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ABSTRACT

THEORETICAL STUDIES OF STRUCTURAL AND ELECTRONIC
PROPERTIES IN TRANSITION METAL OXIDES

by
Tsezár F. Seman

The following studies are presented: theory of K-edge resonant inelastic x-ray scat-

tering and its application for La0.5Sr1.5MnO4, effects of rare earth ion size on the

stability of the coherent Jahn-Teller distortions in undoped perovskite manganites,

and symmetry-mode-based classical and quantum mechanical formalism of lattice

dynamics.

The formula based on tight-binding approach for the calculation of K-edge res-

onant inelastic x-ray scattering (RIXS) spectrum for transition metal oxides is pre-

sented first, by extending the previous existing result to include explicit momentum

dependence and a basis with multiple core-hole sites. This formula is applied to lay-

ered charge, orbital and spin ordered manganites, La0.5Sr1.5MnO4, and good agree-

ment with experimental data was obtained, in particular, with regard to the large

variation of the intensity with momentum. As a consequence, it is established that

the electron screening in La0.5Sr1.5MnO4 is highly localized around the core hole

site and demonstrates the potential of K-edge RIXS, as a probe for the screening

dynamics in materials.

Theoretical study is then introduced on the relation between the size of the

rare earth ions, often known as chemical pressure, and the stability of the coherent

Jahn-Teller distortions in undoped perovskite manganites. Using a Keating model

expressed in terms of atomic scale symmetry modes, it is shown that there exists a

coupling between the uniform shear distortion and the staggered buckling distortion

within the Jahn-Teller energy term. It is found that this coupling provides a mecha-

nism by which the coherent Jahn-Teller distortion is more stabilized by smaller rare



earth ions. Further analysis shows the appearance of the uniform shear distortion

below the Jahn-Teller ordering temperature; the Jahn-Teller ordering temperature

is estimated and its variation between NdMnO3 and LaMnO3, and the relations

between distortions are obtained. A good agreement is found between theoretical

results and the experimental data.

Finally, the classical and quantum mechanical descriptions of lattice dynamics

are presented, from the atomic to the continuum scale, using atomic scale symmetry

modes and their constraint equations. This approach is demonstrated for a one-

dimensional chain and a two-dimensional square lattice on a monatomic basis. For

the classical description, it is found that rigid modes, in addition to the distortional

modes found before, are necessary to describe the kinetic energy. The long wave-

length limit of the kinetic energy terms expressed in terms of atomic scale modes

is shown to be consistent with the continuum theory, and leading order corrections

are obtained. For the quantum mechanical description, conjugate momenta for the

atomic scale symmetry modes are presented. In direct space, graphical rules for their

commutation relations are obtained. Commutation relations in the reciprocal space

are also calculated. As an example, phonon modes are analyzed in terms of sym-

metry modes. The approach presented here based on atomic scale symmetry modes

could be useful for the study of complex emerging materials, in which competing

structural phases and non-linearity of the lattice energy play an important role.
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CHAPTER 1

INTRODUCTION

In recent years, there have been a great interest in the K-edge resonant inelastic x-ray

scattering (RIXS) (Ament et al. 2011), because of its unique advantages over other

probes. K-edge RIXS provides information on momentum dependence of excitations,

sensitive to the bulk properties, and can be directly compared with the electronic

band structures because final states do not have the core hole. It is suggested that the

K-edge RIXS intensity for transition metal oxides essentially represents the dynamics

of electrons near the Fermi energy which screens the 1s core hole created by the x-

ray (Ahn et al. 2009; Semba et al. 2008).

EF

4p

3d

1s

in
out

Photon Photon
(a) (b) (c)

Figure 1.1 Indirect or K-edge RIXS process best described by three stages: (a) in
the initial stage, from incoming photon an electron is excited from deep 1s core level
into 4p valence band, (b) in the intermediate stage, excitations are created in the 3d
band through Coulomb interaction between the core hole and the valence electron,
and (c) in the final stage, electron decays leaving the excitation in the valence band
and a photon is emitted. Courtesy of Ahn et al. (2009).

The result in Ahn et al. (2009) allows an approximation of replacing the sum

over the intermediate states to a single lowest energy intermediate state. The

study further showed that expanding RIXS intensity according to the number of

final electron-hole pairs is a fast converging expansion with one-electron hole pair

states dominant, particularly for insulators. From this consideration, the calculation

showed that the electron excitation is from the whole unoccupied band, reflecting the

1
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localized nature of screening of core hole by electron in direct space, whereas the hole

excitation is mostly from occupied states close to the gap to minimize the kinetic

energy, particularly when the gap energy is smaller than the band width. In Ahn

et al. (2009), however, the focus was on energy dependence of the electron-hole exci-

tations, and momentum dependence of RIXS spectrum was not considered explicitly.

Further presented is a formula that includes the full momentum dependence, as well

as multiple core hole sites within unit cell in the tight binding approach. In this

approach, the formula is expressed in terms of the intermediate state basis with a

completely localized 1s core hole, so that the RIXS spectrum in reciprocal space can

be readily compared with the screening pattern in direct space.

Figure 1.2 (Color) In-plane structural layout of Mn ions depicting t2g spin arrange-
ment along zig-zag chain.

To explain the K-edge RIXS spectrum, applied formula is recently obtained

for La0.5Sr1.5MnO4, which shows a drastic variation of the RIXS intensity in recip-

rocal space in spite of almost no change in the peak energy (Liu et al. 2012).

La0.5Sr1.5MnO4 has a layered two-dimensional perovskite structure and the hopping
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of the Mn 3d eg electrons between different MnO2 layers is believed to be negligible.

K-edge RIXS spectrum is measured on a single crystal of La0.5Sr1.5MnO4 at 20 K (Liu

et al. 2012), which has a magnetic, charge and orbital ordering known as CE-type

ordering in the MnO2 plane, schematically shown in Figure 1.2, where “Mn3+” and

“Mn4+” are used to indicate the two sites not related by the symmetry. The strong

Hund’s coupling between the eg electron spin and the t2g electron spin channels the

eg electron hopping only along the zigzag chain, which influence the screening of

the core hole in the RIXS intermediate state. This work is presented in depth in

Chapter 2, as well as in Liu et al. (2012).

Since the discovery of the colossal magnetoresistance effect, a lot of atten-

tion has focused on a class of materials known as perovskite manganites (von Hel-

molt et al. 1993; Jin et al. 1994; Salamon and Jaime 2001). During the last two

decades, substantial progress has been made in the theory for perovskite mangan-

ites. Importance of the electron-lattice coupling was identified shortly after the dis-

covery of colossal magnetoresistance effect (Millis et al. 1995; Röder et al. 1996; Millis

et al. 1996). First-order character of the metal-insulator phase transition has been

found from Monte Carlo simulations (Vergés et al. 2002). Mechanism for inhomo-

geneity and its relation to metal-insulator transition have been studied (Moreo et al.

1999). Effects of disorder have been investigated for doped manganites (Kumar and

Majumdar 2006; Pradhan et al. 2007). The competition between short range super-

exchange interaction and long range double exchange interaction has been analyzed

for multiferroic undoped manganites (Salafranca and Brey 2006). Most recently,

novel mechanisms for ferroelectricity, including electronic ferroelectricity, have been

proposed for undoped manganites with E-type antiferromagnetic ordering (Sergienko

et al. 2006; Yamauchi et al. 2008). These materials have the chemical formula in the

form of RE1−xAKxMnO3, where RE and AK represent the rare earth and alkali

metal elements, and have a perovskite structure. One of the major research themes
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for these materials is the relation between their physical properties and the average

size of ions at the RE/AK site, often known as the chemical pressure effect. The size

of the RE/AK ion is usually parameterized by a tolerance factor and one of the most

important phase diagrams for these materials has been the one in the temperature

versus tolerance factor plane for a fixed 30% (x = 0.3) doping ratio (Hwang et al.

1995). The RE/AK ions with size smaller than the space created by the surrounding

MnO6 octahedra induce buckling of the Mn-O-Mn bonds, observed through various

structural refinement analyses.

To understand the effect of the chemical pressure, semi-classical theories (Millis

et al. 1995; Röder et al. 1996; Millis et al. 1996; Moreo et al. 1999; Sergienko et al.

2006; Pradhan et al. 2007; Vergés et al. 2002; Salafranca and Brey 2006; Kumar and

Majumdar 2006; Yamauchi et al. 2008) with quantum mechanical electrons coupled

with the classical lattice through the Jahn-Teller (JT) interaction often present the

phase diagram with one axis representing the ratio between the electron hopping

energy and the JT energy gain. This ratio parameterizes the competition between

the kinetic and potential energy in perovskite manganites. Theoretical phase dia-

grams from these approaches agree well with experimental phase diagrams, when

this ratio is related to the Mn-O-Mn buckling distortion due to smaller RE/AK

ions. However, whether this buckling distortion affects the electron hopping energy

or the JT energy gain has been controversial. It is well known from experimental

observations that there is a strong competition between the insulating phase with a

coherent JT distortion and the metallic phase without such distortion (Salamon and

Jaime 2001). So far, most of the attention has centered on the impact of the buckling

on the metallic phase, in particular, the possible change in the effective Mn-O-Mn

electron hopping parameter and the band width (Hwang et al. 1995). At the same

time, there has been a debate whether the variation of the hopping parameter due to

the Mn-O-Mn bond angle change of several degrees would be significant enough to
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explain the observed metal-insulator transition (Dzero et al. 2000; Fernandez-Baca

et al. 1998; Liu et al. 1999; Lynn et al. 1996; Radaelli et al. 1997). For instance,

the spin wave stiffness, which depends sensitively on the electron hopping amplitude

in double exchange model in ferromagnetic metallic phase, shows very little depen-

dence on Mn-O-Mn bond angle (Lynn et al. 1996; Fernandez-Baca et al. 1998). A

less studied effect of the Mn-O-Mn bond buckling, except for a few early efforts based

on experimental data (Louca et al. 2001), is the possibility that the buckling distor-

tion may significantly stabilize the insulating phase with a coherent JT distortion,

by affecting the JT energy gain. The main goal of this topic is to examine such

a possibility with a simplified model of the perovskite manganites. To be specific,

the interplay between the JT ordering and chemical pressure is analyzed for undoped

perovskite manganites. With one localized eg electron per site, the electronic degrees

of freedom can be integrated out in undoped manganites (except for electronically

ferroelectric undoped manganites postulated at low temperatures for very small RE

ions), which allows us to adopt a purely classical model with the energy expressed

in terms of lattice distortions only. The study on undoped manganites is merited,

because they are not only parent compounds of doped perovskite manganites (Millis

1996), but also because one of the first multiferroic materials discovered is an undoped

manganite, TbMnO3, with a relatively small RE element (Kimura, Goto, Shintani,

Ishizaka, Arima and Tokura 2003). Recently, electronic ferroelectricity has been also

proposed for undoped perovskite manganites (Sergienko et al. 2006; Yamauchi et al.

2008). Therefore, the chemical pressure effect in undoped manganites reported in

this thesis would also be relevant for future studies on how the multiferroic and elec-

tronically ferroelectric properties would appear in REMnO3 with small RE ions, as

well as how the chemical pressure affects the distorted insulating phase of doped man-

ganites. This work is presented in Chapter 3, as well as in Seman, Ahn, Lookman,

Saxena, Bishop and Littlewood (2012).
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Further presented is classical and quantum mechanical multi-scale descriptions

of lattice dynamics, from the atomic scale to the continuum scale, using symmetry

modes and their constraint equations. This approach is demonstrated for a one-

dimensional chain and a two-dimensional monatomic square lattice. For the classical

description, it is found that rigid modes, in addition to the strain modes found before,

are necessary to describe the kinetic energy, and obtain constraint equations among

these modes. Lagrangian equations, modified with the Lagrange multiplier terms, are

solved for phonon dispersion relations without using displacement variables explicitly.

The long wavelength limit of the kinetic energy terms expressed in terms of atomic

scale modes is shown to be consistent with the continuum theory, and the leading

order corrections are obtained. The phonon in terms of symmetry modes is analyzed,

and it is found how the contribution of different symmetry modes varies depending

on the phonon branch and wavevector. For the quantum mechanical description,

conjugate momenta derived for the atomic scale symmetry modes. In direct space,

graphical rules for their commutation relations are obtained. Commutation relations

in the reciprocal space are also calculated. It is emphasized that the approach based

on atomic-scale symmetry-modes could be useful for description of multi-scale lattice

dynamics, materials with electron-phonon coupling, and the dynamics of structural

phase transition. Theoretical aspects of this topic are studied in Chapter 4, and also

presented in Seman, Moon and Ahn (2012).

Summary and closing remarks are presented in Chapter 5. Several core algo-

rithms used extensively in calculations can be found in Chapter 6.



CHAPTER 2

THEORY OF K-EDGE RESONANT INELASTIC X-RAY
SCATTERING AND ITS APPLICATION FOR La0.5Sr1.5MnO4

The work in this chapter was done in collaboration with Michel van Veenendaal from

Advanced Photon Source at Argonne National Laboratory, John P. Hill, Xuerong

Liu, and Diego Casa from Brookhaven National Laboratory, Andrew Boothroyd and

Prabhakaran Dharmalingam from Department of Physics at University of Oxford,

Hong Ding from Beijing National Laboratory for Condensed Matter Physics, as well

as Keun H. Ahn from Department of Physics at New Jersey Institute of Technology.

2.1 Introduction

The dynamic screening of the Coulomb interaction plays a central role in determining

the electronic properties of materials (Fetter and Walecka 2003). The response of

valence electrons to a potential, in particular on time scales of the order of femtosec-

onds, is through excitation of electron-hole pairs which screen “bare” charges in the

system. The screening is described theoretically by the density-density correlation

function, or its Fourier transform, the dynamic structure factor (Pines and Nozières

1999). Spectroscopies that probe the valence band, such as photoemission, are sen-

sitive to these screening dynamics. However, it is often not obvious how to separate

the kinetics of a charged particle and the response of the rest of the system to its

presence (Hüfner 2003). In contrast, core-level spectroscopies provide an alternative

way of studying the screening dynamics. By removing a deep-lying core electron, a

strong local potential is created that exists for a very short time, i.e., the core hole

lifetime. Essentially, one creates a short-lived localized “test” particle, and mea-

sures the response of the electrons to this local transient potential. This type of

7
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screening dynamics has intrigued scientists for decades (Nozières and de Dominicis

1969; van der Laan et al. 1981; van Veenendaal and Sawatzky 1993).

For transition metal compounds, K-edge resonant inelastic x-ray scattering

(RIXS) (Ament et al. 2011) offers the intriguing possibility of projecting the excita-

tions related to the core hole screening onto valence band excitations. Specifically,

it has been shown that K-edge RIXS can be directly related to the dynamic struc-

ture factor in the limit of a strong or weak core hole potential, Ucore, relative to the

band width (van den Brink and van Veenendaal 2006). For the case where Ucore is

comparable to the bandwidth, more typical for 3d transition metal compounds, the

screening is more complicated because there is an asymmetry between the electron

and hole excitations and the intermediate states can not be integrated out (Ahn et al.

2009). In this case, the RIXS response is believed to be sensitive to the transient

screening of the intermediate states to the core hole potential (Ahn et al. 2009).

Further presented are RIXS measurements of the momentum and energy depen-

dence of the screening dynamics for a transient local potential in a CE-type charge,

orbital, and spin ordered manganite, La0.5Sr1.5MnO4. Strong momentum depen-

dence of the intensity of the across-gap excitation is found, with a dramatic increase

on moving away from the two-dimensional (2D) zone center. It is shown that this

behavior reflects the size and shape of the real-space screening cloud and demon-

strate that in La0.5Sr1.5MnO4, the screening distance is very short, with a screening

cloud of about 0.4-0.5 interatomic distances in size.

2.2 Experiments

A single crystal of La0.5Sr1.5MnO4 was grown by the traveling solvent floating zone

method. It has a tetragonal structure at room temperature with I4/mmm symmetry

and undergoes a charge and orbital ordering transition around 230 K, accompanied

by complex structural distortions (Herrero-Mart́ın et al. 2011). For simplicity, the



9

I4/mmm notation is used here throughout. The wave vectors of the charge and

orbital ordering are then of the form (1
2
, 1

2
, L) and (1

4
, 1

4
, L), respectively. In the low

temperature ordered state, La0.5Sr1.5MnO4 is an insulator with a large gap between

the eg states (Ba la and Horsch 2005; Lee, Onoda, Arima, Tokunaga, He, Kaneko,

Nagaosa and Tokura 2006). The behavior of the excitation between these predomi-

nantly Mn 3d states, labeled as a d-d transition, is the focus of this study. The Mn

K-edge RIXS experiments were performed at Advanced Photon Source on beamlines

30-ID and 9-ID with an instrumental energy resolution of about 270 meV (FWHM).

The polarization dependence of the RIXS process is controlled by placing the [001]

and [110] directions of the crystal in the scattering plane. The incident beam polar-

ization is perpendicular to the scattering plane, i.e., parallel to the [11̄0] direction.

Thus the incident polarization condition is fixed for all the Q = (H,H,L) points

surveyed. All the data presented were collected at T = 20 K, well below the Néel

temperature(110K) (Sternlieb et al. 1996). Data are normalized by incident beam

intensity and corrected for footprint variations.

In Figure 2.1(a), RIXS spectra is taken at three Q points. In each case, there

is a large elastic line centered at zero energy loss. The d-d transition appears as a

peak on the tails of the elastic scattering at around 2 eV, consistent with optics (Lee

et al. 2007) and EELS (Kraus et al. 2011) observations. This across-gap transition

has also been observed by K-edge RIXS on other manganites (Inami et al. 2003;

Grenier et al. 2005; Weber et al. 2010). Remarkably, the RIXS spectra show a strong

momentum dependence of the intensity of this feature. At Q0 = (−0.03,−0.03, 7.20)

with very small in-plane momentum transfer, the 2 eV peak is almost unobservable.

This momentum dependence is confirmed with RIXS spectra collected at a large

number of Q points, as shown in Figure 2.1(b) and 2.1(c). To control the systematics

resulting from polarization factors, the data were taken either at fixed sample angle

θ, or fixed detector angle 2θ. These conditions result in data taken along three lines
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in reciprocal space. In all cases, the incident polarization is parallel to the [11̄0]

direction. With the detector position 2θ fixed, polarization effects associated with

the outgoing x-ray are eliminated. Figure 2.1(c) shows RIXS spectra with the elastic

line subtracted1 for the Q points with 2θ = 68◦. The integrated intensity, I(Q), is

taken over the 1-3 eV range as a measure of the strength of the 2 eV peak. The size of

the symbols in Figure 2.1(b) is proportional to I(Q). A clear systematic dependence

on momentum transfer is observed.
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Figure 2.1 (a) RIXS spectra at three Q points. (b) The Q points surveyed in the
(H, H, L) plane. The radius of the dot is proportional to the integrated intensity
of the 2 eV peaks. θ and 2θ are the incident and detector angles. (c) RIXS spectra
for the Q points along the 2θ = 68◦ line, with the elastic intensity subtracted. The
grey shaded region is the energy window used in calculating the integrated intensity
of the feature.

1The elastic line was subtracted by using a model function. The latter was determined
by measuring the elastic scattering at an off-resonant energy (7 eV below the edge), where
there are negligible inelastic contributions.
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The integrated intensities of the d-d excitation are plotted as a function of the

in-plane momentum transfer in Figure 2.2(b). In order to quantitatively compare the

experimental data with the theoretical calculations (discussed below), the integrated

intensities are plotted relative to the intensity at Q0 = (−0.03,−0.03, 7.20) 2, i.e.,

I(Q)−I(Q0). This removes the uncertainty in determining the common background

for all Q points. The strength of the 2 eV d-d excitation exhibits a minimum at

zero in-plane momentum transfer and a maximum at (0.5, 0.5, L). Interestingly,

although there is a large variation in the L values for the various Q points [see

Figure 2.1(b)], all the measurements collapse onto a single curve in Figure 2.2(b).

This demonstrates that there is negligible L dependence to this behavior, a result

consistent with the 2D nature of this single layered manganite. Further, it implies

that the polarization factors are indeed constant for the experimental geometry.

From here on, the momentum transfer will be denoted simply as Q2D = (H,H) since

the L component is irrelevant.

The experimental data in Figures 2.1 and 2.2 show the main experimental

observations. The across-gap d-d excitation in La0.5Sr1.5MnO4, as observed in the

RIXS process, exhibits a strong momentum dependence. While the position of the

peak shows no appreciable dispersion, the intensity increases rapidly as the in-plane

momentum transfer increases away from the 2D zone center. Near the zone center,

the spectral weight of the 2 eV feature almost disappears. This is a surprising result.

The disappearance of this RIXS spectral weight at the 2D zone center cannot be the

result of the dynamic structure factor going to zero, since this feature is still observed

in the optical response (Lee et al. 2007), which probes the zero momentum transfer

response function. This demonstrates that K-edge RIXS in La0.5Sr1.5MnO4 is indeed

in the intermediate core-hole potential regime, discussed in the introduction. In the

following, momentum-dependence is described in detail and it is shown that it arises

2Q points such as (0, 0, L), which would have been preferable, are intentionally avoided
due to specular reflection enhancement of the elastic line at such points.
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from the intermediate state screening dynamics and in particular that it reflects the

real-space extent of the screening cloud.

2.3 Results from Theory and Comparison With Experiments

To understand this strong in-plane momentum dependence, the RIXS response is

calculated from La0.5Sr1.5MnO4 for a two-dimensional 16 × 16 Mn cluster with peri-

odic boundary conditions. The initial and final states of the unperturbed system,

and the intermediate states in the presence of the 1s core hole on-site Coulomb

potential, are solved numerically with a tight-binding approach. The Hamiltonian

employed is similar to the one in Ahn and Millis (2000), which includes the nearest-

neighbor electron hopping within the MnO2 plane, the Jahn-Teller and isotropic

electron-lattice coupling, the Hund’s coupling to the CE-type ordered t2g spins, and

the Coulomb interaction between eg electrons within the Hartree-Fock approxima-

tion, as later introduced in depth in Section 2.5. The sizes of the distortions of the

oxygen octahedra are taken from Herrero-Mart́ın et al. (2011). The RIXS spectra

are then calculated from the Kramers-Heisenberg formula (Ament et al. 2011; Ahn

et al. 2009):

I ∝
∑
f

∣∣∣∣∣∑
n

⟨f |D′†|n⟩⟨n|D|g⟩
Eg + ~ωk − En + iΓn

∣∣∣∣∣
2

δ(Ef − Eg − ~∆ω), (2.1)

where |f⟩, |n⟩, and |g⟩ represent the final, intermediate and initial states, and Ef ,

En and Eg their energies. Γn is the inverse of the intermediate state lifetime, and D′†

and D are the RIXS dipole transition operators. ~ωk and ~∆ω are the incident x-ray

energy and the energy loss, respectively. The calculated RIXS intensity is averaged

over configurations in which the zig-zag chains of orbital order are along either the

[110] or the [11̄0] directions, to take into account twining effects in real crystals.

Details of the calculation will be published elsewhere.
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Figure 2.2 (Color) (a) Contour plot of RIXS intensity calculated for the electron
hopping parameter t0 = 0.9 eV, after averaging over twin domains. (b) The integrated
RIXS intensity of the 2 eV peak relative to the (-0.03,-0.03) point, plotted with
respect to the in-plane momentum transfer along the (H, H) direction. Symbols
represent experimental data. Lines represent theoretical results for different values
of t0. Both experimental data and theoretical results are normalized for comparison.

The calculated RIXS spectra were found to be most sensitive to the eg-eg

hybridization and the coupling of the eg electrons to the distortions of oxygen octa-

hedra. These two effects are parameterized as t0 and λ in the Hamiltonian, where t0

is the hopping between 3x2-r2 orbitals along the x direction and λ is proportional to

the strength of the electron-phonon coupling. With reasonable parameter values, as

introduced in Section 2.5, and the combination of t0 = 0.9 eV and λ = 7.41 eV/Å, the

calculated spectra shown in Figure 2.2(a) and the thick (blue) line in Figure 2.2(b)
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closely resemble the experimental observations. The intensity of the calculated RIXS

response peaks near 2 eV, and increases rapidly as Q2D increases away from (0, 0),

towards (0.5, 0.5), as seen in the experiments. The calculated spectra in Figure 2.2(a)

suggest a slight dispersion of about 130 meV of the 2 eV peak, which is much smaller

than that reported for LaSr2Mn2O7 (Weber et al. 2010). Such a small dispersion,

roughly equal to the experimental step size taken in Figure 2.1(c), is below the

detection limit of the experiment.

The sensitivity of the RIXS response to intersite hopping and the electron-

phonon coupling is shown in Figure 2.2(b) by varying t0 and λ, see Section 2.5.

For a given t0, λ is constrained such that the d-d excitation in the RIXS response

peaks near 2 eV. Henceforth, only t0 is mentioned for simplicity. The details of

the combinations of t0 and λ can be found in Section 2.5. As was done for the

experimental data, the calculated response is integrated over the same 1-3 eV window

to generate the curves in Figure 2.2(b), and again the value at Q2D =(-0.03, -0.03)

is subtracted. The calculated results show the best agreement with the experimental

observations when t0 = 0.9 eV. For larger t0 values, the calculated RIXS response

differs significantly from the experimental data. Thus, this study sets the upper limit

of t0. Note that the inability to precisely determine the parameter values is largely

due to the difficulty in determining the contributions from other inelastic scattering

processes that give rise to a smooth “background” in the low energy loss region.

2.4 Discussion

To further understand the implications of the observed momentum dependence of the

RIXS spectrum for the screening dynamics, the real-space screening configurations

are calculated from the lowest energy intermediate eigenstates. These are shown in

the top panels of Figure 2.3. Figures 2.3(a) and 2.3(b) compare the charge redistri-

butions for t0 = 0.9 and 1.5 eV, respectively, with the core hole at either a Mn3+
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or a Mn4+ site. The volumes of the red and blue spheres scale with the screening

electron and hole densities on individual sites. Figures 2.3(c) and 2.3(d) show the

calculated RIXS intensities for the two t0 values over half of a Brillouin zone.

Mn
3+

Mn
4+

0
t  = 0.9 eV

Mn
3+

Mn
4+

0
 t  = 1.5 eV

-0.5 0 0.5
0

0.5

H (r.l.u.)

K
 (

r.
l.

u
.)

-0.5 0 0.5
H (r.l.u.)

(d)(c)

(b)(a)

Figure 2.3 (Color) (a) and (b): Screening configuration in real space for t0 = 0.9
and 1.5 eV, respectively. The top left half corresponds to the case with the core hole
at a Mn3+ site, while the bottom right it is at a Mn4+ site. The volumes of the red
and blue spheres are proportional to the electron and hole numbers. The big red
spheres at Mn4+ core hole sites represent about 0.9 electrons. (c) and (d): Integrated
RIXS intensity plotted in the (H, K, 0) plane of reciprocal space for t0 = 0.9 eV
and t0 = 1.5 eV, respectively. Red and blue represent the maximum and minimum
intensities, respectively.

As expected, the excited hole distributions are more localized near the core

hole sites for the smaller value of t0. For t0 = 0.9 eV, the screening hole is tightly

bound to the excited electron with more than 90 % of the excited charge located

on the three nearest neighbor sites along the zig-zag chain. The predominant wave

vector for these electron and hole distributions is (0.5, 0.5), coincident with the

location of the RIXS peak intensity maximum in reciprocal space in Figure 2.3(c)
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and in agreement with the experimental results. For the large hopping parameter,

t0 = 1.5 eV, the screening pattern in real space changes drastically. The majority

of the hole distribution in Figure 2.3(b) is now beyond the nearest neighbor sites,

and is spread throughout the zig-zag chains. This difference in screening dynamics

is directly reflected in the RIXS response, with the maximum of the RIXS response

then shifted to around (0.25, 0.25), as shown in Figures 2.2(b) and 2.3(d). This

pattern is completely at odds with that seen in the experiment results.
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t0 core hole site

0.9 eV    Mn
3+

0.9 eV    Mn
4+

1.5 eV    Mn
3+

1.5 eV    Mn
4+

Figure 2.4 (Color) The excited hole number normalized by the excited electron
number at the core hole site, plotted in semi-logarithmic scale with respect to the
distance from the core hole site along the zig-zag chain.

The relationship between the hopping strength and the charge redistribution in

the screening process apparent in the theoretical calculations is shown more clearly

in Figure 2.4, where the relative hole number at a given site is plotted as a function

of the distance from the core hole site, as measured along the zig-zag chain. The

semi-logarithmic plot reveals an exponential decay of the hole density, confirming

the presence of exciton-like screening clouds. The size of the screening cloud, which

characterizes the screening dynamics and determines the RIXS response, depends

strongly on the hopping strength t0. Taking the t0 = 0.9 eV case, which best describes

the RIXS data, the excited hole distributions is fitted to an exponential function to
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find that the size of the screening clouds are 0.4 and 0.5 atomic spacings for the

Mn3+ and Mn4+ sites, respectively.

2.5 Details of Theory and Calculations

2.5.1 Tight Binding Hartree-Fock Hamiltonian and Core Hole Potential
for La0.5Sr1.5MnO4

In this section, the tight binding Hamiltonian is introduced that was used to cal-

culate the RIXS spectrum for La0.5Sr1.5MnO4. In the experimental results for this

material (Liu et al. 2012), shown in Figure 2.1 after subtracting the elastic peak, the

RIXS peak at around 2 eV shows prominent changes with momentum, which is the

focus of the current study. This peak is believed to be from the transitions between

Mn 3d eg levels, and, therefore, Mn eg levels are considered only in the tight binding

Hamiltonian. As mentioned above, the MnO2 planes in La0.5Sr1.5MnO4 are separated

from each other by the intervening, electronically inert, Sr, La, and O ions, which

allows the use of the Hamiltonian for a single MnO2 layer for the RIXS calculation.

Term a†
σ⃗iξ

is defined as the creation operator of the eg electron with the spin

state σ = ↑, ↓ and orbital state ξ = 1 ≡ ξ1 for (3z2 − r2)/
√

6 and ξ = 2 ≡ ξ2 for

(x2 − r2)/
√

2 eg at a Mn site with an index vector i⃗ = (ix, iy), where ix and iy are

integers. The electron hopping term, that is, kinetic energy term, is

ĤKE = −1

2

∑
σ,⃗i,δ⃗,ξ,ξ′

tξξ
′

δ⃗

(
a†
σ⃗iξ

aσ,⃗i+δ⃗,ξ′ + a†
σ,⃗i+δ⃗,ξ′

aσ⃗iξ

)
. (2.2)

The unit vector δ⃗ = ±x̂,±ŷ represent the directions of the nearest neighbor sites of

a Mn ion. The form of the hopping matrices within the MnO2 plane are

tx = t−x = to

 1/4 −
√

3/4

−
√

3/4 3/4

 , (2.3)

ty = t−y = to

 1/4
√

3/4

√
3/4 3/4

 , (2.4)
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reflecting the symmetry of the eg orbitals. The parameter t0 represents the effective

hopping constant between two (3x2 − r2)/
√

6 orbitals along the x-direction.

Two kinds of electron-lattice couplings are included. The distortion of oxygen

octahedron around a Mn ion at i⃗ is parameterized as follows. uζ

i⃗
(ζ = x, y) represents

the ζ̂ direction displacement of an oxygen ion located between Mn ions at i⃗ and i⃗+ ζ̂

from the position for the ideal undistorted square MnO2 lattice with the average in-

plane Mn-O bond distance. The u+z

i⃗
and u−z

i⃗
represent the z direction displacements

of oxygen ions, right above and right below the Mn ion at i⃗, from the location of the

average in-plane Mn-O bond distance. The parameters, Q1,⃗i, Q2,⃗i, and Q3,⃗i, represent

the distortion modes of the oxygen octahedron around a Mn ion at site i⃗ and are

defined in the following way.

Q1,⃗i = (ux
i⃗
− ux

i⃗−x̂
+ uy

i⃗
− uy

i⃗−ŷ
+ u+z

i⃗
− u−z

i⃗
)/
√

3 (2.5)

Q2,⃗i = (ux
i⃗
− ux

i⃗−x̂
− uy

i⃗
+ uy

i⃗−ŷ
)/
√

2 (2.6)

Q3,⃗i = (2uz
i⃗
− 2u−z

i⃗
− ux

i⃗
+ ux

i⃗−x̂
− uy

i⃗
+ uy

i⃗−ŷ
)/
√

6 (2.7)

The Mn-O bond distances estimated from the structural refinement of high-resolution

synchrotron x-ray powder diffraction for La0.5Sr1.5MnO4 in Herrero-Mart́ın et al.

(2011) indicate Q1 = 0.0531 Å, Q2 = 0.1089 Å, and Q3 = 0.0955 Å around “Mn3+”

site and Q1 = -0.0531 Å, Q2 = 0, and Q3 = 0.1192 Å around “Mn4+” site.

The Q2 and Q3 distortions break the cubic symmetry of oxygen octahedron

around Mn and interact with the eg orbital state through the following Jahn-Teller

Hamiltonian term,

ĤJT = −λQ

∑
i⃗σ

 a†
σ⃗i1

a†
σ⃗i2


T  Q3,⃗i −Q2,⃗i

−Q2,⃗i −Q3,⃗i


 aσ⃗i1

aσ⃗i2

 , (2.8)

where λQ represents the strength of this coupling. 3 The isotropic Q1 distortion

interacts with total eg electron charge through the following “breathing” electron-

3Unlike the three-dimensional manganites, the degeneracy of the eg levels are broken
even without the Q2 or Q3 distortions because of the layered crystal structure. Therefore,
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lattice Hamiltonian term,

Ĥbr = −βλQ

∑
i⃗σ

 a†
σ⃗i1

a†
σ⃗i2


T  Q1,⃗i 0

0 Q1,⃗i


 aσ⃗i1

aσ⃗i2

 , (2.9)

where β represents the ratio between the strengths of the breathing and the Jahn-

Teller couplings, likely larger than 1.

