nI(X;U) sequences Un i.i.d. with the pmf p(u) and, for each Un sequence, generate

a codebook of 2nI(X;X̂1|U) X̂n
1 sequences i.i.d. with pmf p(x̂1|u) and a codebook of

2nI(X;X̂2|U) sequences X̂n
2 i.i.d. with pmf p(x̂2|u). Given a source sequence Xn, the

encoder finds a jointly typical Un codeword, and then a codeword X̂n
1 jointly typical

with (Xn, Un) and similarly for X̂n
2 . Using source-channel separation on the broadcast

“action” channel described above, the index from the U -codebook and a part of the

index from the X̂1-codebook, of rate r, is described to both decoders, and the index

from X̂2-codebook is described to Decoder 2 as its private information. Thus, the

inequalities below hold

R̃1 ≥ I(X;U) + r (8.23a)

and R̃2 ≥ I(X; X̂2|U). (8.23b)
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The capacity region of the broadcast channel is given by the conditions [1, Chapter

9], R̃1 ≤ H(fY (A)) and R̃1 + R̃2 ≤ H(A), and thus the following rates are achievable

R̃1 ≤ H(fY (A)) (8.24a)

and R̃2 ≤ H(A|fY (A)). (8.24b)

Finally the remaining part of the index of codeword X̂n
1 is sent through the direct

rate R, leading to the condition

R ≥ I(X; X̂1|U)− r. (8.25)

Combining (8.23), (8.24) and (8.25), and using Fourier-Motzkin elimination, one can

obtain

R ≥ I(X; X̂1, U)−H(fY (A)) (8.26)

and (8.29c)-(8.22d). The distortion and cost constraints are handled in a standard

manner and hence the details are omitted.

It remains to discuss how to handle the case of causal or strictly causal action

observation. Given the converse result in Appendix V, it is enough to show that

(8.20)-(8.22) is achievable also with strictly causal and causal action observation. This

can be simply accomplished by encoding in blocks as per achievability of Proposition

8.2 and Proposition 8.3. Specifically, in each block the encoder compresses the source

sequence corresponding to the next block. Decoder 2 then operates as above, while

Decoder 1 can recover all source blocks at the end of all blocks. �

Remark 8.6. The scenario solved above is when the action observation is perfect, i.e.,

f(A) = A. The result also carries verbatim for the more general case where f(A) is

a generic function as long as H(fY (A)|f(A)) = 0. The expressions of the rate region

remain the same as in the proposition above except that A is replaced by f(A).
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Proposition 8.4 characterizes the optimal performance for the case when

Decoder 2 has a better information about the actions taken by the encoder than

Decoder 1 in the sense that H(fY (A)—f(A)) = 0. It is noted here that a similar

characterization can be given also for the dual setting in which H(f(A)—fY (A)) = 0

so that Decoder 1 has the better observation about the actions.

Proposition 8.5. The rate-distortion-cost function R(D1, D2,Γ) for the source

coding problem with encoder-side actions, non-causal, causal or strictly causal

observation of the actions illustrated in Figure 8.2 with H(f(A)|fY (A)) = 0, is given

by

R(D1, D2,Γ) = min
p(a), p(x̂1,x̂2|x)

{I(X; X̂1, X̂2)−H(fY (A))}+, (8.27)

where the information measures are evaluated with respect to the joint pmf

p(x, x̂1, x̂2, a) = p(x)p(x̂1, x̂2|x)p(a), (8.28)

such that the following inequalities are satisfied,

E[dj(X, X̂j)] ≤ Dj, for j = 1, 2, (8.29a)

E[Λ(A)] ≤ Γ, (8.29b)

I(X; X̂2) ≤ H(f(A)). (8.29c)

The converse follows similarly as that for Proposition 8.4 where instead of U

in the converse, X̂2 is used, as knowing Y n = fY (A
n) implies knowing f(An), due

to the assumption H(f(A)|fY (A)) = 0. The achievability is outlined for only for

the non-causal case (the achievability for strictly causal and causal case uses block

coding ideas as in Proposition 8.4). A successive refinement codebook is generated by

drawing 2nI(X;X̂2) codewords X̂n
2 , and, for each codeword X̂n

2 , a number 2nI(X;X̂1|X̂2) of
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codewords X̂n
1 . As for Proposition 8.4, the indices of these two codebooks obtained via

standard joint typicality encoding are sent through the degraded broadcast channel

p(y, b|a) = 1{y=fY (A),b=f(A)}. Splitting the rate for the index of codeword X̂n
1 so that

a rate R is sent over the direct link to Decoder 1, reliability of compression and

communication over the “action” broadcast channel is guaranteed if

I(X; X̂2) ≤ H(f(A)) (8.30)

I(X; X̂2) + I(X; X̂1|X̂2)−R ≤ H(f(A), fY (A)) = H(fY (A)), (8.31)

where the latter inequality implies R ≥ I(X; X̂1, X̂2) − H(fY (A)). The proof is

concluded using the usual steps. �

8.4 Actions for Channel State Control and Probing

In this section, the impact of information embedding on actions for the set-up of

channel coding with actions of [44] is considered. To this end, consider the model in

Figure 8.3, in which Decoder 1, based on the observation of a deterministic function

of the actions, wishes to retrieve part of the information destined to Decoder 2. Note

that for simplicity of notation here the additional encoder that observes the actions

is denoted as Decoder 1, rather than Decoder 2 as done above. Also, it is emphasized

that in the original set-up of [44], Decoder 1 was not present.

8.4.1 System Model

The system is defined by the pmfs p(x), p(y|x, s, a), p(s|a), function f: A → B and

by discrete alphabets X ,A, B, S, and Y . Given the messages (M1,M2), selected

randomly from the set M1 × M2 = [1, 2nR1 ] × [1, 2nR2 ], an action sequence An ∈

An is selected by the Encoder. Decoder 1 observes the signal Bn = f(An) as a

deterministic function of the actions, and estimates message M1. Note that the

notation here implies a “non-causal” observation of the actions, but it is easy to
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see that the results below hold also with causal and strictly causal observation of

the actions. Moreover, the state sequence Sn ∈ Sn is generated as the output of

a memoryless channel p(s|a) and p(bn, sn|an) =
∏n

i=1 p(si|ai)1{bi=f(ai)} holds for an

action sequence An = an. The input sequence Xn ∈ X n is selected on the basis of

both messages (M1,M2) and of the state sequence Sn by the Encoder. The action

sequence An and the input Xn have to satisfy an average cost constraint defined by

a function γ : A × X → [0,∞), so that the cost for the input sequences an and xn

is given by γ(an, xn) = 1
n

∑n
i=1 γ(ai, xi). Given Xn = xn, Sn = sn and An = an,

the received signal is distributed as p(yn|xn, sn, an) =
∏n

i=1 p(yi|xi, si, ai). Decoder 2,

having received the signal Y n, estimates both messages (M1,M2).

The setting includes the semi-deterministic broadcast channel with degraded

message sets [67] (see also [1, Ch. 8]) as a special case by setting X to be constant

and Y = S, and the channel with action-dependent states studied in [44] for R1 = 0.

Definition 8.4. An (n,R0, R1,Γ, ϵ) code for the model in Figure 8.3 consists of an

action encoder

h(a): M1 ×M2 → An, (8.32)

which maps message (M1,M2) into an action sequence An; a channel encoder

h(e): M1 ×M2 × Sn → X n, (8.33)

which maps message (M1,M2) and the state sequence Sn into the sequence Xn; two

decoding functions

h
(d)
1 : Bn → M1, (8.34)

and h
(d)
2 : Yn → M1 ×M2, (8.35)

which map the sequences Bn and Y n into the estimated messages M̂1 and (M̂1, M̂2),

respectively; such that the probability of error in decoding the messages (M1,M2) is
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small,

Pr[h
(d)
1 (Bn) ̸=M1] ≤ ϵ, (8.36)

and Pr[h
(d)
2 (Y n) ̸= (M1,M2)] ≤ ϵ, (8.37)

and the cost constraint is satisfied, i.e.,

1

n

n∑
i=1

E [γ(Ai, Xi)] ≤ Γ + ϵ. (8.38)

Given a cost Γ, a rate pair (R1, R2) is said to be achievable for a cost-constraint

Γ if, for any ϵ > 0 and sufficiently large n, there a exists a (n,R1, R2,Γ, ϵ) code.

The goal is to characterize the capacity-cost region C(Γ), which is the closure of all

achievable rate pairs (R1, R2) for the given cost Γ.

8.4.2 Capacity-Cost Region

In this section, a single-letter characterization of the capacity-cost region is derived.

Proposition 8.6. The capacity-cost region C(Γ) for the system in Figure 8.3 is given

by the union of all rate pairs (R1, R2) such that the inequalities

R1 ≤ H(f(A)) (8.39a)

and R1 +R2 ≤ I(A,U ;Y )− I(U ;S|A), (8.39b)

are satisfied, where the mutual informations are evaluated with respect to the joint

pmf

p(a, s, u, x, y) = p(a)p(s|a)p(u|s, a)1{x=g(u,s)}p(y|x, s, a), (8.40)

for some pmfs p(a), p(u|s, a) and function g: U × S → X such that

E[γ(A,X)] ≤ Γ. (8.41)
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Finally, one can set |U| ≤ |X ||S||A|+ 1 without loss of optimality.

The proof of converse is an immediate consequence of cut-set arguments and

of the proof of the upper bound obtained in [44, Theorem 1]. Specifically, inequality

(8.39a) follows by considering the cut around Decoder 1, while the inequality (8.39b)

coincides with the bound derived in [44, Theorem 1] on the rate that can be

communicated between the Encoder and Decoder 2 with no regards for Decoder 13.

The achievability requires rate splitting, superposition coding and the coding strategy

proposed in [44, Theorem 1]. A sketch of proof of the achievability is relegated to

Appendix W.
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Figure 8.9 Channel coding with actions for channel state probing and with
information embedding on actions.

8.4.3 Probing Capacity

Here, an example is provided to illustrate the effect of the communication requirements

of the action-cribbing decoder on the system performance. Consider the communi-

cation system shown in Figure 8.9, where the states is known to Decoder 2. It is

further assumed that actions are binary, such that, if A = 1, the channel encoder

observes the state S, and if A = 0, it does not obtain any information about S.

3The cardinality constraints follow from [44, Theorem 1]
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This problem is modeled by defining the state information available at the encoder

as Se = u(S,A), where u(S, 1) = S and u(S, 0) = e, where represents as “erasure”

symbol. Following [45], this problem is referred to as having a “probing” encoder.

The channel encoder maps the state information Sn
e and messages M1,M2

into a codeword Xn (see Figure 8.9). Moreover, two cost constraints, namely

1
n

∑n
i=1 E [γa(Ai)] ≤ ΓA and 1

n

∑n
i=1 E [γx(Xi)] ≤ ΓX are imposed for given action

input cost functions γa : A → [0,Λa,max] and γx : X → [0,Λx,max] with 0 ≤

Λa,max <∞ and 0 ≤ Λx,max <∞, respectively. In [45, Theorem 1], a correspondence

was proved between the set-up of a probing encoder and that of action dependent

states. Using [45, Theorem 1] and Proposition 8.6, one can easily obtain that the

capacity-cost region C(ΓA,ΓX) for the system in Figure 8.9 is given by the union of

all rate pairs (R1, R2) such that the inequalities

R1 ≤ H(A|Q) (8.42a)

and R1 +R2 ≤ I(X;Y |S,Q), (8.42b)

are satisfied, where the mutual informations are evaluated with respect to the joint

pmf

p(q, a, s, se, x, y) = p(q)p(a|q)p(s)1{se=u(s,a)}p(x|se, a, q)p(y|x, s), (8.43)

for some pmfs p(q), p(a|q), p(x|se, a, q) such that E[γa(A)] ≤ ΓA and E[γx(X)] ≤ ΓX .

Now, (8.42a)-(8.42b) are applied to the channel shown in Figure 8.9 in which

alphabets are binary X = Y = S = {0, 1}, S is a Bern(1 − ϵ) variable for 0 ≤ ϵ ≤ 1

and the channel is a binary symmetric with flipping probability 0.5 if S = 0 (“bad”

channel state) and 0 if S = 1 (“good” channel state).

To evaluate the maximum achievable sum-rate R1+R2 for a given rate R1, let’s

define Pr[A = 1] = γ, Pr[X = 1|Se = 1, A = 1] = p1 and Pr[X = 1|Se = e, A = 0] =

p2, and set Pr[X = 1|Se = 0, A = 1] = 0 without loss of optimality. The maximum
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sum-rate R1 + R2 for a given rate R1 is then obtained from (8.42b) by solving the

problem

R1 +R2 = max
0≤p1,p2,γ≤1

γ(1− ϵ)H(p1) + (1− γ)(1− ϵ)H(p2), (8.44)

under the constraint E[X] = p1γ(1 − ϵ) + p2(1 − γ) ≤ ΓX , E[A] = γ ≤ ΓA and

H(A) = H(γ) ≥ R1. Note that the last constraint imposes that the rate achievable

by the Decoder 1 is larger than R1 as per (8.42a).

The sum-rate in (8.44) is shown in Figure 8.10 for ϵ = 0.5, ΓA = 1 and different

values of R1. It can be seen that, for sufficiently small values of the cost constraint

ΓX , increasing the communication requirements, i.e., R1, of the Decoder 1, reduces

the achievable sum-rate R1 + R2. This is due to the fact that increasing R1 requires

to encode more information in the action sequence, which in turn reduces the portion

of the actions that can be set to A = 1, i.e., Pr[A = 1]. As a result, the encoder is

less informed about the state sequence and thus bound to waste some power on bad

channel states.

Remark 8.7. The communication requirements of Decoder 1 need not necessarily

affect the system performance. For instance, consider the example 1 in [45, Section

V.A], which includes a probing encoder as in Figure 8.9 but transmitting over a

different channel. There, it turns out that it is sufficient to have Pr[A = 1] & 0.2

in order to achieve the same performance that can be achieved with full encoder

channel state information. Therefore, the additional constraint on the rate of Decoder

1 (8.42a), namely R1 ≥ H(A), does not affect the sum-rate achievable in this example

for any rate R1 ∈ [0, 1].

8.5 Concluding Remarks

There is a profound interplay between actuation and communication in that both

actuation can be instrumental to improve the efficiency of communication, and, vice
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versa, communication, implicit or explicit, can provide an essential tool to improve

control tasks. This work has focused on the first type of interplay, and has investigated

the implications of embedding information directly in the actions for the aim of

communicating with a separate decoder. The communication requirements of this

decoder are generally in conflict with the goal of improving the efficiency of the

given communication link. This performance trade-off has been studied here for both

source and channel coding. The results provided in this chapter allow to give a

quantitative answer to the questions posed in Section 8.1.1 regarding the impact of

the requirements of action information embedding on the system performance. They

also shed light into the structure of optimal embedding strategies, which turns out to

be related, for the source coding model, with the strategies studied in [62, 64].

The investigation on the theme of information embedding on actions can be

further developed in a number of directions, including models with memory [56, 28]

and with multiple terminals [23, 55, 27]. It is also noted that results akin to the ones
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reported here can be developed assuming causal state information at the decoder for

source coding problems or causal state information at the transmitter.



APPENDIX A

PROOF OF PROPOSITION 3.1

First, it is observed that from Definition 3.1, since distortion and CR constraints
(3.8) and (3.9) depend only on the marginal pmfs p(x, y1) and p(x, y2), so does the
rate-distortion function. Therefore, in the proof, one can assume, without loss of
generality, that the joint pmf p(x, y1, y2) satisfies the Markov chain condition X −
Y2 − Y1 so that it factorizes as (cf. (3.10))

p(x, y1, y2) = p(x, y2)p̃(y1|y2). (A.1)

Consider an (n,R,D1 + ϵ,D2 + ϵ, ϵ) code, whose existence is required for
achievability by Definition 3.1. By the CR requirements (3.9), first it is observed
that the following Fano inequalities hold

H(ψj(X
n)|hj(g(Xn), Y n

j )) ≤ nδ(ϵ), for j = 1, 2, (A.2)

for n sufficiently large, where δ(ϵ) = nϵlog|X |+Hb(ϵ). Moreover, one can write

nR = H(J) ≥ H(J |Y n
1 ) (A.3a)

(a)
= H(J |Y n

1 Y
n
2 ) + I(J ;Y n

2 |Y n
1 ), (A.3b)

where (a) follows by the definition of mutual information. From now on, to simplify
notation, explicit the dependence of ψj, gj and hj on Xn and (J, Y n

j ), respectively,
is not made. Also, ψji is defined as the ith symbol of the sequence ψj so that ψj =
(ψj1, ..., ψjn).