In addition, the Hund’s coupling of the eg electron spin state to the CE-type

magnetic ordering of the t2g spins is included,

ĤHund = −
∑

σ′,σ′′ ,⃗i,ξ

JHS⃗t2g,⃗i · a
†
σ′⃗iξ

τ⃗σ′σ′′aσ′′⃗iξ, (2.10)

where S⃗t2g,⃗i represents the t2g spin and τ⃗ the Pauli matrix.

As in Ahn and Millis (2000), the 3d-3d same-site Coulomb interaction with

parameter U is also included,

Ĥ3d3d,Coul =
∑
i⃗

∑
(σ,η=−,+)̸=(σ′,η′=−,+)

Un̂σ⃗iηn̂σ′⃗iη′ , (2.11)

where n̂σ⃗iη = a†
σ⃗iη

aσ⃗iη is the number operator. η = − and + represent the local

orbital eigenstates of ĤJT with lower and higher energies, respectively, chosen for the

following Hartree-Fock approximation,

ĤHF
3d3d,Coul =

∑
i⃗

U↑⃗i+a
†
↑⃗i+a↑⃗i+ + U↑⃗i−a

†
↑⃗i−a↑⃗i−

+U↓⃗i+a
†
↓⃗i+a↓⃗i+ + U↓⃗i−a

†
↓⃗i−a↓⃗i−, (2.12)

where U↑⃗i+ = U < n̂↑⃗i− >+ U < n̂↓⃗i+ > + U < n̂↓⃗i− >, etc..

The total Hamiltonian for the calculations of RIXS initial state and final states

is the sum of the terms described so far.

Ĥ3d = ĤKE + ĤJT + Ĥbr + ĤHund + ĤHF
3d3d,Coul. (2.13)

EJT should be considered as the effective Hamiltonian that includes not only the effect of
the oxygen octahedron but also the crystal field of farther ions.
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The CE type ordering of t2g spins and lattice distortions gives rise to the unit cell

shown in dotted lines in Figure 1.2. With the distance between Mn-Mn in undistorted

lattice represented as a unit distance and the x and y axes chosen along Mn-O bond

directions, the primitive reciprocal lattice vectors are (π/2, π/2) and (π/2,−π/2),

and the first Brillouin zone is Ω1BZ = {k⃗| − π/2 < kx + ky ≤ π/2,−π/2 < kx − ky ≤

π/2}.

The 1s-3d on-site Coulomb interaction is generally expressed as

Ĥ1s3d,Coul = −Uc

∑
σ,ξ,⃗i,σ′

a†
σ⃗iξ

aσ⃗iξs
†
σ′⃗i
sσ′⃗i, (2.14)

As shown in the next section, in the limit of completely localized 1s core hole, the

RIXS intermediate energy eigenstates can be chosen as states with a single completely

localized 1s core hole, which can be found from

Ĥtotal,⃗ic
= Ĥ3d + Ĥ1s3d,Coul,⃗ic

, (2.15)

where

Ĥ1s3d,Coul,⃗ic
= −Uc

∑
σ,ξ

a†
σ,⃗ic,ξ

aσ,⃗ic,ξ. (2.16)

and i⃗c represents the 1s core hole site.

The parameter values chosen for the best fit of the measured RIXS spectrum

are: t0 = 0.9 eV, λQ = 7.4 eV/Å, β = 1.5, JH |S⃗t2g,⃗i| = 2.2 eV, U = 3.5 eV, and Uc

= 4.0 eV. As a comparison, different values of t0 and λQ are considered, including t0

= 1.5 eV and λQ = 3.5 eV/Å, to study the implication of the momentum dependent

RIXS intensity for the screening dynamics.

Further, Ĥ3d and Ĥtotal,⃗ic
are transformed into the reciprocal space as follows,

Ĥ3d =
∑
σ

∑
k⃗,⃗k′

∑
K⃗,K⃗′

∑
ξ,ξ′

H3d
σ,⃗k+K⃗,ξ,⃗k′+K⃗′,ξ′

a†
σ,⃗k+K⃗,ξ

aσ,⃗k′+K⃗′,ξ′ , (2.17)

and

Ĥtotal,⃗ic
=
∑
σ

∑
k⃗,⃗k′

∑
K⃗,K⃗′

∑
ξ,ξ′

Htotal,⃗ic

σ,⃗k+K⃗,ξ,⃗k′+K⃗′,ξ′
a†
σ,⃗k+K⃗,ξ

aσ,⃗k′+K⃗′,ξ′ , (2.18)
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where k⃗, k⃗′ ∈ Ω1BZ, K⃗, K⃗ ′ ∈ {K⃗1, K⃗2, K⃗3, K⃗4, K⃗5, K⃗6, K⃗7, K⃗8}, and K⃗n represents

(0,0), (π,0), (0,π), (π,π), (-π/2,-π/2), (π/2,-π/2) , (-π/2,π/2), and (π/2,π/2), for n

= 1, 2, 3 . . ., 8, respectively. The details of these expressions are presented in the

Appendix 2.A.

From the elements of the eigenvectors of the matrices H3d
σ,⃗k+K⃗,ξ,⃗k′+K⃗′,ξ′

and

Htotal,⃗ic

σ,⃗k+K⃗,ξ,⃗k′+K⃗′,ξ′
, the coefficients α’s and γ’s are defined in the following way:

b†
σlk⃗

=
∑
K⃗,ξ

a†
σ,⃗k+K⃗,ξ

ασ,⃗k+K⃗,ξlk⃗, (2.19)

c†σm =
∑
k⃗,K⃗,ξ

a†
σ,⃗k+K⃗,ξ

γσ,⃗k+K⃗,ξm, (2.20)

where b†
σlk⃗

and c†σm are the creation operators of the eigenstates of Ĥ3d with the

wavevector k⃗ ∈ Ω1BZ within the l-th lowest energy band and the m-th lowest energy

eigenstates of Ĥtotal,⃗ic
, respectively. (Though it is suppressed in the notations for

simplicity, c†σm and γσ,⃗k+K⃗,ξm, defined above, and βσlk⃗m, defined below, depend on

the core hole site i⃗c.)

The relation between a† and b† is inverted in the Equation (2.19) to further

obtain α̃’s defined from

a†
σ,⃗k+K⃗,ξ

=
∑
l

b†
σlk⃗

α̃σlk⃗,⃗k+K⃗,ξ, (2.21)

where the matrix of α̃’s corresponds to the inverse of the matrix of α’s. From α̃’s and

γ’s, the coefficients β’s can be found, which represent the eigenstates in the presence

of the core hole in terms of the eigenstates in the absence of the core hole according

to

c†σm =
∑
lk⃗

b†
σlk⃗

βσlk⃗m, (2.22)

where

βσlk⃗m =
∑

k⃗+K⃗,ξ

α̃σlk⃗,⃗k+K⃗,ξγσ,⃗k+K⃗,ξm. (2.23)
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2.5.2 K-edge RIXS Formula in the Limit of Completely Localized 1s
Core Hole

The following Kramers-Heisenberg formula (Ament et al. 2011) is the starting point

for the derivation of the RIXS formula:

I ∝
∑
f

∣∣∣∣∣∑
n

⟨f |D′†|n⟩⟨n|D|g⟩
Eg + ~ωk⃗ − En + iΓn

∣∣∣∣∣
2

δ(Ef + ~ωk⃗′ − Eg − ~ωk⃗), (2.24)

where |f⟩, |n⟩, and |g⟩ represent the final, intermediate and initial state, Ef , En and

Eg their energies, Γn inverse of the intermediate state life time, ~ωk⃗′ and ~ωk⃗ the

energy of outgoing and incoming x-ray with wavevector k⃗′ and k⃗, and D′† and D the

RIXS transition operators.

In general, the 1s core hole component within the intermediate eigenstates |n⟩

can be chosen as a delocalized state with the momentum index (Semba et al. 2008).

In the limit that the 1s electron hopping amplitude becomes zero, the intermediate

state energy levels with different core hole momenta become degenerate, and the

appropriate linear combinations can be made to form intermediate energy eigenstates

with a 1s core hole completely localized at a site (Davis and Feldkamp 1979; Feldkamp

and Davis 1980; Ahn et al. 2009). Therefore, the state |n⟩ can be written as |nR⃗+d⃗⟩,

which represents the intermediate energy eigenstate with the core hole at a site R⃗+ d⃗

within the unit cell at a lattice point R⃗. Sum over intermediate state,
∑

n is written

as three kinds of sums,
∑

R⃗

∑
d⃗

∑
nR⃗+d⃗ .

Dipole approximation (Ament et al. 2011) is taken for the RIXS transition

operator D′† and D. By analyzing how the phases of intermediate and final eigen-

states change with the translation by the lattice vector R⃗, it is found that the sum

over R⃗ just contributes as a constant factor to the RIXS spectrum and the crystal

momentum conservation. It should be noted that creation and annihilation of the

intermediate 4p excited states do not introduce any phase factor. Polarization effect

in the K-edge RIXS is a constant factor and the dipole operators can be replaced by
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the core hole creation and annihilation operators, resulting in the following expres-

sion,

I ∝
∑
K⃗

∑
f

∣∣∣∣∣∣
∑
d⃗

∑
nd⃗

e−i(k⃗′−k⃗)·d⃗⟨f |sd⃗|nd⃗⟩⟨nd⃗|s†
d⃗
|g⟩

Eg + ~ωk⃗ − E
nd⃗ + iΓ

nd⃗

∣∣∣∣∣∣
2

δ(Ef + ~ωk⃗′ − Eg − ~ωk⃗)δ(k⃗f + k⃗′ − k⃗ + K⃗). (2.25)

Further detail of the derivation of the above formula is presented in Appendix 2.B.
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Figure 2.5 (Color) (a) Density of states per site. Core hole at Mn3+ with t0 =
0.9 eV: (b) Final distribution compared to electron and hole RIXS intensity. (c)
Intermediate distribution compared to density of states per site. Core hole at Mn4+

with t0 = 0.9 eV: (d) Final distribution compared to electron and hole RIXS intensity.
(e) Intermediate distribution compared to density of states per site.

As discussed in the introduction, further approximation is made to replace the

sum
∑

nd⃗ by a single term with nd⃗ = nd⃗
low, that is, the lowest energy eigenstate with

the core hole at site d⃗. Final states ⟨σlek⃗elhk⃗h| are considered with only one pair of
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an electron with momentum k⃗e and band index le and a hole with momentum k⃗h and

band index lh both with spin σ, while neglecting possible differences in resonance

energy E
nd⃗
low

−Eg and life time broadening Γ
nd⃗
low

for different core hole site d⃗ within

the unit cell. These approximations lead to the following formula for the numerical

calculation of the RIXS spectrum.

I ∝
∑
K⃗

∑
σlek⃗elhk⃗h

∣∣∣∣∣∣
∑
d⃗

e−i(k⃗′−k⃗)·d⃗⟨σlek⃗elhk⃗h|sd⃗|n
d⃗
low⟩⟨nd⃗

low|s
†
d⃗
|g⟩

∣∣∣∣∣∣
2

δ(εlek⃗e − εlhk⃗h + ~ωk⃗′ − ~ωk⃗)δ(k⃗e − k⃗h + k⃗′ − k⃗ + K⃗). (2.26)

Further, consider comments on the general features of the above expression. If the

0

10

20

30

 

 

0

1

2

3 (b)
I
RIXS, −

h
, I

RIXS, −

e

n
!n,−

h
, n

!n,−

e

0

0.2

0.4

0.6

 

 

0

1

2

3 (c) DOS
−

n
int,−

e
, n

int,−

h

0

10

20

30

 

 

0

1

2 (d)
I
RIXS, −

h
, I

RIXS, −

e

n
!n,−

h
, n

!n,−

e

0

0.2

0.4

0.6

 

 

−4 −2 0 2 4
0

1

2 (e)

Energy (eV)

DOS
−

n
int,−

e
, n

int,−

h

0

0.2

0.4

0.6

 

 

(a) DOS

E
le

ct
ro

n
 a

n
d

H
o

le
 R

IX
S

F
in

a
l 

D
is

tr
ib

. (
x1

0
   

 )

D
O

S
 

p
e

r 
S

it
e

 (
e

V
   

 )

In
te

rm
e

d
ia

te
 

D
is

tr
ib

. (
x1

0
   

 )
−

2
−

2
F

in
a

l 

D
is

tr
ib

. (
x1

0
   

 )

In
te

rm
e

d
ia

te
 

D
is

tr
ib

. (
x1

0
   

 )
−

2
−

2

−
1

D
O

S
 

p
e

r 
S

it
e

 (
e

V
   

 )
−

1
E

le
ct

ro
n

 a
n

d

H
o

le
 R

IX
S

D
O

S
 

p
e

r 
S

it
e

 (
e

V
   

 )
−

1

Figure 2.6 (Color) (a) Density of states per site. Core hole at Mn3+ with t0 =
1.5 eV: (a) Final distribution compared to electron and hole RIXS intensity. (b)
Intermediate distribution compared to density of states per site. Core hole at Mn4+

with t0 = 1.5 eV: (a) Final distribution compared to electron and hole RIXS intensity.
(b) Intermediate distribution compared to density of states per site.

solid has one core hole site per unit cell like high Tc cuprate, d⃗ = 0 can be chosen to
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simplify the above expression by omitting a constant factor as follows,

I ∝
∑
K⃗

∑
σlek⃗elhk⃗h

∣∣∣⟨σlek⃗elhk⃗h|sd⃗=0|n
d⃗=0
low ⟩

∣∣∣2
δ(εlek⃗e − εlhk⃗h + ~ωk⃗′ − ~ωk⃗)δ(k⃗e − k⃗h + k⃗′ − k⃗ + K⃗). (2.27)

If the outgoing x-ray momentum is changed by reciprocal lattice vector K⃗ ′ to k⃗′′ =

k⃗′+K⃗ ′ while the outgoing x-ray energy is unchanged ~ωk⃗′′ = ~ωk⃗′ , the RIXS intensity

would be unchanged, consistent with the result in Kim et al. (2007) for cuprate. If

the solid have multiple core hole sites per unit cell, such symmetry with respect to

the shift by reciprocal lattice vectors does not exist in general. However, if the core

hole sites within the unit cell can be approximated as a lattice, part of the symmetry

can be approximately restored. For example, for La0.5Sr1.5MnO4, the Mn ion core

hole sites within MnO2 plane approximately form a square lattice with the average

Mn-Mn distance as a lattice constant. Since the reciprocal lattice vector for the

approximate square core hole site, K⃗core, is one of the reciprocal lattice vectors of the

actual lattice, and since eiK⃗core·d⃗ ≈ 1 in Equation (2.26), the RIXS spectrum has an

approximate symmetry of I(k⃗′ + K⃗core − k⃗) ≈ I(k⃗′ − k⃗). Therefore, the approximate

symmetry in reciprocal lattice is not with respect to the actual reciprocal lattice

vectors, but with respect to the “core hole reciprocal lattice vectors” if the core hole

sites approximately form a lattice.

Calculated ⟨nd⃗
low|s

†
d⃗
|g⟩ represents the transition probability from the initial to

the lowest energy intermediate state, according to the following formula, where Ne

represents the total electron number.

⟨nd⃗
low|s

†
d⃗
|g⟩ =

∏
σ=↑↓

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

βσ1k⃗11
βσ1k⃗12

· · · βσ1k⃗1
Ne
2

βσ1k⃗21
βσ1k⃗22

· · · βσ1k⃗2
Ne
2

...
...

. . .
...

βσ2k⃗Nk
1 βσ2k⃗Nk

2 · · · βσ2k⃗Nk
Ne
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.28)
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Further calculated is ⟨σlek⃗elhk⃗h|sd⃗|nd⃗
low⟩, the transition probability from the interme-

diate to the final state, according to the following formula,

⟨σlek⃗elhk⃗h|sd⃗|n
d⃗
low⟩ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

βσ1k⃗11
βσ1k⃗12

· · · βσ1k⃗1
Ne
2

βσ1k⃗21
βσ1k⃗22

· · · βσ1k⃗2
Ne
2

...
...

. . .
...

βσl′′hk⃗
′′
h1

βσl′′hk⃗
′′
h2

· · · βσl′′hk⃗
′′
h

Ne
2

βσlek⃗e1
βσlek⃗e2

· · · βσlek⃗e
Ne
2

βσl′′′h k⃗′′′h 1 βσl′′′h k⃗′′′h 2 · · · βσl′′′h k⃗′′′h
Ne
2

...
...

. . .
...

βσ2k⃗Nk
1 βσ2k⃗Nk

2 · · · βσ2k⃗Nk
Ne
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β−σ1k⃗11
β−σ1k⃗12

· · · β−σ1k⃗1
Ne
2

β−σ1k⃗21
β−σ1k⃗22

· · · β−σ1k⃗2
Ne
2

...
...

. . .
...

β−σ2k⃗Nk
1 β−σ2k⃗Nk

2 · · · β−σ2k⃗Nk
Ne
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.29)

In the above determinant, the set of band and momentum indices, (l′′h, k⃗′′
h) and

(l′′′h , k⃗′′′
h ), represent the occupied states right before and right after the hole state

represented by (lh, k⃗h) when the eigenstates of Ĥ3d are ordered according to the

band index and momentum index.4

2.5.3 Electronic Density of States in the Absence and in the Presence of
the Core Hole

First, the results on energy eigenstates and eigenvalues of the Hamiltonians are

presented, which are then used to calculate the RIXS spectrum. The electron density

4In other words, from the Ne/2×Ne/2 part of the matrix of β’s with m = 1, · · · , Ne/2
and ε

σlk⃗
< εF , the row corresponding to k⃗ = k⃗h and l = lh is replaced by the spin σ part

of the row corresponding to k⃗ = k⃗e and l = le in the matrix of β’s.
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of states (DOS) D3d,↑(ε) for spin ↑ in the absence of the core hole is found from Ĥ3d

for 16 × 16 cluster is shown x in Figure 2.5(a) for t0 = 0.9 eV and in Figure 2.6(a)

for t0 = 1.5 eV. The Lorentz broadening of 2Γ = 0.1 eV is used to make the DOS

curve smooth. Due to spin degeneracy in CE-type antiferromagnetic ordering, the

electron DOS for spin ↓, D3d,↓(ε), is identical to D3d,↑(ε). In the absence of the

electron hopping, the eg levels with spin parallel to the local t2g spin direction are

shown schematically in Figure 1.2 for Mn3+ and Mn4+ sites in La0.5Sr1.5MnO4. With

one eg electron per two Mn ions, the eg electron would occupy the lower JT level at

the Mn3+ site with spin parallel to the t2g spin. With electron hopping between Mn

sites, the lowest JT levels on Mn3+ and Mn4+ hybridize along the zigzag chain and

form the occupied and unoccupied bands right around the gap, separated roughly

by 2 eV, as shown in the electron DOS. The excitation across this gap is responsible

for the 2 eV RIXS peak, which is the focus of the comparison with experiment data.

In the presence of the core hole at site i⃗c, the Hamiltonian Ĥtotal,⃗ic
is analyzed.

The t2g spin direction at i⃗c breaks the spin degeneracy in DOS. The green lines in

Figures 2.5(b) and 2.5(b) show the density of states for spin ↑, Dtotal,⃗ic,↑(ε), in the

presence of the core hole at Mn3+ site (0,0) and Mn4+ site (1,0), respectively, with ↑

spin t2g electrons. The eg energy levels with the spin states opposite to the t2g spin

direction at i⃗c play a minor role for the RIXS spectrum, typically less than 10 % of

the total RIXS spectrum, because the eg electrons with the same spin direction as

the t2g at i⃗c dominantly screen the core hole due to the large Hund’s splitting.

For t0 = 0.9 eV, as discussed in Figures 5(c) and 5(d) in Ahn et al. (2009), the

core hole potential pulls bound states from band continuum, identified as vertical

lines in DOS in Figures 2.5(b) and 2.5(b). One of the bound state for the core hole

at Mn3+ is at around -4 eV, Uc below the occupied band with states primarily at

Mn3+ site. Similarly, one of the bound states for the core hole at Mn4+ is located

at around -2 eV, Uc below the unoccupied band with states primarily at Mn4+ site.
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The DOS for the band continuum is almost unchanged, except that the number of

states within each band continuum below and above the gap is one less to make up

for the created bound states, since total number of states is unchanged, similar to

the result in Ahn et al. (2009). Occupying from the lowest energy levels by the same

number of electrons in the intermediate states, the lowest energy intermediate state

is then obtained, that is s|nlow⟩. Therefore, the bound state below the lowest band is

occupied and the bound state within the gap is empty in the intermediate state, and

these two bound states play important roles in the formation of electron-hole pairs

in the final state as well as the RIXS spectrum, as further analyzed in the following

subsections.

For t0 = 1.5 eV, the DOS in the presence of the core hole at Mn4+ is qualitatively

similar to the one for t0 = 0.9 eV case. The bound state within the gap is closer

to the edge of the lower band continuum compared to t0 = 0.9 eV case, so that the

core distribution is more delocalized. Qualitatively different behavior occurs for the

case with the core hole at Mn3+ sites. In this case, the state that would be in the

gap for smaller t0 resides in the occupied band and become a “resonant” rather than

“bound” state. With this resonant state and the bound state below the lower band

occupied, the top of the lower band is empty in the lowest energy intermediate state,

responsible for the delocalized hole excitation, which will be analyzed further in the

next subsection.

2.5.4 Contributions of the Intermediate and Initial/Final Eigenstates to
Electron and Hole Excitations

As done in Ahn et al. (2009), further analysis is made on how the intermediate

eigenstates contribute to the electron-hole excitations with nh
int,σ(ε) and ne

int,σ(ε),

and how the final/initial eigenstates contribute to the electron-hole excitations with
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ne
fin,σ(ε) and nh

fin,σ(ε), defined by

ne
int,σ(ε) =

∑
ε
σlk⃗

>εF

∑
m≤Ne/2

|βσlk⃗m|
2δ(ε− εσm), (2.30)

nh
int,σ(ε) =

∑
ε
σlk⃗

<εF

∑
m>Ne/2

|βσlk⃗m|
2δ(ε− εσm), (2.31)

nh
fin,σ(ε) =

∑
ε
σlk⃗

<εF

∑
m>Ne/2

|βσlk⃗m|
2δ(ε− εσlk⃗), (2.32)

ne
fin,σ(ε) =

∑
ε
σlk⃗

>εF

∑
m≤Ne/2

|βσlk⃗m|
2δ(ε− εσlk⃗), (2.33)

for each chosen core hole site, similar to ne
m, nh

m, nh
k<

, and ne
k>

defined in Ahn et al.

(2009). These are plotted in Figures 2.5 and 2.6 for σ =↑ for the core hole at Mn3+

and Mn4+ site with spin ↑ t2g electrons. For example, nh
int,σ(ε) represents the sum of

the squared coefficients connecting the eigenstates occupied in the intermediate state

and eigenstates empty in the initial state, with the intermediate energy δ-function

multiplied, and, therefore, represents the contribution of intermediate state to the

electron excitation. Electron and hole distributions for spin ↓ state are less than 10%

of those for spin ↑ state. The plot of nh
int,↑(ε) and ne

int,↑(ε) show that the bound states

in the intermediate state dominantly contribute to the electron-hole excitations, as

identified in Figure 5(d) in Ahn et al. (2009), except the case with t0 = 1.5 eV and

core hole at Mn3+ site in Figure 2.6, for which the resonance within the lower band

and the state at the top of the occupied band dominantly contribute ne
int,↑(ε) and

nh
int,↑(ε).

The plot of nh
fin,↑(ε) and ne

fin,↑(ε) also confirms the conclusion in Figure 5(c) in

Ahn et al. (2009) that the hole [electron] distribution projected into the final/initial

eigenstates near the gap becomes sharper as the intermediate hole [electron] bound

state becomes closer to the top [bottom] of the initial occupied [empty] band, which

gives rise to asymmetric electron and hole distributions, namely, the hole distribu-

tion sharper than the electron distribution, representing different screening dynamics

between electrons and holes. The above analysis in this subsection shows that the
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max = 0.107213 max = 0.916101

Figure 2.7 (Color) Screening configuration in real space for t0 = 0.9 eV case for
core hole at (left) Mn3+, and (right) Mn4+.

main conclusions of the study in Ahn et al. (2009), which mainly focuses on the

energy-dependence of the screening dynamics associated with the RIXS process,

holds for La0.5Sr1.5MnO4, confirming the foundation of the current study. As pointed

out above, the case with t0 = 1.5 eV and core hole at Mn3+ site shows a different

behavior. With the resonance state occupied in the intermediate state, the reso-

nance state contribute to the electron excitation predominantly because the second

bound state is pulled from the initially unoccupied bands, whereas the first bound

state is mostly from the initially occupied band. The delocalized state at the top

of the occupied band predominantly contributes to the hole excitation, because it is

occupied in the initial state and empty in the intermediate state.

In Figures 2.5 and 2.6, also plotted are

IhRIXS,σ(ε) =
∑
le ,⃗ke

∑
lh ,⃗kh

∑
∆K⃗

|Fσ(le, k⃗e; lh, k⃗h; ∆K⃗)|2 δ(εlhk⃗h − ε) (2.34)

IeRIXS,σ(ε) =
∑
le ,⃗ke

∑
lh ,⃗kh

∑
∆K⃗

|Fσ(le, k⃗e; lh, k⃗h; ∆K⃗)|2 δ(εlek⃗e − ε). (2.35)
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max = 1.02051 max = 0.910929

Figure 2.8 (Color) Screening configuration in real space for t0 = 1.5 eV case for
core hole at (left) Mn3+, and (right) Mn4+.

For comparison, the results for IhRIXS,σ(ε) and IeRIXS,σ(ε) in Figures 2.5(b,d) and

2.6(b,d) indeed show good agreement with nh
fin,σ(ε) and ne

fin,σ(ε), confirming close

connection between electron-hole excitation and RIXS spectrum.

2.5.5 Electron and Hole Excitations by the Core Hole Represented in
Direct Space

In this subsection, the pattern of electrons and holes excited by the core hole exam-

ined in direct space is related to the pattern of the RIXS spectrum in reciprocal

space after being integrated with respect to the energy. In the absence of the core

hole, the electron number ⟨n̂σ⃗iη⟩ is calculated for each spin state σ =↑, ↓ and orbital

state η = +,− at each site i⃗ from the initial ground state |g⟩ of the Hamiltonian Ĥ3d.

The total eg electron numbers calculated for the 16×16 cluster model in the absence

of the core hole are 0.87 at the nominal Mn3+ site and 0.13 at the nominal Mn4+

site, indicating a difference of 0.74 in charge density. It must be noted that these

numbers should not be directly compared with the LDA theory results or resonant
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x-ray spectroscopy results, because the local basis states are not pure Mn orbital

states but combinations of Mn and O orbitals, similar to the Zhang-Rice singlet for

cuprates. Proper comparison is described in Appendix 2.A, which shows the electron

numbers in the model are consistent with LDA or RXS results. It is found that most

of these electrons occupy the lower Jahn-Teller level η = − of spin parallel to t2g

spin at each site, approximately x2 − z2/y2 − z2 orbital at Mn3+ site and 3z2 − r2

orbital at Mn4+ site, consistent with the orbital ordering proposed in Zeng et al.

(2008). In the intermediate state, these electron numbers change to screen the core

hole. The change in the electron number is shown in Figures 2.7 and 2.8 for the

core hole at a Mn3+ site and a Mn4+ site (the site with the largest red dot in each

panel), respectively. The gray solid and dashed lines in the background represent

the zigzag chain with t2g spin ↑ and ↓, respectively. The volume of the blue sphere is

proportional to the decrease in the total electron number at each Mn site. Similarly,

the volume of the red sphere represents the increase in the total electron number.

Figures 2.7(a) and 2.7(b) show that the electron excitations are mostly confined right

at the core hole site, consistent with the relatively flat electron distribution, ne
fin↑, in

Figure 2.5(a). Comparing the largest solid red circles in Figures 2.7(a) and 2.7(b)

show that more screening electrons accumulate at the core hole site when the core

hole is created at the Mn4+ site (0.92 electron) than at the Mn3+ (0.11 electron).

This result can be understood from the orbital ordering pattern: Initially the Mn4+

site has less eg electrons on the site itself but more electrons at nearest neighbor Mn

sites along the zigzag chain with orbitals pointing towards the Mn4+ site, compared

to the Mn3+ site. Hole distribution in Figures 2.7(a) and 2.7(b) show that these

screening electrons are mostly from the nearest or next nearest neighbors along the

zigzag chain. For the case of the core hole at the Mn3+ and Mn4+ site for t0 = 0.9 eV,

the holes at two nearest neighbor sites constitute 91.0% and 91.4%, respectively, of

the total hole number. The results show that even though the hole excitation is not
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as localized, as the electron excitation, residing over a few sites instead of just one

site, consistent with different sharpness of nh
fin↑ and ne

fin↑ in Figure 2.5(b), the holes

are still tightly bound to the core hole site with almost exciton-like electron and hole

pair state. Such screening pattern in real space can be related to the variation of the

RIXS intensity in reciprocal space, which is discussed in Section 2.4.

Figure 2.9 (Color) Contour plot of RIXS intensity calculated for t0 = 0.9 eV case
along the chosen path.

The situation changes for cases with a core hole at Mn3+ and with a large

electron hopping, for example, t0 = 1.5 eV. The hole distribution becomes delocalized,

and only about 8.0% of the core is localized within the nearest neighbors, and the

majority of the hole is delocalized along the zigzag chains with the same spin direction

as the core hole site. The hole number does not decay with the distance from the core

hole site, which indicates qualitatively different nature of the screening dynamics.

2.5.6 Calculated RIXS Spectrum and Comparison with Experimental
Data

Once the Hamiltonians are solved in the absence and in the presence of the core

hole, the RIXS intensity, IRIXS(q⃗, ω) can be calculated according to the formula in

Section 2.B. In this RIXS calculation, a small displacement is included of the Mn4+
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Figure 2.10 (Color) Contour plot of RIXS intensity calculated for t0 = 0.9 eV case
along the chosen path.

ions of 0.0265 Å along the diagonal direction from the ideal square lattice (Zeng

et al. 2008). The results are shown in Figures 2.9 and 2.10 for t0 = 0.9 eV and

1.5 eV, along a path in the extended zone ΩExZ in reciprocal space. As mentioned

above, the electron-lattice coupling parameter λ was adjusted to λ = 3.509 eV/Å for

t0 = 1.5 eV from λ = 7.407 eV/Å for t0 = 0.9 eV, so that the lowest energy RIXS

peak stays near 2 eV.

Comparison between the experimental data and the calculated result for t0 =

0.9 eV is made. In addition to the momentum dependent RIXS peak at around 2

eV, the experimental RIXS spectrum shows momentum independent spectral weight,

in particular above 3 eV as shown in Figure 2.1(a). The RIXS spectrum at H =

0.03 is indicative that the RIXS spectral weight above 3 eV may have the same

origin as the 4-5 eV O2p-Mn3d transition observed in optical experiments in related

manganites. Based on such assumption, the experimental RIXS spectrum is fitted

with a momentum-independent O2p–Mn3d transition peak centered at 4.5 eV and

half-width at half-maximum 1.5 eV, similar to the optical peak, and the calculated

momentum-dependent 3d-3d peaks. The results are shown in Figure 2.11 and show
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Figure 2.11 (Color) Theoretical RIXS intensity lines with Lorentzian broadening
shown in brown color scheme, superimposed with experimental data represented
in symbols connected with lines. Both, theoretical and experimental data have a
distinctive peak at 2 eV. Experimental data measured along (a) 2θ = 68◦, (b) 2θ =

78◦, and (c) θ = 48◦, refer to Figure 2.1(b) for surveyed Q⃗-points in the (H,H,L)
plane. Thin grey line at the bottom is added to the theoretical result, as a Lorentzian
peak centered at 4.5 eV with γbk = 1.5 eV.

a reasonable agreement between theory and experiment. The O2p-Mn3d transition

has a substantial spectral weight tail even in the range of 1–3 eV. Such momentum-

independent RIXS spectral weights with substantial tails even in the low energy range

have been also observed in bilayer manganites (Weber et al. 2010). To make more

quantitative comparison, the O2p-Mn3d peak is subtracted from experimental data,

and the spectrum is integrated from 1 eV to 3 eV and compared with corresponding

integrated intensity from theory results. The comparison is shown in Figure 2.12, in

which both theoretical results and experimental data are normalized with respect to

the integrated intensity at (π, π) point.
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Figure 2.12 (Color) Integrated RIXS intensity variation for several t0 cases normal-
ized at (|π|, |π|) for comparison. Symbols represent experimental data.

2.5.7 Periodicity of K-edge RIXS Spectrum in Reciprocal Space

In earlier studies of La2CuO4 by Kim et al. (2007), it was shown that the spectra

did not depend on the choice of Brillouin zone being measured. This observation,

depicted in Figure 2.13, led to the following conclusion: momentum dependence

observed in K-edge RIXS obeys the periodicity of reduced wave vector k⃗, which

defined as q⃗ = k⃗ + G⃗, where q⃗ is the total momentum change, and G⃗ is a reciprocal

lattice vector (Ament et al. 2011, p.715). Hence, RIXS spectra depends purely on k⃗,

and has a translational symmetry of the reciprocal lattice in reciprocal space.

The RIXS calculation and the experimental data for La0.5Sr1.5MnO4 described

in this chapter, clearly indicates that such periodicity is not present. Figure 2.14

shows integrated RIXS intensity in k-space, based on 16x16 Mn lattice. The

diamond shape at the center enclosed by line running through the points k⃗ =

(π/2, 0), (0, π/2), (−π/2, 0), and (0,−π/2), is the first Brillouin zone, whereas the

outer square domain |kx| ≤ π and |ky| ≤ π, denotes the “extended Brillouin zone”,
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Figure 2.13 Kim et al. (2007) presents the experimentally observed comparison of
RIXS spectra on La2CuO4 taken at different total q positions but with an equivalent
reduced wave vector k⃗ for seven different qs corresponding to k⃗ = (0, 0), (π, 0), and
(π, π), from top to bottom. The two-dimensional reciprocal space net is shown in
the top panel.

or in some instances referred to as |H| ≤ 0.5 (r.l.u.). To bring more clarity to the

term “extended”, for example if a system does not have an orbital ordering, charge

ordering, magnetic ordering, and Jahn-Teller distortion, then for a unit cell with one

manganese atom, first Brillouin zone would be equivalent to the extended Brillouin

zone. As it is further shown in Figure 2.14, the calculations were done over the

neighboring extended Brillouin zones to cover wider domain within |kx| ≤ 3π and

|ky| ≤ 3π. It is evident that RIXS spectrum does not exhibit periodicity with respect

to the first Brillouin zone, however the spectrum shows approximate periodicity with

respect to the extended Brillouin zone.

Emphasis must be made, that even this periodicity is only approximate. In the

extended Brillouin zone of Figure 2.14, global maximum of RIXS intensity occurs
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Figure 2.14 (Color) Integrated RIXS intensity in extended reciprocal space for
t0 = 0.9 eV case. First Brillouin zone is at the center bounded by diamond shape
marked by points (π/2, 0), (0, π/2), (−π/2, 0), and (0,−π/2), whereas the square
domain bounded by |kx| ≤ π and |ky| ≤ π denotes the extended Brillouin zone.

at four (±π,±π) points, whereas global minimum occurs at (0, 0). In Figure 2.14,

the spectrum looks almost periodic with respect to the extended Brillouin zone, but

after careful examination one may observe slight differences between corresponding

points with maximums at (±π,±π) and (±3π,±3π), as well as minimums at (0, 0)

and (±2π,±2π). This “slight” non-periodicity of the extended Brillouin zone can be

further attributed to the experimental bond length data describing lattice geometry,

particularly through inclusion of small diagonal displacements at Mn4+ ions (Zeng

et al. 2008). Removing those displacements from calculation makes extended Bril-

louin zone periodic. Analytically, it can be shown through Equation (2.25). Similar

results for t0 = 1.5 eV is shown in Figure 2.15. In addition, this aperiodic behaviour

can be seen more clearly in Figure 2.2(b), especially with the t0 = 1.32 eV line.

2.6 Conclusions

In summary, highly momentum-dependent K-edge resonant inelastic x-ray scat-

tering intensity is observed in the orbital ordered, layered manganite La0.5Sr1.5MnO4.
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Figure 2.15 (Color) Integrated RIXS intensity in extended reciprocal space for
t0 = 1.5 eV case. First Brillouin zone is at the center bounded by diamond shape
marked by points (π/2, 0), (0, π/2), (−π/2, 0), and (0,−π/2), whereas the square
domain bounded by |kx| ≤ π and |ky| ≤ π denotes the extended Brillouin zone.

This is interpreted through a comparison with calculations based on a tight-binding

approach, and also showed that these observations imply a highly localized, nearest

neighbor screening of the local charge perturbation. It is further found that the

momentum dependence of the RIXS spectrum reflects the pattern and range of the

screening in real space, and thus the size and shape of the screening cloud can be

measured. It is determined that the screening cloud is localized to a few Mn sites in

the Mn-O plane, emphasizing the short range nature of the Coulomb interactions in

the manganites. These results also show the potential of K-edge RIXS, as a probe

of the screening dynamics in strongly correlated materials.
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2.A Hamiltonians in Reciprocal Space Without and With 1s Core Hole

In the absence of the core hole, the Hamiltonian has the following form in reciprocal

space,

Ĥ3d =
∑

σ,⃗k∈1BZ

a†
σk⃗
H3d

σk⃗
aσk⃗, (2.36)

where H3d
σk⃗

= H3d,nonint

σk⃗
+ H3d3d,HF

σk⃗
,

a†
σk⃗

= (a†
σ,⃗k+K⃗1,1

, a†
σ,⃗k+K⃗1,2

, a†
σ,⃗k+K⃗2,1

, a†
σ,⃗k+K⃗2,2

,

a†
σ,⃗k+K⃗3,1

, a†
σ,⃗k+K⃗3,2

, a†
σ,⃗k+K⃗4,1

, a†
σ,⃗k+K⃗4,2

,

a†
σ,⃗k+K⃗5,1

, a†
σ,⃗k+K⃗5,2

, a†
σ,⃗k+K⃗6,1

, a†
σ,⃗k+K⃗6,2

,

a†
σ,⃗k+K⃗7,1

, a†
σ,⃗k+K⃗7,2

, a†
σ,⃗k+K⃗8,1

, a†
σ,⃗k+K⃗8,2

) (2.37)

with K⃗1, K⃗2, K⃗3, K⃗4, K⃗5, K⃗6, K⃗7, and K⃗8 representing (0,0), (π,0), (0,π), (π,π),

(-π/2,-π/2), (π/2,-π/2) , (-π/2,π/2), and (π/2,π/2), respectively,

H3d,nonint

σk⃗
=

 H1 H2

H2 H3

 , (2.38)

with matrix blocks defined as follows

H1 =



M1 + W3u −Gσ Gσ W1s + W3s

−Gσ M2 + W3u W1s + W3s Gσ

Gσ W1s + W3s M3 + W3u −Gσ

W1s + W3s Gσ −Gσ M4 + W3u


, (2.39)

H2 =



W2s Gσ Gσ W2s

Gσ W2s W2s Gσ

Gσ W2s W2s Gσ

W2s Gσ Gσ W2s


, (2.40)
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H3 =



M5 + W3u −Gσ Gσ W1s + W3s

−Gσ M6 + W3u W1s + W3s Gσ

Gσ W1s + W3s M7 + W3u −Gσ

W1s + W3s Gσ −Gσ M8 + W3u


, (2.41)

where all the terms further defined as

Mj=

− t0
2

[cos(kx + Kj,x) + cos(ky + Kj,y)]
√
3t0
2

[cos(kx + Kj,x) − cos(ky + Kj,y)]

√
3t0
2

[cos(kx + Kj,x) − cos(ky + Kj,y)] −3t0
2

[cos(kx + Kj,x) + cos(ky + Kj,y)]

,
(2.42)

G↑ =

 −JHSc

2
0

0 −JHSc

2

 , (2.43)

G↓ =

 JHSc

2
0

0 JHSc

2

 , (2.44)

W1s =

 −βλQQ1s 0

0 −βλQQ1s

 , (2.45)

W2s =

 0 λQQ2s

λQQ2s 0

 , (2.46)

W3u =

 −λQQ3u 0

0 λQQ3u

 , (2.47)

W3s =

 −λQQ3s 0

0 λQQ3s

 , (2.48)
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Q1s = 0.053 Å, Q2s = 0.054 Å, Q3u = 0.107 Å, and Q3s = -0.012 Å (Herrero-Mart́ın

et al. 2011). The element of 16 × 16 matrix H3d3d,HF

σk⃗
is independent of k⃗,

(
H3d3d,HF

σk⃗

)
2(j−1)+ξ,2(j′−1)+ξ′

=
∑
i⃗u,η

Uσ⃗iuη

8
e−i(K⃗j−K⃗j′ )·⃗iu

(
Ri⃗uη

)
ξξ′

(2.49)

where η = +,−, j, j′ = 1, 2, ..., 8, ξ, ξ′ = 1, 2, i⃗u represents the position index vector

of the Mn ions within the unit cell, that is, (0,0), (1,0), (2,0), (3,0), (1,-1), (2,-1),

(1,1), and (2,1),

Ri⃗u− =

 cos2 θ⃗iu cos θ⃗iu sin θ⃗iu

cos θ⃗iu sin θ⃗iu sin2 θ⃗iu

 , (2.50)

Ri⃗u+
=

 sin2 θ⃗iu − cos θ⃗iu sin θ⃗iu

− cos θ⃗iu sin θ⃗iu cos2 θ⃗iu

 , (2.51)

θ⃗i is defined from the local lower (−) and upper (+) Jahn-Teller eigenstate,

a†
σ⃗i− = a†

σ⃗i1
cos θ⃗i + a†

σ⃗i2
sin θ⃗i, (2.52)

a†
σ⃗i+

= −a†
σ⃗i1

sin θ⃗i + a†
σ⃗i2

cos θ⃗i (2.53)

At Mn3+ sites in the x/y directional legs of the zigzag chain,

tan θ⃗i = ±Q3u + Q3s −
√

(Q3u + Q3s)2 + 4Q2
2s

2Q2s

(2.54)

At Mn4+ sites, θ⃗i=0. To evaluate Uσ⃗iη, the matrix for the number operator in recip-

rocal space is necessary, the element of which is given below.

(
nσ⃗iuη

k⃗

)
2(j−1)+ξ,2(j′−1)+ξ′

= e−i(K⃗j−K⃗j′ )·⃗iu
(
Ri⃗uη

)
ξξ′

(2.55)

The eigenstates and eigenenergies of 16 × 16 matrix H3d
σk⃗

are found through the

Hartree-Fock iterative calculations at chosen set of k points, which gives the electronic

DOS in Figure 2.5.
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The Hamiltonian in the presence of the core hole at a site i⃗c for N×N clusters,

with N multiple of 4, is presented below. The k points within the first Brillouin zone

are k⃗1, k⃗2, ...,⃗kNk
, where Nk = N2/8.

Ĥtotal =
∑
σ

a†σ(H3d,nonint
σ + H3d3d,HF

σ + H1s3d,⃗ic
σ )aσ (2.56)

where

a†σ = (a†
σk⃗1

, a†
σk⃗2

, · · · , a†
σk⃗Nk

) (2.57)

H3d,nonint
σ =



H3d,nonint

σk⃗1
0 · · · 0

0 H3d,nonint

σk⃗2
· · · 0

...
...

. . .
...

0 0 · · · H3d,nonint

σk⃗Nk


(2.58)

H3d3d,HF
σ =



H3d3d,HF

σk⃗1k⃗1
H3d3d,HF

σk⃗1k⃗2
· · · H3d3d,HF

σk⃗1k⃗Nk

H3d3d,HF

σk⃗2k⃗1
H3d3d,HF

σk⃗2k⃗2
· · · H3d3d,HF

σk⃗2k⃗Nk

...
...

. . .
...

H3d3d,HF

σk⃗Nk
k⃗1

H3d3d,HF

σk⃗Nk
k⃗2

· · · H3d3d,HF

σk⃗Nk
k⃗Nk


(2.59)

where(
H3d3d,HF

σk⃗hk⃗h′

)
2(j−1)+ξ,2(j′−1)+ξ′

=
∑
i⃗,η

Uσ⃗iη

N2
e−i(k⃗h−k⃗h′ )·⃗ie−i(K⃗j−K⃗j′ )·⃗i

(
Ri⃗η

)
ξξ′

(2.60)

where η = +,−, j, j′ = 1, 2, ..., 8, ξ, ξ′ = 1, 2, i⃗ represents the site index vector for

N × N Mn cluster. Again, for the evaluation of Uσ⃗iη, the matrix for the number

operator in reciprocal space is necessary, shown below.

nσ⃗iη =



nσ⃗iη

k⃗1k⃗1
nσ⃗iη

k⃗1k⃗2
· · · nσ⃗iη

k⃗1k⃗Nk

nσ⃗iη

k⃗2k⃗1
nσ⃗iη

k⃗2k⃗2
· · · nσ⃗iη

k⃗2k⃗Nk

...
...

. . .
...

nσ⃗iη

k⃗Nk
k⃗1

nσ⃗iη

k⃗Nk
k⃗2

· · · nσ⃗iη

k⃗Nk
k⃗Nk


(2.61)
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with (
nσ⃗iη

k⃗hk⃗h′

)
2(j−1)+ξ,2(j′−1)+ξ′

= e−i(k⃗h−k⃗h′ )·⃗ie−i(K⃗j−K⃗j′ )·⃗i
(
Ri⃗η

)
ξξ′

. (2.62)

Finally, the 1s-3d Coulomb interaction for the core hole present at i⃗c is represented

by the following Hamiltonian matrix.

H1s3d,⃗ic
σ =



H1s3d,⃗ic

σk⃗1k⃗1
H1s3d,⃗ic

σk⃗1k⃗2
· · · H1s3d,⃗ic

σk⃗1k⃗Nk

H1s3d,⃗ic

σk⃗2k⃗1
H1s3d,⃗ic

σk⃗2k⃗2
· · · H1s3d,⃗ic

σk⃗2k⃗Nk

...
...

. . .
...

H1s3d,⃗ic

σk⃗Nk
k⃗1

H1s3d,⃗ic

σk⃗Nk
k⃗2

· · · H1s3d,⃗ic

σk⃗Nk
k⃗Nk


(2.63)

where (
H1s3d,⃗ic

σk⃗hk⃗h′

)
2(j−1)+ξ,2(j′−1)+ξ′

= Uce
−i(k⃗h−k⃗h′ )·⃗ice−i(K⃗j−K⃗j′ )·⃗icδξξ′ . (2.64)

where j, j′ = 1, 2, ..., 8 and ξ, ξ′ = 1, 2.

Eigenvectors and eigenvalues are found for the 2N2×2N2 Hamiltonian matrix,

H tot
σ = H3d,nonint

σ + H3d3d,HF
σ + H1s3d,⃗ic

σ for each spin direction σ with the core

hole potential, through Hartree-Fock iterative calculations. When necessary, Pullay

mixing method is used to have a convergence. The eigenstates and energies in the

absence of the core hole for the same cluster are found by setting Uc = 0 and repeating

Hartree-Fock iterative calculations. The two sets of eigenstates and eigenvalues give

εσlk⃗, ασ,⃗k+K⃗,ξlk⃗, εσm, and γσ,⃗k+K⃗,ξm, which are fed into the RIXS formula.
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2.B RIXS Formula Derivation

As explained in the text, the following formula is obtained from the Kramers-

Heisenberg formula, Equation (2.24), in the limit of completely localized core hole,

I ∝
∑
f

∣∣∣∣∣∣
∑
R⃗

∑
d⃗

∑
nR⃗+d⃗

⟨f |D′†|nR⃗+d⃗⟩⟨nR⃗+d⃗|D|g⟩
Eg + ~ωk⃗ − E

nd⃗ + iΓ
nd⃗

∣∣∣∣∣∣
2

δ(Ef + ~ωk⃗′ − Eg − ~ωk⃗), (2.65)

where |nR⃗+d⃗⟩ represents the intermediate energy eigenstate with the core hole at a site

R⃗+d⃗ within the unit cell at a lattice point R⃗. Further applying dipole approximation

to the RIXS transition operator, following expression is obtained,

⟨f |D′†|nR⃗+d⃗⟩⟨nR⃗+d⃗|D|g⟩ = e−i(k⃗′−k⃗)·(R⃗+d⃗) ×

ϵ⃗′ · ⟨f |r⃗ − (R⃗ + d⃗)|nR⃗+d⃗⟩⃗ϵ · ⟨nR⃗+d⃗|r⃗ − (R⃗ + d⃗)|g⟩ (2.66)

Two many-body states |Ψ0⟩ and |Ψ−R⃗⟩ with total momentum ~κ⃗ with identical

wave functions in two different coordinate systems, coordinate for |Ψ−R⃗⟩ is shifted

with respect to the coordinate for |Ψ0⟩ by −R⃗, are related to each other by a phase

factor, |Ψ−R⃗⟩ = eiκ⃗·R⃗|Ψ0⟩. Assuming that |g⟩ and |f⟩ have net momenta of zero and

~k⃗f , following relations are obtained,

⟨f |r⃗ − (R⃗ + d⃗)|nR⃗+d⃗⟩ = e−ik⃗f ·R⃗⟨f |r⃗ − d⃗|nd⃗⟩

⟨nR⃗+d⃗|r⃗ − (R⃗ + d⃗)|g⟩ = ⟨nd⃗|r⃗ − d⃗|g⟩ (2.67)

Therefore, the sum over lattice point R⃗ for e−i(k⃗′−k⃗+k⃗f )·R⃗ leads to the conservation of

the crystal momentum δ(k⃗′ − k⃗ + k⃗f + K⃗), where K⃗ represents the reciprocal lattice

vectors, and the following expression for the RIXS intensity,

I ∝
∑
K⃗

∑
f

∣∣∣∣∣∣
∑
d⃗

∑
nd⃗

e−i(k⃗′−k⃗)·d⃗ϵ⃗′ · ⟨f |r⃗ − d⃗|nd⃗⟩⃗ϵ · ⟨nd⃗|r⃗ − d⃗|g⟩
Eg + ~ωk⃗ − E

nd⃗ + iΓ
nd⃗

∣∣∣∣∣∣
2

δ(Ef + ~ωk⃗′ − Eg − ~ωk⃗)δ(k⃗f + k⃗′ − k⃗ + K⃗). (2.68)
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By further neglecting a constant factor associated with the polarization vectors

ϵ⃗′ and ϵ⃗ as well as the dipole moment between 4p and 1s wave functions, Equa-

tion (2.25) is obtained.



CHAPTER 3

EFFECTS OF RARE EARTH ION SIZE ON THE STABILITY OF
THE COHERENT JAHN-TELLER DISTORTIONS IN UNDOPED

PEROVSKITE MANGANITES

The work in this chapter was done in collaboration with Turab Lookman, Avadh

Saxena, and Alan R. Bishop from Theoretical Division at Los Alamos National Lab-

oratory, and Peter B. Littlewood from Physical Sciences and Engineering Division at

Argonne National Laboratory, as well as Keun H. Ahn from Department of Physics

at New Jersey Institute of Technology.

3.1 Introduction

Since the discovery of the colossal magnetoresistance effect, a lot of attention has

focused on a class of materials known as perovskite manganites (von Helmolt et al.

1993; Jin et al. 1994; Salamon and Jaime 2001). During the last two decades, sub-

stantial progress has been made in the theory for perovskite manganites. Importance

of the electron-lattice coupling was identified shortly after the discovery of colossal

magnetoresistance effect (Millis et al. 1995; Röder et al. 1996; Millis et al. 1996).

First-order character of the metal-insulator phase transition has been found from

Monte Carlo simulations (Vergés et al. 2002). Mechanism for inhomogeneity and its

relation to metal-insulator transition have been studied (Moreo et al. 1999). Effects

of disorder have been investigated for doped manganites (Kumar and Majumdar

2006; Pradhan et al. 2007). The competition between short range super-exchange

interaction and long range double exchange interaction has been analyzed for multi-

ferroic undoped manganites (Salafranca and Brey 2006). Most recently, novel mech-

anisms for ferroelectricity, including electronic ferroelectricity, have been proposed

for undoped manganites with E-type antiferromagnetic ordering (Sergienko et al.

47
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2006; Yamauchi et al. 2008). These materials have the chemical formula in the form

of RE1−xAKxMnO3, where RE and AK represent the rare earth and alkali metal

elements, and have a perovskite structure. One of the major research themes for

these materials is the relation between their physical properties and the average size

of ions at the RE/AK site, often known as the chemical pressure effect. The size of

the RE/AK ion is usually parameterized by a tolerance factor and one of the most

important phase diagrams for these materials has been the one in the temperature

versus tolerance factor plane for a fixed 30% (x = 0.3) doping ratio (Hwang et al.

1995). The RE/AK ions with size smaller than the space created by the surrounding

MnO6 octahedra induce buckling of the Mn-O-Mn bonds, observed through various

structural refinement analyses.

To understand the effect of the chemical pressure, semi-classical theories (Millis

et al. 1995; Röder et al. 1996; Millis et al. 1996; Moreo et al. 1999; Sergienko et al.

2006; Pradhan et al. 2007; Vergés et al. 2002; Salafranca and Brey 2006; Kumar and

Majumdar 2006; Yamauchi et al. 2008) with quantum mechanical electrons coupled

with the classical lattice through the Jahn-Teller (JT) interaction often present the

phase diagram with one axis representing the ratio between the electron hopping

energy and the JT energy gain. This ratio parameterizes the competition between

the kinetic and potential energy in perovskite manganites. Theoretical phase dia-

grams from these approaches agree well with experimental phase diagrams, when

this ratio is related to the Mn-O-Mn buckling distortion due to smaller RE/AK

ions. However, whether this buckling distortion affects the electron hopping energy

or the JT energy gain has been controversial. It is well known from experimental

observations that there is a strong competition between the insulating phase with a

coherent JT distortion and the metallic phase without such distortion (Salamon and

Jaime 2001). So far, most of the attention has centered on the impact of the buckling

on the metallic phase, in particular, the possible change in the effective Mn-O-Mn
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electron hopping parameter and the band width (Hwang et al. 1995). At the same

time, there has been a debate whether the variation of the hopping parameter due to

the Mn-O-Mn bond angle change of several degrees would be significant enough to

explain the observed metal-insulator transition (Dzero et al. 2000; Fernandez-Baca

et al. 1998; Liu et al. 1999; Lynn et al. 1996; Radaelli et al. 1997). For instance,

the spin wave stiffness, which depends sensitively on the electron hopping amplitude

in double exchange model in ferromagnetic metallic phase, shows very little depen-

dence on Mn-O-Mn bond angle (Lynn et al. 1996; Fernandez-Baca et al. 1998). A

less studied effect of the Mn-O-Mn bond buckling, except for a few early efforts based

on experimental data (Louca et al. 2001), is the possibility that the buckling distor-

tion may significantly stabilize the insulating phase with a coherent JT distortion,

by affecting the JT energy gain. The main goal of this chapter is to examine such

a possibility with a simplified model of the perovskite manganites. To be specific,

the interplay between the JT ordering and chemical pressure is analyzed for undoped

perovskite manganites. With one localized eg electron per site, the electronic degrees

of freedom can be integrated out in undoped manganites (except for electronically

ferroelectric undoped manganites postulated at low temperatures for very small RE

ions), which allows us to adopt a purely classical model with the energy expressed

in terms of lattice distortions only. The study on undoped manganites is merited,

because they are not only parent compounds of doped perovskite manganites (Millis

1996), but also because one of the first multiferroic materials discovered is an undoped

manganite, TbMnO3, with a relatively small RE element (Kimura, Goto, Shintani,

Ishizaka, Arima and Tokura 2003). Recently, electronic ferroelectricity has been also

proposed for undoped perovskite manganites (Sergienko et al. 2006; Yamauchi et al.

2008). Therefore, the chemical pressure effect in undoped manganites presented in

this chapter would also be relevant for future studies on how the multiferroic and

electronically ferroelectric properties would appear in REMnO3 with small RE ions,
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as well as how the chemical pressure affects the distorted insulating phase of doped

manganites.

3.2 Model System and Energy Expression

A study of a two-dimensional (2D) model for the perovskite structure is presented,

which incorporates both buckling and the JT distortions. A 2D perovskite structure

shown in Figure 3.1 is then defined, which includes the following aspects of the

three-dimensional (3D) perovskite structure for undoped manganites: (1) symmetry

breaking distortion of O ions around Mn ion, (2) chemical pressure effect, which is

the attraction of surrounding O ions toward the small RE ions, and (3) the rotation

of O ions with alternating directions around Mn ions, which is, in effect, the buckling

of Mn-O-Mn bonds. Although the 2D model inevitably misses some aspects of 3D

lattice distortions, it is proposed that the correct order of magnitude estimation of

energies associated with the chemical pressure and the JT effect can still be achieved.

For example, the size of the 3D tetragonal JT distortion mode, commonly known as

Q3 mode (Ahn and Millis 2001) with Mn-O bond lengths changed in all directions, is

typically about a third of the size of the planar JT distortion mode, commonly known

as Q2 mode with Mn-O bond lengths changed only in the plane. The Q2 mode is

kept in the 2D model, but the Q3 mode is not. The error from omitting the Q3 mode

in the 2D model can be estimated by comparing actual 3D and the approximate 2D

Jahn-Teller energy gain, proportional to
√

Q2
2 + Q2

3 and
√
Q2

2, respectively, which

are different by only about 10%. The Q2 mode is expected to couple dominantly

with the in-plane Mn-O-Mn bond buckling and the in-plane contraction of O ions

surrounding a small RE ion. Therefore, it is expected that the 2D model would

be sufficient for an order of magnitude estimation of the energy associated with the

stabilization of the phase with the JT distortion by small RE ions.
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Mn O

RE

Figure 3.1 Two-dimensional model for the perovskite structure considered in the
text.

For the 2D model of perovskite structure, the recently developed atomic scale

description of lattice distortions (Ahn et al. 2003, 2004) is applied to describe the

elastic energy of the system. In this approach, atomic scale modes of lattice distor-

tions and their constraints are used instead of displacement variables. The structural

motifs can be chosen in any convenient way as long as they have the symmetry of

the crystal structure. Two “structural motifs” shown in Figure 3.2 are chosen: one

consists of one Mn ion and four surrounding O ions and the other comprises one RE

ion and four surrounding O ions. Further, ten symmetry modes for each motif are

obtained, which are shown in Figure 3.3 for the MnO4 motif.1 Similar symmetry

modes are defined for the REO4 motif and are distinguished with primes on the

symbols in this chapter. The modes defined for each plaquette on the lattice are

constrained by each other because neighboring motifs share ions, which leads to con-

straint equations between the Fourier components of the modes. In terms of these

twenty modes and constraint equations, any distortion of the 2D perovskite structure

shown in Figure 3.1 can be described.

For the current study, since interest is in the ordered state, distortions with

wavevectors k⃗ = (0, 0) and (π, π) are considered only. For these wavevectors, the

1The normalization factor is chosen in such a way that, for example, e3 = 2dO if each
O ion around Mn ion is displaced by dO in the way shown in Figure 3.3.
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around Mn around RE

(a) (b)

Figure 3.2 Two structural motifs chosen for the 2D structure shown in Figure 3.1.

constraint equations are as follows, where subscripts 0 and s are used to represent

k⃗ = (0,0) and (π, π), respectively: e10 = e′10, e20 = e′20, e30 = e′30, sx0 = −s′x0,

sy0 = −s′y0, e1s = −e′2s, e
′
1s = −e2s, sxs = sys = s′xs = s′ys = 0. Rest of the modes are

unconstrained, particularly, e3s and e′3s. The search for the interplay between the

staggered deviatoric distortion mode e3s and the staggered rotation of O ions around

Mn ion (or equivalently staggered Mn-O-Mn bond buckling mode) e′3s is undertaken,

where the latter is due to the compression e′10 = e10 by small RE ions. Therefore,

only the modes e10 = e′10, e20 = e′20, e3s, and e′3s, are shown in Figure 3.4. The

uniform shear mode e20 = e′20 is included because it is coupled to e′3s through the JT

term, as will be discussed later in this chapter.

Even though it is possible to analyze an energy expression including higher

order symmetry-allowed anharmonic energy terms, such a method would generate

many parameters and would make the model less predictive. Therefore, starting with

a Keating model with a small number of parameters (Keating 1966; Littlewood 1986),

the Keating model is mapped onto the approach based on the symmetry modes. In

the Keating approach, the elastic energy is represented in terms of bond length and

bond angle changes from equilibrium. For the 2D perovskite structure, the following

set of Keating variables and harmonic moduli for each Mn ion are considered, as

shown in Figure 3.5: δln (n = 1, 2, 3, 4) and modulus a1 for Mn-O bond length

change, δθn (n = 1, 2, 3, 4) and b1/4 for 90◦ O-Mn-O bond angle change, δrn (n = 1,

2, 3, 4) and a2 for RE-O bond length change, and δφn (n = 1, 2) and b2/4 for 180◦
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Figure 3.3 Distortion modes for the motif around the Mn ion in Figure 3.2. Similar
distortion modes, e′1, e

′
2, e

′
3, s

′
x, s′y, t

′
x, t′y, w

′
x, w′

y, and r′ are defined for the motif
around the RE ion.

Mn-O-Mn bond angle change. It should be noted that the MnO4 motif is considered

as relatively stiff compared to other components of the structure, so that a1 ≫ a2

and b1 ≫ b2.

Consider the following Keating elastic energy expression per Mn ion,

Eelastic =
1

2
a1

∑
n=1,2,3,4

(δln)2 +
1

2
b1

∑
n=1,2,3,4

(δθn/2)2

+
1

2
a2

∑
n=1,2,3,4

(δrn)2 +
1

2
b2
∑
n=1,2

(δφn/2)2. (3.1)
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(a) (b)

(c) (d)

Figure 3.4 Four distortion modes considered in the current study: (a) uniform
dilatation mode e10, (b) uniform shear mode e20, (c) staggered deviatoric mode e3s,
and (d) staggered buckling mode e′3s. All figures are drawn for the positive values of
the modes with the Mn site at the bottom left corner chosen as the origin.

The Keating variables are then expressed in terms of e10, e20, e3s and e′3s. For

example, one obtains

δl1 =

√
(1 + e10 + e3s)2 + (e20 + e′3s)

2 − 1

2
, (3.2)

δθ1 = tan−1

(
e20 + e′3s

1 + e10 + e3s

)
+ tan−1

(
e20 − e′3s

1 + e10 − e3s

)
. (3.3)

The Taylor expansion of Eelastic in terms of e10, e20, e3s and e′3s produces all the terms

of any order. An approximation that b2 is much smaller than other parameters is

made, as mentioned above, and the terms with b2 are dropped. All harmonic order

terms are then kept and the cubic and quartic order terms that are responsible for

the Mn-O-Mn bond buckling instability are selected, which are shown below as Ehar,

Ecubic, and Equartic.
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Figure 3.5 The Keating variables considered for each Mn ion. l1, l2, l3, and l4
represent the Mn-O bond lengths. θ1, θ2, θ3, and θ4 represent the O-Mn-O bond
angles. r1, r2, r3, and r4 represent RE-O bond lengths. φ1 and φ2 indicate Mn-O-
Mn bond angles.

Further, the JT energy per Mn ion EJT is defined and the energy associated

with the tolerance factor per Mn ion Etol is as follows:

EJT = −λ

2
|δl1 + δl3 − δl2 − δl4|, (3.4)

Etol =
p̃

2
(δr1 + δr2 + δr3 + δr4), (3.5)

where “chemical pressure” is defined as

p̃ = C ′
1(1 − t). (3.6)

The parameter t is a two-dimensional analog of the tolerance factor for the 3D per-

ovskite structure, and the coefficient C ′
1 represents the coupling between the average

RE-O bond length and the tolerance factor t. The chemical pressure p̃ induces the

shortening of the average RE-O bond length due to small RE ions. In addition, the

JT distortion mode is defined as

eJT = (δl1 + δl3 − δl2 − δl4)/2, (3.7)
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which represents the anisotropic bond length change, similar to the JT distortion

modes Q2 and Q3 for 3D perovskite manganites (Ahn and Millis 2001). As men-

tioned above, eJT in the 2D model corresponds to Q2 mode only and thus omit-

ting the Q3 mode. The expression EJT = −λ|eJT| is based on the 3D JT energy

EJT,3D = −λQ

√
Q2

2 + Q2
3, which is obtained after minimizing JT electron-lattice

coupling energy in manganites with respect to the eg orbital state (Ahn and Millis

2001). In undoped manganites, Q3/Q2 is about 0.3 – 0.4 (Rodŕıguez-Carvajal et al.

1998; Balagurov et al. 2004), which allows an approximation EJT,3D ≈ −λQ|Q2|[1 +

(Q3/Q2)
2/2]. Further neglecting the small (Q3/Q2)

2/2 term of about 0.1, the 2D

analog of the JT energy EJT can be obtained with the 2D JT distortion eJT corre-

sponding to 3D JT distortion Q2 except for a normalization factor difference.

Expressions EJT and Etol are expanded in the form of a Taylor series in e10,

e20, e3s and e′3s. Only the leading order energy terms being kept, the total energy

expression per Mn ion Etot is given below.

Etot = Ehar + EJT + Etol + Ecubic + Equartic, (3.8)

Ehar =
1

2
(a1 + a2)(e10)

2 +
1

2
(4b1)(e20)

2

+
1

2
a1e

2
3s +

1

2
a2(e

′
3s)

2, (3.9)

EJT = −λ|e3s + e20e
′
3s|, (3.10)

Etol = p̃e10, (3.11)

Ecubic =
1

2
a1e10(e

′
3s)

2, (3.12)

Equartic =
1

4

a1
2

(e′3s)
4, (3.13)

where the relation

eJT ≈ e3s + e20e
′
3s (3.14)

is used for EJT. The physical origin of the coupling between e20 and e′3s is important

for the current study and is explained in more detail in Section 3.5.1.
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3.3 Estimation of Parameters

In this section, the estimation of the parameters is described. The Mn-Mn distance

before the distortion is chosen, which is around u = 4 Å, as 1. Therefore, e10, e20, e3s,

and e′3s are unitless, and a1, b1, a2, b2, and λ have the unit of energy. The parameter

a1 can be estimated from the Mn-O bond stretching phonon mode energy, which is

about 70 meV from optical measurements (Ahn and Millis 2001). From ~
√

2a1/mO

= 70 meV with mO the mass of the O ion, a1 ≈ 150 eV is obtained. From the

elastic modulus b1, c44 are estimated. From Darling et al. (1998), c44 ≈ 55–60 GPa.