The first term in (A.3b), H(J |Y n
1 Y

n
2 ), can be treated as in [8, Section V.A.], or,

more simply, one can proceed as follows:

H(J |Y n
1 Y

n
2 )

(a)
= I(J ;Xn|Y n

1 Y
n
2 ) (A.4a)

(b)

≥ I(h1h2;X
n|Y n

1 Y
n
2 ) (A.4b)

= I(h1h2ψ1ψ2;X
n|Y n

1 Y
n
2 )− I(ψ1ψ2;X

n|Y n
1 Y

n
2 h1h2) (A.4c)

(c)

≥ I(ψ1ψ2;X
n|Y n

1 Y
n
2 )− I(ψ1ψ2;X

n|Y n
1 Y

n
2 h1h2) (A.4d)

(d)
= I(ψ1ψ2;X

n|Y n
2 )−H(ψ1ψ2|Y n

1 Y
n
2 h1h2)

+H(ψ1ψ2|Y n
1 Y

n
2 h1h2X

n) (A.4e)
(e)

≥ I(ψ1ψ2;X
n|Y n

2 )− nδ(ϵ) (A.4f)

(f)

≥
n∑

i=1

I(ψ1iψ2i;Xi|Y2i)− nδ(ϵ), (A.4g)
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where (a) follows because J is a function of Xn; (b) follows since h1 and h2 are
functions of (J, Y n

1 ) and (J, Y n
2 ), respectively ; (c) follows by using the Markov chain

(ψ1, ψ1, X
n)—Y n

2 —Y n
1 ; (d) follows by the chain rule of mutual information and since

mutual information is non-negative; (e) follows by (R.2a) and since entropy is non-
negative; and (f) follows by the chain rule for entropy, since Xn and Y n

2 are i.i.d.,
and due to the fact conditioning decreases entropy.

Similarly, the second term in (A.3b), namely, I(J ;Y n
2 |Y n

1 ), leads to

I(J ;Y n
2 |Y n

1 )
(a)

≥ I(h1;Y
n
2 |Y n

1 ) (A.5a)

= I(h1ψ1;Y
n
2 |Y n

1 )− I(ψ1;Y
n
2 |Y n

1 h1) (A.5b)
(b)

≥ I(ψ1;Y
n
2 |Y n

1 )−H(ψ1|Y n
1 h1) +H(ψ1|Y n

1 Y
n
2 h1) (A.5c)

(c)

≥ I(ψ1;Y
n
2 |Y n

1 )− nδ(ϵ) (A.5d)

(d)

≥
n∑

i=1

I(ψ1i;Y2i|Y1i)− nδ(ϵ), (A.5e)

where (a) follows because h1 is a function of J and Y n
1 ; (b) follows by the chain rule

of mutual information and since mutual information is non-negative; (c) follows by
(R.2a) and since entropy is non-negative; and (d) follows by the chain rule for entropy,
since Y n

2 and Y n
1 are i.i.d., and due to the fact conditioning decreases entropy. From

(A.3b), (A.4g), and (A.5e), it is also true that

nR ≥
n∑

i=1

I(ψ1iψ2i;Xi|Y2i) + I(ψ1i;Y2i|Y1i)− nδ(ϵ) (A.6a)

(a)
=

n∑
i=1

I(Xi;ψ1i|Y1i) + I(Xi;ψ2i|Y2iψ1i)− nδ(ϵ), (A.6b)

where (a) follows because of the Markov chain relationship (ψ1i, ψ2i)−Xi−Y2i−Y1i,

for i = 1, ..., n. By defining X̂ji = ψji with j = 1, 2 and i = 1, ..., n, the proof is
concluded as in [8].



APPENDIX B

PROOF OF PROPOSITION 3.2

As explained in the text, it is only required to focus on the case where D2 ≤ D1 ≤ σ2
x.

As per the discussion in Appendix A, one can assume, without loss of generality, that
the Markov chain relationship X − Y2 − Y1 holds, so that

Y2 = X + Z2 (B.1a)

and Y1 = Y2 + Z̃1, (B.1b)

where Z̃1 ∼ N (0, N1) is independent of (X,Z2).
First a converse is proved. Calculating the rate-distortion function in (3.14)

requires minimization over the pmf p(x̂1, x̂2|x) under the constraint (3.13). A
minimizing p(x̂1, x̂2|x) exists by the Weierstrass theorem due to the continuity of the
mutual information and the compactness of the set of pmfs defined by the constraint
(3.13)[68]. Fixing one such optimizing p(x̂1, x̂2|x), the rate-distortion function (3.14)
can be written as

RCR
HB(D1, D2) = I(X; X̂2|Y2) + I(X̂1;Y2|Y1). (B.2)

The first term in (B.2), i.e., I(X; X̂2|Y2), can be easily bounded using the approach
in [8, p. 5007]. Specifically, the following holds

I(X; X̂2|Y2) = h(X|Y2)− h(X|X̂2Y2)

= h(X|X + Z2)− h(X − X̂2|X̂2, X̂2 + (X − X̂2) + Z2)

= h(X|X + Z2)− h(X − X̂2|X̂2, (X − X̂2) + Z2)
(a)

≥ h(X|X + Z2)− h(X − X̂2|(X − X̂2) + Z2)

(b)

≥ 1

2
log2

(
2πe

σ2
x

1 + σ2
x

N2

)
− 1

2
log2

(
2πe

D2

1 + D2

N2

)

=
1

2
log2

(
σ2
x

σ2
x +N2

· D2 +N2

D2

)
, (B.3)

where (a) follows because conditioning decreases entropy; and (b) follows from the
maximum conditional entropy lemma [1, p. 21], which implies that h(E|E + Z2) ≤
1
2
log2(2πeσ

2
E|E+Z2

) with E = X−X̂2. In fact, it is true that σ2
E|E+Z2

≤ D2

1+
D2
N2

, since the

conditional variance σ2
E|E+Z2

is upper bounded by the linear minimum mean square

error of the estimate of E given E + Z2. This mean square error is given by D2

1+
D2
N2

,

since E[E2] ≤ D2 and since Z2 is independent of E due to the factorization (3.12)
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and to the independence of X and Z2. For the second term in (B.2), the following
holds:

I(X̂1;Y2|Y1) = h(Y2|Y1)− h(Y2|Y1, X̂1)

=
1

2
log2

(
2πe

N1(N2 + σ2
x)

N1 +N2 + σ2
x

)
− h(Y2|Y1, X̂1). (B.4)

Moreover, it can be evaluated as

h(Y2|Y1, X̂1) = h(Y2, Y1|X̂1)− h(Y1|X̂1)

= h(Y2|X̂1) + h(Y1|Y2, X̂1)− h(Y1|X̂1)

= h(Y2|X̂1)− h(Y2 + Z̃1|X̂1) + h(Y2 + Z̃1|Y2, X̂1)

(a)
= h(Y2|X̂1)− h(Y2 + Z̃1|X̂1) +

1

2
log2(2πeN1), (B.5)

where (a) follows because Z̃1 is independent of Y2 and of X̂1, due to the factorization
(3.12) and due to the independence of Z̃1 and X. Next, a lower bound is obtained on

the term h(Y2+ Z̃1|X̂1) in (B.5) as a function of h(Y2|X̂1) by using the entropy power
inequality (EPI) [1, p. 22]. Specifically, by using the conditional version of EPI [1, p.
22], it holds that

22h(Y2+Z̃1|X̂1) ≥ 22h(Y2|X̂1) + 22h(Z̃1|X̂1)

(a)
= 22h(Y2|X̂1) + 22h(Z̃1)

= 22h(Y2|X̂1) + 2πeN1, (B.6)

where (a) follows because Z̃1 is independent of X̂1 as explained above. The first two
terms in (B.5) can thus be bounded as

h(Y2|X̂1)− h(Y2 + Z̃1|X̂1) ≤ h(Y2|X̂1)−
1

2
log(22h(Y2|X̂1) + 2πeN1)

=
1

2
log2

(
22h(Y2|X̂1)

22h(Y2|X̂1) + 2πeN1

)
(a)

≤ log2

(
2πe(D1 +N2)

2πe(D1 +N2) + 2πeN1

)
, (B.7)

where (a) follows because log2

(
22h(Y2|X̂1)

22h(Y2|X̂1)+2πeN1

)
is an increasing function of h(Y2|X̂1)

and h(Y2|X̂1) ≤ 1
2
log2(2πe(D1 +N2)), as can be proved by using the same approach

used for the bounds (a) and (b) in (B.3). By substituting (B.7) into (B.5), and using
the result in (B.4), one can obtain

I(X̂1;Y2|Y1) ≥ 1

2
log2

(
2πe

N1(N2 + σ2
x)

N1 +N2 + σ2
x

)
− 1

2
log2

(
2πe

N1(D1 +N2)

D1 +N2 +N1

)
=

1

2
log2

(
(N2 + σ2

x)(D1 +N2 +N1)

(N1 +N2 + σ2
x)(D1 +N2)

)
. (B.8)
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Finally, by substituting (B.3) and (B.8) into (B.2), the lower bound is obtained as

RCR
HB(D1, D2) ≥ 1

2
log2

(
σ2
x

σ2
x +N2

· D2 +N2

D2

)
+

1

2
log2

(
(N2 + σ2

x)(D1 +N2 +N1)

(N1 +N2 + σ2
x)(D1 +N2)

)
=

1

2
log2

(
σ2
x

(σ2
x +N1 +N2)

· (D1 +N1 +N2)(D2 +N2)

(D1 +N2)D2

)
. (B.9)

For achievability, (3.14) is calculated with X = X̂2 + Q2 and X̂2 = X̂1 + Q1,
where Q1 ∼ N (0, D1 −D2) and Q2 ∼ N (0, D2) are independent of each other and of

(X̂1,Z̃1, Z2). This leads to the upper bound

RCR
HB(D1, D2) ≤ I(X; X̂1X̂2|Y2) + I(X̂1;Y2|Y1)

= I(X; X̂2|Y2) + I(X̂1;Y2|Y1)
= h(X|Y2)− h(X|Y2, X̂2) + h(Y2|Y1)− h(Y2|Y1, X̂1)

= h(X|X + Z2)− h(X̂2 +Q2|X̂2 +Q2 + Z2, X̂2)

+h(X + Z2|X + Z2 + Z̃1)

−h(X̂1 +Q1 +Q2 + Z2|X̂1 +Q1 +Q2 + Z2 + Z̃1, X̂1)

= h(X|X + Z2)− h(Q2|Q2 + Z2) + h(X + Z2|X + Z2 + Z̃1)

−h(Q1 +Q2 + Z2|Q1 +Q2 + Z2 + Z̃1)

(a)
=

1

2
log2

(
2πe

σ2
x

1 + σ2
x

N2

)
− 1

2
log2

(
2πe

D2

1 + D2

N2

)

+
1

2
log2

(
2πe

σ2
x +N2

1 + σ2
x+N2

N1

)
− 1

2
log2

(
2πe

D1 +N2

1 + D1+N2

N1

)

=
1

2
log2

(
σ2
x

(σ2
x +N1 +N2)

· (D1 +N1 +N2)(D2 +N2)

(D1 +N2)D2

)
, (B.10)

where (a) follows using h(A|A + B) = 1
2
log2

(
2πe SA

1+
SA
SB

)
, for A and B being

independent Gaussian sources with A ∼ N (0, SA) and B ∼ N (0, SB). By comparing
(B.9) with (B.10), the proof is completed.



APPENDIX C

PROOF OF (3.23)

Here, it is proved that (3.2) equals (3.23) for the given sources. For the converse, the
following holds

I(X; X̂|Y ) = H(X|Y )−H(X|X̂, Y )

= p− pH(X|X̂, Y ̸= X)− (1− p2)H(X|X̂, Y = X)

= p− pH(X|X̂, Y ̸= X)

= p− pH(X|X̂)

= p− pH(X ⊕ X̂|X̂)
(a)

≥ p− pH(X ⊕ X̂)
≥ p− pH(D)
= p(1−H(D)), (C.1)

where (a) follows because conditioning decreases entropy. Achievability follows by

calculating (3.2) with X = X̂ ⊕Q where Q ∼ Ber(D).
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APPENDIX D

PROOF OF PROPOSITION 3.3

As explained in the text, it is only required to focus on the case whereD2 ≤ D1 ≤ 1/2.
As for Appendix A and Appendix B, one can assume, without loss of generality, that
the joint pmf of (x, y1, y2) factorizes as (A.1) as shown Figure 3.7. First, a converse
is proved. Similar to (B.2), the rate-distortion function (3.14) can be written as

RCR
HB(D1, D2) = I(X; X̂2|Y2) + I(X̂1;Y2|Y1), (D.1)

where the mutual information terms are calculated with a distribution p(x̂1, x̂2|x)
minimizing (3.14) under the constraint (3.13). The first term in (D.1), i.e.,

I(X; X̂2|Y2), can be easily bounded by following the same steps used in the derivation
of (C.1), leading to

I(X; X̂2|Y2) ≥ p2(1−H(D2)). (D.2)

For the second term in (D.1), instead the following holds

I(X̂1;Y2|Y1) = H(Y2|Y1)−H(Y2|Y1, X̂1)

= H(Y2|Y1)−H(Y2, Y1|X̂1) +H(Y1|X̂1) (D.3)

= H(Y2|Y1)−H(Y2|X̂1)−H(Y1|X̂1, Y2) +H(Y1|X̂1) (D.4)
(a)
= H(Y2|Y1)−H(Y2|X̂1)−H(Y1|Y2) +H(Y1|X̂1), (D.5)

where (a) follows because of the Markov chain condition Y1 − Y2 − X̂1. The second
term in the right-hand side of (D.5) can be evaluated as

H(Y2|X̂1) = H(Y2, X|X̂1)−H(X|Y2, X̂1)

= H(X|X̂1) +H(Y2|X, X̂1)−H(X|Y2, X̂1)

= H(X|X̂1) +H(Y2|X)− p2H(X|Y2 ̸= X, X̂1)

−(1− p2)H(X|Y2 = X, X̂1)
(a)
= H(X|X̂1) +H(p2)− p2H(X|X̂1)

= H(p2) + (1− p2)H(X|X̂1) (D.6)

where (a) follows because H(Y2|X) = H(p2). The fourth term in the right-hand side
of (D.5) can similarly be evaluated as

H(Y1|X̂1) = H(p1) + (1− p1)H(X|X̂1). (D.7)
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Substituting (D.6) and (D.7) in (D.5), it holds that

I(X̂1;Y2|Y1) = H(p1) + (1− p1)H(X|X̂1)− (H(p2) + (1− p2)H(X|X̂1))
+H(Y2|Y1)−H(Y1|Y2)

= H(p1)−H(p2)− (p1 − p2)H(X|X̂1) +H(Y2)−H(Y1)
(a)

≥ (p1 − p2)− (p1 − p2)H(D1) (D.8)

where (a) follows since H(Y2) = H(p2) + (1− p2) and H(Y1) = H(p1) + (1− p1) and

due to the inequality H(X|X̂1) ≤ H(D1). Substituting (D.8) and (D.2) into (D.1), it
is true that

RCR
HB(D1, D2) ≥ p2(1−H(D2)) + (p1 − p2)(1−H(D1))

= p1(1−H(D1)) + p2(H(D1)−H(D2)). (D.9)

For achievability, (3.14) is calculated with X = X̂2 ⊕ Q2 and X̂2 = X̂1 ⊕ Q1,
where Q1 ∼ Ber(D1 ∗ D2) and Q2 ∼ Ber(D2) are independent of each other and of

(X̂1,E1, E2) where Ej = 1{Yj = e} for j = 1, 2. This leads to the upper bound

RCR
HB(D1, D2) ≤ I(X; X̂1X̂2|Y2) + I(X̂1;Y2|Y1)

= I(X; X̂2|Y2) + I(X̂1;Y2|Y1)
= H(X|Y2)−H(X|Y2, X̂2) +H(Y2|Y1)−H(Y2|Y1, X̂1)

(a)
= p2 − p2H(X|X̂2, Y2 ̸= X)− (1− p2)H(X|X̂2, Y2 = X) + p1H

(
p2
p1

)
+p̃1(1− p2)− p1H(Y2|X̂1, Y1 = e)− (1− p1)H(Y2|X̂1, Y1 = X)

(b)
= p2 − p2H(X|X̂2) + p1H

(
p2
p1

)
+ p̃1(1− p2)

−p1
(
H

(
p2
p1

)
+
p̃1(1− p2)

p1
H(X|X̂1)

)
(c)
= p2 − p2H(X̂2 ⊕Q2|X̂2) + p̃1(1− p2)

−p̃1(1− p2)H(X̂1 ⊕Q1 ⊕Q2|X̂1)
(d)
= p2 − p2H(D2 + p̃1(1− p2)− p̃1(1− p2)H(D1)
= p1(1−H(D1)) + p2(H(D1)−H(D2)), (D.10)

where (a) follows because H(Y2|Y1) = p1H
(

p2
p1

)
+ p̃1(1 − p2); (b) follows because

H(Y2|X̂1, Y1 = X) = H(X|X̂1, Y1 = X) = 0 and H(Y2|X̂1, Y1 = e) = H
(

p2
p1

)
+

p̃1(1−p2)
p1

H(X|X̂1); (c) follows by using the inverse test channels X = X̂2 ⊕ Q2 and

X̂2 = X̂1 ⊕ Q1; and (d) follows because Q2 ∼ Ber(D2) and Q1 ⊕ Q2 ∼ Ber(D1). By
comparing (D.9) with (D.10), the proof is completed.



APPENDIX E

PROOF OF PROPOSITION 3.9

Here the proof of Proposition 3.9 is provided. To this end, it is proved that for any
pair (D1, D2) there exists a joint distribution p(x̂1, x̂2|x) such that (3.13) is satisfied
and the conditions (3.43a) and (3.43b) coincide with (3.42a) and (3.42b), respectively.
This entails that the inner and outer bounds of Proposition 3.7 and Proposition 3.8
coincide.

The four region in the (D1, D2) plane depicted in Figure 3.5 are distinguished.

If D1 ≥ σ2
x and D2 ≥ σ2

x, it is enough to set X̂1 = X̂2 = 0 in (3.43) to prove. For

D1 ≤ σ2
x and D2 ≥ min(D1, σ

2
x), instead one can set X̂1 = X̂2 and X = X̂1 + Q1

in (3.43), where Q1 ∼ N (0, D1) is independent of X̂1. Following the discussion in
Section 3.2.3, it is easy to see that this choice is such that (3.43) coincides with

(3.42). Next, in the sub-region where D1≥ σ2
x and D2 ≤ σ2

x, one can select X̂1 = 0

and X = X̂2 +Q2 in (3.43), where Q2 ∼ N (0, D2) is independent of X̂2. Finally, for

the region in Figure 3.5, for which D2 ≤ D1 ≤ σ2
x, One can choose X = X̂2 +Q2 and

X̂2 = X̂1+Q1, where Q1 ∼ N (0, D1−D2) and Q2 ∼ N (0, D2) are independent of each

other and of (X̂1, E1, E2). With this choice, following the derivations in Appendix
B, it is concluded that condition (3.43a) coincides with (3.42a). As for (3.43b), the
following holds

I(X; X̂1|Y2) + I(X; X̂2|X̂1Y2) = I(X; X̂1X̂2|Y2)
= h(X|Y2)− h(X|X̂1, X̂2, Y2)
= h(X|X + Z2)

−h(X̂1 +Q1 +Q2|X̂1, X̂1 +Q1, X̂1 +Q1 +Q2 +Z2)
= h(X|X + Z2)− h(Q1 +Q2|Q1, Q1 +Q2 + Z2)
= h(X|X + Z2)− h(Q2|Q2 + Z2)

=
1

2
log2

(
σ2
x

1 + σ2
x

N2

)
− 1

2
log2

(
D2

1 + D2

N2

)

=
1

2
log2

(
σ2
x

σ2
x +N2

D2 +N2

D2

)
= RCR

G (D2, N2), (E.1)

which concludes the proof.
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APPENDIX F

PROOF OF PROPOSITION 3.10

Here the proof of Proposition 3.10 is provided. Following similar steps as in Appendix
E, it is proved that for any pair (D1, D2) there exists a joint distribution p(x̂1, x̂2|x)
such that (3.13) is satisfied and the conditions (3.43a) and (3.43b) coincide with
(3.42a) and (3.42b), respectively. This entails that the inner and outer bounds of
Proposition 3.7 and Proposition 3.8 coincide.

The four region in the (D1, D2) plane depicted in Figure 3.8 are distinguished.

If D1 ≥ 1/2 and D2 ≥ 1/2, it is enough to set X̂1 = X̂2 = 0 in (3.43) to prove the

desired result. For D1 ≤ 1/2 and D2 ≥ min(D1, 1/2), one can instead set X̂1 = X̂2

and X = X̂1⊕Q1 in (3.43), where Q1 ∼ Ber(D1) is independent of X̂1. Following the
discussion in Section 3.2.4, it is easy to see that this choice is such that (3.43) coincides
with (3.42). Next, in the sub-region where D1 ≥ 1/2 and D2 ≤ 1/2, one can select

X̂1 = 0 andX = X̂2⊕Q2 in (3.43), whereQ2 ∼ Ber(D2) is independent of X̂2. Finally,

for the region in Figure 3.8, for which D2 ≤ D1 ≤ 1/2, one can choose X = X̂2 ⊕Q2

and X̂2 = X̂1 ⊕Q1, where Q1 ∼ Ber(D1 ∗D2) and Q2 ∼ Ber(D2) are independent of

each other and of (X̂1, E1, E2). With this choice, following the derivations in Appendix
D, it is concluded that condition (3.43a) coincides with (3.42a). As for (3.43b), the
following hold

I(X; X̂1X̂2|Y2) = H(X|Y2)−H(X|X̂1, X̂2, Y2)

= p2 − p2H(X|X̂1, X̂2, Y2 ̸= X)− (1− p2)H(X|X̂1, X̂2, Y2 = X)

= p2 − p2H(X|X̂1, X̂2)
(a)
= p2 − p2H(X|X̂2)

= p2 − p2H(X̂2 ⊕Q2|X̂2)
= p2 − p2H(D2)

= RCR
B (D2, p2), (F.1)

where (a) follows by the Markov chain relationship X− X̂2− X̂1. This completes the
proof.
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APPENDIX G

PROOF OF PROPOSITION 3.11

The proof of the achievability follows from standard arguments, similar to [3]. For
the converse, following the proof of [3, Theorem 3] It is true that for any (R,De,1 +
ϵ,De,2 + ϵ,D1 + ϵ,D2 + ϵ) code, the following inequality holds:

nR ≥
n∑

i=1

I(Xi;U1i|Y1i) + I(Xi;U2i|Y2i), (G.1)

with the definitions Uji
△
= (J, Y

n\i
j ), for j = 1, 2, with Y

n\i
j = [Y i−1

j1 , Y n
j(i+1)]. Note that

with the given definition of Uji, the ith element of the decoding functions (3.5)-(3.6)
can be written as hji(J, Y

n
j ) = x̂ji(Uji, Yji) for all i = 1, ..., n and j = 1, 2. Now,

defining De,ji
△
= E[de,j(h

n
ji(M,Y n

j ), ψji(X
n)], The following chain of inequalities for

the code at hand and j = 1, 2 hold:

De,ji = EXnY n
j
[de,j(h

n
ji(J, Y

n
j ), ψji(X

n))] (G.2a)

(a)
= EXnUjiYji

[de,j(x̂ji(Uji, Yji), ψji(X
n))] (G.2b)

= EXnUji
EYji

[de,j(x̂ji(Uji, Yji), ψji(Xi, X
n\i))|XnUji] (G.2c)

=
n∑

xn∈Xn,uji∈U

p(xn, uji) (G.2d)

EYji
[de,j(x̂ji(Uji, Yji), ψji(Xi, X

n\i))|Xi = xi, X
n\i = xn\i, Uji = uji]

(b)

≥
n∑

xn∈Xn,uji∈U

p(xn, uji) (G.2e)

EYji
[de,j(x̂ji(Uji, Yji), ψji(Xi, X

n\i))|Xi = xi, X
n\i = x∗n\i(xi, uji), Uji = uji]

(c)
=

n∑
xn∈Xn,uji∈U

p(xn, uji) (G.2f)

EYji
[de,j(x̂ji(Uji, Yji), x̂e,ji(Uji, Xi))|Xi = xi, Uji = uji]

= EXiUjiYji
[de,j(x̂ji(Uji, Yji), x̂e,ji(Uji, Xi))], (G.2g)

where (a) follows by using the definition of random variables Uj = (J, Y
n\i
j ); (b)

follows by selecting x∗n\i(xi, uji) as

x∗n\i(xi, uji) ∈ argminxn\i∈Xn\i

EYji
[de,j(x̂ji(Uji, Yji), ψji(Xi, X

n\i
i ))|Xi = xi, X

n\i = xn\i, Uji = uji];
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and (c) follows from the Markov chain relationship Yji−(Xi, Uji)−Xn\i and from the
definition x̂e,ji(Uji, Xi) = ψji(Xi, x

∗n\i(Xi, Uji)). Let Q be a uniform random variable

over the interval [1, n] and independent of the variables (Xn, Y n
1 , Y

n
2 , U

n
1 , U

n
2 , X̂

n
1 , X̂

n
2

, X̂n
e,1, X̂

n
e,2) and define the random variables Uj

△
= (Q,UjQ), X

△
= XQ, Yj

△
= YjQ, X̂j

△
=

X̂jQ, and X̂e,j
△
= X̂e,jQ for j = 1, 2. Moreover, note that X̂j is a deterministic function

of Uji and Yji, and X̂e,j is a deterministic function of Uji andXi for j = 1, 2. The proof
is completed by using (3.45) and the fact that the term I(Xi;U1i|Y1i) + I(Xi;U2i|Y2i)
in (G.1) is convex with respect to the pmf p(u1i, u2i|xi), using standard steps (see,
e.g., [13]).



APPENDIX H

CARDINALITY BOUNDS

Using standard inequalities, it can be seen that the rate region (4.12) evaluated with
a constant Q is a contra-polymatroid, as the Berger-Tung region (4.17) (see e.g., [69]).
Moreover, the role of the variable Q is that of performing the convexification of the
union of all regions of tuples (R1, R2, D1, D2,Γ) that satisfy (4.12) and (4.14) for some
fixed Q. It follows from [69] that every extreme point of region of achievable tuples
(R1, R2, D1, D2,Γ) satisfies the equations

R1 = I(X1;V1|V2) + I(X1;U1|U2, V1, V2, Y ) (H.1a)
R2 = I(X2;V2) + I(X2;U2|V1, V2, Y ) (H.1b)

along with (4.14), where both relationships are satisfied with equality, or

R1 = I(X1;V1) + I(X1;U1|V1, V2, Y ) (H.2a)
R2 = I(X2;V2|V1) + I(X2;U2|U1, V1, V2, Y ) (H.2b)

along with (4.14) satisfied with equality. Applying the Fenchel–Eggleston–Caratheodory
theorem to the right-hand side of the equations above and to (4.14) concludes the
proof (See [1, Appendix C] and [29]).
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APPENDIX I

PROOF OF THE CONVERSE FOR PROPOSITION 4.3

In this section, the proof of converse for Proposition 4.3 is given. For any
(n,R1, R2, D1 + ϵ,D2 + ϵ,Γ + ϵ) code, the following inequalities hold

nR1 ≥ H(M1) ≥ H(M1|M2)
(a)
= I(M1;X

n
1 , X

n
2 |M2)

=
n∑

i=1

H(X1i, X2i|X i−1
1 , X i−1

2 ,M2)−H(X1i, X2i|X i−1
1 , X i−1

2 ,M1,M2)

(b)
=

n∑
i=1

H(X1i, X2i|X i−1
1 , X i−1

2 ,M2)−H(X1i, X2i|X i−1
1 , X i−1

2 ,M1,M2, Y
i−1)

(c)

≥
n∑

i=1

H(X1i, X2i|X i−1
1 , X i−1

2 ,M2, Y
i−1)−H(X1i, X2i|X i−1

1 , X i−1
2 ,M1,M2, Y

i−1)

(d)
=

n∑
i=1

I(X1i, X2i;U1i|U2i),

where (a) follows because M1 is a function of (Xn
1 , X

n
2 ) given that Xn

2 is a function
of Xn

1 by assumption; (b) follows since (X1i, X2i)—(X i−1
1 , X i−1

2 ,M1,M2)—Y i−1forms
a Markov chain; (c) follows by the fact that conditioning decreases entropy; and (d)
follows by defining Uji = (X i−1

1 , X i−1
2 , Y i−1,Mj) for j = 1, 2. A similar chain of

inequalities hold for R2. As for the sum-rate R1 +R2, it is true that

n(R1 +R2) ≥ H(M1,M2)
(a)
= I(M1,M2;X

n
1 , X

n
2 )

=
n∑

i=1

H(X1i, X2i|X i−1
1 , X i−1

2 )−H(X1i, X2i|X i−1
1 , X i−1

2 ,M1,M2)

(b)
=

n∑
i=1

H(X1i, X2i|X i−1
1 , X i−1

2 )−H(X1i, X2i|X i−1
1 , X i−1

2 ,M1,M2, Y
i−1)

(c)

≥
n∑

i=1

I(X1i, X2i;U1i, U2i),

where (a) follows because (M1,M2) are functions of (Xn
1 , X

n
2 ); (b) follows since

(X1i, X2i)— (X i−1
1 , X i−1

2 ,M1,M2)—Y i−1 forms a Markov chain; and (c) follows using
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the definition of Uji for j = 1, 2. Next, let Q be a uniform random variable over the

interval [1, n] and independent of (Xn
1 , X

n
2 , U

n
1 , U

n
2 , Y

n) and define Uj
∆
= (Q,UjQ), for

j = 1, 2, X1
∆
= X1Q, X2

∆
= X2Q, Y

∆
= YQ. Note that X̂j is a function of U1, U2 and Y

for j = 1, 2. Moreover, from (4.8) and (7.7), it holds that

Γ + ϵ ≥ 1

n

n∑
i=1

E [Λ(Ai)] = E[Λ(A)] (I.1)

and Dj + ϵ ≥ 1

n

n∑
i=1

E
[
dj(X1i, X2i, Yi.X̂ji, )

]
= E[d1(X1, X2, Y, X̂j)], for j = 1, 2.

(I.2)



APPENDIX J

PROOF OF THE CONVERSE FOR PROPOSITION 4.4

In this section, the proof of converse for Proposition 4.4 is given. Fix a code
(n,R1, R2, D1 + ϵ, ϵ,Γ) for an ϵ > 0, whose existence for all sufficiently large n is
required by the definition of achievability.

From the distortion constraint for X̂2, the following inequality holds

ϵ ≥ 1

n

n∑
i=1

E[dH(X2i, X̂2i)]
(a)
=

1

n

n∑
i=1

pe,2i, (J.1)

where the definition pe,2i = Pr[X2i ̸= X̂2i] is used, and (a) follows from the definition
of the metric dH(x, x̂) as the Hamming distortion. Moreover, the following chain of
inequalities hold

H(Xn
2 |X̂n

2 )
(a)

≤
n∑

i=1

H(X2i|X̂2i)
(b)

≤
n∑

i=1

H(pe,i) + pe,i log
∣∣∣X̂2i

∣∣∣
(c)

≤ nH

(
1

n

n∑
i=1

pe,i

)
+ n

(
1

n

n∑
i=1

pe,i

)
log
∣∣∣X̂2i

∣∣∣
(d)

≤ nH(ϵ) + nϵ log
∣∣∣X̂ji

∣∣∣
∆
= nδ(ϵ), (J.2)

where (a) follows by conditioning reduces entropy; (b) follows by Fano’s inequality;
(c) follows by Jensen’s inequality; and (d) follows by (J.1), where δ(ϵ) → 0 as ϵ→ 0.
Note that, in the following, the convention in [1, Chapter 3] of defining as δ(ϵ) any
function such that δ(ϵ) → 0 as ϵ→ 0 is used.