The uniform shear mode e20 corresponds to the conventional exy/2 (Ashcroft and

Mermin 1976). Using the identity 1 GPa Å3 = 6.3 meV, it implies that b1 ≈ 20–

25 eV. To estimate b2, the results (Mirgorodsky and Smirnov 1993) for ReO3 are

used, which have no RE/AK ion and, therefore, a2 = 0 and the buckling of Re-O-Re

bond depends only on b2. According to the analysis in Mirgorodsky and Smirnov

(1993), the oxygen oscillation along Re-O-Re direction has the angular frequency

ωx
o = 905 cm−1, whereas the oscillation perpendicular to Re-O-Re direction has the

angular frequency ωy
o = 30 cm−1, from which b2/a1 = (ωy

o/ω
x
o )2/2 ≈ 0.5 × 10−3 can

be estimated. Similar order of magnitude for b2 in manganites can be expected,

order of 10−3a1, for example 0.2 eV, which is negligible compared to other parameter

values, while it justifies neglecting the terms with b2 as mentioned above. Various

probes, such as neutron or optical spectroscopy, indicate the buckling mode frequency

in manganites of about 35–50 meV (Zhang et al. 2001). From the analysis of (π, π)

phonon mode for this model, the frequency of buckling mode ωbk =
√

(2a2 + 4b2)/mO

is then obtained. Therefore, one arrives to a2 ≈ 30–80 eV. For the estimation of λ,

the JT energy gain for the 2D model is matched with that for the 3D model to ensure

that the 2D model represents the energy scale of the 3D materials correctly. For the

2D model ∆EJT = −λ2/(2a1). For the 3D model in Ahn and Millis (2000, 2001),

∆EJT ≈ −0.39 eV, and therefore, λ ≈ 10.8 eV is obtained.
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3.4 Interplay Between Mn-O-Mn Bond Buckling and the Jahn-Teller
Distortions

3.4.1 Buckling Instability Without the Jahn-Teller Term

The condition for the buckling instability is found to be without the effect of the

JT energy term EJT. A perturbative approach is further applied, rather than an

attempt to solve high order polynomial equations. By minimizing Ehar + Etol, one

obtains

(e10)
min,∗ = − p̃

a1 + a2
, (3.15)

where the superscript * indicates that the JT term is not yet taken into consideration.

This isotropic compression of the MnO4 motif renormalizes the coefficient of the (e′3s)
2

term through the Ecubic term. From this, the critical condition for the buckling

instability is then obtained,

p̃∗c =
a2
a1

(a1 + a2), (3.16)

(e10)
min,∗
c = −a2

a1
. (3.17)

If p̃ > p̃∗c , Mn-O-Mn bond buckling occurs and the quartic order term, Equartic, should

be considered for the equilibrium e′3s,

|(e′3s)min,∗| =

√
2

a1 + a2

√
p̃− p̃∗c (3.18)

=
√

2

√
(e10)

min,∗
c − (e10)min,∗. (3.19)

The minimized Etot without the EJT term is given by

Emin,∗
tot = − p̃2

2(a1 + a2)
− a1

2

(
p̃

a1 + a2
− a2

a1

)2

. (3.20)

3.4.2 Buckling Instability with the Jahn-Teller Term

It is now examined, on how the JT energy term EJT alters the buckling instability.

From Ehar + Etol + EJT, one obtains

(e10)
min = − p̃

a1 + a2
, (3.21)
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(e3s)
min =

λ

a1
, (3.22)

where the (e3s)
min > 0 case is considered only. The buckling instability is found from

the second order terms in e20 and e′3s in Etot:

1

2
(4b1)(e20)

2 +
1

2
[a2 + a1(e10)

min](e′3s)
2 − λe20e

′
3s, (3.23)

where it is assumed (e3s)
min+e20e

′
3s > 0. From the condition 4b1[a2+a1(e10)

min] < λ2,

one obtains the critical condition

p̃c =
a2
a1

(a1 + a2) −
λ2

4b1a1
(a1 + a2) (3.24)

and the buckling distortion occurs for p̃ > p̃c. Comparing with p̃∗c in Equation (3.16),

it is easy to find that the JT energy makes buckling more likely. After this buckling

instability, the Equartic term should be included to find the equilibrium result. For

this, Etot is first minimized with respect to the shear distortion e20 to obtain

(e20)
min =

λ

4b1
e′3s. (3.25)

Inserting this back, an energy expression for Etot is then obtained in terms of e′3s

only, which gives the equilibrium buckling distortion and the minimum energy,

(e′3s)
min =

√
2

a1 + a2

√
p̃− p̃c, (3.26)

Emin
tot = − p̃2

2(a1 + a2)
− λ2

2a1

−a1
2

(
p̃

a1 + a2
− a2

a1
+

λ2

4b1a1

)2

. (3.27)

Therefore, the energy gain due to the JT energy term is given by

∆EJT = − λ2

2a1
− (p̃− p̃∗c)λ

2

4(a1 + a2)b1
(3.28)

up to order λ2. The second term corresponds to the part of ∆EJT which depends

on the size of RE ion, or p̃. This result shows that the small rare earth ion, or large

chemical pressure, stabilizes the JT distortion.



60

3.5 Comparison with Experiments

Comparisons between the model and experimental results are further presented. In

Section 3.5.1, the simultaneous appearance of the uniform shear distortion and the

long range JT distortion observed in undoped manganites (Rodŕıguez-Carvajal et al.

1998) are explained. In Section 3.5.2, the changes in the JT ordering temperature

TJT are estimated among LaMnO3, PrMnO3, and NdMnO3, and then compared

with the experiments. In Section 3.5.3, the ratios between different distortion modes

are calculated and compared with the experimental data for LaMnO3, PrMnO3,

NdMnO3, and other undoped manganites with even smaller RE ions.

3.5.1 Appearance of Uniform Shear Distortion Below the Jahn-Teller
Ordering Temperature

Experimental data in Rodŕıguez-Carvajal et al. (1998), Balagurov et al. (2004),

and Sánchez et al. (2002) show that the difference between the lattice constants

a and b along the diagonal directions in the plane appears simultaneously with the

long range JT distortion below TJT for LaMnO3, PrMnO3, and NdMnO3. This

distortion corresponds to the uniform shear distortion in the model, related by

e20 = (b− a)/(2
√

2u) with u = 4 Å. The coupling between the JT distortion and the

uniform shear distortion is then analyzed, which is important for the stabilization of

JT ordered state by the chemical pressure. In this model, such coupling originates

from the term e20e
′
3s in eJT in Equation (3.14) or in EJT in Equation (3.10), which

can be understood as follows. Applying a positive e20 shear distortion to the lattice

is initially considered, as shown in Figure 3.6 by the axis of elongation and com-

pression along 45◦ and 135◦, respectively. Such uniform shear distortion makes the

Mn-O bond lengths either longer or shorter depending on whether the direction of

the bond is closer to the orientation of elongation (45◦) or compression (135◦), except

for the bonds with directions right between the two directions. If the system does not

have (π, π) buckling, as shown by the thin solid lines in Figure 3.6, all Mn-O bonds
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make equal angles from the axis of elongation/compression, and therefore e20 shear

distortion keeps all Mn-O bond lengths equal. This implies that e20 distortion alone

does not contribute to the JT distortion or JT energy gain. In contrast, if the system

has a buckling distortion e′3s with a wave vector k⃗ = (π, π), as shown by the thick

solid lines in Figure 3.6, the e20 shear distortion elongates Mn-O bonds marked with

l and shortens Mn-O bonds marked with s, depending on whether the bond direction

is closer to the axis of elongation or the axis of compression, which results in the JT

distortion eJT with a wave vector k⃗ = (π, π). If this extra JT distortion is in the

same [opposite] phase as [to] the deviatoric e3s distortion, in other words, if e20e
′
3s

and e3s have the same [opposite] sign, this extra JT distortion increases [decreases]

the net JT distortion, which explains the expression for EJT in Equation (3.10) or

eJT in Equation (3.14). It is emphasized here that the extra JT energy gain occurs

only when the e2, e3 and e′3 distortions are in the right phase with respect to each

other. Experiments (Rodŕıguez-Carvajal et al. 1998) show that the (π, π) Mn-O-Mn

bond buckling persists even above TJT without much change in size. However, above

TJT, the coherent e3 distortion does not exist, and therefore the extra JT distortion

due to the uniform e20 distortion in the presence of staggered buckling distortion

would increase the JT energy gain in some regions and decrease the JT energy gain

in other regions, and does not change the net JT energy. In other words, the energy

gain due to the cooperative effect between e3, e
′
3, and e2 does not exist at T > TJT.

Therefore it is expected that the e20 mode does not exist above TJT and appears

simultaneously with the long range JT ordering, consistent with the experimental

results.

3.5.2 Jahn-Teller Ordering Temperature and Its Variation Among
LaMnO3, PrMnO3, and NdMnO3

It is reported (Kimura, Ishihara, Shintani, Arima, Takahashi, Ishizaka and Tokura

2003; Sánchez et al. 2002) that TJT changes from 750 K for LaMnO3 to 1050 K
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Figure 3.6 Superposition of (π, π) buckling e′3s and uniform shear distortion e20
effectively generates the extra (π, π) JT distortion of Mn-O bond lengths, as indicated
by the s and l for the shortened and elongated bonds, which is responsible for the
e20e

′
3s coupling within eJT and the JT coupling EJT. In the (π, π) JT ordered state,

this adds up to the e3s deviatoric mode if e3s and e20e
′
3s have the same sign. This

mechanism is responsible for the appearance of the uniform shear distortion below
the JT ordering temperature, as explained in Section3.5.1. The extra JT energy gain
for the buckled lattice is responsible for the increase in TJT in REMnO3 with small
RE ions, as explained in Section 3.5.2.

for PrMnO3, and further to 1100 K for NdMnO3, that is, by about ∆TJT(Pr) =

300 K and ∆TJT(Nd) = 350 K relative to LaMnO3 respectively, where ∆TJT(RE) =

TJT(REMnO3) − TJT(LaMnO3). The term ∆TJT(RE) is further estimated from the

model to understand how such a drastic change of the JT ordering temperature can

occur by the increase in chemical pressure.

The term Emin
tot in Equation (3.27) is rewritten for p̃ > p̃c as follows.

Emin
tot = − p̃2

2(a1 + a2)
− λ2

2a1
− a1(p̃− p̃c)

2

2(a1 + a2)2
, (3.29)

where

p̃c = p̃∗c − δp̃c, (3.30)

δp̃c =
λ2

4b1a1
(a1 + a2), (3.31)
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and p̃∗c represents the critical chemical pressure without the JT energy term. Since

δp̃c, the change in the critical chemical pressure due to the EJT term, is small relative

to p̃− p̃∗c , with δp̃c/(p̃− p̃∗c) ≈ 0.3 for parameter values in Section 3.3, the terms linear

in δp̃c are kept only and then rewritten according to the origin of each term as follows.

Emin
tot ≈ Emin

comp + Emin
JT + Emin

bk + Emin
bk,JT,sh, (3.32)

Emin
comp = −1

2

p̃2

a1 + a2
, (3.33)

Emin
JT = −1

2

λ2

a1
, (3.34)

Emin
bk = −1

2

a1
(a1 + a2)2

(p̃− p̃∗c)
2 , (3.35)

Emin
bk,JT,sh = − a1

(a1 + a2)2
(p̃− p̃∗c) δp̃c,

= − λ2

4b1(a1 + a2)
(p̃− p̃∗c). (3.36)

The first three terms, Emin
comp, Emin

JT , and Emin
bk , represent the energy terms purely

due to compression, JT distortion, and buckling, respectively. The fourth term is

the energy due to the coherent buckling, JT and shear distortions, indicated by its

dependence on p̃ − p̃∗c , λ and b1, which gives extra stability to the JT ordering due

to the chemical pressure.

To estimate TJT, a high temperature state with random JT distortions must be

considered, for which the energy can be written in a similar way as Equation (3.32)

except for the absence of the fourth term due to the lack of coherence among distor-

tions as explained in Section 3.5.1,

Eran
tot = Eran

comp + Eran
JT + Eran

bk . (3.37)

It is expected that Eran
comp ≈ Emin

comp and Eran
bk ≈ Emin

bk , since the unit cell volume and

buckling angle do not change very much as the temperature crosses TJT (Rodŕıguez-

Carvajal et al. 1998). Therefore, the energy difference between JT ordered and JT

disordered state is

Eran
tot − Emin

tot ≈ Eran
JT − Emin

JT − Emin
bk,JT,sh. (3.38)



64

It is important to verify that this model gives the correct order of magnitude

of TJT itself. An order of magnitude estimate for TJT can be made from the energy

difference between two different JT ordered states, one the most favored state and

the other relatively unfavored state. The most favored state is that with the JT

distortion of k⃗ = (π, π) considered so far in this chapter and has the JT energy

of Emin
JT = −λ2/(2a1). A state with the same size of JT distortion e3 is chosen

but with a wave vector k⃗ = (0, 0), as a relatively unfavored state, with energy

Eunif
JT = −λ2/[2(a1 + a2)]. Using the estimated parameter values, a1 = 150 eV, a2 =

30–80 eV, λ = 10.8 eV, Eunif
JT − Emin

JT ≈ 600–1300 K are then obtained, which have

the same order of magnitude, as the experimentally observed TJT in the range of

750–1100 K.

For the change in TJT between LaMnO3 and REMnO3 (RE=Pr, Nd), the

only term in Equation (3.38) which changes with the RE ion size is −Emin
bk,JT,shear.

Therefore, the JT ordering temperature variation between LaMnO3 and REMnO3

can be related to −Emin
bk,JT,sh(REMnO3) + Emin

bk,JT,sh(LaMnO3) within a factor of the

order of one. Further, Emin
bk,JT,sh is expressed in terms of (e′3s)

min,

Emin
bk,JT,sh = −1

2

λ2

4b1
[(e′3s)

min]2. (3.39)

According to the experimental data (Kimura, Ishihara, Shintani, Arima, Takahashi,

Ishizaka and Tokura 2003; Rodŕıguez-Carvajal et al. 1998; Sánchez et al. 2002; Bal-

agurov et al. 2004), the Mn-O-Mn bond angle is 155.1◦ for LaMnO3, 150.5◦ for

PrMnO3, and 149.8◦ for NdMnO3, which corresponds to (e′3s)
min of 0.217, 0.257, and

0.264, respectively. These distortions, along with parameter values λ = 10.8 eV

and b1 = 20–25 eV, result in −Emin
bk,JT,sh(REMnO3) + Emin

bk,JT,sh(LaMnO3) of 11–

14 meV ≈ 130–160 K for RE=Pr and 12–16 meV ≈ 140–190 K for RE=Nd.

From a classical Monte Carlo simulation for the double-well potential model in

Ahn et al. (2003), it has been found that the structural ordering temperature is
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about twice the energy difference between the distorted ground state and undis-

torted high energy state.2 Although such a relation would depend on the details of

the model, if a similar situation in the current model is assumed, the JT ordering

temperature variation can be estimated as twice the energy difference, therefore,

T JT(NdMnO3)−T JT(LaMnO3) ≈ 2× [−Emin
bk,JT,sh(NdMnO3) +Emin

bk,JT,sh(LaMnO3)] =

300–375 K, which agrees well with the experimental change in TJT, 350 K. Similar

analysis for PrMnO3 leads to T JT(PrMnO3) − T JT(LaMnO3) ≈ 255–320 K, which

agrees well with the experimental value of 300 K.

This agreement shows that indeed the JT ordered state is more stabilized when

the buckling increases for smaller RE ions for undoped compounds. The relatively

large increase in the JT ordering temperature, both in theory and experimental data,

shows that the interplay between the RE ion size and the JT distortion is significant,

and should be taken into account to explain the well-known temperature-tolerance

factor phase diagram of both undoped and doped perovskite manganites.

3.5.3 Relation Between Shear, Buckling, and Deviatoric Distortion and
Comparison for Other Undoped Manganites

Equations (3.22) and (3.25) imply that the following quantities remain constant

regardless of the variation in chemical pressure:

(e3s)
min =

λ

a1
, (3.40)

(e20)
min

(e′3s)
min

=
λ

4b1
, (3.41)

(e20)
min

(e3s)min(e′3s)
min

=
a1
4b1

. (3.42)

These quantities are calculated from the experimental data for LaMnO3, PrMnO3,

and NdMnO3, and in turn present the results shown in Table 3.1, in which the

2Classical Monte Carlo simulations is carried out with the same energy expression and
parameter values used for the results in Figure 3 in Ahn et al. (2003). Further, the struc-
tural phase transition temperature is about 0.15, which is about twice the depth of the
potential well 0.08.
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relation between the distortion variables in the model and experimental parameters

is also shown, while the estimate of TJT and ∆TJT is obtained in Section 3.5.2. The

results show that (e3s)
min, (e20)

min/(e′3s)
min, and (e20)

min/[(e3s)
min(e′3s)

min] agree well

with theoretical estimates obtained from the parameters in Section 3.3, and vary 7%,

29%, and 32%, respectively, smaller than up to 41% changes in (e20)
min and (e′3s)

min.

The results underscore the strong coupling between these distortions, in particular,

the important role played by the uniform shear distortion in connecting the JT and

buckling distortions, an aspect neglected in the literature so far.

The analysis to undoped perovskite manganites is further extended with even

smaller RE ions. The results are summarized in Figure 3.7, along with values from

available experimental data. Figure 3.7(a) shows the JT ordering temperature varia-

tion with respect to LaMnO3 from the theory along with measured TJT for LaMnO3,

PrMnO3, and NdMnO3, which indicates rapid increase of the JT energy gain as the

RE size becomes smaller. Figure 3.7(b) shows that the ratio e20/e
′
3s from experi-

mental data remains relatively close to the range of theoretical constant ratios of

λ/(4b1). Explanation for the deviation from theoretically estimated constant for the

whole range of RE ions may require higher order expansions of the energy expres-

sion. Figure 3.7(c) shows eJT from experimental data and theory. For the experi-

mental data, eJT is calculated from (l − s)/u, where l and s are in-plane long and

short Mn-O bond lengths, as in Table I. Theoretical range of eJT versus e′3s is from

eJT ≈ e3s +e20e
′
3s with e3s ≈ λ/a1 and e20 ≈ e′3sλ/(4b1). Both theory and experiment

consistently show an overall increase of eJT as Mn-O-Mn bond buckling increases.

3.6 Discussion on How to Extend the Model to Doped Manganites and
Electronically Ferroelectric Undoped Manganites

Although primary focus in this chapter is the high temperature JT structural phase

transition in undoped perovskite manganites, it is briefly commented on in this sec-
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Figure 3.7 Available experimental data and bounds estimated from theory, plotted
against Mn-O-Mn bond angle and e′3s, for (a) JT ordering temperature, (b) e20/e

′
3s

ratio, and (c) eJT . Experimental data are from Sánchez et al. (2002), Liu et al. (1996),
Alonso et al. (2000), Mochizuki and Furukawa (2009), and references therein.

tion on how to extend the model to doped manganites and electronically ferroelectric

undoped manganites. In the case of doped manganites, each Mn site has a fractional

number of 3d eg electrons, which would require quantum mechanical description of

eg electrons, similar to the ones in Moreo et al. (1999); Pradhan et al. (2007); Vergés

et al. (2002); Salafranca and Brey (2006); Kumar and Majumdar (2006). Further-

more, RE and AK ions with different sizes distribute randomly, effectively generating

site-dependent chemical pressure. Experimentally, it is observed that the increased



69

variance of RE and AK ion sizes has a similar effect as the decreased average RE

and AK ion size in doped manganites. If focus is set on the effects of chemical pres-

sure, the first necessary modification to the existing models in Moreo et al. (1999);

Pradhan et al. (2007); Vergés et al. (2002); Salafranca and Brey (2006); Kumar and

Majumdar (2006) would be a classical coupling between local chemical pressure and

local dilatation mode of surrounding O ions, similar to e′1. The second necessary

modification would be anharmonic lattice energy terms obtained from the Keating

model, similar to the ones presented in this chapter. Because chemical pressure p̃⃗i

is dependent on site, one should consider all modes shown in Figure 3.3 at each site

and the constraints between Fourier transforms of these variables, instead of just the

four modes in Figure 3.4. With many variables involved, numerical approaches, such

as Monte Carlo methods, would be essential.

This model can be extended and serve as a phenomenological model for the

magnetism and electronic ferroelectricity in undoped manganites (Kimura, Ishihara,

Shintani, Arima, Takahashi, Ishizaka and Tokura 2003; Mochizuki and Furukawa

2009; Sergienko et al. 2006), complementing existing theories, such as the ones based

on local density approximation (Yamauchi et al. 2008). In undoped manganites, the

magnetic interaction also shows a prominent dependence on the size of RE ions,

changing the ground state from A-type to E-type antiferromagnetic phase through

incommensurate phases as RE ion becomes smaller. This behavior has been proposed

to originate from the reduced nearest neighbor ferromagnetism and the increased next

nearest neighbor antiferromagnetism (Kimura, Ishihara, Shintani, Arima, Takahashi,

Ishizaka and Tokura 2003), or alternatively, the reduced antiferromagnetism between

t2g spins and long range ferromagnetic double exchange interaction (Salafranca and

Brey 2006). It has been further proposed that electronically ferroelectric phase may

emerge in E-type antiferromagnetic phase, associated with the displacement of Wan-

nier function center (WFC) from the ionic location due to the magnetic inversion
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symmetry breaking for E-type spin ordering (Yamauchi et al. 2008). Within this phe-

nomenological approach, the dependence of the first nearest and the second nearest

neighbor magnetic interaction J1 and J2 on the Mn-O-Mn bond buckling can be

expressed as J1 = J10(1 + α1e
′
3s) and J2 = J20(1 + α2e

′
3s) for a small range of e′3s,

in which the linear coefficients α1 and α2 can be decided from more fundamental

theories. The t2g − t2g super-exchange interaction can be expressed in a similar way.

As for the electronic ferroelectricity, although the explicit form of the Wannier

function would require quantum mechanical analysis, the WFC itself can be treated

as a classical variable and the lattice of the WFC can be considered in addition

to the lattice of Mn ions. Therefore, symmetry-based analysis can be applied to

both the WFC lattice and the ionic lattice. To demonstrate the idea, an example

of three connected Mn-O motifs at sites (-1,0), (0,0), and (1,0) must be considered

that is shown in Figure 3.8. The x directional displacement of Mn ion at site i⃗,

the x directional displacement of WFC associated with Mn 3d3x2−r2 state with spin

parallel to the t2g core spin at site i⃗, and the t2g spin at site i⃗ with magnitude of

|St2g | are represented by d⃗i, Di⃗, and S⃗⃗i. In addition, the buckling distortion e′3s is

considered. If a situation without any other distortions persists, the energy associated

with these limited degrees of freedom can be written in the following form based on

the symmetry:

EeFE =
Kd

2

(
d2(−1,0) + d2(0,0) + d2(1,0)

)
+

KD

2

[(
D(−1,0) − d(−1,0)

)2
+
(
D(0,0) − d(0,0)

)2
+
(
D(1,0) − d(1,0)

)2]
+ J10S⃗(−1,0) · S⃗(0,0)

[
1 + α1e

′
3s + β

(
D(0,0) −D(−1,0)

)]
+ J10S⃗(0,0) · S⃗(1,0)

[
1 + α1e

′
3s + β

(
D(1,0) −D(0,0)

)]
, (3.43)

where the terms with β represent how the magnetic interaction depends on the

distance between the nearest neighbor WFC’s. In the case of d(0,0) = d(−1,0) =

d(1,0) = 0 due to other elastic energy terms that are not considered above and S⃗(−1,0) =
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S⃗(0,0) = −S⃗(1,0) due to the E-type magnetic ordering, the minimization with respect

to D(0,0) leads to D(0,0) = −2J10|St2g |2β/KD, shown schematically in Figure 3.8 with

a thin arrow and an open square representing WFC, which demonstrates how this

model can be expanded for modeling of ferroelectric moment of electronic origin.

The symmetry-mode-based approach can be also used to model conventional ionic

ferroelectricity in perovskite transition metal oxides by including energy terms with

inversion symmetry breaking modes, such as tx, ty, t
′
x, and t′y in Figure 3.3.

Figure 3.8 Schematic drawing that demonstrates how this model can be extended
to include electronic ferroelectricity in undoped manganites. Three connected MnO4

motifs are shown. Open and solid circles represent O and Mn ions. Open squares
represent WFC’s associated with the Mn 3d3x2−r2 state with spin parallel to the t2g
core spin, which would coincide with Mn ions in the non-ferroelectric phase. Thick
arrows at the bottom represent the t2g spin directions for E-type antiferromagnetic
phase of undoped manganites. Thin horizontal arrow represents the displacement of
WFC from Mn ion location, resulting in the ferroelectric moment of electronic origin.

3.7 Conclusions

From the analysis of a Keating energy expression expanded in terms of the atomic-

scale symmetry-modes, it is found that the effect of small RE ion size, known as

chemical pressure effect, is significant in stabilizing the long range JT distortion in

undoped perovskite manganites. A good agreement with the experimental data on

the JT ordering temperature and the substantial increase of the JT ordering tem-

perature from LaMnO3 to PrMnO3 and NdMnO3 have been obtained. It is proposed

that similar effects need to be considered to understand the phase diagram for the
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doped perovskite manganites. Further, the explanation is presented on the appear-

ance of the uniform shear distortion below the JT ordering temperature in terms

of the coupling between coherent shear, buckling, and deviatoric distortions within

the JT energy. Moreover, the ratio between these distortions at low temperature is

estimated, and a good agreement with experimental data for LaMnO3, PrMnO3, and

NdMnO3 is found, which confirms the coupling proposed in this model.



CHAPTER 4

SYMMETRY-BASED ATOMIC-SCALE DESCRIPTIONS OF
LATTICE DYNAMICS

The work in this chapter was done in collaboration with Jichan Moon from Depart-

ment of Physics, Konkuk University of Seoul, South Korea, as well as Keun H. Ahn

from Department of Physics at New Jersey Institute of Technology.

4.1 Introduction

These days a lot of attention has been focused on physical properties in nanometer

length scale. In particular, materials with competing ground states, such as high

temperature superconducting cuprates (Lee, Nagaosa and Wen 2006) and colossal

magnetoresistive manganites (Jin et al. 1994; Millis 1998; Salamon and Jaime 2001),

often show nanometer scale features, either static or dynamic. Examples are stripes in

cuprates (Tranquada et al. 1995; Kivelson et al. 2003) and anisotropic correlations in

manganites (Kiryukhin 2004; Ahn et al. 2004). It is believed that understanding these

nano-scale features is essential to explain macroscopic properties of these materials.

For the description of mesoscopic scale domain structures and phase transitions,

phenomenological Ginzburg-Landau formalism has been very successful (Shenoy

et al. 1999; Lookman et al. 2003). One of the keys for such success is the use of sym-

metry in the definition of variables, which makes the selection of free energy terms

self-evident. Motivated by the success of symmetry-based continuum approach,

symmetry-based atomic-scale description of lattice distortions has been recently pro-

posed, and demonstrated for a two-dimensional square lattice (Ahn et al. 2003). In

this approach, atomic-scale symmetry-modes are defined on a plaquette of atoms, and

are used to express potential energy terms associated with lattice distortions. This

method has been used to understand atomic scale structures of twin boundaries (Ahn

73
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et al. 2003) and antiphase boundaries and associated electronic textures (Ahn et al.

2005), strain-induced metal insulator phase-coexistence in manganites (Ahn et al.

2004), superconducting order parameter textures around structural defects (Zhu

et al. 2003), and the coupling between electronic nematic order parameter and

structural domains in metamagnets near a quantum critical point (Doh et al. 2007).

So far, this approach has been used for frozen lattices or the relaxation of lattice

distortions through the Euler method (Shenoy et al. 1999), which does not require

kinetic energy terms. In the current chapter (Moon 2006), the study on how the

approach based on atomic scale symmetry modes can be extended to include kinetic

energy terms and describe lattice dynamics within the formalism of both classical

and quantum mechanics is presented. The study within the formalism of classical

mechanics is first presented in Section 4.2, where the comparison with the continuum

results (Lookman et al. 2003) are presented, and the phonon spectrum in terms of

symmetry modes is also analyzed. Quantum mechanical formalism is formulated

in terms of atomic scale symmetry modes in Section 4.3, whereas the conclusions

are given in Section 4.4. In addition, intermediate steps of the calculations and 2D

phonon spectrum examples are presented in Appendix 4.A.

4.2 Classical Formalism

4.2.1 One Dimensional Lattice with a Monatomic Basis

The underlying idea of mode-based lattice dynamics for one-dimensional lattice is

first demonstrated, with a monatomic basis shown in Figure 4.1. The displacements

Figure 4.1 The one-dimensional lattice.

of atoms are confined along the direction of the chain, and are represented by u(i),
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where i is the index for sites. M is the mass of the atom. To be specific, it is assumed

that the interaction between nearest neighbor atoms are described by a spring with

a spring constant k and other potential energy terms are negligible, which gives rise

to the following Lagrangian.

Lchain =
∑
i

1

2
Mu̇(i)2 − 1

2
k[u(i + 1) − u(i)]2. (4.1)

A two-atom unit is taken as a motif for this lattice (Ahn et al. 2003), and the

symmetry modes are defined, e(i) and t(i), as follows, where a normalization factor

is introduced according to the number of displacement variables in the definition.

e(i) ≡ 1√
2

[u(i + 1) − u(i)], (4.2)

t(i) ≡ 1√
2

[u(i + 1) + u(i)]. (4.3)

Figure 4.2 The lattice modes for the one-dimensional chain in Figure 4.1.

The two variables, e and t, correspond to the distortion and rigid translation of

the motif, respectively. Similarly to the findings in Ahn et al. (2003), since the

two modes are defined at each site i from one physically independent displacement

variable, these modes are related through one constraint equation, shown below in

the reciprocal space and direct space, respectively.

fk ≡ (eik + 1)e(k) − (eik − 1)t(k) = 0, (4.4)

e(i + 1) + e(i) − t(i + 1) + t(i) = 0 (4.5)

In terms of these modes, the Lagrangian in Equation (4.1) can be expressed in the

following way.

Lchain =
∑
i

1

2
(
M

2
)ė(i)2 +

1

2
(
M

2
)ṫ(i)2 − 1

2
(2k)e(i)2, (4.6)
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The result shows that the introduction of atomic scale rigid modes, such as t, which

are not considered in Ahn et al. (2003), allows the kinetic energy term expressed in a

quadratic form in terms of modes. To obtain the equations of motion for constrained

variables, the Lagrangian with Lagrange multiplier, λk, and constraint equations,

f−k are modified, as shown below.

L̃ =
∑
k

1

2

(
M

2

)(
ėkė−k + ṫk ṫ−k

)
− 1

2
(2k)eke−k

+λk{(e−ik + 1)e−k − (e−ik − 1)t−k}. (4.7)

Lagrangian formalism of dynamics leads to the two equations of motion,

M

2
ëk + 2kek − λk(e−ik + 1) = 0, (4.8)

M

2
ẗk + λk(e−ik − 1) = 0, (4.9)

and a well-known dispersion relation for one-dimensional chain (Kittel 2005),

ω =

√
k

M
(1 − cos k). (4.10)

This result shows that the lattice dynamics can be studied within the framework of

atomic scale symmetry modes and their constraint equations, without using the dis-

placement variables explicitly. The advantage of this approach lies in the convenience

in expressing high order anharmonic potential energy terms in more concise ways,

compared to the approach based on displacement variables. Such advantage will

be more relevant for lattices in 2D or 3D, where anharmonic energy landscape with

multiple local energy minima and consequent domain structures could occur natu-

rally (Ahn et al. 2003). In the next subsection, it is demonstrated how this approach

can be applied for lattices in higher dimensions, for example, a two-dimensional

square lattice with a monatomic basis.

4.2.2 Two-Dimensional Square Lattice With a Monatomic Basis

Symmetry-based atomic scale modes for a two-dimensional square lattice with a

monatomic basis, shown in Figure 4.3, have been studied in Ahn et al. (2003, 2004),
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where strain modes, e1, e2, and e3, and short wavelength modes, sx and sy, are

defined, as shown in Figure 4.4. Specifically, in terms of displacement variables,

Figure 4.3 The two-dimensional square lattice with a mono-atomic basis.

ux(⃗i) and uy (⃗i), shown in Figure 4.3, where ix and iy represent site indices, these

modes are expressed as follows along with proper normalization factors.

Figure 4.4 Normal distortion modes for a square object of four atoms in 2D.

e1(⃗i) =
1

2
√

2
[−ux

i − uy
i + ux

i+10 − uy
i+10

−ux
i+01 + uy

i+01 + ux
i+11 + uy

i+11], (4.11)

e2(⃗i) =
1

2
√

2
[−ux

i − uy
i − ux

i+10 + uy
i+10

+ux
i+01 − uy

i+01 + ux
i+11 + uy

i+11], (4.12)

e3(⃗i) =
1

2
√

2
[−ux

i + uy
i + ux

i+10 + uy
i+10

−ux
i+01 − uy

i+01 + ux
i+11 − uy

i+11], (4.13)

sx(⃗i) =
1

2
[ux

i − ux
i+10 − ux

i+01 + ux
i+11], (4.14)

sy (⃗i) =
1

2
[uy

i − uy
i+10 − uy

i+01 + uy
i+11]. (4.15)

Instead of sx and sy modes, the following s+ and s− modes can be used.

s+(⃗i) =
1√
2

[sx(⃗i) + sy (⃗i)] (4.16)
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s−(⃗i) =
1√
2

[sx(⃗i) − sy (⃗i)] (4.17)

These five modes have been used to describe various forms of potential energy terms

for lattice distortions, in which harmonic and anharmonic interactions among atoms

within the same plaquette have been considered (Ahn et al. 2003, 2004). However,

these five modes are not sufficient to represent the kinetic energy term adequately.

For example, to obtain the phonon spectrum shown in Figure 2 in Ahn et al. (2003),

the expression has been converted back to the displacement variables.