For rate R1, then the following series of inequalities hold

nR1 ≥ H(M1)
(a)
= H(M1, A

n)

= H(An) +H(M1|An)
(b)

≥ H(An)−H(An|Xn
1 , X

n
2 ) +H(M1|An, Y n, Xn

2 )−H(M1|An, Y n, Xn
1 , X

n
2 )

= I(An;Xn
1 , X

n
2 ) + I(M1;X

n
1 |An, Y n, Xn

2 )

= I(An;Xn
1 , X

n
2 ) +H(Xn

1 |An, Y n, Xn
2 )−H(Xn

1 |An, Y n, Xn
2 ,M1)

= H(Xn
1 , X

n
2 )−H(Xn

1 , X
n
2 |An) +H(Xn

1 , X
n
2 , Y

n|An)−H(Y n, Xn
2 |An)

−H(Xn
1 |An, Y n, Xn

2 ,M1)

= H(Xn
1 , X

n
2 ) +H(Y n|An, Xn

1 , X
n
2 )−H(Y n, Xn

2 |An)

−H(Xn
1 |An, Y n, Xn

2 ,M1), (J.3)
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where (a) follows because An is a function of M1 and (b) follows because entropy is
non-negative and conditioning decreases entropy. For the first three terms in (J.3) it
is also true that

H(Xn
1 , X

n
2 ) +H(Y n|An, Xn

1 , X
n
2 )−H(Y n, Xn

2 |An)

= H(Xn
1 , X

n
2 ) +H(Y n|An, Xn

1 , X
n
2 )−H(Y n|An)−H(Xn

2 |An, Y n)

(a)
=

n∑
i=1

H(X1i, X2i) +H(Yi|Y i−1, An, Xn
1 , X

n
2 )−H(Yi|Y i−1, An)−H(X2i|X i−1

2 , An, Y n)

(b)

≥
n∑

i=1

H(X1i, X2i) +H(Yi|Ai, X1i, X2i)−H(Yi|Ai)−H(X2i|Ai, Yi)

=
n∑

i=1

H(X1i, X2i)− I(Yi;X1i, X2i|Ai)−H(X2i|Ai, Yi)

=
n∑

i=1

H(X1i, X2i)−H(X1i, X2i|Ai) +H(X1i, X2i|Ai, Yi)−H(X2i|Ai, Yi)

=
n∑

i=1

I(X1i, X2i;Ai) +H(X1i|Ai, Yi, X2i), (J.4)

where (a) follows by the chain rule for entropy and the fact that Xn
1 , X

n
2 are i.i.d. and

(b) follows since Yi—(Ai, X1i, X2i)—(Y i−1, An\i, X
n\i
1 , X

n\i
2 ) forms a Markov chain, by

the definition of problem, and since conditioning reduces entropy.

Combining (J.3) and (J.4), and defining U1i = (An\i, Y n\i, X
n\i
2 ,M1), it holds

that

nR1

(a)

≥
n∑

i=1

I(X1i, X2i;Ai) +H(X1i|Ai, Yi, X2i)

−H(X1i|X i−1
1 , An, Y n, Xn

2 ,M1)

(b)

≥
n∑

i=1

I(X1i;Ai) +H(X1i|Ai, Yi, X2i)−H(X1i|An, Y n, Xn
2 ,M1)

(c)
=

n∑
i=1

(X1i;Ai) + I(X1i;U1i|Ai, Yi, X2i), (J.5)

where (a) follows by the chain rule for entropy; (b) follows because mutual information
is non-negative and due to the fact that conditioning decreases entropy; and (c)
follows by the definition of mutual information and definition of U1i.
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Next, the rate R2 is considered.

nR2 ≥ H(M2) ≥ H(M2|An, Y n,M1)−H(M2|An, Y n,M1, X
n
2 )

= I(M2;X
n
2 |An, Y n,M1)

= H(Xn
2 |An, Y n,M1)−H(Xn

2 |An, Y n,M1,M2)
(a)

≥ H(Xn
2 |An, Y n,M1)− nδ(ϵ)

=
n∑

i=1

H(X2i|X i−1
2 , An, Y n,M1)− nδ(ϵ)

(b)

≥
n∑

i=1

H(X2i|Ai, Yi, U1i)− nδ(ϵ), (J.6)

where (a) follows because from (J.2), H(Xn
2 |An, Y n,M1,M2) ≤ H(Xn

2 |X̂n
2 ) ≤ nδ(ϵ),

given that X̂n
2 is a function of M1, M2 and Y nand (b) follows using the definition of

U1i and due to the fact that conditioning decreases entropy. For the sum-rate R1+R2,
also the following series of inequalities hold

n(R1 +R2) ≥ H(M1,M2)
(a)
= H(M1,M2, A

n)

= H(An) +H(M1,M2|An)

≥ H(An)−H(An|Xn
1 , X

n
2 ) +H(M1,M2|An, Y n)

−H(M1,M2|An, Y n, Xn
1 , X

n
2 )

= I(An;Xn
1 , X

n
2 ) + I(M1,M2;X

n
1 , X

n
2 |An, Y n)

= I(An;Xn
1 , X

n
2 ) +H(Xn

1 , X
n
2 |An, Y n)−H(Xn

1 , X
n
2 |An, Y n,M1,M2)

= H(Xn
1 , X

n
2 )−H(Xn

1 , X
n
2 |An) +H(Xn

1 , X
n
2 , Y

n|An)−H(Y n|An)

−H(Xn
2 |An, Y n,M1,M2)−H(Xn

1 |An, Y n, Xn
2 ,M1,M2)

(b)

≥ H(Xn
1 , X

n
2 ) +H(Y n|An, Xn

1 , X
n
2 )−H(Y n|An)

−H(Xn
1 |An, Y n, Xn

2 ,M1,M2)− nδ(ϵ), (J.7)
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where (a) follows because An is a function of M1; and (b) follows as in (a) of (J.6).
For the first three terms in (J.7), it is true that

H(Xn
1 , X

n
2 ) +H(Y n|An, Xn

1 , X
n
2 )−H(Y n|An)

(a)
=

n∑
i=1

H(X1i, X2i) +H(Yi|Y i−1, An, Xn
1 , X

n
2 )−H(Yi|Y i−1, An)

(b)

≥
n∑

i=1

H(X1i, X2i) +H(Yi|Ai, X1i, X2i)−H(Yi|Ai)

=
n∑

i=1

H(X1i, X2i)− I(Yi;X1i, X2i|Ai)

=
n∑

i=1

H(X1i, X2i)−H(X1i, X2i|Ai) +H(X1i, X2i|Ai, Yi)

=
n∑

i=1

I(X1i, X2i;Ai) +H(X2i|Ai, Yi) +H(X1i|Ai, Yi, X2i), (J.8)

where (a) follows from the chain rule for entropy and by the chain rule for entropy
and the fact that (Xn

1 , X
n
2 ) are i.i.d.; and (b) follows since Yi—(Ai, X{1,2}i)—

(Y i−1, An\i, X
n\i
1 , X

n\i
2 ) forms a Markov chain, by the definition of problem, and since

conditioning reduces entropy. Combining (J.7) and (J.8), and using the definition of
U1i, it holds that

n(R1 +R2)
(a)

≥
n∑

i=1

I(X1i, X2i;Ai) +H(X2i|Ai, Yi) +H(X1i|Ai, Yi, X2i)

−H(X1i|X i−1
1 , An, Y n, Xn

2 ,M1,M2)− nδ(ϵ)

(b)

≥
n∑

i=1

I(X1i;Ai) +H(X2i|Ai, Yi) +H(X1i|Ai, Yi, X2i)

−H(X1i|An, Y n, Xn
2 ,M1)− nδ(ϵ)

(c)

≥
n∑

i=1

(X1i;Ai) +H(X2i|Ai, Yi) + I(X1i;U1i|Ai, Yi, X2i)− nδ(ϵ), (J.9)

where (a) follows by the chain rule for entropy; (b) follows because mutual information
is non-negative and due to the fact that conditioning decreases entropy; and (c)
follows by the definition of mutual information and definition of U1i and the fact that
conditioning decreases entropy.

Moreover, (X2i, Yi)− (X1i, Ai)−U1i forms a Markov chain. This can be seen by
using the principle of d-separation [70, Section A.9] from Figure J.1, which represents
the joint distribution of all the variables at hand.

Let Q be a uniform random variable over the interval [1, n] and independent of

(Xn
1 , X

n
2 , A

n, Un
1 , Y

n, X̂n
1 ) and define U1

∆
= (Q,U1Q), X1

∆
= X1Q, X2

∆
= X2Q, Y

∆
= YQ,

A
∆
= AQ, and X̂1

∆
= X̂1Q. Note that X̂1 is a function of U1, X2 and Y . Moreover, from
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Figure J.1 Bayesian network representing the joint pmf of variables
(M1, X

n
1 , X

n
2 , A

n, Y n) for the model in Figure 4.2.

(4.8) and (7.7), the following holds

Γ + ϵ ≥ 1

n

n∑
i=1

E [Λ(Ai)] = E[Λ(A)]

and D1 + ϵ ≥ 1

n

n∑
i=1

E
[
d1(X1i, X2i, Yi.X̂1i)

]
= E[d1(X1, X2, Y, X̂1)]. (J.10)

Finally, since (J.5), (J.6) and (J.9) are convex with respect to p(a, u1|x1, q) for
fixed p(q), p(x1, x2), and p(y|a, x1, x2), inequalities (4.20) hold, which completes the
proof of (4.20a)-(4.22b). The cardinality bounds are proved by using the Fenchel–
Eggleston–Caratheodory theorem in the standard way.



APPENDIX K

GREEDY ACTIONS ARE OPTIMAL WITH SUM SIDE

INFORMATION

Here, the equality below is proved.

R⊕
sum, greedy(Γ) = R⊕

sum(Γ). (K.1)

which shows that no gain is accrued by choosing the actions based only on message
M1 with the sum side information. Fix the pmf p(a|x1) that achieves the minimum
in the sum-rate obtained from (4.20c), namely

R⊕
sum(Γ) = min I(X1;A) +H(X1, X2|A, Y ),

where the mutual information is calculated with respect to the distribution

p(x1, x2, y, a) = p(x1, x2)p(a|x1)p(y|a, x1, x2), (K.2)

and the minimum is taken over all distributions p(a|x1) such that E [Λ(A)] = E [A] ≤
Γ. Note that for such a pmf p(a|x1), it is true that E[A] = p(a) = Γ, as it can be
easily seen. Next, following series of equalities hold

R⊕
sum, greedy(Γ)−R⊕

sum(Γ)

(a)
= ΓH(X1, X2|X1 ⊕X2) + (1− Γ)H(X1, X2)

−H(X1, X2|A,X1 ⊕X2)− I(X1;A)
(b)
= ΓH(X1|X1 ⊕X2) + (1− Γ)(1 +H(p))− ΓH(X1, X2|A = 1, X1 ⊕X2)

− (1− Γ)H(X1, X2|A = 0)− I(X1;A)
(c)
= ΓH(X1) + (1− Γ)(1 +H(p))− ΓH(X1|A = 1)− (1− Γ)H(X1|A = 0)

− (1− Γ)H(X2|X1, A = 0)− I(X1;A)
(d)
= Γ + (1− Γ)(1 +H(p))−H(X1|A)− (1− Γ)H(X2|X1)− I(X1;A)

= Γ + (1− Γ)(1 +H(p))−H(X1|A)− (1− Γ)H(p)− 1 +H(X1|A) = 0,

where (a) follows by the definition (4.27); (b) follows using the chain rule for entropy
and from the definition of conditional entropy; (c) follows by the crypto-lemma [37,
Lemma 2]; (d) follows from the fact that X2 −X1 − A forms a Markov chain.
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APPENDIX L

PROOF OF THE CONVERSE FOR PROPOSITION 4.5

In this section, the proof of converse for Proposition 4.5 is provided. For any
(n,R12, R23, D1 + ϵ,D2 + ϵ,Γ + ϵ) code, the following inequalities hold:

nR12 ≥ H(M12) ≥ H(M12|Xn
2 )

(a)
= H(M12,M23|Xn

2 )
(b)
= I(Xn

1 ;M12,M23|Xn
2 )

=
n∑

i=1

H(X1i|X i−1
1 , Xn

2 )−H(X1i|X i−1
1 , Xn

2 ,M12,M23)

(c)
=

n∑
i=1

H(X1i|X2i)−H(X1i|X i−1
1 , Xn

2 , A
n,M12,M23)

(d)
=

n∑
i=1

H(X1i|X2i)−H(X1i|X i−1
1 , Xn

2 , Y
i−1,M12,M23, A

n, X̂n
1 )

(e)

≥
n∑

i=1

H(X1i|X2i)−H(X1i|X2i, Ai, Ui, X̂1i)

=
n∑

i=1

I(X1i;Ai, Ui, X̂1i|X2i), (L.1)

where (a) follows because M23 is a function of (M12,X
n
2 ); (b) follows by definition of

mutual information and since M12 and M23 are functions of Xn
1 and Xn

2 ; (c) follows
because Xn

1 and Xn
2 are i.i.d and since An is a function of M23; (d) follows because

Y i−1−(X i−1
1 , Xn

2 , A
n,M12,M23)−X1i forms a Markov chain and since X̂n

1 is a function
of M12 and Xn

2 ; and (e) follows by defining Ui = (X i−1
1 , X i−1

2 , Y i−1, An\i,M23) and
since conditioning decreases entropy.
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It is also true that

nR23 ≥ H(M23)
(a)
= I(Xn

1 , X
n
2 ;M23)

(b)
=

n∑
i=1

H(X1i, X2i)−H(X1i, X2i|X i−1
1 , X i−1

2 ,M23)

(c)
=

n∑
i=1

H(X1i, X2i)−H(X1i, X2i|X i−1
1 , X i−1

2 , An,M23)

(d)
=

n∑
i=1

H(X1i, X2i)−H(X1i, X2i|X i−1
1 , X i−1

2 , Y i−1, An,M23)

(e)
=

n∑
i=1

H(X1i, X2i)−H(X1i, X2i|Ai, Ui)

=
n∑

i=1

I(X1i, X2i;Ai, Ui), (L.2)

where (a) follows because M23 is a function of Xn
1 and Xn

2 ; (b) follows by the
definition of mutual information and the chain rule for entropy and since Xn

1 and
Xn

2 are i.i.d; (c) follows because An is a function of M23; (d) follows because
Y i−1 − (X i−1

1 , X i−1
2 , An,M23) − (X1i, X2i) forms a Markov chain; and (e) follows by

the definition of Ui.
Let Q be a uniform random variable over [1, n] and independent of (Xn

1 , X
n
2 , Y

n

, An, Un, X̂n
1 ) and define U

∆
= (Q,UQ), X1

∆
= X1Q, X2

∆
= X2Q, Y

∆
= YQ, A

∆
= AQ,

X̂1
∆
= X̂1Q, and X̂2

∆
= X̂2Q. Note that X̂2 is a function of U and Y . Moreover, from

(8.5) and (8.6), the following holds

Γ + ϵ ≥ 1

n

n∑
i=1

E [Λ(Ai)] = E[Λ(A)] (L.3)

and Dj + ϵ ≥ 1

n

n∑
i=1

E
[
dj(X1i, X2i, Yi, X̂ji)

]
= E[dj(X1, X2, Y, X̂j)] for j = 1, 2.

(L.4)

Finally, since (L.1) and (L.2) are convex with respect to p(a, u, x̂1|x1, x2)
for fixed p(x1, x2) and p(y|a, x1, x2), from (L.1) and (L.2) it can be concluded
that inequalities (4.35) hold. The cardinality bounds are proved by using the
Fenchel-Eggleston-Caratheodory theorem in the standard way.



APPENDIX M

CONVERSE PROOF FOR PROPOSITION 5.1 AND 5.4

Here, the converse part of Proposition 5.4 is proved. Since the setting of Proposition
5.1 is more restrictive, as it does not allow for adaptive actions, the converse proof for
Proposition 5.1 follows immediately. For any (n,R1, R2, D1 + ϵ,D2 + ϵ,Γ + ϵ) code,
it is true that

nR1 ≥ H(M1)

≥ H(M1|Y n)
(a)
= I(M1;X

n, Zn|Y n)

= H(Xn, Zn|Y n)−H(Xn, Zn|M1, Y
n)

= H(Xn|Y n) +H(Zn|Xn, Y n)−H(Zn|Y n,M1)−H(Xn|Zn, Y n,M1)
(a,b)
= H(Xn|Y n) +H(Zn|Xn, Y n,M1,M2)−H(Zn|Y n,M1,M2)

−H(Xn|Zn, Y n,M1,M2)
(c)
= H(Xn|Y n)−H(Xn|Zn, Y n,M1,M2, A

n, X̂n
1 )

+
n∑

i=1

H(Zi|Zi−1, Xn, Y n,M1,M2)−H(Zi|Zi−1, Y n,M1,M2)

(c,d)

≥
n∑

i=1

(H(Xi|Yi)−H(Xi|X i−1, Y i,M2, A
i, Zn, X̂1i))

+
n∑

i=1

H(Zi|Zi−1, Xn, Y n,M1,M2, Ai)−H(Zi|Zi−1, Y n,M1,M2, Ai)

(e)
=

n∑
i=1

I(Xi; X̂1i, Ai, Ui|Yi) +H(Zi|Yi, Ai)−H(Zi|Yi, Ai)

=
n∑

i=1

I(Xi; X̂1i, Ai, Ui|Yi), (M.1)

where (a) follows sinceM1 is a function of (Xn, Y n); (b) follows sinceM2 is a function

of (M1, Y
n); (c) follows since Ai is a function of (M2, Z

i−1) and since X̂n
1 is a function

of (M1, Y
n); (d) follows since conditioning decreases entropy and since Xn and Y n

are i.i.d.; and (e) follows by defining Ui = (M2, X
i−1, Y i−1, Ai−1, Zn\i) and since

(Zi−1, Xn, Y n\i,M1,M2)— (Ai, Yi)—Zi form a Markov chain by construction. It is
also true that

nR2 ≥ H(M2)
= I(M2;X

n, Y n, Zn)

188



189

= H(Xn, Y n, Zn)−H(Xn, Y n, Zn|M2)
= H(Xn, Y n) +H(Zn|Xn, Y n)−H(Zn|M2)−H(Xn, Y n|M2, Z

n)

=
n∑

i=1

H(Xi, Yi) +H(Zi|Zi−1, Xn, Y n)−H(Zi|Zi−1,M2)

−H(Xi, Yi|X i−1, Y i−1,M2, Z
n)

(a)
=

n∑
i=1

H(Xi, Yi)+H(Zi|Z i−1, Xn, Y n,M2, Ai)−H(Zi|Zi−1,M2, Ai)

−H(Xi, Yi|X i−1, Y i−1,M2, Z
n, Ai)

(b)

≥
n∑

i=1

H(Xi, Yi) +H(Zi|Xi, Yi, Ai)−H(Zi|Ai)−H(Xi, Yi|Ui, Ai, Zi), (M.2)

where (a) follows because M2 is a function of (M1, Y
n) and thus of (Xn, Y n) and

because Ai is a function of (M2, Z
i−1) and (b) follows since conditioning decreases

entropy, since the Markov chain relationship Zi—(Xi, Yi, Ai)— (Xn\i, Y n\i,M2) holds
and by using the definition of Ui.

Defining Q to be a random variable uniformly distributed over [1, n] and

independent of all the other random variables and with X
△
= XQ, Y

△
= YQ, Z

△
= ZQ,

A
△
= AQ, X̂1

△
= X̂1Q, X̂2

△
= X̂2Q and U

△
= (UQ, Q), from (M.1), the following holds

nR1 ≥ I(X; X̂1, A, U |Y,Q)
(a)

≥ H(X|Y )−H(X|X̂1, A, U, Y ) = I(X; X̂1, A, U |Y ),

where in (a) follows due to the fact that (Xn, Y n) are i.i.d and conditioning reduces
entropy. Moreover, from (M.2) it follows that

nR2 ≥ H(X, Y |Q) +H(Z|X, Y,A,Q)−H(Z|A,Q)−H(X,Y |U,A, Z,Q)
(a)

≥ H(XY ) +H(Z|X,Y,A)−H(Z|A)−H(X, Y |U,A,Z)
= I(XY ;U,A, Z)− I(Z;X, Y |A)
= I(XY ;A) + I(X, Y ;U |A,Z),

where (a) follows since (Xn, Y n) are i.i.d, since conditioning decreases entropy, by the
definition of U and by the problem definition. It is noted that the defined random
variables factorize as (8.8) since the Markov chain relationship X—(A, Y )—Z holds

by the problem definition and that X̂2 is a function f(U,Z) of U and Z by the definition
of U . Moreover, from the cost and distortion constraints (8.5)-(8.6), it is true that

Dj + ϵ ≥ 1

n

n∑
i=1

E[dj(Xi, X̂ji)] = E[dj(X, X̂j)], for j = 1, 2, (M.3a)

and Γ + ϵ ≥ 1

n

n∑
i=1

E [Λ(Ai)] = E [Λ(A)] . (M.3b)
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To bound the cardinality of auxiliary random variable U , p(z|y, a) is fixed and
the joint pmf p(x, y, z, a, u, x̂1) is factorized as

p(x, y, z, a, u, x̂1) = p(u)p(x̂1, a, x, y|u)p(z|y, a).

Therefore, for fixed p(z|y, a), the quantities (8.39a)-(8.9b) can be expressed in terms of
integrals given by

´
gj(p(x̂1, a, x, y|u))dF (u), for j = 1, ..., |X ||Y||A|+ 3, of functions

gj(·) that are continuous on the space of probabilities over alphabet X ×Y ×A×X̂1.
Specifically, gj for j = 1, ..., |X ||Y||A| − 1, are given by the pmf p(a, x, y) for all

values of x ∈ X , y ∈ Y and a ∈ A, (except one), g|X ||Y||A| = H(X|A, Y, X̂1, U = u),

g|X ||Y||A|+1 = H(X, Y |A,Z, U = u), and g|X ||Y||A|+1+j = E[dj(X, X̂j)|U = u], for
j = 1, 2. The proof in concluded by invoking the Fenchel–Eggleston–Caratheodory
theorem [1, Appendix C].



APPENDIX N

PROOF OF PROPOSITION 5.3

Here, the converse parts of Proposition 5.3 and Proposition 5.5 are proved. Let’s start
by proving Proposition 5.3. The proof of Proposition 5.5 will follow by setting Z = ∅,
and noting that in the proof below the action Ai can be made to be a function of
Y i−1, in addition to being a function ofMb, without modifying any steps of the proof.
By the CR requirements (5.26), first it is observed that for any (n,R1, R2, Rb, D1 +
ϵ,D2 + ϵ,Γ + ϵ) code, the Fano inequalities below hold

H(ψ1(X
n)|h1(M1,Mb, Y

n)) ≤ nδ(ϵ), (N.1a)
and H(ψ2(X

n)|h2(M2,Mb, Z
n)) ≤ nδ(ϵ), (N.1b)

where δ(ϵ) denotes any function such that δ(ϵ) → 0 if ϵ → 0. Next, it is also true
that

nRb ≥ H(Mb)
(a)
= I(Mb;X

n, Y n)

= H(Xn, Y n)−H(Xn, Y n|Mb)
(a)
= H(Xn) +H(Y n|Xn,Mb)−H(Xn, Y n|Mb)

(b)
=

n∑
i=1

H(Xi) +H(Yi|Y i−1, Xn,Mb, Ai)−H(Xi, Yi|X i−1, Y i−1,Mb, Ai)

=
n∑

i=1

H(Xi) +H(Yi|Y i−1, Xn,Mb, Ai)−H(Xi|X i−1, Y i−1,Mb, Ai)

−H(Yi|X i, Y i−1,Mb, Ai)

(c)
=

n∑
i=1

H(Xi) +H(Yi|Xi, Ai)−H(Xi|X i−1, Y i−1,Mb, Ai)−H(Yi|Xi, Ai)

(d)

≥
n∑

i=1

H(Xi)−H(Xi|Ai), (N.2)

where (a) follows since Mb is a function of Xn; (b) follows since Ai is a function
of Mb and since Xn is i.i.d.; (c) follows since (Y i−1, Xn\i,Mb)—(Ai, Xi)—Yi forms a
Markov chain by problem definition; and (d) follows conditioning reduces entropy.
In the following, for simplicity of notation, h1, h2, ψ1, ψ2 is used for the values of
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corresponding functions in Section 5.3.4. Next, the following holds

n(R1 +Rb)

≥ H(M1,Mb)
(a)
= I(M1,Mb;X

n, Y n, Zn)

= H(Xn, Y n, Zn)−H(Xn, Y n, Zn|M1,Mb)

= H(Xn) +H(Y n, Zn|Xn)−H(Y n, Zn|M1,Mb)−H(Xn|Y n, Zn,M1,Mb)
(b)
= H(Xn) +H(Y n, Zn|Xn,Mb)−H(Y n|M1,Mb)

−H(Zn|M1,Mb, Y
n, An)−H(Xn|Y n, Zn,M1,Mb,M2, A

n)

(b,c)
=

n∑
i=1

H(Xi) +H(Yi, Zi|Xi, Ai)−H(Yi|Y i−1,M1,Mb, Ai)

−H(Zi|Zi−1,M1,Mb, Y
n, An)−H(Xi|X i−1, Y n, Zn,M1,Mb, A

n,M2, h1, h2)

(d)

≥
n∑

i=1

H(Xi)+H(Yi|Xi, Ai) +H(Zi|Yi, Ai)−H(Yi|Ai)−H(Zi|Yi, Ai)

−H(Xi|Yi, Ai, h1, h2)
n∑

i=1

I(Xi;Yi, Ai, h1, h2)− I(Yi;Xi|Ai)

n∑
i=1

I(Xi;Yi, Ai, h1, h2, ψ1, ψ2)− I(Xi;ψ1, ψ2|Yi, Ai, h1, h2)− I(Yi;Xi|Ai)

(e)

≥
n∑

i=1

I(Xi;Yi, Ai, ψ1, ψ2)−H(ψ1, ψ2|Yi, Ai, h1, h2)

+H(ψ1, ψ2|Yi, Ai, h1, h2, Xi)− I(Yi;Xi|Ai)

(f)

≥
n∑

i=1

I(Xi;Yi, Ai, ψ1, ψ2)− I(Yi;Xi|Ai) + nδ(ϵ)

=
n∑

i=1

I(Xi;Ai) + I(Xi;ψ1, ψ2|Yi, Ai) + nδ(ϵ), (N.3)

where (a) follows because (M1,Mb) is a function of Xn; (b) follows because Mb

is a function of Xn, An is a function of Mb and M2 is a function of (M1,Mb, Y
n);

(c) follows since H(Y n, Zn|Xn,Mb) =
∑n

i=1H(Yi, Zi| Y i−1, Z i−1, Xn,Mb, Ai) =∑n
i=1H(Yi, Zi|Xi, Ai) and since h1 and h2 are functions of (M1,Mb, Y

n) and (M2,Mb, Z
n),

respectively and because (Yi, Zi)—(Xi, Ai)— (Xn\i, Y i−1, Z i−1,Mb) forms a Markov
chain; (d) follows since conditioning reduces entropy, since side information VM
follows p(yn, zn|an, xn)=

∏n
i=1 pY |A,X(yi|ai, xi) pZ|A,Y (zi|ai, yi) from (7.24) and because

Zi—(Yi, Ai)— (Y n\i, Zi−1,M1,Mb) forms a Markov chain; (e) follows by the chain rule
for mutual information and the fact that mutual information is non-negative; and (f)
follows by the Fano inequality (R.2) and because entropy is non-negative. It holds
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that

n(R2 +Rb) ≥ H(M2,Mb)
(a)
= I(M2,Mb;X

n, Y n, Zn)

= H(Xn, Y n, Zn)−H(Xn, Y n, Zn|M2,Mb)
(a)
= H(Xn) +H(Y n, Zn|Xn,Mb)−H(Zn|M2,Mb)

−H(Xn, Y n|Zn,M2,Mb)

(b)
=

n∑
i=1

H(Xi) +H(Yi, Zi|Y i−1, Z i−1, Xn,Mb, Ai)

−H(Zi|Zi−1,M2,Mb, Ai)−H(Xi, Yi|X i−1, Y i−1,M2,Mb, Z
n, Ai)

=
n∑

i=1

H(Xi, Yi)−H(Yi|Xi) +H(Yi, Zi|Y i−1, Z i−1, Xn,Mb, Ai)

−H(Zi|Zi−1,M2,Mb, Ai)−H(Xi, Yi|X i−1, Y i−1,M2,Mb, Z
n, Ai)

(c)
=

n∑
i=1

H(Xi, Yi)−H(Yi|Xi) +H(Yi|Xi, Ai) +H(Zi|Ai, Yi, Xi)

−H(Zi|Zi−1,M2,Mb, Ai)−H(Xi, Yi|X i−1, Y i−1,M2,Mb, Z
n, Ai)

(d)
=

n∑
i=1

H(Xi, Yi)− I(Yi;Ai|Xi) +H(Zi|Ai, Yi, Xi)

−H(Zi|Zi−1,M2,Mb, Ai)−H(Xi, Yi|X i−1, Y i−1,M2,Mb, h2, Z
n, Ai)

(e)

≥
n∑

i=1

H(Xi, Yi) + I(Xi;Ai)− I(Yi, Xi;Ai) +H(Zi|Ai, Yi, Xi)

−H(Zi|Ai)−H(Xi, Yi|h2, Ai, Zi)

=
n∑

i=1

I(Xi, Yi; h2, Ai, Zi, ψ2i)− I(Xi, Yi;ψ2i|h2, Ai, Zi) + I(Xi;Ai)

− I(Yi, Xi;Ai)− I(Xi, Yi;Zi|Ai)

≥
n∑

i=1

I(Xi, Yi;Ai, Zi, ψ2i)−H(ψ2i|h2, Ai, Zi) +H(ψ2i|h2, Ai, Xi, Yi, Zi)

+ I(Xi;Ai)− I(Xi, Yi;Zi, Ai)

(f)

≥
n∑

i=1

I(Xi;Ai) + I(Xi, Yi;ψ2i|Ai, Zi) + nδ(ϵ), (N.4)

where (a) follows since Mb is a function of Xn and because M2 is a function of
(M1,Mb, Y

n) and thus of (Xn, Y n); (b) follows since Ai is a function of Mb and
since Xn is i.i.d.; (c) follows since (Yi, Zi)—(Xi, Ai)— (Xn\i, Y i−1, Zi−1,Mb) forms
a Markov chain and since p(yn, zn|an, xn) =

∏n
i=1 pY |A,X(yi|ai, xi)pZ|A,Y (zi|ai, yi); (d)

follows since h2 is a function of (M2,Mb, Z
n); (e) follows since conditioning reduces

entropy; and (f) follows since entropy is non-negative and using the Fanos inequality.
Moreover, with the definition M = (M1,M2,Mb), the following chain of inequalities
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hold

n(R1 +R2 +Rb) ≥ H(M)
(a)
= I(M ;Xn, Y n, Zn)

= H(Xn, Y n, Zn)−H(Xn, Y n, Zn|M)
(a)
= H(Xn) +H(Y n, Zn|Xn,Mb)−H(Xn, Y n, Zn|M)

= I(Xn;An) +H(Y n, Zn|Xn,Mb)−H(Y n, Zn|M)

−H(Xn|Y n, Zn,M) +H(Xn|An)

= I(Xn;An) +H(Y n, Zn|Xn,Mb)−H(Y n, Zn|M) + I(Xn;Y n, Zn,M |An)

= I(Xn;An) + I(M ;Xn|Y n, An, Zn) +H(Y n, Zn|Xn,Mb)

−H(Y n, Zn|M) + I(Xn;Y n, Zn|An)
(b)
= H(Xn)−H(Xn|An) +H(Xn|Y n, An, Zn)−H(Xn|Y n, An, Zn,M)