In current work, it is shown that additional modes, associated with the rigid

motion of the motif, similar to the mode t in the previous subsection, allow a for-

malism entirely based on symmetry modes without resorting to displacement vari-

ables. The three rigid modes for the two-dimensional square lattice are shown in

Figure 4.5 and are defined as follows.

tx(⃗i) =
1

2
[ux

i + ux
i+10 + ux

i+01 + ux
i+11], (4.18)

ty (⃗i) =
1

2
[uy

i + uy
i+10 + uy

i+01 + uy
i+11], (4.19)

r(⃗i) =
1

2
√

2
[ux

i − uy
i + ux

i+10 + uy
i+10

−ux
i+01 − uy

i+01 − ux
i+11 + uy

i+11], (4.20)

Instead of tx and ty, the following t+ and t− modes can be also used.

Figure 4.5 Three rigid mode in the two-dimensional square lattice.

t+(⃗i) =
1√
2

[tx(⃗i) + ty (⃗i)] (4.21)

t−(⃗i) =
1√
2

[tx(⃗i) − ty (⃗i)] (4.22)
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The first two modes, tx and ty correspond to the rigid translation of the motif along

x and y direction, and r represents a rigid rotation of the motif. Straight-forward

expansion shows that the kinetic energy of the lattice can be expressed in terms of

eight symmetry modes in the following quadratic form, where M is the mass of the

atom.

Tsq.lat =
∑
i⃗

1

2
M [u̇x(⃗i)2 + u̇y (⃗i)

2] (4.23)

=
∑
i⃗

1

2
(
M

4
)[ė1(⃗i)

2 + ė2(⃗i)
2 + ė3(⃗i)

2 + ṡx(⃗i)2

+ṡy (⃗i)
2 + ṫx(⃗i)2 + ṫy (⃗i)

2 + ṙ(⃗i)2]. (4.24)

As discussed in Ahn et al. (2003), constraint equations can be found by repre-

senting the relations between symmetry modes and displacement variables in the

reciprocal space. For example, by inverting the relations between [sx(k⃗),sy(k⃗)] and

[ux(k⃗),uy(k⃗)], one can represent [ux(k⃗),uy(k⃗)] in terms of [sx(k⃗),sy(k⃗)], which leads

to the following six constraint equations.1

sin kx
2

cos ky
2
sx(k⃗) + cos kx

2
sin ky

2
sy(k⃗) −

−
√

2i sin kx
2

sin ky
2
e1(k⃗) = 0, (4.25)

cos kx
2

sin ky
2
sx(k⃗) + sin kx

2
cos ky

2
sy(k⃗) −

−
√

2i sin kx
2

sin ky
2
e2(k⃗) = 0, (4.26)

sin kx
2

cos ky
2
sx(k⃗) − cos kx

2
sin ky

2
sy(k⃗) −

−
√

2i sin kx
2

sin ky
2
e3(k⃗) = 0, (4.27)

cos kx
2

sin ky
2
sx(k⃗) − sin kx

2
cos ky

2
sy(k⃗) +

+
√

2i sin kx
2

sin ky
2
r(k⃗) = 0, (4.28)

1It should be noted that inverting the relation between sx(k⃗) and sy(k⃗) versus ux(k⃗)

and uy(k⃗) is not possible for certain wave vectors, for example, wave vectors with kx=0 or
ky=0. In those cases, new constraint equations should be found from the definition of the
modes.
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cos kx
2

cos ky
2
sx(k⃗) + sin kx

2
sin ky

2
tx(k⃗) = 0, (4.29)

cos kx
2

cos ky
2
sy(k⃗) + sin kx

2
sin ky

2
ty(k⃗) = 0. (4.30)

For a potential energy V represented in terms of symmetry modes, the Lagrangian

is

L̃ = T − V +
6∑

n=1

∑
k

λn,kfn,−k, (4.31)

where λn,k are Lagrange multipliers and fn,k = 0’s are the six compatibility equa-

tions, Equations (4.25)-(4.30). By solving the Lagrangian equations, the dynamic

properties of the lattice can be analyzed.

In the next two subsections, the two applications of description of lattice

dynamics using atomic-scale symmetry-modes developed in this subsection are pre-

sented.

4.2.3 Comparison With Continuum Description of Lattice Dynamics

In Lookman et al. (2003), continuum description of lattice dynamics has been pre-

sented in the context of ferroelastic dynamics, with the lattice kinetic energy, Equa-

tion (3.12a) in Lookman et al. (2003), represented in terms of strain modes, e1 and e3

(e2 in the notation of Lookman et al. (2003)). The atomic-scale theory developed in

the previous subsection is compared with the existing continuum theory. Either by

using Equations (4.11) and (4.13) or by using the constraint equations, the kinetic

energy in terms of e1 and e3 can be obtained,

T =
∑
k⃗

∑
s=1,3

∑
s′=1,3

1

2
Mγss′(k⃗)ės(k⃗)ės′(−k⃗), (4.32)

where

γ11(k⃗) = γ33(k⃗) =
1 − cos kx cos ky

sin2 kx sin2 ky
(4.33)

γ13(k⃗) = γ31(k⃗) =
cos kx − cos ky
sin2 kx sin2 ky

. (4.34)
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By taking the long wavelength limit, one obtains the following leading order term

for γss′ ,

γ
(0)
ss′ (k⃗) =


k2
x + k2

y

2k2
xk

2
y

k2
y − k2

x

2k2
xk

2
y

k2
y − k2

x

2k2
xk

2
y

k2
x + k2

y

2k2
xk

2
y

 , (4.35)

which is identical2 to the result in Lookman et al. (2003). It shows that the approach

is a natural extension of continuum theory, and is suitable for multiscale description

of lattice dynamics within a single theoretical framework. The next order correction

to the above continuum results is as follows.

γ
(1)
ss′ (k⃗) =


1

12
+

k4
x + k4

y

8k2
xk

2
y

k4
y − k4

x

8k2
xk

2
y

k4
y − k4

x

8k2
xk

2
y

1

12
+

k4
x + k4

y

8k2
xk

2
y

 . (4.36)

Specifically, in the long wavelength limit, the definition of symmetry modes are as

follows.

e1(⃗j) =
1√
2

[∇xux(⃗j) + ∇yuy (⃗j)], (4.37)

e2(⃗j) =
1√
2

[∇xuy (⃗j) + ∇yux(⃗j)], (4.38)

e3(⃗j) =
1√
2

[∇xux(⃗j) −∇yuy (⃗j)], (4.39)

r(⃗j) =
1√
2

[∇xuy (⃗j) −∇yux(⃗j)], (4.40)

sx(⃗j) =
1

2
∇x∇yux(⃗j), (4.41)

sy (⃗j) =
1

2
∇x∇yuy (⃗j), (4.42)

tx(⃗j) = 2ux, (4.43)

ty (⃗j) = 2uy, (4.44)

which shows that in k → 0 limit,

tx, ty ∼ u,

2The difference in the pre-factor with Equation (3.12a) in Lookman et al. (2003) is due
to the typographical error in Lookman et al. (2003).
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e1, e2, e3, r ∼ ku, (4.45)

sx, sy ∼ k2u.

It is noteworthy that even if rotation is a rigid mode, it is related to displacement in

the order of k, unlike translation modes, tx and ty.

4.2.4 Phonon Mode Analysis in Terms of Symmetry Modes

In this subsection, the analysis of phonon modes in terms of atomic scale symmetry

modes is presented. Specifically, a harmonic potential energy with a square lattice

ground state (Ahn et al. 2003) is considered, as shown below.

Vsq.lat =
∑
i⃗

1

2
A1e1(⃗i)

2 +
1

2
A2e2(⃗i)

2 +
1

2
A3e3(⃗i)

2

+
1

2
B[sx(⃗i)2 + sy (⃗i)

2]. (4.46)

By solving the Lagrangian equations, Equation (4.31), the dispersion relations are

found,

Mω2 = B(1 − cos kx)(1 − cos ky)

+
1

2
(1 − cos kx cos ky)(A1 + A2 + A3)

±
[

1

4
(cos kx − cos ky)

2(A1 − A2 + A3)
2

+
1

4
sin2 kx sin2 ky(A1 + A2 − A3)

2

]1/2
. (4.47)

Furthermore, the square of normalized amplitude of each symmetry mode within

phonon modes can be found. Their general expressions are shown in the second

column in Table 4.1, where β1 = 1 − cos kx cos ky, β2 = − sin kx sin ky, β3 = cos kx −

cos ky, β4 = (1 − cos kx)(1 − cos ky), β5 = (1 + cos kx)(1 + cos ky), and a = (A1 −

A2 + A3)/(A1 + A2 − A3). First, the mode amplitude does not depend on the short

wavelength mode modulus B, but depends only on the long wavelength mode moduli,

A1, A2, and A3, through the parameter a. Comparison of general expressions for the
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mode amplitudes between upper and lower branches shows that the amplitudes of the

e1 mode in the upper[lower] branch are identical to that of r mode in the lower[upper]

branch. Similar relations exist between e2 and e3, between sx and sy, between tx and

ty, between s+ and s−, and between t+ and t−. Furthermore, mode amplitudes for

the short wavelength modes, sx, sy, s+ and s−, at k⃗ are identical to those for the

translational modes, tx, ty, t+, and t− at (π, π) − k⃗.

For special cases of a = 0 (i.e., A1+A3 = A2), a = 1 (i.e., A2 = A3), and a = ∞

(i.e., A1 + A2 = A3), the general expressions can be simplified, which is also shown

in the Table 4.1. It is noteworthy that, if a = 1, or A2 = A3, the upper phonon

branch includes no rotational mode, r, and the lower branch no area-changing mode,

e1, which can be explained in the following way. If the two shape changing modes,

e2 and e3, have identical moduli, the lattice sustains isotropic phonon dispersion in

the long wavelength limit, in which the lattice behaves like an isotropic continuum

medium. Such medium would support longitudinal phonon mode in the upper branch

and transverse phonon modes in the lower branch: the former rotationless and the

latter locally area-preserving. For finite wavelengths, the phonon dispersion is not

exactly isotropic, and the phonon modes are not exactly longitudinal nor transverse.

However, the upper and lower branch phonon modes remain locally rotationless and

area-preserving, even for finite wavelength, if the two shape changing modes have an

identical modulus.

Squared mode amplitudes for the upper branches within the first Brillouin zone

are plotted in Figures 4.6-4.10 for a = 0, 0.1, 1, 10, and ∞, which reveals that different

regions in k-space are dominated by different modes. For all values of a, the phonons

around the Brillouin zone center, k⃗ = 0, have mostly the translational modes, tx,

ty, or t+, t−, [Figures 4.6-4.10 (e),(f),(i), and (j)] consistent with Equation (4.45).

In contrast, the short wavelength modes, sx, sy, s+, and s− contribute dominantly

near the corners of the first Brillouin zone [Figures 4.6-4.10 (g),(h),(k), and (l)]. The
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upper and lower branch phonon modes at k⃗ = (π, 0) are longitudinal and transverse,

as shown in Figures 4.11(a) and 4.11(b) respectively. Therefore, the phonon at

k⃗ = (π, 0) in the upper branch consists of e1 and e3 modes, and that in the lower

branch of e2 and r modes, which explains the large contribution of these modes near

k⃗ = (π, 0) and, equivalently, near k⃗ = (0, π) [Figures 4.6-4.10 (a) and (c)]. The

contribution of e2 mode in the upper branch and, equivalently, e3 mode in the lower

branch, for a = 0.1, 1, 10,∞ [Figures 4.7-4.10 (b)] is relatively weak, except near

k⃗ = (±π/2,±π/2). Rotational mode r in the upper branch and, equivalently, e1

mode in the lower branch are very small except for a = 0 [Figures 4.7-4.10 (d)],

and, in particular, vanish for a = 1 as discussed above [Figure 4.8 (d)]. For a =

0, or A1 + A3 = A2, the two phonon modes at k⃗ = (π, 0) and (0, π) shown in

Figure 4.11 have the same moduli and, therefore, are degenerate, which give rise

to the equal contribution of the four modes, e1, e2, e3 and r at these k points,

as shown in Figure 4.6 (a), (b), (c), and (d). Understanding how different modes

contribute different parts in the k-space could be useful, for example, to gain insight

into materials with electron-phonon coupling, such as, manganites, phonon-mediated

superconductors, and materials near structural phase transition.

4.3 Quantum Mechanical Formalism

4.3.1 One Dimensional Lattice With a Monatomic Basis

The symmetry-based atomic-scale description of lattice dynamics is further extended

to the quantum mechanical formalism for the one-dimensional chain. In particular,

quantum mechanical commutation relations can be found among modes and conju-

gate momenta. Conjugate momenta for the two modes, Pe(i) and Pt(i), are

Pe(i) =
∂L

∂ė(i)
=

M

2
ė(i) =

1

2
√

2
(pi+1 − pi), (4.48)

Pt(i) =
∂L

∂ṫ(i)
=

M

2
ṫ(i) =

1

2
√

2
(pi+1 + pi), (4.49)
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Figure 4.6 Squared phonon mode amplitudes for the upper branch for a = 0:
(a)|e1|2, (b)|e2|2, (c)|e3|2, (d)|r|2, (e)|tx|2, (f)|ty|2, (g)|sx|2, (h)|sy|2, (i)|t+|2, (j)|t−|2,
(k)|s+|2, (l)|s−|2. [For the lower branch, they correspond to (a)|r|2, (b)|e3|2, (c)|e2|2,
(d)|e1|2, (e)|ty|2, (f)|tx|2, (g)|sy|2, (h)|sx|2, (i)|t−|2, (j)|t+|2, (k)|s−|2, (l)|s+|2.]

where pi represent the momentum of the atom at the site i. From the usual com-

mutation relations between momentum and displacement operators, p̂i and ûj, the

following commutation relations between the mode and the conjugate momentum

are found with the same site index i.

[Pe(i), e(i)] = [Pt(i), t(i)] =
1

2

~
i
,

[Pe(i), t(i)] = [Pt(i), e(i)] = 0.

Since the nearest neighbor modes share an atom, the commutation relation between

them can be non-zero, as shown below.

[Pe(i), t(i + 1)] = [Pt(i), t(i + 1)] =
~
4i
,

[Pe(i), e(i + 1)] = [Pt(i), e(i + 1)] = − ~
4i
,

[Pe(i), e(i− 1)] = [Pe(i), t(i− 1)] = − ~
4i
,

[Pt(i), e(i− 1)] = [Pt(i), t(i− 1)] =
~
4i
.

The commutation relations between the momentum and the mode defined at the

plaquettes farther than the nearest neighbors vanish.
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Figure 4.7 Squared phonon mode amplitudes for the upper branch for a = 0.1.
Mode for each panel is identical to Figure 4.6.

Figure 4.8 Squared phonon mode amplitudes for the upper branch for a = 1. Mode
for each panel is identical to Figure 4.6.

The above relations can also be established graphically. For example,

[Pe(i), t(i + 1)] can be found from the drawing in Figure 4.12, where Pe(i) and

t(i + 1) are represented with arrows. The arrows are then treated as unit vectors,

and it can be found that the sum of scalar products of unit vectors defined for the

same atom, which multiplied by (~/i)(1/2)2, leads to the commutation relation.

From the graphical rule, the following relation can be understood, where a and b

represent e or t.

[Pa(i), b(i + 1)] = [Pb(i), a(i− 1)] (4.50)
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Figure 4.9 Squared phonon mode amplitudes for the upper branch for a = 10.
Mode for each panel is identical to Figure 4.6.

Figure 4.10 Squared phonon mode amplitudes for the upper branch for a = ∞.
Mode for each panel is identical to Figure 4.6.

Similarly, using the fact that e and t have even and odd point reflection symmetry

respectively and the scalar product in the graphic rule is invariant under the point

reflection symmetry operation, the following relation is obtained.

[Pe(i), t(j)] = −[Pt(i), e(j)] (4.51)

Using the commutation relation in the reciprocal space for the displacement

variables and their momenta, the commutation relations in the reciprocal space for

modes and their conjugate momenta are obtained, [Pa(k), b(k′)], which vanish for

k′ ̸= −k. The commutation [ i~Pa(k), b(−k)] is shown in Table 4.2. The k
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Figure 4.11 Phonon modes at k⃗ = (π, 0).

Figure 4.12 Commutation relation of Pe(i) and t(i + 1).

dependent prefactors of the commutation relations reflect the fact that the modes

and conjugate momenta at neighboring plaquettes are defined in terms of shared

atoms.

4.3.2 Two-Dimensional Square Lattice With a Monatomic Basis

The quantum mechanical commutation relations for the two-dimensional square lat-

tice can be found as follows. Conjugate momenta of atomic scale modes are obtained

by the same method as in the one-dimensional case, and are written as

Pe1(i) =
1

8
√

2
[−pxi − pyi + pxi+10 − pyi+10

−pxi+01 + pyi+01 + pxi+11 + pyi+11],

Pe2(i) =
1

8
√

2
[−pxi − pyi − pxi+10 + pyi+10

+pxi+01 − pyi+01 + pxi+11 + pyi+11],

Table 4.2 Commutation Relation in the 1D Reciprocal Space, [Pa(k), b(k′)]

i
~Pe(k) i

~Pt(k)

e(−k) 1
2
(1 − cos k) − i

2
sin k

t(−k) i
2

sin k 1
2
(1 + cos k)
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Pe3(i) =
1

8
√

2
[−pxi + pyi + pxi+10 + pyi+10

−pxi+01 − pyi+01 + pxi+11 − pyi+11],

Pr(i) =
1

8
√

2
[pxi − pyi + pxi+10 + pyi+10

−pxi+01 − pyi+01 − pxi+11 + pyi+11],

Psx(i) =
1

8
[pxi − pxi+10 − pxi+01 + pxi+11],

Psy(i) =
1

8
[pyi − pyi+10 − pyi+01 + pyi+11],

Ptx(i) =
1

8
[pxi + pxi+10 + pxi+01 + pxi+11],

Pty(i) =
1

8
[pyi + pyi+10 + pyi+01 + pyi+11].

From the fundamental commutation relations for displacement operators and usual

momentum operators,

[pxi , u
x
j ] = [pyi , u

y
j ] =

~
i
δij

[pxi , u
y
j ] = [pyi , u

x
j ] = 0

the commutation relations between modes and their conjugate momenta are cal-

culated in a straight forward way. Alternatively, one can use graphical method,

explained for one-dimensional chain in the previous subsection.

The above fundamental commutation relations for i = j have the form of

x̂ · x̂ = ŷ · ŷ = 1

x̂ · ŷ = ŷ · x̂ = 0

except for the factor ~/i, where x̂ and ŷ represent unit vectors, not operators. There-

fore, the commutation relation [Pa(⃗i), b(⃗j)], where a and b represent eight atomic-

scale modes, can be found from the drawings of a and b modes on the square lattice.

The sum of the scalar products of the unit vectors at the sites shared by the two

modes, multiplied by (~/i)(1/4)2, gives the commutation of the two operators. The

multiplication factor after ~/i is associated with the number of atoms in the motif,
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that is, 4 for the monatomic 2D square lattice and 2 for the monatomic 1D chain.

For example, from Figure 4.13, [Pe1(⃗i), e2(⃗i + 11)] can be found as follows.

[Pe1(⃗i), e2(⃗i + 11)] =
~
i
·
(

1

4

)2

· (−1) (4.52)

Figure 4.13 Commutation relation of Pe1(i) and e2(i + 11).

Graphical method is also useful to find symmetry related properties of the

commutation relations. From the orthogonality of modes, the commutation relation

between a conjugate momentum and a mode at the same motif vanishes except for

the case that the two modes are identical, as follows.

[Pa(i), b(i)] =
1

4

~
i
δab. (4.53)

Also, from the symmetry under point inversion, the following equations are obtained,

where even and odd represent the even modes, namely, e1, e2, e3, r, and the odd

modes, namely, sx, sy, tx, ty, respectively.

[Peven(i), even′(j)] = [Peven′(i), even(j)], (4.54)

[Peven(i), odd(j)] = −[Podd(i), even(j)], (4.55)

[Podd(i), odd
′(j)] = [Podd′(i), odd(j)]. (4.56)

The commutation relations in the reciprocal space are calculated from the usual

reciprocal space commutation relations for displacement variables. The commutation

relations in modes in the reciprocal space are given in Table 4.3.
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4.4 Conclusions

In this chapter, the mode-based atomic-scale description of the lattice dynamics is

presented in detail. It is found that not only the potential energy but also the kinetic

energy can be described in terms of the atomic-scale modes, for which the inclusion

of the rigid modes is essential. Further, the atomic-scale mode-based approach is

demonstrated for the dynamics of the one-dimensional chain and two-dimensional

square lattice with a mono-atomic basis. By using the constraint equations, the mod-

ified Lagrangian equations are obtained in terms of atomic-scale modes only, without

explicit use of the displacement variables. This approach to quantum mechanics is

then extended, and the conjugate momenta and the commutation relations in real

and reciprocal space are obtained. This approach becomes useful in describing sys-

tems with strong anharmonicity.



APPENDIX

4.A 2D Phonon Spectrum of the Uniform Phase

4.A.1 Potential Energy in 2D Lattice

Consider six symmetry modes, namely e1(⃗j), e2(⃗j), e3(⃗j), s+(⃗j), s−(⃗j) and r(⃗j).

Every mode defined by four atoms, which in turn defined by two coordinate compo-

nents ux(⃗j) and uy (⃗j). Remaining two symmetry modes of translation have no direct

relevance in this work. For example, mode e1(⃗j) is defined as

e1(⃗j) =
1

2
√

2

[
− ux(⃗j) + ux(⃗j + 10) − ux(⃗j + 01) + ux(⃗j + 11)

+uy (⃗j) − uy (⃗j + 10) + uy (⃗j + 01) + uy (⃗j + 11)
]
,

where j⃗ is the position of every atom in the desired domain. For simplicity of

notation, the reference to j⃗ is dropped with every symmetry mode.

The goal is to derive a general mathematical expression of two-dimensional

phonon spectrum for a lattice with rectangular unit base. To accomplish this, start

with the shape of a square unit cell. With idealized two-dimensional square lattice,

consider potential expression of the following form

Vsq =
∑
j⃗

[A1

2
e21 +

A2

2
e22 +

A3

2
e23 +

F3

4
e43 +

As

2
(s2+ + s2−)

+C12e1e
2
2 + C13e1e

2
3 + C1se1(s

2
+ + s2−) + C2se2(s

2
+ − s2−)

+C3se3s+s− + C23re2e3r +
F3r

2
e23r

2
]
, (4.57)

with selection of constants as

A1, A2, F3, F3r > 0 and A3, C12, C13, C1s, C2s, C3s < 0.

Various denominator constants selected to simplify further form of algebraic expres-

sions. The choice of mixed modes comprising in third order with C-type pre-factors

is due to invariance of symmetry operations over six modes used. There are eight

possible symmetry group operations for a square unit cell, which are reflection with
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respect to horizontal, vertical and both diagonal bisectors passing through center of

the cell, and rotations around 0, π/2, π, and 3π/2 with cell center being the pivot

point. Note that the most obvious and allowed third order term e31 is omitted from

Equation (4.57) to simplify the point of expansion that is further introduced. There

are two forth order terms, from which F3

4
e43 is essential to introduce two non-zero min-

imums in the expansion for e3 mode, and F3r

2
e23r

2 to reduce degeneracy of eigenvalues

obtained later on.

To arrive to a rectangular type lattice, point of expansion must be chosen

with consideration of modes e1 and e3, whereas other resulting geometries can be

considered in analogous fashion.

Consider point of expansion p(e1, e2, e3, s+, s−, r) = (ẽ1, 0, ẽ3, 0, 0, 0) = p0. To

establish values for ẽ1 and ẽ3, set ∇Vsq = 0.

∂V

∂e1
= A1e1 + C12e

2
2 + C13e

2
3 + C1s(s

2
+ + s2−) (4.58)

∂V

∂e2
= A2e2 + 2C12e1e2 + C2s(s

2
+ − s2−) + C23re3r (4.59)

∂V

∂e3
= A3e3 + F3e

3
3 + 2C13e1e3 + C3ss+s− + C23re2r + F3re3r

2 (4.60)

∂V

∂s+
= Ass+ + 2C1se1s+ + 2C2se2s+ + C3se3s− (4.61)

∂V

∂s−
= Ass− + 2C1se1s− − 2C2se2s− + C3se3s+ (4.62)

∂V

∂r
= C23re2e3 + F3re

2
3r (4.63)

From Equations (4.58) and (4.60) it can be found that

A1ẽ1 = −C13ẽ
2
3 and A3 + F3ẽ

2
3 = −2C13ẽ1

and therefore

ẽ1 =
A3C13

A1F3 − 2C2
13

(4.64)

ẽ3 = ±

√
−A1A3

A1F3 − 2C2
13

= ±
√

−A3

F3 − 2C2
13

A1

(4.65)
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Since A3 < 0, a numerical constraint on C13 is then obtained, eg.

|C13| <
√

A1F3

2
. (4.66)

Now consider non-zero second order derivative terms

∂2V

∂e21

∣∣∣
p0

= A1, (4.67)

∂2V

∂e22

∣∣∣
p0

= A2 + 2C12ẽ1, (4.68)

∂2V

∂e23

∣∣∣
p0

= A3 + 3F3ẽ
2
3 + 2C13ẽ1, (4.69)

∂2V

∂s2+

∣∣∣
p0

=
∂2V

∂s2−

∣∣∣
p0

= As + 2C1sẽ1, (4.70)

∂2V

∂r2

∣∣∣
p0

= F3rẽ
2
3, (4.71)

∂2V

∂e1∂e3

∣∣∣
p0

= 2C13ẽ3, (4.72)

∂2V

∂s+∂s−

∣∣∣
p0

= C3sẽ3, (4.73)

∂2V

∂e2∂r

∣∣∣
p0

= C23rẽ3. (4.74)

This allows us to form the second order expansion

Vsq ≈
∑
j⃗

[
V0 +

1

2

[
A1(e1 − ẽ1)

2 + (A2 + 2C12ẽ1)e
2
2

+(A3 + 3F3ẽ
2
3 + 2C13ẽ1)(e3 − ẽ3)

2 + (As + 2C1sẽ1)(s
2
+ + s2−)

+(F3rẽ
2
3)r

2 + 2(2C13ẽ3)(e1 − ẽ1)(e3 − ẽ3) + 2(C3sẽ3)s+s−

+2(C23rẽ3)e2r
]]

(4.75)

To further simplify the notation, one must re-normalize the constant terms

Ã1 = A1, Ã2 = A2 + 2C12ẽ1, (4.76)

Ã3 = A3 + 3F3ẽ
2
3 + 2C13ẽ1, (4.77)

Ãs = As + 2C1sẽ1, (4.78)

Ãr = F3rẽ
2
3, (4.79)
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C̃13 = 2C13ẽ3, (4.80)

C̃s = C3sẽ3, (4.81)

C̃2r = C23rẽ3, (4.82)

which brings us to expression

Vrec =
∑
j⃗

[Ã1

2
(e1 − ẽ1)

2 +
Ã2

2
e22 +

Ã3

2
(e3 − ẽ3)

2 +
Ãs

2
(s2+ + s2−) +

Ãr

2
r2

+C̃13(e1 − ẽ1)(e3 − ẽ3) + C̃ss+s− + C̃2re2r
]
. (4.83)

that is suitable to describe vibrational dynamics of rectangular base lattice.

4.A.2 Formalizing Extraction of Pure Vibrational Modes

In order to construct suitable expressions for evaluation of the Lagrange equation,

one must extract non-vibrational equilibrium part of the expansion, namely ẽ1 and

ẽ3. Also, analytically it is desirable since this equilibrium contribution is non Fourier

transformable. The outline of bases is introduced in (Ahn)3. Directional displace-

ments can be written as follows

ux(⃗i) = ux,eq (⃗i) + δux(⃗i), and uy (⃗i) = uy,eq (⃗i) + δuy (⃗i)

where δ terms represent the vibrational term. Hence, the procedure follows

εxx0 + εyy0√
2

= ẽ1,
εxy0√

2
= 0,

εxx0 − εyy0√
2

= ẽ3,

which implies

εxx0 =
1√
2

(ẽ1 + ẽ3), εyy0 =
1√
2

(ẽ1 − ẽ3), εxy0 = 0.

Since

ux,eq (⃗i) = εxx0 ix + εxy0 iy =
1√
2

(ẽ1 + ẽ3)ix

uy,eq (⃗i) = εxy0 ix + εyy0 iy =
1√
2

(ẽ1 − ẽ3)iy

3K. H. Ahn, T. Lookman and A. R. Bishop. Model for strain-induced metal-insulator
phase coexistence in perovskite manganites
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it can be readily show that

e1(⃗i) = ẽ1 + δe1, and e3(⃗i) = ẽ3 + δe3

and therefore (4.83) is re-written as

Vrec =
∑
j⃗

Vrec(⃗j) (4.84)

=
∑
j⃗

[Ã1

2
δe21 +

Ã2

2
e22 +

Ã3

2
δe23 +

Ãs

2
(s2+ + s2−) +

Ãr

2
r2

+C̃13δe1δe3 + C̃ss+s− + C̃2re2r
]
. (4.85)

which is a somewhat an obvious result. From this point on, the δ prefix will be

dropped for simplicity of notation, otherwise all symmetry modes should be prefixed

with δ for rigor.

4.A.3 Lagrange Equation

With kinetic energy term defined as

T =
∑
j⃗

M

2

[
u̇x(⃗j)2 + u̇y (⃗j)

2
]

where M being a unit of mass and (4.85) being included in L = T − Vrec, one can

write Lagrange equation of motion

d

dt

∂L

∂u̇x,y (⃗i)
− ∂L

∂ux,y (⃗i)
= 0, (4.86)

with indication that derivatives in ux and uy are taken independently from each

other. With

∂

∂u̇x(⃗i)

(∑
j⃗

M

2
u̇x(⃗j)2

)
=
∑
j⃗

Mu̇x(⃗j)δ⃗i,⃗j = Mu̇x(⃗i)

where δ⃗i,⃗j is Kronecker delta, while (4.86) can be re-written as

−Müx,y (⃗i) =
∂Vrec(⃗j)

∂ux,y (⃗i)
(4.87)
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where j⃗ remains a reference to every atom inside of summation, and i⃗ being a refer-

ence to every atom regardless of summation. This leads to us to relation between i⃗

and j⃗, e.g.

j⃗ ∈ i⃗ + {1̄1̄, 01̄, 11̄, 1̄0, 00, 10, 1̄1, 01, 11}

Figure 4.14 Figure (a) shows labeling of atoms with respect to i⃗, whereas (b) shows
references to a symmetry group containing atom i⃗ and its identifying (lower left)
atom, both pointed to by curvy line.

The goal is to evaluate the derivative (4.87) of Vrec on the right side. Define

an arbitrary symmetry mode a(⃗i) as

a(⃗i) = ξa

[
sx1au

x
00 + sx2au

x
10 + sx3au

x
01 + sx4au

x
11

+sy1au
y
00 + sy2au

y
10 + sy3au

y
01 + sy4au

y
11

]
(4.88)

with sx,yka ∈ {−1,+1}. For example, for symmetry mode e1(⃗i), ξe1 = 1
2
√
2

and se1 =

(−1,+1 − 1,+1,−1,−1,+1,+1). Now consider most general second order potential

term with an arbitrary constant A

Vab =
∑
j⃗

Aa(⃗j)b(⃗j) (4.89)
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so that with the help of Figure 4.14 (a) and (b)

∂Vab

∂ux,y (⃗i)
=

∂

∂ux,y (⃗i)

∑
j⃗

Aa(⃗j)b(⃗j) (4.90)

= A

[
a(⃗j)

∂b(⃗j)

∂ux,y (⃗i)
+ b(⃗j)

∂a(⃗j)

∂ux,y (⃗i)

]
j⃗∈⃗i+{1̄0,00,1̄1̄,01̄}

(4.91)

= A
[
a(⃗i + 1̄0)ξbs

x,y
2b + b(⃗i + 1̄0)ξas

x,y
2a

+a(⃗i)ξbs
x,y
1b + b(⃗i)ξas

x,y
1a

+a(⃗i + 1̄1̄)ξbs
x,y
4b + b(⃗i + 1̄1̄)ξas

x,y
4a

+a(⃗i + 01̄)ξbs
x,y
3b + b(⃗i + 01̄)ξas

x,y
3a

]
(4.92)

= Aξb

[
sx,y2b a(⃗i + 1̄0) + sx,y1b a(⃗i) + sx,y4b a(⃗i + 1̄1̄) + sx,y3b a(⃗i + 01̄)

]
+

Aξa

[
sx,y2a b(⃗i + 1̄0) + sx,y1a b(⃗i) + sx,y4a b(⃗i + 1̄1̄) + sx,y3a b(⃗i + 01̄)

]
(4.93)

Since (4.93) consist of two parts mutually symmetrical with respect to a and b,

consider taking a closer look at one part. From this point on, the direct use of actual

mode is no longer required, since underlying ux,y notation is used, which in turn has

a group of nine neighboring atoms as shown in Figure 4.14(a). Now first part of

(4.93) can be re-written as

∑
j⃗∈⃗i+{1̄0,00,1̄1̄,01̄}

A
a(⃗j)∂b(⃗j)

∂ux,y (⃗i)
=

= Aξb

[
sx,y2b a(⃗i + 1̄0) + sx,y1b a(⃗i) + sx,y4b a(⃗i + 1̄1̄) + sx,y3b a(⃗i + 01̄)

]
= Aξaξb

[
sx,y2b (sx1au

x
1̄0 + sx2au

x
00 + sx3au

x
1̄1 + sx4au

x
01 + sy1au

y
1̄0

+ sy2au
y
00 + sy3au

y
1̄1

+ sy4au
y
01)

+sx,y1b (sx1au
x
00 + sx2au

x
10 + sx3au

x
01 + sx4au

x
11 + sy1au

y
00 + sy2au

y
10 + sy3au

y
01 + sy4au

y
11)

+sx,y4b (sx1au
x
1̄1̄ + sx2au

x
01̄ + sx3au

x
1̄0 + sx4au

x
00 + sy1au

y
1̄1̄

+ sy2au
y
01̄

+ sy3au
y
1̄0

+ sy4au
y
00)

+sx,y3b (sx1au
x
01̄ + sx2au

x
11̄ + sx3au

x
00 + sx4au

x
10 + sy1au

y
01̄

+ sy2au
y
11̄

+ sy3au
y
00 + sy4au

y
10)
]

= Aξaξb

[
(sx,y4b s

x
1a)u

x
1̄1̄ + (sx,y4b s

y
1a)u

y
1̄1̄

+ (sx,y4b s
x
2a + sx,y3b s

x
1a)u

x
01̄ + (sx,y4b s

y
2a + sx,y3b s

y
1a)u

y
01̄

+(sx,y3b s
x
2a)u

x
11̄ + (sx,y3b s

y
2a)u

y
11̄

+ (sx,y2b s
x
1a + sx,y4b s

x
3a)u

x
1̄0 + (sx,y2b s

y
1a + sx,y4b s

y
3a)u

y
1̄0
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+(sx,y2b s
x
2a + sx,y1b s

x
1a + sx,y4b s

x
4a + sx,y3b s

x
3a)u

x
00

+(sx,y2b s
y
2a + sx,y1b s

y
1a + sx,y4b s

y
4a + sx,y3b s

y
3a)u

y
00

+(sx,y1b s
x
2a + sx,y3b s

x
4a)u

x
10 + (sx,y1b s

y
2a + sx,y3b s

y
4a)u

y
10

+(sx,y2b s
x
3a)u

x
1̄1 + (sx,y2b s

y
3a)u

y
1̄1

+(sx,y2b s
x
4a + sx,y1b s

x
3a)u

x
01 + (sx,y2b s

y
4a + sx,y1b s

y
3a)u

y
01

+(sx,y1b s
x
4a)u

x
11 + (sx,y1b s

y
4a)u

y
11

]
where ux

1̄0 = ux(⃗i + 1̄0), for example. Lets denote

ux(⃗i) = (ux
1̄1̄, u

x
01̄, u

x
11̄, u

x
1̄0, u

x
00, u

x
10, u

x
1̄1, u

x
01, u

x
11)⃗i (4.94)

uy (⃗i) = (uy
1̄1̄
, uy

01̄
, uy

11̄
, uy

1̄0
, uy

00, u
y
10, u

y
1̄1
, uy

01, u
y
11)⃗i (4.95)

so that using inner product, one can compactly write

∑
j⃗

Aa(⃗j)
∂b(⃗j)

∂ux(⃗i)
= Aξaξb(s1,ab, s2,ab)

(
ux

uy

)
(4.96)

∑
j⃗

Aa(⃗j)
∂b(⃗j)

∂uy (⃗i)
= Aξaξb(s3,ab, s4,ab)

(
ux

uy

)
(4.97)

where

s1,ab = (sx4bs
x
1a, s

x
4bs

x
2a + sx3bs

x
1a, s

x
3bs

x
2a,

sx2bs
x
1a + sx4bs

x
3a, s

x
2bs

x
2a + sx1bs

x
1a + sx4bs

x
4a + sx3bs

x
3a, s

x
1bs

x
2a + sx3bs

x
4a,

sx2bs
x
3a, s

x
2bs

x
4a + sx1bs

x
3a, s

x
1bs

x
4a)

s2,ab = (sx4bs
y
1a, s

x
4bs

y
2a + sx3bs

y
1a, s

x
3bs

y
2a,

sx2bs
y
1a + sx4bs

y
3a, s

x
2bs

y
2a + sx1bs

y
1a + sx4bs

y
4a + sx3bs

y
3a, s

x
1bs

y
2a + sx3bs

y
4a,

sx2bs
y
3a, s

x
2bs

y
4a + sx1bs

y
3a, s

x
1bs

y
4a)

s3,ab = (sy4bs
x
1a, s

y
4bs

x
2a + sy3bs

x
1a, s

y
3bs

x
2a,

sy2bs
x
1a + sy4bs

x
3a, s

y
2bs

x
2a + sy1bs

x
1a + sy4bs

x
4a + sy3bs

x
3a, s

y
1bs

x
2a + sy3bs

x
4a,

sy2bs
x
3a, s

y
2bs

x
4a + sy1bs

x
3a, s

y
1bs

x
4a)
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s4,ab = (sy4bs
y
1a, s

y
4bs

y
2a + sy3bs

y
1a, s

y
3bs

y
2a,

sy2bs
y
1a + sy4bs

y
3a, s

y
2bs

y
2a + sy1bs

y
1a + sy4bs

y
4a + sy3bs

y
3a, s

y
1bs

y
2a + sy3bs

y
4a,

sy2bs
y
3a, s

y
2bs

y
4a + sy1bs

y
3a, s

y
1bs

y
4a)

Note, that for b = a, which implies a square term in the expression for potential,

the middle elements of s1 and s4 automatically equal to largest possible integer 4

that corresponds to the center atom at i⃗. This can be observed in the table below.

To summarize this chapter, lets rewrite(
∂/∂ux(⃗i)

∂/∂uy (⃗i)

)∑
j⃗

Aa(⃗j)b(⃗j) = Aξaξb

[(
s1,ab s2,ab
s3,ab s4,ab

)(
ux

uy

)

+

(
s1,ba s2,ba
s3,ba s4,ba

)(
ux

uy

)]
(4.98)

where sn,ab ̸= sn,ba, or less generally for b(⃗i) = a(⃗i)(
∂/∂ux(⃗i)

∂/∂uy (⃗i)

)∑
j⃗

Aa(⃗j)2 = 2Aξ2a

(
s1,aa s2,aa
s3,aa s4,aa

)(
ux

uy

)
(4.99)

where upper matrix row corresponds to derivative in ux, while lower corresponds to

derivative in uy.

Also, for all the symmetry modes of interest

ξe1 = ξe2 = ξe3 = ξs+ = ξs− = ξr =
1

2
√

2
.

4.A.4 Matrix Elements

From previously derived results summarized in (4.98) and (4.99), quantities for all s

values relevant to Equation (4.87) can be calculated. These quantities appear in the

following table
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case 1̄1̄, 01̄, 11̄, 1̄0, 00, 10, 1̄1, 01, 11 1̄1̄, 01̄, 11̄, 1̄0, 00, 10, 1̄1, 01, 11

s1,e1e1 : s2,e1e1 -1 2 -1 -2 4 -2 -1 2 -1 -1 0 1 0 0 0 1 0 -1

s3,e1e1 : s4,e1e1 -1 0 1 0 0 0 1 0 -1 -1 -2 -1 2 4 2 -1 -2 -1

s1,e2e2 : s2,e2e2 -1 -2 -1 2 4 2 -1 -2 -1 -1 0 1 0 0 0 1 0 -1

s3,e2e2 : s4,e2e2 -1 0 1 0 0 0 1 0 -1 -1 2 -1 -2 4 -2 -1 2 -1

s1,e3e3 : s2,e3e3 -1 2 -1 -2 4 -2 -1 2 -1 1 0 -1 0 0 0 -1 0 1

s3,e3e3 : s4,e3e3 1 0 -1 0 0 0 -1 0 1 -1 -2 -1 2 4 2 -1 -2 -1

s1,s+s+ : s2,s+s+ 1 -2 1 -2 4 -2 1 -2 1 1 -2 1 -2 4 -2 1 -2 1

s3,s+s+ : s4,s+s+ 1 -2 1 -2 4 -2 1 -2 1 1 -2 1 -2 4 -2 1 -2 1

s1,s−s− : s2,s−s− 1 -2 1 -2 4 -2 1 -2 1 -1 2 -1 2 -4 2 -1 2 -1

s3,s−s− : s4,s−s− -1 2 -1 2 -4 2 -1 2 -1 1 -2 1 -2 4 -2 1 -2 1

s1,rr : s2,rr -1 -2 -1 2 4 2 -1 -2 -1 1 0 -1 0 0 0 -1 0 1

s3,rr : s4,rr 1 0 -1 0 0 0 -1 0 1 -1 2 -1 -2 4 -2 -1 2 -1

s1,e1e3 : s2,e1e3 -1 2 -1 -2 4 -2 -1 2 -1 -1 0 1 0 0 0 1 0 -1

s3,e1e3 : s4,e1e3 1 0 -1 0 0 0 -1 0 1 1 2 1 -2 -4 -2 1 2 1

s1,e3e1 : s2,e3e1 -1 2 -1 -2 4 -2 -1 2 -1 1 0 -1 0 0 0 -1 0 1

s3,e3e1 : s4,e3e1 -1 0 1 0 0 0 1 0 -1 1 2 1 -2 -4 -2 1 2 1

s1,s+s− : s2,s+s− 1 -2 1 -2 4 -2 1 -2 1 1 -2 1 -2 4 -2 1 -2 1

s3,s+s− : s4,s+s− -1 2 -1 2 -4 2 -1 2 -1 -1 2 -1 2 -4 2 -1 2 -1

s1,s−s+ : s2,s−s+ 1 -2 1 -2 4 -2 1 -2 1 -1 2 -1 2 -4 2 -1 2 -1

s3,s−s+ : s4,s−s+ 1 -2 1 -2 4 -2 1 -2 1 -1 2 -1 2 -4 2 -1 2 -1

s1,re2 : s2,re2 1 2 1 -2 -4 -2 1 2 1 -1 0 1 0 0 0 1 0 -1

s3,re2 : s4,re2 1 0 -1 0 0 0 -1 0 1 -1 2 -1 -2 4 -2 -1 2 -1

s1,e2r : s2,e2r 1 2 1 -2 -4 -2 1 2 1 1 0 -1 0 0 0 -1 0 1

s3,e2r : s4,e2r -1 0 1 0 0 0 1 0 -1 -1 2 -1 -2 4 -2 -1 2 -1

To interpret this table of coefficients, recall

ux(⃗i) = (ux
1̄1̄, u

x
01̄, u

x
11̄, u

x
1̄0, u

x
00, u

x
10, u

x
1̄1, u

x
01, u

x
11)

= eiωte−i(⃗i·⃗k)U0x · v(k⃗)

uy = (uy
1̄1̄
, uy

01̄
, uy

11̄
, uy

1̄0
, uy

00, u
y
10, u

y
1̄1
, uy

01, u
y
11)

= eiωte−i(⃗i·⃗k)U0y · v(k⃗)
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where U0x and U0y are diagonal matrices with corresponding initial displacements

along the diagonal, and

v(k⃗) =
(
ei(kx+ky), eiky , ei(−kx+ky), eikx , 1, e−ikx , e−i(kx+ky), e−iky , e−i(kx+ky)

)
As an example consider a case:

s1,e1e1 = (-1 2 -1 -2 4 -2 -1 2 -1) ⇒ s1,e1e1 · v

s1,e1e1 · v = −ei(kx+ky) + 2eiky − ei(−kx+ky) − 2eikx + 4 − 2e−ikx

−e−i(kx+ky) + 2e−iky − e−i(kx+ky)

= −(eikx − 2 + e−ikx)(eiky + 2 + e−iky)

= 4(1 − cos kx)(1 + cos ky).

Total of four unique pattern-cases (using intermediate roman numeral notation) can

be identified, down to ±:

I : -1 2 -1 -2 4 -2 -1 2 -1 ⇒ 4(1 − cos kx)(1 + cos ky) (4.100)

II : -1 0 1 0 0 0 1 0 -1 ⇒ 4 sin kx sin ky (4.101)

III : -1 -2 -1 2 4 2 -1 -2 -1 ⇒ 4(1 + cos kx)(1 − cos ky) (4.102)

IV : 1 -2 1 -2 4 -2 1 -2 1 ⇒ 4(1 − cos kx)(1 − cos ky) (4.103)

∂e21
∂ux,y

=
2

(2
√

2)2

(
I II

II III

)
=

1

4

(
I II

II III

)
(4.104)

∂e22
∂ux,y

=
2

(2
√

2)2

(
III II

II I

)
=

1

4

(
III II

II I

)
(4.105)

∂e23
∂ux,y

=
2

(2
√

2)2

(
I −II

−II III

)
=

1

4

(
I −II

−II III

)
(4.106)

∂(s2+ + s2−)

∂ux,y

=
2

(2
√

2)2

(
IV IV

IV IV

)
+

2

(2
√

2)2

(
IV −IV

−IV IV

)
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=
1

2

(
IV 0

0 IV

)
(4.107)

∂r2

∂ux,y

=
2

(2
√

2)2

(
III −II

−II I

)
=

1

4

(
III −II

−II I

)
(4.108)

∂(e1e3)

∂ux,y

=
1

(2
√

2)2

(
I II

−II −III

)
+

1

(2
√

2)2

(
I −II

II −III

)

=
1

4

(
I 0

0 −III

)
(4.109)

∂(s+s−)

∂ux,y

=
1

(2
√

2)2

(
IV IV

−IV −IV

)
+

1

(2
√

2)2

(
IV −IV

IV −IV

)

=
1

4

(
IV 0

0 −IV

)
(4.110)

∂(re2)

∂ux,y

=
1

(2
√

2)2

(
−III II

−II I

)
+

1

(2
√

2)2

(
−III −II

II I

)

=
1

4

(
−III 0

0 I

)
(4.111)

Now with corresponding normalized coefficients, the full expression for potential term

of Lagrange Equation can be written as

∂Vrec

∂ux,y

=
Ã1

8

(
I II

II III

)
+

Ã2

8

(
III II

II I

)
+

Ã3

8

(
I −II

−II III

)

+
Ãs

4

(
IV 0

0 IV

)
+

Ãr

8

(
III −II

−II I

)
+

C̃13

4

(
I 0

0 −III

)

+
C̃s

4

(
IV 0

0 −IV

)
+

C̃2r

4

(
−III 0

0 I

)
(4.112)

=

(
Dxx(k⃗) Dxy(k⃗)

Dyx(k⃗) Dyy(k⃗)

)
. (4.113)

with individual matrix elements written as

Dxx(k⃗) =
1

8

[
(Ã1 + Ã3 + 2C̃13) I + (Ã2 + Ãr − 2C̃2r) III

+(2Ãs + 2C̃s) IV
]

(4.114)

Dxy(k⃗) =
1

8

[
(Ã1 + Ã2 − Ã3 − Ãr) II

]
(4.115)



106

Dyx(k⃗) =
1

8

[
(Ã1 + Ã2 − Ã3 − Ãr) II

]
(4.116)

Dyy(k⃗) =
1

8

[
(Ã2 + Ãr + 2C̃2r) I + (Ã1 + Ã3 − 2C̃13) III

+(2Ãs − 2C̃s) IV
]

(4.117)

In case of the kinetic term of Lagrange Equation (4.87), one can write

∑
j⃗

−Müx,y (⃗j) =

(
−M üx(⃗i)

−M üy (⃗i)

)
= Mω2

(
ux(k⃗)

uy(k⃗)

)

and therefore

Mω2

(
ux(k⃗)

uy(k⃗)

)
=

(
Dxx(k⃗) Dxy(k⃗)

Dyx(k⃗) Dyy(k⃗)

)(
ux(k⃗)

uy(k⃗)

)
(4.118)

4.A.5 Phonon Spectrum

It can be easily shown that for any 2x2 matrix the eigenvalues can be calculated as

eigenvalues

(
a b

c d

)
=

1

2

[
(a + d) ±

√
(a− d)2 + 4bc

]
(4.119)

which can be applied to the right side of (4.118).

Dxx + Dyy =
1

8
(Ã1 + Ã2 + Ã3 + Ãr + 2C̃13 + 2C̃2r) I

+
1

8
(Ã1 + Ã2 + Ã3 + Ãr − 2C̃13 − 2C̃2r) III +

1

2
Ãs IV

= (Ã1 + Ã2 + Ã3 + Ãr)(1 − cos kx cos ky)

+(2C̃13 + 2C̃2r)(cos ky − cos kx)

+2Ãs(1 − cos kx)(1 − cos ky)[
Dxx −Dyy

]2
=

[1

8
(Ã1 − Ã2 + Ã3 − Ãr + 2C̃13 − 2C̃2r) I

+
1

8
(−Ã1 + Ã2 − Ã3 + Ãr + 2C̃13 − 2C̃2r) III

+
1

4
2C̃s IV

]2
=

[
(Ã1 − Ã2 + Ã3 − Ãr)(cos ky − cos kx)
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+(2C̃13 − 2C̃2r)(1 − cos kx cos ky)

+2C̃s(1 − cos kx)(1 − cos ky)
]2

4DxyDyx =
1

16
(Ã1 + Ã2 − Ã3 − Ãr)

2 II
2

= (Ã1 + Ã2 − Ã3 − Ãr)
2 sin2 kx sin2 ky

The two-dimensional phonon spectrum or dispersion relation based on (4.85) can be

finalized as

ω(k⃗)2 =
1

2M

[
E1(k⃗) ±

√
E2(k⃗)2 + E3(k⃗)2

]
(4.120)

where

E1(k⃗) = (Ã1 + Ã2 + Ã3 + Ãr)(1 − cos kx cos ky) +

+(2C̃13 + 2C̃2r)(cos ky − cos kx) +

+2Ãs(1 − cos kx)(1 − cos ky), (4.121)

E2(k⃗) = (Ã1 − Ã2 + Ã3 − Ãr)(cos ky − cos kx) +

+(2C̃13 − 2C̃2r)(1 − cos kx cos ky) +

+2C̃s(1 − cos kx)(1 − cos ky), (4.122)

E3(k⃗) = (Ã1 + Ã2 − Ã3 − Ãr) sin kx sin ky. (4.123)

4.A.6 Verifying and Plotting Results

Consider a set of initial values

====================================================

INPUT PARAMETERS:

A1 = 5, A2 = 4, A3 = -4, As = 5

C12 = -3, C13 = -5, C1s = -7, C3s = 2, C23r = 0.5

F3 = 50, F3r = 0.5

EXPANSION POINT:

e0_1 = 0.1, e0_3 = 0.316228

NORMALIZED PARAMETERS:

A1 = 5, A2 = 3.4, A3 = 10, As = 3.6, Ar = 0.05

C13 = -3.16228, Cs = 0.632456, C2r = 0.158114

====================================================
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Note that ẽ3 (computer: e0_3) chosen as a positive value.

Plot of both branches can be seen in Figure 4.17. The plotted continuous spec-

trum is superimposed with eigenvalues of discrete system of 4x4 atoms. Calculations

for discrete system are done independently to make a verification case for obtained

analytical dispersion relation (4.120). Points in k-space are placed on 4x4 grid with

kx, ky ∈ {−π

2
, 0,

π

2
, π}.

Increasing set of eigenvalues for discrete system produced following eigenvalues

========================================

0 8.6754 11.5987 17.1404

0 8.6754 11.5987 17.1404

3.1338 9.7013 11.8702 17.3509

3.1338 9.7013 15.6367 21.3246

3.7662 10.0133 15.6367 21.3246

3.7662 10.0133 15.6367 27.2596

6.2675 10.0133 15.6367 27.2596

7.5325 10.0133 16.9298 42.6491

========================================

shown in increasing order. On the other hand, continuous spectrum (4.120) generated

following results

========================================

Upper Branch:

27.2596 42.6491 27.2596 16.9298

15.6367 21.3246 15.6367 17.1404

8.6754 0 8.6754 17.3509

15.6367 21.3246 15.6367 17.1404

Lower Branch:

11.5987 6.2675 11.5987 11.8702

10.0133 3.1338 10.0133 9.7013

3.7662 0 3.7662 7.5325

10.0133 3.1338 10.0133 9.7013

========================================

at the corresponding k-points, as seen on the plots of Figure 4.17. Accuracy of 4

significant digits is sufficient to observe one-to-one comparison of both sets. Closer

observation indicates a perfect match.
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Figure 4.15 (Color) Sample eigenmode corresponding to eigenvalue of 6.2675 on
4x4 system, with the point located at kx = 0, ky = π on the phonon spectrum.
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Figure 4.16 (Color) Figure (a) shows upper branch of phonon spectrum squared,
whereas (b) shows lower branch. Labeled points are discrete values of 4x4 system of
atoms with corresponding values superimposed.
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Figure 4.17 (Color) Figure (a) shows upper branch of phonon spectrum, whereas
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with corresponding values superimposed.



CHAPTER 5

SUMMARY AND CLOSING REMARKS

Strongly momentum-dependent local charge screening dynamics is presented in CE-

type charge, orbital, and spin ordered La0.5Sr1.5MnO4, based on Mn K-edge resonant

inelastic x-ray scattering data. Through a comparison with theoretical calculations,

it is shown that the observed momentum dependence reflects highly localized, nearest

neighbor screening of the transient local charge perturbation in this compound with

an exciton-like screening cloud, rather than delocalized screening. The size of the

screening cloud is estimated to be about 0.4–0.5 interatomic distances.

From the analysis of a Keating energy expression expanded in terms of the

atomic-scale symmetry-modes, it is found that the effect of small RE ion size, known

as chemical pressure effect, is significant in stabilizing the long range Jahn-Teller

distortion in undoped perovskite manganites. Good agreement with the experimental

data is obtained on the Jahn-Teller ordering temperature and the substantial increase

of the Jahn-Teller ordering temperature from LaMnO3 to PrMnO3 and NdMnO3.

It is proposed that similar effects need to be considered to understand the phase

diagram for doped perovskite manganites. The appearance of the uniform shear

distortion below the Jahn-Teller ordering temperature is also explained in terms of

the coupling between coherent shear, buckling, and deviatoric distortions within the

Jahn-Teller energy. Moreover, the ratio between these distortions at low temperature

is estimated, and good agreement with experimental data for LaMnO3, PrMnO3, and

NdMnO3 is found, which confirms the coupling proposed between them in the model.

The mode-based atomic-scale description of the lattice dynamics is also pre-

sented. It is established that not only the potential energy but also the kinetic energy

can be described in terms of the atomic-scale modes, for which the inclusion of the

rigid modes is essential. The atomic-scale mode-based approach for the dynamics of
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the one-dimensional chain and two-dimensional square lattice with a mono-atomic

basis is demonstrated. By using the constraint equations, the modified Lagrangian

equations are obtained in terms of atomic-scale modes only, without explicit use

of the displacement variables. This approach is extended to quantum mechanics,

to obtain the conjugate momenta and commutation relations in real and reciprocal

space. It is expected that this approach would be useful in describing systems with

strong anharmonicity.



CHAPTER 6

CODES DEVELOPED FOR RIXS CALCULATION

Many computer programs have been created during the course of theoretical for-

malism development for K-edge RIXS, applied to La0.5Sr1.5MnO4 crystal structure.

In this chapter, it is noteworthy to present small fraction with two programs detailed

in Sections 6.1 and 6.3, as they describe the central algorithms behind calculations,

whereas Section 6.2 describes inclusion of physical parameters.

6.1 Code for Setting Up Hamiltonian Matrices with Hartree-Fock
Approximation

Following computer code is related to the discussion in Chapter 2 and was developed

for Matlab.1 Program sets up all the necessary Hamiltonian matrices and evalu-

ates total Hamiltonian described in Equation (2.18), with inclusion of Hartree-Fock

approximation. All the related figure plotting routines are omitted for compactness

and clarity.

001 % Entry point (Hit F5 to run)

002 %{

003 ===============================================================================

004 DESIGNED BY: Tsezar F. Seman

005 AFFILIATION: NJIT University, Physics Department

006 MODIFIED ON: 06/16/2012

007 COPYRIGHT: (c) Tsezar F. Seman. All rights reserved.

008 PURPOSE: Program calculates various Hamiltonians for LaSrMnO4 using

009 tight binding model.

010 ===============================================================================

011 %}

012 function run1_HF(N,CH, bReloadLastState)

013 clc; addpath(’_functions_’,’../__common__’);

014 %------------------------------------------------------

015 % STARTING PARAMS:

016 if nargin < 1

017 clear all;

018 N = 4;

019 CH = 0;

020 end

1MATLAB R⃝ (matrix laboratory) is a numerical computing environment and fourth-
generation programming language, developed by MathWorks R⃝. At the time of code devel-
opment Matlab version R2012a (7.14.0.739) on 64-bit multi-core platform was used.
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021 if nargin < 3

022 % 0:start from scratch, 1:reload from last state, 2:plot quickly

023 bReloadLastState = 0;

024 end

025 maxSteps = 300;

026 %------------------------------------------------------

027 % INITIALIZATION:

028 if bReloadLastState

029 % STARTING FROM SAVED DATA:

030 CmdTitle(’RE-LOADING SAVED DATA FOR LaSrMnO4’);

031 LoadLastState(N,CH);

032 fprintf(’%sSYSTEM: N=%i, CH=%i\n\n’, StageId(), N,CH);

033 else

034 % STARTING FROM SCRATCH:

035 CmdTitle(’LaSrMnO4 HAMILTONIAN CALCULATION’);

036 Initialize(N,CH);

037 fprintf(’%sSYSTEM: N=%i, CH=%i\n’, StageId(), N,CH);

038 fprintf(’\n%sCONSTRUCTING OPERATORS:... \n\n’, StageId());

039 Set_nOper_All(); % set all n operators for entire i-Space

040 Set_H_nonint();

041 Set_H_corehole();

042 end

043

044 if bReloadLastState < 2

045 %------------------------------------------------------

046 % CORE ALGORITHM:

047 % converging toward stable <n> values

048 ConvergeData(maxSteps, bReloadLastState);

049

050 %------------------------------------------------------

051 % SAVE MISC DATA

052 SaveLastState(); % save all the final data

053

054 fprintf(’\n%sSAVING TABLES: ...\n’, StageId());

055 Table_nXpt();

056 Table_SysParams();

057

058 %------------------------------------------------------

059 % EXPORT DATA:

060 %{-

061 fprintf(’\n%sEXPORING DATA FOR RIXS AND nDIFF: ...\n’, StageId());

062 Save_nDiff(); % For nDiff analysis

063 Save_RIXS(); % For RIXS analysis

064

065 Save_Hcoloumb_Bands();

066 %}

067 end

068

069 % use ONLY for Uch estimation:

070 %ExtractDataForUch();

071

072 GetEocc();

073

074 %------------------------------------------------------

075 % PLOTS:

076 %{

077 fprintf(’\n%sPLOTTING VARIOUS DATA: ...\n’, StageId());

078 % Plot_Energies();

079 Plot_Tracking();

080

081 % Plot_NetSpin();

082 % Plot_NetCharge();

083 %}

084 end

085

086 %==========================================================

087 % KEY ALGORITHMIC COMPONNETS:



116

088

089 % Construct all <n> operators

090 function Set_nOper_All()

091 % ACCESS:

092 global GL

093

094 % Gather all n_Operaors and save them for later use

095 nPt = size(GL.iPoints,1);

096 for iPt = 1:nPt

097 szFile = sprintf(GL.file_nOper, iPt);

098 if exist(szFile, ’file’) ~= 2

099 c_nOper = cell(1,2);

100 % Eg:

101 nOper_eg = Oper_n_eg( GL.iPoints(iPt,:) );

102 for i=1:2

103 c_nOper{i} = sparse(nOper_eg(:,:,i));

104 end

105 % saving file:

106 save(szFile,’c_nOper’);

107 end

108 end

109 end

110 % Construct H_nonint matrices with block-diagonal values

111 function Set_H_nonint()

112 % ACCESS:

113 global GL

114

115 nk = size(GL.kPoints,1);

116 GL.H_nonint_eg = zeros(16*nk,16*nk,2);

117 for i=1:nk

118 ii = (i-1)*16+1;

119 GL.H_nonint_eg(ii:ii+15,ii:ii+15,:) = Oper_Hnonint_eg( GL.kPoints(i,:) );

120 end

121 end

122 % Construct H_1s3d matrices with core hole

123 function Set_H_corehole()

124 % ACCESS:

125 global GL Eg

126

127 % Core-Hole site:

128 switch GL.CH

129 case 0

130 return;

131 case 1

132 site = [0 0];

133 case 2

134 site = [1 0];

135 case 3

136 site = [1 1];

137 case 4

138 if GL.N == 4

139 site = [-1 0]; % this is due to iPoints choice

140 else

141 site = [3 0];

142 end

143 case 5

144 site = [1 -1];

145 case 6

146 site = [2 -1];

147 case 7

148 site = [2 0];

149 case 8

150 site = [2 1];

151 otherwise

152 error(’ERR: Erroneous CH value! CH can only be {0,1,..,8}’);

153 end

154 GL.Track_iPoint = find(GL.iPoints(:,1)==site(1) & GL.iPoints(:,2)==site(2));
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155 if isempty(GL.Track_iPoint); error(’ERR: Suggested tracking (CH) site is not

within the domain of iPoints.’);end;

156 site = GL.iPoints(GL.Track_iPoint,:);

157

158 % Eg CASE:

159 GL.H_corehole_eg = Eg.C.Uch * sum( Oper_n_eg(site), 3 );

160 GL.H_corehole_eg(:,:,2) = GL.H_corehole_eg(:,:,1);

161 end

162

163

164 % Update nXpt table

165 function Update_nXpt()

166 % ACCESS:

167 global GL

168

169 % extract eigen vectors

170 [vEg_up, eEg_up] = eig(GL.H_tot_eg(:,:,1)); eEg_up = diag(eEg_up);

171 [vEg_dn, eEg_dn] = eig(GL.H_tot_eg(:,:,2)); eEg_dn = diag(eEg_dn);

172 nnEg = size(vEg_up,1) / 8;

173

174 % count number of spins/orbitals for all occupied electrons

175 ii = [1 1];

176 while sum(ii)-2 < 2*nnEg

177 [~,ind] = min([ eEg_up(ii(1),1), eEg_dn(ii(2),1) ]);

178 ii(ind) = ii(ind) + 1;

179 end

180 nEg_up = ii(1) - 1;

181 nEg_dn = ii(2) - 1;

182

183 %{-

184 % Make spins even

185 nEg_up = nnEg;

186 nEg_dn = nnEg;

187 %}

188

189 % just to keep an eye on the count

190 if nEg_up ~= nnEg || nEg_dn ~= nnEg

191 fprintf(’!!! Split for %i electrons: [UP:eg|DN:eg]=[%i|%i]\n’,...

192 2*nnEg, nEg_up, nEg_dn);

193 end

194

195 LL1_up = vEg_up(:,1:nEg_up);

196 LL1_dn = vEg_dn(:,1:nEg_dn);

197

198 nPt = size(GL.iPoints,1);

199 nXpt_list_new = zeros(nPt,4);

200 c_nOper = cell(1,2);

201 for iPt = 1:nPt

202 load(sprintf(GL.file_nOper, iPt)); % load nOper into: c_nOper

203 %{-

204 n_xpt = [ ...

205 sum( sum( (LL1_up’ * c_nOper{1}).’ .* LL1_up, 1)), ...

206 sum( sum( (LL1_up’ * c_nOper{2}).’ .* LL1_up, 1)), ...

207 sum( sum( (LL1_dn’ * c_nOper{1}).’ .* LL1_dn, 1)), ...

208 sum( sum( (LL1_dn’ * c_nOper{2}).’ .* LL1_dn, 1)) ];

209 %}

210 %{

211 n_xpt = zeros(1,4);

212 % Eg spin UP case:

213 for iv = 1:nEg_up

214 L = vEg_up(:,iv);

215 n_xpt(1:2) = n_xpt(1:2) + [L’ * c_nOper{1} * L, L’ * c_nOper{2} * L];

216 end

217 % Eg spin DOWN case:

218 for iv = 1:nEg_dn

219 L = vEg_dn(:,iv);

220 n_xpt(3:4) = n_xpt(3:4) + [L’ * c_nOper{1} * L, L’ * c_nOper{2} * L];
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221 end

222 %}

223 nXpt_list_new(iPt,:) = real(n_xpt);

224 end

225

226 % Pullay Mixing segment:

227 if GL.isPullay == 1

228 if GL.Track.Size(1) >= 2

229 alpha = GL.alphaPullay;

230 nXpt_list_new = alpha .* nXpt_list_new + ...

231 (1-alpha) .* GL.nXpt_list_old;

232 GL.nXpt_list_old = GL.nXpt_list;

233 else

234 GL.nXpt_list_old = GL.nXpt_list;

235 end

236 elseif GL.isPullay == 2

237 nXpt_list_new = GL.alphaPullay .* nXpt_list_new + ...