−H(Y n, Zn|M) +H(Y n, Zn|An)

= H(Xn)−H(Xn|An) +H(Xn, Y n, Zn|An)−H(Xn|Y n, An, Zn,M)

−H(Y n, Zn|M)

= H(Xn) +H(Y n, Zn|An, Xn)−H(Xn|Y n, An, Zn,M)−H(Y n, Zn|M)

(c)
=

n∑
i=1

H(Xi) +H(Yi|Ai, Xi) +H(Zi|Ai, Yi)−H(Xi|X i−1, Y n, An, Zn,M)

−H(Zi|Zi−1,M,Ai)−H(Yi|Y i−1, Zn,M,Ai)

(d)
=

n∑
i=1

H(Xi)+H(Yi|Ai, Xi)+H(Zi|Ai, Yi)−H(Xi|X i−1,Y n, An, Zn,M, h1, h2)

−H(Zi|Zi−1,M,Ai)−H(Yi|Y i−1, Zn,M,Ai, h2)

≥
n∑

i=1

H(Xi) +H(Yi|Ai, Xi) +H(Zi|Ai, Yi)−H(Xi|Yi, Ai, h1, h2)

−H(Zi|Ai)−H(Yi|Zi, Ai, h2)
(e)

≥ I(Xi;Ai, Yi, ψ1, ψ2) +H(Yi|Ai, Xi) +H(Zi|Ai, Yi)

−H(Zi|Ai)−H(Yi|Zi, Ai, ψ2)− nδ(ϵ), (N.5)

where (a) follows since (M1,Mb) is a function of Xn and M2 is a function of
(M1,Mb, Y

n); (b) follows since H(Y n, Zn|Xn,Mb) =
∑n

i=1H(Yi, Zi| Y i−1, Zi−1, Xn,
Mb, Ai) =

∑n
i=1H(Yi, Zi| Xi, Ai) = H(Y n, Zn|Xn, An); (c) follows since Ai is a

function of Mb; (d) follows since h1, h2 are functions of (M,Y n) and (M,Zn),
respectively; and (e) follows since entropy is non-negative and by Fano’s inequality.
Next, from (N.5) it is true that
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n(R1 +R2 +Rb) ≥ I(Xi;Ai, Yi, ψ1, ψ2) +H(Yi|Ai, Xi) +H(Zi|Ai, Yi)−H(Zi|Ai)

−H(Yi, Zi|Ai, ψ2) +H(Zi|Ai, ψ2)− nδ(ϵ)

= I(Xi;Ai, Yi, ψ1, ψ2) +H(Yi|Ai, Xi)−H(Zi|Ai)−H(Yi|Ai, ψ2)

+H(Zi|Ai, ψ2)− nδ(ϵ)

= I(Xi;Ai, Yi, ψ1, ψ2)− I(Xi;Yi|Ai, ψ2)− I(Zi;ψ2|Ai)− nδ(ϵ)
(a)
= I(Xi;Ai, Yi, ψ1, ψ2)− I(Xi;Yi|Ai, ψ2)− I(Yi;Ai|Xi)− I(Zi;Yi|Ai)

+ I(Yi;Ai, ψ2|Xi) + I(Zi;Yi|ψ2, Ai)− nδ(ϵ)
(b)
= I(Xi;Ai, Yi, ψ1, ψ2)− I(Xi;Yi|Ai, ψ2) + I(Xi;Ai)− I(Yi, Xi;Ai)

− I(Zi;Xi, Yi|Ai) + I(Xi, Yi;Ai, ψ2) + I(Zi;Xi, Yi|ψ2, Ai)− I(Xi;Ai, ψ2)− nδ(ϵ)

= I(Xi;Ai) + I(Xi;Ai, Yi, ψ1, ψ2) + I(Xi, Yi;Ai, ψ2, Zi)− I(Ai, Zi;Xi, Yi)

− I(Xi;Yi, Ai, ψ2)− nδ(ϵ)

= I(Xi;Ai)+I(Xi;Ai, Yi, ψ1, ψ2) + I(Xi, Yi;ψ2|Ai, Zi)− I(Xi;Yi, Ai, ψ2)− nδ(ϵ)

= I(Xi;Ai) + I(Xi, Yi;ψ2|Ai, Zi) + I(Xi;ψ1|Ai, Yi, ψ2)− nδ(ϵ), (N.6)

where (a) is true since

I(Yi;Ai|Xi) + I(Zi;Yi|Ai)− I(Yi;Ai, ψ2|Xi)− I(Zi;Yi|ψ2, Ai)
= H(Yi|Xi)−H(Yi|Xi, Ai) +H(Zi|Ai)−H(Zi|Ai, Yi)−H(Yi|Xi) +H(Yi|Xi, Ai)
−H(Zi|ψ2, Ai) +H(Zi|Ai, Yi)
= H(Zi|Ai)−H(Zi|ψ2, Ai);

(b) follows because I(Zi;Xi, Yi|Ai) = I(Zi;Yi|Ai) and I(Zi;Xi, Yi|Ai, ψ2) = I(Zi;Yi
|Ai, ψ2).

Next, define X̂ji = ψji(X
n) for j = 1, 2 and i = 1, 2, ..., n and let Q be a random

variable uniformly distributed over [1, n] and independent of all the other random

variables and with X
△
= XQ, Y

△
= YQ, A

△
= AQ, from (N.2), it holds that

nRb ≥ H(X|Q)−H(X|A,Q)
(a)

≥ H(X)−H(X|A) = I(X;A),

where (a) follows since Xn is i.i.d. and since conditioning decreases entropy. Next,
from (N.3), the following holds

n(R1 +Rb) ≥ I(X;A|Q) + I(X; X̂1, X̂2|Y,A,Q)
(a)

≥ I(X;A) + I(X; X̂1, X̂2|Y,A),
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where (a) follows since Xn is i.i.d., since conditioning decreases entropy and by the
problem definition. From (N.4), it is also true that

n(R2 +Rb) ≥ I(X;A|Q) + I(X, Y ; X̂2|A,Z,Q)
(a)

≥ I(X;A) +H(X,Y |A,Z,Q)−H(X,Y |A,Z, X̂2)
(b)
= I(X;A) +H(Y |A,Z) +H(X|A, Y, Z)−H(X, Y |A,Z, X̂2)

= I(X;A) + I(X,Y ; X̂2|A,Z)
≥ I(X;A) + I(X; X̂2|A,Z)

where (a) follows since Xn is i.i.d. and by conditioning reduces entropy; and (b)
follows by the problem definition. Finally, from (N.6), the following holds

n(R1 +R2 +Rb) ≥ I(X,A|Q) + I(X,Y ; X̂2|A,Z,Q) + I(X; X̂1|A, Y, X̂2, Q)
(a)

≥ I(X,A) +H(X,Y |A,Z,Q)−H(X,Y |A,Z, X̂2) + I(X; X̂1|A, Y, X̂2)
(b)
= I(X;A)+H(Y |A,Z)+H(X|A, Y, Z)−H(X,Y |A,Z, X̂2)+I(X; X̂1|A, Y, X̂2)

= I(X;A) + I(X, Y ; X̂2|A,Z) + I(X; X̂1|A, Y, X̂2)

≥ I(X;A) + I(X; X̂2|A,Z) + I(X; X̂1|A, Y, X̂2) (N.7)

where (a) follows since Xn is i.i.d, since conditioning decreases entropy, and by the
problem definition; and (b) follows by the problem definition. From cost constraint
(8.5), it holds

Γ + ϵ ≥ 1

n

n∑
i=1

E [Λ(Ai)] = E [Λ(A)] . (N.8)

Moreover, let B be the event B = {(ψ1(X
n) ̸= h1(M1,Mb, Y

n)) ∧ (ψ2(X
n) ̸=

h2(M2,Mb))}. Using the CR requirement (5.26), Pr(B) ≤ ϵ. For j = 1, 2, it is true
that

E
[
d(Xj, X̂j)

]
=

1

n

n∑
i=1

E
[
d(Xji, X̂ji)

]
=

1

n

n∑
i=1

E
[
d(Xji, X̂ji)

∣∣∣B]Pr(B)+1

n

n∑
i=1

E
[
d(Xji, X̂ji)

∣∣∣Bc
]
Pr(Bc)

(a)

≤ 1

n

n∑
i=1

E
[
d(Xji, X̂ji)

∣∣∣Bc
]
Pr(Bc) + ϵDmax

(b)

≤ 1

n

n∑
i=1

E [d(Xji, hji)] + ϵDmax

(c)

≤ Dj + ϵDmax, (N.9)
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where (a) follows using the fact that Pr(B) ≤ ϵ and that the distortion is upper

bounded by Dmax; (b) follows by the definition of X̂ji and B; and (c) follows by (8.6).



APPENDIX O

CONVERSE PROOF FOR PROPOSITION 6.1 AND 6.2

Here, the converse part of Proposition 6.1 is proved. For any (n,R1, R2, D1 + ϵ,D2 +
ϵ,Γ + ϵ) code, the series of inequalities below hold

nR1 ≥ H(M1)
(a)
= I(M1;X

n, Y n)

= H(Xn) +H(Y n|Xn)

−H(Y n|M1)−H(Xn|Y n,M1)

(b)

≥
n∑

i=1

H(Xi)−H(Xi|Xn
i+1, Y

n,M1, A
i)

+H(Yi|Y i−1, Xn,M1, Ai)−H(Yi|Y i−1,M1, Ai)

(c)

≥
n∑

i=1

H(Xi)−H(Xi|Ai, Yi, Ui)

+H(Yi|Xi, Ai)−H(Yi|Ai), (O.1)

where (a) follows sinceM1 is a function of Xn and since conditioning reduces entropy;
(b) follows since Ai is a function of (M1, Y

i−1) and M1 is a function of Xn and (c)
follows since conditioning decreases entropy, by defining Ui = (M1, X

n
i+1, A

i−1, Y i−1)
and using the fact that the vending machine is memoryless. It is also true that

nR2 ≥ H(M2)

≥ H(M2|Xn,M1)
(a)
= I(M2;Y

n|Xn,M1)

(b)
=

n∑
i=1

H(Yi|Y i−1, Xn,M1, A
i)

−H(Yi|Y i−1, Xn,M1,M2, A
i)

(c)

≥
n∑

i=1

H(Yi|Xi, Ai, Ui)−H(Yi|Xi, Ai,Ui,Vi), (O.2)

where (a) follows since M2 is a function of (M1, Y
n), (b) follows since Ai is a function

of (M1, Y
i−1) and (c) follows since the Markov chain Yi—(Xi, Ui, Ai)—X i−1 holds

by the problem definition (the validity of the Markov chain can be verified using
d-separation on the Bayesian network representation of the joint distribution of the
variables at hand as induced by the system model in Figure O.1, see, e.g., [70, Section
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A.9]), since conditioning reduces entropy and by defining Vi =M2. It is recalled that
d-separation [70, Section A.9] is a standard procedure that allows to test whether a
set of variables X is independent of another set Y , when conditioning on a third set Z.
The procedure operates on the Bayesian network that describes the joint distribution
of all the variables.

1-i
X

i
X

n

i
X

1+

1-i
Y

i
Y

n

i
Y

1+

1-i

A

i
A

n

i
A

1+

1
M

2
M

Figure O.1 Bayesian network representing the joint pmf of variables
(M1,M2, X

n, Y n, An) for the two-way source coding problem with a vending machine
in Figure 6.2.

Defining Q to be a random variable uniformly distributed over [1, n] and

independent of all the other random variables and with X
△
= XQ, Y

△
= YQ, A

△
= AQ,

X̂1
△
= X̂1Q, X̂2

△
= X̂2Q, V

△
= (VQ, Q) and U

△
= (UQ, Q), from (O.1) it holds that

nR1 ≥ H(X|Q)−H(X|A, Y, U,Q)
+H(Y |X,A,Q)−H(Y |A,Q)

(a)

≥ H(X)−H(X|A, Y, U)
+H(Y |X,A)−H(Y |A)

= I(X;A) + I(X;U |A, Y ), (O.3)

where (a) follows by the fact that sourceXn and side information vending machine are
memoryless and since conditioning decreases entropy. Next, from (O.2), the following
holds

nR2 ≥ H(Y |X,A,U)−H(Y |X,A,U, V )
= I(Y ;V |X,A,U). (O.4)

Moreover, from Figure O.1 and using d-separation, it can be seen that Markov
chains Ui—(Xi, Ai)—Yi and Vi—(Ai, Ui, Yi)—Xi hold. This implies that the random
variables (X,Y,A, U, V ) factorize as in (8.8).

The next step is to show that the estimates X̂1 and X̂2 can be taken
to be functions of (V,X) and (U, Y ), respectively. To this end, recall that,

by the problem definition, the reconstruction X̂1i is a function of (M2, X
n) and
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thus of (Xi, Ui, Vi, X
i−1). Moreover, X̂1i can be taken to be a function of

(Xi, Ui, Vi) only without loss of optimality, due to the Markov chain relationship
Yi—(Xi, Ui, Vi)—X i−1, which can be again proved by d-separation using Figure O.1.
This implies that the distortion d1(Xi, Yi, X

i
1) cannot be reduced by including also

X i−1 in the functional dependence of X i. Similarly, the reconstruction X̂2i is a
function of (M1, Y

n) by the problem definition, and can be taken to be a function
of (Ui, Yi) only without loss of optimality, since the Markov chain relationship
Xi—(Yi, Ai, Ui)—Y n

i+1 holds. These arguments and the fact that the definition of
V and U includes the time-sharing variable Q allow us to conclude that one can
take X̂1 to be a function of (U, V,X) and X̂2 of (U, Y ). It is finally observed that
V is arbitrarily correlated with U as per (8.8) and thus it is possible without loss

of generality to set X̂1 to be a function of (V,X) only. The bounds (6.11) follow
immediately from the discussion above and the constraints (8.5)-(8.6).

To bound the cardinality of auxiliary random variable U , it is observed that
(8.8) factorizes as

p(x, y, a, u, v) = p(u)p(a, x|u)p(y|a, x)p(v|a, u, y). (O.5)

Therefore, for fixed p(y|a, x), p(a, u|x) and p(v|a, u, y) the characterization in
Proposition 6.1 can be expressed in terms of integrals

´
gj(·)dF (u), for j =

1, ..., |X | |A| + 3, of functions gj(·) of the given fixed pmfs. Specifically, gj for
j = 1, ..., |X1| |X2| − 1, are given by p(a, x|u) for all values of x ∈ X and a ∈ A
(except one); g|X1||X2| = H(X|A, Y, U = u); g|X1||X2|+1 = I(Y ;V |A,X,U = u);
g|X1||X2|+2 = E[d1(X,Y, f1(V,X))|U = u] and g|X1||X2|+3 = E[d2(X, Y, f2(U, Y ))|U = u].
The proof is concluded by invoking Caratheodory Theorem.

To bound the cardinality of auxiliary random variable V, it is noted that (8.8)
can be factorized as

p(x, y, a, u, v) = p(v)p(a, y, u|v)p(x|a, u, y), (O.6)

so that, for fixed p(x|a, u, y), the characterization in Proposition 6.1 can be expressed
in terms of integrals

´
gj(p(a, u, y|v))dF (v), for j = 1, ..., |A||U||Y| + 1, of functions

gj(·) that are continuous on the space of probabilities over alphabet |A| × |U| × |Y| .
Specifically, gj for j = 1, ..., |A||U||Y| − 1, are given by p(a, u, y) for all values of
a ∈ A, u ∈ U and y ∈ Y (except one); g|A||U||Y| = H(Y |A,X,U, V = v); and
g|A||U||Y|+1 = E[d1(X,Y, f1(V,X))|V = v]. The proof is concluded by invoking Fenchel–
Eggleston–Caratheodory Theorem [1, Appendix C].

The converse for Proposition 6.2 follows similar steps as above with the only
difference that here the following inequalities hold

nR1

(a)

≥
n∑

i=1

H(Zi)−H(Zi|Zn
i+1, Y

n,M1, A
i)

+H(Yi|Y i−1, Zn,M1, Ai)−H(Yi|Y i−1,M1, Ai)

(b)

≥
n∑

i=1

H(Zi)−H(Zi|Ai,Yi,Ui) +H(Yi|Zi,Ai)−H(Yi|Ai), (O.7)

where (a) follows as in (a)-(b) of (O.1); and (b) follows since Markov chain relationship
Yi—(Zi, Ai)—(Y i−1, Zn\i,M1) holds. The rest of the proof is as above.



APPENDIX P

PROOFS FOR THE EXAMPLE IN SECTION 6.4

1) D1 = D1,max and D2 = 0:
Here, it is proved the rate-cost region in Proposition 6.2 is given by (6.19) for

D1 = D1,max and D2 = 0. Let’s begin with the converse part. Starting from (6.15a),
it is true that

R1

(a)

≥ I(A;Z) +H(Z|A, Y )
= H(Z)− I(Z;Y |A)
(b)

≥ H(Z)− ΓI(Z;X|A = 1) (P.1)
(c)

≥ H(Z)− ΓH(X|A = 1)
(d)

≥ H(Z)− Γ
(e)
= H2(ϵ) + 1− ϵ− Γ, (P.2)

where (a) follows from (6.15a) and since Z has to be recovered losslessly at Node 2; (b)
follows since Pr[A = 1] = E[Λ(A)] ≤ Γ; (c) follows because entropy is non-negative;
(d) follows since H(X|A = 1) ≤ 1; and (e) follows because H(Z) = H2(ϵ) + 1 − ϵ.
Achievability follows by setting U = Z, V = ∅, Pr(A = 1|Z = 0) = Pr(A = 1|Z =
1) = Γ/(1−ϵ) and Pr(A = 0|Z = e) = 1 in (6.15).

2) D1 = 0 and D2 = D2,max:
Here, the case D1 = 0 and D2 = D2,max is evaluated. Let’s start with the

converse. Since X is to be reconstructed losslessly at Node 1, the requirement
H(X|V, Z) = 0 is resulted from (6.17a). It is easy to see that this requires that
the equalities A = 1 and V = Y = X are met if Z = e. In fact, otherwise,
X could not be a function of (V, Z) as required by the equality H(X|V, Z) = 0.
The condition that A = 1 if Z = e requires that the pmf p(a|z) be such that
Pr(A = 1|Z = e) = 1, which entails Γ = Pr[A = 1] ≥ Pr[Z = e] = ϵ. Moreover, one
can set Pr(A = 1|Z = 0) = Pr(A = 1|Z = 1) = (γ−ϵ)/(1−ϵ), for some 0 ≤ γ ≤ Γ, by
leveraging the symmetry of the problem on the selection of the actions given Z = 0
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and Z = 11. Starting from (6.15a), it holds that

R1

(a)

≥ I(Z;A)
= H(Z)−H(Z|A)
= H2(ϵ) + 1− ϵ− γH(Z|A = 1)− (1− γ)H(Z|A = 0)
(b)
= H2(ϵ) + 1− ϵ− γH

( ϵ
γ
,
γ − ϵ

2γ
,
γ − ϵ

2γ

)
− (1− γ)

= H2(ϵ)− γH2

( ϵ
γ

)
(a)

≥ H2(ϵ)− ΓH2

( ϵ
Γ

)
, (P.3)

where (a) follows from (6.15a) and since there is no distortion requirement at Node
2; (b) follows by direct calculation; and (c) follows since H2(ϵ)− γH2(

ϵ
γ
) is minimized

at γ = Γ over all 0 ≤ γ ≤ Γ.
The bound (6.20b) follows immediately by providing Node 2 with the sequence

Xn and then using the bound R2 ≥ H(X|Z) = ϵ.
Achievability follows by setting U = ∅ and the pmf p(a|z) be such that Pr(A =

1|Z = e) = 1 and Pr(A = 1|Z = 0) = Pr(A = 1|Z = 1) = Γ−ϵ
1−ϵ

. Moreover, let
V = Y = X if Z = e and V = Y = ϕ otherwise. Evaluating (6.15) with these choices
leads to (6.20).

3) D1 = D2 = 0:
Here, the rate-cost region (6.21) is proved for the case D1 = D2 = 0. Starting

from (6.15a), it is true that

R1

(a)

≥ H(Z)− ΓI(Z;X|A = 1)
(b)
= H(Z)− ΓH(X|A = 1) + ΓH(X|A = 1, Z = e)Pr(Z = e|A = 1)
(c)

≥ H(Z)− Γ + Γ.
ϵ

Γ
= H2(ϵ) + 1− Γ, (P.4)

where (a) follows as in (P.1); (b) follows because H(X|A = 1, Z = 0) = H(X|A =
1, Z = 1) = 0; (c) follows sinceH(X|A = 1) ≤ 1, H(X|A = 1, Z = e) = 1 and because
p(Z = e|A = 1) = ϵ

Γ
, where latter follows from the requirement H(X|V, Z) = 0 as

per discussion provided in the previous section.
For the achievability, let U = Z, Pr(A = 1|Z = e) = 1 and Pr(A = 1|Z =

0) = Pr(A = 1|Z = 1) = Γ−ϵ
1−ϵ

. Moreover, let V = Y = X if Z = e and V = Y = ∅
otherwise. Evaluating (6.15) with these choices leads to (6.21).

1This is due to the fact that, by the problem definition, the events Z = 0 and Z = 1 are
statistically equivalent, and hence, there is no advantage in mapping Z = 0 to A = 1 with
higher probability than mapping Z = 1 to A = 1 and vice versa.



APPENDIX Q

CONVERSE PROOF FOR PROPOSITION 6.3

Here, the converse part of Proposition 6.3 is proved. For any (n,R1, R2, D1 + ϵ,D2 +
ϵ,D3 + ϵ,Γ + ϵ) code, the series of inequalities below hold

nR1 ≥ H(M1)

(a)

≥
n∑

i=1

H(Zi)−H(Zi|Zn
i+1, Y

n,M1, A
i, X̂3i)

+H(Yi|Y i−1, Xn,M1,Ai,X̂3i)−H(Yi|Y i−1,M1,Ai,X̂3i)

(b)

≥
n∑

i=1

H(Zi)−H(Zi|Ai,Yi,Ui, X̂3i)+H(Yi|Zi,Ai, X̂3i)−H(Yi|Ai, X̂3i), (Q.1)

where (a) follows from (a) in (O.7) by noting that X̂3i is a function of M and (b)
follows since conditioning decreases entropy, by defining Ui = (M1, X

n
i+1, A

i−1, Y i−1)

and using the Markov chain relationship Yi—(Zi, Ai, X̂3i)—(Y i−1, Xn\i,M1). The
following series of inequalities hold

nR2 ≥ H(M2)

(a)

≥
n∑

i=1

H(Yi|Zi, Ai, Ui, X̂3i)−H(Yi|Zi, Ai, Ui, Vi, X̂3i), (Q.2)

where (a) follows from (O.2), by replacing sequence Xn with the sequence Zn and

by observing that X̂3i is a function of M1. Defining Q as in Appendix A, along with

X̂3
△
= X̂3Q, from (Q.1) it is true that

nR1 ≥ H(Z|Q)−H(Z|A, Y, U, X̂3, Q) +H(Y |Z,A, X̂3, Q)−H(Y |A, X̂3, Q)
(a)

≥ H(Z)−H(Z|A, Y, U, X̂3) +H(Y |Z,A, X̂3)−H(Y |A, X̂3)

=I(Z;A)+I(Z; X̂3|A)+I(Z;U |A,Y,X̂3),

where (a) follows by the fact that source Zn and side information vending machine
are memoryless and since conditioning decreases entropy. Next, from (Q.2), it holds
that

nR2 ≥ H(Y |Z,A, U, X̂3)−H(Y |Z,A, U, V, X̂3)

= I(Y ;V |Z,A, U, X̂3). (Q.3)
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Moreover, by just adding X̂n
3 to the Bayesian graph in Figure O.1 and using d-

separation, it can be seen that Markov chains Ui—(Zi, Ai)—Yi and Vi—(Ai, Ui, Yi, X̂3)—Zi

hold, which implies that the random variables (X, Y, Z,A, U, V, X̂3) factorize as in
(6.25). Based on the discussion in the converse proof in Appendix A, it is easy to

see that the estimates X̂1 and X̂2 are functions of (V,X) and (U, Y ), respectively.
The bounds (6.24) follow immediately from the discussion above and the constraints
(8.5)-(8.6) and (6.23).



APPENDIX R

PROOF OF PROPOSITION 7.1

First, it is observed that given the probability of error constraint (7.6) the Fano
inequality holds as follows

H(M |Y n) ≤ nδ(ϵ), (R.1)

where the notation δ(ϵ) represents any function such that δ(ϵ) → 0 as ϵ → 0, and
that given the CR constraint (7.9), the Fano inequality holds as follows

H(ψ|Y n) ≤ nδ(ϵ). (R.2a)

It also holds

nR = H(M)
(a)

≤ I(M ;Y n) + nδ(ϵ)
(b)
= I(M ;Y n)− I(M ;Sn|An) + nδ(ϵ)
= I(ψ,M ;Y n)− I(ψ;Y n|M)− I(ψM ;Sn|An) + I(ψ;Sn|An,M) + nδ(ϵ)
= I(ψ,M ;Y n)−H(ψ|M) +H(ψ|M,Y n)− I(ψ,M ;Sn|An) +H(ψ|An,M)

−H(ψ|An,M, Sn) + nδ(ϵ)
= I(ψ,M ;Y n)−I(ψ;An|M)+H(ψ|M,Y n)−I(ψ,M ;Sn|An)

−H(ψ|An,M, Sn)+nδ(ϵ)
(c)

≤ I(ψ,M ;Y n)− I(ψ,M ;Sn|An) + nδ(ϵ)

=
n∑

i=1

I(ψ,M ;Yi|Y i−1)− I(ψ,M ;Si|Sn
i+1, A

n) + nδ(ϵ)

(d)

≤
n∑

i=1

H(Yi)−H(Yi|Y i−1, ψ,M, Sn
i+1, A

n)−H(Si|Sn
i+1, A

n)

+H(Si|Y i−1, ψ,M, Sn
i+1, A

n) + nδ(ϵ)

(e)
=

n∑
i=1

H(Yi)−H(Yi|Ui)−H(Si|Ai) +H(Si|Ui, Ai) + nδ(ϵ)

=
n∑

i=1

I(Ui;Yi)− I(Ui;Si|Ai) + nδ(ϵ) (R.3)

where (a) follows due to Fano’s inequality as in (R.1); (b) follows using the Markov
chainM−An−Sn; (c) follows by (R.2a) and since mutual information is non-negative
(recall that by definition 2nδ(ϵ) = nδ(ϵ)); (d) follows using the same steps provided
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in the proof of Theorem 1 in [44, eq. (9)-(12)] by substituting M with (M,ψ) ; and

(e) follows by defining Ui
△
= (Y i−1, ψ,M, Sn

i+1, A
n\i) and because the Markov relation

Si − Ai − (Sn
i+1, A

n\i) holds.
Defining Q to be a random variable uniformly distributed over [1, n] and

independent of (An, Sn, Un, Xn, Y n), and with A
△
= AQ, S

△
= SQ, X

△
= XQ, Y

△
= YQ

and U
△
= (UQ, Q), from (R.3) the following holds

R ≤ I(U ;Y |Q)− I(U ;S|A,Q) + δ(ϵ)
(a)
= H(Y |Q)−H(Y |U)−H(S|A,Q) +H(S|A,U) + δ(ϵ)
(b)

≤ H(Y )−H(Y |U)−H(S|A) +H(S|A,U) + δ(ϵ)
= I(U ;Y )− I(U ;S|A) + δ(ϵ) (R.4)

where (a) follows using the definition of U and (b) follows because conditioning reduces
entropy. Moreover, from (8.38), it is true that

Γ + ϵ ≥ 1

n

n∑
i=1

E [γ(Ai, Xi)] = E [γ(A,X)] . (R.5)

Next, define Ŝi = ψi(S
n) and Ŝ = ŜQ, where ψi(S

n) represents the ith symbol
of ψ(Sn). Moreover, let B be the event B = {ψ(Sn) ̸= h2(Y

n)}. Using the
CR requirement (7.9), Pr(B) ≤ ϵ. Then the distortion can be calculated as (the
dependence of h2i on Y

n is dropped for simplicity of notation)

E
[
d(S, Ŝ)

]
=

1

n

n∑
i=1

E
[
d(Si, Ŝi)

]
=

1

n

n∑
i=1

E
[
d(Si, Ŝi)

∣∣∣B]Pr(B)
+
1

n

n∑
i=1

E
[
d(Si, Ŝi)

∣∣∣Bc
]
Pr(Bc)

(a)

≤ 1

n

n∑
i=1

E
[
d(Si, Ŝi)

∣∣∣Bc
]
Pr(Bc) + ϵDmax

(b)

≤ 1

n

n∑
i=1

E [d(Si, h2i)] + ϵDmax

(c)

≤ D + ϵDmax, (R.6)

where (a) follows using the fact that Pr(B) ≤ ϵ and that the distortion is upper

bounded by Dmax; (b) follows by the definition of Ŝi and B; and (c) follows by (7.7).
To bound the cardinality of auxiliary random variable U , first, it is observed

that the distribution of the variables (A,U, S,X, Y, Ŝ) identified above factorizes as

p(a, u, s, x, y) = p(u)p(a, s, x|u)p(y|x, s, a), (R.7)
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and Ŝ is a deterministic function ϕ(U). Therefore, for fixed p(y|x, s, a), the characteri-
zation in Proposition 8.6 can be expressed in terms of integrals

´
gj(p(a, s, x|u))dF (u)

for j = 1, ..., |A| × |S| × |X | + 2, of functions gj(.) that are continuous over pmf on
the alphabet |A|× |S|× |X |. Specifically, gj for j = 1, ..., |A|× |S|× |X |−1 are given
by p(a, s, x) for all values of a ∈ A, s ∈ S, and x ∈ X (except one); g|A|×|S|×|X | =

H(Y |U = u); g|A|×|S|×|X |+2 = H(S|A,U = u); and g|A|×|S|×|X |+1 = E
[
d(S, Ŝ)|U = u

]
.

The cardinality bound follows by invoking Fenchel-Eggleston-Caratheodory Theorem
[1, Appendix C]. Finally, it is observed that the joint distribution (R.7) can be written
as (8.8) without loss of generality, since U can always contain A without reducing
rate (7.11).



APPENDIX S

PROOF OF PROPOSITION 7.2

The proof is similar to that given in [51] (see also [52]), although care must be taken
to properly account for the presence of the actions. First, it is observed that given the
probability of error constraint (7.22), the Fano inequality below holds H(Mj|Y n

j ) ≤
nδ(ϵ) for j = 1, 2. The following holds

nR2 = H(M2)
(a)

≤ I(M2;Y
n
2 ) + nδ(ϵ) (S.1)

(b)
=

n∑
i=1

I(M2;Y2i|Y i−1
2 ) + nδ(ϵ) (S.2)

(c)

≤
n∑

i=1

I(M2, Y
i−1
2 ;Y2i) + nδ(ϵ) (S.3)

(d)

≤
n∑

i=1

I(M2, Y
i−1
2 , Y i−1

1 ;Y2i) + nδ(ϵ) (S.4)

(e)
=

n∑
i=1

I(U2i;Y2i) + nδ(ϵ), (S.5)

where (a) follows due to Fano’s inequality as in (R.1); (b) follows by using the chain
rule for mutual information; (c) and (d) follow because conditioning increases entropy;

and (e) follows by defining U2i
△
= (M2, Y

i−1
1 ) and noting the Markov relation Y i−1

2 −
(Y i−1

1 ,M2)− Y2i due to the degradedness property (7.24). It is also true that

nR1 = H(M1)
(a)

≤ I(M1;Y
n
1 ) + nδ(ϵ) (S.6)

(b)

≤ I(M1;Y
n
1 |M2) + nδ(ϵ) (S.7)

(c)
=

n∑
i=1

I(M1;Y1i|Y i−1
1 ,M2) + nδ(ϵ) (S.8)

(d)

≤
n∑

i=1

I(M1, Y
i−1
1 , Si−1;Y1i|Y i−1

1 ,M2) + nδ(ϵ) (S.9)

(d)

≤
n∑

i=1

I(U1i;Y1i|U2i) + nδ(ϵ), (S.10)

where (a) follows due to Fano’s inequality as in (R.1); (b) follows because M1 and M2

are independent and since conditioning reduces entropy; (c) follows using the chain
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rule for mutual information; (d) follows since conditioning decreases entropy; and (e)

follows by defining U1i
△
= (M1, Y

i−1
1 , Si−1). Let Q be a random variable uniformly

distributed over [1, n] and independent of (An, Sn, Un
1 , U

n
2 , X

n, Y n
1 , Y

n
2 ) and define

A
△
= AQ, S

△
= SQ, X

△
= XQ, Y1

△
= Y1Q, Y2

△
= Y2Q, U1

△
= (U1Q, Q), and U2

△
= (U2Q, Q).