238 GL.betaPullay .* GL.nXpt_list_old + ...

239 (1-GL.alphaPullay-GL.betaPullay) .* GL.nXpt_list_old2;

240 GL.nXpt_list_old2 = GL.nXpt_list_old;

241 GL.nXpt_list_old = GL.nXpt_list;

242 end

243 GL.nXpt_list = nXpt_list_new;

244

245 % this is for data tracking and stopping criteria

246 Eocc = sum(eEg_up(1:nEg_up)) + sum(eEg_dn(1:nEg_dn));

247 GL.Track.Add([Eocc, nXpt_list_new(GL.Track_iPoint,:)], 1:5);

248 end

249 % Calculate total Hamiltonian

250 function Update_Htot()

251 % ACCESS:

252 global GL Eg

253

254 % Create U-based list for Hartree-Fock

255 U_list = zeros(size(GL.nXpt_list));

256 nXpt_sum = Eg.C.U * sum(GL.nXpt_list(:,1:4),2);

257 for ic = 1:4

258 U_list(:,ic) = nXpt_sum - Eg.C.U * GL.nXpt_list(:,ic);

259 end

260

261 % Create H_coulomb due to Hartree-Fock

262 nPt = size(GL.iPoints,1);

263 H_coulomb_eg = zeros(2*nPt,2*nPt, 2);

264 c_nOper = cell(1,2);

265 for iPt = 1:nPt

266 load(sprintf(GL.file_nOper, iPt)); % load nOper into: c_nOper

267 U = U_list(iPt,:);

268 H_coulomb_eg(:,:,1) = H_coulomb_eg(:,:,1) + U(1)*c_nOper{1} + U(2)*c_nOper{2};

269 H_coulomb_eg(:,:,2) = H_coulomb_eg(:,:,2) + U(3)*c_nOper{1} + U(4)*c_nOper{2};

270 end

271

272 GL.H_tot_eg = GL.H_nonint_eg + H_coulomb_eg;

273 if GL.CH ~= 0

274 GL.H_tot_eg = GL.H_tot_eg + GL.H_corehole_eg;

275 end

276 end

277 function bval = isStopping()

278 global GL

279

280 choice = 1; % {1,2}

281

282 bval = false;

283 switch choice

284 case 1

285 del_Eocc = abs(GL.Track.GetLast(1) - GL.Track.GetLast(1,-1));

286 if del_Eocc < 1e-4

287 bval = true;
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288 end

289 case 2

290 del_n = max( abs(GL.Track.GetLast(2:5) - GL.Track.GetLast(2:5,-1)) );

291 if del_n < 1e-3

292 bval = true;

293 end

294 end

295 end

296 % Converging Loop

297 function ConvergeData(maxSteps, bReloadLastState)

298 global GL

299

300 % set initial Hamiltonians

301 if bReloadLastState == 0

302 GL.H_tot_eg = GL.H_nonint_eg;

303 end

304 fprintf(’%sCALCULATING nXpt and H_tot^(eg): ...\n’, StageId());

305 tic;

306 for step = 1:maxSteps

307 fprintf(’ * Step %03i/%03i\n’, step,maxSteps);

308 Update_nXpt();

309 Update_Htot();

310 % stopping criteria

311 if isStopping(); break; end;

312 % incremental saving for large calculations

313 if GL.N >= 16; SaveLastState(); end;

314 end

315 toc;

316 end

317 %==========================================================

318 % PRINTING / SAVING:

319 function SaveLastState()

320 % ACCESS to save

321 global GL Eg stage_id

322

323 % correct for ellapsed time

324 GL.timediff = GL.timediff + cputime - GL.timecpu;

325 GL.timecpu = cputime;

326

327 save(sprintf(’%s__LastState.mat’,GL.file_main), ...

328 ’GL’,’Eg’, ’stage_id’);

329 end

330 function LoadLastState(N,CH)

331 % ACCESS to overwrite

332 global GL Eg stage_id

333

334 szFile = sprintf(’_N%02d_data_/_main_/N%02i_CH%i__LastState.mat’,N,N,CH);

335 if exist(szFile, ’file’) == 2

336 GL = {};

337 Eg = {};

338 Etot = {};

339 ZnXpt = {};

340 stage_id = {};

341 load(szFile);

342 else

343 error(’ERR: File [%s] does not exist. Set bReloadLastState=0

to generate the file.’,szFile);

344 end

345

346 % correct for ellapsed time

347 GL.timecpu = cputime;

348 end

349

350 function szId = StageId()

351 global stage_id % local static storage

352 if isempty(stage_id); stage_id = 0; end;

353 stage_id = stage_id + 1;
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354 szId = sprintf(’## % 3i ## - ’,stage_id);

355 end

356 function Table_nXpt()

357 global GL

358

359 cType = {’Mn3x’,’Mn4 ’,’Mn3y’};

360 net_spin = GL.nXpt_list * [1 1 -1 -1]’;

361

362 data = [GL.iPoints(:,1:3), GL.nXpt_list(:,1:4), net_spin, sum(GL.nXpt_list(:,1:4), 2)];

363

364 file = sprintf(’%s__nXptTable.txt’,GL.file_tables);

365 fid = fopen(file, ’w’);

366 fprintf(fid, ’+-----------------------------------------------------------+\r\n’);

367 fprintf(fid, ’| N = %2i: ELECTRON NUMBER TABLE (CH = %i) |\r\n’,

GL.N,GL.CH);

368 fprintf(fid, ’+------+------+-----------------------------+--------+------+\r\n’);

369 fprintf(fid, ’ i-pos | orb. | eg case: < n_{..} > | net | sum(n)\r\n’);

370 fprintf(fid, ’ ix iy | type | -,up +,up -,dn +,dn | spin | \r\n’);

371 fprintf(fid, ’-------+------+-----------------------------+--------+-------\r\n’);

372 for i = 1:size(data,1)

373 fprintf(fid, ’ % i % i | %s | %6.4f %6.4f %6.4f %6.4f | %+5.3f | %6.4f\r\n’, ...

374 data(i,1:2), cType{data(i,3)}, data(i,4:9) );

375 end

376 fprintf(fid, ’+------+------+-----------------------------+--------+------+\r\n’);

377 fprintf(fid, ’| CHECK: Sum(n)/N^2 = %5.3f |\r\n’,

sum(sum(GL.nXpt_list))/size(GL.iPoints,1));

378 fprintf(fid, ’+-----------------------------------------------------------+\r\n’);

379 fclose(fid);

380

381 fprintf(’ * File [%s] have been generated.\n’,file);

382 end

383 function Table_SysParams()

384 global GL Eg

385

386 nxpt = [GL.nXpt_list(GL.iPoints(:,1)==0 & GL.iPoints(:,2)==0,:); ...

387 GL.nXpt_list(GL.iPoints(:,1)==1 & GL.iPoints(:,2)==0,:); ...

388 GL.nXpt_list(GL.iPoints(:,1)==1 & GL.iPoints(:,2)==1,:); ...

389 GL.nXpt_list(GL.iPoints(:,1)==-1 & GL.iPoints(:,2)==0,:) ...

390 ];

391 cTF = {’false’,’true ’};

392 cCH = {’n/a ’,...

393 ’Mn3x+ up’,’Mn4+ up’,’Mn3y+ up’,’Mn4+ up’,...

394 ’Mn3x+ dn’,’Mn4+ dn’,’Mn3y+ dn’,’Mn4+ dn’,};

395

396 file = sprintf(’%s__SysParams.txt’,GL.file_tables);

397 fid = fopen(file, ’w’);

398 fprintf(fid, ’+----------------------------------------------+\r\n’);

399 fprintf(fid, ’| SIMULATION SYSTEM PARAMETERS |\r\n’);

400 fprintf(fid, ’+------------+---------------------------------+\r\n’);

401 fprintf(fid, ’| System: | N = %2i, Ni = %03i, Nk = %03i |\r\n’,

GL.N, (GL.N^2), (GL.N^2/8));

402 fprintf(fid, ’+------------+---------+---------+-------------+\r\n’);

403 fprintf(fid, ’| Parameters | Eg | T2g | Units |\r\n’);

404 fprintf(fid, ’+------------+---------+---------+-------------+\r\n’);

405 fprintf(fid, ’| Q_1s | % 6.4f | - | angstrom |\r\n’, Eg.C.Q_1s);

406 fprintf(fid, ’| Q_2s | % 6.4f | - | angstrom |\r\n’, Eg.C.Q_2s);

407 fprintf(fid, ’| Q_3u | % 6.4f | - | angstrom |\r\n’, Eg.C.Q_3u);

408 fprintf(fid, ’| Q_3s | % 6.4f | - | angstrom |\r\n’, Eg.C.Q_3s);

409 fprintf(fid, ’+------------+---------+---------+-------------+\r\n’);

410 fprintf(fid, ’| t0 | % 6.4f | - | eV |\r\n’, Eg.C.t0);

411 fprintf(fid, ’| beta | % 6.4f | - | |\r\n’, Eg.C.beta);

412 fprintf(fid, ’| lambda | % 6.4f | - | eV/angstrom |\r\n’, Eg.C.lambda);

413 fprintf(fid, ’| JhSc | % 6.4f | - | eV |\r\n’, Eg.C.JhSc);

414 fprintf(fid, ’| U | % 6.4f | - | eV |\r\n’, Eg.C.U);

415 fprintf(fid, ’| Uch | % 6.4f | - | eV |\r\n’, Eg.C.Uch);

416 fprintf(fid, ’| shift | % 6.4f | - | eV |\r\n’, Eg.C.shift);

417 fprintf(fid, ’+------------+---------+---------+-------------+\r\n’);
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418 Q_33 = (Eg.C.Q_3u + Eg.C.Q_3s);

419 Q_34 = (Eg.C.Q_3u - Eg.C.Q_3s);

420 Gap_br = 2 * Eg.C.lambda * Eg.C.beta * Eg.C.Q_1s;

421 Gap_jt = Eg.C.lambda * (sqrt(4 * Eg.C.Q_2s^2 + Q_33^2) - abs(Q_34));

422 Gap_tot = Gap_br + Gap_jt;

423 Gap_jt_Mn3 = 2 * Eg.C.lambda * (sqrt(4 * Eg.C.Q_2s^2 + Q_33^2));

424 fprintf(fid, ’| Gap: br | % 6.4f | - | eV |\r\n’, Gap_br);

425 fprintf(fid, ’| Gap: JT | % 6.4f | - | eV |\r\n’, Gap_jt);

426 fprintf(fid, ’| Gap: Tot | % 6.4f | - | eV |\r\n’, Gap_tot);

427 fprintf(fid, ’| Gap: JT Mn3| % 6.4f | - | eV |\r\n’, Gap_jt_Mn3);

428 fprintf(fid, ’+------------+---------+---------+-------------+\r\n’);

429 fprintf(fid, ’| Select Eg n_xpt Values: |\r\n’);

430 fprintf(fid, ’| ix iy : -,up +,up -,dn +,dn |\r\n’);

431 fprintf(fid, ’| 0 0 : %6.4f %6.4f %6.4f %6.4f |\r\n’, nxpt(1,1:4));

432 fprintf(fid, ’| 1 0 : %6.4f %6.4f %6.4f %6.4f |\r\n’, nxpt(2,1:4));

433 fprintf(fid, ’| 1 1 : %6.4f %6.4f %6.4f %6.4f |\r\n’, nxpt(3,1:4));

434 fprintf(fid, ’| -1 0 : %6.4f %6.4f %6.4f %6.4f |\r\n’, nxpt(4,1:4));

435 fprintf(fid, ’+------------+---------------------------------+\r\n’);

436 fprintf(fid, ’| C-H Type | %s |\r\n’, cCH{GL.CH+1});

437 if GL.CH == 0

438 szCH = ’n/a ’;

439 else

440 szCH = sprintf(’(% i,% i)’,GL.iPoints(GL.Track_iPoint,1:2));

441 end

442 fprintf(fid, ’| C-H Site | %s |\r\n’, szCH);

443 fprintf(fid, ’| isPullay | %s |\r\n’,

cTF{logical(GL.isPullay)+1} );

444 if GL.isPullay > 0

445 fprintf(fid, ’| alpha Pull.| %3.2f |\r\n’,

GL.alphaPullay);

446 end

447 fprintf(fid, ’| Calc. Time | %s|\r\n’, strjust(sprintf(’%27.3f sec.’,

GL.timediff), ’left’) );

448 fprintf(fid, ’| Cycles | %s|\r\n’, strjust(sprintf(’%32i’,

GL.Track.Size()), ’left’) );

449 fprintf(fid, ’| Time Stamp | %s |\r\n’, datestr(now));

450 fprintf(fid, ’+------------+---------------------------------+\r\n’);

451 fclose(fid);

452

453 fprintf(’ * File [%s] have been generated.\n’,file);

454 end

455 %==========================================================

456 % FIGURE PLOTTING:

457 % private function

458 function Plot_Energies()

459 % ACCESS:

460 global GL Eg

461

462 E1 = sortrows([eig(GL.H_nonint_eg(:,:,1)); eig(GL.H_nonint_eg(:,:,2))]);

463 E2 = sortrows([eig(GL.H_tot_eg(:,:,1)); eig(GL.H_tot_eg(:,:,2))]);

464 ind = 1:size(E1,1);

465

466 szCH = ’’;

467 if GL.CH ~= 0

468 szCH = sprintf(’, U_{CH}=%4.1f_{eg} (eV)’, Eg.C.Uch);

469 end

470 szTitle = sprintf(’N=%i, CH=%i: Energy Profile for H_{eg}%s’,GL.N,GL.CH,szCH);

471 GL.figId = FigId(GL.figId, szTitle);

472 hold on;

473 plot(ind,E1, ’.’,’MarkerSize’,5, ’Color’,[.2 .8 1]);

474 plot(ind,E2, ’.’,’MarkerSize’,5, ’Color’,[0 0 1]);

475

476 minNN = min( E1 );

477 maxNN = max( E2 );

478 title(szTitle);

479 ylabel(’Energy - E_F (eV)’);

480 legend(’E_{nonint}^{eg}’ ,’E_{tot}^{eg}’, ’Location’,’SouthEast’);
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481

482

483 NN = size(E1,1);

484 plot([1 NN], [0 0], ’:k’);

485 fermi = size(E1,1) / 8 + 0.5;

486 plot([fermi fermi], [minNN maxNN], ’:k’);

487 text(fermi,maxNN-.1,’occupied’, ...

488 ’Rotation’,90, ’HorizontalAlignment’,’right’, ’VerticalAlignment’,’bottom’ );

489 text(fermi,maxNN-.1,’unoccupied’, ...

490 ’Rotation’,90, ’HorizontalAlignment’,’right’, ’VerticalAlignment’,’top’ );

491 hold off;

492 end

493 function Plot_Tracking()

494 global GL Eg

495

496 data = GL.Track.GetData();

497 n = size(data,1);

498

499 Eocc = data(:,1);

500 Sp_up = data(:,[2 3]);

501 Sp_dn = data(:,[4 5]);

502 clrE = [0 .6 0];

503 clrEg = [0 0 1];

504

505 GL.figId = FigId(GL.figId, ’Evolution of various parametes.’);

506

507 subplot(3,1,1);

508 plot(Eocc,’.-’, ’Color’,clrE);

509 szCH = ’’;

510 if GL.CH == 1

511 szCH = sprintf(’, U_{CH}=%4.1f_{eg} (eV)’, Eg.C.Uch);

512 end

513 title(sprintf(’N=%i, CH=%i: E_{tot}^{OCC} Tracking, E = %.2f (eV)%s’,

GL.N,GL.CH, Eocc(n), szCH ) );

514 xlabel(’Steps’);

515 ylabel(’Energy of Occupied Sites (eV)’);

516 xlim([1,n]);

517 ylim([min(Eocc)-5, max(Eocc)+5]);

518

519 szSite = sprintf(’(%i,%i)’, GL.iPoints(GL.Track_iPoint,1:2));

520

521 subplot(3,1,2); hold on;

522 plot(Sp_up(:,1),’.-’, ’Color’,clrEg);

523 plot(Sp_up(:,2),’.--’, ’Color’,clrEg);

524 hold off;

525 title(sprintf(’Spin \\uparrow n-Values at site %s’,szSite));

526 xlabel(’Steps’);

527 xlim([1,n]);

528 ylim([-0.1, 1.1]);

529 legend(sprintf(’n^{eg}_{-,\\uparrow} = %5.3f’,Sp_up(n,1)),...

530 sprintf(’n^{eg}_{+,\\uparrow} = %5.3f’,Sp_up(n,2)),...

531 ’Location’,’NorthWest’);

532

533 subplot(3,1,3); hold on;

534 plot(Sp_dn(:,1),’.-’, ’Color’,clrEg);

535 plot(Sp_dn(:,2),’.--’, ’Color’,clrEg);

536 hold off;

537 title(sprintf(’Spin \\downarrow n-Values at site %s’,szSite));

538 xlabel(’Steps’);

539 xlim([1,n]);

540 ylim([-0.1, 1.1]);

541 legend(sprintf(’n^{eg}_{-,\\downarrow} = %5.3f’,Sp_dn(n,1)),...

542 sprintf(’n^{eg}_{+,\\downarrow} = %5.3f’,Sp_dn(n,2)),...

543 ’Location’,’NorthWest’);

544 end

545

546 function Plot_ColoredAtoms(data_C, minmax_C, szTitle)
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547 global GL

548

549 MS = 40; % marker size limits

550 nPt = size(GL.iPoints,1);

551

552 % define orbital loops

553 orb_size = 0.5;

554 th = 0:0.1:2*pi+0.1;

555 r_hor = orb_size * cos(th).^2;

556 r_ver = orb_size * sin(th).^2;

557 xy_hor = [r_hor.*cos(th); r_hor.*sin(th)];

558 xy_ver = [r_ver.*cos(th); r_ver.*sin(th)];

559 clrCH = [1 .9 .9];

560 clrOrb = [1 1 1]*.8;

561 clrZig = [1 1 1]*.95;

562

563 GL.figId = FigId(GL.figId, szTitle);

564

565 hold on;

566 % draw CH site

567 if GL.CH ~= 0

568 CH_site = GL.iPoints(GL.Track_iPoint,:);

569 plot(CH_site(1),CH_site(2),’.’, ’Color’,clrCH, ’MarkerSize’,MS*4);

570 end

571 % draw zig-zag and orbitals

572 for iPt = 1:nPt

573 x = GL.iPoints(iPt,1);

574 y = GL.iPoints(iPt,2);

575 switch GL.iPoints(iPt,3)

576 case 1

577 plot(x+[-1 1],y+[0 0],’-’, ’Color’,clrZig,’LineWidth’,3);

578 plot(x+xy_hor(1,:),y+xy_hor(2,:),’-’, ’Color’,clrOrb);

579 case 3

580 plot(x+[0 0],y+[-1 1],’-’, ’Color’,clrZig,’LineWidth’,3);

581 plot(GL.iPoints(iPt,1)+xy_ver(1,:),GL.iPoints(iPt,2)+xy_ver(2,:),’-’,

’Color’,clrOrb);

582 end

583 end

584 % draw color dots

585 nC = 64;

586 cmap = colormap( jet(nC) );

587 for iPt = 1:nPt

588 q = (data_C(iPt) - minmax_C(1)) ./ (minmax_C(2) - minmax_C(1));

589 iColor = max( 1, min(nC, round((nC-1)*q+1) ) );

590 plot(GL.iPoints(iPt,1),GL.iPoints(iPt,2),’.’, ’MarkerSize’,MS,

’Color’,cmap(iColor,:));

591 end

592

593 hold off;

594 colorbar;

595 caxis(minmax_C);

596 minmax_xy = [min(GL.iPoints(:,1)), max(GL.iPoints(:,1))];

597 xlim(minmax_xy + [-.6, .6]);

598 ylim(minmax_xy + [-.6, .6]);

599 title(szTitle);

600 xlabel(’i_x’);

601 ylabel(’i_y’);

602 set(gca,’XTick’,(minmax_xy(1):minmax_xy(2)), ’YTick’,(minmax_xy(1):minmax_xy(2)), ...

603 ’DataAspectRatio’,[1 1 1]);

604 end

605 function Plot_NetSpin()

606 global GL

607

608 net_spin = GL.nXpt_list * [1 1 -1 -1]’;

609 msp = max(abs(net_spin));

610 minmax_C = [-msp,+msp];

611 Plot_ColoredAtoms(net_spin, minmax_C, ...
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612 sprintf(’N=%i, CH=%i: Atomic Net Spin’,GL.N,GL.CH));

613 end

614 function Plot_NetCharge()

615 global GL

616

617 net_charge = sum(GL.nXpt_list(:,1:4), 2);

618 minmax_C = [0,max(net_charge)];

619 Plot_ColoredAtoms(net_charge, minmax_C, ...

620 sprintf(’N=%i, CH=%i: Atomic Net Charge’,GL.N,GL.CH));

621 end

622 %==========================================================

623 % EXPORT DATA FOR FURTHER ANALYSIS:

624 function Save_nDiff()

625 global GL Eg

626

627 data.nXpt_list = GL.nXpt_list;

628 data.U_eg = Eg.C.U;

629 data.Uch_eg = Eg.C.Uch;

630 data.C = Eg.C;

631 if GL.CH == 0

632 % data file without Core Hole, used as a basis

633 data.N = GL.N;

634 data.figId = 20;

635 data.iPoints = GL.iPoints;

636 else

637 data.CH_site = GL.iPoints(GL.Track_iPoint,:);

638 end

639 eval( sprintf(’CH%d = data;’,GL.CH) );

640 save(GL.file_ndiff, sprintf(’CH%d’,GL.CH));

641 end

642 function Save_RIXS()

643 global GL Eg

644

645 data.H_eg = GL.H_tot_eg;

646 data.N = GL.N;

647 data.CH = GL.CH;

648 data.C = Eg.C;

649 if GL.CH == 0

650 % data without Core Hole, used as a basis

651 data.kPoints = GL.kPoints;

652 CH0 = data; %#ok

653 save(GL.file_rixs, ’CH0’);

654 else

655 % data with Core Hole

656 data.CH_site = GL.iPoints(GL.Track_iPoint, 1:2);

657 CH1 = data; %#ok

658 save(GL.file_rixs, ’CH1’);

659 end

660 end

661

662 function Save_Hcoloumb_Bands()

663 global GL

664

665 % n-values are only valid for CH=0, for band’s H_coulomb

666 if GL.CH ~= 0; return; end;

667 file = sprintf(’%s__nXpt_list.mat’, GL.file_main);

668

669 iPoints = GL.iPoints;

670 nXpt_list = GL.nXpt_list;

671 save(file, ’iPoints’,’nXpt_list’);

672 end

673 %==========================================================

674

675 function ExtractDataForUch()

676 global GL Eg

677

678 fid = fopen(sprintf(’DataForUch_N%02d_t%.2f.txt’, GL.N, Eg.C.t0), ’a’);
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679

680 ch = [0,0; 1,0; 1,1; -1,0];

681 if GL.CH == 0

682 for i=1:2%4

683 indCH = find(GL.iPoints(:,1)==ch(i,1) & GL.iPoints(:,2)==ch(i,2));

684 S = sum(GL.nXpt_list(indCH,:));

685 fprintf(fid, ’%d % d % d %.4f %.4f\r\n’, ...

686 GL.CH, ch(i,1),ch(i,2), Eg.C.Uch, S);

687 end

688 else

689 i = GL.CH;

690 indCH = find(GL.iPoints(:,1)==ch(i,1) & GL.iPoints(:,2)==ch(i,2));

691 S = sum(GL.nXpt_list(indCH,:));

692 fprintf(fid, ’%d % d % d %.4f %.4f\r\n’, ...

693 GL.CH, ch(i,1),ch(i,2), Eg.C.Uch, S);

694 end

695 fclose(fid);

696 end

697

698 function GetEocc()

699 global GL

700

701 Eup = eig(GL.H_tot_eg(:,:,1));

702 Edn = eig(GL.H_tot_eg(:,:,2));

703

704 nF = size(Eup,1) / 8;

705 Eocc = [Eup(1:nF), Edn(1:nF)];

706 Eocc = sum(sum(Eocc));

707 Eocc

708 end

709 %==========================================================

6.2 Code for Initialization of Variables

Following computer code written for Matlab, provides initialization for the system

described in previous Section 6.1 and specifically related to the physical parameters of

a crystal La0.5Sr1.5MnO4, which is related to the discussion in Chapter 2. Additional

purpose for this code is to provide initialization for band structure calculation, not

included in this chapter.

001 %{

002 ===============================================================================

003 DESIGNED BY: Tsezar F. Seman

004 AFFILIATION: NJIT University, Physics Department

005 MODIFIED ON: 06/16/2012

006 COPYRIGHT: (c) Tsezar F. Seman. All rights reserved.

007 PURPOSE: Function initializes all static components, allocates all global

008 variables. This function must be called ONCE at the beginning.

009 INPUT: N - system base => N^2 atoms

010 CH - flag for Core-Hole presence

011 ===============================================================================

012 %}
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013 function Initialize(N,CH)

014 if nargin < 0; error(’ERR: Initialize(..) must have input parameters.’); end;

015 if nargin == 1; isCluster = false; else isCluster = true; end;

016 %------------------------------------------------------

017 % DEFINE COMMON GLOBAL STRUCTURE

018 %------------------------------------------------------

019 global GL

020 GL.path = MakeDir(sprintf(’_N%02i_data_’,N));

021 % do not define GL for band plots

022 if isCluster

023 if mod(N,4) ~= 0 || N<4; error(’ERR: System prameter N must be a positive

integer divisible by 4.’); end;

024 if mod(round(CH),9) ~= CH; error(’ERR: Core-Hole parameter CH must be one

of: {0,1,..,8}.’); end;

025 GL.N = N;

026 GL.CH = CH;

027 GL.kPoints = GetAll_kPoints(GL.N); % create all k-points in reduced

Bruloin zone (N^2/8)

028 GL.iPoints = GetAll_iPoints(GL.N); % create all i-space points (N^2)

029 GL.nXpt_list = zeros(GL.N^2, 4); % allocate table for <n..>: 1:4->eg

030

031 % constant matrices

032 GL.H_nonint_eg = [];

033 GL.H_corehole_eg = [];

034 GL.H_tot_eg = [];

035 GL.R_eg = []; % used in Oper_n_eg() (see init below..)

036 GL.kDiff_eg = Get_kDiff_eg(); % used in Oper_n_eg()

037

038 % create/verify directory/file prefix for: {n-Operators, main data, tables}

039 GL.file_nOper = sprintf(’%s/nOper_%%04i.mat’,

MakeDir(sprintf(’_nOper_N%02i_’,GL.N)) );

040 GL.file_main = sprintf(’%s/N%02i_CH%i’,

MakeDir([GL.path,’/_main_’]), GL.N, GL.CH);

041 GL.file_tables = sprintf(’%s/N%02i_CH%i’,

MakeDir([GL.path,’/_tables_’]), GL.N, GL.CH);

042 GL.file_ndiff = sprintf(’%s/N%02i_CH%i’,

MakeDir([GL.path,’/_nDiff_’]), GL.N, GL.CH);

043 GL.file_rixs = sprintf(’%s/N%02i_CH%i’,

MakeDir([GL.path,’/_RIXS_’]), GL.N, GL.CH);

044

045 % miscellaneous

046 GL.figId = 1; % starting figId

047 GL.timecpu = cputime; % cpu time to calculate GL.timediff

048 GL.timediff = 0; % time that already ellapsed in sec

049 GL.Track = clDataTrack(5); % tracking data: [E_occ, nXpt(0,0,0)]

050 GL.Track_iPoint = find(GL.iPoints(:,1)==0 & GL.iPoints(:,2)==0);

051 if isempty(GL.Track_iPoint); error(’ERR: Suggested tracking (CH) site

is not within the domain of iPoints.’);end;

052

053 GL.isPullay = 0; % {0,1,2}

054 %{-

055 if mod(CH,2) == 1

056 GL.isPullay = 2;

057 else

058 GL.isPullay = 0;

059 end

060 %}

061 if GL.isPullay == 1

062 GL.alphaPullay = 0.1;

063 if GL.alphaPullay > 1.0; error(’ERR: alpha > 1, must be < 1.’); end;

064 GL.nXpt_list(:,1) = 0.25;

065 GL.nXpt_list(:,3) = 0.25;

066 GL.nXpt_list_old = GL.nXpt_list; % allocate table for <n..>

USED for Pullay Mixing only!

067 elseif GL.isPullay == 2

068 GL.alphaPullay = 0.3;

069 GL.betaPullay = 0.3;
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070 if (GL.alphaPullay+GL.betaPullay) > 1.0; error(’ERR: alpha+beta > 1,

must be < 1.’); end;

071 GL.nXpt_list(:,1) = 0.25;

072 GL.nXpt_list(:,3) = 0.25;

073 GL.nXpt_list_old = GL.nXpt_list;

074 GL.nXpt_list_old2 = GL.nXpt_list;

075 end

076 end

077

078 %------------------------------------------------------

079 % DEFINE Eg GLOBAL STRUCTURE

080 %------------------------------------------------------

081 global Eg

082 % Physical Constants:

083 %Eg.C.lambda = sqrt(3/2)*1.38*0.4/0.228; % (eV/angstrom), J-T param, (= 2.9652)

084 % Eg.C.lambda = 1.69; % (eV/angstrom), J-T param

085 % Eg.C.JhSc = 2.47 / 2; % (eV), Hund’s param, (= 1.235)

086 % Eg.C.U = 1.6; % (eV), Coulomb potential

087 % Eg.C.Uch = -2.6; % (eV), core-hole potential

088

089 % Experimentally determined:

090 Eg.C.Q_1s = 0.05311622; % (A) distortion parameter

091 Eg.C.Q_2s = 0.05444722; % (A) distortion parameter

092 Eg.C.Q_3u = 0.10736930; % (A) distortion parameter

093 Eg.C.Q_3s = -0.01183920; % (A) distortion parameter

094

095 % Resonance parameters (used in RIXS model only):

096 %Eg.C.omega_in = 0.0; % (eV), calculated later

097 Eg.C.Gamma1 = 0.75; % (eV), set here for Mn3 C-H

098 Eg.C.Gamma2 = 0.75; % (eV), set here for Mn4 C-H

099

100

101 % CHOSEN PARAMETERS:

102 Eg.C.beta = 2.0; % (unitless) breathing parameter

103 Eg.C.t0 = 1.2;

104 Eg.C.lambda = 4.566; % 5.953;

105 Eg.C.U = 0.95 * 1.6; %(= 1.52)

106 Eg.C.JhSc = 1.8 * 2.47 / 2; % (=2.2230)

107 Eg.C.Uch = -2.0;

108

109 Eg.C.shift = 4.17279306; % value for N16 t0 = 0.9

110

111

112 % beta t0 lambda U Uch

113 %----------------------------------------

114 Params = [...

115 1.5, 0.1, 10.79, 3.5, -4.0, 4.64902595; ...

116 1.5, 0.6, 9.606, 3.5, -4.0, 4.50117621; ...

117 1.5, 0.9, 7.407, 3.5, -4.0, 4.17279306; ...

118 1.5, 1.1, 4.810, 3.5, -4.0, 3.73921945; ...

119 1.5, 1.3, 3.800, 3.5, -4.0, 3.61694785; ...

120 1.5, 1.32, 3.760, 3.5, -4.0, 3.61736508; ...

121 1.5, 1.33, 3.748, 3.5, -4.0, 3.61938530; ...

122 1.5, 1.35, 3.725, 3.5, -4.0, 3.62362752; ...

123 1.5, 1.40, 3.650, 3.5, -4.0, 3.62999964; ...

124 1.5, 1.5, 3.509, 3.5, -4.0, 3.64416614; ...

125 ];

126 %1.5, 1.45, 3.575, 3.5, -4.0, 0;

127 pCase = 3;

128

129 Eg.C.beta = Params(pCase,1);

130 Eg.C.t0 = Params(pCase,2);

131 Eg.C.lambda = Params(pCase,3);

132 Eg.C.U = Params(pCase,4);

133 Eg.C.Uch = Params(pCase,5);

134 Eg.C.shift = Params(pCase,6);

135
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136

137

138 % Enable ONLY for running: run_Uch() and Uch_Estimation()

139 %Eg.C.Uch = -1 * load(’_temp_.txt’);

140

141 %------------------------------------------------------

142 % Hamiltonians 16x16:

143 Eg.H_hund = SetHund_eg(Eg.C.JhSc);

144 Eg.H_jt = SetJahnTeller_eg(Eg.C.lambda, Eg.C.Q_3u, Eg.C.Q_3s, Eg.C.Q_2s);

145 Eg.H_brtng = SetBreathing_eg(Eg.C.lambda,Eg.C.beta, Eg.C.Q_1s);

146 Eg.H_shift = Eg.C.shift .* eye(16);

147

148 if isCluster

149 GL.R_eg = Set_R_eg(Eg.C.Q_3u, Eg.C.Q_3s, Eg.C.Q_2s);

150 end

151

152 %------------------------------------------------------

153 % FOR BANDS ONLY

154 %------------------------------------------------------

155 if not(isCluster)

156 Eg.H_coloumb = SetCoulomb_Bands_eg(N);

157 end

158 end

159 %==========================================================

160 function kPoints = GetAll_kPoints(N)

161 kPoints = zeros(N*N/8, 2);

162 dk = 2*pi/N;

163 kx = dk*(-N/4+1:N/4);

164 nkx = length(kx);

165 i = 1;

166 kPoints(i:i+nkx-1,1) = kx’;

167 i = i+nkx;

168 ky = dk;

169 while nkx > 2

170 kx = kx(2:nkx-1);

171 nkx = length(kx);

172 kPoints(i:i+nkx-1,1) = kx’;

173 kPoints(i:i+nkx-1,2) = ky;

174 i = i+nkx;

175 kPoints(i:i+nkx-1,1) = kx’;

176 kPoints(i:i+nkx-1,2) = -ky;

177 i = i+nkx;

178 ky = ky+dk;

179 end

180 kPoints = sortrows(kPoints,[2 1]);

181 end

182 %{

183 Function creates an array of N^2 equally spaced (in 3D) i-points symmetrical w.r.t (0,0).

184 All dimensions run from -N/2+1 to N/2 with increments of 1.

185 NOTE: 3-rd dimension (3-rd column) are orbital id labels: {1,2,3}, not z-coordinate

186 %}

187 function iPoints = GetAll_iPoints(N)

188 iPoints = zeros(N^2, 3);

189 nx = -N/2+1:N/2;

190 ny = nx;

191 nn = length(nx);

192 for iy = 1:nn

193 i = (iy-1)*nn+1;

194 iPoints(i:i+nn-1,1) = nx’;

195 iPoints(i:i+nn-1,2) = ny(iy);

196 end

197 % create orbital id labels: 1: Mn^{3+}_-, 2: Mn^{4+}, 3: Mn^{3+}_+

198 for i = 1:size(iPoints,1)

199 switch mod(-iPoints(i,2) - iPoints(i,1), 4)

200 case 0 % Mn^{3+}_-

201 iPoints(i,3) = 1;

202 case 1 % Mn^{4+}
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203 iPoints(i,3) = 2;

204 case 2 % Mn^{3+}_+

205 iPoints(i,3) = 3;

206 case 3 % Mn^{4+}

207 iPoints(i,3) = 2;

208 end

209 end

210 end

211 %==========================================================

212 function m16 = SetHund_eg(JhSc)

213 Z = zeros(2);

214 G = (JhSc / 2) * eye(2);

215 m16 = [ ...