It can be easily seen that, with these definitions, the sum (S.5) is upper bounded by
I(U2;Y2), and (S.10) equals I(U1;Y1|U2). Moreover, note that, from the definitions
above, X is a function of U1, U2 and S, given the encoding function (7.19). Similarly,
A is a function of (U1, U2) given (7.18). Also, the Markov relationship (U1, U2)−A−S
holds as it can be easily checked by using the d-separation principle [70]. Finally, from
(8.38), it holds that

Γ + ϵ ≥ 1

n

n∑
i=1

E [γ(Ai, Xi)] = E [γ(A,X)] ,

which completes the proof.



APPENDIX T

PROOF OF PROPOSITION 8.1

Here, the converse part of Proposition 8.1 is proved. For any (n,R,D1+ϵ,D2+ϵ,Γ+ϵ)
code, It holds that

nR ≥ H(M)

= I(M ;Xn, Y n)

= H(Xn, Y n)−H(Xn, Y n|M)

= H(Xn) +H(Y n|Xn)−H(Y n|M)−H(Xn|M,Y n)

=
n∑

i=1

H(Xi) +H(Yi|Y i−1, Xn)−H(Yi|Y i−1,M)−H(Xi|X i−1,M, Y n)

(a)

≥
n∑

i=1

H(Xi) +H(Yi|Y i−1, Xn, An)−H(Yi|Y i−1,M,An)−H(Xi|X i−1,M, Y n, An)

(T.1)

(b)
=

n∑
i=1

H(Xi) +H(Yi|Y i−1, Xn, An, X̂2i)−H(Yi|Y i−1,M,An, X̂2i)

−H(Xi|X i−1,M, Y n, An, X̂2i) (T.2)

(c)

≥
n∑

i=1

H(Xi) +H(Yi|Xi, Ai, X̂2i)−H(Yi|Ai, X̂2i)−H(Xi|Ui, Yi, Ai, X̂2i), (T.3)

where (a) because An is a function of M and since conditioning reduces entropy;

(b) follows since X̂2i is a function of An; and (c) follows because the Markov relation

Yi—(Xi, Ai, X̂2i)—(Xn\i, An\i) holds, by defining Ui = (M,X i−1, Y n\i, Ai−1) and since
conditioning decreases entropy.

Defining Q to be a random variable uniformly distributed over [1, n] and

independent of all the other random variables and with X
△
= XQ, Y

△
= YQ, A

△
= AQ,

X̂1
△
= X̂1Q, X̂2

△
= X̂2Q and U

△
= (UQ, Q), from (T.3) The following holds

nR ≥ H(X|Q) +H(Y |X,A, X̂2, Q)−H(Y |A, X̂2, Q)−H(X|U, Y,A, X̂2, Q)
(a)

≥ H(X) +H(Y |X,A, X̂2)−H(Y |A, X̂2)−H(X|U, Y,A, X̂2)

= I(X;U, Y,A, X̂2)− I(Y ;X|A, X̂2)

= I(X;A, X̂2) + I(X;U |Y,A, X̂2),
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where in (a) holds due to the fact that Xn is i.i.d., conditioning reduces entropy and
by the problem definition. Moreover, the following chain of inequalities hold

H(f(An)) ≤
n∑

i=1

H(f(Ai)) = nH(f(A)|Q) ≤ nH(f(A)), (T.4)

where the last inequality follows since conditioning reduces entropy, and

H(f(An)) ≥ I(f(An);Xn)

=
n∑

i=1

I(f(An);Xi|X i−1)

=
n∑

i=1

I(f(An), X̂2i;Xi|X i−1)

=
n∑

i=1

I(f(An), X̂2i, X
i−1;Xi)

(a)

≥
n∑

i=1

I(f(Ai), X̂2i;Xi)

= n(H(X|Q)−H(X|f(A), X̂2, Q))
(b)

≥ n(H(X)−H(X|f(A), X̂2))

= n(I(X; f(A), X̂2)), (T.5)

where (a) follows by the chain rule for mutual information and since mutual
information is non-negative; and (b) follows since Xn is i.i.d. and due to the fact
that conditioning decreases entropy. Combining (T.5) and (T.4), the inequality below
obtained

I(X; f(A), X̂2) ≤ H(f(A)). (T.6)

It is noted that the defined random variables factorizes as (8.8) since the Markov

chain relationship (X̂1, X̂2, U)—(A,X)—Y holds by the problem definition and that

X̂2 is a function g(U, Y ) of U and Y by the definition of U . Moreover, from cost and
distortion constraints (8.5)-(8.6), it is true that

Dj + ϵ ≥ 1

n

n∑
i=1

E[dj(Xi, X̂ji)] = E[dj(X, X̂j)], for j = 1, 2, (T.7a)

and Γ + ϵ ≥ 1

n

n∑
i=1

E [Λ(Ai)] = E [Λ(A)] . (T.7b)

The cardinality constraint on the auxiliary random variable U is obtained as
follows using Caratheodory’s theorem as in [1, Appendix C]. Note that one can

write I(X; X̂2, A) + I(X;U |X̂2, A, Y ) = H(X) − H(X|X̂2, A) + H(X|X̂2, A, Y ) −
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H(X|X̂2, A, Y, U). Now, to preserve the joint distribution of variables (X,X̂2,A), and

thus the distribution of all variables (X,X̂2,A,Y ) and the terms H(X), H(X|X̂2, A)

and H(X|X̂2, A, Y ) (since p(y|x, a) is fixed), the set U should have |X ||X̂2||A| − 1
elements; moreover, one further element is required to preserve the conditional
entropy H(X|X̂2, A, Y, U) and one for the distortion E[d1(X, X̂1)].



APPENDIX U

PROOF OF PROPOSITION 8.2 AND PROPOSITION 8.3

First, the converse part of Proposition 8.2 is proved and then describe the different
steps needed to prove Proposition 8.3. The first part of the converse follows the
same steps as in Appendix A. However, it is noted that in (T.1) and (T.2), Ai can
be written instead of An, without changing the following steps. This is due to the
strictly causal dependence of X̂2i on the action sequence which is used in (T.2). This
allows to validate the claim in Remark 8.2. To prove the constraint in (8.13c), the
following chain of inequalities hold

H(f(An)) =
n∑

i=1

H(f(Ai)|f(Ai−1)) =
n∑

i=1

H(f(Ai)|X̂2i)
(a)

≤ nH(f(A)|X̂2). (U.1)

Moreover, it is also true that

H(f(An)) ≥ I(f(An);Xn)

=
n∑

i=1

I(f(An);Xi|X i−1)

=
n∑

i=1

I(f(An), X̂2i;Xi|X i−1)

=
n∑

i=1

I(f(An), X̂2i, X
i−1;Xi)

(a)

≥
n∑

i=1

I(f(Ai), X̂2i;Xi)

= n(H(X|Q)−H(X|f(A), X̂2, Q))
(b)

≥ n(H(X)−H(X|f(A), X̂2))

= n(I(X; f(A), X̂2)), (U.2)

where (a) follows by the chain for mutual information and since mutual information
is non-negative; and (b) follows since Xn is i.i.d. and due to the fact that conditioning
decreases entropy. Combining (U.2) and (U.1), the inequality (8.13c) is obtained. It is
noted that the joint pmf of the defined random variables factorizes as (8.12) since the

Markov chain relationship (X̂1, X̂2, U)—(A,X)—Y holds by the problem definition

and that X̂1 is a function g(U, Y ) of U and Y by the definition of U as in Appendix
A. The distortion, cost and cardinality constraint are obtained as in Appendix A.

The converse for Proposition 8.3 follows from similar steps by defining Vi =
f(Ai−1) and noting that X̂2i is a function of Vi and f(Ai).
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The cardinality of the auxiliary random variables U and V for Proposition
8.3 is bounded using [1, Appendix C]. The bounds for U in Proposition 8.2 follow
in the same way. Note that one can write I(X;V,A) + I(X;U |V,A, Y ) = H(X) −
H(X|V,A)+H(X|V,A, Y )−H(X|V,A, Y, U). Starting with V , the alphabet V should
have |X |−1 elements to preserve the distribution p(x) and hence H(X), one element
to preserve −H(X|V,A) + H(X|V,A, Y ), two elements to preserve the distortion
constraints and and one more to preserve the condition I(X;V, f(A)) ≤ H(f(A)|V ).
As for U , just as in Appendix A, U should have |X ||V||A| − 1 elements to preserve
the joint distribution p(x, v, a) (which preserves the joint distribution p(x, a, v, y) and
hence H(X), H(X|V,A), H(X|V,A, Y )), one element to preserve H(X|V,A, Y, U)
and one more to preserve the distortion constraint of Decoder 1.



APPENDIX V

PROOF OF PROPOSITION 8.4

Here, the converse part of Proposition 8.4 is proved. To establish the converse, it
is sufficient to consider the case of non-causal action observation, as done in the
following. For any (n,R,D1 + ϵ,D2 + ϵ,Γ + ϵ) code, define the auxiliary variable
Ui = (Y n, X i−1), and Q as a random time sharing variable uniformly distributed in

the interval [1, n] independent of (X,U, X̂1, X̂2, A, Y ). It is true that

H(Y n) =
n∑

i=1

H(Yi|Y i−1)

≤
n∑

i=1

H(Yi)

=
n∑

i=1

H(fY (Ai))

= nH(fY (AQ)|Q)
≤ H(fY (AQ)). (V.1)

Also, the following holds

H(Y n) ≥ I(Xn;Y n)

=
n∑

i=1

I(Xi;Y
n|X i−1)

(a)
=

n∑
i=1

I(Xi;Y
n, X i−1)

=
n∑

i=1

I(Xi;Ui)

= nI(XQ;UQ|Q)
(b)
= I(XQ;UQ, Q), (V.2)
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along with

H(An|Y n) =
n∑

i=1

H(Ai|Y n, Ai−1)

≤
n∑

i=1

H(Ai|Yi)

=
n∑

i=1

H(Ai|fY (Ai))

= n(H(AQ)|fY (AQ), Q)

≤ H(AQ|fY (AQ)), (V.3)

and

H(An|Y n) ≥ I(Xn;An|Y n)
(c)
= I(Xn;An, X̂n

2 |Y n)

≥
n∑

i=1

I(Xi; X̂2,i|Y n, X i−1)

=
n∑

i=1

I(Xi; X̂2,i|Ui)

= nI(XQ; X̂2,Q|UQ, Q). (V.4)

Furthermore, it also holds that

H(Y n,M) ≤
n∑

i=1

H(Yi) + nR

≤ nH(YQ) + nR, (V.5)

and

H(Y n,M) ≥ I(Xn;Y n,M)
(d)
= I(Xn; X̂n

1 , Y
n,M)

≥
n∑

i=1

I(Xi; X̂1,i, Y
n|X i−1)

=
n∑

i=1

I(Xi; X̂1,i, Y
n, X i−1)

=
n∑

i=1

I(Xi; X̂1,i, Ui)

= n(XQ; X̂1,Q, UQ, Q), (V.6)
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where (a) follows from the independence of Xi and X i−1; (b) follows from the

independence of Q from all other random variables; (c) follows from the fact that X̂n
2

is a function of An; and (d) follows from the fact that X̂n
1 is a function of (M,Y n).

Defining U
△
= (UQ, Q) along with X

△
= XQ, Y

△
= YQ, A

△
= AQ, X̂1

△
= X̂1Q, X̂2

△
= X̂2Q

and combining (V.1), (V.2), (V.3), (V.4), (V.5) and (V.6), the rate region inequalities
are obtained as mentioned in the proposition. Note that the joint distribution of the
random variables (X, Y,A, X̂1, X̂2) established above factorizes as p(x)p(u, x̂1, x̂2, a|x)
but can be restricted only to pmfs factorizing as in (8.21). This is because the
information measures in (8.20)-(8.22) only depends on the marginals p(x, u, x̂1), p(a)
and p(x, u, x̂2). Distortion and cost constraints are handled in the standard manner
[1].

The cardinality of the auxiliary random variables U is bounded using [1,

Appendix C]. The set U should have |X ||X̂1||X̂2| − 1 elements to preserve the joint

distribution p(x, x̂1, x̂2), one element to preserve the Markov chain X̂1 −U − X̂2, and

three elements to preserve H(X|X̂1, U), H(X|X̂2, U) and H(X|U) .



APPENDIX W

SKETCH OF PROOF OF ACHIEVABILITY FOR PROPOSITION 8.6

Below, it is proved that the following rate region is achievable

R1 ≤ H(f(A)) (W.1a)
R1 +R2 ≤ I(A,U ;Y )− I(U ;S|A), (W.1b)

R2 ≤ I(A;Y |f(A)) + I(A,U ;Y |A)− I(U ;S|A), (W.1c)

for a given joint distribution as in (8.40). Assuming now that this rate region is
achievable, it is shown that the rate region (8.39) is also achievable. Region (8.39)
is larger than (W.1) owing to the absence of the inequality (W.1c). The two regions
are illustrated in Figure W.1 for a given choice of the distribution (8.40), with region
(W.1) in solid lines and (8.39) in dashed lines. Now, it is argued that the achievability
of region (W.1) (solid lines) implies the achievability of region (8.39) (dashed lines)
as well, by following the same arguments as in [67]. Specifically, it is observed that,
if (R1, R2) is achievable with some scheme, then (R1 − t, R2 + t) is also achievable for
all 0 ≤ t ≤ R1. This is due to the fact that, if the rate pair (R1, R2) is achievable,
then some of the rate of the common message M1 can always be transferred to the
private message M2 for Decoder 2 to achieve (R1 − t, R2 + t) if 0 ≤ t ≤ R1. It follows
immediately that all the points on the dashed line in Figure W.1 are also achievable.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
1

R
2

 

 

(R
1
-t,R

2
+t)

(R
1
,R

2
)

Figure W.1 Illustration of the rate regions (8.39) (dashed lines) and (W.1) (solid
lines).
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The discussion above allows us to conclude that concludes that, if region (W.1)
is achievable, then the desired rate region (8.39) is also achievable. Let’s now focus
on proving the achievability of (W.1). To this end, superposition coding and the
technique proposed in [44] are combined. Fix the joint distribution as in (8.40). First
the codebook bn(m1), m1 ∈ [1 : 2nR1 ] is generated i.i.d. with pmf p(b). Next, a
superimposed codebook is generated for each bn of an(m1,m2) codewords, m2 ∈ [1 :
2nR2 ], i.i.d. with pmf p(a|b). For every an sequence, a codebook of un(m1,m2, j)

sequences is generated, j ∈ [1 : 2nR̃], i.i.d. with pmf p(u|a).
To encode messages (m1,m2), Encoder selects the codeword an(m1,m2), and

chooses a un codeword jointly typical with action and state sequence, which requires
R̃ ≥ I(U ;S|A). Then xi = g(ui, si) is then sent through the channel. Decoder 1
decodes the message m1 correctly if R1 ≤ H(B). Decoder 2 looks for the unique
pair of messages (m1,m2) such that the tuple (yn, bn(m1), a

n(m1,m2), u
n(m1,m2, j))

is jointly typical for some j ∈ [1 : 2nR̃]. This step is reliable if R1 + R2 + R̃ ≤
I(A,U ;Y ) and R2 + R̃ ≤ I(U,A;Y |B) = I(A;Y |B) + I(U ;Y |A). Using Fourier-
Motzkin elimination to eliminate rate R̃ leads to the bounds (W.1).
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