216 Z, G,-G, Z, Z,-G,-G, Z; ...

217 G, Z, Z,-G, -G, Z, Z,-G; ...

218 -G, Z, Z, G, -G, Z, Z,-G; ...

219 Z,-G, G, Z, Z,-G,-G, Z; ...

220 Z,-G,-G, Z, Z, G,-G, Z; ...

221 -G, Z, Z,-G, G, Z, Z,-G; ...

222 -G, Z, Z,-G, -G, Z, Z, G; ...

223 Z,-G,-G, Z, Z,-G, G, Z ];

224 m16(:,:,2) = -m16(:,:,1);

225 end

226

227 function m16 = SetJahnTeller_eg(lambda, Q_3u, Q_3s, Q_2s)

228 Z = zeros(2);

229 A = -lambda * Q_3u * [ 1, 0; 0, -1];

230 B = -lambda * Q_3s * [ 1, 0; 0, -1];

231 C = -lambda * Q_2s * [ 0, -1; -1, 0];

232 m16 = [ ...

233 A, Z, Z, B, C, Z, Z, C; ...

234 Z, A, B, Z, Z, C, C, Z; ...

235 Z, B, A, Z, Z, C, C, Z; ...

236 B, Z, Z, A, C, Z, Z, C; ...

237 C, Z, Z, C, A, Z, Z, B; ...

238 Z, C, C, Z, Z, A, B, Z; ...

239 Z, C, C, Z, Z, B, A, Z; ...

240 C, Z, Z, C, B, Z, Z, A ];

241 end

242

243 function m16 = SetBreathing_eg(lambda, beta, Q_1s)

244 Z = zeros(2);

245 A = -lambda * beta * Q_1s * [1, 0; 0, 1];

246 m16 = [ ...

247 Z, Z, Z, A, Z, Z, Z, Z; ...

248 Z, Z, A, Z, Z, Z, Z, Z; ...

249 Z, A, Z, Z, Z, Z, Z, Z; ...

250 A, Z, Z, Z, Z, Z, Z, Z; ...

251 Z, Z, Z, Z, Z, Z, Z, A; ...

252 Z, Z, Z, Z, Z, Z, A, Z; ...

253 Z, Z, Z, Z, Z, A, Z, Z; ...

254 Z, Z, Z, Z, A, Z, Z, Z ];

255 end

256 %==========================================================

257 %{

258 Creates a pair of 16x16 matrices used in Oper_n()

259 First 16x16 matrix is for kx component, second is for ky

260 %}

261 function m16z2 = Get_kDiff_eg()

262 m16z2 = zeros(16,16,2);

263 m2 = ones(2);

264 del_kx = [0, pi, 0, pi, -pi/2, pi/2, -pi/2, pi/2];

265 del_ky = [0, 0, pi, pi, -pi/2, -pi/2, pi/2, pi/2];

266 for ir = 1:8

267 iir = (ir-1)*2+1;

268 for ic = 1:8

269 iic = (ic-1)*2+1;
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270 m16z2(iir:iir+1, iic:iic+1, 1) = (del_kx(ic) - del_kx(ir)) .* m2;

271 m16z2(iir:iir+1, iic:iic+1, 2) = (del_ky(ic) - del_ky(ir)) .* m2;

272 end

273 end

274 end

275

276 %{

277 Creates 3 pairs of 16x16 matrices used in Oper_n()

278 There are 3 atom types {1,2,3}, and two orbital types each {-,+}

279 %}

280 function m16_R = Set_R_eg(Q_3u, Q_3s, Q_2s)

281 if abs(Q_2s) > eps

282 Q_33 = Q_3u + Q_3s;

283 th0 = atan( (-Q_33 + sqrt(Q_33^2 + 4*Q_2s^2)) / (2*Q_2s) );

284 theta = [-th0, 0, th0];

285 else

286 theta = [0, 0, 0];

287 end

288

289 % 1-2 dim is 16x16

290 % 3-rd dim is atom type based on theta {1,2,3} => {Mn3_x, Mn4, Mn3_y}

291 % 4-th dim is orbital {1,2} => {-,+}

292 m16_R = zeros(16,16,3,2);

293

294 c2 = cos(theta).^2;

295 s2 = sin(theta).^2;

296 cs = cos(theta).*sin(theta);

297

298 ind = 1:2:16;

299 for i = 1:3

300 m16_R(ind,ind, i,1) = c2(i);

301 m16_R(ind,ind+1, i,1) = cs(i);

302 m16_R(ind+1,ind, i,1) = cs(i);

303 m16_R(ind+1,ind+1, i,1) = s2(i);

304

305 m16_R(ind,ind, i,2) = s2(i);

306 m16_R(ind,ind+1, i,2) = -cs(i);

307 m16_R(ind+1,ind, i,2) = -cs(i);

308 m16_R(ind+1,ind+1, i,2) = c2(i);

309 end

310 end

311 %==========================================================

312 % FOR BANDS ONLY:

313 function H_coulomb = SetCoulomb_Bands_eg(N_base)

314 global GL Eg

315

316 NN = N_base^2;

317 iPoints = []; nXpt_list = [];

318 load(sprintf(’%s/_main_/N%02d_CH0__nXpt_list’,GL.path,N_base));

319 nP = size(iPoints,1);

320

321 % Create U-based list for Hartree-Fock

322 U_list = zeros(size(nXpt_list));

323 nXpt_sum = Eg.C.U * sum(nXpt_list(:,1:4),2);

324 for ic = 1:4

325 U_list(:,ic) = nXpt_sum - Eg.C.U * nXpt_list(:,ic);

326 end

327

328 m16_R = Set_R_eg(Eg.C.Q_3u, Eg.C.Q_3s, Eg.C.Q_2s);

329 kDiff_eg = Get_kDiff_eg();

330

331 spUp = 1; spDn = 2;

332 oMn = 1; oPl = 2;

333 H_coulomb = zeros(16,16,2);

334 for i = 1:nP

335 U = U_list(i,:);

336 vi = iPoints(i,1:2);
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337 iType = iPoints(i,3);

338 m16_Exp = (1/NN) .* exp(1i.*( vi(1) .* kDiff_eg(:,:,1) + vi(2) .* kDiff_eg(:,:,2) ));

339

340 H_coulomb(:,:,spUp) = H_coulomb(:,:,spUp) + ...

341 m16_Exp .* ( U(1) .* m16_R(:,:,iType,oMn) + U(2) .* m16_R(:,:,iType,oPl) );

342

343 H_coulomb(:,:,spDn) = H_coulomb(:,:,spDn) + ...

344 m16_Exp .* ( U(3) .* m16_R(:,:,iType,oMn) + U(4) .* m16_R(:,:,iType,oPl) );

345 end

346 end

347 %==========================================================

6.3 Code for RIXS Spectrum Calculation with Kramers-Heisenberg
Formula

Further, presented is Matlab code segment for calculation of RIXS intensity based

upon exact diagonalization approach, applied to calculated Hamiltonian operators.

This code is related to the discussion in Chapter 2. RIXS spectrum is calculated

using Equation (2.26), that have been derived from Kramers-Heisenberg formula.

All the related figure plotting routines are omitted for compactness and clarity.

001 % Entry point (Hit F5 to run)

002 %{

003 ===============================================================================

004 DESIGNED BY: Tsezar F. Seman

005 AFFILIATION: NJIT University, Physics Department

006 MODIFIED ON: 06/06/2012

007 COPYRIGHT: (c) Tsezar F. Seman. All rights reserved.

008 PURPOSE: Calculating RIXS data for eg case.

009 ===============================================================================

010 %}

011 function run2_rixs_calc(N,minmax_E)

012 clc; addpath(’_functions_’,’../__common__’);

013 if nargin < 1

014 clear all;

015 N = 8; % must be divisible by 4

016 end;

017 if nargin < 2

018 % energy bounds for RIXS table

019 minmax_E = [-1, 20]; % units: eV

020 end

021

022 %--------------------------------------------

023 % GENERATE RIXS DATASET:

024 CmdTitle(sprintf(’LaSrMnO4 RIXS: N = %i’, N));

025 fprintf(’## SETTING GLOBAL PARAMS... \n’);

026 tic; SetGlobals(N); toc;

027 fprintf(’\n## CALCULATING RIXS... \n’);

028 tic; SetRIXS(minmax_E); toc;

029 fprintf(’\n## SAVING CALCULATED RIXS: ... \n’);

030 SaveCalcRixs();

031

032 %--------------------------------------------

033 % SAVE RESULTS AS TABLES:
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034 fprintf(’\n## SAVING DATA TABLES: ... \n’);

035 TableEnergy();

036 TableIntensity();

037 TableSumIntensity();

038

039 Table_Matrix_kMap();

040 %--------------------------------------------

041 fprintf(’\nFINISHED... \n’);

042 end

043 %==========================================================

044 % PREPARE DATA FROM CH CORE-HOLE SITES:

045 % Collect all the extended points for the reduced Bruilloin zone and

046 % their indexes mapped to the kPoints

047 function [kPoints_ext, ind_ext] = GetExtended_kPoints(kPoints)

048 sq = 1/sqrt(2);

049 ROT = [sq sq; -sq sq]; % +45 rotation

050 kR = kPoints * ROT;

051

052 del = 1e-10;

053 v1 = pi / 2 / sqrt(2);

054 v2 = pi / sqrt(2);

055

056 % stage 1: x

057 ind1 = find(abs(kR(:,1)-v1) < del);

058 kR_ext1 = kR(ind1,:);

059 kR_ext1(:,1) = kR_ext1(:,1) - v2;

060 % stage 2: y

061 ind2 = find(abs(kR(:,2)-v1) < del);

062 kR_ext2 = kR(ind2,:);

063 kR_ext2(:,2) = kR_ext2(:,2) - v2;

064 % stage 3: x & y

065 ind3 = find(abs(kR(:,1)-v1) < del & abs(kR(:,2)-v1) < del);

066 kR_ext3 = kR(ind3,:);

067 kR_ext3(:,1:2) = kR_ext3(:,1:2) - v2;

068

069 % finilize

070 kR_ext = [kR_ext1, ind1; kR_ext2, ind2; kR_ext3, ind3];

071 kPoints_ext = kR_ext(:,1:2) * ROT’;

072 ind_ext = kR_ext(:,3);

073 end

074 function [kPoints, kPointsExt, kIndexExt] = GetFull_kPoints(N)

075 dk = 2*pi/N;

076 kPoints = zeros(N^2, 2);

077 kx = dk*(-N/2+1:N/2);

078 ky = kx;

079 nn = length(kx);

080 for iy = 1:nn

081 i = (iy-1)*nn+1;

082 kPoints(i:i+nn-1,1) = kx’;

083 kPoints(i:i+nn-1,2) = ky(iy);

084 end

085

086 % extended k-points

087 kPointsExt = [-pi, -pi];

088 kIndexExt = N^2;

089

090 kSet = [kx’, 0.*kx’]; kSet(:,2) = -pi;

091 kPointsExt = [kPointsExt; kSet];

092 kIndexExt = [kIndexExt; (N^2-N+1:N^2)’];

093

094 kSet = [0.*kx’, kx’]; kSet(:,1) = -pi;

095 kPointsExt = [kPointsExt; kSet];

096 kIndexExt = [kIndexExt; (N:N:N^2)’];

097 end

098 function [V_CH0,MAP_CH0] = GetBaseCH0(H_CH0)

099 global GL

100
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101 % allocate space

102 nk = size(GL.kPoints,1);

103 nE = size(H_CH0,1); % # of electorns, total (per spin)

104 V_CH0 = zeros(nE,nE, 2); % storage for column eigen-vectors

105 MAP_CH0 = zeros(nE, 6, 2); % storage for [E,kPoint_index,band_index, E-H index,kx,ky]

106 iBands = (1:16)’;

107 % go through every k-point

108 jj = 1:16;

109 for ik = 1:nk

110 % k-point

111 k = GL.kPoints(ik,:);

112 % spin up/down

113 for spin = 1:2

114 [V,E] = eig( H_CH0(jj,jj,spin) ); E = diag(E);

115 V_CH0(jj,jj,spin) = V; % eigenvectors

116 MAP_CH0(jj,1,spin) = E; % energies

117 MAP_CH0(jj,2,spin) = ik; % kPoint index

118 MAP_CH0(jj,3,spin) = iBands; % band index

119 MAP_CH0(jj,5,spin) = k(1); % k_x

120 MAP_CH0(jj,6,spin) = k(2); % k_y

121 end

122 % iteration

123 jj = jj + 16;

124 end

125 % sort everything with increasing energy

126 for spin = 1:2

127 MAP_CH0(:,1,spin) = ReNormalize(MAP_CH0(:,1,spin));

128 [MAP_CH0(:,:,spin), ind] = sortrows(MAP_CH0(:,:,spin), 1);

129 V_CH0(:,:,spin) = V_CH0(:,ind,spin);

130 end

131 % set E-H index, used in RIXS table

132 MAP_CH0(:,4, 1) = 1:2:2*nE-1;

133 MAP_CH0(:,4, 2) = 2:2:2*nE;

134 end

135 function [Beta_occ, CoF, Beta_unc, Z, CH_iPoint, Eocc] =

136 SetBetaMatrices(inv_V_CH0,MAP_CH0, file_CH, CH)

137 % load calculated core-hole Hamiltonian into CH1:

138 load( file_CH );

139 if CH1.CH ~= CH

140 disp(’ERR: Core hole input data file mismatch.’);

141 end

142 [V_up,E_up] = eig(CH1.H_eg(:,:,1));

143 [V_dn,E_dn] = eig(CH1.H_eg(:,:,2));

144 BetaFull_up = inv_V_CH0(:,:,1) * V_up;

145 BetaFull_dn = inv_V_CH0(:,:,2) * V_dn;

146

147 % allocate space

148 nE = size(MAP_CH0,1);

149 nF = nE / 8;

150 Beta_occ = zeros( nF,nF,2);

151 CoF = zeros( nF,nF,2);

152 Beta_unc = zeros(nE-nF,nF,2);

153

154 % extract return values

155 Beta_occ(:,:,1) = BetaFull_up(1:nF,1:nF);

156 Beta_occ(:,:,2) = BetaFull_dn(1:nF,1:nF);

157

158 Z = [det(Beta_occ(:,:,1)), det(Beta_occ(:,:,2))];

159

160 CoF(:,:,1) = ( Z(1) .* inv(Beta_occ(:,:,1)) ).’;

161 CoF(:,:,2) = ( Z(2) .* inv(Beta_occ(:,:,2)) ).’;

162

163 Beta_unc(:,:,1) = BetaFull_up(nF+1:nE,1:nF);

164 Beta_unc(:,:,2) = BetaFull_dn(nF+1:nE,1:nF);

165

166 CH_iPoint = CH1.CH_site;

167
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168 % get E_occ, the energy of occupied states for given C-H

169 E_up = diag(E_up);

170 E_dn = diag(E_dn);

171 Eocc = sum(sum( [E_up(1:nF), E_dn(1:nF)] ));

172 end

173 function SetGlobals(N)

174 % starting with blank GL and blank TMP:

175 global GL

176

177 if mod(N,4)~=0 || N<4

178 error(’ERR: N must be divisible by 4, and N >= 4.’);

179 end

180

181 GL.path = sprintf(’_N%02i_data_’,N);

182

183 % load calculated base Hamiltonian into CH0:

184 load( sprintf(’%s/_RIXS_/N%02i_CH0.mat’, GL.path, N) );

185

186 GL.N = N;

187 GL.C = CH0.C;

188

189 % DELETE: redundant, left from older version:

190 %GL.U_eg = CH0.C.U;

191 %GL.Uch_eg = CH0.C.Uch;

192

193 % DELETE:

194 %GL.figId = 30;

195 GL.dir_tables = [GL.path,’/_tables_’];

196 GL.kPoints = CH0.kPoints;

197 % DELETE:

198 %GL.figPref = sprintf(’N=%i’,N);

199

200 % extended kPoints and indexes connecting with GL.kPoints

201 [kPoints_ext, ind_ext] = GetExtended_kPoints(GL.kPoints);

202 GL.kPointsExt = kPoints_ext;

203 GL.kIndexExt = ind_ext;

204

205 % k-points for extended Brillouin zone

206 [GL.kPointsFull, GL.kPointsFullExt, GL.kIndexFullExt] = GetFull_kPoints(N);

207

208 % return data from base Hamiltonian (CH0) ordered in increasing energy

209 [V_CH0,MAP_CH0] = GetBaseCH0(CH0.H_eg);

210 GL.MAP_CH0 = MAP_CH0;

211

212 % create inverse once for re-occuring multiplication

213 inv_V_CH0 = zeros(size(V_CH0));

214 inv_V_CH0(:,:,1) = inv(V_CH0(:,:,1).’).’;

215 inv_V_CH0(:,:,2) = inv(V_CH0(:,:,2).’).’;

216

217 %{

218 TFS NOTES:

219 TMP.Beta_occ is redundant since TMP.CoF is needed,

220 but keep for testing, for now!

221 %}

222

223 % prepare beta matrices

224 nCH = 8;

225 nE = size(CH0.H_eg,1);

226 nF = nE / 8; % 8 -> electron filling

227 GL.Beta_occ = zeros( nF, nF, 2, nCH); % 2 -> spins

228 GL.CoF = zeros( nF, nF, 2, nCH); % 2 -> spins

229 GL.Beta_unc = zeros(nE-nF, nF, 2, nCH); % 2 -> spins

230 GL.Z = zeros(nCH,2); % 2 -> spins

231 GL.CH_iPoint = zeros(nCH, 2); % 2 -> ix,iy

232 vEocc_CH = zeros(nCH,1);

233 for CH = 1:nCH

234 file_CH = sprintf(’%s/_RIXS_/N%02i_CH%i.mat’, GL.path,N,CH);
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235 [Beta_occ, Cof, Beta_unc, Z, CH_iPoint, E_occ] =

236 SetBetaMatrices(inv_V_CH0,MAP_CH0, file_CH, CH);

237 GL.Beta_occ(:,:,:, CH) = Beta_occ;

238 GL.CoF(:,:,:, CH) = Cof;

239 GL.Beta_unc(:,:,:, CH) = Beta_unc;

240 GL.Z(CH,:) = Z;

241 GL.CH_iPoint(CH,:) = CH_iPoint;

242 vEocc_CH(CH,1) = E_occ;

243 end

244

245 % calculating resonant term for each CH case

246 Eocc_CH0 = sum(sum( [GL.MAP_CH0(1:nF,1,1), GL.MAP_CH0(1:nF,1,2)] ));

247 omega_in = (vEocc_CH(2)-Eocc_CH0 + vEocc_CH(1)-Eocc_CH0) / 2;

248 g1 = GL.C.Gamma1;

249 g2 = GL.C.Gamma2;

250 vGamma = 1i * [g1,g2, g1,g2, g1,g2, g1,g2]’;

251 GL.RES = 1.0 ./ (omega_in - (vEocc_CH - Eocc_CH0) + vGamma);

252

253 %{-

254 % adding distortions at Mn4+ sites:

255 ds = 0.01871;

256 dd = [ 0,0; ...

257 ds,-ds;...

258 0,0; ...

259 -ds, ds;...

260 0,0; ...

261 ds,-ds;...

262 0,0; ...

263 -ds, ds ];

264 GL.CH_iPoint = GL.CH_iPoint + dd;

265 %}

266 end

267

268 function SetRIXS(minmax_E)

269 global GL

270

271 nE = size(GL.MAP_CH0,1);

272 nF = nE / 8;

273 nk = size(GL.kPoints, 1);

274 nRows = 8*nk*nk * 14*2 * 2; % same as: (nE-nF)*nF * 8 * 2

275 iRow = 1;

276 fprintf(’ * Calculating RIXS table with %i rows...\n’, nRows);

277

278 % RixsData Columns:

279 % 1-hole id, 2-electron id, 3-intensity, 4-energy

280 % 5:6-momentum, 7-spin, 8-indexes of k-points

281 RixsData = zeros(nRows,8);

282 DK = [0,0; pi,0; 0,pi; pi,pi; -pi/2,-pi/2; pi/2,-pi/2; -pi/2,pi/2; pi/2,pi/2];

283 mapOCC = GL.MAP_CH0( 1:nF,:, :);

284 mapUNC = GL.MAP_CH0(nF+1:nE,:, :);

285 rowUNC = zeros(8,nF, 2);

286 % amplitude calculation terms, for every {ke,le,kh,lh, spin,K}:

287 PH = zeros(8,1); % phase

288 X1 = zeros(8,1); % one CH excitation

289 X0 = conj(GL.Z(:,1)) .* conj(GL.Z(:,2)); % no excitation

290 RES = GL.RES; % resonance denominator

291 for iUNC = 1:(nE-nF)

292 % extract rows for use with CoF

293 for CH = 1:8

294 rowUNC(CH,:, 1) = GL.Beta_unc(iUNC,:, 1,CH);

295 rowUNC(CH,:, 2) = GL.Beta_unc(iUNC,:, 2,CH);

296 end

297

298 % populate RIXS table

299 for iOCC = 1:nF

300 for spin = 1:2

301 % excitation contribution



136

302 % example for spin up: Z_dn * DETERMINANT^[Beta(SwapedRow)_up]

303 spin_neg = mod(spin,2)+1;

304 for CH = 1:8

305 X1(CH,1) = GL.Z(CH,spin_neg) .*

306 (rowUNC(CH,:, spin) * (GL.CoF(iOCC,:, spin,CH)).’);

307 end

308

309 %{

310 % TEST DETERMINANT:

311 CH = 1;

312 r = GL.Beta_unc(iUNC,:, spin,CH);

313 B = GL.Beta_occ(:,:, spin,CH);

314 B(iOCC,:) = r;

315 d1 = det(B);

316 d2 = (rowUNC(CH,:, spin) * (GL.CoF(iOCC,:, spin,CH)).’);

317 err = abs(d1 - d2);

318 if err > 1e-15

319 err

320 end

321 %}

322

323 % k-indexes, band-indexes

324 ik_h = mapOCC(iOCC,2, spin); ik_e = mapUNC(iUNC,2, spin);

325 % il_h = mapOCC(iOCC,3, spin); il_e = mapUNC(iUNC,3, spin);

326 iH = mapOCC(iOCC,4, spin); iE = mapUNC(iUNC,4, spin);

327 % momentum change in 1-st BZ

328 dk = GL.kPoints(ik_e,:) - GL.kPoints(ik_h,:);

329 % energy

330 w = mapUNC(iUNC,1, spin) - mapOCC(iOCC,1, spin);

331

332 for iDK = 1:8

333 % momentum change in the extended BZ

334 [q, iq] = CorrectQpt(-dk - DK(iDK,:));

335 % phase

336 PH = exp(-1i * (GL.CH_iPoint * q’) );

337

338 % amplitude for all CH

339 %A = sum(PH .* X1 .* X0 .* RES, 1);

340 A = sum(PH .* X1 .* X0, 1);

341 %A_tmp = PH .* X1 .* X0;

342 %A = A_tmp(3);

343

344 % one data row for rixs table

345 RixsRow = [

346 iH, ... % hole id

347 iE, ... % electron id

348 A*conj(A), ... % rixs intensity

349 w, ... % w energy

350 q(1), ... % q_x momentum

351 q(2), ... % q_y momentum

352 spin, ... % spin

353 iq ... % q-index

354 ];

355 RixsData(iRow,:) = RixsRow;

356 iRow = iRow+1;

357 end % iDK

358 end % spin

359 end % iOCC

360 end % iUNC

361 if iRow-1 ~= nRows

362 disp(’ERR: RIXS Table - number of processed rows mismatched.’);

363 end

364

365 % RixsData = RixsData(1:iRow-1,:);

366

367 % reduce table to given energy bouds

368 RixsData = RixsData(RixsData(:,4) <= minmax_E(2), :);
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369 RixsData = RixsData(RixsData(:,4) >= minmax_E(1), :);

370

371 % set new k-points for extended BZ

372 GL.kPoints = GL.kPointsFull;

373 GL.kPointsExt = GL.kPointsFullExt;

374 GL.kIndexExt = GL.kIndexFullExt;

375

376 %{-

377 % Averaging w.r.t. qx <-> -qx:

378 % create swap array for ik

379 N = GL.N;

380 nk = size(GL.kPoints,1);

381 ind_swap = (1:nk)’;

382 for iOff = 0:N-1

383 for i = 1:N-1

384 ind_swap(iOff*N + i) = iOff*N + N-i;

385 end

386 end

387 % process new table

388 RixsData_qxNeg = RixsData;

389 for i = 1:size(RixsData_qxNeg,1)

390 ik = ind_swap( RixsData_qxNeg(i,8) );

391 RixsData_qxNeg(i,8) = ik;

392 RixsData_qxNeg(i,5) = GL.kPoints(ik,1);

393 end

394 % merge with existing table, and averaging intensity

395 RixsData = [RixsData; RixsData_qxNeg];

396 RixsData(:,3) = RixsData(:,3) / 2;

397 %}

398

399 % sort by descending intensity and pass to global

400 GL.RIXS = sortrows(RixsData, -3);

401

402 % integrate all intensities, separately per spin

403 nk = size(GL.kPoints,1); % must be recalculated, now for extended BZ

404 SumIrixs = zeros(nk,2);

405 for ik = 1:nk

406 SumIrixs(ik,1) = sum( RixsData(RixsData(:,8) == ik & RixsData(:,7) == 1, 3) );

407 SumIrixs(ik,2) = sum( RixsData(RixsData(:,8) == ik & RixsData(:,7) == 2, 3) );

408 end

409 if abs(sum(sum(SumIrixs)) - sum(RixsData(:,3))) > 1e-12

410 disp(’ERR: Sum Irixs mismatch. See SetRIXS().’);

411 end

412 GL.RIXS_SUM = SumIrixs;

413

414 % cleanup GL

415 GL = rmfield(GL, ’kPointsFull’);

416 GL = rmfield(GL, ’kPointsFullExt’);

417 GL = rmfield(GL, ’kIndexFullExt’);

418 GL = rmfield(GL, ’Beta_occ’);

419 GL = rmfield(GL, ’CoF’);

420 GL = rmfield(GL, ’Beta_unc’);

421 GL = rmfield(GL, ’Z’);

422 GL = rmfield(GL, ’CH_iPoint’);

423 end

424 %==========================================================

425 % This is necessary to eliminate 14/15-th significant

426 % digit discrepancy in degenerate values

427 function EE = ReNormalize(E)

428 [EE, ind] = sortrows(E,1);

429 dig_eps = 1000*eps(EE(1));

430

431 igr = 1;

432 groups(igr,1) = 1;

433 val = EE(1);

434 for i = 2:size(EE,1)

435 % if values are not close
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436 if abs(EE(i) - val) > dig_eps

437 val = EE(i);

438 groups(igr,2) = i-1;

439 igr = igr+1;

440 groups(igr,1) = i;

441 end

442 end

443 groups(igr,2) = i;

444

445 % fixing values

446 for i = 1:size(groups,1)

447 a = groups(i,1);

448 b = groups(i,2);

449 avg = mean( EE(a:b,1) );

450 EE(a:b,1) = avg;

451 end

452

453 EE = sortrows([EE, ind],2);

454 EE = EE(:,1);

455 end

456

457 % map new q-value onto extanded BZ

458 function [q, iq] = CorrectQpt(q)

459 global GL

460

461 Eps = 1e-10;

462 % kx values

463 if q(1) > pi

464 q(1) = q(1) - 2*pi;

465 elseif q(1) <= -pi + Eps

466 q(1) = q(1) + 2*pi;

467 end

468 % ky values

469 if q(2) > pi

470 q(2) = q(2) - 2*pi;

471 elseif q(2) <= -pi + Eps

472 q(2) = q(2) + 2*pi;

473 end

474 % indexes

475 kk = (GL.kPointsFull(:,1) - q(1)).^2 + (GL.kPointsFull(:,2) - q(2)).^2;

476 iq = find(kk < 1e-10);

477 q = GL.kPointsFull(iq,:);

478 end

479 %==========================================================

480 % SAVING DATA:

481 function TableEnergy()

482 global GL

483

484 file = sprintf(’%s/N%02i__RIXS_Energies.txt’,GL.dir_tables,GL.N);

485 fid = fopen(file, ’w’);

486 fprintf(fid, ’+--------------------------------------------+\r\n’);

487 fprintf(fid, ’| N = %2i: ELECTRON ENERGY SPECTRUM |\r\n’,GL.N);

488 fprintf(fid, ’------+-----------+-----------------+----+----\r\n’);

489 fprintf(fid, ’iE/iH | Energy |BZ: kx ky |band| sp \r\n’);

490 fprintf(fid, ’------+-----------+-----------------+----+----\r\n’);

491

492 nT = size(GL.MAP_CH0,1);

493 nF = nT/8;

494 cSp = {’u ’,’ d’};

495 for i = nT:-1:1

496 % spin down/up

497 for spin = [2,1]

498 v = GL.MAP_CH0(i,:,spin);

499 fprintf(fid, ’ %4i | %9.4f |%s%s | %2d | %s\r\n’, v(4), v(1), ...

500 Num2Latex(v(5),0,[8,4]), Num2Latex(v(6),0,[8,4]), v(3), cSp{spin});

501 end

502 % fermi level separator
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503 if i == nF+1

504 fprintf(fid, ’>---------------< FERMI LEVEL >--------------<\r\n’);

505 end

506 end

507 fprintf(fid, ’------+-----------+-----------------+----+----\r\n’);

508 fclose(fid);

509

510 fprintf(’ * File [%s] have been generated.\n’,file);

511 end

512 function TableIntensity()

513 global GL

514

515 file = sprintf(’%s/N%02i__RIXS_Intensity.txt’,GL.dir_tables,GL.N);

516 fid = fopen(file, ’w’);

517 fprintf(fid, ’+----------------------------------------------------------------+\r\n’);

518 fprintf(fid, ’| N = %2i: RIXS CALCULATION - PARTIAL TABLE |\r\n’,

GL.N);

519 fprintf(fid, ’------+------+--------------------+---------+-----------------+---\r\n’);

520 fprintf(fid, ’ H_id | E_id | I_RIXS | del_w | del_q(x,y) | sp\r\n’);

521 fprintf(fid, ’------+------+--------------------+---------+-----------------+---\r\n’);

522 nR = min(size(GL.RIXS,1), 170); % limit to about 3 pages in PDF

523 cSp = {’u ’,’ d’};

524 for i = 1:nR

525 fprintf(fid, ’ %4i | %4i | %.16f |%8.4f |%s%s | %s\r\n’, GL.RIXS(i,1:4), ...

526 Num2Latex(GL.RIXS(i,5),0,[8,4]), Num2Latex(GL.RIXS(i,6),0,[8,4]),

cSp{GL.RIXS(i,7)});

527 end

528 fprintf(fid, ’ ... | ... | ... | ... | ... ... | ..\r\n’);

529 fprintf(fid, ’------+------+--------------------+---------+-----------------+---\r\n’);

530 fclose(fid);

531

532 fprintf(’ * File [%s] have been generated.\n’,file);

533 end

534 function TableSumIntensity()

535 global GL

536

537 file = sprintf(’%s/N%02i__RIXS_SumIntensity.txt’,GL.dir_tables,GL.N);

538 fid = fopen(file, ’w’);

539 fprintf(fid, ’+--------------------------------------------------------------+\r\n’);

540 fprintf(fid, ’| N = %2i: Integrated I_RIXS |\r\n’,

GL.N);

541 fprintf(fid, ’-----+--------------------+--------------------+----------------\r\n’);

542 fprintf(fid, ’k_id | Sum I_RIXS_up | Sum I_RIXS_dn | kx ky\r\n’);

543 fprintf(fid, ’-----+--------------------+--------------------+----------------\r\n’);

544 Nk = size(GL.kPoints,1);

545 for ik = 1:Nk

546 fprintf(fid, ’ %2i | %.16f | %.16f |%s%s\r\n’, ik, GL.RIXS_SUM(ik,:), ...

547 Num2Latex(GL.kPoints(ik,1),0,[8,4]), Num2Latex(GL.kPoints(ik,2),0,[8,4]) );

548 end

549 fprintf(fid, ’-----+--------------------+--------------------+----------------\r\n’);

550 fclose(fid);

551

552 fprintf(’ * File [%s] have been generated.\n’,file);

553 end

554 function Table_Matrix_kMap()

555 global GL

556

557 sPref = sprintf(’%s/N%02i__kMap’,GL.dir_tables,GL.N);

558

559 % export coordinate layout

560 kxy = GL.kPoints(1:GL.N,1);

561 file = sprintf(’%s_kx-ky.txt’,sPref);

562 fid = fopen(file, ’w’);

563 fprintf(fid, ’kx values:\r\n’);

564 fprintf(fid, ’% .16f ’,kxy);

565 fprintf(fid, ’\r\n\r\nky values:\r\n’);

566 fprintf(fid, ’% .16f\r\n’,flipud(kxy));
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567 fclose(fid);

568

569 % export k-map matrix values

570 nD = sum(GL.RIXS_SUM, 2);

571 nD2 = flipud(reshape(nD, GL.N, GL.N)’);

572 file = sprintf(’%s_matrix_rixs.txt’,sPref);

573 fid = fopen(file, ’w’);

574 for ir = 1:size(nD2,1)

575 fprintf(fid, ’ % .16f’,nD2(ir,:));

576 fprintf(fid, ’\r\n’);

577 end

578 fclose(fid);

579

580 fprintf(’ * Table file [%s] have been generated.\n’,file);

581 end

582 %==========================================================

583 % SAVING/LOADING:

584 function SaveCalcRixs()

585 % ACCESS to save

586 global GL

587

588 save(sprintf(’%s/_RIXS_/N%02i_CalcRixs.mat’,GL.path,GL.N), ’GL’);

589 end

590 %==========================================================
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